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Abstract:

Novel electrochemical techniques, Scanning Vibrating Electrode (SVET) 

and Scanning Kelvin Probe (SKP), have been used to characterise pitting 

and filiform corrosion characteristics of aerospace alloy 2024-T3/T351. 

They have also been used to semi-quantify the inhibition efficiencies of 

chromate and trivalent Rare Earth Metal (REM) salts (cerium, lanthanum, 

and yttrium), both in solution and in coatings. It is shown that after long 

periods (hours) of immersion in 3.5% aqueous NaCl stable pitting occurs, 

these pits are believed to be in the form of interconnected tunnels, 

emerging at various points on the surface. It is also shown that chromate 

is the most effective inhibitor of those tested, both in solution and in 

coatings.

The role of S phase intermetallic particles on the pitting corrosion 

of the alloy has also been investigated using SVET, and secondary and 

back-scatter electron microscopy. It is shown that the pitting corrosion 

rate exhibited by the alloy increases with the increase of fractional 

surface area occupied by precipitate. It is also shown that, when a non- 

uniform distribution of intermetallic particles is present, the maximum 

density of stable corrosion pits coincides with the minimum surface 

density o f intermetallic particles.



Table of Symbols:

Symbol Quantity Units
K Conductivity Q 'W 1
P Density gem'3
G> Frequency Hz
£ Dielectric constant N/A

$(a,z) Fraction of i detected by integration of jz over a 
rectangular area of length 2X and breadth 2Y

N/A

Fraction of i detected by integration of jz<r?z) over a circular 
area of constant z and radius R

N/A

So Permittivity of a vacuum Fm'1
Tla Anodic polarisation V
ric Cathodic polarisation V
AV Volta potential V
A Area of cross section m
C Capacitance F
d Diameter of pit cm
D Distance between plates m
E Potential V
corr Corrosion potential V
F Faraday constant = 96487 C m o l1
F0 Normal field strength V nf1
G Calibration factor of SVET A m 'V 1
h Height of SVET probe over surface during scan m
I Integrated current A
i Current A
G Total anodic current present for each scan A
/ Current density Am'2

j(t) Time dependant, area averaged corrosion current density Am'2
JcOIT Anodic current density Am'2
Q Charge C
r ( x ' V ) 1'2 m
t Time s

teal Total equivalent aluminium loss gm
Th Threshold current density above which integration is 

performed
Am'2

tm Time of immersion s
X Position or distance in x direction m
y Position or distance in y direction m
z Position or distance in z direction m
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Chapter 1: Introduction.

1.1: Aluminium and its Alloys.

I .1.1: Introduction.

In its pure form aluminium is a lightweight, silver-white, ductile and malleable metal. 

Aluminium is mostly extracted from the mineral bauxite, which contains 

approximately 25 percent aluminium1. It is the third most abundant element, and is 

the most abundant metal in the Earth’s crust2. Pure aluminium is an excellent thermal 

and electrical conductor, magnetically neutral, and when highly polished reflects well 

beyond the visible spectrum at both shorter and longer wavelengths". On contact with 

air the surface oxidises to form a thin, compact and strongly adherent aluminium 

oxide film, which then acts as a protective layer against further corrosive attack. This, 

so called passive behaviour, results in pure aluminium having a high corrosion 

resistance1, despite the large thermodynamic driving force for oxidation indicated by 

its position in the electrochemical series, shown in table 1.6. These and other 

properties make aluminium highly desirable within modem industry.

However, in its pure state aluminium is a relatively soft metal and tends to 

lose strength over time1. To produce the required strong properties, aluminium is 

alloyed with varying quantities of heavy metals such as copper, zinc or nickel. Thus 

producing a relatively light alloy with good mechanical properties. A side effect of 

the alloying is the reduced corrosion resistance of the alloy compared to the pure 

metal1.

The chief alloying constituents added to aluminium are copper, magnesium, 

silicon, manganese, nickel and zinc. Each type of alloy is then given a designation to
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indicate its major alloying element. All are used to increase the strength of pure

1 3aluminium . Table 1.1 shows the designations for wrought aluminium alloys .

Table 1.1: Showing the designations for wrought aluminium alloys3.

M ajor alloying element Designated number

None (99%+ Aluminium) 1XXX

Copper 2XXX

Manganese 3XXX

Silicon 4XXX

Magnesium 5XXX

Magnesium + Silicon 6XXX

Zinc 7XXX

Lithium 8XXX

When the aluminium has been alloyed with the elements, the desired properties may 

be derived from one of two types of treatment; those which derive their properties 

from work hardening, and those which depend on solution heat treatment and age 

hardening.

The 1000, 3000 and 5000 series alloys have their properties adjusted by cold 

work, usually by cold rolling. The exact properties gained by this process depends on 

the degree of cold work and whether any annealing or stabilising thermal treatment 

follows3. However, as these alloy types are not the subject of this thesis the exact 

types of treatment shall not be described further. The 2000, 4000, 6000, 7000 and 

8000 series alloys are produced through solution heat treatment and age hardening. It 

is possible to achieve a wide range properties due to the wide choice of alloy 

compositions, solution heat treatment temperatures and times, quench rates from 

temperature, choice of artificial ageing treatment and degree to which the final



product has been deformed3. To define the treatments used a system of standard 

designations is used. These are based upon the letter T and are followed by a number 

to describe the various conditions. Table 1.2 shows the definitions of these 

designations, and table 1.3 shows the characteristics of some common alloys and how 

and where they are most commonly used.

Table 1.2: Definition of heat treatment designations for aluminium and aluminium 

alloys3.

Term Description

T1 Cooled from an elevated temperature shaping process, and naturally aged to a 

substantially stable condition. This designation applies to products which are 

not cold worked after cooling from an elevated temperature shaping process, 

or in which the effect of cold work in flattening or straightening has no effect 

on mechanical properties.

T2 Cooled from an elevated temperature shaping process, cold worked and 

naturally aged to a substantially stable condition. This designation applies to 

products which are cold worked to improve strength after cooling from an 

elevated temperature shaping process, or in which the effect of cold work in 

flattening or straightening does have an effect on mechanical properties.

T3 Solution heat treated, cold worked and naturally aged to a substantially stable 

condition. This designation applies to products which are cold worked to 

improve strength after solution heat treatment, or in which the effect of cold 

work in flattening or straightening does have an effect on mechanical 

properties.

T4 Solution heat treated and naturally aged to a substantially stable condition. 

This designation applies to products which are not cold worked after solution 

heat treatment, or in which the effect of cold work in flattening or 

straightening does not have an effect on mechanical properties.

T5 Cooled from an elevated temperature shaping process and then artificially 

aged. This designation applies to products which are not cold worked after
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cooling from an elevated temperature shaping process, or in which the effect 

of cold work in flattening or straightening does not have an effect on 

mechanical properties.

T6 Solution heat treated and then artificially aged. This designation applies to 

products which are not cold worked after solution heat treatment, or in which 

the effect of cold work in flattening or straightening does not have an effect 

on mechanical properties.

T7 Solution heat treated and overaged/stabilised. This designation applies to 

products which are artificially aged after solution heat treatment to carry 

them beyond a point of maximum strength to provide control of some 

significant characteristic other than mechanical properties.

Table 1.3: Some common aluminium alloys, their characteristics and common uses3.

Alloy Characteristics Common uses

1050/1200 Good formability, weldability and 

corrosion resistance

Food and chemical 

industry

2014 Heat treatable. High strength. Non- 

weldable. Poor corrosion resistance.

Airframes.

3103/3003 Non-heat treatable. Medium strength 

work hardening alloy. Good weldability, 

formability and corrosion resistance.

Vehicle panelling, 

structures exposed to 

marine atmospheres.

5251/5052 Non-heat treatable. Medium strength 

work hardening alloy. Good weldability, 

formability and corrosion resistance.

Vehicle panelling, 

structures exposed to 

marine atmospheres.

5454# Non-heat treatable. Used at temperatures 

65-200°C. Good weldability and 

corrosion resistance.

Pressure vessel and road 

tankers. Transport of 

ammonium nitrate, 

petroleum. Chemical 

plants.

5083#/5182 Non-heat treatable. Good weldability 

and corrosion resistance. Very resistant 

to sea water, industrial atmospheres.

Pressure vessels and road 

transport applications 

below 65°C. Ship
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structures.

6063# Heat treatable. Medium strength alloy. 

Good weldability and corrosion 

resistance. Used for intricate profiles.

Architectural extrusions, 

window frames, irrigation 

pipes.

6061#/6082# Heat treatable. Medium strength alloy. 

Good weldability and corrosion 

resistance.

Stressed structural 

members, bridges, cranes, 

beer barrels, roof trusses.

6005 Heat treatable. Properties very similar to 

6082. Preferable as air quenchable, 

therefore has less distortion problems.

Thin walled wide 

extrusions.

7020 Heat treatable. Age hardens naturally 

therefore will recover properties in heat 

affected zone after welding. Susceptible 

to stress corrosion. Good ballistic 

deterrent properties.

Armoured vehicles, 

military bridges, motor 

cycle and bicycle frames.

7075 Heat treatable. Very high strength. Non- 

weldable. Poor corrosion resistance.

Airframes.

# = most commonly used alloys

1.1.2: Precipitate growth.

The process known as age hardening or precipitation hardening4,5 may be used in the 

production of aluminium alloys to produce a fine uniform dispersion of hard 

precipitate particles within a softer more ductile matrix. Ideally the matrix formed 

will be coherent, as this produces a widespread disruption of the matrix lattice, so the 

movement of the crystallographic dislocations is impeded even if they merely pass 

close to the particle. However, if the precipitates formed are incoherent, the matrix 

lattice is unperturbed and the movement of dislocations is impeded only if these 

impinge directly on the particle. It is the reduction in dislocation mobility which



reduces susceptibility to plastic deformation, and coherent precipitates therefore 

produce a significantly greater hardening effect than do incoherent precipitates. 

Figure 1.1a5 shows how the matrix lattice remains unperturbed in the vicinity of an 

incoherent precipitate, and figure 1.1b shows how a coherent precipitate disrupts the 

surrounding matrix lattice.

Al-Cu binary alloys:

The composition Al-4%Cu presents a classical example of an age-hardenable alloy 

system. Figure 1.24’5 shows the aluminium rich end of the Al-Cu phase diagram. 

Here the a  phase is a solid solution of Cu in A1 and exhibits a FCC crystal structure. 

The 0 phase is the hard, brittle, intermetallic compound AI2CU which exhibits a body 

centred tetragonal crystal structure, incoherent with a. These are the only stable, 

equilibrium, phases available and it may therefore be understood that any formation 

of coherent precipitates must involve metastable, non-equilibrium, phases. These 

additional phases are termed transition phases and arise as kinetic intermediates in the 

precipitation of 0 from supersaturated a. The process through which they are 

produced involves three steps.

Step 1 -  Solution treatment. The alloy is held above the solvus temperature (500°C) 

until all the 0 phase dissolves to produce homogeneous solid solution a. The 

temperatures actually employed lie between the solvus and the eutectic temperatures 

(500 - 548°C) to avoid microconstituent melting and loss of homogeneity at 

temperatures above the eutectic.
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(a) U>)

Figure 1.1: a) A non-coherent precipitate has no relationship with the crystal structure of the 

surrounding matrix, b) A coherent precipitate forms so that there is a definite relationship between 

the precipitates and the matrix’s crystal structure1.

Atomic percent Cu
700

400Oo
a>
3 
03£ 300Q.
Ea)

2
1 2 3 4 5

Weight percent Cu

Figure 1.2: The aluminium- rich end of the aluminium-copper phase diagram showing the three 

steps in the age-hardening heat treatment and the microstructures that are produced4,5.

Quench
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Step 2 -  Quench. The solution treated alloy is rapidly cooled or quenched to room 

temperature or below. Atoms have insufficient time to diffuse to potential nucleation 

sites with the consequence that 0 phase does not form. However, the structure now 

consists of a supersaturated solid solution a ss with a thermodynamic driving force for 

0 precipitation.

Step 3 -  Age. Finally the alloy is reheated below the solvus temperature, typically to 

temperatures less than 190 °C. Copper atoms can now diffuse to nucleation sites and 

precipitate particles grow. If ageing is allowed to continue for long enough the 

equilibrium a  plus 0 structure will ultimately be produced. However, higher strengths 

may be achieved by stopping the ageing process (by cooling to room temperature) 

before equilibrium is attained, thereby retaining coherent transition phases. During 

the ageing process transition phases form successively as intermediates in a so-called 

precipitation sequence. The precipitation sequence for Al-4%Cu is as follows:

a ss  > GP zones (discs) > 0” (discs) > 0 ’ (plates) > 0 (C uA y (1)

where GP (Guinier -  Preston) zones are copper rich clusters fully coherent with the 

matrix. The 0” precipitates are typically <10nm thick and <100nm diameter and 

exhibit as distorted tetragonal unit cell which is essentially a distorted FCC structure 

fully coherent with the matrix. 0’ is also tetragonal with an approximate composition 

CuAb and forms precipitates up to 1 jum in diameter, semi-coherent with the matrix. 

The final 0 precipitates may be > lpm  in diameter and exhibit the body centred 

tetragonal unit cell, completely incoherent with the a  matrix. The alloy is considered 

to be optimally aged and exhibits maximum strength when only GP zones and 0” plus



0’ transition phases are present in the final structure. Once significant quantities of 

the stable 0 phase precipitate, alloy strength begins to decrease and the alloy is said to 

be overaged. The 0 phase still provides some dispersion strengthening but as 0 

particles increase in size, the strengthening effect diminishes.

Al-Cu-Mg ternary alloys:

Ternary aluminium alloys containing both Cu and Mg exhibit age hardening 

properties like the Al-4%Cu binary system6. Furthermore, age hardening is brought 

about by a similar process of solution treatment, quenching and ageing. The 

precipitation sequence (1) may occur as before, ultimately producing the equilibrium 

C11AI2 0 phase. However, a second precipitation sequence (2) also occurs, ultimately 

producing a face centred orthorhombic S phase with the composition Al2CuMg. As in 

the case of 0 the equilibrium S phase particles are completely incoherent with the 

FCC a  matrix.

a ss  > GPB zones (cylinders) > S”  » S’ -----» S (A^CuMg) (2)

Strengthening of optimally aged Al-Cu-Mg alloys is associated with the presence of 

fully coherent Guinier-Preston-Bagaryatsky (GPB) zones (Cu/Mg clusters) which are 

reported to be 1-2 nm in diameter and 4 nm long. Additional strengthening arises 

from the presence of finely dispersed metastable precipitates. In pseudo-binary alloys 

(Cu:Mg ~ 2.2:1) these are principally S’ (Al2CuMg) particles, whereas both S’ and 

0’(CuAl2) particles are observed in alloys with a higher Cu:Mg weight ratio. The 

existence of S” is still a matter of dispute, however large stresses are thought to be

9



associated with its coherence. The aluminium comer of the aluminium-copper- 

magnesium phase diagram is shown in figure 1.36.

Al-Cu-Mg alloys containing Fe, Mn and Si:

A complete and accurate diagram for the alloy system Al-Cu-Fe-Mg-Mn-Si is not 

available7. However, a large number of iron, manganese and silicon containing 

phases are known to form in addition to those described previously7. Not all o f these 

additional phases will necessarily form for all alloy compositions and all may not 

exist in mutual thermodynamic equilibrium. Phases which may exist in equilibrium 

with S-phase Al2CuMg include: P-phase FeAb, MnAl6, (CuFe)Al6, C ^F eA f, 

CuMg4Al6, (FeMnjAle, Cu2Mn3Al2o and Mg2Si. An approximately equal number of 

phases are possible which may not exist in equilibrium with S-phase Al2CuMg -  the 

most noteworthy of which is (CuFeMn)Al6.

Commercial 2024-T3:

Second phase (intermetallic) particles in commercial 2.0 mm thick 2024-T3 alloy 

sheet stock have been characterised with respect to geometry using a combination of 

optical and scanning electron microscopy (SEM), and with respect to chemical 

composition using electron microprobe analysis (EPMA)8. The alloy sample was 

sectioned in short, transverse and longitudinal planes -  with respect to the original 

rolling direction. The distribution of particles and particle types was found to be 

uniform throughout. Furthermore, no significant geometrical differences were 

detected between particle populations imaged on different orthogonal planes. Table

1.4 summarises geometrical characteristics for all three orthogonal planes, as 

determined by optical image analysis of particles of diameter > 0.2 pm.

10
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Figure 1.3: Aluminium comer of the aluminium-copper-niagnesium phase distribution in the 

solid and solid solubilities at various temperatures6.
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Table 1.4: Geometrical characteristics of second phase particles in 2024-T3.

orientation Mean diameter (jam) Aspect ratio Number analysed

short 4.09 ± 2.6 1.60 ±0.4 196

transverse 3.97 ±2.9 1.76 ±0.5 232

longitudinal 3.77 ±2.8 1.87 ±0.7 224

As shown in Table 1.5 the S-phase (Al2CuMg) predominates. No 0-phase (AJ2C11) 

was detected in the size range studied. It is interesting that Al6(Cu,Fe,Mn) was 

identified as the second most abundant particle type, as this cannot exist in 

equilibrium with the majority S-phase7. The (Al,Cu)6Mn particles may be thought of 

as corresponding (roughly) to the Cu2Mn3Al2o phase 7 The S-phase particles were 

found to be rounded (spherical or globular) in shape, whereas particles containing Fe 

and/or Mn were angular (irregular) in shape.

Table 1.5: Particle distributions by chemical type

Particle type Number % Area %

Al2CuMg 61.3 2.69

Al6(Cu,Fe,Mn) 12.3 0.83

Al7Cu2Fe 5.2 0.17

(Al,Cu)6Mn 4.3 0.11

indeterminate 16.9 0.37

12



1.2: Corrosion.

Corrosion is the environmental degradation of materials. The consequences of 

corrosion can be catastrophic both in financial and human terms. It can lead to 

enormous financial damage for modem industrial societies. Estimates show that 

between 2.1% and 5% of the gross national product is lost through corrosion9,10,11. 

Some past incidences of human loss through corrosion include the 170,000 tonne ship 

Derbyshire in 1980 with all 44 crew members on board. After the incident, there was 

much speculation that the ship had suffered a major structural failure as a result of 

corrosion fatigue11. On 15 December 1967, 46 people lost their lives, when Point 

Pleasant Bridge in Ohio collapsed. The cause of the disaster was found to be a stress 

corrosion crack 2.5 mm deep in the head end of an eyebar11. In the modem age, 

where bigger is better, the potential for even greater loss of life through corrosion is 

very high. Hence much research is being carried out to minimise the risk of corrosion 

on modem structures.

1.2.1: Introduction.

There are many mechanisms of metal corrosion that depend upon the nature of the 

surrounding environment, and the metal present. However corrosion can be divided 

into two main groups, these are chemical and electrochemical. Gaseous corrosion and 

corrosion in non - electrolytes are both examples of chemical corrosion. Atmospheric 

corrosion, soil corrosion and corrosion in electrolytic solutions are all forms of 

electrochemical corrosion. The effects of these forms of corrosion can vary; some of 

the most common are uniform or general corrosion, local corrosion, intercrystalline 

corrosion and pitting corrosion12. In this project the types of corrosion observed are 

localised pitting corrosion, due to a bare metal being submerged in an electrolytic

13



solution, and filiform corrosion due to a coated metal being exposed to chloride ions 

at high humidity.

Electrochemical Reactions:

An electrolyte is defined as an aqueous solution capable of conducting an electric 

current. Most metals corrode severely when in contact with electrolytic solutions.

Various theories have been put forward to explain this phenomenon, which are

explained more in-depth elsewhere11,12. However, what follows is a brief outline of 

electrochemical corrosion.

Electrochemical reactions, such as those which occur in electrolytic solutions, 

are characterised by the donating or receiving of electrons. When anodic reactions 

take place there is an emission of electrons, which results in the oxidisation of the 

surface metal atoms which form aqueous metal ions.

Af —> M n+ + ne~1V1U) ^  1V1(aq) ^ [1 1 ]

However, a cathodic reaction is when the consumption of electrons takes place. This 

may involve either hydrogen evolution as shown in equation 1.2,

+ 2e  ->  H 1{g) 2j

Alternatively, as is more usual in aerobic conditions around neutral pH, it may 

involve the reduction of dissolved oxygen as shown in equation 1.3.

°2(aq) + 2 H 20  + 4e -» 4 O H {aq) ^ ^
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These anodic and cathodic reactions happen at the same time, causing the corroding 

metal to act as a polyelectrode. A polyelectrode is defined as a system where two or 

more couples that are not in thermodynamic equilibrium act simultaneously at a single

are independent of each other, and that the total current flowing into any external 

circuit will be the algebraic sum of the individual currents due to the individual 

couples16. From this it can be seen that if there is no external circuit the sum of the 

individual currents is zero, so under conditions of free corrosion,

/ represents the partial current due to any anodic process, i represents the
anodic cathodic

partial current due to any cathodic process and i is the rate of corrosion

expressed in terms of current. As electrochemical currents are dependent on potential, 

this equation constrains the corroding metal to adopt a unique potential, this is known 

as free corrosion potential, Ecorrl7,7°.

Equations 1.5 and 1.6 show the mathematical relationship between current i, 

and potential E, which was first defined by Tafel18.

From these equations it can be seen that a graph of E  against log i for each electrode 

process would give a straight line (known as a Tefal plot).

