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1 INTRODUCTION TO THE PROJECT

The galvanneal coating forms by the isothermal solidification of molten zinc as a 

result of the diffusion of iron atoms from an effectively infinite source. The result is a 

coating with good paintability, weldability and corrosion resistance but with the 

potential to fail during press forming operations. Consequently considerable work has 

been carried out on the galvanneal product in the two main areas of coating failure 

and coating formation. The majority of this work has investigated the mechanisms by 

which the galvanneal coating fails and how the coating constitution influences this 

failure. However, there is a lack of understanding as to how the formation of surface 

features within the galvanneal coating may influence the properties of the coating.

In 1998 Carless presented a paper at the Galvatech international conference entitled 

‘Influence of Substrate Topography on the Formation of Iron-Zinc Phases and the 

Properties of Galvanneal Coatings’. In his paper Carless stated that the presence of 

‘craters’ within the galvanneal coating increased the resistance to coating failure. In 

that same year an independent research project organised by the International Lead 

Zinc Research Organisation (ILZRO) and lead by Wright (1998) also reported similar 

findings. The project stated that the presence of craters within the galvanneal coating 

helped to reduce the amount of failure experienced by the galvanneal coating.

The work of both authors gave great insight into the possibility of manipulating the 

surface features of the coating to improve the resistance to coating failure. However, 

the work on ‘craters’ by Carless was only a small part of a much larger study and the 

work of Wright relied on industrial samples from numerous suppliers. What was 

needed was an in-depth investigation, under controlled conditions, into the effect of 

craters upon the properties of the galvanneal coating.

The primary objective of the project was therefore to

‘investigate the iron-zinc coating constitution and crater evolution in galvanneal. *
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Realisation of this primary objective was achieved by:

1. Developing a quantative technique for measuring and characterising craters.

2. Identifying the affect of process parameters upon the formation of craters.

3. Identifying the mechanism of crater formation during the growth and 

formation of the galvanneal coating.

4. Identifying the influence of craters upon the coating failure mechanism.

5. Developing a user-friendly computer model of the development of the 

galvanneal coating constitution.

These objectives were achieved through a critical review of the available literature 

and a systematic scientific investigation of both process and product.

1.1 THESIS LAYOUT

The first part of the thesis, chapter two, details a critical review of the published 

literature with regards to the galvannealing process, craters and the mechanisms of 

coating failure. The literature review then continues in chapter three by looking at the 

principle of diffusion couples and their application to the galvannealing reaction. The 

experimental procedures used to carry out the investigations are then explained in 

chapter four before detailing the programme of work to be carried out in chapter five. 

The results from each of the investigations are illustrated and explained in chapter six 

together with an in-depth discussion of the work relating back to the initial literature 

review. Finally, a general discussion combines each of the investigations in chapter 

seven to give an overview of the whole project before the final conclusions of the 

work are stated in chapter eight.
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2 LITERATURE REVIEW

The following chapter details a critical review of the current literature regarding the 

use, production and development of galvanised products.

2.1 INTRODUCTION

The automotive industry is one of the most important markets for the steel industry 

and has provided the greatest stimulus and challenge for the development of new and 

improved metallic coatings and anti-corrosion techniques. In spite of competition 

from aluminium and plastic composites, steel has maintained its position as the 

predominant material for automobile body parts due to its good formability, ease of 

welding and relatively low cost.

However, constant developments within the plastics and aluminium industries mean 

that the steel industry must always be developing and attaining greater understanding 

of its own products. One such area of development is anti-corrosion protection. For 

decades, steel has been protected from corrosion by the application of zinc to its 

surface. However, continuing demands for better paintability, greater corrosion 

resistance, better formability and lower costs have prompted the development and 

study of alternative coating technologies and products for corrosion protection.

2.2 THE PROCESS OF CORROSION

Corrosion is a process by which a substance reaches thermodynamic equilibrium with 

its environment as a result of an electrochemical reaction. As with all electrochemical 

reactions an anode, a cathode, an electrolyte and a flow of electrons are present. The 

anode forms when the metal enters the electrolyte:

M -> M2++ 2e' (2 . 1)



The electrons then flow through the metal and are neutralised at a local cathode where 

a variety of possible reactions takes place. The most important of these involves the 

reduction of oxygen that can be written as:

0 2 + 2H20  + 4e -> 40H ' (2.2)

and results in OH' 1 0 ns being produced in the liquid which in turn becomes locally 

alkaline.

Iron
Air

Cathode
▲

OH'

T
e Electrolyte

Anode Fe2+
Figure 2.1. Schematic diagram of a simple corrosion cell.

In figure 2.1 atmospheric oxygen will dissolve in the liquid electrolyte so the iron just 

beneath the surface will experience an increased dissolved oxygen content and will 

thus act as a cathode. The bottom of the specimen, furthest removed from the surface, 

will experience a lower dissolved oxygen content and thus act as an anode. Fe ions 

will thus pass into solution as described by equation 2.1 and the metal will corrode. 

Electrons will pass up the specimen and discharge near the surface where OH' ions 

will form in the electrolyte as described by equation 2.2. Diffusion will occur in the 

liquid over a period of time and the Fe2+ ions and the OH' 1 0 ns will interact to form an 

iron hydroxide, better known as rust (Martin, 1996).

Protection from corrosion can take many forms but all varieties use the same 

principle, without a cathode, an anode, electrolyte or a flow of electrons corrosion 

cannot take place.
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One such method of corrosion prevention is through soluble inhibitors where the 

liquid is treated with a reagent that removes oxygen from the solution or forms a 

passive film over the metal thus stifling the attack. However, this method is only 

viable in closed systems where the liquid is constantly recirculated and not 

continually exposed to the atmosphere. (Martin, 1996)

The use of paints and lacquers helps to prevent corrosion by excluding water and air 

from the surface of the metal. However, any breach of the painted surface can leave 

the metal exposed to the environment and the subject of rapid corrosion.

Another anti-corrosion technique is cathodic protection that can take two forms. The 

first method is impressed current protection whereby the metal is connected to the 

negative terminal of a suitable DC source and an inert metal anode placed nearby. 

The second method is through sacrificial protection whereby a more reactive metal, 

such as zinc, is connected electrically to the steel. In this instance the more reactive 

metal will corrode preferentially leaving the less reactive metal unaffected (Martin, 

1996).

Sacrificial protection using zinc has become one of the most widely used methods of 

protecting steel because it offers good sacrificial protection at a relatively low cost. 

Under normal environmental conditions zinc also forms a passive layer over itself, 

leading to a reduced rate corrosion of the zinc layer and the added bonus of being able 

to ‘heaT any minor scratches by the formation of zinc oxides as illustrated in figure 

2 .2 .
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Therefore, despite the thermodynamic driving force encouraging the corrosion of a 

steel substrate the application of a zinc coating can help to protect the steel and 

prevent rusting by offering both galvanic and barrier protection. Consequently, the 

application of a zinc coating to a steel substrate has become one of the most widely 

used techniques for preventing the corrosion of steel.

2.3 PRODUCTION OF ZINC COATED PRODUCTS

The application of a zinc coating occurs primarily in one of two ways, either by hot 

dip galvanising as illustrated in figure 2.3 or by electroplating as illustrated in figure 

2.4. Both processes involve a continuous production cycle whereby the coils of steel 

are welded end to end as they pass through the line. To facilitate this, production 

lines have accumulators that release or take up extra strip as required when the coils 

enter or exit the line.

In hot dip galvanising, reducing furnaces heat the steel strip to increase the ductility of 

the strip by encouraging recovery and recrystallisation of the cold rolled substrate. 

The strip is also heated to activate and clean the surface so that wetting of the steel by 

the liquid zinc is unhindered and contamination of the zinc pot by iron fines is 

reduced to a minimum. Subsequent dipping into the pot of molten zinc coats the steel, 

upon removal from the bath air knives remove any excess zinc so that a coating of 

approximately 7-10|um thick is achieved. Cooling of the strip then takes place before 

subsequent processes such as skin pass rolling, cleaning, and chromating are carried

n(OH)2

Electrolyte

Figure 2.2. Formation of protective zinc oxides.

▼ o2
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out. The strip then passes through an inspection area before being recoiled and 

packed.

Accumulator

Cooling 
Secti<

Shear

Galvanneal 
Furnace v

Furnace
Air Knives

Zinc Pot

Sink Roll
Exit
Accumulator

Figure 2.3. Schematic diagram of a continuous hot dip galvanising line.

In electroplating, the strip passes through numerous baths o f electrolyte. An electric 

potential applied across the strip causes the zinc dissolved in the electrolyte to plate 

onto the strip. Coatings of 2-3pms in thickness are produced for domestic appliance 

products and up to 7pm for automotive products.

For long life in use, whether for domestic appliances, automotive products or 

construction two areas in zinc steel processing need close attention - paintability and 

weldability. In terms of paintability, zinc does not allow easy wetting or adherence of 

paint to its surface unless subsequent pre-treatments are carried out (De Cooman et 

al. , 1998). In terms of weldability the zinc reacts with the copper spot electrodes used 

to attach the exterior panels to the frame of the car body. The result is rapid alloying 

of the electrode to form brass and the subsequent deterioration of weld quality and 

electrode life (Holliday et a l, 1996).
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Charged Strip

Zinc
Anodes

Entry AccumulatormmaiDoi
Exit Accumulator

Welder

  Electrolyte
Figure 2.4. Schematic diagram of a continuous electrogalvanising line.

Shears

Consequently, the use of galvanised steel for exterior body parts presents many 

problems to the car manufacturer. Hot dip galvanised steel is cheap and has good 

corrosion resistance but suffers from poor paintability, weldability and surface feature 

defects. Electroplated galvanised steel has better paintability but at a much higher 

cost. The solution to this problem in part comes from the use of the galvanneal 

coating.

2.4 THE GALVANNEAL COATING

Interdiffusion of the iron and zinc atoms should occur as a result of the elevated 

temperatures of about 460°C within the zinc pot and the intimate contact between the 

molten zinc and the steel substrate. However, under normal galvanising conditions, a 

small amount of aluminium (approximately 0 .135wt%Aleff) added to the zinc bath 

forms a thin inhibition layer of Fe2AE between the zinc and the iron substrate. This 

prevents the interdiffusion of the iron and zinc atoms resulting in a coating consisting 

mainly of pure zinc, figure 2.5.



Zinc Coating

Inhibition Layer

SubstrateSubstrate
Figure 2.5. Optical image of a zinc coating and a schematic diagram

In the galvanneal process, reduction of the aluminium content in the zinc bath to 

approximately 0.108wt%Aleff means that the inhibition layer that does form is not as 

stable. Subsequent heating at a temperature of between 490-510°C for about ten 

seconds causes the interdiffusion of the iron and zinc atoms and the formation of 

several alloy layers (Inagaki et al., 1991), figure 2.6.

Figure 2.6. Optical image of the galvanneal coating and a schematic diagram

This alloy layer contains about 10wt% iron and has the effect of greatly improving the 

paintability, weldability and corrosion resistance of the product. Paintability is 

improved as a result of the surface micro-roughness that occurs due to the alloying 

process, this enables the paint to key with the surface more easily. The weldability is 

improved due to the reduced amount of zinc that is present at the surface and the 

increased melting point of the surface phases. Both of these lead to reduced wear on 

the copper electrodes.

£ phase 

5 phase 

T Phase^ 

Substrate'

^UrtSWBt*
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However, the way in which the galvanneal coating is produced means that there are 

different intermetallic phases present within the coating. When subjected to stresses 

and strains such as those experienced in the forming operation each of the different 

phases behaves in a unique and individual manner. This may result in powdering or 

flaking of the coating as discussed later in section 2.6.

2.5 GROWTH OF THE GALVANNEAL COATING

The galvannealing process involves the non-equilibrium isothermal solidification of 

iron-zinc phases by the atomic diffusion of iron atoms from an effectively infinite 

source. Consequently, many different studies conducted on the coating development 

have enabled us to achieve an understanding of this complex process. The work of 

McDevitt et a l (1998) divided the process into four main areas:

1. Formation of the Fe-Al layer.

2. Breakdown of the Fe-Al layer.

3. Solidification of coating by 5 formation.

4. Growth of Fe-rich phases via diffusion.

The aluminium in the bath has a much higher affinity with iron than it does with zinc 

and results in a thin inhibition layer of iron and aluminium forming on the substrate 

surface (Isobe et al„ 1992, McDevitt et a l 1998). After approximately one second of 

immersion in the bath, Fe2 Als and FeAl cover about 80% of the substrate surface. 

However, because the inhibition layer does not form instantaneously and because the 

surface is not completely covered, the zinc near the substrate has some iron dissolved 

in it. Iron-zinc phases can now form and McDevitt et a l (1998) and Tang and Adams 

(1993) observed clusters of 5 and £ dispersed between the inhibition layer, figure 2.7. 

After approximately three seconds the FeAl layer has disappeared leaving just the 

Fe2Al5 behind which has now grown to cover approximately 95% of the substrate. 

Both £ and rj were observed as well as a 0.1pm thick layer of Ti on top of the 

inhibition layer. The final microstructure of the inhibition layer is that of colonies of
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FezAls with both high and low angle grain boundaries separating them. Guttmann et 

al (1995) showed that large portions of the Fe2Al5 nucleate with strong orientation 

relationships with respect to the substrate and several different colonies may exist 

within the area of a single substrate grain. They also suggested that the inhibition 

layer consisted of an upper layer with a random orientation and a lower layer with an 

ordered orientation. The formation of the inhibition layer is highly dependent upon 

the aluminium content of the bath and the thickness has been observed to vary from 

approximately 30 to 300nm (McDevitt et al., 1997).

Fe2Al5
colonies Zinc

Lateral growth of layer

Inhibition Layer 
SubstrateFe-Zn

Intermetallics

Figure 2.7. Schematic diagram of the initial formation of the inhibition layer.

Upon leaving the bath and entering the galvanneal furnace, the inhibition layer begins 

to breakdown and Fe-Zn phases begin to form. Two main theories exist about the 

nature of this breakdown process. The first one proposed by McDevitt et al. (1997) 

suggests that the inhibition layer dissolves and diffuses into the steel substrate. 

Experiments showing significant amounts of aluminium in the steel grain boundaries 

help to support this. The other theory suggested by Guttmann et al. (1995) proposes 

that the inhibition layer is broken apart by the formation of Fe-Zn intermetallics 

beneath the inhibition layer. In actual fact, both theories may be correct depending 

upon the thickness of the inhibition layer. When the inhibition layer is thin, 

dissolution could occur before mechanical breakage can take effect, yet when the 

inhibition layer is thick dissolution is not quick enough and so mechanical breakage 

occurs.

The exact process by which the inhibition layer forms and is subsequently broken 

down is still under much debate and much work still needs to be done to arrive at a 

definitive explanation. Flowever, by whatever mechanism the inhibition layer breaks 

down the overall outcome is the formation of Fe-Zn intermetallic compounds. Most
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experts agree that these Fe-Zn intermetallic compounds occur by the formation of 

‘outburst’ structures at steel grain boundaries that are emerging at the surface of the 

steel (Kim and Chung, 1998). The high angle boundaries within the Fe-Al layer act as 

quick diffusion paths through which the zinc can move and react with the iron in the 

substrate, figure 2.8. (Guttmann, 1995).

High Angle 
Boundary

Movement of Liquid Zinc
Zinc - s

Inhibition
Layer

Aluminium
Substrate Fe/Zn Reaction

urain
Boundaries

Figure 2.8. Schematic diagram of the formation of outbursts.

Guttmann et al. (1995) suggested that by using this path, zinc could diffuse cross a 

70nm thick Fe2Als layer in one second.

When the Fe/Zn reaction takes place, the remaining inhibition layer will be 

mechanically broken off. Further evidence supporting this hypothesis is demonstrated 

by the work of Stevenson (1998), who showed that there is a high aluminium 

concentration at the outburst front.

At 500°C and below, the equilibrium phase diagram predicts that the C, phase should 

be the first phase to form as the iron diffuses into the coating. However, experimental 

evidence shows that it is the 8 phase that forms first and propagates through the 

coating. As demonstrated by Kawaguchi and Hirose (1993) an increase in aluminium 

content has the effect o f reducing the peritectic transformation temperature and 

making 8 the stable phase. From the work of Stevenson (1998), we know that there is 

an increase in aluminium content ahead of the outburst front. The author therefore 

postulates that this may result in the lowering of the peritectic temperature and result
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in 5 crystal formation. Further support of this is given by Jordan et al. (1998) who 

showed that the growth rate constant for 5 increased with increasing aluminium 

content.

Liquid
8 0 0

f  + Liquid

7 0 0

^  6 0 0
5 + Liquid

5 0 0
£ + Liquid

2 0 0 '----------------—
7 5 8 0

Figure 2.9. Iron zinc equilibrium phase diagram.
85 90

Because of the iron concentration gradient that exists between the substrate and the 

coating, as heating continues, more and more iron diffuses into the coating. This 

results in further growth of the 5 phase and the development of the T phase at the 

coating substrate interface (Foct et al., 1993). On an industrial line, the design of the 

galvannealing process is such that it finishes when the coating has an iron content of 

approximately 10wt% and the 8 phase is dominant at the surface. The overall 

resultant coating makeup is essentially determined by the customers needs and desires 

but generally consists of the 5 phase with some £ phase at the surface and a 0.5pm 

thick T phase at the substrate. The different phases are shown below in table 1.1 

along with the Vickers Flardness value as determined by Fujii et al. (2000).
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Table 1.1. Different phases present within the galvanneal coating.

PHASE STRUCTURE WT% FE AT% FE HARDNESS (HV)

Eta(t|) Hexagonal 0 0 52

Zeta (Q Monoclinic 5.9-6.3 6.8-7.2 200

Delta (8) Hexagonal 7.2-11.4 8.3-13.0 284-300

Gammai (Ti) FCC 17.1-19.6 19.4-22.2 505

Gamma (T) BCC 22.0-27.6 24.8-30.9 326

It is clear to see from the table that when subjected to the same force each of the 

phases will behave in its own unique manner. The result is a build up of internal 

stresses leading to cracking and powdering of the coating.

2.6 MECHANISMS OF POWDERING AND FLAKING

Powdering and flaking occurs when the galvanneal coating becomes detached from 

the steel substrate. Flaking occurs by failure at the T/substrate interface and results in 

thin flakes of coating approximately the coating thickness in length. Powdering 

occurs by failure within the 8 layer and leads to very fine particles of the coating 

being removed (Urai et al., 1999). Both powdering and flaking are major concerns of 

galvanneal users for two main reasons; firstly, the loss of coating leads to reduced 

corrosion resistance and secondly any coating that comes off may get trapped in the 

presses leading to increased tool maintenance and fluctuating friction. The reason for 

coating failure is that as the solute within an alloy changes then so do the mechanical 

properties of that alloy (Jordan et al, 1992, Mataigne et al, 1995). The best example 

is that of steel, whereby variations of carbon content within the steel dramatically alter 

the mechanical properties and phases present. In the same way varying amounts of 

iron within the zinc coating can change the mechanical properties and phases present.

Therefore, the main cause behind the powdering and flaking of galvanneal coatings is 

the reduction in ductility due to the increased iron content within the coating (Zhong 

et a l 1998). This means that when subjected to deformation the coating cannot
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accommodate the strain imposed upon it and therefore must crack to relieve the stress 

(Foct, 1992). The exact nature of this cracking is dependent upon the type and speed 

of deformation.

Zhong et a l (1998) demonstrated that under a shear stress the galvanneal coating 

tended to fail by flaking whereas under tensile or compressive stresses the tendency 

was for powder failure. Urai et a l (1999) looked at the deformation speed and found 

that at high deformation rates the layer exfoliated at the interface between the T layer 

and the steel substrate. At lower deformation rates the coating exfoliated in the 

middle of the 8 layer. In general, as the forming speed increased the amount of 

exfoliation increased (Rangarajan, 1997) and the mode of exfoliation moved from 

powdering to flaking.

The reason behind this, as proposed by Arimura et a l (1995) and Urai et a l (1999), is 

that the deformation mode of the base steel differs depending upon the forming speed. 

At low forming speeds, there is uniform elongation and therefore the stresses imposed 

upon the coating (especially at the coating/steel interface) are less harsh resulting in 

less exfoliation. At high forming speed, the elongation becomes non-uniform 

resulting in much harsher deformation conditions and greater amounts of exfoliation.

Deits et al (1990) proposed that the actual crack formation and propagation under 

imposed tensile strains occurred in three stages. In the first stage, the substrate 

deforms and the coating cannot accommodate the stresses. Cracks start from the 

coating/steel interface and propagate towards the surface through weak areas in the 

coating to relieve the internal stresses. Finally, the cracks then propagate along the 

interface in a further attempt to relieve the stresses placed on the coating, figure 2.10.
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Stage 1

Stage 2

Stage 3

Figure 2.10. Mechanism of coating failure under tensile strain conditions.

Therefore, powdering resistance is lowest when there is a high iron content within the 

coating and a thick T layer. Together they increase the coating brittleness and 

encourage easy crack propagation along the coating/steel interface.

Urai et al. (1996) used coatings with similar iron contents and showed that when the 

aluminium content within the bath increased from 0.05-0.16wt%Aleff the amount of 

powdering decreased from 8mg to lmg. The reason they proposed for this was that as 

the aluminium content increased then so did the thickness of the Fe-Al inhibition 

layer. Therefore, in the bath with the high Al content, the alloying reaction occurs
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heterogeneously and the coating has a mixed structure of both 8 and £ phases. Upon 

deformation, the £ phase deforms preferentially and relaxes some of the stresses that 

build up in the coating. Ito (1977) also confirmed this and stated that powdering was 

suppressed by an increase in the ratio of £ to 5 within the coating.

However, from a commercial point of view the thicker Fe-Al layer results in slower 

diffusion of iron resulting in longer processing times and a reduced production rate. It 

should also be noted that the work carried out by Urai et a l (1996) used high coating 

weights of lOOg/m and may therefore not be a correct representation of commercial 

galvanneal products.

2.7 THE EFFECT OF SUBSTRATE CHEMISTRY UPON THE 
GALVANNEALING REACTION

Solute atoms are present within the steel either because of deliberate additions or as a 

result of the iron and steel making process. For example, carbon, sulphur and nitrogen 

are present as a result of the iron and steel making progress whereas phosphorous and 

niobium are deliberately added to increase the yield strength of the steel.

However, in terms of the development of the galvanneal coatings, interstitial solute 

atoms will either collect at grain boundaries and hinder the alloying reaction or 

remove atoms from the grain boundaries and promote the alloying reaction.

The addition of titanium to the steel substrate results in the formation of carbides and 

nitrides within the iron lattice. This has the effect of removing the carbon from the 

iron lattice thus making dislocation movement easier and increasing the ductility of 

the steel. In terms of the development of the galvanneal coating, titanium has the 

effect of removing carbon atoms from the grain boundaries thus making them far 

more reactive. Consequently, the alloying reaction occurs at an increased rate when 

high concentrations of titanium are present within the substrate (Jordan and Marder, 

1998).
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However, some steels have all of the aforementioned solute atoms present in varying 

amounts. Toki (1994) therefore produced a formula that would predict the reactivity 

of the grain boundaries depending upon the solutes present.

