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1.1 Thesis aims and objectives

The research themes in the current thesis stem from collaboration with an industrial 

project in which thin organic coatings (TOCs) were being developed for application as 

primer coatings for cold rolled (CR) and hot dip galvanised (HDG) steels. As current 

legislation requires the replacement of chromate, a known carcinogen, with 

environmentally friendly alternatives there is a need to develop inhibitors that may 

provide corrosion protection to an equally high standard. Electrochemical techniques 

have been employed to assess inhibitors in both immersion situations and in-coating 

with the presence of a penetrative electrolyte.

C hapter 3 A study using the SKP technique where the effect of in-coating phenyl 

phosphonic acid (H2PP) for the prevention of corrosion-driven underfilm delamination 

on HDG substrates is studied. Experiments are carried out in the presence of large 

defects and the possibility of inhibitor leaching is explored.

Chapter 4 Results are presented from an extensive study using the Scanning vibrating 

electrode technique (SVET), backed up by open circuit potential (OCP) measurements 

to, firstly, determine the corrosion activity on HDG when fully immersed in electrolyte 

in the full range of pH. These results are then used as a baseline to compare the 

effectiveness of H2PP and sodium phosphate inhibitors when added to the electrolyte.

Chapter 5 A further study on the inhibitor H2PP is carried out on iron substrates. Both 

cathodic and anodic delamination process are studied. Results obtained using the 

Scanning Kelvin probe (SKP) are presented where the effect on cathodic delamination 

of in-coating additions of the H2PP inhibitor made to a polyvinylbutyral (PVB) model 

primer coating is studied. This is done in two ways, the first being in the presence of a 

large defect and the second a realistic scribed defect experiment. Subsequent SVET 

experiments are presented where the influence of H2PP on the corrosion of bare iron 

fully immersed in electrolyte containing the inhibitor is assessed. Finally, the effect of 

in-coating H2PP additions on the anodic delamination process filiform corrosion is 

studied.

Chapter 6 Firstly, an alternative study utilises the SKP, which features profoundly in 

this thesis, to assess the interaction of PEDOTiPSS films with a range of metal surfaces. 

Secondly, an assessment of the effectiveness of PEDOT on preventing underfilm
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delamination on both HDG and iron substrates is presented. On iron both cathodic and 

anodic FFC delamination are studied.

Chapter 7 An exploration of the use of time-lapse photography as an alternative, or 

complementary, technique for assessing the corrosion prevention of thin organic 

coatings (TOCs) under development. The aim is to provide a technique that achieves 

accurate results with a fast throughput when compared with industry standard humidity 

tests. A range of coated products is tested, from laboratory to the pilot-line phase, to 

fully explore the validity of the technique.
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1.2 General corrosion theory

Most metals naturally exist as an ore. This is a state where the metal is chemically 

bound with another compound, typically an oxide, a sulphide or a carbonate. The 

extraction of a pure metal requires an input of energy. For example, iron can be 

extracted from its ore, hematite (Fe2C>3), by heating with a reducing agent in the blast 

furnace at a temperature of 1600°C. The resulting pure metal has an increased energy 

state when compared to the original ore resulting in a thermodynamic drive to return to 

the original, lower energy state. A pure metal is unstable in air and a return to the lower 

energy state is facilitated by reactions with components found in the environment.

1.2.1 Electrochemistry of corrosion

Corrosion is the unwanted transformation of a metal back to its natural, lower energy 

state. When corrosion occurs, a wet corrosion cell is established consisting of four 

critical components: an anodic reaction site, a cathodic reaction site, an electrolyte and 

an electrical connection. The natural environment provides salt solution electrolytes in 

the form of seawater or rain. The conducting solutions reduce the activation energy 

*AG pathway between the pure metal and its corrosion products thus allowing the onset 

of corrosion.

The aforementioned electrical connection of a corrosion cell can be in the form two 

separate surfaces with an external circuit or two dissimilar metals joined together. 

However, it is typical that anodic and cathodic reaction sites will initiate on the same 

metal surface where this is sufficient to act as an electrical connection. It is noted that 

anodic and cathodic sites may be seen to be spatially inseparable on the corroding 

surface. Where the anode and cathode surfaces are small, very numerous and change 

places at short intervals of time, this is described as ‘general’ corrosion. Where anodic 

and cathodic sites are spatially distinct, the corrosion is described as ‘localised’. As 

anodic activity is focused in small, discrete areas, this type of corrosion is particularly 

damaging.

The anodic reaction is:

111(8) mn+(aq) + ne' (1.1)
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where the anodic oxidation of the metal surface results in the production of metal ions 

and a release of electrons. The metal ions produced in the anodic reaction can react 

with other species to form the build-up of an insoluble residue that adheres to the metal 

surface. This blocks electrolyte contact with the metal surface and results in the 

retardation of the corrosion rate.

The anodic reaction occurs simultaneously with the cathodic reaction. Electrons 

released in the anodic reaction are transported through the metal surface and consumed 

at the cathodic reaction site. There are several possible cathodic reactions that can take 

place during the corrosion of a metal. In aerobic conditions at alkaline or near neutral 

solutions the cathodic reaction is the reduction of dissolved oxygen:

2H20(aq) + 0 2(e) + 4e' ^  4 0 H '(aq) Ee =+1.23 V(vs. SHE)[1] (1.2)

However, at sufficiently low pH, cathodic reactions may occur as follows:

0 2(g) + 4H+(aq) + 4e' —> 2H20 (aq) E 9 = +1.23 V(vs. SHE)[1] (1.3)

In acidic conditions Hydrogen evolution may occur:

2H+(aq)+ 2e' ^  H2(g) E9= +0.00 V(vs. SHE)[1] (1.4)

The reduction of metal ions:

Fe3+(aq) + e ^  Fe2+(aq) Ee=-0.44 V(vs. SHE)[1] (1.5)

The deposition of metal:

Cu2+(aq) + 2e‘ Cu(s) E0 = -0.34 V (vs. SHE)[1] (1.6)

Fig 1.1 shows a schematic of a typical wet corrosion cell depicting a corroding metal 

surface under a droplet of water. This illustrates the connection between anode and 

cathode by the ionic current flux in the water droplet electrolyte and the flow of 

electrons through the metal surface. The locations of anodic and cathodic sites, in this 

example, are established due to local differences in the concentration of oxygen. The 

region in the centre of the droplet acts solely as an anode as low oxygen diffusion 

through the long pathway from the edge of the droplet means replenishment is not 

sufficient to sustain a cathodic region. The cathodic region circles the outskirts of the

13



droplet and, as the anodic region spreads radially outwards from the centre, a ring of 

corrosion product is formed. Other ways in which cathodic and anodic regions become 

established are due to local differences in the composition of the metal surface, local 

differences in pH and local differences in the permeability of a passive layer such as a 

surface oxide.

Water

Cathode Cathode

Anode
Cathodic oxygen reduction: Anodic metal Cathodic oxygen reduction:
0 2 + 2H20  + 4e- -► 40H - dissolution: 0 2 + 2H20  + 4e~ -► 4 0 H '

m —> mnf+ ne'

Fig 1.1 Schematic diagram o f  a typical aqueous corrosion cell.

1.2.2 Kinetics of corrosion

A ‘polyelectrode’ occurs where both anodic and cathodic activity occurs on a single 

metallic surface where more than two couples, that are not in mutual thermodynamic 

equilibrium, act simultaneously at a single electrode surface [2]-[4]. It is stated in 

Wagner and Trauds’ additivity principle that the total current flowing into an external 

circuit is the sum of the currents due to individual couples present on the corroding 

surface [5]. Therefore, where free corrosion takes place:

^danodic =  “^icathodic =  icorr ( ! • / )

where ianodic is the partial current density due to any anodic process, i cathodic is the partial 

current density due any cathodic process and iCOrr is the rate of corrosion expressed in
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current terms. Due to the potential dependence of electrochemical current, any given 

corroding metal will adopt a unique potential termed the ‘free corrosion potential’, E COrr*

Tafel defined the mathematical relationship between current density, i, and potential, E, 

stating [6 ]:

ianodic 00 GXp (E) (1*8)

and

icathodic 00 GXp (-E) (1*9)

A Tafel plot is a graph of E against lg (current density) and may be plotted for each 

electrode process to give a straight line. Fig 1.2 shows a combination of Tafel plots 

where individual electrode processes have generated a mixed potential. This plot is 

known as an Evans diagram which represents a simple corrosion process for a metal in 

contact with an aerated electrolyte. As ions enter solution, due to the corroding of the 

metal at the anodic site, an excess of electrons flows to the cathodic site. Upon the 

advancement of corrosion the anodic region becomes less negative and results in the 

upward shift of potential by the amount r\a, anodic polarisation. The opposite effect is 

the cathodic polarisation r\c, where the cathodic reagion becomes more negative and its 

potential is shifted down by this amount. The Evans diagram in Fig 1.3 depicts the 

described positive and negative shifts in respective anodic and cathodic polarisation. 

The intersection of the depicted Tafel slopes shows the point at which anodic and 

cathodic current densities are equal; that is, their sum is zero. The free corrosion current 

density, i COr r ,  as stated in equation 1.7, is defined by this point. Further to this, the free 

corrosion potential, E co rr ,  for the system may also be obtained from the Evans diagram.
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0 2 + 2H20  + 4e- -> 40H '

'cort

lg i 0 (c) 
lg i 0 (v)

lg current density

|
Fig. 1.2 Evans diagram for a metal immersed in an aerated electrolyte.

1.2.3 Pourbaix diagrams

A great influence of electrochemical studies was Marcel Pourbaix who introduced the 

‘Pourbaix Diagram’ where the affect of pH and potential on the stability of different 

species is mapped. An arbitrary division is made between a corroding and non­

corroding state whereby when a concentration of a metal’s ions is > 10'6M in solution 

the metal is said to be undergoing corrosion. Where the concentration of ions is less 

than this value, the metal is said to be in an immune phase. It was shown in equation 

( 1 .1 ) that soluble metal ions pass into solution in a metal dissolution corrosion reaction; 

however, this is not representative of all corrosion reactions. Many corrosion products 

are insoluble and lead to the formation of a film that blocks the corroding surface from 

the electrolyte. Where this occurs the metal surface is described as ‘passive’ due to the 

substantial reduction of corrosion rate. The Pourbaix diagrams show the reaction 

condition of a metal, under varying conditions of pH and potential where several 

reactions, dependent on electrolyte pH, may occur at once.

16



Figs 1.3 and 1.4 show simplified Pourbaix diagrams for iron and zinc in water 

respectively. It can be observed that, for both metals, the corrosive state occurs under 

conditions of neutral pH and no impressed potential. It can also be seen that a variation 

of electrolyte pH or potential suppression can alter the state of the metals to regions of 

passivity or immunity.

(A ct iv e)0.5

c -0.5

(Immune)

-2 12 142 60 4 10 16
pH

Fig 1.3 Sim plified Pourbaix diagram for Iron in water.
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C/3

C&oOh

1

Zn (corrosion)

0
Zn02
(corrosion)

1

Zn (immunity)

•2

0 2 4 6 8 10 12 14

PH

Fig 1.4 Pourbaix diagram for zinc in water where (1) shows the reduction of hydrogen producing 
hydrogen gas and (2) shows the oxidation of water liberating oxygen. The area between (1) and 
(2) represents the conditions where water is stable.

1.2.4 Redox Potentials and Corrosion Potentials

Where a metal is immersed in aqueous solution containing ions of the same metal a 

dynamic equilibrium will be reached whereby both oxidised and reduced states of a 

system are present in the solution. Due to an abundance of metal cations present in 

solution in close proximity to the metal surface, and a negative charging of the metal 

due to the remaining electrons, a so-called electrochemical double layer persists. The 

layer means that the metal will have a different potential to the solution known as the 

Galvani Potential (CD). The difference in Galvani potential between metal and solution 

is known as the electrode potential (E). A relationship exists between the electrode 

potential and the effective metal ion concentration in the solution i.e. activity of the 

metal ion. It is represented by the Nemst equation,

^  z" R T 1E  -  E  m
zF

products

reactants
(1.10)

where E is the non-equilibrium potential generated by the reaction, [reactants] and 

[products] are the molar concentrations of the oxidant and reductant respectively. R is

18



the gas constant (8.31 J m o l1 K '), T is temperature (Kelvin), z the number of electrons 

involved in the redox reaction and F is Faraday’s constant (96494 C m o l1).

Using Equation 1.10 the standard electrode potential of all metals can be calculated and 

used to generate a table of standard reduction potentials, as shown in Table 1.1. Where 

two metals are coupled the metal with the more positive standard electrode potential 

(i.e. positioned higher up in the table), is more likely to be reduced. The metal with the 

more negative electrode potential is more likely to be oxidised.

Table 1.1 Standard reduction potentials for som e com m on metals [ 1 ]

Metal Half-reaction E° / V vs SHE

P t  Pt2+(aq)+2e' — ► P t ( s )  +1.20

Ag Ag+(aq) +e —> Ag(S) +0.80
Fe Fe3+(aq)+e —► Fe~+(aq) +0.77

Cu Cu2+(aq)+2e' —► CU(S) +0.34

Ni Ni~+(aq)+2e —■> Ni(S) -0.26

Fe Fe~+(aq)+2e —* Fe(S) -0.44

Zn Zn2+(aq)+2e' —► Zn(s) -0.76

A1 Al3+(aq)+3e —̂ Al(aq) -1.68

M g  M g 2+ (a q ) + 2 e  — > M g ( S) -2.38

1.2.5 Localised Corrosion

The major types of localised corrosion, relevant to the current study, that affect zinc 

coated and cold rolled steels are discussed in this section.

1.2.5.1 Corrosion of dissimilar metals

Where two different metals are coupled in the presence of an electrolyte a wet corrosion 

cell results. As described in Section 1.1, a corroding metal adopts a unique free 

corrosion potential E corr in a given electrolyte. This allows for the classification of 

metals in an electrochemical series where the value of E COrr for each material is listed in 

order of relative reactivity or nobility as given in Table 1.1 in Section 1.2.4. The higher 

the free corrosion potential value the more noble the metal. Therefore, where two 

different metals are coupled in the presence of electrolyte the more reactive metal, i.e.

19



the metal with the lower Ecorr, will become the anode and corrode. This is in preference 

to the more noble metal with the higher Ecorr that becomes the cathode. A greater 

difference in potential between the two materials results in a faster anodic corrosion 

rate. This forms the basis of steel protection by coating with zinc, which is more 

reactive.

1.2.5.2 Differential aeration

Differential aeration corrosion results from any differences in oxygen concentration on 

the metallic surface as the cathodic reaction is the reduction of oxygen. An area of 

metal surface abundant in oxygen will become the cathodic region and an area depleted 

of oxygen will act as the anode in the cell. Such differences in oxygen concentration 

are typical in narrow crevices regions such as under a partially delaminated paint film or 

in a crack within the metal bulk. Due to the low solubility of CE in water, its diffusion 

to such depths is limited and so crevices are susceptible to anodic metal dissolution 

where the corresponding cathodic activity will typically become concentrated at the 

crevice opening or on an exposed surface. As in pitting corrosion, a lowering of pH and 

increase of anion concentration, such as Cl", may occur within the crevice thus 

increasing the rate of metal dissolution. Fig 1.5 shows the schematic of a corrosion cell 

where differential aeration drives the corrosion beneath the water droplet.

Air

Long
path W ater

Short
path

Short
path

Oxygen diffusion

Oxygen depleted layer

General corrosion with anodes and cathodes

F ig .l .5 Scem atic diagram show ing differential aeration under a drop o f  water
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1.3 Coatings for protection against corrosion

1.3.1 Sacrificial coating protection

Sacrificial coating protection constitutes the application of a more reactive metal to the 

metallic substrate in need of protection. The more reactive metal will corrode 

preferentially to sacrificially protect the underlying substrate; this principal was 

described in section 1.2.5.1 where the corrosion of dissimilar metals was discussed. 

Due to the steeper cathodic polarisation curve of the reactive metal coating, in 

comparison to the lesser reactive metal substrate, an increase in the cathodic 

overpotential of the surface occurs and the corrosion potential becomes more negative 

than the substrate [7].

Zinc is the sacrificial coating material most widely used in industry along with various 

coatings based on this metal. The respective free corrosion potentials of zinc and iron in 

seawater are -1.05 V vs SCE and -0.65 V vs SCE. According to the theory described in 

section 1.2.5.1 it can be stated that zinc, being more reactive, will corrode more readily 

than iron upon exposure to an electrolyte. In the event that a zinc coated steel sample 

containing a penetrating defect comes into contact with corrosive media, the zinc would 

corrode preferentially by becoming the anode and the underlying steel would become 

the cathode. Thus, metal dissolution would only occur on the zinc coating leaving the 

steel sacrificially protected. Further to this zinc ions readily react with hydroxide ions 

found in electrolyte. This produces insoluble zinc hydroxide that tends to form a layer 

at the defect thus blocking the steel cathode and reducing the corrosion rate.

The Evans diagram shown in fig 1.6 summarises the affect of connecting the two 

metals. It can be observed that the corrosion rate of the zinc coated steel ( Ic o n -z n  coating) is 

lower than that of uncoated steel ( Ic o rr  uncoated F e ) . This is because the cathodic 

overpotential of the surface is increased by the zinc coating and the exchange current 

density of dissolved oxygen on zinc (Ioc z n )  is lower than that on iron ( Io c  F e ) . Where a 

scratch is present and the iron is exposed to a corrosive environment the electrode 

potential of the exposed iron will be equal to the corrosion potential of the zinc (ECOrrZn). 

This is due to the cathodic polarisation of the surrounding zinc. The corrosion rate of 

the exposed iron will, therefore, be reduced substantially Icon- exposed Fe when compared
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with uncoated iron Icon- uncoated Fe- It can be concluded that zinc coatings are of extreme 

importance with regards to corrosion prevention as they can considerably extend the 

lifetime of steel products.

Electrode
Potential 0 2 + 2H20  + 4e’ 40H'

Fe —> Fe + 2e"

'corr Fe

Zn —» Zn + 2e"

-corr Zn

Icorr uncoated FeIc,I qc Zn I qc Fe Icorr exposed Fe

Log current density
Fig 1.6 Evans diagram for zinc coated steel where a small scratch exposes a small quantity of steel 
showing sacrificial protection. The zinc coating provides cathodic control protection by cathodically 
polarising the exposed iron reducing the corrosion current of the steel, ICOir exposed Fe [7].

1.3.2 Barrier coatings

Barrier coatings are the most basic form of corrosion protection and simply act, as the 

name suggests, as a barrier to air (i.e. oxygen) and electrolyte. Typical organic barrier 

coatings are paints, plastic laminates and enamels. These coatings can only protect 

against corrosion if they remain undamaged. Without any form of protection the 

underlying metal can become severely corroded if a penetrating defect results in 

exposure to a corrosive environment. Corrosion in this instance can be particularly 

severe as the presence of a partially delaminated film can be likened to a crevice and 

result in pitting corrosion.
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1.3.3 The traditional coating system

A typical coating system for cold rolled (CR) steel can be observed in cross-sectional 

diagram shown in fig. 1.7. A typical system consists of a pre-treatment, a primer layer, 

where inhibitor pigment is typically added, and a top coat that provides a barrier 

protection and good aesthetics to the final product.

Top coat

Primer

Steel substrate 

Primer 

Top coat

Fig 1.7 A cross section o f  a traditional coating system

1.3.4 Thin organic coatings (TOCs)

Thin organic coatings (TOC) have become an area of interest in the steel industry as 

they present an opportunity to reduce both the cost and the environmental impact of the 

finishing process. Although TOCs are generally used as temporary protection, there is 

potential for the replacement of the pre-treatment and primer layers (shown in fig 1.9) 

with a single TOC that is <1 pm in thickness. Furthermore, coating oils, such as those 

used on cold reduced steels for some markets, would no longer need to be applied. A 

schematic showing the stations found on a typical coating line is shown in fig 1.10. The 

major advantage of converting to the use of TOCs is the relief of several coating line 

stations such as degreasing and those involving the pre-treatment and primer application 

stages. Removal of these stages reduces the use of materials, electricity and man power 

as well as a reduction of waste. These factors also present an opportunity to lower 

product prices. The use of TOCs presents an opportunity to increase through-put as 

finishing time will decrease with a reduction in stages. A reduction in environmental 

impact can help to encourage a positive company reputation. In order for such a 

replacement to be viable a TOC must fulfill the following criteria:

Pre-treatment
'

Pre-treatment .
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1. Good adhesion to the substrate

2. Good adhesion to the top coat (i.e. good post paintability)

3. Offer corrosion resistance (i.e. contain inhibitor pigment)

4. Exhibit optimal lubricity for ease of application

5. Cost effective

The development of TOCs is discussed in Chapter 7 where an alternative to industry 

standard corrosion testing techniques is assessed.

1.3.5 Traditional in-coating inhibitors for protection against corrosion

To add further protection to metallic substrates, inhibitor pigments are added to barrier 

coatings. Such substances provide inhibition when in contact with aqueous solution and 

can prevent either the anodic or cathodic reaction leading to a retardation of the 

corrosion process. Typically, corrosion inhibitors are added to the primer layer which is 

applied directly to the bare, or pre-treated, metal substrate. The two types of inhibition 

mechanism, anodic and cathodic, will be discussed here. The traditional inhibitors 

chromate and phosphate will also be discussed. Section 1.7 expands on corrosion 

inhibition with particular focus on in-coating inhibitors for underfilm delamination.

1.3.6 Anodic Inhibitors

Two types of anodic inhibitor exist; the first of these are anodic precipitation inhibitors 

that form insoluble salts with the metal cations that are generated by the anodic reaction. 

A protective barrier film is formed by the insoluble salts that blocks mass transport to 

the underlying anode thus limiting further corrosion. Chromates and phosphates are 

examples of anodic precipitation inhibitors [8-9].

The second type is the anodic oxidising inhibitor (also termed cathodic depolarisers); 

these work by the removal of electrons from the electrochemical cell by providing an 

alternative cathodic reaction to oxygen reduction. This causes a shift in free corrosion 

potential where the substrate is polarised to the metal’s passive region whereby the 

formation of a stable and insoluble oxide or hydroxide layer protects the metal substrate 

from further corrosion activity.

It is highly important that anodic inhibitors are present in sufficient quantity as, where a 

whole anodic region is not fully blocked; it results in a situation where a small anode is
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coupled with a large cathode. This can lead to highly detrimental results as the anodic 

metal dissolution will be accelerated [ 1 0 ].

1.3.7 Cathodic Inhibitors

Cathodic inhibitors work by the precipitation of an insoluble salt film formed by a 

reaction between cations, from the inhibitor, and the hydroxide ions generated by the 

cathodic oxygen reduction reaction in the electrochemical corrosion cell. The resultant 

insoluble film blocks the cathodic reaction site. The main inhibitors of this type are rare 

earth metals [1 1 ].

1.3.7.1 Chromate

Chromate is the traditional inhibiting pigment used for the protection of steel against 

corrosion. However, despite its superior corrosion protection, the toxicity of chromate 

(which is described in Section 1.3.8) means that the search for a competitive alternative 

is of high importance industrially. The inhibitory mechanism achieved by chromate- 

based conversion coatings is attributed to the replacement of the cathodic reaction with 

the reduction of Cr(VI) to a solid Cr(IH) oxide r at the cathode. The reaction is as 

follows:

2C r0 2‘4+ 5H 20  + 6 e‘ Cr20 3(s) + 10OH' (1.10)

On iron, this reduction reaction occurs at oxidation sites where the anodic dissolution of 

iron occurs. This is represented by:

Fe Fe2+ + 2e' (1.11)

On iron substrates chromium oxides (i.e. G^Os) have been shown to be 

thermodynamically stable above pH 5. However, it has been reported that the oxidizing 

power of Cr(VI) ions result in the enhancement of corrosion in acidic solutions [12]. 

The term ‘zinc yellow’ describes a classic chromate pigment that consists of a mixed 

salt of zinc chromate, potassium chromate and zinc hydroxide. The hydroxyl ion from 

the zinc hydroxide reinforces the mode of action of the chromate by raising the pH and, 

therefore, enhancing the stability of Cr(III) salts. Further to this, a precipitation of 

Zn(OH )2  at cathodic sites occurs creating a protective layer enhancing the inhibitory 

effect.
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Bastos et al measured the open circuit potential (OCP) of iron, over time, immersed in 

an experimental electrolyte where chromate additions had been made [13]. A potential 

much higher than that of the control sample was observed immediately upon immersion. 

This indicates the rapid formation of a passivating chromate layer.

The inhibitory effects of chromate will be considered further in Section 1.5.1 where its 

effect on preventing underfilm coating delamination will be discussed.

1.3.7.2 Phosphate

A close competitor to chromate is zinc phosphate that is used in both conversion- 

coating formulations and as anti-corrosion pigments for paints. Phosphate coatings are 

typically applied by immersion where a series of tanks are used to carry out the 

degreasing, phosphating and all subsequent rinsing stages. Phosphating treatments are

suitable for both cold rolled steel and HDG steel, amongst others [14]. Dilute

phosphoric acid solutions of iron, manganese and zinc primary phosphates form the 

bases of any conventional phosphate coating process. The following equation shows 

the reaction that occurs at local anodes on the iron surface between the iron itself and 

free phosphoric acid in solution:

Fe + 2 H3PO4 Fe(H2P 0 4) 2 + H2 (1.12)

The products of this reaction are soluble primary ferrous phosphate and the evolution of 

hydrogen gas. This results in a local depletion of phosphoric acid at the metal/solution 

interface. However, the dissociation of the primary metal phosphates in solution result 

in the following reactions:

Me(H2P 0 4) 2 ^  M eHP04 + H 3P 0 4 (1.13)

3MeHP04 ^  Me3(P 0 4) 2 + H3P 0 4 (1.14)

3Me(H2P 0 4)2' Me3(P 0 4) 3 + 4H3P 0 4 (1.15)

Reaction (1.12) causes the neutralization of free phosphoric acid thus pushing the 

position of equilibrium in Reactions (1.13), (1.14) and (1.15) towards the right. This 

leads to the deposition of sparingly soluble secondary phosphates and insoluble tertiary 

phosphates that form cathodic blocking layers.
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i
i
I Phosphate pigments are considered to be more affecting at low pH due to the increased
i

solubility of zinc in acidic media [15]. Bastos et al showed the effective corrosion 

i inhibition of phosphate inhibitors on both zinc and iron surfaces but, in comparison to
I
| the instantaneous action of chromate, total protection of either surface took several

| hours to achieve. In both cases the measured open circuit potential, where zinc

: phosphate was added to an experimental electrolyte, was relatively similar to that of the

i  uninhibited case. This is in contrast to chromate additions where the OCP was

substantially increased as described in the previous section. As the current leading 

alternative to chromate, sodium phosphate inhibitor will be the basis for comparison in 

the studies presented within the current work [13,16] .

1.3.8 The hazards of chromium compounds

I Hexavalent chromium is known to be extremely detrimental to living systems causing

problems such as kidney and liver damage and, most notably, the direct damage of 

DNA [17-18]. Katz et al state that the oxidation state is the critical factor upon 

assessment of chromium compound activities. Compounds of hexavalent chromium are 

generally more toxic than trivalent chromium; the latter being the most stable and 

abundant of the oxidation states (+2, +3, +4, +5^ and +6 ) [19]. The notion that 

hexavalent chromium is the most hazardous is attributed to high membrane transport 

and strong oxidising power. Where testing has been carried out on animals hexavalent 

chromium has been shown to cause tissue damage, irritative lesions of both skin and the 

respiratory tract and the formation of tumours at the site where injection of the 

compound is administrated.

Conversely, Katz states that trivalent chromium compounds in both soluble and 

insoluble form, are not usually active carcinogens. Shumilla et al suggests that although 

Cr(H[) is not considered harmful as it does not have the ability to enter cells as readily 

as Cr(VI). However, upon contact with a cell, an insoluble form of Cr(VI) will readily 

enter and be subsequently reduced to Cr(H[) and, in this way, the compound has found 

to be damaging to DNA. It is suggested that Cr(VI) acts as a “Trojan Horse” for the 

damaging Cr(III) [17-18].
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1.4 Underfilm corrosion phenomena

As described in Section 1.3, organic coatings are primarily used to accommodate the 

use of metals for industrial practices where their mechanical properties may be utilised 

without the constraints of deficiencies caused by corrosion. The role of an organic 

coating is to prevent corrosion by providing a barrier against potentially destructive ions 

and also by improving the adhesion of the topcoat to the substrate. Furthermore, upon 

damage of a coating system, where a defect penetrates through to the substrate, an 

adequate organic coating blocks the ionic path between a local anode and a local 

cathode along the substrate/polymer coating interface. In the event of ingress of 

electrolyte beneath the organic coating the last line of defence provided by the coating is 

the release of corrosion active pigments and inhibitors that may leach out into the 

intrusive electrolyte.

The current section discusses the two forms of corrosion phenomena that occur on 

organically coated metallic substrates. These are cathodically driven underfilm 

delamination and anodically driven filiform corrosion (FFC) where respective 

destructive and aesthetic damage are major issues for the steel industry. The kinetics 

and theory is described in depth along with the background of atmospheric corrosion. 

Further to this, current methods of prevention for the two phenomena are summarised 

with a focus on chromate and its potential replacements.

1.4.1 Atmospheric corrosion

Atmospheric corrosion occurs upon the covering of a metal substrate with an 

electrolyte. As described in Section 1.2.1 corrosion may only occur in the presence of 

the four key electrochemical cell components: an anode, a cathode, a medium for ionic 

flow and an electrical connection.

The first stage of atmospheric corrosion is the generation of cations, the product of 

metal dissolution shown by Reaction (1.16). These cations enter the electrolyte layer 

creating a concentrated region of electrons. A reduction reaction, shown in Reaction 

(1.17), takes place where molecular oxygen, which has diffused through the electrolyte, 

receives the electrons resulting in the production of hydroxide ions. The final stage of
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atmospheric corrosion is the combining of metal ions and hydroxide ions to produce the 

resulting solid corrosion product. The anodic reaction is as follows:

m mn+ + ne' (1-16)

and the cathodic reaction is either:

0 2 + H20  + ne' nOH (1.17)

or:

2H+ + 2e ^  H2 (1.18)

Over time this corrosion product, an electron conducting oxide layer (in the case of iron 

or zinc), spreads over the entire metal surface. This blocks the electrolyte from contact 

with the metal substrate thus inhibiting further metal dissolution. However, although 

reduced, further corrosion is still possible through the diffusion of molecular oxygen 

through the layer of corrosion product.

The rate of atmospheric corrosion increases with decreasing electrolyte thickness as the 

rate-determining factor is the rate of molecular oxygen diffusion through the electrolyte 

layer.

1.4.2 Cathodic delamination

The specification for any coating system providing corrosion protection for a metallic 

product includes protection against loss of coating adhesion in the inevitable event of 

penetrative damage. A penetrative coating defect leaves the exposed metallic substrate 

vulnerable to electrolyte that, upon contact, can result in the establishment of an 

electrochemical corrosion cell. The result is delamination of the coating system that can 

continue to spread away from the defect. Fig 1.8 illustrates the mechanism by which 

delamination occurs. The general mechanism for an iron or zinc surface involves 

anodic metal dissolution at the site of the exposed substrate in the vicinity of the defect 

shown in Equation (1.16) in Section 1.4.1. This couples with cathodic molecular 

oxygen reduction at the delamination front by the ingress of electrolyte underneath the 

coating resulting in its detachment from the substrate. The oxygen reduction reaction 

leads to the formation of hydroxyl ions which render the interface high in pH; this is 

represented by Equation (1.17) in Section 1.4.1. Other reactive intermediate products 

are formed during oxygen reduction that, through a chemical attack on the electrolyte,
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produce a hydrogel, a network of hydrophilic polymer chains, which is thought to be the 

medium of initial underfilm ingress. Rapid diffusion through the hydrogel is possible 

but a smaller diffusion rate is observed when compared to an aqueous solution [20]. 

Fiirbeth et al established, using the SKP technique and small-spot photoelectron 

spectroscopy analysis, that the formation of a galvanic element is caused by the 

migration of cations from the defect to the delamination front [21]. Auger analysis has 

shown that external electrolyte anions remain localised to the defect zone [20],

Distance

DEFECT

Xa+ cr Na OH

IRONFe

Fig 1.8 Schem atic representation o f  the Ecorr measured in relation to a delam ination cell

Underfilm delamination of a polymer-coated metal surface has been extensively 

studied, with the SKP technique being the primary method of investigation [9,22]. In 

order to discuss underfilm delamination in detail, a typical potential profile mapped 

using the SKP in an atmosphere of 93% relative humidity is shown in fig 1.9. A full 

description of the SKP technique and sample preparation can be found in Section 1.12. 

A typical potential profile has four distinguishable phases. They are as follows:

1. The defect region: where anodic metal dissolution takes place.

2. Region of gradual potential increase: this results from ohmic resistance to the 

galvanic current linking the delamination front to the defect.

3. Cathodic delamination region: observed as a sudden step in potential, where the 

reactions responsible for the loss of coating adhesion occur.

4. The intact interface defined by an anodic plateau. This plateau is the result of 

electronic conductivity from the oxide-covered substrate on which electron 

transfer reactions (ETRs) take place [23].
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Fig 1.9 A typical Ecorr profile show ing underfilm delam ination plotted using the SKP technique

1.4.3 Mechanisms of cathodic delamination of organic coatings from iron and zinc 

surfaces

Various theories have been put forward in current literature regarding the mechanism 

for loss of adhesion of an organic coating from a metallic substrate [23], In 1976, 

Leidheiser and Kendig first described an elevated pH in the delaminated region, 

parabolic delamination rate kinetics and a sharp drop in corrosion potential at the point 

of coating disbondment [24]. This section will cover these theories in detail with focus 

on zinc and iron substrates. It is noted that, for any given system, there may exist 

several mechanisms of disbondment but it is that which proceeds at the fastest rate that 

is considered the governing mechanism [25]. Grundmeier et al suggest that there are 

three crucial governing properties to consider. These are:

1. The electron-transfer properties at the substrate/coating interface;

2. The oxide redox properties between metal and polymer;

3. Chemical stability of the interface with regards to potentially damaging species 

formed during ETRs.

The aforementioned points will be discussed with regards to the mechanism by which 

delamination occurs on iron and zinc substrates. Many similarities between the two 

metals are apparent however, when tested using SKP apparatus in the absence of 

oxygen, subtle differences are observed. The main distinction between the two is the
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effect of an elevated pH on the metal oxides. Iron oxide is highly stable in alkaline 

media whilst zinc oxide is both unstable and highly soluble; the relevance of which 

refers to the production of hydroxyl ions from the cathodic oxygen reduction reaction 

described in Section 1.4.2. The mechanisms of organic coating delamination from both 

substrates will be discussed.

The anodic plateaux observed in region four of the EcorT profile (shown in fig 1.12) 

results from high electronic conductivity of a surface oxide where ETRs take place. 

This can be observed on both iron and zinc substrates which display highly conducting 

and semi-conducting oxides respectively. Oxygen can diffuse to the metal surface and 

will be reduced in correspondence to the oxidation of the surface oxide. However, with 

no electrolyte present, no ion transfer reactions take place and no corrosion will occur. 

Above a certain anodic potential the oxygen reduction rate is very small so no further 

anodic potential shifts are observed. There is a difference in potential of around 500 

mV between zinc oxide and iron oxide with the former being more negative. This is 

true for zinc oxide only in the presence of oxygen. Where oxygen is removed, a rapid 

decrease of the electrode potential on the intact interface is observed. An iron oxide 

surface under the same conditions will remain stable for a comparatively long period of 

time. It is suggested by Grundmeier et al that this could be due to the different donor 

densities of both oxides. Zinc oxides generally exist as single valance states only; it is 

therefore understandable that a cathodic potential shift would be possible with minimal 

charge. In contrast, at an iron-polymer interface, a large proportion of Fe3+ states must 

be transformed into Fe2+; this substantially limits any chance of a cathodic potential 

shift. Grundmeier et al put forward a theory suggesting that, when the oxide is reduced 

and the metal substrate concurrently oxidised, the redox reaction is the cause of coating 

adhesion loss on iron [23].

As previously stated, the oxygen reduction reaction that occurs at the metal-polymer 

interface in a delamination corrosion cell substantially increases the pH of the underfilm 

electrolyte. In such conditions an iron oxide layer is stable and so anodic behaviour is 

not observed in any region other than the exposed defect zone, thus ruling out metal 

dissolution as a possible delamination mechanism. However, oxidative destruction at 

an iron-polymer interface, in particular base-catalysed polymer degradation, base- 

catalysed hydrolysis of interfacial bonds and polymer attack, can be attributed to

32



intermediate radicals that form during the oxygen reduction reaction leading to loss of 

coating adhesion [22-23]. This implies that the instability of the interface is directly 

linked to the rate at which oxygen reduction occurs. However, for a polymer-coated 

zinc surface, the opposite is true.

Zinc oxides are unstable within an alkaline environment [23]. Experimental research, 

conducted by Furbeth et al using Auger electron spectroscopy (AES) sputter profiles, 

has revealed the substantial growth of oxide scale in the delaminated region [26]. This 

indicates that anodic reactions can take place within this region during a standard 

delamination experiment. This is confirmed by a study of potential profiles from SKP 

experiments, in which the atmosphere has been suddenly converted from air to argon, 

that show an inverse in polarity between the defect and the delamination front. In an 

oxygen-free environment, no oxygen reduction will take place and the galvanic element 

disappears. Thus, the potential becomes reliant on the Zn/Zn2+ couple within the defect 

and a Zn/Zn(OH ) 2 ' 4 couple at the metal-polymer interface [23]. It is suggested that a pH 

buffering in the delaminated area would result from the establishment of an equilibrium 

between hydroxyl ion formation and the reaction with zinc. This implies a reduction in 

the path of charge transfer between local anode and the local cathode (region of ion 

incorporation) potentially leading to a higher delamination rate when compared with 

iron.