Figure 1.4 shows an Evans diagram for a simple corrosion process for a metal 

in contact with an electrolyte11. This is produced by graphically combining Tefal

electrode surface13,14,15. It is known that the couples acting at a polyelectrode surface

anodic cathodic corrosion
[1.4]

corrosion

ianodic ex p  ( E ) [1.5]

and

icathodic c*~ CXp (~E } [1.6]
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plots for the individual electrode processes. As the anodic reaction (red line in figure 

1.4) proceeds metal ions enter the solution thus leaving the metal with an excess of 

electrons in this area, which then flow to a cathodic site. Hence, as corrosion 

continues the anode becomes less negative and its potential is shifted upwards by an 

amount rja, the anodic polarisation. Conversely, the cathodic site becomes more 

negative (blue line in figure 1.4) and its potential is shifted downwards by an amount 

t j c, the cathodic polarisation. Where these Tafel plots intersect the anodic and 

cathodic currents are zero. As stated in equation 1.4 this point defines the free 

corrosion current, icorrosion■ Subsequently the free corrosion potential, Ecorr may also 

be obtained from the Evans diagram11.

It is possible to determine the stability of a metal with respect to the pH of the 

electrolyte, as well as the potential. These plots are called Pourbaix diagrams, figure

1.5 shows such a diagram for aluminium exposed to water10. A metal is deemed to be 

corroding when the concentration of its ions in solution is > 1CT6 M 11. If the 

concentrations of ions is less than this value then the metal is deemed to be in a 

condition of immunity. However, as described in section 1.1.1 pure aluminium 

oxidises very quickly at neutral pH to leave a thin protective layer. This is described 

as passivation. As can be seen from figure 1.5, for pure aluminium to corrode the 

electrolyte has to have an extreme pH (4>pH>9). However, as described in section 

1.1 pure aluminium is very rarely used within industry, and alloying elements are 

added to improve mechanical properties. These additions to pure aluminium greatly 

change its corrosion characteristics for the worse.
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1.2.2: Surface pitting corrosion.

Pitting corrosion is a highly localised form of corrosion which results in small holes in 

the metal10,19. Pitting corrosion usually occurs on metals that are protected by a thin 

surface film, and it is thought that pits initiate at imperfections or weak areas of the 

film. However, all surface defects do not result in stable pitting events. Scratching 

the surface of aluminium does damage the protective oxide layer, but does not always 

lead to pitting10.

Pitting is most usually associated with the presence of aggressive ions, such as 

chloride, initiating corrosion by the break down of passive oxide films on metal 

surfaces through the formation of soluble metal complexes. Rapid metal dissolution 

then occurs within the pit whilst cathodic oxygen reduction occurs on the adjacent 

surface. The pitting process is autocatalytic, i.e. once started it is self sustaining. 

Metal cations formed in the pit attract the migration of charge balancing chloride ions, 

in addition the metal cations also tend to undergo hydrolysis, so reducing pH; both 

chloride ions and low pH stimulate metallic dissolution and act to prevent 

repassivation. A schematic diagram of a stable pit can be seen in figure 1.620.

1.2.3: Pitting corrosion o f aluminium-copper alloys.

In general, the susceptibility of aluminium-copper alloys to corrosion increases with 

copper content. This effect has been attributed to the formation of galvanic cells at 

microstructural elements (copper-rich intermetallic particles vs. matrix or Cu-depleted 

grain boundary zones) or by the enhanced electrocatalytic activity (for cathodic 

oxygen reduction) at those intermetallics or at otherwise copper-enriched regions on 

the alloy surface29,21 22,23,24,25,26. Furthermore, it has long been known that the 

electrochemical heterogeneity of AA2024-T3 makes this alloy susceptible to pitting



Figure 16: Schematic diagram of stable pit20.
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corrosion, intergranular corrosion and stress-corrosion cracking in aqueous chloride 

electrolytes" It has been found that Al-Cu-Fe-Mn phases will be noble with 

respect to the a  aluminium matrix and will therefore tend to act as sites of cathodic 

oxygen reduction26. Conversely, the S-phase Al2MgCu particles are predicted to be 

more active than the a  matrix and these are generally regarded as being sites of 

preferential anodic attack26. It is therefore evident that the onset of corrosion in 

AA2024-T3 is likely to be highly localised in nature. However, this picture is further 

complicated by observation that once corrosion has commenced copper becomes 

redistributed at the alloy surface, producing large localised changes in electrocatalytic 

activity with respect to cathodic oxygen reduction.

The role of precipitate particles:

Much work has been carried out on the effects of precipitate particles on the initiation 

of pitting corrosion on AA2024 exposed to aggressive aqueous electrolytes, such as 

those containing chloride ions8’26’30’3132 33 Initiation most probably occurs either 

through a purely anodic process of selective dissolution in the case of S-phase 

Al2CuMg particles26,30 or through a cathodically mediated peripheral pitting of the a

51 % I '5 ')

matrix in the case of dealloyed S-phase particles 5 5 ' and, possibly, Al-Cu-Fe-Mn 

particles" . However, the transient pits formed through such events are very much 

smaller, and orders of magnitude more numerous, than the stable, acid-filled pits 

observable in heavily corroded AA2024-T3. The question of whether alloy 

microstructure and the distribution of intermetallic particles can influence the 

transition from transient to stable pitting, and thereby determine the location and 

number density of stable pits remains substantially unaddressed. However, here are 

some possible theories.
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If, for example, the transition from transient to stable pitting is a purely 

stochastic process then, under circumstances where the surface distribution of 

intermetallic particles is non-uniform, we would expect the maximum number density 

of stable pits to occur in those areas exhibiting the maximum number density of 

intermetallic particles (see figure 1.7a). If, on the other hand, the cathodic copper 

deposits formed through S-phase dealloying * • * ■ and/or through cathodically 

mediated matrix dealloying34’38’39’40,41 could influence the transition from transient to 

stable pitting the expected location of stable pits would depend upon the 

predominating mode of influence. Thus, if the predominant mode of influence is 

galvanic, the maximum probability of a transition to stable pitting will coincide with 

the minimisation of effective current pathlengths in solution, and the maximum 

number density of stable pits is once again predicted to occur in those areas exhibiting 

the maximum number (or possibly area) density of intermetallic particles. 

Conversely, if the predominant mode of influence is chemical, via solution pH, then 

the maximum number density of stable pits is predicted to occur in those areas 

exhibiting the minimum number (or possibly area) density of intermetallic particles 

(see figure 1.7b). This is because it is reasonable to expect that, all else being equal, 

the establishment and maintenance of an acidic micro-environment within the 

growing pit will become more difficult as external solution pH increases.

1.2.4: Filiform corrosion.

Filiform corrosion (FFC), first accurately described in 1944,42 is an atmospheric 

corrosion phenomenon affecting organic coated metals. It is characterised by “thread­

like” tracks of corrosion product deposits beneath the coating. There have been 

extensive studies on organic coated aluminium, steel and magnesium surfaces43,44,

21



a)
High density of 
intermetallics

High density 
o f stable pits

©

Low density 
of intermetallics

Low density 
of stable pits

Key:

b)

(Green) Intermetallic particle 
(Pink) Stable pits

High density of

C')
\_y1©i

©

$©

intermetallics A ® ( )
* •  # o  •

high pH due • .  .  .  Q  c i
to transient (jy

<f& ifb ^
pitting • o

•  •  •  •
Low density o O o  0  o
of stable pits ® ® O ® o c

Low density 
of intermetallics

neutral pH due 
to little transient 
pitting

High density 
of stable pits

Figure 1.7: Schematic diagram showing how intermetallic distribution may influence 

distribution of stable pitting events, if the transition from transient to stable pitting is

a) a purely stochastic transition, or predominant mode o f influence is galvanic,

b) predominant mode of influence is chemical.
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which have shown that for FFC to occur, oxygen, aggressive ions such as chloride 

(CF), and a high relative humidity must all be present. Corrosion filaments, each 

comprising an electrolyte filled “head” and a “tail” of dry corrosion product, 

propagate from penetrative defects in the organic coating and may attain a length of 

several centimetres. A schematic diagram of a filament can be seen in figure 1.8. 

The exact mechanism of FFC remains unclear but it is generally believed that 

filament advance involves anodic undercutting of the organic coating driven by 

differential aeration, which arises in turn from mass transport of atmospheric O2 

through the filament-tail.43,44,45’46,47’48 .Aggressive anions (CF) and water tend to be 

conserved in the filament-head electrolyte, and filaments may continue to propagate 

for long periods of time (years)43,44

1.3: Corrosion Protection.

1.3.1: Introduction.

As can be seen in section 1.2 corrosion can come at a high price, both in monetary 

and human terms. It is possible to reduce the effects of corrosion in many ways, what 

follows is a brief outline of some of these methods.

Barrier coatings:

Barrier coatings are probably the easiest form of corrosion prevention. They work by 

stopping the electrolyte from coming into contact with the metallic surface, thus 

preventing the initiation of corrosion cells. Typical barrier coatings are vitreous 

enamels, paints, plastic laminates and less reactive metals49 (e.g. gold). However 

these coatings are only effective when the metals surface is completely covered, even
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the smallest scratches or defects in the coating will allow corrosion to start. Hence, 

this method of corrosion protection is generally only used for relatively inexpensive 

easily replaced items (e.g. bicycles, domestic outhouses, white goods).

Sacrificial protection:

This form of protection utilises the fact that some metals will corrode in preference to 

others. Table 1.6 shows the standard reduction potentials of commonly used metals. 

This value is a thermodynamic measure of how easy a metal is to extract from its ore 

and also consequently how easily it will corrode.

Table 1.6: Standard reduction potentials11.

Electrode Reaction E W

Au+ + e' = Au +1.68

Pt2+ + 2e' = Pt + 1.20

Hg2+ + 2e’ = Hg +0.85

Ag+ + e' = Ag +0.80

Cu2+ + 2e' = Cu +0.34

2H+ + 2e' = H2 0.00

Pb2+ + 2e' = Pb -0.13

Sn2+ + 2e’ = Sn -0.14

Niz+ + 2e" = Ni -0.25

Cd2+ + 2e' = Cd -0.40

Fei+ + 2e" = Fe -0.44

Cr3+ + 3e‘ = Cr -0.71

Zn2+ + 2e‘ = Zn -0.76
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Al3+ + 3e‘ = A1 -1.67

Mg2+ + 2e' = Mg -2.34

Na+ + e' = Na -2.71

Ca2+ + 2e' = Ca -2.87

K+ + e~ = K -2.92

From this series it can be seen that the most stable metals have the most positive 

electrode potentials (e.g. gold), and conversely the least stable metals, which corrode 

rapidly, have the most negative electrode potentials (e.g. sodium).

This fact can be used to protect an item, and is most commonly used today in 

the form of galvanised steel. A galvanised steel surface comprises a thin zinc layer 

laid on an iron surface. The zinc is a more electroactive metal and corrodes in 

preference to the iron by galvanic action when iron is exposed. Thus the zinc 

sacrifices itself to protect the iron. However, because it involves adding a great deal 

more weight to a product, this method is unsuitable for aerospace applications.

1.3.2: Anodic inhibitors.

A corrosion inhibitor can be defined as a substance which, when added in small 

concentrations to an environment, effectively reduces the rate of corrosion of a metal 

exposed to that environment50.

Anodic inhibitors act by increasing the polarisation of the anode by reacting 

with ions of the corroding metal. This may produce either a thin passive film, or a 

salt layer of limited solubility, which coat the anode. Figure 1.9 shows an Evans 

diagram where an anodic inhibitor has been added to the system. The solid red line 

shows the initial anodic polarisation and the dashed red line represents the anodic
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Figure 1.9: Evans diagram showing a simple corrosion process for a metal in contact with an aerated

electrolyte. Dotted red line shows how anodic reaction changes when anodic inhibitor is added to the

system.
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Figure 1.10: Evans diagram showing a simple corrosion process for a metal in contact with an aerated

electrolyte. Dotted blue line shows how cathodic reaction changes when cathodic inhibitor is added to

the system.
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polarisation after the anodic inhibitor has been added. It can be seen from figure 1.9 

that the corrosion current is decreased, however this is accompanied by an increase in 

the free corrosion potential11,50. Thus, if there is insufficient anodic inhibition to 

suppress all the corrosion in the system, the increased free corrosion potential will 

increase the thermodynamic driving force for corrosion. This will result in any 

remaining active sites experiencing an increased level of corrosion49.

1.3.3: Cathodic inhib itors.

Figure 1.10 shows an Evans diagram for a simple corrosion process for a metal in 

contact with an aerated electrolyte as in figure 1.9. The dashed blue line indicates 

how the cathodic polarisation of the metal increases when a cathodic inhibitor is 

added to the system. As for the anodic inhibitor, this decreases the corrosion current, 

however in this case the free corrosion potential is also reduced. Hence, unlike for 

anodic inhibitors, even too little cathodic inhibitor added to a system will reduce 

corrosion activity because the thermodynamic driving force for corrosion is 

decreased11,49.

1.3.4: Chromate containing inhibitors.

The use of chromates as corrosion inhibiting pigments in paints was first suggested in 

190751 and now chromates are the most common corrosion inhibiting paint 

pigments52. Chromates are widely used in conversion coatings and paint pigments. 

The chromate ion is one of the most effective aqueous corrosion inhibitors for a wide 

range of metals including aluminium, zinc, steel and magnesium “. Chromates inhibit 

corrosion by forming a protective mixed chromium/metal oxide film (typically 0.1- 

lpm thick). The film fonns as a result of the electrochemical reduction of the



chromate ion52. Chromate has proved itself to be a very effective inhibitor, and 

recently work has been carried out to quantify its effectiveness for comparison 

reasons49,52,53,54,58 However, recently it has been found that chromates are toxic55 and 

highly carcinogenic56 which has resulted in increasing pressure for the development 

o f more environmentally acceptable alternatives57,58.

1.3.5: Rare Earth Metal (REM) salt containing inhibitors.

Due to the recent demands to reduce the usage of chromates as corrosion inhibitors, 

researchers have been looking for more environmentally friendly alternatives. One 

possible approach is Rare Earth Metal (REM) cations (i.e. cerium Ce3+, Lanthanum 

La3+ and Yttrium Y3+). REM salts act as cathodic precipitation inhibitors, they react 

with the hydroxyl ions generated by the oxygen reduction reaction to precipitate 

insoluble compounds on the cathodic site. This covers the cathodic sites thus 

stopping the electrolyte and oxygen reaching the surface.

Recently there has been much research into the effectiveness of REM salts as

- ,'*,U,'u;+-...r.59,60,61,62,63,64 • . 1  • 59,60,61,62,63,65,66 1 • ,**,59,61,63corrosion inhibitors m particular cerium and yttrium

The rare earth metal salts have been found to successfully inhibit corrosion on various 

metallic surfaces including mild steel67, stainless steel68, zinc69, zinc coated steel69 and 

aluminium aerospace alloys60,61,62,63,64,65.

1.4: Scanning Vibrating Electrode Technique (SVET).

1.4.1: Introduction.

The Scanning Vibrating Electrode Technique (SVET), is a scanning technique

capable of estimating components of current density in solution near a corroding

surface which may be related to the local corrosion rate. The SVET relies on
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measurement of potential gradients in solution, which arise as a consequence of the 

ionic current flux generated by local corrosion cells. In corrosion studies, the 

potential gradient and hence current flux component measured by SVET is typically 

that lying normal to the corroding surface.

1.4.2: Theory.

When a metallic surface is freely corroding in contact with a conductive electrolyte, 

the circuit between the local anode and cathode is completed by electronic conduction 

through the bulk metal. The electronic resistivity of metals is sufficiently low that no 

significant potential differences arise in the metallic phase, therefore the metal surface 

itself may be considered as a plane of constant potential. However, aqueous solutions 

of electrolyte exhibit ionic conductivity and typically have much higher resistivity 

than metals. Consequently, the passage of ionic current through the electrolyte 

produces significant ohmic potential gradients, which may be described in terms of

lines of iso-potential lying normal to the lines of ionic current flux, as shown in figure

l . n 70

The distribution of potential and ionic current in solution can theoretically be 

determined from the Laplace equation (1.7),

V2E = 0 [1.7]

where E  is the electrical potential, and from Ohm’s Law,

i = -vVE  [1.8]

Where i is current and k  is the solution conductivity.
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Figure 1.11: Diagram of the distribution of ionic current and thus lines of iso-potential in 

an electrolytic solution above a metal sample, which consists of a localised anodic pit surrounded 

by a distributed cathode70.

Figure 1.12 . Surface plot showing the theoretical distribution of the vertical component of potential

gradient above a point current source set in an insulating plane, where the quantity is calculated at 

a height (-) equivalent to 0.08 times the length of the x  and;/ axes shown
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A general solution to this problem is not possible and, analytical solutions are non­

trivial only in the simplest of cases. An analytical solution is possible for a point 

current source i, situated at height z = 0 on a non-conducting x y  plane with the 

current drain at infinity71. For this case it may be shown that the potential at any point 

(x,y,z) in solution is inversely proportional to the distance from the source and, is 

given by72

E = ------------ 1 2-----------------  2---- [1-9]2 7ZK -yf( X  + y  + z  )

The normal field strength (F0), measured by vibrating the SW T probe perpendicular

77to the surface, is given by “

dE _ iz
dz 2 7 t K ( x 2 + y 2 + z i )

The distribution of normal field strength in solution across a plane of constant height 

above a point current source is shown graphically in figure 1.12, which shows the 

characteristically peak shape centred about the current source.

The maximum field strength (Fo(max)) at height z occurs directly above the origin (x=0, 

y=0) and is given by

rr _  1
0(m8X) 17CKZ2 [ U 1 ]

The inverse square relationship between Fo(max) and the probe height z makes the 

control of probe height critical in SVET measurements of highly localised current
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sources resembling point sources. Consequently when such measurements are being 

performed the probe should be kept at as constant a height above the samples as 

possible.

The theoretical spatial resolution of the SVET at any particular scan height may be 

characterised in terms of the signal peak-width at half maximum (whm) above a point 

current source, in as much as it would be difficult to resolve two point current sources 

that were closer together than the value of whm. If we define a parameter r as the 

distance on the (x,y) plane from the point current source such that

r - ( x 2+y 2f 5 [112]

then the value of r for which the value of F0 falls to half its maximum value (i.e. 

0.5Fo(max)) is obtained by combining equations (1.10) and (1.12).

0.5 F  'Z
0(n"“) 2 m c ( r 2 + z 2)'-5 fU 3 ]

The ratio of equations (1.11) and (1.13) then gives

r = z(2“ -l)05 [1.14]

and since the width of the SVET response peak is twice the value of r

whm = 2 r=  1.533z [115]

Model studies72 of the SVET have verified the relationships given by equation (1.15) 

for point current sources. Similar studies have demonstrated the ability of the SVET 

to accurately determine normal current density distributions above equi-potential disc 

and equi-current disc current sources72. It has also been shown that the variation in 

normal current density above any electrode may be modelled by substituting the true

79surface current distribution with an array of point current sources . From this it can
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be suggested that SVET data can be used to completely characterise the surface 

current density distribution of a locally corroding surface72.

1.5: Scanning Kelvin Probe (SKP).

1.5.1: Introduction.

The Scanning Kelvin Probe (SKP), is a scanning technique used in investigating 

atmospheric corrosion affecting metallic surfaces, as pioneered by Stratmann and 

others73,74,75,76. The SKP is one of the most sensitive measuring procedures in surface 

physics and is a well established means of determining metallic work functions. The 

SKP can also be used to electrochemically map the localised corrosion phenomena 

occurring beneath thin electrolyte films and beneath intact polymer coatings70.

1.5.2: Theory.

A schematic diagram illustrating the Kelvin Probe technique can be seen in figure 

1.13. The tip of the probe electrode and the metal sample surface under study 

constitute the two plates of a parallel plate capacitor. The non-conducting medium 

(typically air, or a mixture of air gap and insulating polymer) in the space between the 

plates constitutes the capacitor dielectric. The capacitance (C) of a parallel plate 

capacitor is given by70,

[ U 6 ]
D

Where D is the distance between the plates, A the plate area, so the permittivity of a 

vacuum, and £the dielectric constant of the capacitor dielectric.
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Figure 1.13: Schematic diagram illustrating the Kelvin probe for measuring surface (Volta) potential, 

where AV=  Volta potential difference, E  = experimentally applied bias potential and i(ac) = current 

flow in external circuit due to Volta potential difference.
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The probe electrode is vibrated in a sinusoidal fashion relative to the sample 

surface, at a frequency co such that the plate separation, D, varies with time, t, 

according to,

where Do is the mean plate separation, and Dy is the amplitude of vibration. From this 

it can be seen that the probe vibration produces a periodic fluctuation in the 

capacitance. Also, if any Volta potential difference (AF) exists between the probe and 

the sample surface an alternating current (/) will flow in the external circuit, this will 

be given by,

where Q is the electric charge on the capacitor plates. Substituting equations (1.16) 

and (1.17) into (1.18) gives,

D = Do + D]Sm(o)t) [1.17]

i = - s s 0A A V
D xo)cos{cot) [1.19]

[D q + D x sin(ty/)]2

which for cases where D o »  D] the relationship simplifies to,

i =  — ge 0 A  A. V
[1.20]

It may also be shown that the maximum signal current (w )  is obtained when,



Which may be written as,

D „ = ------ ^ -------- [1.22]
1 -  (    )V 2 (-1/2) >

Where Dmin = D o -D i  = minimum distance between plates.

The Kelvin probe signal current is not directly used to infer the open circuit 

value of AV. This is instead obtained indirectly by adjusting the value of the 

externally applied DC bias voltage, E, such that the signal current becomes zero, i.e. 

the null current condition. Under these circumstances,

E  = E ist o = - A V  [1.23]

Ej=o is the experimentally measured quantity, so the Kelvin Probe potential, Ekp, will

be defined as being equal to - Ei=o, and which is wherefore equivalent to the Volta

7n
potential difference AV  as determined by the Kelvin probe .