Ti** = Ti -  3.99C -  1.49S -  3.42N -  1.55P (2.3)

Where:

Ti = Wt% titanium 

C =W t% carbon 

S = Wt% sulphur 

N = Wt% nitrogen 

P = Wt% phosphorous

If Ti** is positive then there is excess titanium and the grain boundaries are more 

reactive resulting in the fastest growth rates of the Fe-Zn alloy. If Ti** is negative 

then not all the C, N, S or P is tied up and thus the grain boundaries are blocked 

(Coffin and Thompson, 1995). Toki (1994) showed that as the Ti** value became 

positive there was a rapid increase of iron in the coating for a given galvanneal time. 

They also showed that with Ti-added steels (Ti** > 0) that the effect of the grain size 

upon the reaction was quite large.

This increased reactivity, according to Jordan and Marder (1998), only affects the T 

layer growth, as it is this phase that is primarily controlled by interface diffusion. 

Jordan and Marder (1998) showed that when Ti was positive the growth rate 

constant was clearly higher for the T phase but stayed constant for the other phases. 

Their work also showed that the solute additions had no effect upon the inhibition 

layer growth and that outburst formation corresponded to the location of substrate 

grain boundaries.

Just how this relates to powdering was analysed by Zhong et a l in 1998. They found 

that with low iron content coatings, and when the phosphorous or carbon content was 

high, the bonding strength of the coating to the substrate increased and failure 

occurred mainly by powdering. However, the addition of Ti had the effect of
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reducing bonding strength leading to the failure of the coating by flaking. This may 

be attributed to an increase in the growth rate constant of the brittle T phase as shown 

by Jordan and Marder, (1998). Overall, through the use of a U channel test, they 

showed that both the ductility and the interfacial bonding strength of the coating 

affected the powdering performance. With a low bonding strength, performance was 

poor regardless of the ductility, whereas, with a high bonding strength the 

performance was highly dependent upon coating ductility.

2.8 SURFACE FEATURES

The surface of the galvanneal coating is one of the most vital aspects of the 

galvanneal product. It is the surface that will be exposed to the presses when the steel 

is formed; it is the surface that will be in contact with the electrodes when the steel is 

welded and it is the surface that the paint will be in contact with when the steel is 

painted.

Both £ and 8 can be present at the surface of the galvanneal product and the relative 

amounts of each phase is determined by the conditions of the galvannealing process. 

For example, a short galvanneal time and/or unreactive steel may result in large 

amounts of £ and r| on the surface and the presence of very little or no 8.

2.8.1 Surface Appearance

The work of De Cooman et a l (1998) shows that the appearance index, a measure of 

the surface quality of a sample after it has been painted, is as low as 60% when the 

coating consists of 20% The appearance index then rises to about 90% (similar to 

that of electroplated steel) when the iron content reaches approximately 10wt% and 

there is between 0-10% This shows that the presence of the £ phase at the surface 

is detrimental to the surface quality of the galvanneal product and that further alloying 

of the coating helps to improve this. De Cooman et a l (1998) also demonstrated that 

in the absence of outbursts the surface is smoother than the underlying substrate due
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to the ability of the zinc to mask some substrate surface features. Furthermore, the 

emergence of outbursts generates large profile waviness due to the flow o f liquid zinc 

that in turn leads to a very poor visual appearance. Therefore, overall they showed 

that the presence of the C, phase within the coating and at the surface results in poor 

paintability characteristics for the customer.

2.8.2 Formability

The forming operation involves an intimate reaction between the die, the punch, the 

steel substrate and the coating surface. Previous work has shown that both the 

steel/coating interface and the coating structure play an important roll in this process. 

In terms of the surface, two parameters are important, the friction and the roughness. 

The work of Inagaki et al. (1991), Kato et al. (1993) and Rangarajan (1997) showed 

that the amount of £ phase at the surface greatly affects the frictional coefficient of the 

galvanneal product. The reason for this is that the higher coefficient of friction of the 

C, phase compared to that of the 8 phase resulted in the ‘sticking’ of the steel sheet to 

the press. However, it should be emphasised that the actual value of the coefficient of 

friction is not as important as a value that does not fluctuate wildly from sample to 

sample. The addition of lubricants during pressing will greatly reduce the amount of 

‘sticking’ that occurs (Elliot, 1999 and Kunde et al., 1998), but the amount of 

lubricant that needs to be added is highly dependent upon the coefficient o f friction of 

the material. Therefore, a customer will want the surface to contain consistent 

amounts of C, and 8 for a good pressing operation although less £ would ultimately 

result in less lubrication being required.

2.8.3 Roughness

Four main features define the roughness of a galvanneal coating, the formation of 

Fe/Zn phases, emergence of C, crystals, exaggeration of topographical features and 

craters (Scheers et al., 1996). The same principle holds with the roughness of the 

material as it did with the frictional coefficient. The addition of lubricants and the 

performance during pressing is dependent upon the roughness of the material; a
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customer will therefore want a material with constant roughness so that press forming 

conditions will be constant from one pressing to the next. In terms of C, and 8 the 

product should have consistent amounts of both, although preferably there would be 

less £ so as to reduce the amount of lubrication required for each operation.

2.8.4 Weldability

The weldability of the galvanneal product is determined by the amount of wear that 

the copper electrode experiences during the spot welding process. The £ phase has a 

much lower melting point than the 5 phase and causes much more rapid brassing of 

the copper electrodes. This in turn leads to an increase in both the brittleness of the 

electrode and the amount of current that must be applied to create a certain weld size. 

Therefore, in terms of weldability from a customer’s point of view, it is preferential to 

have a greater percent of 8 on the surface (Mataigne et al, 1995).

It is clear to see that the presence of the £ phase on the surface is detrimental to the 

galvanneal product in terms of surface appearance, weldability, friction and 

roughness. However, as stated earlier in section 2.6, the softer £ phase helps to reduce 

powdering by relieving internal stresses and is therefore beneficial from the point of 

powdering resistance.

2.9 CRATER FORMATION, GROWTH AND EFFECT

As mentioned previously in section 2.8.3 the surface roughness of the galvanneal 

coating has an effect upon the formability characteristics of the galvanneal product. 

One of the main influences on roughness is the presence of craters.

The thickness of the galvanneal coatings varies quite considerably as a result of the 

alloying reaction that occurs. In some places, gaps in the coating extend almost the 

full way through the coating and have an ordered layer of £ crystals at their base
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(McDevitt and Meshii, 1998); known as craters they are a unique feature of the 

galvanneal product.

Their presence has the immediate effect of increasing the roughness of the surface of 

the galvanneal product and, as proposed by Carless et al. (1998), reduce powdering. 

Essentially, craters form due to the preferential nucleation of £ crystals on specifically 

oriented ferrite grains and result in a barrier to the formation of the normal galvanneal 

coating.

CraterOrdered £, crystals

Fe/Zn . 
Coating

10 pmSubstrate

Figure 2.11. Schematic diagram of a galvanneal crater.

2.9.1 Proposed Mechanism of Formation of the Galvanneal C rater

Tang et al. (1998) reported that the formation of Fe/Zn intermetallics on the surface of 

the strip involves a four-step process:

1. Iron atoms separate from the strip

2. Zinc atoms separate from each other

3. Iron atoms mix with the zinc atoms

4. Iron and zinc phases nucleate on the surface of the strip

The energy barrier for the separation of iron atoms from the strip is approximately

equal to the free energy of fusion (AGf) as described below in equation 2.4:
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AGf= 15200-8.4T

where:

T = Temperature in Kelvin

(2.4)

Therefore, the probability of an Fe atom escaping from the surface (P):

6

where:

AG = Free Energy of Fusion

R = Molar Gas Constant

T = Temperature in Kelvin

P = ^ x e x p f - ^ ± j  (2-5)

Using these equations Tang (1998) predicted that the iron content near the strip would 

be approximately 3.0wt%.

Tang (1998) also looked at the enrichment of the aluminium content near the strip and 

suggested that it increased by a factor of 200 times at 460°C resulting in 84% of the 

atomic sites being occupied by aluminium atoms. Therefore, because aluminium and 

zinc atoms repel each other in the liquid this Al segregation not only affects density of 

potential nucleation sites for Fe/Zn intermetallics, but also the activity of them at the 

interface.

Tang (1998) reported a transition point of 0.134wt%Alefr in the bath. Above this 

concentration the nucleation of Fe/Al on the strip surface is favourable whereas below 

this point the formation of Fe/Zn intermetallics is favourable. However, the exact 

nature of these intermetallics is dependent on several factors. When the aluminium 

level is higher than 0.1wt%Aleff the 8 phase becomes the thermodynamically favoured 

phase. Yet it has been widely reported that the C, phase frequently grows epitaxially 

on the surface of the strip. The reason for this, as reported by Tang et al. (1998) is 

threefold. Firstly, the iron solubility sustained by the metastable £ phase is very much 

the same as the equilibrium iron solubility determined by the liquid+8 phase.
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Secondly, the driving force for the formation of both phases is similar and thirdly the 

£ phase can grow epitaxially on the steel substrate whereas the 5 phase cannot. 

Epitaxial nucleation occurs when the atoms within the nucleating phase and the 

substrate are arranged in such a way that the misalignment between them is very 

small. This results in a very small amount of energy required to create the new 

interface and the likelihood of a very small energy barrier to the nucleation of the new 

phase. In the case of the nucleating £ phase the grains of the underlying substrate 

must be oriented with {111} in the plane of the sheet (Nakamori et al, 1995).

What this means is that although the 8 phase is the equilibrium phase (Tang, 1996), 

the C phase is thermodynamically permissible and kinetically favourable under 

epitaxial nucleation. In terms of surface energies and classic nucleation theory, the 

critical radius for epitaxial nucleation for the £ phase is only 3.3xlO'10m, which is 

smaller than the dimension of a unit cell of £ phase. Therefore, the energy barrier for
90formation of the £ phase under epitaxial nucleation is only 1.12x10' J (Tang et a l 

1998).

However, for the £ phase to grow epitaxially the steel grains must be oriented with 

{111} in the plane of the sheet. The random 8 phase will be able to nucleate 

preferentially on non-{ 111} grains and thus a mixture of 8 and t, will be found on the 

surface of the strip.

When the aluminium content is in the range 0.135-0.15wt%Aleff metastable Fe/Zn 

intermetallics of mainly £ crystals are observed. The reason for this is that initially 

the aluminium atoms contiguous to the interface facilitate the growth of the Fe-Al 

layer. Consumption of these atoms requires long-range diffusion through the liquid 

before further growth can take place. Therefore, because the £ phase can nucleate 

very easily under epitaxial conditions the formation of £ crystals is still kinetically 

possible. Above 0.15wt%Aleff the nucleation of the £ phase is no longer kinetically or 

thermodynamically possible as a complete inhibition layer is formed.
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Therefore, in summary so far, the reaction at the substrate/liquid interface involves the 

formation of the Fe-Al layer, the 5 phase and the £ phase. When the effective 

aluminium is between 0.1 and 0.135wt%Alefrthe aluminium concentration is not high 

enough to cover all the potential nucleation sites and so the £ and 5 phases can 

nucleate. Above 0.1wt%Aleff the 5 phase has the lowest energy barrier to nucleation 

and will therefore nucleate preferentially. However, the £ phase has the ability to 

rapidly nucleate on grains oriented with {111} in the plane of the sheet due to the 

even lower energy barrier. Overall, the initial layer laid down will be a mixture of Fe- 

Al phase, 8 phase and £ phase as illustrated below in figure 2.12.

Substrate

{111} oriented
grain

Figure 2.12. Schematic diagram of the initial layer makeup.

When the aluminium content is between 0.135 to 0.15wt%Alea there is a high enough 

aluminium content for the Fe-Al layer to cover the majority of the potential nucleation 

sites. However, the supply of aluminium atoms occurs by long-range diffusion 

through the liquid and will therefore take its time. Consequently, although it will be 

able to rapidly lay down a thin inhibition layer the actual growth will take longer. As 

reported by Guttmann et al. (1995) the inhibition layer has an orientation relationship 

with the substrate and therefore whilst the Fe-Al layer is thin and growing the £ phase 

can still rapidly nucleate on grains oriented with {111} in the plane of the sheet. The 

8 phase does not have this ability of rapid nucleation and is therefore not likely to be 

present within the initial layer makeup.

Above 0 .15wt%Alefr the Fe-Al layer has rapidly covered all of the potential nucleation 

sites and the nucleation of either the £ or the 8 phase is not possible.
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2.9.2 Development and Growth of the Galvanneal Crater

When the strip is galvannealed after dipping, the formation of the Fe/Zn layer will 

proceed by the processes described previously in section 2.5. However, where the £ 

phase has nucleated in an ordered fashion on oriented grains the situation is not as 

straightforward. Essentially, because of the similar driving forces, the £ phase should 

grow at a rate comparative to that of the 8 phase and yet it has been observed that only 

a 1-2pm thick layer of £ crystals grows during the galvannealing process. One reason 

proposed by Guttmann et a l (1995) suggested that it was due to the ‘peculiar grain 

boundary structure of the £ phase and the incidence of the atomic structure of the 

otferrite/C interface’. Guttmann et a l (1995) did not go on to explain clearly what they 

mean by this or the overall effect that this may have upon crater formation.

However, work done by Inagaki et a l (1995) showed that when the aluminium 

content of the bath was 0.15wt%Aleff, a thin Fe-Al layer was present below the 

ordered £ crystals after galvannealing. It is suggested that this thin inhibition layer 

would restrict the diffusion of iron atoms into the £ crystals thus retarding their 

growth. Diffusion through the £ crystals may also be such that the iron concentration 

would never be high enough to nucleate the 8 phase. The C, crystals may possibly then 

act to protect the inhibition layer from the liquid zinc and because formation takes 

place on grains and not over grain boundaries diffusion into the substrate would be 

minimal. The exact process by which craters develop is poorly understood and 

investigative work in this area is almost non-existent.

The final crater consists of an area void of coating with ordered £ crystals at the base. 

Below the ordered crystals there may be a very thin inhibition layer and below this a 

plateau of substrate. The plateau forms because the zinc is not able to diffuse into the 

substrate and therefore does not transform it to an Fe/Zn alloy. A cross section of an 

actual crater and an SEM image are shown in the figures 2.13 and 2.14 respectively.
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Figure 2.13. Optical image of a galvanneal crater.

Figure 2.14. SEM image of the galvanneal coating containing craters.

2.9.3 The Effect of Cratering

Current understanding of the effect that craters have upon the properties of the 

galvanneal product is limited. Flowever, the preliminary work done by Carless (1998) 

highlighted several important aspects. Comparing a Ti IF steel with a TiNb IF steel
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Carless showed that the TiNb IF steel was more susceptible to crater formation than 

the Ti IF steel. This was primarily thought to be due to the increase in grain size of 

the TiNb steel leading to more stable crater formation.

Under mechanical testing, it was demonstrated further that the increased crater density 

had the result of reducing the amount of powdering. However, it is well known that 

Ti IF steels are much more reactive than TiNb IF steels because of the lack of carbon 

atoms at the grain boundaries (Jordan, 1998). Therefore, under similar processing 

conditions the Ti-stabilised steel will inherently have a much more brittle coating than 

the TiNb steel.

Because of this, Carless (2000) compared the powdering effects of Ti IF and TiNb 

steels both with similar iron contents in their coatings. He found that in low iron 

coatings (12wt% or less) the TiNb steel had the better powdering resistance whereas 

in high iron coatings (12wt% or more) the Ti steel was the best. The reason he 

proposed for this was that in low iron coatings the weak link is the T/steel interface, 

therefore, when the crater density is high, the plateaux will hinder crack propagation 

and reduce powdering. In the high iron coatings not only is the coating more brittle 

but the craters cause an increase in roughness. This then leads to increased friction, 

greater failure in the brittle 8 phase and more powdering.

However, Carless’ experimental data did not cover the complete range of iron 

contents. The iron content was consistently much lower in the TiNb coatings (11-
9 915g/m ) than in the Ti IF steels (13-2lg/m ). Consequently, the individual influences 

of iron content and crater density were not completely established and therefore the 

subject of further work.

However, it was clearly shown that thicker coatings are much less susceptible to 

crater formation. A possible reason for this could be that there is simply more zinc 

above the £ crystals. This excess zinc cannot be absorbed by the growing outbursts 

and thus the crater remains ‘filled in’. In addition, the longer galvannealing time 

required for the thicker coatings might mean that the outbursts have more chance of
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covering over the £ crystals or that the £ crystals actually transform to 8. Thicker 

coatings are also more prone to powdering, although this is more likely to be due to an 

increase in the thickness of the brittle T layer rather than a lower crater density.

In terms of the effect upon paintability and surface appearance, the work of Carless 

showed that craters were easily masked over by the painting procedures implemented 

in the automotive industry. Therefore, craters are not of concern with regards to the 

paintability and final surface appearance of the galvanneal product.

The work of Wright (1998) under LLZRO Project ZCO-29 has shown similar results to 

those of Carless in that cratering helps to reduce powdering. However, the work of 

Wright introduces so many other variables that the results are not conclusive.

2.10 PROCESS PARAMETERS INFLUENCING CRATER DEVELOPMENT

From previous work done in the area of galvannealing, it is possible to propose 

process and substrate parameters that may influence the development of craters and 

their overall effect on the galvannealing coating.

2.10.1 Grain Size

An increase in the grain size of the substrate may result in larger areas that will be 

harder for outbursts to mask, thus leading to a higher crater density at the end of the 

galvannealing process. Grain size modification could be achieved by using substrates 

with Niobium additions or by annealing the substrate to promote grain growth. This 

would be an easy and simple way of altering the crater density to assess its overall 

effect upon formability properties without changing any other parameters. However, 

work done by Jordan et al (1998) has shown that the grain size has a strong influence 

on inhibition layer breakdown. Their experiments showed that the time for outburst 

formation increased from 10 seconds for 15pm grains to 1200 seconds for 85pm 

grains. These findings would therefore have to be taken into account when 

manipulating the grain size. In addition, manipulation of the grain size on an
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industrial basis may not be possible due to its large influence on the mechanical 

properties of the steel.

2.10.2 Aluminium Content of the Zinc Bath

Varying the aluminium content of the bath has been shown to have many different 

effects upon the formation of craters. Increasing the aluminium content will cause a 

greater and more preferential nucleation of the Fe2Al5 inhibition layer. The inhibition 

layer will not only ‘steal’ the majority of the sites upon which £ could preferentially 

nucleate but also reduces the solubility of iron within the bath and decrease the 

peritectic temperature. Therefore, the £ phase will not only be thermodynamically 

unstable and have no suitable nucleation sites but also may not even have a high 

enough iron content to be present in the first place. The aluminium content of the 

bath therefore has a great effect upon crater formation although a high aluminium 

content will create a thicker inhibition layer leading to longer processing times for a 

given coating iron content.

2.10.3 Grain Orientation

The ordered £ phase may form epitaxially on the ferrite grains oriented with {111} in 

the plane of the sheet due to the low interfacial energy barrier. If there are no 

correctly oriented grains, the phase will not be able to nucleate as easily, resulting in a 

lower crater density. Preliminary work done by Carless (2000) showed that abrasion 

of the surface of the steel with emery paper greatly hindered crater formation. It is 

proposed that the abraded surface helped to promote the formation of the 5 phase 

rather than the ordered £ phase.

2.10.4 Annealing Time and Temperature

An increased annealing time or increased annealing temperature will lead to greater 

recrystallisation of the steel substrate. As a result a higher proportion of properly 

oriented grains will be present at the surface of the substrate. This will in turn
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facilitate the epitaxial nucleation of the ordered £ crystals and much greater crater 

formation.

2.10.5 Bath and Strip Entry Temperature

If the bath or strip entry temperature is higher than the aluminium-modified peritectic 

temperature, the £ phase is no longer thermodynamically stable and will thus find it 

much harder to nucleate and grow. However, the temperature at which this occurs 

would be around 530°C, which from an industrial point of view would mean higher 

running costs and a much quicker breakdown of the inhibition layer.

2.10.6 Galvanneal Temperature

A galvannealing temperature higher than the peritectic temperature will cause the £ 

phase to be no longer thermodynamically stable. However, by the time the strip 

reaches the galvanneal furnace the £ phase will have already nucleated and grown. 

The galvanneal furnace would therefore have to cause the transformation of the £ 

phase to the 8 phase. The amount of time required for this and its exact nature is not 

clear and is therefore a definite area for further research.

2.11 CONCLUSIONS OF THE LITERATURE REVIEW

The conclusions of the literature review are as follows:

• The galvanneal coating provides a cheap and effective way of protecting a 

steel substrate from corrosion.

• The galvanneal coating has both improved weldability and paintability 

compared to the standard galvanised product.

• Coating failure of the galvanneal product occurs because of the formation of 

intermetallic phases within the coating.

• Coating failure occurs primarily at the brittle interface between the coating and 

the substrate.
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• The initial formation of the galvanneal coating is the result of competition 

between different nucleating phases.

• The formation of craters within the galvanneal coating is due to the epitaxial 

nucleation of ordered crystals upon ferrite grains oriented with {111} in the 

plane of the sheet.

• It is proposed that the presence of craters within the galvanneal coating helps 

to prevent coating failure during press forming operations.
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3 DERIVATION OF THE GAMODELLER

The following chapter details the development of the GAModeller program, all of 

which took place as part of this project. The theoretical work of diffusion couples is 

described in detail together with how they are applicable to the growth of the 

galvanneal coating. Further explanations include how the process parameters 

involved with online production have been incorporated into the model.

3.1 INTRODUCTION

Diffusion occurs so as to minimise the Gibbs free energy of the whole system (Porter 

and Easterling, 1995). If two blocks of the same A-B solid solution, but different 

compositions are placed together at a sufficiently high temperature inter-diffusion of 

the A and B atoms will occur so as to reduce the overall energy, figure 3.1.

Gibbs
Free
Energy

G2G3

G4

A (1) (2) B

rt-MUl
A

0 )  4

'W D-NCn 

B (2)

Figure 3.1. Free energy and compositional changes during ‘downhill’ diffusion.
i}|
i The free energy of each part of the alloy is given by G1 and G2 and the energy of the

overall system by G3. As diffusion occurs so as to eliminate the concentration
i
j  differences the overall energy decreases to G4, the free energy of a homogeneous

alloy. As such the A and B atoms diffusing away from the region of high 

concentration to that of low concentration achieve the decrease in free energy. Thus 

movement down a concentration gradient is observed.
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However this is not always the case as in alloy systems containing a miscibility gap 

the free energy curve can have a negative curvature at low temperatures, figure 3.2.

Gibbs
Free

A-rich
A

M d T I  Ener9y

(i) * B (2)
G4

A (1) (2) B

Figure 3.2. Free energy and compositional changes during ‘uphill’ diffusion.

Again the respective energies of the individual alloys are given by G1 and G2 and the 

overall energy by G3. In this instance the atoms diffusing towards the regions of high 

concentration, i.e. uphill, achieve the decrease in overall energy from G3 to G4.

In both instances the A and B atoms are diffusing from regions of high chemical 

potential to regions of low chemical potential. This change in concentration with 

energy is defined by the Cahn-Hilliard equation (Cahn & Hilliard, 1958).

where: M is the kinetic coefficient of diffusion (mobility) 

c is the concentration 

F is the free energy functional

s is the energy associated with the creation of interfaces

The kinetic coefficient of diffusion, M, is assumed to be independent of the 

concentration. The parameter s measures the range of intermolecular interactions and 

raises the overall free energy through the existence of interfaces between the phases.

