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SUMMARY

This thesis presents a new generic approach to improve the computational efficiency 
of neural-network-training algorithms and investigates the applicability of its 
''learning from  examples' featured in improving the performance o f a current 
intelligent diagnostic system. The contribution of this thesis is summarised in the 
following two points:

• For the first time in the literature, it has been shown that significant 
improvements in the computational efficiency o f neural-network algorithms 
can be achieved using the proposed methodology based on using adaptive-gain 
variation.

• The capabilities o f the current Knowledge Hyper-surface method (Meghana R. 
Ransing, 2002) are enhanced to overcome its existing limitations in modelling 
an exponential increase in the shape of the hyper-surface.

Neural-network techniques, particularly back-propagation algorithms, have been 
widely used as a tool for discovering a mapping function between a known set of 
input and output examples. Neural networks learn from the known example set by 
adjusting its internal parameters, referred to as weights, using an optimisation 
procedure based on the ‘least square fit principle’. The optimisation procedure 
normally involves thousands of iterations to converge to an acceptable solution. 
Hence, improving the computational efficiency o f a neural-network algorithm is an 
active area of research. Various options for improving the computational efficiency o f 
neural networks have been reviewed in this thesis. It has been shown in the existing 
literature that the variation o f the gain parameter improves the learning efficiency of 
the gradient-descent method. However, it can be concluded from previous 
researchers’ claims that the adaptive-gain variation improved the learning rate and 
hence the efficiency. It was discovered in this thesis that the gain variation has no 
influence on the learning rate; however, it actually influences the search direction. 
This made it possible to develop a novel approach that modifies the gradient-search 
direction by introducing the adaptive-gain variation. The proposed method is robust 
and has been shown that it can easily be implemented in all commonly used gradient- 
based optimisation algorithms. It has also been shown that it significantly improves 
the computational efficiency as compared to existing neural-network training 
algorithms. Computer simulations on a number o f benchmark problems are used 
throughout to illustrate the improvement proposed in this thesis.

In a foundry a large amount of data is generated within the foundry every time a 
casting is poured. Furthermore, with the increased number of computing tools and 
power there is a need to develop an efficient, intelligent diagnostic tool that can learn 
from the historical data to gain further insight into cause and effect relationships. In 
this study the performance of the current Knowledge Hyper-surface method was 
reviewed and the mathematical formulation o f the current Knowledge Hyper-surface 
method was analysed to identify its limitations. An enhancement is proposed by 
introducing mid-points in the existing shape formulation. It is shown that the mid­
points’ shape function can successfully constrain the shape o f decision hyper-surface 
to become more realistic with an acceptable result in a multi-dimensional case. This is 
a novel and original approach and is of direct relevance to the foundry industry.
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function.

A supervised learning algorithm which uses data with 

associated target output to train an artificial neural 

network.

A test that measures the performance of a system or a 

method on a well-defined task or set o f tasks.

A value that representing the strength o f the occurrence 

o f effect or cause.

Variation o f Newton's optimization algorithm, in which 

an approximation o f the Hessian matrix is obtained 

from gradients computed at each iteration o f the 

algorithm.
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Bias

Conjugate gradient 

algorithm

Epoch

Feed-forward network 

Fletcher-Reeves update

Function approximation

Gain value

Generalisation

performance

Golden section search

Neuron parameter that is summed with the neuron's 

weighted inputs and passed through the neuron's 

transfer function to generate the neuron's output.

In the conjugate gradient algorithms, a search is 

performed along conjugate directions, which produces 

generally faster convergence than a search along the 

steepest descent directions.

One iteration through the neural network training 

algorithm (presentation o f the entire training set once to 

the network).

Layered network in which each layer only receives 

inputs from previous layers.

Method for computing a set o f conjugate directions. 

These directions are used as search directions as part of 

a conjugate gradient optimization procedure.

Task performed by a network trained to respond to 

inputs with an approximation of a desired function.

Training parameter that controls the steepness of 

activation function during learning.

The ability of a trained network to correctly classify on 

a set o f unseen data which is similar to but not the same 

as the training data set by finding their similarities with 

training data set patterns.

Linear search that does not require the calculation o f the 

slope. The interval containing the minimum of the
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performance is subdivided at each iteration of the 

search, and one subdivision is eliminated at each 

iteration.

Gradient descent

Heuristic 

Learning 

Learning rate 

Momentum

MSE

Network topology 

One Dimensional (ID)

Optimisation

Over fitting

Process of making changes to weights and biases, 

where the changes are proportional to the derivatives of 

network error with respect to those weights and biases. 

This is done to minimize network error.

A method that serves as an aid to problem solving. It is 

sometimes defined as any ‘rule o f thumb’.

Process by which weights and biases are adjusted to 

achieve some desired network behavior.

Training parameter that controls the size o f weight and 

bias changes during learning.

A constant that is often used to make it less likely for a 

back-propagation network to get caught in a shallow 

minimum.

Performance function that calculates the average 
squared error between the network outputs 0 K and the 
target outputs tK.

Ways to arrange nodes in a network.

A plotted graph that shows only one defect is connected 

to the a cause

A process that finds a best, or optimal, solution for a 

selected model.

Case in which the error on the training set is driven to a 
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very small value, but when new (unseen) data is 

presented to the network, the error is large.

Performance

Perceptron

Polak-Ribiere update

Premature saturation

Quasi-Newton algorithm

Search direction

Sigmoid activation 

function

Two Dimensional (2D)

Behavior of a network or a method.

The basic processing element used in neural networks 

without hidden layer. A simple analog circuit with 

weighted inputs and a nonlinear decision element such 

as a hard limiter, threshold logic or sigmoid 

nonlinearity.

Method for computing a set of conjugate directions. 

These directions are used as search directions as part of 

a conjugate gradient optimization procedure.

The situation where the instantaneous sum of 

differences between network output and target value is 

almost unchanged for some period of time.

Class of optimization algorithm based on Newton’s 

method. An approximate Hessian matrix is computed at 

each iteration o f the algorithm based on the gradients.

The choice of direction where error function decreases 

most quickly.

Squashing function of the form shown below that maps 

the input to the interval [0, 1].

A plotted graph that shows two defect are connected to 

the a cause
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Weight

The process of testing the models with a data set 

different from the training data set.

The strength of connection between two nodes.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Every day foundries manufacture a large number of castings. Every time a casting is 

produced, a large amount of data is generated involving process-parameter values and 

one or more indicators on whether the casting is defective or not. This data is 

encoded for each type o f defect, for each day, week and month o f the casting process 

and is available for all casting components.

The rejection data for a given casting and time frame, normally indicates a pattern, 

which has normally few defects occurring at significantly high proportions and some 

occurring at significantly low proportions. Therefore, the diagnostic casting problem 

was defined as recognising patterns in the casting rejection data and identifying a 

corresponding combination of causes. It was observed that a combination of defects 

generally occurs as a result o f a combination of causes (Meghana R. Ransing, 2002).

The cause and effect relationship is generally complex and highly interlinked for 

many manufacturing processes. Identification o f the degree of influence o f a cause on 

the occurrence o f a defect is one of the most difficult tasks in a diagnostic process and 

the highly interlinked causal relationship further complicates the problem. 

Furthermore, many foundries monitor their process closely and record vast amounts
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of data. There is a need to develop a computational tool that can learn from the 

historical data and provide options to minimise production o f defective components.

1.2 AN OVERVIEW OF THE OPTIMISING CASTING

PROCESS USING HISTORICAL DATA

The cause and effect relationship in a casting process is complex and non-linear. 

Furthermore, a large number o f parameters are needed to be coordinated with each 

other in an optimal way to minimise the occurrence of defective castings. This has led 

to the necessity of developing computer-based optimisation techniques. An 

optimisation process is a computational technique that determines an optimal value 

for process parameters such that the magnitude o f one or more response variables of 

the process is minimised. It also ensures that the process operates within established 

limits or constraints (B. Lally et al., 1991). Casting process optimisation has 

facilitated foundrymen in making right choices, but it still remains a challenging area 

that has drawn the attention of many researchers during the last two decades

Recent studies have used the response surface method (RSM) to optimise parameters 

in the casting process (J. Grum and J.M. Slabe, 2004; Theodore T. Allen and Liyang 

Yu, 2002). The computational efficiency of the RSM approach significantly reduces 

as the number o f process parameters increase (David L. Rodriguez, 2003). This is 

mainly because RSM techniques show the same limitations as showed by polynomial- 

regression techniques; the number of unknowns in the system increases exponentially 

with the number o f parameters.

In contrast, Taguchi’s robust design method provides a process engineer with a 

systematic and efficient approach for conducting experimentation to determine near 

optimum settings of design parameters for performance and cost ( A. Bendall, 1988; 

R.N. Kackar, 1985; S.M. Phadke, 1989). The robust design method uses orthogonal 

arrays (OA) to study the parameter space, usually containing a large number of 

decision parameters, with a small number o f experiments. To this date, a quite 

significant amount of research and development work has been done in order to
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optimise parameters of the casting process by using the Taguchi method (G.P. Syrcos, 

2003; Y.V. Kamat and M.V. Rao, 1994; H. Singh and P. Kumar, 2005; V.D. 

Tsoukalas et al., 2004).

Recently, the artificial-neural networks (ANN), or simply neural-networks (NN), 

technique has gained more popularity in learning cause and effect analysis in casting 

processes (D. Barschdorff et al., 1997; H. Lin et al., 1995; M. Perzyk and A. 

Kochanski, 2003; E.E. Martinez et al., 1994; Prasad K. Yarlagadda, 2000; H.C. Zang 

and S.H. Huang, 1995). ANN consists o f interconnected cells, called neurons, and 

simulates the behaviour o f the biological neural network in a human brain (R.L. 

Wilson and R. Sharda, 1994). Neural-networks’ techniques are able to adapt, learn 

from examples and are generally used to model complex relationships between inputs 

and outputs or to classify data finding common patterns (K. Funahashi, 1989). This 

ability makes the field o f diagnosis a potential application for neural networks.

A new approach, which is of direct relevance to the manufacturing industry, was 

proposed by Ransing (Meghana R. Ransing, 2002). The proposed method used 

Lagrange Interpolation polynomials to explore how the degree of influence of each 

cause on the occurrence of a defect or a combination o f defects can be quantified 

based on past diagnostic examples. For some selected data sets the method showed 

superior extrapolation abilities as a result o f the networks’ ability to constrain the 

shape of the resulting multi-dimensional hyper-surface to the known variation in the 

belief values in causes and effects. Furthermore, the proposed method had reduced the 

number of unknowns to an acceptable number which improved computational 

efficiency as compared to the RSM approach. This work was also compared with 

neural-network techniques.

The thesis also proposed initial work on using one of the internal parameters o f neural 

networks (i.e. gain) in improving its computation efficiency.

The objective of the work presented in this thesis is to continue the research proposed 

by Ransing (2002) in order to: (i) overcome the limitation of the current Knowledge
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Hyper-surface method; and (ii) to develop a new and robust methodology for 

improving computational efficiency of neural networks using the gain value.

1.3 RESEARCH CHALLENGES

Based on the research objective presented in Section 1.2, the following research 

challenges were identified:

1) A neural-network training algorithm, particularly back propagation (BP) 

algorithm, has been widely known as a tool for mapping non-linear 

relationships between input and output examples. Many variations o f this 

algorithm have been proposed by previous researchers to increase the BP 

training efficiency and one of the approaches is to adjust the slope of 

activation function. Previous researchers have claimed that changing the gain 

value in a BP algorithm is equivalent to changing the leaming-rate value. 

Efficient methods are currently available to decide an optimal leaming-rate 

value at every iteration of the optimisation process, and hence this research 

direction was probably not taken forward. It was discovered during this 

research that the gain variation does not influence the learning rate but it 

actually affects the search direction. The challenge in this research direction 

was to prove the finding, develop a mathematical formulation, and validate it 

on a number of benchmark problems.

2) The diagnosis of defective castings has always been a centre o f attention in 

the manufacturing industry. An intelligent diagnosis system should be able to 

diagnose effectively the causal representation and also justify its diagnosis. A 

previous method, known as the Knowledge Hyper-surface method, proposed 

by Ransing (2002), had shown that the belief value o f the occurrence of cause 

with respect to the change in the belief value in the occurrence o f effect can 

be modelled by linear, quadratic or cubic relationships. However, the 

methodology was unable to model exponential increase/decrease in belief 

values in cause and effect relationships. A challenge in this research direction 

was to propose a strategy that is computationally efficient and able to model
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the exponential increase/decrease in belief values in cause and effects 

relationships without introducing the side-effects o f ‘over fitting’.

1.4 SCOPE OF WORK AND RESEARCH CONTRIBUTIONS

A summary o f research achievements is outlined below:

• Detailed review o f various methods that influence the computational 

efficiency of neural networks.

• Study the effect o f the newly proposed method that combines adaptive gain 

variation with adaptive learning rate and analyses the performance of the 

proposed method on back propagation training algorithms.

• Discovery that the introduction of gain variation actually improves the search 

direction and not the learning rate as presumed by previous researchers. As a 

result, for the first time in the literature, it has been demonstrated that the 

adaptive gain variation can be used with a number o f gradient-based 

optimisation methods.

• The transcription of the algorithm to computer codes was achieved by building 

on MATLAB programming language.

• Validate the performance of the proposed method with the conventional 

algorithm and neural-network toolbox method on a number of benchmark 

problems.

• Discover some of the practical limitations o f the current Knowledge Hyper­

surface method and bring about enhancements by constructing a midpoints 

method on the existing version to achieve better results.

• Compare the performance of the integration system with the current version of 

Knowledge Hyper-surface method on real casting data.

The major research contributions are summarised as follows:

• A novel approach for improving the training efficiency o f BP neural-network 

algorithms has been proposed with respect to gain variation. It was discovered 

in this thesis that adaptive gain variation actually improves the gradient search
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direction instead of the learning rate as claimed by previous researchers. A 

coupled algorithm has been proposed that adaptively adjusts the learning rate 

and gain variation in order to speed up the BP neural-network training process.

• For the first time, the proposed method has been successfully implemented 

into other well-known optimisation methods. This was done with an objective 

o f improving the computational efficiency of the neural-networks training 

process. The robustness of the proposed method has been validated against a 

number of commonly used optimisation methods by using a variety of 

benchmark problems.

• Enhancements were implemented into the current Knowledge Hyper-surface 

method to overcome limitations posed by the existing version and by 

constructing a midpoints method.

The research output during the entire course o f study period was documented and a 

number of publications, as a result, originated or are forthcoming and are listed next.

1.5 LIST OF PUBLICATIONS

The following publications were produced during the course o f the research-study 

period.

• N. M. Nawi, M. R. Ransing, and R. S. Ransing: “An improved Conjugate 

Gradient based learning algorithm for back propagation neural networks”, 

International Journal o f  Computational Intelligence, March 2007, Vol. 4, No. 

1, pp. 46-55.

• R. S. Ransing, N. M. Nawi and M. R. Ransing: “A new method to improve the 

gradient based search direction to enhance the computational efficiency of 

back propagation based Neural Network algorithms: Part I: Theory”, 

Submitted to IEEE Transaction on Neural Networks, 2007.

• R. S. Ransing, N. M. Nawi and M. R. Ransing: “A new method to improve the 

gradient based search direction to enhance the computational efficiency of
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back propagation based Neural Network algorithms: Part II: Validation on 

benchmark problems and discussion o f results”, Submitted to IEEE  

Transaction on Neural Networks, 2007.

•  N. M. Nawi, M. R. Ransing, and R. S. Ransing: “Improving the gradient based 

search direction to enhance training efficiency of back propagation based 

neural network algorithms”, Proceedings o f  the 26th International Conference 

o f Innovative Techniques and Applications o f  Artificial Intelligent (SGAI’06), 

Cambridge, UK, 11th-13th December, 2006, pp. 45-58.

• N. M. Nawi, M. R. Ransing, and R. S. Ransing: “A new efficient search 

direction for conjugate gradient training methods”, Proceedings o f  the 3rd 

International Conference Artificial Intelligence in Engineering and 

Technology (ICAIET'06), Sabah, Malaysia, 22nd-24th November, 2006, pp. 

176-181.

• N. M. Nawi, M. R. Ransing, R. S. Ransing: “An improved learning algorithm 

based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for back 

propagation neural networks”, Proceedings o f  the 6th International Conference
• thon Intelligent Systems Design and Applications (ISDA'06), Jinan, China, 16 - 

18th October, 2006, vol. 1, pp. 152-157.

• N. M. Nawi, M. R. Ransing, and R. S. Ransing: “An improved learning 

algorithm based on the Conjugate Gradient method for back propagation 

neural networks”, Proceedings o f  the 14th International Conference on 

Computational and Information Sciences (ICIS ’06), Prague, Czech Republic, 

25th-27th August, 2006, vol. 14, pp. 211-215.

1.6 OUTLINE OF THE THESIS

The thesis is subdivided into six chapters, including the introduction and conclusion 

chapters. The following is the synopsis o f each chapter.
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Chapter One: Introduction. Apart from providing an outline o f the thesis, this 

chapter contains an overview of the background to research work, objectives, 

scope o f the research, and research contributions made during the period of 

study.

Chapter Two: Review o f  efficient learning methods fo r  back propagation 

networks. The back propagation (BP) algorithm is one o f the best known and 

widely used learning algorithms for neural networks. However, its 

convergence rate can be very slow. Researchers have tried to improve its 

computational efficiency by using adaptive learning rate values, momentum 

term, gain tuning o f activation functions, network topology and different 

learning algorithms. This chapter reviews the research contribution made by 

various researchers to improve the training efficiency o f neural networks. One 

of the modifications is to change the gain parameter used in the activation 

function. This chapter demonstrates some o f the misconceptions claimed by 

the previous literature on using the gain value and a detailed description o f the 

method proposed by Ransing (2002) is given. At the end o f this chapter, some 

of the advantages posed by the current method are outlined. This chapter lays 

a foundation for introducing a novel and innovative algorithm for improving 

the learning efficiency as described in Chapter Three.

Chapter Three: Enhanced learning algorithm fo r  back propagation network. 

This chapter extends the work on using the adaptive-gain variation as 

proposed in Chapter Two. It was discovered that the gain variation influences 

the search direction used in an optimisation process. Since most o f the 

gradient-based optimisation algorithms employed during the training process 

of BP networks use the negative gradient o f error as a gradient-based search 

direction. An improved and efficient algorithm has been presented that 

adaptively modified the gradient-based search direction by using the gain 

parameter used in the activation function. The implementation of the proposed 

method into other optimisation methods is presented. The proposed method is 

programmed in MATLAB programming language and is tested for its 

correctness on a simple sine curve approximation function. The results o f the 

proposed method are then compared to facilitate further testing and validation 

in the next chapter.



• Chapter Four: Results and validation on benchmark problems. The new 

method developed in Chapter Three is further validated for its efficiency and 

accuracy on a variety of benchmark problems. The performance of the 

proposed method is tested in two ways: (a) the speed of convergence measured 

in number of iterations and CPU time; and (b) the classification accuracy on 

testing data from the benchmark problems. The benchmark problems used to 

verify the proposed algorithm are taken from the open literature (Lutz 

Prechelt, 1994). The results are then discussed for their interpretation and 

implementation through various optimisation methods.

• Chapter Five: Improved method fo r  constructing optimal Knowledge Hyper­

surface. A detailed description of the current Knowledge Hyper-surface 

method proposed by Ransing (2002) is given. Then the limitations posed by 

the current Knowledge Hyper-surface method are outlined. The proposed 

enhancements are implemented in the method to overcome the limitations by 

constructing midpoints between each primary weight along each dimension. 

The new improved algorithm is then tested on real-casting data.

• Chapter Six: Conclusion and future work. The novel research contributions 

are summarised and recommendations are made for further continuation of 

work.
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CHAPTER 2

REVIEW OF EFFICIENT LEARNING 

METHODS FOR BACK PROPAGATION 

NETWORKS

CHAPTER LAYOUT

In this chapter, the back propagation (BP) algorithm, which is one of the best known 

and widely used learning algorithms for neural networks, is reviewed in detail. The 

second section of this chapter highlights the limitations o f the conventional BP- 

training algorithm. In particular, two major issues are identified which are namely 

convergence to a local minima and long-leaming time. The next section then 

discusses some improvements and contributions suggested by various researchers to 

overcome the limitations. The two major areas o f improvement that have been 

identified in the literature are: (a) firstly, the use o f heuristic-based techniques that 

modify network parameters such as learning rate value, momentum term, activation 

function, and topology optimisation; and (b) the integration o f (a) with second-order 

optimisation techniques for minimising the error. In heuristic based networks, the 

gain value is one o f the less commonly used parameters for improving learning 

efficiency. The next section o f this chapter studies the relevant literature on gain 

parameter in detail and demonstrates some of the improvements proposed by previous 

researchers using the gain value for improving computational efficiency. Then a 

detailed description o f the method proposed by Ransing (2002) is given and some of 

the advantages and disadvantages posed by the current method are outlined in the next 

section. This lays the foundation for the next chapter that describes a new and robust 

methodology to further improve the learning efficiency o f the method proposed by 

Ransing (2002).
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2.1 INTRODUCTION

The most popular artificial neural-networks’ (ANN) architecture is called multilayer 

perceptrons (MLP) because o f its similarity to perceptron networks with more than 

one layer. The MLP refer to the network consisting of a set o f sensory units (source 

nodes) that constitute the input layer, one or more hidden layers o f computation 

nodes, and an output layer o f computation nodes. Nodes or neurons in any layer of the 

network are connected to all neurons in the previous layer. The input signal 

propagates through the network in a forward direction, from left to right and on a 

layer-by-layer basis. In Figure 2.1, a detailed schema of MLP with a single hidden 

layer is given.

Direction o f information flow

Hidden layer

Input layer Output layer

Figure 2.1: Multilayer Perceptrons (MLP).

The training o f MLP in neural networks is also known as supervised learning 

processes and can be interpreted as an example of an optimisation method. The 

objective of a learning process is to find a weight vector w * which minimises the
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difference between the actual output Ok and the desired output tk or can be defined as 

error function E (w ) .

(2 .1)
L k=\

where:

n : num ber o f output nodes in the output layer.

tk : desired output o f  the k th output unit.

ok : netw ork output o f  the k th output unit.

The error function in a one dimensional weight space can be visualised as shown in 

Figure 2.2.

Figure 2.2: Schematic error function for a single parameter w , showing four 

stationary points, at which V E ( w )  = 0 . Point A is a local minimum, point B is a local 

maximum, point C is a saddle point, and D is the global minimum.

For networks with more than one layer o f adaptive weights, the error function is a 

non-linear function o f weights and may have many minima, which satisfy the 

following equation:

E

j >—

j  C

A

D
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V £ ( »  = 0 (2 .2)

Where V E (w ) denotes the gradient o f E  with respect to weights. The point at which 

the value of the error function is smallest (point D in Figure 2.2) is called the global 

minimum while all other minima are called local minima. There may also be other 

points, which satisfy conditions (Equation 2.2) such as local maximum (point B, 

Figure 2.2) or saddle point (point C, Figure 2.2).

2.2 BACK PROPAGATION ALGORITHM (SUPERVISED 

LEARNING)

Multilayer perceptrons (MLP) training is an iterative process which involves, at each 

iteration or epoch, the calculation o f the network outputs for (one or more) patterns in 

the training set, and the adjustment o f the network weights according to the difference 

between the actual network output and the desired output. Given a suitable network 

architecture and training algorithm, the network weights will be progressively 

adjusted to the point where the network output is acceptably close to the desired 

output for each pattern in the training set. The most widely used training algorithm for 

updating the MLP weights during the training process is known as the back 

propagation (BP) algorithm. The BP algorithm has been independently derived by 

several researchers working in different fields. Werbos (P.J. Werbos, 1974) 

discovered the BP algorithm while working on his doctoral thesis in statistics and 

called it the dynamical feedback algorithm. Parker (D. Parker, 1985) rediscovered the 

BP algorithm in 1982 and called it the learning logic algorithm. Finally, in 1986, 

Rumelhart, Hinton and Williams (D.E. Rumelhart et al., 1986) rediscovered the 

algorithm and the technique became widely known. Even today, the vast majority of 

MLP research uses a version of BP algorithm. For this reason, BP can be viewed as 

the benchmark against which all other training methods are judged.

The BP algorithm implements the steepest descent (gradient-descent) method which is 

the most venerable, but also one o f the least effective, classical optimisation 

strategies. There are many different versions o f the basic BP algorithm, and new
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modifications are regularly published in neural-network journals (see Section 2.4). 

However, this section begins by considering the traditional implementation of the BP 

algorithm (as presented in Rumelhart and colleagues (1986)) known as batch or off­

line BP. The procedure for supervised error-back-propagation is as follows:

Step 1 Start the cycle by presenting input patterns to the neural network.

Step 2 Specify desired outputs for each input pattern.

Step 3 The input pattern is then propagated forward through the network,

layer-by-layer until the output layer.

Step 4 A set of output produced is considered as the actual response o f the

network. Steps 1, 2, 3 and 4 constitute the ‘Forward propagation 

phase’ in that the signal propagates from nodes in the input layer to 

nodes in the output layer.

Step 5 Error is calculated by comparing the network output with the desired

output by using Equation 2.1.

Step 6 The error signal (E ) is propagated backw ards through the

netw ork and is used to adjust the weights. The weights in the 

links connecting to output nodes (w ,*) are then m odified based 

on the gradient descent method as follows:

a r d E  ^A w j k =Jl ( - ^ — ) (2.3)

= l S kOj

where:

Oj : Output o f  the j th hidden node.

The error is propagated backwards to compute the error specifically, at 

the hidden nodes:

( 2 -4 )

= v 8 Jo i

where:

ot : output o f i th input node (which is the same as the output

value)
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Tj : step length (learning rate)

i , j , k  : subscripts i , j  and A: correspond to input, hidden and 

output nodes, respectively.

Wjk : w eight on the link from node j  to k .

Wy : w eight on the link from unit i to j .

S k : o h{\ — ok )(tk ~ o k ) for output nodes.

: ° j  d  — ° j  w jk f° r hidden nodes.

In this way, the error is propagated backwards to modify weights so as 

to minimise the error. Steps 5 and 6 above are referred to as the 

‘Backward propagation phase9.

Step 7 Go back to Step 1 until a satisfactory configuration is found.

A detailed derivation o f the BP gradient calculation is given by Rum elhart 

and colleagues (1986).