The exact meaning of Ekp is dependant on the conditions under which the 

measurement is made. If the conditions consist of a pristine metal surface placed in a 

perfect vacuum then the value of Ekp will be equal to the difference in work functions 

of the metals composing the probe and the sample. However, when the experimental 

conditions vary from these ideals, such as measurements taken in air and therefore in 

the presence of oxide films, Ekp is likely to deviate from the expected values based 

purely on metallic work functions73. Even further differences in Ekp are likely when 

other factors such as atmospheric humidity as a consequence of water absorption and 

the hydration of any surface oxide layer are taken into account73.

37



When the metal surface is covered in a thin layer of a conducting electrolyte 

the interpretation of Ekp is more complex. Under these conditions the probe is directly 

above the electrolytic film, not the metallic surface, so the relevant Volta potential 

difference is not that existing between the probe and the metallic surface, but that 

existing between the probe and the outer surface of the electrolyte film. Electrolyte 

film potentials are subject to influences from a number of sources including electrical 

double layer effects at the metal-solution interface, and the presence of potential 

gradient in the solution resulting from the passage of ionic currents between localised 

corrosion sites73. However, it has been shown that if the electrolyte film is thicker 

than the electrical double layer and no ionic currents are flowing in solution then73,

Ekp = Ecorr + constant [ 1.24]

Where Ecorr is the free corrosion potential of the metal relative to a real or 

hypothetical reference electrode immersed in the electrolyte film immediately over 

the point of measurement70. A significant advantage of the Kelvin probe technique is 

that since EkP is measured under null current conditions, the measurement does not 

electrically perturb the sample-solution interface. Also the measurement is indifferent 

to the nature of the dielectric overlaying the metal or the electrolyte surface, hence EkP 

measurements may be carried out with samples coated with, for example, an 

insulating polymer film.
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Chapter 2.



Chapter 2: Experimental apparatus, calibration and quantification.

2.1: Scanning Vibrating Electrode Technique (SVET).

2.1.1: Integration o f normal current density data.

If we consider a point current source (/) set in a insulating surface with the current 

drain at infinity, the potential (E) at any point in solution defined by a set of Cartesian 

co-ordinates (x,y,z) with the origin at the point source and the insulating surface lying 

in the x,y plane will be given by equation 1.9. The potential gradient {dE/dz) normal 

to the x,y plane may then obtain by partial differentiation of equation 1.9 with respect 

to z.1,2, and is given by equation 1.10.

From equation 1.8 (Ohms law) the potential gradient cE/ct will be related to 

the component of current density along the z axis (Jz) by

f = ^  [2.1]
OZ K  1 J

where k is the solution conductivity. Thus, from equations 1.10 and 2.1 we may write

The area integral of jz  about the origin may then be obtained by writing the 

infinitesimal increment in area as l.mr.dr. Thus,

i.z
[2.2]

If, for reasons of symmetry, we let r2 = x2 + y 2, equation 2.2 may be rewritten as

2.rc{r2 + z 2)15 [2.3]
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which yields

i f a z )  =  t y 1 -  ( t f  +  z ? / s )  P -5J

where is the fraction of i detected by integration of j z ^  over a circular area of 

constant z and radius R, concentric with the point source. It may be shown from 

equation 2.5 that, for any finite value of z, <p(R>z)-----> 1 as R  > oo. Furthermore, it

may be shown that </)(riZ) = 0.5 for R = yj3 z, i.e. half the point source current may be 

detected by integration of j z ^  up to a radius 1.732 times z. Figure 2.1a shows <j)(R,Z) 

as a function of dimensionless R, for various values of dimensionless z, plotted 

according to equation 2.5.

However, in practical SVET measurements the probe is scanned in a 

rectilinear, and not a circular, fashion. It is therefore desirable to carry out the 

integration of j z  values over a square or rectangular area. Under these circumstances 

the appropriate area integral is obtained from equation 2.2, i.e.

Y X  Y X

I P.6]
- Y  - X  - Y  - X

Which yields,

1‘t ( X , Y , z )

r 2 A  ( X .Y  'j [2.7]—  .arctanj 5 s  ^ - r
) \^z.(X +Y +z ) J

Where <!>(x,y,z) is the fraction of i  detected by integration of j z  over a rectangular area of 

length I X  and breadth 27, concentric with the point source. When integration is 

performed over a square area of side 2a equation 2.7 simplifies to give
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Figure 2. la. Plot showing how <j){Rz) vanes as a function of dimensionless R, for various values 

o f dimensionless z, plotted according to equation 2.5 (Red line indicated the value at which

all current is detected ).
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Figure 2. lb: Plot showing how <j)(a,z) varies as a function of dimensionless a, for various values 

of dimensionless z, plotted according to equation 2.8 (Red line indicated the value at which 

all current is detected )
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. arctan
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2 , _ 2  \ 0.5

[2 .8]

Vz.(2.a*+zz)

Using equation 2.6 it may be shown that the fraction of i detected, ----->1 as a/:

 > oo, also that <p(a,z) -  0.5, 0.9 and 0.99 when a = 1.555-z, 9 z  and 90z, respectively.

Figure 2.1b shows (j}(a,Z) as a function of dimensionless a, for various values of 

dimensionless z, plotted according to equation 2.83.

2.1.2: Apparatus.

A schematic diagram of the SVET equipment used can be seen in figure 2.2a. The 

sample to be scanned is placed on a Perspex table (a schematic diagram in figure 2.3) 

in a tank of electrolyte. The height and orientation of the sample table is adjustable 

via screw threads, making it possible to level the sample. The micro-computer (IBM 

compatible, Pentium II™ processor supplied by Mertec Ltd) is used to control the 

lock-in amplifier (Perkin Elmer model 7505) parameters such as sensitivity, 

frequency and drive voltage before each scan (control shown as a black line on figure 

2.2a). The computer is also used to control the motor drivers (L25 Paragon drives 

supplied by Time and Precision Ltd) which move the tri-axial micro-manipulator (x-y 

platform: model XY4505CR-GBS compact table, z-axis: model UP2505P motorised 

ballslide, for mechanical details see table 2.14, supplied by Time and Precision Ltd) 

(green line on figure 2.2a). An optical picture of the SVET equipment used can be 

seen in figure 2.2b.

The blue line in figure 2.2a shows the path of the vibrator drive voltage, which 

is sent from the lock-in amplifier to an external amplifier (gain ten), and then to the
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calibration.
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Figure 2.3: Schematic diagram of SVET leveling table.



SVET head, where it is used to drive the probe electrode, via a 8Q 1 watt 

moving coil loudspeaker (see SVET head design figure 2.4). The signal picked up by 

the probe electrode is detected using the lock-in amplifier. The lock-in only detects 

signals at the drive frequency, thus greatly reducing experimental noise (see red line 

on figure 2.2a). The r.m.s value of the detected signal voltage is digitised in the lock- 

in amplifier and recorded by the micro computer.

Table 2.1: Table showing the mechanical details available for the tri-axial micro­

manipulator4.

z-axis x-y  platform

Usable travel 50mm 50x50mm

Linear accuracy - 2pm

Repeatability - 2pm

Maximum load 8.0kg 55kg

Resolution Depends on drivers used 2.5pm

Flatness - <0.02mm / 50mm travel

Straightness - <0.02mm / 50mm travel

The SVET head is set on an aluminium arm attached to a tri-axial micro-manipulator 

which is controlled via the micro-computer. This makes it possible to control the 

position of the probe head in three dimensions (x,y,z). The SVET head incorporates a 

mu-metal screen to minimise electro-magnetic flux leakage from the loud speaker. 

Any drive flux leakage may generate potential gradients in solution through ac eddy 

current induction. These potential gradients will alternate at the same frequency as 

the SVET signal and may therefore be detected by the lock-in amplifier.
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The Mu-metal box enclosing the loud speaker acts as both a magnetic screen 

and Faraday cage (see figure 2.4). To further minimise interference from the 

loudspeaker, the distance between the speaker and signal detection area was 

maximised. The probe tip is mounted on the end of a hollow glass push rod (length ~ 

80mm) which is directly connected to the loud speaker. The glass push rod passes 

through a small hole in a cylinder of solid aluminium which provides electrostatic 

screening as well as stabilising the glass rod to eliminate any x,y motion in the tip. 

The tip is then vibrated perpendicular to the plane of scan, at the experimental 

frequency (140Hz), amplitude of vibration ~ 40pm, by the loud speaker via the glass 

rod. The probe tip itself consists of a 125pm platinum wire set in a glass sheath, total 

tip diameter ~ 200pm. The end is ground flat so the tip acts as a 125pm diameter 

planar electrode (see figure 2.5a and 2.5b).

2.1.3: SVET Calibration.

Introduction:

If the SVET tip is vibrating with a peak to peak amplitude Az, and detects a peak to 

peak ac potential amplitude bEz then AE/Az  —»dEJdz as Az —>0. Thus for small 

values of Az equation 2.1 may be written as

AEz jz

Where Az is the mechanical amplitude of probe vibration.

Rearranging equation 2.9 gives

jz  = AE*G [2.10]

Where G is a calibration factor given by k/Az.
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Figure 2.4: Schematic diagram of SVET head design.
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A theoretical value of the calibration factor Gtber can be obtained by measuring Az in 

air and taking a value for k  from literature. The mechanical peak to peak amplitude 

of vibration Az was measured experimentally using a travelling microscope and 

stroboscopic illumination. The vibrator drive frequency was 140Hz and the drive 

voltage amplitude 0.7 V rms, as used throughout in SVET corrosion experiments. 

The stroboscope was set to flash at 140 ± 1 Hz, freezing the tip motion and allowing 

the limits of tip vibration to be located using the travelling microscope. The value of 

Az thus obtained was 35pm ± 5pm using k = conductivity of 3.5%w/w NaCl5 = 5.08 

Q '1 m '1. The theoretical value of G (Gther) could then be calculated as, Gther= 5.08 / 

35x10^ = 1.45x10s ± 0.2xl05 Am'2V '\

However, in practice Az is not easily determined in solution, and the influence 

of solution viscosity on Az is not known. Furthermore, the efficiency with which AE 

is detected by the SVET probe / lock-in amplifier combination is also not known. For 

these reasons the relationship between AEz and j z  is best determined empirically by 

calibration. Three separate approaches were made to calibrating the SVET signal in 

terms of current density, and the results compared. All calibrations involved passing 

a known current through a geometrically well defined calibration cell containing 3.5% 

w/w aqueous NaCl electrolyte.

Calibration under uniform current density conditions:

This approach has the advantage of not requiring precise tip location relative to the 

calibration source. However, it does not take into account the screening (electrolyte 

displacement) effects and non-linearity effects which may occur when the SVET 

probe is vibrated close to a point source-like feature such as a corrosion pit. A 

calibration cell was constructed which consists of a nylon cylinder (diameter ~ 60mm)
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hollowed out to a depth of ~ 80mm, and has a glass tube (internal diameter ~ 6mm) 

protruding from one side (figure 2.6) with a 90° bend. The length of the glass tube 

was sufficient so that the current density throughout the cross sectional area was 

uniform. The anode and cathode were connected to a galvanostat, and the set-up was 

such that all current must pass through the glass tube, as the anode was positioned in 

the nylon cylinder and the cathode in the bulk electrolyte. Experiments were first 

carried out to see how current density varies with position in the glass tube.

Experiment A: This experiment was carried out to see how current varies with 

position across the diameter of the tube at varying heights respective to the glass tube 

edge. The left hand edge of the tube was taken to be jc = 0 mm, and the probe tip was 

moved in 0.2mm steps toward the right hand edge. All measurements were taken for i 

= 100(iA, and readings of the potential were recorded from the lock-in amplifier. 

Measurements were taken for z (height) = +0.5, 0, -0.5, -1 and -1.5mm, taking z = 0 

when the end of the SVET tip is level with the top edge of the glass tube (see figure 

2.7). A graph of results can be seen in figure 2.8.

Experiment B: This experiment was carried out to see the depth at which the 

current becomes uniform within the tube. The probe tip was positioned directly over 

the centre of the glass tube, 1mm above the edge. The galvanostat was set to lOOpA, 

and the tip was lowered in 0.2mm steps into the tube (figure 2.9). A reading of the 

potential was taken for each height and a graph of the results can be seen in figure 

2 . 10 .
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Figure 2.7: Schematic diagram of experimental procedure to see how lock-in 

potential varies with horizontal tip position within calibration tube
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Calibration: To calibrate using this method the SVET probe was positioned in the 

centre of the glass tube, with the tip ~ 3mm below the edge of the tube, as the results 

to the experiments explained previously show that the current density is most constant 

in this position. AE was measured for j z  varied systematically between -3.5 and +3.5 

A m'2. A plot of jz  vs. AE can be seen in figure 2.11 and gave a straight line 

(correlation coeff. 0.9999) with slope (Gmbe) = 1.39 ± 0.1 x 105 A m 'V . This is in 

reasonable agreement with the Gther value of 1.45 ± 0.2 x 105 A m ^V 1 calculated from 

equation 2.10 using k — 5.08 Q'Vm'1 (for 3.5% aqueous NaCl at 25°C)5 and Az = 35 ± 

5 jLim, as measured stroboscopically in air.

Point current source stationary in space calibration:

As stated previously, the tubular calibration cell cannot take into account the 

displacement of solution, and consequent influence on current flux density,6 produced 

when the SVET probe tip approaches what is essentially a point current source such 

as an active corrosion pit. In order to determine G under conditions more relevant to 

the quantification of pitting corrosion, the SVET probe tip was positioned over the 

“point source” calibration electrode. The “point source” comprised of a 25pm Pt 

microdisc working electrode set in a horizontal insulating plane (Perspex block) and a 

remote 1cm2 Pt counter electrode, a schematic diagram of which can be seen in figure 

2.12. The SVET probe was positioned at heights (h) of 60, 100 and 120pm over the 

central microdisc electrode. The probe height was determined by lowering the probe 

tip in 10pm increments until it audibly buzzes. At this point the tip is in contact with 

the surface and the tip amplitude is at its most negative. The tip is then raised a 

known amount (100pm for all SVET experiments). Thus the height of the tip above
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cell stationary in space, at three different probe heights above the point source.
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the surface is 100jam + the amplitude of vibration 20pm, which is a mean value 

~ 120pm (see figure 2.5a). The value of i was varied systematically between -1pm 

and 1pm. A graph showing how the SVET signal varies with applied current for each

figure 2.14 which gives a straight line (correlation coeff. 0.998) with slope (GPoint) =

experimental conditions the SVET probe is scanned over the surface hence the SVET 

was calibrated in a third and final way.

Point current source integration calibration:

In some of the experiments the total anodic current emerging from a population of 

corrosion pits is estimated by numerical integration of jz  values over the scanned area. 

In order to determine G under conditions more relevant to the numerical integration 

procedure the SVET probe tip was scanned over the “point source” at a constant 

height of 100pm over a 2 x 2mm area above the central microdisc electrode, in 0.1 

steps. An example of the SVET signal (AE) distribution obtained can be seen in 

figure 2.15. Given that the efficiency with which the point source current i is detected 

tends to unity as the area over which j z  values are integrated tend to infinity, equations 

2.1 and 2.6 may be combined to give

probe height can be seen in figure 2.13. A plot of j  (= i!2 7ih2) vs. AE can be seen in

1.31 ±0.1 x 105 AiTf2V '\ Again this is in reasonable agreement with the Gther value 

of 1.45 ± 0.2 x 10 Am' V' calculated from equation 2.10. However, under

00 QO

[2.11]
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Thus, the value of G may be obtained by comparison of i with the area integral of the 

SVET signal. The value of i was varied systematically between IpA and -IpA. A plot 

of i vs. the integral of AE(Xiy) over the scan area obtained numerically using the 

trapezium method can be seen in figure 2.16 and gave a straight line (correlation 

coeff. 1.00) with slope (Gmt) = 1.30 ± 0.2 x 105 A m 'V 1. Given the 20:1 ratio of x  and 

y  integration intervals to SVET probe height (z) used in the integrated point source 

calibration experiment, figure 2.1 suggests that current detection efficiency should be 

90%. However, the value of G obtained is actually 8% lower than that obtained using 

the tubular calibration cell or calculated using equation 2.10, i.e. larger values of 

SVET ac voltage signal (AEz) are being produced than are predicted for a given value 

of i. This finding is consistent with the SVET probe tip displacing solution proximal 

to the “point source” electrode when the probe and point source are physically close 

together. Thus, the concentration of ionic current in the remaining solution results in 

higher local current flux densities and higher potential gradients than those predicted 

by equation 2.5.

The integration calibration method (G = 1.30 ± 0.2 x 105 A m ^V 1) was used to 

convert SVET potential into current density before any quantification of the results 

was carried out, for all SVET experiments. This method was deemed to be the most 

appropriate as it was obtained using the point current source, thus taking into account 

the geometry of the problem, whilst being independent of the scan height. As 

opposed to the point source stationary in space calibration, which is largely dependant 

upon the height of the probe tip which could produce large errors in the results.
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Figure 2.17: SVET surface plot of data recorded whilst SVET was scanning in 3.5% w/w 

NaCl over insulating plane turned for side view
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2.1.4: SVET experimental noise.

Whilst using the SVET experimentally there are two types of noise which can 

produce error in the results obtained, i) instrumental noise and, ii) environmental 

noise. Instrumental noise is determined by the noise floor of the lock-in amplifier, 

and the phase noise introduced by the vibration amplifier. Environmental noise is 

induced in the electrolyte and/or probe by the electrical nature of the environmental 

surroundings. This could be influenced by factors such as, a) mains noise, b) noise 

generated by other equipment and c) radio frequency noise in the atmosphere. The 

proportion of instrumental noise was deemed to be insignificant relative to 

environmental noise. This was determined by shorting the lock-in input, the 

instrumental noise observed was effectively zero compared to experimental signal 

levels recorded. Hence it was detennined that the experimental noise observed was 

produced by the environment. These factors where minimised using screening 

techniques, as described in section 2.1.2. However, the level of background noise was 

determined by scanning the SVET probe over an insulating plane, and was observed 

to have an amplitude corresponding to a calibrated normal current density fluctuation 

of ± 0.2 Am'2 peak to peak (as can be seen in figure 2.17).

2.1.5: SVET experimental set-up.

Samples were prepared as described in each section. After preparation the samples 

were securely fastened to the levelling table in the tank, as can be seen in figure 2.3, 

and the table was initially levelled using a small spirit level, by adjusting the three 

levelling screws until the air bubble was in the centre of the level. The tank was then 

filled with the electrolyte solution up to the level of the base of the sample, and left
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for 20 minutes. This was to allow any expansion in the materials used to prepare the 

samples before the surface was accurately levelled using the buzzing technique 

described in section 2.1.3 for determining the height of the tip. Once the sample has 

been levelled to within 10pm the tip was raised 100pm from the sample surface, 

resulting in a mean scan height of ~ 120pm. The step size used in height 

measurement gives an error of ± 10pm in the subsequent scan height. Probe 

amplitude ~ 20pm measured as described in section 2.1.3. SVET scan parameters 

were set via the micro computer, and then the tank was filled with the electrolyte 

before the experiment was started. The electrolyte used was 3.5% w/w aqueous NaCl 

that was unstirred and open to the air for all experiments, any additions to the solution 

are stated in each section.

2.2: Scanning Kelvin Probe (SKP).

2.2.1: Apparatus.

n

The Scanning Kelvin Probe apparatus is shown schematically in figure 2.18a , and an 

optical picture can be seen in figure 2.18b. The vibrating reference probe assembly 

was mounted in a fixed position above the moving test sample. The reference probe 

itself consisted of a 125pm diameter gold wire, which was vibrated along the vertical 

axis using a moving coil electromechanical actuator (8Q 1W loudspeaker). Reference 

probe vibration amplitudes were checked using stroboscopic observation in 

conjunction with a travelling microscope, as described for the SVET (section 2.1.3). 

The experimental set-up was such that the tip of the vibrating reference probe was 

held at earth potential and positioned inside a stainless steel environment chamber, 

which was also at earth potential. The electromechanical actuator and vibrator drive
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Figure 2.18b Optical picture o f Scanning Kelvin Probe (SKP) apparatus.
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electronics were positioned outside the environmental chamber in order to ensure 

effective electrostatic and magnetic shielding of both the reference probe and sample. 

Vibration was conducted to the probe tip via a 50mm long glass push rod.

The positioning and scanning of the test sample was carried out using a micro­

manipulation stage, consisting of three orthogonally arranged (x, y, z), stepper motor 

driven, linear bearings (Time and Precision Ltd). To perform each measurement the 

ac current generated in the circuit connecting the sample and vibrating probe was 

amplified and converted into an ac voltage signal, using a dc biased trans-impedance 

amplifier circuit a diagram of which can be seen in figure 2.19. The ac voltage signal 

was detected using a lock-in amplifier (Perkin Elmer model 7260). The dc output of 

the lock-in amplifier was transmitted to a feedback system based on an integrator 

circuit which controlled the dc bias applied to the sample via the current to voltage 

converter so as to automatically null the ac current. The magnitude of the dc bias 

(equivalent to -Ekp as defined in section 1.2.2) applied via the integrator, was digitised 

and logged. Probe scanning and data logging were all carried out under micro­

computer control (IBM compatible supplied by Mertec Ltd).

2.2.2: SKP calibration.

Prior to use, the SKP was calibrated in terms of electrode potential using an
O

established procedure . This involved measuring Ecorr (vs. SHE) and EkP 

simultaneously for a series of couples (Ag/Ag+, Cu/Cu2+, Fe/Fe2+ and Zn/Zn2+) using 

calibration electrolytes comprising of a 0.5 mol dm'3 solution of the relevant metal 

chloride (nitrate in the case of Ag) salt. The influence of a PVB coating on 

calibration was taken into account by placing a free standing PVB film in contact with
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SKP probe

Sample

ac

ac

Figure 2.19: Circuit diagram of current voltage converter used in SKP equipment, as seen in

figure 2.18, where E  = experimentally applied bias potential, i(JC= current flow in external

circuit due to Volta potential difference and Vac = R./ac.
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Figure 2.20: Calibration plot of as a function of Ecorr vs. SUE for Zn/Zn2+, Fe/Te24, Cu/Cu2+ 

anG Ag/Ag+ couples covered with free standing PVB films, taken at 25°C.
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the meniscus of the calibration electrolyte, allowing the electrolyte, PVB film and 

SKP chamber to become equilibrated, and then measuring Ekp at PVB / air interface.