Williams et al [9] also suggest that, at an elevated pH, the oxidation of zinc leads to the 

formation of solid zinc hydroxide product Zn(OH ) 2 generated by the following reaction:

The amphoteric nature of Zn(OH ) 2 results in its dissolution at high pH leading to the 

formation of zincate (ZnO2 -) and bizincate (HZn02‘) corrosion products, shown in 

Reactions (1.20) and (1.21) respectively. This is due to aforementioned anodic activity 

that eventually occurs in the delaminated region.

Zn(S) + 2H20  w Zn(OH)2(S) + 2H+(aq) + 2e (1.19)

Zn(OH)2(s) ^  H Z n0 2 '(aq) + H+(aq) ( 1.20)

Zn(OH)2(s) ^  Z n 0 2'(aq) + 2H+(aq) ( 1.21)
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At pH 10.37 or higher, such as is found in the delaminated underfilm region, a bare zinc 

surface exposed by the dissolution of zinc(hydr)oxide could also be directly oxidized to 

bizincate via the following reaction [9,26]:

Zn(s) + 2H20  ^  H Zn0 2 '(a q ) + 3H+(aq) + 2e' (1.22)

It can be concluded that the governing mechanism for adhesion loss on iron is due to 

cathodic delamination in which polymer attack by reactive intermediates generated from 

the oxygen reduction reaction results in the breaking of interfacial bonds and polymer 

degradation. The stability of the metal-polymer interface is directly linked to the rate of 

oxygen reduction. In contrast, the governing mechanism for coating adhesion loss on a 

zinc substrate is due to the formation of the galvanic element. An anodic reaction 

results from the alkalisation of the zinc-polymer interface in the delaminated region. 

This leads to the growth of a thick oxide in the delaminated region resulting in a 

reduced ionic pathway to the delamination frontier thus increasing the delamination 

rate. The difference in disbondment mechanism between zinc oxide and iron oxide can 

therefore be attributed to a different level of stability when in an alkaline environment.

1.4.4 Characterisation of underfilm delamination kinetics of uninhibited coatings

In order to study the effectiveness of in-coating inhibitors on underfilm delamination, 

the delamination kinetics of uninhibited coatings must first be characterised. Any 

literature concerned with underfilm delamination typically contains details of control 

experiments in which the baseline kinetics have been established for the particular 

substrate-coating type to be studied. This allows the characterisation of that particular 

delamination cell. The current discussion refers to reported delamination kinetics of 

uninhibited PVB coatings applied to iron and HDG (zinc) substrates, where 

delamination is initiated by 5% aqueous NaCl electrolyte and experiments are carried 

out at 93% relative humidity.

The measurable distance from defect to delamination front can be established using an 

SKP-derived Ecorr profile. The delamination front is located at the inflection point 

where a steep change in potential is observed; this was illustrated in Fig 1.12. The 

background of this widely accepted theory is described in section 1.4.2. The time 

dependence of the position of the delamination is then used to analyse underfilm 

delamination kinetics. The relationship between delaminated distance (Xdei) and any
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given time (tdei), after addition of electrolyte to the defect, has been defined previously 

with the following equation:

%del ~  ^ d e l iP d e l  ~  t i )  ^  ( 1 - 2 ,3 )

where kdei is the delamination rate constant [28]. Plotting Xdei vs (tdei -  h) 1/2 allows the 

delamination kinetics to be characterised. The term ti is the time taken for either 

parabolic or linear kinetics to become established. At the time of electrolyte addition to 

the defect, the sample has spent sufficient time in the humidity chamber to allow the full 

hydration of the coating. The onset of definable delamination kinetics at time ti is the 

time at which interfacial ionic concentration reaches a level where cathodic oxygen 

reduction is supported. Section 1.4.5.2 expands on this where the effect of electrolyte 

concentration on delamination rate is discussed.

It is extensively reported that, for the delamination of an unpigmented PVB coating 

from an iron or HDG substrate plotted as Xdei vs. (tdei -  h)1/2, linear kinetics are observed 

[9,26,27,29]. The rate-determining step for the observed delamination kinetics of 

uninhibited coatings is regarded as the transport of electrolyte cations travelling from 

the defect, parallel to the interface, to the delamination front. Equation 1.23 is not a 

result of the transport of ions penetrating the coating in a perpendicular direction, as this 

diffusion path is independent of distance to the defect.

Leng et al showed that, by differentiating a series of potential profiles taken from any 

typical delamination experiment using SKP, the delamination front could be obtained 

exactly by the maximum value of the resulting peak. The various parameters, such as 

height, width and position of this peak reveal the characteristics of the delamination cell 

when considered with respect to time. Leng demonstrates how the delamination process 

can be quantified in several ways [20]. It was observed that, with increasing 

delamination time, the peak height gradually decreased. It was suggested that, during 

this time, the highly alkaline corrosion conditions in the vicinity of the delamination 

front begin to distribute through the already delaminated region. Progression over 

longer periods of time can result in the delamination front becoming indistinguishable. 

The rate at which this E COrr  distribution occurs can be quantified by the measurement of 

peak height plotted against time.
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Leng attributes the width of the peak to the direct distance measurement between the 

change in electrochemistries between the intact and already delaminated surfaces. The 

width of the peak is reported to remain relatively constant over long periods of time. 

Leng states that this region may also be determined by considering the ability of the 

specified ions to diffuse into the intact polymer and the time required for the oxygen 

reduction reaction to cause the destruction of the interface.

In summary, several quantifiable characteristics exist with regards to delamination cell 

potential profiles established for inhibitor-free delamination experiments. From this, 

any effects of inhibitor additions made to the protective coating may be determined 

where inconsistencies with the uninhibited profiles are observed.

1.4.5 Factors effecting delamination rate of uninhibited coatings

In the previous section it was stated that the rate-determining step for the delamination 

of unpigmented coatings is regarded as the transport of electrolyte cations travelling 

from the defect, parallel to the interface, to the delamination front. The rate- 

determining step is in any complex process is always the slowest step. Before 

considering the effect of inhibitor additions made to a polymeric coating on the rate of 

its delamination from a metal substrate, the effects on the delamination rate of those 

parameters that will remain consistent in a standard delamination experiment must first 

be understood. The influence of the initiating external electrolyte on coating 

delamination rate, with regards to composition and concentration, is discussed for a 

delamination cell on iron and zinc substrates.

1.4.5.1 Influence of the external electrolyte composition on delamination rate

Cation type has proven highly significant in the study of underfilm mass transport 

mechanism. As described in section 1.4.2, it has been reported that, upon the 

establishment of a delamination cell, only cations are present in the delaminated region; 

anions remain localized to the defect. Leng et al experimented with alkali-halide 

chloride salt electrolytes and showed that, when plotting delamination distance vs. (t -  

ti)1/2, the delamination rate could be ranked in the order Cs+ > K+ > Na+ > Li+ [20]. This 

ranking order correlates to the mobility ranking of the listed cations when in aqueous 

electrolyte. For example, the small Li+ ion displayed the lowest delamination rate and 

has the lowest mobility in aqueous electrolyte due to a large, strongly bound hydration
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shell. Leng concludes that the rate-determining step for the delamination of simple 

unpigmented polymeric coatings is the transport of cations along the substrate/coating 

interface. However, Leng also reports that the observed diffusion coefficients recorded 

for cations at the metal-polymer interface are substantially smaller than those recorded 

in water. This leads to the assumption that the cations migrate via a thin gel-like layer, 

as referred to in section 1.4.2, which results from the chemically destroyed polymer. 

Although mechanical adhesion to the substrate is severely limited, the swollen 

polymeric structure limits cation mass transport, hence the reduction in measured 

mobility values at the interface when compared with those in water.

Further experiments were carried out by Leng et al to determine the influence of anion 

type on the delamination rate. It was found that the delamination rate differed very little 

when electrolytes of NaBr, NaF, NaCl and NaClCL were used to initiate delamination. 

The anions in a cathodic delamination cell remain localized to the defect region; using 

ESCA studies, Furbeth et al proved this [31]. In contrast to cations, which migrate to 

the delamination front to balance the negative charge created by the cathodic oxygen 

reduction reaction, anions have no role to play and can be considered negligible with 

regards to delamination rate.

1.4.5.2 Influence of electrolyte concentration on delamination rate

Leng et al have studied the effect of electrolyte concentration on the underfilm 

delamination rate of a polymeric coating [20]. The SKP technique was used to study 

the delamination of polymeric coatings where varying concentrations of NaCl were 

added to deionised water applied to the sample defect. It was found that, where 

deionised water with NaCl content below 0.05 M was added, no coating delamination 

was observed using the SKP; this was verified using mechanical de-adhesion testing. 

This highlights a minimum requirement of ions at the metal-polymer interface necessary 

for the establishment of the galvanic effect. Without sufficient ion content 

electrochemical reactions are impeded by the domination of an extended diffuse double 

layer as a result of the lack of ions incorporated into the interface. Hence, as described 

in section 1.4.4, equation (1.20) must incorporate q as up to this point interfacial ionic 

concentration has not reached the required level to support cathodic oxygen reduction.
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Leng also found that increasing the NaCl concentration upwards of 0.05 M the 

delamination rate progressively increased. When plotting delamination distance Xdei vs. 

(tdei -  h)1/2, all experiments revealed linear kinetics up to a time of 15 h. Leng states that, 

unlike electrolyte composition, the linear kinetics cannot be attributed to ion mobility. 

It is suggested that the observed kinetics are influenced by a permeation coefficient 

[20].

1.4.6 Filiform Corrosion

1.4.6.1 Background to filiform corrosion

First reported in scientific literature in 1944 by Sharman, filiform corrosion (FFC) is 

considered a type of atmospheric corrosion and was first observed on lacquered tobacco 

cans [32]. The characteristic thread-like corrosion product deposited under organic 

films is primarily known to affect organic-coated aluminium and iron (steel) substrates. 

The effects of FFC are largely superficial with the main detrimental effect of the 

mechanism being aesthetic. This in itself is unacceptable within the organic-coated 

metal product market but, more importantly, in some instances FFC is a precursor to 

more serious, structural problems. The first example of this kind was found in the 

aeronautical industry where aeroplanes exposed to tropical atmospheres experienced 

corrosion on the rivet heads and at the edges of aluminium sheets. Cracking in the 

paintwork caused by flight vibrations resulted in the onset of FFC that eventually lead 

to corrosion in crevices surrounding the rivets. The result was crack development in 

highly stressed zones from FFC trails [33]. FFC was able to develop undetected below 

the lacquer coating and was noticed only when the problem became dangerous in 

nature. It is, therefore, of great importance that organic coatings provide resistance 

against FFC in the event that the metallic product to be is exposed to the conditions 

under which FFC may occur.
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]. 10. Photographic im age o f  filiform  corrosion on an aluminium substrate [3 4 ]

1.4.6.2 Factors effecting filiform corrosion

FFC is initiated by the penetration of soluble ionic species, such as chloride ions, 

through a defect or coating weak spot to the underlying substrate. It has been reported 

that FFC on iron may initiate by a wide range of anions where the effectiveness of 

particular salts at doing so is regardless of its hygroscopic characteristics. FFC only 

occurs at humidity in the range 60 - 95%. Where relative humidity is close to the 

saturation point, i.e. above 95%, blistering is typically observed in place of FFC [33]. 

Further to this, oxygen must be present for FFC to occur as corrosion processes require 

a redox reaction; FFC does not occur in inert atmospheres [35]. It has been shown 

elsewhere that an increase in temperature from ambient conditions results in an increase 

in FFC growth rate [33].

1.4.6.3 Filiform corrosion mechanism -  Phase one

McMurray et al showed that, on iron substrates, a phase of cathodic coating 

disbondment precedes FFC where initiation is achieved by the addition of group (I) 

chloride salt electrolytes to a penetrative defect [36]. Whilst the progressive depletion 

of the group (I) cations occurs, due to migration to the site of cathodic delamination, C1‘ 

anions remain in the vicinity of the defect. The electrochemical cell is completed by the 

anodic dissolution of Fe2+ cations at the defect. Upon the eventual exhaustion of all 

group (I) cations and, hence, the halting of cathodic delamination, the remaining Fe2+ 

and Fe3+ chlorides at the defect site begin the onset of Phase two, FFC.

A study by McMurray et al recorded observations of cathodic delamination and 

subsequent FFC initiated by a range of aqueous group (I) chloride salts[36]. Unlike
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initiation with the other group (I) chloride salt electrolytes, FeCh electrolyte resulted in 

no initial cathodic disbondment. Instead a layer of thick, dark brown precipitate was 

observed on the coating defect. It was suggested that, through contact with atmospheric 

O2 , Fe2+ cations are oxidised to Fe3+. It is known that the precipitation of an insoluble 

solid Fe(OH )3  is the result of a tendency of Fe3+ aquacations to undergo hydrolysis to 

produce a series of mono and polynuclear hydroxyl-complexes. The lack of a cathodic 

delamination phase prior to the onset of FFC can be attributed to the polyvalent Fe3+ 

aquocation rendered incapable of carrying current through the alkaline underfilm 

electrolyte layer. After a 40 h period the initiation of FFC was observed where the 

filament propagation rate was similar to those initiated by other group (I) chloride salts. 

[36].

1.4.6.4 Filiform corrosion mechanism -  Phase two

The mechanism for Phase two filament growth is presented by Keashe [37] and further 

demonstrated by Ruggeri and Beck [38]. The theory attributes the delamination of the 

coating, caused by FFC, to an anodic mechanism. A filiform filament is made up of an 

electrolyte-filled head, including metal cations and aggressive Cl' anions, and a filament 

tail consisting of inert corrosion product. The head acts as the active corrosion cell and 

travels across the metal substrate leaving behind the dry, porous corrosion product that 

makes up the tail. As a result of cation hydrolysis, the leading edge of the filament head 

displays a very low pH, typically between pH 1 and pH 4. Conversely, the back of the 

head is of extremely high pH; this was measured by Slabaugh as pH 12 on an iron 

substrate [35].

The initiation of FFC is thought to be by osmosis on the basis that it only occurs when 

exposed to a humidity above 65% [39]. Where a penetrative defect allows the entry of 

electrolyte containing a soluble salt, a small liquid aggregate will form. This is due to 

the high affinity of the ions for water. Upon the build-up of molecules a formation of 

liquid occurs such that any further liquid penetrating the coating is retained due to the 

vapour pressure of the concentrated electrolyte [40]. The beginning of anodic iron 

dissolution then occurs releasing Fe2+ ions into the solution. Furthermore, the 

displacement of oxygen occurs in the same region. Where low oxygen concentration is 

present, within a differential aeration cell, the acidification of the electrolyte is a typical
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response; this oxygen deficient site forms the basis of the anode and the surrounding 

area forms the cathode. The diffusion of oxygen and water through the porous tail into 

the filament head causes a differential aeration cell and the separation of the anode and 

cathode. The imbalance of oxygen supply to the area of iron dissolution allows the 

further development of the anode and the cathode. The oxygen deficient area at the 

front of the head becomes the anode and the oxygen rich area at the back of the head, 

supplied by the porous tail, becomes the cathode. Upon the full development of the 

oxygen concentration cell, the region at the front of the head anodically undermines the 

coated substrate allowing for the propagation of the filaments.

Williams et al show that a potential gradient exists between the front and back of the 

filament head where anions migrate to the front and cations migrate to the back [36]. 

The Fe2+ formed in the oxidisation of the iron, as in equation (1.24), at the front of the 

head migrates to the back of the head. Further oxidisation of the cation then occurs as 

it is exposed to a higher oxygen concentration. This cathodic reaction is shown in 

equation (1.25).

Fe Fe2+ + 2e' (1.24)

4Fe2++ 0 2 + 2H20  4Fe3+ + 4 0 H ‘ (1.25)

A colour change between anodic and cathodic regions can be observed where a ‘V ’ 

shaped boundary between ferrous and ferric ions exists.

1.4.6.5 Alternative FFC mechanism

An alternative mechanism by which FFC initiates and propagates has previously caused 

some dispute amongst authors regarding the location of the cathodic site. The opposing 

proposals suggests that cathodic activity occurs either in the narrow region at the very 

front of the filament head [30,38,39] or even preceding the filament head a small 

distance ahead of the leading edge [40-41]. Funke proposed a mechanism by which a 

cathodic region lies a distance in front of the filament head and is able to grow due to a 

generation of underfilm hydroxyl ions. It was suggested that this occurs until the 

cathodic region reaches a size where it merges with the filament head. From this 

hydroxyl ions are said to migrate in the direction of the anode while electrolyte cations 

present in the head migrate towards the preceding cathode. A polarity reversal results 

where the front region, originally cathodic, is now the filiform head anodic leading
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edge. The process is said to repeat resulting in the segmented appearance of the 

fdament tails.

Various counter arguments to this hypothesis include the notion that the described 

model is inconsistent with the asymmetric separation observed between corrosion cell 

anodic and cathodic zones. Ruggieri and Beck also point out that the alternative 

mechanism implies that the ionic current must flow from the anode through the coating 

to reach the anterior cathodic region [38]. It is suggested that high resistance of the 

undelaminated coating would limit cathode size. A lack of experimental evidence to 

prove the existence of the region cathodic detachment preceding filament advancement 

is typically taken as an argument against its validity. However, Williams et al suggest 

that, although it is not a filament propagation rate determining process in FFC on iron, it 

should be considered an important factor in the lateral spread of filament head 

electrolyte [36].

1.5 Recent work on inhibitors for the prevention of the underfilm delamination 

of organic coatings

Extensive research published by various authors outlines the prevention of corrosion- 

driven underfilm delamination by in-coating inhibitor additions and pre-treatments; 

these will be discussed within the current section. Due to legislative pressure to replace 

the traditional chromate-based inhibitor systems, non-toxic, alternative inhibitors are of 

particular importance for industrial applications.

As described in Section 1.4.2, an electrochemical delamination cell is established by the 

coupling of a cathodic oxygen reduction reaction at the delamination front with anodic 

metal dissolution at a defect. In the delamination of unpigmented coatings an underfilm 

pH of > 1 0  contributes to the hydrolysis of interfacial bonds, polymer degradation and, 

in the case of HDG, dissolution of the amphoteric zinc (hydr)oxide film. Reported 

delamination kinetics suggest that the rate-determining step in an uninhibited 

delamination cell is the migration of cations from the external electrolyte to the 

delamination front. The mechanism by which chromate acts so efficiently to prevent the 

aforementioned cathodic disbondment process will be discussed along with a selection 

of potential replacement inhibitor systems.
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1.5.1 The inhibition of corrosion-driven underfilm delamination by chromate

The cathodic inhibitory properties of chromate have been reported extensively in 

various literature [9,42,43]. In-coating chromate (SrCrCU) additions have been proven 

to reduce both underfilm delamination and delamination cell currents to a minimum. 

This has been shown at volume fractions (cpsc) of > 0.064 when added to a PVB coating 

applied to HDG substrates [9]. The dominant inhibition mechanism from such findings 

is considered to be the replacement of the oxygen reduction reaction by self-limiting 

chromate anion reduction (Reaction 1.26). This acts as a cathodic depolarizer following 

the diffusion of CrCMj-  anions from the coating directly into the underfilm electrolyte 

layer. Furthermore, the resulting insoluble Cr(III) (hydr)oxide (Cr(OH)3) precipitate 

acts to reinforce any passive zinc(hydr)oxide layer that may be present at the zinc 

surface.

2C r04 j"+ 10H 2O + 6 e ^  2Cr(OH)3(s) + 10OH (1.26)

Further to this it has been shown that a zinc surface, within the already delaminated 

region, becomes increasingly passive over the duration of the experiment [47]. This 

was shown by an increase in potential in the area from values of -0.6 V vs. SHE, typical 

for a freely corroding zinc surface at the defect margin, to ca. -0.35 V vs. SHE [9]. This 

passivation is attributed to a combination of high underfilm pH and the diffusion of 

Cr044~ anions into the electrolyte layer. A reported decrease in rates of anodic zinc 

dissolution in region (I) of fig 1.12 contributes to, but does not govern, the overall 

reduction in delamination rate.

In contrast to the highly effective inhibitory action of in-coating SrCrC>4 , anions of the 

same pigment (CrCMj- ) added to the electrolyte were found to reduce the delamination 

of an unpigmented coating by a conservative <25% . A passivation of the exposed zinc 

surface at the defect was observed and anodic zinc dissolution was profoundly inhibited 

exclusively in this region. The reason delamination was able to progress was due to the 

persistent zinc dissolution in the defect/coating margin region. The authors assigned 

this finding to be consistent with previous findings that showed the substantial 

exclusion of CrCM^-  anion migration from the underfilm electrolyte layer by the 

delamination cell electric field [9].
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1.5.2 The inhibition of corrosion-driven underfilm delamination by smart-release 

coating systems

‘Smart-release’ inhibitor systems, also known as nanocontainer-based technologies, 

have obtained substantial recognition as a credible alternative to in-coating corrosion 

inhibitor pigments based on sparingly soluble chromate. The attraction of such systems 

is as follows:

1. They have the ability to release stored inhibitor species and sequester aggressive 

ions. This occurs only upon intrusion by corrosive electrolyte. This is a major 

advantage with respect to environmental concerns as sparingly soluble chromate 

based pigments continuously leach their constituent ions when in contact with 

aqueous media resulting in long-term environmental damage.

2. It is potentially possible to incorporate either inorganic or organic ionic species 

that may act as corrosion inhibitors. This relieves the limitations of only 

incorporating sparingly soluble salts.

The release of stored inhibitor species may be triggered in three ways. The first is by 

the presence of aggressive ions that initiate a subsequent ion-exchange process. The 

second trigger is by an alteration in substrate potential, this type of system is typically 

achieved by the incorporation of a conducting polymer (CP). CPs such as polypyrrole 

(Ppy) have been shown to prevent corrosion at a defect by the release of inhibiting 

anions only when the defect potential falls beneath a threshold value [44-45].

The final type of smart-release system triggers anion-release when a change in local pH 

is realised. These include coatings based on meso-porous silica [49], hydroxyapatite 

[50] and layer-by-layer deposited polyelectrolytes [51]. Extensive study has 

successfully shown that, on a range of metallic substrates, a self-healing effect to a 

penetrating coating defect can be achieved the results of which are comparable to 

industry standards [28].

1.5.3 Ion-exchange pigments for the inihibiton of corrosion driven underfilm 

delamination

A major contender for the replacement of chromate under investigation is the use of ion- 

exchange minerals as smart-release pigments for incorporation within a polymer binder
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[28], [52]—[57]. The inhibitory mechanism against delamination of such a system takes 

effect only in the presence of a potentially damaging aqueous environment where 

inhibitor species are released and aggressive chloride and H+ ions are sequestered. The 

main contenders for the replacement of chromate based systems will be described in this 

section.

1.5.3.1 Rare earth metal cation-exchanged bentonite pigment

Various literature documents the substantial study of exchange cations for naturally 

occurring bentonite (a.k.a Wyoming) clay [56,57,58]; a comparatively low-cost pigment 

that exhibits no negative connotations on the environment. The key characteristic of 

bentonite clays, with regards to their inhibitory qualities within the highly alkaline 

rendered conditions of a delamination cell, is their intrinsic cation exchange properties 

that have substantial independence from pH [61].

Williams et al explored the exchange of bentonite clays with a range of divalent alkali 

earth metal cations: Mg2+, Ca2+, Sr2+ and Ba2+ and trivalent rare earth metal cations Y3+ 

and Ce2+ [29]. A significant enhancement in the resistance of cathodic delamination in 

organic coatings adherent to iron surfaces was demonstrated when compared with 

experiments on uninhibited coatings. The proposed inhibitory mechanism was the 

reduction of underfilm electrolyte conductivity by underfilm cation exchange and 

precipitation of sparingly soluble hydroxides. Delamination kinetics were consistent 

with underfilm cation migration as the rate determining step. Interestingly, it was 

observed that the cations with more soluble hydroxides provided superior inhibition to 

underfilm delamination than those with less soluble hydroxides. It was suggested that a 

less soluble hydroxide might result in excess precipitation that acts to suppress further 

cation exchange.

9 -4-1.5.3.2 Zn -exchanged bentonite pigment

Zn2+-exchanged bentonite pigment dispersed in a PVB coating have been shown to 

significantly decrease the delamination rate of coatings applied to a HDG substrate. 

Cation exchange has been shown to occur between Na+ ions in the underfilm electrolyte 

and the Zn2+-Ben pigmented coating. The governing mechanism, suggested by 

Williams et al, is thought to be the suppression of cathodic oxygen reduction; this was
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shown in two ways [62]. Firstly, with increasing levels of in-coating exchangeable Zn2+, 

the Eintact was shown to become progressively depressed when compared to those values 

observed in the uninhibited case. Secondly, analysis of the delamination rate revealed a 

change from the parabolic kinetics (where Xdei was plotted against (tdei -  h)), seen in the 

control experiment, to linear kinetics upon addition of inhibitor pigment. It is suggested 

that a cathodic blockade results from the aquo-cation hydrolysis of exchanged Zn2+ that 

produces a buffering of the underfilm pH. The dissolution of amphoteric zinc 

(hydr)oxide at the delamination cell cathode is thus prevented and reinforced to further 

obstruct interfacial electron transfer [61].

1.5.3.3 Ce3+ cation-exchanged bentonite and silica

Dispersions of Ce3+ cation-exchange pigments based on silica and bentonite in PVB 

coatings applied to HDG substrates have been shown to significantly retard, but not 

completely halt, cathodic delamination. The mechanism is ascribed to an increase in 

under-film resistivity by the displacement of underfilm electrolyte by solid Ce(OH )3  via 

Reaction 1.27.

Ce3+(aq) + 3H20(aq) ^  Ce(OH)3(s) + 3H+(aq) (1.27)

The consequence of this deposit is the increase in length and tortuosity of the pathway 

in which delamination cell ions must migrate. The mechanism was derived from the 

delamination kinetics that remained parabolic (where x<jei was plotted against (tdei -  h)), 

where inhibitor was added, denoting that mass transport control remains the rate- 

determining step. Williams et al suggest that the rate of exchange of Ce3+(aq) ions with 

Na+(aq) from the experimental electrolyte lags behind the advancing delamination front. 

The majority of Ce3+ ions that enter the highly alkaline electrolyte form a Ce(OH )3  

precipitate in close proximity to the defect and the delaminated zone. Oxygen reduction 

at the delamination cell cathode is free to continue as no coherent cathodic film capable 

of stifling the reaction is formed [29].

1.5.3.4 Ca2+ cation-exchanged silica

A commercially available cation-exchange pigment based on exchangeable calcium- 

containing silica (Si0 2 ) pigment has been shown to exhibit an equivalent level of 

inhibition as that of chromate pigments [63]. It is prepared via the treatment of Si0 2
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powder with aqueous calcium hydroxide (Ca(OH)2). Three inhibitory mechanisms have 

been proposed:

1. The acid-base reaction of calcium hydroxide with -O H  groups on the Si0 2  

particle surface produces exchangeable Ca2+ cations.

2. An interaction between Ca2+-silica and the binder resulting in an improvement 

of cross-linking

3. The formation of a protective film at the point of metal contact facilitated by the 

established mobility of silica and calcium during the permeation process [63]— 

[65].

1.5.3.5 Anion-exchange hydrotalcite clay

The white, anionic clay hydrotalcite (HT) is commercially available in a range of 

chemical compositions and crystallographic parameters. Such clays are all termed 

‘hydrotalcite’ or ‘layered double hydroxides’ (LDH) and are either natural or synthetic 

lamellar mixed hydroxides that contain exchangeable anions. Specifically, HT in the 

form Mg6Al2(0 H )1 6 C0 3 .4 H2 0  and hydrotalcite-like compounds have been shown 

previously to act effectively as halogen scavengers within a polymer coating system. 

Within an aqueous system they have been shown to act as halide getters [6 6 ]. Both 

hydrotalcites and calcined hydrotalcites have also been shown to neutralise aqueous 

acids [67].

1.5.4 Intrinsically conducting polymers as inhibitors of underfilm delamination

Intrinsically conductive polymers (ICPs), also referred to as 7i-conjugate polymers, have 

been extensively studied due to their potential utilisation within electronic, 

electrochemical and optical applications [6 8 ]. ICPs are discussed further in Section 1.6. 

The majority of literature that discusses the use of ICPs with regards to corrosion 

protection focuses on the redox active polymers, in particular polypyrrole, polyaniline 

and polythiothene [41,42,61,62]. The following suggestions for the incorporation of 

ICPs into an effective coating system have been proposed within the available literature:

1. Single layer primer
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The electro-deposition of ICPs directly onto metallic surfaces is the established 

method of application [71]. Further to this, the addition of low concentration, 

anti-corrosive pigments is proven to improve corrosion resistance where it is 

theorised that no further coating layers are required [72].

2. Primer layer in a conventional coating system

It has been suggested that superior corrosion protection can be achieved where a 

topcoat overlays an ICP primer layer [73]—[75].

3. Conventional polymer binder/ICP blend

Various authors have reported improved corrosion protection on iron where, in 

particular, polyaniline has been mixed with polyurethane or alkyd resins [73- 

74].

4. Replacement of anticorrosion pigments with ICPs.

Low concentration additions (< 1% wt.%) of an ICP to traditional paint 

formulation have been reported to show improved corrosion resistance when 

compared with uninhibited paints [65-66].

Despite the positive points mentioned above, the use of ICP for corrosion protection is a 

contentious issue. It is suggested by Rohwerder et al that, depending on the coating 

system and the corrosive conditions, an ICP may provide excellent protection or, 

alternatively, may cause the unwanted acceleration of corrosion [22]. The proposed 

inhibition mechanisms of such ICPs are as follows:

1. The ennobling mechanism -  when applied in their oxidised form, conductive 

redox polymers such as polyaniline and polypyrrole act as an oxidiser to 

improve the oxide layer at the substrate-coating interface. It is also suggested 

that they provide anodic protection by maintaining the substrate in the passive 

region where a defect has led to substrate exposure to the external environment.

2. The shifting of the oxygen reduction site from the substrate-coating interface 

purely into the polymer coating. This acts to spread the produced radicals (such 

as the OH' radical that promotes the loss of adhesion) over the coating in order 

to reduce the radical content at the interface.

However, Rohwerder also reports that, in a situation where a large defect exists, whilst 

some CP coatings continue to provide good protection, others have been found to fail 

[78]. In an immersion situation where the whole surface area of the defective coating is

48



in contact with the electrolyte the ICP is active. In this instance the reduction current of 

the ICP would typically be higher than the current required to overcome the critical 

passivation current density in the defect. In contrast, a delamination scenario would 

stand only a small chance of the ICP reduction current being higher than required to 

overcome the critical passivation current density. This is due to the limited portion of 

the active ICP available to passivate the comparatively large area of underlying 

substrate exposed to the penetrating electrolyte at the defect.

Rohwerder et al suggest that an important factor that affects whether polarisation will 

lead to the protection against, or enhancement of, corrosion is the coupling between the 

ICP and the metal onto which it is coated. Protection may only be observed where the 

ICP is capable of providing oxidation power high enough to raise the corrosion current 

of the metal over the critical passivation current density. Where this can not be 

achieved, the acceleration of corrosion is likely. Specific cases where ICPs have been 

incorporated into coating systems will be discussed in the proceeding sections [2 2 ].

1.5.4.1 The effect of polyaniline on underfilm delamination

The electrically conductive emeraldine salt (ES) of polyaniline (PAni) was first reported 

to be an effective inhibitor against corrosion by DeBerry in 1985 [79]. The PAni ES is 

produced via the proton doping of partially oxidised PAni emeraldine base (EB) using 

Bronsted acids [80]. Within the available literature the comparable effectiveness of 

dopant type, doped (conductive) and undoped (non-conductive) PAni ES is a 

contentious issue with regards to the protection of carbon steel [81]. Certain 

publications suggest that an enhancement in protection is achieved by doping with 

anions with their own inhibitory qualities; the ability to form a salt layer on the substrate 

is shown to be beneficial [82]—[86]. Contrary to this, several studies have contested the 

need for doping and suggested that the protection qualities of PAni EB are superior 

[86]—[91].

A readily available version if PAni, paratoluenesulphonic acid (PAni-PTS), is widely 

used commercially [68,89]. A major drawback of PAni-PTS, however, is its intractable 

nature through which adhesion to metal surfaces is limited [71]. Application of PAni ES 

to metallic substrates is traditionally carried out by electrodeposition or via the
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deposition of water-borne dispersions. Several studies report the successful dispersion 

of PAni into a conventional polymer binder [85,90]. Williams et al studied the effect of 

PAni-PTS on underfilm delamination when dispersed in a PVB coating applied to HDG 

substrates [94]. It was hypothesised that, by dispersing in a non-conducting polymer 

matrix such as PVB, PAni-PTS could be utilised without any issues with adhesion loss. 

PAni-PTS dispersions of cppa > 0.2 in PVB were found to profoundly inhibit underfilm 

delamination over a 48 h period. The proposed inhibition mechanism, in this instance, 

was the stifling of the cathodic oxygen reduction reaction by the formation of a PAni- 

PT-induced zinc oxide layer at the zinc-coating interface. This oxide layer was found to 

form at a thickness proportional to cp. The zinc layer was also found to remain 

unharmed by the highly alkaline underfilm conditions by a pH buffering mediated by 

the PAni-PTS additions.

The effective inhibition of cathodic delamination on iron substrates by PAni doped with 

various acids, p-toluenesulfonic (H-pTS), camphorsulfonic (H-CS), phosphoric (H3PO4) 

and phenylphosphonic (H2-PP) was proven in an SKP study. A progressive increase in 

substrate potentials, by up to 0.36 V, with increasing PAni volume fraction (cppa) was 

observed from PVB/PAni ES coatings. Such coatings also induced the growth of an 

interfacial iron oxide or salt film. This is in contrast to PAni EB coatings where Eintact is 

shown to be independent of (ppa indicating that no electron transfer takes place between 

the iron substrate and the electrically non-conducting PAni EB.

The mechanism by which oxide growth occurs, proposed by Holness et al, suggests that 

the oxide layer behaves as a hydrous polyelectrolyte containing the LB/ES redox couple 

shown in Reaction (1.28) [95]. A' represents the relevant dopant anion.

PAni+ A'(ES) + e' ^  PAni(LB)+A' (1.28)

Fe ^  Fe2+ + 2e‘ (1.29)

2Fe2+ + 3H20  ^  Fe20 3 + 3H+ +2e' (1.30)

The underlying substrate is polarized to potentials at which the spontaneous oxidation 

of iron occurs, shown in Reaction (1.29). Further to this the Fe2+, which exists 

transiently as the dopant anion salt, undergoes oxidative hydrolysis at the iron surface

via Reaction (1.30). A hydrous layer of Fem (hydr)oxide is produced which is able to

thicken linearly with time due to no significant impedance of the anodic current. A
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cyclic re-oxidation of air-sensitive LB moieties to ES through coupling with cathodic 

oxygen reduction means the PAni redox state is maintained.

The dominant inhibition mechanism for PAni ES coatings is considered to be the 

relocation of the cathodic oxygen reduction reaction from the ennobled substrate onto 

the coating ES. This mechanism was also observed by Tallman et al where polypyrrole- 

PAni duplex coatings were electropolymerised onto HDG substrates [71]. The before­

mentioned reduction of PAni ES to PAni LB partially, or wholly, replaces the cathodic 

oxygen reduction reaction within the delamination zone. The re-oxidation of PAni LB 

is able to take place until the alkalization of the underfilm region occurs. At which 

point the reaction product becomes non-protective PAni EB.

The PAni-dopants that displayed the most effective delamination prevention were PAni- 

HPP and PAni- H 3PO4 ; the formation of FePP and Fe3(PC>4 )2  salt films were observed 

respectively. Williams suggests that the salt films hindered electron transfer between 

PAni-ES and the iron substrate. This “secondary” barrier decreases the rate of PAni-ES 

reduction at the delamination front. Due to an eventual depletion, ES can only act to 

retard cathodic delamination, albeit substantially, but with the addition of these 

particular dopant salts a complete prevention can be achieved.

In summary the suggested inhibition mechanisms, assigned by various authors, for the 

protection of carbon steel by PAni includes:

1. Substrate ennoblement

2. The formation of a passive oxide film

3. The relocation of the cathodic oxygen reduction reaction from the ennobled 

substrate onto the coating ES

4. The precipitation of an insoluble metal salt resulting in anodic inhibition where a 

dopant anion is present

1.5.4.2 The effect of polypyrrole on underfilm delamination

Paliwoda-porebska et al found that an unmodified coating, based on the conducting 

redox polymer polypyrrole (Ppy), employed for protection against underfilm 

delamination from a large defect, the acceleration of delamination is observed [48]. The 

resultant accelerated breakdown of the coating is due to a fast oxygen reduction reaction
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and a failure to passivate the defect region. It was suggested that the fast reduction 

process is caused by high cation mobility in the reduced polymer. As the delamination 

progresses it is thought that the coating becomes increasingly accommodating for fast 

cation transport.

Where a Ppy coating was doped with MoOj- , it was found that no inhibition of 

delamination was observed. It was theorised that this was due the over-oxidation of Ppy 

due to the highly alkaline rendered interface between the metal and the polymer.