2.3 LIMITATIONS OF THE BACK PROPAGATION 

TRAINING ALGORITHM

The traditional BP algorithm has proved satisfactory when applied to many training 

tasks, but despite many successful applications the BP algorithm has several 

important limitations. Since the BP algorithm uses the gradient descent method to 

update weights, one of the limitations of this method is that it is not guaranteed to find 

the global minimum of the error function (refer to Figure 2.2). The gradient-descent 

method may easily get trapped in a local minima especially for non-linearly separable 

problems (Marco Gori and Alberto Tesi, 1992) such as the XOR problem (E.K. Blum, 

1989). Being trapped into a local minima is one o f the reasons that may lead BP to fail 

in finding the global optimal solution.

The gradient-descent method is an iterative procedure for obtaining the values of 

parameters that minimise an objective fu n c tio n ^ (w ). Geometrically, the objective
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function specifies an error surface defined over the weight space (R. P. Lippman,

1987). During each iteration or at the end of each epoch, the weight vector is 

iteratively changed from a randomly chosen magnitude and direction along the 

negative gradient o f the error function in which the error function decreases most 

rapidly as follows:

W (n+l) = w {n) +  A w {n) (2.5)

where:

n  : the iteration step.

Aw in): rj(n)d (n)

,n) dE
u  : — V —— is the search direction m which an objective (error)

o w

function E ( w ) is reduced.
/n\

77 : step length or the learning rate.

For a sufficiently small leaming-rate value, the error E ( w ) is expected to decrease at 

each successive step/pattem, eventually leading to a weight vector at which the 

condition (Equation 2.2) is satisfied. The selection of an optimal learning rate value is 

important to achieve faster convergence. An incorrect choice of the learning rate can 

result in a slow convergence.

Even though the gradient descent method can be an efficient method for obtaining the 

weight values that minimise an error measure, error surfaces frequently possess 

properties that make this procedure too slow to converge. There are various reasons 

for this slow rate o f convergence. They involve the magnitude and the direction 

components of the gradient vector. When the error surface is fairly flat along a weight 

dimension, the derivative of the weight is small in magnitude. Thus, the value o f the 

weight is adjusted by a small amount and many steps are required to achieve a 

significant reduction in error. Alternatively, where the error surface is highly curved 

along a weight dimension, the derivative o f the weight is large in magnitude. Thus, 

the value o f the weight is adjusted by a large value which may overshoot the
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minimum of the error surface along that weight dimension. Another reason for the 

slow rate of convergence o f the gradient-descent method is that the direction o f the 

negative gradient vector may not point directly towards the minimum of the error 

surface.

2.4 IMPROVING THE BACK PROPAGATION TRAINING 

EFFICIENCY USING OPTIMISATION METHODS

The problem of improving the learning efficiency and convergence rate o f the BP 

algorithm has been investigated by a number of researchers. Several acceleration 

techniques have been proposed as modifications to the original BP algorithm. The 

research has fallen roughly into two categories:

(a) Heuristic techniques which include variations o f the learning rate, use o f a 

momentum term, gain tuning o f the activation function, and use of topology 

optimisation methods.

(b) Second-order optimisation techniques for minimising the error.

2.4.1 Heuristic techniques

A detailed survey o f BP improvements lies outside the scope of this chapter, as the 

remaining sections in this chapter examine some o f the most significant and popular 

modifications to the BP algorithm. Based on this first category, various acceleration 

techniques have been proposed.

(a) The Bold driver method. One of the main issues with the traditional BP 

algorithm is the fixed learning rate 7 7 . It is very common for neural-netw ork 

researchers that in finding the optim al learning rate (i.e. the one that brings 

about the greatest reduction in the netw ork error value E )  is likely to vary 

not only from task to task, but also for different regions o f  a single error 

surface. Evidently, a strategy for adapting 77 as training proceeds is highly 

desirable. The bold driver is one o f  the simple and effective strategies for 

adapting the BP learning rate 7 7 . The strategy involves increm entally
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increasing or decreasing 77 at each training epoch depending on w hether the 

algorithm  is m aking progress or not (T.P. Vogl et al., 1988). Unlike a 

traditional fixed-learning rate BP, the bold driver m ethod can be im plem ented 

as a strict descent algorithm  which m eans that no increase in E  is allow ed 

during any training epoch. This is achieved sim ply by m aintaining the 

netw ork w eights at the same location such as by setting wn+1 = wn

w heneverE{wn - r j ng n)> E(wn) , provided that the gradient g(wn) is non-zero, it 

is guaranteed that the bold driver m ethod will eventually reduce 77 to a small 

enough value to bring about a reduction in E  along the negative gradient 

from lo ca tio n wn. Vogl and colleagues (1988) proved in their paper that the

bold driver m ethod frequently outperform ed both batch BPs w ith fixed 

learning rates (even when 77 is set to its optim al fixed value), and the gradient 

descent algorithm , a classical im plem entation o f batch BP that sets the 

learning rate optim ally at each epoch using a one-dim ensional line-search 

procedure. As long as the optim al learning rate 77 does not change rapidly as 

training proceeds, the bold driver m ethod will tend to set 77 to a near optim al 

value much o f the tim e, furtherm ore the com putational cost o f adapting 77 is 

m inim al as com pared to the classical gradient descent m ethod.

(b) BP with momentum. Rumelhart and colleagues (1986) proposed a simple 

heuristic strategy for speeding up the BP training method which involves 

incorporating a momentum term in the generalised delta rule (Equation 2.5) as 

follows:

Aw("} = T{g{n} + aA w (/l_1) (2.6)

where the user-defined param eter a  is set in the range 0 < a  < 1. Note that if  

the momentum effects are turned o ff ( a  = 0 ) then the update rule given by 

Equation 2.6 is equivalent to the standard BP update o f  Equation 2.5. M any 

researchers have shown that the addition o f a m om entum  term can 

significantly  speed up the BP training algorithm . One potential drawback with 

the update in Equation 2.6 is that, if  a  is increased, it may be necessary to reduce the
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Tj in order to maintain network stability in preventing excessive weight changes. To 

counter this problem, Widrow and Lehr (B. Widrow and M. A. Lehr, 1990) proposed 

a modified version o f Equation 2.6 which incorporates the factor (1 -  a )  as follows:

A w{n) = -(1  -  a)rfg{n) + aAw(n~l) (2.7)

However, this approach has its own potential drawback, as i f  a  is set to a

com paratively large value, the weight update Aw in Equation 2.7 w ill tend 

to be dom inated by gradient inform ation from previous epochs so the update 

in Equation 2.7 frequently proves less effective, as com pared to Equation 2.6, 

in practice. The com parison between batch BP w ith m om entum  and a class o f 

classical optim isation algorithm  known as conjugate-gradient m ethods (see 

Chapter Three) discovered that the update rule for batch BP with a m omentum 

term can be view ed as an approxim ation to the conjugate-gradient update, 

w ith the im portant difference that BP with momentum sets 77 and a  to fixed 

heuristic values, whereas the conjugate-gradient m ethods autom atically set 77 

and a  to near optim al values at each iteration (M.F. M oller, 1993).

(c) Delta-Bar-Delta Rule. Jacobs (1988) noted from his research that if 

consecutive changes of a weight Wjj(n+1) and possess opposite signs, then the

weight value is oscillating, hence the learning rate for that weight should be 

decremented. Similarly, if  the consecutive derivatives of a weight possess the same 

sign then the learning rate for that weight should be increased. Jacobs (1988) has 

introduced a Delta-Bar-Delta modification, which consists o f a weight update rule and 

a learning rate update rule. The Delta-Bar-Delta algorithm controls the learning rates 

by observing the sign changes of an exponentially averaged gradient (Jacobs R. A., 

1988). The weight update rule is similar to the original gradient-descent algorithm 

with the exception that each weight possesses its own learning rate parameter. The 

Delta-Bar-Delta rule increments the learning rates linearly, but decrements them 

exponentially. Incrementing linearly prevents the individual learning rates from 

becoming too large. Decrementing exponentially ensures that the learning rates are 

always positive and allows them to be decreased rapidly. The disadvantage o f this 

method is that the designers have to determine three new parameters, and like the
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conventional BP, convergence rates are slow. In addition, a large number o f trial runs 

are required before arriving at the right choice o f parameter values. Most o f the 

researchers have pointed out that a constant learning rate is not suitable for a complex 

error surface. Other researchers (D. R. Hush and J. M. Salas, 1988; T.P. Vogl et al.,

1988) proposed learning rate adaptations, while Weir (1991) considered the problem 

o f choosing an optimum leaming-rate value and established a method for self- 

determination of the adaptive leaming-rate value for every epoch. Most o f these 

techniques can be considered as the variations o f line search methods.

(d) Starting with appropriate weights. It has been shown that the BP method is 

sensitive to initial weights (J.F. Kolen and J.B. Pollack, 1991). Weights are usually 

initialised with small random values. However, starting with incorrect weight values 

is one reason for getting trapped in local minima or leading to a slow learning 

progress. For example, initial weight values which are too large can cause 

‘Premature Saturation (PS)’ (B.W. Lee and B.J. Sheu, 1993). The learning progress 

can be accelerated by initialising weights in such a way that all hidden units are 

scattered uniformly in the input pattern space (D. Nguyen and B. Widrow, 1990).

(e) Improving the error function. Since the sigmoid derivative which appears in 

the error function of the original BP method has a bell shape, it sometimes causes 

slow learning progress when output o f a unit is near ‘O’ or ‘1’. To remove it from the 

error signal, van Ooyen and Nienhuis (1992) and Krzyzak and colleagues (1990) have 

employed an entropy-like error function by making the error gradients for poorly 

classified patterns o f significantly higher values than calculated mean squared error 

(MSE) functions. Therefore adjustment allows the network to progress in flat regions 

o f the weights space. Oh (1997) proposed a modified error function by reducing the 

probability that output nodes take the extreme values of sigmoid function. Chandra 

and Singh (2004) proposed a new activation function for sigmoidal feed forward 

neural network training. Lee and colleagues (1999) analysed the cause o f ‘Premature 

Saturation (PS)’ in output layer, which is caused by the use o f the gradient-descent 

method. PS will greatly slow down the learning speed o f the BP algorithm. They 

proposed an Error Saturation Prevention (ESP) function to prevent the nodes in the 

output layer from the PS condition. They also applied to the hidden nodes in hidden 

layers to adjust the learning term. Again Oh and Lee (1995) proposed another
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improved error function of the error back propagation (EBP) algorithm for MLPs by 

allowing the output nodes o f the MLP to generate an appropriate error signal 

according to the situation of the output nodes. When some output nodes o f MLP are 

incorrectly saturated, the strong error signal o f the output nodes updates the associated 

weights so that they can escape the incorrectly saturated state. This can accelerate the 

learning speed.

(f) Improving activation function . One of the main reasons for the slow 

convergence of BP algorithms is the derivative o f the activation function that leads to

the occurrence of PS o f the network output units. When the actual output o pk (where 

opk is the actual output o f the k th output neuron for the p - t h  pattern) is 

approaching either extrem e values o f the sigm oidal function, that is either 0  

or 1 , the derivative o f the activation function having the factor opk( l - o pk)

w ill becom e extrem ely small, and the BP error signal may vanish. This will 

lead the algorithm  to be trapped into a ‘flat spo t’. C onsequently the learning 

process and w eight adjustm ent o f the algorithm  will be very slow or even 

suppressed. That is why BP usually requires tens to a thousand iterations to 

leave the flat spot, and causing the slow convergence o f the algorithm . Ng 

and colleagues (2003) proposed a modification to the derivative o f the activation 

function so as to improve the convergence of the learning process by preventing the 

error signal dropping to a very small value by magnifying the derivative term

o pk( \ - o pk) , especially when the value o f  Opk approaches 0  or 1 , by using the

pow er factor so that the derivative o f the activation function w ill not be too 

sm all and im prove the convergence o f the algorithm . Chandra and Singh (2004) 

proposed an algorithm that adapts the activation function itself. The choice o f the final 

activation function is done dependent on the data set used for training and the initial 

weight condition. The results demonstrated that the proposed algorithm could be an 

order o f magnitude faster than the BP algorithm.

(g) Adjusting the steepness o f  the sigmoid function. As Hush and colleagues 

(1992) have pointed out, because o f the sigmoid’s non-linearity, error surfaces tend to 

have many flat areas as well as steep regions. If one such flat area with a high error is
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encountered, no significant decrease in the error occurs for some period, after which 

the error decreases again then this will lead to PS condition. Since considerable time 

is often needed to traverse such an area, PS retards the learning process. The basic 

remedy is to adjust the sigmoid’s steepness (A. Rezgui and N. Tepedelenlioglu, 1990; 

K. Yamada et al., 1989). The adaptation o f gain parameters o f the activation functions 

has been shown to prevent the network from becoming trapped in a local minimum 

caused by the neuron saturation in the hidden layer (X.G. Wang et al., 2004). The 

gain term controls the steepness of the activation function. It has been shown recently 

that a BP algorithm using a gain variation term in an activation function converges 

faster than the standard BP algorithm as will be discussed further in the next section.

2.4.2 Second-order optimisation methods

The second category o f research in improving the training efficiency o f BP algorithms 

has focused on the use o f the second-order method. Several researchers have proposed 

the use o f second-order gradient techniques such as conjugate gradient and Quasi- 

Newton (QN) methods, instead o f the simple gradient-descent technique. For 

instance, Fahlman (1988) claimed that a set of first-order partial derivatives collected 

at a single point only tell very little about how large a step one can safely take in 

weight space. But if  something about higher order derivatives (the curvature o f the 

error function) is known, one can presumably achieve better performance. The 

momentum term and Delta-Bar-Delta techniques which were discussed in Section

2.4.1 are an ad-hoc variation o f this strategy. Other approaches make explicit use of 

the second derivative o f the error with respect to each weight. Fahlman developed 

‘quickprop’, a variation of the BP with momentum that utilises both the second-order 

method, which is loosely based on Newton’s method, as well as other heuristic 

methods, for the purpose o f improving the convergence rate of the original BP 

algorithm.

The use o f second derivatives has been proposed to increase the convergence speed in 

several works (R. Battiti., 1992; W.L. Buntine and A.S. Weigend, 1993). It has been 

demonstrated (Y. LeCun et al., 1991) that these methods are more efficient, in terms 

of learning speed, than the methods based only on the gradient-descent technique. In 

fact, second-order methods are among the fastest learning algorithms. Some o f the
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most relevant examples of this type o f methods are the Quasi-Newton (QN), 

Levenberg-Marquardt (LM) (D.W. Marquardt, 1963; K. Levenberg, 1944; M.T. 

Hagan and M. Menhaj, 1994), and the conjugate-gradient algorithms (E.M.L. Beale., 

1972). The Quasi-Newton methods use a local quadratic approximation of the error 

function, like Newton’s method, but they employ an approximation o f the inverse o f 

the Hessian matrix to update the weights, thus getting the lowest computational cost. 

The two most common updating procedures are the Davidon-Fletcher-Powell (DFP) 

and Broyden-Fletcher-Goldfarb-Shanno (BFGS) (J. E. Dennis and R. B. Schnabel, 

1983). The Levenberg-Marquardt method combines, in the same weight updating 

rule, both the gradient and the Gauss-Newton approximation o f the Hessian of the 

error function. The influence o f each term is determined by an adaptive parameter, 

which is automatically updated. Regarding the conjugate-gradient methods, they use 

at each iteration o f the algorithm, different search directions in a way that the 

component o f the gradient is parallel to the previous search direction. Several 

algorithms based on conjugate directions were proposed such as the Fletcher-Reeves 

(Adrian J. Sheperd, 1997; R. Fletcher and C.M. Reeves, 1964), Polak-Ribiere (C.M. 

Bishop, 1995; R. Fletcher and C.M. Reeves, 1964), Powell-Beale (M.J.D. Powell, 

1977) and scaled conjugate-gradient algorithms (M.F. Moller, 1993).

2.5 SUPERVISED LEARNING USING ADAPTIVE GAIN 

VARIATION

Among various attempts to enhance the learning efficiency of BP algorithms 

(gradient-descent method) that have been mentioned in Section 2.4.1, those using the 

gain value are among the easiest to implement. The gain value controls the steepness 

o f the activation function. As shown in Equation 2.8, for a j ,h node, the weighted 

sum of inputs is passed through a sigmoid activation function to generate the nodal 

output as follows:

1
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Figure 2.3: Sigmoid-activation function with different slopes.

The value o f the gain parameter, c , directly influences the slope o f the activation

function. For large gain values ( c . » l ) ,  the activation function approaches a ‘step

function’ whereas for small gain values ( 0  <cj «  1 ), the output values change from

zero to unity over a large range of the weighted sum of the input values and the 

sigmoid function approximates a ‘linear function ’ as shown in Figure 2.3.
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It has been recently shown that a BP algorithm using adaptive gain variation in an 

activation function converges faster than the standard BP algorithm. The early 

research on adapting the gain value was conducted by Kruschke and Movelland 

(1991). They explored the benefits o f adaptive gains in BP networks and showed that 

gradient descent with respect to gain greatly increases learning speed, and concluded 

that adaptive gain only has a catalytic effect in the learning process by modifying the 

magnitude, not the direction, of the weight change. However it was found out that the 

algorithms that employ the gain parameter suffered from increased instability, and 

frequently fail to converge within a finite time because of an inappropriate choice for 

the initial weights. Tai-Hoon Cho and colleagues (1991), then proposed an automatic 

weight reinitialisation solution with a larger initial gain value (around 2 or 3) on BP 

algorithms to converge much faster and are more stable.

Later, Thimm and colleagues (1996) had proved that changing the gain value o f the 

activation function is equivalent to changing the learning rate and the weights and 

claimed that the idea simplified the BP learning rule by eliminating one o f its 

parameters. In order to support the argument, Figure 2.4 shows a summary of network 

performance when the learning rate was fixed with a constant value and at the same 

time varying the gain value. The horizontal axis shows a variety of gain values that 

were used to control the steepness of the sigmoid function. For each gain value, the 

maximum generalisation accuracy is plotted (using the vertical scale on the right), 

along with the number of training epochs required to reach that level of accuracy 

(using the vertical scale on the left). As can be seen from Figure 2.4, the 

generalisation accuracy gets better as the gain value gets bigger, and the training time 

also improves dramatically. At a gain value of about 0.005, the accuracy is 

dramatically decreased and training time (in epochs) is at its maximum value. It is 

often possible to get slightly higher accuracy by using an even bigger gain value than 

the ‘fastest’ one, as is the case here, where accuracy is improved by using a gain value 

of 2, at the expense o f increased training time. Beyond that, however, smaller gain 

value requires linearly more training time with no significant improvement in 

accuracy.
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Figure 2.4: Training time (in epochs) and maximum hold-out set phoneme 

generalisation accuracy for each gain value. The bars indicate the number o f epochs 

needed to reach the maximum generalisation accuracy, and the line indicates what the 

maximum accuracy was for each gain value.

Research also showed that the BP learning algorithm with adaptive gain value and 

combined with a dynamic learning rate optimisation method can achieve the goal of 

fast convergence (Murphy Hot and Hiroaki Kurokawa, 1998). As can be seen from 

Figure 2.5 that for the tests carried out, the behaviour o f the networks is fairly 

controlled when learning rate values o f 0.1 and 0.5 were used. The results obtained 

when a learning rate value o f 0.1 was used were clearly better than those obtained 

using the smaller learning rate values. This is mainly due to the increased number of 

iterations required in reaching the target error. There was a large variation in the 

results obtained when a learning rate o f 0.05 was used, indicating that the oscillations 

in the MSE prediction error were large.

Epochs —a— Generalisation Accuracy
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Figure 2.5: Best results obtained when various gain values were used at a varied

learning rate.

Danilo and colleagues (1999) provided a good analysis on the relationship between 

the learning rate 77 and the gain value c in the hyperbolic tangent activation function 

for a feed forward NN, trained by BP and it showed that such relationships reduced 

the number o f parameters in the non-linear optimisation task. Again, Eom and Jung 

(2003) proposed a method using fuzzy logic for automatically tuning the gain 

parameter o f the activation function and demonstrated that changing the gain o f the 

activation function is equivalent to changing the learning rate, the weights and the 

biases. Kandil and colleagues (2005) improved further the use o f variable gain o f the 

log-sigmoid function by optimising the gain value by using the Stretched Particle 

Swarm Optimisation (SPSO) technique. The proposed algorithm is trained and 

compared with the popular training (Levenberg-Marquardt back propagation) method, 

on application examples and showed an increase in the speed o f convergence for the 

training and learning phase.
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It has been shown in the above literature that the variation in the gain value does 

improve the BP learning efficiency. It can be concluded from this literature review 

that changing the gain value is equivalent to changing the leaming-rate value. Those 

claimed had simplified the BP learning rule by eliminating one o f its parameters (i.e. 

gain) and as a result, it appears that the researchers had begun to lose their interest in 

studying the effect o f gain in improving training efficiency.

Until in 2002, when Ransing (2002) discovered that for the BP algorithm gain is not 

equivalent to change in the learning rate value, but its effect is like having a global 

learning rate value and an additional localised learning rate contribution for every 

node. A coupled algorithm that changed the gain value adaptively for each node was 

presented in this work.

The next section will discuss in detail the previous research carried out by Ransing 

(2002) to illustrate the effect of adaptive gain variation in increasing the training 

efficiency o f the gradient-descent method.

2.6 AN INNOVATIVE METHOD TO ENHANCE BACK

PROPAGATION TRAINING ALGORITHM BY RANSING 

(Meghana R. Ransing, 2002)

The analysis provided by Ransing (2002) studying the effect o f adaptive gain 

variation on BP network training showed that adaptive gain variation has a significant 

impact on gradient-descent training speed. For the first time, Ransing had proposed a 

new method that modified the standard BP by coupling the weight, bias and gain 

update expressions in the standard BP algorithm (refer to Equations 2.11 and 2.12). 

The algorithm had been proposed for sequential as well as batch training. The weight 

and gain update expressions for output as well as the hidden nodes are shown below.

The weight update expression for the links connecting to output nodes is:
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Aw>jk = Tj(tk -  ok )ok (1 -  ok )ckOj (2.9)

The gain update expression for the output node is:

Ac, (n  + 1) = T](tk - o t )oh( \ - o kX X X * 0 /)  (2 1 °)

The weight update expression for the links connecting to hidden nodes is:

A w 0 = tj ' Z ckwjk°k(l - ° k ) ( tk - ° k ) C j O j i l - O j ) (2 . 11)

Similarly, the gain update expression for the links connecting hidden nodes is:

Ac An + 1) = T) - ' E c k w j k ° k ( l ~ ° k ) ( h ~ o k ) O y ( l-O y ) £ W i j ° i
k j

(2 .12)

It is evident from the literature that coupling the expressions for updating weight and 

gain (Equations 2.11 and 2.12), for sequential as well as batch training, is an 

innovative and original approach. The following iterative and coupled algorithm had 

been proposed by Ransing (2002) for batch training. Weight, bias and gain values 

were calculated and updated after the presentation of all the training example pairs as 

shown in Table 2.1 were presented to the network. The current algorithm used the 

following terms.

For a given epoch:

Update the weight and bias values after the presentation o f the entire example 

set using the previously converged gain value. (1)

Use the weight and bias values calculated in Step 1 to calculate the new gain 

value. (2)

Repeat Steps 1 and 2 by using the gain value calculated in Step 2 in Step 1 

until the difference in consecutive weight, bias and gain values becomes less 

than the predefined value.
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The speed o f convergence achieved using the proposed current method was 

demonstrated by using the sine curve problem. Consider a single input-output layer 

network with one hidden layer having five hidden nodes. The training data set was 

created by using the two following cases:

(a) Case 1: the training datasets was created by using the function:

y = sin(pi * x) where x e [0,1].

(b) Case 2: the same training datasets as created in Case 1 by using the 

function: y = sin(pi * x) where x e  [0,1] but w ith by adding an 

approxim ate tw enty per cent random  G aussian noise.

2.6.1 Case 1: The sin(x) problem without noise

The first training dataset was created by using the function: 

y  = sin (pi * x) where x e [0 ,1]. The training required the network to approximate the 

function for a sample o f fifty-two input points chosen uniformly as illustrated in 

Figure 2.6 (circles). These data points were also shown as tabulated in Table 2.1. 

Before training the dataset was further divided into a training set o f examples and a 

validation set of examples. Only the training set of examples was used to adjust the 

network weights until the stopping criteria was satisfied. During each epoch, the gain, 

weight and bias values for all hidden nodes and output nodes converged to achieve an 

MSE of 0.001 for gain, weight and bias values, respectively. The terminated number 

of epochs in reaching the target error is shown in Figure 2.8.
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Figure 2.6: The sine curve data points used in the training data set as tabulated in 

Table 2.1 (data points taken from Ransing (2002)).

The error versus number o f epochs required to achieve the target error by the method 

proposed by Ransing (2002) is plotted in Figure 2.8 (red solid curve). The dotted 

curve represents the same graph for the network trained using a constant unit gain. It 

can be seen from Figure 2.8 that the method proposed by Ransing with adaptive gain 

has consistently outperformed the standard gradient-descent method. The current 

method took 6,017 epochs to learn the target function whereas the standard gradient- 

descent method took 14,098 epochs which is almost twice bigger.

The gain values for the five hidden nodes at the end o f training are 1.0004, 1.0322, 

1.0727, 1.1107 and 1.3493, respectively. The gain value for the output node at the end 

o f the training is 1.3602. The speed o f convergence for the current proposed method 

was high because the modified gain values are greater than unity.
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Training data
No. Input Target

1 0 . 0 0 2 0.501
2 0 . 0 2 1 0.439
3 0.041 0.379
4 0.060 0.320
5 0.080 0.264
6 0.099 0 . 2 1 2

7 0.119 0.164
8 0.139 0 . 1 2 1

9 0.158 0.084
1 0 0.178 0.054
1 1 0.197 0.030
1 2 0.217 0.013
13 0.236 0.003
14 0.256 0 . 0 0 2

15 0.276 0.007
16 0.295 0 . 0 2 0

17 0.315 0.041
18 0.334 0.068
19 0.354 0 . 1 0 2

2 0 0.374 0.142
2 1 0.393 0.188
2 2 0.413 0.238
23 0.432 0.292
24 0.452 0.349
25 0.471 0.409
26 0.491 0.470

27 0.511 0.532
28 0.530 0.593
29 0.550 0.652
30 0.569 0.710
31 0.589 0.764
32 0.608 0.814
33 0.628 0.859
34 0.648 0.899
35 0.667 0.933
36 0.687 0.961
37 0.706 0.981
38 0.726 0.994
39 0.745 1.000
40 0.765 0.998
41 0.785 0.989
42 0.804 0.972
43 0.824 0.948
44 0.843 0.917
45 0.863 0.880
46 0.883 0.837
47 0.902 0.789
48 0.922 0.737
49 0.941 0.681
50 0.961 0.623
51 0.980 0.562
52 1.000 0.501

Table 2.1: The training data set used for Case 1 (data points taken from Ransing

(2002)).
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Figure 2.7: Output o f neural network trained to learn a sine curve using the current 

proposed method (source adopted from Ransing, 2002).
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Figure 2.8: Error versus number o f epochs required to achieve the target error o f 

0.001 (source adopted from Ransing (2002)).
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2.6.2 C ase 2: T he sin(x) p rob lem  with twenty per cent random  Gaussian 

noise

The second training dataset was created by using the same data created from the 

function y = s\n(pi * x) where xe  [0,1] but the data  points w ere fu rther added 

w ith  an app rox im ate  tw enty  per cent random  G aussian  noise as illu s tra ted  in 

F igure 2.9 (c irc les). These data points were also put into the table as shown in Table 

2.2. The training data was also further divided into a training set o f examples used to 

adjust the network weights and a validation set o f examples used to estimate network 

performance during training as required by the stopping criteria.