The calibration plot obtained can be seen in figure 2.20, which shows Ekp vs. 

Ecorr for the four couples covered with a 30pm PVB film. The line shown in figure 

2.20 has a slope of 1 within experimental error and a jc-intercept value of 330mV. 

Calibration was carried out before each experiment, and the calibration constant was 

determined to be 330 ± 50mV. This constant obtained may be used in conjunction 

with equation 1.18 and the Ekp values obtained in the course of a SKP scan to 

calculate the instantaneous spatial distribution of Ecorr values existing at the sample 

surface.

2.2.3: SKP experimental set-up.

Samples were prepared as described in section 7.2.1. They were then securely 

fastened to the movable platform in the thermostatically controlled (20°C) 

environmental chamber (as can be seen in figure 2.18b). The stainless steel 

environment chamber of the SKP, maintained at a constant relative humidity of 93% 

by equilibration of the experimental atmosphere (air) with saturated NaiSC^.lOTkO 

(aq). The scanning reference probe consisted of a 125 pm diameter gold wire 

vibrated along its long axis and normal to the sample surface with amplitude 40pm 

and frequency 280Hz. Repetitive scans were carried out every 3 hours on a 1 cm 

area of the coated sample encompassing the scribe, using a data point density of 10 

points per mm and a mean probe to sample height of 100 microns.
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2.3: High Resolution Microscopy.

Two types of Secondary Electron Microscopes were used to take high resolution 

pictures of aluminium alloy surfaces. The Philips XL30 CP (a picture of the machine 

can be seen in figure 2.21) with tungsten element was primarily used to take high 

resolution pictures of the sample surface. It was also used to record back-scatter 

images of the surface so as to obtain the greatest colour contrast between the 

aluminium matrix (soft and so dark in back-scatter mode) and the precipitate particles 

(harder and so light in back-scatter mode). These high contrast back-scatter images 

were used to find the percentage area of precipitates on the sample surface. The 

JEOL 35C ( a picture can be seen in figure 2.22) was used to determine the types of 

precipitate observed on the surface, using an Oxford Link Isis EDX system attached. 

The basic principles used in these microscope systems can be found elsewhere9,10,11,12.

2.4: Optical Scanning System (OSS).

The BAE System OSS combines a Mitutoyo optical microscope with a Wentworth 

Laboratory autostepping stage mounted on an anti-vibration table in a system 

originally designed to inspect silicon wafers (a picture of the equipment can be seen in 

figure 2.23). A PC controlled, motorised stage, moves the sample under the 

microscope and allows precise adjustments of sample position. BAE in-house 

software running on the PC is used to automate the process of capturing images using 

a digital camera (JVC KY-F55B). The corroding sample is scanned under the optical 

microscope and individual images are collected and stored on the PC. The images 

have 5% overlap and are montaged using additional BAE in-house written software to 

produce a high resolution map of the surface. Approximately 400 images were
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Figure 2.24: The Reichert-Jung MeF3 Optical Imaging used for high resolution optical pictures

Figure 2.23: The Wentworth clean room microscope used for high resolution OSS optical mapping.
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montaged for the SVET work which mapped an area of 5x5mm to a resolution better 

than 3 pm.

2.5: Reichert-Jung MeF3 Optical Imaging.

To photograph the exposed sample surface after corrosion experiments a Reichert- 

Jung MeF3 inverted light microscope was used (a picture of the equipment can be 

seen in figure 2.24). Attached to the microscope was a camera with a frame grabber, 

which was then connected to a Macintosh computer. The software used was ‘Image 

On’ software from Graftek Optilab. The corroded surface was placed face down on a 

flat x-y movable platform above the objective lens. The platform was moved so that 

the surface was visible on the computer screen. The contrast was optimised using the 

microscopes contrast control panel and the surface was bought into focus using the 

manual coarse and fine focus controls. Once the required image was visible on the 

computer screen and was in focus, the image was captured and saved to file. To 

obtain pictures of the whole corroded surface the magnification was set to its lowest 

setting (x20), when pictures of pits were required magnification was increased 

accordingly.

2.6: Other Methods of Optical Imaging.

The two methods described in section 2.4 and 2.5 were used to obtain optical 

micrographs of small sections of the sample, as they are capable of producing high 

magnification images. Before other techniques of low magnification imaging became 

available, the inverted light microscope was used to produce montage pictures of the 

whole surface (see figures 3.20 and 6.3). To obtain good quality images of the whole 

surface two methods were used, i) Scamiing the surface at high resolution using a
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Hewlett Packard ScanJet 5200C scanner connected to an IBM compatible computer, 

ii) Image photography using a Nikon Coolpix 950 digital camera, which was used to 

obtain angled pictures which emphasise surface colour and texture.

2.7: Materials.

Aluminium alloy 2024, (composition shown in table 2.2) was obtained from BAE 

Systems, Sowerby research centre in two forms. AA 2024-T3 samples in the form of 

thin plates with a thickness of 2mm and varying lengths and breaths, and AA 2024- 

T351 samples in the form of 26mm cubes. The AA2024-T351 cube samples were cut 

from a hot-rolled billet of AA2024-T351 which was an intermediate stage in 

manufacture of the lower skin of an Airbus wing. The cubes were cut such as the 

‘top’, ‘side’ and ‘end’ of the cube were defined in relation to the rolling direction of 

the original billet as shown in figure 4.1. The alloy T number indicates how the alloy 

was heat treated and worked. T3 specifies that the alloy has been solution heat 

treated, cold worked and naturally aged to a substantially stable condition1314, as 

discussed in section 1.1.1. Whereas T351 indicates that as well as being solution heat 

treated, cold worked and naturally aged to a substantially stable condition as for T3, 

the alloy has also been stretched13,14.

Element. % Alloy.

Silicon 0.5

Iron 0.5

Copper 3 .8 -4 .9

Manganese 0 .3 -0 .9

Magnesium 1 .2 - 1.8

Chromium 0.1

Zinc 0.25

Table 2.2: Table showing composition of experimental alloy 2024-T3 14.
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Platinum and gold wire used in the SVET and SKP tips respectively were obtained 

from Goodfellow. Platinum wire stated as 99.9% pure, gold wire stated as 99.99% 

pure.

2.8: Computer software.

2.8.1: Presentation o f data.

On completion of each SVET and SKP scan, a matrix of data points was stored on the 

micro-computer. This data was manipulated in various ways using a cartography 

package called Surfer 6 supplied by Golden Software. This package was used to 

present the data in one of three ways using the surface, contour and image functions in 

the map menu. The surface and contour functions were mostly used to present the 

SVET data, whereas the image function was used for the SKP data. The surface plots 

were best used to show peak values in the data, whereas the contour and image plots 

where used to show information on current or potential distributions.

2.8.2: Finding x-y co-ordinates o f detected features.

Once a contour or image of data has been plotted using Surfer 6, it is possible to 

digitise the map using the “Digitise” function in the map menu. This function allows 

the user to determine the x and y co-ordinates of any point on the map, by clicking on 

the map using the mouse cursor. When a point has been clicked on, a red cross is left 

in that position, and the jc and y  co-ordinates of that point are recorded in a digitdat 

box on the screen. This function was used to determine the position of pits detected 

by the SVET, and also determine the progression of filiform filaments detected by the 

SKP.
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2.8.3: Determining peak current density values at SVET detected pit sites.

Once the positions of the pits detected by the SVET were determined for a given 

experiment, it was possible to determine their peak current density value for each scan 

using the Surfer software. That is to say the current density immediately above the pit 

opening. The x co-ordinates of the pit sites were recorded in the first column of a dat 

file, the y  co-ordinates of the pit sites were recorded in the second column, and the 

third column of the dat file was filed with zeros. Then using the residual function in 

the grid menu the difference between the level set in the third column (zero) and the 

actual recorded value at that point for each scan was recorded in the next available 

column.

2.8.4: Determining areas and sums o f total anodic or cathodic activity.

The Surfer software was also used to determine the total anodic or cathodic activity 

for the recorded data. It has been shown that corrosion current may be quantified by 

integrating SVET normal current density data over the area scanned (as seen in 

section 2.1.1). Integrations were performed using the “Volume” function in the 

surface grid menu, which shows the positive volume above a known level (see 

threshold levels in section 3.3.3) as the cut value, which is equal to the sum of the 

anodic activity recorded by the SVET. For the SKP data the area of anodic and 

cathodic activity is the value required to make the technique quantitative. This was 

determined using the same function as for determining volume in Surfer 6, however it 

was the positive and negative planar areas required from the same data readout.
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Chapter 3.



Chapter 3: Quantification of surface pitting corrosion of polished

AA2024-T3 using the Scanning Vibrating Electrode Technique

(SVET).

3.1: Introduction.

Aluminium alloys are widely used within the aerospace industry, due to their high 

strength to weight ratio. The AA2024-T3 alloy investigated here, is used in the 

aircraft industry for many applications including fuselage and door skin, dorsal fin 

and trailing edge panels1. However, it has been found to be particularly prone to 

localised corrosion, such as pitting and exfoliation1,2’3. Pitting is a form of highly 

localised corrosive attack which can result in premature breakdown of structural 

parts1, or even be a precursor to more complex damage such as corrosion fatigue 

crack initiation and growth4. Consequently there is a great demand for knowledge 

regarding initiation and propagation of pitting corrosion on aluminium alloys. In the 

work to be described here, the aim has been to develop the Scanning Vibrating 

Electrode Technique (SVET), as a fully quantitative means of investigating the 

localised corrosion characteristics of AA2024-T3. The number density, location, 

lifetime and size evolution of surface pits on AA2024-T3 was determined from SVET 

data. A comparison of these SVET results was also made with high resolution optical 

images and SEM pictures.
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3.2: Experimental.

3.2.1: Materials.

AA2024-T3 samples, as described in section 2.7, were prepared following the 

sequence in figure 3.1. Coupons of 3 cm by 3 cm (typically) were ground using 

increasingly fine grades of silica paper (400, 800, 1200 and 1600) to remove any 

surface scratches. The surface was then polished to a mirror finish, first using 6 pm 

diamond paste on a rotating polishing disk, and finished with 1 pm diamond paste on a 

rotating polishing disk. The sample surface was cleaned using a non-ionic surfactant 

between each stage of polishing. Following polishing the sample was immersed in 

Methyl Ethyl Ketone (MEK) for 10 mins to remove surface grease. After polishing, 

two scratches ( ~ 2  cm in length) were scribed at right angles using a diamond cutter 

(as shown in figure 3. Id). This was done so that the point of intersection between the 

two scratches could be used as a reference point for high resolution optical scanning, 

and SVET scans. The sample area for SVET investigation (« 10mm x 10mm) was 

isolated from the rest of the sample using PTFE insulation tape obtained from 3M 

Ltd. The only part of the sample left un-coated was the area to be scanned as shown 

in figure 3.1e.

On completion of the SVET experiment the samples were removed from the 

electrolyte and immersed in an inhibited phosphoric acid solution comprising of 3.5% 

v/v phosphoric acid (d 1.75) and 2.0% w/v Chromic acid at 80°C for 10 minutes. This 

was used to remove any corrosion product deposited on the surface during the 

experiment, so that optical and SEM images could be taken.

All other materials were purchased from Aldrich in their highest purity and all 

solutions were prepared in distilled water.
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Surface ground using increasingly fine grades 
of silica paper.

Surface polished to a mirror finish using 5pm 
then I pm diamond paste.

Sample immersed in Methyl Ethyl 
Ketone (MEK).

Scratches made using diamond cutter.

Reference point for optical scanning and
SVET.

Then covered with

~ 10 x 10 mm area

PTFE insulation tape.

left bare for SVET scan.

Figure 3.1: Schematic diagram showing preparation of AA2024-T3 sample surface prior 

to SVET corrosion experiments
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3.2.2: Methods.

SVET:

The SVET operates by measurement of the electrical potential gradient in solution, at 

known points above a corroding metal surface using a movable microtip electrode, as 

described in chapter 2. The apparatus used was as described in section 2.1.2, and set­

up as described in section 2.1.4. The probe typically made 50 measurements per 

centimetre, generating a regular matrix of 2500 data points for the 10 x 10 mm area of 

the sample with a total scan time of 20 minutes. Each individual SVET data point 

was acquired with the probe stationary and was an average of ten successive signal 

measurements. The samples were scanned using SVET immediately on immersion 

and at hourly intervals thereafter for varying periods of time.

Optical microscopy:

On completion of the SVET experiment, optical pictures were taken of the sample 

surface by one of three methods, i) The first method was the in-situ (OSS) optical 

mapping as described in section 2.4. Whilst still immersed in the electrolyte a high 

resolution colour picture of part ( 5 x 5  mm) of the sample surface was produced, ii) 

The second method used the inverted light microscope with camera attached as 

described in section 2.5. iii) The third method used the scanner as described in 

section 2.6. For both of these methods the sample was rinsed in distilled water to stop 

corrosion, then air dried before the optical pictures were taken. These methods were 

also used to take pictures after the surface was cleaned by immersing the sample in 

the inhibited phosphoric acid solution for 10 min at 85°C.
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Electron microscopy:

After the samples were cleaned they were cut down to 0.5 x 0.5 cm coupons, so that 

when they were in position in the SEM (see section 2.3), the sample could be rotated 

to allow the angle of incidence to be changed. This was done so that the pit could be 

seen from as many angles as possible, and pit geometry could be better determined.

3.3: Results and Discussion.

3.3.1: Presentation of SVET data.

On completion of each scan, a matrix of 2500 data points was stored on the micro­

computer. The SVET potential data was converted into normal current density in the 

plane of scan, jz (Xiy) using the point source integration calibration constant described in 

section 2.1.3. Information from this jZ(X,y) matrix was presented in various ways using 

the Surfer 6  cartography package as described in section 2.8. The two methods used 

in this work were surface plots, and false colour maps as described in section 2 .8 .1 . 

Figure 3.2 shows the same SVET data represented in two ways, a) Surface plot, b) 

False colour map. The surface plot shown in figure 3.2a was built up of a series of 50 

line scans along the x-axis, with successive line scans being systematically displaced 

along the y-axis. Each line scan comprised of 50 data points and took approximately 

20 seconds to complete. Scans commenced at the point denoted as the origin of the 

corresponding surface plot. The z-axis corresponds to the calibrated SVET signal, so 

peaks on the z-axis correspond to large positive normal current density (jzfayj) values. 

Whereas, the x  and y  axes correspond to the spatial position of the SVET probe whilst 

measuring the signal. In figure 3.2b points of the same normal current density were 

joined by contours spaced by a given interval, and the level is depicted by a colour 

gradient from (in this case) blue to yellow. Again the x  andy  axes correspond to the
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spatial position of the probe. Both methods have their advantages, and each was used 

during the evaluation of the experimental data. Contour plots can easily be compared 

with photographs and images of the sample surface, whereas surface plots are of 

advantage in making the accurate measurement of peak current density.

Normal current density, jz(X<yh distributions were determined as a function of 

time above the surface of AA2024-T3 freely corroding in 3.5% w/w aqueous NaCl. 

Figure 3.3 shows current density surface plots obtained immediately following 

immersion and at hourly intervals thereafter for a 17 hour experiment. As can be seen 

in figure 3.3 pitting corrosion of the surface commences immediately after immersion 

in the electrolyte. Active pits are visible as discrete peaks of positive jz. Following 

initiation, individual pits propagate for varying periods of time before passivating. 

Thus it may be seen from figure 3.3 that some pits remain active over a 1 hour period 

or longer (lettered a-f in figure 3.3) whereas many more do not. In principle, SVET 

data of the sort shown in figure 3.3 should allow the time-dependence of individual 

pitting events to be observed over two different time-scales. The first of these is the 

time between successive line scans, here 30 seconds. The second is the time between 

area scans, here 1 hour. Using the point density shown in figure 3.3 the current from 

an individual pit is typically detected in 4-5 successive line-scans. This implies a pit 

lifetime of > 2-2.5 minutes, which is consistent with stable pitting. However, if a pit 

is detected in only one line scan, and not in its neighbours, then it may be concluded 

that the lifetime of that particular pitting event is <30 seconds, which is consistent 

with metastable pitting. However, at any instant the SVET probe sees only a very 

small fraction of the sample surface and this, together with the relatively slow rate of 

scan, implies that SVET will detect only a very small fraction of the total number of 

metastable pitting events. Typically, each SVET area scan contains only one or two
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j z (Xty) features which could be interpreted as metastable pitting, i.e. features with 

lifetime <30 sec. Figure 3.4 shows a surface plot where only the data points of the 

same y  value are joined. This makes it easier to see peaks which only last one line of 

scanning, implying metastable pitting. Furthermore, the peak j z (x<y) values associated 

with these metastable pitting events are typically more than an order of magnitude 

lower that that associated with stable pits. Consequently, we may assume that the 

jZ(Xiy) distributions seen in figure 3.3 derive substantially from stable pitting events.

Initially the surface is covered in a large number of very low intensity pits 

(peak values <2 Am'2) most of which seem to last less then one hour. However, after 

6  hours immersion a small number (between 1 and 6 ) of high intensity pits were 

detected (peak values between 2 and 15 Am'2), whilst the majority still have a peak 

value <2 Am'2. Most of the high intensity pits remain active for many hours, some 

examples are marked c to f  in figure 3.3. From figure 3.3 it can also be seen that 

whilst the anodic (positive) activity is very localised, the cathodic (negative) activity 

is generalised, and in fact seems cover the whole of the remaining sample area.

The peaks in the current density are very narrow, this makes them very hard to 

depict well using contour maps (figure 3.2) as the lines of equal j z (x>y) are very close 

together. It is possible to spread out the contours, however this greatly reduces the 

detail of the maps. Another method is to restrict the scale so that its maximum level is 

low (~1 Am"2) whilst keeping the gap between contours small (~0.1 Am'2). The result 

can be seen in figure 3.5, which shows some of the same scans as figure 3.3. It can be 

seen that the lower level activity is now visible on these maps, however the actual 

intensity of the more active pits is not visible. In the same way the z-axis on the 

surface plots can be ‘blown up’ so that the lower level activity is exposed, as can be 

seen in figure 3.6. However this results in very large, often unmanageable, pictures.
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Peaks indicating metastable pitting.

Figure 3.4: Surface plot of SVET scans for polished AA2024-T3 freely corroding in 3.5% w/w 

NaCl immediately after immersion.
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Figure 3.5: False colour maps o f SVET scans for polished AA2024-T3 freely corroding in 

3.5% w/w NaCl after X hours immersion, current density scale set to 1 Am'2 maximum.
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Figure 3.6: ‘Blown up’ Surface plot of SVET scan for polished AA2024-T3 freely corroding in

3.5% w/w NaCl, after 10 hours immersion.
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These are examples of how manipulating the data in various ways can yield different 

information.

3.3.2: Optical images.

A high resolution in-situ optical picture was taken of part of the sample surface on 

completion of the SVET experiment, as described in section 3.2.2. Figure 3.7a shows 

the high resolution optical image for the same sample as used in figure 3.3. Figure 

3.7b is a schematic diagram showing how the position of the optical picture relates to 

the SVET scans. As can be seen in figure 3.7 the majority of the sample surface has 

become ‘copper’ in colour, however there are small areas (diameters ranging from 

~10pm to 1mm) of very dark deposit (examples marked a to c on figure 3.7a), some 

of which have a very light coloured halo (examples marked d to f  on figure 3.7a).

Figure 3.8 shows the high resolution micrograph overlaid with contours of 

SVET data for 0, 4, 7, 10, 14 and 17 hours. It can be seen that areas of high activity 

recorded by the SVET correspond very closely to the dark disk like features on the 

surface after 17 hours. This would suggest that these dark disk like features are sites 

of anodic pitting.

3.3.3: Quantification o f SVET data.

If a collection of point current sources of the same sign, 0 , i2 ... are set at different 

points on an insulating x,y plane, with the current drain at infinity, then the total 

current (i) will be given by / = /; + 6  -  • + in- Furthermore, the normal current density 

contributions from each point source will be additive, such that total normal current

density at any point j z (XtV) =jz(z>y)\ + j z (ZtV) 2 ... .+jz(zy)n. Under these circumstances, the
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0 , 0

Figure 3.7: a) In-situ high resolution optical picture of corroded surface after 17 hours 

immersion in 3.5% w/w NaCl, picture corresponds to SVET data in figure 3.3. b) Diagram

showing position of optical image relative to SVET scans.
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SVET ac voltage signal AE will be related to j z (Xty) by equation 2.11 and (?) may be 

obtained using the numerical area integral of jz(X>y). As show in section 2.1.1 for a 

single point current source, ? will be accurately estimated provided the x and y  

integration intervals are large by comparison to probe height h and all the point 

sources lie well within the limits of the x and y  intervals. Current contributions from 

point sources lying a distance less than 1 0 /? from the limits of the x or y  intervals will 

be significantly underestimated.

The above scenario may be approximated by a metal surface, polarised via an 

external circuit, which undergoes pitting such that the pitting current is equal to 

current flowing in the external circuit, the remainder of the surface being 

electrochemically inactive. However, it is less clear how closely the above scenario 

approximates to a metal surface, which undergoes pitting under free corrosion 

conditions. Under these circumstances the anodic pits may certainly resemble point 

current sources but the cathode (current drain) will now be the surrounding metal 

surface. Consequently, equation 2.6 may underestimate j z  as some lines of current 

flux may loop between anodic and cathodic sites without cutting the plane of scan.