Where Ppy was doped with the anion [PM0 1 2 O40]3", significant inhibition of 

delamination was observed through on-demand release. A partial passivation of the 

defect was observed where iron dissolution was inhibited by the accumulation of 

M0 O4 -  anions. The successful inhibition in this case was also achieved by the 

decomposition reaction of the [PM0 1 2 O40]3’ anion which provided significant buffering 

of the high pH at the delamination front. In the MoOj-  dopant case described above, 

this buffering does not take place and inhibition can not be achieved.

1.6 Previous literature on relevant inhibitor materials

1.6.1 Corrosion inhibition by Phenyl phosphonic acid

Phenyl phosphonic acid (H2PP) is studied intensely in the current thesis with regards to 

its effect on inhibition of corrosion on industrially important materials; namely iron and 

HDG. Previous studies have shown the effective inhibition of filiform corrosion (FFC) 

on aluminium where H2PP is added to a polyvinylbutyral (PVB) coating. Inhibition of 

filament advancement beyond 1.5 mm was achieved at the critical level of 0.5%; it was 

observed that H2PP additions above this level made no further improvement. It was 

suggested that electrochemically active sites were sufficiently blocked by HPP' and PP2' 

anion adsorption where H2PP was present at this level. Coleman et al found that H2PP 

acts to suppress the ECOrr in the undelaminated region by values up to 0.35 V [96]. This 

was attributed to the described HPP' and PP2' anion adsorption on the oxide-covered 

aluminium surface. This observation coincided with a reduction in FFC filaments [96]. 

A further suggestion is that the formation of a metal/H2PP salt layer acts to prevent the 

propagation of the initiated filaments.
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H2PP was used in a study by Williams et al where polyaniline (PAni) emeraldine salts 

(ES) in a PVB coating were doped with the inhibitor. Whilst the study concerns the 

effectiveness of PAni ES at preventing underfilm delamination it is also shows that an 

H2PP dopant provides a secondary barrier by the formation of a FePP salt film. This is 

shown to hinder the oxidation reaction of the iron substrate assuming the ions exceed 

the estimated solubility product (Ksp) value which was given as Ksp = iO' 7 9±0 3 from a

Fig 1.11 The atomic structure of phenyl phosphonic acid 

1.6.2 Conducting Polymers

The concept of conducting polymers was first introduced by Hatano et al in the 1960s 

where a study revealed the conductive properties of polyacetylene. Since 1977, where 

Shirakawa, MacDiarmid and Heeger proved the possibility of increased conductivity of 

said polymer via exposure to halogen vapour, the newly classified ‘intrinsically 

(inherently) conducting polymers’ (ICP) have become a highly researched subject for 

applications in a wide span of industrial sectors. With observed electrical properties 

close to that of copper, ICPs were also referred to as ‘organic metals’. Fig 1.12 shows 

the chemical structures of some common 7c-conjugated polymers.

titration experiment [80].

o
ii

M H

Tl

Polyaniline (PAni)

Poly (3,4-ethyldioxythiophene) (PEDOT)
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trans-polyacetylene (t-PA)

Polypyrrole (PPy)

Fig 1.12 The atomic structure of various conducting polymers

Conducting polymers can be grouped into either ionically or electronically conductive 

depending on the type of charge transport carrier. As the name suggests, in ionically 

conducting polymers ions are responsible for the conduction of electricity; a typical 

application is the electrolyte in a solid-state battery. Electrically conducting polymers 

can be further divided into two categories; intrinsic and extrinsic. An extrinsically 

conducting polymer is able to conduct due to the addition of conductive fillers e.g. 

graphite or metal particles.

1.6.3 Poly (3,4-ethyldioxythiophene) (PEDOT)

PEDOT is currently the most widely used ICP due to its performance with regards to 

conductivity, processablity and stability. Compared with other thiophenes, PEDOT 

displays good electrochemical, ambient and thermal stability of its electrical properties. 

However, pristine PEDOT is neither soluble nor dispersible, due to a formation of 

undesirable products formed in the polymerisation reactions; processablitlity in 

unaltered PEDOT is poor.

In 1989, a way of rectifying these problems was achieved by the polymerisation of the 

EDOT monomer in aqueous poly(styrenesulfonic acid) (PSS). PSS itself has no 

oxidising effect so is not considered to be a dopant. However, due to a much higher 

molecular weight, PSS and the corresponding polyanion were found to function 

sufficiently as the counterion for positively charged, doped PEDOT. PSS acts to keep 

the PEDOT chain segments dispersed in the aqueous medium. The resulting 

PEDOT:PSS complex was found to display highly stable micro-dispersive properties in 

water where PEDOT is in its oxidised state. The final product is processable on a large 

scale and may be applied via a range of industrial techniques to produce a thin,
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transparent, conducting film. Aqueous dispersions of commercial grade PEDOT:PSS 

typically have a work function of ca. 5.2 eV. Due to the PSS content the dispersion 

typically displays a pH value between 1.5 and 2.5 at room temperature.

1.6.4 Corrosion inhibition by PEDOT

To date, Poly(3,4-ethylenedioxythiophene) (PEDOT) has been used within 

photographic film, antistatic coatings, printed circuit boards, inorganic 

electroluminescent lamps amongst others (ref:). PEDOT has proved useful in such a 

wide range of applications due to its high conductivity and uniquely high stability when 

in the oxidised state. An essential requirement of the applications listed above is 

effective film-forming properties. This is achieved by doping with poly(styrene 

sulfonic acid) (PSS) which promotes the formation of a water-soluble polyelectrolyte 

system [6 8 ]. Armelin et al studied the effectiveness of PEDOT:PSS as an anticorrosive 

additive in low concentrations (0.3 wt.% ) in a conventional epoxy paint formulation for 

steel [69]. It was found that PEDOT:PSS additives provided a significant improvement 

in corrosion protection when compared with the unmodified paint formulation in an 

accelerated corrosion assay using aggressive saline solution. Although various papers 

suggest the possible applications for PEDOT:PSS as a corrosion inhibitor available 

literature on the substrate is very limited at present.

1.7 Theoretical principals of the Scanning Vibrating Electrode Technique 

(SVET)

The relatively modem innovation of scanning electrochemical techniques is a highly 

effective means of studying the kinetics and mechanism of metallic corrosion in 

aqueous environments. This is a substantial progression from traditional techniques 

where a basic, unspecific picture of a corroding surface was produced. In principal, the 

electrochemical activity of the surface of interest may be scanned periodically with a 

micro tip electrode to produce a series of spatially resolved maps showing corrosion 

over time. This enables the identification of corrosion type and allows subtle features to 

be observed. Scanning is conducted at very close distances from the surface where local 

potential values are obtained that relate to a known co-ordinate position. The ability to 

spatially resolve and quantify localised differences in corrosion activity on a metallic 

surface, and provide details of reaction rates, is highly unique. A major benefit of such
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techniques is that the scanning process does not perturb the sample in any way such that 

results are unaffected and highly reliable.

The predecessor of the SVET is the Scanning reference electrode technique (SRET) that 

uses a scanning reference electrode and a remote electrode to measure the ohmic 

potentials generated in solution by the passage of current from anodic to cathodic sites. 

The SVET is derived from the SRET and provides a considerable advancement in 

sensitivity and spatial resolution by measurement of the vertical component of current 

flux in the plane of the scan. This measurement also enables a more reliable estimate of 

current density [98].

As described in Section 1.2.1, the electrochemical corrosion of a metal involves the 

flow of ionic current from a local anodic site to a general cathodic region. The ionic 

current distribution through the electrolyte can be considered as lines of current flux that 

pass from anode to cathode. The flow of electrons through the metallic substrate 

completes the conducting circuit. The metallic substrate can be considered as a plane of 

constant potential due to its negligible resistance. Conversely, the electrolyte has a 

substantially higher resistance and, therefore, ohmic potential gradients are produced 

upon the movement of ionic current through the solution. These may be represented as

a series of lines of iso-potential that lie normal to the lines of ionic current flux. This is

illustrated in the schematic shown in Fig 1.13.

Both the Laplace equation (equation 1.31) and Ohm’s law (equation 1.32) can be used 

to determine the distribution of potential and ionic current in solution; these are as 

follows:

V2E = 0 (1.31)

i = -CIVE (1.32)

Where E represents the electrical potential, i the current and □ the conductance of the 

solution.
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Current flux Iso-potential

Fig 1 . 1 3 -  Schem atic representation o f  the current flux and iso-potentials generated from a point source.

Further to this, the potential at any point in three dimensional planes (x,y or z) is shown 

to be inversely proportional to the distance from the source for a point current source, i, 

situated at height z = 0 on a non-conducting x,y plane where the current drain is equal to 

infinity. This is given by:

The SVET technique is based on the scanning of a micro-tip electrode (125 pm 

diameter platinum wire within a glass capillary) that is vibrated mechanically at 

constant amplitude and frequency perpendicularly at ca. 100 pm (in the current study) 

above the sample surface. An alternating potential is registered, at the vibration 

frequency, where the vibrating tip scans over a corroding surface. This registered 

potential is proportional to the electric field strength or potential gradient in the 

direction of the vibration that arises due to ionic current flux passing through the 

electrolyte. Therefore, the SVET signal is directly proportional to the component of 

ionic current density that lies parallel to the vibration of the probe; hence, in the current 

study, normal to the sample surface. Due to the set distance of the vibrating micro-tip 

above the corroding surface, the measured signal is proportional to the vector 

component of the current density in the electrolyte at the height of the probe and not the 

surface current density [98].

E = (1.33)
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By vibrating the SVET probe perpendicular to the surface, the normal electrical field 

strength (F) may be measured. A progression of equation 1.30, which gives the electric 

potential, E, at any point (x,y,z) in the electrolyte, is as follows:

dE iz
dz 2k k (x 2 +  y 2 + z2)1Ar, — o  . __2 . _,2 \ 1.5 (1-34)

where the differentiation of equation 1.30 with respect to z has been carried out. Fig 

1.14 shows the characteristically peaked shape centred about the current source that 

represents the distribution of normal field strength in solution across a plane of constant 

height above a point current source. From equation 1.31, the maximum field strength 

(Fmax) at a height z will occur when the micro-tip is directly above the point source 

origin (i.e. x=0 , y=0 ) and is given as follows:

Fmax = "  27CKZ2 (1'35)

which, again, is recognised as the z differential of equation 1.30. It is highly critical for 

an SVET study that test samples are flat and contain no perturbing features. This is due 

to the inverse-square relationship between Fmax and the probe height, implicit in

equation 1.32 that makes the control of probe height critical in any SVET measurement. 

One positive feature of the SVET predecessor, SRET, is that the condition of samples is 

not such a concern. However, recent advances in SVET development have resulted in 

3D height scanning which allows the scanning of 3D shapes whilst maintaining a 

constant distance from the sample surface.

In terms of accurately locating localised corrosion features, spatial resolution is of high 

importance; this is defined by the minimum distance between two features that is 

detectable by the scanning micro-tip. Theoretical spatial resolution of the SVET is 

determined by the calculation of signal peak width at half the maximum peak height

(whm). If r is taken as the distance from a point current source on the x,y plane then it

can be shown that:

r =  (x2 +  y 2)0-5 (1.36)
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Fig 1 . 1 4 -  Graphical representation o f  the distribution o f normal field strength in solution across a plane 
o f constant height above a point current source.

then the value of r at which the value of F falls to half of its maximum value (i.e. 

0.5Fmax) is obtained by combining equations (1.33) and (1.34).

iz

max =  27tK(r2 +  z 2) 1'5 0  '3?)

The ratio of equations. (1.29) and (1.31) then gives,

r =  z (2 273 -  I)0’5 (1.38)

Finally, since the width of the SVET response peak is twice the value of r

whm = 2r = 1.533z (1.39)

As is used throughout the current study, a scan height of 100pm would yield a 

theoretical spatial resolution of 153 pm. However, the actual resolution of the SVET 

apparatus is around 250 pm. This deviation from the theoretical resolution and the 

measured resolution results from the finite dimensions (i.e. the 125 pm platinum disc) 

of the experimental probe.

Through model studies carried out by Isaacs it has been demonstrated that the equations 

expressed here can be considered true when in reference to a point source [99]. When 

investigating the effect of probe height above a point source set in an insulating plane 

on the normal fields of current flux Isaacs showed that the distribution of the ionic 

currents emanating from the electrodes are dependent on the disk being of either
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uniform current density or of a uniform potential at the surface of the disk. Scan heights 

are suggested to be kept above a certain limit as it was stated that when the distance 

between the probe and the point source approaches zero the current fields become non­

linear.

1.7.1 SVET efficiency

The fixed scanning height (h) of the SVET tip has been found to be insufficient in 

certain situations. When scanning a corroding surface where a well established local 

anode is surrounded by a well distributed cathode, as in stable pitting corrosion, the 

distance between local anode and local cathode will be greater than h and current flux 

lines will cross the plane of scan and therefore be detectable. When scanning a surface 

where generalised corrosion is occurring and the anode-cathode distance is less than h 

the current flux will not cross the plane of scan and, therefore, not be detectable by the 

SVET; this will result in a greatly reduced efficiency of the scan [100]. This is 

illustrated in fig 1.15.

(a) SVET detection efficiency->1 (b) SVET daeaion efficiency-► 0

LJ □ □
c A C A C A C A

Pitting corrosion General corrosion

Fig. 1.15 Schematic diagrams that show the SVET detection efficiency in two scenarios where (a) a local 
anode is surrounded by a uniformly distributed cathode where the anode-cathode distance is > h and (b) a 
generalised attack where the anode-cathode distance is < h [100].

1.8 Theory and principals of the scanning Kelvin probe (SKP)

Pioneered by Stratmann et el, the use of the Scanning Kelvin Probe (SKP) for the study 

of metallic surfaces under atmospheric conditions has allowed the advancement of 

investigative testing into underfilm delamination of polymeric films. One profound
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benefit of the technique over traditional techniques is that, in no situation, does the 

sample surface need to be touched meaning damage of any kind is avoided.

In practice, atmospheric conditions are the most corrosively damaging as metal surfaces 

are subject to thin electrolyte layers that develop through both water adsorption and 

condensation. Traditional testing techniques are not suitable for testing in atmospheric 

corrosion conditions because an electrolytic conduction path is required to connect the 

scanning and reference electrodes. The SKP technique does not require a reference 

electrode. This allows for the electrochemical mapping of localized corrosion 

phenomena that occurs beneath both thin electrolyte films and intact polymer coatings. 

As one of the most sensitive measuring techniques in surface physics the SKP 

technique, or ‘Kelvin’s vibrating capacitor technique’, has become a well established 

means of determining metallic work functions. Initial studies, conducted by Stratmann 

et al, were based on large areas; advancement in design, however, has led to lateral 

scanning resolutions of < 100 pm [101].

1.8.1 Principles of S KP operation

Fig 1.26 shows a schematic diagram of the SKP technique that illustrates its use in 

measuring surface (Volta) potential. The probe is positioned perpendicularly above the 

sample where the two constitute the plates of a parallel plate capacitor. The air-gap and 

insulating polymer (as in a delamination experiment) are the non-conducting medium 

present between the ‘capacitor plates’ and, thus, represent the capacitor dielectric. 

Capacitance (C) of a parallel plate capacitor can be established via the following 

equation:

c = ~ r  (!-40)

where A is the plate area, d is the distance between plates, £0 is the permittivity of a 

vacuum and £ is the dielectric constant of the capacitor dielectric. The probe electrode 

is vibrated relative to the sample surface in sinusoidal form at a frequency, co, such that 

the distance separating the two capacitor plates, d , varies with time, t. This is 

represented as follows:
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d = d 0 + sin(ojt) (1.41)

Vibrating Metal_ 
([x, y] scanning)

Electrolyte 
W orking 

Electrode

J Frequency CO 

'} A T

Uext
Fig. 1.16 Schem atic diagram o f  the SKP

in which the mean plate separation is denoted by d 0, and the amplitude of vibration by 

d 1. A periodic fluctuation, C, is produced by probe vibration. Where any Volta 

(outside) potential exists between probe and sample surface, an alternating current, i, 

will result in the external circuit illustrated in the schematic shown in fig 1.16. This 

flow of current is given by:

dQ dC
i =  ~ T  =  A T  —  dt  u t

(1.42)

where Q represents the electric charge on the capacitor plates. By substituting equation 

1.38 and 1.39 into equation 1.40 the following is true:

d 1£ocos(mt)
i =  - £ £ 0A A V  —   — — — —

[d0 + d1 s in (w t)]2
(1.41)

and, in situations where d0 »  d x this relationship can be simplified as follows:

i =  — £ £ nA A V

(1.42)
d 1ajcos(6ut)

0'*“ ' , 2 
dr\
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Maximum signal current (imax) is obtained when;

(1.43)

and this may be written in the form:

■min (1.44)

where dmin = dQ — d1 = the minimum distance between the two plates.

The open circuit value of AV is not directly obtained from the Kelvin probe signal 

current. Instead, by means of adjusting the value of the externally applied DC bias 

voltage, E, such that the signal current is nulled i.e. made zero, the AV value is 

determined indirectly. Under such circumstances the following is true:

If the experimentally obtained quantity Ei=0 is used to define a parameter E k p  where we 

take the following to be true: E k p  = -Ei=0 then E k p  is equivalent to the Kelvin probe- 

determined Volta potential difference, AV. The ‘nulling’ technique used is 

advantageous because the measurement doesn’t perturb the sample-solution interface 

where an electrolyte layer is present.

1.8.2 Calibration of the scanning Kelvin probe

The conditions under which an experiment is performed have an effect on the particular 

physical meaning of the before mentioned value Ekp- For example, where 

measurements are taken in vacuum conditions on a pristine metal surface Ekp will 

represent the difference in work function of the sample and probe. Upon the 

introduction of air to an experiment the metal sample may now exhibit a surface oxide 

film that causes a deviation in E k p  values expected of the metallic work functions. 

Humidity is another factor that offers further deviation from a measurement of pure 

difference in metallic work function. With humid atmosphere comes the hydration of 

surface oxide layers as a consequence of water adsorption.

E = Ei=o =  -A V (1.45)
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The complexity of the EKP interpretation increases with the presence of a conducting 

electrolyte film on the sample surface. In such situations the Volta potential difference 

measured is that between the probe electrode and the outer surface of the electrolyte 

film. Complexities arise due to the number of influences that may affect the electrolyte 

film Volta potentials. These include electrical double-layer effects at the metal-solution 

interface and ionic migration between localised corrosion sites causing the formation of 

potential gradients that set up in the solution. However, if no ionic current flow is 

present in solution and the electrolyte film is thicker than the electrical double layer then 

it may be shown that [99-100]:

E k p  = E co n - + constant (\ .46)

Where EcorT represents the free corrosion potential of the metal sample relative to a 

reference electrode (real of hypothetical) immersed in the film of electrolyte at the exact 

point of measurement.

For a polymer-coated metal substrate the half-cell potential (E1/2) is given by:

EU 2 =  ^ - ^  +  A C f  (1'47)

where Xgas *s the dipole potential of the polymer-gas interface and A i s  the Volta

potential difference measure between the reference probe and the polymer surface. 

Equation 1.44 can then be adapted for a post-delamination situation in which a layer of 

electrolyte exists between the metal substrate and the polymer layer. This is as follows:

ref
Ei/ 2 = ^<Pd + - f  XVgas +  M>pol (1-48)

where A (pD is the Donnan potential equivalent to the Galvani potential difference which

becomes established between the polymer layer and the electrolyte solution ((pso1 -  tppo1). 

It can be assumed that quantities areef, Xgas and Xgas remain constant over time where 

the gas-phase composition remains unchanged.

It is typical to express the free corrosion potential, E COit,  of a metallic surface with 

respect to a reference electrode such that:
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E c o r r  =  E 1/2  +  K %

where E y2 the half-cell potential defined in equations 1.44 -  1.46 and El/2 1S 

half-cell potential of the reference electrode. Equation 1.46 may be used to rewrite 

equations 1.47 and 1.48, where A and B are constants, as follows:

ECorr = A  + A t/£ f  (1.50)

for the bare substrate-electrolyte interface

Ecorr = B +  M>rpe0{ (1.51)

for both the substrate-intact polymer interface and the substrate-delaminated polymer 

interface.

The values of A and B may be individually determined by the simultaneous 

measurement of EcorT (vs. a standard reference electrode) with Aiploi an^ (using

the Kelvin probe) respectively.
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Experimental Procedures.
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2.1 Materials

The studies in this thesis involve corrosion testing both by immersion of bare metal 

substrates and observing the corrosion on a metal surface underneath an organic 

coating. The current section outlines the key materials used to create the samples so 

the relevant experiments could be carried out. This includes both metal substrates and 

their coatings. Table 2.2 given in Section 2.8 at the end of the current chapter lists all 

other materials used.

2.1.1 Metals

All metals used throughout this study were used as substrate material. All hot dip 

galvanised (HDG) steel was supplied from a single batch by Tata Steel UK and 

comprised of 0.7 mm gauge mild steel coated on both side with a 20 pm zinc layer. All 

iron samples used were provided by Goodfellow Metals Ltd and were pre-cut 50 mm x 

50 mm coupons of iron foil (99.9% Fe) of 1.5 mm thickness.

2.1.2 Organic coatings

Poly vinyl butyral-co vinyl alcohol (PVB), MW ~70,000-100,000, was used as a model 

coating for all delamination experiments and was obtained from Sigma-Aldrich 

Chemical Co. As PVB is soluble in ethanol it is possible to be used to make a liquid of 

controlled viscosity. PVB shows good adhesion to metal substrates due to a consistency 

of hydrophilic and hydrophobic monomers. PVB was chosen for the current study as it 

is simple to prepare and apply to a substrate and is of low risk to health. The structure 

of PVB is given in fig 2.1.

CH --------

I
O

c =  o

R -  CHj-CH -̂CH,
X “  No. of vinyl acetal groups 
Y “  No. of vinyl alooho] groups 
Z "  No. of vinyl acetate groups

Fig 2.1 The structure of PVB.

CH CB
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2.1.3 Sample Preparation

HDG steel and iron samples were prepared for experiments by, firstly, being cut using a 

guillotine into coupons of 50 mm x 50 mm if not already the correct size. Polishing was 

then carried out using 5 pm alumina powder to remove any surface oxide before 

subsequent rinsing with water to remove any powder residue. Finally a degreasing with 

ethanol was carried out to ensure a clean surface followed by air-drying.

2.2 The Scanning Kelvin probe (SKP)

The SKP technique is employed in Chapters 3, 5 and 6 for the assessment of corrosion 

underneath organic coatings in atmospheric conditions. The phenomenon of cathodic 

delamination of an organic coating from a metallic substrate has been studied. Through 

measuring the external potential at localised points over a sample surface an 

electrochemical map of the sample surface can be created and from this the coating 

delamination kinetics can be established.

2.2.1 Sample Preparation

In the current thesis, SKP experiments have been carried out using two types of sample 

set-up. In both cases samples were initially prepared as described in section 2.1.3.

2.2.1.1 Standard delamination cell

The standard sample preparation method is taken from the methods developed by 

Stratmann et al for the measurement of underfilm delamination [1]. A clear adhesive 

tape was used to cover a 15 mm x 50 mm area adjacent to one edge of the sample. Two 

strips of Tesla adhesive insulating tape (supplied by RS), of thickness 30 \im, were 

placed parallel to each other and normal to the clear tape at the edges of the sample. 

This left a bare strip of metal in the centre of sample of size 35 mm x 20 mm that acts as 

a trough for the organic coating. Approximately 0.5 cm of a 15.5% w/w ethanolic 

PVB solution, containing the desirable amount of phenyl phosphonic acid (H2PP) where 

necessary, was then deposited onto the clear tape and cast into a thin film using a glass 

rod which was pulled across the exposed area. The adhesive tape acted as a height 

guide allowing for the even coating distribution at a final dry film thickness of -10  \im. 

The dry film thickness was measured in three separate areas before each experiment
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using a Dektak profileometer supplied by Veeco. This process is shown in figure 2.2. 

The film was then allowed to dry in air over a 30 min period. The clear tape was then 

scribed at the edges and pulled back into a raised lip leaving an exposed area of 20 mm 

x 15 mm of the bare metal. A well for electrolyte was created using non-corrosive 

silicon sealant supplied by RS. This is shown in fig 2.12(b).

Direction of)
film castingInsulating tape guide

Adhesive tape

Liquid
coating
formulaMetal substrate

Scanning kelvin 
probe tip

Electrolyte
reservoir

Coating

Adhesive
(b) tape/coating barrier

Fig 2 .2 Representation o f  a) the bar coating process for the application o f  the PVB coating and b) the final 
sam ple with the defect and electrolyte w ell created from non-corrosive silicone rubber.

2.2.1.2 Scribed defect delamination cell

The sample preparation for this experiment was taken from a study by Williams et al [2] 

where both underfilm delamination and the resulting filiform corrosion (FFC) were 

assessed using this method. The method to be described was used for underfilm 

delamination. Samples were initially prepared as described in sections 2.2 and 2.3. A 

15.5% w/w ethanolic solution of PVB, containing the relevant amount of FfPP where 

necessary, was bar-cast onto a clean sample where strips of Tesla adhesive insulating 

tape, of thickness 30 pm, had been placed parallel to each another on two of the sample 

edges. The tape acted as a trough for the PVB which, after being allowed to dry in air 

for 30 minutes, had a dry film thickness of -10  pm. A 2 mm long penetrative linear 

defect was scribed into the PVB layer using a scalpel blade.
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2.2.2 SKP Apparatus

Fig 2.3 shows a typical schematic representation of the SKP apparatus. The sample 

holder, housed within the stainless steel chamber, was connected to an external tri-axial 

motor stage and reference probe. The whole system was computer controlled and data 

was collected on the computer.

Lockin amplifier

1 1 1 1  1 I I 1 1 1 I I 1 I I I  I I I  1

rH-,

Integrator

Vibrator drive 
amplifier

Scan control and data 
logging computer

Tri-axial M icro  
Manipulator Trans - Conductanc e 

Amplifier

Vibrating gold tip 

Sample

Stainless steel chamber

Fig 2.3 Schem atic diagram o f the SKP apparatus set up.

The reference probe consisted of 125 pm diameter 99.99% gold wire that was vibrated 

normal to the sample surface. Probe vibration was achieved via a glass push rod 

connected to an audio loud speaker. The speaker was driven at frequency of 280 Hz via 

the oscillator function on a lock-in amplifier that maintained an amplitude of 40 pm as 

measured via a strobe light. The periodic variation in capacitance, between the sample 

and reference probe that results in a generated a.c. current, was initially amplified and 

converted to a.c. voltage. A feedback circuit was created where a corresponding d.c. 

output was sent from the amplifier to an integrator where the d.c. bias voltage applied to 

the sample was adjusted so as to automatically null it. The integrator made the finite 

changes to equalise the Galvani Potentials of the probe and the specimen to nullify the 

a.c. current. When the integrator alters the bias d.c. voltage, the system determines the 

effect it has on the a.c. current, gradually with smaller and smaller changes the system
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reaches null conditions. Once the stable condition is reached the integrator sends the 

magnitude of the reverse bias required, converted to a digital signal by the lock-in 

amplifier to the computer.

2.2.3 Operation of the SKP

After calibration of the SKP (described in Section 2.2.4) the test sample was mounted 

on the ‘stage’ in the stainless steel chamber and levelled manually. The first step in 

levelling was to position the probe over one end of the sample area and incrementally 

reduce the distance between sample and probe by raising the sample up to the probe. At 

the point of contact between sample and probe an overload signal was read on the lock- 

in amplifier. The sample was subsequently lowered so that a distance of 100 pm 

separated it from the probe and was then moved to the opposite end of the scan area. 

The same procedure was repeated where the distance between probe and sample was 

incrementally decreased until an overload was again registered. The required distance 

the sample needed to be raised to touch the probe was registered. The sample stage was 

then adjusted accordingly until both extremities of the scan area were equidistant from 

the probe in a vertical direction. Upon achieving a level sample, sample and probe were 

separated by 100 pm; this was the scanning height. It was highly important to ensure 

the sample was correctly levelled to allow a constant scan height during the experiment.

All delamination experiments were carried out at room temperature and the humidity of 

the chamber was maintained at 95% relative humidity by the incorporation of 

electrolyte reservoirs in the chamber. Before each scan the sample was left without the 

addition of electrolyte inside the closed stainless steel chamber to allow the correct 

humidity to be established and the full hydration of the coating. In all standard 

delamination cells 5% w/w NaCl(aq) was used as the initiating electrolyte in the sample 

well. The Spatial resolution of the Volta potential can then be achieved by scanning the 

sample area along four 12 mm lines to the defect boundary. Scans were carried out 

immediately after the addition of electrolyte and then at regular intervals as specified in 

the relevant chapter. The computer recorded a data grid for each scan.

2.2.4 Calibration of the SKP

SKP was calibrated in terms of electrode potential using a comparison with known 

standard redox couples Ag/Ag+, Cu/Cu2+, Fe/Fe2+, and Zn/Zn2+ couples according to an
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I
| established calibration procedure. Calibration cells consisted of machined wells -15

I mm in diameter and 5 mm deep in disks of the respective metal. The wells were then
S o
| filled with 0.5 mol dm' aqueous solution of the respective metal chloride salt or, in the
f
■ 3case of silver, 0.5 mol dm' nitrate salt. Values for Ekp were obtained by vibrating the
i

probe in a position -100 pm above the electrolyte meniscus in the centre of the well, 

j The electrode potential was simultaneously measured vs. SCE using a Solartron 1280

potentiostat.

When using SKP to carry out experiments on an organically coated metal sample, the 

effect of the coating must also be accounted for. The calibration of the PVB film has 

been carried out elsewhere and found to amount to an offset of -220 mV. In brief, a 

I self-supporting PVB film of the coating is produced and placed over the calibration disk

so that it is in contact with the electrolyte meniscus. The polymer film is then allowed 

to equilibrate with electrolyte 6 hours prior to the Ekp measurements. These 

I measurements were obtained by the same procedure described above.

j After scanning, calibration of the obtained data was carried out using the following
i

equation:

i

E COr r  = E k p  + constant ( 2 . 1 )

If calibration using the Cu/Cu2+ redox couple is considered, where the known ECorr for 

Cu is 298 mV, the value of the Cu/Cu2+ measured by the SKP thus allows the constant 

to be calculated. As described above, a material specific offset must be factored into the 

final calibration calculation when data is obtained from scanning above an organic 

coating. In the case of PVB this value is -220 mV. An example of a calibration 

calculation is given below where 250mV is an example of an experimentally obtained 

reading for a Cu/Cu2+ redox couple:

298 = -250 + constant 

548 = constant 

Then taking into consideration the PVB- 

548-220 

= 328 mV
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Therefore, where the value of 250 mV is obtained using the described calibration 

technique, a final value of 328 mV must be added to the Kelvin Potential recorded via 

the experiment.

2.2.5 Scanning Kelvin probe analysis

Data was then be extrapolated via Microsoft Excel in the form of time dependant EcorT 

vs. Distance plots. From this the distance of potential change that results from a 

delamination front was measured. This then allowed the delamination kinetics to be 

plotted in terms of distance against time.

2.3 Use of the Scanning Vibrating Electrode technique for the evaluation of 
corrosion behaviour

A wealth of previous studies exist where the SVET has been employed to gain a greater 

understanding of the mechanisms of corrosion that occur on metal surfaces fully 

immersed in solution [3-6]. Locally occurring corrosion events may be resolved in 

SVET by the use of a movable micro-tip electrode. An alternating potential is detected 

at the vibration frequency proportional to the potential gradient in the same direction as 

the vibration that emanates from the current source in solution [3]. Due to this the 

SVET translates extremely well to localised corrosion study as anodic events occurring 

on a galvanised surfaces in chloride electrolytes can be considered point current 

sources. The SVET can be utilised to assess the corrosion behaviour of a variety of 

metallic coating systems and has the ability to determine the location and intensity of 

anodic and cathodic events occurring on the surface of the metal in question. Time 

dependant metal loss and anodic current density can be semi-quantified allowing for the 

comparison of different systems i.e. coating systems or electrolyte inhibitor additions.

2.3.1 SVET for the study of corrosion occurring on fully immersed, bare metallic 
surfaces

A constant scan height of 100 pm was set for the glass encased 125 pm platinum wire 

SVET microtip which scanned across the corroding sample surface submerged in the 

electrolyte (5% w/v NaCl for all tests where inhibitor additions were made to the 

relevent electrolyte). The SVET scanned over the surface twice hourly for a total of 24 

h in each experiment. A 24 h representation of the corrosion activity at the surface could 

then be created for analysis [7]. The dissolved oxygen concentration in bulk solution
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was assumed to be the equilibrium concentration for air saturated water constant of 2.8 

x 10'4 mol dm'3 [3]. The SVET probe was vibrated normal to the sample surface at a 

frequency of 140 Hz with amplitude of 30 pm. The amplitude of tip vibration was 

measured by viewing the tip under a microscope with applied light from a stroboscope. 

This served to slow the visible motion of vibration so an amplitude measurement could 

be taken easily. Control of the frequency and probe signal measurement was carried out 

by the use of a lockin amplifier (Perkin Elmer EG & G model 7625) and digital signal 

averaging (typically of ten successive measurements) was carried out to enhance the 

signal-to-noise ratio. Movement of the probe over the sample surface was controlled by 

the use of linear bearings driven by stepper motor on a tri-axial micromanipulator 

platform supplied by Time and Precision Ltd. The SVET tip was held in a Teflon 

holder that attaches to a glass push rod. The push rod attaches to the cone of a speaker 

that serves to provide the vibration to the tip. The speaker and push rod are encased in a 

mu-metal box that acts to reduce electromagnetic leakage to a minimum.

2.3.2 Sample preparation for SVET

All metal samples were prepared as described in section 2.1.3. An area of ca. 10 mm 

xlO mm (the exact size of which was noted in each case) was isolated in the centre of 

the coupon using insulating extruded PTFE self-adhesive tape so that only the scan area 

was exposed. For any given test corrosion was observed on the scan area only and not 

anywhere else on the sample for the duration of a 24 h scan.

2.3.3 SVET Calibration

The component of current flux normal to the sample surface generated by a current 

source in solution is measured by the SVET. This is achieved via the vibration of the 

micro-tip above the point current source at constant height, frequency and vibration. 

The potential measured by the SVET micro-tip is proportional to the electrical field 

strength, F, or potential gradient in the direction of vibration. Eq 2.2 details how the 

field strength, F, varies with distance from the point source (i).

F = ®  =  r iz,  —  (2.2)
dz 27ck(x + y  + z  )

K = conductivity of the electrolyte

x,y and z are distances in the horizontal and vertical planes.
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F =
27TKZT

(2.3)

The value of F will therefore be at its maximum when the microtip is directly above the 

point source shown by Eq 2.2.

By Ohm’s law, the current flux density along the axis of probe vibration (jz) is related to 

the peak-to-peak SVET voltage signal (Vpp) by the following:

—  (2.4)

where k is solution conductivity and the SVET calibration factor may be defined as 

G=k/App. In practice, calibration was carried out by the use of a two compartment cell; 

this is shown schematically in fig 2.4.

Mu metal box

Signal
pickup

ProbeConnection to galvanostat

Pt wire

Glass tube

Idejctrodc

Solution

electrode

Figure 2.4 Schem atic representation o f  the calibration instrumental set-up

A 1 cm" Pt electrode was placed in each compartment of the cell and compartments 

were linked by an electrolyte-filled glass tube, vertical in orientation, 70 mm in length 

and 5mm in internal diameter. The SVET tip was placed ca. 5 mm downwards inside 

the glass tube and a nanogalvanostat was employed to pass a range of currents through 

the tube. At this position, current flux density was constant across the diameter of the 

tube and equal to the cell current divided by the internal cross-sectional area (where the 

cross-sectional area of the SVET probe is deducted). An area of uniform current
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density is created by the tube as lines of current flux align parallel to its length and 

parallel with the axis of probe vibration. The voltage was measured for each resultant 

current density and a linear relationship was observed as shown in fig 2.5. The 

instrument calibration factor was obtained from the gradient of the current density vs. 

recorded SVET voltage plot.

80000
y = 3576.4x + 2E-12

60000 -

40000 -
G

20000 -

•t— .

W -20000 - 

™ -40000 -

-60000 -■

-80000
20-20 -10 0 10

Current density / Am*2

Fig 2.5 SVET calibration plot measured in 5% w/v NaCl electrolyte where signal changes linearly with 
current.

2.3.4 Rendering of SVET data

The SVET data was calibrated via the procedure described in the previous section in 

order to convert the raw data in nV into Am2. The data was uploaded into the 

cartography package Surfer™ from Golden Software. False colour contour maps were 

created using this software for each half hourly scan allowing for the detailing of anode 

and cathode intensity and location. In all results throughout the study the anodic activity 

is defined in red and cathodic activity in blue. Signal strength is depicted by colour 

intensity and the scale bar provides the link between the colour depth and an exact value 

of current density. The position, intensity and life times of local corrosion activity 

occurring on the sample surface can then be monitored.
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The data from the numerous current density surface plots produced in each 24 h scan 

was expressed in a compact manner by an estimation of time dependent evolution of 

local corrosion currents obtained through the numerical area integration of j z. 

Numerical integration, given in Equation (2.5), provided a minimum estimate of time- 

dependent total anodic current (It) and, therefore, area-averaged anodic current density 

(jt) associated with each of the current density distribution j z maps.

