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Abstract

Abrupt climatic transitions that characterise the Late Pleistocene are recognised in a 
number of palaeoarchives, yet little has advanced our understanding of the causal 
mechanisms. High-resolution atmospheric changes are best represented in the 
Greenland ice-core records and North Atlantic marine sediments preserve a sequence 
of oceanic responses during these rapid events. An understanding of forcing 
mechanisms, however, is currently hampered by chronological uncertainties and an 
inability to integrate proxy records from these different realms. Tephrochronology is 
one of the few techniques that offer the potential to establish independent and precise 
tie-points between marine and ice-core records.

Four marine sequences are explored to assess the potential of utilising tephra and 
cryptotephra deposits as time-synchronous marker horizons during Marine Isotope 
Stage 2 and 3. Tephras preserved in the marine environment are subjected to a range 
of secondary transportation and depositional processes, such as iceberg rafting and 
bioturbation, as well as primary airfall. Using a range of diagnostic indicators, a 
protocol is proposed to i) assess the processes controlling tephra deposition ii) to 
inform isochron placement and iii) to identify primary deposits that can act as 
valuable marker horizons. Moreover, a pioneering application of thin-section and X- 
ray microtomography analyses are presented to assist in the assessment of post- 
depositional processes. These techniques highlight some of the complexities of 
marine tephrochronology and the possibilities they offer for fully resolving 
depositional integrity.

Through application of this protocol, ten primary tephra deposits are identified and 
together form a marine tephrochronological framework for the North East Atlantic 
region. Four deposits are new discoveries and augment the volcanic event 
stratigraphy and enhance the number of isochrons available for synchronisation. 
Geochemical characterisation and stratigraphical analysis are employed to assess the 
presence of coeval marine and ice-core horizons. Two ice-marine tie-lines, FMAZ II 
and NAAZ II, have been successfully utilised to identify the relative timing of 
climatic events and highlight the potential of synchronising records. Some of the 
challenges of correlating marine deposits to the Greenland ice-cores are explored, 
and recommendations are made for future applications of marine tephrochronology.
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Chapter 1 Introduction

1.1 Synchronisation of disparate climatic archives

The shape of modem Quaternary Science has evolved considerably over the past 

decade, but little has advanced our understanding of the mechanisms driving abrupt 

climatic shifts punctuating the last glacial period (Alley et al., 1993; Lowe 2001; 

Hemming 2004; Clement and Peterson, 2008). The most dramatic insights into the 

behaviour of the climate system have been detailed in ice and sediment cores in the 

North Atlantic (Dansgaard et al., 1982; Bond et al., 1992; Alley et al., 1993). 

Transitions in climate state occurred over decadal timescales and were matched with 

large scale reorganisations in the ocean-atmosphere system (Steffenson et al., 2008). 

These excursions are known as Dansgaard-Oeschger (D-O) events; recurring roughly 

every 1500 years (Bond et al., 1997), manifesting as abrupt warming over 

Greenland, followed by a gradual return to stadial conditions (Dansgaard et al., 

1982). Annually-resolved Greenland ice-core records detail the best stratigraphically 

uncompromised chronometer for the complex sequence of D-O events (Rasmussen 

et al., 2008, 2013, 2014). Bond et al. (1992) demonstrated that D-O events in 

Greenland are closely matched by changes in sea-surface temperatures (SST) 

recorded in North Atlantic marine sediments. This suggests linkage between oceanic 

and atmospheric processes. Triggers are thought to reside in the deep ocean i.e. 

disruption to the thermohaline circulation, and alternative hypotheses suggest abrupt 

transitions are initiated through changes in atmospheric dynamics (see section 2.1.2) 

(Broecker, 2003; Clement and Peterson 2008; Barker et al., 2015). Additionally, a 

large number of records from around the world detail evidence of similar short-lived 

climatic oscillations (Wang et al., 2001; Blaauw et al., 2009; Nakagawa et al., 2012; 

Lane et al., 2013). As such, a key challenge of palaeoclimatic research is to 

determine the causal mechanisms of these abrupt events.
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To fully understand the regional expression and mechanisms driving rapid changes, 

precise correlations are required between the ice, marine and terrestrial realms to 

assess the relative timing of their impacts (Blockley et al., 2012; Brauer et al., 2014; 