The total anodic current (ia) present in each of the j(X>y) distribution maps 

exemplified in figure 3.3 was determined using equation 3.1 with a threshold (77?) 

current density value of 0.2 Am'“.

ia = A  Jeon- = J  (j'Z(x,y) > 77?) dx [3.1]
x=0 y=0

Where A is the sample area, X and Y are the length and width of the SVET scan and 

77? is a threshold current density above which integration is performed.
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The use of a non-zero threshold was made necessary by practical 

considerations such as the finite level of random electrical noise superimposed on the 

SVET signal (typically 1.6 pV peak-to-peak, corresponding to ± 0.2 Am'2) and finite 

base-line stability over the experimental period (see section 2.1.4). Figure 3.9a shows 

a surface plot of SVET data recorded whilst the probe was scanned in the 

experimental electrolyte over an insulating plane. This was done to determine the 

level of background noise detected by the SVET probe in each experiment. As can be 

seen in figure 3.9a apparent background j(X>y) values oscillate around zero with a peak 

to peak amplitude of ~ ± 0.2 Am'2. Although this noise level is negligible, compared 

to the signal picked up over a sample freely corroding in electrolyte, it is not 

negligible when inhibiting is significant. Noise may therefore result in relatively 

large errors in ia values obtained using equation 3.1 with Th = 0, where surface pitting 

corrosion has been inhibited (see chapter 6 ). Figure 3.9b shows the same scan as 

figure 3.9a but the surface plot has been rotated to show the side view. The horizontal 

coloured lines show different values of threshold, used to determine the sensitivity of 

Jeon with respect to threshold value. Figure 3.10 shows how JCOit varies with threshold

•j
value for five SVET scans. For Th < 0 Am' the value obtained for Jeon- is strongly 

dependant on Th. However, for Th > -0.05 Am ' 2 JCOn changes much more slowly with 

Th because now only pitting currents above background noise are being included in 

the current integral. Never the less J^n- is seen to decrease slowly with Th even for Th 

> 0 , for these reasons a compromise value of Th = 0.2 Am' was adopted as giving 

good noise immunity whilst not excessively underestimating JCOrr.

In this manner one value of Jcorr was obtained from each hourly SVET scan, by 

using the grid, volume function in Surfer 6  as described in section 2.8.4. The
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Figure 3.9: a) SVET surface plot of data recorded whilst SVET was scanning in 3.5% w/w 

NaCl over insulating plane, b) Surface plot a) turned for side view, coloured lines show

threshold levels (Th) of 0.2 A m 2 (green), 0.1 Am'2 (blue) and zero (red).
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Figure 3.10: Plot showing how Jcorr varies for different values of threshold for four arbitrary 

SVET scans in 3.5% w/w aqueous NaCl. (Black line with circle symbols shows values for 

background noise scan shown in figure 3.9).
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variation of JCOrr with time can be seen in figure 3.11, initially Jcorr = 0 . 0 2  Am' rising
-y

slowly to ~ 0.04 Am' over the 17 hour experimental period.

The total quantity of charge emitted from corrosion pits over the 17 hour 

experimental period was calculated from J(t) using

SF xteal t=tmT_  ,
0 =   y7~"~= j  J(t) -d/ [3.2]

t=o
•y

Where Q is the charge in C m ', tm is the immersion period (in seconds), F  is the 

Faraday constant and teal is the total equivalent aluminium (atm. wt 27g) loss in gm' 2 

The integration of J(t) values was performed numerically using Eulers method. The 

value of Q obtained from the 17 hour immersion experiment, was 1692 Cm'2, which 

corresponds to a teal value of 0.158 g m'2.

3.3.4: Number density o f  active pits detected by SVET.

To determine the number density of pits detected by the SVET for each scon it is 

necessary to first define what is to be considered a pit. Figure 3.3 shows surface plots 

of SVET data, it can be seen that the surface is covered with peaks which correspond 

to large positive j(X>y). Figure 3.8 shows contour plots of j(X<y) data overlaid on an 

optical micrograph of the surface, after completion of the SVET experiment. This 

shows that the large positive peaks in j (Xty) detected by the SVET correspond with 

areas of pitting on the surface. From this it was determined that large anodic peaks in 

j(X,y) correspond to anodic pitting activity on the surface. However, in section 3.3.3 it 

was explained how low level noise on the SVET signal makes it necessary to use a 

threshold (Th) on the SVET data to determine anodic current density. A similar 

approach was also used to determine pit number density, figure 3.12 shows a side
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Figure 3 12: SVET surface plot SVET data recorded whilst scanning over polished 

AA2024-T3 in 3.5% w/w NaCl turned for side view, Red line shows threshold level of 0 

Am'2, Blue line shows threshold level of 0.2 Am'2.

x-axis, mm x-axis, mm

Figure 3.13: SVET contour plots of the same data as figure 3.12, Figure 3.13a shows 

threshold level of 0 Am-2, Figure 3 .13b shows threshold level of 0.2 Am'2.
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view of a SVET surface plots taken straight after immersion in the electrolyte. It 

shows that at Th = 0 Am' there are many j (xy) peaks which could be taken as pits, 

however figure 3.13a, showing the same information but presented using a contour 

plot, indicates that not all the j(X>y) peaks at this level are pit-like in shape. The blue 

line in figure 3.12 shows the threshold level at Th = 0.2 Am'2. It can be seen that at 

this level any peaks cutting the threshold are made up of many points, indicating 

pitting activity not noise. Figure 3.13b reinforces this, as all activity over 0.2 Am"2 

greatly resembles activity seen using a point current source (see section 2.1.3). For 

these reasons a pit was defined as any discrete feature associated with j (xy) values > Th 

= 0.2 Am'2. Obviously this is an arbitrary definition and only has meaning for the 

work currently under discussion.

To determine pit density of each scan the SVET data was presented as in 

figure 3.13b. The number of pits was counted with the aid of the Map, Digitise 

function in Surfer 6  software as described in section 2.8.2. This function digitises the 

contour map so that when a point is ‘clicked’ on with the mouse, it leaves a red cross 

in that position, and records its x-y co-ordinates (see figure 3.14). Using this the 

number density of pits detected by the SVET for each hourly scan was determined, a 

plot of which can be seen in figure 3.15. Figure 3.15 shows that pit density detected 

by the SVET during the experimental period does not change greatly with time, at 

t=0, pit density = 600000 pits m'2, and for the remaining experimental period pit 

density remains within 750000 and 450000 pits m*2.

3.3.5: Calculating pit dimensions from SVET data.

As described in section 3.3.4, a pits x,y co-ordinates were determined using the Map, 

Digitise function in Surfer 6 . From a pits x,y co-ordinates the current density j(xy) at
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Figure 3.14: SVET contour plots of the same data as figure 3.12, showing map-digitise 

function in Surfer 6 software. Red crosses show position of cursor when jcj/ co-ordinate 

was recorded for pit.
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that point was determined using the Grid, Residual function in Surfer 6  as described 

in section 2.8.3. From this peak value oij(X,y) the anodic current was determined using 

equation 2.11 when r = 0 and z = h, i.e. i =j (xy). 2. mh2. Assuming i to be constant for 

the hour between SVET scans, and all metal loss to be aluminium. The mass of 

aluminium lost (teal) from that site for that hour can be determined using

teal = 2ZJL [3.3]
3 F

where t is time between SVET scans.

Using this it is possible to determine the diameter of the pit using equation 3.4, 

if it is also assumed that the pit is hemispherical in nature.

f  ~ f-«m V ' 3
d = 2 ~ ~ ~  X  teal [3 .4 ]

2  np £?< J )  L J
1

Where d  is pit diameter and p  is the density of aluminium = 2.0702 gem' .

From figure 3.15 it can be seen that there may be over one hundred pits active during 

any scan. This large number makes it difficult to present pit diameter for each pit 

individually.

To illustrate how pit diameters change with immersion time, histograms of the 

number of pits with each pit diameter were produced for each scan, however before 

pit diameter could be measured, the x,y co-ordinates for each pit was determined. As 

can be seen in figure 3.3 some pits stay active over many hours of immersion, 

whereas others are only active for one SVET scan. To produce the histograms a file 

containing x,y co-ordinates for all pits becoming active during the SVET experiment 

must be produced. In so doing it is important that each pit is counted only once. This 

requirement was achieved in the following way. Firstly a false colour map was 

produced and the x,y co-ordinates for each pit were recorded in the same way as
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described in section 3.3.4 (see figure 3.14). Secondly a false colour plot for the 

subsequent SVET scan was produced, however the contours were made a different 

colour (to be distinct from the first plot) and they were not filled in. The second plot 

was overlaid on the first (so the first plot could be seen through the second). Then 

any pits not recorded from the first scan were recorded from the second, as can be 

seen in figure 3.16. This procedure was repeated for each SVET scan for the 

experimental period. The theoretical diameter of each pit after each scan was 

determined as described previously using equation 3.4. Following this procedure pit 

diameter histograms were produced for each hour of immersion, examples of which 

can be seen in figure 3.17 for hours 0, 4, 7, 10, 14 and 17. For this sample over 400 

pits were recorded throughout the experimental period, and as can be seen from figure 

3.17, diameters after 17 hours immersion the 3.5% NaCl vary from between 25 and 

155pm. Figure 3.17 also shows how the distribution in pit diameters broadens with 

longer immersion time (from 50pm at t=0 to 130pm at f=17hr), and the mode value 

increases with immersion time ( from 20pm at t=Q to 40pm at f=17hr).

3.3.6: Comparing SVET pit diameter with Optical pit diameter.

Figure 3.8 shows SVET contour plots overlaid on an in-situ high resolution optical

micrograph. It shows that the contour plots correspond very closely with the dark

areas on the surface, hence it is possible to associate a SVET diameter calculated from

equation 3.4 (see section 3.3.5) with an optical diameter measured from the optical

micrograph. The optical diameter was taken to be the maximum distance from one

edge of the dark disk to the opposite edge. Figure 3.18 shows the optical micrograph

with 11 ‘pits’ circled, these were chosen as their co-ordinates correspond very closely

with ‘pit’ co-ordinates on SVET surface plots. Figure 3.19 shows four of the selected
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Figure 3 16: Plots showing how x,y  co-ordinates of all pits active during experimental period 

were determined
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Figure 3.18: In-situ optical image of AA2024-T3 surface after 17 hours immersion in 3.5% 

NaCl at 25°C, showing position of pits used to compare SVET diameters with optical 

diameters.
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pits at high magnification. Figure 3.20 shows a plot comparing the pit diameters 

determined by the optical micrograph (blue) with the diameter determined 

experimentally using equation 3.4 (red) for the same ‘pits’. It shows that the 

diameters determined from the optical micrograph are considerably larger then those 

determined using equation 3.4, the optical diameter is larger by a factor of between 

1.3 to 7.3. This difference in determined diameter could be due to a number of factors 

including, i) error in determining pit diameter from the optical picture, ii) the pits not 

being hemispherical in nature producing an error in calculated d  values and, iii) the 

SVET not detecting all the anodic current emerging from the pit.

On closer investigation it was concluded that the largest errors probably occur 

through misinterpretation of the optical picture, as the large dark disk like features 

visible in figures 3.18 and 3.19 are not actually the pit opening but a deposit of 

corrosion product at the pit mouth. Hence, to determine how well the SVET measures 

anodic activity the size and shape of resulting pits must be more accurately 

determined. To discover the real shape and size of the pit openings it is first 

necessary to remove any deposit of corrosion product. Consequently, after the SVET 

corrosion experiment was completed, the sample was rinsed in distilled water to stop 

corrosion activity, then optical images were taken of the surface using the inverted 

light source microscope as described in section 3.2.2 (see figure 3.21), and two of the 

disk like features at higher magnification (figure 3.23a). To remove the corrosion 

deposit the sample was cleaned as described in section 3.2.2. Then further optical 

images were taken of the surface (figure 3.22) of same small areas as examined before 

cleaning (figure 3.23b). It can be seen from figure 3.23 that after immersion in the 

cleaning solution the dark disk-like features are removed to show the opening of the 

pits. Figure 3.23b shows that the actual pit openings are much
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Figure 3.19: In-situ optical images showing examples of pits at high magnification, 

numbered as in figure 3 18.
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Figure 3.21: Inverted light source optical image of polished AA2024-T3 after 24 hours 

immersion in 3.5% NaCl.
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Figure 3.22: Scanned optical image of polished AA2024-T3 after 24 hours immersion in 

3.5% NaCl, and then immersed in 3.5% v/v phosphoric acid (d 1.75) and 2.0% w/v 

Chromic acid for 10 min at 85°C.
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Figure 3.23: Inverted light source optical image of polished AA2024-T3 after a) 24 hours 

immersion in 3.5% NaCl, and b) after immersion in 3.5% v/v phosphoric acid (d 1.75) and 

2.0% w/v Chromic acid for 10 min at 85°C. For two small areas Pit 1 and Pit 2. Also 

shown is SVET diameter calculated from equation 3.4. Numbered as shown in figures

3.20-21.
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smailer then the dark disks covering them after corrosion, also the pit openings are not 

one large opening but lots of small ones very close together. This finding poses the 

further question: whether these features consist of one large pit with lots of openings 

(lacy cap), or lots of small pits so close together the SVET can not spatially resolve 

them as shown schematically in figure 3.24.

To conclusively determine the nature of the pits it would be necessary to slice 

through the sample so as to cut the pit in half whilst not distorting the substrate 

material. Such an undertaking is non trivial and the equipment required to do this 

reliably was not available. However, figure 3.25 shows some high magnification 

SEM pictures taken in the same areas as pit 1 and 2 in figure 3.23. The angle of 

incidence was increased so that the edges of the pits could be seen. If no subsurface 

interconnection was visible between each of the small surface openings then a group 

of small pits would be the most likely hypothesis. However, if the small openings 

appear to open into a single cavity then the pit would seem to resemble the lacy cap. 

Figure 3.25b shows the same opening as figure 3.25a but the angle of incidence has 

been increased to 61°. Figures 3.25b-d suggest that although individual surface 

openings are not isolated, as in figure 3.24b, they also do not connect with a single, 

geometrically simple, subsurface cavity, as in figure 3.24a. Rather, individual surface 

openings seem to be interconnected via a maze or gallery produced by subsurface 

metal excavation, as shown in figure 3.24c. Furthermore, the walls of the 

interconnecting galleries are not smooth but very rough, showing evidence of 

preferential phase dissolution or crystallographic etching. What is certain from the 

SEM pictures is that the pits produced by immersing AA2024-T3 in 3.5% w/w NaCl 

for over 1 0  hours are not hemispherical in nature.
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a) Lacy cap.

b) G roup o f  sm all pits.
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Figure 3.24: Diagrams showing possible shapes of pits produced by immersing AA2024-T3 

in 3.5% w/w NaCl for over 10 hours, a) One ‘large’ pit with many small openings (lacy 

cap), b) group of small pits very close together, c) group of small pits connected via

galleries.
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a) 0 degree incidence. b) 61 degree incidence.

c) 45 degree incidence. d) 71 degree incidence
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Figure 3.25: High magnification SEM images of Pits 1 and 2 at various angles of incidence.
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3.4: Conclusions.

It has been shown that current density data obtained using SVET corresponds closely 

to optical images of the corroded surface, in terms of number and location of anodic 

pits. Anodic activity in the SVET data coincide with areas of metal loss and corrosion 

product deposition on the surface after corrosion. By using a ‘thresholded’ numerical 

integral of the SVET current density data, a series of instantaneous values for the area 

averaged anodic current density were obtained, which may be used to quantify the 

rate of pitting corrosion of AA2024-T3 in 3.5% w/w NaCl in terms of average metal 

loss over the exposed area.

The characteristics of pit population were also determined, firstly by 

determining how pit density varies over experimental period, then by determining 

how theoretical pit diameter varies with time of immersion (calculated from localised 

metal loss). High resolution images of a cleaned post corrosion surface were used to 

determine the accuracy of pit diameters calculated using SVET data. By so doing it 

has been determined that surface pitting corrosion of AA2024-T3 in 3.5% w/w NaCl 

is not hemispherical in nature, and in fact more resembles a network of tunnels.
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Chapter 4.



Chapter 4: Investigation into how precipitate distribution affects 

pitting corrosion of AA2024-T351 using (SVET).

4.1: Introduction.

It is thought that large intemietallic particles precipitated within the aluminium matrix 

may accelerate pitting corrosion of AA20241. The shape, size and chemical 

composition of these precipitates are determined by the heat treatment and forming 

carried out on the alloy2. There are two principle types of precipitates that occur in 

AA2024. The first of these comprise of Al-Cu-Mg particles, which tend to be anodic 

relative to the matrix. The second comprise of Al-Cu-Mn-Fe-Si particles, which tend 

to act as cathodic sites relative to the aluminium matrix3. Aluminium alloys 

containing larger amounts of copper have been found to be more susceptible to pitting 

corrosion than others4. It is widely thought that the AhCuMg (S phase) intemietallic 

particles are responsible for the majority of pitting corrosion in AA20245,6 However, 

the exact mechanisms underlying this phenomenon are not yet understood, and are 

still the subject of research. Here it has been our aim to determine the number density 

and distribution of precipitate particles on the surface using SEM back-scatter 

imaging. How this number density and distribution affects the pitting corrosion 

characteristics of AA2024-T351 was investigated using a quantitative SVET as 

described in chapter 3. A comparison was also made of the corrosion characteristics 

of AA2024-T351 and AA2024-T3.
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4.2: Experimental.

4.2.1: Materials.

Two cube samples of AA2024-T351 as described in section 2.7 were used. One was 

kept in the form of a cube, so that the side and end could be scanned using the SVET. 

The other was cut into seven slices from top to bottom, so that SVET scans could be 

carried out for different depths through the cube. A schematic diagram can be seen in 

figure 4.1. The top surface, end and side of the AA2024-T3 sample was scanned for 

comparison. All samples were prepared following the sequence in figure 4.2. The 

surface to be corroded was ground using increasingly fine grades of silica paper (400, 

800, 1200 and 1600) to remove any surface scratches. The surface was then polished 

to a mirror finish, first using 6 pm diamond paste on a rotating polishing disk, and 

finished with 1pm diamond paste on a rotating polishing disk. The sample surface 

was cleaned using a non-ionic surfactant between each stage of polishing. Following 

polishing the sample was immersed in Methyl Ethyl Ketone (MEK) for 10 mins to 

remove surface grease. The sample area for SVET investigation (see section 4.2.2 for 

the area for each type of surface) was isolated from the rest of the sample using PTFE 

insulation tape obtained from 3M Ltd. The only part of the sample left un-coated was 

the area to be scanned, as shown in figure 4.2d.

All other materials were purchased from Aldrich in their highest purity and all 

solutions were prepared in distilled water.
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Top of cube Side of cube

26 mm

26 mm

Rolling 
direction

26 mm

End of cube Cube slices
numbered 1 to 7

Figure 4.1: Schematic diagram showing AA2024-T351 cube sample with different surfaces 

and cube slices labeled.
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Surface ground using increasingly fine grades 
of silica paper.

Surface polished to a mirror finish using 5pm 
then 1pm diamond p a s t e . ------------

----

Sample immersed in Methyl Ethyl 
Ketone (MEK).   --------

Polished surface left uncovered for SVET 
to scan over the edge

Rest of sample surfaces covered using PTFE 
insulation tape.

Figure 4.2: Schematic diagram showing preparation of AA2024-T35E and AA2024-T3 

sample surface prior to SVET corrosion experiments.



4.2.2: M ethods.

SVET:

The methods used for this study were as described in section 3.2.2 with the following 

adjustments.

The scan area for the side and end of the 2024-T351 cube scans was typically 

25 mm x 25 mm, the data matrix generated was 100 x 100 points and total scan time 

was 80 minutes. The samples were scanned using SVET immediately on immersion 

and at 80 minute intervals thereafter for a period of 24 hours.

For the top of 2024-T351 cube slices and 2024-T3 top surface (see section 2.7) 

experiments the scan area was typically 2 0  mm x 2 0  mm, the matrix generated was 80 

x 80 points and total scan time was 40 minutes. The 2024-T3 thin plate samples end 

and side (as shown in figure 4.3) experiments scan area was typically 3 mm x 30 mm, 

the matrix generated was ~ 15 x 140 points and total scan time was 15 minutes. The 

samples were scanned using SVET immediately on immersion and at hourly intervals 

thereafter for a period of 24 hours.

Each SVET measurement was made with the probe stationary, and was an 

average of ten measurements.

Optical microscopy:

On completion of the SVET experiment the sample was rinsed in distilled water to 

stop corrosion, then air dried before the optical pictures were taken. Optical pictures 

were taken using the scanner, and angled digital photographs as described in section 

2 .6 .
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Top of thin slice

Rolling
direction

End of thin slice

Side of thin slice

Figure 4.3: Schematic diagram showing AA2024-T3 thin slice sample with different 

surfaces labeled
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Electron microscopy:

After the side of the AA2024-T351 cube sample was polished to 1pm it was placed in 

the SEM described in section 2.3. The aim was to determine the distribution of 

precipitate particles from the top to the bottom of the cube sample side. This was 

done using the back-scatter mode at the highest possible contrast, as described in 

section 2.3, so the precipitates show up as white on a black background. Firstly, the 

sample was lined up so that the top edge of the cube could be seen, then six 

micrographs were recorded along the edge between X = 0 mm and X = 1 mm. A 

schematic diagram can be seen in figure 4.4. Then six micrographs were recorded 

between X = 1 mm and X = 2 mm. This was repeated until the centre of the cube was 

reached (it had previously been determined using a travelling optical microscope that 

the precipitate particle distribution was approximately symmetrical round the top- 

bottom mid line). Once the back-scatter images were recorded it was necessary to 

determine the area of precipitates on the micrographs. This was carried out using the 

Graftek, Optilab Pro image analysis package. A contrast threshold was set so that the 

white precipitates were distinguished from the black matrix. Then, using the ‘particle 

count’ function, the fractional area of precipitates was recorded for each micrograph, 

and the average of six micrographs was determined for each X co-ordinate.