It = A.Jt > f*JgL/'zfxy) >  0]dxdy (2.5)

where A is the area of the sample, X and Y are the length and width of the SVET scan. 

The trapezium rule employed to carry out the numerical integration allowing a single Jt 

value to be obtained per half hourly scan. The estimated values could then be plotted 

with respect to time and used for a comparative assessment of each sample [8]. 

Random electrical noise superimposed on the SVET signal (typically 1 \iV peak-to-peak 

which corresponds to ±0.06 A m-2) must be compensated for. Therefore, a Jat value 

carried out for a blank experiment was subtracted from each individual area-averaged 

anodic Jat current density value calculated according to Eq 2.5. A mean Jat value was 

obtained from five separate blank SVET scans carried out over a glass slide immersed 

in 5% w/v NaCl(aq)

By making the assumption that corrosion activity occurring on the sample remains

constant in the interval between scans, it is possible to calculate the amount of metal

lost during each experiment by utilising Faraday’s law.

Jaf t  Ar (Zn) (2.6)
F ' n

F = Faraday’s constant, (96487 C/mol)

n = no. of electrons lost during corrosion, which is 2 for the case of Zn 

Ar = atomic weight, in the case of zinc is 65 

Total metal loss for the entire 24 h experiment can, therefore, be calculated by summing 

the individual half-hourly mass loss values.

2.4 Filiform corrosion experiments
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In all cases iron samples were prepared as described in Section 2.1.3 and 2.2.1.2 where 

a 10 mm penetrating scribe was made into the PVB coating containing the relevant 

levels of H2PP. In all cases, FFC was initiated by introducing a volume of 2 pi of 

aqueous 0.005 M FeCl2 to the scribe and allowing to dry in room air. Samples were 

then placed in an environment chamber that was maintained at a constant 93% relative 

humidity and 20°C. Samples were then photographed using a 600G Canon camera on a 

weekly basis. Photographic images were then analysed using SigmaScan Pro software, 

this is described in full in Section 2.6.3.

2.5 Open circuit potential (OCP) measurements

All metal samples were prepared as described in section 2.1.3. An area of ca. 10 mm 

xlO mm was isolated in the centre of the coupon using insulating extruded PTFE self- 

adhesive tape so that only this area was exposed. A small area of exposed metal was 

also left un-taped at the top edge of the sample so that an electrical connection could be 

made. The sample was immersed in 5% w/v NaCl(aq) electrolyte, ensuring that the 

exposed area for electrical connection was out of the water. This was then connected as 

the working electrode and held in place next to a calomel reference electrode, which 

was also immersed in the electrolyte. Time-dependent free corrosion potential 

measurements were performed using a Solartron SI 1280B Electrochemical 

Workstation.

2.6 Time-lapse photography

Time-lapse photography is a method adapted for the visualisation of corrosion and its 

progression over time. The technique is particularly useful to be used in conjunction 

with results from the SVET to aid the overall understanding of the corrosion process. 

The formation of any artefacts that may not be observed using the SVET may also be 

highlighted.

2.6.1 Sample preparation for time-lapse photography

All materials tested using time-lapse photography in Chapter 7 of this thesis were 

supplied by Tata Steel UK RD&T department. Material was received in the form of A4 

sheets of cold rolled (CR) steel with a thin organic coating (TOC) applied by bar-
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coating or by various methods on a pilot line; details of this will be specified where

required. Material was cut into coupons of -20  x 20 mm using a guillotine. Coupons

were then covered completely using insulating extruded PTFE self-adhesive tape 

j  leaving only a 10 mm x 10mm exposed area of the organically coated metal surface.
f[
| 2.6.2 Time-lapse photography apparatus and operation

! A Canon G10 Power-shot camera with a close up lens was set up in the desired position

| using a tripod. The camera was controlled remotely using Canon software. Fluorescent

lighting was used to ensure a good contrast could be achieved on the sample. Fully 

j prepared samples, as described in section 2.6.1, were affixed to the bottom of a petri

dish using double sided tape. Electrolyte of the required concentration of NaCl was 

S added to the petri dish and the first image was taken immediately. Images were

acquired at a rate of one image every 30 minutes for a duration of up to several days,
i
| exact timings are given in the relevant chapter.

I 2.6.3 Rendering of time-lapse photography data

| The raw photographic image files were edited using the ‘batch process’ tool in

Photoshop CS3 software to obtain an image of just the required test area. Edited images 

j  were then uploaded into SigmaScan Pro software where they were converted to grey­

scale. A calibration of each image was carried out to determine a fixed size. The colour 

intensity threshold was then altered so that the areas of interest were highlighted, this is 

demonstrated in fig 2.6 and fig 2.7. The highlighted areas were subsequently measured 

as a percentage area of the whole image.
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Fig 2.6 Screen shot o f  Sigm aScan Pro software where the colour intensity threshold is adjusted to allow  
measurement o f  specific tones.

a)

m .

Fig 2.7 A partially corroded sam ple shown by (a) a photographic im age and (b) the same im age in grey­
scale where Sigm aScan Pro software has been used to highlight the corroded regions for 
measurement.

2.7 Atmospheric corrosion testing

Atmospheric corrosion tests were carried out to determine the resistance of materials to 

a humid atmosphere. In the current thesis the corrosion performance of thin organic 

coatings (TOC) on cold reduced (CR) steel was assessed in accordance with BS 3900 -  

Part F2 [9]. The degree of rusting was assessed according to ASTM D 610-08 [10]. All 

the systems were evaluated in duplicate, with one cut edge exposed and no scribe.

2.7.1 Atmospheric corrosion testing sample preparation
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Samples of CR steel were received from various pilot line trials coated on one side with 

a TOC. Samples were all cut to a standard size of approximately 150 mm x 80 mm. 

The back and edges of the sample were masked using insulating extruded PTFE self- 

adhesive tape. One cut edge was left exposed and no scribing was carried out.

2.7.2 Atmospheric corrosion experimental methods

Prior to exposure to a humidity chamber, samples were dried for a minimum of 16 h at a 

temperature of 23± 2°C and a relative humidity of 50 ± 5 % with free air circulation and 

protection from direct sunlight. The testing procedure commenced immediately prior to 

this conditioning period. Samples were held vertically in a closed humidity chamber 

with a cyclic fluctuation of temperature between 42°C and 48°C. The relative humidity 

was maintained at approximately 100% to insure the constant presence of copious 

condensation on the panels.

2.7.3 Evaluation of the degree of rusting for atmospheric corrosion tests

Evaluation of the degree of rusting on the CR steel panels containing a TOC was carried 

out with accordance to ASTM D 610-08 [10]. First, the area to be evaluated was 

selected and the type of rust distribution was determined using the definitions defined in 

Table 2.1 and visual examples such as those given in fig 2.7. The percentage area 

rusted was then estimated using visual examples such as those shown in fig 2.8. The 

rust grade was then determined by the percentage of area rusted again using Table 2.1. 

A rust rating was assigned using rust grade 0 - 1 0  followed by either S for spot, G for 

general, P for pinpoint or H for hybrid.
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Table  2.1 Scale and description o f  rust ratings [10],

Rust
Grade Surface Rusted (%) Spot(S)

Visual Examples 
General Pinpoint

(G) (P)
10 Less than or equal to 0.01% None
9 Greater than 0.01% and up to 0.03% 9 -  S 9 -  G 9 -  P
8 Greater than 0.03% and up to 0.1 % 8 -  S 8 -  G 8 -  P
7 Greater than 0.1% and up to 0.3% 7 -  S 7 -  G 7 -  P
6 Greater than 0.3% and up to 1% 6 -  S 6 -  G 6 -  P
5 Greater than 1% and up to 3% 5 -  S 5 -  G 5 -  P
4 Greater than 3% and up to 10% 4 -  S 4 -  G 4 -  P
3 Greater than 10% and up to 16% 3 -  S 3 -  G 3 - P
2 Greater than 16% and up to 33% 2 -  S 2 -  G 2 - P
1 Greater than 33% and up to 50% 1 - S 1 - G 1 - P
0 Greater than 50% None

PINPOINT RUSTING

Rust Grad« 3-P, 16% Rusted

Rust Grade 2-P. 33% Rusted

Rust Grade 1-P. 50% Rusted

Fig 2.8 Exam ples o f  area percentages rust grades on coated sam ples [10].
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2.8 Materials, chemicals and reagents

Table 2.2 List of materials used in current thesis
Material Supplier Purity

Hot dip galvanised Steel 
Substrate

Tata Steel UK

Iron coupons Goodfellow Metals Ltd 99+%

NaCl Sigma-Aldrich 99+%

NaOH Sigma-Aldrich 99+%

Ethanol Sigma-Aldrich 99+%

PVB Sigma-Aldrich 99+%

Silicon Rubber RS Non-Corrosive

Alumina Powder Buehler

PTFE tape RS

Phenyl phosphonic acid Sigma-Aldrich 99+%

PEDOT:PSS AGFA OrgaconlM Inks

Sodium phosphate Sigma-Aldrich 99+%

Tesla tape RS
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Chapter Three.
Inhibition of corrosion-driven organic coating 
delamination on hot dip galvanised steel by phenyl 
phosphonic acid.
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3.1 Introduction

The market for organically coated hot dip galvanised (HDG) steel products is of 

worldwide proportions. An integral component of the organic coating system comprises 

a primer layer, which provides corrosion protection to the underlying steel by means of 

corrosion inhibitive pigments dispersed within an organic binder. The most effective 

anti-corrosion pigment technologies are those based upon sparingly soluble salts of 

chromium (VI) anions, such as zinc or strontium chromate. However, legislative 

pressure to replace the traditional, highly effective, yet toxic and carcinogenic, inhibitor 

pigments based on chromium (VI) with credible, environmentally acceptable 

technologies presents a major challenge in corrosion science research [1,2]. The 

detrimental environmental and health risks of Cr(VI) are described in detail in Section 

1.3.8. Furthermore, an industrial demand for a reduction in primer coating dry film 

thickness exists, driven by the need for cost savings and reduced environmental impact. 

Therefore, potential replacements for chromium (Vl)-based inhibitors must be 

compatible with organic coatings of thicknesses of typically less than 10 pm.

The conventional approach to incorporating chrome-free inhibitors into an organic 

coating system is to disperse pigments that are sparingly soluble salts such as zinc 

phosphate [3-5]. The prevention of delamination by the incorporation of such pigments 

is attributed to several mechanisms such as improved barrier properties [6]. Precipitates 

of tertiary phosphates with zinc have also been reported where phosphate layers at the 

anodic and cathodic sites occur [7,8] hindering the access of oxygen to the substrate. 

Such pigments continuously leach constituent ions when in contact with aqueous media. 

This results in the passivation of the over-coated zinc surface, and contributes to the 

prevention of underfilm delamination [9], however, this uncontrolled leaching can result 

in long term environmental issues [10]. A recent innovation that provides a potential 

solution to such issues is the ‘smart-release’ system where the release of stored inhibitor 

species and the sequestration of aggressive ions occurs when contact is made with a 

corrosive electrolyte [11,12]. Ion-exchange pigments based on naturally occurring 

Wyoming Bentonite clays display this double effect where harmful chloride anions are 

absorbed and inhibiting ions are released [13-15]. Furthermore, the incorporation of 

any inorganic or organic species may be applied as they may be employed as generic 

‘inhibitor delivery systems’. This increases the range of inhibitors that may be 

included within a protective coating without the constraint of only using those ionic
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species that form sparingly soluble salts. The smart release of stored inhibitor species 

may also be triggered by a change in the metal substrate potential. Conducting polymer 

coating systems, such as polypyrrole, have been shown to release inhibitor anions only, 

when the potential at and around the defect falls below a threshold value [16,17]. Other 

systems, for example those based on meso-porous silica [18], hydroxyapatite [19] and 

layer-by-layer deposited polyelectrolytes [20], intelligently release inhibitor species 

where a change in the local pH occurs. Such new technologies are discussed in full in 

Section 1.5.

In the current Chapter a different approach is used where the inhibitor, in its acid form, 

is directly dissolved into a solution of the polymer. The approach is similar to that taken 

for etch-primers where certain components of the primer solution cause a reaction with 

the metal surface and lead to the formation of a protective layer at the metal-organic 

coating interface. For example, Marsh et al report the increased surface area available 

for coating adhesion interactions where traditional chromate pigmented etch-primers are 

employed as anti-corrosion pre-treatments for steel [21].

For the current study an in situ scanning Kelvin probe (SKP) technique was adopted to 

follow the delamination kinetics of thin (ca. 10 pm) polyvinyl butyral (PVB) coatings, 

containing phenyl phosphonic acid (H2PP) additions over a range of concentrations, 

adherent to a HDG steel substrate. The SKP technique allows the temporal and spatial 

resolution of potential distributions beneath intact organic coatings and has been 

extensively used in the study of delamination [9,11,22,23]. The principal aim has been 

to determine the efficiency of H2PP as an inhibitor to corrosion-driven cathodic 

disbondment when dissolved in a thin PVB coating applied to a HDG steel surface. The 

mechanism by which H2PP prevents cathodic disbondment is determined by analysis of 

delamination kinetics. Delamination testing has been carried out on both uninhibited 

coatings, where various levels of H 2PP have been added to the experimental electrolyte, 

and through in-coating additions of H2PP.

It has been demonstrated in a recent study that H2PP additions made to a PVB coating 

effectively inhibit filiform corrosion on aluminium substrates [24]. Williams et al also 

showed that particulate polyaniline doped with H2PP dispersed in a PVB coating 

efficiently decreases the rate of cathodic disbondment on iron surfaces by up to 99% 

with increasing volume fractions (□) (i.e. □ < 0.05) [25]. A key feature of the overall
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mechanism, described by Williams, is the ability of H2PP to form an electron transfer 

blocking, insoluble, salt film with divalent metal cations. The work described here 

investigates the influence of H2PP on cathodic delamination when various levels of the 

inhibitor are dissolved in a PVB coating applied to a HDG steel substrate.

3.2 Experimental details

3.2.1 Materials

Hot dip galvanised steel samples, provided by Tata Steel UK, were a gauge of 0.7 mm 

mild steel coated with a zinc layer of 20 pm cut into square coupons of 50 mm x 50 

mm. Polyvinyl butyral (PVB) solutions were prepared in ethanol (15.5% w/w) and the 

required amount of phenyl phosphonic acid (H2PP) added and thoroughly mixed. All 

chemicals were supplied by Sigma-Aldrich Chemical Co. and were of analytical grade 

purity.

3.2.2 Sample preparation

Samples were prepared as described in Section 2.13. In the current chapter all SKP 

experiments were carried out using a standard delamination cell as described in Section

2.2.1.1 and well documented elsewhere in literature published by Stratmann et all [26].

3.2.3 Methods

An electrolyte of 5% w/v NaCl(aq) was used in all case; this concentration is typical for 

industry standard accelerated corrosions tests such as salt spray. Where H2PP inhibitor 

was added to the electrolyte, neutralisation to pH 7 was carried out on a drop-by-drop 

basis using additions of an aqueous sodium hydroxide (NaOH) solution.

The SKP reference probe was scanned over the coated surface in a 12 mm line normal 

and adjacent with the defect-coating boundary. Scanning commenced immediately on 

the addition of electrolyte and thereafter at hourly intervals over a period of 24 h. A 100 

pm reference probe-to-air gap was used with ECOit data points recorded at 20 per mm. In 

all delamination experiments the temperature and humidity were kept constant at 25°C 

and 95% r.h. The full description of SKP instrumentation, calibration procedure, set-up 

and subsequent analysis can be found in Sections 2.2.2 to 2.2.5.
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For experiments carried out in the presence of an electrochemically deposited Zn2+/ 

phenylphosphonate salt layer the HDG steel coupon was masked off using 90 pm thick 

extruded PTFE 5490 tape (3M Ltd.) leaving an exposed area of ca. 10 mm x 20 mm. 

The Zn2+/phenylphosphonate salt layer was electrochemically deposited using a three 

electrode set-up where the HDG steel sample (working electrode), a calomel reference 

electrode (SCE) and a platinum counter electrode were immersed in aqueous solution 

containing 0.05 M H2PP and 0.015 M ZnCL. A Solartron SI 1280B Electrochemical 

Workstation was employed to apply a 0.1 V for 30 min. The tape was then removed 

and the sample was lightly rinsed using distilled water. A Stratmann cell was then 

produced using the methods described in Section 2.2.1.1 where the deposited film was 

over-coated with PVB and the defect region was a bare HDG steel surface.

In those experiments that required a switch from air to N2 inside the SKP chamber, two 

hoses passing through two separate dreschel bottles containing 5% w/v NaCl (aq) were 

fed into the chamber. Air was pumped through the dreschel bottle using a KNF 

Laboport vacuum pump and, when required, this was switched off and the N2 was 

pumped through the other dreschel bottle from a cylinder. In both cases a Cole-Parmer 

valved flow meter was used to ensure equal flow rates. A Lascar EL-USB-1 data logger 

was kept inside the chamber at all times to record the humidity.

In order to determine the solubility product (Ksp) of the ZnPP salt, titrations were 

carried out where ZnCl2(aq) solutions, of various concentrations, were titrated from a 

burette into a beaker containing 10 ml of aqueous solution containing various 

concentrations of H2PP adjusted to pH 7. The volume of ZnC^aq) solution required to 

produce soluble product in the beaker was recorded and the concentrations of Zn2+ (aq) 

and PP2' (aq) used to give an estimate of Ksp according to the following.

Ksp = [Zn2+ (aq)] [PP2' (aq)] (3.1)
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3.3. Results and Discussion

3.3.1 Delamination of uninhibited PVB coatings on HDG

Three types of experiment were carried out using unpigmented PVB coatings on HDG 

steel. Firstly, the baseline kinetics of a delamination cell under an uninhibited PVB 

coating were characterised through control delamination experiments. The second type 

of experiment was carried out to identify the effects of PP2' anions added directly to the 

experimental electrolyte used to initiate underfilm corrosion by application to the defect. 

Additions of H2PP at levels of 0.01 M and 0.05 M, with subsequent adjustment to pH 7 

were made to the 5% w/v NaCl(aq) electrolyte. The third type of experiment was carried 

out to determine the effect on delamination kinetics of an electrochemically deposited 

Zn2+/ phenylphosphonate salt layer at the substrate-coating interface.

Fig 3.1 shows the typical time-dependent ECOn:-distance (x) profiles established upon the 

addition of 5% w/v NaCl(aq) to the sample defect for a PVB coating delaminating from 

HDG steel. The characteristic steep potential drop of ca. 0.3 V indicates the location of 

the delamination front measured from the defect to the inflection midpoint. The 

recorded E c o r r  values of the undelaminated region ( E j n t a c t )  of ca. -0.3 V to -0.4 V vs. SHE 

can be directly compared to those measured for uncoated HDG steel. At ca. three hours 

after initiation, measured Ecorr values in the region in direct proximity to the defect 

approximate the equilibrium potential of Reaction 3.2 i.e. ca. -0.76 V vs. SHE.

The mechanism by which cathodic delamination occurs is described in detail in Section

1.4.2. In brief, a local cathode resulting from oxygen reduction as in Reaction 3.3, 

exists in the vicinity of the delamination front [4,6]. Zinc dissolution (Reaction 3.2) is 

constrained to the defect region. The ingress of a thin layer of electrolyte beneath the 

organic coating allows the passage of ionic current linking the cathodic and anodic 

processes. It has been shown previously that, in the absence of any inhibitors, this ionic 

current and, therefore, the rate of delamination, is limited by the migrational mass 

transport of cations (i.e. Na+ in the current study) from the external electrolyte to the 

delamination front [27]. The observed sharp reduction in EcorT shown in fig 3.1, 

denoting the delamination front, can be attributed to an ingress of ions, loss of coating 

adhesion and the onset of Reaction 3.3.

Zn Zn2+ +2e' (3.2)
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0 2+2H 20  + 4e ^  40H (3.3)
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Fig 3.1 Profiles o f  time dependent Ecorr m easurements against distance (x) from the artificial coating  
defect for a HDG substrate coated with uninhibited PVB measured hourly from 0 h (left) to 24 h (right).

Reaction 3.3 results in an increased pH at the delamination front where typical values of 

pH 10-11 have been recorded [27]. This highly alkaline-rendered environment 

promotes coating disbondment through the dissolution of amphoteric layers, polymer 

degradation and hydrolysis of interfacial bonds. This also leads to the formation of 

bizincate (HZn02~) and zincate (ZnO^- ) corrosion product from anodic activity that 

eventually occurs in the underfilm region (equilibrium Reactions 3.4 and 3.5). 

Zn(OH)2(s) ^  H Zn02"(aq) + H+(aq) (3.4)

Zn(OH)2(s) ^  ZnO ^(aq) + 2H+(aq) (3.5)

It is suggested by Furbeth [23] that, at elevated pH such as in the delaminated underfilm 

region, a bare zinc surface exposed by the dissolution of zinc(hydroxide) can be directly 

oxidised to bizincate via the following reaction:

Zn(s) + 2H?0 ^  H Zn02"(aq )+ 3H+(aq) + 2e' (3.6)
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It is observed in fig 3 .1  that the delamination frontier moves progressively away from 

the defect immediately upon addition of electrolyte, reaching a distance of ca. 7 5 0 0  \im 

over a 2 4  h period. When additions of 0 . 0 1  M  and 0 . 0 5  M  H 2 P P  were made to the 

experimental electrolyte, the onset of underfilm delamination was delayed by 3 6 0  min 

and 9 0 0  min respectively. Fig 3 . 2  shows a typical plot from an experiment where an 

addition of 0 . 0 5  M  H 2 P P  was made to the electrolyte. The E COrr at the defect boundary 

appears entirely similar to that of the uninhibited electrolyte case. The first profile 

shown on the left was recorded at 8 4 0  min and the first recorded delamination front 

occurred at 9 0 0  min indicating a delay in delamination until this time. Fig 3 . 3  shows a 

plot of Xdei vs. tdei for the unpigmented coating experiments where Xdei is the 

delamination distance and tdei is the delamination time following application of 

electrolyte. The plot shows the significant delays in delamination initiation where 0 . 0 1  

M  and 0 . 0 5  M  of H 2 P P  were added to the experimental electrolyte.

Fig. 3.4 shows a plot of Xdei vs. (tdei - U), again for the unpigmented coating experiments, 

where f  is the initiation period. It can be observed that parabolic kinetics are retained 

where H2PP additions were made to the experimental electrolyte. This suggests that 

cation migration remains the rate-limiting step. A similar delamination rate constant 

(kdei) is observed for all three experiments.

The proceeding Chapter will investigate the effect of H2PP on the corrosion of a bare 

HDG steel surface where additions are made to an experimental electrolyte. It is thought 

that, even if H2PP additions at 0.05 M can be shown to effectively inhibit corrosion on 

bare HDG steel, this will not reduce the rate of underfilm corrosion once it has initiated. 

This is in agreement with previous work by Williams et al where additions of Na2CrC>4 , 

SrCrC>4 and Ce3+ were made to the electrolyte [9,15]. It is suggested that, upon the 

eventual initiation of delamination, the electrolyte anions (e.g. Cl' and PP2') are 

excluded from the underfilm electrolyte layer.
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Fig 3.2 Profiles o f  time dependant Ecorr m easurements against distance (x) from the artificial coating  
defect containing 5% NaCl electrolyte with additions o f  0.05 M H2PP neutralised to pH 7 for a HDG  
substrate coated with uninhibited PVB measured hourly from 840 min (left) to 1440 min (right).
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Fig 3.3 Plots o f  xdei versus tdei for uninhibited PVB coated HDG substrates where electrolyte adjusted to 
pH 7 containing concentrations o f  i) 0  M ii) 0.1 M and iii) 0.05 M H2PP has been added to an external 
defect.
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Fig 3.4 Plots o f  xdei vs. tde| - tj for uninhibited PVB coated HDG substrates where electrolyte adjusted to 
pH 7 containing concentrations o f  0 M, 0.1 M and 0.05 M H2PP has been added to an external defect.

Fig 3.5 shows the time-dependent profiles of E corr measurements vs. distance (x) for the 

delamination of an unpigmented PVB coating on H D G  steel overlaying an 

electrochemically deposited Zn2+/phenylphosphonate layer with a thickness of ca. 10 

pm. A progression of the delamination front to ca. 2000 pm is observed over 24 h. The 

plot shows that the E jntact values are wholly similar to those in the control experiment, 

shown in fig 3.1, however, E corr values in the delaminated region are not as negative as 

those observed in the control experiment. These values are approximately 0.1 V vs. 

S H E  more positive than the control experiment. This indicates that inhibition of anodic 

activity occurring in the delaminated zone is more effective here than in the previous

experiments where the inhibitor is present in the electrolyte because PP~ is excluded

from this under-film region. In the current case, the pre-existing sparingly soluble ZnPP 

salt film in this region prevents under-film anodic activity.

Fig 3.6 shows a plot of Xdei vs. (tdei - k) for this experiment in comparison with the

control experiment. It can be seen that the plot displays linear kinetics and the

delamination rate has been considerably reduced. In contrast to the previous 

experiments no increase in tj was observed and the onset of delamination was recorded 

after the first hour of initiation. All the results from experiments carried out using 

unpigmented coatings are summarised in Table 3.1.
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Fig 3.5 Profiles o f  time-dependant EcorT m easurements against distance (x) from the artificial coating  
defect for a HDG substrate containing a electrochem ically deposited 10pm ZnPP salt film  over-coated  
with uninhibited PVB measured hourly from Oh (left) to 24 h (right).
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Fig 3.6 Plots o f  xde| vs. tdel - tj for uninhibited PVB coated HDG substrates where i) was an unaltered 
control sample and ii) had a 10 pm ZnPP salt film  electrochem ically deposited on the sam ple surface 
prior to coating with PVB.
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Table 3.1 Values o f  time to delam ination determined for uninhibited PVB where varying concentrations 
o f  H2PP have been added to the electrolyte adjusted to pH 7.

H2PP (M) tj (mins) kdel Kdei reduction (%)
0 0 5 .4 0

0 .0 1 3 6 0 8 .8 -6 3

0 .0 5 1 1 4 0 4 .7 13

0  (ZnPP layer) 0 1 .2 7 8

A further SKP experiment was carried out on zinc samples coated with uninhibited PVB 

PVB and PVB containing 10% PKPP additions. All experiments were conducted in 

95% humidity. SKP scanning was carried out on a single point over the coated surface 

until a stable E corr was reached; at this point the chamber was flooded with N 2. 

Scanning over the same point then continued until further stabilisation was achieved. 

Typical results are given in fig 3.7 where i) shows the result for the uninhibited coating 

and ii) shows the result for the coating containing 10% PKPP additions. In both cases a 

substantial drop in E corr takes place at the point where the chamber is flooded with N 2 

(at ca. 1000 min). The reason for such a drop in E corr is due to a partial reduction of the 

oxide layer on the metallic zinc substrate under the PVB coatings. This does not occur 

in a normal air environment due to the oxidising potential of oxygen [28-301. In the 

case of those samples coated with PVB containing PKPP, more negative potentials were 

measured in the absence of oxygen. This suggests that the in-coating PKPP has an 

influence on the oxygen reduction reaction during delamination and indicates the 

presence of ZnPP layer that is reduced further by the underlying zinc substrate in the 

absence of oxygen.
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Fig 3.7 Plots o f  Econ measurements vs. time measured on a single point o f  HDG surfaces coated with i) 
uninhibited PVB and ii) PVB containing 10% additions o f  H2PP. A switch from air to an N 2 atmosphere 
occurred at ca. 1000 min.

3.3.2 Delamination of phenyl phosphonic acid inhibited coatings

Delamination experiments were carried out to determine the inhibition efficiency of 

H2 PP where additions of 0%, 2%, 5% and 10% w/w were made to a PVB coating. Figs 

3.8 and 3.9 show the E corr versus distance profiles measured for experiments in which 

additions of 5% and 10% H2 PP were made to the PVB coating respectively. In the later 

stages (ca. 20-24 h after initiation) of the experiment with 5% additions, measured E COrr 

values in close proximity to the defect approximate the hypothesised equilibrium 

potential of Reaction 3.2 i.e. ca. -0.76 V vs. S H E .  In contrast, where 10% additions 

were made, this value is more positive indicating that the anodic reaction at the defect is 

inhibited, albeit partially. No variation of E jntact is observed at any level of H2 PP 

addition when compared with the control experiment suggesting that the presence of in­

coating H2PP has minimal effect on the steady-state delamination-cell potentials. Fig 

3.10 shows plots of delaminated distance (Xdei), measured starting at the defect edge, vs. 

(tdei - h) allowing for a comparison of delamination kinetics obtained from inhibited and 

uninhibited coating data. The delamination rate (kdei) information obtained from plot 

gradients in fig. 3.11 is listed in Table 3.2. All inhibited cases exhibit a substantial
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reduction in kdei of > 71% starting at additions of 2% H2PP. Thereafter, with increasing 

levels of H2PP, kdei is found to decrease by small increments. The delamination 

initiation times (q) for each experiment are also listed in Table 3.2 showing that q is 

increased substantially with increasing levels of H2PP additions. Additions of 10% 

H2PP are shown to delay the onset of delamination for periods of up to approximately 

20 h. The effect of q and kdei vs. % of in-coating H2PP additions is illustrated in fig 

3.12. A kdei value for the un-inhibited PVB was taken as an initial rate value from the 

first few hours of delamination.

The same change from parabolic (in the uninhibited experiment) to linear (in the 

inhibited experiments) kinetics has been shown in previous studies on polyaniline and 

smart-release bentonite-pigmented coating systems [31]. In these studies the transition 

to linear kinetics was ascribed to interfacial oxygen reduction at the disbondment front 

becoming the rate-limiting step in the corrosion-driven delamination process. It is 

proposed that for in-coating H2PP additions, the transformation results from an electron 

transfer-blocking interfacial layer that forms when the PVB/H2PP ethanolic solution is 

initially applied to a HDG steel surface. The dissociation of H2PP dissolved in the 

ethanol produces H+ cations that result in an acid etch of the zinc surface generating 

Zn2+ cations at the substrate/coating interface via Reaction 3.2. The following series of 

equilibria illustrate the de-protonation of H2PP:

H2PP (aq) ^  H P F (aq) + H+ (aq) (pKal =2.3) (3.7)

HPP -  (aq) ^  PP2’ (aq) + H+ (aq) (pKa2 = 7.8)[32] (3.8)

Although a low pH will be produced at the coating/Zn interface when the coating is first 

applied, the progressive removal of H+ by neutralisation from OH' generated by 

Reaction 3.3, or by cathodic hydrogen evolution coupling with Zn dissolution, will 

favour further H2PP and HPP' dissociation according to reactions 3.7 and 3.8. 

Eventually, sufficiently high local concentrations of PP2' will build up, allowing a 

subsequent reaction with underfilm Zn ions to occur, forming a solid film of insoluble 

Zn2+PP2' at the metal coating interface according to the following:

Zn2+ + PP2' [Zn2+PP2‘]s (3.9)

f\ f\A solubility product (Ksp) value of 10' mol dm' was obtained experimentally through 

a series of titrations. It is proposed that the resulting precipitate forms a barrier to
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electron transfer and subsequently blocks the underfilm cathodic oxygen reduction 

reaction. Analysis of the surface should be carried out, in future work, using X-ray 

photoelectron spectroscopy (XPS) to verify the presence of such a salt film. Previous 

observations of a substantially reduced kdei for a PVB coated sample comprising an
9-i-electrochemically deposited Zn /phenylphosphonate layer (see fig 3.5), confirm this 

theory.

A second mode of inhibition which may contribute to the overall mechanism is 

suggested, whereby the in-coating H2PP acts to moderate underfilm pH from its 

alkaline-rendered state. The first and second deprotonation steps given in Reactions 3.7 

and 3.8 have pKa values of 2.3 and 7.8 respectively, suggesting that pH buffering at 

these values will occur. A reservoir of H+ cations, provided by the in-coating H2PP, 

acts to neutralise the hydroxide product present in the delamination region. Firstly, this 

mechanism will reduce loss of coating adhesion caused by base-catalysed polymer 

degradation and base-catalysed hydrolysis of interfacial bonds. Secondly, lack of high 

pH will prevent the formation of anodic activity in the delaminated region hindering the 

formation of zincate and bizincate corrosion products, as shown in Reactions 3.4 -  3.5, 

which may contribute to adhesion loss.

A third mode of inhibition involves the leaching of H2PP, HPP' or PP2' from the edge of 

the coating/defect boundary in to the NaCl(aq) electrolyte at the exposed zinc surface. 

An inhibition of Reaction 3.2 at the coating/defect boundary would be anticipated to 

result in a corresponding decrease of Reaction 3.3 at the delamination front. It was also 

shown in Section 3.3.1 that additions of H2PP made to the external electrolyte increased
9 +  9the delamination initiation time by up to 20 h. Furthermore, where a Zn PP ' salt film 

was electrochemically grown on the HDG substrate prior to coating with unpigmented 

PVB, there was no increase in delamination initiation time in comparison to the control 

experiment. This suggests that the observed increase in q with increasing levels of in­

coating H 2PP relates to the temporary prevention of Reaction 3.2 at the coating/defect 

edge by the leaching of PP2' from the coating into the electrolyte. To test the theory of 

this third possible mode of inhibition, the proceeding Chapter will determine the effect 

of H2PP on the corrosion of a bare HDG surface where additions are made to an 

experimental electrolyte.
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Fig 3.8 Profiles o f  tim e dependent Ecorr V vs. SHE measurements against distance (pm ) from the artificial 
coating defect for a HDG substrate coated with a PVB layer at a thickness o f  10 pm containing 5%  
additions o f  H2PP measured from 1440 min (left) and then at intervals o f  660  min up to 1400 min (right).
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Fig 3.9 Profiles o f  time dependant Ecorr V vs. SHE measurements against distance (pm ) from the artificial 
coating defect for a HDG substrate coated with a PVB layer at a thickness o f  10 pm 10% additions o f  
H2PP measured from 1200 min (left) and then at intervals o f  180 min up to 3000  min (right).
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Fig 3 .10  Plots o f  xde| vs. tdei for PVB coated HDG substrates where additions o f  i) 0%, ii) 2%, iii) 5% and 
iv) 10% H2PP have been made to the PVB coating.
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Fig 3.11 Plots o f  xdei vs. (tdei - t j ) for PVB coated HDG substrates where additions o f  i) 0%, ii) 2%, iii) 
5% and iv) 10% H2PP have been made to the PVB coating.
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Table 3.2 V alues o f  parabolic rate constant and time to delam ination determined for PVB coatings 
containing various values o f  H2PP on HDG substrates.

%h 2p p kdei (pm.min) kdei reduction (%) h (min)
0 5.4 0 0
2 1.5 72 480
5 1.3 76 660
10 0.3 94 1200

1400

Initiation time (ti)
1200

• Delamination rate
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Fig 3.12 Summary plots o f  delam ination initiation time values (tj) and k̂ ei values both plotted as a 
function o f  H2PP levels (%) added to 10 pm PVB coatings delam inating from HDG steel substrates; the 
latter are plotted using a secondary y-axis.

3.4 Conclusions

Phenyl phosphonic acid (H2PP) dissolved in a 10 pm PVB primer coating can achieve 

the efficient inhibition of underfilm delamination observed where additions of 5% w/v 

NaCl(aq) were made to a sample defect for a period of up to 20 h. In the absence of 

H2PP, delamination progresses to a distance of ca. 7500 pm, measured from the defect 

site, over a period of 24 h. When H2PP is present in the coating at a dispersion of 2% 

w/w, the time for delamination kinetics to become established (tj) is increased to 480 

min from 0 - 1 2 0  min where no H2PP is present. This increases to 1200 min where 10%

108



w/w additions are made. It was also shown that, where additions of neutralised H2PP 

were added to the external electrolyte at a level of 0.05 M the f  was increased to 1140 

min. It is suggested that dissociated PP' ions act to suppress the anodic reaction 

(Reaction 3.2) at the defect site that, in turn, leads to a corresponding decrease in the 

cathodic reaction (Reaction 3.3) that drives forward delamination. Thus, the onset of 

the delamination process is inhibited for a substantial period of time.

Furthermore, when H2PP is present in the coating (at dispersions of > 2% w/w), the 

delamination rate (kdei) is decreased by > 72%. Incremental reductions in kdei are 

observed with increasing levels of in-coating H2PP. A 92% reduction in kdei is observed 

where additions of 10% w/w H2PP are made. When plotting Xdei vs. tdei, a transition 

from parabolic kinetics for the uninhibited coating to linear kinetics where H2PP 

additions were made is observed. It is suggested that the formation of an insoluble 

Zn2+/phenylphosphonate salt layer at the substrate/coating interface blocks the cathodic 

oxygen reduction reaction leading to the suppression of coating delamination. The salt 

layer is thought to form upon coating where the in-coating acid etches the surface 

causing the dissolution of Zn2+. Where an electrochemically deposited 

Zn2+/phenylphosphonate salt layer was over-coated with uninhibited PVB it was found 

that delamination initiated immediately but kdei was reduced by -78% .