The netw ork w as trained  using a constan t learn ing  rate value o f  0.3 to achieve 

a ta rge t e rro r value  w ith in  one per cent, using the standard  g rad ien t descen t 

tra in ing  a lgo rithm  in a batch m ode w ith coupled  and adap tive changes in 

w eight, b ias and gain values.

0.

0 .

0 .

JO.
>
CD 0 .
cn

£ o .

0 .

0 .

0 .

Figure 2.9: The sine curve data points with twenty per cent random Gaussian noise as 

tabulated in Table 2.2 (data points taken from Ransing (2002)).
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The error value versus number of epochs required to achieve the target error was 

plotted in Figure 2.11 (solid red curve). The dashed curve represents the same graph 

for the network trained using a constant unit gain value. The results clearly showed 

that the current m ethod proposed by Ransing (2002) outperform ed the 

standard algorithm  w ith constant gain by only taking 905 epochs as com pared 

to 3,296 epochs in learning the target function. The results showed that the 

speed o f convergence o f  the current method was im proved as com pared to the 

standard gradient-descent m ethod because the m odified gain values were 

greater than unity. The gain values for the five hidden nodes at the end o f 

training were 2.0, 1.0511, 1.0692, 1.0551 and 1.0320. The gain value for the 

output nodes at the end o f training was 1.9858.

Training data
No. Inpu t Target

1 0 . 0 0 2 0.579
2 0 . 0 2 1 0.473
3 0.041 0.354
4 0.060 0.442
5 0.080 0.298
6 0.099 0.259
7 0.119 0.171
8 0.139 0.253
9 0.158 0 . 1 2 0

1 0 0.178 0.183
1 1 0.197 0 . 0 0 2
1 2 0.217 0.082
13 0.236 0.090
14 0.256 0.068
15 0.276 0 . 2 2 0
16 0.295 0.098
17 0.315 0.141
18 0.334 0.161
19 0.354 0.080
2 0 0.374 0.095
2 1 0.393 0.317
2 2 0.413 0.245
23 0.432 0.191
24 0.452 0.323
25 0.471 0.459
26 0.491 0.526

27 0.511 0.544
28 0.530 0.606
29 0.550 0.673
30 0.569 0.549
31 0.589 0.764
32 0.608 0.805
33 0.628 0.789
34 0.648 0.719
35 0.667 0.746
36 0.687 0.928
37 0.706 0.945
38 0.726 1 . 0 0 0
39 0.745 0.820
40 0.765 0.804
41 0.785 0.851
42 0.804 0.846
43 0.824 0.941
44 0.843 0.796
45 0.863 0.684
46 0.883 0.749
47 0.902 0.633
48 0.922 0.679
49 0.941 0.683
50 0.961 0.663
51 0.980 0.549
52 1 . 0 0 0 0.348

Table 2.2: The training data set used for Case 2 (data points taken from Ransing

(2002))
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O  datapoints
—  Standard grad ient descent
—  Ransing's method
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Figure 2.10: Output o f neural network trained to learn a sine curve with twenty per 

cent random Gaussian noise in batch mode using the coupled algorithm.
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Figure 2.11: Error versus number of epochs required to achieve the target error value

of 0.01.
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2.6.3 Advantages of the current method

The results obtained from the case studies clearly showed that the method proposed 

by Ransing (2002) substantially improved the learning speed and some o f the 

contributions of the current method were summarised as follow:

• Ransing (2002) showed in her work that it is easy to introduce an adaptive 

gain value into a gradient-descent method as agreed by previous researchers 

but not for other optimisation methods.

• Previous researchers eliminated the gain variation value or they used a 

constant gain value in the training process since they claimed that varying the 

gain value was equivalent to changing the learning rate value. Whereas, the 

current method discovered that gain variation contributed like an adaptive 

learning rate for individual nodes.

• An innovative algorithm that coupled the weight, bias and gain update 

expressions was proposed and the algorithm demonstrated significantly 

improvement in sequential as well as batch-leaming modes.

Even though, the analysis results, as shown in Section 2.6, dem onstrated that 

the current proposed method significantly increased the learning speed and 

outperform ed the standard algorithm  with constant gain in learning the target 

function. However, the next section identifies some lim itations o f the current 

method.

2.6.4 Limitations of the current method

There were two major limitations that have been identified in the current method:

• During training, only weights, bias and gain update expressions were coupled 

and update adaptively. Whereas, the leaming-rate value was kept constant 

until the end of training.

• The current method had significantly increased the training speed by 

improving the leaming-rate value. However, the implementation o f the current 

method was restricted only for the gradient-descent method.
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2.7 CONCLUSION

While the back propagation (BP) algorithm is used widely in the majority of practical 

neural-network applications and performed relatively well, the algorithm still suffers 

from several problems such as in sensitivity to initial conditions and slow 

convergence. Consequently, in the past few years, a number o f research studies have 

been attempted to improve and overcome problems associated with BP algorithms. 

This chapter reviewed some o f the major improvements and contributions suggested 

by various researchers to overcome those limitations. Two major directions for 

improvements have been identified which are: (a) firstly, the use of heuristic 

techniques such ideas as variation o f the leaming-rate value, use o f the momentum 

term, gain tuning o f activation function; and (b) secondly the integration of (a) with 

second-order optimisation techniques for minimising the error value.

It has been shown in the literature that the variation o f the gain parameter does 

improve the learning efficiency. The relevant literature on adaptive-gain variation has 

also been reviewed. It can be concluded that early researchers claimed that the 

adaptive-gain variation improved the learning rate. The work done by Ransing (2002) 

concluded that the adaptive-leaming rate can be achieved for each neural network 

node by varying the gain value for each node. A coupled algorithm for the efficient 

calculation of the adaptive-gain value was proposed. A detailed description and the 

performance of the current proposed method are given. The advantages and 

disadvantages posed by the current proposed method have been identified.

The next chapter will take this discussion forward and explain how improvements 

have been implemented in the method proposed by Ransing (2002) in order to 

overcome some restrictions posed by the method.
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CHAPTER 3

ENHANCED LEARNING ALGORITHM FOR 

BACK PROPAGATION NETWORK

CHAPTER LAYOUT

A novel approach for improving the training efficiency of BP neural networks 

algorithms is presented in this chapter. This chapter carries on with the investigation 

on improvements to the BP algorithm proposed by earlier researchers, particularly the 

work presented by Ransing (2002), on using the adaptive-gain variation in improving 

the training efficiency (Section 2.6 of Chapter Two). It was discovered during this 

work that the training efficiency o f the gradient-descent formulation with adaptive 

gain was not improved as a result o f having an adaptive-leaming rate for each node as 

proposed by Ransing (2002). It was, however, because the adaptive-gain change 

improved the search direction. This chapter introduces a novel technique of 

integrating the adaptive-leaming rate method coupled with an improved search 

direction for improving the computational efficiency o f neural networks. As a result 

o f this new understanding, it was possible for the first time to implement the proposed 

technique into various second-order optimisation methods. The mathematical 

formulation is described in the following sections. The penultimate section o f this 

chapter then tests the software for its correctness on the data generated using a simple 

sine curve. The conclusions are drawn from the research presented in this chapter to 

facilitate further testing and validation that is described in Chapter Four.
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3.1 INTRODUCTION

The work proposed by Ransing (2002) assumed that the learning efficiency was 

improved because the gain variation contributed like an adaptive-leaming rate for 

individual nodes. The supervised training procedure performed search through a 

weight space in a succession of steps as follows:

w (n+1)= w (n)+ A w (n) (3.1)

where:

A w (n) = - 7 J ^ d (n) 

n : is the iteration step 

f j : learning rate value 

d (/l) : search direction.

At each ( n ) step, A w (n) is chosen to reduce an objective (error) function ^ ( w ) . A 

w idely accepted choice for error function E ( w )is  the m ean-of-squares error 

(Equation 2.1 in Chapter Two). The efficiency of training algorithms is determined 

by the way in which the learning rate and the search direction is calculated (C. de 

Groot and D. Wiirtz, 1994). Equation 3.1 describes the procedure for updating 

the w eight vector using the learning-rate value ( Tj) and the search direction

( d (n)). The influence o f gain as claim ed by previous researchers is shown 

diagram m atically in Figure 3.1.
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Standard method: 

A w (n) =T}ln)d (n)

• j ------------------------------------- ►
--------------- V ------

n«
Previous literatures claim (gain value ck as a modifier or multiplier 
of the learning rate):

Aw (") = c ^ (,)d (,)
— --------- _ _ _ _ _ ------- ----------- --- ------- * d
V__________   >

Figure 3.1: The effect o f gain variation on gradient-descent method claimed by

previous researchers.

In this chapter, however, it was discovered that the gain variation actually improves 

the search direction ( d (w)) rather than the learning rate The next section

describes this new understanding in detail and compares its findings with the results 

calculated by Ransing (2002).

The MATLAB implementation o f the newly proposed method is then tested for its 

correctness. This will be illustrated further by comparing the simulation results of the 

proposed method with the previous version on a non-linear mapping function given 

by a functiony = sin(pi* x) where x e  [0 ,1]. The m athem atical form ulation o f 

im plem enting the proposed method into various second-order methods is 

described in Section 3.3. The correctness o f the m athem atical form ulation is 

tested again on the data generated using the sine curve in Section 3.4. The 

chapter is concluded in Section 3.5.
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3.2 THE PROPOSED METHOD BY IMPROVING THE 

CURRENT METHOD

In this section a significant improvement on the method introduced by Ransing (2002) 

on improving the training efficiency of BP neural-network algorithms is presented. 

The proposed algorithm uses the same gain-update expressions for output as well as 

hidden nodes as derived in Section 2.6 and for more detailed calculation please refer 

to Ransing’s work.

The significant difference between the proposed method with that proposed by 

Ransing (2002) is in the understanding of how adaptive-gain variation improves the 

training efficiency.

Ransing’s method assumed that the network had two types o f learning rates: (i) the 

global-leaming rate: and (ii) the local-learning rate for each node. At step ( n ) 

Ransing’s method used a constant value for the global-leaming rate and calculated the 

local-learning rate with respect to gain variation for each node by using Equation 3.2:

A */<"> = - r jM
each
node

dE

H K)
~r(M eghana R. Ransing, 2002) (3.2)

As shown in Figure 3.2 it is proposed in this chapter that the adaptive-gain variation

altered the initial search direction ( )  and not the learning rate. This clarity in 

understanding allowed a coupling of this theory with existing methods o f using 

adaptive-leaming rate values. It will also be shown in Section 3.3 that this

modification of initial search direction ( d (w)) can be implemented in various second- 

order optimisation methods to yield significant improvements in the computational 

speed.
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d n ( Ck,n)

d,
■V

Figure 3.2: The real effect o f gain variation on the gradient-descent method in

improving search direction.

With the newly proposed method, the learning rule is determined by calculating the 

function o f gain into the gradient o f error with respect to weight and gain as shown in 

Equation 3.3:

In this research a widely used Golden Section line search method (C urtis F. G erald 

and Patrick  O. W heatley , 2004) is chosen to obtain  the op tim ised  learn ing  rate

The complete comparison between the proposed algorithm and the current method on 

the BP algorithm is shown in Table 3.1. The flowchart illustrating the steps involved 

in the proposed algorithm is shown in Figure 3.3.

The following iterative algorithm is proposed for changing the gradient-based search 

direction by adaptively changing the gain value. The learning rate is adaptively 

changed by using the Golden Section method.

Step 1 Initialise the weight vector with random values and the vector of gain

(3.3)

values with unit values.
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Step 2 Calculate the gradient o f  error with respect to the weights and

gradient or error with respects to gain.

Step 3 Adaptively calculate the learning rate by using the Golden Section

search method.

Step 4 Use the gradient weight vector and gradient o f  gain calculated in Step

2 to calculate the new weight vector and vector o f  new gain values fo r  

use in the next epoch.

Step 5 Repeat the following Steps 2, 3 and 4 on an epoch-by-epoch basis until

the given error minimisation criteria are satisfied.

By using the proposed method, the gradient is re-evaluated optimally at each step to 

produce a better choice for the search direction ( d n). The proposed method 

modifies the gradient-search direction ( d n) adaptively with the gain parameter for 

each node. Furthermore, the learning rate ( 77) is also determined optimally by using 

the Golden Section method.
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Ransing’s method The Proposed method
1. Initialise all weights to small random numbers

2. Until satisfied, DO
3. For each training pattern, DO

3.1 Input the training pattern to the 
network and compute the network 
output using sigmoid activation 
function with gain term 

1

'  ( l + e “CA"J )

3.1 Input the training pattern to the 
network and compute the network 
output using sigmoid activation 
function with gain term 

1

( 1  +  e c,a"',J )
3.2 Calculate the gradient of Error w.r.t 

weight and gain

I f  = (I< 5 t“ w“ ) / ' ( c > « ‘ )c;
d w iJ k

JT .r =OCj k

3.2 Calculate the gradient o f Error w.r.t 
weight and gain

OCj k

3.3 Use constant value for learning 
rate value.

3.3 At step n calculate learning rate 
by using Golden section search.

+ ^ X )  = + '7 ,rf»)

3.4 At step n calculate learning rule for 
weights and gain

c)F
A ( * > ) ) - , . )

each CVv-y 
node

T T n e t L i

3.4 At step n calculate learning rule 
for weights and gain

= _ '7<”> ^ ) { c >{n))

T I n e t L i

3.5 Update each netw ork 
w eight
W(»+D = w(») + Aw<»)

c )  (« + !) = Cj (n ) + Ac Lj  (n )

3.5 Update each netw ork 
weight

= w W +Aw<")

c Lj (n + 1) = Cj (n ) + ACj (n)

END DO

Table 3.1: Comparison between the proposed algorithm and the method proposed by

Ransing (2002).
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Iteration>=Max
iteration

MSE<=minimum

NO NO

YES

n = 0

n=n + 1

Initialise weights, biases and gain value

Calculate ( 77) using Golden Section method

Calculate error (MSE) e = - Y ( t  - o Y
P  t  t - u  '  p i  P> '

Update new weights w(fl+1) = w(n) + A a n d  new gain value 

Cj (« + !) = Cj (n) + A Cj (n) to minimise the error

Calculate output signal for output and hidden unit 
using sigmoid activation with gain value

f{netDi) = -------------

h * = - 7  w ^ f >

1 r netL i

hc>(n) = r]5‘ ^ )

Figure 3.3: Flowchart for the proposed method.
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3.2.1 Verification of the proposed method on simple data sets:

(a) Case 1

The speed o f convergence achieved using the proposed method on the gradient- 

descent method is demonstrated by using the same datasets created by Ransing (2002) 

in Section 2.6.1 (refer to Table 2.1). The output o f the proposed method (black 

continuous curve) is shown against the training data points (circles) in Figure 3.4. 

Whereas, Figure 3.3 demonstrated the error versus number o f epochs required to 

achieve the target error 0.01.

O datapoints 
■— GDM
  Ransing's method
—  GDM/AG

0.9

0.8

0.7

0.6

0 .4

0.3

0.2

0.2 0 .4 0.6 0.8
Input

Figure 3.4: Output o f the proposed network (GDM/AG) trained to learn a sine curve

corresponds to Figure 2.7.

As shown in Figure 3.5, that the proposed network (GDM/AG) outperformed both 

methods including the method proposed by Ransing (2002), the proposed method 

significantly reduced the number o f epochs in order to reach the target error without 

losing the generalisation accuracy.
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Figure 3.5: Error versus number o f epochs required by the proposed method 

(GDM/AG) to achieve the target error o f 0.001 using the gradient-descent method.

This figure corresponds to Figure 2.8.

(b) Case 2

The dataset created for Case 2 is also taken from Ransing (2002). The network was 

required to approximate the function determined by a sample o f fifty-two input points 

shown in Figure 3.6 (circles). The output o f the proposed method (black continuous 

curve) is shown against the training data points (circles) in Figure 3.6. Figure 3.7 

computes the speed o f convergence. The number of epochs required by the proposed 

method (black continuous curve) are compared with the method proposed by Ransing 

(2002) (red solid curve) and the standard gradient-descent method (blue dot 

continuous curve). It is clear that the proposed method (GDM/AG) outperformed 

both methods including that proposed by Ransing. Even though the speed o f 

convergence can be improved by using the method proposed by Ransing (2002), but it 

still required more iterations as compared to the proposed method. The proposed 

method only took 625 epochs in reaching the target function as compared with 905 

epochs required by Ransing’s method and 3,295 epochs for standard gradient-descent

—  GDM
  Ransing's method
  GDM/AG
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(GDM) method. It shows that the speed o f convergence for the proposed method is 

high due to the modification o f the gradient-search direction by adaptively modifying 

gain values together with varying the leaming-rate value. At the end o f the training 

the values o f gain o f the proposed method for the five hidden nodes at the end o f 

training are 2.0, 0.8020, 0.5474, 0.9116 and 1.6337. The value o f gain for the output 

node at the end o f training is 0.5318.

O datapoints 
— ■ GDM
  Ransing's method
  GDM/AG
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CD
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+■» v
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Figure 3.6: Output o f the proposed network (GDM/AG) trained to learn a sine curve 

with twenty per cent random Gaussian noise using the proposed method. This figure

corresponds to Figure 2.10.
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Figure 3.7: Error versus number o f epochs required by the proposed method 

(GDM/AG) to achieve the target error o f 0.01 using the gradient-descent method. This

figure corresponds to Figure 2.11.

In general, both sets o f results (i.e. for cases (a) and (b)) clearly showed that the 

proposed method implemented with the gradient-descent method significantly 

improved the training speed. The speed o f convergence was high due to the effect o f 

introducing gain variations and learning rates at each training epoch.

Since most of the optimisation techniques used the gradient information to calculate 

their search direction, the next section demonstrates the implementation of the 

proposed method in modifying the search direction using adaptive-gain variation with 

various optimisation techniques.
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3.3 THE IMPLEMENTATION OF THE PROPOSED METHOD 

WITH VARIOUS OPTIMISATION TECHNIQUES

In this section, the proposed method is implemented into other well-known 

optimisation methods. The proposed optimisation algorithm calculates the learning 

rate adaptively by using the Golden Section method (Curtis F. Gerald and Patrick 

O. W heatley, 2004) and calculates the search direction optimally by using gain 

variation.

3.3.1 Conjugate-gradient method with adaptive-gain variation

One o f the remarkable properties of the conjugate-gradient method is its ability to 

generate, in a very economical fashion, a set of vectors with a property known as 

‘conjugacy’ (C.M. Bishop, 1995). The most widely used conjugate-gradient 

algorithms are given by Fletcher and Powell (R. Fletcher and M.J.D. Powell, 1963) 

and the Fletcher-Reeves (R. Fletcher and R.M. Reeves, 1964) ones. Both of these 

procedures generate conjugate directions o f search and therefore aim to minimise a 

positive definite quadratic function of n variables in n steps.

The search direction at each iteration is determined by updating the weight vector as 

given in Equation 3.1, where: c/(w) = g (/l) -I- P ^ d n̂_^. The scalar Pn is to be

determined by the requirement that d n and d n+l must fulfill the conjugacy property

(C.M. Bishop, 1995). The calculation procedure for scalar Pn determines different

types o f conjugate-gradient methods. The well-known formulae for Pn are those o f

Fletcher-Reeves ( Fletcher R. and Reeves R. M., 1964) and Polak-Ribiere (E. 

Polak, 1971) and are given by:

o    &  n+1 §  n+1
Pn ~ T (Fletcher-Reeves ( Fletcher R. and Reeves R. M., 1964)) (3.4)

(Polak-Ribiere ( Polak E., 1971)) (3.5)
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The proposed method that is implemented with the conjugate-gradient method is 

referred as CGFR/AG for Fletcher-Reeves’ implementation and CGPR/AG for Polak- 

Ribiere’s implementation. The method begins the minimisation process with an initial 

estimate w0 and an initial search direction as:

d o = - V E (wo) = -g o  (3 -6)

Then, for every epoch the search direction at {n + \)'h iteration is calculated as:

</„*. = - ^ ( ^ +1) + A ( ^ , K ( ^ )  (3-7)

The proposed algorithm for the conjugate-gradient method is summarised as follows:

Step 1 Initialise the weight vector random ly, the gradient vector g Q to zero

and gain value to one. Let the first search d ire c tio n ^  = g 0. Set 

fl0 = 0 , epoch = 1 and n = 1 . Let Nt  be the num ber o f weight 

param eters. Select a convergence tolerance ( c r ) .

Step 2 At step f l , evaluate gradient vector g n(cn) w ith respect to gain

vector cn and calculate gain vector.

Step 3 Evaluate E(wn).  IF E(wn) < CT  then STOP training ELSE go to

Step 4.

Step 4 Calculate a new search direction: d n = -g „ (c n) + j3n_xd n_x.

Step 5 For the first iteration, check i f  n > l THEN w ith the function o f

gain, update j3n+x by m odifying the following formula:

p  = s l A cn « )g ^ (c,» )  for CGFR/AG or

p _ Sn+\(Cn+\)[g n+\(Cn+l) ~ §n (Cn)] for CGPR/AG 
g Tn(cn)gn(cn)

ELSE go to Step 6 .

Step 6 IF [{epoch + \) lNt] = 0  THEN ‘res ta rt’ the gradient vector with

dn = ~g„-\(cn-i), ELSE go to Step 7.
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S tep  7 Calculate the optim al value for learning rate rjn by using

the Golden Section line search technique such as:

E(wn + ) = min E(w„ + )

Step  8 Update w„: = w„ + r{ndn

S tep  9 Evaluate new gradient vector g n+l(cn+l) w ith respect to gain

value c„+, .

Step  10  Calculate new search direction: dn+x = - g n+i(cn+̂) + J3„(cn)dn

Step  11 Set n = n + 1 and go to Step 2.

3.3.2 Quasi-Newton methods with adaptive-gain variation

Quasi-Newton methods are also among the most popular algorithms used in 

unconstrained optimisation techniques. For an error function E(w), a typical iteration 

o f the Quasi-Newton method is given as in Equation 3.3, where the search direction 

d(n) is defined by solving a system o f equations:

d(n)=~[H(n)]VE(w{n)) (3.8)

where: VE’(w) = g  and H  is the Hessian matrix which is adjusted from iteration to 

iteration such that the direction d(n) approximates the Newton direction. Quasi-

Newton methods achieve fast convergence and also do not require direct computation 

o f second-order derivatives. Two commonly used implementations of Quasi-Newton 

methods are Broyden-Fletcher-Goldfarb-Shanno (BFGS) formulation (Adrian J. 

Sheperd, 1997) and Davidon-Fletcher-Powell (DFP) formulation (F. Fnaiech et al., 

1994). The basic difference between those two formulations is in the way the inverse 

Hessian is constructed. This is illustrated in the following formula:

V. = \  + y TnHny n
Ts,y, j

_ s , yT, H.  (BFGS ( Adrian J. Sheperd, 1997)) (3.9)
T  Tsnyn sny n

v. = i+ H„s„n n n
T

y„s  n n

_ y A H .+ H 'S y ,  (DFp ( p  Fnaiech et ai ( j 994)) (3 10)
T Tynsn yns„
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The vectors sn and y n are determined as in Equation 3.11 and Equation 3.12, 

respectively.

The proposed method uses the gradient vector that is a function o f the gain parameter 

(g„(cn) ) as described in Equation 3.7. Such a modification has been implemented in

both the BFGS and DFP formulations and referred as BFGS/AG and DFP/AG. The 

proposed algorithms for Quasi-Newton is summarised as follows:

Step 1 Initialise the weight vector w(0 ) along w ith a positive definite o f

H essian matrix//(o) = / .  Select a convergence to le rancect .

Step  2 Compute the search direction dn w ith respect to gain variation

by solving

Step  3 Search the optim al value for ̂  by using a Golden Section line

search technique such as:

+ 7 X )  = minE(wn +rjndn).

Step  4 Update W-: w n+l = w n + ij*Hdn.

Step  5 Compute:

=w„+]-w„ (3.11)

yn =gn+̂ n+x) - g n{cn) (3.12)

Construct the inverse Hessian by modifying the following formula:

V. =

V. =

l + y Tn(Cn)H ny n(Cn)
s„y„{cn)

s„s Tn s ny Tn {cn) H n f o r  B F G S / A G  o r  

Snyn(Cn) STny n(Cn)

\  S l H n S n |  I n n n y n ( C n ) y Tn ( C n )  ( C n ) S l H n + H n S n y TH ( C „ )  f ( ) r

y Tn(C«)Sn y Tn(Cn)Sny Tn(cn)sn 
DFP/AG.

Step 6 Update the inverse m atrix // : / / , = / /  +v .
^  ^  n n+ l n n

Step  7 Compute the error function value. e(w„)

Step 8 I f  E(wn) > CT go to Step 2, else stop training.
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3.4 COMPARISON OF THE PROPOSED TRAINING METHOD 

WITH THE EQUIVALENT STANDARD METHODS ON A 

SIMPLE DATA SET

This section is dedicated to presenting an analysis o f the performance of the proposed 

training method coupled with other optimisation methods when applied to a 

continuous approximation function. The proposed method described in Section 3.4 

has been implemented by using the MATLAB programming language (refer to 

Appendices 1.1 to 1.6). In training those networks, the main objective of this section 

is to ensure that the proposed programming code learns and trains correctly on a 

sample data set. Further validation o f the proposed method will be undertaken in the 

next chapter.

3.4.1 Experimental setup

The critical issue in training neural networks is to measure the generalisation 

performance of the network by comparing the network output with the known output 

on a data set that is not in the training data. The standard neural network architectures, 

such as the fully-connected multi-layer perceptrons, are prone to overfitting (Stuart 

Geman et al., 1992). As the number o f hidden nodes increase, the number of 

unknowns, or degree of freedom in the network, increases and the risk of overfitting 

to the data also increases. On the other hand, with too few nodes the network will not 

be flexible enough to adapt to the true input-output relationship. Therefore it is 

important to get the number of hidden nodes approximately right before proceeding 

with the training.