(3.1)
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In practice ‘downhill’ diffusion where the chemical potential gradient is along the 

same direction as the concentration gradient is far more common than ‘uphill’ 

diffusion. It is therefore usually assumed that diffusion occurs down concentration 

gradients. However, it can be seen that this is only true under special circumstances 

and for this reason it is strictly speaking better to express the driving force for 

diffusion in terms of a chemical potential gradient (Porter and Easterling, 1995). 

Diffusion ceases when the chemical potentials of all atoms are the same everywhere 

and the system is in equilibrium.

However, concentration differences are much easier to measure than chemical 

potential differences, as a result it is more convenient to relate diffusion to 

concentration gradients. The remainder of this chapter will therefore use this 

approach to diffusion.

3.2 DIFFUSION COUPLES

As stated previously, when two metals are placed in intimate contact at an elevated 

temperature, interdiffusion between the two metals will occur. If the two materials 

are not completely soluble in each other and do not exhibit any intermediate phases 

then the model is quite simple. A simplified phase diagram is shown in figure 3.3.

L + a

(X +  P

Figure 3.3. Simplified phase diagram.
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As the temperature is elevated the A and B atoms diffuse into one another. The 

concentration of A atoms is shown in figure 3.4. As diffusion occurs the A atoms are 

slowly replaced by B atoms as the A atoms diffuse into material B and vice versa. 

After a long enough time at this elevated temperature (T) the two separate blocks of A 

and B will become one block of a  + p.

Ca

Figure 3.4. Schematic diagram of the concentration of A atoms.

3.2.1 Diffusion Couples with Intermediate Phases

In more complicated systems, such as the Fe-Zn system, intermediate phases form as 

the diffusional process continues. The phase diagram in figure 3.5 shows a simple 

binary phase diagram with an intermediate phase.

A B

Figure 3.5. Schematic phase diagram exhibiting an intermediate phase.
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If a piece of A is placed in contact with a piece of B a thin layer of the intermediate 

phase p will form between the two terminals of the a  and y phases. The profile across 

the two materials would be as in figure 3.6

B

Py

Pa

a

B A

y yY a

Figure 3.6. Diffusion profile across two materials exhibiting an intermediate phase.

If a pseudo-steady-state condition is assumed within the P layer, then a linear 

concentration profile exists across the P phase and Fick’s First Law, Wilkinson 

(1997), gives the flux, or flow of atoms:

SC0
Jp  = ~Dp x —

Sy
(3.2)

where: Jp is the flux or flow of atoms 

Dp is the diffusion coefficient 

5Cp is the change in concentration

6y is the distance over which the change in concentration takes place.
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Applying Fick’s Law to the diffusion couple in figure 3.4 the following equation is 

arrived at:

_ n  * ^
P ~  U P j (3.3)

where: Jp is the flux across the p phase

Dp is the diffusion coefficient of the atoms through the P phase 

Cpy is the concentration at the py interface 

Cpa is the concentration at the Pa interface 

L is the time dependent thickness of the intermediate layer.

The motion of each of the interfaces ya and yY is governed by the principle of mass 

conservation. If the simple phase diagram in figure 3.5 is considered along with what 

happens if the interface moves by an amount dyi over a time interval dt then the 

amount of B atoms that move into the a-phase is equal to Ja*A*dt, where A is the 

area of the interface. Similarly, the amount moving out of the p-phase is Jp*A*dt. 

Thus the total build-up of atoms at the interface is equal to (Jp-Ja)*A*dt. This excess 

material must go towards creating more of the B rich phase, i.e. the p-phase. As this 

happens the interface moves by dyi. The amount of B which is taken up is therefore 

equal to (Cp-Ca)*A*dyi. Therefore, by equating these two terms we can determine 

the rate of interface motion to be:

If this equation is now applied to the diffusion couple with intermediate phases, as

dyj _ (Jp ~ J g ) (3.4)
dt ( C , - C a )

shown in figure 3.5, the following equations are arrived at:
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dya _ {Jp Ja) 
dt ~(C„a - C a)

(3.5)

dyY (JY dp)
dt (Cr - C p r )

(3.6)

When the layer is very thin, Jp must be very large and will dominate the equation. 

The growth of the layer (dL/dt) is thus given by the difference between the motion of 

each interface, that is adding equation 3.5 to equation 3.6:

dL _ dya dyy ^  Jp Jp
~ & ~ ~ t i ~ ~ d d * { C p a - C a) + {CY - Cp r )

(3.7)

If, from equation 3.3, Jp is substituted into the equation, the result is:

dt I
(Cfy -  Cfr ) | (C ^ -C g .)  

^ ( C ^ - C J  (Cr - C 6 r )r  Pr '  y
(3.8)

If this is then integrated with respect to time the usual parabolic dependence of layer 

thickness (L) with time is arrived at, namely:

L2 = 2 D J (3.9)

3.3 APPLICATION TO THE GALVANNEALING REACTION

The previous section has shown how the principle of diffusion couples can be applied 

to the growth of an intermediate phase at elevated temperatures. Applying the theory 

to the growth of the galvannealing reaction requires an understanding of the 

concentration differences and diffusion coefficients in the Fe-Zn system, the growth 

rate constant and the effect of production process parameters.
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3.3.1 Concentration Differences on the Fe-Zn Phase Diagram

Equation 3.9 shows that the rate of growth of an intermediate layer is highly 

dependent upon the concentration differences both within the phase and those either 

side of it. Figure 3.7 illustrates a schematic diagram of the zinc rich end of the Fe-Zn 

phase diagram.

smperature
(°C)

500

300

5 + r

10 15
Fe Concentration (wt%)

D

20

Figure 3.7. Schematic diagram of the zinc rich end of the Fe-Zn phase diagram.

o
For the 8 phase at a galvannealing temperature of 500 C equation 3.9 becomes:

L S  = 2Dt* i ^S ^S + T)  ^ 8 ( ^ + 8 ) )  j ( C s ( S + T )  ^ S ( C + 5 ) )

V(^s(c+s) ~ C ^ + s)) (Crr^+n ~ CS(S+n  )
(3.10)

r(<y+r) ^8(8+T)J j

However, for easier reading the letters on the phase diagram will be used to represent 

the boundaries of the different phases, equation 3.10 then becomes:
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Lg =2Dt* r ( C - S )  + ( C - S ) N 
CD-C)J

(3.11)

where: A = 6.2, B = 7, C = 11.4, D = 21

The same process can be applied to both the £ and T phases. However, from the Fe- 

Zn phase diagram it is clear to see that the value of some boundaries varies with 

temperature and must therefore be taken into account when dealing with any type of 

modelling.

3.3.2 The Diffusion Coefficient of Iron in Zinc

Equation 3.11 shows that the growth rate of an intermediate phase is also dependent 

upon the diffusion coefficient, D. In the case of the galvannealing reaction this is the 

diffusion coefficient of iron in zinc that is easily determined from the Arrhenius 

equation 3.12.

where: D0 is the pre-exponential factor (m Is)

Q is the activation energy for diffusion (J/mol)

R is the molar gas constant (8.314 J/mol K)

T is the temperature in Kelvin (K).

However, the values of Q and D0 are much harder to acquire especially considering 

the fact that they vary between the different phases. The work of Wakamatsu (1997) 

as published in the Smithells Metals Reference Book arrived at the following values 

for D0 and Q.

(3.12)
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Table 3.1. Diffusion values of iron in zinc obtained by Wakamatsu et a/.

j Phase Pre-Exponential Factor, 

D0 (m2/s)

Activation Energy, 

Q (kJ/mol)

Zeta (Q 2.28 x 10'6 83.3

Delta (5) 2.82 x 10'7 80.4

Gamma (T) 1.05 x 10'7 92.1

The values for diffusion coefficients are generally calculated by plating the diffusing 

species onto the material for which the diffusion coefficient is to be calculated, as 

shown in figure 3.8.

Diffusing species Diffusive matrix

Figure 3.8. Experimental set up for determining diffusion coefficients.

The variation of concentration with distance and time is given by equation 3.13.

C * Sc (y,t) = - j ~ e x p  
^7lDt

where: 8 is the thickness of the plane initial source 

y is distance into the material

C is the initial concentration of the plane initial source 

t is the time over which the diffusion takes place 

D is the diffusion coefficient

(3.13)

Therefore by plotting the log of the iron content against the distance squared it can be 

shown that the slope of the graph will be equal to:
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gradient = -1  
4 Dt

(3.14)

Using this approach experimental work, as detailed in section 5.7, was carried out to 

test and validate the values for D0 and Q as detailed in table 3.1.

3.3.3 Growth Rate Constant

Equation 3.9 stated that:

L2 =2 Dpt* ' (P p r -C ,.)  , 
^ (C ^ -C J  (Cr -C * )

This can be greatly simplified to the growth rate equation of k f  where:

k -  A2D
{Co Cfa) (C# C0a)Py ^  pa J Py ^  Pa

r py j y

and

n = 0.5

Equation 3.9 therefore becomes:

L = kt*.0.5 (3.15)

However, the work of Jordan et al. (1997) and Onishi et al. (1974) has shown that the 

growth rate constant, n, is not the same for all the phases and is not equal to 0.5. 

Onishi et a l (1974) conducted experiments on iron-zinc diffusion couples heated at 

temperatures between 210°C and 410°C and concluded that the growth rate constants 

for the different phases were as follows:

n  ̂= 0.36 

n§ = 0.49 

nr = 0.23
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These values show that the 8 growth rate constant is still very close to 0.5 but that the 

values for the £ and Y phases are quite considerably lower. This shows that with a 

value close to 0.5 the growth of the 8 phase is diffusion controlled whereas other 

factors play a part in the growth of the £ and T phases.

The work of Jordan et a l (1992) looked at the effect of aluminium additions on the 

growth rate constant during galvanising and arrived at similar values to those of 

Onishi et a l (1974).

3.3.4 Aluminium Additions

In all commercial galvanising lines aluminium is added to the zinc spelter to create an 

inhibition layer between the zinc and the substrate. In a galvanising spelter the 

aluminium level is kept high to prevent the diffusion of iron atoms into the zinc. In a 

galvannealing spelter the aluminium level is reduced to allow alloying to take place 

during the subsequent heating of the strip.

In terms of the modelling approach the inhibition layer has the effect of introducing a 

time delay to the start of the alloying process, the magnitude of which can be 

attributed mainly to the effective aluminium content of the spelter.

From the work of Guttmann et a l (1995), Morimoto et a l (1997) Hertveldt et a l 

(1998) and Price (1999) we are able to assess the variation of inhibition layer 

thickness with the effective aluminium content of the bath.
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Figure 3.9. Variation of inhibition layer thickness with effective aluminium content.

A logarithmic fit was used to assess the relationship between thickness and effective 

aluminium. As the effective aluminium content increases, the thickness will 

eventually level out because the aluminium atoms cannot diffuse to the substrate 

within the specified time.

The time delay of the inhibition layer was modelled using the concept of the nominal 

diffusion distance and analysing the diffusion of zinc atoms through the aluminium 

inhibition layer.

The diffusion into a solid from a fixed surface concentration, Cs, takes the form of 

equation 3.16.

where: y = the distance through the solid

t = the time interval over which the diffusion takes place 

D = the diffusion coefficient of the diffusing atoms through the solid

Figure 3.10 shows a schematic plot of the concentration of atoms diffusing from a 

surface of fixed concentration.

(3.16)
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Figure 3.10. Schematic diagram of the diffusion of atoms from a fixed concentration.

Experimental observations have shown that the £ phase (zinc content 94wt%) is the 

first to develop and breakthrough the inhibition layer. Therefore, using equation 3.16 

and assuming that the spelter concentration is 100wt% zinc it can be shown that:

erfc
2-jDt

= 0.94 (3.17)

Using the knowledge that erfc = 1 - erf, equation 3.16 becomes:

1 - e r f r y  '
2 4Dt

= 0.94 (3.18)

Further manipulation of equation 3.18 and the use of error function tables enables the 

calculation of the time delay before alloying takes place:

t = 100 x y_
D

(3.19)
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where: t is the time delay before alloying takes place 

y is the thickness of the inhibition layer 

D is the diffusion coefficient of zinc atoms through aluminium

Using the Arrhenius equation detailed in equation 3.12 it is possible to calculate the 

value of D from the published values of D0 and Q in Smithells Reference Book of 

Metals. Two sets of values from two separate authors are published within this book 

and detailed in table 3.2.

Table 3.2. Values for D0 and Q for the diffusion of zinc in the inhibition layer.

| Set Authors Do (m /s) Q (kJ/mol)
A Peterson and Rothman (1997) 3.25 x 10'5 117.9
B D. L. Bdke (1997) 2,45 x 10'3 119.6

Experimental work, as detailed in section 5.7, was carried out to test and validate 

these values.

3.4 ASSUMPTIONS OF THE MODEL

To facilitate the production of the model certain assumptions were made. The first of 

these was the use of a single temperature during the galvannealing process. After 

leaving the bath the strip is heated up to the galvannealing temperature, held for a 

certain period of time and then cooled. However, the model assumes that the coated 

strip is instantly at the galvannealing temperature, held for the allotted time and then 

instantly cooled back down to room temperature.

During the galvannealing process intermetallic formation can sometimes progress 

through a series of outburst structures occurring at emerging grain boundaries. This 

leads to local variations within the coating structure. The model assumes that these 

outburst structures are minimal and that the coating forms in layers of q, 5 and T. 

In addition the model assumes that these layers are present in very small quantities at 

the start of the galvannealing process. These layers grow during the galvannealing 

process (Foct et al, 1993) and as such no nucleation stage exists and no energy 

change is associated with the interfaces between the phases. As these layers grow the

47



free zinc, rj, will be consumed until the intermetallic phases reach the surface of the 

coating. When the surface is reached the model assumes that the £ phase will be 

consumed by the growing 8 phase (Lamberigts, 1992 and Mataigne et al, 1995) and 

that no energy barrier exists to this transformation.

Other assumptions are that due to the thin nature of the coating there is no stirring or 

mixing within the coating and that the transport of iron through the coating is 

diffusion controlled. Furthermore, each of the phases is assumed to be homogeneous 

with identical diffusivity throughout. Finally, as predicted on the iron-zinc phase 

diagram, no £ phase exists if the galvannealing temperature is above 530°C.
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4 EXPERIMENTAL PROCEDURES

The following chapter details the procedures and equipment utilised during the 

program of work.

4.1 RHESCA HOT DIP SIMULATOR

The production of online galvanneal samples under varying processing conditions was 

not possible due to the restrictions of line parameters and production schedules. The 

production of laboratory controlled galvannealed coatings was therefore carried out 

on the Rhesca hot dip simulator based at the Engineering Centre for Materials and 

Manufacturing (ECM ) in Port Talbot. The Rhesca hot dip simulator consists of three 

main components, the computer control, the main tower and the satellite furnaces.

The computer control system operates the EuroSimulator™ software package written 

by Faulk Systems GMBH. The software package enables the user to control and 

manipulate the other two components of the hot dip simulator. The main tower is 

made up of four sections, the loading and cooling section, the heating section, the gas 

wiping section and the zinc spelter. A schematic diagram of the four sections is 

illustrated in figure 4.1

The satellite furnaces system consists of four independent Kanthal electric resistance 

furnaces controlled by the computer system. These furnaces enable the preparation of 

varying spelters separately from the main tower. A photograph of the main tower and 

the computer control system is shown in figure 4.2.



LOADING & 
COOLING

HEATING

Guide Rod

Sample
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De-drossmg Scissors
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Figure 4.1. Schematic diagram of the Rhesca hot dip simulator at Port Talbot.

Figure 4.2. Photograph of the Rhesca hot dip simulator based at Port Talbot.
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4.1.1 Rhesca Hot Dip Simulator Panels

The panels used in the Rhesca hot dip simulator are produced following the Welsh 

Technology Centre (WTC) operating procedure PD/MC/01, Laboratory Production of 

Hot-Dip Products. The panels are cut to a size of 200mm by 105mm using a Morgan 

Rushworth shear. A process window 65mm by 50mm is punched from the top 

section of the panel to reduce the amount of uncoated material that needs to be heated. 

Furthermore, to increase the rigidity and prevent movement during processing beads 

are pressed along the sides of the panel. Finally, for safety reasons, the comers of the 

panel are removed. A schematic diagram of a Rhesca hot dip simulator panel is 

illustrated in figure 4.3.

200mm

65mm

50mm

Holding Position

Process Window

Dipping Level

Thermocouple
Attachment

Beading

105mrn

Figure 4.3. Schematic diagram of a FIDS panel.

4.1.2 Processing of Rhesca Hot Dip Simulator Panels

The processing of panels was performed under the Welsh Technology Centre 

operating procedure PD/MC/01, Laboratory Production of ITot-Dip Products. The 

panel is cleaned with acetone to remove any excess oil before being attached to the
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guide rod in the loading section of the main tower. A k-type resistance thermocouple 

is spot welded to the upper right comer of the panel to enable accurate control and 

recording of the temperature changes. The door of the loading section is closed and 

held shut with four wing nuts at each comer to ensure an airtight seal.

To maintain a controlled environment the radiant tube, loading section and the upper 

part of the quartz tube are placed under vacuum and reduced to a pressure of 

approximately 30Pa. Once this pressure has been obtained the vacuum is turned off 

and the pressure returned by purging with a 5 % hydrogen 95% nitrogen gas mix.

Utilising the computer control system a set of instructions are input into the 

EuroSimulator™ software package detailing the exact specifications of the 

experiment. These specifications include, but are not limited to:

annealing temperature 

heating rate 

annealing time 

panel entry temperature 

dipping time 

wiping speed 

wiping pressure 

galvannealing temperature 

galvannealing time 

cooling rate

Upon execution of the program the panel moves down into the radiant tube at a speed 

of up to 1200 mm/s where it is heated to the specified temperature in the required time 

by infrared heaters. The panel is held at this temperature for the required period of 

time before returning to the loading and cooling section. Whilst in this position the 

operator uses the de-drossing scissors to remove any oxides or dross particles from the 

surface of the liquid zinc.
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In the loading and cooling section the panel is cooled down to the specified 

temperature by the use of air jets either side of the panel. Upon attaining the required 

temperature the panel moves down through the radiant tube and into the liquid zinc. 

Whilst in the liquid zinc the air knives are switched on and nitrogen gas is forced 

through the nozzles at high speed and pressure. Once the specified dipping time has 

been achieved the panel is withdrawn from the liquid zinc and through the air knives. 

The high pressure of the nitrogen gas removes excess zinc from the panel and 

produces a coating of the required thickness.

If the panel is to have a galvanised coating it is returned back to the loading and 

cooling section where it is cooled with nitrogen gas back down to room temperature. 

If a galvanneal coating is to be created the panel stops in the radiant tube where it is 

heated to the specified temperature in the required time. Upon reaching the specified 

temperature the panel is held at that temperature for the required period before 

moving back into the heating and cooling section where it is cooled with nitrogen gas 

down to room temperature. A typical heating regime for a galvannealed Rhesca hot 

dip simulator panel is shown in figure 4.4.
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Figure 4.4. Typical heating regime for a galvannealed Rhesca hot dip simulator panel.
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4.1.3 Accuracy and Limitations of the Rhesca Hot Dip Simulator

The Rhesca hot dip simulator allows accurate and easy manipulation of the process 

parameters involved during the commercial production of galvanneal. The 

temperature control is accurate to ±1°C and the coating thickness accurate to ±2 

microns.

However, exact replication of commercial processing conditions is not possible due to 

the configuration of the Rhesca hot dip simulator. The main difference is the use of 

infrared heating lamps on the Rhesca hot dip simulator compared to a mixture of gas 

and induction heating used on most galvanising lines. In addition the continuous 

movement of the steel substrate within the zinc spelter during the dipping process 

cannot be simulated on the Rhesca hot dip simulator.

4.2 COATING AND SPELTER ANALYSIS

The chemical composition of both the galvanneal coating and the zinc spelter of the 

Rhesca hot dip simulator can have profound effects upon the coatings physical 

properties and characteristics. An accurate measurement of both of these parameters 

was carried out using Inductively Coupled Plasma Spectrophotometry (ICP).

Identification of the phases under the optical microscope was achieved by etching the 

polished samples with a Kilpatrick solution for a few seconds. This resulted in the £ 

phase showing up as yellowy brown colour, the 8 phase a blue colour and the T phase 

a dark brown colour.

4.3 CRATER DENSITY MEASUREMENTS

To assess and quantatively measure the crater coverage 10mm by 10mm sections 

were punched from the samples produced on the Rhesca hot dip simulator. These 

were analysed in a Scanning Electron Microscope (SEM) using the Welsh 

Technology Centre operating procedure CP/03/OP/02, General Operation of the JEOL 

840A SEM. Ten images of each sample were taken from random points on the
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surface at a magnification of 300x. This degree of magnification allowed an area of 

125,000jam to be analysed per image and still enable easy identification of the craters 

present.

The images taken were then loaded into the KS300 image analysis software package. 

Once loaded the craters present within the surface of the sample were manually 

identified and the outer perimeter of them drawn around. After identifying all the 

craters the software package calculated the actual crater coverage both in pm2 and 

percentage of the image. Once all ten images had been analysed an average was 

obtained for the total crater coverage of the sample.

4.4 POWDERING TESTS

To assess the effect that craters have upon the coating failure mechanisms of the 

galvanneal coating 55mm discs were punched and de-burred from the processed 

panels. These discs were then processed according to the Welsh Technology Centre 

operating procedures PE/SE/02, Procedure for the 55mm to 33mm Cup Draw 

Powdering Tests, and PE/SE/03, Procedure for the Weight Loss Powdering Test.

Each disc was ultra-sonically cleaned in an acetone bath for three minutes and then 

accurately weighed using a Sartorius electronic balance, accurate to ±0.000 lg. If the 

effect of lubrication was also to be analysed a coating of the commercially available 

Quaker P20K2 oil was applied to both sides of the disc. In addition both sides of the 

disc were covered with a sheet of acetate.

Deformation of the disc into a cup shape was achieved on an Erichsen Press where a 

32mm diameter punch was used with a punch speed of lmm/s and a blank holder 

force of lkN. The starting disc and formed cup are shown in figure 4.5.
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55mm

32mm

Figure 4.5. Starting disc and formed cup.

After deformation the cup was again ultra-sonically cleaned and 3M Scotch Brand 

Tape was applied to the outer surface of the cup. Upon removal of the tape the 

formed cup was then re-weighed on the Sartorious electronic balance. The difference 

in weight from the first weighing was then equal to the amount o f coating that had 

become detached from the substrate during pressing.

4.5 ELECTRON BACKSCATTER DIFFRACTION

To assess and evaluate the influence of the underlying steel grain structure on the 

development of the galvanneal coating the process of electron backscatter diffraction 

(EBSD) was utilised.

4.5.1 EBSD Apparatus

The EBSD apparatus consists of five main components:

• SEM

• Diffraction (video) camera interfaced to a phosphor screen

• Camera control/diffraction pattern processor unit

• Computer

• Dedicated software to control data acquisition and processing
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The electron beam from the SEM impinges upon the surface of the specimen at an 

angle of approximately 20°. This produces a diffraction pattern from the interaction 

between the electrons and the crystal lattice of the steel substrate.