Blockley et al., 2014; Davies, 2010). However, long-standing chronological issues 

have plagued the integration of disparate records, largely due to inherent dating 

difficulties such as those associated with radiocarbon dating (Muscheler et al., 2008, 

2014; Davies et al., 2012). To avoid these issues, records are frequently tuned and 

wiggle matched based upon common patterns in the data-sets, which is not 

climatically independent and likely to mask any leads and lags that may be present in 

the system (Blauuw, 2012; Lane et al., 2013; Rach et al., 2014; Blockley et al., 2014) 

(Fig l.la,b). At present, tephrochronology offers high potential for the precise and 

independent correlation of disparate sequences (Lowe et al., 2001; Turney et al., 

2004; Blockley et al., 2007; Davies et al., 2012; Lane et al., 2014) (Fig 1.1c).

Tephrochronology is based upon the utilisation of isochrons defined by volcanic ash 

(Thorarinsson, 1944). The instantaneous deposition of tephra following a specific 

eruption forms time-synchronous marker horizons and permits the correlation of 

separate deposits formed at the same time (Lowe, 2011). This technique has been 

revolutionised over the past decade through the identification of cryptotephras that 

increase the number and distribution of known and previously undiscovered tephra 

deposits (Dugmore, 1989; Turney et al., 2004; Pyne O’Donnell et al., 2012; Davies 

et al., 2014). In the quest for resolving causal mechanisms of D-O events, the most 

valuable tephra deposits are those that can be traced between the Greenland ice-cores 

and North Atlantic marine archives. This permits synchronisation of records that 

preserve atmospheric (ice) and oceanic changes (marine sediments) associated with 

these rapid events. Additionally, ages can be imported through the transfer of the 

GICC05 ice-core age into records containing equivalent tephra horizons, which can 

then be included in chronological models (Svensson et al., 2008; Davies et al.,

2012). Tephrochronology offers much promise for the creation of independent time­

scales and an insight into leads and lags within the ocean-atmosphere system (Brauer 

et al., 2014). TRACE (Tephra constraints on Rapid Climate Events) - a five-year 

project funded the European Research Council, aims to utilise 

cryptotephrochronology to precisely correlate the Greenland ice-cores with North 

Atlantic marine records.

2



Chapter 1. Introduction

Wiggle-matching

(a)

Age

Tuned record(b)

Age

Tephra synchronisation

W arm f

Air temperature
ice-cores

Tephra

aM
Cold , r Tephra

W arm A

SST (N Atlantic 
marine core)

Cold r

Age

Figure 1.1 Schematic representation of tuning procedures after Blaauw, (2012). (a) Similar features 
within two time-series are identified (tie-points indicated by dashed lines), (b) Tie-points deduced in 
(a) are then aligned to the red series based upon tuning, (c) Schematic representation of TRACE 
synchronisation goals. The same data series are synchronised based upon the occurrence of common 
tephra horizons between the marine and ice realms.

3



Chapter 1. Introduction

This investigation forms part of the TRACE project and aims to exploit tephra 

isochrons found within these records to constrain phasing relationships between 

oceanic and atmospheric systems during the last glacial period (Fig 1.1c).

To date, the potential of tephrochronology to synchronise common tephra horizons 

between ice and marine environments has been demonstrated by the detection of the 

Faroe Marine Ash Zones (FMAZ) II (Wastegard et al., 2006; Davies et al., 2008) and 

the North Atlantic Ash Zone (NAAZ) II (Austin et al., 2004). Furthermore, Abbott 

and Davies (2012) summarise the potential of tracing cryptotephras within the 

Greenland ice-cores and new discoveries in Greenland ice, detected as part of the 

TRACE project, have greatly increased the number of horizons available for cross­

correlations (Bourne et al., 2013, 2015). However, very few studies have explored 

the potential of tracing cryptotephras in North Atlantic marine sequences. Previous 

marine studies have focused on coarse grained or clearly visible horizons, and 

cryptotephra content within marine sediment has been largely overlooked 

(Ruddiman and Glover, 1972; Haflidason et al., 2000; Rasmussen et al., 2003). 