3.4.1.1 Early stopping

Overfitting as mentioned in Section 3.4.1 may be prevented in three main ways: (a) by 

limiting the number of hidden nodes; (b) by adding a penalty term to the objective 

function for large weights; or (c) by limiting the amount of training using early 

stopping (Murray Smith, 1993). Although all three methods are potentially useful,
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early stopping is used in this section to prevent overfitting, as it is the most popular, 

simple to understand, and easy to implement.

In this technique, as shown in Figure 3.8, data is divided into training and validation 

data sets. The network is trained using only the training data and at predetermined 

training intervals (e.g., after every twenty epochs), the error of the network is 

determined in both the training and the validation data sets, and the connection weight 

configuration of the network is saved. Training continues with the error in the training 

set usually declining with additional training. However, the training is stopped as soon 

as the corresponding error in the validation set is higher than it was the last time it 

was checked. The network weight configuration with the least error in the test set is 

considered the best network and is used for future predictions in external validation 

sets.

— training error 
■ ■ validation error

LU

stop training

Number of Epochs

Figure 3.8: Idealised training and validation error curve.

3.4.1.2 Initial training conditions

During the training process in neural networks, the weight, bias and gain values are 

updated after each epoch. An epoch is said to be complete after the presentation o f a 

training example. A mean squared-error (MSE) value is calculated after the 

presentation of all training examples and compared with the target error. Training is
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done on an epoch-by-epoch basis until the MSE value falls below the desired target- 

error value or by stopping the training after the stopping criteria as mentioned in 

Section 3.4.1.1. has been satisfied.

The selection of initial weights and bias are important parameters in the training 

process. If the initial weights are very small, the back-propagated error is so small that 

practically no change takes place for some weights, and therefore more iterations are 

necessary to decrease the error (D.E. Rumelhart et al., 1986). In the worst case the 

error remains constant and the learning stops in an undesired local minimum (Y. Lee 

et al., 1993). On the other hand, large values o f weights speed up learning, but they 

can lead to saturation and to flat regions o f the error surface where training is 

considerably slow (G.D. Magoulas et al., 1996). Thus, in order to evaluate the 

performance of the algorithms better, the experiments were conducted using the same 

initial weight and bias vectors that have been randomly chosen from a uniform 

distribution between [0,1].

3.4.1.3 Training cases

The speed of convergence achieved using the proposed algorithm is demonstrated in 

the following example which corresponds to the data set created by Ransing (2002) in 

the second chapter o f her thesis. Consider a single input-output two-layer network 

with one hidden layer having five hidden nodes as can be seen in Figure 3.9. There 

are two training data sets that have been used in this section and those training data 

sets are created by using the function y  = sin(/w * x) where x<= [0,1] and by adding 

an approxim ate tw enty per cent random Gaussian noise. The netw ork is 

trained using 0.3 as the learning rate and 0.4 as the momentum value to achieve a 

one per cent target error. A sigm oid activation function was used in order to 

generate an output value betw een ‘0 ’ and ‘1’ at each node.
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Input Layer
Hidden Layer Output Layer

Figure 3.9: Fully-connected MLP netw ork w ith 1-5-1 architecture.

3.4.1.4 Training algorithms

All the proposed methods have been implemented by using MATLAB programming 

language. The netw ork is trained using eight training algorithm s w ith coupled 

and adaptive changes in w eight, bias and gain values. The netw ork is trained 

w ith an adaptive gain for all output as well as hidden nodes. Those eight 

training algorithm s are:

1) The standard conjugate gradient-Fletcher-Reeves (CGFR) (Fletcher R.and 

Reeves R. M., 1964).

2) The newly proposed conjugate gradient-Fletcher-Reeves method with adaptive 

gain (CGFR/AG)

3) The standard conjugate gradient-Polak-Ribiere (CGPR) (Polak E., 1971).

4) The newly-proposed conjugate gradient-Fletcher-Reeves method with adaptive 

gain (CGPR/AG)

5) The standard Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Adrian J. Sheperd, 

1997).

6) The newly-proposed Broyden-Fletcher-Goldfarb-Shanno method with adaptive 

gain (BFGS/AG).

7) The standard Davidon-Fletcher-powell (DFP) (F. Fnaiech et al., 1994).

8) The newly-proposed Davidon-Fletcher-Powell with adaptive gain (DFP/AG)
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3.4.2 Experiment results

(a) Case 1: The sin(x) problem without noise

The speed o f convergence achieved by all training algorithms as mentioned in Section

3.6.1.4 is demonstrated using the same data sets as illustrated in Section 2.6.1. The 

training procedure and conditions are kept the same as proposed by Ransing (2002). 

During each epoch, the gain, weight and bias values for all hidden nodes and output 

nodes converged to achieve an MSE of 0.001 for gain, weight and bias values, 

respectively. The terminated number of epochs and average running time for all 

algorithms are included in Table 3.2.

Methods
No of epochs in 

which the 
convergence was 

achieved

CPU time 
(seconds)

Standard CGFR 292 21.88

CGFR/AG 257 19.34

Standard CGPR 365 23.64

CGPR/AG 315 27.72

Standard BFGS 1400 89.23

BFGS/AG 760 76.55

Standard DFP 2546 175.67

DFP/AG 1932 121.21

Table 3.2: Summary o f sim ulation results.

It can be seen from Table 3.2 that all proposed methods with adaptive gain have 

consistently outperformed other standard algorithms in terms of number of epochs 

and CPU time required for the convergence. For the purpose of comparison, only the 

performance of the conjugate gradient (Fletcher-Reeves) formulation is presented and 

discussed in this section whereas the performance of other formulations is discussed 

in Appendices 1.1 to 1.16.

Figures 3.10 and 3.11 illustrate the performance of the proposed method implemented 

into conjugate-gradient (Fletcher-Reeves) formulation. As can be seen from Figure
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3.11, the proposed method (CGFR/AG) took 257 epochs to learn the target function 

as compared to the standard algorithm which took about 292 epochs.

The gain values for the five hidden nodes at the end o f training are 1.0232, 1.0002, 

1.1743, 0.5107, and 1.0343, respectively. The gain value for the output node at the 

end o f the training is 1.6232. As shown in Table 3.2, the speed o f convergence for the 

proposed method (CGFR/AG) is fast because the modified gain values improved the 

gradient-search direction as compared to the standard algorithm with unity gain value.

O datapoints 
—  C G FR  
  CG FR/AG

0.9

0.8

0.7

0.64->3CL4->
3o

0.4

0.3

0.2

0.1

0.2 0.4 0.6 0.8
Input

Figure 3.10: Output o f neural networks trained to learn a sine curve using the 

proposed con jugate-g rad ien t m ethod w ith  F le tch er-R eev es’ form ulation .
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Figure 3.11: Error versus number o f epochs required to achieve the target error of 

0.001 for the conjugate-gradient m ethod w ith F le tch er-R eev es’ form ulation .

(b) C ase 2: T he sin(x) p rob lem  with noise

As mentioned in the previous section, the second training data set is also created by 

using the same function used by Ransing. The data point values were altered using the 

Gaussian noise. The same network architecture is used for this experiment’s data and 

all parameters were kept the same as for the first experiment, except for the target- 

error value. At each epoch, the gain, weight and bias values for all hidden nodes and 

output nodes converged to achieve a target error o f 0.01 for gain, weight and bias 

values, respectively. The terminated number o f epochs and average running time for 

all algorithms are included in Table 3.3.
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Methods
Number of 
iteration in 
which the 

convergence 
was achieved

CPU time 
(seconds)

Standard CGFR 111 7.59

CGFR/AG 54 3.36

Standard CGPR 167 11.75

CGPR/AG 111 7.51

Standard BFGS 450 34.73

BFGS/AG 316 22.48

Standard DFP 659 41

DFP/AG 429 27

Table 3.3: Sum m ary o f sim ulation results w ith tw enty per cent random
Gaussian noise.

In achieving the results in Table 3.3 the following discoveries were made: first, the 

standard gradient descent was not able to leam the noisy data properly. As a result it 

took a longer time and number of epochs to achieve the target-error value. Second, all 

proposed methods exhibited good performance in reaching the target-error value in 

terms o f the number o f epochs and CPU time required for convergence as compared 

with other standard algorithms.

The proposed method implemented with the conjugate gradient (Polak-Ribiere) 

formulation is chosen for the purpose of comparison. As can be seen from Figure

3.12, both algorithms have predicted the same mapping approximating function. 

However, the proposed method (CGPR/AG) significantly improved the training speed 

by reducing the number of epochs from 167 to 111 (Figure 3.13). The speed of 

convergence for the proposed method (CGPR/AG) is reduced due to the modified 

gain values that further improved the gradient-search direction as compared to the 

standard algorithm.

The performance comparison of other optimisation methods coupled with the 

proposed method is shown in Appendix A.I.
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Figure 3.12: Output of neural networks trained to learn a sine curve with twenty per 

cent random Gaussian noise using the proposed method w ith P o lak-R ib iere

form ulation .
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Figure 3.13: Error versus number o f epochs required to achieve the target error of 

0.01 using the conjugate-gradient method w ith  P o lak -R ib iere  form ulation .
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3.5 CONCLUSION

The back propagation algorithm, which is frequently used in the neural-network 

training process, has often been criticised for its stability and convergence problems. 

Many researchers have devoted their efforts in improving its efficiency ranging from 

employing various optimisation methods for proposing new algorithms. Previous 

literature showed that changing the ‘gain’ value adaptively for each node can also 

improve the network training speed. The previous research concluded that adaptive 

gain has a catalytic effect in the learning process by magnifying the magnitude of the 

learning rate.

The research presented in this chapter proposes that for the standard gradient-descent 

algorithm, the adaptive-gain variation does not influence the learning rate as 

perceived in the previous research but modifies the initial search direction. A 

mathematical formulation, based on this insight, was developed for various 

optimisation techniques.

The proposed method has been successfully implemented into the MATLAB 

programming language and the experimental results have shown that the proposed 

programming code was trained correctly and significantly reduced both the number of 

epochs and the CPU time in reaching the target error as compared to other standard 

algorithms. Furthermore, the proposed method has been shown to be more generic 

and easy to implement into other commonly used gradient-based optimisation 

algorithms. The proposed method provides an important lead into the gradient-based 

optimisation techniques for improving training efficiency.
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CHAPTER 4

RESULTS AND VALIDATION ON 

BENCHMARK PROBLEMS

CHAPTER LAYOUT

This chapter undertakes further tests to validate the efficiency and accuracy of the 

newly-developed method discussed in Chapter Three. The benchmark problems used 

to verify the proposed algorithm are taken from the open literature (Lutz Prechelt, 

1994). The following two criteria are used to assess the computational efficiency and 

accuracy of the proposed method in comparison with the benchmark problem: (a) the 

speed o f convergence measured in the number o f epochs and the CPU time; and (b) 

the classification accuracy on testing data from the benchmark problems. The results 

are discussed and conclusions drawn from the research presented in the last section of 

this chapter.
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4.1 INTRODUCTION

Chapter Three suggested that a simple modification to the gradient-based search 

direction can also substantially improve the training efficiency o f almost all major 

optimisation methods. It was discovered that if  the gradient-based search direction is 

locally modified by a gain value used in the activation function of the corresponding 

node, significant improvements in the convergence rates can be achieved irrespective 

o f the optimisation algorithm used. The correctness of the proposed method using the 

MATLAB programming language was demonstrated by comparing the learning speed 

on the data generated from a sine function.

In this chapter, the robustness of the proposed algorithm is further validated and it is 

illustrated by comparing convergence rates for gradient descent, conjugate-gradient 

and Quasi-Newton methods on many benchmark examples. The remains o f the 

chapter is organised as follows: Section Two discusses the preliminaries o f the 

simulation; and in Section Three, the robustness of the proposed algorithm is shown 

by comparing convergence rates for gradient descent, conjugate gradient and Quasi- 

Newton methods on many benchmark examples. The chapter is concluded in the final 

section along with a short discussion on further research.

4.2 PRELIMINARIES

The performance analysis used in this research focuses on two criteria: (a) the speed 

of convergence measured in number of iterations and CPU time; and (b) the 

classification accuracy on testing data from the benchmark problems. The benchmark 

problems used to verify the proposed algorithm are taken from the open literature 

(Lutz Prechelt, 1994). To perform the experiments the data has to be arranged into a 

collection of training and testing sets. The algorithm is trained on the training set and 

its performance is measured on the corresponding testing set (early stopping) as 

mentioned in Section 3.4.1.1. In this case two-thirds o f the examples in each category 

were randomly placed in the training set, and the remaining examples formed the
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testing set. To reduce statistical fluctuations, the results are averaged over several 

simulations on the same training and testing sets.

Six classification problems have been tested including Thyroid, Wisconsin breast 

cancer, Diabetes, IRIS classification problem and Glass classification (Lutz Prechelt, 

1994). The simulations were carried out on a Pentium IV with a 3 GHz processor, 1 

GB RAM and using MATLAB version 6.5.0 (R13).

On each problem, the following fifteen algorithms were analysed and simulated:

1) The standard gradient-descent method with the momentum term (traingdm) 

from ‘MATLAB Neural Network Toolbox version 4.0.1’.

2) The standard gradient-descent method with the momentum term (GDM).

3) The modified gradient-descent method proposed by Ransing (2002).

4) The gradient-descent method with the momentum term and adaptive-gain 

variation (GDM/AG) method.

5) The standard conjugate gradient-Fletcher-Reeves (traincgf) method from the 

‘MATLAB Neural Network Toolbox version 4.0.1’.

6) The standard conjugate gradient-Fletcher-Reeves (CGFR) method.

7) The conjugate gradient-Fletcher-Reeves method with adaptive-gain variation 

(CGFR/AG) method.

8) The standard conjugate gradient-Polak-Ribiere (traincgp) method from the 

‘MATLAB Neural Network Toolbox version 4.0.1’.

9) The standard conjugate gradient- Polak-Ribiere (CGPR) method.

10) The conjugate gradient-Polak-Ribiere method with adaptive-gain variation 

(CGPR/AG) method.

11) The standard Broyden-Fletcher-Goldfarb-Shanno (trainbfg) method from the 

‘MATLAB Neural Network Toolbox version 4.0.1’.

12) The standard Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.

13) The Broyden-Fletcher-Goldfarb-Shanno method with adaptive-gain variation 

(BFGS/AG) method.

14) The standard Davidon-Fletcher-Powell (DFP) method.

15) The standard Davidon-Fletcher-Powell method with adaptive-gain variation 

(DFP/AG) method.

67



To compare the performance o f the proposed algorithm with respect to other standard 

optimisation algorithms from the MATLAB neural-network toolbox, network 

parameters such as network size and architecture (number o f nodes, hidden layers, 

etc.), and the values for the initial weights and gain parameters were kept the same. 

For all problems the neural network had one hidden layer with five hidden nodes and 

the sigmoid activation function was used for all nodes. This architecture o f the neural 

network was finalised after an initial study with a different number o f hidden nodes.

Prior to training, the weights are initialised to small random values. The reason to 

initialise weights with small values is to prevent saturation (where one or more hidden 

node is highly active or inactive for all patterns and therefore insensitive to the 

training process) and random to break symmetry (Adrian J. Sheperd, 1997). If, on the 

other hand, the initial weights are too small, training will tend to start very slowly. In 

order to reduce statistical fluctuation, all algorithms were tested using the same initial 

weights that were initialised randomly from range [0, 1] and received the input 

patterns for training in the same sequence.

For the gradient-descent algorithm, the learning rate value was 0.3 and the momentum 

term value was 0.4. The initial value used for the gain parameter was set to one. The 

values were used for comparison purpose only and there was no particular reason for 

the choice o f these values.

For each simulation run, the numerical data is shown in two files: (1) the summary 

results file; and (2) a detailed description of the successful algorithm. The number of 

iterations required to achieve convergence for each simulation result were noted to 

calculate the mean, the standard deviation and the number of failure cases. The cases 

that failed to converge are obviously excluded from the calculations o f the mean and 

standard deviation but are reported as failure cases.

For each simulation run, the generalisation accuracy (the accuracy o f the network in 

classifying unknown data) o f all algorithms is also calculated based on the 

formulation proposed by Watkins (Dave Watkins, 1997). Watkins determined 

generalisation accuracy by calculating the inverse of a distance measure o f simulation 

results from the real answers, expressed as a percentage o f the limits o f the range:
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Accuracy(%) = -------------- * 100

U B -L B
(4.1)

where UB and LB represent the upper bound and the lower bound. Both are 

defined based on the type o f  activation function that is used during the 

sim ulations, in this case all sim ulations are run using a sigm oid activation 

function. Hence UB is defined as one and LB is defined as zero. The final 

accuracy is determined by taking the mean o f all simulation runs.

4.3 VERIFICATION ON BENCHMARK PROBLEMS

For each problem, one hundred simulation runs were obtained, each with a different 

randomly chosen set of initial weights. For each simulation run, the number of 

iterations required for convergence is reported. For an experiment of one hundred 

simulation runs, the mean of the number o f iterations, the standard deviation, and the 

number of failures are collected. A failure case occurs when the network exceeds the 

maximum iteration limit or the stopping criteria as mentioned in Section 3.6.1.1 is 

met; each simulation is run for up to one thousand iterations except for the back- 

propagation algorithm based on the gradient-descent method as it failed to converge 

within the specific iteration limit and needed at least ten thousand iterations to 

converge; otherwise, the training procedure is halted and the run is reported as a 

failure case. Convergence is achieved when the output of the network achieves the 

above mentioned stopping criteria.

4.3.1 Performance comparison setup

To simplify the process of verification, this section describes the summary of some 

procedures and criteria that have been used to compare the results o f all training 

algorithms on selected benchmarks taken from the open literature (Lutz Prechelt, 

1994). The list o f benchmarks tested is as follows:

• Thyroid classification problem
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• Wisconsin Breast Cancer classifications problem

• Diabetes classification problem

• IRIS classification

• Seven-bit parity problem

• Glass-classification problem

To provide comparable and interpretable results, each problem will be presented with 

the same table as shown in Table 4.1 together with a figure that illustrates the 

comparison of average CPU time and number o f epochs required for convergence. 

Each table only presents the summary of the performance for all training algorithms 

based on certain criteria. The detailed information is presented in tables in Appendix 

AIII provided at the end of this thesis.

Mean 
no. of 
epochs

CPU 
time(s) per 

Epoch

Total CPU 
time(s) to 
converge

SD Accuracy

(%)

Fails

traingdm
GDM
Ransing’s
method
GDM/AG
traincgf
CGFR
CGFR/AG
traincgp
CGPR
CGPR/AG
trainbfg
BFGS
BFGS/AG
DFP
DFP/AG

Table 4.1: Sample table showing characteristics used to compare the performance of

all algorithms.

For the purpose of comparison, the following notations together with their explanation 

specify characteristics that have been used for each problem:
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Mean number of epochs -  the ratio o f sum of total number o f epochs with the 

number o f simulation runs.

CPU time (s) per epochs -  the total CPU time (in seconds) divided by the mean 

number o f epochs.

Total CPU time (s) to converge -  the sum of all CPU times (in seconds) divided by 

the number o f simulation runs.

Standard deviation (SD) -  the value that describes how close the results are around 

the mean number o f epochs in one hundred simulation runs. When the result values 

are very close to each other, the SD value is small. When the result values are spread 

apart it has a relatively large SD value.

Accuracy -  the value that was used by all training algorithms to determine the 

network performance when classifying unknown datasets (testing data) for each 

simulation run. It was calculated based on the formulation proposed by Watkins 

(Dave Watkins, 1997).

Number of failures -  the value that indicates the number of runs that failed to 

converge within the specified MSE value or the training was stopped when the 

stopping criteria (refer Section 3.6.1.1) are met.

4.3.1.1 Thyroid classification problem

fftp://ftp. ics.uci.edu/pub/machine-leaming-databases/thyroid-disease)

This data set was created based on the ‘artificial neural-network’ version o f the 

‘thyroid disease’ problem. The data set is designed so that a neural-network model 

can diagnose thyroid hyper- or hypo-function based on patient query data and patient 

examination data. The model decides whether the patient’s thyroid has over-function, 

normal-function, or under-function. Some 7,200 observations are used and the data is 

partitioned into training and validation subsets, and permutated in three ways. The 

selected architecture of the Feed-forward Neural-network is 21-5-3. The target error is 

set to 0.05 and the maximum epochs to one thousand.

Table 4.2 provides the summary of all algorithms’ performances for the Thyroid 

classification problem. It shows that all gradient-based algorithms coupled with the
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proposed method outperform other algorithms in terms of the CPU time and number 

o f iterations required for convergence.

Thyroid classification problem (target error=0.05)

Mean 
no. of 
epochs

CPU 
time(s) per 

Epoch

Total CPU 
time(s) to 
converge

SD Accuracy
(%)

Fails

traingdm 8925 3.72x1 O'2 332.03 1.70xl02 87.04 16
GDM 3441 9.20x1 O'2 316.49 1.02xl03 88.17 7
Ransing’s
method

1413 8.87xl0'2 125.30 7.14xl02 88.41 4

GDM/AG 1114 1.00x10'1 111.63 7.44x10’ 88.66 4
traincgf 49 2.03x10’ 10.02 5.43x10’ 91.03 6
CGFR 15 4.27 xlO'1 6.48 5.89x10° 91.33 4
CGFR/AG 11 4.30 xlO'1 4.84 4.22x10° 90.97 3
traincgp 34 2.20 xlO1 7.4593 6.59 xlO1 91.64 9
CGPR 13 3.49 xlO1 4.6151 3.28 xl0° 89.85 6
CGPR/AG 10 2.64 xlO*1 2.5802 3.53 xl0° 90.37 3
trainbfg 63 1.40x10’1 8.7439 7.86x10’ 88.56 4
BFGS 35 2.74x10'’ 9.6520 3.68x10° 90.04 1
BFGS/AG 21 2.52x10'’ 5.2977 4.24x10° 89.62 1
DFP 107 2.79x10’ 29.93 8.38x10’ 90.03 5
DFP/AG 53 2.39x10'’ 12.6739 8.47x10’ 89.47 3

Table 4.2: Summary o f algorithms’ performances for the Thyroid 

classification problem.

Figure 4.1 displays the performance of various gradient-descent methods on the 

Thyroid classification problem. Note that the proposed method and the method that 

was introduced by Ransing (2002) had drastically reduced the number of epochs 

required for convergence as well as the CPU time over one hundred simulation runs 

as compared to the neural-network toolbox. However, it can be seen that the 

performance of the method proposed in this thesis is still better as compared to the 

one proposed by Ransing. Furthermore, in reaching the target error, the proposed 

method had reduced the number o f failure cases from sixteen when using a neural- 

network toolbox to four, even though both algorithms gave most similar results on 

generalisation accuracy. Almost all algorithms have given similar results on the 

generalisation accuracy.
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□  Mean no. of Epochs 8925 3441 1413 1114

□ Standard deviation 1419.85 1015.82 713.64 1066.93

□ CPU time (seconds) 332.03 316.49 125.30 111.63

Figure 4.1: Comparison o f average CPU time and number o f epochs required for 

convergence using the gradient-descent method for the Thyroid classification

problem.

The proposed method has also shown superior performance when integrated with the 

conjugate-gradient formulation. As can be seen in Figure 4.2, in order to reach the 

target error o f 0.05, the mean value for epoch calculated over one hundred simulation 

runs was ten for the proposed method (CGPR/AG) as opposed to the standard CGPR 

method where the mean value for epochs was thirteen. This is an improvement ratio 

o f nearly 3.4, similarly the improvement ratio is almost 1.6477 for the convergence 

time.

The proposed algorithm (CGPR/AG) also shows better results as compared to the 

neural-network toolbox (traincgp) even though the proposed method had three failure 

cases, but it is considered better as compared to the neural-network toolbox with nine 

failure cases. This makes the CGPR/AG algorithm a better choice for this problem 

since it had only three failure cases for the one hundred different simulation runs. 

(Refer to Appendix II. 1 for a detailed calculation procedure for evaluating the 

CGPR/AG performance).
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traincgf CG FR CGFR/AG traincgp CG PR CGPR/AG

□  Mean no. o f  Epochs 49 15 11 34 13 10

□  Standard deviation 54.26 5.89 4.22 66 2.99 3.53

□  CPU time (seconds) 10.02 6.48 4.84 7.46 4.62 2.58

Figure 4.2: Comparison o f average CPU time and number o f epochs required for 

convergence using the conjugate-gradient method for the Thyroid classification

problem.

Figure 4.3 displays a summary o f the Thyroid classification problem for second-order 

methods using Quasi-Newton formulation. The adaptive gain implementation in the 

proposed method in Quasi-Newton formulation has also increased the computational 

efficiency as compared to the traditional Quasi-Newton-based optimisation methods.
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trainbfg BFGS BFGS/AG DFP DFP/AG

□  Mean no. of Epochs 63 35 21 107 53

□  Standard deviation 78.64 3.68 4.24 83.84 84.71

□ CPU time (seconds) 8.74 9.65 5.30 29.93 12.67

Figure 4.3: Comparison o f average CPU times and number o f epochs required for 

convergence using the Quasi-Newton method for the Thyroid classification problem.

4.3 .1 .2  W isconsin  breast cancer  c lassification  p rob lem

(ftp://ftp.ics.uci.edu/pub/machine-leaming-databases/breast-cancer-wisconsin)

In this test the task is to predict malignancy from nine continuous clinical variables: 

clump thickness; uniformity o f cell size; uniformity o f cell shape; marginal adhesion; 

single epithelial cell size; bare nuclei; bland chromatin; normal nucleoli; and mitoses. 

The database consists o f 699 patients, o f which sixteen were eliminated due to 

missing values. O f the remaining cases, 239 were classified as having a malignancy.

Dr. William H. Wolberg (O.L. Mangasarian and W.H. Wolberg, 1990) applied a 

multi-surface method o f pattern separation, training on 246 o f the 369 inputs available 

at that time, and obtained a 96 per cent test set predictive accuracy. The selected 

architecture o f the Feed-forward Neural-network is 9-5-2. The target error is set as to 

0.02 and the maximum epochs to a thousand.
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With the cancer classification problem, the disparity between the convergence rate of 

first- and second-order methods is clearly illustrated in Table 4.3. The results clearly 

show that algorithms which implement the proposed method exhibit a very good 

average performance in order to reach target error.

