

 Swansea University E-Theses ___

Computational issues in process optimisation using historical data.

Nawi, Nazri Mohd

 How to cite: ___
Nawi, Nazri Mohd (2007) Computational issues in process optimisation using historical data.. thesis, Swansea

University.

http://cronfa.swan.ac.uk/Record/cronfa42799

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42799
http://www.swansea.ac.uk/library/researchsupport/ris-support/

CIVIL AND COMPUTATIONAL ENGINEERING CENTRE

SW ANSEA UNIVERSITY

COMPUTATIONAL ISSUES IN PROCESS

OPTIMISATION USING HISTORICAL DATA

NAZRI m o h d n a w i

B.Sc., M.Sc. (Malaysia)

THESIS SUBMITTED TO THE SW ANSEA UNIVERSITY IN FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

AUGUST 2007

ProQuest Number: 10807575

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10807575

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

SUMMARY

This thesis presents a new generic approach to improve the computational efficiency
of neural-network-training algorithms and investigates the applicability of its
''learning from examples' featured in improving the performance o f a current
intelligent diagnostic system. The contribution of this thesis is summarised in the
following two points:

• For the first time in the literature, it has been shown that significant
improvements in the computational efficiency o f neural-network algorithms
can be achieved using the proposed methodology based on using adaptive-gain
variation.

• The capabilities o f the current Knowledge Hyper-surface method (Meghana R.
Ransing, 2002) are enhanced to overcome its existing limitations in modelling
an exponential increase in the shape of the hyper-surface.

Neural-network techniques, particularly back-propagation algorithms, have been
widely used as a tool for discovering a mapping function between a known set of
input and output examples. Neural networks learn from the known example set by
adjusting its internal parameters, referred to as weights, using an optimisation
procedure based on the ‘least square fit principle’. The optimisation procedure
normally involves thousands of iterations to converge to an acceptable solution.
Hence, improving the computational efficiency o f a neural-network algorithm is an
active area of research. Various options for improving the computational efficiency o f
neural networks have been reviewed in this thesis. It has been shown in the existing
literature that the variation o f the gain parameter improves the learning efficiency of
the gradient-descent method. However, it can be concluded from previous
researchers’ claims that the adaptive-gain variation improved the learning rate and
hence the efficiency. It was discovered in this thesis that the gain variation has no
influence on the learning rate; however, it actually influences the search direction.
This made it possible to develop a novel approach that modifies the gradient-search
direction by introducing the adaptive-gain variation. The proposed method is robust
and has been shown that it can easily be implemented in all commonly used gradient-
based optimisation algorithms. It has also been shown that it significantly improves
the computational efficiency as compared to existing neural-network training
algorithms. Computer simulations on a number o f benchmark problems are used
throughout to illustrate the improvement proposed in this thesis.

In a foundry a large amount of data is generated within the foundry every time a
casting is poured. Furthermore, with the increased number of computing tools and
power there is a need to develop an efficient, intelligent diagnostic tool that can learn
from the historical data to gain further insight into cause and effect relationships. In
this study the performance of the current Knowledge Hyper-surface method was
reviewed and the mathematical formulation o f the current Knowledge Hyper-surface
method was analysed to identify its limitations. An enhancement is proposed by
introducing mid-points in the existing shape formulation. It is shown that the mid­
points’ shape function can successfully constrain the shape o f decision hyper-surface
to become more realistic with an acceptable result in a multi-dimensional case. This is
a novel and original approach and is of direct relevance to the foundry industry.

DECLARATION

This work has not previously been accepted in substance for any degree and is

not being concurrently submitted in candidature for any degree.

STATEMENT 1

.This thesis is the result o f my own investigations, except where otherwise

stated. Where correction services have been used, the extend and nature o f the

correction is clearly marked in a footnote(s). Other sources are acknowledged

by footnotes giving explicit references. A bibliography is appended.

Signed (candidate)

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for

photocopying and for inter-library loans, and for the title and summary to be

made available to outside organisations.

Signed (candidate)

Date

Date

Signed (candidate)

Date

CONTENTS

SUM M ARY.. ii

DECLARATION AND STATEM ENTS.. iii

CONTENTS... iv

LIST OF FIG U RES... viii

LIST OF TA BLES... xv

ACKNOWLEDGEMENTS... xvii

ABBREVIATIONS AND NOMENCLATURE.. xviii

GLOSSARY OF TE R M S... xx

CHAPTER 1 : INTRODUCTION

1.1 Background... 1

1.2 An overview o f the optimisation casting process using historical data 2

1.3 Research challenges.. 4

1.4 Scope of work and research contributions... 5

1.5 List of publication.. 6

1.6 Outline of the thesis.. 7

CHAPTER 2 : REVIEW OF EFFICIENT LEARNING METHODS FOR BACK-

PROPAGATION NETWORKS

CHAPTER LAYOUT... 10

2.1 Introduction... 11

2.2 Back-propagation algorithm (supervise learning).. 13

2.3 Limitations of the back-propagation training algorithm 15

2.4 Improving the back-propagation training efficiency using optimisation

m ethods... 17

2.4.1 Heuristic techniques... 17

2.4.2 Second order optimisation m ethods.. 22

2.5 Supervised learning using adaptive gain variation... 23

2.6 An innovative method to enhance the back-propagation training algorithm

by Ransing... 28

2.6.1 Case 1: The Sin(x) problem without n o ise ... 30

2.6.2 Case 2: The Sin(x) problem with twenty percent random Gaussian

n o ise ... 34

2.6.3 Advantages of the current m ethod.. 37

2.6.4 Limitations o f the current m ethod ... 37

2.7 C onclusion... 38

CHAPTER 3 : ENHANCED LEARNING ALGORITHM FOR BACK

PROPAGATION NETWORK

CHAPTER LA Y O U T.. 39

3.1 Introduction... 40

3.2 The proposed method by improving the current m ethod 42

3.2.1 Verification o f the proposed method on simple data s e ts 47

3.3 The implementation o f the proposed method with various optimisation

techniques... 51

3.3.1 Conjugate gradient method with adaptive gain variation................. 51

3.3.2 Quasi-Newton method with adaptive gain variation......................... 53

3.4 Comparison o f the proposed training method with the equivalent standard

methods on a simple data s e t .. 55

3.4.1 Experimental se tu p ... 55

3.4.1.1 Early stopping... 55

3.4.1.2 Initial training conditions.. 56

3.4.1.3 Training cases ... 57

3.4.1.4 Training algorithm s... 58

3.4.2 Experiment resu lts .. 59

3.5 C onclusion... 64

v

CHAPTER 4 : RESULTS AND VALIDATION ON BENCHMARK PROBLEMS

CHAPTER LAYOUT.. 65

4.1 Introduction... 66

4.2 Preliminaries.. 66

4.3 Verification on benchmark problem s... 69

4.3.1 Performance comparison setup .. 69

4.3.1.1 Thyroid classification problem ... 71

4.3.1.2 Wisconsin breast cancer classifications problem 75

4.3.1.3 Diabetes classification prob lem .. 79

4.3.1.4 IRIS classification problem .. 83

4.3.1.5 Seven-bit parity p roblem ... 87

4.3.1.6 Glass classification problem ... 91

4.4 Conclusion.. 95

CHAPTER 5 : ENHANCEMENT TO THE METHOD PROPOSED FOR

CONSTRUCTING OPTIMAL KNOWLEDGE HYPER-SURFACE

CHAPTER LA Y O U T.. 96

5.1 Introduction... 97

5.2 The Current Knowledge hyper-surface method.. 98

5.2.1 Analogy o f the belief variation in a cause and effect relationship

for the medical fie ld ... 101

5.3 Advantages o f the current Knowledge hyper-surface m ethod....................... 107

5.4 Limitations of the current Knowledge hyper-surface m ethod 107

5.5 Enhancement to the current Knowledge hyper-surface m ethod 110

5.6 The performance comparison of the proposed method with the current

method and neural netw ork.. 112

5.6.1 Importance of the need for accurately monitoring the exponential

rise in belief va lues... 121

5.7 Conclusion... 123

vi

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE

WORK

6.1 Research conclusion.. 124

6.2 Proposal for future w o rk .. 127

REFERENCES... 129

APPENDIX (CONTENTS).. 136

AI: The performance comparison of the proposed method with other

optimisation m ethods.. 138

All: Comparison of the proposed method on benchmark problem s................. 144

LIST OF FIGURES

Figure 2.1: Multilayer Perceptron (M L P)... 11

Figure 2.2: Schematic error function for a single parameter w 12

Figure 2.3: Sigmoid activation function with different slopes 24

Figure 2.4: Training time (in epochs) and maximum hold-out set

phoneme generalisation accuracy for each gain value............... 26

Figure 2.5: Best results obtained when various gain values were used at a

various learning ra te .. 27

Figure 2.6: The sine curve data points used in the training data set as

tabulated in Table 2.1 .. 31

Figure 2.7: Output o f neural network trained to leam a sine curve using

the current proposed m ethod .. 33

Figure 2.8: Error versus number of epochs required to achieve the target

error o f 0.001... 33

Figure 2.9: The sine curve data points with twenty percent random

Gaussian noise as tabulated in Table 2 .2 34

Figure 2.10: Output o f neural network trained to leam a sine curve with

twenty percent random Gaussian noise in batch mode using

the coupled algorithm ... 36

Figure 2.11: Error versus number o f epochs required to achieve the target

error value o f 0.01 .. 36

Figure 3.1: The effect o f gain variation on gradient descent method

claimed by previous researchers.. 41

Figure 3.2: The real effect of gain variation on gradient descent method in

improving search direction... 43

Figure 3.3: Flowchart for the proposed m ethod ... 46

Figure 3.4: Output o f the proposed network (GDM/AG) trained to leam a

sine curve corresponds to Figure 2 .7 .. 47

Figure 3.5: Error versus number of epochs required by the proposed

method (GDM/AG) to achieve the target error o f 0.001 using

viii

gradient descent method. This figure corresponds to Figure

2 .8 48

Figure 3.6: Output of the proposed network (GDM/AG) trained to leam a

sine curve with 20% random Gaussian noise using the

proposed method. This figure is corresponds to Figure 2 .1 0 ... 49

Figure 3.7: Error versus number o f epochs required by the proposed

method (GDM/AG) to achieve the target error o f 0.01 using

gradient descent method. This figure is corresponds to Figure

2.11 .. 50

Figure 3.8: Idealised training and validation error cu rv e 56

Figure 3.9: Fully connected MLP netw ork w ith 1-5-1 architecture... 58

Figure 3.10: Output o f neural network trained to leam a sine curve using

the proposed conjugate gradient m ethod w ith Fletcher-

Reeves fo rm u la tio n .. 60

Figure 3.11: Error versus number of epochs required to achieve the target

error o f 0.001 for conjugate gradient m ethod w ith Fletcher-

Reeves' fo rm u la tio n ... 61

Figure 3.12: Output o f neural network trained to leam a sine curve with

twenty percent random Gaussian noise using the proposed

method w ith Polak-R ibiere fo rm u la tio n 63

Figure 3.13: Error versus number o f epochs required to achieve the target

error o f 0.01 using conjugate gradient method w ith Polak-

Ribiere fo rm u la tio n .. 63

Figure 4.1: Comparison of average CPU time and number o f epochs

required for convergence using the gradient-descent method

for the Thyroid classification problem.. 73

Figure 4.2: Comparison of average CPU time and number o f epochs

required for convergence using the conjugate gradient method

for the Thyroid classification problem 74

Figure 4.3: Comparison of average CPU time and number o f epochs

required for convergence using the Quasi-Newton method for

the Thyroid classification problem ... 75

Figure 4.4: Comparison of average CPU time and number o f epochs

required for convergence using the gradient descent method

for Cancer classification problem .. 77

Figure 4.5: Comparison of average CPU time and number o f epochs

required for convergence using the conjugate gradient method

for Cancer classification problem ... 78

Figure 4.6: Comparison of average CPU time and number o f epochs

required for convergence using the Quasi-Newton method for

Cancer classification problem .. 79

Figure 4.7: Comparison of average CPU time and number o f epochs

required for convergence using the gradient descent method

for Diabetes classification problem ... 81

Figure 4.8: Comparison of average CPU time and number o f epochs

required for convergence using the conjugate gradient method

for Diabetes classification problem .. 82

Figure 4.9: Comparison of average CPU time and number o f epochs

required for convergence using the Quasi-Newton method for

Diabetes classification problem .. 83

Figure 4.10: Comparison of average CPU time and number o f epochs

required for convergence using the gradient descent method

for IRIS classification problem ... 85

Figure 4.11: Comparison of average CPU time and number o f epochs

required for convergence using the conjugate gradient method

for IRIS classification problem ... 86

Figure 4.12: Comparison of average CPU time and number o f epochs

required for convergence using the Quasi-Newton method for

IRIS classification problem .. 87

Figure 4.13: Comparison of average CPU time and number o f epochs

required for convergence using the gradient descent method

for 7-bit parity problem ... 89

Figure 4.14: Comparison of average CPU time and number of epochs

required for convergence using the conjugate gradient method

x

for 7-bit parity problem .. 90

Figure 4.15: Comparison of average CPU time and number o f epochs

required for convergence using the Quasi-Newton method for

7-bit parity problem .. 91

Figure 4.16: Comparison of average CPU time and number o f epochs

required for convergence using the gradient descent method

for Glass classification problem ... 93

Figure 4.17: Comparison of average CPU time and number o f epochs

required for convergence using the conjugate gradient method

for Glass classification problem .. 94

Figure 4.18: Comparison of average CPU time and number o f epochs

required for convergence using the Quasi-Newton method for

Glass classification problem .. 95

Figure 5.1: Primary weight values (1,2,3,4,7) and Secondary weight

values (5,6,8,9). Associated with Reference Points 1 to 9 100

Figure 5.2: Schematic representation of a ‘single effect - cause

relationship’ ... 102

Figure 5.3: Belief that ‘Typhoid’ is a cause for a symptom ‘Fever’ 102

Figure 5.4: Belief that ‘Brain Fever’ is a cause for a symptom ‘Fever’ 103

Figure 5.5: Belief that ‘Heart Attack’ is cause for a symptom ‘Chest

Pain’ ... 104

Figure 5.6: Belief that ‘Hair Fraction in Ribs or Muscular Twist’ is a

cause for a symptom ‘Chest Pain’ ... 105

Figure 5.7: Belief that ‘Over Exertion’ is a cause for a symptom ‘Fever’.. 106

Figure 5.8: Data points plotted with linear, quadratic and quartic shape

functions to demonstrate the over fitting effect caused by the

current knowledge hyper-surface method................................... 108

Figure 5.9: Exponential increase in the belief value o f a c au se 109

Figure 5.10: Belief value variation modelled by quadratic, cubic and

quartic polynomials on a set of data points as show n.............. 109

Figure 5.11: Belief value variation modelled by quadratic, cubic and

110

111

113

116

116

117

118

118

119

119

119

120

122

128

quartic polynomials on a set of data points as show n...............

Shape of the resulting curve after a two stage of optimisation

process. It ensures that x } is betw een w l and W2

and X2 betw een w 2 and W3 ..

Data points used in the training data set as tabulated in Table

5 .4 ...

The performance of Ransing’s method and the proposed

method for ID belief value variation modelled by quadratic

polynomials for defect Porosity...

The performance of Ransing’s method and the proposed

method for 2D belief value variation modelled by quadratic

polynomials for defect Porosity ...

The performance of neural network method for 2D belief

value variation for defect Porosity ...

The performance of Ransing’s method and the proposed

method for ID belief variation modelled by quadratic

polynomials for defect M ism akes..

The performance of Ransing’s method and the proposed

method for 2D belief variation modelled by quadratic

polynomials for defect M ism akes..

The performance of neural network method for 2D belief

value variation for defect M ism akes..

2D quadratic output surface for defects Porosity and

Mismakes generated by Ransing’s m ethod

2D quadratic output surface for defects Porosity and

Mismakes generated by the proposed m ethod

2D output surface for Defects Porosity and Mismakes

generated by the neural network m ethod

Robust design principles: assessing the sensitivity o f output

variation to the change in design factor settings........................

Automatic neural networks training m odel................................

xii

Appendix A

Figure AI. 1: Output of neural network trained to leam a sine curve using

the proposed conjugate gradient m ethod with Polak-

Ribiere fo rm u la tio n .. 138

Figure AI.2: Error versus number o f epochs required to achieve the target

error o f 0.001 for conjugate gradient m ethod w ith Polak-

R ibiere fo rm u la tio n .. 138

Figure AI.3: Output of neural network trained to leam a sine curve using

the proposed conjugate gradient m ethod w ith Broyden-

Fletcher-Goldfarb-Shanno fo rm u la tio n 139

Figure AI.4: Error versus number o f epochs required to achieve the target

error o f 0.001 for conjugate gradient m ethod w ith Broyden-

Fletcher-Goldfarb-Shanno fo rm u la tio n 139

Figure AI.5: Output o f neural network trained to leam a sine curve using

the proposed conjugate gradient m ethod w ith Davidon-

Fletcher-Power fo rm u la tio n ... 140

Figure AI.6: Error versus number of epochs required to achieve the target

error of 0.001 for conjugate gradient m ethod w ith Davidon-

Fletcher-Power fo rm u la tio n ... 140

Figure AI.7: Output o f neural network trained to leam a sine curve with

20% random Gaussian noise using the proposed method with

Fletcher-Reeves fo rm u la tio n .. 141

Figure AI.8: Error versus number of epochs required to achieve the target

error o f 0.01 using conjugate gradient method w ith Fletcher-

Reeves fo rm u la tio n .. 141

Figure AI.9: Output o f neural network trained to leam a sine curve with

20% random Gaussian noise using the proposed method with

Davidon-Fletcher-Power fo rm u la tio n 142

Figure AI. 10: Error versus number o f epochs required to achieve the target

error o f 0.01 using conjugate gradient method w ith Davidon-

Fletcher-Power fo rm u la tio n ... 142

Figure AI. 11: Output of neural network trained to leam a sine curve with

20% random Gaussian noise using the proposed method with

xiii

Broyden-Fletcher-Goldfarb-Shanno fo rm u la tio n 143

Figure AI. 12: Error versus number of epochs required to achieve the target

error o f 0.01 using conjugate gradient method w ith Broyden-

Fletcher-Goldfarb-Shanno fo rm u la tio n 143

xiv

LIST OF TABLES

Table 2.1: The training data set used for Case 1 ... 32

Table 2.2: The training data set used for Case 2 .. 35

Table 3.1: Comparison between the proposed algorithm and the current

method proposed by R ansing ... 45

Table 3.2: Summ ary o f sim ulation resu lts .. 59

Table 3.3: Summ ary o f sim ulation results w ith tw enty percent

random Gaussian n o is e .. 62

Table 4.1: Sample o f table showing characteristics used to compare the

performance of all algorithm s.. 70

Table 4.2: Summary o f algorithms’ performances for the Thyroid

classification problem .. 72

Table 4.3: Summary of algorithms performance for Cancer

problem.. 76

Table 4.4: Summary of algorithms performance for Diabetes problem... 80

Table 4.5: Summary o f algorithms performance for IRIS problem 84

Table 4.6: Summary o f algorithms performance for Seven-bit Parity

problem .. 88

Table 4.7: Summary o f algorithms performance for Glass classification

problem.. 92

Appendix A

Table II. 1: Detail version of the Conjugate Gradient with Polak-Ribiere

formulation performance for Thyroid problem 144

Table II.2: Detail version of the Conjugate Gradient with Polak-Ribiere

formulation performance for Cancer problem 147

xv

Table II.3: Detail version o f the Conjugate Gradient with Fletcher-

Reeves formulation performance for Diabetes classification

problem .. 150

Table II.4: Detail version of the Conjugate Gradient with Polak-Ribiere

formulation performance for IRIS problem 153

Table II. 5: Detail version of the Broyden-Fletcher-Goldfarb-Shanno

performance for 7 bit Parity p roblem 156

Table II.6: Detail version of the Broyden-Fletcher-Goldfarb-Shanno

performance for Glass classification p roblem 159

xvi

ACKNOWLEDGEMENTS

Working as a Ph.D. student in Swansea University was a magnificent as well

as challenging experience to me. In all these years, many people were instrumental

directly or indirectly in shaping up my academic career. It was hardly possible for me

to thrive in my doctoral work without the precious support o f these personalities. Here

is a small tribute to all those people.

My sincere thanks first and foremost go to my first supervisor, Dr. Rajesh S.

Ransing, for his patience and understanding in guiding me throughout this PhD

research. I really appreciate the enormous time that Dr. Rajesh spent with me to

discuss my research in detail, from the first discussion up to the last modifications to

the text o f this thesis. I learned a tremendous amount about how to concentrate on

setting up and solve various scientific questions. His company and assurance at the

time of crisis would be remembered lifelong.

From those others who helped me the most in Swansea University, I would

like to thanks my second supervisor, Prof. David Gethin and the officers in Post

Graduate Office, School o f Engineering for helping me in various ways to clarify the

things related to my academic works in time with excellent corporation and guidance.

Special acknowledgment is also given to Malaysian Public Service Department and

Universiti Tun Hussein Onn Malaysia (UTHM) for funding this research.

I express my gratitude to Dr. Meghana for her kind assistance and support

with all the convenience I needed. I am sincerely grateful to my colleague, Dr. Peter

Dyson for correcting my English. I am grateful to group at Civil and Computational

Engineering Centre for sharing their knowledge and life experience with me.

I thank my parents for their continuous prayer, patience, support and love

whenever I need it over these years. I also would like to dedicate this work to my two

young children, Aina and Hafiz for their silent prayer for my work at the time when

they needed my company most. They are always the source of motivation behind me.

Finally, I would like to express my deepest appreciation to my beloved wife,

Zawati Harun, for her presence in my life. We have been each others best friends and

the strongest supporters all these times. Without her loving support and understanding

I would never have completed my present work. Her patience and encouragement was

the drive for me.

xvii

ABBREVIATIONS AND NOMENCLATURE

BP Back propagation

DOE Design o f experiment

OA Orthogonal array

NN Neural network

RSM Response surface method

MLP Multi layer perceptron

PS Premature saturation

g(n) gradient o f error at step n

1 Learning rate

j c, Set o f input signals

/ i , h j h m Set of output signals o f hidden nodes in the first hidden layer

(suffice j and m are used for hidden nodes)

0 , ,...,ok ,...,on Set of output signals of output nodes in the output layer (suffice k

and n are used for output nodes)

ak Activation function o f k ‘h unit

a Momentum term

E Error function

/ The squashing or activation function o f the a processing

unit

% Weight o f the link form unit i to unit j

wjk Weight of the link form unit j to unit k

d^n) Search direction at step n

@j Bias for the j th unit

c j Gain o f the j th unit

a net, j Net input activation function for the j th unit

P Momentum coefficient in conjugate gradient

CT Convergence tolerance

Nt N um ber o f free param eters (weights and bias)

xviii

H Hessian matrix

A • {n) Weight, bias or gain correction o f • for n th training iteration

d • Partial derivative of •

N The number o f design variables

Set o f design variables

c (c = 0 to 1) Output belief value in cause

w . Weight variable associated with the j th reference point

oII Belief values for ‘ p 9 effects

Zj(i = 1 to m) Function of = \t0 p)

MSE Mean squared error

QN Quasi-Newton

LM Levenberg-Marquardt

GDM/AG Gradient descent with momentum and Adaptive Gain

CGFR/AG Conjugate gradient - Fletcher-Reeves method with Adaptive Gain

CGPR/AG Conjugate gradient - Polak-Ribiere method with Adaptive Gain

BFGS/AG Broyden-Fletcher-Goldfarb-Shanno method with Adaptive Gain

DFP/AG Davidon-Fletcher-Powell with Adaptive Gain

xix

GLOSSARY OF TERMS

Activation function

Adaptive gain value

Architecture

Artificial Neural network

Back-propagation

Benchmark

Belief value

BFGS Quasi-Newton

method

A mathematical function applied to a node’s activation

that computes the signal strength it outputs to

subsequent nodes.

Gain value that is adjusted according to an algorithm

during training to minimize error.

Description of the number of the layers in a neural

network, each layer's transfer function, the number of

neurons per layer, and the connections between layers.

A computer simulation of the human brain which

consists of at least one neuron and a set o f synapses.

Neurons have an activation level and a transfer

function.

A supervised learning algorithm which uses data with

associated target output to train an artificial neural

network.

A test that measures the performance of a system or a

method on a well-defined task or set o f tasks.

A value that representing the strength o f the occurrence

o f effect or cause.

Variation o f Newton's optimization algorithm, in which

an approximation o f the Hessian matrix is obtained

from gradients computed at each iteration o f the

algorithm.

xx

Bias

Conjugate gradient

algorithm

Epoch

Feed-forward network

Fletcher-Reeves update

Function approximation

Gain value

Generalisation

performance

Golden section search

Neuron parameter that is summed with the neuron's

weighted inputs and passed through the neuron's

transfer function to generate the neuron's output.

In the conjugate gradient algorithms, a search is

performed along conjugate directions, which produces

generally faster convergence than a search along the

steepest descent directions.

One iteration through the neural network training

algorithm (presentation o f the entire training set once to

the network).

Layered network in which each layer only receives

inputs from previous layers.

Method for computing a set o f conjugate directions.

These directions are used as search directions as part of

a conjugate gradient optimization procedure.

Task performed by a network trained to respond to

inputs with an approximation of a desired function.

Training parameter that controls the steepness of

activation function during learning.

The ability of a trained network to correctly classify on

a set o f unseen data which is similar to but not the same

as the training data set by finding their similarities with

training data set patterns.

Linear search that does not require the calculation o f the

slope. The interval containing the minimum of the

xxi

performance is subdivided at each iteration of the

search, and one subdivision is eliminated at each

iteration.

Gradient descent

Heuristic

Learning

Learning rate

Momentum

MSE

Network topology

One Dimensional (ID)

Optimisation

Over fitting

Process of making changes to weights and biases,

where the changes are proportional to the derivatives of

network error with respect to those weights and biases.

This is done to minimize network error.

A method that serves as an aid to problem solving. It is

sometimes defined as any ‘rule o f thumb’.

Process by which weights and biases are adjusted to

achieve some desired network behavior.

Training parameter that controls the size o f weight and

bias changes during learning.

A constant that is often used to make it less likely for a

back-propagation network to get caught in a shallow

minimum.

Performance function that calculates the average
squared error between the network outputs 0 K and the
target outputs tK.

Ways to arrange nodes in a network.

A plotted graph that shows only one defect is connected

to the a cause

A process that finds a best, or optimal, solution for a

selected model.

Case in which the error on the training set is driven to a

xxii

very small value, but when new (unseen) data is

presented to the network, the error is large.

Performance

Perceptron

Polak-Ribiere update

Premature saturation

Quasi-Newton algorithm

Search direction

Sigmoid activation

function

Two Dimensional (2D)

Behavior of a network or a method.

The basic processing element used in neural networks

without hidden layer. A simple analog circuit with

weighted inputs and a nonlinear decision element such

as a hard limiter, threshold logic or sigmoid

nonlinearity.

Method for computing a set of conjugate directions.

These directions are used as search directions as part of

a conjugate gradient optimization procedure.

The situation where the instantaneous sum of

differences between network output and target value is

almost unchanged for some period of time.

Class of optimization algorithm based on Newton’s

method. An approximate Hessian matrix is computed at

each iteration o f the algorithm based on the gradients.

The choice of direction where error function decreases

most quickly.

Squashing function of the form shown below that maps

the input to the interval [0, 1].

A plotted graph that shows two defect are connected to

the a cause

xxiii

Validation

Weight

The process of testing the models with a data set

different from the training data set.

The strength of connection between two nodes.

xxiv

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Every day foundries manufacture a large number of castings. Every time a casting is

produced, a large amount of data is generated involving process-parameter values and

one or more indicators on whether the casting is defective or not. This data is

encoded for each type o f defect, for each day, week and month o f the casting process

and is available for all casting components.

The rejection data for a given casting and time frame, normally indicates a pattern,

which has normally few defects occurring at significantly high proportions and some

occurring at significantly low proportions. Therefore, the diagnostic casting problem

was defined as recognising patterns in the casting rejection data and identifying a

corresponding combination of causes. It was observed that a combination of defects

generally occurs as a result o f a combination of causes (Meghana R. Ransing, 2002).

The cause and effect relationship is generally complex and highly interlinked for

many manufacturing processes. Identification o f the degree of influence o f a cause on

the occurrence o f a defect is one of the most difficult tasks in a diagnostic process and

the highly interlinked causal relationship further complicates the problem.

Furthermore, many foundries monitor their process closely and record vast amounts

1

of data. There is a need to develop a computational tool that can learn from the

historical data and provide options to minimise production o f defective components.

1.2 AN OVERVIEW OF THE OPTIMISING CASTING

PROCESS USING HISTORICAL DATA

The cause and effect relationship in a casting process is complex and non-linear.

Furthermore, a large number o f parameters are needed to be coordinated with each

other in an optimal way to minimise the occurrence of defective castings. This has led

to the necessity of developing computer-based optimisation techniques. An

optimisation process is a computational technique that determines an optimal value

for process parameters such that the magnitude o f one or more response variables of

the process is minimised. It also ensures that the process operates within established

limits or constraints (B. Lally et al., 1991). Casting process optimisation has

facilitated foundrymen in making right choices, but it still remains a challenging area

that has drawn the attention of many researchers during the last two decades

Recent studies have used the response surface method (RSM) to optimise parameters

in the casting process (J. Grum and J.M. Slabe, 2004; Theodore T. Allen and Liyang

Yu, 2002). The computational efficiency of the RSM approach significantly reduces

as the number o f process parameters increase (David L. Rodriguez, 2003). This is

mainly because RSM techniques show the same limitations as showed by polynomial-

regression techniques; the number of unknowns in the system increases exponentially

with the number o f parameters.

In contrast, Taguchi’s robust design method provides a process engineer with a

systematic and efficient approach for conducting experimentation to determine near

optimum settings of design parameters for performance and cost (A. Bendall, 1988;

R.N. Kackar, 1985; S.M. Phadke, 1989). The robust design method uses orthogonal

arrays (OA) to study the parameter space, usually containing a large number of

decision parameters, with a small number o f experiments. To this date, a quite

significant amount of research and development work has been done in order to

2

optimise parameters of the casting process by using the Taguchi method (G.P. Syrcos,

2003; Y.V. Kamat and M.V. Rao, 1994; H. Singh and P. Kumar, 2005; V.D.

Tsoukalas et al., 2004).

Recently, the artificial-neural networks (ANN), or simply neural-networks (NN),

technique has gained more popularity in learning cause and effect analysis in casting

processes (D. Barschdorff et al., 1997; H. Lin et al., 1995; M. Perzyk and A.

Kochanski, 2003; E.E. Martinez et al., 1994; Prasad K. Yarlagadda, 2000; H.C. Zang

and S.H. Huang, 1995). ANN consists o f interconnected cells, called neurons, and

simulates the behaviour o f the biological neural network in a human brain (R.L.

Wilson and R. Sharda, 1994). Neural-networks’ techniques are able to adapt, learn

from examples and are generally used to model complex relationships between inputs

and outputs or to classify data finding common patterns (K. Funahashi, 1989). This

ability makes the field o f diagnosis a potential application for neural networks.

A new approach, which is of direct relevance to the manufacturing industry, was

proposed by Ransing (Meghana R. Ransing, 2002). The proposed method used

Lagrange Interpolation polynomials to explore how the degree of influence of each

cause on the occurrence of a defect or a combination o f defects can be quantified

based on past diagnostic examples. For some selected data sets the method showed

superior extrapolation abilities as a result o f the networks’ ability to constrain the

shape of the resulting multi-dimensional hyper-surface to the known variation in the

belief values in causes and effects. Furthermore, the proposed method had reduced the

number of unknowns to an acceptable number which improved computational

efficiency as compared to the RSM approach. This work was also compared with

neural-network techniques.

The thesis also proposed initial work on using one of the internal parameters o f neural

networks (i.e. gain) in improving its computation efficiency.

The objective of the work presented in this thesis is to continue the research proposed

by Ransing (2002) in order to: (i) overcome the limitation of the current Knowledge

3

Hyper-surface method; and (ii) to develop a new and robust methodology for

improving computational efficiency of neural networks using the gain value.

1.3 RESEARCH CHALLENGES

Based on the research objective presented in Section 1.2, the following research

challenges were identified:

1) A neural-network training algorithm, particularly back propagation (BP)

algorithm, has been widely known as a tool for mapping non-linear

relationships between input and output examples. Many variations o f this

algorithm have been proposed by previous researchers to increase the BP

training efficiency and one of the approaches is to adjust the slope of

activation function. Previous researchers have claimed that changing the gain

value in a BP algorithm is equivalent to changing the leaming-rate value.