The diffraction pattern is produced on the phosphor screen and is then turned into a 

digital image by the diffraction video camera. The digital image is then passed into 

the camera control/diffraction pattern processor unit where the image is further 

enhanced to produce a cleaner and more defined diffraction pattern. This diffraction 

pattern is then inputted into the computer where further analysis using a dedicated 

software package is carried out to calculate the orientation of the crystal lattice at the 

point being analysed. The electron beam is then moved an operator determined step- 

size and the process is repeated. This continues over a selected area to produce an 

orientation map of the specimen. A schematic diagram of the EBSD set-up is shown 

in figure 4.6.

P C with
dedicated
softwareVideo

Camera

SEM

Phosphor Screen
Specimen

Figure 4.6. Schematic Diagram of the Electron Backscatter Diffraction Set-up.

4.5.2 Sample Preparation for EBSD Analysis

Samples for EBSD were taken as close to the thermocouple as was practically 

possible to ensure accurate temperature readings. The surface analysed was also that 

to which the thermocouple had been attached. A total of 4096 measurements were 

taken with each sample using a step size of approximately 3 microns. This allowed 

for an area approximately 192 microns squared to be analysed which is the equivalent 

of approximately 370 grains.
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To produce a distinct clear image a cross-section of the sample to be analysed was 

mounted in a conductive resin and polished to an almost mirror finish using standard 

polishing techniques. The final preparation of the sample involved polishing with 

colloidal silica. Colloidal silica was used because it produces a very good mirror 

finish without causing severe deformation of the surface as would occur with diamond 

paste.
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5 EXPERIMENTAL PROGRAMME

The following chapter details the materials used and the experimental work carried 

out to achieve the stated objectives.

5.1 OBJECTIVES

The primary objective of the project was to,

‘investigate the iron-zinc coating constitution and crater evolution in galvanneal. '

Achieving this objective was accomplished through a series of five sequential 

experimental investigations.

1. Critical assessment of a quantative technique for analysing crater coverage in 

the galvanneal coating.

2. Investigation into the influence of process parameters on the crater coverage of 

the galvanneal coating produced on the Rhesca hot dip simulator.

3. Investigation into the characteristics, formation and development of craters 

within the galvanneal coating produced on the Rhesca hot dip simulator.

4. Investigation into the effect of craters upon the coating failure mechanism of 

the galvanneal coating produced on the Rhesca hot dip simulator.

5. Development and testing of a model, based on diffusion couples, to predict the 

coating constitution of the galvanneal coating produced on the Rhesca hot dip 

simulator.

5.2 MATERIALS

A titanium-niobium stabilised interstitial free (TiNb) steel produced at the Corns 

steelworks in Port Talbot was used for the vast majority of the experimental work. 

The steel was hot and cold rolled at the Port Talbot steelworks and obtained just prior 

to processing on the ZODIAC galvanising line at the Corns steelworks in Llanwem. 

The chemical composition of the steel is shown in table 5.1.

59



Table 5.1. Chemical analysis of TiNb IF steel.

Element wt%

Carbon 0.002

Silicon 0.001

Manganese 0.160

Phosphorous 0.013

Sulphur 0.009

Nickel 0.018

Copper 0.010

Tin 0.001

Nitrogen 0.002

Sol. Aluminium 0.032

Chromium 0.011

Molybdenum 0.001

Niobium 0.016

Titanium 0.030

Vanadium 0.001

5.3 EXPERIMENTAL INVESTIGATION ONE

Critical assessment o f  a quantative technique for analysing crater coverage in the 

galvanneal coating.

Due to the extensive use of the technique for measuring crater coverage, as detailed in 

section 4.3, it was necessary to assess its accuracy and repeatability. This was 

achieved through four sets of work which were designed to determine:

1. The accuracy and repeatability of identifying and marking the edge of a single 

crater (Single Crater Analysis).

2. The accuracy and repeatability of identifying and marking all the craters 

within a single image (Single Image Analysis).
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3. The variation of crater coverage over a single sample (Single Sample 

Analysis).

4. The variation of crater coverage between two sets of ten images from the same 

sample (Single Sample Double Image Analysis).

5.3.1 Single Crater Analysis

To assess the accuracy of identifying and marking individual craters a single crater 

was identified within an image of the galvanneal coating and the perimeter of the 

crater was drawn around ten times over a five-day period. The KS300 image analysis 

package was then utilised to calculate both the area and the perimeter of the crater 

each time.

5.3.2 Single Image Analysis

To assess the accuracy and consistently of identifying craters within a single image an 

image of the galvanneal coating, at a magnification of 300x, was loaded into the 

KS300 image analysis package. The craters within the image were then identified and 

drawn around on seven different occasions over a five-day period. The KS300 image 

analysis package was then utilised to calculate the crater coverage, total perimeter and 

number of craters for each of the seven measurements.

5.3.3 Single Sample Analysis

To assess the variation of crater coverage over a single sample ten images from 

random points over a sample were loaded into the KS300 image analysis package. 

The craters within each image were identified and the crater coverage calculated.

5.3.4 Single Sample Multiple Image Analysis

To assess the accuracy of taking ten images per sample ten sets of ten images were 

taken at random locations over the surface of a single sample. The craters within each
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image were identified and the average crater coverage of each of the ten sets was 

calculated. The variation between the ten sets of images was then calculated.

5.4 EXPERIMENTAL INVESTIGATION TWO

Investigation into the influence o f process parameters on the crater coverage o f  the 

galvanneal coating produced on the Rhesca hot dip simulator.

In order to gain a certain degree of control over the formation of craters within the 

galvanneal coating it was necessary to determine the influence that process parameters 

had upon the formation of craters. To achieve this three sets of experimental work 

were carried out:

1. A preliminary investigation into the effect of processing parameters upon the 

formation of craters within the galvanneal coating.

2. A partial statistically designed experiment analysing the interaction between 

four of the main temperature effects

3. A full statistically designed experiment analysing the interaction between three 

temperature effects.

5.4.1 Preliminary Investigation into Process Parameter Effects

Based upon both the literature review and previous work the initial experiment 

analysed four main process parameters, the spelter temperature, the heating rate to 

500°C after dipping, the effective aluminium and the galvannealing temperature. The 

standard processing conditions utilised during this experiment are shown in table 5.2
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Table 5.2. Standard conditions for preliminary investigation.

Process Param eter Value

Annealing Temperature (°C) 800

Annealing Time (s) 60

Strip Entry Temperature (°C) 10°C above spelter

Spelter Temperature (°C) 455

Heating Rate to 500°C (°C/s) 50

Galvannealing Time (s) 8

Galvannealing Temp (°C) 510

Eff. A1 of Spelter (wt%) 0.94

Coating Thickness (microns) 8

Iron Content (wt%) 10

The process parameters to be investigated were then modified around these standard 

conditions and carried out in duplicate. The variation of the process parameters is 

shown in table 5.3.

Table 5.3. Variation in process parameters for preliminary investigation.

Process Param eter Variation

Spelter Temperature (°C) 430,440, 450, 460

Heating Rate to 500°C (°C/s) 2,4, 8, 12, 15

Eff. A1 of Spelter (wt%) 0.10, 0.12, 0.14, 0.16, 0.18

Galvannealing Temperature (°C) 440,510, 520, 530, 550

5.4.2 Partial Statistical Interaction Analysis

Following on from the previous work eight panels of galvannealed TiNb IF steel were 

produced on the Rhesca hot dip simulator to investigate the effects of annealing 

temperature, strip entry temperature, spelter temperature and galvannealing 

temperature upon crater formation. Table 5.4 shows the process conditions used for 

each of the panels.
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Table 5.4. Process parameters for partial statistical interaction analysis.

Process Param eter 1 2 3 4 5 6 7 8

Annealing Temperature (°C) 780 850 780 850 850 780 850 780

Strip Entry Temperature (°C) 460 460 480 460 480 480 480 460

Spelter Temperature (°C) 460 480 480 480 460 480 460 460

Galvannealing Temperature (°C) 510 510 510 500 500 500 510 500

Heating Rate to GA Temp (°C/s) 10 10 10 4 4 4 10 4

GA Time (s) 8 8 8 2 2 2 8 2

The effective aluminium content of the spelter was maintained at 0.108 wt% and the 

samples were all annealed for 60 seconds at the respective temperatures. To ensure 

each of the samples was galvannealed to the same degree, even though different 

galvannealing temperatures were used, the galvannealing time and heating rate were 

modified as shown.

5.4.3 Full Statistical Interaction Analysis

As a result of the work accomplished a full statistical interaction analysis of the 

annealing temperature and the strip entry temperature was carried out. Furthermore, 

an interaction between the crater coverage and the lowest temperature reached after 

dipping (TAD) was suspected. The temperature after dipping (TAD) was therefore 

included within the full statistical interaction analysis experiment along with the strip 

entry temperature and annealing temperature. Table 5.5 shows the process conditions 

utilised during the experiment.

Table 5.5. Process parameters for statistical interaction analysis.

Process Param eter 1 2 3 4 5 6 7 8

Strip Entry Temperature (°C) 480 480 480 480 430 430 430 430

Temperature After Dipping (°C) 440 440 410 410 440 440 410 410

Annealing Temperature (°C) 900 700 900 700 900 700 900 700
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All of the conditions shown in table 5.5 were carried out in triplicate. The 

temperature of the spelter was held at 460°C and the effective aluminium content at 

0.108 wt%. The annealing for all the samples was carried out for sixty seconds and 

the galvannealing conditions were maintained at 500°C for 10 seconds.

As well as investigating the effects of strip entry temperature, temperature after 

dipping and annealing temperature an additional set of work was carried out on the 

effect of the aluminium content of the spelter upon crater formation. This involved 

using two levels of effective aluminium content, 0.1 wt% and 0.113wt%. The 

annealing temperature and strip entry temperature were modified between the high 

and low states with the temperature after dipping maintained at the low state.

5.5 EXPERIMENTAL INVESTIGATION THREE

Investigation into the characteristics, formation and development o f  craters within the 

galvanneal coating produced on the Rhesca hot dip simulator.

Under similar processing conditions craters are observed within the galvanneal 

coating but not within the galvanised coating. Therefore, to further investigate the 

formation of craters within the galvanneal coating and how they develop during the 

galvannealing process panels of TiNb IF steel were galvannealed on the Rhesca hot 

dip simulator for varying degrees of time. Using the results from section 5.4 the 

process conditions utilised during this experiment were manipulated to enhance the 

crater formation within the coating and are shown in table 5.6. In order to investigate 

the formation of both ordered and disordered craters two different effective 

aluminium contents and strip entry temperatures were utilised.

To further understand the formation of craters within the galvanneal coating a marker 

was placed within the samples that went through the coating and down to the 

substrate. Images of the coating surface were taken at specific points around the 

marker using the JEOL 810A SEM. The coating was then removed with inhibited 

hydrochloric acid and the exposed substrate etched with 5% Nital for twenty seconds.
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Images of the underlying substrate were then taken at the same specified points 

around the marker that the coating images had been taken.

Table 5.6. Process conditions for crater development experiment.

Process Param eter Value (ordered) Value (disordered)

Annealing Temperature (°C) 900 900

Annealing Time (s) 60 60

Strip Entry Temperature (°C) 465 455

Spelter Temperature (°C) 460 460

Effective Aluminium (wt%) 0.1 0.113

Heating Rate (°C/s) 50 50

Galvannealing Temp (°C) 500 500

Galvannealing Time (s) 0 to 14 0 to 14

In addition to the SEM images, optical and EBSD work was also carried out upon the 

underlying substrate on samples that had been annealed at 700°C and 900°C on the 

Rhesca hot dip simulator but which had not undergone any form of dipping

Finally, over 4,000 craters were measured to obtain a size distribution of craters 

within the galvanneal coating.

5.6 EXPERIMENTAL INVESTIGATION FOUR

Investigation into the effects o f craters upon the coating failure mechanism o f the 

galvanneal coating produced on the Rhesca hot dip simulator.

Previous work (Carless, 1999) has suggested that the presence of craters within the 

galvanneal coating may help to reduce the amount of powdering experienced during 

deformation procedures. Work from the previous investigation showed how the 

annealing temperature affected both the crater coverage of the galvanneal coating and 

the microstructure of the underlying substrate. Manipulation of both the annealing 

temperature and the galvannealing temperature facilitated the production of samples
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with both high and low annealing temperature and high and low crater coverage. This 

would therefore enable the effects of the annealing temperature and the crater 

coverage to be investigated both separately and in conjunction with each other. In 

addition the effect of iron content and coating weight upon both the powdering and 

flaking properties of the coating was also investigated.

Furthermore, the formed cups were also analysed under the scanning electron 

microscope to investigate how both the coating and craters had performed during 

deformation. Images were taken from inside and outside of the cup at the locations 

shown in figure 5.1.

Figure 5.1. Schematic diagram of sampling positions.

Further investigative work was also carried out on the underlying substrate by 

dissolving the overlying galvanneal coating with inhibited hydrochloric acid. Images 

of the underlying substrate were then taken from the outside of the cup at the locations 

shown in figure 5.1

5.7 EXPERIMENTAL INVESTIGATION FIVE

Development and testing o f a model, based on diffusion couples, to predict the coating 

constitution o f  the galvanneal coating produced on the Rhesca hot dip simulator.

The principle of diffusion couples was utilised to produce a model to predict the 

formation of the galvanneal coating. One of the main parameters that needed to be 

determined in order for the model to work was the diffusion co-efficient of iron in 

zinc. This was calculated by SEM elemental mapping of the iron content of a low 

aluminium galvanneal coating that had been galvannealed for ten seconds at 500°C.

Outside Inside Middle

Bottom
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By plotting the log of the iron concentration against the square of the distance into the 

coating, as detailed in section 3.2.2, the diffusion coefficients for the different phases 

could be determined. The results obtained could then be compared to the published 

values of D0 and Q as detailed in table 3.1.

For ease of use and portability the GAModeller was created in the Microsoft Visual 

Basic™ programming language (see appendix A). This enabled the production of an 

easy to use graphical user interface (GUI) as well as the rapid calculation and 

graphical representation of the coating constitution.

Once this initial stage was completed final testing and validation of the model was 

achieved by producing panels of galvannealed TiNb IF steel on the Rhesca hot dip 

simulator under the conditions shown in table 5.7.

Table 5.7. Process parameters used for GAModeller testing.

Process Param eter Value

Annealing Temperature (°C) 800

Annealing Time (s) 60

Strip Entry Temperature (°C) 465

Spelter Temperature (°C) 455

Coating Thickness (microns) 20

The effective aluminium of the spelter, the galvannealing temperature and 

galvannealing time were all then varied for each panel, as shown in table 5.8.

The coating constitution of the panels was then analysed using X-Ray Diffraction 

(Angeli et al., 1993). The two sets of published values for Dc and Q of zinc in 

aluminium, as detailed in section 3.2.4, were then individually used within the 

GAModeller and the results compared with the XRD work to see which set gave the 

best results.
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Table 5.8. Variation of process parameters for GAModeller testing.

Panel ID Eff Al. Galv. Temp Galv. Time
GAM1 0.108 506 4
GAM2 0.108 534 20
GAM3 0.108 410 3
GAM4 0.108 417 8
GAM5 0.108 446 18
GAM6 0.108 556 6
GAM7 0.108 577 16
GAM8 0.108 489 20
GAM9 0.108 546 14
GAM10 0.108 585 18
GAM11 0.108 565 5
GAM12 0.12 476 1
GAM13 0.12 540 2
GAM14 0.12 561 16
GAM15 0.12 508 16
GAM16 0.12 440 7
GAM17 0.12 440 7
GAM18 0.12 451 11
GAM19 0.12 451 11
GAM20 0.12 491 6
GAM21 0.12 578 4
GAM22 0.12 483 16
GAM23 0.12 596 4
GAM24 0.12 596 4
GAM25 0.14 553 11
GAM26 0.14 485 17
GAM27 0.14 405 4
GAM28 0.14 496 8
GAM29 0.14 450 2
GAM30 0.14 452 4
GAM31 0.14 544 1
GAM32 0.14 544 1
GAM33 0.14 576 2
GAM34 0.14 488 7
GAM35 0.14 591 12
GAM36 0.14 483 20
GAM37 0.14 414 8
GAM38 0.16 482 19
GAM39 0.16 419 11
GAM40 0.16 412 1
GAM41 0.16 409 12
GAM42 0.16 563 5
GAM43 0.16 573 6
GAM44 0.16 428 16
GAM45 0.16 505 17
GAM46 0.16 440 18
GAM47 0.16 413 13
GAM48 0.108 506 4
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6 RESULTS AND DISCUSSION

The following chapter contains the experimental results and discussion for each of the 

individual investigations.

6.1 EXPERIMENTAL INVESTIGATION ONE

Critical assessment o f a quantative technique for analysing crater coverage in the 

galvanneal coating,

Due to the extensive use of this technique, and as stated in section 5.3, this 

investigation was carried out to determine the errors involved with using the KS300 

image analysis package to measure the crater coverage within the galvanneal coating.

6.1.1 Single Crater Analysis

Table 6.1 details the results from the single crater analysis that was carried out to 

determine the accuracy of identifying and marking the edge of a single crater using 

the KS300 image analysis package.

From the ten measurements carried out the average area of the single crater was 

calculated as 851.7pm2 and the average perimeter 182.8 microns. The smallest area 

was 828pm2 and the largest area 876pm2. The largest perimeter measured was 190 

microns and the smallest 177 microns. Over the ten images taken the standard 

deviation for the area was 16.7pm2 and for the perimeter 4.4 microns. For three 

standard deviations the variation of the area for the ten measurements was ±5.9% of 

the average and for the perimeter ±7.3% of the average.
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Table 6.1. Experimental results from single crater analysis

Measurement Area (pm2) Perimeter (pm)

1 835 180

2 859 177

3 846 176

4 836 187

5 855 185

6 874 190

7 843 182

8 876 188

9 865 182

10 828 181

Average 851.7 182.8

a ±16.7 ±4.4

3ct ±50.1 ±13.2

% of Average ±5.9 ±7.3

Analysis of the results and figure 6.1 show that the size of the measured area is not 

proportional to the size of the perimeter. For example, although measurement ten 

gives the smallest area it does not give the smallest perimeter. Figure 6.1 shows the 

relationship between the measured area and the measured perimeter. A general trend 

is observed whereby an increase in the perimeter results in an increase in the area. 

However, a large amount of scatter is observed within the data, as shown by the low 

R2 value.
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Figure 6.1. Correlation of measured crater area and perimeter for single crater 

analysis.

The results from this investigation have shown that the KS300 image analysis 

technique is sufficiently accurate in consistently determining and calculating the area 

of an individual crater. The large scatter observed in figure 6.1 is explained by the 

very rough and irregular shape of the representative crater used to carry out the 

investigation. While defining the edge of the crater with the image analysis package 

small comers of the crater may be omitted thus varying the relationship between the 

measured area and the measured perimeter.

6.1.2 Single Image Analysis

Table 6.2 details the experimental results obtained by taking a single image of the 

galvanneal coating and determining its crater density. This was carried out to 

determine the accuracy of identifying and measuring craters within the galvanneal 

coating using the KS300 image analysis package.
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The average total area of crater coverage was 9599.0|Lim2 or 7.84% of the total image 

and ranged from as low as 8492pm2 to as high as 10624jiim2. The total perimeter of 

all the measured craters was on average 3049.7pm ranging from 2901 jam to 3305pm. 

Furthermore, the strong positive correlation between the total perimeter and the area is 

shown in figure 6.2. An R2 value of 0.6867 shows considerably less scatter than the 

correlation for the single image analysis shown in figure 6.1. In addition, the number 

of craters measured is seen to vary from as low as fifteen craters to as high as nineteen 

craters over the seven measurements.

Table 6.2. Experimental results from single image analysis

Measurement Area
(pm2)

Area
(%)

Total Perimeter 
(pm)

Number of 
Craters

1 8880 7.3 2901 15

2 10268 8.4 3067 16

3 9584 7.8 2903 15

4 9369 7.7 3125 17

5 10624 8.7 3305 17

6 8492 6.9 2829 15

7 9976 8.2 3218 19

Average 9599.0 7.84 3049.7 16.3

a ±700.6 ±0.57 ±165.5 ±1.4

3a ±2101.8 ±1.71 ±496.5 ±4.2

% of Average ±21.9 ±21.90 ±16.3 ±25.5
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Figure 6.2. Correlation between total perimeter and measured area for the single 

sample analysis.

6.1.3 Single Sample Analysis

Table 6.3 details the experimental results from the single sample analysis whereby ten 

images from different areas of the sample were taken and the crater coverage 

analysed. This was carried out to determine the variation of crater coverage over a 

single sample.

The average total area covered by craters was 7817.6 pm2 or 6.39%. This varied from 

as low as 4798pm2 in image four to as high as 16524pm2 in image six. This large 

variation between images produced a standard deviation of ±3328.4pm2 or ±127.73% 

of the average for three standard deviations.

♦

R = 0.6867

♦

3400
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Table 6.3. Experimental results from single sample analysis

Image No. Area (pm2) Area (%)

1 9743 8.0

2 6732 5.5

3 5484 4.5

4 4798 3.9

5 9913 8.1

6 16524 13.5

7 6973 5.7

8 5422 4.4

9 6156 5.0

10 6431 5.3

Average 7817.6 6.39

o ±3328.3 ±2.72

3a ±9984.9 ±8.16

% of Average ±127.7 ±127.7

The results from this investigation show the large variation in crater coverage across 

the single sample analysed. The results also illustrate the fact that taking a single 

image does not give an accurate indication of the crater coverage of the whole sample.

6.1.4 Single Sample Multiple Image Analysis

Table 6.4 details the experimental results from the single sample multiple image 

analysis. Ten sets of ten images were analysed for crater coverage and the average 

coverage calculated from each set. This was carried out to determine whether or not 

taking ten images would give an accurate representation of the crater coverage.

The average of all one hundred images was 9.8% coverage with the individual sets 

ranging from as low as 9.5% to as high as 10.0%. This range of values equates to a 

standard distribution value of just 0.2%.
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Table 6.4. Experimental results for single sample multiple image analysis

Set
Average Area 
Coverage (%)

1 10.0

2 9.7

3 9.8

4 9.8

5 9.9

6 9.5

7 9.6

8 9.8

9 9.5

10 10.1

Average 9.77

a 0.21

3a 0.63

±% of Average 6.54

6.1.5 Discussion

The results from table 6.1 show that the errors associated with identifying and 

marking the edge of a crater are minimal. For three standard deviations the variation 

of the area for the ten measurements was just ±5.9% of the average and for the 

perimeter just ±7.3% of the average. The lack of correlation between the measured 

perimeter and the measured area in figure 6.1 is a result of the rough and irregular 

shape of the crater used in the investigation. While determining the edge of a crater it 

is possible to miss out parts of the crater thus affecting the relationship between the 

perimeter and the area.

When the results from the single image are analysed, table 6.2, it is clear to see that a 

moderate error is experienced. The different measurements for the total crater 

coverage for a single image varied from as low as 8492pm2 to as high as 10624pm2. 

For three standard deviations this was equal to ±2101.8pm2 or ±21.9% of the average.