To discriminate between Al-Cu-Mg and Al-Cu-Mn-Fe-Si particles the 

polished surface was then characterised using a combination of EDX described in 

section 2.3, and high resolution SEM. The Oxford Link Isis, spot chemical analysis 

was used to chemically identify individual particles visible in the micrographs. To 

determine the fractional area ratio of the two precipitate types, the micrographs were 

printed onto thick paper then each particle image was cut out using scissors. All the
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Six micrographs taken for X = 0 mm 
of which average value is used,

..........................

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ • ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ • ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ a

Top of cube.

X = 0 mm 
X = 1 mm

X = 2 mm 
X = 3 mm 
X = 4 mm 
X = 5 mm

X = 13 mm

Side of AA2024-T351 cube 
polished to 1pm.

Figure 4.4: Schematic diagram showing methodology in determining distribution of 

precipitates on the side and end surface of AA2024-T351
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Ai-Cu-Mg particles and Al-Cu-Mn-Fe-Si particle images were weighed on an 

analytical balance and the ratio determined.

This process was then repeated for the cube end.

4.3: Results and Discussion.

4.3.1: Distribution o f precipitates on AA2024-T351 cube surfaces.

As described in section 4.2.1 the AA2024-T351 sample was in the form of a 26mm x 

26 mm x 26 mm cube. Figure 4.1 shows a schematic diagram of the cube, the ‘top’ 

surface of the cube would correspond to the surfaces used in previous experiments 

(see chapter 3) on the AA2024-T3 samples. On this surface the precipitates are 

evenly distributed. However, on the surfaces labelled ‘side’ and ‘end’ in figure 4.1 

the precipitates are not evenly distributed but concentrated at the top and bottom of 

the cube. Figure 4.5 shows examples of the SEM back-scatter images recorded at a 

distance of 0, 7 and 13 mm from the top of the cube. Figure 4.6 shows how the 

fraction of sample surface (%) composed of intermetallic precipitates, as determined 

using SEM back-scatter, varies with distance from the top of the AA2024-T351 cube 

for the ‘side’ surface (blue diamond symbol) and the ‘end’ surface (red triangle 

symbol). The precipitate area values for the ‘end’ surface are much smaller than for 

the side surface. Figure 4.7 shows that this is because the precipitates are drawn out 

(stretched) along the side surface during rolling, so a larger area of the precipitate is 

visible from the side and top angles then from the end.

It is widely thought that the corrosion characteristics of AA2024 are mostly 

influenced by the Al-Cu-Mg particles rather then the Al-Cu-Mn-Fe-Si particles. For 

this reason it was necessary to determine the ratio of these particles, as described in 

section 4.2.2. Figure 4.8 illustrates example SEM pictures of the side surface. It
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^ Rolling direction

X = 0 mm

X = 7 mm

X = 13 mm

j lOOjiim j

Figure 4.5: Examples of back-scatter micrographs from SEM for the side surface of 

AA2024-T351. The aluminium matrix appears black, and the transition metal containing

intermetal lies white.
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Figure 4.7: Examples of back-scatter micrographs from SEM for the a) side surface and 

b) end surface of AA2024-T351 11 mm from top of cube.
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10  jum
I 1

Figure 4.8: High resolution SEM pictures to determine the ratio of Al-Cu-Mg ( •  symbol) to 

Al-Cu-Mn-Fe-Si ( □ symbol) precipitates on the side surface of AA2024-T351.
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shows the two types of precipitates marked with red squares (Al-Cu-Mn-Fe-Si) or 

blue circles (Al-Cu-Mg). This was also carried out for the end surface of the cube. It 

was thus determined that approximately the same fractional surface area may be 

attributed to each type of precipitate on both the side and end surface.

4.3.2: Current distribution on corroding AA2024-T351 cube side and end.

To determine how particle distribution influences pitting corrosion of AA2024 it is 

necessary to investigate distribution of pitting corrosion on the surface. Figure 4.9 

shows false colour maps of the SVET data, as described in section 3.3.1, obtained 

from an experiment of the cube side as described in section 4.2.2. This figure 

illustrates that most of the anodic current (yellow), and therefore pitting, is 

concentrated in the centre of the surface throughout the experiment. Figure 4.10 

shows plots corresponding to the false colour maps in figure 4.9. Each point 

corresponds to the average current density value along the y -axis for each x co­

ordinate. This demonstrates that the majority of pitting occurs in the centre of the 

surface, a position which coincides with the minimum density of intermetallic particle 

distribution shown in figure 4.6. Figure 4.11 is optical micrographs of the surface of 

the cube side after 24 hours immersion in 3.5% NaCl. Figure 4.11a shows that a 

contour plot generated from summated SVET data corresponds very closely with the 

pitted areas on the surface. Figure 4.11b shows the same surface however the 

micrograph was taken at a angle to the surface, this was so the colour of the surface 

was clearer. As can be seen the centre of the surface is covered with the dark disk 

like features described in section 4.3.6, and the rest of the surface is ‘copper’ in 

colour. However, unlike the surfaces in section 4.3.6 the two types of areas are
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Figure 4.9: SVET contour plots for AA2024-T351 cube side, polished to lpm  then immersed in 

3.5% w/w NaCl for 24 hours at 25°C. The time indicated is time since sample immersion.
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Figure 4.10: Graphs showing how average current density varies along x-axis of AA2024-T351 

cube side, polished to 1 pm then immersed in 3.5% w/w NaCl for 24 hours at 25°C. The time 

indicated is time since sample immersion.
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Figure 4.11: Optical micrographs of cube side a) From above with summated SVET contour plots

overlaid (red), b) Angled to show colouring. After 24 hours immersion in 3.5% w/w NaCl at 25°C.
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distinctly separate. The experiments carried out on the cube end yield very similar 

results to the cube side.

4.3.3: Distribution o f  corrosion on AA2024-T351 cube slices.

Section 4.3.2 describes how a non uniform particle distribution influences pitting 

corrosion on AA2024-T351. This section using the cube slices as described in section 

4.2.1 determines how particle density influences pitting corrosion. SVET 

experiments were carried out as described in section 4.2.2 on each of the cube slices. 

Figure 4.12 shows example false colour plots of the SVET data obtained from slice 1. 

It demonstrates that pitting corrosion on the surface is much more uniform than for 

the cube side seen in figure 4.9, and greatly resembles the type of plot shown in 

section 3.3.1 for AA2024-T3. The same experiment was carried out on all seven cube 

slices, and the anodic current density was determined for each hour using equation 3.1 

with a threshold of 0.2 Am'2. Figure 4.13 shows how the current density varies with 

time of immersion for each cube slice. The slice distance from the top was estimated 

by measuring the thickness of each slice, and assuming the amount of metal removed 

between each slice in the cutting process was the same. Figure 4.14 shows how total 

aluminium loss varies with distance from the top of the cube. This was determined 

using equation 3.3 whilst making the same assumptions. It shows that there is a 

reduction in total metal loss towards the centre of the cube. From the top of the cube 

to the centre, the total metal loss has more then halved from ~ 0.07gm‘2 to ~ 0.03gm'2. 

From figure 4.15 which shows how total aluminium loss varies with area of surface 

precipitates, it can be seen that the reduction in pitting corrosion can be correlated 

with the reduction in precipitate surface area. It can also be seen that by reducing the

138



18

16

14

12

10

8

6
4

2

0

18

_ 16

CM
_ 09  14

S< —
—07 1 12—0.5 E4-»‘c75C 0.3 g 10

"O
0.1 Z  8

53
ta -0.1 6
U j ■ o CO

-0.5
2

0 h o u rs  n
0 2 4 6 8 10 12 14 16 18 C) 2 4 6 8 10 12 14 16 18

0.9 
0.7 
0.6 
0.3 
0.1 
- 0.1 
-0.3 
- 0.6

5 hours

<
Si
33
c4>T3

x-axis, mm x-axis, mm

15 hours10 hours
6 8 10 12 14 16 18

x-axis. mm

6 8 10 12 14 16 18

x-axis. mm

U

20 hours
10 12 14 16

25 hours
10 12 14 16

x-axis, mm x-axis, mm
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Figure 4.13 Plot showing how current density varies with time of immersion in 3.5% w/w NaCl at
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precipitate surface area by half (from ~ 3% to ~ 1.5%) the resulting pitting corrosion 

is reduced by half.

4.3.4: Comparing sample AA2024-T351 with AA2024-T3.

For comparison experiments were carried out on the end and side of the AA2024-T3 

plate samples described in section 3.2.1. Figure 4.16 shows false colour plots from 

the SVET data obtained from the end of the plate. As can be seen the pitting 

corrosion seems to be a lot more random than in the case of the AA2024-T351 cube. 

This is supported by figure 4.17 showing graphs of the same kind as figure 4.10. It 

can be seen that there is no correlation between distance from the top of the sample 

and anodic activity. However, figure 4.18 shows how current density varies with time 

of immersion for all three surfaces (top, end and side) of both the AA2024-T351 cube 

and AA2024-T3 plate. As can be seen for both the plate and the cube the top surface 

is by far the most active, and the sides are slightly more active then the ends. It can 

also be seen that all three surfaces of the AA2024-T3 plate are much more active then 

the surfaces of the AA2024-T351 cube. Figure 4.19 shows the total aluminium loss 

for each of the six experiments in figure 4.18. From figure 4.19 it can be seen more 

clearly that all three sides of the thin slice sample were more active (losing ~ 3 times 

more aluminium) then the corresponding surface on the cube sample.
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4.4: Conclusions.

It has been shown that for cube sample AA2024-T3 the precipitate particles are 

concentrated along the top and bottom surfaces, so that in the centre of the cube there 

are far fewer particles then along the edge. It has also been shown that there is 

approximately the same surface area of Al-Cu-Mg particles to Al-Cu-Mn-Fe-Si 

particles on the surfaces of AA2024-T351. Using the SVET it has been determined 

that the majority of pitting corrosion on the side and end of the AA2024-T351 cube 

sample occurred towards the centre of the cube, i.e. where there were least precipitate 

particles. By slicing through the cube sample it was possible to obtain samples with 

different densities of particles. Using these samples it was determined that the higher 

the particle density, the more pitting corrosion was detected by the SVET. It was also 

determined that the AA2024-T351 cube sample is far less prone to pitting corrosion 

then the AA2024-T3 3 mm plate sample. We may therefore conclude that the 

precipitate particles act as effective cathodes. Thus when a non-uniform distribution 

of particles is present, cathodic activity is greatest in areas of lower particle 

concentration. Furthermore, when a uniform distribution of particles is present 

overall corrosion currents increase with particle concentration. It has not been 

possible to assign relative cathodic activities to the S phase and Fe-Mn particle 

populations. However, the known electro-catalytic proportions of Cu for cathodic O2 

reduction suggests that it is the S phase particles which are principally responsible for 

directing cathodic activity.
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Chapter 5.



Chapter 5: Investigation into how selective dissolution of precipitate 

particles affects pitting corrosion of AA2024-T3 using (SVET),

5.1: Introduction.

As described in chapter 4, the intemietallic precipitate particles present on the surface 

of AA2024-T3 influences its corrosion characteristics1,2’3,4. The aim of the work to be 

described here, has been to determine the extent to which intermetallic precipitates 

present at the AA2024-T3 surface may be selectively removed using nitric 

acid/chloride mixtures. It has been a further aim to quantify the influence of 

precipitate removal on subsequent rates of pitting corrosion using SVET. The 

fractional area of alloy surface comprising of intemietallic particles was determined 

using SEM back-scatter as in chapter 4. The sample was then immersed in a nitric 

acid solution containing chloride ions for varying amounts of time to selectively 

remove intermetallic precipitates5. The pitting corrosion characteristics of the treated 

alloy surface were subsequently determined using a quantitative SVET as described in 

chapter 3.

5.2: Experimental.

5.2.1: Materials.

Aluminium alloy 2024-T3 as described in section 3.2.1, were obtained from BAE 

Systems, Sowerby research centre. All samples were prepared following the 

sequency in figure 3.1, as described in section 3.2.1. However, before the sample area 

was masked off using the PTFE tape the sample was immersed in a solution

consisting of 50% w/v Nitric acid containing 3xl0"2 M NaCl for varying periods o f
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time (0, 2, 5, 15, 30, 60 and 300 sec) to dissolve varying amounts of surface 

precipitates, and the sample was rinsed in distilled water immediately after to remove 

any remnants of the solution.

All other materials were purchased from Aldrich in their highest purity and all 

solutions were prepared in distilled water.

5.2.2: Methods.

Electron microscopy:

After the sample had been immersed in the nitric acid solution for a given length of 

time it was placed in the SEM described in section 2.3. The aim was to determine the 

percentage of precipitate particles left on the surface. This was done using the back- 

scatter mode at the highest possible contrast, so the precipitates show up as white on a 

black background. Eleven micrographs were recorded from random positions for 

each sample. Once the images were recorded it was necessary to determine the area 

of precipitates on the micrographs. This was achieved using the Graftek, Optilab Pro 

image analysis package. A threshold was set so that the white precipitates were 

distinguished from the black matrix. Then using the particle count function the 

percentage area of precipitates was recorded for each micrograph, and the average of 

eleven micrographs was determined for each sample.

SVET:

The methods used for this study are described in section 3.2.2 with these adjustments.

The scan area for all SVET experiments was typically 20 mm x 20 mm, so the 

matrix generated was 80 x 80 points and total scan time was 40 minutes. The samples
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were scanned using SVET immediately on immersion and scanned at hourly intervals 

for a period of 24 hours. Each SVET measurement was made with the probe 

stationary and was an average of ten measurements.

Optical microscopy:

On completion of the SVET experiment the sample was rinsed in distilled water to 

stop corrosion, then air dried before the optical pictures were taken. Optical pictures 

were taken using the scanner as described in section 2 .6 .

5.3: Results and Discussion.

5.3.1: Investigation into how precipitate area varies with time o f immersion in nitric 

acidchloride solution.

Figure 5.1 shows example back-scatter images for a sample before being immersed in 

the nitric acid/chloride solution, and for samples immersed for 2, 5, 15, 30, 60, and 

300 seconds. As can be seen there is a very high contrast between the aluminium 

matrix (black) and the precipitates present on the surface (white), with exception of 

the back-scatter images after the sample was immersed for 300 seconds. In this case 

it can be seen that the aluminium matrix appears mid-grey with small white areas 

(precipitate) and small black areas (determined to be holes from SEM images as can 

be seen in figure 5.1b). Table 5.1 shows the percentage of each image that is 

precipitate obtained using Graftek, Optilab Pro image analysis package. As can be 

seen in table 5.1 eleven images were produced for each experiment, and a mean value 

was obtained along with the standard deviation (cr) and the standard deviation on the 

mean (crA i.e.
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Figure 5.1: Example SEM back-scatter images of AA2024-T3 surface after being immersed in 

50% w/v nitric acid with 3 xl 0 ! M NaCl for various periods of time.
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Figure 5.1b: SEM micrograph of polished AA2024-T3 after being immersed in nitric acid/ 

chloride solution for 300 seconds.
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where n is the population, in this case eleven. This determined the error due to the 

sample size. However, to determine the reproducibility it was necessary to repeat the 

experiments for the same immersion time. This was very labour intensive, so two 

measurements were chosen for repeating; the untreated case was measured three 

times, as this determined the reproducibility in the initial sample surface, also the 15 

second immersion case was measured four times as a random treated surface.

Figure 5.2 shows a plot of the mean percentage of the surface which is 

precipitate for each immersion time in the nitric acid/chloride solution. The red solid 

line indicates the mean value for the untreated surfaces, with the dashed lines showing 

the corresponding values of ±an. The value for the 15 second immersion is the mean 

of the four experiments carried out, with the error bars indicating ±<x. The values 

used for all other times were obtained from the single experiments shown in table 5.1, 

and the fractional error was assumed to be the same as the fractional error <jf for the 

15 sec experiments, i.e.

[5-2]
' mean

Which for the 15 sec immersion experiments = 0.32. Using this value and equation 

5.2 <jn was found for all other immersion times.

It may be seen from figure 5.2 that experimental error was relatively low on 

the untreated samples but was much higher on the 15 sec treated sample. The reason 

for this error is not clear. However, it does not appear to be a result of variation in 

precipitate area before immersion in the nitric acid/chloride solution, but due to
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Figure 5.2: Plot showing how mean percentage of precipitate surface area varies with time of immersion 

in nitric acid/chloride solution. Solid red line shows mean percentage of precipitate for three untreated 

surface experiments, with dashed lines indicating ± standard deviation on the mean (a n). Standard 

deviation values for all other immersion times were calculated using the fractional error ( a f) obtained 

from repeated 15 sec immersion experiments.
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variation in the treatment. Possible sources of variation include experimental time, 

temperature and convection rates in the solution. Figure 5.2 shows that there is a 

general trend, such that, as time of immersion in the nitric acid solution is increased, 

the area of precipitates on the surface of the alloy is reduced. However, it can also be 

seen that for 2 seconds immersion there is a dip in particle area which rises again for 5 

seconds immersion. This effect may be due to a large number of small precipitates (< 

1 0 pm) being initially present in the naturally occurring oxide layer (typically between 

5 - 1 5  pm thick6), or a microstructure layer produced during the rolling or polishins 

processes, see figure 5.3a. These particles may be quickly removed by the nitric acid 

solution, but there may not be enough time to expose the particles beneath. At longer 

immersion times the particles initially present in the subsurface bulk alloy become 

exposed producing a transient increase in particle surface area. A schematic diagram 

illustrating this proposition can be seen in figure 5.3. This proposition may also help 

explain the large error in precipitate area between different samples after 15 seconds 

immersion in the solution. Small variations in immersion time may result in large 

variations in particle concentration if the removal of a thin, reactive, surface layer is 

involved
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Before sample is immersed in the nitric acid 

solution the surface is covered in a thin 

(~ 5 to 15 |Lim) oxide film, or a damaged 

layer from rolling or polishing.

This thin film will be removed very quickly 

after immersion in the solution, and any 

particles held to the surface by the oxide film 

will ‘fall out’, thus reducing the surface area 

of precipitates.

c) t = 5 sec
If the sample is left in the solution for longer 

periods o f time (~ 5 sec) then the particles 

just under the oxide film are exposed to the 

surface, thus increasing the surface area.

Figure 5.3: Schematic diagram showing possible reason for large reduction in precipitate surface area 

after only 2 seconds immersion in Nitric acid solution.

However, if the sample is left in for a very long 

time ( »  5 sec) then the particles start being 

dissolved out by the solution (which does not 

attack the matrix), thus reducing the surface 

area of particles. This would result in large holes being left on the surface.

d) t »  5 sec
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Table 5.1: Table showing percentage of AA2024-T3 surface area which consists of 

precipitate particles for three untreated samples, and after 2 sec, 5 sec. four x 15 sec. 

30 sec, 60 sec, and 300 sec immersion in nitric acid/chloride solution. Eleven results 

were recorded for each sample so as to determine means and errors in the values 

obtained.

Untreated 2 sec | 5 sec | 15 sec | 30 sec I 60 sec ( 300 sec |
image j *; | z  j 5 i . i " - ' i  i i i

1 1 1 A .AM 5.91 2.86 ! .4 d  fin i fi Ma IJM.J O. UD 4.01 a ! i | r»_/ 11 ✓ i i
2 | 2.75 4 22 3.23 1.24 2.9 ! 1.1 1.25 3.99 3 87 2.23 | 1.39 0.12 !
4 2.26 4.2 3.i i .21 2.6a 0./2 i.02 3 3.66 d  | l.Ol . . .  Iu.ia
A
* 3.05 3 46 3.4 1.26 2.44 0.93 1.41 3.05 545 1.95 I 1.89 0.2
r. 2 12 2 74 2 4S 0.S7 1.77 n ■y-5 L 0 ss 4 31 5 34 2 37 j 123 0.15
6 3.75 3 44 3.97 1.35 2.8 1.98 0.83 6.18 5.01 1.45 1.89 0.26
7 2.38 2 93 2.19 1.32 2.79 1.56 1.35 3.17 3.16 2 54 0 88 0 23
8 3.36 3.92 2.91 1.45 2.49 1.65 0.94 3.92 2.68 2.87 0.19 i
a 2 73 2.17 3 22 1 22 1.51 1.63 1.05 5.67 2 17 1 78 1.84 o.i !
10 2.11 2 38 4.4 2.11 2.14 1.78 1.26 4.57 3.81 1.9 1.73 0.1

1 n  
1 2 68 3 03 3 04 1 13 4 QO 4 OC A 3 S6 3 3 4 Qu n uu 0 00 ‘
j Mean 2.78 3.57 3.25 1.32 2.45 1.30 1.08 4.23 3.90 2.19 1.63 0.17
| Standard 

deviation 0.55 1.05 0.66
___U.JU 0.75 0.44 0.20 1.06 1.03 0.4a 0.56 0 06

1 Standard 
! deviation 

on mean 0.10 0.19 0.12 0.06 0.14 0.08 0 04 0.19 0.19 0 09 0.10 0.01

5.3.2: Determining how corrosion characteristics change with time o f  immersion in 

nitric acid solution.