A further suggested mechanism is that the dissociation of H2PP results in an abundance 

of H+ cations that act as a buffer to neutralise the alkaline rendered underfilm region 

from the cathodic oxygen reduction reaction. The rate at which base catalysed polymer 

degradation, and interfacial bond hydrolysis, occurs is subsequently reduced. Although 

the combination of all three modes of inhibition contributes to a marked decrease in kdei, 

this remains non-zero even when a 10% w/w H2PP addition is used.
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Chapter Four.
An SVET study of the corrosion of hot dip galvanised 

steel immersed in phenyl phosphonic acid-containing 

electrolyte.
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4.1 Introduction

The detrimental health effects of the traditional, highly effective anti-corrosion 

technologies based on sparingly soluble salts of chromium (VI) anions are widely 

known [1]. As such, legislative pressure to implement alternative environmentally 

friendly coating systems calls for research into this area. The benefits of chromate 

based systems for corrosion protection are as follows:

a) Leachable, highly soluble and mobile ions, such as Cr(VI) oxyanions, that 

provide a ‘self-repairing’ effect.

b) The self reducing Cr(VI) to Cr(H[) reaction that forms passivating oxides at 

surface layer defects providing a barrier affect [2].

c) Stability of surface layers, such as Cr20 3, across a wide pH range [3].

Localised corrosion activity occurring over a commercial grade HDG surface immersed 

in aqueous sodium chloride electrolyte has been mapped using the SVET. 

Concentrations of H2PP were systematically added to the experimental electrolyte in 

order to establish an optimum by assessment of its influence on the corrosion of the 

surface. Further experiments to determine the influence of pH on inhibition by H2PP at 

its optimum concentration were then carried out.

4.2 Experimental
4.2.1 Materials

All HDG steel was supplied by Tata Steel UK and comprised of 0.7 mm gauge mild 

steel coated on both side with a 20 pm zinc layer cut into 50 mm x 50 mm square 

coupons. All chemicals were supplied by Sigma-Aldrich Chemical Co. and were of 

analytical grade purity.

4.2.2 Sample preparation

Prior to each experiment, abrasive cleaning was carried out, as described in Section

2.1.3, using an aqueous slurry of 5 pm polishing alumina followed by washing with 

aqueous surfactant and finally rinsing with distilled water and then ethanol. Samples 

were then prepared for immersion by being completely covered using 90 pm thick 

extruded PTFE 5490 tape (3M Ltd.), leaving exposed only the 10 mm x 10 mm test area 

on one face. All experimental electrolyte was prepared using analytical grade reagents

113



obtained from Alrdrich Chemical Co. and distilled water. Solution pH was adjusted by 

the drop-wise addition of either HC1 (aq) or NaOH (aq).

4.2.3 Methods

SVET experiments were carried out as described in Section 2.3 with half-hourly scans 

over a period of 24 h. Time-dependent free corrosion measurements were performed 

using a Solartron SI 1280B Electrochemical Workstation and carried out as described in 

Section 2.15.

Mass loss experiments were carried out by first cutting the HDG material into a coupon 

of approximately 20 mm x 20 mm. Coupons were then cleaned and weighed and 

subsequently taped using 90 [xm thick extruded PTFE 5490 tape (3M Ltd.) leaving a 10 

mm x 10 mm exposed surface. Samples were then fully immersed in the relevant 

electrolyte for a period of one week. Samples, still taped, were then immersed in an 

etchant (made up of 50 ml H 3 P O 4 ,  20 g Cr03 and 1 L H20)[4] at a temperature of ca. 

80°C for a period of 5 min. All taping was then removed and samples were cleaned 

using ethanol and oven-dried at ca.l00°C for 10 min. All samples were then weighed 

again.

4.3 Results and discussion

4.3.1 Corrosion inhibition of hot dip galvanised steel by phenyl phosphonic acid in 

neutral conditions

In situ SVET scanning was used to determine the current density distributions, as a 

function of time, above the surface of unpolarised HDG samples freely corroding in 

uninhibited 5% wt/v aqueous NaCl at pH 7. Representative current density maps 

obtained at times between 1 h and 24 h after initial sample immersion are shown in fig 

4.1. It can be observed that corrosion activity occurs with the development of a single 

anode and a single cathode. For the duration of the 24 h experiment, the large cathode 

occupies roughly one third of the test area and the anode remains localised throughout. 

The photographic image presented in fig 4.1(f) shows white rust corresponding to the 

anodic region observed on the current density maps. Figs 4.2 to 4.4 show the respective 

sets of current density maps for SVET experiments carried out in electrolyte of H2PP 

concentrations lxlO '3 mol dm'3, lxlO '2 mol dm'3, and 5x l0 '2 mol dm'3, neutralised to pH 

7. The current density surface maps given in fig 4.2, for additions of lxlO '3 mol dm'3
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H2PP, indicate that at low concentration levels of H2PP, inhibition is incomplete and 

thus an intense local anode is present. The corresponding photographic image, given in 

part (d), shows that the surface has been stripped away in a small region represented by 

the anodic activity on the current density maps. The photograph also shows a protective 

film on the remaining area of the sample. Fig 4.3, showing the results for experiments 

carried out in H2PP concentrations of 1x10 2 mol dm'3, shows a very similar finding but 

the local anode is smaller and less intense at this higher concentration. The current 

density maps presented in fig 4.4 indicate that, at the higher H2PP concentration of 

5x1 O'2 mol dm"3, inhibition is complete and no corrosion activity is observed. The 

photographic image shows that no corrosive surface tarnishing has occurred.
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Fig 4.1 SVET-derived current density surface maps o f  unpolarised HDG obtained fo llow ing im mersion in 

aerated 5% (w /v) NaCl (aq) at pH 7 at time a) lh  b) 2 h, and c) 6 h where d) 12 h e) 24 h and f) show s a 

photographic im age o f  the sam ple after 24h immersion.
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Fig 4 .2 SVET-derived current density surface maps o f  unpolarised HDG obtained fo llow ing im mersion in 
aerated 5% (w /v) NaCl (aq) at pH 7 containing additions o f  1 x 1 0 3 mol d m 3 H2PP at times a) 30 min b) 6 
h c) 24 h where d) is a photographic im age o f  the sam ple after 24 h o f  immersion.
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Fig 4.3 a) SVET-derived current density surface map o f  unpolarised HDG obtained fo llow ing immersion  
in aerated 5% (w /v) NaCl (aq) at pH 7containing additions o f  1x10 2mol dm 3 H2PP at time 24 h where d) 
is a photographic im age o f  the sam ple after 24 h o f  immersion.
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Fig 4.4 SVET-derived current density surface maps o f  unpolarised HDG obtained fo llow ing  im m ersion in 
aerated 5% (w /v) NaCl (aq) at pH 7containing additions o f 5x10 2mol dm 3 H2PP at 24 h where d) is a 
photographic image o f  the sample after 24 h o f  immersion.

Area-averaged, integrated SVET-derived anodic current density plotted as a function of 

time for uninhibited, 1x10 3 mol dm 3 EEPP, 1x102 mol dm 3 H2PP, and 5x10 2 mol dm 3 

H2PP concentrations is given in fig 4.5. The data was obtained by the numerical area 

integration of j z distributions to give an estimation of time-dependent total local 

corrosion currents. This is described in full in Section 2.1.14. A progressive decrease 

in integrated current density can be observed with increasing concentrations of FFPP. 

Plot (i) shows the integrated current density at a concentration level of 5x10 2mol dm”3 

H 2PP and indicates that very little anodic activity was measured. From area-averaged 

anodic Jat current density values, the total equivalent zinc loss is calculated using:

  (4.3)

where F is Faradays constant. Values of zinc loss after 24 h immersion time are 

presented in fig 4.6 given in gm'2. It can be observed that, with increasing 

concentration levels of PP2 dissolved in the electrolyte, the mass of zinc dissolved from 

the sample is progressively reduced. At a concentration of 5x102 mol dm'3 H2PP, the 

measured zinc lost is reduced by ca. 96% when compared with the control sample.
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Fig 4.5 Area-averaged, integrated SV ET-derived anodic current density vs. time profiles obtained for 
HDG immersed in aerated 5% (w /v) NaCl (aq) at pH 7 containing (i) 5 x 1 0 2 mol dm 3 (ii) 1x10 2 mol d m 3 
(iii) 1x10 3 mol dm f additions o f  H2PP. Curve (iv) was obtained in the absence o f  inhibitor.
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Fig 4 .6  Summary o f measured corrosion mass loss over 24 h as a function o f  [PP2'].
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Error! Reference source not found. 4.7 shows a plot of the open circuit potential (OCP) 

of HDG measured in a series of systematic experiments where H2 PP was present in
3 2 3concentrations ranging from 1x10" to 5x10 ~ mol dm in 5% wt/v NaCl(aq) experimental 

electrolyte neutralised to pH 7. The dashed line represents the eventual OCP value 

measured where no H2PP was present in the electrolyte. It can be observed that this 

control result displays an Ecorr value near the equilibrium value of zinc. It can be 

observed that the presence of H2PP at concentrations of 1x10"3 mol d m 3 had no 

significant effect on the final potential.
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Fig 4.7 Plot o f  EcorT with respect to time for HDG immersed in aerated 5% wt/v NaCl (aq) electrolyte at 
pH 7 containing (i) 5x10 2 mol d m 3 (ii) 1 x 1 0 3 mol dm 3 (iii) 1x10 2 mol dm 3 additions o f  H2PP. The 
dashed line represents the eventual value obtained in the absence o f  inhibitor.

The initial period up to ca. 100 min indicates predominant net cathodic inhibition where
o 9 t 3 3 3samples were immersed in [PP"'] of 5xl0"~mol dm" and 1x10 mol dm" shown in plots

(i) and (ii). The possible mechanism by which this occurs is represented schematically 

in Fig. 4.8. When the HDG sample is initially immersed in the inhibited electrolyte, the 

localised corrosion activity is represented by Fig. 4.8(a) where low level anodic activity, 

distributed over large areas of the exposed surface is galvanically coupled with intense
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cathodic sites. Fig 4.8(b) shows a high pH zone in the vicinity of the local cathode 

which results in the conversion of bulk HPP~(aq) anions to PP2_(aq). Zn2+ ions produced 

by Reaction (4.1) migrate to the sites of local cathodic activity and, by combining with 

free PP2- anions, they form a solid Zn(PP) film thus stifling ongoing interfacial electron 

transfer as illustrated in Fig.4.8(c).

Beyond the 100 min immersion time it can be observed that plot (i), showing the result 

for 5x1 O'2 molL'2 [PP2 ] additions to the electrolyte, rapidly increases to more positive 

Ecorr values suggesting a conventional anodic inhibitor mechanism where an insoluble 

Zn(PP) film is formed at the anodic sites.

Phosphorus oxyacids undergo a series of stepwise deprotonations and, with each step; a 

progressively higher pKa is exhibited. The deprotonation equilibria for H2PP are as 

follows [4]:

H2PP (aq) ^  HPP' (aq) + H+ (aq) (pKal =2.3) (4.4)

HPP ~ (aq) PP2- (aq) + H+(aq) (pKa2 = 7.8) (4.5)

The following equation can be used to calculate the [Zn ] threshold at which ZnPP will 

precipitate:

[Zn2+][PP2] = ksp (4.6)

where ksp in the solubility product which, through a series of titrations described in the
f\ 0 ftprevious chapter, was calculated to be 1x10' mol dm' .

2 2Under aqueous conditions, the pH-dependent concentration of PP ' ([PP ']) is given by:

[pp2-i = ____________ [PP]tot____________
L J 1 +  1 0 ( - p H + 7 .8 )  +  1 0 (-2 p H + 7 .8 + 2 .3 )

(4.7)

where [PPW is the total concentration of the phenyl phosphonate species. From Eq. 4.7 

it can be shown that [PP2 ] = 6.8 x 10'3 [PP]tot at pH 7. By applying this value and the 

ksp value to Eq. 4.6 a [Zn2+] threshold can be calculated for the precipitation of solid 

Zn(PP) where a value of 1.46 x 10’4 mol2dm’6 is obtained.
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Fig 4.8 Schematic representation o f  the m echanism o f  zinc corrosion inhibition by aqueous 
phenyphosphonate ions at neutral pH, show ing (a) localisation o f  the early stages o f  corrosion, (b) 
phosphonate speciation in the vicinity o f  the local cathode and (c) the deposition o f  an insoluble film .
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4.3.2 pH Dependence of a phenyl phosphonic acid inhibitor

The Pourbaix diagram (fig 1.5) given in Section 1.2.3 shows the reaction conditions of 

zinc immersed in water at various pH and potential values. According to the Pourbaix 

diagram, when zinc is immersed in electrolyte of low pH, an abundance of Zn2+ ions 

should be present. Where additions of H2PP are made to an electrolyte of low pH, it is 

expected that [PP2 ] levels would be insufficient to form a solid film with the Zn2+ ions. 

This is shown by the pka value given for Eq. 4.4 suggesting that inhibition efficiency 

should drop with decreasing pH. Conversely, at high pH levels, a high level of [PP2 ] 

would be expected in the electrolyte according to Eq. 4.5. However, the corrosion 

product formed at high pH according to the Pourbaix diagram is the highly soluble 

zincate anion (ZnC>22’). Therefore, even with sufficient [PP2 ], without the presence of 

Zn2+ ions it would not be possible for a solid Zn(PP) film to form.

In the current section corrosion activity occurring on a bare HDG surface was studied 

when fully immersed in uninhibited electrolyte at both pH 2 and pH 11.5 for 

comparison with neutral conditions. Fig 4.9 shows SVET derived current density 

surface maps for unpolarised HDG immersed in aerated 5% wt/v NaCl(aq) electrolyte 

altered to pH 2 at various immersion times between 1 h and 24 h. In contrast to the 

corrosion activity shown in fig 4.1, where the test was carried out in at pH 7, general 

anodic and cathodic activity can be observed. Due to the lack of OH" in the acidic 

electrolyte no ‘white rust’ corrosion product is observed in the photographic image 

given in fig 4.10(d) which shows the sample surface after 24 h immersion. However, a 

tarnishing of the surface corresponding to the anodic regions visible in the current 

density surface maps can be observed.

Fig 4.10 shows SVET derived current density surface maps for unpolarised HDG 

immersed in aerated 5% wt/v NaCl electrolyte altered to pH 11.5 shown at various 

immersion times between 1 h and 24 h. It can be observed that a single cathode and 

single anode situation prevails. However, in this case, the anodic region is initially 

localized to one confined region but, after approximately five hours, can be seen to 

spread in a wave-like manner across the substrate so the anodic and cathodic regions 

occupy approximately half the test area each. The photographic image given in 4.9(f)
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shows the appearance of the HDG surface after 24 h immersion; the paler areas can be 

related to the anodic region shown in Fig. 4.10(e).
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Fig 4 .9 SVET-derived current density surface map o f  unpolarised HDG obtained fo llow in g  im mersion in 
aerated 5% (w /v) NaCl (aq) at pH 2 at time a) lh  b) 14 h, and c) 24 h where d) show s a photographic 
image o f  the sample after 24h immersion.

Fig. 4.11 shows a summary of area-averaged, integrated SVET-derived anodic current 

density (Jat) versus time profiles obtained for HDG immersed in aerated 5% (w/v) 

NaCl(aq) at a range of pH where no inhibitor additions have been made to the electrolyte. 

It can be observed that the highest Jat values are observed in those experiments carried 

out at high pH. The Pourbaix diagram suggests that there should be a passive region 

due to the formation of a Zn(OH ) 2  in alkali conditions. However, in the experimental 

conditions used here, the presence of 5% NaCl may provide Cl" anions that destroy any 

passive film. Unexpectedly, those tests carried out in acidic conditions show lower Jat 

values than those carried in both alkali and neutral conditions. This will be discussed 

further where experiments carried out in inhibitor-containing electrolyte are presented.
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In summary, it can be shown that the pH of the electrolyte has a significant effect on the 

corrosion behaviour of a bare HDG surface when immersed in aerated 5% wt/v NaCl(aq) 

electrolyte for 24 h. In neutral conditions the anodic region is shown to be highly 

localised and isolated. At high pH a moving anode region has been recorded. In acidic 

conditions general corrosion is observed where anodic and cathodic regions are highly 

interspersed. The effect on corrosion in these conditions will now be discussed with 

regards to the presence of an H2 PP inhibitor.

A m '

Non-corroded 
region

Corroded
region

9 mm

Fig 4 .1 0  SV ET derived current density surface map o f  unpolarised HDG obtained fo llow ing im mersion in 
aerated 5% (w /v) NaCl (aq) at pH 11.5 at time a) 1 h b) 6 h, c) 14 h, d) 22 h and e) 24 h where d) show s a 
photographic im age o f  the sam ple after 24 h immersion.
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Fig 4.11 Summary o f  area-averaged, integrated SVET-derived anodic current density versus time profiles 
obtained for HDG immersed in aerated 5% (w /v) N aCl(aq) at a range o f  pH where no inhibitor additions 
have been made to the electrolyte.

Fig 4.12 shows SVET derived current density surface maps for unpolarised HDG 

immersed in aerated 5% wt/v NaCl(aq) electrolyte altered to pH 2 containing additions of 

5x10 2 mol dm 3 H2 PP shown at various times between 0.5 h and 24 h. The SVET 

surface maps show general corrosion that appears to be more intense than that shown 

for the uninhibited test in fig 4.9.

Fig 4.13 shows SVET-derived current density surface maps for unpolarised HDG 

immersed in aerated 5% wt/v NaCl electrolyte altered to pH 11.5 containing additions 

of 5x10 2 mol dm 3 H2PP shown at various times between 0.5 h and 24 h. It can be 

observed that a strong anodic peak forms on the surface and passivates after ca. 6 h. A 

further anodic region is shown to form at ca. 22 h. The photographic image given in fig 

4.13(f) shows the substantial amount of corrosion product formed on the sample 

surface. The result given in fig 4.14(b) for pH 11.5 shows that as the H2PP 

concentration is increased the Jat is progressively decreased. However, at the higher
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concentration of H2 PP, it can be observed that intense localised anodic activity occurs in 

between periods of total inhibition. This is shown by the anodic spikes that initiate at 

immersion times of approximately 2 h and 22 h and remain for approximately 3 h. It is 

suggested that, in alkaline conditions, PPPP acts as an adsorption inhibitor whereby the 

PP“ anion adsorbs onto the HDG surface and reinforces the Zn(OH ) 2  layer. This layer 

disfavours Cl adsorption thus preventing the anions from destroying this passive layer. 

However, the periods of intense, highly localised anodic activity, show that this layer is 

only partially protective.

y j  Am 2 
120

--2 0

9m m

Fig 4 .1 2  SV ET derived current density surface map o f  unpolarised HDG obtained fo llow ing  im m ersion in 
aerated 5% (w /v) N aCl (aq) at pH 2 containing 5x10  2mol dm'3 H2PP at (a) 30 mins, (b) 2.5 h, c) 22 h 
where (d) show s a photographic im age o f  the sam ple after 24h immersion.
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Fig 4.13 SV ET derived current density surface map o f  unpolarised HDG obtained fo llow ing im mersion in 
aerated 5% (w /v) NaCl (aq) at pH 11.5 containing 5x10  2mol dm 3 H2PP at (a) 2 h, (b) 3.5 h, c) 4 h, (d) 6 
h, (e) 22 h, where (f) show s a photographic im age o f  the sam ple after 24h immersion.

Fig 4.14 gives a summary of area-averaged, integrated SVET-derived anodic current 

density (Jat) vs. time profiles for samples immersed in electrolyte containing no 

inhibitor, 1x102 mol dm"3 H2PP and 5x10 2 mol dm"3 PEPP at (a) pH 2 and (b) pH 11.5. 

It is shown by the plots presented in 4.14(a) that, where a high H2 PP concentration is 

present, Jat is initially less than that of the uninhibited experiment, but after
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approximately 17 h Jat progressively increases to extremely high values. At the lower 

H 2PP concentration very little corrosive activity was observed.
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Fig 4 .14  Area-averaged, integrated SV ET-derived anodic current density vs. time profiles obtained for 
H DG  im m ersed in aerated 5% (w /v) N aC l(aq) with i) no H2PP additions and H2PP additions o f  ii) 10 2mol 
d m 3 and iii) 5x10  2mol dm 3 where the bulk pH o f  the experim ental electrolyte has been altered to (a) pH  
2 and (b) pH 11.5.

The inhibition efficiency (%) of H2 PP with respect to pH is presented in the plot given 

in fig 4.15. Efficiency was calculated as follows:

\
mass lossr -  mass loss: (4 8)

Inhibition efficieny (%) = -------------------------   xlOO
mass lossc

where ‘mass lossc’ and ‘mass lossf are the total mass of zinc lost after 24 h immersion 

in uninhibited electrolyte and electrolyte containing 5x10 2 mol dm'3 H2PP respectively. 

Values were calculated from SVET-derived data using Eq. 4.3. It is expected that 

inhibition efficiency would be the highest in neutral conditions with a reduction 

observed with increasing or decreasing pH. The plot shows an efficiency of 96% in 

neutral conditions. The general trend is for efficiency to be reduced where pH is above 

and below neutral. However, pH 11.5 shows an efficiency of 90%. As shown in fig
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4.13 and 4.14(b), the intense anodic activity is highly damaging and occurs for short 

periods of time. In the remaining time no anodic activity is recorded so, although the 

surface has been attacked and protection is only partial, the efficiency appears close to 

that at pH 7 for the SVET-derived efficiency data.

The inhibition efficiency measured for experiments carried out at low pH display the 

lowest values. However, the accuracy of those SVET experiments carried out in acidic 

conditions is in question as the Jat vs. time plots given in fig 4.11, obtained from 

experiments with uninhibited electrolyte, shows unexpectedly low values in comparison 

to those carried out in neutral conditions. The photographic image of the sample 

surface after 24 h immersion shows visible tarnishing suggesting that the low Jat values 

obtained are not truly representative. It has been reported previously that, where 

general corrosion activity occurs, as is shown in the SVET current density maps of Fig 

4.9(a-c), the anode-cathode distance may be substantially less than the SVET probe 

height (which is 100 pm in the current study). In consequence, the current flux lines do 

not cross the plane of scan and are not detected by the SVET [61; this is illustrated by 

the diagram shown in fig 1.25 in Section 1.11.1. Where localised corrosion is observed, 

the distance between anode and cathode is typically greater than that of the probe height 

providing good accuracy of results.
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Fig 4.15 Plot show ing the inhibition efficiency (%) o f  H 2PP with respect to pH.
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To verify this notion, actual mass loss experiments were carried out as described in 

Section 4.2.3. The results are presented as a percentage of Zn mass loss in the bar chart 

shown in fig 4.16. Samples were immersed for a period of one week in 5% wt/v 

NaCl(aq) containing either no inhibitor, 5x10 2 mol dm 3 H 2 PP or lxlO '2 mol dm 3 fTPP 

where each inhibitor concentration level was tested at pH 2, pH 7 and pH 11.5. It can 

be observed that, where no inhibitor was present, a very similar Zn loss (%) value was 

recorded for samples immersed in the three levels of pH. This is in contrast to the 

results presented in fig 4.11 where the Jat values for experiments conducted in pH 2 are 

substantially lower.

Efficiency values have also been calculated for actual mass loss data at pH 2, pH 7 and 

pH 11.5. These are also summarised in fig 4.15. The Actual inhibition efficiency 

measured at pH 2 is substantially lower than that derived from the SVET. It is 

suggested, therefore, that the SVET derived Jat results presented for pH 2 immersion 

conditions cannot be taken as accurate, however, the observation of a change from 

localised to general corrosion is still an important result. A trend showing a progressive 

decrease in mass loss with increasing inhibitor concentration is shown for tests carried 

out in pH 7 electrolyte. This is in agreement with the Jat values presented in fig 4.5 and 

SVET-derived mass loss data presented in fig 4.6.
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Fig 4.16 Bar chart showing Zinc loss (%) from HDG samples after one week of immersion in aerated 5% 
(w/v) NaCl(aq) at pH 2, pH 7 and pH 11.5 where no additions and lxlO'2 mol dm'3 H2PP and 5xl0'2mol 
dm'3 H2PP additions have been made at each pH level.

4.3.3 Corrosion inhibition of hot dip galvanised steel by sodium phosphate

Having identified an optimum H2PP concentration value of 5x1 O'2 mol dm'3 for the 

effective inhibition of a HDG surface, further experiments were carried out to compare 

the inhibition efficiency of H2PP with sodium phosphate (NasPCU). Figs 4.17(i) [a-c] 

show the SVET derived current density surface maps of unpolarised HDG samples after 

24 h immersion in aerated 5% (w/v) NaCl (aq) containing 5x l0 '2 mol dm'3 Na3PC>4 

where electrolyte was adjusted to pH 2, pH 7 and pH 11.5 respectively. Photographic 

images taken after this 24 h period are given in fig 4.17(ii) [a-c].

The photographic image shown in fig 4.17(b)(ii) for the experiment carried out at pH 7 

suggests that inhibition is only partial. A protective layer is visible over the whole 

surface but localised corrosive metal attack can be observed isolated in a small area. 

This is confirmed by the anodic region shown in the same comer of the surface of the 

SVET map of fig 4.17(a)(i). In comparison, the same test carried out with H2PP 

additions of identical concentration showed full inhibition on the surface. The area- 

averaged, integrated SVET-derived anodic current density vs. time profiles for 

immersion over 24 h, are given in Fig 4.18[a-c]. The results presented in (b) for the 

experiment carried out at pH7 shows hourly Jat values much lower than those of the 

uninhibited case throughout the 24 h period.

Hydrolysed corrosion product was produced in the experiment carried out at pH 11.5. 

This is shown in the photographic image given in Fig 4.17(c)(ii). It can also be 

observed that, as with the experiment carried out at pH 7, all visible corrosion activity is 

constrained to an isolated region and the remainder of the surface is corrosion-free. The 

SVET surface map however shows several local anodes in a region covering half the 

test area. The Jat vs. time profile given in Fig 4.18(c) shows that, in comparison to a 

relatively constant Jat value of around 1.25 Am'2 recorded throughout the 24 h 

experiment in uninhibited conditions, when Na3PC>4 is present initial Jat values are 

extremely low. After approximately 4 h Jat begins to increases reaching that of the
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uninhibited case at ca. 15 h. This increase in Jat continues to progresses over the 

remaining time period. Unlike the same experiment carried out with H2PP, no re­

passivation of the surface is observed after the occurrence of anodic activity where Jat 

values return to approximately 0 Am'2.

In contrast to the experiment carried out with H2PP at pH 2, the equivalent experiment 

presented here shows no sign of inhibition as the Jat values, given in 4.17(a), are 

substantially higher than that of the uninhibited case throughout the 24 h time period.
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Fig 4 .17  i) SVET-derived current density surface maps o f  unpolarised HDG obtained fo llow ing  
im m ersion in aerated 5% (w /v) NaCl (aq) containing 5x10  2 mol dm 3 N a3P 0 4 after 24 h and ii) a 

photographic im age o f  the sam ple after 24 h im mersion where the bulk electrolyte was adjusted to a) pH 

2, b) pH 7 and c) pH 11.5.
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Fig 4 .18  Summary o f  area-averaged, integrated SV ET-derived anodic current density versus tim e profiles 
obtained for H DG  im m ersed in aerated 5% (w /v) N aCl (aq) containing i) no inhibitor and ii) 5 x 1 0 2 mol 
dm 3 P 0 43 adjusted to a) pH 2 b) pH 7 and c) pH 11.5.

Zinc mass loss values were derived, using Eq. 4.3, from the SVET experiments carried 

out in electrolyte adjusted to pH 2, pH 7 and pH 11.5 containing Na3P04, H2PP and no 

inhibitor additions. This is presented in fig 4.19 where, in all cases, it can be shown that 

zinc mass loss is at the lowest where experiments were carried out in neutral conditions. 

In all pH conditions, additions of H2PP to the electrolyte show a reduction in zinc loss
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when compared with the uninhibited experiment. The results presented here indicate 

that H2 PP was least effective in acidic conditions.
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Fig 4 .19  Bar chart show ing SVET-derived mass loss over 24 h where no inhibitor was present, 5x10  2 mol 
dm 3 PO43 additions were made and 5x10  2 mol dm 3 PP2 additions were made in electrolytes adjusted to 

pH 2, pH 7 and pH 11.5.

Additions of Na^PC^ to the electrolyte show an increase in metal loss in comparison to 

the control sample when tested in acidic and alkaline conditions. At pH 2 this increase 

in zinc loss was substantial. A significant reduction in mass loss at pH 7 was recorded 

compared to the uninhibited experiment but these results indicate that Na3 PC>4 is not as 

effective as H2PP.

Further actual mass loss experiments were carried out to determine whether the SVET 

derived results may be considered reliable. These were, again, carried out in electrolyte 

adjusted to pH 2, pH 7 and pH 11.5 with and without additions of 5x10 2 mol dm'3 

Na3P04. The results are presented in Fig 4.20 where it can be observed that, as with the 

SVET-derived data, a substantial decrease in mass loss is observed where Na3P04 is 

present in neutral conditions. As with the SVET data, in both acidic and alkali 

conditions, it can be shown that Na3P0 4 additions result in an increase in zinc loss when 

compared with uninhibited experiments. However, the actual mass loss recorded in

■ Control 

T □  P O 4 3 -

pH2 pH7 pH11.5
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acidic conditions shows only a slight increase in zinc mass loss where Na3 PC>4 was 

present in comparison to the SVET derived data where this increase was substantial. As 

suggested in the previous section, the generalised anodic activity occurring in 

uninhibited, acidic conditions may be undetectable by the SVET. This suggests that, if 

the amount of zinc lost in the uninhibited experiment has been underestimated by the 

SVET-derived data, it may be more realistic to suggest that Na.^PCTi is simply 

ineffective at low pH rather than an accelerant of corrosion. Efficiency values of 75% 

and 73% for SVET-derived and actual mass respectively were calculated using Eq. 4.8 

for the experiments carried out at pH 7.
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Fig 4 .20  Bar chart show ing zinc loss (%) from HDG sam ples after one w eek o f  im mersion in aerated 5% 

(w /v) N aCl(aq) adjusted to pH 2 , pH 7 and pH 11.5 where no additions and 5 x 1 0 2 mol dm 3 P 0 43 
additions have been made at each pH level.

H2PP appears to be a more effective inhibitor than Na3PC>4 in the experiments presented 

here. Phosphorus oxyacids undergo a series of stepwise deprotonations and, with each 

step; a progressively higher pKa is exhibited. The first, second and third pKa values are 

2.0, 6.9 and 12.3 respectively for H 3P O 4 [5]. The following equation can be used to 

calculate the [Zn2+] threshold at which Zn3 (PC>4 ) 2  will precipitate:

■  pH2

■ pH7

C ontro l 0.05 M P O .3
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[Zn2+]3[P043f  = ksp [4.7]

where ksp is 9x1033 mol2dm-6. Under aqueous conditions, the pH-dependent 

concentration of P 0 43 ([P043 ]) is given by:

[4.8]

where [P04]tot is the total concentration of the phosphate species, in this case 5x102 

moPdm"6. Eq. 4.8 may be used to show that [P 043 ] = 8.8 x 10"8. By applying this 

value and the ksp value to Eq. 4.7 a [Zn2+] threshold can be calculated for the 

precipitation of solid Zn3(P04)2 where a value of 5.38 x 10~5 mol2dm 6 is obtained. This 

is lower than the predicted [Zn2+] threshold value for the precipitation of ZnPP which is 

1.46 x 104 mol2dm 6; this result suggests that Na^Pd* should be the more effective 

inhibitor. However, it is proposed that the incomplete inhibition observed in this case, 

where availability of P 0 4 is not limited, results from precipitation of Zn3(P04)2 in 

solution above the sites of anodic zinc dissolution and not directly on the corroding 

surface. This is represented schematically in fig 4.20. Zn2+, therefore, does not migrate 

to sites of local cathodic activity, as was the case with ZnPP (illustrated in fig 4.8b), to 

instigate the deposition of blocking films of Zn3(P04)2 directly on these regions. This 

was observed previously by Williams et al where the effect of a phosphate inhibitor on a 

corroding magnesium surface was assessed [7].

Aqueous NaCl solution Insoluble Zn3<P04)2formed
away from the corroding surface
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Fig 4.21 Schematic representation o f  a locally corroding H D G  surface in the presence o f  phosphate ions.

138



4.4 Conclusions

The current chapter assesses the effectiveness of phenyl phosphonic acid (H2PP) as a 

corrosion inhibitor for hot dip galvanised steel (HDG) surfaces immersed in 5%wt/v 

NaCl(aq) electrolyte containing additions of H2PP. The work presented here 

demonstrates, using the in situ scanning vibrating electrode technique (SVET), and 

through a series of open circuit potential experiments, that increasing the concentration

of H 2PP made to electrolyte progressively decreases the corrosion activity on the HDG
2 2 6surface. At a concentration of 5x10' mol dm' , H2PP has been shown to keep a bare 

HDG surface free from white corrosion product for up to 24 h with an efficiency, 

measured using SVET-derived data, of 96%. The suggested inhibition mechanism is 

the formation of a Zn(PP) salt film that forms initially on cathodic sites and 

subsequently on anodic sites. Where a zone of high pH evolves at a cathodic site a 

conversion of bulk HPP“(aq) anions to PP2_(aq) may be expected. A combination of free 

PP2- anions with Zn2+ ions produced by the anodic dissolution of zinc at the anodic sites 

forms a solid Zn(PP) film which stifles any ongoing interfacial electron transfer.

It was expected that H2PP would be less effective as a corrosion inhibitor at non-neutral 

pH. At low pH, [PP2] levels would be insufficient to form a solid film with the 

abundance of Zn2+ ions present. At high pH insufficient Zn2+ would be available to 

combine with the abundance of available PP2' anions as a presence of the soluble 

zincate anion (ZnC>22’) tends to prevail according to the Pourbaix diagram (given in fig

1.5 of Section 1.2.3) . It has been shown in the work presented here that, in both acidic
9  9  f \and alkaline conditions, corrosion activity is present where additions of 5x10' mol dm' 

H 2PP have been made. Anodic activity has been shown to change from isolated and 

localised in neutral conditions to moveable when in alkali conditions and highly general 

when in acidic conditions. The nature of the general corrosion observed visually in 

experiments carried out at low pH meant that SVET detection was poor. However, 

through photographing the sample surface and carrying out actual mass-loss 

experiments it can be concluded that H2PP additions made to acidic media are less 

effective than in neutral conditions.

Partial inhibition was observed in alkaline conditions where it is thought that H2PP acts 

as an adsorption inhibitor. The PP2' anion adsorbs onto the zinc surface and reinforces 

the Zn(OH )2  layer that disfavours Cl" adsorption thus preventing the anions from
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destroying this passive layer. The intermittent periods of high anodic activity showed 

that this layer must be partially protective only.

Finally, in situ SVET experiments carried out with sodium phosphate (Na3P 0 4) at the 

same concentration showed only partial protection of the HDG surface in neutral 

conditions and an SVET-derived efficiency of 75% was calculated. From this it can be 

concluded that H2PP is more effective at this concentration. This was unexpected as the 

calculated [Zn2+] threshold value for solid Zn3(PC>4 )2  precipitation to occur was 

substantially lower than the value of 1.46 x 10'4 mol2dm‘6 calculated for Zn(PP) 

precipitation. However, it is suggested that precipitation of Zn3(P04)2 does not occur 

directly on the corroding surface but rests in solution in the regions above as has been 

observed previously [7]. Furthermore, Na3P 0 4 additions at both low and high pH were 

found it be relatively ineffective inhibitors.

The SVET has proved to be a useful tool in determining the effective corrosion 

inhibition of HDG surfaces immersed in electrolyte containing H2PP at a concentration
0 0 f\of 5x10' mol dm' in neutral conditions. The previous Chapter showed that, where 

additions of H2PP were made to a polyvinyl butyral (PVB) coating, underfilm 

delamination was stifled and the delamination rate reduced substantially. One 

suggested inhibition mechanism was the leaching of H2PP, PP2’ and HPP' from the edge 

of the coating/defect boundary in to the NaCl(aq) electrolyte at the exposed zinc surface. 

The work presented in the current Chapter suggests that this is indeed a possible 

mechanism as additions of H2PP present in electrolyte at the optimum level have been 

shown to keep a surface of exposed HDG free from white rust for a period of 24 h.
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Chapter Five.
Inhibition of corrosion-driven organic coating 

delamination on iron by phenyl phosphonic acid.
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5.1 Introduction

In the current Chapter a non-chromate inhibitor, organic phenyl phosphonic acid 

(H2PP), is added to a polyvinyl butyral (PVB) polymer solution. In Chapter three, such 

a system was shown to prolong the delamination initiation time (f) by ca. 1200 min and 

reduce the delamination rate (kdei) by 94% on a hot dip galvanised (HDG) steel surface 

where additions of 10% H2PP were made to the PVB coating.

The primary aim of the work presented in this Chapter is to investigate the influence of 

H2PP on both coating disbondment and filiform corrosion, when dissolved in an organic 

‘primer’ PVB coating, applied to an iron substrate. The effect of H2PP on underfilm 

delamination has been studied using two different experiments and, in both cases, the 

SKP technique has been employed to carry out measurements. The first type of 

experiment was carried out using the technique pioneered by Stratmann et al where the 

coating is partially lifted from the substrate and exposed to a large defect-containing 

electrolyte [1]. The experimental conditions are harsh and uninhibited coating 

delamination rates are high; this allows for a clear distinction between delamination 

rates where different levels of H2PP are present. The second type of delamination 

experiment represents a realistic scenario where electrolyte is added to a small, 

penetrative scratch and first allowed to dry being exposed to a humid environment. This 

approach will establish whether H2PP is a viable inhibitor in an environment that 

mimics a typical in-service defect. Further investigation using a series of SVET and 

OCP experiments will assess whether the leaching of H2PP into electrolyte has an effect 

on the corrosion of bare iron. Furthermore, the effectiveness of in-coating H2PP at 

halting FFC will be assessed.