Cancer classification problem (target error=0.02)

Mean 
no. of 
epochs

CPU 
time(s) per 

Epoch

Total CPU 
time(s) to 
converge

SD Accuracy
(%)

Fails

traingdm 3419 1.60x1 O'2 54.59 1.22xl03 88.31 14
GDM 1105 4.7 lx l 0'2 52.05 1.16 xlO3 88.13 4
Ransing’s
method

690 3.87 xlO'2 26.68 1.14 xlO3 88.61 4

GDM/AG 405 4.45x10'2 18.02 6.64 xlO2 88.92 3
traincgf 71 5.36 xlO’2 3.78 5.35 xlO1 90.08 4
CGFR 65 5.09 xlO2 3.32 4.03 xlO1 90.16 3
CGFR/AG 39 3.98 xlO'2 1.55 2.45 xlO1 90.37 2
traincgp 29 9.83xl0'2 2.82 4.07 xlO1 90.49 3
CGPR 33 4.77xl0'2 1.56 1.51 xlO1 89.93 2
CGPR/AG 24 4.57xl0‘2 1.082 1.16 xlO1 90.38 2
trainbfg 35 7.00x1 O'2 2.46 2.46x10’ 88.92 2
BFGS 32 5.3 7x1 O'2 1.72 5.39x10° 88.88 1
BFGS/AG 29 5.48xl0'2 1.58 7.66x10° 89.13 1
DFP 219 8.31xl0'2 18.16 8.12x10’ 88.77 3
DFP/AG 147 8.00xl0'2 11.79 1.08 xlO2 88.34 2

Table 4.3: Summary o f algorithms’ performance for the cancer problem.

To underline the point, the performance of gradient-descent method is compared first 

in Figure 4.4. The proposed method (GDM/AG) took only 405 iterations to converge 

over one hundred simulation runs as compared to the neural-network toolbox 

(traingdm) with 3,419 iterations which is an improvement ratio of nearly 8.4. It shows 

that the proposed algorithm still outperforms other algorithms including the method 

proposed by Ransing (2002). Furthermore, the number o f failure cases also indicated 

that the training efficiency of the gradient-descent method improved drastically by 

using the proposed method.
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□  Mean on. o f  Epochs 3419 1105 690 405

□  Standard deviation 1215.62 1162 1137.59 663.53

□  CPU time (seconds) 54.59 52.05 26.68 18.02

Figure 4.4: Comparison o f average CPU lime and number o f epochs required for 

convergence using the gradient-descent method for the cancer classification problem.

Figure 4.5 demonstrates the performance o f the proposed method when implemented 

into the conjugate-gradient formulation. It shows that the proposed algorithm, 

particularly CGPR/AG, outperforms other algorithms as shown by the low mean 

value for epochs that was required for convergence. Yet for this problem CGPR/AG 

outperformed CGFR/AG with a mean o f twenty-four, the lowest value standard 

deviation and two failure cases. Even though the number o f failures is similar to the 

neural-network toolbox and the standard methods, the proposed method has 

performed better as compared to the standard method in terms o f number o f iterations 

and CPU time. Appendix II.2 demonstrates a detailed explanation o f CGPR/AG 

performance.
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Figure 4.5: Comparison o f average CPU time and number o f epochs required for 

convergence using the conjugate-gradient method for the cancer classification

problem.

Figure 4.6 illustrates the results for the cancer classification problem with various 

optimisation methods based on the Quasi-Newton formulation. As can be seen from 

the figure, the proposed algorithms (i.e. DFP/AG and BFGS/AG) show an 

improvement and still outperform other standard and neural-network algorithms as 

shown by a low mean value for epochs required for convergence.
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Figure 4.6: Comparison o f average CPU time and number o f epochs required for 

convergence using the Quasi-Newton method for the cancer classification problem.

4.3.1.3 Diabetes classification problem
(ftp://ftp.ics.uci.edu/pub/machine-leaming-databases/diabetes)

This dataset was created based on the ‘Pima Indians diabetes’ problem dataset from 

the UCI repository o f machine-learning databases. The task is to decide whether a 

patient is diabetic or not, based on eight clinical variables, all continuous: age; 

diabetes pedigree function; body mass index; two-hour serum insulin level; triceps 

skin fold thickness; diastolic blood pressure; plasma glucose concentration; and 

number o f pregnancies. O f the 768 patients, 268 are diabetic. The selected 

architecture o f the Feed-forward Neural-network is 8-5-2. The target error is set to 

0.01 and the maximum epochs to one thousand.

It is worth noticing in Table 4.4 that the performance o f the proposed method with all 

gradient-based methods is substantially faster as compared to other standard methods.
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Diabetes classification problem (target error=0.01)

Mean 
no. of 
epochs

CPU 
time(s) per 

Epoch

Total CPU 
time(s) to 
converge

SD Accuracy
(%)

Fails

traingdm 965 3.14xl0'2 30.36 1.45xl02 93.86 13
GDM 520 5.00x10'2 25.97 1.14 xlO2 89.09 5
Ransing’s
method

499 3.28 xlO'2 16.36 2.96 xlO2 90.78 4

GDM/AG 417 3.54xl0'2 14.76 1.02 xlO2 89.10 4
traincgf 98 4.11 xlO'2 4.03 8.70 xlO1 91.50 5
CGFR 51 5.16 xl0‘2 2.61 1.70 xlO1 89.97 3
CGFR/AG 40 5.05 xlO'2 2.00 1.59 xlO1 90.70 4
traincgp 46 7.12 xlO'2 3.27 5.28x10’ 92.09 7
CGPR 54 4.73 xlO'2 2.54 1.99x10’ 91.66 5
CGPR/AG 46 4.94 xlO'2 2.26 1.59x10’ 91.24 4
trainbfg 106 3.90 xlO'2 4.12 7.45 xlO1 89.16 3
BFGS 95 4.93 xlO'2 4.67 1.91 xlO' 88.20 4
BFGS/AG 82 4.90 xlO'2 4.01 1.89x10’ 87.61 3
DFP 401 6.04 xlO’2 24.24 1.74 xlO2 92.39 0
DFP/AG 309 6.06 xlO'2 18.74 1.83 xlO2 92.07 0

Table 4.4: Summary o f algorithm performance for the diabetes problem.

Figure 4.7 clearly shows that the proposed method had improved the training 

efficiency of gradient-descent methods by reducing the number o f iterations and CPU 

time. It shows that the proposed algorithm (GDM/AG) is almost twice as fast as 

compared to the neural-network toolbox (traingdm) in achieving the target error of 

0.01. Nevertheless with only four failure cases as compared to thirteen failure cases 

for the neural-network toolbox (itraingdm), Figure 4.7 also shows that the proposed 

method (GDM/AG) gives better results with a lower number o f epochs as compared 

to the method proposed by Ransing (2002). Furthermore, the proposed algorithm 

(GDM/AG) with the lowest standard deviation value yields more consistent results to 

reach the target error as compared to the neural-network toolbox.
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traingdm GDM
Ransing's

method
GDM/AG

□ Mean no. of Epochs 965 520 499 417

□ Standard deviation 145.33 114.14 295.54 102.23

□ CPU time (seconds) 30.36 25.97 16.36 14.76

Figure 4.7: Comparison o f  average CPU times and number o f epochs required for 

convergence using the gradient-descent method for the diabetes classification

problem.

Figure 4.8 demonstrates the performance o f the proposed method with the conjugate- 

gradient method. It shows that the proposed CGFR/AG algorithm took only forty 

epochs to reach the target error compared to CGFR at about fifty-one epochs and 

neural-network toolbox (traincgf) which needs about ninety-eight epochs to converge. 

The proposed algorithm also outperforms other algorithms in terms o f the total CPU 

time to converge. The consistent performance o f the proposed CGFR/AG algorithm is 

further shown by its lowest standard-deviation value as compared to other standard 

algorithms. The detailed explanation o f the proposed CGFR/AG algorithm 

performance can be seen in Appendix II.3.
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Figure 4.8: Comparison o f average CPU time and number o f  epochs required for 

convergence using the conjugate-gradient method for the diabetes classification

problem.

Figure 4.9 shows that the proposed method implemented with the Quasi-Newton 

optimisation formulation had significantly improved the training efficiency in terms 

o f  number o f iterations and CPU time. A longer learning time is required for the 

diabetes problem than the previous two problems, particularly for the quasi-Newton 

methods. The mean convergence ranged for Quasi-Newton methods are from eighty 

to four hundred iterations. Even though all implementations o f the proposed methods 

have outperformed other algorithms, for this problem, the proposed BFGS/AG 

algorithm produced the best results with eighty-two iterations. The neural-network 

toolbox algorithm (trainbfg) took 1.29 seconds longer to learn than the proposed 

BFGS/AG algorithm. In addition, the proposed method performs more consistent 

results to reach the target error as compared to the neural-network toolbox as shown 

by the value o f standard deviation in Figure 4.9.
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Figure 4.9: Comparison o f average CPU time and number o f epochs required for 

convergence using the Quasi-Newton method for the diabetes classification problem.

4.3.1.4 IRIS classification problem
(ftp:// ftp.ics.uci.edu/pub/machine-leaming-databases/iris/iris. data)

This classical classification data set was made famous by Fisher (R.A. Fisher, 1936), 

who used it to illustrate principles o f discriminant analysis. This is perhaps the best- 

known database to be found in the pattern recognition literature. Fisher’s paper is a 

classic in the field and is referenced frequently to this day. The selected architecture 

o f the Feed-forward Neural-network is 4-5-3 with a target error set as 0.05 and the 

maximum epochs to one thousand.

Table 4.5 shows that using the proposed method with second-order methods presents 

substantial improvements over the first-order methods in terms o f the CPU time and 

number o f iterations. The proposed formulation still outperforms other algorithms in 

terms o f CPU time and number o f epochs.
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IRIS classification problem (target error=0.05)

Mean 
no. of 
epochs

CPU 
time(s) per 

Epoch

Total CPU 
time(s) to 
converge

SD Accuracy

(%)

Fails

t r a in g d m 1609 2.69x1 O'2 43.30 6 .58x l02 94.01 15
GDM 754 3.89x1 O'2 29.28 2 .94x l02 94.33 4
Ransing’s
method

653 4.09 xlO’2 26.70 5 .18x l02 95.35 3

GDM/AG 581 3.69x1 O'2 21.42 2 .4 3 x l0 2 94.45 3
t r a i n c g f 70 5.45 xlO'2 3.83 7.41X101 96.52 6
CGFR 39 4.91 xlO'2 1.93 3.25X101 96.65 2
CGFR/AG 29 4.93 xlO"2 1.42 7.00x10° 96.07 2
t r a in c g p 39 7.67 xlO'2 2.99 6.31 xlO1 96.28 10
CGPR 28 4.54 xlO'2 1.25 1.63 xlO1 97.77 4
CGPR/AG 23 4.55 xl0‘2 1.06 1.19 xlO1 97.73 3
t r a in b f g 51 5.20 x lO 2 2.64 2.54 xlO 1 93.26 2
BFGS 63 4.76 xlO’2 3.01 4.61 x l0° 95.85 1
BFGS/AG 40 4.57 xlO'2 1.83 4 .26x10° 95.90 0
DFP 599 6.45 xlO"2 38.67 2.58 xlO2 94.55 5
DFP/AG 534 5.90 xlO’2 31.49 4.39 xlO2 94.31 3

Table 4.5: Summary o f algorithm performances for the IRIS problem.

Figure 4.10 illustrates the performance of the gradient-descent method coupled with 

the proposed method. The proposed method clearly shows a better result in terms of 

number o f iterations required to converge. The proposed method is three times faster 

as compared to the neural-network toolbox (‘traingdm *). Moreover, the proposed 

algorithm (GDM/AG) gave more consistent results with a lower value of standard 

deviation as compared to other algorithms.
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□  Mean no. o f Epochs 1609 754 653 581

□  Standard deviation 658.22 294.28 518.24 242.57

□ CPU time (seconds) 43.30 34.59 26.70 21.42

Figure 4.10: Comparison o f average CPU times and number o f epochs required for 

convergence using the gradient-descent method for the IRIS classification problem.

As for second-order methods with conjugate-gradient formulation, the proposed 

algorithm as illustrated in Figure 4 .11 shows better results as compared to other 

standard algorithms. Even though the proposed algorithm (CGFR/AG) had only two 

failure cases as compared to CGPR/AG with three failure cases, yet CGPR/AG is 

faster. The proposed algorithm (CGPR/AG) needs only twenty-three epochs to 

converge as compared to CGFR/AG with twenty-nine epochs. This makes the 

proposed algorithm (CGPR/AG) a better choice for this problem. As far as the 

consistency o f the performance is concerned, it is clear that the neural-network 

toolbox implementation failed to converge at certain trials and showed a higher 

standard deviation value which indicates that the neural-network toolbox 

implementation are unstable as compared to the proposed method (Figure 4.11). The 

detailed explanation on the proposed algorithm (CGPR/AG) performance is given in 

Appendix II.4.
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Figure 4.11: Comparison o f average CPU times and number o f epochs required for 

convergence using the conjugate-gradient method for the IRIS classification problem.

The performance o f the proposed method with Quasi-N ewton formulation is shown 

in Figure 4.12. The proposed algorithm (BFGS/AG) outperforms neural-network 

toolbox ‘trainbfg ’ with an improvement ratio o f nearly 1.4, for the total CPU time. 

Furthermore, the proposed algorithm (BFGS/AG) needs only forty epochs to reach the 

target error as compared to standard BFGS with sixty-three epochs and neural- 

network toolbox ‘trainbfg' with fifty-one epochs. The proposed method significantly 

reduced the number o f epochs required for the convergence.

traincgf CGFR CGFR/AG traincgp CGPR CGPR/AG

70 39 29 39 28 23

74.08 32.51 7.00 63.10 16.33 11.97

3.83 1.93 1.42 2.99 1.25 1.06
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Figure 4.12: Comparison o f average CPU times and number o f epochs required for 

convergence using the Quasi-Newton method for the IRIS classification problem.

4 .3 .1 .5  S ev en -b it p arity  prob lem

(T rain ing  data: h ttp ://h o m e p aaes .cae .w isc .ed u /~ ece5 3 9 /d a ta /p arity 7 r)

(T esting  data: h ttp ://h o m ep aaes .cae .w isc .ed u /~ ece5 3 9 /d a ta /p aritv 7 t)

N  -bit parity is the name given to a set o f binary problems that are widely used in 

benchmark-training tests for neural-network algorithms. The yv -bit parity training set 

consist o f 2n tra in ing  pairs, w ith each tra in ing  pair com prising  an n -length

input vecto r and a sing le  b inary  target value. The 2 A input vectors represent 

all possib le  com binations o f  n  binary  num bers. B asically  if  a given input 

vecto r con tains an odd num ber o f  ones, the co rresponding  target value i s l ,  

o therw ise  the target value i sO.  The parity problem is one o f the most popular 

initial testing tasks and very demanding classification problem for neural networks to 

solve. This is because the target-output changes whenever a single bit in the input 

vector changes and this makes generalisation difficult and learning does not always 

converge easily (Erik Hjelmas and P.W. Munro, 1999). The selected architecture o f 

the Feed-forward Neural-network is 7-5-1. The target error has been set to 0.05.
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It is very important to recognise that there is a fundamental distinction between the 

causes o f training failure recorded in Table 4.6. Convergence to a stationary point 

(typically a local minimum) is the main cause of training failure cases with first- or 

second-order methods (i.e. traingdm, GDM, DFP and DFP/AG). However, the high 

failure rate for first-order methods when applied to this problem is the result o f a 

failure to converge to any stationary point within the allowed number o f training 

epochs, in this case maximum epochs for the first-order method is twenty thousand. 

The implementations of the proposed method into first- and second-order methods 

greatly decreases the number o f failure cases to converge and also decreases the 

number of epochs required as well as CPU time. The detailed explanation of the 

proposed BFGS/AG algorithm performance is demonstrated in Appendix II.5.

7 bit parity problem (target error=0.05)
Mean 
no. of 
epochs

CPU 
time(s) per 

Epoch

Total CPU 
time(s) to 
converge

SD Accuracy

(%)

Fails

T r a in g d m 14272 9.81 xlO'3 140.02 2.72 xlO3 87.62 12
GDM 1347 3.80 xlO'2 51.15 5.09 xlO2 87.54 7
Ransing’s
method

717 3.35 xlO'2 24.04 3.07 xlO2 88.59 3

GDM/AG 537 3.99 xlO’2 21.42 1.83 xlO2 88.75 4
T r a i n c g f 283 3.87 xlO'2 10.97 3.32 xlO2 90.98 5
CGFR 148 7.27 xlO'2 10.74 1.07 xlO2 91.12 3
CGFR/AG 114 7.11 xlO'2 8.11 6.53 xlO 1 90.34 2
T r a in c g p 143 3.46x1 O'2 4.94 1.41 xlO2 90.19 3
CGPR 129 6.15 xlO'2 7.92 3.32 x l0 ] 91.23 2
CGPR/AG 92 5.28 xlO'2 4.86 1.37x10' 90.57 1
T r a i n b fg 166 2.70 xlO'2 4.50 8.69 xlO1 88.74 3
BFGS 93 4.31 xlO'2 4.02 3.83 xlO0 90.43 2
BFGS/AG 85 4.39 xlO'2 3.73 3.01 xlO0 90.66 1
DFP 525 5.97 xlO'2 31.35 1.32 xlO2 90.11 10
DFP/AG 326 5.97 xlO'2 19.48 1.19 xlO2 90.15 10

Table 4.6: Summary o f algorithm performance for the Seven-bit parity problem.

Figure 4.13 displays a summary o f the Seven-bit parity classification problem for 

gradient-descent methods. It shows that training with the neural-network toolbox 

(traingdm) took 14,272 iterations to reach the target error with sixteen failure cases. 

The proposed GDM/AG reduces the number of iterations almost nine times with only



four failure cases and clearly shows that the proposed method outperforms the neural- 

network toolbox. Even though the method introduced by Ransing (2002) decreased 

the number o f epochs significantly as compared to the standard gradient-descent 

method, the proposed GDM/AG algorithm again outperformed with the lowest 

standard deviation value o f  183.15.
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□  M ean no. o f  Epochs 14272 1347 717 537

□  Standard deviation 2719.62 509.08 306.58 183.15

□  C P U  time (seconds) 140.02 51.15 24.04 21.42

Figure 4.13: Comparison o f average CPU time and number o f epochs required for 

convergence using the gradient-descent method for the Seven-bit parity problem.

In Figure 4.14, the proposed algorithm shows better results as compared with the 

conjugate gradient formulation because it converges in a smaller number o f epochs as 

observed by a low value o f  the mean. The proposed algorithm (CGFR/AG) had two 

failure cases as compared to the CGPR/AG algorithm with one failure case. This 

makes the proposed algorithm (CGPR/AG) a better choice for this problem since it 

had only one failure case for the one hundred simulation runs. The proposed 

(CGPR/AG) algorithm not only decreases the number o f iterations to converge but 

also it is more consistent as compared to other standard algorithms. Figure 4.14 

clearly shows that within a hundred simulation runs o f training the proposed method
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is stable and achieves a low standard deviation value o f 13.66 as compared to other 

algorithms.
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□  Standard deviation 329.09 107.48 65.31 141.30 33.21 13.66

□  CPU time (seconds) 10.42 10.74 8.78 4.79 7.92 4.86

Figure 4.14: Comparison o f average CPU time and number o f epochs required for 

convergence using the conjugate-gradient method for the Seven-bit parity problem.

Figure 4.15 illustrates the performance between the proposed method and neural- 

networks toolbox using Quasi-Newton formulation. It shows that gradient-based 

methods with the proposed implementation are substantially faster than the traditional 

gradient-based methods.
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Figure 4.15: Comparison o f average CPU time and number o f epochs required for 

convergence using the Quasi-Newton method for Seven-bit parity problem.

4.3.1.6 Glass-classification problem

(ftp://ftp.ics.uci.edu/pub/machine-leaming-databases/glass)

This data set aims to classify glass type and was created based on the ‘glass’ problem 

data set from the UCI repository or machine-learning databases. The results o f 

chemical analysis o f  glass splinters (percentage content o f eight different elements) 

plus the refractive index are used to classify the sample to be either float-processed or 

non-float-processed building windows, vehicle windows, containers, tableware or 

head lamps. This task was motivated by forensic needs in criminal investigations. The 

selected architecture o f the Feed-forward Neural-network is 9-5-6. The target error is 

set to 0.01 and the maximum epochs to a thousand.

The results presented in Table 4.7 illustrate that all gradient-based methods coupled 

with the proposed method outperform other classical gradient-based methods. The 

different rates o f convergence associated with different classes o f gradient-based 

methods, and with the proposed method, are clearly noticeable.

91



Glass classification problem (target error=0.01)

Mean 
no. of 
epochs

CPU time(s) 
per Epoch

Total CPU 
time(s) to 
converge

SD Accuracy
(%)

Fails

traingdm 1194 3.10 xlO'2 36.98 3.27 xlO2 93.97 9
GDM 670 4.66 xlO'2 31.19 1.29 xlO2 92.91 4
Ransing’s
method

583 3.98E-02 23.1922 301.05 92.64 3

GDM/AG 491 4.16 xlO'2 20.40 6.94 xlO1 93.03 3
traincgf 280 2.35 xlO'2 6.58 2.06 xlO2 93.39 6
CGFR 108 8.90 xlO'2 9.60 1.31 xlO2 92.27 3
CGFR/AG 73 7.74 xlO'2 5.66 7.05 xlO1 92.45 4
traincgp 75 3.79 xlO'2 2.86 5.54x10' 93.33 4
CGPR 36 6.35 xlO'2 2.31 1.01 xlO1 92.72 2
CGPR/AG 31 5.62x1 O’2 1.74 1.34 xlO1 93.55 3
trainbfg 117 3.41 xlO’2 3.99 4.07 xlO1 93.22 6
BFGS 27 8.60 xl0‘2 2.34 1.19 xlO1 92.61 4
BFGS/AG 15 6.07 xlO'2 0.93 4.32 xlO0 93.25 5
DFP 715 7.09 xlO'2 50.67 4.20 xlO2 90.60 2
DFP/AG 409 6.83 xlO'2 27.92 2.64 xlO2 90.53 1

Table 4.7: Summary o f algorithm performance for the Glass-classification problem

Figure 4.16 below compares the performance of the proposed method with the 

gradient-descent method. It shows that the proposed method is substantially faster 

than the traditional gradient-descent method and particularly the neural-network 

toolbox {traingdm) implementation. As can be noticed, the proposed method allows 

the learning algorithm to obtain a faster convergence speed. Although, the method 

introduced by Ransing also presents a good performance, that is much better than the 

standard GDM, but it is not consistent as the value of standard deviation is high as 

compared to the proposed method (GDM/AG).
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E3 C PU  time (seconds) 36.98 31.19 23.19 20.40

Figure 4.16: Comparison o f average CPU time and number o f epochs required for 

convergence using the gradient-descent method for the Glass-classification problem.

Figure 4.17 shows the comparison o f average CPU time and number o f epochs 

required for convergence using conjugate-gradient methods. The proposed 

formulation outperforms other standard algorithms. Among all methods the proposed 

method (CGPR/AG) performs the best with only thirty-one epochs and 1.74 seconds 

CPU time is required for convergence. The method presented by the neural-network 

toolbox ‘traincgf ’ yields very poor results as it requires the highest number o f epochs 

with the highest standard deviation value which also indicates that the method is 

unstable in reaching the target value within a hundred simulation runs.
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□  Mean no. of  Epochs 280 108 73 75 36 31

□  Standard deviation 206.27 131.06 70.49 55.38 10.14 13.36

□  CPU time (seconds) 6.58 9.60 5.66 2.86 2.31 1.74

Figure 4.17: Comparison o f average CPU time and number o f epochs required for 

convergence using the conjugate-gradient method for the Glass-classification

problem.

The average CPU time and number o f epochs for Quasi-Newton methods are plotted 

in Figure 4.18. From the figures the overall performance o f the proposed method in 

achieving the target error is better as compared to other standard algorithms. As 

shown in the figure the proposed method (BFGS/AG) took only fifteen epochs to 

converge as compared to the neural-network toolbox (trainbfg) that required 117 

epochs which is an improvement ratio o f nearly 7.8 (refer to Appendix II.6 for a 

detailed explanation on BFGS/AG performance). Even though the number o f epochs 

required by the proposed method DFP/AG is quite high as compared to BFGS/AG, it 

shows an improvement on its standard algorithm (DFP) with a more consistent 

performance (as shown by lower standard deviation value). This is attributed to the 

improvements o f the search direction introduced by the proposed method.
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Figure 4.18: Comparison o f average CPU time and number o f epochs required for 

convergence using the Quasi-Newton method for the Glass-classification problem.

4.4 CONCLUSION

The novel method proposed in Chapter Three that improved the gradient-based search 

direction was validated in this chapter for its efficiency and accuracy on a variety o f 

benchmark problems. The performance o f the proposed method is validated in two 

ways: (a) the speed o f convergence measured in the number o f iterations and CPU 

time; and (b) the generalisation accuracy on testing data from the benchmark 

problems. The results were discussed and it showed that the proposed algorithm is 

generic, robust and easy to implement into all commonly used gradient-based 

optimisation processes. Furthermore, the results clearly showed that the proposed 

algorithm has significantly improved the neural-network training performance as 

compared to the existing methods including the one proposed by Ransing (2002).
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CHAPTER 5

ENHANCEMENT TO THE METHOD 

PROPOSED FOR CONSTRUCTING 

OPTIMAL KNOWLEDGE HYPER-SURFACE

CHAPTER LAYOUT

This chapter is a rational attempt to carry forward the research task outlined in Section 

1.3 of Chapter One. The first section o f this chapter discusses the implementation of 

Lagrange Interpolation Polynomials into the current Knowledge Hyper-surface 

method and highlights important features o f the current method in learning from 

examples. The limitations o f using the current method are described next and the need 

for further improvement is identified. The next section describes the enhancements 

proposed to the current method by incorporating midpoints in the existing shape 

formulation. The results are compared with the neural-network method proposed in 

Chapter Four and the current Knowledge Hyper-surface method. The conclusions are 

then drawn in the last section to identify scope for further research.
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5.1 INTRODUCTION

The research on the analysis o f cause and effect relationships in castings has always 

been a centre o f attention in the manufacturing industry. An intelligent diagnosis 

system should be able to diagnose effectively the causal representation and also 

justify its diagnosis. A previous method, known as the Knowledge Hyper-surface 

method, proposed by Ransing (Meghana R. Ransing, 2002), used Lagrange 

Interpolation polynomials to show that the belief value o f the occurrence o f cause 

with respect to the change in the belief value in the occurrence o f effect can be 

modelled by linear, quadratic or cubic relationships. The current method retained the 

advantages o f neural networks and overcomes their limitations in learning the input- 

output mapping function in the presence of noisy, limited and sparse data. The ability 

of the current method to constrain the belief values in the causes made it a better 

technique as compared to the multi-layer neural-network method. The comparison 

was done on real casting data (Meghana R. Ransing, 2002).