76



This moderate error is associated with the problem of consistently identifying what is 

and what is not a crater. This is illustrated firstly by the variation in the actual number 

of craters identified for each measurement and secondly by the fact that the 

measurement with the highest number of craters does not have the highest crater 

coverage. For example a comparison between measurements two and seven shows 

that although measurement seven identified 19 craters and crater coverage of 

9976pm2 measurement two identified just 16 craters but had a coverage of 10268pm2. 

The improved correlation observed in figure 6.2 between the total perimeter and the 

total area, as compared to figure 6.1, is explained by the fact that taking measurements 

from several craters masks the error associated with determining the exact edge.

Table 6.3 shows the results from the single sample analysis whereby ten surface 

images were taken from a single sample and analysed for crater coverage. The results 

show a large variation in the crater coverage across the images going from as low as 

4798pm2 to as high as 16524pm2. For three standard deviations this equates to 

±9984.9pm2 or ±127.7% of the average. This shows that across a single sample of 

galvanneal there is considerable variation in the crater coverage and that when 

measuring the coverage of a sample it is not possible to measure just a single image.

The results from the single sample multiple image analysis whereby ten sets of ten 

images were taken from a single sample of galvanneal are shown in table 6.4. The 

variation between the ten sets of images is seen to be negligible and over three 

standard deviations the variation in crater coverage is just ±0.6pm2 or ±6.54% of the 

average. These results show that by taking ten images of the surface of the galvanneal 

coating a true representation of the crater coverage can be achieved.

6.1.6 Summary

This investigation has developed and tested a technique for identifying and measuring 

craters within the galvanneal coating. The technique of measuring the crater coverage 

within the galvanneal coating by taking ten SEM images of the surface and using an 

image analysis package has proved to be satisfactory. Care and attention needs to be 

exercised when identifying craters and although time consuming the technique gives
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valuable information about crater size and morphology as well as an error of just 

±6.54%.
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6.2 EXPERIMENTAL INVESTIGATION TWO

Investigation into the influence o f process parameters on the crater coverage o f the 

galvanneal coating produced on the Rhesca hot dip simulator.

As stated in section 5.4 this experimental investigation was carried out to gain greater 

understanding of the influence of process parameters upon the crater coverage within 

the galvanneal coating. During this investigation the manipulation of the various 

process parameters resulted in a change in the morphology of the craters that were 

observed. Whereas previously just an ordered structure had been observed at the base 

of the crater during the investigation a more random and disordered structure was also 

observed, figure 6.22. The different craters will now be referred to as ordered craters 

for those with an ordered structure at their base and disordered craters for those with a 

random and disordered structure at their base. During the preliminary and partial 

investigation just the total crater coverage was measured, including both the ordered 

and disordered craters. However, with the full statistical analysis the ordered and 

disordered craters were treated as separate features in an attempt to discover the 

reason behind the change in morphology.

6.2.1 Preliminary Investigation into Process Parameter Effects

Figure 6.3 details the experimental results from the preliminary investigation into the 

effect of process parameters upon the formation of craters within the galvanneal 

coating.

Consistently low crater coverage was observed for the majority of the samples except 

for those with high effective aluminium content and in one instance when the spelter 

temperature was at 460°C. The highest crater coverage was approximately 12% and 

occurred when the effective aluminium content was 0.127wt%. Variation of the 

heating rate from 2°C s'1 to 15°C s'1 under these process conditions consistently gave 

zero crater coverage. A similar result was also experienced when the galvannealing 

temperature increased from 440°C to 550°C. In addition, modification of the spelter 

temperature from 430°C to 460°C had no influence upon crater coverage.
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Figure 6.3. Experimental results from preliminary investigation.

6.2.2 Partial Statistical Interaction Analysis

Figures 6.4 to 6.7 chart the experimental data from the partial statistical interaction 

analysis carried out to further investigate the influence of process parameters upon the 

formation of craters within the galvanneal coating.

To keep the legends on the graphs to an acceptable size the following key code has 

been used:

ANN = Annealing temperature BT = Bath/Spelter temperature 

GAT = Galvannealing temperature SET = Strip entry temperature 

TAD = Temperature after dipping
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F igure 6.4 shows the zero correlation between the bath temperature and the crater 

coverage within the samples. A galvannealing temperature of 500°C (as 0 , 0  in 

fiigure 6.4) produces samples with a greater crater coverage compared to a 

g;alvannealing temperature of 510°C (as □ , A  in figure 6.4).
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Figure 6.4. The effect of bath temperature upon crater coverage.

Figure 6.5 illustrates a strong positive correlation between the annealing temperature 

of the sample and the crater coverage. In all cases an increase in the annealing 

temperature produces an increase in the crater coverage of the sample. The average 

gradient for all the lines is equal to 0.0136 and represents a 0.0136 increase in the 

percentage crater coverage for each 1°C increase in annealing temperature. It can also 

be seen that a galvannealing temperature of 500°C (as O , O  in figure 6.5) produces 

higher crater coverage than a galvannealing temperature of 510°C (as A , □  in figure 

6.5).
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Figure 6.5. The effect of annealing temperature upon crater coverage.

Figure 6.6 illustrates the relationship between the strip entry temperature and the 

crater coverage o f the samples analysed. When the galvannealing temperature is at 

500°C (as O , O  in figure 6.6) the overall crater coverage is greater, in addition an 

increase in the strip entry temperature results in an increase in the crater coverage. 

The average gradient of the two lines is equal to 0.097 and represents a 0.097 increase 

in the percentage crater coverage for each 1°C increase in the strip entry temperature.

However, when the galvannealing temperature is at 510°C (as A , □  in figure 6.6) an 

overall lower crater coverage is seen and an increase in the strip entry temperature 

leads to a decrease in the crater coverage. The average gradient of the two lines is 

equal to -0.028 and represents a 0.028 decrease in the percentage crater coverage for 

each 1°C increase in the strip entry temperature.
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Figure 6.6. The effect of strip entry temperature upon crater coverage.

Figure 6.7 shows the strong correlation between the galvannealing temperature and 

the crater coverage of the samples analysed. It can be clearly seen that an increase in 

the galvannealing temperature results in a decrease in the crater coverage. However, 

the degree to which the crater coverage decreases appears to be dependent upon the 

strip entry temperature. With a strip entry temperature of 480°C the average gradient 

of the lines is equal to -0.552 and represents a 0.552 decrease in the percentage crater 

coverage for each 1°C increase in the galvannealing temperature. However, with a 

strip entry temperature of 460°C the average gradient of the lines is -0.302 and 

represents a 0.302 decrease in the percentage crater coverage for each 1°C increase in 

strip entry temperature.
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Figure 6.7. The effect of galvannealing temperature upon crater coverage.

6.2.3 Full Statistical Interaction Analysis

Figures 6.8 to 6.17 detail the experimental results obtained from the full statistical 

interaction analysis.

Strip Entry Temperature (SET)

Figure 6.8 shows the effect of strip entry temperature upon the ordered crater 

coverage within the galvanneal coating produced on the Rhesca hot dip simulator. 

When a high annealing temperature of 900°C is utilised (as O , □  in figure 6.8) it can 

be seen that an increase in the strip entry temperature leads to an increase in the 

ordered crater coverage. However, when a low annealing temperature of 700°C is 

used (as O , A  in figure 6.8) the coverage of ordered craters remains zero even when 

the strip entry is increased.
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Figure 6.8. The effect of strip entry temperature upon ordered crater coverage.

Figure 6.9 illustrates the effect of strip entry temperature upon the coverage of 

disordered craters within the galvanneal coating produced on the Rhesca hot dip 

simulator. When a high annealing temperature is used (as O, □  in figure 6.9) an 

increase in the strip entry temperature results in a decrease in the coverage of 

disordered craters. When a low annealing temperature is used (as O , A  in figure 6.9) 

the coverage of disordered craters is unaffected by the variation in strip entry 

temperature.

Figure 6.10 shows the effect of strip entry temperature upon the combined crater 

coverage of both disordered and ordered craters. A high annealing temperature (as O,

□  in figure 6.10) produces a higher crater coverage compared to a low annealing 

temperature (as O , A  in figure 6.10). Modifying the strip entry temperature has no 

effect upon the total crater coverage within the galvanneal coating.
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Figure 6.9. The effect of strip entry temperature upon disordered crater coverage.
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Figure 6.10. The effect of strip entry temperature upon total crater coverage.
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Annealing Temperature

Figure 6.11 shows the influence of annealing temperature on the coverage of ordered 

craters within the galvanneal coating. A definite strong positive relationship can be 

observed whereby an increase in the annealing temperature from 700°C to 900°C 

produces an increase in the crater coverage. The highest crater coverage is 

experienced with samples with both a high annealing temperature and a high strip 

entry temperature (as □ , A  in figure 6.11).
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Figure 6.11. The effect o f annealing temperature upon ordered crater coverage.

Figure 6.12 details the effect of annealing temperature upon the coverage of 

disordered craters within the galvanneal coating. An increase in the annealing 

temperature combined with a low strip entry temperature produces an increase in the 

disordered crater coverage (as O , O in figure 6.12). When the strip entry temperature 

is high (as □ , A  in figure 6.12) the increase in annealing temperature has no effect 

upon the disordered crater coverage.
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Figure 6.12. The effect of annealing temperature upon disordered crater coverage.
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Figure 6.13. The effect of annealing temperature upon total crater coverage.
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Figure 6.13 illustrates the influence of annealing temperature upon the total crater 

coverage. A strong positive relationship is defined whereby an increase in the 

annealing temperature from 700°C to 900°C produces an increase in the total crater 

coverage.

Temperature After Dipping (TAD)

Figure 6.14 illustrates the negligible effect that the temperature after dipping has upon 

the coverage of ordered crater within the galvanneal coating. The highest ordered 

crater coverage is experienced with samples processed with both a high annealing 

temperature and a high strip entry temperature (as □  in figure 6.14). All other 

processing conditions produced zero ordered crater coverage.
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Figure 6.14. The effect of temperature after dipping upon ordered crater coverage.

Figare 6.15 illustrates the effect of temperature after dipping upon disordered crater 

courage within the galvanneal coating. The highest disordered crater coverage 

occurs when a high annealing temperature is combined with a low strip entry
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temperature (as A  in figure 6.15). All other conditions produce very low disordered 

crater coverage and the influence of temperature after dipping is seen to be negligible.
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Figure 6.15. The effect of temperature after dipping upon disordered crater coverage.

Figure 6.16 shows the negligible effect of temperature after dipping upon the total 

crater coverage. The highest crater coverage occurs when a high annealing 

temperature is utilised (as □ , A  in figure 6.16).
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Figure 6.16. The effect of temperature after dipping upon total crater coverage. 

Effective Aluminium Content

Figure 6.17 illustrates the influence that the effective aluminium content of the spelter 

has upon the coverage of ordered craters within the galvanneal coating. An increase 

in the effective aluminium content from 0. lwt% to 0.113wt% led to a decrease in the 

ordered crater coverage for those samples with a high annealing temperature (as O, 
A  in figure 6.17). Of these the biggest decrease was seen when a high annealing 

temperature was used in conjunction with a low strip entry temperature (as O in 

figure 6.17).

When a low annealing temperature was utilised zero crater coverage was experienced 

at effective aluminium contents of both 0.1 wt% and 0.113wt% (as O in figure 6.17).
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Figure 6.17. The influence of effective aluminium content upon ordered crater 

coverage.

The influence of effective aluminium content upon the formation of disordered craters 

within the galvanneal coating is shown in figure 6.18. Overall an increase in the 

effective aluminium content from 0.1 wt% to 0.113wt% produces an increase in the 

disordered crater coverage. The greatest increase is seen when a high annealing 

temperature is used in conjunction with a low strip entry temperature (as O  in figure 

6.18).

Figure 6.19 shows the influence of effective aluminium content upon the total crater 

coverage of the galvanneal coating. An increase in the effective aluminium content of 

the spelter has negligible effect upon the total crater coverage.
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Figure 6.18. The influence of effective aluminium content upon disordered crater 

coverage.
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Figure 6.19. The influence of effective aluminium content upon total crater coverage.
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6.2.4 Discussion

The effect of numerous process parameters upon the crater coverage within the 

galvanneal coating were analysed by this investigation. Each of these process 

parameters will be discussed in turn.

Annealing Temperature

Figures 6.5 and 6.13 show the effect of annealing temperature upon the overall crater 

coverage within the galvanneal coating. Over the range of 700°C to 900°C an 

increase in the annealing temperature leads to an increase in the overall crater 

coverage. An increase in the annealing temperature creates greater recrystallisation of 

the cold rolled microstructure. This in turn produces a greater proportion of {111} 

oriented grains upon which, as stated by Carless (2000), craters can nucleate.

In addition figures 6.11 and 6.12 show the effect of annealing temperature upon 

ordered and disordered craters. In both cases an increase in the annealing temperature 

from 700°C to 900°C shows an increase in the coverage. This illustrates the fact that 

both ordered and disordered craters nucleate upon {111} oriented grains.

Galvannealing Temperature

The effect of galvannealing temperature upon the coverage of craters within the 

galvanneal coating is shown in figure 6.7. A strong correlation is observed whereby 

an increase in the galvannealing temperature produces a decrease in the crater 

coverage. The reasoning behind this is clear when the iron-zinc equilibrium phase 

diagram, figure 2.9, is analysed. At the zinc rich end of the phase diagram a peritectic 

transformation is observed at 530°C. Above this temperature the £, phase is no longer 

permissible under equilibrium conditions. Furthermore, due to the curve of the 

Liquid/(L+Q phase boundary and for a given iron content, the closer the 

galvannealing temperature gets to the peritectic temperature the less abundant the £ 

phase becomes.
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The exact effect that this will have upon the craters within the coating is unclear. If 

the ordered £ crystals at the base of the crater form within the bath the higher 

galvannealing temperature may cause them to become unstable and remelt. If 

however the ordered H, crystals form during the galvannealing process the higher 

temperature may hinder their formation. In either case a lower crater coverage, as 

shown in figure 6.7, would occur at a higher galvannealing temperature.

Effective Aluminium

Figures 6.17, 6.18 and 6.19 illustrate the relationship between the effective aluminium 

content of the spelter and the crater coverage within the galvanneal coating. When a 

high annealing temperature is used analysis of the ordered craters shows a negative 

correlation between the effective aluminium and the crater coverage. When a low 

annealing temperature is used zero ordered crater coverage is observed at both 

effective aluminium levels. In addition the greatest effect is observed when a high 

effective aluminium is combined with a low strip entry temperature. However when 

the disordered crater coverage is analysed a positive relationship is observed between 

the effective aluminium and the crater coverage. Combining both relationships it can 

be seen that the overall crater coverage is unaffected by the change in effective 

aluminium.

This change in morphology as a result of the change in effective aluminium is 

explained by the fact that when the effective aluminium level is higher than 0.1 wt% 

the 5 phase becomes the thermodynamically favoured phase (Tang, 1998). The 

random 8 phase therefore nucleates preferentially upon the {111} oriented grains 

instead of the ordered £ crystals. In addition, the increase in effective aluminium 

content would produce a thicker inhibition layer that would loose its orientation 

relitionship with the underlying substrate (Guttmann et al, 1995). This would also 

promote the nucleation of the random 8 phase, as the ordered \  phase prefers to 

nucleate epitaxially. Furthermore because the total coverage is unaffected by the 

effective aluminium it can also be stated that over the range of concentrations used the 

effective aluminium does not affect the availability of sites upon which craters can 

fom.
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Strip Entry Temperature

Figures 6.6, 6.8, 6.9 and 6.10 show the relationship between the strip entry 

temperature and the crater coverage within the galvanneal coating. Figure 6.8 shows 

the positive correlation between the strip entry temperature and the ordered craters 

within the galvanneal coating. However, figure 6.9 shows the negative correlation 

between the strip entry temperature and the disordered craters. Combining both the 

ordered and the disordered crater coverage in figure 6.10 it can be seen that zero 

correlation exists between the overall crater coverage and the strip entry temperature.

This illustrates that the strip entry temperature affects only the morphology of the 

craters and not the overall coverage. Furthermore, it also suggests that the initial 

formation of craters happens during the very first moments of dipping where the strip 

entry temperature has the greatest influence. The reasoning behind this variation in 

morphology with strip entry temperature is that when the temperature is high the iron 

atoms within the strip are more active and thus more able to escape from the strip, 

equation 2.4. This results in an increase in the iron content next to the strip and an 

overall reduction in the local effective aluminium. This makes the % phase the 

thermodynamically stable phase thus resulting in ordered craters. At a lower strip 

entry temperature the iron dissolution is less, the local effective aluminium higher and 

the 6 phase the thermodynamically stable phase. In addition because the total 

co/erage is unaffected by the strip entry temperature it can also be stated that over the 

range of temperatures used the strip entry temperature does not affect the number of 

sites upon which craters can form.

Beth Temperature

The zero correlation between the bath temperature and the crater coverage is shown in 

figjre 6.4 and helps to further support the notion that the initial formation of the 

craters occurs during the first few moments of dipping. Due to the high thermal 

coiductivity of steel and the density of the zinc bath the steel strip will rapidly attain 

the same temperature as the bath. If crater formation was occurring throughout the
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dipping process a correlation between the bath temperature and the crater coverage 

would be expected.

Temperature After Dipping

Figures 6.14, 6.15 and 6.16 illustrate the zero correlation observed between the 

temperature after dipping and the crater coverage within the galvanneal coating. Zero 

correlation is observed for the ordered craters, disordered craters and the total 

coverage. This lack of correlation shows that the formation and growth of the craters 

within the galvanneal coating does not occur after the strip has left the spelter.

6.2.5 Summary

This investigation has shown that the main process parameters with the greatest 

influence upon overall crater formation are the annealing and galvannealing 

temperature. An increase in the annealing temperature leads to an increase in the 

overall crater coverage whereas an increase in the galvannealing temperature leads to 

a decrease in overall crater coverage. Alteration of the crater morphology is achieved 

by modifying the strip entry temperature or the effective aluminium content of the 

spelter. Increasing the strip entry temperature leads to a more ordered morphology 

whereas increasing the effective aluminium creates a disordered morphology. No 

effect on crater coverage or morphology was observed by changing the temperature 

after dipping. Table 6.5 summarises the overall effects of the different process 

parameters upon craters within the galvanneal coating.
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Table 6.5. Summary o f process parameter effects.

Increasing Process Parameter
Ordered

Craters

Disordered

Craters

Overall C rater 

Coverage

| Annealing Temperature t t t

Galvannealing Temperature 4

Strip Entry Temperature t I

Effective Aluminium 4 t <->

Spelter Temperature <-> <-> <->

Temperature After Dipping

( t  = Increase, I  = Decrease, <-» = No Change)
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6.3 EXPERIMENTAL INVESTIGATION THREE

Investigation into the characteristics, formation and development o f craters within the 

galvanneal coating produced on the Rhesca hot dip simulator.

As stated in section 5.5 craters are not observed within the galvanised coating but 

develop during the galvannealing process. This investigation was designed to explain 

how craters form during the change from a galvanised to a galvannealed coating.

6.3.1 Size Distribution of Craters

The size distribution of over 4,000 craters is shown in figure 6.20. The mode of the 

distribution is the 33 to 47 square microns and, if the crater was circular, equates to a 

diameter of approximately 7pm. The largest crater measured, but which does not 

appear in figure 6.20, was 2949 square microns that, if the crater was circular, equates 

to a diameter of approximately 30pm.
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Figure 6.20. Size distribution of craters within the galvanneal coating.
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6.3.2 Formation of Ordered Craters

The formation of ordered craters as the coating develops from a galvanised to a 

galvannealed coating is shown in figure 6.21. The initial formation of the galvanneal 

coating is shown in figure 6.21a where the emergence of £ crystals at the surface is 

observed. Figure 6.21b shows the initial formation of the lip of the crater as the 

galvannealing process continues. This lip becomes more pronounced and ordered £ 

crystals are observed at the base of the crater after further galvannealing, figures 6.21c 

and 6.2Id. In figure 6.2le the normal galvanneal coating is almost formed with a few 

columnar £ crystals at the surface of the coating. The edge of the crater is truly 

defined and the ordered £ crystals are observed at its base. Finally, figure 6.2 I f  shows 

the zero g a lv an n ea led  coating with a predominantly 8 structure at the surface. The 

craters are easily seen within the coating and consist of ordered craters at their base.
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Figure 6.21. SEM images of the formation of ordered craters.

6.3.3 Formation of Disordered Craters

Figures 6.22 shows the formation of disordered craters as the coating develops from a 

galvanised coating to a galvannealed coating. Figure 6.22a shows the initial stages of 

the change from the galvanised to the galvannealed coating. Within the figure can be 

seen the emergence of £ crystals on the surface of the coating along with the initial lip 

and dip of the crater.

In figure 6.22b the lip of the crater has become more defined and the emergence of C, 

crystals more pronounced. The size of the emerging £ crystals within the crater 

remains unchanged even though those crystals within the normal coating are growing.

As the galvannealing process continues, figure 6.22c, the £, crystals within the normal 

coating continue to grow and the first presence of the 5 phase is observed. All o f the 

free zinc at the base of the crater has gone and been replaced with a microstructure 

whose size is comparable to that seen at the base of the crater in figure 6.22b. The 

edge of the crater is now completely defined.

In figure 6.22d the normal coating has now almost completely transformed to the 5 

phase. The microstructure at the base of the crater has changed very little during the 

continuation of the galvannealing process and contains a mixture of both £ and 5.
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Figure 6.22. SEM images of the formation of disordered craters.

In addition, figure 6.23 shows the variation of the iron content at the different stages 

of galvannealing for both the surface of the normal coating and that of the disordered 

crater. Initially we can see that in stages one and two the iron content of the crater is 

slightly higher than that of the normal coating. During stages three and four the iron 

content of the crater rapidly increases up to nearly 43%. In contrast the iron content 

o f the coating only gradually increases up to approximately 6%.

Elemental mapping of both ordered and disordered craters is shown in figure 6.24. A 

high iron content is observed within the disordered crater whereas the ordered crater 

has an almost identical coating constitution to the normal coating. Zero correlation is 

observed between the aluminium content and the location of the craters.
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Figure 6.23. Variation of the iron content at the coating and disordered crater surface.

Figure 6.24. Elemental mapping of ordered and disordered craters.

103



v^«t«pic/ UIA — iVCJMlW U H U  L ^ l A ^ l l S S I U r i

6.3.4 Underlying Substrate

Figures 6.25a and 6.25b show the optical images of the TiNb IF steel substrate 

annealed at 700°C and 900°C respectively. When annealed at 700°C, figure 6.25a, 

the deformed grains from the cold rolling process are still evident within the 

microstructure. However, when annealed at 900°C, figure 6.25b, no deformed grains 

are observed and instead the structure consists of recrystallised equiaxed grains.

■I? m

Figure 6.25. Optical images of the substrate annealed at a) 700°C and b) 900°C.