Efficient methods are currently available to decide an optimal leaming-rate

value at every iteration of the optimisation process, and hence this research

direction was probably not taken forward. It was discovered during this

research that the gain variation does not influence the learning rate but it

actually affects the search direction. The challenge in this research direction

was to prove the finding, develop a mathematical formulation, and validate it

on a number of benchmark problems.

2) The diagnosis of defective castings has always been a centre o f attention in

the manufacturing industry. An intelligent diagnosis system should be able to

diagnose effectively the causal representation and also justify its diagnosis. A

previous method, known as the Knowledge Hyper-surface method, proposed

by Ransing (2002), had shown that the belief value o f the occurrence of cause

with respect to the change in the belief value in the occurrence o f effect can

be modelled by linear, quadratic or cubic relationships. However, the

methodology was unable to model exponential increase/decrease in belief

values in cause and effect relationships. A challenge in this research direction

was to propose a strategy that is computationally efficient and able to model

4

the exponential increase/decrease in belief values in cause and effects

relationships without introducing the side-effects o f ‘over fitting’.

1.4 SCOPE OF WORK AND RESEARCH CONTRIBUTIONS

A summary o f research achievements is outlined below:

• Detailed review o f various methods that influence the computational

efficiency of neural networks.

• Study the effect o f the newly proposed method that combines adaptive gain

variation with adaptive learning rate and analyses the performance of the

proposed method on back propagation training algorithms.

• Discovery that the introduction of gain variation actually improves the search

direction and not the learning rate as presumed by previous researchers. As a

result, for the first time in the literature, it has been demonstrated that the

adaptive gain variation can be used with a number o f gradient-based

optimisation methods.

• The transcription of the algorithm to computer codes was achieved by building

on MATLAB programming language.

• Validate the performance of the proposed method with the conventional

algorithm and neural-network toolbox method on a number of benchmark

problems.

• Discover some of the practical limitations o f the current Knowledge Hyper­

surface method and bring about enhancements by constructing a midpoints

method on the existing version to achieve better results.

• Compare the performance of the integration system with the current version of

Knowledge Hyper-surface method on real casting data.

The major research contributions are summarised as follows:

• A novel approach for improving the training efficiency o f BP neural-network

algorithms has been proposed with respect to gain variation. It was discovered

in this thesis that adaptive gain variation actually improves the gradient search

5

direction instead of the learning rate as claimed by previous researchers. A

coupled algorithm has been proposed that adaptively adjusts the learning rate

and gain variation in order to speed up the BP neural-network training process.

• For the first time, the proposed method has been successfully implemented

into other well-known optimisation methods. This was done with an objective

o f improving the computational efficiency of the neural-networks training

process. The robustness of the proposed method has been validated against a

number of commonly used optimisation methods by using a variety of

benchmark problems.

• Enhancements were implemented into the current Knowledge Hyper-surface

method to overcome limitations posed by the existing version and by

constructing a midpoints method.

The research output during the entire course o f study period was documented and a

number of publications, as a result, originated or are forthcoming and are listed next.

1.5 LIST OF PUBLICATIONS

The following publications were produced during the course o f the research-study

period.

• N. M. Nawi, M. R. Ransing, and R. S. Ransing: “An improved Conjugate

Gradient based learning algorithm for back propagation neural networks”,

International Journal o f Computational Intelligence, March 2007, Vol. 4, No.

1, pp. 46-55.

• R. S. Ransing, N. M. Nawi and M. R. Ransing: “A new method to improve the

gradient based search direction to enhance the computational efficiency of

back propagation based Neural Network algorithms: Part I: Theory”,

Submitted to IEEE Transaction on Neural Networks, 2007.

• R. S. Ransing, N. M. Nawi and M. R. Ransing: “A new method to improve the

gradient based search direction to enhance the computational efficiency of

6

back propagation based Neural Network algorithms: Part II: Validation on

benchmark problems and discussion o f results”, Submitted to IEEE

Transaction on Neural Networks, 2007.

• N. M. Nawi, M. R. Ransing, and R. S. Ransing: “Improving the gradient based

search direction to enhance training efficiency of back propagation based

neural network algorithms”, Proceedings o f the 26th International Conference

o f Innovative Techniques and Applications o f Artificial Intelligent (SGAI’06),

Cambridge, UK, 11th-13th December, 2006, pp. 45-58.

• N. M. Nawi, M. R. Ransing, and R. S. Ransing: “A new efficient search

direction for conjugate gradient training methods”, Proceedings o f the 3rd

International Conference Artificial Intelligence in Engineering and

Technology (ICAIET'06), Sabah, Malaysia, 22nd-24th November, 2006, pp.

176-181.

• N. M. Nawi, M. R. Ransing, R. S. Ransing: “An improved learning algorithm

based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for back

propagation neural networks”, Proceedings o f the 6th International Conference
• thon Intelligent Systems Design and Applications (ISDA'06), Jinan, China, 16 -

18th October, 2006, vol. 1, pp. 152-157.

• N. M. Nawi, M. R. Ransing, and R. S. Ransing: “An improved learning

algorithm based on the Conjugate Gradient method for back propagation

neural networks”, Proceedings o f the 14th International Conference on

Computational and Information Sciences (ICIS ’06), Prague, Czech Republic,

25th-27th August, 2006, vol. 14, pp. 211-215.

1.6 OUTLINE OF THE THESIS

The thesis is subdivided into six chapters, including the introduction and conclusion

chapters. The following is the synopsis o f each chapter.

7

Chapter One: Introduction. Apart from providing an outline o f the thesis, this

chapter contains an overview of the background to research work, objectives,

scope o f the research, and research contributions made during the period of

study.

Chapter Two: Review o f efficient learning methods fo r back propagation

networks. The back propagation (BP) algorithm is one o f the best known and

widely used learning algorithms for neural networks. However, its

convergence rate can be very slow. Researchers have tried to improve its

computational efficiency by using adaptive learning rate values, momentum

term, gain tuning o f activation functions, network topology and different

learning algorithms. This chapter reviews the research contribution made by

various researchers to improve the training efficiency o f neural networks. One

of the modifications is to change the gain parameter used in the activation

function. This chapter demonstrates some o f the misconceptions claimed by

the previous literature on using the gain value and a detailed description o f the

method proposed by Ransing (2002) is given. At the end o f this chapter, some

of the advantages posed by the current method are outlined. This chapter lays

a foundation for introducing a novel and innovative algorithm for improving

the learning efficiency as described in Chapter Three.

Chapter Three: Enhanced learning algorithm fo r back propagation network.

This chapter extends the work on using the adaptive-gain variation as

proposed in Chapter Two. It was discovered that the gain variation influences

the search direction used in an optimisation process. Since most o f the

gradient-based optimisation algorithms employed during the training process

of BP networks use the negative gradient o f error as a gradient-based search

direction. An improved and efficient algorithm has been presented that

adaptively modified the gradient-based search direction by using the gain

parameter used in the activation function. The implementation of the proposed

method into other optimisation methods is presented. The proposed method is

programmed in MATLAB programming language and is tested for its

correctness on a simple sine curve approximation function. The results o f the

proposed method are then compared to facilitate further testing and validation

in the next chapter.

• Chapter Four: Results and validation on benchmark problems. The new

method developed in Chapter Three is further validated for its efficiency and

accuracy on a variety of benchmark problems. The performance of the

proposed method is tested in two ways: (a) the speed of convergence measured

in number of iterations and CPU time; and (b) the classification accuracy on

testing data from the benchmark problems. The benchmark problems used to

verify the proposed algorithm are taken from the open literature (Lutz

Prechelt, 1994). The results are then discussed for their interpretation and

implementation through various optimisation methods.

• Chapter Five: Improved method fo r constructing optimal Knowledge Hyper­

surface. A detailed description of the current Knowledge Hyper-surface

method proposed by Ransing (2002) is given. Then the limitations posed by

the current Knowledge Hyper-surface method are outlined. The proposed

enhancements are implemented in the method to overcome the limitations by

constructing midpoints between each primary weight along each dimension.

The new improved algorithm is then tested on real-casting data.

• Chapter Six: Conclusion and future work. The novel research contributions

are summarised and recommendations are made for further continuation of

work.

9

CHAPTER 2

REVIEW OF EFFICIENT LEARNING

METHODS FOR BACK PROPAGATION

NETWORKS

CHAPTER LAYOUT

In this chapter, the back propagation (BP) algorithm, which is one of the best known

and widely used learning algorithms for neural networks, is reviewed in detail. The

second section of this chapter highlights the limitations o f the conventional BP-

training algorithm. In particular, two major issues are identified which are namely

convergence to a local minima and long-leaming time. The next section then

discusses some improvements and contributions suggested by various researchers to

overcome the limitations. The two major areas o f improvement that have been

identified in the literature are: (a) firstly, the use o f heuristic-based techniques that

modify network parameters such as learning rate value, momentum term, activation

function, and topology optimisation; and (b) the integration o f (a) with second-order

optimisation techniques for minimising the error. In heuristic based networks, the

gain value is one o f the less commonly used parameters for improving learning

efficiency. The next section o f this chapter studies the relevant literature on gain

parameter in detail and demonstrates some of the improvements proposed by previous

researchers using the gain value for improving computational efficiency. Then a

detailed description o f the method proposed by Ransing (2002) is given and some of

the advantages and disadvantages posed by the current method are outlined in the next

section. This lays the foundation for the next chapter that describes a new and robust

methodology to further improve the learning efficiency o f the method proposed by

Ransing (2002).

10

2.1 INTRODUCTION

The most popular artificial neural-networks’ (ANN) architecture is called multilayer

perceptrons (MLP) because o f its similarity to perceptron networks with more than

one layer. The MLP refer to the network consisting of a set o f sensory units (source

nodes) that constitute the input layer, one or more hidden layers o f computation

nodes, and an output layer o f computation nodes. Nodes or neurons in any layer of the

network are connected to all neurons in the previous layer. The input signal

propagates through the network in a forward direction, from left to right and on a

layer-by-layer basis. In Figure 2.1, a detailed schema of MLP with a single hidden

layer is given.

Direction o f information flow

Hidden layer

Input layer Output layer

Figure 2.1: Multilayer Perceptrons (MLP).

The training o f MLP in neural networks is also known as supervised learning

processes and can be interpreted as an example of an optimisation method. The

objective of a learning process is to find a weight vector w * which minimises the

11

difference between the actual output Ok and the desired output tk or can be defined as

error function E (w) .

(2 .1)
L k=\

where:

n : num ber o f output nodes in the output layer.

tk : desired output o f the k th output unit.

ok : netw ork output o f the k th output unit.

The error function in a one dimensional weight space can be visualised as shown in

Figure 2.2.

Figure 2.2: Schematic error function for a single parameter w , showing four

stationary points, at which V E (w) = 0 . Point A is a local minimum, point B is a local

maximum, point C is a saddle point, and D is the global minimum.

For networks with more than one layer o f adaptive weights, the error function is a

non-linear function o f weights and may have many minima, which satisfy the

following equation:

E

j >—

j C

A

D

12

V £ (» = 0 (2 .2)

Where V E (w) denotes the gradient o f E with respect to weights. The point at which

the value of the error function is smallest (point D in Figure 2.2) is called the global

minimum while all other minima are called local minima. There may also be other

points, which satisfy conditions (Equation 2.2) such as local maximum (point B,

Figure 2.2) or saddle point (point C, Figure 2.2).

2.2 BACK PROPAGATION ALGORITHM (SUPERVISED

LEARNING)

Multilayer perceptrons (MLP) training is an iterative process which involves, at each

iteration or epoch, the calculation o f the network outputs for (one or more) patterns in

the training set, and the adjustment o f the network weights according to the difference

between the actual network output and the desired output. Given a suitable network

architecture and training algorithm, the network weights will be progressively

adjusted to the point where the network output is acceptably close to the desired

output for each pattern in the training set. The most widely used training algorithm for

updating the MLP weights during the training process is known as the back

propagation (BP) algorithm. The BP algorithm has been independently derived by

several researchers working in different fields. Werbos (P.J. Werbos, 1974)

discovered the BP algorithm while working on his doctoral thesis in statistics and

called it the dynamical feedback algorithm. Parker (D. Parker, 1985) rediscovered the

BP algorithm in 1982 and called it the learning logic algorithm. Finally, in 1986,

Rumelhart, Hinton and Williams (D.E. Rumelhart et al., 1986) rediscovered the

algorithm and the technique became widely known. Even today, the vast majority of

MLP research uses a version of BP algorithm. For this reason, BP can be viewed as

the benchmark against which all other training methods are judged.

The BP algorithm implements the steepest descent (gradient-descent) method which is

the most venerable, but also one o f the least effective, classical optimisation

strategies. There are many different versions o f the basic BP algorithm, and new

13

modifications are regularly published in neural-network journals (see Section 2.4).

However, this section begins by considering the traditional implementation of the BP

algorithm (as presented in Rumelhart and colleagues (1986)) known as batch or off­

line BP. The procedure for supervised error-back-propagation is as follows:

Step 1 Start the cycle by presenting input patterns to the neural network.

Step 2 Specify desired outputs for each input pattern.

Step 3 The input pattern is then propagated forward through the network,

layer-by-layer until the output layer.

Step 4 A set of output produced is considered as the actual response o f the

network. Steps 1, 2, 3 and 4 constitute the ‘Forward propagation

phase’ in that the signal propagates from nodes in the input layer to

nodes in the output layer.

Step 5 Error is calculated by comparing the network output with the desired

output by using Equation 2.1.

Step 6 The error signal (E) is propagated backw ards through the

netw ork and is used to adjust the weights. The weights in the

links connecting to output nodes (w ,*) are then m odified based

on the gradient descent method as follows:

a r d E ^A w j k =Jl (- ^ —) (2.3)

= l S kOj

where:

Oj : Output o f the j th hidden node.

The error is propagated backwards to compute the error specifically, at

the hidden nodes:

(2 -4)

= v 8 Jo i

where:

ot : output o f i th input node (which is the same as the output

value)

14

Tj : step length (learning rate)

i , j , k : subscripts i , j and A: correspond to input, hidden and

output nodes, respectively.

Wjk : w eight on the link from node j to k .

Wy : w eight on the link from unit i to j .

S k : o h{\ — ok)(tk ~ o k) for output nodes.

: ° j d — ° j w jk f° r hidden nodes.

In this way, the error is propagated backwards to modify weights so as

to minimise the error. Steps 5 and 6 above are referred to as the

‘Backward propagation phase9.

Step 7 Go back to Step 1 until a satisfactory configuration is found.

A detailed derivation o f the BP gradient calculation is given by Rum elhart

and colleagues (1986).

2.3 LIMITATIONS OF THE BACK PROPAGATION

TRAINING ALGORITHM

The traditional BP algorithm has proved satisfactory when applied to many training

tasks, but despite many successful applications the BP algorithm has several

important limitations. Since the BP algorithm uses the gradient descent method to

update weights, one of the limitations of this method is that it is not guaranteed to find

the global minimum of the error function (refer to Figure 2.2). The gradient-descent

method may easily get trapped in a local minima especially for non-linearly separable

problems (Marco Gori and Alberto Tesi, 1992) such as the XOR problem (E.K. Blum,

1989). Being trapped into a local minima is one o f the reasons that may lead BP to fail

in finding the global optimal solution.

The gradient-descent method is an iterative procedure for obtaining the values of

parameters that minimise an objective fu n c tio n ^ (w). Geometrically, the objective

15

function specifies an error surface defined over the weight space (R. P. Lippman,

1987). During each iteration or at the end of each epoch, the weight vector is

iteratively changed from a randomly chosen magnitude and direction along the

negative gradient o f the error function in which the error function decreases most

rapidly as follows:

W (n+l) = w {n) + A w {n) (2.5)

where:

n : the iteration step.

Aw in): rj(n)d (n)

,n) dE
u : — V —— is the search direction m which an objective (error)

o w

function E (w) is reduced.
/n\

77 : step length or the learning rate.

For a sufficiently small leaming-rate value, the error E (w) is expected to decrease at

each successive step/pattem, eventually leading to a weight vector at which the

condition (Equation 2.2) is satisfied. The selection of an optimal learning rate value is

important to achieve faster convergence. An incorrect choice of the learning rate can

result in a slow convergence.

Even though the gradient descent method can be an efficient method for obtaining the

weight values that minimise an error measure, error surfaces frequently possess

properties that make this procedure too slow to converge. There are various reasons

for this slow rate o f convergence. They involve the magnitude and the direction

components of the gradient vector. When the error surface is fairly flat along a weight

dimension, the derivative of the weight is small in magnitude. Thus, the value o f the

weight is adjusted by a small amount and many steps are required to achieve a

significant reduction in error. Alternatively, where the error surface is highly curved

along a weight dimension, the derivative o f the weight is large in magnitude. Thus,

the value o f the weight is adjusted by a large value which may overshoot the

16

minimum of the error surface along that weight dimension. Another reason for the

slow rate of convergence o f the gradient-descent method is that the direction o f the

negative gradient vector may not point directly towards the minimum of the error

surface.

2.4 IMPROVING THE BACK PROPAGATION TRAINING

EFFICIENCY USING OPTIMISATION METHODS

The problem of improving the learning efficiency and convergence rate o f the BP

algorithm has been investigated by a number of researchers. Several acceleration

techniques have been proposed as modifications to the original BP algorithm. The

research has fallen roughly into two categories:

(a) Heuristic techniques which include variations o f the learning rate, use o f a

momentum term, gain tuning o f the activation function, and use of topology

optimisation methods.

(b) Second-order optimisation techniques for minimising the error.

2.4.1 Heuristic techniques

A detailed survey o f BP improvements lies outside the scope of this chapter, as the

remaining sections in this chapter examine some o f the most significant and popular

modifications to the BP algorithm. Based on this first category, various acceleration

techniques have been proposed.

(a) The Bold driver method. One of the main issues with the traditional BP

algorithm is the fixed learning rate 7 7 . It is very common for neural-netw ork

researchers that in finding the optim al learning rate (i.e. the one that brings

about the greatest reduction in the netw ork error value E) is likely to vary

not only from task to task, but also for different regions o f a single error

surface. Evidently, a strategy for adapting 77 as training proceeds is highly

desirable. The bold driver is one o f the simple and effective strategies for

adapting the BP learning rate 7 7 . The strategy involves increm entally

17

increasing or decreasing 77 at each training epoch depending on w hether the

algorithm is m aking progress or not (T.P. Vogl et al., 1988). Unlike a

traditional fixed-learning rate BP, the bold driver m ethod can be im plem ented

as a strict descent algorithm which m eans that no increase in E is allow ed

during any training epoch. This is achieved sim ply by m aintaining the

netw ork w eights at the same location such as by setting wn+1 = wn

w heneverE{wn - r j ng n)> E(wn) , provided that the gradient g(wn) is non-zero, it

is guaranteed that the bold driver m ethod will eventually reduce 77 to a small

enough value to bring about a reduction in E along the negative gradient

from lo ca tio n wn. Vogl and colleagues (1988) proved in their paper that the

bold driver m ethod frequently outperform ed both batch BPs w ith fixed

learning rates (even when 77 is set to its optim al fixed value), and the gradient

descent algorithm , a classical im plem entation o f batch BP that sets the

learning rate optim ally at each epoch using a one-dim ensional line-search

procedure. As long as the optim al learning rate 77 does not change rapidly as

training proceeds, the bold driver m ethod will tend to set 77 to a near optim al

value much o f the tim e, furtherm ore the com putational cost o f adapting 77 is

m inim al as com pared to the classical gradient descent m ethod.

(b) BP with momentum. Rumelhart and colleagues (1986) proposed a simple

heuristic strategy for speeding up the BP training method which involves

incorporating a momentum term in the generalised delta rule (Equation 2.5) as

follows:

Aw("} = T{g{n} + aA w (/l_1) (2.6)

where the user-defined param eter a is set in the range 0 < a < 1. Note that if

the momentum effects are turned o ff (a = 0) then the update rule given by

Equation 2.6 is equivalent to the standard BP update o f Equation 2.5. M any

researchers have shown that the addition o f a m om entum term can

significantly speed up the BP training algorithm . One potential drawback with

the update in Equation 2.6 is that, if a is increased, it may be necessary to reduce the

18

Tj in order to maintain network stability in preventing excessive weight changes. To

counter this problem, Widrow and Lehr (B. Widrow and M. A. Lehr, 1990) proposed

a modified version o f Equation 2.6 which incorporates the factor (1 - a) as follows:

A w{n) = -(1 - a)rfg{n) + aAw(n~l) (2.7)

However, this approach has its own potential drawback, as i f a is set to a

com paratively large value, the weight update Aw in Equation 2.7 w ill tend

to be dom inated by gradient inform ation from previous epochs so the update

in Equation 2.7 frequently proves less effective, as com pared to Equation 2.6,

in practice. The com parison between batch BP w ith m om entum and a class o f

classical optim isation algorithm known as conjugate-gradient m ethods (see

Chapter Three) discovered that the update rule for batch BP with a m omentum

term can be view ed as an approxim ation to the conjugate-gradient update,

w ith the im portant difference that BP with momentum sets 77 and a to fixed

heuristic values, whereas the conjugate-gradient m ethods autom atically set 77

and a to near optim al values at each iteration (M.F. M oller, 1993).

(c) Delta-Bar-Delta Rule. Jacobs (1988) noted from his research that if

consecutive changes of a weight Wjj(n+1) and possess opposite signs, then the

weight value is oscillating, hence the learning rate for that weight should be

decremented. Similarly, if the consecutive derivatives of a weight possess the same

sign then the learning rate for that weight should be increased. Jacobs (1988) has

introduced a Delta-Bar-Delta modification, which consists o f a weight update rule and

a learning rate update rule. The Delta-Bar-Delta algorithm controls the learning rates

by observing the sign changes of an exponentially averaged gradient (Jacobs R. A.,

1988). The weight update rule is similar to the original gradient-descent algorithm

with the exception that each weight possesses its own learning rate parameter. The

Delta-Bar-Delta rule increments the learning rates linearly, but decrements them

exponentially. Incrementing linearly prevents the individual learning rates from

becoming too large. Decrementing exponentially ensures that the learning rates are

always positive and allows them to be decreased rapidly. The disadvantage o f this

method is that the designers have to determine three new parameters, and like the

19

conventional BP, convergence rates are slow. In addition, a large number o f trial runs

are required before arriving at the right choice o f parameter values. Most o f the

researchers have pointed out that a constant learning rate is not suitable for a complex

error surface. Other researchers (D. R. Hush and J. M. Salas, 1988; T.P. Vogl et al.,

1988) proposed learning rate adaptations, while Weir (1991) considered the problem

o f choosing an optimum leaming-rate value and established a method for self-

determination of the adaptive leaming-rate value for every epoch. Most o f these

techniques can be considered as the variations o f line search methods.

(d) Starting with appropriate weights. It has been shown that the BP method is

sensitive to initial weights (J.F. Kolen and J.B. Pollack, 1991). Weights are usually

initialised with small random values. However, starting with incorrect weight values

is one reason for getting trapped in local minima or leading to a slow learning

progress. For example, initial weight values which are too large can cause

‘Premature Saturation (PS)’ (B.W. Lee and B.J. Sheu, 1993). The learning progress

can be accelerated by initialising weights in such a way that all hidden units are

scattered uniformly in the input pattern space (D. Nguyen and B. Widrow, 1990).

(e) Improving the error function. Since the sigmoid derivative which appears in

the error function of the original BP method has a bell shape, it sometimes causes

slow learning progress when output o f a unit is near ‘O’ or ‘1’. To remove it from the

error signal, van Ooyen and Nienhuis (1992) and Krzyzak and colleagues (1990) have

employed an entropy-like error function by making the error gradients for poorly

classified patterns o f significantly higher values than calculated mean squared error

(MSE) functions. Therefore adjustment allows the network to progress in flat regions

o f the weights space. Oh (1997) proposed a modified error function by reducing the

probability that output nodes take the extreme values of sigmoid function. Chandra

and Singh (2004) proposed a new activation function for sigmoidal feed forward

neural network training. Lee and colleagues (1999) analysed the cause o f ‘Premature

Saturation (PS)’ in output layer, which is caused by the use o f the gradient-descent

method. PS will greatly slow down the learning speed o f the BP algorithm. They

proposed an Error Saturation Prevention (ESP) function to prevent the nodes in the

output layer from the PS condition. They also applied to the hidden nodes in hidden

layers to adjust the learning term. Again Oh and Lee (1995) proposed another

20

improved error function of the error back propagation (EBP) algorithm for MLPs by

allowing the output nodes o f the MLP to generate an appropriate error signal

according to the situation of the output nodes. When some output nodes o f MLP are

incorrectly saturated, the strong error signal o f the output nodes updates the associated

weights so that they can escape the incorrectly saturated state. This can accelerate the

learning speed.

(f) Improving activation function . One of the main reasons for the slow

convergence of BP algorithms is the derivative o f the activation function that leads to

the occurrence of PS o f the network output units. When the actual output o pk (where

opk is the actual output o f the k th output neuron for the p - t h pattern) is

approaching either extrem e values o f the sigm oidal function, that is either 0

or 1 , the derivative o f the activation function having the factor opk(l - o pk)

w ill becom e extrem ely small, and the BP error signal may vanish. This will

lead the algorithm to be trapped into a ‘flat spo t’. C onsequently the learning

process and w eight adjustm ent o f the algorithm will be very slow or even

suppressed. That is why BP usually requires tens to a thousand iterations to

leave the flat spot, and causing the slow convergence o f the algorithm . Ng

and colleagues (2003) proposed a modification to the derivative o f the activation

function so as to improve the convergence of the learning process by preventing the

error signal dropping to a very small value by magnifying the derivative term

o pk(\ - o pk) , especially when the value o f Opk approaches 0 or 1 , by using the

pow er factor so that the derivative o f the activation function w ill not be too

sm all and im prove the convergence o f the algorithm . Chandra and Singh (2004)

proposed an algorithm that adapts the activation function itself. The choice o f the final

activation function is done dependent on the data set used for training and the initial

weight condition. The results demonstrated that the proposed algorithm could be an

order o f magnitude faster than the BP algorithm.

(g) Adjusting the steepness o f the sigmoid function. As Hush and colleagues

(1992) have pointed out, because o f the sigmoid’s non-linearity, error surfaces tend to

have many flat areas as well as steep regions. If one such flat area with a high error is

21

encountered, no significant decrease in the error occurs for some period, after which

the error decreases again then this will lead to PS condition. Since considerable time

is often needed to traverse such an area, PS retards the learning process. The basic

remedy is to adjust the sigmoid’s steepness (A. Rezgui and N. Tepedelenlioglu, 1990;

K. Yamada et al., 1989). The adaptation o f gain parameters o f the activation functions

has been shown to prevent the network from becoming trapped in a local minimum

caused by the neuron saturation in the hidden layer (X.G. Wang et al., 2004). The

gain term controls the steepness of the activation function. It has been shown recently

that a BP algorithm using a gain variation term in an activation function converges

faster than the standard BP algorithm as will be discussed further in the next section.

2.4.2 Second-order optimisation methods

The second category o f research in improving the training efficiency o f BP algorithms

has focused on the use o f the second-order method. Several researchers have proposed

the use o f second-order gradient techniques such as conjugate gradient and Quasi-

Newton (QN) methods, instead o f the simple gradient-descent technique. For

instance, Fahlman (1988) claimed that a set of first-order partial derivatives collected

at a single point only tell very little about how large a step one can safely take in

weight space. But if something about higher order derivatives (the curvature o f the

error function) is known, one can presumably achieve better performance. The

momentum term and Delta-Bar-Delta techniques which were discussed in Section

2.4.1 are an ad-hoc variation o f this strategy. Other approaches make explicit use of

the second derivative o f the error with respect to each weight. Fahlman developed

‘quickprop’, a variation of the BP with momentum that utilises both the second-order

method, which is loosely based on Newton’s method, as well as other heuristic

methods, for the purpose o f improving the convergence rate of the original BP

algorithm.

The use o f second derivatives has been proposed to increase the convergence speed in

several works (R. Battiti., 1992; W.L. Buntine and A.S. Weigend, 1993). It has been

demonstrated (Y. LeCun et al., 1991) that these methods are more efficient, in terms

of learning speed, than the methods based only on the gradient-descent technique. In

fact, second-order methods are among the fastest learning algorithms. Some o f the

22

most relevant examples of this type o f methods are the Quasi-Newton (QN),

Levenberg-Marquardt (LM) (D.W. Marquardt, 1963; K. Levenberg, 1944; M.T.

Hagan and M. Menhaj, 1994), and the conjugate-gradient algorithms (E.M.L. Beale.,

1972). The Quasi-Newton methods use a local quadratic approximation of the error

function, like Newton’s method, but they employ an approximation o f the inverse o f

the Hessian matrix to update the weights, thus getting the lowest computational cost.

The two most common updating procedures are the Davidon-Fletcher-Powell (DFP)

and Broyden-Fletcher-Goldfarb-Shanno (BFGS) (J. E. Dennis and R. B. Schnabel,

1983). The Levenberg-Marquardt method combines, in the same weight updating

rule, both the gradient and the Gauss-Newton approximation o f the Hessian of the

error function. The influence o f each term is determined by an adaptive parameter,

which is automatically updated. Regarding the conjugate-gradient methods, they use

at each iteration o f the algorithm, different search directions in a way that the

component o f the gradient is parallel to the previous search direction. Several

algorithms based on conjugate directions were proposed such as the Fletcher-Reeves

(Adrian J. Sheperd, 1997; R. Fletcher and C.M. Reeves, 1964), Polak-Ribiere (C.M.

Bishop, 1995; R. Fletcher and C.M. Reeves, 1964), Powell-Beale (M.J.D. Powell,

1977) and scaled conjugate-gradient algorithms (M.F. Moller, 1993).

2.5 SUPERVISED LEARNING USING ADAPTIVE GAIN

VARIATION

Among various attempts to enhance the learning efficiency of BP algorithms

(gradient-descent method) that have been mentioned in Section 2.4.1, those using the

gain value are among the easiest to implement. The gain value controls the steepness

o f the activation function. As shown in Equation 2.8, for a j ,h node, the weighted

sum of inputs is passed through a sigmoid activation function to generate the nodal

output as follows:

1

23

and a net, j

O,

+ $, where:

IV-y

°J

anet, j

c j

•thoutput signal from the I unit,

w eight o f the link from unit i to unit j .
th

output signal o f the J unit.
th

net input activation function for the J unit.
•th

bias for the J unit.

gain describing the slope o f the activation function for
ththe J unit.

Effect of gain on sigmoidal function

io.8 -

c = 0.3CL

-20 -15 -10
weighted sum

Figure 2.3: Sigmoid-activation function with different slopes.

The value o f the gain parameter, c , directly influences the slope o f the activation

function. For large gain values (c . » l) , the activation function approaches a ‘step

function’ whereas for small gain values (0 <cj « 1), the output values change from

zero to unity over a large range of the weighted sum of the input values and the

sigmoid function approximates a ‘linear function ’ as shown in Figure 2.3.

24

It has been recently shown that a BP algorithm using adaptive gain variation in an

activation function converges faster than the standard BP algorithm. The early

research on adapting the gain value was conducted by Kruschke and Movelland

(1991). They explored the benefits o f adaptive gains in BP networks and showed that

gradient descent with respect to gain greatly increases learning speed, and concluded

that adaptive gain only has a catalytic effect in the learning process by modifying the

magnitude, not the direction, of the weight change. However it was found out that the

algorithms that employ the gain parameter suffered from increased instability, and

frequently fail to converge within a finite time because of an inappropriate choice for

the initial weights. Tai-Hoon Cho and colleagues (1991), then proposed an automatic

weight reinitialisation solution with a larger initial gain value (around 2 or 3) on BP

algorithms to converge much faster and are more stable.

Later, Thimm and colleagues (1996) had proved that changing the gain value o f the

activation function is equivalent to changing the learning rate and the weights and

claimed that the idea simplified the BP learning rule by eliminating one o f its

parameters. In order to support the argument, Figure 2.4 shows a summary of network

performance when the learning rate was fixed with a constant value and at the same

time varying the gain value. The horizontal axis shows a variety of gain values that

were used to control the steepness of the sigmoid function. For each gain value, the

maximum generalisation accuracy is plotted (using the vertical scale on the right),

along with the number of training epochs required to reach that level of accuracy

(using the vertical scale on the left). As can be seen from Figure 2.4, the

generalisation accuracy gets better as the gain value gets bigger, and the training time

also improves dramatically. At a gain value of about 0.005, the accuracy is

dramatically decreased and training time (in epochs) is at its maximum value. It is

often possible to get slightly higher accuracy by using an even bigger gain value than

the ‘fastest’ one, as is the case here, where accuracy is improved by using a gain value

of 2, at the expense o f increased training time. Beyond that, however, smaller gain

value requires linearly more training time with no significant improvement in

accuracy.