However, during the research work that is presented in this chapter, it was discovered 

that the methodology was unable to model exponential increase/decrease in belief 

values in cause and effect relationships. This chapter proposes an enhancement to the 

current Knowledge Hyper-surface method by introducing midpoints in the existing 

shape formulation which further constrains the shape o f the Knowledge hyper­

surfaces to model an exponential rise in belief values but without exposing the dataset 

to the limitations o f ‘overfltting’.

The first section starts with the overview o f the current method which discusses the 

implementation o f Lagrange Interpolation Polynomials into the current Knowledge 

Hyper-surface method and highlights important features o f the current method in 

learning from examples. The limitations of using the current method are described 

next in Section 5.4. The enhancements and mathematical solution is presented in 

Section 5.5. The performance o f the proposed method is further illustrated in Section

5.6 by comparing its solution with the previous version of the Knowledge Hyper­

surface method and the neural-networks method on real casting data. Finally, the 

conclusions are drawn from the research presented in this chapter.
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5.2 THE CURRENT KNOWLEDGE HYPER-SURFACE 

METHOD

Ransing (2002) proposed a method that retains advantages o f regression analysis and 

neural-network techniques and at the same time overcomes the limitations o f both 

techniques. The Knowledge Hyper-surface method described that the belief variation 

in the occurrence of a cause, with respect to a change in the belief value o f the 

occurrence o f an effect, follows a pattern. Such a variation is generally linear, 

quadratic or cubic and certainly not an arbitrary higher-ordered polynomial.

The method described that to model an n‘h order relationship along a dimension, 

(n + 1) equidistant reference points between -1 and +1 are chosen. For each 

reference p o in t'/ ' ( i =l  to n + 1), a one-dim ensional Lagrange 

Interpolation Polynom ial is used based on the following form ula:

^ * 4 - 4 ,  * 4 - 4 i  * iS..
4*-$> 4k~4, W * -. 4k ~4M '" W .

where:

n : Order o f  the Lagrange Interpolation Polynom ial (e.g. one for linear; 

two for quadratic; three for cubic; etc.)

k : A reference point at which the one-dim ensional Lagrange 

Interpolation Polynom ial /**(£) is constructed ( k  ranges from 0 to n).  

i : Ranges from one to total num ber o f  reference points, i.e. (n + 1).

The variable % is used to store the b e lie f value representing the strength o f 

the corresponding effects, ranges from -1 to +1. For one-dim ensional 

Lagrange Polynom ial Interpolation the reference points are drawn along this 

dim ension. W hereas for a given cause connected to ‘ p  ’ effects, the Lagrange
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Interpolation Polynom ial at a reference point ‘ i ’ is defined as ‘ p  ’ 

dim ensional and is given by the following equation:

where:

ki  ^  ' p i  _ p )  p i  _ p j  p j  _ p J  p i  _ p i  P J  — p j  P***/
h k j  t>0 h k j  r l  b k j  h k j - l  b k j  ~>kj+\ ~>kj b r i j

Kj : The order o f one dim ensional Lagrange Interpolation Polynom ial 

( /; ;  ( ) )  corresponding to j th dim ension that represents the relationship 

betw een j th effect and the cause under consideration.

k j  : Reference point along j th dim ension, at which the one-dim ensional 

Lagrange Interpolation Polynom ial is evaluated, ( k j  Independently
J J

ranges from 0 to n- for each Lagrange Polynom ial Interpolation).

are ( j l + 1) reference points along the j th dim ension.
J J

i : for a ‘ p  ’ dim ensional case, ‘ i ’ ranges from one to the total num ber o f 

reference points ‘ q ’ as given below:

q = (nx + \ )* (n2 +1)*(«3 +1)*... *(«_,. +1) * (np +1) (5.4)

The method also prescribed that a Lagrange Interpolation polynomial and a weight 

value can be associated with each o f the said reference points as shown by the 

equation below:

q
The belief value in the cause —

1=1

where:

q : Total num ber o f  reference points. 

l j ( £ ] 9<%2 p ) is given by Equation 2.24

: W eight variable associated w ith the i th reference point.
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By considering a weight value at a reference point to be representative o f the belief 

value in the cause, the total number of weights is therefore the same as the total 

number o f reference points. However, this formulation had its own limitation. As the 

number o f dimensions increased, the total number of weights in a network also 

increased exponentially. This rapidly increased the number of unknown variables 

within the network and it was not a practical implementation, as it would not only 

slow down the system, but also requires an excessively large training dataset.

In order to overcome that limitation, Ransing (2002) divided the reference points into 

two categories, referred to as primary and secondary reference points. Weight values 

associated with these primary reference points have been considered as independent 

variables (primary weight values) and other weight values associated with secondary 

reference points (secondary weight values), have been considered to be linearly 

dependent on one or more primary weight values (see Figure 5.1).

Belief in the 
occurrence of
effect £ 2

Belief in the occurrence o f effect ^

Figure 5.1: Dependent (1,2,3,4,7) and Independent Weight Values (5,6,8,9) associated

with Reference Points 1 to 9.
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For a ‘ p  ’ dimensional problem, the total number o f primary weights is calculated as:

Primary weights 2 X + 1 -o -1 )
v>> J

(5.6)

As we can see from Figure 5.1, weights associated with primary reference points 1, 2, 

3, 4 and 7 are primary weights. The secondary weight values at locations 5, 6, 8 and 9 

are expressed as a linear combination o f the primary weights and in particular:

c(w2+w4)
(5.7)

w6 =

w„

_ c(w} + w 4) 
2

c(w2+ w 7)

(5.8)

(5.9)

w9 =
c(w} + w7)

(5.10)

5.2.1 Analogy of the belief variation in a cause and effect relationship for 

the medical field

An analogy has been sought in the medical field to further illustrate the belief- 

variation concept (Meghana R. Ransing, 2002). Generally medical experts 

characterise the strength of a symptom by adjectives e.g. low, medium, high and very 

high fever. Similarly the belief in the proposition that ‘typhoid is a cause for a 

symptom fever’ is also characterised as low, medium, high and very high. Such belief 

variations in a one- dimensional cause and effect relationship can be graphically 

plotted as shown in Figure 5.2. These relationships are easy to visualise in one 

dimension, however, as the number o f symptoms increase the shape of the resulting 

hyper-surface becomes much more complex. For a one-dimensional example, as 

shown in Figures 5.5 and 5.6, if  the chest pain is very high then the belief that the 

patient is suffering from a ‘heart attack’ is high and the belief that the patient has a 

‘hair fracture or small muscular twist in the chest’ is low.



The output value in the following Figures (5.3-5.7) represents a belief value in the 

occurrence o f the cause corresponding to the strength o f the effect. These figures 

show graphical representation of some general one-dimensional cause and effect 

relationship as shown in Figure 5.2.

►( Input node 
(effect)

W.

Figure 5.2: Schematic representation of a ‘single effect -  cause relationship’.
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Belief in sympton Fever

Figure 5.3: Belief that ‘Typhoid’ is a cause for a symptom ‘Fever’.
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The belief value quantifying the occurrence, or non-occurrence, o f an effect 

associated with a particular cause is normalised between +1 to -1, respectively, and 

the belief value, which quantifies the extent o f occurrence o f the cause under 

consideration, is also normalised from zero to unity.

Figure 5.3 showed that the linear variation in belief values, which when the belief 

value representing the strength o f the symptom ‘Fever’ is at its minimum, the belief 

that ‘Typhoid’ is a cause for a symptom ‘Fever’ is also at its minimum. The belief 

value in the occurrence o f the cause is linearly increased as the strength of the 

symptom or effect start to increase.

□.9

0.0
S3
£  0.7

0.6

-0.0 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.0

Belief ill symptlion Fever

Figure 5.4: Belief that ‘Brain Fever’ is a cause for a symptom ‘Fever’.

Figure 5.4 demonstrates a quadratic variation of cause and effect. It shows that the 

belief that ‘Brain Fever (Encephalitis)’ is a cause for symptom ‘Fever’ is at its 

minimum when the belief value representing the strength o f the effect or symptom 

‘Fever’ is at its minimum. The belief value on the occurrence o f the corresponding 

cause starts to increase as the strength o f the effect starts to increase. It is noticed that
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when the strength of the affect is around half o f its maximum value, the rate of 

increase in the belief value slows down and reaches its maximum value when the 

strength o f the effect also reaches its maximum value.

0.9

S 0.4
• S3

0 3
%
pq 0.2

-0.8 -0.6 -0.4 -0.2
Belief ill sympton Chest Pain

0.2 0.4 0.6 0.8

Figure 5.5: Belief that ‘Heart Attack’ is a cause for a symptom ‘Chest Pain’.

Figure 5.5 above also shows a quadratic variation of cause and effect, in which, when 

the belief value representing the strength o f the effect or symptom ‘Chest Pain’ is at 

its minimum, then the belief that ‘Heart Attack’ is a cause for a symptom ‘Chest Pain’ 

is also at its minimum. The belief value in the occurrence of the corresponding cause 

starts to increase slowly as the strength of the effect starts to increase. The belief value 

in the occurrence of the cause suddenly increases and reaches its maximum value as 

the strength o f the effect increases to about half o f its maximum value.
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Figure 5.6: Belief that ‘Hair Fracture in Ribs or Muscular Twist’ is a cause for a
symptom ‘Chest Pain’.

In Figure 5.6, a quadratic variation of cause and effect shows that the belief that ‘Hair 

Fracture in Ribs or Muscular Twist’ is a cause for a symptom ‘Chest Pain’ is at its 

maximum when the belief value representing the strength o f the effect or symptom 

‘Chest Pain’ is at its minimum. Its clearly shows that there is a quick reduction in the 

belief value in the occurrence of the cause as the strength of the effect starts to 

increase. The belief value decreases slowly until its reaches minimum value as the 

strength o f the effect increases to about half o f its maximum value.
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Figure 5.7: Belief that ‘Over Exertion’ is a cause for a symptom ‘Fever’.

Figure 5.7 demonstrates that for a quadratic belief variation in a cause and effect 

relationship, when the belief value representing the strength o f the effect or symptom 

‘Fever’ is at its minimum, then the belief that ‘Over-Exertion’ is a cause for a 

symptom ‘Fever’ is at its maximum. The belief value in the occurrence of the cause 

slowly starts to decrease as the strength of the effect increases. The belief value starts 

to decrease quickly when the strength of the effect reaches about half of its maximum 

and then reaches its minimum when the strength o f the effect is at its maximum.

If more than one effect is associated with a cause, the cause shown in Figures 5.3 to

5.7 would generate a multidimensional hyper surface. Following the previous works, 

it is assumed that these hyper surfaces have similar curvatures to their one­

dimensional counterparts. And as a result, in order to construct such smooth multi­

dimensional hyper-surfaces, Ransing (2002) proposed to use linear, quadratic or cubic 

one-dimensional Lagrange Interpolation polynomials.
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The next section identifies some advantages and limitations o f the current Knowledge 

Hyper-surface method and the remedies for the limitations are presented in the 

following sections.

5.3 ADVANTAGES OF THE CURRENT KNOWLEDGE 

HYPER-SURFACE METHOD

• The current method was capable a priori o f storing any known information 

about the cause-effect relationship within the network and at the same time 

was able to learn from examples. For some selected datasets the proposed 

algorithm has shown superior extrapolation abilities as compared to the multi­

layer neural network. The extrapolation ability was enhanced by the network’s 

ability to constrain the shape o f the resulting multi-dimensional hyper-surface 

to the known variation in the belief values in causes and effects.

• The dependence o f the secondary weight values on the primary weight values 

had reduced the number o f unknowns to an acceptable number.

In the following section some limitations of the Knowledge Hyper-surface method are 

identified and then an improvement has been proposed to overcome these limitations.

5.4 LIMITATIONS OF THE CURRENT KNOWLEDGE 

HYPER-SURFACE METHOD

Despite the superior extrapolation abilities of the current knowledge Hyper-surface 

method, two major limitations have been identified.

• Use of higher ordered polynomials can lead to the ‘over-fitting’ effect as 

observed in other interpolation techniques including neural networks.

• An exponential rise in the belief value (as shown in Figure 5.9) cannot be 

modelled by lower-ordered polynomials such as quadratic and cubic Lagrange 

interpolation polynomials.
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To demonstrate the over-fitting effect, the following dataset is created by choosing a 

few data points and then a maximum of twenty percent noise with normal distribution 

with mean zero and unit standard deviation value is added randomly. The variations 

are plotted using linear-, quadratic- and quartic-shape functions to observe the 

performance o f the current method as shown in Figure 5.8.

Belief values for the Cause 
C1

■■■■■•■ linear

 quadratic
 quartic
O data points

0(/)3
COO
0■C
c
0
1  0.4  
>

fa * * '  ■ < /___._____ L_
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Belief Value in the occurrence of Defect 1 D1

Figure 5.8: Data points plotted with linear-, quadratic- and quartic-shape functions to 

demonstrate the over-fitting effect caused by the current Knowledge Hyper-surface

method.

Figure 5.8 clearly shows that the use o f quartic-shape functions in the current 

Knowledge Hyper-surface method had fitted all the data points perfectly as compared 

to the others, but the resulting shape of the decision hyper-surface is unrealistic and is 

a clear case o f ‘over-fitting’ to the data points.
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Figure 5.9: Exponential increase in the belief value of a cause.

The performance o f the current Knowledge Hyper-surface method is assessed on data 

points generated from curves (a) and (b) in Figure 5.9, and is shown in Figures 5.10 

and 5.11, respectively. It is clear that lower-ordered polynomials cannot model the 

exponential rise in belief values where in the higher-ordered polynomials tend to 

overfit the data points.

Belief values for a Cause

 quadratic
 cubic
 quartic
o  data points
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1 0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Belief Value in the occurrence of a Defect

Figure 5.10: Belief value variation modelled by quadratic, cubic and quartic 

polynomials on a set of data points as shown.
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Figure 5.11: Belief value variation modelled by quadratic, cubic and quartic 

polynomials on a set o f data points as shown.

The following section will discuss the modification that has been proposed to 

overcome the above-mentioned limitations within the existing technique.

5.5 ENHANCEMENT TO THE CURRENT KNOWLEDGE 

HYPER-SURFACE METHOD

In the current Knowledge Hyper-surface method, the multi-dimensional hyper surface 

is constructed from one-dimensional belief curves. Once the shape of each one­

dimensional curve is determined, the shape of the hyper surface gets automatically 

determined. Hence the challenge for the proposed enhancement is to be able to model 

the exponential rise by higher-ordered polynomials without introducing the side- 

effects o f over fitting the possible noise in data points.

This is achieved by a two-stage optimisation process. As can be seen in Figure 5.12, 

first the belief values at the end of points and the midpoint are determined using a 

quadratic Lagrange interpolation polynomial and employing the current Knowledge
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Hyper-surface method. This method determines the primary weight values at the end- 

and mid-reference points. The exponential rise is either in the first half o f the belief 

curve or in the second half.

This effect is modelled by introducing a further reference point between the end- and 

mid-reference point. The primary weights determined previously at end- and mid­

reference points are kept constant and optimal values for the two new reference points

( x] and x2) are determined by a second-stage optimisation process using the current 

knowledge hyper method using fourth-ordered (quartic) Lagrange interpolation 

polynomials.

The primary weight values at the two new reference values are constrained such as 

that they lie between the corresponding primary-weight values at the neighbouring 

end- and mid-reference points as shown in Figure 5.12.

In the proposed new method, midpoints are constructed between each primary weight 

along each dimension such that:

1. 0 (i.e. origin at point 1) <= Xx <= primary-weight at point 2, and

2. Primary-weight at point 2 <= x 2 <= primary-weight at point 3.

O data points
 quadratic

  quartic

 final shape
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-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

Figure 5.12: Shape o f the resulting curve after a two-stage optimisation process. It 

ensures that x } is betw een wx and w2 and x 2 betw een w2 and w3 .
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5.6 THE PERFORMANCE COMPARISON OF THE

PROPOSED METHOD WITH THE CURRENT METHOD 

AND NEURAL NETWORK ON A REAL DATASET

The abilities o f the proposed method to capture the exponential change in the belief 

variation o f the cause when the belief in the effect is at its minimum is compared with 

the outputs from both the current Knowledge Hyper-surface method and a multi-layer 

neural network on a real dataset. This dataset was also used by Ransing (2002). The 

data was collected from ‘Kaye Preistigne’-  a pressure die-casting foundry. A total of 

fourteen defects were identified and associated with forty-three process, material or 

design parameters. The data was collected for similar components over a period of 

one year. A total o f sixty representative examples were finalised. For this case study 

as shown in Table 5.4, sixteen process parameters, three defects and eleven examples 

were chosen. The same information was also used by Ransing (2002).

A belief value in the occurrence o f defects was calculated as corresponding to the 

belief values representing the occurrence and non-occurrence of associated process, 

design and material parameters as given by the experts in the foundry. Three defects 

known as ‘Porosity’, ‘Mismakes’ and ‘Dimensional’ are identified and all defects 

chosen are represented as defects A, B and C, as shown in Table 5.4.

For the purpose o f comparison, the graphical variation of belief surfaces learnt by 

neural network, the current method and the proposed method are shown only on two 

defects which are ‘Porosity’ and ‘Mismakes’. Sixteen associated process, material and 

design parameters were identified to create a neural network with two input nodes 

corresponding to defects ‘A ’ and ‘B ’, and sixteen output nodes corresponding to the 

sixteen process, material and design parameters. The belief values which were used in 

a training dataset are shown in Table 5.4.
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Figure 5.13: Data points used in the training dataset as tabulated in Table 5.4.
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Defects: Defect A Defect B Defect C
Strength o f Defects:

1 0 0
1 0 0
1 1 0
0.7 1 0
1 0.8 0
0.7 1 0
0 1 0
0 1 0
0 1 0
0 0.8 1
0 0.9 1

Output node Numbers: 1 2 3 4 5 6 7 8
Target Output Values:

0.8 0 0 0 1 1 1 1
0.8 0 0 0 1 1 1 1
0.8 0.7 0 0 1 1 1 1
0.8 0.7 0 0 1 1 1 1
0.8 0.7 0 0 1 1 1 1
0.8 0.7 0 0 1 1 1 1
0 0 0 0 0 0 0 0.8
0 0 0 0 0 0 0 0.8
0 0 0 0 0 0 0 0.9
0 0.7 1 0.7 0 0 0 0.7
0 0.8 1 0.7 0 0 0 0.8

Output Node Numbers:9 10 11 12 13 14 15 16
Target Output Values:

1 0.9 1 0.8 0 0 0 0.9
1 0.9 1 0.8 0 0 0 0.9
1 1 1 0.8 0.8 0.7 0 0.9
1 1 1 0.8 0.8 0.7 0 0.8
1 1 1 0.8 0.8 0.7 0 0.9
1 1 1 0.8 0.8 0.7 0 0.8
0 0.9 0.7 0 0.7 0 0 0
0 0.9 0.7 0 0.7 0 0 0
0 0.9 0.7 0 0.8 0 0 0
0 0.9 0 0.7 0.7 0 0 0
0 1 0.7 0.7 0.7 0 0 0

Table 5.4: The training dataset with target output values for the input defects

plotted in Figure 5.13.
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The proposed conjugate gradient neural-network method (CGPR/AG) with five 

hidden nodes is constructed and trained on the training dataset with a learning rate 

equal to 0.4 and with a target error o f 0.001. Since a neural network uses sigmoid 

activation function, the input data for the neural network was scaled between [0, 1]. A 

quadratic variation between input and output relationships was assumed in both the 

current method and the proposed method. Both networks were trained on the training 

dataset as shown in Figure 5.13. Codes for all methods have been written in 

MATLAB.

All networks achieved the target error o f 0.001 and seemed to have learnt the training 

dataset. The speed o f all networks in learning the training dataset is not the main 

concern in this test, as the resulting shape o f the hyper surface is o f importance. The 

belief surface has been plotted for cause ‘The position of gate’ (cause number 8) 

which influences the occurrence o f ‘Porosity’ (defect A) and ‘Mismakes’ (defect B) 

as this data requires to model the exponential rise in the belief values variation.

The variation in the belief value in the occurrence of ‘The position of gate’ for defect 

A, i.e. ‘Porosity’ using the current method and the proposed method is plotted when 

only defect A is connected to the cause (one-dimensional case) and when both defects 

(i.e. defects A and B) are connected to the cause (two-dimensional case). The results 

are shown in Figures 5.14 and 5.15. Since the proposed method is able to model an 

exponential increase in belief values, it was shown to be a better fit to data points 

using the quadratic polynomials as compared to the current method. This is because of 

the introduction o f midpoints which gives an additional degree of freedom to control 

the resulting curve. Furthermore, Figure 5.16 also demonstrates that neural networks 

showed a reasonable fit to these data points. However, as demonstrated by Ransing 

(2002) neural networks do not guarantee a better shape for hyper surfaces. Neural 

networks tend to interpolate better point and exhibit all the limitations as identified by 

Ransing (2002).
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Figure 5.14: The performance o f Ransing’s method and the proposed method for one­

dimensional belief-value variation modelled by quadratic polynomials for defect

Porosity.
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Figure 5.15: The performance of Ransing’s method and the proposed method for 2D 

belief-value variation modelled by quadratic polynomials for defect Porosity.
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Figure 5.16: The performance of neural-network method for a 2D belief-value

variation for defect Porosity.

Figures 5.17, 5.18 and 5.19 show the variation in the belief value in the occurrence of 

the ‘The position of gate’ for defect B, i.e. ‘Mismakes’ using the proposed method, 

the method proposed by Ransing (2002) and neural-network method plotted for both 

one-dimensional and two-dimensional cases. The results demonstrate that the 

proposed method has modelled the exponential rise in the data points better than both 

Ransing’s and the neural-network methods.
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Figure 5.17: The performance of Ransing’s method and the proposed method for ID 

belief variation modelled by quadratic polynomials for defect Mismakes.
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Figure 5.18: The performance of Ransing’s method and the proposed method for 2D 

belief variation modelled by quadratic polynomials for defect Mismakes.
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Figure 5.19: The performance of neural network method for 2D belief-value variation

for defect Mismakes.

Figures 5.20, 5.21 and 5.22 show the variation in the belief values in the occurrence 

of ‘The position o f gate’ for belief values for defects ‘Porosity’ and ‘Mismakes’ using 

the proposed method, Ransing’s method and the neural-network method. It can easily 

be observed that the proposed method has an ability to accurately model the 

exponential rise in the belief values rather than the other two techniques.
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Figure 5.20: 2D quadratic output surface for defects Porosity and Mismakes generated

by Ransing’s method.
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Figure 5.21: 2D quadratic output surface for defects Porosity and Mismakes generated

by the proposed method.
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Figure 5.22: 2D output surface for defects Porosity and Mismakes generated by the

neural-network method.

5.6.1 Importance of the need for accurately monitoring the exponential rise in 
belief values

The major objective of a robust parameter design methodology is to make the system 

insensitive or ‘robust’ to a process variation. In a robust parameter-design method, the 

output variation can be lowered by reducing either the sensitivities to the variation in 

the design factor or sensitivities to noise factors. Figure 5.23 shows how a factor 

setting may influence the variation of the output depending on the occurrence of the 

belief variation. When design factor setting one is chosen, more variation is 

transmitted from a small change design factor value to its output due to the 

exponential rise in the slope of the belief curve. This makes the corresponding output 

more sensitive to the variation o f design factor setting one. Whereas for factor setting 

two even a larger change in values will not influence the output value. Design factor
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setting two thus offers a robust design setting as the process is insensitive to its 

variation. The proposed method has an ability to accurately model the exponential rise 

in the data values. This has significantly improved the applicability o f the Knowledge 

Hyper-surface method in addressing robust design problems.

output

smaller
performance
variation

larger
performance
variation

robust

sensitiviy

Design factor 1 Design Factor 2

Figure 5.23: Robust design principles: assessing the sensitivity o f output variation to

the change in design-factor settings.
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5.7 CONCLUSION

An enhancement to the current Knowledge Hyper-surface method has been proposed 

in this chapter. The method introduces midpoints in the existing shape-function 

formulation so that an exponential rise in the belief-value variation can be modelled 

without introducing the effects of ‘overfitting’. The performance of the proposed 

method was compared with the method proposed by Ransing (2002) and the neural- 

network method on the same casting data used by Ransing. The proposed method 

does not have limitations o f neural-network techniques as identified by Ransing 

(2002).

If the function y  =  f(x) increases exponentially, a small change in the ‘ x  ’ 

value produces a large change in results. The process param eters that show 

such variation need close m onitoring in a m anufacturing process and in robust 

design applications, in particular. Hence, the ability o f  the netw ork to model 

an exponential increase in b e lie f values is a significant step forward in the 

research direction.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE WORK

6.1 RESEARCH CONCLUSION

The work presented in this thesis focuses on improving the computational efficiency 

of neural-network training algorithms and investigates the applicability of its Teaming 

from examples’ feature in improving the performance o f a current intelligent 

diagnostic system. The back propagation (BP) algorithm which is one of the best 

known and widely used learning algorithms for neural networks is reviewed in detail 

and the limitations o f the conventional BP training algorithm is highlighted. Two 

major areas o f improving the BP algorithm are identified in the literature as: (a) the 

use o f heuristic-based techniques that modify network parameters such as learning 

rate value, momentum term, activation function, and topology optimisation; and (b) 

the integration o f (a) with second-order optimisation techniques for minimising the 

error. The ability o f the current method proposed by Ransing (2002) in modelling the 

exponential increase/decrease o f belief values in cause and effect relationships also 

has been discussed in detail and remedies have been recommended. The aspects 

researched and refined were:

• Investigate further on improvements to the BP algorithm proposed by early 

researchers, particularly the work presented by Ransing (2002), on using the 

adaptive-gain variation in improving the training efficiency.

• Discover the misunderstanding o f previous researchers in their claims that the 

training efficiency o f the gradient-descent formulation was improved because 

the gain variation influenced the learning rate.

• Propose a novel approach that improves the search direction and hence 

improves the training efficiency of BP neural-network algorithms.
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• Implement the novel approach into other well-known optimisation methods 

with an objective of improving the computational efficiency o f neural- 

networks training process.

• Revisit the current Knowledge Hyper-surface method proposed by Ransing 

(2002) and identify some limitations posed by the existing version in 

modelling the exponential increase/decrease in belief values in cause and 

effect relationships.

• Propose a strategy that is computationally efficient and able to model the 

exponential increase/decrease in belief values in cause and effects 

relationships without introducing the side-effects o f ‘over-fitting’.