Further work was also carried out on the annealed substrates using Electron 

BackScatter Diffraction (EBSD). Figure 6.26 shows the inverse pole figures for the 

normal direction obtained for the substrates annealed at 700°C and 900°C. A higher 

annealing temperature of 900°C produces a grain texture containing a greater 

proportion of grains with {111} oriented in the plane of the sheet.
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Sample Name : 700 C Map 3 modified. 
Material : Iron Alpha 
Measurements : 4096 
Dale : 01-Sep-03 12:06

Material : Iron Alpha 
Measurements : 4096 
Date : 23-M -03 11:16

Sample Name : 900C Map 2 modified

[1 1 1] [1 1 11
Sample Normal Sample Normal

[ 1 0  1]

Figure 6.26. EBSD inverse pole figures for substrates annealed at 700°C and 900°C

By removing the coating, as described in section 5.5, it has been possible to correlate 

the association between the underlying substrate and craters within the galvanneal 

coating. Figures 6.27a to figure 6.27c each show the galvanneal coating together with 

the substrate that is directly beneath. In all of the figures direct matching between the 

edges of the crater and grain boundaries within the underlying substrate can be seen. 

Within these grain boundaries a lighter plateau is observed which matches the areas 

covered by the ordered crystals.

Flowever, by comparing figure 6.27 with the optical image in figure 6.25b it can be 

clearly seen that the SEM image does not reveal all of the grain boundaries. For 

identical annealing conditions the average grain size in figure 6.25b is approximately 

10pm whereas in figure 6.27 the ‘grain’ size is approximately 50pm. Closer 

examination between grains two and three in figure 6.27 shows the variation of crystal 

orientation over what initially appears to be a single ‘grain’. Within this single ‘grain’ 

can be seen the very faint outline of a grain boundary corresponding to the same 

position at which the variation in crystal structure occurs.
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Figure 6.27. SEM images of the galvanneal coating and underlying substrate.

6.3.5 Discussion

This investigation, coupled with investigation two, was carried out to determine how 

craters form and then develop during the galvannealing process. Both ordered and 

disordered craters were investigated together with the influence of the underlying 

substrate.
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Formation and Development o f Ordered Galvanneal Craters

As detailed by Carless (2001), Inagaki (1995) and Guttmann (1995) the formation of 

craters takes place upon {111} oriented grains. This has been confirmed by the 

results from investigation two that show an increase in the numbers of craters as a 

result of an increase in annealing temperature. In addition, figure 6.27 shows that 

craters are not confined to just a single {111} oriented grain and can actually form 

over several {111} oriented grains so long as they are contiguous. Furthermore, if  no 

{111} oriented grains are available then zero crater coverage will be experienced 

regardless of what any other process parameter is set to.

The effect of strip entry temperature and effective aluminium on the crater coverage 

illustrates the notion that the ordered £ crystals form during the initial stages of the 

dipping process. Upon entering the bath the zinc near the strip becomes super­

saturated with iron. From this super-saturation both the inhibition layer and iron-zinc 

intermetallics can form. Where the inhibition layer nucleates upon a {111} oriented 

grain an orientation relationship develops between the grain and the inhibition layer 

(Guttmann et al., 1995). Furthermore where a {111} grain exists the ordered £ 

crystals are able to nucleate on top of the oriented inhibition layer. Where a suitable 

nucleation site does not exist or where concentration and thermal variations prevent 

nucleation the standard initial layer forms. This consists of an Fe2 Als inhibition layer 

and possibly random £ or 8 intermetallics. Figure 6.28 shows a schematic diagram of 

the initial layer formation.

The lack of influence of both the bath temperature and the temperature after dipping 

upon the crater coverage shows that after the initial nucleation very little happens until 

the strip reaches the galvannealing furnace.
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Figure 6.28. Schematic diagram of the initial layer formation.

Upon reaching the furnace the galvannealing process begins. Where the ordered £ 

crystals have not formed the liquid zinc penetrates the inhibition layer and reacts with 

the iron diffusing from the substrate. This results in the formation of the iron-zinc 

intermetallics 5 and T. Figure 6.27 shows that the grain boundaries between {111} 

and non-{ 111} are high angle boundaries. These high angle grain boundaries provide 

rapid transport routes for iron out of and zinc into the substrate. The rapid movement 

of iron out of the substrate leads to the formation of outburst structures and, as shown 

in figure 6.21b, results in the initial lip of the crater.

Where ordered C, crystals (>94wt% Zn) have formed upon {111} oriented grains zinc 

penetration into the inhibition layer is restricted and the inhibition layer remains 

intact. Furthermore, the persistence of the inhibition layer prevents the diffusion of 

iron atoms into the ordered £, crystals, restricting their growth and maintaining the 

zinc above them as liquid. If however a higher galvannealing temperature is used the 

ordered t, crystals become unstable and the inhibition layer breaks down. This results 

in the development of a normal galvanneal coating and, as shown in figure 6.7, a 

reduction in the crater coverage. Figure 6.29 illustrates a schematic diagram of the 

initial stages of galvannealing.
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Figure 6.29. Schematic diagram of the initial stages of galvannealing.

Where the ordered £ crystals have not formed the normal coating will continue to 

develop during the galvannealing process. Where the ordered £ crystals have formed 

the zinc above them remains liquid and is therefore subsequently drawn into the 

adjacent galvanneal coating, figure 6.21. In addition the persistence of the inhibition 

layer beneath the ordered £ crystals limits their growth by restricting the flow of iron 

into them. Figure 6.30 shows a schematic diagram of the coating and crater 

development.

Intermetallics
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Figure 6.30 Schematic diagram of the coating and crater development.

By the end of the galvannealing process the normal coating consists of the 5 phase 

and a continuous layer of the T phase at the substrate. Where craters have formed the 

liquid zinc has been drawn into the adjacent coating and the ordered £ crystals at the 

base are clearly visible, figure 6.21. In addition because no diffusion into the 

substrate has occurred a plateau of steel now existed below the ordered C, crystals. 

Figure 6.31 shows a schematic diagram of the fully developed coating and crater.

High Angle Grain 
Boundaries

Potential Low 
Angle Grain 
Boundaries

Figure 6.31. Schematic diagram of the fully developed coating and crater.



Formation and Development o f Disordered Galvanneal Craters

As with ordered craters and illustrated by figure 6.12, disordered craters also form 

upon {111} oriented grains. The influence of strip entry temperature and effective 

aluminium shows that the initial nucleation of the disordered craters occurs during the 

first few moments of dipping. Either the lower strip entry temperature or the higher 

effective aluminium content will result in the degree of iron super-saturation near the 

surface of the strip being lower. Any nucleation of iron-zinc intermetallics upon the 

{111} oriented grains will therefore be considerably thinner and of a different 

morphology. Even so, the process by which the disordered craters form is identical to 

that of the ordered craters. The only difference is that during the galvannealing 

process the base of the crater increases in iron content, figures 6.23 and 6.24. This 

increase in iron content is not observed within the £ crystals at the base of an ordered 

crater. This increase in iron content is partly attributed to the morphology of the 

crystals at the base of the disordered structure. The 8 phase exists over a much larger 

range of iron contents compared to the C, phase. As a result, iron can more easily 

diffuse into the base of the crater without the need for a change in morphology. In 

addition, as the liquid zinc is drawn into the surrounding coating any measurement of 

the base of the crater may also start to include the underlying substrate thus leading to 

a further increase in the iron content.

6.3.6 Summary

This investigation has revealed how craters form as the coating develops from a 

galvanised coating to a galvannealed coating. It has shown that during the 

galvannealing process the zinc above the crater moves into the surrounding coating 

revealing either the ordered or disordered crystals at the base. It has also been shown 

how a higher annealing temperature modifies the crystallographic structure of the 

underlying substrate to create more nucleation sites upon which the craters can form. 

In addition the investigation has shown how craters form within the confines of high 

angle grain boundaries and yet are able to form over low angle grain boundaries.
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6.4 EXPERIMENTAL INVESTIGATION FOUR

Investigation into the effects o f craters upon the coating failure mechanism o f the 

galvanneal coating produced on the Rhesca hot dip simulator.

As stated in section 5.6 it has been suggested that the presence of craters within the 

galvanneal coating may help to reduce the amount of powdering experienced during 

press forming operations. The following experimental investigation was designed to 

determine the influence that craters may have upon the galvanneal coating.

6.4.1 Powdering and Flaking Analysis

In order to ensure that any variations in powdering were due solely to the presence of 

craters and not a variation in coating weight or iron content a coating analysis using 

ICP was carried out. Figures 6.32 and 6.33 illustrate the variation of powdering and 

flaking over the range of coating iron contents produced in the investigation.
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Figure 6.32. The effect of coating iron content on powdering.
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Figure 6.32 shows the variation of powdering with iron content. Over the range of 

iron contents examined zero correlation was observed between the amount of 

powdering that occurs and the iron content of the coating.

Figure 6.33 shows the variation of flaking with iron content. Over the range of iron 

contents examined zero correlation was observed between the amount of flaking that 

occurs and the iron content of the coating. Furthermore, by comparing figures 6.32 

and 6.33 it is clear to see that the application of the 3M scotch tape leads to a greater 

degree of coating loss.
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Figure 6.33. The effect of coating iron content on flaking.

The variation of coating loss with coating weight is shown in figures 6.34 and 6.35. 

Figure 6.34 illustrates the effect of coating weight on the powdering properties of the 

coating. A positive relationship is observed whereby an increase in the coating 

weight leads to an increase in the amount of powdering.
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Figure 6.34. The effect of coating weight upon powdering.
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Figure 6.35. The effect of coating weight upon flaking.
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Figure 6.35 shows the samples that have had the 3M scotch tape applied to the outer 

surface of the cup. Over the range of coating weights investigated a positive 

correlation is observed between the coating weight and the amount of flaking.

Incorporating the coating weight with the amount of coating failure it is possible to 

calculate the percentage of coating that has failed during the cup forming operation. 

The following equation was utilised to calculate the percentage powdering that had 

occurred for each of the samples.

C T
%loss = ------— ------*100 (6.1)

(AoD * CW)

where: CL is the coating loss in grams per cup

AoD is the Area of Disc = 1.8835xl0'3 m2

CW is the coating weight in grams per metre squared

A similar equation was utilised for the amount of flaking that had occurred during the 

press forming operation. The only difference was that the coating weight of the 

sample was reduced by the amount of powdering that had occurred. It should also be 

noted that the area of the disc has been reduced to incorporate the fact that all of the 

coating loss occurs at only the walls of the cup.

Figure 6.36 shows the variation of powdering when just the crater coverage is 

included. The amount of crater coverage varied from 0% to 14.7% and the percentage 

of coating loss varied from 3.4% to 10.5%. The distribution shows an initial decrease 

in the amount of powdering to about four percent coating loss at around six percent 

coverage. The distribution then increases up to about five percent coating loss at 

around twelve percent coverage before levelling out.
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Figure 6.36. Variation of powdering with just crater coverage.

However, if the annealing temperature is included, figure 6.37, it can be seen that it is 

actually the increased annealing temperature that has resulted in the decrease in 

powdering rather than the presence of the craters within the coating. At the lower 

crater coverage it can be seen that the 900°C annealed substrate produces a lower 

coating loss than the 700°C annealed substrate. In addition, at the higher crater 

coverage with the 900°C annealing temperature it can be seen that from 

approximately 7% to 15% the amount of powdering does not vary as the crater 

coverage increases.

The variation of flaking with crater coverage and annealing temperature is shown in 

figure 6.38. It can be seen that there is zero correlation between the amount of flaking 

that has occurred and the crater coverage. Furthermore, if the samples annealed at 

900°C are analysed an actual increase in the amount of flaking from approximately 

5% to 10% is observed as the crater coverage increases.
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Figure 6.37. Variation of powdering with crater coverage and annealing temperature.

16

14

12

10

8

6

4

2

0

o o

o o O O o

6 8 10 

Crater Coverage (%)

12

Ann 700 A Ann 800 ° Ann 900

14 16

Figure 6.38. Variation of flaking with crater coverage and annealing temperature.
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The combined loss of coating through both powdering and flaking is shown in figure 

6.39. Zero correlation is observed between the total coating loss and the crater 

coverage.
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Figure 6.39. Variation of total coating loss with crater coverage.

To aid the press forming operation it is possible to apply lubricating oil to the steel 

strip. Figure 6.40 illustrates the variation of total coating loss (powdering and flaking) 

with crater coverage and annealing temperature when lubricating oil is applied to the 

surface. Comparing figures 6.39 and 6.40 it is observed that the application of a 

lubricating oil reduces the total coating loss from approximately 15% coating loss to 

approximately 7% coating loss. Figure 6.40 also shows the zero correlation between 

the total coating loss that has occurred and either the crater coverage or the annealing 

temperature.
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Figure 6.40. Variation of total coating loss with crater coverage and annealing 

temperature with the application of lubricating oil.

6.4.2 Coating Analysis

As detailed in section 5.6 the formed cup was placed within the JEOL 810A SEM to 

analyse how the coating and craters had behaved during the cup forming process. The 

initial analysis was carried out on the top of the cup where the deformation process 

was minimal. Figure 6.41 shows the deformation of both the normal coating and the 

ordered craters within it. Crack propagation can be readily seen throughout the 

entirety of the normal coating, subdividing it up into islands of approximately 30- 

50pm.

Figure 6.42 shows a close-up image of an ordered crater after minimal deformation. 

When a crack reaches an ordered crater it can be clearly seen that the crack splits into 

numerous smaller cracks that then propagate over the rest of the crater. Crack
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propagation produces a cracked structure of approximately 5-10pm and is completely 

independent of the crystal structure within the crater.

Figure 6.41. Crack propagation on the top surface of the cup (ordered craters).

Figure 6.42. Crack propagation through an ordered crater.
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When disordered craters are present within the coating the cracking of the coating is 

very similar, figure 6.43. The normal coating has again cracked into ‘islands’ of 

approximately 30-50pm and a close up of the disordered craters, figure 6.44, shows 

the much finer crack propagation through the crater.

W M

p M P

Figure 6.43. Crack propagation on the top surface of the cup (disordered crater).
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Figure 6.44. Crack propagation through a disordered crater.

Figure 6.45 shows the coating of a sample that has been annealed at 700°C and has a 

low crater coverage. Images from the top, middle and bottom of the wall are shown 

for both the inside and the outside. At the top of the wall slight deformation has taken 

place and the cracking on both the inside and outside has occurred perpendicular to 

the direction of deformation. Comparing the inside and outside it can be seen that the 

cracking is more pronounced on the outside compared to the inside. In addition, gaps 

within the coating can also be seen going all the way down to the substrate.

Further down the side of the cup the cracking has again occurred perpendicular to the 

direction of deformation and gaps within the coating are again seen extending down to 

the substrate. However, when the inside and outside of the cup are compared the 

cracking is considerably more pronounced on the outside than the inside.

At the bottom of the cup the cracking is considerably less and now occurs in all 

directions. The gaps within the coating are still observed and the cracking on the 

outside of the coating is again more pronounced than that on the inside.
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Figure 6.45. Coating deformation of a sample annealed at 700°C that has low crater 

co\erage.
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Figure 6.46 shows the coating of a sample that has been annealed at 900°C and has 

high crater coverage. Images from the top, middle and bottom of the wall of the cup 

are shown for both the inside and the outside. At the top of the wall slight 

deformation has taken place and the cracking of the coating has occurred 

perpendicular to the direction of the deformation on both the inside and the outside of 

the cup. The craters within the coating have also begun to crack and deform with the 

coating. In addition, on the outside of the cup there are gaps within the coating that 

go all the way down to the substrate.

Further down the side of the cup the deformation has become more pronounced and 

the coating has now cracked in all directions. The number of gaps that go down to the 

substrate has increased dramatically with the coating on the outside showing a greater 

degree of coating failure compared to the inside. Furthermore, the coverage of 

ordered craters within the coating has decreased.

Finally, at the bottom of the cup the coating has cracked in all directions with large 

quantities of the coating becoming detached from the substrate. Practically zero 

ordered crater coverage is seen over the sample.
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Figure 6.46. Coating deformation of a sample annealed at 900°C that has a high crater 

coverage.

125



6.4.3 Substrate Analysis

As detailed in section 5.6, the coating of the formed cups was removed using inhibited 

hydrochloric acid so that the underlying substrate could be analysed. SEM images of 

the substrate were taken from the outside of the cup at the top, middle and bottom of 

the wall.

Figure 6.47 shows the substrate of a sample annealed at 700°C. At the top of the wall 

the deformation is minimal and the exposed grain boundaries run in all directions 

forming an equiaxed structure. At the middle of the wall the exposed grain 

boundaries are running parallel to the direction of the deformation producing an 

elongated structure. A very similar structure is also observed at the bottom of the cup 

where deformation is the greatest.

Middle
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Bottom

Figure 6,47. Underlying substrate of a formed sample annealed at 70Q°C.

The underlying substrate of a sample annealed at 900°C is shown in figure 6.48. 

Deformation at the top of the wall is observed to be minimal although slight cracking 

of the substrate is observed in places. Further down the side of the wall the amount of 

deformation has increased and a greater degree of cracking within the substrate is 

observed. In addition, the substrate has become rougher and more undulating. At the 

bottom of the cup where the amount of deformation is the greatest very little cracking 

of the substrate is observed. The number of exposed grain boundaries has increased 

rapidly producing a very fine equiaxed structure that is considerably rougher and 

more undulating than that at the middle of the wall.
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Figure 6.48. Underlying substrate of a formed sample annealed at 900°C.

6.4.4 Discussion

The works o f Carless (2000) and Wright (1998) have reported the beneficial effects 

that craters have upon the powdering and flaking properties of the galvanneal coating. 

This investigation has analysed the coating failure properties and mechanisms under 

laboratory controlled conditions.

The initial work centred around ensuring that no external factors were influencing the 

powdering and flaking properties, namely the coating weight and the iron content. In 

terms of the iron content the variation experienced showed no correlation with the 

amount of powdering or flaking that had occurred, figures 6.32 and 6.33. This was 

due to the small variation (14-17.5wt%) in the iron content as a result of the
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controlled laboratory conditions under which the samples were produced. With the 

coating weight, as shown in figures 6.34 and 6.35, an increase leads to an increase in 

both the amount of powdering and the amount of flaking. This can be explained 

firstly by the fact that if there is more coating i.e. a higher coating weight, then there 

is simply more coating available to come off during pressing leading to a greater 

weight loss. Secondly a thicker coating will result in less clearance between the 

coating and the forming tools, greater friction and thus the failure of more coating. 

The effect of coating weight was therefore nullified by using the percentage of coating 

that had failed rather than simply the amount that had failed per cup. This therefore 

meant that any changes in powdering and flaking would be due to the effects of either 

craters or the annealing temperature.

As stated in section 6.2.4 the annealing temperature influences the coverage of craters 

within the galvanneal coating by providing more nucleation sites upon which the 

craters can form. However, as well as providing more nucleation sites a higher 

annealing temperature also produces a more ductile substrate. During deformation the 

more ductile substrate will form more easily and thus may have an influence upon the 

failure mechanisms of the coating. Therefore, to determine whether it was the 

substrate or the craters that were influencing the coating it was necessary to produce a 

coating with varying degrees of crater coverage but with identically annealed 

substrates.

The work from investigation two has shown that it is not possible to produce craters 

on a substrate annealed at 700°C and therefore an annealing temperature of 900°C 

was utilised. Producing low crater coverage on a highly annealed substrate was 

achieved, as shown in section 6.2.4, by using a higher galvannealing temperature for a 

shorter period of time. The shorter period of time was needed to ensure the iron 

content of the coating remained similar.

In terms of the effect of craters upon powdering it can be seen in figure 6.37 that an 

increase in the crater coverage has very little affect upon the amount of powdering 

that occurs. This is best illustrated by the substrate annealed at 900°C, as the 

coverage increases from 0% up to 15% no change in the amount of powdering occurs.
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However, if the 700°C substrate and the 900°C substrate are compared it can be seen 

that lower powdering is experienced with the higher annealing temperature. This 

shows that it is in fact the higher annealing temperature that reduces the amount of 

powdering and that craters form simply as a result of this higher annealing 

temperature.

The exact nature as to how a higher annealing temperature and more ductile substrate 

improves the powdering properties is shown in figures 6.47 and 6.48. It can be 

clearly seen that the different annealing temperatures affect the way in which the 

underlying substrate has deformed. The substrate annealed at 900°C has deformed in 

a much more uniform way compared to the substrate annealed at 700°C. This would 

lead to less stress building up within the coating and thus a smaller degree of 

powdering. A schematic diagram of this effect is shown in figure 6.49.

900°C

tttt
- A - - A -  - A -

Figure 6.49. Variation in substrate deformation with annealing temperature.

In terms of the effect upon the flaking properties of the coating, figure 6.38, it can be 

seen that an increase in the crater coverage actually increases the amount of coating 

loss. By considering the samples annealed at 900°C it can be seen that higher crater 

coverage produces a greater amount of coating loss. The exact reason behind this has 

not been ascertained in this investigation but could possibly be linked to the increased 

roughness associated with increased crater coverage. This would lead to greater 

friction between the coating and the die that would in turn lead to a greater degree of 

flaking.

Carless (2000) suggested that the plateau beneath the crater might act as a crack 

inhibitor and therefore help to improve the flaking properties of the coating. From 

figures 6.42 and 6.44 it can be seen that even at minimal deformation crack
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propagation occurs across both ordered and disordered craters. The crack propagation 

is much finer through the crater than compared with the surrounding coating. This 

would have the effect of dissipating the energy of crack thus inhibiting their 

propagation. However, this occurs at such minimal deformation that the effect can be 

considered negligible. Indeed, at higher deformations, figure 6.46, it can be seen that 

the craters have themselves become detached from the substrate. This suggests that 

the same crack propagation that has affected the normal coating has also affected the 

craters.

If the low crater coverage samples are analysed it can be seen that an increase in the 

annealing temperature results in a slightly lower amount of flaking. This can again be 

explained by the variation in deformation mode for the differently annealed 

substrates. The more uniform deformation experienced by the 900°C substrate would 

result in less stress being experienced at the T/substrate interface. This in turn would 

reduce the amount of crack propagation and the degree of flaking.

6.4.5 Summary

This investigation has revealed how the variation in coating failure that had 

previously been linked to the presence of craters within the galvanneal coating is in 

fact the result of variation in ductility of the underlying substrate. It has been shown 

that a higher annealing temperature helps improve both the powdering and flaking 

properties of the coating. Furthermore, the plateau that lies under the crater does not 

act as an effective barrier to crack propagation along the brittle T/substrate interface. 

Finally it has also been shown that an increased crater coverage for a given annealing 

temperature actually leads to a greater amount of flaking.
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6.5 EXPERIMENTAL INVESTIGATION FIVE

Development and testing o f  a model, based on diffusion couples, to predict the coating 

constitution o f  the galvanneal coating produced on the Rhesca hot dip simulator.

Using the principle of diffusion couples a model was constructed to predict the 

formation of the four main phases present within the galvanneal coating, r|, 5 and

T. The initial part of the experimental investigation was carried out to assess whether 

or not the published values for the diffusion coefficient of iron in zinc were applicable 

to the galvannealing reaction. The experimental investigation then went on to 

determine the accuracy of the model and at the same time the best data for the 

diffusion of zinc through the inhibition layer.

6.5.1 Diffusion Coefficient of Iron in Zinc

The formation of the galvanneal coating occurs by diffusion of the iron atoms from 

the substrate into the zinc coating. Determination of the diffusion coefficient of iron 

through zinc was therefore imperative to the validation and development of the 

GAModeller.