25

4500 85

4000

3500

to 3000 --.co
oQ.
!±L 2500 -
a>
E

ra 2000 -
c

H 1500 -

1000 -

500

0 -L-
UO ^ CO CnJ t- t- LT> v - L O L O

o d P P §
Gain value ° ° o

Figure 2.4: Training time (in epochs) and maximum hold-out set phoneme

generalisation accuracy for each gain value. The bars indicate the number o f epochs

needed to reach the maximum generalisation accuracy, and the line indicates what the

maximum accuracy was for each gain value.

Research also showed that the BP learning algorithm with adaptive gain value and

combined with a dynamic learning rate optimisation method can achieve the goal of

fast convergence (Murphy Hot and Hiroaki Kurokawa, 1998). As can be seen from

Figure 2.5 that for the tests carried out, the behaviour o f the networks is fairly

controlled when learning rate values o f 0.1 and 0.5 were used. The results obtained

when a learning rate value o f 0.1 was used were clearly better than those obtained

using the smaller learning rate values. This is mainly due to the increased number of

iterations required in reaching the target error. There was a large variation in the

results obtained when a learning rate o f 0.05 was used, indicating that the oscillations

in the MSE prediction error were large.

Epochs —a— Generalisation Accuracy

26

25000

— LR=0. 05

— 6— LR=0.5

- -X- - LR=0.3

—A - LR=0.1

X- - LR=1

20000

15000 —

10000

5000 —

0.01 0.5

Gain Values

Figure 2.5: Best results obtained when various gain values were used at a varied

learning rate.

Danilo and colleagues (1999) provided a good analysis on the relationship between

the learning rate 77 and the gain value c in the hyperbolic tangent activation function

for a feed forward NN, trained by BP and it showed that such relationships reduced

the number o f parameters in the non-linear optimisation task. Again, Eom and Jung

(2003) proposed a method using fuzzy logic for automatically tuning the gain

parameter o f the activation function and demonstrated that changing the gain o f the

activation function is equivalent to changing the learning rate, the weights and the

biases. Kandil and colleagues (2005) improved further the use o f variable gain o f the

log-sigmoid function by optimising the gain value by using the Stretched Particle

Swarm Optimisation (SPSO) technique. The proposed algorithm is trained and

compared with the popular training (Levenberg-Marquardt back propagation) method,

on application examples and showed an increase in the speed o f convergence for the

training and learning phase.

27

It has been shown in the above literature that the variation in the gain value does

improve the BP learning efficiency. It can be concluded from this literature review

that changing the gain value is equivalent to changing the leaming-rate value. Those

claimed had simplified the BP learning rule by eliminating one o f its parameters (i.e.

gain) and as a result, it appears that the researchers had begun to lose their interest in

studying the effect o f gain in improving training efficiency.

Until in 2002, when Ransing (2002) discovered that for the BP algorithm gain is not

equivalent to change in the learning rate value, but its effect is like having a global

learning rate value and an additional localised learning rate contribution for every

node. A coupled algorithm that changed the gain value adaptively for each node was

presented in this work.

The next section will discuss in detail the previous research carried out by Ransing

(2002) to illustrate the effect of adaptive gain variation in increasing the training

efficiency o f the gradient-descent method.

2.6 AN INNOVATIVE METHOD TO ENHANCE BACK

PROPAGATION TRAINING ALGORITHM BY RANSING

(Meghana R. Ransing, 2002)

The analysis provided by Ransing (2002) studying the effect o f adaptive gain

variation on BP network training showed that adaptive gain variation has a significant

impact on gradient-descent training speed. For the first time, Ransing had proposed a

new method that modified the standard BP by coupling the weight, bias and gain

update expressions in the standard BP algorithm (refer to Equations 2.11 and 2.12).

The algorithm had been proposed for sequential as well as batch training. The weight

and gain update expressions for output as well as the hidden nodes are shown below.

The weight update expression for the links connecting to output nodes is:

28

Aw>jk = Tj(tk - ok)ok (1 - ok)ckOj (2.9)

The gain update expression for the output node is:

Ac, (n + 1) = T](tk - o t)oh(\ - o kX X X * 0 /) (2 1 °)

The weight update expression for the links connecting to hidden nodes is:

A w 0 = tj ' Z ckwjk°k(l - ° k) (tk - ° k) C j O j i l - O j) (2 . 11)

Similarly, the gain update expression for the links connecting hidden nodes is:

Ac An + 1) = T) - ' E c k w j k ° k (l ~ ° k) (h ~ o k) O y (l-O y) £ W i j ° i
k j

(2 .12)

It is evident from the literature that coupling the expressions for updating weight and

gain (Equations 2.11 and 2.12), for sequential as well as batch training, is an

innovative and original approach. The following iterative and coupled algorithm had

been proposed by Ransing (2002) for batch training. Weight, bias and gain values

were calculated and updated after the presentation of all the training example pairs as

shown in Table 2.1 were presented to the network. The current algorithm used the

following terms.

For a given epoch:

Update the weight and bias values after the presentation o f the entire example

set using the previously converged gain value. (1)

Use the weight and bias values calculated in Step 1 to calculate the new gain

value. (2)

Repeat Steps 1 and 2 by using the gain value calculated in Step 2 in Step 1

until the difference in consecutive weight, bias and gain values becomes less

than the predefined value.

29

The speed o f convergence achieved using the proposed current method was

demonstrated by using the sine curve problem. Consider a single input-output layer

network with one hidden layer having five hidden nodes. The training data set was

created by using the two following cases:

(a) Case 1: the training datasets was created by using the function:

y = sin(pi * x) where x e [0,1].

(b) Case 2: the same training datasets as created in Case 1 by using the

function: y = sin(pi * x) where x e [0,1] but w ith by adding an

approxim ate tw enty per cent random G aussian noise.

2.6.1 Case 1: The sin(x) problem without noise

The first training dataset was created by using the function:

y = sin (pi * x) where x e [0 ,1]. The training required the network to approximate the

function for a sample o f fifty-two input points chosen uniformly as illustrated in

Figure 2.6 (circles). These data points were also shown as tabulated in Table 2.1.

Before training the dataset was further divided into a training set o f examples and a

validation set of examples. Only the training set of examples was used to adjust the

network weights until the stopping criteria was satisfied. During each epoch, the gain,

weight and bias values for all hidden nodes and output nodes converged to achieve an

MSE of 0.001 for gain, weight and bias values, respectively. The terminated number

of epochs in reaching the target error is shown in Figure 2.8.

30

0.9

0.7

0.6

0.3

0.2

- W
0.2 0.4 0.6 0.8

Input value

Figure 2.6: The sine curve data points used in the training data set as tabulated in

Table 2.1 (data points taken from Ransing (2002)).

The error versus number o f epochs required to achieve the target error by the method

proposed by Ransing (2002) is plotted in Figure 2.8 (red solid curve). The dotted

curve represents the same graph for the network trained using a constant unit gain. It

can be seen from Figure 2.8 that the method proposed by Ransing with adaptive gain

has consistently outperformed the standard gradient-descent method. The current

method took 6,017 epochs to learn the target function whereas the standard gradient-

descent method took 14,098 epochs which is almost twice bigger.

The gain values for the five hidden nodes at the end o f training are 1.0004, 1.0322,

1.0727, 1.1107 and 1.3493, respectively. The gain value for the output node at the end

o f the training is 1.3602. The speed o f convergence for the current proposed method

was high because the modified gain values are greater than unity.

31

Training data
No. Input Target

1 0 . 0 0 2 0.501
2 0 . 0 2 1 0.439
3 0.041 0.379
4 0.060 0.320
5 0.080 0.264
6 0.099 0 . 2 1 2

7 0.119 0.164
8 0.139 0 . 1 2 1

9 0.158 0.084
1 0 0.178 0.054
1 1 0.197 0.030
1 2 0.217 0.013
13 0.236 0.003
14 0.256 0 . 0 0 2

15 0.276 0.007
16 0.295 0 . 0 2 0

17 0.315 0.041
18 0.334 0.068
19 0.354 0 . 1 0 2

2 0 0.374 0.142
2 1 0.393 0.188
2 2 0.413 0.238
23 0.432 0.292
24 0.452 0.349
25 0.471 0.409
26 0.491 0.470

27 0.511 0.532
28 0.530 0.593
29 0.550 0.652
30 0.569 0.710
31 0.589 0.764
32 0.608 0.814
33 0.628 0.859
34 0.648 0.899
35 0.667 0.933
36 0.687 0.961
37 0.706 0.981
38 0.726 0.994
39 0.745 1.000
40 0.765 0.998
41 0.785 0.989
42 0.804 0.972
43 0.824 0.948
44 0.843 0.917
45 0.863 0.880
46 0.883 0.837
47 0.902 0.789
48 0.922 0.737
49 0.941 0.681
50 0.961 0.623
51 0.980 0.562
52 1.000 0.501

Table 2.1: The training data set used for Case 1 (data points taken from Ransing

(2002)).

32

O datapoints
■— GDM
— Ransing's method

0.9

0.8

0.7

0.6+■>
3a+-i3o

0 .4

0.3

0.2

0.1

0.2 0.4 0.6 0.8
Input

Figure 2.7: Output o f neural network trained to learn a sine curve using the current

proposed method (source adopted from Ransing, 2002).

0 .16
— GDM
 Ransing's method

0 .14

0.12

k-

2 0 .08
UJ

0.06

0 .0 4

0.02

5 0 0 0 10000 150 0 0
Number of Epochs

Figure 2.8: Error versus number o f epochs required to achieve the target error o f

0.001 (source adopted from Ransing (2002)).

33

2.6.2 C ase 2: T he sin(x) p rob lem with twenty per cent random Gaussian

noise

The second training dataset was created by using the same data created from the

function y = s\n(pi * x) where xe [0,1] but the data points w ere fu rther added

w ith an app rox im ate tw enty per cent random G aussian noise as illu s tra ted in

F igure 2.9 (c irc les). These data points were also put into the table as shown in Table

2.2. The training data was also further divided into a training set o f examples used to

adjust the network weights and a validation set o f examples used to estimate network

performance during training as required by the stopping criteria.

The netw ork w as trained using a constan t learn ing rate value o f 0.3 to achieve

a ta rge t e rro r value w ith in one per cent, using the standard g rad ien t descen t

tra in ing a lgo rithm in a batch m ode w ith coupled and adap tive changes in

w eight, b ias and gain values.

0.

0 .

0 .

JO.
>
CD 0 .
cn

£ o .

0 .

0 .

0 .

Figure 2.9: The sine curve data points with twenty per cent random Gaussian noise as

tabulated in Table 2.2 (data points taken from Ransing (2002)).

c * b ° cP

0.4 0.6
Input Value

34

The error value versus number of epochs required to achieve the target error was

plotted in Figure 2.11 (solid red curve). The dashed curve represents the same graph

for the network trained using a constant unit gain value. The results clearly showed

that the current m ethod proposed by Ransing (2002) outperform ed the

standard algorithm w ith constant gain by only taking 905 epochs as com pared

to 3,296 epochs in learning the target function. The results showed that the

speed o f convergence o f the current method was im proved as com pared to the

standard gradient-descent m ethod because the m odified gain values were

greater than unity. The gain values for the five hidden nodes at the end o f

training were 2.0, 1.0511, 1.0692, 1.0551 and 1.0320. The gain value for the

output nodes at the end o f training was 1.9858.

Training data
No. Inpu t Target

1 0 . 0 0 2 0.579
2 0 . 0 2 1 0.473
3 0.041 0.354
4 0.060 0.442
5 0.080 0.298
6 0.099 0.259
7 0.119 0.171
8 0.139 0.253
9 0.158 0 . 1 2 0

1 0 0.178 0.183
1 1 0.197 0 . 0 0 2
1 2 0.217 0.082
13 0.236 0.090
14 0.256 0.068
15 0.276 0 . 2 2 0
16 0.295 0.098
17 0.315 0.141
18 0.334 0.161
19 0.354 0.080
2 0 0.374 0.095
2 1 0.393 0.317
2 2 0.413 0.245
23 0.432 0.191
24 0.452 0.323
25 0.471 0.459
26 0.491 0.526

27 0.511 0.544
28 0.530 0.606
29 0.550 0.673
30 0.569 0.549
31 0.589 0.764
32 0.608 0.805
33 0.628 0.789
34 0.648 0.719
35 0.667 0.746
36 0.687 0.928
37 0.706 0.945
38 0.726 1 . 0 0 0
39 0.745 0.820
40 0.765 0.804
41 0.785 0.851
42 0.804 0.846
43 0.824 0.941
44 0.843 0.796
45 0.863 0.684
46 0.883 0.749
47 0.902 0.633
48 0.922 0.679
49 0.941 0.683
50 0.961 0.663
51 0.980 0.549
52 1 . 0 0 0 0.348

Table 2.2: The training data set used for Case 2 (data points taken from Ransing

(2002))

35

O datapoints
— Standard grad ient descent
— Ransing's method

0.9
CO

0.8

0.7

O
0.4

0.3

0.2

0.4 0.6 0.8
Input

Figure 2.10: Output o f neural network trained to learn a sine curve with twenty per

cent random Gaussian noise in batch mode using the coupled algorithm.

Standard gradient descent
Ransing's method0.09

0.08

0.07

0.06

LU

0.04

0.03

0.02

0 .0 1 -

3500500 1000 2000
Number of Epochs

1500 2500 3000
Number

Figure 2.11: Error versus number of epochs required to achieve the target error value

of 0.01.

36

2.6.3 Advantages of the current method

The results obtained from the case studies clearly showed that the method proposed

by Ransing (2002) substantially improved the learning speed and some o f the

contributions of the current method were summarised as follow:

• Ransing (2002) showed in her work that it is easy to introduce an adaptive

gain value into a gradient-descent method as agreed by previous researchers

but not for other optimisation methods.

• Previous researchers eliminated the gain variation value or they used a

constant gain value in the training process since they claimed that varying the

gain value was equivalent to changing the learning rate value. Whereas, the

current method discovered that gain variation contributed like an adaptive

learning rate for individual nodes.

• An innovative algorithm that coupled the weight, bias and gain update

expressions was proposed and the algorithm demonstrated significantly

improvement in sequential as well as batch-leaming modes.

Even though, the analysis results, as shown in Section 2.6, dem onstrated that

the current proposed method significantly increased the learning speed and

outperform ed the standard algorithm with constant gain in learning the target

function. However, the next section identifies some lim itations o f the current

method.

2.6.4 Limitations of the current method

There were two major limitations that have been identified in the current method:

• During training, only weights, bias and gain update expressions were coupled

and update adaptively. Whereas, the leaming-rate value was kept constant

until the end of training.

• The current method had significantly increased the training speed by

improving the leaming-rate value. However, the implementation o f the current

method was restricted only for the gradient-descent method.

37

2.7 CONCLUSION

While the back propagation (BP) algorithm is used widely in the majority of practical

neural-network applications and performed relatively well, the algorithm still suffers

from several problems such as in sensitivity to initial conditions and slow

convergence. Consequently, in the past few years, a number o f research studies have

been attempted to improve and overcome problems associated with BP algorithms.

This chapter reviewed some o f the major improvements and contributions suggested

by various researchers to overcome those limitations. Two major directions for

improvements have been identified which are: (a) firstly, the use of heuristic

techniques such ideas as variation o f the leaming-rate value, use o f the momentum

term, gain tuning o f activation function; and (b) secondly the integration of (a) with

second-order optimisation techniques for minimising the error value.

It has been shown in the literature that the variation o f the gain parameter does

improve the learning efficiency. The relevant literature on adaptive-gain variation has

also been reviewed. It can be concluded that early researchers claimed that the

adaptive-gain variation improved the learning rate. The work done by Ransing (2002)

concluded that the adaptive-leaming rate can be achieved for each neural network

node by varying the gain value for each node. A coupled algorithm for the efficient

calculation of the adaptive-gain value was proposed. A detailed description and the

performance of the current proposed method are given. The advantages and

disadvantages posed by the current proposed method have been identified.

The next chapter will take this discussion forward and explain how improvements

have been implemented in the method proposed by Ransing (2002) in order to

overcome some restrictions posed by the method.

38

CHAPTER 3

ENHANCED LEARNING ALGORITHM FOR

BACK PROPAGATION NETWORK

CHAPTER LAYOUT

A novel approach for improving the training efficiency of BP neural networks

algorithms is presented in this chapter. This chapter carries on with the investigation

on improvements to the BP algorithm proposed by earlier researchers, particularly the

work presented by Ransing (2002), on using the adaptive-gain variation in improving

the training efficiency (Section 2.6 of Chapter Two). It was discovered during this

work that the training efficiency o f the gradient-descent formulation with adaptive

gain was not improved as a result o f having an adaptive-leaming rate for each node as

proposed by Ransing (2002). It was, however, because the adaptive-gain change

improved the search direction. This chapter introduces a novel technique of

integrating the adaptive-leaming rate method coupled with an improved search

direction for improving the computational efficiency o f neural networks. As a result

o f this new understanding, it was possible for the first time to implement the proposed

technique into various second-order optimisation methods. The mathematical

formulation is described in the following sections. The penultimate section o f this

chapter then tests the software for its correctness on the data generated using a simple

sine curve. The conclusions are drawn from the research presented in this chapter to

facilitate further testing and validation that is described in Chapter Four.

39

3.1 INTRODUCTION

The work proposed by Ransing (2002) assumed that the learning efficiency was

improved because the gain variation contributed like an adaptive-leaming rate for

individual nodes. The supervised training procedure performed search through a

weight space in a succession of steps as follows:

w (n+1)= w (n)+ A w (n) (3.1)

where:

A w (n) = - 7 J ^ d (n)

n : is the iteration step

f j : learning rate value

d (/l) : search direction.

At each (n) step, A w (n) is chosen to reduce an objective (error) function ^ (w) . A

w idely accepted choice for error function E (w)is the m ean-of-squares error

(Equation 2.1 in Chapter Two). The efficiency of training algorithms is determined

by the way in which the learning rate and the search direction is calculated (C. de

Groot and D. Wiirtz, 1994). Equation 3.1 describes the procedure for updating

the w eight vector using the learning-rate value (Tj) and the search direction

(d (n)). The influence o f gain as claim ed by previous researchers is shown

diagram m atically in Figure 3.1.

40

Standard method:

A w (n) =T}ln)d (n)

• j ------------------------------------- ►
--------------- V ------

n«
Previous literatures claim (gain value ck as a modifier or multiplier
of the learning rate):

Aw (") = c ^ (,)d (,)
— --------- _ _ _ _ _ ------- ----------- --- ------- * d
V__________ >

Figure 3.1: The effect o f gain variation on gradient-descent method claimed by

previous researchers.

In this chapter, however, it was discovered that the gain variation actually improves

the search direction (d (w)) rather than the learning rate The next section

describes this new understanding in detail and compares its findings with the results

calculated by Ransing (2002).

The MATLAB implementation o f the newly proposed method is then tested for its

correctness. This will be illustrated further by comparing the simulation results of the

proposed method with the previous version on a non-linear mapping function given

by a functiony = sin(pi* x) where x e [0 ,1]. The m athem atical form ulation o f

im plem enting the proposed method into various second-order methods is

described in Section 3.3. The correctness o f the m athem atical form ulation is

tested again on the data generated using the sine curve in Section 3.4. The

chapter is concluded in Section 3.5.

41

3.2 THE PROPOSED METHOD BY IMPROVING THE

CURRENT METHOD

In this section a significant improvement on the method introduced by Ransing (2002)

on improving the training efficiency of BP neural-network algorithms is presented.

The proposed algorithm uses the same gain-update expressions for output as well as

hidden nodes as derived in Section 2.6 and for more detailed calculation please refer

to Ransing’s work.

The significant difference between the proposed method with that proposed by

Ransing (2002) is in the understanding of how adaptive-gain variation improves the

training efficiency.

Ransing’s method assumed that the network had two types o f learning rates: (i) the

global-leaming rate: and (ii) the local-learning rate for each node. At step (n)

Ransing’s method used a constant value for the global-leaming rate and calculated the

local-learning rate with respect to gain variation for each node by using Equation 3.2:

A */<"> = - r jM
each
node

dE

H K)
~r(M eghana R. Ransing, 2002) (3.2)

As shown in Figure 3.2 it is proposed in this chapter that the adaptive-gain variation

altered the initial search direction () and not the learning rate. This clarity in

understanding allowed a coupling of this theory with existing methods o f using

adaptive-leaming rate values. It will also be shown in Section 3.3 that this

modification of initial search direction (d (w)) can be implemented in various second-

order optimisation methods to yield significant improvements in the computational

speed.

42

d n (Ck,n)

d,
■V

Figure 3.2: The real effect o f gain variation on the gradient-descent method in

improving search direction.

With the newly proposed method, the learning rule is determined by calculating the

function o f gain into the gradient o f error with respect to weight and gain as shown in

Equation 3.3:

In this research a widely used Golden Section line search method (C urtis F. G erald

and Patrick O. W heatley , 2004) is chosen to obtain the op tim ised learn ing rate

The complete comparison between the proposed algorithm and the current method on

the BP algorithm is shown in Table 3.1. The flowchart illustrating the steps involved

in the proposed algorithm is shown in Figure 3.3.

The following iterative algorithm is proposed for changing the gradient-based search

direction by adaptively changing the gain value. The learning rate is adaptively

changed by using the Golden Section method.

Step 1 Initialise the weight vector with random values and the vector of gain

(3.3)

values with unit values.

43

Step 2 Calculate the gradient o f error with respect to the weights and

gradient or error with respects to gain.

Step 3 Adaptively calculate the learning rate by using the Golden Section

search method.

Step 4 Use the gradient weight vector and gradient o f gain calculated in Step

2 to calculate the new weight vector and vector o f new gain values fo r

use in the next epoch.

Step 5 Repeat the following Steps 2, 3 and 4 on an epoch-by-epoch basis until

the given error minimisation criteria are satisfied.

By using the proposed method, the gradient is re-evaluated optimally at each step to

produce a better choice for the search direction (d n). The proposed method

modifies the gradient-search direction (d n) adaptively with the gain parameter for

each node. Furthermore, the learning rate (77) is also determined optimally by using

the Golden Section method.

44

Ransing’s method The Proposed method
1. Initialise all weights to small random numbers

2. Until satisfied, DO
3. For each training pattern, DO

3.1 Input the training pattern to the
network and compute the network
output using sigmoid activation
function with gain term

1

' (l + e “CA"J)

3.1 Input the training pattern to the
network and compute the network
output using sigmoid activation
function with gain term

1

(1 + e c,a"',J)
3.2 Calculate the gradient of Error w.r.t

weight and gain

I f = (I< 5 t“ w“) / ' (c > « ‘)c;
d w iJ k

JT .r =OCj k

3.2 Calculate the gradient o f Error w.r.t
weight and gain

OCj k

3.3 Use constant value for learning
rate value.

3.3 At step n calculate learning rate
by using Golden section search.

+ ^ X) = + '7 ,rf»)

3.4 At step n calculate learning rule for
weights and gain

c)F
A (* >)) - , .)

each CVv-y
node

T T n e t L i

3.4 At step n calculate learning rule
for weights and gain

= _ '7<”> ^) { c >{n))

T I n e t L i

3.5 Update each netw ork
w eight
W(»+D = w(») + Aw<»)

c) (« + !) = Cj (n) + Ac Lj (n)

3.5 Update each netw ork
weight

= w W +Aw<")

c Lj (n + 1) = Cj (n) + ACj (n)

END DO

Table 3.1: Comparison between the proposed algorithm and the method proposed by

Ransing (2002).

45

Iteration>=Max
iteration

MSE<=minimum

NO NO

YES

n = 0

n=n + 1

Initialise weights, biases and gain value

Calculate (77) using Golden Section method

Calculate error (MSE) e = - Y (t - o Y
P t t - u ' p i P> '

Update new weights w(fl+1) = w(n) + A a n d new gain value

Cj (« + !) = Cj (n) + A Cj (n) to minimise the error

Calculate output signal for output and hidden unit
using sigmoid activation with gain value

f{netDi) = -------------

h * = - 7 w ^ f >

1 r netL i

hc>(n) = r]5‘ ^)

Figure 3.3: Flowchart for the proposed method.

46

3.2.1 Verification of the proposed method on simple data sets:

(a) Case 1

The speed o f convergence achieved using the proposed method on the gradient-

descent method is demonstrated by using the same datasets created by Ransing (2002)

in Section 2.6.1 (refer to Table 2.1). The output o f the proposed method (black

continuous curve) is shown against the training data points (circles) in Figure 3.4.

Whereas, Figure 3.3 demonstrated the error versus number o f epochs required to

achieve the target error 0.01.

O datapoints
■— GDM
 Ransing's method
— GDM/AG

0.9

0.8

0.7

0.6

0 .4

0.3

0.2

0.2 0 .4 0.6 0.8
Input

Figure 3.4: Output o f the proposed network (GDM/AG) trained to learn a sine curve

corresponds to Figure 2.7.

As shown in Figure 3.5, that the proposed network (GDM/AG) outperformed both

methods including the method proposed by Ransing (2002), the proposed method

significantly reduced the number o f epochs in order to reach the target error without

losing the generalisation accuracy.

47

0 .16

0 .1 4

0.12

0.1

L-

2 0 .08
LU

0.06

0 .0 4

0.02

°0 5 0 0 0 10000 1 5 0 0 0
Number of Epochs

Figure 3.5: Error versus number o f epochs required by the proposed method

(GDM/AG) to achieve the target error o f 0.001 using the gradient-descent method.

This figure corresponds to Figure 2.8.

(b) Case 2

The dataset created for Case 2 is also taken from Ransing (2002). The network was

required to approximate the function determined by a sample o f fifty-two input points

shown in Figure 3.6 (circles). The output o f the proposed method (black continuous

curve) is shown against the training data points (circles) in Figure 3.6. Figure 3.7

computes the speed o f convergence. The number of epochs required by the proposed

method (black continuous curve) are compared with the method proposed by Ransing

(2002) (red solid curve) and the standard gradient-descent method (blue dot

continuous curve). It is clear that the proposed method (GDM/AG) outperformed

both methods including that proposed by Ransing. Even though the speed o f

convergence can be improved by using the method proposed by Ransing (2002), but it

still required more iterations as compared to the proposed method. The proposed

method only took 625 epochs in reaching the target function as compared with 905

epochs required by Ransing’s method and 3,295 epochs for standard gradient-descent

— GDM
 Ransing's method
 GDM/AG

48

(GDM) method. It shows that the speed o f convergence for the proposed method is

high due to the modification o f the gradient-search direction by adaptively modifying

gain values together with varying the leaming-rate value. At the end o f the training

the values o f gain o f the proposed method for the five hidden nodes at the end o f

training are 2.0, 0.8020, 0.5474, 0.9116 and 1.6337. The value o f gain for the output

node at the end o f training is 0.5318.

O datapoints
— ■ GDM
 Ransing's method
 GDM/AG

0.9
CD

0.8

0.7

+■» v

~ 0 . 5
3o

0.4

0.3

0.2

0.1

0.80 .4 0.6
Input

Figure 3.6: Output o f the proposed network (GDM/AG) trained to learn a sine curve

with twenty per cent random Gaussian noise using the proposed method. This figure

corresponds to Figure 2.10.

49

 GDM
 Ransing's method
 GDM/AG

0 .09

0 .08

0 .07

0 .06

LU

0 .0 4

0 .0 3 -

0.02

0.01

350 0500 1000 2000
Number of Epochs

1500 250 0 300 0
Number

Figure 3.7: Error versus number o f epochs required by the proposed method

(GDM/AG) to achieve the target error o f 0.01 using the gradient-descent method. This

figure corresponds to Figure 2.11.

In general, both sets o f results (i.e. for cases (a) and (b)) clearly showed that the

proposed method implemented with the gradient-descent method significantly

improved the training speed. The speed o f convergence was high due to the effect o f

introducing gain variations and learning rates at each training epoch.

Since most of the optimisation techniques used the gradient information to calculate

their search direction, the next section demonstrates the implementation of the

proposed method in modifying the search direction using adaptive-gain variation with

various optimisation techniques.

50

3.3 THE IMPLEMENTATION OF THE PROPOSED METHOD

WITH VARIOUS OPTIMISATION TECHNIQUES

In this section, the proposed method is implemented into other well-known

optimisation methods. The proposed optimisation algorithm calculates the learning

rate adaptively by using the Golden Section method (Curtis F. Gerald and Patrick

O. W heatley, 2004) and calculates the search direction optimally by using gain

variation.

3.3.1 Conjugate-gradient method with adaptive-gain variation

One o f the remarkable properties of the conjugate-gradient method is its ability to

generate, in a very economical fashion, a set of vectors with a property known as

‘conjugacy’ (C.M. Bishop, 1995). The most widely used conjugate-gradient

algorithms are given by Fletcher and Powell (R. Fletcher and M.J.D. Powell, 1963)

and the Fletcher-Reeves (R. Fletcher and R.M. Reeves, 1964) ones. Both of these

procedures generate conjugate directions o f search and therefore aim to minimise a

positive definite quadratic function of n variables in n steps.

The search direction at each iteration is determined by updating the weight vector as

given in Equation 3.1, where: c/(w) = g (/l) -I- P ^ d n̂_^. The scalar Pn is to be

determined by the requirement that d n and d n+l must fulfill the conjugacy property

(C.M. Bishop, 1995). The calculation procedure for scalar Pn determines different

types o f conjugate-gradient methods. The well-known formulae for Pn are those o f

Fletcher-Reeves (Fletcher R. and Reeves R. M., 1964) and Polak-Ribiere (E.

Polak, 1971) and are given by:

o & n+1 § n+1
Pn ~ T (Fletcher-Reeves (Fletcher R. and Reeves R. M., 1964)) (3.4)

(Polak-Ribiere (Polak E., 1971)) (3.5)

51

The proposed method that is implemented with the conjugate-gradient method is

referred as CGFR/AG for Fletcher-Reeves’ implementation and CGPR/AG for Polak-

Ribiere’s implementation. The method begins the minimisation process with an initial

estimate w0 and an initial search direction as:

d o = - V E (wo) = -g o (3 -6)

Then, for every epoch the search direction at {n + \)'h iteration is calculated as:

</„*. = - ^ (^ +1) + A (^ , K (^) (3-7)

The proposed algorithm for the conjugate-gradient method is summarised as follows:

Step 1 Initialise the weight vector random ly, the gradient vector g Q to zero

and gain value to one. Let the first search d ire c tio n ^ = g 0. Set

fl0 = 0 , epoch = 1 and n = 1 . Let Nt be the num ber o f weight

param eters. Select a convergence tolerance (c r) .

Step 2 At step f l , evaluate gradient vector g n(cn) w ith respect to gain

vector cn and calculate gain vector.

Step 3 Evaluate E(wn). IF E(wn) < CT then STOP training ELSE go to

Step 4.

Step 4 Calculate a new search direction: d n = -g „ (c n) + j3n_xd n_x.

Step 5 For the first iteration, check i f n > l THEN w ith the function o f

gain, update j3n+x by m odifying the following formula:

p = s l A cn «)g ^ (c,») for CGFR/AG or

p _ Sn+\(Cn+\)[g n+\(Cn+l) ~ §n (Cn)] for CGPR/AG
g Tn(cn)gn(cn)

ELSE go to Step 6 .

Step 6 IF [{epoch + \) lNt] = 0 THEN ‘res ta rt’ the gradient vector with

dn = ~g„-\(cn-i), ELSE go to Step 7.

52

S tep 7 Calculate the optim al value for learning rate rjn by using

the Golden Section line search technique such as:

E(wn +) = min E(w„ +)

Step 8 Update w„: = w„ + r{ndn

S tep 9 Evaluate new gradient vector g n+l(cn+l) w ith respect to gain

value c„+, .

Step 10 Calculate new search direction: dn+x = - g n+i(cn+̂) + J3„(cn)dn

Step 11 Set n = n + 1 and go to Step 2.

3.3.2 Quasi-Newton methods with adaptive-gain variation

Quasi-Newton methods are also among the most popular algorithms used in

unconstrained optimisation techniques. For an error function E(w), a typical iteration

o f the Quasi-Newton method is given as in Equation 3.3, where the search direction

d(n) is defined by solving a system o f equations:

d(n)=~[H(n)]VE(w{n)) (3.8)

where: VE’(w) = g and H is the Hessian matrix which is adjusted from iteration to

iteration such that the direction d(n) approximates the Newton direction. Quasi-

Newton methods achieve fast convergence and also do not require direct computation

o f second-order derivatives. Two commonly used implementations of Quasi-Newton

methods are Broyden-Fletcher-Goldfarb-Shanno (BFGS) formulation (Adrian J.