Recent cryptotephra investigations during MIS (marine isotope stage) 4 and 5 have 

demonstrated the potential of undertaking cryptotephra investigations (Brendryen et 

al., 2010; Brendryen et al., 2011; Abbott et al., 2011, 2013, 2014; Davies et al., 

2014). The MIS 2 and 3 periods, however, are yet to be explored. This investigation 

will examine MIS 2 and 3 deposits to provide the foundations for a 

tephrochronological framework for the North Atlantic.

The high-eruptive frequency of Icelandic volcanic systems during the last glacial 

period, as shown by the cryptotephras in the ice cores, indicates the potential for 

widespread tephra dispersal into the marine environment (Bourne et al., 2015). 

However, a key challenge for the marine environment is the identification of tephra 

and cryptotephra deposits that originate from primary depositional processes and are 

unaffected by any secondary transport or depositional processes e.g. iceberg rafting 

and bioturbation (e.g. Davies et al., 2014; Griggs et al., 2014). In order to fully 

exploit tephra tie-lines, it is essential to first assess the depositional integrity of the 

tephra; an issue which is currently confounded by the complexity of processes that 

control deposition in the oceans (Austin et al., 2004; Brendryen et al., 2010; Abbott 

et al., 2011). As such, stratigraphic displacement of a deposit may lead to 

chronological uncertainties and erroneous use of tie-points, which has important
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ramifications for establishing the relative timing of climatic signals preserved within 

palaeosequences (e.g. Davies et al., 2014). The complexity of processes operating on 

tephra and cryptotephra deposits cannot be fully unravelled using existing 

stratigraphic techniques. Resolving depositional integrity represents a crucial step in 

utilising tephrochronology to meet the TRACE synchronisation goals.

1.2 Aims and Objectives: Extending the tephra 
framework

A tephrochronological framework is constructed by combining precise and robust 

methods of geochemical characterisation with an assessment of stratigraphic 

integrity (Davies et al., 2012; Blockley et al., 2014). This includes the importance of; 

a) employing robust geochemical acquisition of individual glass shards; b) resolving 

sedimentation, transportation and dispersion processes, and; c) systematic data 

comparison exercises to determine likely correlations. These form the central themes 

of the thesis in order optimise the use of tephrochronology to meet the TRACE 

synchronisation goals. The general aims of the project are:

1. To assess the cryptotephra content within four marine cores in the NE 

Atlantic region spanning 16-55 ka, i.e. during MIS 2 and 3;

2. To geochemically fingerprint each marine tephra deposit to determine its 

volcanic origin and to assess the stratigraphic integrity of each deposit;

3. To develop a protocol for assessing the stratigraphic and depositional 

integrity of marine tephra deposits;

4. To assess the viability of utilising innovative sedimentological visualisation 

techniques for improving isochron placement in palaeosequences;
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5. To develop and improve the MIS 2 and 3 North Atlantic marine 

tephrochronological framework and to assess potential correlations to other 

published tephra horizons in the ice-cores and other marine records;

6. To assess phasing relationships in the atmospheric and oceanic systems 

during the last glacial period
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2.1 Abrupt climate change

2.1.1 Dansgaard Oeschger events; what are they?

Throughout the last glacial period the North Atlantic has experienced twenty five 

abrupt climatic fluctuations, known as Dansgaard-Oeschger (D-O) events, during 

which oceanic and atmospheric conditions alternated between warm (interstadial) 

and cold (stadial) episodes (Dansgaard et ah, 1982; NGRIP Members, 2004; 

Rasmussen et ah, 2014). Ice core records in Greenland have been instrumental in the 

examination of past abrupt climate change, offering unparalleled temporal resolution 

of D-O events in comparison to other sedimentary archives (Alley et ah, 1999;
1 ftSteffensen et ah, 2008). As such, 8 O records from ice-core records indicate initial 

rapid warming occurred within only a few decades (Steffensen et ah, 2008; Thomas 

et ah, 2009), typically in the range of 6-16°C (Dansgaard et ah, 1992; Huber at ah, 

2006; Landais et ah, 2004; Kindler et ah, 2014). Interstadials, which vary in duration 

from centuries to millennia, were followed by a slow cooling trend over several 

centuries and a final rapid drop into cold stadial conditions (Huber et ah, 2006). The 

most abrupt transitions are best reflected in the deuterium excess values, where the 

record indicates a sustained shift in the position of prevailing air masses occurring 

within only three years at the end of GS-1 (Greenland stadial) (Steffenson et ah, 

2008).