Figure 6.50 shows the variation of iron, zinc and aluminium content through the 

coating of a sample galvannealed for ten seconds at 500°C. The iron content of the 

coating increases the closer to the substrate the analysis is taken. The opposite is seen 

for the zinc content which shows an almost mirror image of the iron content and 

decreases with proximity to the substrate. Finally, the variation of the aluminium is 

much more erratic but shows a general decrease in concentration the closer to the 

substrate the analysis is taken.

A plot of the log of the iron content against the square of the distance into the coating 

is shown in figure 6.51. The three distinct groups of the £, 6 and T phases are shown 

along with the gradient of each of the lines.
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Figure 6.50. Variation of iron, zinc and aluminium content in a galvannealed sample.
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coating.
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Using equation 3.13 the diffusion coefficient of iron in the three different phases at 

500°C was calculated. Table 6.6 compares the diffusion coefficients calculated from 

the gradients with those calculated using the published values of D0 and Q, as detailed 

in table 3.1. A close match can be seen between the values for all three phases.

Table 6.6. Comparison of diffusion coefficients of iron at 500°C

Phase Measured Published

Zeta(C) 7.29 x 10'IJ 5.36 x 10'15

Delta (8) 1.07 x lO '12 1.04 x 10'12

Gamma (T) 7.61 x 10'14 6.27 x 10‘14

6.5.2 Microsoft Visual Basic™ Graphical User Interface

The model was produced using the Microsoft Visual Basic™ programming language 

(see appendix A for the annotated code) to make it both easy and flexible to use. This 

enabled the production of a graphical user interface (GUI) through which the user 

could easily input data and rapidly receive information in both numerical and 

graphical format.

Figure 6.52 shows the GUI produced for the GAModeller. In the top left hand comer 

the user inputs information such as the coating thickness, galvannealing temperature, 

galvannealing time and effective aluminium. The model then calculates the coating 

constitution and displays it in several formats. In the bottom left hand comer the 

model displays a graph of the coating development with time while in the top right 

hand comer a schematic diagram is displayed. In addition both the thickness and 

percentage of the individual phases is displayed in a numerical format in the bottom 

right hand comer. Further information is also displayed within the model such as the 

iron content of the coating, the equivalent coating weight, an approximation to the 

amount of powdering and the thickness of the inhibition layer. Finally, so that the 

model can be applied to online production facilities there is also the ability to switch 

between HDS mode and online mode. By switching to online mode the model
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calculates the coating constitution based upon the line speed rather than the 

galvannealing time.

(5j) GAModeller
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Figure 6.52. Graphical User Interface (GUI) of the GAModeller.

6.5.3 Testing and Validation

Testing and validation of the GAModeller was carried out on the Rhesca hot dip 

simulator. Panels of TiNb IF steel were produced with varying effective aluminium, 

galvannealing time and galvannealing temperature. The coating constitution of the 

coating was then analysed using XRD and the results compared to those predicted by 

the GAModeller. Two different published values were used for the diffusion of zinc 

through the aluminium inhibition layer and the results compared to see which values 

gave the best results.

Figures 6.53 to 6.56 show the difference between the measured and modelled amounts 

for each of the four phases. A positive value on the vertical axis shows that the
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modelled value for that particular sample was higher than the amount measured using 

XRD. A negative value shows that the modelled value was lower than the measured 

value.

Figure 6.53 shows the difference between the modelled and measured values for the rj 

phase. For some samples the model has under predicted the amount of r| within the 

coating. The greatest of these is for samples GAM8 and GAM 13 where the model 

under predicts the amount by 80%. In these cases the XRD analysis has measured 

considerably more galvannealing than has been predicted by the model. For other 

samples the model has over predicted the amount of r\ within the coating. The 

greatest of these is with sample GAM5 where the model over predicts the amount of r| 

by 72.4%. However, this is only when the ‘A’ set of diffusion values is used, if the 

‘ET set of values is used then the over prediction decreases to 50.0%.
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Figure 6.53. Difference between measured and modelled values for the r\ phase.

Overall it can be seen that the points deviate around the zero mark on the graph. The 

average for all the measurements is -10.8%  for the ‘A’ values and —4.5% for the ‘B’ 

values. This suggests that the CB’ values would give better results than the ‘A ’ values.
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On average it can be stated that with the ‘A’ diffusion values the model under predicts 

the amount of r\ present within the coating by 10.8% and with the ‘B’ values by 4.5%. 

If the average deviation is analysed then the 4B’ diffusion values also give a better 

result of 17.1% compared to the ‘A’ diffusion values of 21.8%. This shows that on 

average the ‘B’ diffusion values give a variation on the measured values for the r| 

phase of ±17.1%. For a ten micron coating this would be approximately two microns.

The difference between the measured and modelled values for the £ phase is shown in 

figure 6.54. The difference between the measured and modelled values for the £ 

phase is quite small. The greatest over prediction is just 20.2% for sample GAM8 and 

means that the XRD measurements have shown less galvannealing than that predicted 

by the model. The greatest under prediction is 26.2% for sample GAM20 and means 

that the XRD measurements have shown more galvannealing than that predicted by 

the model. In addition it should also be noted that those samples galvannealed above 

530°C had no £ phase present within the coating. The best example is sample 

GAM43 that had been dipped in a spelter containing 0.16wt% effective aluminium 

and galvannealed at 573°C for six seconds. The XRD measurements for this sample 

showed there was 44.3% 5, 55.7% r|, 0% £ and 0% T.

Overall it can be seen that the points on the graph deviate around the zero mark. The 

average for all the measurements is 1.5% for the ‘A’ values and 0.1% for the ‘B’ 

values. This suggests that the ‘B* diffusion values give the best results by over 

predicting the amount of on average, by just 0.1%. The average deviation for the £ 

phase is 5.1% for the ‘A’ values and 3.5% for the ‘B’ values. It can therefore be 

stated that on average the ‘B* diffusion values give a variation on the measured values 

of ±3.5%.
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Figure 6.54. Difference between the measured and modelled values for the £ phase.

Figure 6.55 shows the difference between the measured and modelled values for the 6 

phase. A large scatter around the zero mark is observed for both the ‘A’ and ‘B’ 

diffusion values. The greatest under prediction of 75.3% is seen with sample GAM5 

when the ‘A’ diffusion values are used. The greatest over prediction is seen with 

sample GAM13 where the model over predicts by 79.7%. The average for all the 

measurements is 9.3% for the ‘A’ diffusion values and 4.7% for the ‘B’ diffusion 

values. Therefore, on average, when the ‘B’ diffusion values are used the model over 

predicts the amount of 8 phase by 4.7%. The average deviation for the 8 phase is 

16.8% for the ‘A’ diffusion values and 14.3% for the ‘B’ diffusion values. It can 

therefore be stated that, on average, when the lB’ diffusion values are used the 

variation from the measured values is ±14.3%.
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Figure 6.55. Difference between the measured and modelled values for the 8 phase.

The difference between the measured and modelled values for the T phase are shown 

in figure 6.56. The difference between the modelled and measured values is seen to 

be extremely small. The average for all the measurements is just -0.1% for the ‘A’ 

diffusion values and -0.3 for the ‘B’ diffusion values. The average deviation for the 

‘A’ and ‘ET diffusion values are 1.5% and 1.4% respectively. It is therefore possible 

to state that, on average, when the ‘B’ diffusion values are used the model under 

predicts the amount of T phase by 0.3% and has a variation from the measured values 

of ±1.4%.
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Figure 6.56. Difference between the measured and modelled values for the T phase.

Table 6.7 summarises the average values for each of the individual phases and 

diffusion values. In terms of the average prediction difference it can be seen that the 

‘B’ diffusion values give results closer to zero in all cases except for the T phase. In 

terms of the average variation in prediction the ‘B’ diffusion values give the smallest 

variation for all of the phases.

Table 6.7. Average prediction and average variation for each phase and values.

Phase

Average Prediction 

Difference

Average Variation in 

Prediction

‘A’ Values ‘B’ Values ‘A’ Values ‘B’ Values

Eta (rj) -10.8 -4.5 21.8 17.1

Zeta (£) 1.5 0.1 5.1 3.5

Delta (6) 9.3 4.7 16.8 14.3

Gamma (T) -0.1 -0.3 1.5 1.4
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6.5.4 Discussion

This investigation has analysed the possibility of using the principle of diffusion 

couples to model the coating constitution of the galvanneal coating. The investigation 

has also sought to determine the most appropriate diffusional data for use within the 

model.

The initial work set about determining whether or not the diffusion co-efficients 

published by Wakamatsu (1997) in the Smithells Metals Reference Book were 

applicable to the galvannealing reaction. The results verify that the values for the pre­

exponential factor (Do) and the activation energy (Q) for the different phases are 

suitable for use within the GAModeller.

The majority of the work in this investigation focused around the testing and 

validation of the model and the determining of the diffusion values of zinc through the 

inhibition layer. Both of these were conducted simultaneously and the results are 

shown in figures 6.53 to 6.56 and table 6.7. A large scatter in the points for both sets 

of diffusion values is seen for the r| and the 5 phase. However if the graphs are 

analysed closely it can be seen that they are in fact almost mirror images of each 

other. For example if sample GAM5 is analysed it can be seen that for the r\ phase 

the model over predicts by 72.4% yet for the 5 phase it under predicts by 75.3%. This 

is observed to a greater or lesser degree with nearly all of the samples and is also seen 

within table 6.7. The average prediction for the r\ phase, using the ‘B’ diffusion 

values, is -4.5 but for the 5 phase it is +4.7. The reason for this is the way in which 

the model predicts the amount of rj phase.

To calculate the amount of r\ phase the model first predicts the thickness of the other 

three phases and then subtracts their total thickness from the overall coating thickness. 

Therefore, because the 8 phase is the predominant phase within the coating the two 

will be strongly linked. The greatest variation within the model is therefore related to 

the prediction of the thickness of the 8 phase.
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On average, when the ‘B’ diffusion values are used the model over predicts the 

percentage of 5 by 4.7%. This over prediction in 8 may be related to an under 

prediction of the delaying effect of the inhibition layer. That is if the effect of the 

inhibition layer was increased, the model would predict less alloying and thus less 8 

phase. By examining both the ‘A’ and ‘B’ diffusion values it can be seen that the ‘B’ 

diffusion values hinder the diffusion of zinc through the inhibition layer more than do 

the ‘A’ diffusion values. As a result the ‘B’ diffusion values give a greater amount of 

inhibition, less alloying and more accurate results. Using diffusion values that hinder 

the amount of zinc diffusion even more than the ‘B’ diffusion values could therefore 

rectify the average over prediction experienced by the model. This is in part to be 

expected because the diffusion data used is based upon diffusion of zinc in pure 

aluminium. Obviously the inhibition layer is not pure zinc but an iron, aluminium and 

zinc mixture. However, due to the extremely thin nature of the inhibition layer 

practical experiments could not be carried out to determine the exact diffusion values.

Of the two sets of diffusion values used it has been shown that, on average, the ‘B’ set 

of diffusion values give the least variation and the most accurate predictions. 

Therefore to maintain the variation between the modelled and measured values to a 

minimum and until further work can be carried out the ‘B’ set of values by D. L. Bdke 

(1997) will be used within the GAModeller.

In addition to measuring the accuracy of the GAModeller this set of work has also 

proven that, as predicted by the iron-zinc phase diagram, no £ is present within the 

coating if a galvannealing temperature greater than 530°C is used. The reason for this 

is that a peritectic transformation occurs at 530°C on the iron-zinc phase diagram. 

Above 530°C the £ phase is no longer thermodynamically stable and is replaced by 

the 8 phase.

6.5.5 Summary

This investigation has shown how the principle of diffusion couples can be used to 

create a model that predicts the constitution of the galvanneal coating. The diffusion
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co-efficients for the diffusion of iron in zinc, as published by Wakamatsu et a l, have 

been shown to be appropriate to the galvanneal coating. In addition, the diffusion 

data published by D. L. Bdke et a l has also shown to be most appropriate for the 

GAModeller. On average the model accurately predicts the constitution of the 

galvanneal coating although the 5 phase exhibits quite a large variation of ±14.3%.
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7 GENERAL DISCUSSION

The following chapter gives an overall discussion of the whole project, detailing how 

the individual investigations have worked together towards the overall goal.

7.1 CRATER MEASUREMENT TECHNIQUE

The main thrust of the project has centred on microstructural features within the 

galvanneal coating known as craters. To be able to carry out any form of 

investigation into their effects it was necessary to first devise a technique for 

identifying and measuring the craters within the coating. The rough and undulating 

morphology of the surface of the galvanneal coating meant that optical microscopy 

was not a viable option for identifying the galvanneal craters. The only option was 

therefore to use the scanning electron microscope to take images of the surface of the 

galvanneal coating. Automated identification of the galvanneal crater could not be 

achieved because no distinct colour or elemental differential existed between the 

ordered craters and the surrounding coating. Measurement of the crater coverage was 

therefore achieved by manually defining the edge of each individual crater and 

inputting the information into the KS300 image analysis package.

Assessment of this technique has shown that over a single sample the crater coverage 

can vary quite dramatically and that that by measuring ten images of the surface of the 

galvanneal coating an accurate representation of the crater coverage can be achieved. 

The technique, although time consuming, gives valuable information about crater size 

and morphology as well as an error of just ±6.5%.

7.2 THE INFLUENCE OF PROCESS PARAMETERS

Now that a technique for identifying and measuring galvanneal craters had been 

developed and tested it was necessary to determine whether or not crater formation 

could be controlled. Were craters the result of some random uncontrollable parameter 

or did certain process parameters influence their formation? Use of the Rhesca hot
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dip simulator enabled laboratory production of the galvanneal coating under a variety 

of process conditions. Combining this with the crater measurement technique enabled 

a complete assessment of the effect of several process parameters upon the crater 

coverage.

The results showed that an increase in the annealing temperature helped to promote 

crater formation whereas an increase in the galvannealing temperature hindered crater 

formation. Modification of the effective aluminium and the strip entry temperature 

did not affect the actual crater coverage but instead altered the morphology of the 

craters. Finally neither the spelter temperature nor the temperature after dipping had 

any effect upon either crater formation or crater morphology. All of this has shown 

that some degree of control could be achieved over the quantity and type of crater 

formation. The effect of each process parameter also helped to give an insight into 

just how and why craters form within the galvanneal coating. In addition, now that 

some control over crater formation had been achieved easier production and 

investigation into them could follow.

7.3 CRATER FORMATION

The next step was to work out how and why craters form as the coating develops from 

the galvanised to the galvannealed coating. The work that had been undertaken 

analysing the effect of process parameters had already given valuable information as 

to how craters could be easily formed for this investigation. The previous work had 

also taken the first steps in identifying why and how craters form.

The increase in crater coverage with increasing annealing temperature has helped to 

support the fact that, as proposed by Carless (2000), craters nucleate upon grains 

oriented with {111} in the plane of the sheet. Both the EBSD and the optical 

microscopy work carried out have confirmed that increasing the annealing 

temperature from 700°C to 900°C creates an equiaxed microstructure with numerous 

{111} oriented grains. Further work into the effect of the underlying substrate has 

shown that craters form within the high angle grain boundaries of {111} oriented 

grains and can also form over more than one {111} grain as long as they are
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contiguous. Now that the nucleation site for the craters has been identified and 

explained it is necessary to determine what exactly is nucleating upon these {111} 

oriented grains and just when it is nucleating.

The influence of strip entry temperature on crater morphology together with the lack 

of effect of both the spelter temperature and the temperature after dipping suggests 

that the initial nucleation of the crater occurs during the first instances of dipping. 

During this time it is possible for both the inhibition layer and iron-zinc intermetallics 

to form on the surface of the substrate. In the case of ordered craters it is the £ phase 

that is able to nucleate epitaxially upon the {111} oriented grains. In the case of 

disordered craters the increase in effective aluminium or the decrease in strip entry 

temperature that leads to their formation will result in a reduced super-saturation of 

iron near the substrate. This will therefore result in a much thinner layer of 

intermetallics forming upon the {111} oriented grains and with a different 

morphology. It is also believed, though not confirmed by experimental investigations, 

that a thin layer of inhibition layer is also present beneath the nucleating iron-zinc 

intermetallics.

The final part of the puzzle was determining just how craters form during the 

galvannealing process. By analysing both ordered and disordered craters during the 

formation of the galvanneal coating it was possible to determine that the zinc above 

the crater remained in a liquid state and was drawn into the surrounding coating. The 

formation of outbursts along the high angle grain boundaries at the edge of the crater 

produced a lip that became more pronounced as the galvannealing process continued. 

However, throughout the whole galvannealing process the initial iron-zinc 

intermetallics at the base of the crater remained completely unaffected. The reason 

for this is that the inhibition layer beneath the intermetallics prevents iron diffusing 

into them and the intermetallics prevent the liquid zinc from breaking up the 

inhibition layer. In effect they give each other mutual protection. That is, as shown in 

previous chapter, unless a high galvannealing temperature is used. At the higher 

galvannealing temperature the iron-zinc intermetallics remelt causing the break down 

of the inhibition layer and the formation of the normal galvanneal coating.
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7.4 COATING FAILURE

The investigations so far have provided a technique for measuring crater density, a 

greater degree of control over crater formation and a more in-depth understanding of 

how and why craters form. The final challenge was to determine just what influence 

craters would have upon the failure of the galvanneal coating.

The previous work of Carless (2000) and Wright (1998) had suggested that craters 

would reduce the amount of coating failure experienced during press forming 

operations. Investigation into the effect of crater formation upon the coating failure 

was carried out by testing samples of different crater coverage with a standard 

cupping test. The different crater coverages were produced by manipulation of both 

the annealing and galvannealing temperatures.

The results showed that an improvement in both the powdering and flaking properties 

was a result of changes in the ductility of the underlying substrate and not the 

presence of craters within the coating. During pressing the more ductile substrate 

would deform more uniformly, impose less stress upon the coating and reduce the 

coating failure. The craters within the coating were simply caused by the more ductile 

substrate containing more grains with {111} oriented in the plane of the sheet upon 

which the craters could nucleate.

The work of Carless (2000) compared the coating failure on a TiNb IF steel substrate 

and a Ti IF steel substrate. The work concluded that the coating on the TiNb IF steel 

substrate experienced less coating failure than that of the Ti IF steel substrate because 

of a higher crater coverage. It can be concluded from the current investigation that 

the improved coating failure experienced by the TiNb IF substrate was in fact due to 

the more ductile substrate and not the presence of craters. The addition of niobium to 

the substrate would have helped promote more recovery and recrystallisation 

compared to the substrate without niobium.

In addition the work also proposed that the plateau beneath the crater would inhibit 

cracks travelling through the brittle T/substrate interface. Analysis of the base of the
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craters after minimal deformation showed prolific crack propagation. This suggests 

that although some crack inhibition may occur the effect would be minimal.

7.5 GAMODELLER

In terms of investigating the coating constitution and surface evolution of the 

galvanneal coating the work up until now has primarily been involved with the nature 

and effect of craters. The final piece of work looked much more closely at the make­

up of the galvanneal coating in terms of the presence of the individual intermetallic 

phases.

The major part of this work involved the creation and testing of a model, based on 

diffusion couples, to predict the quantity of each of the intermetallic phases within the 

galvanneal coating. The initial part of the work set out to determine whether or not 

the published diffusion values of iron in zinc were applicable to the galvannealing 

reaction. The results from this proved successful and the published diffusion data was 

incorporated into the model. Further testing and validation of the model compared the 

coating produced on a Rhesca hot dip simulator to that predicted by the model. The 

results showed a close correlation between the measured and modelled quantities of £ 

and T. The 5 phase showed some scatter and an average over prediction of about 5%. 

This over prediction was related to the diffusion values utilised for the inhibition 

layer. The results suggest that the modelled inhibition layer is not hindering the 

alloying process as much as it should be. A greater hindrance would reduce the 

amount of alloying and the amount of each of the phases. This is due to the fact that 

the diffusion values used were based upon the diffusion of zinc through pure 

aluminium. The inhibition layer is actually an aluminium, iron and zinc mixture that 

would inhibit the amount of alloying to a much greater extent. However, measuring 

the actual diffusion values of zinc through the inhibition layer is very difficult due to 

its extremely thin nature. Therefore until further work can be undertaken into the 

diffusion of zinc through the inhibition layer the values of D. L. Bdke (1997) will be 

used within the GAModeller.
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7.6 COMMERCIAL RELEVANCE

The current work has shown that the presence of craters within the coating has no 

positive effect upon the powdering or flaking properties of the galvanneal coating. In 

addition there is also the possibility that the presence of craters may actually worsen 

the flaking properties. From a commercial point of view craters should therefore be 

avoided within the galvanneal coating. However, the work has also shown that a 

well-annealed substrate will help improve the resistance to coating failure by reducing 

the stresses imposed upon the coating. In addition, eradicating craters from a well- 

annealed substrate by increasing the galvannealing temperature may result in excess T 

formation and increased coating failure, in particular because during on-line 

production the galvannealing time is dictated by the line speed that is in turn 

controlled by the annealing furnace. Therefore if an improvement in powdering 

properties is desired the galvanneal producer may have to just accept the presence of 

craters within the coating.

There is also the possibility that, although craters do not improve the resistance to 

coating failure, they may be beneficial in another way. The increased roughness of 

the coating as a result of the presence of craters may help to improve the adhesion of 

both paints and glues to the galvanneal. This increased roughness helps to promote 

greater ‘keying’ between the coating and either the paint or the glue. In addition, 

work currently being carried out by Wright (1998) under the ILZRO (International 

Lead and Zinc Research Organisation) project ZCO-29 suggests that the presence of 

craters may help the stone chipping resistance of painted galvanneal panels.

The GAModeller has shown to be fairly accurate in predicting the coating constitution 

of the galvanneal coating. However, in its present state use as an on-line production 

tool would be limited. The main reason for this is the lack of additional process 

parameters such as substrate composition, bath temperature and immersion time 

within the model. Also, on-line production currently uses an X-ray machine to 

measure iron content and determine the amount of alloying. This method of 

determining the coating constitution is rapid, tested and accurate. Use of the 

GAModeller will therefore be on a research basis, used to plan experiments and give 

an understanding as to how the coating develops.
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From an immediate commercial point of view the main result that has come from this 

piece of work is that if a galvannealing temperature above 530°C is used then no £ is 

present within the coating. The preferred coating of many customers is a zero £ 

coating, as this tends to have the most consistent forming properties. Normally a 

galvannealing temperature of around 500-510°C is used together with a long enough 

galvannealing time to ensure that all of the £ has transformed to 8. This work has 

shown that by using a galvannealing temperature of above 530°C the coating consists 

of just 8 and T even when some free zinc still remains in the coating. Therefore, as 

long as a shorter galvannealing time is used to compensate for the higher temperature, 

the coating will always consist of zero-£ without the need for transformation of the £ 

to 8.
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8 CONCLUSIONS

The following chapter states the overall conclusions that have been derived from the

completion of this project.

Crater Measurement Technique

• Use of the KS300 image analysis package for the identification and 

measurement of craters is both accurate and repeatable.

• Crater density can vary quite considerably over a single sample.

Influence o f Process Parameters

• Increasing the annealing temperature from 700°C to 900°C leads to an 

increase in crater formation.

• Increasing the galvannealing temperature from 500°C to 510°C leads to a 

decrease in crater formation.

• Increasing the strip entry temperature results in a more ordered structure of the

crystals at the base of the crater.