Sheperd, 1997) and Davidon-Fletcher-Powell (DFP) formulation (F. Fnaiech et al.,

1994). The basic difference between those two formulations is in the way the inverse

Hessian is constructed. This is illustrated in the following formula:

V. = \ + y TnHny n
Ts,y, j

_ s , yT, H. (BFGS (Adrian J. Sheperd, 1997)) (3.9)
T Tsnyn sny n

v. = i+ H„s„n n n
T

y„s n n

_ y A H .+ H 'S y , (DFp (p Fnaiech et ai (j 994)) (3 10)
T Tynsn yns„

53

The vectors sn and y n are determined as in Equation 3.11 and Equation 3.12,

respectively.

The proposed method uses the gradient vector that is a function o f the gain parameter

(g„(cn)) as described in Equation 3.7. Such a modification has been implemented in

both the BFGS and DFP formulations and referred as BFGS/AG and DFP/AG. The

proposed algorithms for Quasi-Newton is summarised as follows:

Step 1 Initialise the weight vector w(0) along w ith a positive definite o f

H essian matrix//(o) = / . Select a convergence to le rancect .

Step 2 Compute the search direction dn w ith respect to gain variation

by solving

Step 3 Search the optim al value for ̂ by using a Golden Section line

search technique such as:

+ 7 X) = minE(wn +rjndn).

Step 4 Update W-: w n+l = w n + ij*Hdn.

Step 5 Compute:

=w„+]-w„ (3.11)

yn =gn+̂ n+x) - g n{cn) (3.12)

Construct the inverse Hessian by modifying the following formula:

V. =

V. =

l + y Tn(Cn)H ny n(Cn)
s„y„{cn)

s„s Tn s ny Tn {cn) H n f o r B F G S / A G o r

Snyn(Cn) STny n(Cn)

\ S l H n S n | I n n n y n (C n) y Tn (C n) (C n) S l H n + H n S n y TH (C „) f () r

y Tn(C«)Sn y Tn(Cn)Sny Tn(cn)sn
DFP/AG.

Step 6 Update the inverse m atrix // : / / , = / / +v .
^ ^ n n+ l n n

Step 7 Compute the error function value. e(w„)

Step 8 I f E(wn) > CT go to Step 2, else stop training.

54

3.4 COMPARISON OF THE PROPOSED TRAINING METHOD

WITH THE EQUIVALENT STANDARD METHODS ON A

SIMPLE DATA SET

This section is dedicated to presenting an analysis o f the performance of the proposed

training method coupled with other optimisation methods when applied to a

continuous approximation function. The proposed method described in Section 3.4

has been implemented by using the MATLAB programming language (refer to

Appendices 1.1 to 1.6). In training those networks, the main objective of this section

is to ensure that the proposed programming code learns and trains correctly on a

sample data set. Further validation o f the proposed method will be undertaken in the

next chapter.

3.4.1 Experimental setup

The critical issue in training neural networks is to measure the generalisation

performance of the network by comparing the network output with the known output

on a data set that is not in the training data. The standard neural network architectures,

such as the fully-connected multi-layer perceptrons, are prone to overfitting (Stuart

Geman et al., 1992). As the number o f hidden nodes increase, the number of

unknowns, or degree of freedom in the network, increases and the risk of overfitting

to the data also increases. On the other hand, with too few nodes the network will not

be flexible enough to adapt to the true input-output relationship. Therefore it is

important to get the number of hidden nodes approximately right before proceeding

with the training.

3.4.1.1 Early stopping

Overfitting as mentioned in Section 3.4.1 may be prevented in three main ways: (a) by

limiting the number of hidden nodes; (b) by adding a penalty term to the objective

function for large weights; or (c) by limiting the amount of training using early

stopping (Murray Smith, 1993). Although all three methods are potentially useful,

55

early stopping is used in this section to prevent overfitting, as it is the most popular,

simple to understand, and easy to implement.

In this technique, as shown in Figure 3.8, data is divided into training and validation

data sets. The network is trained using only the training data and at predetermined

training intervals (e.g., after every twenty epochs), the error of the network is

determined in both the training and the validation data sets, and the connection weight

configuration of the network is saved. Training continues with the error in the training

set usually declining with additional training. However, the training is stopped as soon

as the corresponding error in the validation set is higher than it was the last time it

was checked. The network weight configuration with the least error in the test set is

considered the best network and is used for future predictions in external validation

sets.

— training error
■ ■ validation error

LU

stop training

Number of Epochs

Figure 3.8: Idealised training and validation error curve.

3.4.1.2 Initial training conditions

During the training process in neural networks, the weight, bias and gain values are

updated after each epoch. An epoch is said to be complete after the presentation o f a

training example. A mean squared-error (MSE) value is calculated after the

presentation of all training examples and compared with the target error. Training is

56

done on an epoch-by-epoch basis until the MSE value falls below the desired target-

error value or by stopping the training after the stopping criteria as mentioned in

Section 3.4.1.1. has been satisfied.

The selection of initial weights and bias are important parameters in the training

process. If the initial weights are very small, the back-propagated error is so small that

practically no change takes place for some weights, and therefore more iterations are

necessary to decrease the error (D.E. Rumelhart et al., 1986). In the worst case the

error remains constant and the learning stops in an undesired local minimum (Y. Lee

et al., 1993). On the other hand, large values o f weights speed up learning, but they

can lead to saturation and to flat regions o f the error surface where training is

considerably slow (G.D. Magoulas et al., 1996). Thus, in order to evaluate the

performance of the algorithms better, the experiments were conducted using the same

initial weight and bias vectors that have been randomly chosen from a uniform

distribution between [0,1].

3.4.1.3 Training cases

The speed of convergence achieved using the proposed algorithm is demonstrated in

the following example which corresponds to the data set created by Ransing (2002) in

the second chapter o f her thesis. Consider a single input-output two-layer network

with one hidden layer having five hidden nodes as can be seen in Figure 3.9. There

are two training data sets that have been used in this section and those training data

sets are created by using the function y = sin(/w * x) where x<= [0,1] and by adding

an approxim ate tw enty per cent random Gaussian noise. The netw ork is

trained using 0.3 as the learning rate and 0.4 as the momentum value to achieve a

one per cent target error. A sigm oid activation function was used in order to

generate an output value betw een ‘0 ’ and ‘1’ at each node.

57

Input Layer
Hidden Layer Output Layer

Figure 3.9: Fully-connected MLP netw ork w ith 1-5-1 architecture.

3.4.1.4 Training algorithms

All the proposed methods have been implemented by using MATLAB programming

language. The netw ork is trained using eight training algorithm s w ith coupled

and adaptive changes in w eight, bias and gain values. The netw ork is trained

w ith an adaptive gain for all output as well as hidden nodes. Those eight

training algorithm s are:

1) The standard conjugate gradient-Fletcher-Reeves (CGFR) (Fletcher R.and

Reeves R. M., 1964).

2) The newly proposed conjugate gradient-Fletcher-Reeves method with adaptive

gain (CGFR/AG)

3) The standard conjugate gradient-Polak-Ribiere (CGPR) (Polak E., 1971).

4) The newly-proposed conjugate gradient-Fletcher-Reeves method with adaptive

gain (CGPR/AG)

5) The standard Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Adrian J. Sheperd,

1997).

6) The newly-proposed Broyden-Fletcher-Goldfarb-Shanno method with adaptive

gain (BFGS/AG).

7) The standard Davidon-Fletcher-powell (DFP) (F. Fnaiech et al., 1994).

8) The newly-proposed Davidon-Fletcher-Powell with adaptive gain (DFP/AG)

58

3.4.2 Experiment results

(a) Case 1: The sin(x) problem without noise

The speed o f convergence achieved by all training algorithms as mentioned in Section

3.6.1.4 is demonstrated using the same data sets as illustrated in Section 2.6.1. The

training procedure and conditions are kept the same as proposed by Ransing (2002).

During each epoch, the gain, weight and bias values for all hidden nodes and output

nodes converged to achieve an MSE of 0.001 for gain, weight and bias values,

respectively. The terminated number of epochs and average running time for all

algorithms are included in Table 3.2.

Methods
No of epochs in

which the
convergence was

achieved

CPU time
(seconds)

Standard CGFR 292 21.88

CGFR/AG 257 19.34

Standard CGPR 365 23.64

CGPR/AG 315 27.72

Standard BFGS 1400 89.23

BFGS/AG 760 76.55

Standard DFP 2546 175.67

DFP/AG 1932 121.21

Table 3.2: Summary o f sim ulation results.

It can be seen from Table 3.2 that all proposed methods with adaptive gain have

consistently outperformed other standard algorithms in terms of number of epochs

and CPU time required for the convergence. For the purpose of comparison, only the

performance of the conjugate gradient (Fletcher-Reeves) formulation is presented and

discussed in this section whereas the performance of other formulations is discussed

in Appendices 1.1 to 1.16.

Figures 3.10 and 3.11 illustrate the performance of the proposed method implemented

into conjugate-gradient (Fletcher-Reeves) formulation. As can be seen from Figure

59

3.11, the proposed method (CGFR/AG) took 257 epochs to learn the target function

as compared to the standard algorithm which took about 292 epochs.

The gain values for the five hidden nodes at the end o f training are 1.0232, 1.0002,

1.1743, 0.5107, and 1.0343, respectively. The gain value for the output node at the

end o f the training is 1.6232. As shown in Table 3.2, the speed o f convergence for the

proposed method (CGFR/AG) is fast because the modified gain values improved the

gradient-search direction as compared to the standard algorithm with unity gain value.

O datapoints
— C G FR
 CG FR/AG

0.9

0.8

0.7

0.64->3CL4->
3o

0.4

0.3

0.2

0.1

0.2 0.4 0.6 0.8
Input

Figure 3.10: Output o f neural networks trained to learn a sine curve using the

proposed con jugate-g rad ien t m ethod w ith F le tch er-R eev es’ form ulation .

60

0.2
— - C G FR
 C G FR /A G0.18

0.16

0 .14

0.12

0.1
LU

0.08

0.06

0.04

0.02

100) 150 :
N um ber of Epochs

200 250 300

Figure 3.11: Error versus number o f epochs required to achieve the target error of

0.001 for the conjugate-gradient m ethod w ith F le tch er-R eev es’ form ulation .

(b) C ase 2: T he sin(x) p rob lem with noise

As mentioned in the previous section, the second training data set is also created by

using the same function used by Ransing. The data point values were altered using the

Gaussian noise. The same network architecture is used for this experiment’s data and

all parameters were kept the same as for the first experiment, except for the target-

error value. At each epoch, the gain, weight and bias values for all hidden nodes and

output nodes converged to achieve a target error o f 0.01 for gain, weight and bias

values, respectively. The terminated number o f epochs and average running time for

all algorithms are included in Table 3.3.

61

Methods
Number of
iteration in
which the

convergence
was achieved

CPU time
(seconds)

Standard CGFR 111 7.59

CGFR/AG 54 3.36

Standard CGPR 167 11.75

CGPR/AG 111 7.51

Standard BFGS 450 34.73

BFGS/AG 316 22.48

Standard DFP 659 41

DFP/AG 429 27

Table 3.3: Sum m ary o f sim ulation results w ith tw enty per cent random
Gaussian noise.

In achieving the results in Table 3.3 the following discoveries were made: first, the

standard gradient descent was not able to leam the noisy data properly. As a result it

took a longer time and number of epochs to achieve the target-error value. Second, all

proposed methods exhibited good performance in reaching the target-error value in

terms o f the number o f epochs and CPU time required for convergence as compared

with other standard algorithms.

The proposed method implemented with the conjugate gradient (Polak-Ribiere)

formulation is chosen for the purpose of comparison. As can be seen from Figure

3.12, both algorithms have predicted the same mapping approximating function.

However, the proposed method (CGPR/AG) significantly improved the training speed

by reducing the number of epochs from 167 to 111 (Figure 3.13). The speed of

convergence for the proposed method (CGPR/AG) is reduced due to the modified

gain values that further improved the gradient-search direction as compared to the

standard algorithm.

The performance comparison of other optimisation methods coupled with the

proposed method is shown in Appendix A.I.

62

O datapoints
 CGPR/AG
— CGPR

0.9

0.8

0.7

0.4

0.3

0.2

0.1

0.4 0.6 0.8
Input

Figure 3.12: Output of neural networks trained to learn a sine curve with twenty per

cent random Gaussian noise using the proposed method w ith P o lak-R ib iere

form ulation .

0.1
 CGPR
 CGPR/AG0.09

0.08

0.07

0.06

0.04

0.03

0.02

0.01

80 100 120 140 160 180
Num ber of Epochs

40

Figure 3.13: Error versus number o f epochs required to achieve the target error of

0.01 using the conjugate-gradient method w ith P o lak -R ib iere form ulation .

63

3.5 CONCLUSION

The back propagation algorithm, which is frequently used in the neural-network

training process, has often been criticised for its stability and convergence problems.

Many researchers have devoted their efforts in improving its efficiency ranging from

employing various optimisation methods for proposing new algorithms. Previous

literature showed that changing the ‘gain’ value adaptively for each node can also

improve the network training speed. The previous research concluded that adaptive

gain has a catalytic effect in the learning process by magnifying the magnitude of the

learning rate.

The research presented in this chapter proposes that for the standard gradient-descent

algorithm, the adaptive-gain variation does not influence the learning rate as

perceived in the previous research but modifies the initial search direction. A

mathematical formulation, based on this insight, was developed for various

optimisation techniques.

The proposed method has been successfully implemented into the MATLAB

programming language and the experimental results have shown that the proposed

programming code was trained correctly and significantly reduced both the number of

epochs and the CPU time in reaching the target error as compared to other standard

algorithms. Furthermore, the proposed method has been shown to be more generic

and easy to implement into other commonly used gradient-based optimisation

algorithms. The proposed method provides an important lead into the gradient-based

optimisation techniques for improving training efficiency.

64

CHAPTER 4

RESULTS AND VALIDATION ON

BENCHMARK PROBLEMS

CHAPTER LAYOUT

This chapter undertakes further tests to validate the efficiency and accuracy of the

newly-developed method discussed in Chapter Three. The benchmark problems used

to verify the proposed algorithm are taken from the open literature (Lutz Prechelt,

1994). The following two criteria are used to assess the computational efficiency and

accuracy of the proposed method in comparison with the benchmark problem: (a) the

speed o f convergence measured in the number o f epochs and the CPU time; and (b)

the classification accuracy on testing data from the benchmark problems. The results

are discussed and conclusions drawn from the research presented in the last section of

this chapter.

65

4.1 INTRODUCTION

Chapter Three suggested that a simple modification to the gradient-based search

direction can also substantially improve the training efficiency o f almost all major

optimisation methods. It was discovered that if the gradient-based search direction is

locally modified by a gain value used in the activation function of the corresponding

node, significant improvements in the convergence rates can be achieved irrespective

o f the optimisation algorithm used. The correctness of the proposed method using the

MATLAB programming language was demonstrated by comparing the learning speed

on the data generated from a sine function.

In this chapter, the robustness of the proposed algorithm is further validated and it is

illustrated by comparing convergence rates for gradient descent, conjugate-gradient

and Quasi-Newton methods on many benchmark examples. The remains o f the

chapter is organised as follows: Section Two discusses the preliminaries o f the

simulation; and in Section Three, the robustness of the proposed algorithm is shown

by comparing convergence rates for gradient descent, conjugate gradient and Quasi-

Newton methods on many benchmark examples. The chapter is concluded in the final

section along with a short discussion on further research.

4.2 PRELIMINARIES

The performance analysis used in this research focuses on two criteria: (a) the speed

of convergence measured in number of iterations and CPU time; and (b) the

classification accuracy on testing data from the benchmark problems. The benchmark

problems used to verify the proposed algorithm are taken from the open literature

(Lutz Prechelt, 1994). To perform the experiments the data has to be arranged into a

collection of training and testing sets. The algorithm is trained on the training set and

its performance is measured on the corresponding testing set (early stopping) as

mentioned in Section 3.4.1.1. In this case two-thirds o f the examples in each category

were randomly placed in the training set, and the remaining examples formed the

66

testing set. To reduce statistical fluctuations, the results are averaged over several

simulations on the same training and testing sets.

Six classification problems have been tested including Thyroid, Wisconsin breast

cancer, Diabetes, IRIS classification problem and Glass classification (Lutz Prechelt,

1994). The simulations were carried out on a Pentium IV with a 3 GHz processor, 1

GB RAM and using MATLAB version 6.5.0 (R13).

On each problem, the following fifteen algorithms were analysed and simulated:

1) The standard gradient-descent method with the momentum term (traingdm)

from ‘MATLAB Neural Network Toolbox version 4.0.1’.

2) The standard gradient-descent method with the momentum term (GDM).

3) The modified gradient-descent method proposed by Ransing (2002).

4) The gradient-descent method with the momentum term and adaptive-gain

variation (GDM/AG) method.

5) The standard conjugate gradient-Fletcher-Reeves (traincgf) method from the

‘MATLAB Neural Network Toolbox version 4.0.1’.

6) The standard conjugate gradient-Fletcher-Reeves (CGFR) method.

7) The conjugate gradient-Fletcher-Reeves method with adaptive-gain variation

(CGFR/AG) method.

8) The standard conjugate gradient-Polak-Ribiere (traincgp) method from the

‘MATLAB Neural Network Toolbox version 4.0.1’.

9) The standard conjugate gradient- Polak-Ribiere (CGPR) method.

10) The conjugate gradient-Polak-Ribiere method with adaptive-gain variation

(CGPR/AG) method.

11) The standard Broyden-Fletcher-Goldfarb-Shanno (trainbfg) method from the

‘MATLAB Neural Network Toolbox version 4.0.1’.

12) The standard Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.

13) The Broyden-Fletcher-Goldfarb-Shanno method with adaptive-gain variation

(BFGS/AG) method.

14) The standard Davidon-Fletcher-Powell (DFP) method.

15) The standard Davidon-Fletcher-Powell method with adaptive-gain variation

(DFP/AG) method.

67

To compare the performance o f the proposed algorithm with respect to other standard

optimisation algorithms from the MATLAB neural-network toolbox, network

parameters such as network size and architecture (number o f nodes, hidden layers,

etc.), and the values for the initial weights and gain parameters were kept the same.

For all problems the neural network had one hidden layer with five hidden nodes and

the sigmoid activation function was used for all nodes. This architecture o f the neural

network was finalised after an initial study with a different number o f hidden nodes.

Prior to training, the weights are initialised to small random values. The reason to

initialise weights with small values is to prevent saturation (where one or more hidden

node is highly active or inactive for all patterns and therefore insensitive to the

training process) and random to break symmetry (Adrian J. Sheperd, 1997). If, on the

other hand, the initial weights are too small, training will tend to start very slowly. In

order to reduce statistical fluctuation, all algorithms were tested using the same initial

weights that were initialised randomly from range [0, 1] and received the input

patterns for training in the same sequence.

For the gradient-descent algorithm, the learning rate value was 0.3 and the momentum

term value was 0.4. The initial value used for the gain parameter was set to one. The

values were used for comparison purpose only and there was no particular reason for

the choice o f these values.

For each simulation run, the numerical data is shown in two files: (1) the summary

results file; and (2) a detailed description of the successful algorithm. The number of

iterations required to achieve convergence for each simulation result were noted to

calculate the mean, the standard deviation and the number of failure cases. The cases

that failed to converge are obviously excluded from the calculations o f the mean and

standard deviation but are reported as failure cases.

For each simulation run, the generalisation accuracy (the accuracy o f the network in

classifying unknown data) o f all algorithms is also calculated based on the

formulation proposed by Watkins (Dave Watkins, 1997). Watkins determined

generalisation accuracy by calculating the inverse of a distance measure o f simulation

results from the real answers, expressed as a percentage o f the limits o f the range:

68

1— /* - o Lt
Accuracy(%) = -------------- * 100

U B -L B
(4.1)

where UB and LB represent the upper bound and the lower bound. Both are

defined based on the type o f activation function that is used during the

sim ulations, in this case all sim ulations are run using a sigm oid activation

function. Hence UB is defined as one and LB is defined as zero. The final

accuracy is determined by taking the mean o f all simulation runs.

4.3 VERIFICATION ON BENCHMARK PROBLEMS

For each problem, one hundred simulation runs were obtained, each with a different

randomly chosen set of initial weights. For each simulation run, the number of

iterations required for convergence is reported. For an experiment of one hundred

simulation runs, the mean of the number o f iterations, the standard deviation, and the

number of failures are collected. A failure case occurs when the network exceeds the

maximum iteration limit or the stopping criteria as mentioned in Section 3.6.1.1 is

met; each simulation is run for up to one thousand iterations except for the back-

propagation algorithm based on the gradient-descent method as it failed to converge

within the specific iteration limit and needed at least ten thousand iterations to

converge; otherwise, the training procedure is halted and the run is reported as a

failure case. Convergence is achieved when the output of the network achieves the

above mentioned stopping criteria.

4.3.1 Performance comparison setup

To simplify the process of verification, this section describes the summary of some

procedures and criteria that have been used to compare the results o f all training

algorithms on selected benchmarks taken from the open literature (Lutz Prechelt,

1994). The list o f benchmarks tested is as follows:

• Thyroid classification problem

69

• Wisconsin Breast Cancer classifications problem

• Diabetes classification problem

• IRIS classification

• Seven-bit parity problem

• Glass-classification problem

To provide comparable and interpretable results, each problem will be presented with

the same table as shown in Table 4.1 together with a figure that illustrates the

comparison of average CPU time and number o f epochs required for convergence.

Each table only presents the summary of the performance for all training algorithms

based on certain criteria. The detailed information is presented in tables in Appendix

AIII provided at the end of this thesis.

Mean
no. of
epochs

CPU
time(s) per

Epoch

Total CPU
time(s) to
converge

SD Accuracy

(%)

Fails

traingdm
GDM
Ransing’s
method
GDM/AG
traincgf
CGFR
CGFR/AG
traincgp
CGPR
CGPR/AG
trainbfg
BFGS
BFGS/AG
DFP
DFP/AG

Table 4.1: Sample table showing characteristics used to compare the performance of

all algorithms.

For the purpose of comparison, the following notations together with their explanation

specify characteristics that have been used for each problem:

70

Mean number of epochs - the ratio o f sum of total number o f epochs with the

number o f simulation runs.

CPU time (s) per epochs - the total CPU time (in seconds) divided by the mean

number o f epochs.

Total CPU time (s) to converge - the sum of all CPU times (in seconds) divided by

the number o f simulation runs.

Standard deviation (SD) - the value that describes how close the results are around

the mean number o f epochs in one hundred simulation runs. When the result values

are very close to each other, the SD value is small. When the result values are spread

apart it has a relatively large SD value.

Accuracy - the value that was used by all training algorithms to determine the

network performance when classifying unknown datasets (testing data) for each

simulation run. It was calculated based on the formulation proposed by Watkins

(Dave Watkins, 1997).

Number of failures - the value that indicates the number of runs that failed to

converge within the specified MSE value or the training was stopped when the

stopping criteria (refer Section 3.6.1.1) are met.

4.3.1.1 Thyroid classification problem

fftp://ftp. ics.uci.edu/pub/machine-leaming-databases/thyroid-disease)

This data set was created based on the ‘artificial neural-network’ version o f the

‘thyroid disease’ problem. The data set is designed so that a neural-network model

can diagnose thyroid hyper- or hypo-function based on patient query data and patient

examination data. The model decides whether the patient’s thyroid has over-function,

normal-function, or under-function. Some 7,200 observations are used and the data is

partitioned into training and validation subsets, and permutated in three ways. The

selected architecture of the Feed-forward Neural-network is 21-5-3. The target error is

set to 0.05 and the maximum epochs to one thousand.

Table 4.2 provides the summary of all algorithms’ performances for the Thyroid

classification problem. It shows that all gradient-based algorithms coupled with the

71

proposed method outperform other algorithms in terms of the CPU time and number

o f iterations required for convergence.

Thyroid classification problem (target error=0.05)

Mean
no. of
epochs

CPU
time(s) per

Epoch

Total CPU
time(s) to
converge

SD Accuracy
(%)

Fails

traingdm 8925 3.72x1 O'2 332.03 1.70xl02 87.04 16
GDM 3441 9.20x1 O'2 316.49 1.02xl03 88.17 7
Ransing’s
method

1413 8.87xl0'2 125.30 7.14xl02 88.41 4

GDM/AG 1114 1.00x10'1 111.63 7.44x10’ 88.66 4
traincgf 49 2.03x10’ 10.02 5.43x10’ 91.03 6
CGFR 15 4.27 xlO'1 6.48 5.89x10° 91.33 4
CGFR/AG 11 4.30 xlO'1 4.84 4.22x10° 90.97 3
traincgp 34 2.20 xlO1 7.4593 6.59 xlO1 91.64 9
CGPR 13 3.49 xlO1 4.6151 3.28 xl0° 89.85 6
CGPR/AG 10 2.64 xlO*1 2.5802 3.53 xl0° 90.37 3
trainbfg 63 1.40x10’1 8.7439 7.86x10’ 88.56 4
BFGS 35 2.74x10'’ 9.6520 3.68x10° 90.04 1
BFGS/AG 21 2.52x10'’ 5.2977 4.24x10° 89.62 1
DFP 107 2.79x10’ 29.93 8.38x10’ 90.03 5
DFP/AG 53 2.39x10'’ 12.6739 8.47x10’ 89.47 3

Table 4.2: Summary o f algorithms’ performances for the Thyroid

classification problem.

Figure 4.1 displays the performance of various gradient-descent methods on the

Thyroid classification problem. Note that the proposed method and the method that

was introduced by Ransing (2002) had drastically reduced the number of epochs

required for convergence as well as the CPU time over one hundred simulation runs

as compared to the neural-network toolbox. However, it can be seen that the

performance of the method proposed in this thesis is still better as compared to the

one proposed by Ransing. Furthermore, in reaching the target error, the proposed

method had reduced the number o f failure cases from sixteen when using a neural-

network toolbox to four, even though both algorithms gave most similar results on

generalisation accuracy. Almost all algorithms have given similar results on the

generalisation accuracy.

72

9000

8000

7000

6000

5000

4000

3000

2000

1000 x]

pi
traingdm GDM Ransing's method GDM/AG

□ Mean no. of Epochs 8925 3441 1413 1114

□ Standard deviation 1419.85 1015.82 713.64 1066.93

□ CPU time (seconds) 332.03 316.49 125.30 111.63

Figure 4.1: Comparison o f average CPU time and number o f epochs required for

convergence using the gradient-descent method for the Thyroid classification

problem.

The proposed method has also shown superior performance when integrated with the

conjugate-gradient formulation. As can be seen in Figure 4.2, in order to reach the

target error o f 0.05, the mean value for epoch calculated over one hundred simulation

runs was ten for the proposed method (CGPR/AG) as opposed to the standard CGPR

method where the mean value for epochs was thirteen. This is an improvement ratio

o f nearly 3.4, similarly the improvement ratio is almost 1.6477 for the convergence

time.

The proposed algorithm (CGPR/AG) also shows better results as compared to the

neural-network toolbox (traincgp) even though the proposed method had three failure

cases, but it is considered better as compared to the neural-network toolbox with nine

failure cases. This makes the CGPR/AG algorithm a better choice for this problem

since it had only three failure cases for the one hundred different simulation runs.

(Refer to Appendix II. 1 for a detailed calculation procedure for evaluating the

CGPR/AG performance).

73

70

60

50

40

30

20

10
n

j 3 » o » J Ia l s
traincgf CG FR CGFR/AG traincgp CG PR CGPR/AG

□ Mean no. o f Epochs 49 15 11 34 13 10

□ Standard deviation 54.26 5.89 4.22 66 2.99 3.53

□ CPU time (seconds) 10.02 6.48 4.84 7.46 4.62 2.58

Figure 4.2: Comparison o f average CPU time and number o f epochs required for

convergence using the conjugate-gradient method for the Thyroid classification

problem.

Figure 4.3 displays a summary o f the Thyroid classification problem for second-order

methods using Quasi-Newton formulation. The adaptive gain implementation in the

proposed method in Quasi-Newton formulation has also increased the computational

efficiency as compared to the traditional Quasi-Newton-based optimisation methods.

74

120

100

trainbfg BFGS BFGS/AG DFP DFP/AG

□ Mean no. of Epochs 63 35 21 107 53

□ Standard deviation 78.64 3.68 4.24 83.84 84.71

□ CPU time (seconds) 8.74 9.65 5.30 29.93 12.67

Figure 4.3: Comparison o f average CPU times and number o f epochs required for

convergence using the Quasi-Newton method for the Thyroid classification problem.

4.3 .1 .2 W isconsin breast cancer c lassification p rob lem

(ftp://ftp.ics.uci.edu/pub/machine-leaming-databases/breast-cancer-wisconsin)

In this test the task is to predict malignancy from nine continuous clinical variables:

clump thickness; uniformity o f cell size; uniformity o f cell shape; marginal adhesion;

single epithelial cell size; bare nuclei; bland chromatin; normal nucleoli; and mitoses.

The database consists o f 699 patients, o f which sixteen were eliminated due to

missing values. O f the remaining cases, 239 were classified as having a malignancy.

Dr. William H. Wolberg (O.L. Mangasarian and W.H. Wolberg, 1990) applied a

multi-surface method o f pattern separation, training on 246 o f the 369 inputs available

at that time, and obtained a 96 per cent test set predictive accuracy. The selected

architecture o f the Feed-forward Neural-network is 9-5-2. The target error is set as to

0.02 and the maximum epochs to a thousand.

75

With the cancer classification problem, the disparity between the convergence rate of

first- and second-order methods is clearly illustrated in Table 4.3. The results clearly

show that algorithms which implement the proposed method exhibit a very good

average performance in order to reach target error.

Cancer classification problem (target error=0.02)

Mean
no. of
epochs

CPU
time(s) per

Epoch

Total CPU
time(s) to
converge

SD Accuracy
(%)

Fails

traingdm 3419 1.60x1 O'2 54.59 1.22xl03 88.31 14
GDM 1105 4.7 lx l 0'2 52.05 1.16 xlO3 88.13 4
Ransing’s
method

690 3.87 xlO'2 26.68 1.14 xlO3 88.61 4

GDM/AG 405 4.45x10'2 18.02 6.64 xlO2 88.92 3
traincgf 71 5.36 xlO’2 3.78 5.35 xlO1 90.08 4
CGFR 65 5.09 xlO2 3.32 4.03 xlO1 90.16 3
CGFR/AG 39 3.98 xlO'2 1.55 2.45 xlO1 90.37 2
traincgp 29 9.83xl0'2 2.82 4.07 xlO1 90.49 3
CGPR 33 4.77xl0'2 1.56 1.51 xlO1 89.93 2
CGPR/AG 24 4.57xl0‘2 1.082 1.16 xlO1 90.38 2
trainbfg 35 7.00x1 O'2 2.46 2.46x10’ 88.92 2
BFGS 32 5.3 7x1 O'2 1.72 5.39x10° 88.88 1
BFGS/AG 29 5.48xl0'2 1.58 7.66x10° 89.13 1
DFP 219 8.31xl0'2 18.16 8.12x10’ 88.77 3
DFP/AG 147 8.00xl0'2 11.79 1.08 xlO2 88.34 2

Table 4.3: Summary o f algorithms’ performance for the cancer problem.

To underline the point, the performance of gradient-descent method is compared first

in Figure 4.4. The proposed method (GDM/AG) took only 405 iterations to converge

over one hundred simulation runs as compared to the neural-network toolbox

(traingdm) with 3,419 iterations which is an improvement ratio of nearly 8.4. It shows

that the proposed algorithm still outperforms other algorithms including the method

proposed by Ransing (2002). Furthermore, the number o f failure cases also indicated

that the training efficiency of the gradient-descent method improved drastically by

using the proposed method.

76

2500

u

traingdm GDM
Ransing's

method
GDM/AG

□ Mean on. o f Epochs 3419 1105 690 405

□ Standard deviation 1215.62 1162 1137.59 663.53

□ CPU time (seconds) 54.59 52.05 26.68 18.02

Figure 4.4: Comparison o f average CPU lime and number o f epochs required for

convergence using the gradient-descent method for the cancer classification problem.

Figure 4.5 demonstrates the performance o f the proposed method when implemented

into the conjugate-gradient formulation. It shows that the proposed algorithm,

particularly CGPR/AG, outperforms other algorithms as shown by the low mean

value for epochs that was required for convergence. Yet for this problem CGPR/AG

outperformed CGFR/AG with a mean o f twenty-four, the lowest value standard

deviation and two failure cases. Even though the number o f failures is similar to the

neural-network toolbox and the standard methods, the proposed method has

performed better as compared to the standard method in terms o f number o f iterations

and CPU time. Appendix II.2 demonstrates a detailed explanation o f CGPR/AG

performance.