FFC experiments have been carried out in the current chapter using the technique that is 

described in Section 5.2. The filament propagation rate has been assessed with regards 

to levels of H2PP additions made to a PVB coating and, hence, the effectiveness of 

H2PP as an inhibitor for FFC has been determined.
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5.2 Experimental procedure

5.2.1 Materials

Iron foil samples (99.9% Fe) of 1.5 mm thickness were obtained from Goodfellow 

Metals Ltd and were received as 50 mm square coupons. Polyvinyl butyral (PVB) 

solutions were prepared in ethanol (15.5% w/w) MW 70,000-100,000 and the required 

amount of phenyl phosphonic acid (H2PP) was added and thoroughly mixed. All 

chemicals were supplied by Sigma-Aldrich Chemical Co and were of analytical grade 

purity.

5.2.2 Sample preparation

All samples in the current chapter were cleaned as described in Section 2.2.1. The first 

set of SKP experiments were carried out using a standard delamination cell as described 

in Section 2.2.1.1 and well document elsewhere in literature published by Stratmann et 

al [2,3]. For the second set of SKP experiments, samples were prepared as described in 

Section 2.2.1.1 and documented elsewhere by Williams et al [4]. For SVET and OCP 

testing samples were prepared as described in Section 2.3.1.

5.2.3 Methods

For the Standard delamination testing, an electrolyte of 5% wt/v NaCl(aq) was used. The 

SKP reference probe was scanned in four lines of 12 mm over the coated surface, 

normal and adjacent with the defect-coating boundary. Scanning commenced 

immediately on the addition of electrolyte and thereafter at hourly intervals over a 

period of 24 h. A 100 pm reference probe-to-air gap was used with Ecorr data points 

recorded at 20 per mm. In all delamination experiments the temperature and humidity 

were kept constant at 25°C and 95% r.h. The full description of SKP instrumentation, 

calibration procedure, set-up and subsequent analysis can be found in Sections 2.2.2 to 

2.2.5.
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For the second type of delamination experiment, a defect 2 mm in length was scribed 

into the PVB layer using a scalpel blade. Corrosion was initiated using 2 pi of 0.05 M 

NaCl(aq) solution introduced into the scribed region and allowed to dry in room air. The 

sample was then placed in the SKP chamber maintained at a constant 95% relative 

humidity and 20°C. Scans were carried out at hourly intervals thereafter on a 12 m m x 

12 mm area centred around the scribe. Fig 5.1 shows a diagram of a prepared sample 

with defect, scan area and scan direction.

The SVET testing was carried out as described in Section 2.3 where a full description of 

SVET instrumentation, calibration procedure and set-up can be found. In all cases 

solution pH was adjusted to neutral by the drop-wise addition of NaOH(aq).

FFC experiments and subsequent analysis were carried out as described in Section 2.4. 

In summary, a 10 mm penetrating scribe was made into the PVB coating containing the 

relevant levels of H2 PP. In all cases, FFC was initiated by introducing a volume of 2 pi 

of aqueous 0.005 M FeCh to the scribe and allowing to dry in room air. Samples were 

then placed in an environment chamber that was maintained at a constant 93% relative 

humidity and 20°C.

Probe

Scan
direction

2mm defect

Scan area 
12cm x 12cm

15 pm PVB layer

Diagram o f  iron sam ple show ing 2 mm scribed defect scan area and scan direction
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5.3 Results and discussion

5.3.1 SKP study of Cathodic delamination using a standard delamination cell

5.3.1.1 Cathodic delamination of uninhibited PVB coatings on iron

Delamination experiments were carried out using the approach pioneered by Stratmann 

et al [1]. Initial experiments were conducted using uninhibited PVB coatings to 

establish the baseline delamination kinetics. Upon the establishment of equilibrium 

with the humid experimental atmosphere, uniformly high E co rr  values over the intact 

coating surface were obtained. The values were representative of those measured over 

an uncoated iron surface in the same conditions i.e. ca. 0.1-0.2 V vs. SHE. 

Delamination of the coating typically initiated within 1 h of the addition of 5% w/v 

NaCl (aq) electrolyte to the defect. The distinctive time-dependent E COr r  -  distance 

profiles proceeded to develop and progress thereafter as can be observed in fig 5.2. The 

Ecorr values measured in the vicinity of the defect are approaching the hypothesised 

equilibrium potential of reaction 5.2 i.e. ca. -0.44 V vs. SHE. The mechanism by which 

cathodic disbondment on iron substrates occurs is described in full in Section 1.4.2.

A further experiment was carried out where the PVB coating remained uninhibited but 

in this case additions of 0.05 M H2PP, adjusted to pH 7, were made to the experimental 

electrolyte. A plot of Xdei vs. (tdei - h), where tdei is the delamination time following 

application of electrolyte and f  is the delamination initiation time, are given in fig 5.3. 

It can be observed that there is very little difference between the two curves and both 

display parabolic kinetics suggesting that cation migration remains the rate-limiting step 

in the presence of H2PP in the electrolyte. Furthermore, no increase in h was observed. 

This suggests that any leaching of in-coating H2PP would have little effect on the 

anodic reaction (Reaction 5.2) occurring at the defect. These findings are in contrast to 

the observations of Chapter 3 Section 5.3.1 where the same experiment was carried out 

on a hot dip galvanised (HDG) steel substrate and an increase in q by 1140 min was 

observed.
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Fig 5 .2 Profile o f  time dependant Ecorr vs. SHE (V ) measurements against distance from the penetrative 
coating defect (pm ) for a PVB coated iron surface from Oh (left) to 24h (right) shown at hourly intervals 
fo llow ing initiation with 5%  N aCl(aq) electrolyte.

It has been shown elsewhere that, in a similar experiment, additions of CrO 4 made to 

the initiating electrolyte of a Stratmann delamination cell showed only a 25% reduction 

in kdei of an uninhibited coating on a zinc surface in this instance. Despite the profound 

inhibition of an exposed, bare metal surface in the region of the penetrative coating 

defect by CrO 4 anions, it was reported that defect-coating margin anodic metal 

dissolution persisted resulting in the onset of delamination [2]. In the current study, 

Econ- values were found to be slightly more positive in the region in close proximity to 

the defect (initially ca. -0.2 V vs. SHE increasing to -0.1 V vs. SHE after 24 h) when 

compared with the control experiment. This suggests that partial inhibition of the bare 

iron surface occurs. Further experiments to determine the inhibitory efficiency of H2PP 

on bare iron when fully immersed in electrolyte containing H2PP additions at various 

concentrations will be presented in the proceeding sections. Even if it is found that high 

inhibition efficiency occurs at the concentration studied here, it is suggested that anodic 

iron dissolution is able to persist in a delamination situation at the coating-defect 

margin.
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Fig 5.3 Plots o f  xde| vs. (tdei - tj) for uninhibited PVB coated iron substrates where electrolyte adjusted to 
pH 7 where a concentrations o f  (i) 0 M and (ii) 0.05M  H2PP has been added to an external defect.

5.3.1.2 Inhibition of cathodic delamination with in-coating PEPP

A series of experiments were carried out where different amounts of H2PP were 

systematically added to the PVB coatings. Representative potential profile plots, over a 

period of 24 h, are given in figs 5.4 and 5.5 where 5% and 10% additions of PEPP have 

been made respectively. It can be observed that the progression of the delamination 

front is reduced over the 24 h period where additions of in-coating H2PP are present 

when compared to the control experiment. No variation of Ejntact is observed at any level 

of H2PP addition when compared with the control experiment suggesting that the 

presence of in-coating PEPP has minimal effect on the steady-state delamination-cell 

potentials.

The delamination kinetics have been quantified as a plot of Xdei vs. (tdei - k); this is given 

in fig 5.6. Curve (i) shows that, in the absence of in-coating PEPP, delamination 

propagation kinetics best fit a parabolic curve and a delamination rate (kdei)(dxdei/dt) of

o

1------------------ 1------------------1------------------1------------------r
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6.39 pm.min after 24 h is measured upon differentiation of the curve. The linear 

kinetics shown in the plots that represent samples containing in-coating H2PP additions 

show a reduction in kdei; however this is not substantial. The maximum reduction in kdei 

was 55% where additions of 10% H2PP were made and an increase in f  of 540 min was 

observed. A summary of t, and kdei values plotted as a function of in-coating H2PP 

amount (%) is given in fig 5.7. The plot illustrates the reduction in kdei and an increase 

of ti with increasing levels of H2PP. Actual values are also given in Table 5.1.

The observed change from parabolic to linear kinetics shown in fig. 5.6, for uninhibited 

and inhibitor-containing coatings respectively is a phenomenon observed in several 

previous studies on both polyaniline and smart-release bentonite-pigmented systems 

[4,5]. This was also reported in Chapter 3 where delamination of PVB coatings from 

HDG substrates in the presence of in-coating H2PP was studied. It is proposed that this 

transformation is due to the formation of an interfacial layer that blocks electron transfer 

and subsequently suppresses the underfilm cathodic oxygen reduction reaction. It is 

suggested that this change in delamination kinetics occurs because, where H2PP is 

added to the coating, the underfilm oxygen reduction reaction replaces the previously 

mentioned cation migration process as the rate-limiting step. The formation of this 

blocking interfacial layer is thought to proceed when the PVB/H2PP ethanolic solution 

is first applied to the iron substrate. H+ derived from the dissociation of H2PP causes an 

acid etch of the iron surface generating Fe2+ cations at the metal-coating interface via 

Reaction 5.2. This is shown in the following series of equilibria:

H 2 P P  (aq) ^

HPP " (aq) ■ 

Fe2+ + PP2'

HPP (aq) + H (aq) 

>2 -PP (aq) +  H  (aq)

[Fe2+PP2']s

( p K a i  = 2 . 3 )  

( P K a 2  =  7 . 8 ) [ 8 ]

(5.3)

(5.4)

(5.5)

Provided local concentrations of the aforementioned ions exceed the estimated 

solubility product (Ksp) of 10'8 mol2 dm'6, subsequent combinations of Fe2+ cations with 

PP2' produced by (5.4) will give an insoluble salt of Fe2+PP2'. This salt precipitate film, 

formed as the metal is coated, acts as a barrier to underfilm electron transfer and 

blocking cathodic oxygen reduction.
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As shown in Reaction 5.1, the production of OH ions from the reduction of oxygen in a 

cathodic delamination cell renders the underfilm pH highly alkaline. In the case of iron 

values of pH » 1 0  are reported and, a maximum measurement of pH 14 recorded [7,8]. 

A second possible mode of underfilm inhibition is proposed by which the in-coating 

H2PP additions moderate the underfdm pH to prevent or reduce the base-catalysed 

polymer degradation and base-catalysed hydrolysis of interfacial bonds. This is 

according to the corresponding series of acid/base equilibria given in reaction 5.3, 

where the pKa values for first and second deprotonation steps given above are 2.3 and 

7.8 respectively. Therefore the in-coating H2PP provides a reservoir of H+ cations which 

may provide some neutralisation of the hydroxide product of the underfilm cathodic 

reaction shown in reaction 5.1 and thus prevent loss of adhesion [8].
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Fig 5.4 Profile o f  time dependant Ecorr vs. SHE (V ) measurements against distance from the penetrative 
coating defect (pm ) for an iron surface coated with PVB containing additions o f  5% H2PP from 4 h (left) 
to 24 h (right) shown at hourly intervals fo llow ing initiation with 5% N aC l(aq) electrolyte.
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Fig 5.5 Profile o f  time dependant Ecorr vs. SHE (V ) measurements against distance from the penetrative 
coating defect (pm ) for an iron surface coated with PVB containing additions o f  10% H2PP from 9 h (left) 
to 24 h (right) shown at hourly intervals fo llow in g  initiation with 5% N aC l(aq) electrolyte.
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Fig 5 .6  Plots o f delam ination distance (xdel) vs. (t, - t̂ ei) for 10 pm PVB coatings on an iron substrate 
containing i) no additions ii) 2 % iii) 5% iv) 8% and v) 10% H2PP additions fo llow ing initiation with 5% 
N aC l(aq) electrolyte.
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Fig 5.7 Summary plots o f  delam ination initiation time values (tj) and k^i values both plotted as a function  
o f  HiPP levels (%) added to 10 pm PVB coatings delam inating from iron substrates; the latter are plotted 
using a secondary y-axis.

Table 5.1 V alues o f  parabolic rate constant and time to delamination determined for PVB coatings

%h 2p p kdei (pm.min) Akde, (%) h (min)
0 6.39 0 0
5 4.53 29 240
8 3.3 48 240
10 2.88 55 540

5.3.2 Comparison of cathodic delamination inhibition by in-coating H2 PP on HDG 
steel and iron substrates

Chapter 3 investigated the effect of H2PP on underfilm delamination of a PVB coating 

on a HDG substrate and it was found that the delamination initiation time (tdei) was 

increased by 1200 min and the delamination rate was reduced by 94% where in-coating 

additions of 10% H2PP were made. In the current chapter it has been shown that the 

same amount of in-coating H2 PP provides a tdei value of 540 min and a reduction in kdei 

of only 55% when applied to an iron substrate. Although this is an improvement on the 

control sample, H2 PP does not appear to inhibit underfilm delamination as effectively
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on iron as it does on a HDG substrate. Fig 5.8 gives summary plots of the reduction in 

k d e i  (%), for both iron and HDG substrates, as a function of in-coating H2PP amount 

(%). This shows that even the lowest level of in-coating H2 PP provides superior 

inhibition on HDG in comparison to the maximum level of H2PP applied to an iron 

substrate. It is suggested that a major factor may be that the underfilm pH on an iron 

surface, as described in the previous section where values of up to pH 14 have been 

recorded [7,8], is much higher than that of a HDG (pH 10-11 [9]) substrate when 

delamination is taking place. Any pH buffering provided by the aforementioned 

reservoir of H+ cations to neutralise the hydroxide product of the underfilm cathodic 

reaction, shown in reaction 5.1, would therefore not be as effective on the extremely 

highly alkaline rendered iron surface. A further mechanism that promotes loss of 

adhesion on an iron surface is the strongly potential dependent composition of iron- 

oxides, reported by Grundmeier et al, caused by the flipping of valence states (Fe2+ and 

Fe3+) in the cation sublattice [3].
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Fig 5 .8 Summary plots show ing the reduction in delam ination rate (kdei) as a function o f  H2PP levels (%) 
added to 10 pm PVB coatings on iron and HDG substrates where delam ination was initiated using 5%
w /v N aC l(aq).

Furthermore, HDG surfaces benefit from the additional inhibitory effect of free Zn2+ 

cations produced by the initial acid etch as reported by Williams et al [9]. It was
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suggested that, in the alkaline underfilm electrolyte, Zn2+ aquocations become 

hydrolysed to precipitate solid zinc hydroxide (Zn(OH)2) via the following reaction:

Zn2+(aq) + 20H ‘(aq) ^  Zn(OH)2(s) (5.6)

and improve delamination inhibition by further blocking the cathodic reaction. Without 

this mechanism the iron surface is protected only by the Fe2PP layer and any H2PP in 

contact with the metal surface as a result of leaching into the electrolyte.

5.3.3 SKP study of Cathodic delamination from a penetrative scribe defect

5.3.3.1 Cathodic delamination of uninhibited PVB coatings on iron

In the current section SKP experiments were carried out to mimic a realistic scenario, an 

alternative to the harsh conditions set up in the Stratmann cell experiments of the 

previous section. A similar study was carried out in previous work by Williams et al 

and it was reported that, when initiated with NaCl(aq), two types of corrosion are 

observed [4], namely:

i) Cathodic disbondment (phase I) - this will be studied in the current section.

ii) Anodic disbondment (phase II) via filiform corrosion (FFC) - this will be 

studied in the proceeding section.

Delamination experiments using uninhibited PVB coatings were carried out to 

determine baseline kinetics and establish the delamination cell characteristics. Fig 5.9 

shows the profiles of time dependant E corr vs. SHE (V) measurements plotted against the 

distance from the penetrative coating defect, measured in pm, for the PVB coated iron 

surface containing no inhibitor following initiation with 0.05 M N a C l(a q ) . The E COrr 

values recorded in the vicinity of the scribed defect are approaching -0.44 V vs. SHE, 

the expected value for anodically active iron. The recorded under-film distributions 

were entirely similar to those recorded by Stratmann et al for cathodic organic coating 

delamination on iron [1].

Fig 5 . 1 0  (a-d) shows a series of corresponding grey-scale E COrr distribution maps 

recorded using in situ SKP at various times up to 24 h. The images show the control 

sample where no H2PP additions have been made to the PVB coating. The progression 

of the radially expanding delaminated area can be clearly observed.
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Fig 5.9 Profiles o f  time dependant EcorT vs. SHE (V ) measurements against distance from the penetrative 
coating defect (m m ) for a PVB coated iron surface containing no H2PP at time intervals from Oh (left) in 
three hour intervals through to 12h (right) fo llow ing initiation with 2 pi 0 .05 M N aCl(aq) electrolyte 
added to a 2 mm scribed defect.

154



a) b)

Dist ance (mm)Distance (mm)

Distance (mm) Distance (mm)

Fig 5 .10  Interpolated grey-scale maps show ing Ecorr distributions measured over a PVB coated iron 
surface with dispersions o f  2% H2PP show ing tim es (a) 1, (b) 4 , (c) 8 (d) 12 hours fo llow ing initiation  
using 2pl o f  0 .05 M NaCl (aq) to a scribed defect.

Experiments were carried out with additions of FEPP at levels of 1%, 2%, 5% and 10% 

to the PVB coatings. Fig 5.1 l(a-d) shows a series of grey-scale Ecorr distribution maps 

for the sample in which the PVB coating contains a dispersion of 2% H2PP. The images 

show that delamination initiates but, after a 24 h period, the area of radial expansion is 

substantially less than that of the control sample.
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Fig 5.11 Interpolated grey-scale maps show ing Ecorr distributions measured over a PVB coated iron 
surface with dispersions o f  2% H2PP show ing tim es (a) 1, (b) 4, (c) 8 (d) 24 hours fo llow ing initiation  
using 2pl o f  0.05 M NaCl (aq) to a scribed defect.

Figs 5.12 and 5.13 show the profiles of time dependant Ecorr vs. SHE (V) measurements, 

at various time intervals, plotted against the distance (in pm) from the penetrative 

coating defect. The results are for a PVB coated iron surface containing dispersions of 

2% H2PP and 5% H2PP respectively. The delamination kinetics have been quantified as 

a plot of Xdei vs. (tdei - h); this is shown in fig 5.14. Curve (i) shows that, as in the 

previous section, delamination propagation kinetics best fit a parabolic curve where 

measurements have been taken in the absence of H2PP coating to the coating. Where 

additions of H2PP have been made to the PVB coating, a change from parabolic to 

linear kinetics can be observed in the xdei vs. (tdei - h) plots given in fig 5.12. This is 

entirely similar to that observed in the Stratmann cell experiments carried out in the 

previous section. Fig 5.15 summarises the U and kdei values plotted as a function of in­

coating H2PP amount (%). The plot shows a reduction in kdei and an increase in U with 

increasing levels of H2PP. Actual values are given in Table 5.2. The realistic 

experiments carried out in the current section show a promising result for the inhibition 

of corrosion on iron with in-coating H2PP where 10% additions halted delamination for 

a period of 24 h and reduced the delamination rate by 99% upon initiation.
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Fig 5 .12  Profile o f  time dependant Econ vs. SHE (V ) measurements against distance (x) in pm from the 
penetrative coating defect for a PVB coated iron surface containing additions o f  2% H2PP at 3 h time 
intervals starting at 2 h (left) and ending at 20  h (right) follow ing initiation with 2 pi 0 .05 M N aCl(aq) 
electrolyte added to a 2 mm scribed defect.
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Fig 5 .13  Profiles o f  time dependant Ecorr vs. SHE (V ) measurements against distance (x) in pm from the 
penetrative coating defect for a PVB coated iron surface containing a dispersion o f  5% H2PP at time 3 h 
(left) fo llow ed  by 4 h, 5 h, 6 h and 10 h fo llow ing initiation with 2pl 0 .05M N aC l(aq) electrolyte added to a 
2 mm scribed defect.

157



6000

0

5000

4000

2000

<►

ii) .1000

a & i  ft ft I

0 200 400 600 800

(tdei . t j ) /  min

1000 1200

Fig 5.14 Plots o f  delam ination distance (xdei) vs. (ti - tdei) for 15 pm PVB coatings on an iron substrate 
containing i) 0 % ii) 1% iii) 2% iv) 5% and v) 10% H2PP additions fo llow ing initiation with 2pl 
0 .05M N aC l(aq) electrolyte added to a 2mm scribed defect.
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Fig 5.15 V alues o f  time to delam ination (tj) and summary plots o f  k^i both plotted as a function o f  H2PP 
levels (%) added to 10 pm PVB coatings on iron substrates where delam ination was initiated using 5% 
w /v N aC l(aq); the latter are plotted using a secondary y-axis
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Table 5 .2 Values o f  parabolic rate constant and time to delamination determined for PVB coatings 
containing various values o f  H2PP on iron substrates.___________________________________________________

%h 2p p kdei (pm.min) Akdel (%) tj (mins)
0 7.5 0 0
1 0.7 91 0
2 0.5 94 0
5 0.2 98 400
10 0.1 99 -

5.3.3 Inhibition of filiform corrosion-driven anodic delamination by with in-coating
h 2p p

As described in Section 1.4.6, filiform corrosion (FFC) may be recognised as a thread­

like corrosion product deposited under organic films found on organic-coated 

aluminium and iron substrates. In the previous Section phase I underfilm cathodic 

delamination, as described by Williams et al [4], was studied where in-coating H2PP 

was shown to retard the delamination rate when 0.05 M aqueous NaCl was used to 

initiate corrosion through application to a penetrative defect. As FFC, observed in 

phase II, is slow to develop, the current section assesses the effect of in-coating H2PP 

where corrosion is initiated by aqueous FeCl2. Williams et al showed that by initiating 

with FeCl2 only phase II will commence and, as such, the experiments may be carried 

out over a shorter time scale [4].

Figs 5.16 and 5.17 show the appearance of PVB coated iron samples in (a) the absence 

of FFPP and (b-e) the presence of H2PP at levels of 2%, 5%, 10% and 12% respectively 

at 672 h and 1344 h. Fig 5.18 gives the plots of measured corroded area with respect to 

time for all levels of H2PP additions. The uninhibited sample shown in both fig 5.16(a) 

and fig 5.17(a) was chosen as a good representation from all the repeat experiments. It 

can be observed that only five filaments are present and four of these cease to progress 

further than the distance covered after 672 h. One filament progresses and subsequently 

doubles in length by 1344 h. Where additions of 2% FI2PP have been made to the PVB 

coating (b), it can be observed that FFC filaments are much narrower but a substantial 

increase in the number of filaments can be observed. These Filaments continue to grow 

in length over the period measured and new filaments can be seen to initiate. 

Interestingly, the filaments observed where 5% F12PP is present in the PVB coating are 

approaching the thickness of those observed on the control sample. Filament
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propagation exceeds that of the control sample. Both 2% and 5% H2PP additions to the 

PVB coating result in an increase in corrosion rate, by 300% and 140% respectively, 

when compared to the control sample over the time period of 1008 h.

Where additions of 10% and 12% H2PP are present, it can be observed that the 

filaments are extremely narrow. A high number of filaments initiate in both cases, 

however, after 672 h only very short filaments can be observed. Where 12% H2PP 

additions are present, the filaments propagate over time and appear to change direction 

more frequently than those in the presence of H2PP at other amounts. Additions of 12% 

H2PP show the initiation of a large amount of narrow filaments but propagation is 

substantially limited and a decrease in corrosion rate of 76% is recorded. This is shown 

in fig 5.18 where plots of anodically delaminated area vs. time are shown for iron 

coated with PVB containing additions of H2PP the various concentrations. Table 5.3 

provides a summary of the values for the rate of FFC propagation.

As FFC is an anodic process it is likely that the formation of an insoluble 

Fe2+/phenylphosphonate salt layer at the substrate/coating interface is not sufficient to 

prevent the initiation of FFC filaments. Where additions of a very high level of H2PP 

are made to the PVB coating the suppression of the cathodic reaction might be enough 

to subsequently reduce the anodic reaction and hence reduce the corrosion rate but not 

prevent initiation entirely. In all cases, where in-coating H2PP is present, the number of 

filaments is shown to dramatically increase and, in most cases, the filaments are much 

thinner. It is suggested that, due to partial protection of an insufficient Fe2PP salt film 

that forms during casting, an increase in the number of initiation points occurs. Where 

additions of H2PP have been made to the coating at lower levels, e.g. 2% - 10%, 

localised attack by Cl" is possible. When enough H2PP is present, such as with 12% 

additions, and a Fe2PP layer forms that is capable of acting as a barrier to prevent Cl" 

adsorbing onto the iron surface, only then is a reduction in progression rate observed. 

Furthermore, the acidic (pH 2) underfilm conditions in a filament head mean that no PP" 

will be available to react with Fe2+ if leaching does occur. Fig 5.19 shows a schematic 

representation of the mechanism where the F2PP salt layer is insufficient to prevent the 

adsorption of Cl" onto the surface and, hence, corrosion is able to progress.
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lOnim

Fig 5 .16  Photographic im ages o f  filiform  experim ents carried out on iron substrates coated with PVB  
containing additions o f  H 2PP at levels o f  a) 0% b) 2% c) 5% d) 10% e) 12% after 672h.
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Fig 5.17 Photographic im ages o f  filiform  experim ents carried out on iron substrates coated with PVB  
containing additions o f  H2PP at levels o f  a) 0% b) 2% c) 5% d) 10% e) 12% after 1344h.
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Fig 5.18 Tim e dependant FFC delaminated area for iron coated with PVB containing additions o f  H2PP at 
concentrations of: i) 2% w /w  ii) 5% w /w  iii) 0% w /w  iv) 10% w /w  v) 12% w /w

Table 5.3 Values for the rate o f  FFC propagation for PVB containing various concentrations o f  H2PP on
iron

H2PP (%)
Corrosion 
rate (mm2.h)

Change in 
corrosion rate (%)

0 0.005 0
2 0.02 -300
5 0.012 -140
10 0.0059 -18
12 0.0012 76

OHFe20 3
Corrosion product

Cl- F eT Fe2PP surface film

Cathode

Fig 5.19 Schem atic representation o f  filiform  corrosion m echanism  where an insufficient Fe2PP surface 
film  provides partial protection.
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5.3.4 Corrosion inhibition of bare iron by phenyl phosphonic acid

The effect on corrosion of an iron surface where in-coating H2PP, HPP' or PP2 leaches 

to the coating/defect region is explored in the current section. Experiments were carried 

out using S VET to determine if H2PP had an effect, over a sustained time period, on the 

corrosion of bare iron surface fully immersed in 5% w/v NaCl(aq) electrolyte containing 

additions of the inhibitor.

Firstly, in situ SVET scanning was used to determine the current density distributions as 

a function of time above the surface of unpolarised iron samples freely corroding in 5% 

wt/v NaCl(aq) at pH 7. Representative current density maps obtained at times 2 h, 12 h 

and 24 h after immersion are shown in fig 5.20. It can be observed that activity occurs 

with the development of a single anode and a single cathode where the anode remains 

stationary and localized throughout. The photographic image shown in Fig 5.20(d) 

shows the thick layer of red rust that developed at the anodic site.

Figs 5.21 and 5.22 show the respective sets of current density maps for scans carried out
rs ry /r 0 0 f\

where concentrations of 1x10' mol dm' , and 5x10' mol dm' H2PP were present in the 

experimental electrolyte which was neutralised to pH 7. The photographic image given 

in fig 5.19(d) shows that some red rust was present after immersion over a 24 h period 

where additions of lxlO '2 mol2dm'6 were made. In contrast to the control sample where 

a region of thick corrosion product was observed, a fine layer covering the entire 

surface was present after the 24 h period. However, the current density maps show 

negligible corrosive activity so this cannot be considered an accurate representation. A 

transformation from highly localised corrosion when the electrolyte is uninhibited, to 

general corrosion where H2PP is present, appears to occur. The SVET is incapable of 

detecting the anodic and cathodic regions where generalised corrosion occurs as the 

resolution is not great enough - this is described full in Section 1.8.1.

The photographic image in fig 5.22(d) shows that no red rust is observed on the iron 

surface after an immersion period of 24 h where a concentration of 5x10' mol dm' 

H2PP was present in the electrolyte. This, along with the negligible anodic activity 

shown by the current density maps, indicates that H2PP at > 0.05 M can effectively 

inhibit the corrosion of iron in such conditions up to a period of 24 h.
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Fig 5.23 shows the result where additions of Na3 PC>4 were made to the electrolyte at a 

concentration of 5x10 2 mol2dm 6. A very sparse layer of red rust can be observed in the 

photographic image given in fig 5.23(d). As with fig 5.21, it cannot be certain whether 

the anodic activity shown in the current density maps gives a true representation of the 

anodic activity occurring on the iron surface. It can, however, be concluded that general 

corrosion, as opposed to localised corrosion is occurring.

< >
9mm

Fig 5 .20  SV ET-derived current density surface map o f  unpolarised iron obtained fo llow ing  im m ersion in 
aerated 5% (w /v) N aCl (aq) at pH 7 at time a) 2 h, b) 12 h, and c) 24 h. d) is a photographic im age o f  the 
sam ple taken at the end o f  the 24 h experim ent.
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Fig 5.21 SV ET-derived current density surface map o f  unpolarised iron obtained fo llow in g  im m ersion in 
aerated 5% (w /v) N aCl (aq) at pH 7containing additions o f  1x10 2m ol2dm‘6H 2PP at tim e a) 2 h, b) 12 h, 
and c) 24 h. d) is a photographic im age o f  the sam ple taken at the end o f  the 24 h experim ent.

a) b)

9 mm

Fig 5 .22  SV ET-derived current density surface map o f  unpolarised iron obtained fo llow ing  im m ersion in 
aerated 5% (w /v) N aCl (aq) at pH 7containing additions o f  5x10  2m ol2dm 6H2PP at tim e a) 2 h, b) 12 h, 
and c) 24 h. d) is a photographic im age o f  the sam ple taken at the end o f  the 24 h experim ent.
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a) b)

8 mm

jz /  A m '2

Fig 5 .23  SV ET-derived current density surface map o f  unpolarised iron obtained fo llow ing  im m ersion in 
aerated 5% (w /v) N aCl (aq) at pH 7containing additions o f  5x10  2m ol2d m 6 Sodium  Phosphate at tim e a) 2 
h, b) 12 h, and c) 24 h. d) is a photographic im age o f  the sam ple taken at the end o f  the 24 h experim ent.

All experimental samples were compared using the area-averaged anodic current 

density values shown in fig 5.24. A significant decrease in anodic activity is shown by 

the results where H2PP or Na3P0 4 were present in the electrolyte in comparison to the 

control sample. The experiment in which additions of 5x10 2 mol2dm'6 H2PP were made 

to the electrolyte appears to display a lower level of anodic current than where additions 

of Na3P04 were made at the same level. As stated previously, the experiment in which
9 9 A

additions of 1x10' mol dm H2PP were made to the electrolyte cannot be considered as

a true representation of the level of corrosive activity taking place in the experiment.
2 2 6From the results, it can be shown that H 2 PP additions of > 5x l0 '“mol dm' to 5% w/v 

NaCl(aq) can keep the surface of bare iron clear of red rust for periods of up to 24 h.
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Fig 5.24  Area-averaged, integrated SVET-derived anodic current density versus time profiles obtained for 
iron immersed in aerated 5% (w /v) NaCl (aq) at pH 7 containing (i) no inhibitor (ii) 5 x l 0 2m ol2dm 

Na3P 0 4(iii) 1x 10 2m ol2dm 6 H2PP additions and (iv) 5 x l0  2m ol2dm ’̂additions o f  H2PP.

Values for iron loss, given in gm “, recorded after 24 h immersion time are presented in 

fig 5.25. The plot shows that, with increasing concentration levels of PP“ dissolved in 

the electrolyte, the mass of iron dissolved from the sample is progressively reduced. 

Where a concentration of 5x10 2 mol2dm 6 FPPP is present the measured iron loss is 

reduced by ca. 97% when compared with the control sample.

In order to determine the mode through which inhibition occurs, a systematic study of 

the open circuit potential (OCP) of bare iron samples was recorded with respect to time. 

Concentrations of H2PP ranging from 5x10 3 mol2dm’6 to 5x10 1 mol2dm’6 were added 

to 5% wt/v NaCl(aq) experimental electrolyte, which was neutralised to pH 7, the results 

were compared with that of an uninhibited example. Fig 5.26 shows a plot of OCP vs. 

time curves recorded in both the presence and absence of H2PP. The uninhibited 

control experiment gave an eventual value of -0.45V vs. SHE, this is represented by the 

dashed line. The potentials recorded at low H2PP concentrations shown by plot (iii) and
a  O A o O 6

(iv), where additions of 2x10 “ moPdm" and 5x10’ mol dm were made respectively, 

show cathodic inhibition. At the higher H2PP concentrations of 5x10’1 mol dm'3 and
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1x10 1 mol d m 3 shown by plots (i) and (ii) initially show mixed inhibition but 

principally anodic inhibition can be observed after ca. 900 s and 2300 s respectively.

25

20 -

Control lx lO '2 5 x l0 '2
[P P 2 ] /m o l2dm  6

Fig 5.25 Summary o f  measured corrosion mass loss over 24 h as a function o f  [PP2"]*

With regards to cathodic delamination, this suggests that the H2PP concentrations added 

to the initiating electrolyte in Section 5.3.1.1 were not sufficient to provide any anodic 

inhibition in the defect region.
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Fig 5 .26  Plot o f  Ecorr with respect to time for iron im mersed in aerated 5% w t/v NaCl (aq) electrolyte at 
pH 7 containing (i) 5x10  1 m ol2dm 6, (ii) 1x10 1 m ol2dm 6 (iii) 5x10  2 m ol2dm (\  (iv) 2x10 1 m ol2dm 6 
additions o f  H2PP. The dashed line represents the eventual value obtained in the absence o f  inhibitor.

5.4 Conclusions

Where standard Stratmann delamination cell experiments were carried out, additions of 

phenyl phosphonic acid (H2PP) dissolved in a 10 pm poly vinyl butyral (PVB) primer at 

10% are shown to reduce the delamination rate (kdei) by 55% and increase the 

delamination initiation time (h) by 550 min when applied to an iron substrate. It is 

suggested that the formation of an insoluble Fe2+/phenylphosphonate salt layer at the 

substrate/coating interface blocks the cathodic oxygen reduction reaction thus 

suppressing coating delamination. It is thought that this salt layer forms upon coating 

but also from the leaching of H2 PP, PP2 and HPP after coating. Although some 

improvement is observed, this result compares poorly to the same experiment presented 

in Chapter 3 carried out on hot dip galvanised (HDG) steel where the same amount of 

in-coating H2 PP showed a decrease in kdei of 94% and an increase in U of 1200 min. 

This is thought to be due to the extremely high pH values recorded on iron (up to pH 

14[ 11,12]) which are higher than those found on HDG in a delamination cell (typically
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pH 10-11). As the dissociation of H2PP results in an abundance of H+ cations, this can 

act as a buffer to neutralise the alkaline rendered underfilm region from the cathodic 

oxygen reduction reaction and reduces the rate at which, previously base-catalysed, 

polymer degradation and hydrolysis of interfacial bonds occurs. However, whilst this is 

effective on the lower pH values found in the delaminated regions on a HDG steel 

surface, the highly alkaline rendered underfilm conditions that occur on iron during the 

delamination process may prevent in-coating H 2PP additions from being fully effective
r\ 0 f\

in this way. Furthermore, where 5x10' mol dm' H2PP was present in the initiating 

electrolyte, no change from the control experiment was observed other than a slight 

increase in E COr r  values in the defect region. A study using the scanning vibrating 

electrode technique ( S V E T )  showed that, where H2PP was present in the 5% wt/v 

electrolyte at a concentration of 5x10' mol dm' a bare iron surface was kept free from 

red rust for 24 h. Open circuit potential measurements suggest that, below a H2PP 

concentration threshold of 1x10' mol dm' , predominantly cathodic inhibition is 

observed.

A realistic experiment, in which electrolyte was added to a scribe defect and allowed to 

dry, showed more encouraging results with regards to the inhibition of delamination. 

The efficient inhibition of the propagation of a radially delaminated region was 

observed when 2 pi of 0.05 M NaCl(aq) electrolyte were added to a 2 mm scribed defect. 

In the absence of H2PP this delaminated region expanded to a delamination distance 

(Xdei), measured from the defect to the cathodic delamination front, of -4 .4  mm at 12 h 

after initiation. Where H2PP was present in the coating at a dispersion of 2% w/w the 

delamination still initiates but the propagation rate is greatly reduced and ceased 

completely after -2 0  h. Additions of 5% H 2PP showed a further reduction in the 

delaminated region with the final Xdei reaching only 0.9 mm after a time of 12 h post 

initiation. Increasing the level of H2PP beyond 5% showed a slight further reduction in 

Xdei and the initiation of delamination can still be seen to occur.

In both types of experiment, when plotting Xdei vs. tdei for both the uninhibited coating 

and a coating containing H2PP additions, it can be shown that a transformation from 

parabolic delamination kinetics to linear kinetics occurs respectively. It is suggested 

that the formation of an insoluble Fe2+/phenylphosphonate salt layer at the 

substrate/coating interface blocks the cathodic oxygen reduction reaction thus
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suppressing coating delamination. It is thought that this salt layer forms both upon the 

initial casting of the coating. The delamination experiment in which H2PP was added 

to the external electrolyte, shown in the plot given in fig 5.3, suggests that leaching of 

H2PP, PP2’, and HPP' from the coating has little effect on inhibiting delamination.