The following conclusions may be drawn from the work presented in this thesis:

1) This study suggests that adaptive-gain variation as introduced by previous 

researchers including Ransing (2002) has a significant effect in improving the search 

direction not the learning rate. A novel method to improve the training efficiency of 

BP algorithms with respect to adaptive-gain variation o f activation function has been 

successfully developed. The proposed method not only coupled the gain update 

expressions for output, as well as the hidden nodes as derived by Ransing (2002), but 

also coupled with the adaptive-leaming rate. Furthermore, the generic nature o f the 

proposed method has been demonstrated by successfully implementing its 

formulation into other well-known optimisation methods to yield significant 

improvements in the computational speed. To the best o f the author’s knowledge, this 

was the first instance when the adaptive gain of activation function has been 

implemented with almost all commonly used gradient-based optimisation algorithms. 

The theoretical formulation of the proposed method has been expressed in terms of 

three major optimisation methods: gradient-descent method; conjugate-gradient 

method; and Quasi-Newton method.

2) For implementation into a computer code, MATLAB programming language 

was chosen as the language that combines comprehensive math and graphics 

functions with a powerful high-level language beyond those provided by languages 

such as FORTRAN and C. The correctness of implementing the code was tested on 

data generated using a simple sine curve. The computed numerical results were
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compared with the previous version introduced by Ransing (2002). The comparison 

showed significant improvements using the proposed method.

3) The efficiency of the proposed method (with respect to computer run time and 

generalisation accuracy) implemented with other optimisation methods was 

investigated by using benchmark problems. The benchmark problems used to verify 

the proposed algorithm are taken from the open literature (Lutz Prechelt, 1994). The 

computed numerical results as well as graphical results of the proposed method were 

compared with other standard algorithms as well as Ransing’s method in terms of 

training efficiency. The results clearly showed that the proposed method substantially 

improved the computational efficiency of the training process. In addition, the 

proposed algorithm is generic, robust and easy to implement into all commonly used 

gradient-based optimisation methods.

4) This study also explored limitations o f the existing Knowledge Hyper-surface 

method proposed by Ransing (2002) in learning cause and effect relationships. A new 

approach to enhance the performance o f the current Knowledge Hyper-surface 

method has successfully been proposed. The theoretical formulation o f the approach 

has been expressed by constructing midpoints between each primary weight along 

each dimension by using a quadratic Lagrange interpolation polynomial. The new 

secondary-weight values, generated due to addition of midpoints, were also 

represented as a linear combination of the corresponding primary/axial weight values. 

An algorithm to constrain the shape o f the surface in two-dimensional and multi­

dimensional cases has been successfully developed in order to produce more realistic 

and acceptable results as compared to the previous version.

5) The ability o f the proposed approach to model the exponential 

increase/decrease in the belief values by using high-ordered polynomials without 

introducing ‘over-fitting’ effects was investigated. The performance o f the proposed 

method in modelling the exponential increase/decrease in belief values was carried 

out on real cases taken from real casting data used by Ransing (2002). The computed 

graphical result o f the proposed method was compared with the current Knowledge 

Hyper-surface and neural-network methods. As a result o f this research achievement, 

it will now be possible to correctly predict the sensitivity o f process-parameter 

variations with the occurrence o f defects. This is an important area of research in a 

robust design methodology.
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In general, the proposed approach has shown significant improvement on 

computational efficiency and at the same has provided industry with an efficient self- 

learning decision-making tool, which has the knowledge o f current/past rejection 

levels within the manufacturing set up. The tool automatically learned a cause and 

effect relationship by using the diagnosis information provided by experts. This 

learning ability has the potential to help managers not only to quantify the influence 

of causes on defects for existing products but also to be very computationally efficient 

for use in manufacturing new quality products.

6.2 PROPOSAL FOR FUTURE WORK

The method developed to improve the current Knowledge Hyper-surface method in 

providing industry with an efficient self-learning decision-making tool has been 

shown to be capable o f giving good results in all case studies in Chapter Five. In 

addition, a novel method was developed to improve the computational efficiency of 

neural-network algorithms as described in Chapters Three and Four. The 

recommendations regarding the further development are given below:

(1) The proposed method significantly improved the computer training efficiency 

as demonstrated in Chapters Three and Four, the improvement is actually the result of 

automatically varying gain parameters and learning rates during training. It was also 

noticed that the success of neural-network models largely depended on their 

architecture, which is usually determined by a trial and error process (E. Cantu-Paz, 

2003). It would be useful to develop an automatic and effective neural-networks 

training model, as shown in Figure 6.1, that combines the proposed method together 

with techniques such as network pruning (K. Suzuki et a i,  2001) which can 

automatically optimise their network architecture. Furthermore the implementation of 

this combination into all gradient-based optimisation methods can simplify network 

training without human intervention while at the same time further improve the 

computational efficiency.

(2) A good method has been successfully developed by Smart and Zhang (2004) 

which integrated the gradient-descent method with genetic programming (GP) in 

investigating for object-classification problems. The results showed that the new
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method outperformed the basic GP method on all cases in both classification accuracy 

and training generations. However, that method was only tested on the gradient- 

descent method. It is also possible to explore the effect o f other gradient-based 

methods as proposed in Chapters Three and Four with GP on even more difficult 

image-classification problems such as face-recognition problems and satellite image- 

detection problems.

(3) The enhancement proposed to the Knowledge Hyper-surface method can be 

extended to methods used in solving problems that are generally addressed by 

Taguchi’s methods (S.M. Phadke, 1989). The ability o f the method to model an 

exponential change will also help in gaining an insight into the ‘tolerance design’ 

process for various machine parameters. These are a few immediate milestones that 

need to be achieved in the process of realising the dream of designing an ‘Intelligent 

and Autonomous Foundry’ o f the future.

Network pruning (K. Suzuki 
et al., 2001)

Gradient-based 
optimisation method

The proposed method (Nazri 
Mohd Nawi et al., 2006)

Figure 6.1: Automatic neural-networks training model.
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AI: The performance comparison of the proposed method with 

other optimisation methods
This Appendix is to illustrate the performance o f the proposed training method 

introduced in Chapter Three implemented with other optimisation methods. The 

performance o f the proposed method is tested on Sine curve.

1.1 Sine curve w ithout noise

O datapoints 
—  C G PR  
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Figure A I .l : Output o f neural network trained to learn a sine curve using the proposed 
con jugate  g rad ien t m ethod w ith P o lak-R ib iere  fo rm ulation .
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Figure AI.2: Error versus number o f epochs required to achieve the target error of
0.001 for conjugate gradient m ethod w ith  P o lak -R ib iere  fo rm ulation .
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Comments on A I.l and AI.2: As can be seen from Figure A ll. 1 both methods 

performed almost the same results in learning the data sets. However the proposed 

method showed a faster result by taking 315 epochs as compared to standard 

algorithm which need 365 epochs to reach the target error.
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Figure AI.3: Output o f neural network trained to learn a sine curve using the proposed 
con jugate  g rad ien t m ethod w ith Broyden-Fletcher-Goldfarb-Shanno form ulation .
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Figure A1.4: Error versus number o f epochs required to achieve the target error of 
0.001 for conjugate gradient m ethod w ith Broyden-Fletcher-Goldfarb-Shanno

form ulation .
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Comments on AI.3 and AI.4: Both methods performed same generalisation results 

but the proposed (BFGS/AG) method significantly reduce number o f epochs almost 

twice faster as compared to standard algorithm (BFGS) with unity gain value.
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Figure AI.5: Output o f neural network trained to learn a sine curve using the proposed 
conjugate  g rad ien t m ethod w ith  Davidon-Fletcher-Power form ulation .
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Figure AI.6: Error versus number o f epochs required to achieve the target error of
0.001 for conjugate gradient m ethod w ith  Davidon-Fletcher-Power form ulation .
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Comments on AI.5 and AI.6: The proposed method (DFP/AG) outperformed the 

standard algorithm (DFP) by taking 1932 epochs to reach the target error as compared 

to 2546 needed by the standard algorithm (DFP).

II.2 Sine curve with noise
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Figure AI.7: Output o f neural network trained to learn a sine curve with 20% random 
Gaussian noise using the proposed method w ith  F le tcher-R eeves form ulation .
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Figure AI.8: Error versus number o f epochs required to achieve the target error of
0.01 using conjugate gradient method w ith F le tcher-R eeves form ulation .
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Comments on AI.7 and AI.8: Both methods performed almost the same results on 

generalisation. However, the proposed method (CGPR/AG) only took 111 epochs to 

achieve the target error as compared to the standard algorithm (CGPR) which took 

167 epochs.
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Figure AI.9: Output o f neural network trained to learn a sine curve with 20% random 
Gaussian noise using the proposed method w ith Davidon-Fletcher-Power

form ulation .
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Figure AI.10: Error versus number o f epochs required to achieve the target error of
0.01 using conjugate gradient method w ith Davidon-Fletcher-Power form ulation .
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Comments on AI.9 and AI.10: The proposed method (DFP/AG) significantly 

reduced the number o f  epochs and outperformed the standard algorithm (DFP) for 

almost 1.5 times faster without losing the generalisation performance.

1       e
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0,0 0.4 0.6 10.8
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Figure A I.l 1: Output o f neural network trained to learn a sine curve with 20% random 
Gaussian noise using the proposed method w ith  Broyden-Fletcher-Goldfarb-Shanno

form ulation .
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Figure A I.l 2: Error versus number o f epochs required to achieve the target error of 
0.01 using conjugate gradient method w ith  Broyden-Fletcher-Goldfarb-Shanno

form ulation .

Comments on AI.10 and A I.l 1: The proposed method (BFGS/AG) outperformed the 

standard algorithm (BFGS) in term o f number o f epochs with ration o f 1.4.
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All: Comparison of the proposed method on benchmark problems

This Appendix is to illustrate the detail calculation procedure for evaluating the 

performance o f the proposed method on benchmark problems as mentioned in 

Chapter Four.

Table II.l: Detail version of the Conjugate Gradient with Polak-Ribiere

formulation performance for Thyroid problem

traincgp CGPR CGPR-AG

Trials Epoch
CPU
time accuracy epoch

CPU
time accuracy epoch

CPU
time accuracy

1 7 5.44 93.48 12 4.89 90.37 10 3.36 89.10
2 15 6.13 90.74 10 3.42 91.17 9 2.08 89.96
3 248 44.20 92.46 10 3.42 90.14 9 3.94 91.01
4 11 4.31 92.39 11 3.80 90.34 6 2.47 88.65
5 6 4.17 89.89 16 6.56 90.30 11 2.67 90.22
6 12 4.90 89.79 24 8.20 90.68 11 4.11 89.12
7 24 5.72 90.90 10 3.38 90.16 7 3.20 93.95
8 10 3.89 92.17 11 4.44 90.26 10 3.61 92.92
9 165 30.52 91.77 12 4.23 91.02 7 2.50 91.82
10 - - - 12 4.23 91.01 9 3.22 89.88
11 286 48.33 92.44 10 3.02 91.03 11 3.55 91.44
12 48 10.88 92.32 12 5.22 90.50 11 3.61 89.41
13 101 18.84 89.68 11 3.91 90.04 8 2.99 89.94
14 7 2.98 91.55 11 4.89 90.57 10 4.17 88.28
15 8 3.03 89.61 10 3.53 90.36 5 1.64 88.34
16 232 45.30 92.14 14 6.23 91.88 5 1.63 92.84
17 6 3.28 93.48 14 6.36 90.58 7 2.34 88.89
18 18 5.09 94.03 11 4.06 90.08 4 1.30 89.85
19 - - - 15 6.48 90.88 15 4.89 88.42
20 - - - 15 6.70 90.57 16 5.94 90.54
21 139 24.44 90.77 18 7.81 90.26 7 1.59 90.45
22 5 2.52 90.45 11 3.89 91.28 8 3.41 92.70
23 343 61.19 92.81 21 6.11 91.11 9 3.70 90.00
24 6 3.16 90.03 17 6.77 90.57 7 2.80 90.89
25 30 7.48 89.73 13 4.50 90.31 9 1.94 89.08
26 4 4.94 92.32 13 5.56 90.48 5 1.17 90.92
27 8 3.41 91.89 15 6.77 91.65 5 1.06 90.50
28 6 3.23 93.33 10 3.58 90.02 7 1.53 90.80
29 - - - 14 5.00 90.04 10 2.36 92.74
30 - - - 10 5.47 90.20 8 1.73 90.29
31 6 2.48 91.50 12 2.70 91.02 11 2.36 92.77
32 20 5.75 90.30 12 2.75 91.01 9 2.03 91.23
33 22 5.66 89.57 17 5.98 89.96 8 1.86 89.12
34 - - - 15 5.30 90.86 15 3.55 85.81
35 76 13.92 90.22 16 5.95 90.38 10 2.28 90.47
36 12 4.28 94.39 19 6.88 92.02 12 2.81 91.47
37 7 2.94 91.18 16 5.84 90.22 15 3.59 90.14
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38 162 30.72 90.12 13 5.95 90.68 0 .8 9 9 0 .86

39 11 3.9 1.67 90.35

40 2.69 91.39

41 27 6.6 0.91 91.07

42 17 4.7 1.55 86.96

43 3.4 1.49 81.75
44 2.3 1.52 94.69

45 151 27.: > 2.25 89.58
46 34 7.0 3.00 84.31
47 2.6 r 4.02 93.47
48 16 4.2 > 3.11 90.67

49 2.1 1.69 90.43
50 2.3 I 2.56 91.58
51 2.7 3.11 90.21

52 19 5.0 3.36 90.03
53 2.9 1.33 89.79
54 2.5 3.08 90.27
55 1.45 90.78
56 2.5 4.13 90.27
57 3.0 3.53 90.84
58 2.6 3.11 91.23
59 11 3.5 3.11 89.44
60 227 34.( 3.05 89.63
61 2.9 1.50 91.53
62 35 6.8 2.69 91.51
63 20 5.8 3.42 90.76
64 2.1 2.30 89.17
65 2.3 3.77 89.86
66 1.28 89.66
67 2.9 2.44 90.21
68 2.7 2.16 91.16
69 2.5 2.77 91.39
70 18 4.5 1.91 92.37
71 2.7 2.11 90.77
72 2.5 3.28 90.30
73 2.3 2.70 93.10
74 2.6 2.81 90.27
75 2.3 2.19 89.99
76 11 2.8 1.95 91.56
77 13 3.2 2.24 91.31
78 10 2.9 2.89 90.44
79 17 4.3
80 10 3.0 2.88 90.34
81 2.3 2.22 90.33
82 17 4.0 2.17 89.68
83 2.5 2.38 92.43
84 2.7 1.41 88.32
85 3.1 1.97 92.61
86 2.6 1.88 90.91
87 25 4.7; 3.02 90.29
88 10 3.2:
89 2 .2 : 3.33 91.70
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90 21 4.59 90.58 . . . 14 3.08 90.94

91 18 4.25 89.74 13 3.99 91.34 8 1.66 91.69

92 6 2.48 92.48 13 4.55 91.62 17 3.61 91.20

93 5 2.20 90.65 11 3.48 91.18 15 3.13 87.68

94 5 2.08 90.32 13 4.00 91.47 - - -
95 10 3.13 90.73 11 3.39 91.63 10 2.47 88.77

96 9 3.17 92.61 23 8.39 91.35 8 1.81 90.93

97 18 4.99 91.38 12 3.72 91.73 12 2.64 89.92

98 43 7.61 92.68 11 3.59 92.52 12 3.06 91.67

99 10 2.94 94.33 12 3.67 91.06 8 3.19 89.72

100 10 2.80 92.67 10 3.05 91.50 7 1.72 90.33

Mean 34 7.46 91.64 13 4.62 89.85 10 2.58 90.37
SD 66 10.88 3.28 1.85 3.53 1.01

succ. 91 94 97
fail 9 6 3
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Table II.2: Detail version of the Conjugate Gradient with Polak-Ribiere

formulation performance for Cancer problem

traineew CGPR CGPR-AG

Trials epoch
CPU
time accuracy epoch

CPU
time accuracy epoch

CPU

time accuracy
1 9 4.20 89.31 25 1.11 89.73 14 0.63 89.50
2 11 4.34 89.56 27 1.19 89.66 21 0.94 98.06
3 45 4.77 88.45 42 1.91 89.87 9 0.38 89.75
4 20 3.45 87.57 25 1.24 89.69 23 1.03 89.76
5 16 2.78 89.37 41 2.09 89.91 19 0.84 98.10
6 - - - 24 1.08 89.87 16 0.70 89.75
7 12 2.02 89.87 32 1.58 89.71 28 1.23 89.89
8 43 3.21 89.33 24 1.06 89.66 20 0.91 89.95
9 13 1.94 89.55 25 1.11 89.73 9 0.38 89.58
10 32 3.34 88.11 43 2.14 89.68 14 0.61 89.74
11 16 2.33 89.78 29 1.30 89.77 35 1.61 89.92
12 18 2.00 89.51 27 1.22 89.77 29 1.33 89.74
13 71 3.63 89.51 25 1.11 98.10 27 1.22 89.73
14 17 2.88 89.66 28 1.41 89.79 31 1.41 89.88
15 18 2.75 89.93 68 3.34 89.78 26 1.19 89.73
16 12 2.59 89.78 49 2.23 89.95 19 0.84 89.74
17 15 3.53 89.75 27 1.19 89.77 28 1.27 95.01
18 17 5.72 89.12 23 1.11 89.78 9 0.38 89.81
19 21 5.23 88.00 33 1.63 89.77 23 1.05 89.94
20 11 2.77 98.03 42 1.94 89.78 23 1.05 89.75
21 - - - 24 1.08 89.75 17 0.75 89.61
22 15 2.75 89.55 25 1.23 89.70 21 0.95 89.88
23 14 2.45 89.71 27 1.34 89.73 25 1.13 89.83
24 13 2.64 98.01 26 1.16 89.63 60 2.89 89.82
25 21 2.19 89.58 46 2.11 89.75 19 0.86 89.66
26 19 2.33 89.84 23 1.03 89.68 32 1.47 89.78
27 17 2.88 89.60 23 1.02 89.90 . _ -
28 34 3.22 87.45 26 1.16 89.69 24 1.09 89.69
29 52 3.47 89.49 24 1.16 89.85 29 1.33 89.94
30 31 2.80 89.85 25 1.22 89.75 19 0.86 89.92
31 13 2.20 98.07 106 5.39 89.83 60 2.89 95.49
32 16 2.39 89.57 - - - 23 1.11 89.72
33 18 2.39 89.89 84 4.22 89.83 19 0.86 89.94
34 27 2.48 89.61 26 1.28 89.69 29 1.33 89.85
35 45 4.22 89.57 42 1.92 89.81 92 4.73 89.81
36 145 5.86 89.73 26 1.31 89.80 20 0.91 89.84
37 12 2.11 89.50 24 1.08 89.69 33 1.50 95.34
38 22 2.39 89.83 24 1.08 89.80 24 1.08 89.68
39 25 2.34 89.45 31 1.41 89.79 18 0.81 89.80
40 28 2.77 88.55 38 1.91 89.77 27 1.22 89.83
41 12 2.03 89.53 32 1.59 89.75 21 0.92 89.68
42 16 2.08 89.57 50 2.52 89.82 17 0.77 89.96
43 34 2.61 89.30 24 1.16 89.66 43 2.00 89.89
44 14 2.38 89.43 25 1.11 89.75 15 0.69 89.43
45 16 2.17 89.80 39 1.78 89.72 14 0.61 89.73
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46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
_6J_
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79
80

11
82
83

84
85
86
87
88
89
90
91
92
93
94
95
96
97

36 2.72 89.65 31 1.53 89.86 12 0.52 89.88

22 2.33 89.81 44 2.20 89.82 16 0.69 89.81

52 3.00 89.87 22 1.08 89.80 25 1.14 89.73

22 2.45 89.55 37 1.67 89.78 33 1.53 89.61

19 2.09 89.45 34 1.55 89.74 35 1.61 98.01

12 1.80 89.69 22 1.08 89.62 11 0.47 89.90

18 2.52 89.38 35 1.78 89.98 34 1.56 98.15

17 2.19 89.42 43 2.19 89.71 13 0.58 89.75

12 2.50 89.21 23 1.14 89.73 18 0.78 89.74

12 2.00 89.90 22 1.02 89.66 18 0.81 89.62

23 1.17 89.81 24 1.09 89.78

12 2.95 89.76 30 1.33 89.95 20 0.91 89.78

22 2.41 89.60 24 1.06 89.77 19 0.84 89.63

21 1.05 98.13 22 1.00 89.89

18 2.02 89.77 28 1.24 89.74 31 1.42 89.81

18 2.11 89.42 29 1.28 89.71 14 0.63 89.78

260 9.02 98.13 46 2.05 89.85 11 0.47 89.89

33 2.83 89.69 24 1.03 89.73 20 0.88 89.72

15 2.02 89.75 28 1.38 89.69 13 0.58 89.76

16 1.89 89.88 34 1.52 89.64 41 1.89 89.79

59 3.19 89.68 103 5.20 89.70 37 1.72 89.79

34 4.01 89.12 27 1.20 89.78 23 1.05 89.80

19 2.03 89.69 23 1.02 89.65

10 2.44 89.49 33 1.47 89.72 22 1.00 89.81
12 1.86 89.60 24 1.17 89.73 20 0.88 89.78

39 3.09 89.74 39 1.95 89.76 23 1.05 89.78

29 2.45 89.57 37 1.86 89.71 28 1.28 89.69

19 2.13 89.66 28 1.39 89.58 13 0.56 89.85

273 8.47 98.00 77 3.86 89.68 33 1.53 89.79

12 2.81 89.84 22 1.08 89.88 37 1.73 89.83

18 2.09 89.71 35 1.78 89.65
12 1.80 98.07 43 2.19 89.73 32 1.63 89.95

20 2.25 89.85 26 1.17 89.73 25 1.11 89.86

21 2.39 89.87 21 1.05 89.76 15 0.66 89.72

1.92 98.41 29 1.30 89.81 29 1.47 89.78

22 2.45 89.91 26 1.16 89.67 12 0.53 89.91

128 5.64 89.62 28 1.38 89.75 17 0.77 89.89

19 2.16 89.45 27 1.20 89.76 17 0.75 89.78

19 3.72 89.90 28 1.39 89.84 27 1.22 89.75

89 4.39 89.74 32 1.44 89.74 29 1.31 98.12

12 2.19 89.82 22 1.11 89.81 15 0.66 89.74

16 2.08 89.73 23 1.02 89.61 25 1.25 89.87

12 1.92 98.47 31 1.55 89.90 14 0.61 89.82

14 2.06 89.83 24 1.17 89.69 21 0.97 90.00

15 2.13 98.11 29 1.28 89.76 25 1.14 89.88

11 2.03 98.14 37 1.86 89.80 15 0.67 89.70

53 3.25 89.75 22 1.11 89.76 31 1.42 89.96

10 2.00 89.97 24 1.14 89.77 20 0.89 89.78

12 1.92 89.77 51 2.63 89.70 15 0.64 89.77

16 2.14 89.56 25 1.23 89.81 24 1.09 89.89

12 6.28 98.00 32 1.45 89.68 14 0.61 89.73
16 2.19 89.67 22 1.08 89.73 12 0.53 89.68
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98 27 2.58 89.70 28 1.27 89.63 25 1.13 89.87
99 21 2.31 89.38 33 1.50 89.70 13 0.56 89.55
100 11 2.56 89.74 24 1.05 89.79 33 1.50 89.89

Mean 29 2.82 90.49 33 1.56 89.93 24 1.08 90.38
SD 41 1.38 15.11 0.80 11.58 0.60

succ. 98 98 98
fail 3 2 2
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Table II.3: Detail version of the Conjugate Gradient with Fletcher-Reeves

formulation performance for Diabetes problem

train eg f CGFR CGFR-AG

Trials epoch
CPU
time accuracy epoch

CPU
time accuracy epoch

CPU
time accuracy

1 64 6.28 91.58 81 3.94 91.36 29 1.30 92.32

2 66 5.30 91.81 47 2.16 92.04 38 1.70 91.78

3 _ - . 48 2.19 90.89 25 1.16 88.70

4 104 3.39 91.74 46 2.09 91.31 29 1.28 92.68

5 77 3.59 92.25 50 2.28 91.50 58 2.70 90.92

6 76 4.81 92.04 59 2.78 90.25 27 1.33 90.96

7 106 3.48 92.08 114 6.92 58.17 - - -
8 229 5.88 91.90 58 2.72 90.38 17 0.75 92.56

9 32 2.13 92.49 35 1.58 91.37 48 2.17 90.89

10 25 2.20 92.19 67 3.19 91.52 48 2.20 89.39

11 359 8.72 91.72 65 3.13 90.84 46 2.09 89.82

12 60 2.78 92.31 57 2.67 91.36 37 1.66 88.63

13 63 2.81 92.33 24 1.06 91.62 22 0.97 91.83

14 72 2.92 91.77 39 1.75 91.74 28 1.25 92.64

15 72 2.58 91.53 26 1.16 90.48 43 1.92 90.19

16 75 2.69 92.34 54 2.52 90.30 61 2.89 90.04

17 61 2.36 92.57 66 3.17 90.80 71 3.39 88.73
18 82 2.95 91.95 46 2.13 90.97 22 0.97 92.67

19 60 2.39 92.91 92 5.36 92.59 46 2.13 89.54
20 27 2.05 91.22 54 2.47 91.35 46 2.08 90.54

21 31 2.31 91.35 47 2.39 90.19 32 1.61 91.53
22 251 8.41 91.59 46 2.33 90.45 44 2.17 91.85
23 64 3.05 91.10 34 1.69 91.67 33 1.63 92.16
24 67 2.84 91.51 47 2.39 84.15 28 1.38 90.04
25 105 3.73 91.22 27 1.34 92.10 55 2.89 85.45

26 47 2.99 91.28 39 1.91 91.36 26 1.31 92.16
27 27 2.16 91.16 77 4.02 91.17 44 2.31 90.43

28 75 3.14 91.03 40 2.02 89.93 37 1.88 93.01

29 56 2.80 91.49 58 3.00 90.83 46 2.41 93.22

30 73 3.13 91.31 38 1.94 91.20 28 1.39 90.99

31 524 16.91 91.35 54 2.88 90.56 54 2.80 89.29

32 182 7.81 91.23 43 2.19 91.48 38 1.94 91.41

33 63 5.11 91.38 46 2.33 90.96 25 1.23 92.47

34 70 3.84 91.38 45 2.41 90.82 37 1.77 92.45

35 73 3.33 91.42 36 1.80 91.08 21 1.06 91.93

36 63 2.97 91.51 32 1.63 91.14 42 2.08 90.02

37 115 4.72 91.39 55 2.94 90.26 53 2.77 90.29

38 66 3.33 91.25 49 2.55 90.73 43 2.22 93.22

39 83 3.39 91.23 66 3.58 90.25 28 1.49 92.68

40 39 2.88 91.51 37 1.91 91.11 28 1.39 91.65
41 60 3.49 91.51 - - - 53 2.77 92.19
42 28 3.41 91.25 51 2.67 91.51 41 2.09 90.99