77

80

60

50

40

30

traincgf CG FR CGFR/AG CG P R CGPR/AGtraincgp

□ Mean no. o f Epochs

□ Standard deviation

£3 CPU time (seconds)

53.54 40.33 24.54 11.5815.11
3.78 3.32 1.55 2.88 1.56 1.08

Figure 4.5: Comparison o f average CPU time and number o f epochs required for

convergence using the conjugate-gradient method for the cancer classification

problem.

Figure 4.6 illustrates the results for the cancer classification problem with various

optimisation methods based on the Quasi-Newton formulation. As can be seen from

the figure, the proposed algorithms (i.e. DFP/AG and BFGS/AG) show an

improvement and still outperform other standard and neural-network algorithms as

shown by a low mean value for epochs required for convergence.

78

250

200

150

100

50

DFP/A Gtrainbfg BFG S BFG S/A G DFP

219 147□ M ea n on. O f Epochs

□ Standard deviation

13 C P U time (seconds)

5.39

1.72

7.66

1.58

81.23

18.16

107.69

2.46 11.79

Figure 4.6: Comparison o f average CPU time and number o f epochs required for

convergence using the Quasi-Newton method for the cancer classification problem.

4.3.1.3 Diabetes classification problem
(ftp://ftp.ics.uci.edu/pub/machine-leaming-databases/diabetes)

This dataset was created based on the ‘Pima Indians diabetes’ problem dataset from

the UCI repository o f machine-learning databases. The task is to decide whether a

patient is diabetic or not, based on eight clinical variables, all continuous: age;

diabetes pedigree function; body mass index; two-hour serum insulin level; triceps

skin fold thickness; diastolic blood pressure; plasma glucose concentration; and

number o f pregnancies. O f the 768 patients, 268 are diabetic. The selected

architecture o f the Feed-forward Neural-network is 8-5-2. The target error is set to

0.01 and the maximum epochs to one thousand.

It is worth noticing in Table 4.4 that the performance o f the proposed method with all

gradient-based methods is substantially faster as compared to other standard methods.

79

Diabetes classification problem (target error=0.01)

Mean
no. of
epochs

CPU
time(s) per

Epoch

Total CPU
time(s) to
converge

SD Accuracy
(%)

Fails

traingdm 965 3.14xl0'2 30.36 1.45xl02 93.86 13
GDM 520 5.00x10'2 25.97 1.14 xlO2 89.09 5
Ransing’s
method

499 3.28 xlO'2 16.36 2.96 xlO2 90.78 4

GDM/AG 417 3.54xl0'2 14.76 1.02 xlO2 89.10 4
traincgf 98 4.11 xlO'2 4.03 8.70 xlO1 91.50 5
CGFR 51 5.16 xl0‘2 2.61 1.70 xlO1 89.97 3
CGFR/AG 40 5.05 xlO'2 2.00 1.59 xlO1 90.70 4
traincgp 46 7.12 xlO'2 3.27 5.28x10’ 92.09 7
CGPR 54 4.73 xlO'2 2.54 1.99x10’ 91.66 5
CGPR/AG 46 4.94 xlO'2 2.26 1.59x10’ 91.24 4
trainbfg 106 3.90 xlO'2 4.12 7.45 xlO1 89.16 3
BFGS 95 4.93 xlO'2 4.67 1.91 xlO' 88.20 4
BFGS/AG 82 4.90 xlO'2 4.01 1.89x10’ 87.61 3
DFP 401 6.04 xlO’2 24.24 1.74 xlO2 92.39 0
DFP/AG 309 6.06 xlO'2 18.74 1.83 xlO2 92.07 0

Table 4.4: Summary o f algorithm performance for the diabetes problem.

Figure 4.7 clearly shows that the proposed method had improved the training

efficiency of gradient-descent methods by reducing the number o f iterations and CPU

time. It shows that the proposed algorithm (GDM/AG) is almost twice as fast as

compared to the neural-network toolbox (traingdm) in achieving the target error of

0.01. Nevertheless with only four failure cases as compared to thirteen failure cases

for the neural-network toolbox (itraingdm), Figure 4.7 also shows that the proposed

method (GDM/AG) gives better results with a lower number o f epochs as compared

to the method proposed by Ransing (2002). Furthermore, the proposed algorithm

(GDM/AG) with the lowest standard deviation value yields more consistent results to

reach the target error as compared to the neural-network toolbox.

80

u

traingdm GDM
Ransing's

method
GDM/AG

□ Mean no. of Epochs 965 520 499 417

□ Standard deviation 145.33 114.14 295.54 102.23

□ CPU time (seconds) 30.36 25.97 16.36 14.76

Figure 4.7: Comparison o f average CPU times and number o f epochs required for

convergence using the gradient-descent method for the diabetes classification

problem.

Figure 4.8 demonstrates the performance o f the proposed method with the conjugate-

gradient method. It shows that the proposed CGFR/AG algorithm took only forty

epochs to reach the target error compared to CGFR at about fifty-one epochs and

neural-network toolbox (traincgf) which needs about ninety-eight epochs to converge.

The proposed algorithm also outperforms other algorithms in terms o f the total CPU

time to converge. The consistent performance o f the proposed CGFR/AG algorithm is

further shown by its lowest standard-deviation value as compared to other standard

algorithms. The detailed explanation o f the proposed CGFR/AG algorithm

performance can be seen in Appendix II.3.

81

100

90

80

40

30 -

C G P R C G P R /A GCG FR C G FR /A Gtraincgf traincgp

□ M ean no. o f Epochs

□ Standard deviation

E3 C P U tim e (s e co nds)

19.90

2.54

15.90

2.26

86.99

4.03

17.03

2.61

15.94 67.06

2.01 3.73

Figure 4.8: Comparison o f average CPU time and number o f epochs required for

convergence using the conjugate-gradient method for the diabetes classification

problem.

Figure 4.9 shows that the proposed method implemented with the Quasi-Newton

optimisation formulation had significantly improved the training efficiency in terms

o f number o f iterations and CPU time. A longer learning time is required for the

diabetes problem than the previous two problems, particularly for the quasi-Newton

methods. The mean convergence ranged for Quasi-Newton methods are from eighty

to four hundred iterations. Even though all implementations o f the proposed methods

have outperformed other algorithms, for this problem, the proposed BFGS/AG

algorithm produced the best results with eighty-two iterations. The neural-network

toolbox algorithm (trainbfg) took 1.29 seconds longer to learn than the proposed

BFGS/AG algorithm. In addition, the proposed method performs more consistent

results to reach the target error as compared to the neural-network toolbox as shown

by the value o f standard deviation in Figure 4.9.

82

4 5 0 -

4 0 0 -
/

350 -

3 0 0 -

250 -

2 0 0 -
Jzz

_

150 -
/

100 - nL n
5 0 - u1 L 1mm

0
trainbfg BFGS BFGS/AG DFP DFP/AG

□ Mean no. o f Epochs 106 95 82 401 309

□ Standard deviation 74.46 19.08 18.90 174.36 183.30

□ CPU time (seconds) 4.12 4.67 4.01 24.24 18.74

Figure 4.9: Comparison o f average CPU time and number o f epochs required for

convergence using the Quasi-Newton method for the diabetes classification problem.

4.3.1.4 IRIS classification problem
(ftp:// ftp.ics.uci.edu/pub/machine-leaming-databases/iris/iris. data)

This classical classification data set was made famous by Fisher (R.A. Fisher, 1936),

who used it to illustrate principles o f discriminant analysis. This is perhaps the best-

known database to be found in the pattern recognition literature. Fisher’s paper is a

classic in the field and is referenced frequently to this day. The selected architecture

o f the Feed-forward Neural-network is 4-5-3 with a target error set as 0.05 and the

maximum epochs to one thousand.

Table 4.5 shows that using the proposed method with second-order methods presents

substantial improvements over the first-order methods in terms o f the CPU time and

number o f iterations. The proposed formulation still outperforms other algorithms in

terms o f CPU time and number o f epochs.

83

IRIS classification problem (target error=0.05)

Mean
no. of
epochs

CPU
time(s) per

Epoch

Total CPU
time(s) to
converge

SD Accuracy

(%)

Fails

t r a in g d m 1609 2.69x1 O'2 43.30 6 .58x l02 94.01 15
GDM 754 3.89x1 O'2 29.28 2 .94x l02 94.33 4
Ransing’s
method

653 4.09 xlO’2 26.70 5 .18x l02 95.35 3

GDM/AG 581 3.69x1 O'2 21.42 2 .4 3 x l0 2 94.45 3
t r a i n c g f 70 5.45 xlO'2 3.83 7.41X101 96.52 6
CGFR 39 4.91 xlO'2 1.93 3.25X101 96.65 2
CGFR/AG 29 4.93 xlO"2 1.42 7.00x10° 96.07 2
t r a in c g p 39 7.67 xlO'2 2.99 6.31 xlO1 96.28 10
CGPR 28 4.54 xlO'2 1.25 1.63 xlO1 97.77 4
CGPR/AG 23 4.55 xl0‘2 1.06 1.19 xlO1 97.73 3
t r a in b f g 51 5.20 x lO 2 2.64 2.54 xlO 1 93.26 2
BFGS 63 4.76 xlO’2 3.01 4.61 x l0° 95.85 1
BFGS/AG 40 4.57 xlO'2 1.83 4 .26x10° 95.90 0
DFP 599 6.45 xlO"2 38.67 2.58 xlO2 94.55 5
DFP/AG 534 5.90 xlO’2 31.49 4.39 xlO2 94.31 3

Table 4.5: Summary o f algorithm performances for the IRIS problem.

Figure 4.10 illustrates the performance of the gradient-descent method coupled with

the proposed method. The proposed method clearly shows a better result in terms of

number o f iterations required to converge. The proposed method is three times faster

as compared to the neural-network toolbox (‘traingdm *). Moreover, the proposed

algorithm (GDM/AG) gave more consistent results with a lower value of standard

deviation as compared to other algorithms.

84

1800

1600

1400

1200

1000

800

600

400

200

0

traingdm GDM
Ransing's

method
GDM/AG

□ Mean no. o f Epochs 1609 754 653 581

□ Standard deviation 658.22 294.28 518.24 242.57

□ CPU time (seconds) 43.30 34.59 26.70 21.42

Figure 4.10: Comparison o f average CPU times and number o f epochs required for

convergence using the gradient-descent method for the IRIS classification problem.

As for second-order methods with conjugate-gradient formulation, the proposed

algorithm as illustrated in Figure 4 .11 shows better results as compared to other

standard algorithms. Even though the proposed algorithm (CGFR/AG) had only two

failure cases as compared to CGPR/AG with three failure cases, yet CGPR/AG is

faster. The proposed algorithm (CGPR/AG) needs only twenty-three epochs to

converge as compared to CGFR/AG with twenty-nine epochs. This makes the

proposed algorithm (CGPR/AG) a better choice for this problem. As far as the

consistency o f the performance is concerned, it is clear that the neural-network

toolbox implementation failed to converge at certain trials and showed a higher

standard deviation value which indicates that the neural-network toolbox

implementation are unstable as compared to the proposed method (Figure 4.11). The

detailed explanation on the proposed algorithm (CGPR/AG) performance is given in

Appendix II.4.

85

80

70

60

50

40

30

20

10

0

□ Mean no. of Epochs

□ Standard deviation

□ CPE time (seconds)

Figure 4.11: Comparison o f average CPU times and number o f epochs required for

convergence using the conjugate-gradient method for the IRIS classification problem.

The performance o f the proposed method with Quasi-N ewton formulation is shown

in Figure 4.12. The proposed algorithm (BFGS/AG) outperforms neural-network

toolbox ‘trainbfg ’ with an improvement ratio o f nearly 1.4, for the total CPU time.

Furthermore, the proposed algorithm (BFGS/AG) needs only forty epochs to reach the

target error as compared to standard BFGS with sixty-three epochs and neural-

network toolbox ‘trainbfg' with fifty-one epochs. The proposed method significantly

reduced the number o f epochs required for the convergence.

traincgf CGFR CGFR/AG traincgp CGPR CGPR/AG

70 39 29 39 28 23

74.08 32.51 7.00 63.10 16.33 11.97

3.83 1.93 1.42 2.99 1.25 1.06

86

600

500

400

300

200

100

u
trainbfg BFGS BFGS/AG DFP DFP/AG

□ Mean no. o f Epochs 51 63 40 599 534

□ Standard deviation 25.41 4.61 4.26 257.76 438.62

E3 CPU time (seconds) 2.64 3.01 1.83 38.67 31.49

Figure 4.12: Comparison o f average CPU times and number o f epochs required for

convergence using the Quasi-Newton method for the IRIS classification problem.

4 .3 .1 .5 S ev en -b it p arity prob lem

(T rain ing data: h ttp ://h o m e p aaes .cae .w isc .ed u /~ ece5 3 9 /d a ta /p arity 7 r)

(T esting data: h ttp ://h o m ep aaes .cae .w isc .ed u /~ ece5 3 9 /d a ta /p aritv 7 t)

N -bit parity is the name given to a set o f binary problems that are widely used in

benchmark-training tests for neural-network algorithms. The yv -bit parity training set

consist o f 2n tra in ing pairs, w ith each tra in ing pair com prising an n -length

input vecto r and a sing le b inary target value. The 2 A input vectors represent

all possib le com binations o f n binary num bers. B asically if a given input

vecto r con tains an odd num ber o f ones, the co rresponding target value i s l ,

o therw ise the target value i sO. The parity problem is one o f the most popular

initial testing tasks and very demanding classification problem for neural networks to

solve. This is because the target-output changes whenever a single bit in the input

vector changes and this makes generalisation difficult and learning does not always

converge easily (Erik Hjelmas and P.W. Munro, 1999). The selected architecture o f

the Feed-forward Neural-network is 7-5-1. The target error has been set to 0.05.

87

It is very important to recognise that there is a fundamental distinction between the

causes o f training failure recorded in Table 4.6. Convergence to a stationary point

(typically a local minimum) is the main cause of training failure cases with first- or

second-order methods (i.e. traingdm, GDM, DFP and DFP/AG). However, the high

failure rate for first-order methods when applied to this problem is the result o f a

failure to converge to any stationary point within the allowed number o f training

epochs, in this case maximum epochs for the first-order method is twenty thousand.

The implementations of the proposed method into first- and second-order methods

greatly decreases the number o f failure cases to converge and also decreases the

number of epochs required as well as CPU time. The detailed explanation of the

proposed BFGS/AG algorithm performance is demonstrated in Appendix II.5.

7 bit parity problem (target error=0.05)
Mean
no. of
epochs

CPU
time(s) per

Epoch

Total CPU
time(s) to
converge

SD Accuracy

(%)

Fails

T r a in g d m 14272 9.81 xlO'3 140.02 2.72 xlO3 87.62 12
GDM 1347 3.80 xlO'2 51.15 5.09 xlO2 87.54 7
Ransing’s
method

717 3.35 xlO'2 24.04 3.07 xlO2 88.59 3

GDM/AG 537 3.99 xlO’2 21.42 1.83 xlO2 88.75 4
T r a i n c g f 283 3.87 xlO'2 10.97 3.32 xlO2 90.98 5
CGFR 148 7.27 xlO'2 10.74 1.07 xlO2 91.12 3
CGFR/AG 114 7.11 xlO'2 8.11 6.53 xlO 1 90.34 2
T r a in c g p 143 3.46x1 O'2 4.94 1.41 xlO2 90.19 3
CGPR 129 6.15 xlO'2 7.92 3.32 x l0] 91.23 2
CGPR/AG 92 5.28 xlO'2 4.86 1.37x10' 90.57 1
T r a i n b fg 166 2.70 xlO'2 4.50 8.69 xlO1 88.74 3
BFGS 93 4.31 xlO'2 4.02 3.83 xlO0 90.43 2
BFGS/AG 85 4.39 xlO'2 3.73 3.01 xlO0 90.66 1
DFP 525 5.97 xlO'2 31.35 1.32 xlO2 90.11 10
DFP/AG 326 5.97 xlO'2 19.48 1.19 xlO2 90.15 10

Table 4.6: Summary o f algorithm performance for the Seven-bit parity problem.

Figure 4.13 displays a summary o f the Seven-bit parity classification problem for

gradient-descent methods. It shows that training with the neural-network toolbox

(traingdm) took 14,272 iterations to reach the target error with sixteen failure cases.

The proposed GDM/AG reduces the number of iterations almost nine times with only

four failure cases and clearly shows that the proposed method outperforms the neural-

network toolbox. Even though the method introduced by Ransing (2002) decreased

the number o f epochs significantly as compared to the standard gradient-descent

method, the proposed GDM/AG algorithm again outperformed with the lowest

standard deviation value o f 183.15.

16000

14000

12000

10000

8000

6000
y

4000 -

2000 -
f 0— a '— a

nu

traingdm G D M
Ransing's

method
G DM /AG

□ M ean no. o f Epochs 14272 1347 717 537

□ Standard deviation 2719.62 509.08 306.58 183.15

□ C P U time (seconds) 140.02 51.15 24.04 21.42

Figure 4.13: Comparison o f average CPU time and number o f epochs required for

convergence using the gradient-descent method for the Seven-bit parity problem.

In Figure 4.14, the proposed algorithm shows better results as compared with the

conjugate gradient formulation because it converges in a smaller number o f epochs as

observed by a low value o f the mean. The proposed algorithm (CGFR/AG) had two

failure cases as compared to the CGPR/AG algorithm with one failure case. This

makes the proposed algorithm (CGPR/AG) a better choice for this problem since it

had only one failure case for the one hundred simulation runs. The proposed

(CGPR/AG) algorithm not only decreases the number o f iterations to converge but

also it is more consistent as compared to other standard algorithms. Figure 4.14

clearly shows that within a hundred simulation runs o f training the proposed method

89

is stable and achieves a low standard deviation value o f 13.66 as compared to other

algorithms.

350

300

250

200

150

100

50

B0 -
traincgf CGFR CGFR/AG traincgp CG PR CGPR/AG

□ Mean no. o f Epochs 269 148 114 139 129 92

□ Standard deviation 329.09 107.48 65.31 141.30 33.21 13.66

□ CPU time (seconds) 10.42 10.74 8.78 4.79 7.92 4.86

Figure 4.14: Comparison o f average CPU time and number o f epochs required for

convergence using the conjugate-gradient method for the Seven-bit parity problem.

Figure 4.15 illustrates the performance between the proposed method and neural-

networks toolbox using Quasi-Newton formulation. It shows that gradient-based

methods with the proposed implementation are substantially faster than the traditional

gradient-based methods.

90

600

500

400

300

200

DFP/AGBFGS BFGS/AG DFPtrainbfg

166 525 326□ M ean no. of Epochs

□ Standard deviation 3.83 131.68 119.1386.89 3.01

4.02 31.35 19.484.50 3.76CPU time (seconds)

Figure 4.15: Comparison o f average CPU time and number o f epochs required for

convergence using the Quasi-Newton method for Seven-bit parity problem.

4.3.1.6 Glass-classification problem

(ftp://ftp.ics.uci.edu/pub/machine-leaming-databases/glass)

This data set aims to classify glass type and was created based on the ‘glass’ problem

data set from the UCI repository or machine-learning databases. The results o f

chemical analysis o f glass splinters (percentage content o f eight different elements)

plus the refractive index are used to classify the sample to be either float-processed or

non-float-processed building windows, vehicle windows, containers, tableware or

head lamps. This task was motivated by forensic needs in criminal investigations. The

selected architecture o f the Feed-forward Neural-network is 9-5-6. The target error is

set to 0.01 and the maximum epochs to a thousand.

The results presented in Table 4.7 illustrate that all gradient-based methods coupled

with the proposed method outperform other classical gradient-based methods. The

different rates o f convergence associated with different classes o f gradient-based

methods, and with the proposed method, are clearly noticeable.

91

Glass classification problem (target error=0.01)

Mean
no. of
epochs

CPU time(s)
per Epoch

Total CPU
time(s) to
converge

SD Accuracy
(%)

Fails

traingdm 1194 3.10 xlO'2 36.98 3.27 xlO2 93.97 9
GDM 670 4.66 xlO'2 31.19 1.29 xlO2 92.91 4
Ransing’s
method

583 3.98E-02 23.1922 301.05 92.64 3

GDM/AG 491 4.16 xlO'2 20.40 6.94 xlO1 93.03 3
traincgf 280 2.35 xlO'2 6.58 2.06 xlO2 93.39 6
CGFR 108 8.90 xlO'2 9.60 1.31 xlO2 92.27 3
CGFR/AG 73 7.74 xlO'2 5.66 7.05 xlO1 92.45 4
traincgp 75 3.79 xlO'2 2.86 5.54x10' 93.33 4
CGPR 36 6.35 xlO'2 2.31 1.01 xlO1 92.72 2
CGPR/AG 31 5.62x1 O’2 1.74 1.34 xlO1 93.55 3
trainbfg 117 3.41 xlO’2 3.99 4.07 xlO1 93.22 6
BFGS 27 8.60 xl0‘2 2.34 1.19 xlO1 92.61 4
BFGS/AG 15 6.07 xlO'2 0.93 4.32 xlO0 93.25 5
DFP 715 7.09 xlO'2 50.67 4.20 xlO2 90.60 2
DFP/AG 409 6.83 xlO'2 27.92 2.64 xlO2 90.53 1

Table 4.7: Summary o f algorithm performance for the Glass-classification problem

Figure 4.16 below compares the performance of the proposed method with the

gradient-descent method. It shows that the proposed method is substantially faster

than the traditional gradient-descent method and particularly the neural-network

toolbox {traingdm) implementation. As can be noticed, the proposed method allows

the learning algorithm to obtain a faster convergence speed. Although, the method

introduced by Ransing also presents a good performance, that is much better than the

standard GDM, but it is not consistent as the value of standard deviation is high as

compared to the proposed method (GDM/AG).

92

1200

1000

800

400

200

0

traingdm G DM
Ransing's

method
GDM /AG

□ M ean no. o f Epochs 1194 670 583 491

□ Standard deviation 326.98 129.98 301.05 69.44

E3 C PU time (seconds) 36.98 31.19 23.19 20.40

Figure 4.16: Comparison o f average CPU time and number o f epochs required for

convergence using the gradient-descent method for the Glass-classification problem.

Figure 4.17 shows the comparison o f average CPU time and number o f epochs

required for convergence using conjugate-gradient methods. The proposed

formulation outperforms other standard algorithms. Among all methods the proposed

method (CGPR/AG) performs the best with only thirty-one epochs and 1.74 seconds

CPU time is required for convergence. The method presented by the neural-network

toolbox ‘traincgf ’ yields very poor results as it requires the highest number o f epochs

with the highest standard deviation value which also indicates that the method is

unstable in reaching the target value within a hundred simulation runs.

93

250

100

m v - «
0-

traincgf CGFR CGFR/AG traincgp CGPR CGPR/AG

□ Mean no. of Epochs 280 108 73 75 36 31

□ Standard deviation 206.27 131.06 70.49 55.38 10.14 13.36

□ CPU time (seconds) 6.58 9.60 5.66 2.86 2.31 1.74

Figure 4.17: Comparison o f average CPU time and number o f epochs required for

convergence using the conjugate-gradient method for the Glass-classification

problem.

The average CPU time and number o f epochs for Quasi-Newton methods are plotted

in Figure 4.18. From the figures the overall performance o f the proposed method in

achieving the target error is better as compared to other standard algorithms. As

shown in the figure the proposed method (BFGS/AG) took only fifteen epochs to

converge as compared to the neural-network toolbox (trainbfg) that required 117

epochs which is an improvement ratio o f nearly 7.8 (refer to Appendix II.6 for a

detailed explanation on BFGS/AG performance). Even though the number o f epochs

required by the proposed method DFP/AG is quite high as compared to BFGS/AG, it

shows an improvement on its standard algorithm (DFP) with a more consistent

performance (as shown by lower standard deviation value). This is attributed to the

improvements o f the search direction introduced by the proposed method.

94

800

700

600

500

400

300

200

100

0
trainbfg BFGS BFGS/AG DFP DFP/AG

□ Mean no. of Epochs 117 27 15 715 409

□ Standard deviation 40.70 11.90 4.32 420.27 263.61

El CPU time (seconds) 3.99 2.33 0.93 50.67 27.92

Figure 4.18: Comparison o f average CPU time and number o f epochs required for

convergence using the Quasi-Newton method for the Glass-classification problem.

4.4 CONCLUSION

The novel method proposed in Chapter Three that improved the gradient-based search

direction was validated in this chapter for its efficiency and accuracy on a variety o f

benchmark problems. The performance o f the proposed method is validated in two

ways: (a) the speed o f convergence measured in the number o f iterations and CPU

time; and (b) the generalisation accuracy on testing data from the benchmark

problems. The results were discussed and it showed that the proposed algorithm is

generic, robust and easy to implement into all commonly used gradient-based

optimisation processes. Furthermore, the results clearly showed that the proposed

algorithm has significantly improved the neural-network training performance as

compared to the existing methods including the one proposed by Ransing (2002).

95

CHAPTER 5

ENHANCEMENT TO THE METHOD

PROPOSED FOR CONSTRUCTING

OPTIMAL KNOWLEDGE HYPER-SURFACE

CHAPTER LAYOUT

This chapter is a rational attempt to carry forward the research task outlined in Section

1.3 of Chapter One. The first section o f this chapter discusses the implementation of

Lagrange Interpolation Polynomials into the current Knowledge Hyper-surface

method and highlights important features o f the current method in learning from

examples. The limitations o f using the current method are described next and the need

for further improvement is identified. The next section describes the enhancements

proposed to the current method by incorporating midpoints in the existing shape

formulation. The results are compared with the neural-network method proposed in

Chapter Four and the current Knowledge Hyper-surface method. The conclusions are

then drawn in the last section to identify scope for further research.

96

5.1 INTRODUCTION

The research on the analysis o f cause and effect relationships in castings has always

been a centre o f attention in the manufacturing industry. An intelligent diagnosis

system should be able to diagnose effectively the causal representation and also

justify its diagnosis. A previous method, known as the Knowledge Hyper-surface

method, proposed by Ransing (Meghana R. Ransing, 2002), used Lagrange

Interpolation polynomials to show that the belief value o f the occurrence o f cause

with respect to the change in the belief value in the occurrence o f effect can be

modelled by linear, quadratic or cubic relationships. The current method retained the

advantages o f neural networks and overcomes their limitations in learning the input-

output mapping function in the presence of noisy, limited and sparse data. The ability

of the current method to constrain the belief values in the causes made it a better

technique as compared to the multi-layer neural-network method. The comparison

was done on real casting data (Meghana R. Ransing, 2002).

However, during the research work that is presented in this chapter, it was discovered

that the methodology was unable to model exponential increase/decrease in belief

values in cause and effect relationships. This chapter proposes an enhancement to the

current Knowledge Hyper-surface method by introducing midpoints in the existing

shape formulation which further constrains the shape o f the Knowledge hyper­

surfaces to model an exponential rise in belief values but without exposing the dataset

to the limitations o f ‘overfltting’.

The first section starts with the overview o f the current method which discusses the

implementation o f Lagrange Interpolation Polynomials into the current Knowledge

Hyper-surface method and highlights important features o f the current method in

learning from examples. The limitations of using the current method are described

next in Section 5.4. The enhancements and mathematical solution is presented in

Section 5.5. The performance o f the proposed method is further illustrated in Section

5.6 by comparing its solution with the previous version of the Knowledge Hyper­

surface method and the neural-networks method on real casting data. Finally, the

conclusions are drawn from the research presented in this chapter.

97

5.2 THE CURRENT KNOWLEDGE HYPER-SURFACE

METHOD

Ransing (2002) proposed a method that retains advantages o f regression analysis and

neural-network techniques and at the same time overcomes the limitations o f both

techniques. The Knowledge Hyper-surface method described that the belief variation

in the occurrence of a cause, with respect to a change in the belief value o f the

occurrence o f an effect, follows a pattern. Such a variation is generally linear,

quadratic or cubic and certainly not an arbitrary higher-ordered polynomial.

The method described that to model an n‘h order relationship along a dimension,

(n + 1) equidistant reference points between -1 and +1 are chosen. For each

reference p o in t'/ ' (i =l to n + 1), a one-dim ensional Lagrange

Interpolation Polynom ial is used based on the following form ula:

^ * 4 - 4 , * 4 - 4 i * iS..
4*-$> 4k~4, W * -. 4k ~4M '" W .

where:

n : Order o f the Lagrange Interpolation Polynom ial (e.g. one for linear;

two for quadratic; three for cubic; etc.)

k : A reference point at which the one-dim ensional Lagrange

Interpolation Polynom ial /**(£) is constructed (k ranges from 0 to n).

i : Ranges from one to total num ber o f reference points, i.e. (n + 1).

The variable % is used to store the b e lie f value representing the strength o f

the corresponding effects, ranges from -1 to +1. For one-dim ensional

Lagrange Polynom ial Interpolation the reference points are drawn along this

dim ension. W hereas for a given cause connected to ‘ p ’ effects, the Lagrange

98

Interpolation Polynom ial at a reference point ‘ i ’ is defined as ‘ p ’

dim ensional and is given by the following equation:

where:

ki ^ ' p i _ p) p i _ p j p j _ p J p i _ p i P J — p j P***/
h k j t>0 h k j r l b k j h k j - l b k j ~>kj+\ ~>kj b r i j

Kj : The order o f one dim ensional Lagrange Interpolation Polynom ial

(/; ; ()) corresponding to j th dim ension that represents the relationship

betw een j th effect and the cause under consideration.

k j : Reference point along j th dim ension, at which the one-dim ensional

Lagrange Interpolation Polynom ial is evaluated, (k j Independently
J J

ranges from 0 to n- for each Lagrange Polynom ial Interpolation).

are (j l + 1) reference points along the j th dim ension.
J J

i : for a ‘ p ’ dim ensional case, ‘ i ’ ranges from one to the total num ber o f

reference points ‘ q ’ as given below:

q = (nx + \)* (n2 +1)*(«3 +1)*... *(«_,. +1) * (np +1) (5.4)

The method also prescribed that a Lagrange Interpolation polynomial and a weight

value can be associated with each o f the said reference points as shown by the

equation below:

q
The belief value in the cause —

1=1

where:

q : Total num ber o f reference points.

l j (£] 9<%2 p) is given by Equation 2.24

: W eight variable associated w ith the i th reference point.

99

By considering a weight value at a reference point to be representative o f the belief

value in the cause, the total number of weights is therefore the same as the total

number o f reference points. However, this formulation had its own limitation. As the

number o f dimensions increased, the total number of weights in a network also

increased exponentially. This rapidly increased the number of unknown variables

within the network and it was not a practical implementation, as it would not only

slow down the system, but also requires an excessively large training dataset.

In order to overcome that limitation, Ransing (2002) divided the reference points into

two categories, referred to as primary and secondary reference points. Weight values

associated with these primary reference points have been considered as independent

variables (primary weight values) and other weight values associated with secondary

reference points (secondary weight values), have been considered to be linearly

dependent on one or more primary weight values (see Figure 5.1).

Belief in the
occurrence of
effect £ 2

Belief in the occurrence o f effect ^

Figure 5.1: Dependent (1,2,3,4,7) and Independent Weight Values (5,6,8,9) associated

with Reference Points 1 to 9.

100

For a ‘ p ’ dimensional problem, the total number o f primary weights is calculated as:

Primary weights 2 X + 1 -o -1)
v>> J

(5.6)

As we can see from Figure 5.1, weights associated with primary reference points 1, 2,

3, 4 and 7 are primary weights. The secondary weight values at locations 5, 6, 8 and 9

are expressed as a linear combination o f the primary weights and in particular:

c(w2+w4)
(5.7)

w6 =

w„

_ c(w} + w 4)
2

c(w2+ w 7)

(5.8)

(5.9)

w9 =
c(w} + w7)

(5.10)

5.2.1 Analogy of the belief variation in a cause and effect relationship for

the medical field

An analogy has been sought in the medical field to further illustrate the belief-

variation concept (Meghana R. Ransing, 2002). Generally medical experts

characterise the strength of a symptom by adjectives e.g. low, medium, high and very

high fever. Similarly the belief in the proposition that ‘typhoid is a cause for a

symptom fever’ is also characterised as low, medium, high and very high. Such belief

variations in a one- dimensional cause and effect relationship can be graphically

plotted as shown in Figure 5.2. These relationships are easy to visualise in one

dimension, however, as the number o f symptoms increase the shape of the resulting

hyper-surface becomes much more complex. For a one-dimensional example, as

shown in Figures 5.5 and 5.6, if the chest pain is very high then the belief that the

patient is suffering from a ‘heart attack’ is high and the belief that the patient has a

‘hair fracture or small muscular twist in the chest’ is low.