With regards to FFC it was found that any additions of H2PP made to the PVB coating 

less than 10% wt/v were found to increase the corroded area measured on the iron 

surface. Below this level localised attack by Cl" is possible, when enough H2PP is 

present and a Fe2PP layer forms that is capable of acting as a barrier to prevent Cl" 

adsorbing onto the iron surface, only then is a reduction in progression rate observed. It 

was found that, with any level of H2PP additions, the filaments were reduced in 

thickness. However, the number of initiation sites was found to increase due to partial 

protection of an insufficient Fe2PP salt film, that forms during casting, causing an 

increase in the number of initiation points. The acidic (pH 2) underfilm conditions in a 

filament head mean that no PP’ will be available to react with Fe2+ if leaching does 

occur. Where additions of 12 % are present, it is thought that a Fe2PP layer forms that 

is capable of acting as a barrier to prevent Cl" adsorbing onto the iron surface. At this 

level a reduction in the filament progression rate of 76% observed.

In conclusion, it has been shown that in-coating H2PP reduces the delamination rate of a 

PVB coating from an iron surface and this is effective when in a realistic scenario. 

With regards to a harsher experimental environment, this coating system is much more 

effective on a HDG surface. At high in-coating H2PP levels, the system can effectively 

reduce the filament propagation rate of FFC thus reducing anodic delamination.
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Chapter Six.
A scanning Kelvin probe investigation of the 
interaction of PEDOTrPSS films with metal surfaces 
and potential corrosion protection properties.
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6.1 Introduction

Poly(3,4-Ethylenedoixythiophene)-Poly(Styrene Sulphonate) (PEDOT:PSS) is 

employed in a variety of applications and is widely used as a transparent conductor in 

applications such as organic light-emitting diodes (OLED)[l-2] and organic solar cells

[3]. Much research has been conducted into the replacement of the traditional Pt counter 

electrode (CE) o f a dye-sensitised solar cell (DSSC) [4] due to the high costs involved. 

PEDOT:PSS is widely considered to be an ideal candidate due to its high conductivity, 

electrochemical stability and stability in the oxidized state where catalytic activity for 

the reduction of the I2 to I- mediator in the redox electrolyte is required in a DSSC CE 

[5-6]. In many applications there is a requirement for electrical contact to be made with 

the organic PEDOT:PSS layer. It is therefore of high importance to understand the 

interaction between PEDOT:PSS and various metals in order to gauge the long term 

stability of the metal-ICP interface. Currently Au and Ag are typically used as contacts 

[7-9] but, as with the DSSC CE, it is necessary to determine whether a more cost- 

effective alternative, such as Cu or Ni, would be equally inert when over-coated using 

PEDOT:PSS. The first aim of the current Chapter is to use in-situ SKP to measure the 

Volta potential differences o f various PEDOT:PSS coated metal surfaces to identify 

instances where a reaction may be taking place at the metal-PEDOT interface. Various 

previous studies have used the SKP to carry out potentiometric investigations of metals 

coated with ICP [8,11,12].

The second aim is to investigate any corrosion protection capability o f PEDOT:PSS 

coatings applied to technologically important metallic surfaces, in this case iron (as a 

substitute for cold reduced steel) and hot dip galvanized (HDG) steel using an in-situ 

scanning Kelvin probe (SKP). Protection will be evaluated under two different 

scenarios where:

1. coating failure by cathodic delamination dominates.

2. the principal failure mechanism is anodic disbondment in the form of filiform 

corrosion (FFC) - for iron surfaces only.

Previously reported resistance against marine corrosion by an epoxy-based coating 

containing additions of electrochemically generated PEDOT:PSS was attributed to the 

electrochemical stability and high electrical conductivity of PEDOT:PSS [13].

175



6.2 Experim ental details

The Scanning Kelvin probe (SKP) was used in all experiments and a full description of 

operation and set up is described in Section 2.2. SKP calibration was carried out as

described in Section 2.2.4 and, additionally, a PEDOT:PSS layer over-coated with PVB
2+

was placed over the Cu/Cu calibration cell to determine any effect on the measured 

calibration value which was found to be negligible.

All metal samples for all experiments were prepared using the procedure described in 

section 2.1.3. PEDOT:PSS was supplied by AGFA (5.5% wt) and was applied to metal 

surfaces via bar coating where clear adhesive tape was used to make a trough with 

either single, double or triple layers to achieve final film thickness of 1 pm, 3 pm or 5 

pm respectively. Oven curing was carried out at 130°C for > 10 min. Dry film 

thickness of the PEDOT:PSS was measured using a Dektak profileometer.

For PEDOT:PSS-metal interaction experiments metal substrates were coated with 

PEDOT:PSS as shown in Fig 6.1. Experiments were carried out in ambient conditions, 

unless otherwise stated, i.e. 50 ± 10% r.h. at ~25°C where measurements were taken 

throughout using a Lascar humidity and temperature sensor. Elourly scanning was 

carried out over four lines of 10 mm length over a 24 h period as shown in Fig 6.2.

Bare metal PEDOT 
coated metal

10 mm

Fig 6.1 Schem atic show ing a metal sam ple coated with a PEDOT:PSS layer. The four arrows show  the 
10 mm scan length across the m etal-PEDO T:PSS-coated metal boundary.
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For delamination experiments metal substrates were coated with PEDOT:PSS, as shown 

in fig 6.2, at thicknesses 1 pm, 3 pm or 5 pm, and subsequently over-coated with PVB 

films of thickness 10±3 pm and prepared for delamination experiments as described in 

Section 2.2.1.1. SKP scanning was carried out as described in Section 2.2.3. For FFC 

experiments samples were prepared as shown in fig 6.3. Samples were coated with 

PEDOT:PSS layers of thicknesses 1 pm, or 5 pm with an exposed area o f iron left in 

between the two coated strips. The entire sample surface was then over-coated with 

PVB films of thickness 10±3 pm. A 10 mm penetrating defect was scribed, using a 

scalpel, in the region with only a PVB layer. A syringe was then used to apply a 

volume of 2 pi of aqueous 0.005 M FeC f, which was allowed to dry in room air. 

Initiation was carried out with FeChtaq) as opposed to N aC l(aq) to avoid the phase I 

cathodic delamination described in Section 1.4.6.4 so experiments could be conducted 

over shorter time periods. Samples were placed in a humidity chamber at 93% r.h. and 

20°C. Samples were photographed periodically using a Canon 600D camera.

Bare metal

Fig 6.2 Schem atic show ing a metal sam ple coated with a PEDOT:PSS layer prior to over-coating with  
PVB. The four arrows show  the 12 mm scan length across the PEDO T:PSS-coated metal surface up to 
the artificial defect.
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Bare metal

10 mm scribe

PEDOT layer

Fig 6.3 Schem atic show ing a metal sam ple coated with a PEDOT:PSS layer and over-coated with PVB. 
The 10 mm scribe is show n, where FFC is initiated, parallel to a PEDOT:PSS layer on the metal surface.

6.3 Results and discussion

6.3.1 Volta potential measurement of various PEDOT:PSS coated metal surfaces 

The current study employs a wide range of metals spanning a large part of the 

electrochemical series. This was done to make a comparison between the more noble 

metals, such as Ag and Pt, that are typically used in conjunction with PEDOT:PSS for 

electronic applications, and reactive metals such as Mg and Al. Zn and Fe were chosen 

to gain an insight for the proceeding corrosion-driven delamination experiments. Cu 

and Ni were chosen for their ‘intermediate’ position in the electrochemical series and 

because they may potentially be utilised as electrical connections combined with 

PEDOT:PSS providing a less expensive alternative to Ag and Pt. The metals studied are 

listed in Table 6.1 where the standard reduction potentials (E°) for each redox half-cell 

reaction are also given.

Table 6.1 The standard reduction potential (E°) values for the relevant metals at 298K , lm o le , latm .

M etal Half-reaction E° / V vs SHE

Pt Pt2+(aq)+2e' -> Pt(S)

Ag Ag+(aq) +e -*  Ag(S)
Cu Cu2+ (aq )^ ~ 2e  * C l l ( s )

Ni Ni2+(aq)+2e —> Ni(S)

Fe Fe2+(aq)+2e' —> Fe(S)

Zn Zn2+(aq)+2e' —> Zn̂ s)
Al Al3+(aq)+3e' —►Al(aq)

Mg Mg2+(aq)+2e' -► Mg(S)

+ 1.20

+0.80

+0.34

-0.26

-0.44

-0.76

- 1.68

-2.38
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Experiments were conducted as described in Section 6.2 where PEDOT:PSS layers 

were applied at thickness of 1 pm, 3 pm and 5 pm on each metal substrate. Fig 6.4 [a- 

d] shows the Ecorr (V vs. SHE) vs. distance profiles, taken as an average from four 

scanned lines, for the ‘noble’ metals Pt, Ag, Cu and Ni after 24 h holding time. In each 

case the blue dashed vertical line shows the boundary between the bare metal surface 

and the PEDOT:PSS-coated metal surface.
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Fig 6.4 Ecorr vs. distance profiles for substrates (a) Pt, (b) A g, (c) Cu and (d) N i where PEDOT:PSS layers 
were present at thicknesses o f  (i) 5 pm, (ii) 3 pm and (iii) 1 pm. Data was recorded after 24 h in ambient 
conditions.

In contrast to previous findings using PAni/PVB coatings, it can be observed that the 

values of Ecorr recorded on each of the PEDOT:PSS coated metal surfaces ( E mtact) are all 

unique [1 0 ]. In each case, with the exception of E mtact values measured on Ni, E jntact
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values are more positive than the bare metal surface. It can be seen that the extent of 

this ‘ennoblement’ is dependent on film thickness. Whilst the values recorded for Eintact 

are wholly similar for P E D O T : P S S  coatings of 3 pm and 5 pm, values measured on 

coatings of 1 pm for each metal were substantially less positive, again with the 

exception of Ni. It appears that a threshold thickness value of 3 pm exists where E intact 

values measured in the presence of a coating of this thickness, or above, are wholly 

similar. Conversely, very similar values were recorded in experiments carried out on all 

three of the different P E D O T  layers applied to a Ni surface and, importantly, a 

depression of Emtact measured in relation to the bare metal surface was observed.

Fig 6.5 [a -  d] shows the Ecorr(V vs. S H E )  vs. distance profiles at 24 h for those metals 

at the more reactive end of the electrochemical series Fe, Zn, Al and Mg coated with 

P E D O T : P S S  at film thicknesses o f 1 pm, 3 pm and 5 pm. As with the previous fig, the 

dashed line shows the boundary between the bare metal surface and the P E D O T : P S S -  

coated metal surface. It appears that coating thickness has less of an influence on Eintact 

for Al, Ni and Zn as the values recorded on a layer of P E D O T : P S S  at 1 pm seem to be 

entirely similar to those measured at 3 pm and 5 pm. It is suggested that the coverage 

of the metal surface is not uniform in those cases where E ,ntact values measured for a 

P E D O T : P S S  layer o f 1 pm do not approximate those measured at 3 pm and 5 pm.
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Fig 6.5 Ecorr vs. distance profiles for substrates (a) Fe, (b) Zn, (c) Al and (d) M g where PEDOT:PSS  
layers were present at thicknesses o f  (i) 5 pm, (ii) 3 pm and (iii) 1 pm. Data was recorded after 24 h in 
ambient conditions.

Fig 6 . 6  summarises the E corr values measured over the metal-PEDOT:PSS coated metal 

interface for all the metals used in the current study when coated with a 5 pm PEDOT 

layer. The ECOit values recorded on the ‘noble’ metals, shown more closely in fig 6.7, 

are all more positive, with the exception of Fe, than the bare metal and display entirely 

dissimilar values.

Initial observations suggest that the Zn, Al and Mg substrates are simply ennobled by 

the P E D O T : P S S  to a more positive E intact value. However, as shown in fig 6 .8 , the 

established E jntact values all tend to a value of ca. -0.15 V vs. S H E .  Furthermore, it can 

be observed that all those metals with an E °  value of < -0.26 V vs. S H E  (as given in 

Table 6.1) i.e. Ni and all subsequent metals with values more negative than this, are
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‘polarised’ to this consistent value of ca. -0.15 V vs. S H E .  For Ni and, to a lesser extent, 

Fe (fig 6.7), E i n t a c t  values are depressed relative to the E c o r r  measurements made on the 

bare metal surfaces. Again, these E i n t a c t  values tend towards -0.15 V vs. S H E .  It seems 

reasonable to assume that this consistent E j n t a c t  value for P E D O T  coated Ni, Fe, Mg, Al, 

Zn is due to the metal surface being ‘polarised’ to the potential governed by the 

P E D O T  : P S S ( 0x ) / P E D O T  : P S S ( r e d )  couple.

Ghilane et al report a switching value o f -0.4 V vs. SCE (ca. -0.156 V vs. SHE) at 

which the potential of the PEDOT:PSS polymer film converts from the oxidized form to 

the reduced form. It is, therefore, further proposed that the consistent Eintact value 

observed on Ni, Al, Mg, Zn and, to some extent, Fe, is derived from the formation of a 

certain quantity of PEDOT:PSS(red)- This arises because the PEDOT:PSS(OX) is capable 

of oxidizing the metal surface m (where m = Ni, Al, Mg, Zn and Fe) according to:

m mn+ + ne' (6.1)

PEDOT:PSS(oX) + e' ^  PEDOT:PSS(red) (6.2)

Reaction 6.2, however, is written in a simplified form, as the PSS counterion is not 

included. It would be expected that, as the PEDOT:PSS becomes reduced from its 

radical cation state (as shown in the reaction scheme given in fig 6.10), electroneutrality 

would be preserved by the association o f either metal cations (mn+) or protons (H+) with 

the negatively charged sulphonate groupings, this is represented in the reaction scheme 

given in fig 6.9.
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Fig 6.6 Summary plot o f  Ecorr vs. distance profiles for all metals coated with PEDOT:PSS at a thickness 
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Fig 6 .10  Reaction schem e show ing the reduction o f  PEDOT:PSS.
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The presence o f a fraction of reduced P E D O T : P S S ( r e d )  in the coatings applied to the 

surface of a metal (m) allows a stable E j n t a c t  value to be established according to the 

Nemst equation:

Ecorr =  E° ( PEDOT: PSS ( — +  2 303RT lo g 10 [PEDQT:PSS(o-)] ( 5 3 )
corr V Vred/)  F 5 1 0  [PEDOT:PSS{red)] v }

For the ‘noble’ metals, e.g. Pt, Ag and Cu, the lack of any consistent E i n t a c t  values may

be attributed to the fact that no redox reaction with PEDOT:PSS(OX) is established. As a

result the PEDOT:PSS coating remains fully oxidized and the

[ P E D O T ( OX) ] / [ P E D O T ( r e d ) ]  ratio is large, resulting in potentials that are consistently

higher than E 0[ P E D O T ( 0x ) ] / [ P E D O T ( r e d ) ] .  This can be illustrated further by calculating

the cell potential (Ece]i) using the values of E° (m/mn+) and E° (PEDOT:PSS(OX)/

P E D O T : P S S ( r e d ) )  half-cells for each metal to determine whether the P E D O T : P S S

reduction reaction ( E ( r e d ) )  is thermodynamically favourable for each metal. The

standard electrode potential is related to the thermodynamic quantity of Gibbs free

energy change (AG°) by the following relationship:

AG° =  -nFE° (6 .4)

Where F is Faraday’s constant and n is the number of moles of electrons involved in the

cell reaction per mol of product. A negative value of AG° means the reaction is

thermodynamically favourable. The E° value o f a cell (Eceu) can be calculated by using

the following equation:

E c e l l  —  E ( r e d )  —  E ( 0x )  (6.5)

A positive value of Eceii indicates a negative value o f AG° and, hence, a

thermodynamically favourable reaction. The half-cell reaction for the reduction of

PEDOT:PSS is:

E(red) PEDOT:PSS(ox) + e' -> PEDOT:PSS(red) E° (-0.15 V vs. SHE) (6.6)

The half-cell oxidation reaction for Pt, for example, is:

E ( o x )  Pt2+(a,) + 2e' -► Pt(S) E °  (+1.20 V vs. S H E )  (6.7)

Applying this E° value to Eq. 6.5 gives:

E c d i  =  - 0 . 1 5  - ( + 1 . 2 0 )

ECeii =-1.35 V vs. SHE

This Eceii value indicates that the reaction is highly thermodynamically unfavourable 

and suggests that, on a Pt substrate, PEDOT:PSS would be present in its oxidised form 

only. For Ag and Cu the same is expected as Eceii values of -0.95 V vs. SHE and -0.49 

V vs. SHE are calculated respectively.
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The half-cell oxidation reaction for Ni is:

E(ox) Ni2+(aq)+2e- Ni(S) E° (+0.26 V vs. SHE) (6.8)

Applying this E° value to Eq. 6.5 gives:

ECeii = -0 .15-(-0 .26)

Eceii = +0.11 V vs. SHE

This value indicates that the reaction is thermodynamically favourable and suggests that 

PEDOT:PSS on a Ni substrate would be present partially in its reduced form. For Al 

and Mg Eceii values of +1.53 V vs. SHE and +2.23 V vs. SHE respectively are 

calculated meaning that in both cases the reaction for the reduction of PEDOT:PSS is 

highly thermodynamically favourable.

Fig 6.11 (a) and (b) gives plots o f Eintact vs. time over a period of 24 h for the two most 

noble metals, Pt and Ag, and the most reactive metals, Al and Mg, in 95% r.h. and 

ambient conditions respectively. After exposure to conditions at 95% r.h, P E D O T : P S S  

coated Mg and Al exhibit highly stable Eintact values in comparison to the more noble 

metals, Pt in particular. The plots presented in 6.11 (a) for Ag and Pt are selected 

purely to show the time dependence of Eintact over 24 h and are not a firm representation 

of repeat experiments as values measured were wholly different with each experiment. 

Unstable E j n t a c t  values measured over the 24 h period were observed each time. Al 

displays identical and stable values in both high r.h. and ambient conditions where a 

value approaching ca. -0.15 V vs. S H E  is shown. However, where Mg was exposed to a 

high r.h, as shown in fig 6.11(a), the Eintact values were unexpectedly more negative than 

that of bare Mg. It was expected that, like Al, values around -0.15 V vs. S H E  would be 

recorded. It is suggested that, at a high r.h. the P E D O T : P S S ( 0X) / P E D O T : P S S ( r e d )  couple 

no longer exists and P E D O T : P S S  exists in its fully reduced form under these 

conditions.
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Fig 6.11 Eintact vs. tim e for PEDOT:PSS coated m etals in air at a) 95% r.h. and b) 50% r.h.

This is demonstrated in fig 6.12 (a) and (b) that shows photographic images of Al and 

Mg surfaces respectively after one week in an environment chamber at 95% r.h. The 

right hand side of each image shows a section of the surface coated in PEDOT:PSS 

where the lower region has been removed using isopropanol. It can be seen in both 

cases that, in comparison to the bare substrate shown on the left hand side of each 

image, a surface oxide has developed. The Ejntact values measured on the range of 

PEDOTiPSS-coated metals presented is not wholly governed by the redox potential as 

other factors, such as relative humidity, also have an influence.

Fig 6.12 Photographic im ages o f  a) alum inium and b) m agnesium  substrates after one w eek in an 
environm ent chamber at 95% r.h. The right hand side has been coated with a 5 pm PEDOT:PSS and the 
low er portion rem oved using isopropanol. The left hand side show s the bare, uncoated metal surface.
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It is unexpected that the stable E COr r  value (e.g. ca. -0.15 V vs. SHE) measured on the 

more reactive metals in ambient conditions is sustainable over a prolonged time period 

e.g. 24 h as shown in fig 6.11(b). One might expect a steadily falling E c o r r  value to be 

observed as more o f the PEDOT:PSS(OX) becomes reduced, however, this is not the case. 

A possible reason for this is a self-limiting interfacial reaction in which the 

PEDOT:PSS in immediate contact with the metal substrate becomes fully reduced. An 

interfacial oxide layer would be expected to form on the concurrently oxidised metal 

substrate. The reaction would then slow and eventually cease, hence stable values of 

Eintact- Rohwerder et al report this for both polyaniline and polypyrrole ICPs on a zinc 

substrate [11].

It is well known that certain ICPs, e.g. PAni emeraldine salt, become re-oxidised by 

atmospheric oxygen when in their reduced form [10]. A second hypothesis is that this 

is the case for PEDOT:PSS on the reactive metals. Fig 6.13 shows a plot o f E j n t a c t  vs. 

time of an Al surface coated in PEDOT:PSS at a thickness of 5 pm where, upon the 

establishment of a stable Eintact value in 95% r.h. air, the environment chamber was 

flooded with N 2 remaining at 95% r.h. It can be observed that, when oxygen was 

removed from the chamber, the Eintact value decreased to a value o f ca. -0.375 V vs. 

SHE. This value is approaching the values measured for bare Al as shown in fig 6.8 

and represents a partial reduction of the oxide layer by the metallic Al underneath it; in 

air this reaction is prevented by the oxidizing potential of oxygen [11]. Upon reaching a 

stable Eintact value in the N 2 atmosphere, air was reintroduced into the chamber, again at 

95% r.h. Importantly, the Eintact values returned to those recorded in air at 95% r.h. 

This result demonstrates the cyclic re-oxidation of PEDOT:PSS on Al. The E c o r r  

changes observed are shown relative to bare Al in fig 6.14. Again, the thermodynamic 

favourability of this oxidation reaction can be calculated according to Eq. 6.4 where the 

E° values for each half-cell are known:

E(ox) PEDOT(red) ^  PEDOT(oX) + e' E° (-0.15 V vs. SHE) (6.9)

E(red) O2 + 4e" + 2H20  -*« 40H ' E° (+0.44 V vs. SHE) (6.10)

Referring to Eq. 6.5, Eceii can be determined where:

E Ce i i  = + 0.44-(-0 .15)

Eceii = +0.59 V vs. SHE

which in turn gives a negative value of AG° indicating that the oxidation of 

PEDOT:PSS is thermodynamically favourable.
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Fig 6.13 Plot o f  Eintact values with respect to tim e for an Al surface coated with a 5 pm PEDOT:PSS layer 
where the sam ple was kept in an environm ent chamber at 95% rh and 25°C throughout. Initial values 
were measured in air and im m ediately upon recording values the chamber was flooded with N 2. Air was 
reintroduced at approx. 650 min. The upper and lower dashed lines show  the Ecorr values recorded on 
bare Al in the absence o f  and presence o f  N 2 respectively.

6.3.2 Delamination of an uninhibited PVB coating from a bare HDG surface

Preliminary experiments were carried out to determine the baseline kinetics of 

unpigmented organic coating delamination from a bare HDG steel substrate. The 

Stratmann-type delamination cell procedure was carried out as outlined in Section 2.1.3 

and four scan lines were taken hourly over a 24 h period. Upon reaching an equilibrium 

of 95% rh within the environmental chamber, values of E COn- for the undelaminated 

coating surface ( E mtact) were approximately -0.4 V vs. SHE, similar to those recorded on 

an uncoated HDG surface in the same conditions and also in agreement with values 

reported within available literature [ 14]—[ 16]. Upon addition of an electrolyte of 5% 

aqueous NaCl to the defect area, the establishment of the distinctive time-dependent 

ECorr-distance (x) delamination profile was observed typically within 1 -3 h denoting the 

onset of delamination. Fig 6.15 shows plots of time-dependent E COrr vs. distance profiles 

for a 10 pm PVB coating on HDG at hourly intervals from 0 h (left) to 24 h (right).
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Fig 6.15 Plot o f  tim e-dependent Ecorr vs. distance profiles for a 10pm PVB coating on HDG initiated at a 
defect with 5% (aq) electrolyte shown at hourly intervals from 0 h (left) to 24 h (right).

A sharp drop in potential of ca. 0.3 V is observed in the immediate vicinity of the

delamination front. In the region linking the delamination front to the area adjacent to 

the defect, the potential reduces gradually and in an approximately linear manner finally 

reaching values as low as -0.7 to -0.8 V vs. SHE.

As described in Section 1.4.2 and in the available literature, a local cathode resulting 

from oxygen reduction due to O2 reduction as in reaction 6 .1 1 , exists in the vicinity of 

the delamination front [29-30]. This is coupled with the anodic Zn dissolution reaction 

given in 6 .1 2 , that initially occurs at the defect only, by a thin layer of penetrating 

electrolyte. It is reported that the rate-determining step in cathodic delamination is 

typically the transport of cations from the external electrolyte and through the metal- 

coating interface.

0 2 + 2H20  + 4e' ^  40H ' (6.11)

Zn Zn2+ +2e' (6.12)
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The actual loss of adhesion of the organic coating is attributed to the high pH, reported 

to be pH 10-11 on HDG steel [18], that results in base catalysed polymer degradation 

and base catalysed hydrolysis of interfacial bonds. The Zn surface of HDG steel is also 

susceptible to the dissolution of the amphoteric metal oxide film at the metal-coating 

interface. This elevated pH leads to the formation of bizincate (H Zn02‘) and zincate 

(ZnO^- ) corrosion product from anodic activity that eventually occurs in the underfilm 

region:

Zn(OH)2(s) ^  H Zn02"(aq) + H* (aq) (6.13)

Zn(OH)2(s) ^  ZnOi’ (aq) + 2H+(aq) (6.14)

Furthermore, a bare Zn surface exposed by the dissolution of zinc(hydroxide) has the 

potential to directly oxidize to bizincate via the following reaction:

Zn(s) + 2H20  =*=* H Zn02’(a q )+ 3H+(aq) + 2e‘ (6.15)

6.3.3 Delamination of PVB on a HDG steel surface with a PEDOT:PSS under-layer

Delamination experiments were carried out on HDG samples where a layer of PVB, of 

thickness 10 pm, was coated over a layer of PEDOT:PSS, of thickness 1 pm and 5 pm. 

The results are given in figs 6.16 and 6.17 where the time-dependent E c o rr  vs. distance 

profiles recorded at hourly intervals are plotted between 0 h and 24 h (right). The 

representative plot of time-dependent E co rr  vs. distance profiles (fig 6.16) for a 1 pm 

PEDOT:PSS layer shows that values recorded in the vicinity o f the defect region are — 

0.8 V vs. SHE approximating those values measured in the control experiment (fig 

6.15). The drop in potential at the delamination front is also wholly similar to that 

shown for the control experiment. The Eintact values, however, are approximately 0.1 V 

vs. SHE higher than those recorded in the control experiment. For the experiment 

where a 5 pm PEDOT:PSS layer was present, represented by the plot given in fig 6.17, 

a very blurred potential drop is observed where the delamination front region appears to 

connect directly to the defect. Leng et al suggest in previous work that this is the result 

o f the spreading o f the corrosion conditions throughout the delaminated region as 

opposed to remaining localised, as is shown the control example (fig 6.15)[19]. Again, 

a slight increase in Emtact is observed when compared to the control experiment.
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Fig 6.16 Plot o f  tim e-dependent Ecorr vs distance profiles for a 10 pm PVB coating applied over a 1 pm 
PEDOT:PSS layer on HDG initiated at a defect with 5 % (aq) electrolyte shown at hourly intervals from 0 
h (left) to 14 h (right).
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Fig 6.17 Plot o f  tim e-dependent Ecorr vs. distance profiles for a 10 pm PVB coating applied over a 5 pm 
PEDOT:PSS layer on HDG where w as initiated at a defect with 5% (aq) electrolyte from shown at half- 
hourly intervals from l h (left) to 5.5 h (right).
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The delamination rate (kdei) for the three experiments can be obtained from fig 6.18 

where a plot of Xdei vs. (tdei - h), is given where tdei is the delamination time following 

application of electrolyte and tj is the delamination initiation time. As delamination 

kinetics remain parabolic it can be assumed that Na+ cation migration remains the rate 

limiting process. The delamination rates (kdei) for each experiment are listed in Table 

6.2. This shows that where a 1 pm PEDOT:PSS layer is present the delamination rate 

increases by -113%  in comparison with the control sample. Even more substantially, 

the presence of a 5 pm PEDOT:PSS layer increases the delamination rate by -  1860%.

12000
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0
0 200 400 600 800

tde) - tj / min

Fig 6.18 Delam ination distance (xde[) plotted as a function o f  time (tdei -  ti) for unpigm ented PVB coatings 
where the defect electrolyte is 5% N aCl (aq) and layers o f  PEDOT:PSS have been applied directly to the 
HDG substrate at a thickness o f  i) 5 pm ii) 1 pm and iii) no PEDOT:PSS layer is present.

Image 6.19 shows photographic images of a typical Stratmann cell set up for the current 

experiment. A HDG surface coated in PEDOT:PSS at a thickness of 1 pm and over­

coated with PVB at a thickness of 10 pm is shown (a) before the addition of electrolyte 

(b) after exposure to 95% r.h. over a period of 24 h where delamination was initiated 

with 5% wt/v aqueous NaCl and (c) where the PVB coating has been peeled back after
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the experiment. Such a result was also typical where a PEDOT:PSS layer of 5 pm in 

thickness had been applied. An area of darker blue can be observed in fig 6.19(b) 

where delamination has occurred and electrolyte has ingressed underneath the coating. 

Furthermore, It can be observed, upon removal of the PVB coating (fig 6.19(c)), that the 

PEDOT:PSS has also been lifted from the HDG surface and attached to the PVB 

coating.

a)
d

b)
J  f

c)

W m t i «# t f ' ** m.' 1

Fig. 6.19 Photographic im ages to show  a Stratmann cell set up for a HDG surface coated in PEDOT:PSS  
at a thickness o f  1 pm over-coated with PVB at a thickness o f  10 pm (a) before the addition o f  electrolyte  
(b) after exposure to 93% r.h. over a period o f  24 h where delam ination was initiated with 5% wt/v  
aqueous NaCl and (c) with the PVB coating peeled back after the experiment.

Table 6.2 V alues o f  the delam ination rate (kdei) and time to delam ination determined for PVB coatings

PEDOT:PSS layer 
thickness (pm)

kdei
(pm.min) kdei change (%) f  (mins)

0 14 0 0

1 30 113 0

5 240 1860 0

Rohwerder et al hypothesise that enhanced corrosion observed in conjunction with ICP- 

based coatings is due to macroscopic percolation networks of the ICP leading to 

reduction of the ICP at an increased rate due to fast mobility of cations within the 

network [11]. It is stated that the above is true independent of the metal substrate upon 

which the ICP is coated. It is also reported that, in cases such as PEDOT:PSS, where 

the ICP may be re-oxidised by atmospheric oxygen, the enhancement of corrosion is 

likely to occur. Due to the acceleration of delamination it was unexpected that the Ejntact 

values were in fact more positive.
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6.3.4 Delamination of an uninhibited PVB coating from a bare iron suface

Initial delamination experiments were carried out using unpigmented PVB on a bare 

iron surface in order to establish baseline delamination kinetics. Stratmann-type 

experiments were carried out as outlined in Section 2.1.3 and, following equilibration 

with the humid experimental atmosphere, E jntact values were found to be uniformly high 

and approximated that of an uncoated iron surface in the same conditions i.e. ca. 0 . 1  -  

0.2 V vs. SHE. Upon addition of 5% NaCl (aq) electrolyte to the defect area, the 

distinctive time-dependent E corr vs. distance (x) delamination profile became established 

in one hour denoting the onset of delamination. A sharp drop in potential of ca. 0.4 to

0.5 V vs. SHE was observed in the immediate vicinity of the delamination front. In the 

region linking the delamination front to the region adjacent to the defect, an 

approximately linear and gradual potential reduction was observed. Values as low as -

0.4 V vs. SHE were measured in the immediate vicinity of the defect. This is shown in 

fig. 6 . 2 0  which gives the plots of time-dependent E COrr vs. distance profiles for a 1 0  pm 

PVB coating on iron at hourly intervals from 0 h (left) to 24 h (right).
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Fig 6.20 Plot o f  tim e-dependent EcorT vs. distance profiles for a 10 pm PVB coating on iron initiated at a 
defect with 5% N aC l(aq) electrolyte shown at hourly intervals from Oh (left) to 24h (right).
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The corrosion-driven cathodic delamination of an organic PVB coating adherent to an 

iron substrate proceeds in a similar to manner to delamination from a HDG as described 

in Section 6.3.2. A thin layer o f electrolyte ingresses underneath the coating coupling 

the anodic metal dissolution (Reaction 6.16) at the defect with cathodic oxygen 

reduction (Reaction 6.11) occurring in the proximity of the site o f coating disbondment. 

On iron the alkaline environment that results from the cathodic oxygen reduction 

reaction has been recorded at values of > pH 10 up to pH 14 [20]; this is substantially 

higher than the values recorded for a zinc surface. It is this alkaline environment that is 

thought to cause the loss o f coating adhesion by base catalysed polymer degradation and 

base catalysed hydrolysis o f interfacial bonds.

Fe 5=^ Fe2++ 2e‘ (6.16)

6.3.5 Delamination of PVB on an iron surface with a PEDOT:PSS under-layer

Delamination experiments were carried out where a PEDOT:PSS layer was deposited, 

at thicknesses of 1 pm and 5 pm, on the iron surface prior to coating with a 10 pm PVB 

layer. Experiments were carried out as described in Section 2.1.3. In the case of a 1 pm 

PEDOT:PSS layer, addition of the 5% w/v NaCl (aq) electrolyte resulted in the 

initiation of delamination after five hours and a rapid progression of the delamination 

front is shown by the time-dependent EcorT vs. distance (x) delamination profiles plotted 

in fig 6.21. A delamination distance o f 11000 pm was recorded after a period of 10 h. 

For the experiment where a 5 pm PEDOT:PSS layer was present delamination again 

progressed quickly and, in this case, the delamination profiles are similar to that o f the 

control experiment shown in fig 6.22.
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Fig 6.21 Plot o f  tim e-dependent EcorT vs. distance profiles for a 10 pm PVB coating applied over a I pm 
PEDOT:PSS layer on iron initiated at a defect with 5% NaCl(aq) electrolyte shown at hourly intervals from 
Oh (left) to 12h (right).
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Fig 6.22 Plot o f  tim e-dependent EcorT vs. distance profiles for a 10 pm PVB coating applied over a 5 pm 
PEDOT:PSS layer on iron initiated at a defect with 5% N aC l(aq) electrolyte shown at hourly intervals from 
4h (left) to 24h (right).
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The delamination kinetics of the three experiments are summarised in fig 6.23 which 

shows a plot o f Xdei vs. (tdei - ti). It can be observed that delamination kinetics remain 

parabolic meaning that Na+ cation migration remains the rate limiting process. The 

delamination rates (kdei) for each experiment are listed in Table 6.3. This shows that, 

where a 5 pm PEDOT:PSS layer is present, the delamination rate increases by -33%  in 

comparison with the control sample but, even more substantially, the presence of a 1 

pm PEDOT:PSS layer increases the delamination rate by -  167, albeit with a slightly 

prolonged initiation time %.

Fig 6.24 shows photographic images of a typical Stratmann cell set up for the current 

experiment. An iron surface coated in PEDOT:PSS at a thickness o f 1 pm and over­

coated with PVB at a thickness o f 10 pm is shown (a) before the addition of electrolyte 

(b) after exposure to 95% rh over a period of 24 h where delamination was initiated 

with 5% wt/v aqueous NaCl. An area of darker blue can be observed in both cases 

where delamination has occurred and electrolyte has ingressed underneath the coating. 

Fig 6.25 (a) and (b) show photpgraphic images where the PVB coating has been peeled 

back after the experiment for layers of PEDOT:PSS at thicknesses of 1 pm and 5 pm 

respectively. It can be observed that, upon removal of the PVB coating, the 

PEDOT:PSS has also been lifted from the iron surface and attached to the PVB coating.

199



10000 -

8000 - o

6000

4000 -

2000

250 500 750 1000 1250 15000
tdei-tj / m i n s

Fig 6.23 Delamination distance (x) plotted as a function o f  time (tdei - 1,) for unpigmented PVB coatings 
where the defect electrolyte is 5% NaCl (aq) and layers o f  PEDOT:PSS have been applied directly to the 
iron substrate at a thickness o f  i) 1 pm ii) 5 pm and iii) no PEDOT:PSS layer is present.

Table 6.3 Values o f  the delamination rate (kde|) and time to delamination determined for PVB coatings 
applied over a PEDOT :PSS layer o f  various thicknesses on an iron substrate______

PEDOTrPSS layer 
thickness (ftm)

kdel
(fim.min) kdei change (%) tj (mins)

0 7.5 0 0
1 20 167 300
5 10 33 120

Fig. 6.24 Photographic im ages to show  a Stratmann cell set up for an iron surface coated in PEDOT:PSS  
at a thickness o f  1 pm over coated with PVB at a thickness o f  10 pm (a) before the addition o f  electrolyte 
(b) after exposure to 93% r.h. over a period o f  24 h where delamination was initiated with 5% w t/v  
aqueous NaCl.
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Fig. 6.25 Photographic im ages to show a Stratmann cell set up for an iron surface coated in PEDOT:PSS  
at a thickness o f  a) 1 pm and b) 5 pm where, in both cases, a 10 pm PVB coating has been peeled back. 
Both sample have been exposed to 93% r.h. for a period o f  24 h and delam ination was initiated with 5% 
w t/v aqueous NaCl.