• Increasing the effective aluminium content of the spelter leads to a more

disordered structure at the base of the crater.

• Neither the spelter temperature nor the temperature after dipping have any 

influence upon crater formation or crater morphology.

Crater Formation

• Craters nucleate during the first instances of dipping and within the high angle 

grain boundaries of grains oriented with {111} parallel to the sheet surface.

• Craters can nucleate across adjacent {111} oriented grains separated by low 

angle grain boundaries.

• During the galvannealing process the liquid zinc above the crystals is drawn

into the surrounding coating.
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Coating Failure

• Any improvement in powdering and flaking properties is the result of a more 

ductile substrate and not the effect of craters.

• Craters have no effect upon the powdering properties of the galvanneal 

coating.

• Craters may worsen the flaking properties of the galvanneal coating.

• Craters do not act as an effective inhibitor to crack propagation along the 

brittle T/substrate interface.

GAModeller

• The principle of diffusion couples is applicable to the formation of the 

galvanneal coating.

• The diffusion values published by Wakamatsu (1997) are applicable to the 

galvannealing process.

• Galvannealing above 530°C results in no £ phase being present within the 

coating.

Overall it can be stated that during the first moments of dipping craters form by the 

epitaxial nucleation of the £ iron-zinc intermetallic. This occurs upon grains oriented 

with {111} in the plane of the sheet, the proportion of which increases with an 

increase in annealing temperature. The presence of these craters within the coating 

has no major influence upon the failure properties of the coating. Instead, an increase 

in the annealing temperature creates a more ductile substrate that imposes less strain 

upon the coating and thus results in less coating failure. From a commercial point of 

view craters are neither a help nor a hindrance to the failure properties of the coating 

and simply give an indication as to the grain structure of the underlying substrate.
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APPENDIX

The complete Visual Basic™ code for the GAModeller is detailed and annotated 

below:

1Declaration o f variables

Option Explicit
Dim R_boundary As Single
Dim L_boundary As Single
Dim Far_L_boundary As Single
Dim Far_R_boundary As Single
Dim DO As Single
Dim Q As Single
Dim k As Single
Dim Time As Single
Dim n As Single
Dim thickness As Single
Dim inhibition As Single
Dim D As Single
Dim zeta As Single
Dim delta As Single
Dim gamma As Single
Dim eta As Single
Dim etafecontent As Single
Dim zetafecontent As Single
Dim deltafecontent As Single
Dim gammafecontent As Single
Dim zetaover As Single
Dim value As Single
Dim HEATtime As Single
Dim eqtime As Single
Dim speed As Single
Dim coating_thickness As Single

'Clear the graph 
Private Sub Clear_Click()
CIs
End Sub

'Decrease the coating thickness by half a micron 
Private Sub CoatThminus_Click()
CoatThinput.Text = CoatThinput.Text - 0.5 
If CoatThinput.Text < 0 Then CoatThinput = 0 
End Sub

'Increase Coating thickness by half a micron 
Private Sub CoatThplus_Click()
CoatThinput.Text = CoatThinput.Text + 0.5 
End Sub
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'Decrease the Galvannealing Time by one second 
Private Sub DecGATime_Click()
GATimelnput.Text = GATimelnput.Text -1 
If GATimelnput.Text < 0 Then GATimelnput.Text = 0 
End Sub

'Decrease the effective aluminium by 0.005%
Private Sub Effalminus_Click()
EffAlinput.Text = Format(EffAIinput.Text - 0.005, "0.000")
If EffAlinput.Text < 0 Then EffAlinput.Text = 0 
End Sub

'Increase the Effective aluminium by 0.005%
Private Sub EffAlplus_Click()
EffAlinput.Text = Format(EffAlinput.Text + 0.005, "0.000") 
End Sub

'Decrease the galvannealing temperature by 1 degree 
Private Sub GATempminus_Click()
GATempinput.Text = GATempinput.Text -1  
If GATempinput.Text < 0 Then GATempinput = 0 
End Sub

'Increase the galvannealing temperature by 1 degree 
Private Sub GATempplus_Click()
GATempinput.Text = GATempinput.Text + 1 
End Sub

'Increase Galvannealing Time by one second 
Private Sub lncGATime_Click() 
value = GATimelnput.Text + 1 
GATimelnput.Text = value 
End Sub

‘Vary the x andy scales on the graph 
Private Sub MaxXminus_Click()
MaxX.Text = MaxX.Text -1
If MaxX.Text < 0 Then MaxX.Text = 0
If MaxX.Text = MinX.Text Then MaxX.Text = MinX.Text -1
End Sub

Private Sub MaxXplus_Click()
MaxX.Text = MaxX.Text + 1
If MaxX.Text = MinX.Text Then MaxX.Text = MinX.Text + 1 
End Sub

Private Sub MinXminus_Click()
MinX.Text = MinX.Text - 1
If MinX.Text < 0 Then MinX.Text = 0
If MinX.Text = MaxX.Text Then MinXText = MaxX.Text -1
End Sub

Private Sub MinXplus_Click()
MinX.Text = MinX.Text + 1
If MinX.Text = MaxX.Text Then MinXText = MaxX.Text + 1 
End Sub
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'Set Galvannealing Time back to zero 
Private Sub ResetGA_Click()
GATimelnput.Text = 0 
End Sub

'Exit Program 
Private Sub Exit_Click()
End
End Sub

'Change to HDS Option 
Private Sub GATimeOption_Click()
GATimeLbl. Visible = True 
linespeedLbl.Visible = False 
Label4. Visible = False 
Label5. Visible = False 
Furnace. Visible = False 
GATimeSelect. Caption = "GA Time"
Equivalent. Caption = "m/min"
MaxX.Text = 30 
End Sub

'Change to Zodiac Option 
Private Sub LineSpeedOption_Click() 
GATimeLbl.Visible = False 
linespeedLbl.Visible = True 
Label4. Visible = True 
Label5. Visible = True 
Furnace. Visible = True 
GATimeSelect.Caption = "Line Spd"
Equivalent. Caption = "Secs"
MaxX.Text = Furnace. Text
If GATimelnput.Text = 0 Then GATimelnput.Text = 1 
End Sub

Private Sub Calculate_Click()

'Calculate the time delay due to the Inhibition Layer

'Calculate diffusion ofZn through Inhibition Layer 
DO = 0.0000245 
Q = 119600
D = DO * (2.7182 A (0 - Q / (8.314 * (GATempinput.Text + 273))))

'Calculate thickness ofInhibition layer from work o f  Guttman, Price Etc 
If EffAlinput.Text <= 0 Then EffAlinput = 0.000001 
thickness = 866 + 376 * (Log(EffAlinput.Text) / Log(2.7182))
If thickness < 0 Then thickness = 0

'Display the thickness in nanometres 
InhibLayer.Caption = Format(thickness, "###.##") 
thickness = thickness /1000000000
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'Calculate the time it takes for Zn to diffuse through 
inhibition = (thickness * thickness) / (0.01 * D)

'Calculate the thickness o f the zeta phase

'Boundary conditions from the phase diagram 
R_boundary = 7.2
If GATempinput.Text > 530 Then L_boundary = 7.2
If GATempinput.Text <= 530 Then L_boundary = (GATempinput.Text + 583.9) /160  
If L_boundary < 7.05 Then L_boundary = 7.05 
Far_L_boundary = 0.25 
Far_R_boundary = 7.95

'Diffusion Coefficients fo r iron through the zeta phase 
DO = 0.00000228 
Q = 83300

D = DO * (2.7182 A ((0 - Q) / (8.314 * (GATempinput.Text + 273))))

k = (2 * D * (((R_boundary - L_boundary) / (L_boundary - Far_L_boundary)) + ((R_boundary - 
L_boundary) I (Far_R_boundary - R_boundary)))) A 0.5

'If the user is using the line speed parameter then the immersion time needs to be 
adjusted
If LineSpeedOption = True Then 
If GATimelnput.Text = 0 Then GATimelnput.Text = 1 
End If

'If the zodiac option is used then the Galvannealing time is dependent upon the line 
‘speed
'The equivalent HDS galvannealing time is also calculated 
If LineSpeedOption = True Then 
If GATimelnput.Text = 0 Then GATimelnput.Text = 1 
HEATtime = Furnace.Text / (GATimelnput.Text / 60)
Equivalent. Caption = "Secs"
eqtime = Furnace.Text / (GATimelnput.Text / 60)
convert.Caption = Format(eqtime, "###.##")
End If

'If the HDS option is used then the equivalent line speed is calculated 
If LineSpeedOption = False Then 
HEATtime = GATimelnput.Text 
Equivalent. Caption = "m/min"
End If

'zero GA time
If GATimelnput.Text = 0 Then 
convert. Caption = "N/A"
Else
speed = 60 * (Furnace.Text / GATimelnput.Text) 
convert.Caption = Format(speed, "###.##")
End If
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Time = HEATtime - inhibition 
If Time < 0 Then Time = 0

n = 0.36

thickness = k * Time A n 
If GATempinput.Text > 530 Then thickness = 0

zeta = thickness * 1000000

1Calculate the delta phase thickness

'Boundary conditions from the phase diagram
R_boundary =11.4
L_boundary = 7
Far_L_boundary = 6.2
Far_R_boundary = 21

'Change o f  boundary i f  temperature is above 530C

If GATempinput.Text > 530 Then L_boundary = 7 + ((1.5 / 90) * GATempinput - 530)

'Diffusion coefficients o f  iron through the delta phase 
DO = 0.000000282 
Q = 80400

D = DO * (2.7182 A (0 - Q / (8.314 * (GATempinput.Text + 273))))

k = (2 * D * (((R_boundary - L_boundary) / (L_boundary - Far_L_boundary)) + ((R_boundary - 
L_boundary) / (Far_R_boundary - R_boundary)))) A 0.5

Time = HEATtime - inhibition 
If Time < 0 Then Time = 0

n = 0.43

thickness = k * Time A n 

delta = thickness * 1000000

'Calculate the thickness o f  the Gamma Phase

'Boundary conditions from the phase diagram 
R_boundary = 28 
L_boundary = 21 
Far_L_boundary = 11.4
Far_R_boundary = 100 - ((GATempinput.Text - 300) / 22.8)

'Diffusion coefficients o f iron through the gamma phase 
DO = 0.000000105 
Q = 92100
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D = DO * (2.7182 A (0 - Q / (8.314 * (GATempinput.Text + 273))))

k = (2 * D * (((R_boundary - L_boundary) / (L_boundary - Far_L_boundary)) + ((R_boundary - 
L_boundary) / (Far_R_boundary - R_boundary)))) A 0.5

Time = HEATtime - inhibition 
If Time < 0 Then Time = 0

n = 0.24 - (0.5 * EffAlinput.Text)
If n < 0 Then n = 0.000001 
If n > 0.3 Then n = 0.3

thickness = k * Time A n

gamma = thickness * 1000000

'Calculate the overall constitution

coating_thickness = CoatTh input. Text

eta = coating_thickness - (zeta + delta + gamma)
If eta <= 0 Then eta = 0
If eta = 0 Then zeta = coating_thickness - (delta + gamma)

'Effectively the amount o f  iron that would have escaped 
zetaover = zeta

If zeta <= 0 Then zeta = 0
If zeta = 0 And eta = 0 Then delta = coating_thickness - gamma

etamicrons.Caption = Format(eta, "##0.##") 
zetamicrons.Caption = Format(zeta, "##0.##") 
deltamicrons. Caption = Format(delta, "##0.##")
Gammamicrons. Caption = Format(gamma, "##0.##")

etaPerc. Caption = Format(eta / CoatThinput.Text * 100, "##0.##") 
zetaPerc.Caption = Format(zeta / CoatThinput.Text * 100, "##0.##") 
deltaPerc.Caption = Format(delta / CoatThinput * 100, "##0.##") 
gammaPerc.Caption = Format(gamma / CoatThinput * 100, "##0.##")

'Calculate the Fe content o f  the coating

etafecontent = 0.003 
zetafecontent = 6.25 
deltafecontent = 7 
gammafecontent = 20

'The enrichment o f  the delta and gamma phases 
If zeta = 0 Then
deltafecontent = (7 - (zetaover / 2.5)) 
gammafecontent = (20 - (zetaover /1 .3))
End If
If deltafecontent > 12 Then deltafecontent = 12
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If gammafecontent > 30 Then gammafecontent = 30

Fewghtperc.Caption = Format((etafecontent * eta + zetafecontent * zeta + deltafecontent * 
delta + gammafecontent * gamma) / coating_thickness, "##0.##")
Fegrams.Caption = Format((Fewghtperc.Caption /100) * coating_thickness * 7.88, "##0.##") 

'Calculate the amount o f powdering

If GATempinput.Text <= 530 Then powdering.Caption = Format(0.000113 * Exp(0.865 * 
Fegrams.Caption), "0.####")
If GATempinput.Text > 530 Then powdering.Caption = Format(0.000137 * Exp(0.594 * 
Fegrams.Caption), "0.####")

'Display schematic microstructure

substratepic.Top = 2880 
substratepic.Left = 10440 
gammapic.Left = 10440 
deltapic.Left = 10440 
zetapic.Left = 10440 
etapic.Left = 10440

gammapic.Top = substratepic.Top -1920 * (gammaPerc. Caption /100) 
gammapic.Height = substratepic.Top - gammapic.Top

deltapic.Top = gammapic.Top -1920 * (deltaPerc.Caption /100) 
deltapic. Height = gammapic.Top - deltapic.Top 
If deltaPerc.Caption = 0 Then deltapiclab.Visible = 0 
If deltaPerc.Caption > 0 Then deltapiclab.Visible = 1 
deltapiclab.Top = deltapic.Top

zetapic.Top = deltapic.Top -1920 * (zetaPerc.Caption /100) 
zetapic.Height = deltapic.Top - zetapic.Top 
If zetaPerc.Caption <=10 Then zetapiclab. Visible = 0 
If zetaPerc. Caption > 10  Then zetapiclab. Visible = 1 
zetapiclab.Top = zetapic.Top

etapic.Top = zetapic.Top -1920 * (etaPerc.Caption /100) 
etapic. Height = zetapic.Top - etapic.Top 
If etaPerc.Caption <= 10 Then etapiclab. Visible = 0 
If etaPerc. Caption > 10 Then etapiclab.Visible = 1 
etapiclab.Top = etapic.Top

End Sub
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'* Display the Graph

Private Sub Display_Graph_Click()

Dim X As Integer
Dim zetaY As Single
Dim etaY As Single
Dim deltaY As Single
Dim gammaY As Single
Dim FeY As Single
Dim GAtime As Single
Dim time_step As Single
Dim zeta_thickness As Single
Dim delta_thickness As Single
Dim gamma_thickness As Single
Dim zeta_growth_rate As Single
Dim delta_growth_rate As Single
Dim gamma_growth_rate As Single

Display_Graph.MousePointer = 11 
Display_Graph. Caption = "Computing"

’Alter the scale on the thickness axis
LabY1.Caption = Format(1 * (CoatThinput.Text /10), "##.#")
LabY2.Caption = Format(2 * (CoatThinput.Text /10), "##.#")
LabY3.Caption = Format(3 * (CoatThinput.Text /10), "##.#")
LabY4.Caption = Format(4 * (CoatThinput.Text /10), "##.#")
LabY5. Caption = Format(5 * (CoatThinput.Text /10), "##.#")
LabY6. Caption = Format(6 * (CoatThinput.Text /10), "##.#")
LabY7.Caption = Format(7 * (CoatThinput.Text /10), "##.#")
LabY8. Caption = Format(8 * (CoatThinput.Text /10), "##.#")
LabY9.Caption = Format(9 * (CoatThinput.Text /10), "##.#")
MaxY. Caption = Format(CoatThinput.Text, "##.##")

’Alter the scale on the fe  content axis
LabFeYI .Caption = Format(1 * (FeYMaxText / 7), "##.#")
LabFeY2.Caption = Format(2 * (FeYMaxText / 7), "##.#")
LabFeY3.Caption = Format(3 * (FeYMaxText / 7), "##.#")
LabFeY4.Caption = Format(4 * (FeYMax.Text / 7), "##.#")
LabFeY5.Caption = Format(5 * (FeYMaxText / 7), "##.#")
LabFeY6.Caption = Format(6 * (FeYMax.Text / 7), "##.#")

’Alter the scale on the Xaxis
LabX1 .Caption = Format(MinX.Text + 1 * ((MaxXText - MinXText) / 6), "##.##") 
LabX2. Caption = Format( MinX.Text + 2 *  ((MaxX.Text - MinXText) / 6), "##.##") 
LabX3.Caption = Format(MinX.Text + 3 * ((MaxX.Text - MinX.Text) / 6), "##.##") 
LabX4. Caption = Format(MinXText + 4 * ((MaxX.Text - MinXText) / 6), "##.##") 
LabX5.Caption = Format(MinX.Text + 5 * ((MaxXText - MinXText) / 6), "##.##")

'Start Point o f  the Graph for the different phases 
X = 460 
zetaY = 8150 
deltaY = 8150
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gammaY = 8150

If LineSpeedOption = True Then 
LabeHO.Caption = "Dist (m)"
Else
LabeMO.Caption = "Time (s)"
End If

‘Do loop for drawing the graph 

Do While X < 7800
If etacheck.value = 1 Then PSet (X, etaY), RGB(255, 255, 255)
If zetacheck.value = 1 Then PSet (X, zetaY), QBColor(11)
If deltacheck.value = 1 Then PSet (X, deltaY), RGB(0, 255, 0)
If gammacheck.value = 1 Then PSet (X, gammaY), RGB(255, 0, 0)
If fecheck.value = 1 Then PSet (X, FeY), QBColor(14)

If LineSpeedOption = True Then 
If GATimelnput.Text = 0 Then GATimelnput.Text = 1
GAtime = MinX.Text + (X - 460) / ((7335 * (GATimelnput.Text / 60)) / (MaxX.Text - 
MinXText))
Else
GAtime = MinXText + (X - 460) / (7335 / (MaxX.Text - MinX.Text))
End If

'Calculate the time delay due to the Inhibition Layer

'Calculate diffusion ofZn through Inhibition Layer 
DO = 0.0000245 
Q = 119600
D = DO * (2.7182 A (0 - Q / (8.314 * (GATempinput.Text + 273))))

'Calculate thickness o f Inhibition layer from work o f Guttman, Price Etc 
If EffAlinput.Text <= 0 Then EffAlinput = 0.000001 
thickness = 866 + 376 * (Log(EffAlinput.Text) / Log(2.7182))
If thickness < 0 Then thickness = 0

thickness = thickness /1000000000

'Calculate the time it takes for Zn to diffuse through 
inhibition = (thickness * thickness) / (0.01 * D)

'Calculate the thickness o f the zeta phase

'Boundary conditions from the phase diagram 
R_boundary = 7.2
If GATempinput.Text > 530 Then L_boundary = 7.2
If GATempinput.Text <= 530 Then L_boundary = (GATempinput.Text + 583.9) /160  
If L_boundary < 7.05 Then L_boundary = 7.05 
Far_L_boundary = 0.25 
Far_R_boundary = 7.95
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'Diffusion coefficients o f  iron through the zeta phase 
DO = 0.00000228 
Q = 83300

D = DO * (2.7182 A ((0 - Q) / (8.314 * (GATempinput.Text + 273))))

k = (2 * D * (((R_boundary - L_boundary) / (L_boundary - Far_L_boundary)) + ((R_boundary - 
L_boundary) / (Far_R_boundary - R_boundary))))A 0.5

If LineSpeedOption = True Then 
If GATimelnput.Text = 0 Then GATimelnput.Text = 1 
End If

Time = GAtime - inhibition 
If Time < 0 Then Time = 0

n = 0.36

zeta_thickness = k * Time A n 

If GATempinput.Text > 530 Then zeta_thickness = 0 

zetaY = zeta_thickness * 1000000

'Calculate the delta phase thickness

'Boundary conditions from the phase diagram
R_boundary = 11.4
L_boundary = 7
Far_L_boundary = 6.2
Far_R_boundary = 21

'Change o f boundary i f  temperature is above 530C
If GATempinput.Text > 530 Then L_boundary = 7 + ((1.5 / 90) * (GATempinput - 530))

'Diffusion coefficients o f  iron through the delta phase 
DO = 0.000000282 
Q = 80400

D = DO * (2.7182 A (0 - Q / (8.314 * (GATempinput.Text + 273))))

k = (2 * D * (((R_boundary - L_boundary) / (L_boundary - Far_L_boundary)) + ((R_boundary - 
L_boundary) / (Far_R_boundary - R_boundary)))) A 0.5

Time = GAtime - inhibition 
If Time < 0 Then Time = 0

n = 0.43

delta_thickness = k * Time A n 

deltaY = delta thickness * 1000000
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'Calculate the thickness o f the Gamma Phase

'Boundary conditions from the phase diagram 
R_boundary = 28 
L_boundary = 21 
Far_L_boundary = 11.4
Far_R_boundary = 100 - ((GATempinputText - 300) / 22.8)

'Diffusion coefficients o f  iron through the gamma phase 
DO = 0.000000105 
Q = 92100

D = DO * (2.7182 A (0 - Q / (8.314 * (GATempinput.Text + 273))))

Time = GAtime - inhibition 
If Time < 0 Then Time = 0

n = 0.24 - (0.5 * EffAlinput.Text)
If n < 0 Then n = 0.0000001 
If n > 0.3 Then n = 0.3

k = (2 * D * (((R_boundary - L_boundary) / (L_boundary - Far_L_boundary)) + ((R_boundary - 
L_boundary) / (Far_R_boundary - R_boundary)))) A 0.5

gamma_thickness = k * Time A n

gammaY = gamma_thickness * 1000000

'Calculate the overall constitution

coating_thickness = CoatThinput.Text

etaY = coating_thickness - (zetaY + deltaY + gammaY)
If etaY <= 0 Then etaY = 0
If etaY = 0 Then zetaY = coating_thickness - (deltaY + gammaY)

'Effectively the amount o f iron that would have escaped 
zetaover = zetaY

If zetaY <= 0 Then zetaY = 0
If zetaY = 0 And etaY = 0 Then deltaY = coating_thickness - gammaY 

If zerozeta Then
If zetaY = 0 And etaY = 0 Then Exit Do 
End If

'Calculate the Fe content o f the coating

etafecontent = 0.003 
zetafecontent = 6.25
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deltafecontent = 7 
gammafecontent = 20

'The enrichment o f the delta and gamma phases 
If zetaY = 0 Then
deltafecontent = (7 - (zetaover / 2.5)) 
gammafecontent = (20 - (zetaover /1.3))
End If
If deltafecontent > 12 Then deltafecontent = 12 
If gammafecontent > 30 Then gammafecontent = 30

FeY = 8150 - ((etafecontent * etaY + zetafecontent * zetaY + deltafecontent * deltaY +
gammafecontent * gammaY) / coating_thickness) * (4650 / FeYMax.Text)
etaY = 8150 - (etaY * (4650 / coating_thickness))
zetaY = 8150 - (zetaY * (4650 / coatingjhickness))
deltaY = 8150 - (deltaY * (4650 / coating_thickness))
gammaY = 8150 - (gammaY * (4650 / coating_thickness))

X = X + 25

Loop

Display_Graph. Caption = "&Graph"
Display_Graph.MousePointer = 0

End Sub
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