The output value in the following Figures (5.3-5.7) represents a belief value in the

occurrence o f the cause corresponding to the strength o f the effect. These figures

show graphical representation of some general one-dimensional cause and effect

relationship as shown in Figure 5.2.

►(Input node
(effect)

W.

Figure 5.2: Schematic representation of a ‘single effect - cause relationship’.

0.9

0.8

o 0.7

S
f ? 0-6
o>
% 0 .5cc

.3 D-4

*8 0.3
PQ

0.2

-0.8 -0.B -0.4 -0.2 0 0.2 0.4 0.6 0.8

Belief in sympton Fever

Figure 5.3: Belief that ‘Typhoid’ is a cause for a symptom ‘Fever’.

102

The belief value quantifying the occurrence, or non-occurrence, o f an effect

associated with a particular cause is normalised between +1 to -1, respectively, and

the belief value, which quantifies the extent o f occurrence o f the cause under

consideration, is also normalised from zero to unity.

Figure 5.3 showed that the linear variation in belief values, which when the belief

value representing the strength o f the symptom ‘Fever’ is at its minimum, the belief

that ‘Typhoid’ is a cause for a symptom ‘Fever’ is also at its minimum. The belief

value in the occurrence o f the cause is linearly increased as the strength of the

symptom or effect start to increase.

□.9

0.0
S3
£ 0.7

0.6

-0.0 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.0

Belief ill symptlion Fever

Figure 5.4: Belief that ‘Brain Fever’ is a cause for a symptom ‘Fever’.

Figure 5.4 demonstrates a quadratic variation of cause and effect. It shows that the

belief that ‘Brain Fever (Encephalitis)’ is a cause for symptom ‘Fever’ is at its

minimum when the belief value representing the strength o f the effect or symptom

‘Fever’ is at its minimum. The belief value on the occurrence o f the corresponding

cause starts to increase as the strength o f the effect starts to increase. It is noticed that

103

when the strength of the affect is around half o f its maximum value, the rate of

increase in the belief value slows down and reaches its maximum value when the

strength o f the effect also reaches its maximum value.

0.9

S 0.4
• S3

0 3
%
pq 0.2

-0.8 -0.6 -0.4 -0.2
Belief ill sympton Chest Pain

0.2 0.4 0.6 0.8

Figure 5.5: Belief that ‘Heart Attack’ is a cause for a symptom ‘Chest Pain’.

Figure 5.5 above also shows a quadratic variation of cause and effect, in which, when

the belief value representing the strength o f the effect or symptom ‘Chest Pain’ is at

its minimum, then the belief that ‘Heart Attack’ is a cause for a symptom ‘Chest Pain’

is also at its minimum. The belief value in the occurrence of the corresponding cause

starts to increase slowly as the strength of the effect starts to increase. The belief value

in the occurrence of the cause suddenly increases and reaches its maximum value as

the strength o f the effect increases to about half o f its maximum value.

104

0.9

0.0

0.7

cz nc
5=1 3
CZ o
B 3 0.4

3

g ^
C5

0.2

-0.B -0.B -0.4 -0.2 0 0.2 Q.4 0.6 0.B
Belief in sympton Chest Pain

Figure 5.6: Belief that ‘Hair Fracture in Ribs or Muscular Twist’ is a cause for a
symptom ‘Chest Pain’.

In Figure 5.6, a quadratic variation of cause and effect shows that the belief that ‘Hair

Fracture in Ribs or Muscular Twist’ is a cause for a symptom ‘Chest Pain’ is at its

maximum when the belief value representing the strength o f the effect or symptom

‘Chest Pain’ is at its minimum. Its clearly shows that there is a quick reduction in the

belief value in the occurrence of the cause as the strength of the effect starts to

increase. The belief value decreases slowly until its reaches minimum value as the

strength o f the effect increases to about half o f its maximum value.

105

0.9

o 0.0

0.7
53
> 0.6
a>
^ 0 5
cs o
rH 0.4

** n -5=8 D'3
FQ

0.2

0.2 0.4 0.6 0.0-0.0 -0.6 -0.4 -0.2
Belief ill symptom Fever

Figure 5.7: Belief that ‘Over Exertion’ is a cause for a symptom ‘Fever’.

Figure 5.7 demonstrates that for a quadratic belief variation in a cause and effect

relationship, when the belief value representing the strength o f the effect or symptom

‘Fever’ is at its minimum, then the belief that ‘Over-Exertion’ is a cause for a

symptom ‘Fever’ is at its maximum. The belief value in the occurrence of the cause

slowly starts to decrease as the strength of the effect increases. The belief value starts

to decrease quickly when the strength of the effect reaches about half of its maximum

and then reaches its minimum when the strength o f the effect is at its maximum.

If more than one effect is associated with a cause, the cause shown in Figures 5.3 to

5.7 would generate a multidimensional hyper surface. Following the previous works,

it is assumed that these hyper surfaces have similar curvatures to their one­

dimensional counterparts. And as a result, in order to construct such smooth multi­

dimensional hyper-surfaces, Ransing (2002) proposed to use linear, quadratic or cubic

one-dimensional Lagrange Interpolation polynomials.

106

The next section identifies some advantages and limitations o f the current Knowledge

Hyper-surface method and the remedies for the limitations are presented in the

following sections.

5.3 ADVANTAGES OF THE CURRENT KNOWLEDGE

HYPER-SURFACE METHOD

• The current method was capable a priori o f storing any known information

about the cause-effect relationship within the network and at the same time

was able to learn from examples. For some selected datasets the proposed

algorithm has shown superior extrapolation abilities as compared to the multi­

layer neural network. The extrapolation ability was enhanced by the network’s

ability to constrain the shape o f the resulting multi-dimensional hyper-surface

to the known variation in the belief values in causes and effects.

• The dependence o f the secondary weight values on the primary weight values

had reduced the number o f unknowns to an acceptable number.

In the following section some limitations of the Knowledge Hyper-surface method are

identified and then an improvement has been proposed to overcome these limitations.

5.4 LIMITATIONS OF THE CURRENT KNOWLEDGE

HYPER-SURFACE METHOD

Despite the superior extrapolation abilities of the current knowledge Hyper-surface

method, two major limitations have been identified.

• Use of higher ordered polynomials can lead to the ‘over-fitting’ effect as

observed in other interpolation techniques including neural networks.

• An exponential rise in the belief value (as shown in Figure 5.9) cannot be

modelled by lower-ordered polynomials such as quadratic and cubic Lagrange

interpolation polynomials.

107

To demonstrate the over-fitting effect, the following dataset is created by choosing a

few data points and then a maximum of twenty percent noise with normal distribution

with mean zero and unit standard deviation value is added randomly. The variations

are plotted using linear-, quadratic- and quartic-shape functions to observe the

performance o f the current method as shown in Figure 5.8.

Belief values for the Cause
C1

■■■■■•■ linear

 quadratic
 quartic
O data points

0(/)3
COO
0■C
c
0
1 0.4
>

fa * * ' ■ < /___._____ L_
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Belief Value in the occurrence of Defect 1 D1

Figure 5.8: Data points plotted with linear-, quadratic- and quartic-shape functions to

demonstrate the over-fitting effect caused by the current Knowledge Hyper-surface

method.

Figure 5.8 clearly shows that the use o f quartic-shape functions in the current

Knowledge Hyper-surface method had fitted all the data points perfectly as compared

to the others, but the resulting shape of the decision hyper-surface is unrealistic and is

a clear case o f ‘over-fitting’ to the data points.

108

0.9

0.8

0.7
TOO
TO 0.6

0.6W
P
* * 0.4

0.3<u
CQ

0.2

0 L-
0.2 0.6 0.8

Belief value in an effect

Figure 5.9: Exponential increase in the belief value of a cause.

The performance o f the current Knowledge Hyper-surface method is assessed on data

points generated from curves (a) and (b) in Figure 5.9, and is shown in Figures 5.10

and 5.11, respectively. It is clear that lower-ordered polynomials cannot model the

exponential rise in belief values where in the higher-ordered polynomials tend to

overfit the data points.

Belief values for a Cause

 quadratic
 cubic
 quartic
o data points

0.6

15 0.4

1 0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Belief Value in the occurrence of a Defect

Figure 5.10: Belief value variation modelled by quadratic, cubic and quartic

polynomials on a set of data points as shown.

109

Belief values for a cause

 quadratic

— cubic
 quartic
o data points

« u.d
i

.2 06
1 0.4
M—I.32
<L>CQ

■0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Belief value in the occurence of a defect

Figure 5.11: Belief value variation modelled by quadratic, cubic and quartic

polynomials on a set o f data points as shown.

The following section will discuss the modification that has been proposed to

overcome the above-mentioned limitations within the existing technique.

5.5 ENHANCEMENT TO THE CURRENT KNOWLEDGE

HYPER-SURFACE METHOD

In the current Knowledge Hyper-surface method, the multi-dimensional hyper surface

is constructed from one-dimensional belief curves. Once the shape of each one­

dimensional curve is determined, the shape of the hyper surface gets automatically

determined. Hence the challenge for the proposed enhancement is to be able to model

the exponential rise by higher-ordered polynomials without introducing the side-

effects o f over fitting the possible noise in data points.

This is achieved by a two-stage optimisation process. As can be seen in Figure 5.12,

first the belief values at the end of points and the midpoint are determined using a

quadratic Lagrange interpolation polynomial and employing the current Knowledge

110

Hyper-surface method. This method determines the primary weight values at the end-

and mid-reference points. The exponential rise is either in the first half o f the belief

curve or in the second half.

This effect is modelled by introducing a further reference point between the end- and

mid-reference point. The primary weights determined previously at end- and mid­

reference points are kept constant and optimal values for the two new reference points

(x] and x2) are determined by a second-stage optimisation process using the current

knowledge hyper method using fourth-ordered (quartic) Lagrange interpolation

polynomials.

The primary weight values at the two new reference values are constrained such as

that they lie between the corresponding primary-weight values at the neighbouring

end- and mid-reference points as shown in Figure 5.12.

In the proposed new method, midpoints are constructed between each primary weight

along each dimension such that:

1. 0 (i.e. origin at point 1) <= Xx <= primary-weight at point 2, and

2. Primary-weight at point 2 <= x 2 <= primary-weight at point 3.

O data points
 quadratic

 quartic

 final shape

0.8

0.6

0.2

Wi
-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

Figure 5.12: Shape o f the resulting curve after a two-stage optimisation process. It

ensures that x } is betw een wx and w2 and x 2 betw een w2 and w3 .

I l l

5.6 THE PERFORMANCE COMPARISON OF THE

PROPOSED METHOD WITH THE CURRENT METHOD

AND NEURAL NETWORK ON A REAL DATASET

The abilities o f the proposed method to capture the exponential change in the belief

variation o f the cause when the belief in the effect is at its minimum is compared with

the outputs from both the current Knowledge Hyper-surface method and a multi-layer

neural network on a real dataset. This dataset was also used by Ransing (2002). The

data was collected from ‘Kaye Preistigne’- a pressure die-casting foundry. A total of

fourteen defects were identified and associated with forty-three process, material or

design parameters. The data was collected for similar components over a period of

one year. A total o f sixty representative examples were finalised. For this case study

as shown in Table 5.4, sixteen process parameters, three defects and eleven examples

were chosen. The same information was also used by Ransing (2002).

A belief value in the occurrence o f defects was calculated as corresponding to the

belief values representing the occurrence and non-occurrence of associated process,

design and material parameters as given by the experts in the foundry. Three defects

known as ‘Porosity’, ‘Mismakes’ and ‘Dimensional’ are identified and all defects

chosen are represented as defects A, B and C, as shown in Table 5.4.

For the purpose o f comparison, the graphical variation of belief surfaces learnt by

neural network, the current method and the proposed method are shown only on two

defects which are ‘Porosity’ and ‘Mismakes’. Sixteen associated process, material and

design parameters were identified to create a neural network with two input nodes

corresponding to defects ‘A ’ and ‘B ’, and sixteen output nodes corresponding to the

sixteen process, material and design parameters. The belief values which were used in

a training dataset are shown in Table 5.4.

112

0.2

0.8

0.2

X I: Belief value in the
occurrence o f defect
‘Porosity’.

g X2: Belief value in the
\ occurrence of defect
~ ‘Mismakes’.

X3: Belief value in the
occurrence of defect
‘Dimensional’.

Figure 5.13: Data points used in the training dataset as tabulated in Table 5.4.

113

Defects: Defect A Defect B Defect C
Strength o f Defects:

1 0 0
1 0 0
1 1 0
0.7 1 0
1 0.8 0
0.7 1 0
0 1 0
0 1 0
0 1 0
0 0.8 1
0 0.9 1

Output node Numbers: 1 2 3 4 5 6 7 8
Target Output Values:

0.8 0 0 0 1 1 1 1
0.8 0 0 0 1 1 1 1
0.8 0.7 0 0 1 1 1 1
0.8 0.7 0 0 1 1 1 1
0.8 0.7 0 0 1 1 1 1
0.8 0.7 0 0 1 1 1 1
0 0 0 0 0 0 0 0.8
0 0 0 0 0 0 0 0.8
0 0 0 0 0 0 0 0.9
0 0.7 1 0.7 0 0 0 0.7
0 0.8 1 0.7 0 0 0 0.8

Output Node Numbers:9 10 11 12 13 14 15 16
Target Output Values:

1 0.9 1 0.8 0 0 0 0.9
1 0.9 1 0.8 0 0 0 0.9
1 1 1 0.8 0.8 0.7 0 0.9
1 1 1 0.8 0.8 0.7 0 0.8
1 1 1 0.8 0.8 0.7 0 0.9
1 1 1 0.8 0.8 0.7 0 0.8
0 0.9 0.7 0 0.7 0 0 0
0 0.9 0.7 0 0.7 0 0 0
0 0.9 0.7 0 0.8 0 0 0
0 0.9 0 0.7 0.7 0 0 0
0 1 0.7 0.7 0.7 0 0 0

Table 5.4: The training dataset with target output values for the input defects

plotted in Figure 5.13.

114

The proposed conjugate gradient neural-network method (CGPR/AG) with five

hidden nodes is constructed and trained on the training dataset with a learning rate

equal to 0.4 and with a target error o f 0.001. Since a neural network uses sigmoid

activation function, the input data for the neural network was scaled between [0, 1]. A

quadratic variation between input and output relationships was assumed in both the

current method and the proposed method. Both networks were trained on the training

dataset as shown in Figure 5.13. Codes for all methods have been written in

MATLAB.

All networks achieved the target error o f 0.001 and seemed to have learnt the training

dataset. The speed o f all networks in learning the training dataset is not the main

concern in this test, as the resulting shape o f the hyper surface is o f importance. The

belief surface has been plotted for cause ‘The position of gate’ (cause number 8)

which influences the occurrence o f ‘Porosity’ (defect A) and ‘Mismakes’ (defect B)

as this data requires to model the exponential rise in the belief values variation.

The variation in the belief value in the occurrence of ‘The position of gate’ for defect

A, i.e. ‘Porosity’ using the current method and the proposed method is plotted when

only defect A is connected to the cause (one-dimensional case) and when both defects

(i.e. defects A and B) are connected to the cause (two-dimensional case). The results

are shown in Figures 5.14 and 5.15. Since the proposed method is able to model an

exponential increase in belief values, it was shown to be a better fit to data points

using the quadratic polynomials as compared to the current method. This is because of

the introduction o f midpoints which gives an additional degree of freedom to control

the resulting curve. Furthermore, Figure 5.16 also demonstrates that neural networks

showed a reasonable fit to these data points. However, as demonstrated by Ransing

(2002) neural networks do not guarantee a better shape for hyper surfaces. Neural

networks tend to interpolate better point and exhibit all the limitations as identified by

Ransing (2002).

115

Belief values for the C ause
Position of the gate

— Ransing's method
o Data points
 Proposed method

CD% 0.8 COo
CD
s z 0.6
,c
CD

- i 0 . 4CO>
CD
1 0.2
co

1- 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 0 . 2 0 . 4 0 . 6 0 . 8•1
Belief Value in the occurrence of Defect Porosity

Figure 5.14: The performance o f Ransing’s method and the proposed method for one­

dimensional belief-value variation modelled by quadratic polynomials for defect

Porosity.

Belief values for the Cause
Position of the Gate

— Ransing's method
o Data points
 Proposed method

CD

 ̂ 0.8
03o
CD
- 0.6
c
CD

0 . 4CO>
CD
1 0.2
00

0 . 2 0 . 4 0 . 6 0 . 8 11 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0
Belief Value in the occurrence of Defect Porosity

Figure 5.15: The performance of Ransing’s method and the proposed method for 2D

belief-value variation modelled by quadratic polynomials for defect Porosity.

116

Belief values for the Cause
Position of the Gate

 Neural Network
O Data points

0.8

a>
C/5

a
° 0.6 <u

c
a>
to
> 0 . 4

(Dm

0.2

0.80 . 2 0 . 4

Belief Value in the occurrence of Defect Porosity
0.6

Figure 5.16: The performance of neural-network method for a 2D belief-value

variation for defect Porosity.

Figures 5.17, 5.18 and 5.19 show the variation in the belief value in the occurrence of

the ‘The position of gate’ for defect B, i.e. ‘Mismakes’ using the proposed method,

the method proposed by Ransing (2002) and neural-network method plotted for both

one-dimensional and two-dimensional cases. The results demonstrate that the

proposed method has modelled the exponential rise in the data points better than both

Ransing’s and the neural-network methods.

117

Belief values for the C ause
Position of the gate

— Ransing's method
o Data points
 Proposed method

a)
 ̂ 0.8

cO O
a)
- 0.6
c
a)3 0.4
CO>
1 0.2
CO

- 0.8 - 0.6
Belief Value in the occurrence of Defect Mismakes

0.2 0.4 0.6 0.8

Figure 5.17: The performance of Ransing’s method and the proposed method for ID

belief variation modelled by quadratic polynomials for defect Mismakes.

Belief values for the Cause
Position of the Gate

 Ransing's method
° Data points
 Proposed method

CD

 ̂ 0.8 CDO
CD
- 0.6
c
CD

■is 0-4CO>
CD

■1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Belief Value in the occurrence of Defect Msmakes

Figure 5.18: The performance of Ransing’s method and the proposed method for 2D

belief variation modelled by quadratic polynomials for defect Mismakes.

118

Belief values for the Cause
Position of the Gate

0.8
Belief Value in the C ause

0.6

0.4

0.2

0.80.2 0.4 0.6 10

Neural Network
O Data points

Belief Value in the occurrence of Defect M ismakes

Figure 5.19: The performance of neural network method for 2D belief-value variation

for defect Mismakes.

Figures 5.20, 5.21 and 5.22 show the variation in the belief values in the occurrence

of ‘The position o f gate’ for belief values for defects ‘Porosity’ and ‘Mismakes’ using

the proposed method, Ransing’s method and the neural-network method. It can easily

be observed that the proposed method has an ability to accurately model the

exponential rise in the belief values rather than the other two techniques.

119

o c c u rre n c e of
d e fec t:
Porosity

D efect 2:

defec t:
Mismakes

Belief surface generated for the M etacause
Position of the Gate

D efect 1:
Belief value in t h ^

Belief value in thfi>
o c c u rre n c e of 15

>

0)GQ

Defect 2 Defect 1

Figure 5.20: 2D quadratic output surface for defects Porosity and Mismakes generated

by Ransing’s method.

Belief surface generated for the Metacause
Position of the Gate

Defect 1:
Belief value in t h ^
o ccurrence of «
defect: g
Porosity

o

Defect 2: £
Belief value in t h ^
occurrence of 15
defect: '>
Mismakes J2 0

CO

Defect 2 Defect 1

Figure 5.21: 2D quadratic output surface for defects Porosity and Mismakes generated

by the proposed method.

120

Belief surface generated for the Metacause
Position of the Gate

Defect 1:
Belief value in the
occurrence of
defect:
Fbrosity

Defect 2:
Belief value in the
occurrence of
defect:
Mismakes

0 w
1 0.8
CO
0
2 0.6

~ 0.4 0
3
(0
> 0.2
0
0m n

'X

0.8
0.80.6

0.60.4
0.40.2 0.2

0 0Defect 2 Defect 1

Figure 5.22: 2D output surface for defects Porosity and Mismakes generated by the

neural-network method.

5.6.1 Importance of the need for accurately monitoring the exponential rise in
belief values

The major objective of a robust parameter design methodology is to make the system

insensitive or ‘robust’ to a process variation. In a robust parameter-design method, the

output variation can be lowered by reducing either the sensitivities to the variation in

the design factor or sensitivities to noise factors. Figure 5.23 shows how a factor

setting may influence the variation of the output depending on the occurrence of the

belief variation. When design factor setting one is chosen, more variation is

transmitted from a small change design factor value to its output due to the

exponential rise in the slope of the belief curve. This makes the corresponding output

more sensitive to the variation o f design factor setting one. Whereas for factor setting

two even a larger change in values will not influence the output value. Design factor

121

setting two thus offers a robust design setting as the process is insensitive to its

variation. The proposed method has an ability to accurately model the exponential rise

in the data values. This has significantly improved the applicability o f the Knowledge

Hyper-surface method in addressing robust design problems.

output

smaller
performance
variation

larger
performance
variation

robust

sensitiviy

Design factor 1 Design Factor 2

Figure 5.23: Robust design principles: assessing the sensitivity o f output variation to

the change in design-factor settings.

122

5.7 CONCLUSION

An enhancement to the current Knowledge Hyper-surface method has been proposed

in this chapter. The method introduces midpoints in the existing shape-function

formulation so that an exponential rise in the belief-value variation can be modelled

without introducing the effects of ‘overfitting’. The performance of the proposed

method was compared with the method proposed by Ransing (2002) and the neural-

network method on the same casting data used by Ransing. The proposed method

does not have limitations o f neural-network techniques as identified by Ransing

(2002).

If the function y = f(x) increases exponentially, a small change in the ‘ x ’

value produces a large change in results. The process param eters that show

such variation need close m onitoring in a m anufacturing process and in robust

design applications, in particular. Hence, the ability o f the netw ork to model

an exponential increase in b e lie f values is a significant step forward in the

research direction.

123

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE WORK

6.1 RESEARCH CONCLUSION

The work presented in this thesis focuses on improving the computational efficiency

of neural-network training algorithms and investigates the applicability of its Teaming

from examples’ feature in improving the performance o f a current intelligent

diagnostic system. The back propagation (BP) algorithm which is one of the best

known and widely used learning algorithms for neural networks is reviewed in detail

and the limitations o f the conventional BP training algorithm is highlighted. Two

major areas o f improving the BP algorithm are identified in the literature as: (a) the

use o f heuristic-based techniques that modify network parameters such as learning

rate value, momentum term, activation function, and topology optimisation; and (b)

the integration o f (a) with second-order optimisation techniques for minimising the

error. The ability o f the current method proposed by Ransing (2002) in modelling the

exponential increase/decrease o f belief values in cause and effect relationships also

has been discussed in detail and remedies have been recommended. The aspects

researched and refined were:

• Investigate further on improvements to the BP algorithm proposed by early

researchers, particularly the work presented by Ransing (2002), on using the

adaptive-gain variation in improving the training efficiency.

• Discover the misunderstanding o f previous researchers in their claims that the

training efficiency o f the gradient-descent formulation was improved because

the gain variation influenced the learning rate.

• Propose a novel approach that improves the search direction and hence

improves the training efficiency of BP neural-network algorithms.

124

• Implement the novel approach into other well-known optimisation methods

with an objective of improving the computational efficiency o f neural-

networks training process.

• Revisit the current Knowledge Hyper-surface method proposed by Ransing

(2002) and identify some limitations posed by the existing version in

modelling the exponential increase/decrease in belief values in cause and

effect relationships.

• Propose a strategy that is computationally efficient and able to model the

exponential increase/decrease in belief values in cause and effects

relationships without introducing the side-effects o f ‘over-fitting’.

The following conclusions may be drawn from the work presented in this thesis:

1) This study suggests that adaptive-gain variation as introduced by previous

researchers including Ransing (2002) has a significant effect in improving the search

direction not the learning rate. A novel method to improve the training efficiency of

BP algorithms with respect to adaptive-gain variation o f activation function has been

successfully developed. The proposed method not only coupled the gain update

expressions for output, as well as the hidden nodes as derived by Ransing (2002), but

also coupled with the adaptive-leaming rate. Furthermore, the generic nature o f the

proposed method has been demonstrated by successfully implementing its

formulation into other well-known optimisation methods to yield significant

improvements in the computational speed. To the best o f the author’s knowledge, this

was the first instance when the adaptive gain of activation function has been

implemented with almost all commonly used gradient-based optimisation algorithms.

The theoretical formulation of the proposed method has been expressed in terms of

three major optimisation methods: gradient-descent method; conjugate-gradient

method; and Quasi-Newton method.

2) For implementation into a computer code, MATLAB programming language

was chosen as the language that combines comprehensive math and graphics

functions with a powerful high-level language beyond those provided by languages

such as FORTRAN and C. The correctness of implementing the code was tested on

data generated using a simple sine curve. The computed numerical results were

125

compared with the previous version introduced by Ransing (2002). The comparison

showed significant improvements using the proposed method.

3) The efficiency of the proposed method (with respect to computer run time and

generalisation accuracy) implemented with other optimisation methods was

investigated by using benchmark problems. The benchmark problems used to verify

the proposed algorithm are taken from the open literature (Lutz Prechelt, 1994). The

computed numerical results as well as graphical results of the proposed method were

compared with other standard algorithms as well as Ransing’s method in terms of

training efficiency. The results clearly showed that the proposed method substantially

improved the computational efficiency of the training process. In addition, the

proposed algorithm is generic, robust and easy to implement into all commonly used

gradient-based optimisation methods.

4) This study also explored limitations o f the existing Knowledge Hyper-surface

method proposed by Ransing (2002) in learning cause and effect relationships. A new

approach to enhance the performance o f the current Knowledge Hyper-surface

method has successfully been proposed. The theoretical formulation o f the approach

has been expressed by constructing midpoints between each primary weight along

each dimension by using a quadratic Lagrange interpolation polynomial. The new

secondary-weight values, generated due to addition of midpoints, were also

represented as a linear combination of the corresponding primary/axial weight values.

An algorithm to constrain the shape o f the surface in two-dimensional and multi­

dimensional cases has been successfully developed in order to produce more realistic

and acceptable results as compared to the previous version.

5) The ability o f the proposed approach to model the exponential

increase/decrease in the belief values by using high-ordered polynomials without

introducing ‘over-fitting’ effects was investigated. The performance o f the proposed

method in modelling the exponential increase/decrease in belief values was carried

out on real cases taken from real casting data used by Ransing (2002). The computed

graphical result o f the proposed method was compared with the current Knowledge

Hyper-surface and neural-network methods. As a result o f this research achievement,

it will now be possible to correctly predict the sensitivity o f process-parameter

variations with the occurrence o f defects. This is an important area of research in a

robust design methodology.

126

In general, the proposed approach has shown significant improvement on

computational efficiency and at the same has provided industry with an efficient self-

learning decision-making tool, which has the knowledge o f current/past rejection

levels within the manufacturing set up. The tool automatically learned a cause and

effect relationship by using the diagnosis information provided by experts. This

learning ability has the potential to help managers not only to quantify the influence

of causes on defects for existing products but also to be very computationally efficient

for use in manufacturing new quality products.

6.2 PROPOSAL FOR FUTURE WORK

The method developed to improve the current Knowledge Hyper-surface method in

providing industry with an efficient self-learning decision-making tool has been

shown to be capable o f giving good results in all case studies in Chapter Five. In

addition, a novel method was developed to improve the computational efficiency of

neural-network algorithms as described in Chapters Three and Four. The

recommendations regarding the further development are given below:

(1) The proposed method significantly improved the computer training efficiency

as demonstrated in Chapters Three and Four, the improvement is actually the result of

automatically varying gain parameters and learning rates during training. It was also

noticed that the success of neural-network models largely depended on their

architecture, which is usually determined by a trial and error process (E. Cantu-Paz,

2003). It would be useful to develop an automatic and effective neural-networks

training model, as shown in Figure 6.1, that combines the proposed method together

with techniques such as network pruning (K. Suzuki et a i, 2001) which can

automatically optimise their network architecture. Furthermore the implementation of

this combination into all gradient-based optimisation methods can simplify network

training without human intervention while at the same time further improve the

computational efficiency.

(2) A good method has been successfully developed by Smart and Zhang (2004)

which integrated the gradient-descent method with genetic programming (GP) in

investigating for object-classification problems. The results showed that the new

127

>
H

>
O

method outperformed the basic GP method on all cases in both classification accuracy

and training generations. However, that method was only tested on the gradient-

descent method. It is also possible to explore the effect o f other gradient-based

methods as proposed in Chapters Three and Four with GP on even more difficult

image-classification problems such as face-recognition problems and satellite image-

detection problems.

(3) The enhancement proposed to the Knowledge Hyper-surface method can be

extended to methods used in solving problems that are generally addressed by

Taguchi’s methods (S.M. Phadke, 1989). The ability o f the method to model an

exponential change will also help in gaining an insight into the ‘tolerance design’

process for various machine parameters. These are a few immediate milestones that

need to be achieved in the process of realising the dream of designing an ‘Intelligent

and Autonomous Foundry’ o f the future.

Network pruning (K. Suzuki
et al., 2001)

Gradient-based
optimisation method

The proposed method (Nazri
Mohd Nawi et al., 2006)

Figure 6.1: Automatic neural-networks training model.

128

REFERENCES

A. van Ooyen, and B. Nienhuis, 1992, Improving the convergence o f the back-
propagation algorithm: Neural Networks, v. 5, p. 465-471.

Adrian J. Sheperd, 1997, Second Order Methods for Neural Networks-Fast and
Reliable Training Methods for Multi-layer Perceptrons, Springer, 143 p.

B. Lally, L. T. Biegler, and H. Henein, 1991, Optimisation and Continous casting. 1.
Problem Formulation and Solution Strategy: Metallurgical Transactions B -
Process Metallugy, v. 22, p. 641-648.

Barschdorff D., Monostori L., Wijstenkiihler G.W., Egresits Cs., and Kadar B., 1997,
Approaches to coupling connectionist and expert systems in intelligent
manufacturing: Computers in Industry, v. 33, p. 95-102.

Bendall A., 1988, Introduction to Taguchi methodology: Proceedings of the 1988
European Conference, p. 1-14.

Bishop C. M., 1995, Neural Networks for Pattern Recognition, Oxford University
Press.

Curtis F. Gerald, and Patrick O. Wheatley, 2004, Applied Numerical Analysis.
Seventh Edition, Addison-Wesley.

D. W. Marquardt, 1963, An algorithm for least-squares estimation o f non-linear
parameters: Journal of the Society o f Industrial and Applied Mathematics, v.
11, p. 431-441.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams, 1986, Learning internal
representations by error propagation: in D.E. Rumelhart and J.L. McClelland
(eds), Parallel Distributed Processing, v. 1, p. 318-362.

Danilo P. Mandic, J. A. C., 1999, Relating the Slope of the Activation Function and
the Learning Rate within a Recurrent Neural Network: Neural Computation, v.
11, p. 1069-1077.

Dave Watkins, 1997, Clementine's Neural Networks Technical Overview: Technical
Report.

David L. Rodriguez, 2003, Response Surface based Optimization with a Cartesian
CFD method: American Institute of Aeronautics and Astronautics, p. 1-9.

E. Cantu-Paz, 2003, Pruning Neural Networks with Distribution Estimation
Algorithms: Genetic and Evolutionary Computation Conference on The
advanced information system and technology, p. 1-13.

129

E. M. L. Beale., 1972, A derivation o f conjugate gradients.: In F. A. Lootsma, editor,
Numerical methods for nonlinear optimization, p. 39-43.

E.K. Blum, 1989, Approximation of Boolean functions by sigmoidal networks: Part I:
XOR and other two-variable functions: Neural Computation, v. 1, p. 532-540.

Eom K., and Jung K., 2003, Performance Improvement o f Back propagation
algorithm by automatic activation function gain tuning using fuzzy logic:
Neurocomputing, v. 50, p. 439-460.

Erik Hjelmas, and P.W. Munro, 1999, A comment on parity problem: Technical
Report, p. 1-7.

F. Fnaiech, D. Bastard, V. Buzenac, R. Settineri, and M. Najim, 1994, A Fast Kalman
Filter based new algorithm for training feedforward neural networks:
Proceedings o f EUSPCO (European signal processing conference).

Fahlman S. E., 1988, Faster Learning Variations on Back-propagation: An Empirical
Study: Proceedings o f the 1988 Connectionist Models Summer School, p. 38-
51.

Fisher R.A., 1936, The use of multiple measurements in taxonomic problems: Annals
o f Eugenics, v. 7, p. 179 -188.