43 82 3.34 91.15 45 2.25 88.87 54 2.86 91.60
44 43 2.70 91.21 64 3.50 91.40 - - -
45 144 4.98 91.30 79 4.63 82.36 34 2.55 90.32
46 - - - 66 3.39 90.84 20 0.99 91.93
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47 92 3.59 91.43 45 2.23 91.22 19 0.92 91.91

48 120 4.30 91.34 54 2.72 91.18 20 0.95 91.93

49 121 4.56 91.46 56 2.78 90.11 64 3.50 90.74

50 74 3.38 91.18 76 4.25 91.12 24 1.20 92.50

51 61 2.73 91.19 51 2.66 90.38 73 4.13 90.95

52 67 3.09 91.18 54 2.84 91.93 33 1.66 91.70

53 208 6.34 91.48 43 2.19 91.82 20 0.99 92.39

54 60 2.83 91.31 61 3.30 92.04 46 2.09 90.73

55 57 3.00 91.17 85 4.81 89.17 35 1.77 91.70

56 236 7.88 91.58 37 1.86 91.19 19 1.91 93.60
57 340 10.58 91.22 40 2.02 89.67 39 1.91 91.77

58 132 4.73 91.80 71 3.98 89.27 51 2.56 90.39

59 215 6.20 91.23 82 4.67 91.00 48 2.45 90.18

60 60 2.70 91.45 23 1.13 92.64 21 0.91 91.55

61 345 10.86 91.17 51 2.66 91.36 34 1.74 91.86
62 25 3.61 91.34 49 2.53 90.19 - - -
63 97 3.73 91.26 51 2.67 90.93 33 1.69 92.87
64 61 2.61 91.38 - - - 43 2.17 92.34

65 61 2.77 91.69 43 2.23 91.38 56 2.83 88.19
66 . . - 64 3.41 90.21 42 2.14 90.01
67 55 2.86 91.25 57 3.09 89.98 48 2.53 90.82
68 70 3.06 91.44 57 3.06 93.38 55 2.84 80.46
69 28 2.19 91.16 20 0.95 91.71 52 2.61 90.88

70 64 3.02 91.33 64 3.31 92.01 23 1.14 92.22
71 62 2.70 91.34 51 2.55 90.91 22 1.08 92.10
72 69 3.16 91.41 42 2.11 90.60 39 1.99 91.50
73 86 3.50 91.21 55 2.75 89.69 26 1.27 92.87
74 59 2.77 91.59 40 1.97 91.08 47 2.41 91.12
75 25 2.28 91.49 43 2.13 91.00 47 2.42 90.30
76 32 2.34 91.43 29 1.39 91.81 19 0.92 88.86
77 90 3.69 91.24 102 5.99 71.14 44 2.19 91.00
78 121 4.56 91.32 37 1.84 92.93 37 1.86 80.36
79 59 2.77 91.29 47 2.34 90.54 42 2.13 89.47

80 117 4.81 91.64 42 2.08 90.19 60 3.27 91.12
81 25 2.05 91.20 - - - 28 1.42 92.05
82 59 2.97 91.71 25 1.23 92.08 36 1.89 91.69
83 62 5.38 91.77 66 3.61 90.97 - - -
84 . . . 52 2.69 90.38 65 3.55 90.81
85 232 7.56 91.53 26 1.30 91.44 27 1.31 91.75
86 49 2.97 91.42 27 1.33 91.64 18 0.89 93.11
87 60 2.55 91.23 51 2.67 72.74 23 1.14 93.11
88 102 3.86 91.29 36 1.81 90.92 29 1.42 92.28
89 115 3.89 91.85 55 2.94 89.87 63 3.39 89.59

90 76 3.39 91.28 45 2.27 90.60 22 1.09 91.55

91 60 2.98 91.62 21 1.03 90.74 15 0.73 92.18
92 66 3.02 91.09 41 2.08 92.79 46 2.27 90.22
93 65 2.91 91.39 61 3.38 90.83 70 3.91 87.02
94 223 6.86 91.42 30 1.50 91.97 55 2.92 89.93
95 70 3.14 91.10 39 1.99 91.28 50 2.59 90.05
96 46 2.69 91.32 50 2.59 90.22 52 2.59 90.47
97 32 2.30 91.23 54 2.88 90.05 52 2.72 83.15
98 - - - 70 3.88 75.92 114 6.70 87.54
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99 390 11.89 91.58 50 2.59 90.44 40 2.02 81.91
100 67 3.00 91.52 39 1.98 90.79 31 1.56 90.75

Mean 98 4.03 91.50 51 2.61 89.97 40 2.01 90.70
SD 87 2.48 17.03 1.11 15.94 0.97

succ. 95 97 96
Fail 5 3 4
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Table II.4: Detail version of the Conjugate Gradient with Polak-Ribiere

formulation performance for IRIS problem

Trials
1

10
11
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Epoch
13 
18
14
13 

17 
29
14 
42 

37 
57 
45

22
17
11
24
91
11
21

16
44
55
16
37
14 
26 

384 
17 
33 
55 

16 
470 
17 

16 

47 
39
15
16 

129

17 
21 
27
18 
49

train cgp 
CPU 
time accuracy epoch

CGPR 
CPU 
time accuracy

3.5
2.5
3.0
2.1 
2.8
2.4 

2.2
2.4
2.5 
2.8 
2.8

2.1

2.4
2.3
2.3 
3.7 
2.0
2.3

2.2
3.1 
2.8 
2.0 
2.8
2.3
2.5
10.5
2.1
2.5
2.9
2.3 

12.c 
2.1 
2 .2 '

2.9 
2.7: 
2 .0:
2.01
4.2

2 .2:

2 .2!
3.2:
1.9)
4.3I

epoch
f__
I

l_

CGPR-AG 
CPU 
time
0.63
0.94
0.38
1.03
0.84
0.70
1.23
0.91
0.38
0.61
1.61
1.33 
1.22 
1.41
1.19 

0.84 
1.27 
0.38
1.05
1.05 
0.75 
0.95 
1.13
2.89 
0.86 
1.47
1.19 
1.09
1.33 
0.86
2.89 
1.11 
0.86
1.33 
4.73 

0.91 
1.50 

1.08 
0.81 
1.22 
0.92 
0.77 
2.00 
0.69 

0.61 
0.52

accuracy
97.50 

98.06
97.75
97.76 
98.10 
97.75 

97.89
97.95 

97.58
97.74
97.92
97.74
97.73
97.88
97.73
97.74 
95.01
97.81
97.94
97.75 
97.61
97.88
97.83
97.82 
97.66
97.78
97.79 
97.69
97.94
97.92 
95.49
97.72
97.94 
97.85 

97.81
97.84 
95.34
97.68
97.80
97.83
97.68
97.96
97.89 
97.43
97.73 
97.88
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47 22 3.17 95.22 21 0.94 97.82 16 0.69 97.81

48 21 2.42 95.92 19 0.84 97.80 25 1.14 97.73

49 13 2.80 95.06 37 1.67 97.78 33 1.53 97.61

50 42 2.80 95.30 34 1.55 97.74 35 1.61 98.01

51 18 2.16 95.73 18 0.80 97.62 11 0.47 97.90
52 101 3.69 95.76 17 0.74 97.98 34 1.56 98.15
53 . - - 22 0.97 97.71 13 0.58 97.75
54 10 2.19 95.05 17 0.75 97.73 18 0.78 97.74

55 37 2.95 97.51 - - - 18 0.81 97.62

56 71 3.86 95.22 19 0.88 97.81 24 1.09 97.78
57 26 2.41 95.38 30 1.33 97.95 20 0.91 97.78
58 41 2.67 96.37 24 1.06 97.77 19 0.84 97.63
59 - - - 15 0.66 98.13 22 1.00 97.89
60 11 2.17 95.67 28 1.24 97.74 31 1.42 97.81
61 11 5.58 95.25 29 1.28 97.71 14 0.63 97.78
62 . - - 46 2.05 97.85 11 0.47 97.89
63 11 2.16 95.11 24 1.03 97.73 20 0.88 97.72
64 33 2.42 96.25 20 0.88 97.69 13 0.58 97.76
65 78 3.30 98.92 34 1.52 97.64 41 1.89 97.79
66 12 3.06 95.86 103 5.20 97.70 37 1.72 97.79
67 47 2.81 95.51 27 1.20 97.78 23 1.05 97.80
68 9 3.27 96.31 25 1.11 97.80 23 1.02 97.65
69 27 4.73 95.29 33 1.47 97.72 - - -

70 9 3.44 95.38 19 0.83 97.73 20 0.88 97.78
71 - - - 18 0.78 97.76 23 1.05 97.78
72 12 3.05 95.22 20 0.89 97.71 28 1.28 97.69
73 30 2.42 96.95 18 0.78 97.58 13 0.56 97.85
74 18 2.03 95.02 77 3.86 97.68 - - -

75 23 2.28 95.20 17 0.75 97.88 37 1.73 97.83
76 14 2.39 95.02 18 0.77 97.65 42 1.95 97.75
77 47 3.42 95.91 - - - 9 0.38 97.95
78 20 1.92 96.40 26 1.17 97.73 25 1.11 97.86
79 48 2.77 97.50 19 0.84 97.76 15 0.66 97.72
80 18 2.64 97.82 29 1.30 97.81 7 0.28 97.78
81 39 2.42 96.35 26 1.16 97.67 12 0.53 97.91
82 - . - 21 0.94 97.75 17 0.77 97.89
83 21 2.77 95.10 27 1.20 97.76 17 0.75 97.78
84 33 2.94 97.22 21 0.94 97.84 27 1.22 97.75

85 68 3.50 96.73 32 1.44 97.74 29 1.31 98.12
86 78 3.22 96.38 20 0.88 97.81 15 0.66 97.74
87 40 2.80 97.62 23 1.02 97.61 9 0.41 97.87

88 30 4.30 95.56 16 0.70 97.90 14 0.61 97.82
89 - - - - - - 21 0.97 98.00
90 10 3.05 95.02 29 1.28 97.76 25 1.14 97.88
91 16 2.38 95.88 20 0.89 97.80 15 0.67 97.70
92 10 3.16 95.41 12 0.52 97.76 31 1.42 97.96
93 20 2.20 96.49 21 0.94 97.77 20 0.89 97.78
94 - - - 18 0.77 97.70 15 0.64 97.77
95 32 4.61 98.98 22 0.95 97.81 24 1.09 97.89
96 21 2.19 95.93 32 1.45 97.68 . - -

97 60 2.73 95.52 22 0.97 97.73 12 0.53 97.68
98 16 5.30 96.57 28 1.27 97.63 25 1.13 97.87
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99 12 2.16 95.01 . . 13 0.56 97.55
100 35 2.27 96.62 24 1.05 97.79 33 1.50 97.89

Mean 39 2.99 96.28 28 1.25 97.77 23 1.06 97.73
SD 63 1.67 16.33 0.86 11.97 0.62

Succ. 90 96 97
fail 10 4 3
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Table II.5: Detail version of the Broyden-Fletcher-Goldfarb-Shanno

performance for 7 bit Parity problem

trainbfg BFGS BFGS-AG

Trials epoch
CPU
time accuracy epoch

CPU
time accuracy epoch

CPU
time accuracy

1 138 4.22 91.32 86 3.67 91.02 89 4.00 90.29

2 167 7.25 90.78 84 3.31 91.02 84 3.66 90.11

3 213 5.70 91.47 85 3.41 91.17 82 3.44 90.02

4 67 2.58 87.05 87 3.81 89.06 84 3.48 89.02

5 286 6.94 89.82 85 3.75 91.07 85 3.58 90.06

6 70 2.80 84.95 86 3.78 89.00 84 3.44 91.05

7 228 6.08 90.56 90 3.95 90.05 85 3.64 91.02

8 84 3.14 89.18 80 3.48 90.01 81 3.66 89.11

9 179 4.91 92.50 . - - 87 3.92 91.02

10 186 4.97 93.33 84 3.67 90.11 84 3.83 91.24

11 239 5.91 91.90 94 4.20 90.04 85 3.81 90.02

12 127 3.59 90.26 95 4.24 90.50 86 3.84 91.02

13 409 9.78 84.27 98 4.39 91.04 84 3.80 90.06

14 258 6.50 89.14 96 4.28 91.07 82 3.67 91.05

15 76 2.70 90.81 93 4.11 89.03 84 3.77 89.02

16 218 5.58 82.47 90 3.69 91.22 98 4.50 90.11
17 303 7.41 89.00 91 3.89 91.09 83 3.69 91.02

18 109 3.59 88.48 96 4.33 91.00 86 4.39 91.24

19 170 4.61 83.57 92 4.13 91.02 83 3.70 91.38

20 196 5.83 85.33 90 4.00 89.01 85 3.81 90.00

21 100 3.13 88.14 90 3.95 91.02 84 3.77 91.27
22 73 2.67 89.09 91 4.03 90.17 84 3.73 91.16
23 256 5.92 85.45 99 4.44 90.06 86 3.86 90.48
24 81 2.77 91.78 90 3.94 90.07 86 3.92 91.12
25 97 3.09 88.12 95 4.20 90.00 89 5.47 91.04
26 112 3.24 89.30 92 4.03 90.05 82 3.50 91.03
27 288 6.41 93.33 99 4.42 91.10 82 3.97 89.45
28 245 5.64 90.13 96 4.33 91.12 83 3.70 91.39

29 227 5.24 83.89 95 4.53 91.04 87 4.16 91.74

30 147 3.67 91.47 99 4.55 88.99 83 3.45 88.00

31 352 7.78 83.85 88 5.34 91.14 85 3.58 91.01

32 174 4.28 87.09 93 4.81 91.04 85 3.58 92.32

33 70 2.58 85.75 101 4.17 89.44 83 3.44 91.12

34 344 7.27 81.97 94 3.88 91.42 94 4.95 90.05

35 68 2.58 87.76 96 3.91 91.06 82 3.39 91.07

36 65 2.38 89.49 97 4.48 91.07 87 3.67 89.01
37 169 3.99 89.91 96 4.31 91.10 84 3.86 89.45

38 107 3.30 87.70 93 3.81 91.09 86 3.72 91.06

39 212 5.02 87.58 96 4.20 87.98 90 3.80 91.19

40 260 5.84 90.00 90 3.80 91.01 82 3.44 91.11
41 305 6.77 88.50 93 4.03 91.00 82 3.77 91.34

42 83 2.92 87.08 92 3.91 90.12 79 3.49 90.02

43 91 2.88 92.53 93 4.02 89.03 84 3.55 90.09
44 422 8.97 88.33 92 3.70 91.36 91 3.86 89.00
45 270 6.09 84.24 92 3.83 89.06 85 3.58 91.15
46 221 5.05 93.00 103 4.44 91.05 - - -
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47 272 6.09 91.17 94 3.97 90.11 82 3.42 91.12

48 336 7.28 92.79 93 3.84 89.68 85 3.56 91.12

49 287 6.30 83.60 95 3.94 91.11 84 3.53 89.11

50 144 3.78 91.00 97 3.98 91.03 84 3.52 91.47

51 _ _ . 95 4.14 87.57 82 3.42 91.01

52 125 3.22 89.40 93 4.14 91.13 88 3.69 91.18

53 63 2.34 90.14 95 4.31 91.04 82 3.42 91.13

54 141 3.63 90.63 93 4.17 91.04 80 3.33 91.73

55 180 4.33 90.00 93 4.16 90.06 86 3.61 91.14

56 111 3.14 91.52 94 4.22 87.22 85 3.63 91.03

57 51 3.72 87.32 96 4.31 91.05 89 4.08 91.03

58 70 2.53 89.63 94 4.19 91.09 88 4.05 91.45

59 133 3.80 80.61 96 4.34 91.10 82 3.77 91.02

60 248 5.83 87.11 93 4.14 91.23 83 3.80 91.14

61 64 7.44 86.94 92 4.13 91.00 89 4.06 91.04

62 88 3.31 90.13 97 4.38 91.04 91 4.17 91.02

63 104 3.30 88.49 95 4.30 91.05 84 3.80 91.07

64 250 5.72 84.97 95 4.00 90.28 84 3.80 90.09

65 219 5.25 81.26 96 4.06 91.03 84 3.81 90.50

66 79 2.75 90.54 92 3.70 90.02 88 3.99 90.02

67 172 4.28 85.73 93 3.75 91.11 82 3.72 90.27

68 217 5.20 90.00 98 4.45 87.57 85 3.83 90.20

69 220 5.30 87.49 96 4.36 91.18 85 3.88 91.04

70 133 3.84 91.47 98 4.23 91.05 84 3.83 89.01
71 71 4.72 86.27 95 4.02 91.01 83 3.77 88.33

72 192 4.64 91.85 90 3.61 91.01 88 4.03 91.11

73 107 3.23 92.19 89 3.56 91.06 86 3.91 91.24
74 217 5.24 88.66 92 3.73 91.00 86 3.91 91.25
75 80 2.83 89.55 92 3.97 91.01 85 3.86 92.32
76 263 6.14 84.13 93 3.92 91.05 81 3.63 90.31
77 65 2.52 91.49 93 3.89 90.09 82 3.70 91.31
78 - - . 94 3.88 90.24 85 3.86 91.07
79 57 2.48 89.72 92 3.72 85.34 82 3.69 91.65

80 65 2.50 87.04 92 3.72 87.57 88 4.00 91.05

81 77 2.81 92.55 . - - 86 3.89 89.33

82 202 5.58 82.93 94 3.95 90.15 85 3.56 91.29

83 121 3.48 90.47 99 4.17 90.45 84 3.50 87.57

84 99 3.16 89.05 92 3.75 90.12 88 3.83 91.07

85 236 5.41 91.32 100 4.17 90.15 82 3.50 91.22

86 225 5.16 89.90 92 3.72 89.66 78 3.22 91.04

87 169 4.50 90.99 89 3.59 91.03 84 3.58 91.07

88 70 2.59 88.70 96 4.00 91.05 84 3.53 91.12

89 131 3.70 88.79 91 3.74 91.05 87 3.63 91.04

90 86 2.97 88.88 95 3.95 89.66 84 3.50 91.04

91 201 5.55 87.94 95 3.92 91.22 86 3.69 89.68

92 144 3.97 93.99 92 3.81 90.13 87 3.66 91.21

93 276 6.14 89.80 95 3.94 91.16 84 3.53 91.10

94 - - - 90 3.69 91.13 86 3.61 91.05
95 105 3.22 90.57 93 3.94 91.11 85 3.58 91.23
96 164 4.42 91.18 92 3.78 91.04 88 3.75 90.05
97 182 4.63 89.00 93 3.84 91.01 90 4.84 90.02
98 108 3.24 88.99 94 3.92 91.02 88 3.70 91.20
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99 95 3.17 89.47 96 3.94 91.44 81 3.36 91.03

100 72 2.70 88.77 99 4.11 91.01 88 3.72 91.19
Mean 166 4.50 88.74 93 4.02 90.43 85 3.76 90.66

SD 87 1.79 15.48 3.83 0.64 12.77 3.01 0.50 9.11
Succ. 97 98 99
Fail 3 2 1
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Table II.6: Detail version of the Broyden-Fletcher-Goldfarb-Shanno

performance for Glass classification problem

trainbfg BFGS BFGS-AG

Trials epoch
CPU
time accuracy epoch

CPU
time accuracy epoch

CPU
time accuracy

1 66 6.52 91.76 16 1.13 90.52 14 0.95 90.89

2 109 5.86 92.14 21 1.12 96.48 12 0.88 93.38

3 89 4.80 92.22 16 1.06 90.82 12 0.86 93.63

4 208 8.94 93.18 34 2.22 93.86 23 1.92 92.56

5 167 6.97 94.26 45 3.77 93.58 15 1.14 91.38

6 _ . - 33 2.22 92.19 12 0.92 90.09

7 116 5.95 93.34 22 2.22 92.06 19 1.36 92.60
8 167 7.38 93.53 - - - 21 1.59 92.34

9 147 6.77 93.58 34 3.11 90.71 12 0.91 93.70
10 97 4.98 93.40 20 1.41 90.81 16 1.14 94.08
11 95 3.77 93.52 16 1.08 92.25 11 0.56 93.76
12 96 3.58 93.41 34 3.22 93.46 12 0.59 93.85
13 74 3.00 94.00 34 3.77 92.54 19 0.98 93.41

14 88 3.09 92.05 32 2.22 92.99 14 0.72 93.06
15 111 3.61 93.15 16 1.08 90.41 19 1.13 93.96

16 73 2.83 93.43 20 1.34 95.99 22 1.20 93.90
17 131 4.05 92.98 16 1.08 90.46 - - -
18 113 3.66 91.58 17 1.17 93.53 15 0.80 93.49
19 74 2.84 92.83 23 1.66 92.21 13 0.75 92.60
20 68 2.75 93.69 18 1.22 94.85 12 0.64 90.83
21 131 3.91 94.31 32 3.22 93.33 12 0.64 93.57
22 94 5.11 92.75 16 1.06 93.87 27 1.41 93.62
23 137 4.31 94.07 17 1.11 92.70 41 2.36 93.74
24 103 3.45 92.30 . . . 15 0.80 92.70
25 222 5.77 93.70 16 1.06 93.82 12 0.64 96.95
26 89 3.13 93.32 36 4.22 92.56 12 0.70 93.46
27 192 5.17 93.02 16 1.08 92.23 12 0.78 92.83
28 142 4.17 93.88 34 3.32 96.85 15 0.88 90.89
29 180 4.95 92.83 17 1.13 90.44 20 1.17 93.39
30 102 3.30 92.95 15 1.03 90.14 18 0.91 92.08
31 102 3.33 92.42 16 1.09 93.75 12 0.59 93.18
32 157 4.42 92.80 35 4.22 93.69 15 0.75 93.65

33 157 4.39 93.95 36 4.22 90.26 19 0.98 92.62
34 162 4.41 94.73 16 1.08 94.07 15 0.81 90.74

35 75 2.84 93.31 16 1.06 93.30 15 0.94 94.70

36 _ - - 16 1.11 93.91 14 0.88 94.55
37 130 3.95 93.33 17 1.14 92.50 18 1.16 94.00

38 65 2.70 92.55 17 1.13 91.82 21 1.55 92.82
39 107 3.53 92.54 16 1.08 93.75 20 1.39 92.91
40 78 2.97 94.26 16 1.08 93.80 13 0.83 92.18
41 88 3.36 91.95 34 3.23 93.22 14 0.81 92.89
42 53 2.45 92.95 45 3.22 92.89 12 0.75 90.79
43 227 6.34 93.54 54 5.23 93.51 16 1.16 93.79
44 191 5.38 93.16 33 2.22 93.14 11 0.67 90.99
45 132 4.22 92.24 34 3.23 94.09 12 0.69 93.54
46 166 4.69 94.30 17 1.27 90.64 14 0.81 90.89
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47 79 2.94 93.62 44 3.22 90.31 19 1.06 93.14

48 114 3.67 93.56 34 3.22 90.69 22 1.33 94.79

49 99 3.38 92.83 16 1.14 90.13 13 0.75 93.41

50 85 3.05 93.20 23 2.22 90.60 12 0.78 93.90

51 94 3.13 92.91 43 3.22 93.45 19 1.28 90.23

52 112 3.70 92.99 23 2.22 93.09 11 0.77 93.64

53 212 6.45 93.24 34 3.22 93.06 - - -

54 101 3.42 91.91 16 1.14 93.33 17 1.22 91.76

55 107 4.25 93.22 21 2.14 90.11 18 1.14 90.26

56 . - - 16 1.45 94.25 11 0.59 94.50

57 - . - 54 4.22 93.21 11 0.55 96.80

58 102 3.56 93.81 55 4.77 96.55 13 0.69 94.77

59 166 4.52 92.64 34 4.22 90.53 18 1.13 94.05

60 253 7.06 93.81 54 4.77 90.69 12 0.66 94.89

61 142 4.20 93.97 33 2.11 96.00 16 0.92 94.82

62 98 3.38 93.38 45 3.22 90.79 19 0.99 93.18

63 109 3.47 93.66 16 1.09 90.06 18 0.97 95.58

64 59 3.20 92.61 45 5.33 90.48 22 1.39 94.71

65 100 3.36 92.87 . - - 17 0.98 94.92

66 94 3.31 93.23 18 1.27 93.91 11 0.58 94.43

67 134 4.17 93.77 33 3.12 93.67 17 0.84 93.21

68 89 3.06 93.82 15 1.14 93.95 13 0.64 90.54

69 134 4.11 94.32 45 3.22 94.70 15 0.75 93.32

70 92 3.34 93.34 34 2.12 93.67 18 0.91 92.89

71 99 3.24 94.06 18 1.22 94.23 14 0.70 90.10
72 122 3.77 93.66 45 3.88 94.84 17 0.84 93.78

73 69 2.70 93.24 17 1.27 93.44 12 0.59 93.63
74 105 3.39 92.76 16 1.48 96.36 14 0.70 94.52

75 102 3.38 92.94 56 6.33 90.69 - - -

76 62 2.56 92.26 16 1.59 90.86 14 1.09 93.23
77 154 4.55 93.12 18 2.45 90.29 12 1.06 90.59

78 115 3.50 94.01 34 3.22 90.03 13 0.92 90.57
79 88 3.16 94.45 23 2.22 93.39 12 0.74 93.01

80 101 3.31 93.71 18 1.52 92.13 16 0.89 94.78
81 112 3.61 92.67 54 5.33 91.30 12 0.64 93.30
82 - . - 18 1.16 92.71 13 0.70 94.94

83 65 2.53 92.11 45 5.33 92.54 12 0.69 93.21

84 126 3.77 93.59 17 1.05 93.50 14 0.81 93.46

85 131 3.69 93.51 18 1.06 92.41 16 0.91 93.11

86 102 3.42 94.10 24 2.11 92.34 15 0.86 96.94

87 121 3.72 93.95 - - - 13 0.89 94.57

88 89 3.00 93.02 35 3.23 93.24 19 1.42 92.89

89 95 3.11 93.26 45 5.33 93.64 - - -

90 151 4.28 94.11 16 1.05 93.06 11 0.73 94.41

91 122 3.73 92.48 20 1.42 92.68 11 0.69 94.84

92 65 2.52 92.92 24 2.01 92.94 16 1.03 90.31

93 97 3.17 92.79 25 2.25 93.01 12 0.75 96.61
94 70 2.61 93.31 18 1.90 96.52 18 1.17 93.64

95 139 3.86 92.73 28 2.97 90.32 20 1.30 92.76
96 123 3.63 93.51 28 2.90 90.75 - - -

97 103 3.41 92.55 31 3.01 90.43 17 1.09 92.62
98 182 5.05 93.35 22 1.17 90.55 13 0.83 94.44
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