SVET experiments were earned out as described in section 5.2.2. Figure 5.4 shows a 

selection of false colour plots obtained from corroding polished AA2024-T3 in 3.5% 

w/w NaCl at 25°C As can be seen these plots are consistent with those obtained for 

the same sample under the same conditions in chapter 3. Figure 5.5 shows an optical 

micrograph of the surface after the SVET experiment was finished as described in 

section 5.2.2. As can be seen from the micrograph, areas of anodic activity 

correspond well with areas of pitting on the samples surface after the experiment was 

finished. Figure 5.6 shows a section of false colour plots obtained from a polished 

AA2024-T3 which has then been immersed in a nitnc acid (see section 5.2.1) solution
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Figure 5.4: SVET contour plots for AA2024-T3 without being immersed in nitric acid solution,

polished to 1pm then immersed in 3.5% w/w NaCl for 24 hours at 25°C.
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Figure 5.5: Optical micrograph for AA2024-T3 without being immersed in nitric acid solution, 

polished to 1 pm then immersed in 3.5% w/w NaCl for 24 hours at 25°C, corresponding to SVET 

plots seen in figure 5 4
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Figure 5.6: SVET contour plots for AA2024-T3 polished to l pm then immersed in nitric acid 

solution for 2 seconds, then immersed in 3.5% w/w NaCl for 24 hours at 25°C.
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Figure 5.7: Optical micrograph of AA2024-T3 polished to 1pm then immersed in nitric acid 

solution for 2 seconds, then immersed in 3.5% w/w NaCl for 24 hours at 25°C, corresponding 

to SVET plots seen in figure 5.6
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for 2 seconds, before being corroded in 3.5% w/w NaCl at 25°C. Figure 5.7 shows an 

optical micrograph of the surface after the SVET experiment was finished, again it 

can be seen from the micrograph that areas of anodic activity correspond well with 

areas of pitting on the surface of the sample, after the experiment was finished. 

Comparing Figures 5.4 and 5.6 it can be seen that after 2 seconds immersion in the 

nitric acid solution pitting corrosion on the surface of polished AA2024-T3 seems to 

be greatly reduced. That is to say, pits appear to be fewer and of lower intensity when 

the sample was immersed in the solution for 2  seconds, before corrosion was initiated. 

Figure 5.8 shows a graph of how total aluminium lost over the 24 hour immersion in 

the electrolyte, obtained as described in section 3.3.3, varies with time of immersion 

in the nitric acid/chloride solution before corrosion was initiated. It shows that there 

is a minimum amount of metal loss after 2  seconds immersion in the nitric acid 

solution. This corresponds with a dip in the surface area of precipitates as seen in 

figure 5.2. However, from figure 5.2 it can be seen that for longer periods of 

immersion (> 60 seconds) in the nitric acid solution the percentage of the surface area 

that is precipitates is reduced again. This does not correspond to a reduction in total 

aluminium loss shown in figure 5.8; which shows that for very long periods of 

immersion in the nitric acid solution, the total aluminium loss over the 24 hour 

experimental period increases back to around the same level as for untreated samples, 

shown by the red line ±cr„ red dashed lines. This failure to reduce corrosion at high 

nitric acid immersion times may be due to the holes left in the surface after the 

precipitate particles have been dissolved acting to promote pit nucleation. These 

holes can be clearly seen in the SEM picture shown in figure 5.1b. Three SVET 

experiments were carried out for samples not treated in the nitric acid/chloride 

solution, and three were carried out for samples immersed for 15 seconds. The blue
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diamond symbols show the mean of the three values with ± the standard deviation on 

the mean marked on the graph. Errors for the other immersion times were also 

determined using the fractional error from the 15 second experiments and equation 

5.2. As can be seen the error in total aluminium loss for all times of immersion is not 

large, and the scatter for 15 seconds immersion is far less then that obtained in the 

measurement of percentage area of precipitate particles (see figure 5.2).

5.4: Conclusions.

It has been shown that the 50% w/v nitric acid, 3x1 O' 2 M NaCl solution can dissolve 

out the precipitate particles present on the surface of AA2024-T3 without a large 

amount of damage being done to the matrix. Percentage surface area of precipitates 

was obtained for varying immersion times in the nitric acid solution, and it lias been 

found that there was a dip in the amount of precipitates for 2  seconds immersion in 

the solution. However, generally, precipitate area decreases as immersion time 

increases. It has also been shown using SVET that the minimum amount of 

aluminium loss occurred after the sample was immersed in the nitric acid solution for 

only 2 seconds. Thus it would appear that reducing the concentration of particles at 

the alloy surface reduces corrosion current. This finding is entirely consistent with 

the cathodic activity of particles determined in the proceeding chapter. However, it 

would also seem that prolonged exposure to nitric acid/ chloride mixtures decreases 

corrosion resistance due to the creation of relatively large voids and defects in the 

alloy surface.
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Chapter 6: Study of surface pitting inhibition by Rare Earth Metal

(REM) Salts using the Scanning Vibrating Electrode Technique

(SVET).

6.1: Introduction.

Aluminium and its alloys are frequently protected from corrosion by the use of 

coatings incorporating corrosion inhibitor species. Chromate (Cr(VI)) compounds 

have been used extensively because of their efficiency and low cost1,2. However, it is 

now known that chromates are toxic3 and highly carcinogenic4, which has resulted in 

increasing pressure for the development of more environmentally acceptable 

alternatives5,6. Rare earth metal (REM) salts have received significant attention in 

this context by virtue of their non-toxicity and their ability to effectively stifle the 

cathodic reactions associated with metallic corrosion through the precipitation of thin, 

REM rich, (hydr)oxide films7’8,9’10’11’12’13’14,15. Previous studies of REM inhibition on 

aluminium have used classical measures of corrosion rate such as weight loss16,17. 

However, corrosion reactions are often highly localised, so that the influence of an 

inhibitor on the distribution of electrochemical activity may be as important (or more 

important) than its effect on the overall rate of metal dissolution. The aim of the work 

described here has been to develop the scanning vibrating electrode technique 

(SVET), as a fully quantitative means of investigating the influence of corrosion 

inhibitors on localised corrosion kinetics. It has been a further aim to use SVET to 

undertake a comparative study of chromate (CrCV‘) and the trivalent cations of 

cerium (Ce), yttrium (Y) and lanthanum (La) as inhibitors of pitting corrosion on 

AA2024-T3 aluminium alloy.
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6.2: Experimental.

6.2.1: Materials.

Aluminium alloy 2024-T3 samples « 2mm thick of varying dimensions were obtained 

from BAE Systems, Sowerby research centre. Composition of this alloy can be found 

in table 3.1. The sample alloy has a T number of 3, this indicates that the alloy has 

been solution heat treated, cold worked and naturally aged to a substantially stable 

condition18,19. Samples were cleaned using a slurry of 5pm alumina powder in 

aqueous non-ionic surfactant to remove the pre-formed oxide layer, followed by 

immersion in Methyl Ethyl Ketone (MEK) for 10 mins to remove surface grease. The 

sample area for SVET investigation (» 15 mm x 15 mm) was isolated from the rest of 

the sample using insulating lacquer (Lacomit) followed by PVC electrical insulation 

tape. NB The only part of the sample left un-coated was the area to be scanned (see 

figure 6 .1 ).

All other materials were purchased from Aldrich in their highest purity and all 

solutions were prepared in distilled water.

6.2.2: Methods.

SVET:

The methods used for this study are described in section 3.2.2 with these adjustments. 

The scan area was typically 15 mm x 15 mm, so the matrix generated was 60 x 60 

points and total scan time was 40 minutes. Each SVET measurement was made with 

the probe stationary and was an average of three measurements.

The inhibitors (cerium (III) chloride, lanthanum (III) chloride, yttrium (III) 

chloride and sodium chromate) were dissolved in the 3.5% w/w aqueous sodium
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Surface cleaned using slurry of 5 pm 
alumina powder in aqueous non-ionic 
surfactant.

A

Sample immersed in Ethanol Methanol 
Ketone (MEK).

Scan area left uncovered. —------

Remaining area covered with insulating 
lacquer (Lacomit).

Then covered with 
insulation tape.

- 1 5 x 1 5  mm area

Figure 6.1: Schematic diagram showing preparation of AA2024-T3 sample surface prior 

to SVET corrosion experiments.

PVC electrical

left bare for SVET scan
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chloride bath electrolyte prior to sample immersion. Inhibitor concentrations were 

varied between 2.5 x 10' 5 mol dm"3 and 2.5 x 10 “ mol dm"3 in five increments (on a 

logarithmic scale). Additional experiments where the highest and lowest 

concentrations of sodium chromate were added to the electrolyte five minutes before 

scan 5 started. The samples were scanned using SVET immediately on immersion 

and at hourly intervals thereafter for a period of 24 hours.

Optical microscopy:

On completion of the SVET experiment the sample was rinsed in distilled water to 

stop corrosion, then air dried before the optical pictures were taken. These were taken 

using the inverted light microscope with camera attached as described in section 2.5.

6.3: Results and discussion.

6.3.1: Uninhibited corrosion o f  AA2024-T3.

The SVET potential data was converted into normal current density in the plane of 

scan, jZ(Xfy) using the point source calibration constant described in section 2.1.3. 

Normal current density, j z (Xiy)y distributions were determined as a function of time 

above the surface of AA2024-T3 freely corroding in 3.5% w/w aqueous NaCl. Figure 

6 . 2  shows representative j z (x>y; maps obtained immediately following electrolyte 

immersion and at 8  hour intervals thereafter, although SVET scans were actually 

carried out at 1 hour intervals. The surface plots shown in figure 6.2 are built up of a 

series of 60 line scans along the x-axis, with successive line scans being 

systematically displaced along they-axis. Each line scan comprises data 60 points and
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Figure 6.2: Surface plots of SVET scans for AA2024-T3 freely corroding in 3.5% w/w NaCl,

after i) 0 hours, ii) 8 hours, iii) 16 hours and iv) 24 hours immersion
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mm

Figure 6 .3 : Optical micrograph of the exposed AA2024-T3 sample surface seen in 

figure 6.2, after 24 hours immersion in 3.5% w/w aqueous NaCl at 25°C.
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took approximately 30 seconds to complete. Scans commenced at the point denoted as 

the origin of the corresponding current density map. It may therefore be understood 

from figure 6 . 2  that pitting corrosion becomes initiated on the alloy surface within a 

few seconds of electrolyte contact.

The visual appearance of the AA2024-T3 surface after 24 hours immersion is 

illustrated in figure 6.3. The corroded surface was covered with a large number (-20 

cm'") of pits, with diameters ranging from 35 to 250 pm. Individual pits were 

surrounded by an approximately flat deposit of white corrosion product, which was 

particularly evident in the case of the larger pits where the diameter of the deposit 

area was in the range (0.1-0.5mm). The remainder of the AA2024-T3 surface was 

covered with a dark tarnish. It was observed optically, that the physical position of a 

pit on the surface after immersion, corresponded very closely with a peak at the same 

co-ordinates on the SVET potential data. Hence, peaks in the SVET potential data 

were taken to depict pits on the corroding surface. Due to the underlying noise level, 

a threshold was required to separate the noise from peaks produced by pitting on the 

surface. A value of 0.2 Am'" was taken as the maximum value at which a detected 

peak could potentially be due to noise, rather than due to an anodic site on the 

corroding surface. Therefore, a pit is defined as any jz (x<y) peak above 0.2 Am'".

Following initiation, individual pits propagate for varying periods of time 

before passivating. Thus it may be seen from figure 6.2 that some pits remain active 

over an 8  hour period or longer (lettered a-f in figure 6 .2 ) whereas many more do not. 

In principle, SVET data of the sort shown in figure 6.2 should allow the time- 

dependence of individual pitting events to be observed over two different time-scales. 

The first of these is the time between successive line scans, here -30 seconds. The 

second is the time between area scans, here 1 hour. Using the point density shown in
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figure 6.2 the current from an individual pit is typically detected in 4-5 successive 

line-scans. This implies a pit lifetime > 2-2.5 minutes, which is consistent with stable 

pitting. However, if a pit is detected in only one line scan, and not in its neighbours, 

then it may be concluded that the lifetime of that particular pitting event is <30 

seconds, which is consistent with metastable pitting. However, at any instant the 

SVET probe sees only a very small fraction of the sample surface and this, together 

with the relatively slow rate of scan, implies that SVET will detect only a very small 

fraction of the total number of metastable pitting events. Typically, each SVET area 

scan contains only one or two j z (x>y) features which could be interpreted as metastable 

pitting, i.e. features with lifetime <30 sec. Figure 6.4 shows a surface plot where only 

the data points of the same y  value are joined. This makes it easier to see peaks which 

only last one line of scanning, implying metastable pitting. Furthermore, the peak 

jZfay) values associated with these metastable pitting events are typically more than an 

order of magnitude lower than that associated with stable pits. Consequently, we may 

assume that the jz (x>y) distributions seen in figure 6 . 2  derive substantially from stable 

pitting events.

Anodic current density measurements:.

The total anodic current (ia) present in each of the j(Xiy) distribution maps exemplified 

in figure 6.2 was determined using equation 3.1 with a threshold (Th) current density 

value of 0 . 2  Am'2. In this manner one value of J COrr was obtained from each hourly 

SVET scan. Five successive scans were carried out on bare AA2024-T3 to determine 

the reproducibility of the technique. Jcorr is plotted as a function of time in figure 6.5. 

The coloured lines show how the anodic current density varies with time of 

immersion for each experiment. The black line with the circle symbol indicates the
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Figure 6.4: Surface plot of SVET scans for AA2024-T3 freely corroding in 3.5% w/w NaCl 

immediately after immersion.
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average value for each hour. Figure 6.5 shows a fairly large degree of scatter in 

corrosion rate. Consequently, the average of the five experiments will be used to 

show the case of uninhibited AA2024-T3. The black line in figure 6.5 shows that J COrr 

is initially -0.019 A m ', rising to a maximum of -0.05 Ann' after 4 hours and falling 

to a minimum of -0.008 Am' 2 after 24 hours. This decrease in anodic current density 

throughout the experimental period is consistent in all five uninhibited experiments, 

and therefore depicts a general trend in the corrosion characteristics of AA2024-T3 

freely corroding in 3.5% w/w NaCl.

Figure 6 . 6  shows how the number density of stable pits as detected by the 

SVET varies with time of immersion. As shown in figure 6.5 the coloured lines 

indicate the five separate experiments carried out, and the black line with the circle 

symbols shows the average value. Since the average number density of stable pits 

actually increases slightly between 5 and 24 hours immersion, the implication is that, 

over this period, the average current associated with individual pits becomes steadily 

reduced.

The total quantity of charge emitted from corrosion pits (Q) over the 24 hour 

experimental period was calculated from J(t) using equation 3.2. The mean value of 

Q obtained from 5 repetitions of the 24 hour immersion experiment, using a freshly 

prepared AA2024-T3 sample each time, was 2026 ± 640 Cm'2, which corresponds to 

a teal value of 0.189 ± 0.060 g m'2.
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Figure 6.5; Plot of area-averaged anodic current density (J(t)) versus immersion time for 

AA2024-T3 freely corroding in 3.5% w/w aqueous NaCl. Coloured lines show the range o f anodic
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Figure 6.6: Plot of number density of stable pits versus immersion time for AA2024-T3

freely corroding in 3 5% w/w aqueous NaCl. Coloured lines show the range of number density

of stable pits for five separate experiments. Black line with circle symbol represents mean value
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6.3.2: Inhibited corrosion o f  AA2024-T3.

A series of experiments were carried out in which AA2024-T3 samples were 

immersed in 3.5% aqueous NaCl in which inhibitor was already present. The 

inhibitors used in these experiments were Na2CrC>4 , YCI3, LaCft and CeCft, in 

concentrations varied systematically between 2.5 x 10' 3 mol dm' 3 and 2.5 x 10"5 mol 

d m '. In the case of Na2CrC>4 additional experiments were carried out in which the 

inhibitor was added to the experimental electrolyte 5 hours after sample immersion, 

i.e. after stable pitting had become well established. As in the uninhibited 

experiment, SVET scanning was carried out immediately on immersion and at 1 hour 

intervals thereafter for 24 hours. Figure 6.7 shows a representative set of current 

density distribution (jz(x,yj) maps obtained in the presence of 2.5 x 10' 5 mol dm ' 3 YCI3 . 

Comparison of figures 6.2 and 6.7 shows how the YCI3 inhibitor acts to progressively 

reduce both the number and the intensity of corrosion pits. Figure 6 . 8  is an example of 

an optical picture taken after the sample was immersed in 3.5% w/w aqueous NaCl 

containing 2.5 x 10' 3 mol dm' 3 CeCl3 . Comparing this to figure 6.3 it can be seen that 

the surface has greatly been protected by the rare earth inhibitor, however a small 

amount of corrosion has occurred on the right of the picture.

Figure 6.9 shows current density distribution maps in the presence of 2.5xl0 3 

mol dm' 3 Na2CrC>4, and comparison with figure 6.7 shows that the SVET is unable to 

detect surface corrosion at any time during the experiment. Time-dependent area- 

averaged corrosion current density (J(t)) values were obtained as before using 

equation 3.1. Figures 6.10a,b,c and d show plots of J(t) vs time for CeCft, LaCft, 

YCI3 and Na2Cr0 4  respectively, present at the lowest (green line with solid triangle 

symbol) and highest (pink line with solid square symbol) experimental 

concentrations. The blue line with diamond symbols shows the average of five
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1 mm

Figure 6.8: Optical micrograph of the exposed AA2024-T3 sample surface, after 24 hours 

immersion in 3.5% w/w aqueous NaCl with 2.5 x 10'3 mol dm'3 CeCl3 added at 25°C,
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Figure 6.9: Surface plots of SVET scans for AA2024-T3 freely corroding in 3.5% w/w NaCl 

with 2.5 x lO'3 mol dm'3 Na2C r04, after l) 0 hours, ii) 8 hours, lii) 16 hours and iv) 24 hours

immersion.
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Figure 6.10: Plots of area-averaged anodic current density (J(t)) versus immersion time for 

AA2024-T3 corroding in 3.5%w/w aqueous NaCl. The blue line with diamond symbol 

shows the mean of five experiments in the absence of inhibitor. Inhibitors: a) CeCl3, 

b) LaCl?. Inhibitor concentrations: Pink with square = 2.5 x 10'3 mol dm'3,
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Figure 6.10: Plots of area-averaged anodic current density (J(t)) versus immersion time for AA2024-T3 
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184



uninhibited experiments. In figure 6.10d the two additional series (hollow symbols) 

on the plot show cases where the Na2Cr0 4 was added to the electrolyte after pitting 

corrosion was well established, and the red dotted line indicates the time at which the 

inhibitor was added.

It may be seen from figure 6.10d that when present from f=0 Na2C r0 4 reduces 

the J(t) values to well below the uninhibited case at all experimental concentrations. 

For Na2Cr04 = 2.5 x 10' 3 mol dm' 3 J(t) is effectively zero, i.e. below the detection 

limit of the SVET, throughout the experimental period. However, pitting currents 

were detectable initially for lower Na2Cr0 4 concentrations. For example, figure 6.10d 

shows that Na2C r0 4 = 2.5 x 10' 5 mol dm ' 3 J(t) was 0.001 Am ' 2 in the initial SVET 

scan but fell to zero after 1 hour of immersion. Figure 6.10d also shows that when 

Na2C r0 4 is added to the electrolyte after pitting corrosion is well established, it does 

not inhibit pitting corrosion so completely as when it is present from t=0. That is to 

say although J(t) is greatly reduced within minutes of adding the inhibitor to the 

electrolyte, at no point is surface pitting corrosion completely inhibited. All the REM 

chloride inhibitors were found to reduce J(t) values but not as rapidly or as completely 

as in the case of Na2C r04. Furthermore, the degree of inhibition was found to be 

dependent on the concentration of REM chloride salt present. For example, figure 

6 .10a shows that 2.5 x 10' 3 mol dm' 3 CeCf reduces the initial value of J(t) to 4 x 10' 3 

Am'2, with J(t) falling to zero after 4 hours immersion. Whereas, the same figure 

shows that 2.5 x 10' 5 mol dm' 3 CeCl3 scarcely reduces J(t) values at all over the first 

10-12 hours of immersion, although J(t) values do fall below the uninhibited case 

thereafter. Figure 6 .1 0 b shows that LaCE acts in a similar fashion to CeCE, although 

J(t) values are less concentration dependent. Figure 6.10c suggests that YCE behaves
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anomolously, producing a greater reduction in J(t) values at 2.5 x 10' 5 mol dm ' 3 than 

at 2.5 x 10° mol dm'3.

Thus, the data shown in figure 6.10 indicate that all the REM chloride salts 

inhibit the pitting corrosion of AA2024-T3 to some extent, provided they are present 

in sufficient concentration. However, figure 6.10 also indicates that the REM 

chloride salts do not typically produce so rapid or so complete an inhibition as does 

chromate.

The equivalent metal loss over the 24 hour experimental period was calculated 

using equation 3.3. The results for both uninhibited and inhibited cases are shown in 

figure 6.11. Figure 6 .1 la  shows the total metal loss for CeCb at the five experimental 

concentrations. These can be compared to the blue dashed line which depicts the 

average of the uninhibited experiments. It can be seen that at the higher 

concentrations CeCh inhibits surface pitting corrosion on AA2024-T3 quite 

effectively, however its effectiveness deteriorates at lower concentrations. Figure 

6.1 lb shows the total metal loss for LaCf, although it does not appear as effective as 

CeCf it does follow the same trend in inhibition. Figure 6.11c shows the same 

information for YCI3, as can be seen from this graph Yttrium seems to inhibit 

coiTOsion most effectively at the middle concentrations used. At the highest and 

lowest concentrations YCI3 was very unpredictable, in fact at these concentrations 

repeat experiments showed little reproducibility with respect to the uninhibited cases 

and the middle concentration of YCI3 (after repeated experiments error bars (± 

standard deviation on the mean) were produced at three concentrations for YCI3). 