As in the previous section, the acceleration of delamination, can be attributed to an 

accelerated reduction process caused by high cation mobility in a reduced polymer that 

becomes an “autobahn” for fast cation transport with the progression of the 

delamination frontier. Accelerated cation transport is thought to be promoted by high 

conductivity resulting from extended percolation networks of the conducting polymer.

6.3.6 Filiform corrosion on a PVB-coated iron surface with a PEDOT:PSS under-layer

In the current section filiform corrosion experiments were carried out where iron was 

coated in PEDOT:PSS at thickness of 1 pm or 5 pm and then over coated with PVB at a 

thickness of ca. 10 pm. FFC was then initiated by applying 0.005 M FeC f to a scribed 

defect 10 mm in length. FFC was initiated both directly onto PVB coated iron where a 

PEDOT:PSS layer was present (6.26[a-b]) and also onto PVB coated on bare iron in a 

location parallel to, and 2 mm away from, a region coated with PEDOT:PSS (6.26 [c- 

d]). Samples were then held in an environment chamber at 95% rh for a period of four 

weeks. It was found that, on a substrate with a 1 pm thick layer of PEDOT:PSS, FFC 

initiation was greatly reduced in comparison to that initiated on PVB-coated bare iron 

(6.26 [c-d]). Furthermore, propagation of those filaments that did initiate can be seen to 

be extremely limited. Where filaments from the bare iron surface reach the 

PEDOT:PSS coated surface in fig 6.26 [a-b] it can be seen that, in most cases, filaments 

turn away from this layer. The same can be observed in fig 6.27 [a-b] where FFC 

filaments come into contact with a 5 pm layer of PEDOT:PSS. In this instance no 

penetration into this region occurred at all over the four-week experimental period.
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Furthermore, no filament propagation occurred at all from the few initiation sites that 

formed on the PEDOT:PSS layer shown in fig 27.x [c-d].

It was first reported by Ruggieri and Beck that, upon coming into contact with the 

filament tail made of dry, porous corrosion product, a propagating filament head will 

not cross over this area and will instead change direction [21]. Williams et al carried 

out SKP measurements over a surface of propagating FFC filaments on an iron surface 

and recorded values of ca. +0.15 V vs. SHE in the filament tails [22]. In the current 

study SKP experiments were carried out where an iron surface coated with 10 pm PVB 

over a 5 pm PEDOT:PSS layer and was scanned every five hours over a period of one 

week in an environment chamber held at a constant rh of 95% as in the standard FFC 

experiments. The results are given in fig 6.28 where it can be observed that Ejntact 

gradually increases to values more positive than that of a bare iron surface in the same 

conditions.

10 mm
Fig 6.26 Photographic im ages show ing FFC on a 10 pm thick PVB coated iron surface at tw o w eeks (a 
and c) and four w eeks (b and d) after initiation with 0.005 M FeCl2 where sam ples have been held in an 
environm ent chamber at 95% r.h. Images a) and b) show s a defect made next to a 1 pm layer o f  
PEDOT:PSS. Im ages c) and d) show  a defect made directly over a layer o f  1 pm PEDOT:PSS.
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10 mm

Fig 6.27 Photographic im ages show ing FFC on a 10 pm thick PVB coated iron surface at tw o w eeks (a 
and c) and four w eeks (b and d) after initiation with 0.005 M FeCl2 where sam ples have been held in an 
environment chamber at 95% r.h. Images a) and b) show s a defect made next to a 5 pm layer o f  PEDOT. 
Images c) and d) show  a defect made directly over a layer o f  5 pm PEDOT:PSS.

6.4 Conclusions

The aims of the current Chapter were, firstly, to use in-situ SKP to measure the Volta 

potential differences of various bare and PEDOT:PSS coated metal surface to identify 

instances where a reaction may be taking place at the metal-PEDOT:PSS interface. 

Secondly, an investigation into any corrosion protection capability offered by 

PEDOT:PSS coatings applied to iron and hot dip galvanized (HDG) steel surfaces was 

carried out. Evaluation was with regards to protection against cathodic delamination 

and, for iron, anodic disbondment in the form of filiform corrosion (FFC).

A consistent E mtact value of ca. -0.15 V vs. S H E  was observed where P E D O T : P S S  was 

applied at a threshold thickness of > 3 pm on Ni, Al, Mg, Zn. On Fe a value tending 

towards ca. -0.15 V vs. S H E  was observed. It is suggested that is derived from the 

formation of a certain quantity of P E D O T : P S S ( red) arising because the P E D O T : P S S ( OX) is
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capable of oxidizing the metal surface in these cases. No consistent Eintact values were 

observed for the PEDOT:PSS-coated ‘noble’ metals, e.g. Pt, Ag and Cu, and this was 

attributed to the fact that no redox reaction with PEDOT:PSS(OX) was established. In 

such a case the PEDOT:PSS coating remains fully oxidized and the 

[PEDOT:PSS(OX)]/[PEDOT:PSS(red)] ratio is large, resulting in potentials that are 

consistently higher than E°[PEDOT:PSS(ox)]/[PEDOT:PSS(red)]- An oxide layer was 

observed on the surface of A1 and Mg when a PEDOT:PSS layer was removed after one 

week in 95% rh. Furthermore, the cyclic re-oxidation of PEDOT:PSS on an A1 surface 

was demonstrated.

Experiments were carried out to determine the inhibitory properties of a PEDOT:PSS 

layer, applied at various thicknesses, to HDG steel and iron substrates. The 

delamination of a PVB layer, coated over the PEDOT:PSS layer, was studied. The 

acceleration of cathodic disbondment was observed in all cases when compared to a 

control experiment. Rohwerder et el reported previously that, intrinsically conducting 

polymers (ICPs) are suitable for corrosion protection only by the prevention of extended 

percolation networks in the polymer coating [23]. For PEDOT:PSS to provide effective 

inhibition of cathodic disbondment it may be needed to be electrochemically reduced in 

a cation containing solution, such as cerium chloride, after casting on the relevant 

substrate. However, a PEDOT:PSS layer under a PVB coating was found to be highly 

effective for the inhibition o f filiform corrosion (FFC).
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Chapter Seven.
An alternative testing technique for corrosion 

protection by commercial thin organic coatings.
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7.1 Introduction

The aim of the current chapter is to assess the viability of alternative corrosion testing 

techniques to be employed as complimentary tests to industry standard atmospheric 

corrosion tests. The potential of the in-situ scanning vibrating electrode technique 

(SVET) and time-lapse photography is assessed for implementation into the industrial 

research and development process for a new thin organic coating (TOC) system for cold 

reduced (CR) steel. Atmospheric corrosion testing, carried out according to BS 3900 

[1] and analysed according to ASTM D 610-08 [2], is the current corrosion assessment 

technique employed by TATA Steel UK for such product development studies; this is 

fully described in Section 2.7. A typical experimental length for this test is four weeks. 

The two test methods presented here need to provide reliable and repeatable data that 

can be produced over shorter time scales i.e. several days.
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7.2 Experimental details

7.2.1 Sample preparation

All CR steel samples were received from pilot-line trials coated on one side with a 

TOC. For all time-lapse photography and SVET experiments, samples were cut into 

approximately 50 mm x 50 mm coupons with careful attention not to touch the TOC. 

Samples were then completely masked off using insulating extruded PTFE self- 

adhesive tape leaving an exposed area of 10 mm x 10 mm.

Samples for atmospheric corrosion testing were prepared as described in Section 2.7.1 

according to BS 3900 -  Part F2 [1].

7.2.2 Experimental method

All time-lapse photography testing was carried out as described in Section 2.6. In brief, 

prepared samples were fully immersed in 5% w/v NaCl(aq) electrolyte and photographed 

every 10 min. Photographic images were then edited and analysed as described in 

Section 2.6.3.

All SVET testing was carried out as described in Section 2.3. Prepared samples were 

immersed in 5% w/v NaCl(aq) electrolyte and scans taken every 30 min over a period of 

24 h.

All atmospheric corrosion testing was carried out in accordance to BS 3900 -  Part F2

[1] as described in Section 2.7.2. Evaluation was then carried out in accordance to 

ASTM D 610-08 [2].

7.3 Results and discussion

7.3.1 Assessment of time-lapse photography and SVET immersion tests for TOCs on 

CR steel

The current study involves the assessment of two different coatings applied to CR steel 

on an industrial scale pilot line. Both were water-based coatings of ca. 1 pm dry film 

thickness (dft). Concerns that the edges of the CR steel strip were not being thoroughly 

coated were reported during a pilot line trial. Time-lapse photography and SVET were 

employed to assess:
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1. The performance of both coatings with regards to corrosion protection.

2. Any apparent difference in the corrosion protection performance of the coating 

at the edge of the steel strip in comparison to the coating at the centre of the steel 

strip for both coating types.

For all experiments a 10 mm x 10 mm sample of each coating type was selected from 

both the edge and the centre of the steel strip. In all cases samples were fully immersed 

in 5% w/v NaCl(aq) solution for a period of 24 h. This is summarised in Table 7.1.

Table 7.1 Samples tested using SVET and time-lapse photography

Sample
Position on 

strip
Coating

type
A edge 1
B centre 1
C edge 2
D centre 2

Time-lapse photography was employed to measure the sample area containing visible 

corrosion product as a percentage of the whole sample area. Photographic images were 

taken at 10 min time intervals over the 24 h immersion period. From this, images were 

selected at four-hourly intervals starting at 0 h immersion time. The corroded area (%) 

was then measured on each of these images. Corroded area (%) was then plotted with 

respect to immersion time (h). From this the samples were ranked according to the 

following:

1. Initial corrosion rate (% area / h) taken over the first 4 h of immersion.

2. Final corroded area (%)

In the experiments carried out using the SVET the samples were scanned on a half 

hourly basis over the 24 h period. The following could be established for each sample:

1. Profiles of area-averaged, integrated SVET-derived anodic current density vs. time.

2. The intensity and location of local anodes and cathodes.

3. Data for total metal mass loss over the 24 h period from which a ranking order could 

be established.
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The data obtained in the current study will be used to assess the compatibility of time- 

lapse photography and the SVET for producing consistent quantitative and qualitative 

results.

7.3.1.1 Time lapse-photography as a technique for the assessment of corrosion 

performance of TOCs on CR steel

Prior to immersion, no difference in the coating quality was visible to the naked eye 

between the coated samples selected from the strip edge and the coated samples selected 

from the centre of the strip. Experiments were carried out in triplicate and 

representative images are presented in the current Section. Figs 7.1 and 7.2 show a 

typical selection of images taken throughout the 24 h period at time intervals of 2 h, 3 h, 

6 h, 12 h and 24 h after immersion. Images have been selected at these immersion times 

for the purposes of comparison between the four different samples.

Every image presented in fig 7.1 [a - e], representing the immersion tests carried out on 

Sample A, shows the presence of corrosion product in close proximity to the strip-edge 

(on the left-hand side of the photographs). The images show that this corrosion product 

develops over time into a well-defined region of corrosion product. Additional 

corrosion product on the remainder of the sample (i.e. away from the edge) appears to 

initiate after ca. 5 h immersion time. It can be observed that this occurs in the vicinity 

of the pre-corroded region at the strip-edge and spreads to the remainder of the sample 

area. The photographic images presented in fig 7.1[f - j] show Sample B, which was 

selected from the centre of the steel strip. Corrosion product can be observed generally 

on the sample area and can be seen to cover approximately the entire sample area at 24

h.

In contrast, it can be observed in the images given in fig 7.2 [a - e] for Sample C 

(selected from the edge of the steel strip) that a very faint line of corrosion product is 

present at the strip-edge. Furthermore, this does not appear to develop further, as with 

Sample A. Corrosion product can be observed to occur simultaneously elsewhere on 

the sample. When compared to the images presented in fig 7.2 [f - j], which show the 

result for Sample D, (selected from the centre of the same steel strip) it appears that 

wholly similar areas containing corrosion product are present at each time interval, 

other than the thin line at the strip-edge region shown in Sample C.

211



The progression of the corroded region with respect to time is plotted in fig 7.3 for all 

four samples. The corroded region, measured as a percentage of the total sample area, 

is plotted at 4 h time intervals over a 24 h period. From these plots the initial corrosion 

rate (corroded area(%) / h), measured for 4 h immersion time, and final corroded area 

(%) were measured and are summarised in Table 7.2. A performance ranking order, 

based on initial corrosion rate values, gave B>D>C>A where B displayed the lowest 

initial corrosion rate. The main performance ranking was order was based on the final 

corroded area (%)values recorded gave C>D>B>A value where Sample C showed the 

lowest amount of corrosion product present after 24 h immersion. The results show 

that, although ranked third, Sample B displayed the slowest initial corrosion rate (% 

area corroded / h) and, hence, acceleration in the corrosion rate must have occurred after 

this. Furthermore, the results show that Coating 1 performs better than Coating 2 with 

respect to corrosion protection.
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Fig 7.1 Photographic im ages o f  organically-coated CR steel fully im mersed in 5% N aC l(aq) solution where [a - e] 
show  sam ple A at im mersion tim es a) 2 h, b) 3 h, c) 6 h, d) 12 h e) 24 h and [f - j] show  sample B at im mersion 
tim es a) 2 h, b) 3 h, c) 6 h, d) 12 h e) 24 h.
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Fig 7.2 Photographic im ages o f  organically-coated CR steel fully immersed in 5% N aC l(aq) solution where 
[a - e] show  sam ple C at im m ersion tim es a) 2 h, b) 3 h, c) 6 h, d) 12 h e) 24 h and [f  - j] show sample D 
at im mersion tim es a) 2 h, b) 3 h, c) 6 h, d) 12 h e) 24 h.
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Fig 7.3 Corroded area (%) vs. time (h) plots for Sam ples A ,B ,C  and D when fully im mersed in 5% wt/v 
NaCl(aq) experim ental electrolyte.

Table 7.2 Summary o f  performance ranking orders obtained from corroded area (%) vs. time data for 
sam ples A, B, C and D.___________________________________________________________________________________

Sample Initial corrosion rate 
(%Area corroded / h)

Ranking Final corroded 
area (%)

Ranking

A 4.3 4 92 4
B 1 . 1 1 91 3
C 4.1 3 6 8 1

D 3.9 2 79 2

7.3.1.2 SVET as a technique for of the assessment of corrosion performance of TOCs 

on CR steel

The samples listed in Table 7.1 were studied using in-situ SVET in test conditions 

identical to those of the previous section. Experiments were carried out in triplicate and 

the results presented here have been selected as the best representation. Samples were 

scanned every 30 min over a 24 h period. Figs 7.5 - 7.8 show the SVET derived current 

density surface maps of unpolarised samples A, B, C and D respectively obtained 

following immersion in aerated 5% w/v NaCl(aq) at times a) 1 h b) 4 h, and c) 12 h. The 

scaling of the z-axis for all current density surface maps has been normalised to a 

maximum of 40 Am" to account for the maximum values recorded for Sample A given
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in fig 7.5. This allows visual comparisons to be made between data for each sample, 

hi all figs the photographic image shows the sample after 24 h immersion. The area- 

averaged anodic current density vs. time profiles for each sample is given in fig 7.9.

It can be observed in fig 7.4, which shows the set of SVET-derived current density 

surface maps for Sample A, that anodic action initiates at the strip-edge of the sample 

(the top left edge of the map) and subsequently spreads to the rest of the exposed area. 

Fig 7.4(c) indicates that by 12 h immersion time, anodic activity does not occur at the 

sample edge and has relocated to other areas of the sample. The photographic image 

given in fig 7.4(d) shows substantial corrosion product at the strip-edge of the sample 

and also on approximately half of the whole sample area. This highlights the fact that, 

although corrosion product may be visible in a particular area (i.e. the strip edge), it 

does not mean that anodic activity occurs in this area at all times. This is additional 

information provided by the SVET that is beyond the scope of time-lapse photography 

imaging. The results for Sample B (fig 7.5) indicate the occurrence of transient 

corrosion where anodically active sites are present in different regions on each of the 

current density surface maps. In each case large areas of non-active sites are also 

present. The final image shows that corrosion product covers almost the entire surface.

The current density surface maps for Samples C and D shown in figs 7.6 and 7.7 

respectively show wholly similar results. For Sample C, which was selected from the 

strip-edge, anodic activity can initially be observed in this region (shown at the top left 

hand side of the image map) but this disappears in later scans. For both C and D, 

transient anodic activity can be observed in the initial scans and an anodic region 

covering the entire sample area can be observed after 12 h immersion. In both cases the 

photographic image shows complete coverage with corrosion product.
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Fig 7.8 Area-averaged anodic current density versus time profiles obtained for sam ples i) D ii) C iii) A iv) 
B immersed in aerated 5% (w /v) NaCl (aq)
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Fig 7 .9 Bar chart show ing SVET-derived mass loss over 24 h for coated CR sam ples A -  D.
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Fig 7.8 shows SVET-derived area-averaged anodic current density versus time profiles 

obtained for samples A, B, C and D after 24 h immersion in aerated 5% (w/v) NaCl(aq). 

The subsequent SVET-derived metal mass loss data for each sample is given in the bar 

chart shown in fig 7.9. A ranking order based on the SVET-derived mass loss data, 

where Sample B is considered the best performer with regards to corrosion protection, 

and B>A>C>D. When compared to the performance ranking order established through 

time-lapse photography, where Sample A was shown to have the least corroded final 

area and so A>B>D>C, it can be observed that in both cases coating 1 (i.e. Samples A 

and B) performs better than coating 2 (i.e. Samples C and D).

The current study highlights the major differences between the data obtained from in- 

situ SVET experiments and time-lapse photography tests. Although time-lapse 

photography can show the area occupied by corrosion product with respect to time, 

unlike SVET, it cannot detect where anodic activity is actually occurring at any one 

time.

In the current scenario time-lapse photography has proven to be highly useful for 

highlighting areas of poor coating quality, such as was shown at the strip-edge on 

Sample A. Both time-lapse photography and SVET indicated that corrosion initially 

occurred at the strip-edge for both coating 1 and coating 2. The time-lapse photography 

images studied at the strip edge of coating 2 showed only a thin line of corrosion 

product. Other than this corrosion appeared to progress in a wholly similar manner to 

that on the Sample selected from the centre of the steel strip. Qualitative results 

obtained from the SVET seem to be in agreement with this where corrosion activity can 

be seen to occur in all areas of the sample.

Although in both cases tests are carried out over 24 h, the time-lapse photography 

technique holds a distinct advantage over the SVET with respect to efficiency. For this 

particular application all samples (including repeats) may be tested in one single 24 h 

experiment using one set of equipment. For SVET testing each sample must be carried 

out in an individual test over 24 h meaning the total time for the entire set of tests to be 

completed can be many days. The equipment preparation and set-up and subsequent 

results rendering and analysis required for the SVET takes a substantially longer 

amount of time and is more complex.
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The current study shows the compatibility of time-lapse photography and SVET where 

quantitative results were wholly similar when ranking the performance of two coatings. 

Furthermore, qualitatively, time-lapse photography highlighted the initiation point of 

corrosion product development and the resultant build-up and surface tarnishing effect; 

any visible coating failure was also recorded. SVET showed wholly similar results 

when identifying the location of anodic activity initiation points. The SVET provides 

the additional benefit of mapping the location and intensity of anodic activity at the time 

of occurrence. It is suggested that, for these test methods to be implemented into a 

research and development process, time-lapse photography could be used to test every 

sample and SVET could be employed only in circumstances where specific features and 

information about actual corrosion activity were required.

223



7.3.2 Assessment of time-lapse photography in comparison with industry standard 

atmospheric corrosion testing

The current study assesses the viability of time-lapse photography to be used in 

conjunction with standard atmospheric corrosion testing for a commercial TOC applied 

CR steel. Both testing techniques have been employed for a series of samples and a 

performance ranking order established. For time-lapse photography this is based on the 

final corroded area (%). For atmospheric corrosion tests this is based on the final 

grading after four weeks of testing; the grading system is fully explained in Section 2.4. 

Experiments were carried out on a set of six samples taken from a pilot-line trial where 

the line speed (m / min), squeegee roll roughness (CAMI grit designation) and pre-heat 

treatment were variables. Table 7.2 lists the samples and their relevant application 

method.

Table 7.2 Samples tested using humidity testing and time-lapse photography

Sample Line speed 
(m/min) Pre-heat?

Squeegee 
(CAMI grit 
designation)

19 100 Y 80
20 100 N 80
21 200 Y 80
24 100 Y 120
25 100 N 120
28 250 Y 120

7.3.2.1 Assessment of TOCs on CR steel using time lapse-photography

Time-lapse photography tests were carried out (in triplicate) as described in Section 2.4. 

The total experimental time for all samples was 40 h as one single test and one set of 

equipment was used for all. Figs 7.10 to 7.15 show a selection of typical photographic 

images taken throughout the 40 h period where the progression of corrosion product 

development can be observed with respect to time. These images have been chosen as 

the best representation out of the three repeat tests. In all samples both pin-point rusting 

and red rust can be observed. Fig 7.16 gives plots of measured corroded area (%) vs. 

time. From this, samples can be ranked, with regards to corroded area after the full 40 h 

testing time, as follows: 20>25>21>19>28>24 where Sample 20 showed the lowest 

corroded area after 40 h immersion. This is summarised in Table 7.3.
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1 Omm
Fig 7 .10  Photographic im ages o f  Sample 19 organically coated CR steel sam ple immersed in aerated 5% 
(w /v) NaCl (aq) at tim es a) 5 h, b) 8 h, c) 10 h, d) 20  h, e) 30 h and f) 40  h.

■

__________________

1 Omm
Fig 7.11 Photographic images of Sample 20 organically coated CR steel sample immersed in aerated 5% (w/v)
NaCl (aq) at times a) 5 h, b) 8 h, c) 10 h, d) 20 h, e) 30 h and f) 40 h.
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10mm

Fig 7 .12  Photographic im ages o f  Sam ple 21 organically coated CR steel sam ple immersed in aerated 5%  (w /v) 
NaCl (aq) at tim es a) 5 h, b) 8 h, c) 10 h, d) 20 h, e) 30 h and 0  40  h.

a) b) c)

10 m m
Fig 7.13 Photographic images of Sample 24 organically coated CR steel sample immersed in aerated 5 % (w/v)
NaCl (aq) at times a) 5 h, b) 8 h, c) 10 h, d) 20 h, e) 30 h and f) 40 h.

2 2 b



'ag/Piy

'.•c., i te&& JA -J M  " v  ^-^JA

:':‘‘̂ 't+.rHAjftV\lar

10mm
Fig 7 .14  Photographic im ages o f  Sam ple 21 organically coated CR steel sam ple immersed in aerated 5%  (w /v) 
NaCl (aq) at tim es a) 5 h, h) 8 h, c) 10 h, d) 20 h, e) 30  h and f) 40  h.

a) b) c)

10mm
Fig 7.15 Photographic images of Sample 21 organically coated CR steel sample immersed in aerated 5 % (w/v)
NaCl (aq) at times a) 5 h, b) 8 h, c) 10 h, d) 20 h, e) 30 h and f) 40 h.
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Fig 7 .16  Corroded area (%) vs. time (h) plots for Sam ples 19, 20, 21, 24, 25 and 28 when fully immersed  
in 5% wt/v N aC l(aq) experim ental electrolyte.

Table 7.3 Summary o f  performance ranking orders obtained from corroded area (%) vs. time data.

Sample Initial corrosion rate 
(%corroded area / h) Ranking Final corroded 

area (%) Ranking

19 2.9 2 95 6
20 2.0 1 50 1
21 9.6 5 74 3
24 9.8 6 88 4
25 7.5 4 55 2
28 4.9 3 95 5

7.3.2.2 Assessment of TOCs on CR steel using standard atmospheric corrosion testing

Atmospheric corrosion testing was carried out according to BS 3900 [1], this is fully 

described in section 2.4. All samples were tested in the same humidity chamber in 

duplicate. The total experimental testing time was two weeks. Figs 7.17 to 7.22 show 

photographic images for samples 19-28 after storage in a humidity chamber for a) 24 h 

and b) 2 weeks. The images have been evaluated according to ASTM D 610-08 industry 

standards [2], The results are recorded in Table 7.3. All samples display pinpoint 

rusting and, after two weeks testing, samples 20 and 25 can be graded 3-P and samples 

19, 21, 24 and 28 are graded 2-P.
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80 mm
Fig 7.17 Photographic im ages o f  duplicate tests o f  Sample 19 held in a humidity chamber for a) 24 h and 
b) 2 w eeks.

a) b)

80 mm
Fig 7.18 Photographic im ages o f  duplicate tests o f  Sample 20  held in a humidity chamber for a) 24 h and 

b) 2 w eeks.

a) b)

80 mm
Fig 7 .19  Photographic im ages o f  duplicate tests o f  Sample 21 held in a humidity chamber for a) 24 h and 

b) 2 w eeks.
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80 mm
Fig 7 .20  Photographic im ages o f  duplicate tests o f  Sample 24 held in a humidity chamber for a) 24 h and 
b) 2 weeks.

a) b)

80 mm
Fig 7.21 Photographic im ages o f  duplicate tests o f  Sample 25 held in a humidity chamber for a) 24 h and 
b) 2 weeks.

a) b)

80 mm
Fig 7 .22  Photographic im ages o f  duplicate tests o f  Sam ple 28 held in a humidity chamber for a) 24 h and 
b) 2 w eeks.
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Table 7.3 Results of atmospheric corrosion tests for relevant samples evaluated according to ASTM 
standard D610 - 08

24 h 120 h 1 week 2 weeks
Sample % RR Grade % RR Grade % RR Grade % RR Grade

19 10-16 4/3-P 16 3-P 16-33 3/2-P 33 2-P
20 10 4-P 10 4-P 10 4-P 16 3-P
21 3 5-P 10 4-P 16 3-P 33 2-P
24 16 3-P - - 16-33 3/2-P 33 2-P
25 10-16 4/3-P 10-16 4/3-P 16 3-P 16 3-P
28 16-33 3/2-P 16-33 3/2-P 33 2-P 33 2-P

Atmospheric corrosion test analysis according to ASTM standard D 610-08 places 

samples into a performance group; in this case either 2-P of 3-P. This means difficulties 

can arise when distinguishing between two particular samples. In this case the four 

worst performing samples were grouped together in 2-P. The time-lapse photography 

technique allows the exact corroded area (%) to be compared at any particular time and

| can be used to distinguish between every individual sample tested. As shown here, a
i
| ranking order between the six samples was established allowing the preferential
|

parameters for coating application to be determined.

In both atmospheric corrosion testing and time-lapse photography testing, samples 20 

and 25 had the highest performance-ranking showing that the results produced were 

wholly similar for both tests. Time-lapse photography technique testing can be carried 

out over a 24 h period which is a significant reduction in experimental time from two 

weeks. The data rendering involved with time-lapse photography is more time 

consuming than that of atmospheric corrosion testing due to an accurate measure of 

corrosion being established rather than grouping performance. However, the total time 

to carry out the experiment and data rendering is still substantially shorter than the 2 

weeks required for industry standard atmospheric corrosion testing. Furthermore, a 

reduction in data rendering time can be realised by reducing the number of images 

analysed if required i.e. only photographs taken at 24 h immersion time could be 

analysed. It is suggested that the time-lapse photography technique could be used in 

conjunction with the industry standard atmospheric corrosion test where samples, such 

as the four poorest performers in the current study, are indistinguishable through when 

grouped as shown in the current study.
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7.4 Conclusions

The validity of a time-lapse photography technique and in-situ scanning vibrating 

electrode technique (SVET), for corrosion testing of commercial TOCs applied to CR 

steel, has been assessed. Time-lapse photography technique was compared to both 

SVET and atmospheric corrosion testing using two different sets of samples. In all 

cases a ranking order, as far as possible, was established. When compared to both 

SVET and atmospheric corrosion tests, time-lapse photography results proved to be 

wholly similar. This suggests that, for the current application, viable data concerning 

the corrosion protection performance of TOCs applied to CR steel can be produced.

Firstly, an assessment of the coating quality at the strip edge was conducted for two 

separate coatings. Samples of each coating were selected for assessment where some 

samples were taken from the vicinity of the strip-edge and some were taken away from 

the strip-edge. Time-lapse photography and SVET were both employed to study 

corrosion during immersion in 5% wt/v NaCl(aq) electrolyte over a 24 h period. Both 

techniques showed wholly similar trends with regards to corrosion initiation when 

analysed qualitatively. Although time-lapse photography shows the location of 

corrosion product, the SVET can provide exact details of intensity and location of 

anodic activity occurring at a specified time. The quantitative results obtained from 

both techniques were in agreement that coating 1 performed better than coating 2.

Secondly, an assessment of the viability of time-lapse photography, to be used in 

conjunction with industry standard atmospheric corrosion testing of a commercial TOC 

applied CR steel, was carried out. Both testing techniques were employed to test a 

series of samples where a performance ranking order was established. The same 

coating was used on all six samples but the coating application processes were varied. 

Both tests indicated that Samples 20 and 25 performed the best with regards to 

corrosion protection. Both tests work on the same principal in that samples are held in 

corrosive conditions and periodically photographed to assess corrosion. Although the 

time-lapse photography technique is not a realistic test (i.e. the conditions samples are 

subject to do not reflect those of the natural environment in which an in-service TOC 

product would be used) the test conditions are constant amongst all samples to allow a 

comparison to be made. This also allows for alternative testing conditions to be applied

i.e. a change in temperature or pH may be introduced in order to establish the corrosion
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performance in such conditions. Where two samples produce a very similar corrosion 

performance re-testing in a lower salt concentration may be carried out to further 

distinguish between samples. Provided each sample is subjected to the same 

environment a comparison and, hence, a ranking order may be established. The major 

advantage of the time-lapse photography technique over atmospheric corrosion testing 

is the reduction in experimental time. It is suggested that the technique may be used 

alongside atmospheric corrosion testing in order to distinguish between those samples 

that fall into the same performance group.

It is suggested that, for time-lapse photography to be implemented into a research and 

development process, time-lapse photography could be used to test all samples to allow 

a faster throughput of data to provide short-term information whilst industry standard 

atmospheric corrosion tests are conducted. For in-situ SVET, although the typical 

experimental length of 24 h per sample is substantially shorter than the 2 -  4 weeks for 

industry standard tests, this represents an extensive time period if a large batch of 

samples were tested in duplicate. Therefore, the suggested use of the technique for 

industrial purposes would be to provide data for selected samples where information 

about specific features or verification of a corrosion mechanism was required.
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Chapter Eight.
Conclusions and further work.
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8.1 Conclusions

The current thesis presents an extensive study of the inhibitor phenyl phosphonic acid 

(H2PP) with regards to the prevention of corrosion on industrially important materials 

hot dip galvanised (HDG) steel and iron, where the latter was used to represent cold 

reduced steel. The drive to expand the design of effective corrosion inhibitor systems 

for organic coatings applied to steel substrates derives from legislative pressure to 

replace traditional toxic inhibitors based on chromate. Phosphonates are well known 

anodic inhibitors and are also considered to be environmentally acceptable for use as 

inhibitors. H2PP was selected for the current study as previous reports exhibit the 

inhibitors ability to strongly adsorb onto a surface oxide film; a benefit for corrosion 

inhibition as the incorporation of chloride ions becomes disfavoured.

The effectiveness of H2PP as an in-coating inhibitor of delamination has been studied 

using a Scanning Kelvin probe (SKP) where the rate of delamination (kdei) was 

measured in comparison to an inhibitor-free coating. A standard experimental 

delamination cell set-up, was used and all coatings were made from a model coating 

polyvinyl butyral (PVB). It was found for both HDG steel and iron that, by 

systematically increasing the wt% of in-coating H2PP additions, the delamination rate 

was progressively decreased. However, this reduction in kdei was found to be much 

more profound on HDG steel surfaces rather than iron surfaces where reductions of 

97% and 55% were established respectively. In both cases the reduction in kdei is 

attributed to a metal/phenylphosphonate layer that forms on the metal surface during the 

initial casting of the PVB coating. This salt layer blocks the oxygen reduction reaction 

that occurs at the site of cathodic disbondment. This was determined by the 

delamination kinetics which transformed from parabolic for uninhibited coatings to 

linear for coatings containing H2PP in all cases. It is suggested that the reason H2PP is 

more effective on a HDG steel surface is due to the effect of the dissociation of H2PP 

that results in an abundance of H+ cations in the under-film region. This can act as a 

buffer to neutralise the alkaline-rendered underfilm region from the cathodic oxygen 

reduction reaction and reduces the rate at which previously base-catalysed polymer 

degradation, and hydrolysis of interfacial bonds, occurs. On a HDG steel surface, the 

underfilm pH has been measured at around pH 10-11 and so this buffering mechanism 

can potentially have a profound effect. Conversely, the underfilm conditions of a
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coating delaminating from an iron surface tend to be much more alkaline and have been 

measured previously at pH 14. It is, therefore, suggested that the buffering effect is not 

as effective for iron substrates.

However, further studies were carried out into the effectiveness of H2PP as an in­

coating inhibitor for iron using a delamination cell set-up that represents a realistic 

scenario; that is less harsh than the previous experiments. As such a scribed defect is 

made to the coating and electrolyte is added and allowed to dry. A reduction of 98%, 

when compared to a control experiment, was observed where > 5%  H2PP was added to 

the coating. Furthermore, where additions of 12% H2PP were made to the PVB coating, 

a reduction in the filament propagation rate of filiform corrosion (FFC) filaments was 

observed. However, when added at values below 10%, in-coating H2PP was found to 

enhance corrosion by creating an increase in filament initiation sites and an increase in 

filament propagation rate was observed.

H2PP was also studied in immersion conditions where bare HDG steel substrates were 

placed in electrolyte containing various concentrations of the inhibitor. Localised 

corrosion activity occurring over a commercial grade HDG steel surface immersed in 

aqueous sodium chloride electrolyte was mapped using the in situ Scanning vibrating 

electrode technique (SVET). It was thus demonstrated using the SVET, and through a 

series of open circuit potential experiments, that systematically increasing the 

concentration of H2PP made to the electrolyte progressively decreases the corrosive 

activity on the HDG steel surface. Furthermore, at a concentration of 5x10' mol dm' , 

H2PP was shown to keep HDG steel free from white rust for a period of 24 h with an 

efficiency of 96%, measured using SVET-derived data. This was compared to a sodium 

phosphate (NasPCL) inhibitor that was studied at the same concentration where an 

efficiency of 75% was measured using SVET-derived data. The results reported for this 

study reinforced a third suggested mechanism for the inhibition of underfilm cathodic 

delamination on HDG steel surfaces by H2PP which was a leaching effect by which the 

anodic process occurring at the defect was inhibited, thus delaying the initiation and on­

set of delamination. A further development of the study of the inhibitory effect of H2PP 

presented here would be to extend this research to other metals of industrial interest, 

such as alloyed HDG steel.
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Experiments to determine the influence of pH on inhibition by H2PP at its optimum

concentration showed that, in both acid (pH 2) and alkaline (pH 11.5) conditions,
2 2 6corrosion activity was present where additions of 5x10’ mol dm' H2PP were made. 

Anodic activity was shown to change from isolated and localised in neutral conditions 

to moveable when in alkali conditions and highly general when in acidic conditions.

A further study into inhibition of corrosion-driven cathodic delamination on HDG steel 

and iron surfaces explored the intrinsically conducting polymer (ICP) Poly(3,4- 

Ethylenedioxythiophene)-Poly(Styrene Sulphonate), also known as PEDOT:PSS. The 

results showed the failure of the PVB-PEDOT:PSS coating system where delamination 

was found to be accelerated when compared with control experiments. Such a result 

has been reported previously for ICPs and this was attributed to a fast reduction of the 

ICP, caused by fast mobility of cations in the network of the reduced polymer. This 

occurs due to macroscopic percolation networks. Although coatings based on ICPs may 

effectively inhibit corrosion in the presence of small defects, a coating breakdown is 

inevitable in the presence of large defects such as those employed for delamination 

experiments in this thesis. For PEDOTiPSS to provide effective inhibition of cathodic 

disbondment, it may need to be electrochemically reduced in a cation containing 

solution, such as cerium chloride, after casting on the relevant substrate. However, a 

PEDOTiPSS layer under a PVB coating was found to be highly effective for the 

inhibition of filiform corrosion (FFC) on coated iron surfaces.

Finally, a study into alternative industrial testing techniques was carried out. It was 

shown that a time-lapse photography immersion technique could produce reliable data 

for the corrosion resistance of thin organic coatings (TOCs) on CR steel in a much 

shorter time-scale than the industry standard atmospheric corrosion tests. It was also 

shown that the technique could provide further information with regards to corrosion 

initiation and coating failure. Furthermore, the in situ SVET was shown to provide 

further information, where experiments were again carried out on coated CR steel 

samples, with regards to corrosion activity. This provided further information where 

other techniques, using photographic imaging, could only measure the visible corrosion 

product.
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8.2 Further work

In the previous Section various areas of further work have been highlighted. With 

regards to phenyl phosphonic acid (H2PP), there is scope for further research into this 

inhibitor with regards to alternative industrially important substrates, such as alloyed 

HDG steels. Furthermore, research into the potential incorporation into water-based 

coating systems, such as those studied in Chapter 7 is suggested. This presents further 

problems, as the acidic nature of the inhibitor may not be compatible with a water-based 

resin. Further research into the use of PEDOT:PSS as an inhibitor of under-film 

cathodic delamination is suggested. The electrochemical reduction in a cation 

containing solution, such as cerium chloride, may be required for PEDOTiPSS to 

provide effective protection against coating delamination.
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