Fletcher R., and Reeves R. M., 1964, Function minimization by conjugate gradients:
Comput. J., v. 7, p. 149-160.

Funahashi K., 1989, On the Approximate Realization o f Continuous Mappings by
Neural Networks: Neural Networks, v. 2, p. 183-192.

G. P. Syrcos, 2003, Die casting process optimization using Taguchi methods: Journal
o f Materials Processing Technology, v. 135, p. 68-74.

Groot C. de, and Wiirtz D., 1994, Plain Backpropagation and Advanced Optimization
Algorithms: A Comparative Study: Neurocomputing, NEUCOM 291, v. 6, p.
153-161.

Hahn-Ming Lee, Tzong-Ching Huang, and Chih-Ming Chen, 1999, Learning
Efficiency Improvement of Back Propagation Algorithm by Error Saturation
Prevention Method: IJCNN '99, v. 3, p. 1737-1742.

Hanselman, Duane & Littlefield, and Bruce, 1997, The student edition o f MATLAB:
version 5, user's guide.: New Jersey: Prentice-Hall, Inc., Prentice-Hall, Inc.

Hush D. R., Home B., and Salas J. M., 1992, Error surfaces for multilayer
Perceptrons.: IEEE Transactions on Systems, Man, and Cybernetics, v. 22, p.
1152-1161.

130

Hush D. R., and Salas J. M., 1988, Improving the learning rate o f backpropagation
with the gradient reuse algorithm.: In Proceedings of the IEEE Conference on
Neural Networks, v. 1, p. 441-447.

J. E. Dennis, and R. B. Schnabel, 1983, NumericalMethods for Unconstrained
Optimization and Nonlinear Equations: Englewood Cliffs, NJ, Prentice-Hall.

J. Grum, and J.M. Slabe, 2004, The use o f factorial design and response surface
methodology for fast determination of optimal heat treatment conditions of
different Ni-Co-Mo surfaced layers: Journal of Materials Processing
Technology, v. 155-156, p. 2026-2032.

Jacobs R. A., 1988, Increased Rates o f Convergence Through Learning Rate
Adaptaion: Neural Networks, v. 1, p. 561-573.

John K. Kruschke, and Javier R. Movellan, 1991, Benefits of Gain: Speeded Learning
and Minimal Hidden Layers in Back-Propagation Networks: IEEE Transaction
on System, Man, and Cybernetics, v. 21, p. 273-280.

K. Levenberg, 1944, A method for the solution o f certain non-linear problems in least
squares.: Quaterly Journal o f Applied Mathematics, v. 2, p. 164-168.

Kackar R.N., 1985, Off-line quality control, parameter design and the Taguchi
method: Journal o f Quality Technology, v. 17, p. 176-88.

Kamat Y. V., and Rao M. V., 1994, A Taguchi optimization o f the manufacturing
process for die cast components: Proc. 6th AIMTDR Conference, p. 174-179.

Kolen J. F., and Pollack J. B., 1991, Back propagation is sensitive to initial
conditions. In R. P. Lippmann, J. E. Moody, & D. S. Tpuretzky (Eds.):
Advances in Neural Information Processing Systems, v. 3, p. 860-867.

Krzyzak A., Dai W., and Suen C. Y., 1990, Classification of large set o f handwritten
characters using modified back propagation model.: Proceedings of the
International Joint Conference on Neural Networks, v. 3, p. 225-232.

Lee B. W., and Sheu B. J., 1993, Paralleled hardware annealing for optimal solutions
on electronic neural networks: IEEE Transactions on Neural Networks, v. 4, p.
588-599.

Lee Y., Oh S.-H., and Kim M. W., 1993, An analysis o f premature saturation in
backpropagation learning.: Neural Networks, v. 6, p. 719-728.

Lin H., Yih Y., and Salvendy, 1995, Neural Network based fault diagnosis of
hydraulic forging presses in China: International Journal of Production
Research, v. 33, p. 1939-1951.

Lippman R. P., 1987, An Introduction to Computing with Neural Nets: IEEE ASSP
magazine.

131

Lutz Prechelt, 1994, PR0BEN1 - a set o f neural network benchmark problems and
benchmarking rules. (WEB: ftp:// flp.ira.uka.de/pub/neuron/proben 1 .tar, gz):
Technical report 21/94, p. 1-4.

M. F. Moller, 1993, A scaled conjugate gradient algorithm for fast supervised
learning: Neural Networks, v. 6, p. 525-533.

M. J. D. Powell, 1977, Restart procedures for the conjugate gradient method.:
Mathematical Programming, v. 12, p. 241-254.

M. Perzyk, and A. Kochanski, 2003, Detection o f cause of casting defetcs assisted by
artificial neural netwroks: Proceedings o f the Institution o f Mechanical
Engineers, Part B: Journal o f Engineering Manufacture, v. 217, p. 1279-1284.

M.T. Hagan, and M. Menhaj, 1994, Training feedforward networks with the
Marquardt algorithm: IEEE Trans. Neural Networks, v. 5, p. 187-199.

Magoulas G. D., Vrahatis M. N., and Androulakis G. S., 1996, A new method in
neural network supervised training with imprecision.: In Proceedings of the
IEEE 3rd International Conference on Electronics, Circuits and Systems, p.
287-290.

Magy. M. Kandil, Fayza. A. Mohamed, Fathy Saleh, and Magda Fayek, 2005, A New
Approach For Optimizing Back Propagation Training With Variable Gain
Using PSO: GVIP 05 Conference, p. 1-7.

Mangasarian O. L., and Wolberg W. H., 1990, Cancer diagnosis via linear
programming: SIAM News, v. 23, p. 1-18.

Marco Gori, and Alberto Tesi, 1992, On the problem of local minima in back­
propagation: IEEE Transactions on Pattern Analysis and Machine Intelligence,
v. 14, p. 76-86.

Martinez E. E., Smith A. E., and Idanda B., 1994, Reducing waste in casting with a
predictive neural model: Journal of Intelligent Manufacturing, v. 5, p. 277-
286.

Meghana R. Ransing, 2002, Issues in Learning Cause and Effect Relationships from
Examples: With particularly emphasis on casting process, University o f Wales
Swansea, Swansea.

Murphy Hot, and Hiroaki Kurokawa, 1998, Characteristics of Gradient Descent
Learning with Neuronal Gain Control.: IEEE, p. 74-77.

Murray Smith, 1993, Neural Networks for Statistical Modeling: New York, NY,
USA, John Wiley & Sons, Inc., 235 p.

Nazri Mohd Nawi, Meghana R. Ransing, and Rajesh S. Ransing, 2006, Improving the
gradient based Search Direction to Enhance training Efficiency of Back
Propagation based Neural Network algorithms: Proceedings of the 26th

132

International Conference o f Innovative Techniques and Applications of
Artificial Intelligent (SGAICD6), p. 45-48.

Nguyen D., and Widrow B., 1990, Improving the learning speed of 2-layer neural
networks by choosing initial values of the adaptive weights: Proceedings o f
the International Joint Conference on Neural Networks, v. 3, p. 21-26.

Parker D., 1985, Learning-Logic: Technical Report TR-47.

Phadke S. M., 1989, Quality Engineering Using Robust Design: Englewood Cliffs,
N.J., Prentice Hall.

Polak E., 1971, Computational Methods in Optimization: (New York: Academic
Press).

Pravin Chandra, and Yogesh Singh, 2004, An activation function adapting training
algorithm for sigmoidal feedforward networks: Neurocomputing, v. 61, p.
429-437.

R. Battiti., 1992, First and second order methods for learning: Between steepest
descent and Newton□ method: Neural Computation, v. 4, p. 141-166.

R. Fletcher, and C. M. Reeves, 1964, Function minimization by conjugate gradients:
Computer Journal, v. 7, p. 149-154.

R. Fletcher, and M. J. D. Powell, 1963, A rapidly convergent descent method for
minimization: British Computer J., p. 163-168.

Rezgui A., and Tepedelenlioglu N., 1990, The effect o f the slope of the activation
function on the back propagation algorithm: In Proceedings of the
International Joint Conference on Neural Networks, v. 1, p. 707-710.

Rumelhart D.E., Hinton G.E., and Williams R.J., 1986, Learning internal
representations by error propagation: Parallel Dist. Process, v. 1.

S. C. Ng, C. C. Cheung, S. H. Leung, and A. Luk, 2003, Fast convergence for back
propagation network with magnified gradient function: Proceedings o f the
International Joint Conference on Neural Networks 2003, v. 3, p. 1903-1908.

Sang-Hoon Oh, and Youngjik Lee, 1995, A Modified Error Function to Improve the
Error Back-Propagation Algorithm for Multi-Layer Perceptrons: ETRI
Journal, v. 17, p. 11-22.

Sang Hoon Oh, 1997, Improving the Error Backpropagation Algorithm with a
Modified Error Function: IEEE TRANSACTIONS ON NEURAL
NETWORKS, v. 8, p. 799-803.

Singh H., and Kumar P., 2005, Optimizing cutting force for turned parts using
Taguchi □ parameter design approach: Indian J. Eng. Mater. Sci., v. 12, p. 97-
103.

133

Stuart Geman, Elie Bienenstock, and Rene Doursat, 1992, Neural networks and the
bias/variance dilemma.: Neural Computation, v. 4, p. 1-58.

Suzuki K., Horiba I., and Sugie N., 2001, A Simple Neural Network Pruning
Algorithm with Application to Filter Synthesis: Neural Processing Letters, v.
13, p. 43-53(11).

T.P. Vogl, J.K. Mangis, A.K. Zigler, W.T. Zink, and D.L. Alkon, 1988, Accelerating
the convergence o f the backpropagation method: Biol. Cybernet., v. 59, p.
256-264.

Tai-Hoon Cho, Richard W. Conners, and A. Philip A, 1991, Fast Back-Propagation
Learning Using Steep Activation Functions and Automatic Weight
Reinitialization: Conference Proceedings 1991 IEEE International Conference
on Systems, Man, and Cybernetics, v. 3, p. 1587-1592.

Theodore T. Allen, and Liyang Yu, 2002, Low-Cost Response Surface Methods from
Simulation Optimization: Quality and Reliability Engineering International, v.
18, p. 5-17.

Thimm G., Moerland F., and Emile Fiesler, 1996, The Interchangeability o f Learning
Rate an Gain in Back propagation Neural Networks: Neural Computation, v.
8, p. 451-460.

V. D. Tsoukalas, St. A. Mavrommatis, N. G. Orfanoudakis, and A. K. Baldoukas,
2004, A study o f porosity formation in pressure die casting using the Taguchi
approach: Proceedings o f the Institution of Mechanical Engineers, Part B:
Journal o f Engineering Manufacture, v. 218, p. 77-86.

W. L. Buntine, and A. S. Weigend, 1993, Computing second derivatives in feed­
forward networks: A review: IEEE Transactions on Neural Networks, v. 5, p.
480-488.

Weir M. K., 1991, A method for self-determination o f adaptive learning rates in back
propagation.: Neural Networks, p. 371-379.

Werbos P. J., 1974, Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences, Harvard University, USA.

Widrow B., and Lehr M. A., 1990, 30 years of adaptive neural networks:perceptron,
madaline,and backpropagation: Proceeding of the IEEE, v. 78, p. 1415-42.

Will Smart, and Mengjie Zhang, 2004, Applying Online Gradient Descent Search to
Genetic Programming for Object Recognition: The Australasian Workshop on
Data Mining and Web Intelligence(DMWI2004),Conferences in Research and
Practice in Information Technology, v. 32.

Wilson R. L., and Sharda R., 1994, Bankruptcy prediction using neural networks:
Decision Support Systems, v. 11, p. 545-557.

134

X.G. Wang, Z. Tang, H. Tamura, M. Ishii, and W.D. Sun, 2004, An improved back
propagation algorithm to avoid the local minima problem, Neurocomputing:
Elsevier, v. 56, p. 455-460.

Y. LeCun, I. Kanter, and S.A. Solla, 1991, Second order properties o f error surfaces:
Learning time and generalization: In R.P. Lippmann, J.E. Moody, and D.S.
Touretzky, editors, Neural Information Processing Systems, v. 3, p. 918-924.

Yamada K., Kami H., Tsukumo J., and Temma T., 1989, Handwritten numeral
recognition by multilayer neural network with improved learning algorithm.:
In Proceedings o f the International Joint Conference on Neural Networks, v. 2,
p. 259-266.

Yarlagadda Prasad K., 2000, Prediction of die casting process parameters by using an
artificial neural network model for zinc alloys: International Journal of
Production Research, v. 38, p. 119-139.

Zang H. C., and Huang S. H., 1995, Applications o f neural networks in
manufacturing: A state-of-the-art survey: International Journal o f Production
Research, v. 33, p. 705-728.

135

APPENDIX (CONTENTS)

A l : The performance comparison of the proposed method with other optimisation

methods

LI Sine curve without n o ise ... 136

Figure AI. 1: Output o f neural network trained to learn a sine curve

using the proposed conjugate gradient m ethod w ith

Polak-R ibiere fo rm u la tio n ... 136

Figure AI.2: Error versus number o f epochs required to achieve the

target error o f 0.001 for conjugate gradient m ethod with

Polak-R ibiere fo rm u la tio n .. 136

Figure AI.3: Output of neural network trained to learn a sine curve

using the proposed conjugate gradient m ethod w ith

Broyden-Fletcher-Goldfarb-Shanno fo rm u la tio n 137

Figure AI.4: Error versus number o f epochs required to achieve the

target error o f 0.001 for conjugate gradient m ethod with

Broyden-Fletcher-Goldfarb-Shanno fo rm u la tio n 137

Figure AI.5: Output o f neural network trained to learn a sine curve

using the proposed conjugate gradient m ethod with

Davidon-Fletcher-Power fo rm u la tio n 138

Figure AI.6: Error versus number o f epochs required to achieve the

target error o f 0.001 for conjugate gradient m ethod with

Davidon-Fletcher-Power fo rm u la tio n 138

1.2 Sine curve with n o ise .. 139

Figure AI.7: Output o f neural network trained to learn a sine curve

with 20% random Gaussian noise using the proposed

method w ith Fletcher-R eeves fo rm u la tio n 139

Figure AI.8: Error versus number o f epochs required to achieve the

target error o f 0.01 using conjugate gradient method with

Fletcher-R eeves fo rm u la tio n .. 139

Figure AI.9: Output of neural network trained to learn a sine curve

with 20% random Gaussian noise using the proposed

method w ith Davidon-Fletcher-Power fo rm u la tio n 140

136

Figure AI. 10: Error versus number o f epochs required to achieve the

target error of 0.01 using conjugate gradient method with

Davidon-Fletcher-Power fo rm u la tio n 140

Figure AI. 11: Output o f neural network trained to learn a sine curve

with 20% random Gaussian noise using the proposed

method w ith Broyden-Fletcher-Goldfarb-Shanno

fo rm u la tio n .. 141

Figure AI. 12: Error versus number o f epochs required to achieve the

target error o f 0.01 using conjugate gradient method with

Broyden-Fletcher-Goldfarb-Shanno fo rm u la tio n 141

All: Comparison of the proposed method on benchmark problems 142

Table II. 1: Detail version of the Conjugate Gradient with Polak-Ribiere

formulation performance for Thyroid problem 142

Table II.2: Detail version o f the Conjugate Gradient with Polak-Ribiere

formulation performance for Cancer problem 145

Table II.3: Detail version of the Conjugate Gradient with Fletcher-Reeves

formulation performance for Diabetes problem 148

Table II.4: Detail version of the Conjugate Gradient with Polak-Ribiere

formulation performance for IRIS problem .. 151

Table II.5: Detail version o f the Broyden-Fletcher-Goldfarb-Shanno

performance for 7 bit Parity problem ... 154

Table II. 6: Detail version o f the Broyden-Fletcher-Goldfarb-Shanno

performance for Glass classification problem 157

137

AI: The performance comparison of the proposed method with

other optimisation methods
This Appendix is to illustrate the performance o f the proposed training method

introduced in Chapter Three implemented with other optimisation methods. The

performance o f the proposed method is tested on Sine curve.

1.1 Sine curve w ithout noise

O datapoints
— C G PR
 CGPR/AG

0 . 9

0.8

0.7

0.6
3
a.
3o

0 . 4

0.3

0.2

0.2 0 . 4 0.6 0.8
Input

Figure A I .l : Output o f neural network trained to learn a sine curve using the proposed
con jugate g rad ien t m ethod w ith P o lak-R ib iere fo rm ulation .

0.16
 C G P R /A G
— C G P R0.14

0.12

0.1

t 0.08

0.06

0.04

0.02

100 150
Number of Epochs

200
of'

250 300 400350
Number

Figure AI.2: Error versus number o f epochs required to achieve the target error of
0.001 for conjugate gradient m ethod w ith P o lak -R ib iere fo rm ulation .

138

Comments on A I.l and AI.2: As can be seen from Figure A ll. 1 both methods

performed almost the same results in learning the data sets. However the proposed

method showed a faster result by taking 315 epochs as compared to standard

algorithm which need 365 epochs to reach the target error.

O datapoints
— BFGS
 BFGS/AG

0.9

0.8

0.7

0.4

0.3

0.2

0.2 0.6 0.80.4
Input

Figure AI.3: Output o f neural network trained to learn a sine curve using the proposed
con jugate g rad ien t m ethod w ith Broyden-Fletcher-Goldfarb-Shanno form ulation .

0.14

BFGS/AG
BFG S0.12

0.1

0.08
luw2

0.06

0.04

0.02

200 400 600 800 1000 1200 1400
E p o c h s

Figure A1.4: Error versus number o f epochs required to achieve the target error of
0.001 for conjugate gradient m ethod w ith Broyden-Fletcher-Goldfarb-Shanno

form ulation .

139

Comments on AI.3 and AI.4: Both methods performed same generalisation results

but the proposed (BFGS/AG) method significantly reduce number o f epochs almost

twice faster as compared to standard algorithm (BFGS) with unity gain value.

O datapoints
DFP

— DFP/AG
0.9

0.8

0.7

0.6
a

0.4

0.3

0.2

0.2 0.4 0.6
Input

Figure AI.5: Output o f neural network trained to learn a sine curve using the proposed
conjugate g rad ien t m ethod w ith Davidon-Fletcher-Power form ulation .

0.09
— DFP
 DFP/AG0.08

0.07

0.06

0.05hico
2

0.04

0.03

0.02

0.01

500 1000 1500
Epochs

2000 2500 3000

Figure AI.6: Error versus number o f epochs required to achieve the target error of
0.001 for conjugate gradient m ethod w ith Davidon-Fletcher-Power form ulation .

140

Comments on AI.5 and AI.6: The proposed method (DFP/AG) outperformed the

standard algorithm (DFP) by taking 1932 epochs to reach the target error as compared

to 2546 needed by the standard algorithm (DFP).

II.2 Sine curve with noise

O datapoints
— C G F R
 C G F R /A G

0.9
CD

0.8

0.7

0.4

0.3

0.2

0.1

0,0 0.4 0.6 0.8 1
in p u t

Figure AI.7: Output o f neural network trained to learn a sine curve with 20% random
Gaussian noise using the proposed method w ith F le tcher-R eeves form ulation .

— CGFR/AG
- - C G F R0.09

0.08

0.07

0.06

1 0.05

0.04

0.03

0.02

0.01

40 100 120
N u m b e r o f E p o c h s

Figure AI.8: Error versus number o f epochs required to achieve the target error of
0.01 using conjugate gradient method w ith F le tcher-R eeves form ulation .

141

Comments on AI.7 and AI.8: Both methods performed almost the same results on

generalisation. However, the proposed method (CGPR/AG) only took 111 epochs to

achieve the target error as compared to the standard algorithm (CGPR) which took

167 epochs.

O datapoints
— DFP
 DFP/AG

0.9
CD

0.8

0.7

1 0.5.3o
0.4

0.3

0.2

cib"'7 cP

&

0.1

0,0 0.4 0.6 0.8 1
Input

Figure AI.9: Output o f neural network trained to learn a sine curve with 20% random
Gaussian noise using the proposed method w ith Davidon-Fletcher-Power

form ulation .

0.1
 D FP/A G
— D F P0.09

0.08

0.07

0.06

0.05
LU

0.04

0.03

0.02

0.01

100 150
N u m b e r

200
N u m b e r o f E p o c h s

250 300 350

Figure AI.10: Error versus number o f epochs required to achieve the target error of
0.01 using conjugate gradient method w ith Davidon-Fletcher-Power form ulation .

142

Comments on AI.9 and AI.10: The proposed method (DFP/AG) significantly

reduced the number o f epochs and outperformed the standard algorithm (DFP) for

almost 1.5 times faster without losing the generalisation performance.

1 e
O datapoints

— BFGS
 BFGS/AG

0.9
CD

0.8

0.7

0.3

0.2

0.1

0,0 0.4 0.6 10.8
Input

Figure A I.l 1: Output o f neural network trained to learn a sine curve with 20% random
Gaussian noise using the proposed method w ith Broyden-Fletcher-Goldfarb-Shanno

form ulation .

0.12
 BFGS/AG
— BFGS

0.08

0.06
UJ

0.04

0.02

100 150 200 250 300 350 400 450
Number of Epochs

Figure A I.l 2: Error versus number o f epochs required to achieve the target error of
0.01 using conjugate gradient method w ith Broyden-Fletcher-Goldfarb-Shanno

form ulation .

Comments on AI.10 and A I.l 1: The proposed method (BFGS/AG) outperformed the

standard algorithm (BFGS) in term o f number o f epochs with ration o f 1.4.

143

All: Comparison of the proposed method on benchmark problems

This Appendix is to illustrate the detail calculation procedure for evaluating the

performance o f the proposed method on benchmark problems as mentioned in

Chapter Four.

Table II.l: Detail version of the Conjugate Gradient with Polak-Ribiere

formulation performance for Thyroid problem

traincgp CGPR CGPR-AG

Trials Epoch
CPU
time accuracy epoch

CPU
time accuracy epoch

CPU
time accuracy

1 7 5.44 93.48 12 4.89 90.37 10 3.36 89.10
2 15 6.13 90.74 10 3.42 91.17 9 2.08 89.96
3 248 44.20 92.46 10 3.42 90.14 9 3.94 91.01
4 11 4.31 92.39 11 3.80 90.34 6 2.47 88.65
5 6 4.17 89.89 16 6.56 90.30 11 2.67 90.22
6 12 4.90 89.79 24 8.20 90.68 11 4.11 89.12
7 24 5.72 90.90 10 3.38 90.16 7 3.20 93.95
8 10 3.89 92.17 11 4.44 90.26 10 3.61 92.92
9 165 30.52 91.77 12 4.23 91.02 7 2.50 91.82
10 - - - 12 4.23 91.01 9 3.22 89.88
11 286 48.33 92.44 10 3.02 91.03 11 3.55 91.44
12 48 10.88 92.32 12 5.22 90.50 11 3.61 89.41
13 101 18.84 89.68 11 3.91 90.04 8 2.99 89.94
14 7 2.98 91.55 11 4.89 90.57 10 4.17 88.28
15 8 3.03 89.61 10 3.53 90.36 5 1.64 88.34
16 232 45.30 92.14 14 6.23 91.88 5 1.63 92.84
17 6 3.28 93.48 14 6.36 90.58 7 2.34 88.89
18 18 5.09 94.03 11 4.06 90.08 4 1.30 89.85
19 - - - 15 6.48 90.88 15 4.89 88.42
20 - - - 15 6.70 90.57 16 5.94 90.54
21 139 24.44 90.77 18 7.81 90.26 7 1.59 90.45
22 5 2.52 90.45 11 3.89 91.28 8 3.41 92.70
23 343 61.19 92.81 21 6.11 91.11 9 3.70 90.00
24 6 3.16 90.03 17 6.77 90.57 7 2.80 90.89
25 30 7.48 89.73 13 4.50 90.31 9 1.94 89.08
26 4 4.94 92.32 13 5.56 90.48 5 1.17 90.92
27 8 3.41 91.89 15 6.77 91.65 5 1.06 90.50
28 6 3.23 93.33 10 3.58 90.02 7 1.53 90.80
29 - - - 14 5.00 90.04 10 2.36 92.74
30 - - - 10 5.47 90.20 8 1.73 90.29
31 6 2.48 91.50 12 2.70 91.02 11 2.36 92.77
32 20 5.75 90.30 12 2.75 91.01 9 2.03 91.23
33 22 5.66 89.57 17 5.98 89.96 8 1.86 89.12
34 - - - 15 5.30 90.86 15 3.55 85.81
35 76 13.92 90.22 16 5.95 90.38 10 2.28 90.47
36 12 4.28 94.39 19 6.88 92.02 12 2.81 91.47
37 7 2.94 91.18 16 5.84 90.22 15 3.59 90.14

144

38 162 30.72 90.12 13 5.95 90.68 0 .8 9 9 0 .86

39 11 3.9 1.67 90.35

40 2.69 91.39

41 27 6.6 0.91 91.07

42 17 4.7 1.55 86.96

43 3.4 1.49 81.75
44 2.3 1.52 94.69

45 151 27.: > 2.25 89.58
46 34 7.0 3.00 84.31
47 2.6 r 4.02 93.47
48 16 4.2 > 3.11 90.67

49 2.1 1.69 90.43
50 2.3 I 2.56 91.58
51 2.7 3.11 90.21

52 19 5.0 3.36 90.03
53 2.9 1.33 89.79
54 2.5 3.08 90.27
55 1.45 90.78
56 2.5 4.13 90.27
57 3.0 3.53 90.84
58 2.6 3.11 91.23
59 11 3.5 3.11 89.44
60 227 34.(3.05 89.63
61 2.9 1.50 91.53
62 35 6.8 2.69 91.51
63 20 5.8 3.42 90.76
64 2.1 2.30 89.17
65 2.3 3.77 89.86
66 1.28 89.66
67 2.9 2.44 90.21
68 2.7 2.16 91.16
69 2.5 2.77 91.39
70 18 4.5 1.91 92.37
71 2.7 2.11 90.77
72 2.5 3.28 90.30
73 2.3 2.70 93.10
74 2.6 2.81 90.27
75 2.3 2.19 89.99
76 11 2.8 1.95 91.56
77 13 3.2 2.24 91.31
78 10 2.9 2.89 90.44
79 17 4.3
80 10 3.0 2.88 90.34
81 2.3 2.22 90.33
82 17 4.0 2.17 89.68
83 2.5 2.38 92.43
84 2.7 1.41 88.32
85 3.1 1.97 92.61
86 2.6 1.88 90.91
87 25 4.7; 3.02 90.29
88 10 3.2:
89 2 .2 : 3.33 91.70

145

^

90 21 4.59 90.58 . . . 14 3.08 90.94

91 18 4.25 89.74 13 3.99 91.34 8 1.66 91.69

92 6 2.48 92.48 13 4.55 91.62 17 3.61 91.20

93 5 2.20 90.65 11 3.48 91.18 15 3.13 87.68

94 5 2.08 90.32 13 4.00 91.47 - - -
95 10 3.13 90.73 11 3.39 91.63 10 2.47 88.77

96 9 3.17 92.61 23 8.39 91.35 8 1.81 90.93

97 18 4.99 91.38 12 3.72 91.73 12 2.64 89.92

98 43 7.61 92.68 11 3.59 92.52 12 3.06 91.67

99 10 2.94 94.33 12 3.67 91.06 8 3.19 89.72

100 10 2.80 92.67 10 3.05 91.50 7 1.72 90.33

Mean 34 7.46 91.64 13 4.62 89.85 10 2.58 90.37
SD 66 10.88 3.28 1.85 3.53 1.01

succ. 91 94 97
fail 9 6 3

146

Table II.2: Detail version of the Conjugate Gradient with Polak-Ribiere

formulation performance for Cancer problem

traineew CGPR CGPR-AG

Trials epoch
CPU
time accuracy epoch

CPU
time accuracy epoch

CPU

time accuracy
1 9 4.20 89.31 25 1.11 89.73 14 0.63 89.50
2 11 4.34 89.56 27 1.19 89.66 21 0.94 98.06
3 45 4.77 88.45 42 1.91 89.87 9 0.38 89.75
4 20 3.45 87.57 25 1.24 89.69 23 1.03 89.76
5 16 2.78 89.37 41 2.09 89.91 19 0.84 98.10
6 - - - 24 1.08 89.87 16 0.70 89.75
7 12 2.02 89.87 32 1.58 89.71 28 1.23 89.89
8 43 3.21 89.33 24 1.06 89.66 20 0.91 89.95
9 13 1.94 89.55 25 1.11 89.73 9 0.38 89.58
10 32 3.34 88.11 43 2.14 89.68 14 0.61 89.74
11 16 2.33 89.78 29 1.30 89.77 35 1.61 89.92
12 18 2.00 89.51 27 1.22 89.77 29 1.33 89.74
13 71 3.63 89.51 25 1.11 98.10 27 1.22 89.73
14 17 2.88 89.66 28 1.41 89.79 31 1.41 89.88
15 18 2.75 89.93 68 3.34 89.78 26 1.19 89.73
16 12 2.59 89.78 49 2.23 89.95 19 0.84 89.74
17 15 3.53 89.75 27 1.19 89.77 28 1.27 95.01
18 17 5.72 89.12 23 1.11 89.78 9 0.38 89.81
19 21 5.23 88.00 33 1.63 89.77 23 1.05 89.94
20 11 2.77 98.03 42 1.94 89.78 23 1.05 89.75
21 - - - 24 1.08 89.75 17 0.75 89.61
22 15 2.75 89.55 25 1.23 89.70 21 0.95 89.88
23 14 2.45 89.71 27 1.34 89.73 25 1.13 89.83
24 13 2.64 98.01 26 1.16 89.63 60 2.89 89.82
25 21 2.19 89.58 46 2.11 89.75 19 0.86 89.66
26 19 2.33 89.84 23 1.03 89.68 32 1.47 89.78
27 17 2.88 89.60 23 1.02 89.90 . _ -
28 34 3.22 87.45 26 1.16 89.69 24 1.09 89.69
29 52 3.47 89.49 24 1.16 89.85 29 1.33 89.94
30 31 2.80 89.85 25 1.22 89.75 19 0.86 89.92
31 13 2.20 98.07 106 5.39 89.83 60 2.89 95.49
32 16 2.39 89.57 - - - 23 1.11 89.72
33 18 2.39 89.89 84 4.22 89.83 19 0.86 89.94
34 27 2.48 89.61 26 1.28 89.69 29 1.33 89.85
35 45 4.22 89.57 42 1.92 89.81 92 4.73 89.81
36 145 5.86 89.73 26 1.31 89.80 20 0.91 89.84
37 12 2.11 89.50 24 1.08 89.69 33 1.50 95.34
38 22 2.39 89.83 24 1.08 89.80 24 1.08 89.68
39 25 2.34 89.45 31 1.41 89.79 18 0.81 89.80
40 28 2.77 88.55 38 1.91 89.77 27 1.22 89.83
41 12 2.03 89.53 32 1.59 89.75 21 0.92 89.68
42 16 2.08 89.57 50 2.52 89.82 17 0.77 89.96
43 34 2.61 89.30 24 1.16 89.66 43 2.00 89.89
44 14 2.38 89.43 25 1.11 89.75 15 0.69 89.43
45 16 2.17 89.80 39 1.78 89.72 14 0.61 89.73

147

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6J
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79
80

11
82
83

84
85
86
87
88
89
90
91
92
93
94
95
96
97

36 2.72 89.65 31 1.53 89.86 12 0.52 89.88

22 2.33 89.81 44 2.20 89.82 16 0.69 89.81

52 3.00 89.87 22 1.08 89.80 25 1.14 89.73

22 2.45 89.55 37 1.67 89.78 33 1.53 89.61

19 2.09 89.45 34 1.55 89.74 35 1.61 98.01

12 1.80 89.69 22 1.08 89.62 11 0.47 89.90

18 2.52 89.38 35 1.78 89.98 34 1.56 98.15

17 2.19 89.42 43 2.19 89.71 13 0.58 89.75

12 2.50 89.21 23 1.14 89.73 18 0.78 89.74

12 2.00 89.90 22 1.02 89.66 18 0.81 89.62

23 1.17 89.81 24 1.09 89.78

12 2.95 89.76 30 1.33 89.95 20 0.91 89.78

22 2.41 89.60 24 1.06 89.77 19 0.84 89.63

21 1.05 98.13 22 1.00 89.89

18 2.02 89.77 28 1.24 89.74 31 1.42 89.81

18 2.11 89.42 29 1.28 89.71 14 0.63 89.78

260 9.02 98.13 46 2.05 89.85 11 0.47 89.89

33 2.83 89.69 24 1.03 89.73 20 0.88 89.72

15 2.02 89.75 28 1.38 89.69 13 0.58 89.76

16 1.89 89.88 34 1.52 89.64 41 1.89 89.79

59 3.19 89.68 103 5.20 89.70 37 1.72 89.79

34 4.01 89.12 27 1.20 89.78 23 1.05 89.80

19 2.03 89.69 23 1.02 89.65

10 2.44 89.49 33 1.47 89.72 22 1.00 89.81
12 1.86 89.60 24 1.17 89.73 20 0.88 89.78