Figure 6 .l id  shows the results for Na2Cr0 4 . It illustrates that at the highest 

concentration the SVET was unable to detect any surface pitting corrosion, and at the 

lower concentrations chromate inhibited corrosion more effectively than any of the
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other inhibitors used. It may be seen from figure 6.11 that inhibitor efficiency 

increases in the order Y3+ ~ La3+ < Ce3+ < Cr042'. Furthermore, it may be seen from 

figure 6.10 that the principal reason for the lower efficiencies of the REM cations is 

the slower onset of inhibition observed with these species. That is to say, whilst the 

ultimate reduction in pitting current may be similar in the case of REM and chromate 

inhibitors, the persistence of pitting current for longer periods in the case of REM 

cations gives rise to significantly higher levels of metal loss. It would seem 

reasonable to propose that the slower onset of inhibition in the case of REM cations 

arises from the need for corrosion, and associated cathodic oxygen reduction, to 

proceed in order to allow the deposition of a REM (hydr)oxide cathodic film. In 

contrast chromate may act as a cathodic depolariser, producing rapid surface 

passivation without the requirement for significant levels of corrosion to have 

occurred.

Figure 6.12 shows how the number density of pits detected by the SVET 

varies with time of immersion for each of the inhibitors at the highest (2.5 x 10' 3 mol 

d m ', pink line with square symbol) and lowest (2.5 x 10' mol d m ', green line with 

triangle symbol) concentrations used. The blue line with diamond symbols depicts 

the mean value obtained from five uninhibited experiments. The experiments from 

which these results were taken are the same as used for figure 6 .1 0 , hence the pink 

line in figure 6.12a corresponds directly to the pink line in figure 6.10a. From this it 

is possible to deduce that the number density of pits on a surface is not necessarily 

related to the anodic current density. An example of this can be seen with the lowest 

concentration of cerium (green lines in figures 6 .10a and 6 .12a). In figure 6 .10a it can 

be seen that the anodic current density is greatly reduced after 1 0  hours immersion,
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however from figure 6 .1 2 a it can be seen that at this time the number density of pits 

detected increases. Other cases like this can be seen in figures 6 .10c and 6 .12c.

6.4: Conclusions.

It has been shown that a “thresholded” numerical integral of SW T  current 

density data obtained from unpolarised samples of AA2024-T3 undergoing pitting 

corrosion in 3.5% w/w aqueous NaCl may be used to obtain a series of instantaneous 

values for the area-averaged anodic current density. These current density values 

may, in turn, be numerically integrated with respect to time in order to obtain a value 

for equivalent metal loss over a 24 hour period. By using such an approach it has 

been shown that the efficiency of chromate and trivalent REM cations as inhibitors of 

AA2024-T3 surface pitting corrosion increases in the order Y3+ ~ La3+ < Ce3+ < 

Cr042'. It has also been shown that the principal reason for the higher efficiency of

o 'y
CrCV is that corrosion currents decay more rapidly in the presence of CrCV' than in 

the presence of the REM cations20. However for the cases where Na2Cr0 4 was added 

to the electrolyte after surface pitting corrosion was well established, it was shown 

that the inhibition of corrosion was not as complete as for the same concentration of 

Na2Cr0 4 present in the electrolyte from initiation. The more rapid onset of inhibition

*7 *7by Cr04“ may arise from the ability of CrCV' reduction to replace cathodic O2 

reduction, quickly generating a Cr(III) (hydr)oxide cathodic film. Alternatively, 

competitive adsorption of Cr04“' on the AIO3 surface oxide may coulombically 

disfavour C f adsorption, reducing the possibility of surface depassivation. The 

second possibility is consistent with the observation that Cr042' inhibition is less 

complete if depassivation (pitting) has already commenced.
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Chapter 7: Chromate inhibition of filiform corrosion on organic 

coated AA2024-T3 investigated using a scanning Kelvin probe.

7.1: Introduction.

Filiform corrosion (FFC), first described scientifically in 19441, is an atmospheric 

corrosion phenomenon affecting organic coated metals and producing characteristic 

“thread-like” deposits of corrosion product beneath the coating. Extensive studies on 

coated aluminium, steel and magnesium surfaces have shown that oxygen, aggressive 

ions such as chloride, and a high relative humidity must all be present for FFC to 

occur2,3. Filaments, each comprising a liquid filled “active head” and a “tail” of dry 

corrosion products, propagate from penetrative defects in the organic coating and may 

attain a length of several centimetres. The primary driving force for filament 

advancement is thought to be an oxygen concentration cell which forces anodic metal 

dissolution, reaction (7.1) in the case of aluminium, to occur at the leading edge and 

cathodic oxygen reduction, reaction (7,2), to occur at the trailing edge of the active

The absence of a bulk electrolyte, the small size of FFC features (width 0 .1  -0,5mm) 

and the high electrical resistance of organic coatings make FFC notoriously difficult

[A1(H20 ) 6 ] 3 (aq) + 3e A1 (S) + 6H20(j) [7.1]

0 2 + 2H20  + 4e 40H ‘ (aq) [7.2]

However, recently publishedtrv c+nrkr pl*ar*trr\r»Viprnir*ql ipol-m im ipc^i.\J > VV/aV w i i v i v i i u i  V i V V U V / V l J V l l l l V U i
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developments in the scanning Kelvin probe (SKF) have shown that this non-contact, 

non-perturbing, technique allows spatially-resolved potential measurements to be 

made on metallic surfaces coated with intact insulating films and/or in contact with 

thin adsorbed layers of electrolyte7,8,9,10,11,12,13,14,15. The theory of SKP operation has 

been elaborated elsewhere7,8,9,10,11, and a brief overview can be seen in section 2 .2 . 

The aim of our work has been to use SKP to carry out an investigation of the kinetics 

of FFC as it occurs on a model system comprising strontium chromate (SrCr04) 

pigmented polyvinyl butyral (PVB) coated AA2034-T3 aerospace aluminium alloy. 

This has been done with the intention of determining the mechanisms by which 

sparingly soluble chromate salts, such as SrCrC4, act to inhibit FFC.

7.2: Experimental.

7.2.1: Materials.

All experiments were carried out using AA2024-T3 aluminium alloy as descibed in 

section 3,2.1 supplied by RAF, Systems T,td. Strontium chromate (SrCrC4) pigment, 

primary particle size 1-3pm, was supplied as a 70% w/w suspension in xylene by 

Akzo Nobel UK Pic. All other chemicals were obtained from Aldrich pic in 

analytical grade purity, Aluminium alloy samples were cut into 35 mm square 

coupons and prepared as shown schematically in figure 7.1. Figure 7,1a shows how 

the sample was abrasively cleaned using increasingly fine grades of silica paper (400, 

800, 1 2 0 0  and 1600) along the rolling direction, followed by degreasing in ethanol. 

Figure 7,1b shows how two layers of PVC insulation tape were placed along the edge 

of the sample parallel to the polishing direction. This was to create a platform above 

the surface so that the film could be cast easily and evenly using a casting rod The 

PVR solutions (15% w/w) were prepared in ethanol, and any required amount of
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a) Sample abrasively polished with increasingly 

grades o f silica paper, along the sample 

rolling direction. Then degreased using ethanol.

b) PVC insulation tape placed along sample edges 

to produce raised platform, to make casting easier. 

Pigmented PVB solution cast using bar.

c) Pigmented PVB film left to dry in air. 

Result is 30pm thick film.

d) Filiform corrosion was initiated by applying a 

1 pi volume of 0.5 mol dm'3 aqueous HC1 

along the length of a 10mm linear coating defect, 

scribed in the centre of PVB coated 

sample using a scalpel blade.

Figure 7.1: Schematic diagram showing preparation of AA2024-T3 sample prior to SKP corrosion

experiments.
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SrCr0 4  added as a dispersion in xylene, and the two mixed using a high shear blender. 

Figure 7.1e shows the pigmented PVR solutions after being bar cast on to the clean 

sample surface and allowed to dry in air. This procedure gave a dry film thickness of 

30 pm as measured using a micrometer screw gauge. Figure 7,Id shows how the 

filiform corrosion was initiated by applying a 1 pi volume of 0.5 mol dm' 3 aqueous 

FTC1 along the length of a 1 0 mm linear coating defect, previously scribed in the centre 

of each PVR coated AA2024-T3 alloy sample using a scalpel blade. In every case, 

the direction of the scribe was perpendicular to the abrasive polishing direction.

7.2.2: Methods.

SKP:

Details of the SKP instrument used in this work can be found in section 2 2, The 

scanning reference probe consisted of a 125 pm diameter gold wire vibrated along its 

long axis and normal to the sample surface with amplitude 40pm and frequency 

280Hz. The sample was then placed in the thermostatically controlled (20°C) 

stainless steel environment chamber of the SKP, maintained at a constant relative 

humidity of 93% by equilibration of the experimental atmosphere (air) with saturated 

Na2SO4 .1 0 H2O (aq). Repetitive scans were carried out every 3 hours on a 1 cm2 area 

of the coated sample encompassing the scribe, using a data point density of 1 0  points 

per mm and a mean probe to sample height of 1 0 0  microns.

Optical microscopy:

On completion of the SKP experiment the sample was immediately scanned to 

obtained an optical micrograph of the surface as described in section 2 .6 ,
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7.3: Results.

Unpigmented coatings:

Repeated SKP scanning of AA2024-T3 samples, coated with unpigmented PVR films 

and with PVR films containing SrCr04 volume fractions (<J>) of 0,01 to 0,05, was used 

to generate a series of time lapse animations showing dynamic changes in local free 

corrosion (Kcorr) patterns. Figure 7,2 shows the progression of the SKP image plots 

(obtained using Golden Software, Surfer 6  cartography package) for the unpigmented 

PVR film. From figure 7.2 it can be seen that some time after initiation (~ 4 hours) 

FFC filament heads (dark regions) are visible along the edge of the defect, which then 

start to propagate perpendicular to the defect (along polishing/rolling direction) Tn 

the case of uninhibited coatings, Fcon values beneath the intact coating are — 0,2V vs. 

SHF., which is consistent with the coated aluminium surface existing in a substantially 

passive state. Tn the head region of propagating filaments Fcon values fall to ~ -0.5V 

vs. SHF. indicating local depassivation. However, Fcon values in the filament tail 

(light region) are ~ 0,1 V vs. SHF., indicating local superpassivation. These potential 

relationships are perhaps more easily seen in figure 7,3, which shows the time- 

dependent Fcorr distribution along the axis of filament propagation for an individual 

filament, Tn figure 7.3 the active head is seen as a 1 mm long region of Fcorr < -200 

mV vs. SFTF. which shifts from left to right i.e. away from the penetrative defect, with 

increasing time. The tail region of the filament, which is seen to develop as the head 

moves away from the defect, exhibits Fcorr values which are significantly more 

positive than those associated with the intact coating. Figure 7.2b shows an optical 

micrograph of the sample on completion of the SKP experiment, it shows very good 

correlation with the image plots obtained from the SKP data.
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The digital nature of the data obtained in individual SKP scans allows a 

detailed analysis of the instantaneous distributions associated with FFC 

filaments. Furthermore, the time-dependent progress of filaments may be quantified 

by comparing the spatial distribution of Ecorr values between successive scans. This 

was achieved by determining the distance travelled by a filament in a given time, 

using the ‘map digitise’ function described in section 3,3,4. For unpigmented 

coatings, the position of filiform heads in any scan may be determined by locating the 

associated Ecorr minima. Plotting the position of individual E^n minima over time, as 

shown in figure 7,4, shows that on average filaments propagate at a constant speed of 

1.3 ± 0.2 pm min' 1 along the rolling direction and do not intersect.

However, this approach suffers from two difficulties. Firstly, the labour 

involved in measuring a large number of filaments. Secondly, the inevitable 

subjectivity involved in estimating the exact extent of filament progress. In an 

alternative approach, the extent of FFC may be quantified automatically by computing 

the delaminated area from each instantaneous Ecorr distribution map. As in section 

3 3,3 Surfer 6  cartography software is used, however in this case it is to calculate the 

fractions of the scanned area which have Ecorr values which are displaced positive or 

negative of the background by an amount >0 ,1 V. The sum of the assigned head areas 

(negative displacement) and tail areas (positive displacement) therefore provides the 

total delaminated area at a given time. The results obtained for an unpigmented 

coating are shown in figure 7.5. After an initial period of 400 min, representing a 

“delay time” required for the FFC corrosion cell to become established, the tail area 

increases at a rate of 0.0126 mm2 min'1, while head area decreases at a rate of 0 . 0 0 2 1

7 i
mm m in '. This results in the growth of total delaminated area at a rate of 0.0105

2  ■ -1 m  tv .  rv \  1 r*iilXJi ixiiJjl
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Coatings pigmented with SrCrO4:

Figure 7,6 shows representative Fcorr distributions, observed 50 hours after initiation, 

for samples of varying <{r Figures 7,6a-6d show that, as the SrCrG4 content of the 

PVB coating is increased from (J) = 0,01 to d> = 0.05 so the extent of filament 

propagation decreases significantly and that Flcon values measured beneath the intact 

coating also decrease. Figure 7,7 shows scanned images of the same samples after 

completion of the SKP experiments. As can be seen the pigmented coatings are 

progressively more yellow in colour as expected for SrCrC4. The pictures also 

correspond well with the images obtained from the SKP data. This shift in potential is 

perhaps more clear in figure 7,8. This shows FCOTT distributions along the axis of 

filament propagation for individual filaments which have advanced an equal distance 

from the coating defect. It may be seen from figure 7.8 that Ecorr values measured 

beneath the intact coating decrease from -0,2V to -0,5V vs. SHF., as (j) increases from 

zero to 0.02, However, samples prepared with 0.02 < cji > 0,05 showed no further 

decrease in intact coating Fcorr values. Figure 7.8 also shows that Fcorr values 

measured in the head region of propagating filaments are substantially independent of

coating SrCrC4 content and remain similar to the uninhibited case, i e .  0.5V vs.

SFTR. Tn contrast, FOOTT values in the filament tail region are strongly influenced by 

SrCrC4 levels and are shifted downwards from the uninhibited case to — 50 mV for <|) 

=  0 .02 .

For SrCrG4 pigmented coatings, because of the observed similarity between 

background and filament head Fcorr values, the progress of the filament is most easily 

quantified by measuring the increase in length of the filament tail region. Such an 

analysis shows that filament velocity decreases progressively as di is increased, 

approaching zero for (fi > 0 05, as can be seen in figure 7 9,
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200 um

Figure 7.7: Optical images of coated sample after completion of SKP experiment. Coating

SrCr04 pigment volume fraction. tysc = a) 0.01, b) 0.02, c) 0.035 and. d) 0.05
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Once again, the similarity of filament head and intact coating Ecou values in 

the case of SrCrC4 pigmented coatings makes head, area and hence total delaminated 

area, difficult to determine. Consequently, for pigmented coatings tail area is used as 

a measure of FFC propagation Using this approach, the influence of SrCrC4 pigment 

levels on FFC delamination kinetics is shown in figure 7.10, It may he seen from 

figure 7,10 that the rate of tail area growth is approximately linear and that rate 

decreases progressively with increasing <j>. This effect is summarised in figure 7.11, 

which shows FFC delamination rate, as determined from the slope of tail area-time 

data, as a function of <j>.

7.4: Discussion.

When in equilibrium with air at 93% relative humidity the exposed aluminium alloy 

surface will be covered with an adsorbed aqueous film7. Furthermore, prior exposure 

to aqueous F1CI will have resulted in production of AlCty and Al(TTT) hydroxychloride 

salts (Al(OH)2Cl and Al(OFf)Cl2) at the exposed metal surface. These salts may then 

dissolve in the adsorbed humidity film to produce an aqueous electrolyte capable of 

supporting the electrochemical reactions of corrosion. Reactions 7,1 and 7,2 are 

generally believed to be localised in the FFC corrosion cell as shown schematically in 

figure 7,12, which also shows the relationship to (uninhibited) /Corr profile. Filament 

head pH values may be <pH2 as a result of Al3+ aquo-cation hydrolysis2,3. Filament 

tail pH values may be >pH102,3. The reduced Emn values observed in the filament 

head region are consistent with the substantial dissolution of the pre-existing passive 

oxide film on the surface of the aluminium matrix16. The high Econ values observed 

in the filament tail region are consistent with the presence of a thick aluminium-rich 

(hvdr)oxide film. However, entrapment of aluminium hydroxychloride salts in the
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tail region is also possible and the resulting depletion of head-electrolyte may account 

for the slow decrease in head area seen in figure 7.1215.

The solubility product of SrCr04 is 3.6 x 10' 5 mol2 dnf6 at 15°C17. Thus, when 

the PVB coating contains dispersed SrCr04, Sr2+ cations and Cr042' anions may 

diffuse into the FFC cell electrolyte. The absence of any anodic shift in E ^  values 

suggests that SrCrG4 does not significantly increase the polarisation of anodic 

processes occurring in the filament head region. This is probably due to the relatively 

high solubility of dichromate (C^O?2') salts and Cr3+ cations (the reduction product of 

Cr2C>72') at the low pH values and high chloride concentrations prevailing at the FFC 

cell anode site. Conversely, the cathodic shift in E^n values in the filament tail region 

suggests that SrCrC4 does increase the polarisation of cathodic processes occurring at 

sites in the filiform corrosion cell, where the local pH is high enough for relatively 

insoluble Cr(OH)3 and basic Cr(III)Cr(VI) salts to be the predominant C r042' 

reduction products. Tt has been shown that, for AA2024-T3, reaction (7.2) occurs 

mainly on CuMgAF and (Cu,Fe,Mn,)Al6 intermetallic particles and also on Cu which 

has been replated onto the surface of the A1 matrix following corrosion-driven particle 

dealloying18. It has also been shown that the rate of reaction (7.2) on (Cu,Fe,Mn,)Al6

9 ”3 9and Cu is reduced by ~ 1 order of magnitude in the presence of 10' mol dm' Cr0 4 ‘

18

The observation that ECOTT values in the intact coating region may be decreased 

by ~ 0,3V in the presence of SrCr04 implies that electrochemical interaction between 

Cr042' and the AA2024-T3 surface may take place before FFC delamination has 

occurred. This begs the question as to whether such interactions play any role in 

forestalling FFC. It has been proposed that a portion of reaction 7 2  may occur in a
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zone preceding the FFC filament head19,20. However, the spatial resolution of our 

SKP instrument is insufficient to confirm whether or not this is the case,

7.5: Conclusions.

Filiform corrosion filaments on organic coated AA2024-T3 aluminium alloy may be 

detected using SKP by imaging changes in local free corrosion potential (FCOTI), The 

presence of in-coating SrCr04 dispersions substantially reduced the rate of FFC- 

driven coating delamination, which becomes zero for SrCrC4 volume fractions >0,06, 

Increasing SrCrG4 volume fraction produces little or no change in filament head F ^  

values, but significantly depresses FcorT values in the filament tail and undelaminated 

surface This suggests an increased polarisation of cathodic oxygen reduction 

occurring at sites where the local pH is high enough for insoluble Cr(TTT) salts to be 

the predominant Cr042‘ reduction product.
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Conclusions:

1 . Surface preparation is significant in determining the pattern and intensity of 

pitting corrosion on AA2024. In the cases were the surface was polished with a 

slurry of 5pm alumina paste, the highest anodic activity recorded was 20 Am' 2 

after only 8  hours immersion. However, when the surface was polished to a 1 pm 

diamond paste mirror finish, the highest anodic activity recorded was halved to 1 0  

Am' after 10 hours immersion.

2. Pits formed on the surface of AA2024 after 24 hours immersion in 3.5% aqueous 

NaCl are not hemispherical in nature, but take the form of many openings to the 

surface connected by tunnels.

3. The rates of pitting corrosion on AA2024 are determined by the area 

concentration of intermetallic particles. By halving the area percentage of 

particles from 3% to 1.5%, the amount of aluminium lost through pitting 

corrosion, as determined by the SVET, more then halved from 0.07 gm' 2 to 

0.03gm'2 after 24 hours immersion in 3.5% aqueous NaCl.

4. Intermetallic particles act as cathodic sites. In SVET studies of samples exhibiting 

a non-uniform distribution of intermetallic particles, cathodic activity was focused 

at the sites of highest particle concentration.

5. In SKP studies of filiform corrosion, filaments were found to preferentially 

propagate along the samples rolling direction, i.e. along the direction of
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intermetallic particle elongation. This finding is consistent with cathodic oxygen 

reduction occurring on intermetallic particles and de-alloyed intermetallic 

particles. Thus, the orientation of the intermetallic particles determines the 

direction of the filament propagation.

6 . Rare earth chlorides (Ce3+, La3+ and Y3+) are effective inhibitors of pitting 

corrosion on AA2024. The efficiency of these trivalent cations increases in the 

order Y3+~La3+<Ce3+.

7. Chromate (NaCrC^) was a more effective inhibitor of pitting corrosion than 

REM chlorides. This greater efficiency appears to result from a more rapid 

onset of inhibition. At a concentration of 2.5 x 10' 3 M/1 in 3.5% aqueous NaCl, 

chromate completely inhibits pitting corrosion within the first hours immersion. 

Whereas cerium, lanthanum and yttrium take 4, 8  and 24 hours respectively to 

completely inhibit pitting corrosion.
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Future work:

On completion of the thesis I was made aware that the T number designated to the 

two types of sample supplied (i.e. AA2024-T3 and AA2024-T351) was not correct. 

The sample described in this thesis as 3mm thick AA2024-T3 is actually AA2024- 

T351, and the sample described as a cube of AA2024-T351 is AA2024 (no 

designation). This is because the cube sample has not been through any of the 

processes described in table 1 .2 , because of this the two samples are completely 

different in structure. However, it would be possible to treat the cube sample in such 

a way as to make the two samples comparable. This would mean in any results 

obtained from SVET experiments on these samples, could be directly compared to 

each other.

With more time and the correct equipment, it would be possible to map the 

surface of these samples to show the distribution and composition of intermetallic 

particles. This would give a more complete picture as to the surface composition, and 

may help in determining which type of particle (if any) contributes the most to surface 

pitting corrosion.

Using the SVET and SKP, there are may avenues available for future work, 

some suggestions are. Investigating further how surface preparation for both SVET 

and SKP influences corrosion. Also any number of inhibitors can be investigated 

both with SVET and SKP.
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