39 3.09 89.74 39 1.95 89.76 23 1.05 89.78

29 2.45 89.57 37 1.86 89.71 28 1.28 89.69

19 2.13 89.66 28 1.39 89.58 13 0.56 89.85

273 8.47 98.00 77 3.86 89.68 33 1.53 89.79

12 2.81 89.84 22 1.08 89.88 37 1.73 89.83

18 2.09 89.71 35 1.78 89.65
12 1.80 98.07 43 2.19 89.73 32 1.63 89.95

20 2.25 89.85 26 1.17 89.73 25 1.11 89.86

21 2.39 89.87 21 1.05 89.76 15 0.66 89.72

1.92 98.41 29 1.30 89.81 29 1.47 89.78

22 2.45 89.91 26 1.16 89.67 12 0.53 89.91

128 5.64 89.62 28 1.38 89.75 17 0.77 89.89

19 2.16 89.45 27 1.20 89.76 17 0.75 89.78

19 3.72 89.90 28 1.39 89.84 27 1.22 89.75

89 4.39 89.74 32 1.44 89.74 29 1.31 98.12

12 2.19 89.82 22 1.11 89.81 15 0.66 89.74

16 2.08 89.73 23 1.02 89.61 25 1.25 89.87

12 1.92 98.47 31 1.55 89.90 14 0.61 89.82

14 2.06 89.83 24 1.17 89.69 21 0.97 90.00

15 2.13 98.11 29 1.28 89.76 25 1.14 89.88

11 2.03 98.14 37 1.86 89.80 15 0.67 89.70

53 3.25 89.75 22 1.11 89.76 31 1.42 89.96

10 2.00 89.97 24 1.14 89.77 20 0.89 89.78

12 1.92 89.77 51 2.63 89.70 15 0.64 89.77

16 2.14 89.56 25 1.23 89.81 24 1.09 89.89

12 6.28 98.00 32 1.45 89.68 14 0.61 89.73
16 2.19 89.67 22 1.08 89.73 12 0.53 89.68

148

98 27 2.58 89.70 28 1.27 89.63 25 1.13 89.87
99 21 2.31 89.38 33 1.50 89.70 13 0.56 89.55
100 11 2.56 89.74 24 1.05 89.79 33 1.50 89.89

Mean 29 2.82 90.49 33 1.56 89.93 24 1.08 90.38
SD 41 1.38 15.11 0.80 11.58 0.60

succ. 98 98 98
fail 3 2 2

149

Table II.3: Detail version of the Conjugate Gradient with Fletcher-Reeves

formulation performance for Diabetes problem

train eg f CGFR CGFR-AG

Trials epoch
CPU
time accuracy epoch

CPU
time accuracy epoch

CPU
time accuracy

1 64 6.28 91.58 81 3.94 91.36 29 1.30 92.32

2 66 5.30 91.81 47 2.16 92.04 38 1.70 91.78

3 _ - . 48 2.19 90.89 25 1.16 88.70

4 104 3.39 91.74 46 2.09 91.31 29 1.28 92.68

5 77 3.59 92.25 50 2.28 91.50 58 2.70 90.92

6 76 4.81 92.04 59 2.78 90.25 27 1.33 90.96

7 106 3.48 92.08 114 6.92 58.17 - - -
8 229 5.88 91.90 58 2.72 90.38 17 0.75 92.56

9 32 2.13 92.49 35 1.58 91.37 48 2.17 90.89

10 25 2.20 92.19 67 3.19 91.52 48 2.20 89.39

11 359 8.72 91.72 65 3.13 90.84 46 2.09 89.82

12 60 2.78 92.31 57 2.67 91.36 37 1.66 88.63

13 63 2.81 92.33 24 1.06 91.62 22 0.97 91.83

14 72 2.92 91.77 39 1.75 91.74 28 1.25 92.64

15 72 2.58 91.53 26 1.16 90.48 43 1.92 90.19

16 75 2.69 92.34 54 2.52 90.30 61 2.89 90.04

17 61 2.36 92.57 66 3.17 90.80 71 3.39 88.73
18 82 2.95 91.95 46 2.13 90.97 22 0.97 92.67

19 60 2.39 92.91 92 5.36 92.59 46 2.13 89.54
20 27 2.05 91.22 54 2.47 91.35 46 2.08 90.54

21 31 2.31 91.35 47 2.39 90.19 32 1.61 91.53
22 251 8.41 91.59 46 2.33 90.45 44 2.17 91.85
23 64 3.05 91.10 34 1.69 91.67 33 1.63 92.16
24 67 2.84 91.51 47 2.39 84.15 28 1.38 90.04
25 105 3.73 91.22 27 1.34 92.10 55 2.89 85.45

26 47 2.99 91.28 39 1.91 91.36 26 1.31 92.16
27 27 2.16 91.16 77 4.02 91.17 44 2.31 90.43

28 75 3.14 91.03 40 2.02 89.93 37 1.88 93.01

29 56 2.80 91.49 58 3.00 90.83 46 2.41 93.22

30 73 3.13 91.31 38 1.94 91.20 28 1.39 90.99

31 524 16.91 91.35 54 2.88 90.56 54 2.80 89.29

32 182 7.81 91.23 43 2.19 91.48 38 1.94 91.41

33 63 5.11 91.38 46 2.33 90.96 25 1.23 92.47

34 70 3.84 91.38 45 2.41 90.82 37 1.77 92.45

35 73 3.33 91.42 36 1.80 91.08 21 1.06 91.93

36 63 2.97 91.51 32 1.63 91.14 42 2.08 90.02

37 115 4.72 91.39 55 2.94 90.26 53 2.77 90.29

38 66 3.33 91.25 49 2.55 90.73 43 2.22 93.22

39 83 3.39 91.23 66 3.58 90.25 28 1.49 92.68

40 39 2.88 91.51 37 1.91 91.11 28 1.39 91.65
41 60 3.49 91.51 - - - 53 2.77 92.19
42 28 3.41 91.25 51 2.67 91.51 41 2.09 90.99

43 82 3.34 91.15 45 2.25 88.87 54 2.86 91.60
44 43 2.70 91.21 64 3.50 91.40 - - -
45 144 4.98 91.30 79 4.63 82.36 34 2.55 90.32
46 - - - 66 3.39 90.84 20 0.99 91.93

150

47 92 3.59 91.43 45 2.23 91.22 19 0.92 91.91

48 120 4.30 91.34 54 2.72 91.18 20 0.95 91.93

49 121 4.56 91.46 56 2.78 90.11 64 3.50 90.74

50 74 3.38 91.18 76 4.25 91.12 24 1.20 92.50

51 61 2.73 91.19 51 2.66 90.38 73 4.13 90.95

52 67 3.09 91.18 54 2.84 91.93 33 1.66 91.70

53 208 6.34 91.48 43 2.19 91.82 20 0.99 92.39

54 60 2.83 91.31 61 3.30 92.04 46 2.09 90.73

55 57 3.00 91.17 85 4.81 89.17 35 1.77 91.70

56 236 7.88 91.58 37 1.86 91.19 19 1.91 93.60
57 340 10.58 91.22 40 2.02 89.67 39 1.91 91.77

58 132 4.73 91.80 71 3.98 89.27 51 2.56 90.39

59 215 6.20 91.23 82 4.67 91.00 48 2.45 90.18

60 60 2.70 91.45 23 1.13 92.64 21 0.91 91.55

61 345 10.86 91.17 51 2.66 91.36 34 1.74 91.86
62 25 3.61 91.34 49 2.53 90.19 - - -
63 97 3.73 91.26 51 2.67 90.93 33 1.69 92.87
64 61 2.61 91.38 - - - 43 2.17 92.34

65 61 2.77 91.69 43 2.23 91.38 56 2.83 88.19
66 . . - 64 3.41 90.21 42 2.14 90.01
67 55 2.86 91.25 57 3.09 89.98 48 2.53 90.82
68 70 3.06 91.44 57 3.06 93.38 55 2.84 80.46
69 28 2.19 91.16 20 0.95 91.71 52 2.61 90.88

70 64 3.02 91.33 64 3.31 92.01 23 1.14 92.22
71 62 2.70 91.34 51 2.55 90.91 22 1.08 92.10
72 69 3.16 91.41 42 2.11 90.60 39 1.99 91.50
73 86 3.50 91.21 55 2.75 89.69 26 1.27 92.87
74 59 2.77 91.59 40 1.97 91.08 47 2.41 91.12
75 25 2.28 91.49 43 2.13 91.00 47 2.42 90.30
76 32 2.34 91.43 29 1.39 91.81 19 0.92 88.86
77 90 3.69 91.24 102 5.99 71.14 44 2.19 91.00
78 121 4.56 91.32 37 1.84 92.93 37 1.86 80.36
79 59 2.77 91.29 47 2.34 90.54 42 2.13 89.47

80 117 4.81 91.64 42 2.08 90.19 60 3.27 91.12
81 25 2.05 91.20 - - - 28 1.42 92.05
82 59 2.97 91.71 25 1.23 92.08 36 1.89 91.69
83 62 5.38 91.77 66 3.61 90.97 - - -
84 . . . 52 2.69 90.38 65 3.55 90.81
85 232 7.56 91.53 26 1.30 91.44 27 1.31 91.75
86 49 2.97 91.42 27 1.33 91.64 18 0.89 93.11
87 60 2.55 91.23 51 2.67 72.74 23 1.14 93.11
88 102 3.86 91.29 36 1.81 90.92 29 1.42 92.28
89 115 3.89 91.85 55 2.94 89.87 63 3.39 89.59

90 76 3.39 91.28 45 2.27 90.60 22 1.09 91.55

91 60 2.98 91.62 21 1.03 90.74 15 0.73 92.18
92 66 3.02 91.09 41 2.08 92.79 46 2.27 90.22
93 65 2.91 91.39 61 3.38 90.83 70 3.91 87.02
94 223 6.86 91.42 30 1.50 91.97 55 2.92 89.93
95 70 3.14 91.10 39 1.99 91.28 50 2.59 90.05
96 46 2.69 91.32 50 2.59 90.22 52 2.59 90.47
97 32 2.30 91.23 54 2.88 90.05 52 2.72 83.15
98 - - - 70 3.88 75.92 114 6.70 87.54

151

99 390 11.89 91.58 50 2.59 90.44 40 2.02 81.91
100 67 3.00 91.52 39 1.98 90.79 31 1.56 90.75

Mean 98 4.03 91.50 51 2.61 89.97 40 2.01 90.70
SD 87 2.48 17.03 1.11 15.94 0.97

succ. 95 97 96
Fail 5 3 4

152

Table II.4: Detail version of the Conjugate Gradient with Polak-Ribiere

formulation performance for IRIS problem

Trials
1

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Epoch
13
18
14
13

17
29
14
42

37
57
45

22
17
11
24
91
11
21

16
44
55
16
37
14
26

384
17
33
55

16
470
17

16

47
39
15
16

129

17
21
27
18
49

train cgp
CPU
time accuracy epoch

CGPR
CPU
time accuracy

3.5
2.5
3.0
2.1
2.8
2.4

2.2
2.4
2.5
2.8
2.8

2.1

2.4
2.3
2.3
3.7
2.0
2.3

2.2
3.1
2.8
2.0
2.8
2.3
2.5
10.5
2.1
2.5
2.9
2.3

12.c
2.1
2 .2 '

2.9
2.7:
2 .0:
2.01
4.2

2 .2:

2 .2!
3.2:
1.9)
4.3I

epoch
f__
I

l_

CGPR-AG
CPU
time
0.63
0.94
0.38
1.03
0.84
0.70
1.23
0.91
0.38
0.61
1.61
1.33
1.22
1.41
1.19

0.84
1.27
0.38
1.05
1.05
0.75
0.95
1.13
2.89
0.86
1.47
1.19
1.09
1.33
0.86
2.89
1.11
0.86
1.33
4.73

0.91
1.50

1.08
0.81
1.22
0.92
0.77
2.00
0.69

0.61
0.52

accuracy
97.50

98.06
97.75
97.76
98.10
97.75

97.89
97.95

97.58
97.74
97.92
97.74
97.73
97.88
97.73
97.74
95.01
97.81
97.94
97.75
97.61
97.88
97.83
97.82
97.66
97.78
97.79
97.69
97.94
97.92
95.49
97.72
97.94
97.85

97.81
97.84
95.34
97.68
97.80
97.83
97.68
97.96
97.89
97.43
97.73
97.88

153

^

47 22 3.17 95.22 21 0.94 97.82 16 0.69 97.81

48 21 2.42 95.92 19 0.84 97.80 25 1.14 97.73

49 13 2.80 95.06 37 1.67 97.78 33 1.53 97.61

50 42 2.80 95.30 34 1.55 97.74 35 1.61 98.01

51 18 2.16 95.73 18 0.80 97.62 11 0.47 97.90
52 101 3.69 95.76 17 0.74 97.98 34 1.56 98.15
53 . - - 22 0.97 97.71 13 0.58 97.75
54 10 2.19 95.05 17 0.75 97.73 18 0.78 97.74

55 37 2.95 97.51 - - - 18 0.81 97.62

56 71 3.86 95.22 19 0.88 97.81 24 1.09 97.78
57 26 2.41 95.38 30 1.33 97.95 20 0.91 97.78
58 41 2.67 96.37 24 1.06 97.77 19 0.84 97.63
59 - - - 15 0.66 98.13 22 1.00 97.89
60 11 2.17 95.67 28 1.24 97.74 31 1.42 97.81
61 11 5.58 95.25 29 1.28 97.71 14 0.63 97.78
62 . - - 46 2.05 97.85 11 0.47 97.89
63 11 2.16 95.11 24 1.03 97.73 20 0.88 97.72
64 33 2.42 96.25 20 0.88 97.69 13 0.58 97.76
65 78 3.30 98.92 34 1.52 97.64 41 1.89 97.79
66 12 3.06 95.86 103 5.20 97.70 37 1.72 97.79
67 47 2.81 95.51 27 1.20 97.78 23 1.05 97.80
68 9 3.27 96.31 25 1.11 97.80 23 1.02 97.65
69 27 4.73 95.29 33 1.47 97.72 - - -

70 9 3.44 95.38 19 0.83 97.73 20 0.88 97.78
71 - - - 18 0.78 97.76 23 1.05 97.78
72 12 3.05 95.22 20 0.89 97.71 28 1.28 97.69
73 30 2.42 96.95 18 0.78 97.58 13 0.56 97.85
74 18 2.03 95.02 77 3.86 97.68 - - -

75 23 2.28 95.20 17 0.75 97.88 37 1.73 97.83
76 14 2.39 95.02 18 0.77 97.65 42 1.95 97.75
77 47 3.42 95.91 - - - 9 0.38 97.95
78 20 1.92 96.40 26 1.17 97.73 25 1.11 97.86
79 48 2.77 97.50 19 0.84 97.76 15 0.66 97.72
80 18 2.64 97.82 29 1.30 97.81 7 0.28 97.78
81 39 2.42 96.35 26 1.16 97.67 12 0.53 97.91
82 - . - 21 0.94 97.75 17 0.77 97.89
83 21 2.77 95.10 27 1.20 97.76 17 0.75 97.78
84 33 2.94 97.22 21 0.94 97.84 27 1.22 97.75

85 68 3.50 96.73 32 1.44 97.74 29 1.31 98.12
86 78 3.22 96.38 20 0.88 97.81 15 0.66 97.74
87 40 2.80 97.62 23 1.02 97.61 9 0.41 97.87

88 30 4.30 95.56 16 0.70 97.90 14 0.61 97.82
89 - - - - - - 21 0.97 98.00
90 10 3.05 95.02 29 1.28 97.76 25 1.14 97.88
91 16 2.38 95.88 20 0.89 97.80 15 0.67 97.70
92 10 3.16 95.41 12 0.52 97.76 31 1.42 97.96
93 20 2.20 96.49 21 0.94 97.77 20 0.89 97.78
94 - - - 18 0.77 97.70 15 0.64 97.77
95 32 4.61 98.98 22 0.95 97.81 24 1.09 97.89
96 21 2.19 95.93 32 1.45 97.68 . - -

97 60 2.73 95.52 22 0.97 97.73 12 0.53 97.68
98 16 5.30 96.57 28 1.27 97.63 25 1.13 97.87

154

99 12 2.16 95.01 . . 13 0.56 97.55
100 35 2.27 96.62 24 1.05 97.79 33 1.50 97.89

Mean 39 2.99 96.28 28 1.25 97.77 23 1.06 97.73
SD 63 1.67 16.33 0.86 11.97 0.62

Succ. 90 96 97
fail 10 4 3

155

Table II.5: Detail version of the Broyden-Fletcher-Goldfarb-Shanno

performance for 7 bit Parity problem

trainbfg BFGS BFGS-AG

Trials epoch
CPU
time accuracy epoch

CPU
time accuracy epoch

CPU
time accuracy

1 138 4.22 91.32 86 3.67 91.02 89 4.00 90.29

2 167 7.25 90.78 84 3.31 91.02 84 3.66 90.11

3 213 5.70 91.47 85 3.41 91.17 82 3.44 90.02

4 67 2.58 87.05 87 3.81 89.06 84 3.48 89.02

5 286 6.94 89.82 85 3.75 91.07 85 3.58 90.06

6 70 2.80 84.95 86 3.78 89.00 84 3.44 91.05

7 228 6.08 90.56 90 3.95 90.05 85 3.64 91.02

8 84 3.14 89.18 80 3.48 90.01 81 3.66 89.11

9 179 4.91 92.50 . - - 87 3.92 91.02

10 186 4.97 93.33 84 3.67 90.11 84 3.83 91.24

11 239 5.91 91.90 94 4.20 90.04 85 3.81 90.02

12 127 3.59 90.26 95 4.24 90.50 86 3.84 91.02

13 409 9.78 84.27 98 4.39 91.04 84 3.80 90.06

14 258 6.50 89.14 96 4.28 91.07 82 3.67 91.05

15 76 2.70 90.81 93 4.11 89.03 84 3.77 89.02

16 218 5.58 82.47 90 3.69 91.22 98 4.50 90.11
17 303 7.41 89.00 91 3.89 91.09 83 3.69 91.02

18 109 3.59 88.48 96 4.33 91.00 86 4.39 91.24

19 170 4.61 83.57 92 4.13 91.02 83 3.70 91.38

20 196 5.83 85.33 90 4.00 89.01 85 3.81 90.00

21 100 3.13 88.14 90 3.95 91.02 84 3.77 91.27
22 73 2.67 89.09 91 4.03 90.17 84 3.73 91.16
23 256 5.92 85.45 99 4.44 90.06 86 3.86 90.48
24 81 2.77 91.78 90 3.94 90.07 86 3.92 91.12
25 97 3.09 88.12 95 4.20 90.00 89 5.47 91.04
26 112 3.24 89.30 92 4.03 90.05 82 3.50 91.03
27 288 6.41 93.33 99 4.42 91.10 82 3.97 89.45
28 245 5.64 90.13 96 4.33 91.12 83 3.70 91.39

29 227 5.24 83.89 95 4.53 91.04 87 4.16 91.74

30 147 3.67 91.47 99 4.55 88.99 83 3.45 88.00

31 352 7.78 83.85 88 5.34 91.14 85 3.58 91.01

32 174 4.28 87.09 93 4.81 91.04 85 3.58 92.32

33 70 2.58 85.75 101 4.17 89.44 83 3.44 91.12

34 344 7.27 81.97 94 3.88 91.42 94 4.95 90.05

35 68 2.58 87.76 96 3.91 91.06 82 3.39 91.07

36 65 2.38 89.49 97 4.48 91.07 87 3.67 89.01
37 169 3.99 89.91 96 4.31 91.10 84 3.86 89.45

38 107 3.30 87.70 93 3.81 91.09 86 3.72 91.06

39 212 5.02 87.58 96 4.20 87.98 90 3.80 91.19

40 260 5.84 90.00 90 3.80 91.01 82 3.44 91.11
41 305 6.77 88.50 93 4.03 91.00 82 3.77 91.34

42 83 2.92 87.08 92 3.91 90.12 79 3.49 90.02

43 91 2.88 92.53 93 4.02 89.03 84 3.55 90.09
44 422 8.97 88.33 92 3.70 91.36 91 3.86 89.00
45 270 6.09 84.24 92 3.83 89.06 85 3.58 91.15
46 221 5.05 93.00 103 4.44 91.05 - - -

156

47 272 6.09 91.17 94 3.97 90.11 82 3.42 91.12

48 336 7.28 92.79 93 3.84 89.68 85 3.56 91.12

49 287 6.30 83.60 95 3.94 91.11 84 3.53 89.11

50 144 3.78 91.00 97 3.98 91.03 84 3.52 91.47

51 _ _ . 95 4.14 87.57 82 3.42 91.01

52 125 3.22 89.40 93 4.14 91.13 88 3.69 91.18

53 63 2.34 90.14 95 4.31 91.04 82 3.42 91.13

54 141 3.63 90.63 93 4.17 91.04 80 3.33 91.73

55 180 4.33 90.00 93 4.16 90.06 86 3.61 91.14

56 111 3.14 91.52 94 4.22 87.22 85 3.63 91.03

57 51 3.72 87.32 96 4.31 91.05 89 4.08 91.03

58 70 2.53 89.63 94 4.19 91.09 88 4.05 91.45

59 133 3.80 80.61 96 4.34 91.10 82 3.77 91.02

60 248 5.83 87.11 93 4.14 91.23 83 3.80 91.14

61 64 7.44 86.94 92 4.13 91.00 89 4.06 91.04

62 88 3.31 90.13 97 4.38 91.04 91 4.17 91.02

63 104 3.30 88.49 95 4.30 91.05 84 3.80 91.07

64 250 5.72 84.97 95 4.00 90.28 84 3.80 90.09

65 219 5.25 81.26 96 4.06 91.03 84 3.81 90.50

66 79 2.75 90.54 92 3.70 90.02 88 3.99 90.02

67 172 4.28 85.73 93 3.75 91.11 82 3.72 90.27

68 217 5.20 90.00 98 4.45 87.57 85 3.83 90.20

69 220 5.30 87.49 96 4.36 91.18 85 3.88 91.04

70 133 3.84 91.47 98 4.23 91.05 84 3.83 89.01
71 71 4.72 86.27 95 4.02 91.01 83 3.77 88.33

72 192 4.64 91.85 90 3.61 91.01 88 4.03 91.11

73 107 3.23 92.19 89 3.56 91.06 86 3.91 91.24
74 217 5.24 88.66 92 3.73 91.00 86 3.91 91.25
75 80 2.83 89.55 92 3.97 91.01 85 3.86 92.32
76 263 6.14 84.13 93 3.92 91.05 81 3.63 90.31
77 65 2.52 91.49 93 3.89 90.09 82 3.70 91.31
78 - - . 94 3.88 90.24 85 3.86 91.07
79 57 2.48 89.72 92 3.72 85.34 82 3.69 91.65

80 65 2.50 87.04 92 3.72 87.57 88 4.00 91.05

81 77 2.81 92.55 . - - 86 3.89 89.33

82 202 5.58 82.93 94 3.95 90.15 85 3.56 91.29

83 121 3.48 90.47 99 4.17 90.45 84 3.50 87.57

84 99 3.16 89.05 92 3.75 90.12 88 3.83 91.07

85 236 5.41 91.32 100 4.17 90.15 82 3.50 91.22

86 225 5.16 89.90 92 3.72 89.66 78 3.22 91.04

87 169 4.50 90.99 89 3.59 91.03 84 3.58 91.07

88 70 2.59 88.70 96 4.00 91.05 84 3.53 91.12

89 131 3.70 88.79 91 3.74 91.05 87 3.63 91.04

90 86 2.97 88.88 95 3.95 89.66 84 3.50 91.04

91 201 5.55 87.94 95 3.92 91.22 86 3.69 89.68

92 144 3.97 93.99 92 3.81 90.13 87 3.66 91.21

93 276 6.14 89.80 95 3.94 91.16 84 3.53 91.10

94 - - - 90 3.69 91.13 86 3.61 91.05
95 105 3.22 90.57 93 3.94 91.11 85 3.58 91.23
96 164 4.42 91.18 92 3.78 91.04 88 3.75 90.05
97 182 4.63 89.00 93 3.84 91.01 90 4.84 90.02
98 108 3.24 88.99 94 3.92 91.02 88 3.70 91.20

157

99 95 3.17 89.47 96 3.94 91.44 81 3.36 91.03

100 72 2.70 88.77 99 4.11 91.01 88 3.72 91.19
Mean 166 4.50 88.74 93 4.02 90.43 85 3.76 90.66

SD 87 1.79 15.48 3.83 0.64 12.77 3.01 0.50 9.11
Succ. 97 98 99
Fail 3 2 1

158

Table II.6: Detail version of the Broyden-Fletcher-Goldfarb-Shanno

performance for Glass classification problem

trainbfg BFGS BFGS-AG

Trials epoch
CPU
time accuracy epoch

CPU
time accuracy epoch

CPU
time accuracy

1 66 6.52 91.76 16 1.13 90.52 14 0.95 90.89

2 109 5.86 92.14 21 1.12 96.48 12 0.88 93.38

3 89 4.80 92.22 16 1.06 90.82 12 0.86 93.63

4 208 8.94 93.18 34 2.22 93.86 23 1.92 92.56

5 167 6.97 94.26 45 3.77 93.58 15 1.14 91.38

6 _ . - 33 2.22 92.19 12 0.92 90.09

7 116 5.95 93.34 22 2.22 92.06 19 1.36 92.60
8 167 7.38 93.53 - - - 21 1.59 92.34

9 147 6.77 93.58 34 3.11 90.71 12 0.91 93.70
10 97 4.98 93.40 20 1.41 90.81 16 1.14 94.08
11 95 3.77 93.52 16 1.08 92.25 11 0.56 93.76
12 96 3.58 93.41 34 3.22 93.46 12 0.59 93.85
13 74 3.00 94.00 34 3.77 92.54 19 0.98 93.41

14 88 3.09 92.05 32 2.22 92.99 14 0.72 93.06
15 111 3.61 93.15 16 1.08 90.41 19 1.13 93.96

16 73 2.83 93.43 20 1.34 95.99 22 1.20 93.90
17 131 4.05 92.98 16 1.08 90.46 - - -
18 113 3.66 91.58 17 1.17 93.53 15 0.80 93.49
19 74 2.84 92.83 23 1.66 92.21 13 0.75 92.60
20 68 2.75 93.69 18 1.22 94.85 12 0.64 90.83
21 131 3.91 94.31 32 3.22 93.33 12 0.64 93.57
22 94 5.11 92.75 16 1.06 93.87 27 1.41 93.62
23 137 4.31 94.07 17 1.11 92.70 41 2.36 93.74
24 103 3.45 92.30 . . . 15 0.80 92.70
25 222 5.77 93.70 16 1.06 93.82 12 0.64 96.95
26 89 3.13 93.32 36 4.22 92.56 12 0.70 93.46
27 192 5.17 93.02 16 1.08 92.23 12 0.78 92.83
28 142 4.17 93.88 34 3.32 96.85 15 0.88 90.89
29 180 4.95 92.83 17 1.13 90.44 20 1.17 93.39
30 102 3.30 92.95 15 1.03 90.14 18 0.91 92.08
31 102 3.33 92.42 16 1.09 93.75 12 0.59 93.18
32 157 4.42 92.80 35 4.22 93.69 15 0.75 93.65

33 157 4.39 93.95 36 4.22 90.26 19 0.98 92.62
34 162 4.41 94.73 16 1.08 94.07 15 0.81 90.74

35 75 2.84 93.31 16 1.06 93.30 15 0.94 94.70

36 _ - - 16 1.11 93.91 14 0.88 94.55
37 130 3.95 93.33 17 1.14 92.50 18 1.16 94.00

38 65 2.70 92.55 17 1.13 91.82 21 1.55 92.82
39 107 3.53 92.54 16 1.08 93.75 20 1.39 92.91
40 78 2.97 94.26 16 1.08 93.80 13 0.83 92.18
41 88 3.36 91.95 34 3.23 93.22 14 0.81 92.89
42 53 2.45 92.95 45 3.22 92.89 12 0.75 90.79
43 227 6.34 93.54 54 5.23 93.51 16 1.16 93.79
44 191 5.38 93.16 33 2.22 93.14 11 0.67 90.99
45 132 4.22 92.24 34 3.23 94.09 12 0.69 93.54
46 166 4.69 94.30 17 1.27 90.64 14 0.81 90.89

159

47 79 2.94 93.62 44 3.22 90.31 19 1.06 93.14

48 114 3.67 93.56 34 3.22 90.69 22 1.33 94.79

49 99 3.38 92.83 16 1.14 90.13 13 0.75 93.41

50 85 3.05 93.20 23 2.22 90.60 12 0.78 93.90

51 94 3.13 92.91 43 3.22 93.45 19 1.28 90.23

52 112 3.70 92.99 23 2.22 93.09 11 0.77 93.64

53 212 6.45 93.24 34 3.22 93.06 - - -

54 101 3.42 91.91 16 1.14 93.33 17 1.22 91.76

55 107 4.25 93.22 21 2.14 90.11 18 1.14 90.26

56 . - - 16 1.45 94.25 11 0.59 94.50

57 - . - 54 4.22 93.21 11 0.55 96.80

58 102 3.56 93.81 55 4.77 96.55 13 0.69 94.77

59 166 4.52 92.64 34 4.22 90.53 18 1.13 94.05

60 253 7.06 93.81 54 4.77 90.69 12 0.66 94.89

61 142 4.20 93.97 33 2.11 96.00 16 0.92 94.82

62 98 3.38 93.38 45 3.22 90.79 19 0.99 93.18

63 109 3.47 93.66 16 1.09 90.06 18 0.97 95.58

64 59 3.20 92.61 45 5.33 90.48 22 1.39 94.71

65 100 3.36 92.87 . - - 17 0.98 94.92

66 94 3.31 93.23 18 1.27 93.91 11 0.58 94.43

67 134 4.17 93.77 33 3.12 93.67 17 0.84 93.21

68 89 3.06 93.82 15 1.14 93.95 13 0.64 90.54

69 134 4.11 94.32 45 3.22 94.70 15 0.75 93.32

70 92 3.34 93.34 34 2.12 93.67 18 0.91 92.89

71 99 3.24 94.06 18 1.22 94.23 14 0.70 90.10
72 122 3.77 93.66 45 3.88 94.84 17 0.84 93.78

73 69 2.70 93.24 17 1.27 93.44 12 0.59 93.63
74 105 3.39 92.76 16 1.48 96.36 14 0.70 94.52

75 102 3.38 92.94 56 6.33 90.69 - - -

76 62 2.56 92.26 16 1.59 90.86 14 1.09 93.23
77 154 4.55 93.12 18 2.45 90.29 12 1.06 90.59

78 115 3.50 94.01 34 3.22 90.03 13 0.92 90.57
79 88 3.16 94.45 23 2.22 93.39 12 0.74 93.01

80 101 3.31 93.71 18 1.52 92.13 16 0.89 94.78
81 112 3.61 92.67 54 5.33 91.30 12 0.64 93.30
82 - . - 18 1.16 92.71 13 0.70 94.94

83 65 2.53 92.11 45 5.33 92.54 12 0.69 93.21

84 126 3.77 93.59 17 1.05 93.50 14 0.81 93.46

85 131 3.69 93.51 18 1.06 92.41 16 0.91 93.11

86 102 3.42 94.10 24 2.11 92.34 15 0.86 96.94

87 121 3.72 93.95 - - - 13 0.89 94.57

88 89 3.00 93.02 35 3.23 93.24 19 1.42 92.89

89 95 3.11 93.26 45 5.33 93.64 - - -

90 151 4.28 94.11 16 1.05 93.06 11 0.73 94.41

91 122 3.73 92.48 20 1.42 92.68 11 0.69 94.84

92 65 2.52 92.92 24 2.01 92.94 16 1.03 90.31

93 97 3.17 92.79 25 2.25 93.01 12 0.75 96.61
94 70 2.61 93.31 18 1.90 96.52 18 1.17 93.64

95 139 3.86 92.73 28 2.97 90.32 20 1.30 92.76
96 123 3.63 93.51 28 2.90 90.75 - - -

97 103 3.41 92.55 31 3.01 90.43 17 1.09 92.62
98 182 5.05 93.35 22 1.17 90.55 13 0.83 94.44

160