Alternating patterns of interstadials and stadials are reflected in a diverse range of 

palaeoarchives (Voelker and workshop participants, 2002; Brauer et ah, 2008). The 

first marine evidence for abrupt climate changes during the last glacial period came 

from high accumulation rate sediment cores in the subpolar North Atlantic and were 

suggested to correlate to the events shown in the ice-cores (Bond et ah, 1992,
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Clement and Peterson, 2008). Sea surface temperatures (SSTs) reconstructed from 

planktonic foraminifera followed similar patterns to those seen in the ice with SST 

changes of ~5°C, however, the transitions appeared smoother than the ice cores 

(Bond et al., 1992). Additionally, thick, discrete, carbonate rich sedimentary deposits 

within marine cores are thought to have been deposited by discharges of debris-laden 

icebergs into the North Atlantic during some D-O events (Hemmings, 2004). These 

ice-rafted debris (IRD) layers are termed ‘Heinrich’ layers and represent a ‘Heinrich’ 

event (Heinrich, 1988). Heinrich events are thought to mark the final abrupt and 

extreme minimum of six interspersed D-O cycles throughout the last glacial 

(Hemmings, 2004). Heinrich events maybe time-transgressive (Stanford et al., 2011) 

and the presence of IRD alone is not evidence for a D-O event in the marine record, 

despite its associated occurrence (Hemmings, 2004). Rasmussen et al. (2014) argue 

the Greenland ice-core records constitute the most comprehensive, well-resolved 

archive of D-O scale climate variability and it is in these records that D-O events 

should be defined and named. Much value is to be gained from unique proxy 

evidence recorded in the marine realm, which details oceanic changes during D-O 

cycles (Fig 2.1c). This information is crucial for integration with atmospheric 

changes recorded in the ice and is central to the TRACE synchronisation goals. Only 

when independent synchronisation is facilitated can the existence of leads and lags in 

the climate system be tested.

2.1.2 What caused D-O events?

Understanding the forcing mechanisms behind abrupt climate change still remains an 

elusive goal for palaeoclimate researchers (Blockley et al., 2012; Brauer et al., 

2014). At present, the favoured paradigm for explaining abrupt climate change is a 

re-organisation in the North Atlantic deep-water ocean circulation (NADW). This is 

thought to be a result of freshwater input and its impact on heat transport to regions 

following disruption to the meridional overturning circulation of the North Atlantic 

(AMOC) (Bond et al., 1992; Alley et al., 1999; Broecker, 2003; Knutti et al., 2004; 

Clement and Peterson, 2008). Recent palaeoceanographic investigations have 

suggested iceberg discharge and freshwater input may be a consequence of stadial 

conditions rather than the cause (Barker et al., 2015). Barker et al. (2015) indicate
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rapid transitions to stadial conditions may be a consequence of nonlinear responses 

to more gradual cooling across the North Atlantic.

The alternative view to an oceanic trigger in the North Atlantic focuses on the 

coupled ocean-atmosphere system originating in the tropics (Clement and Peterson, 

2008). As tropical convective systems constitute the dominant element in the climate 

system, the trigger most likely resides in the El Nino-La Nina regions, and small 

changes in the tropics have the potential to alter the radiation budget of the planet, 

hydrological cycle, and NADW (Clement and Peterson, 2008, Cane and Clement,

1999). Ivanochoko et al. (2005) have argued that changes in strength and structure of 

tropical convective systems throughout the tropics may be sufficient to modulate 

terrestrial emissions of methane, providing a plausible mechanism for amplifying 

and perpetuating millennial scale variability. The forcing mechanism originating in 

the tropics points toward an atmospheric trigger of abrupt climate change.

Although there is strong marine evidence detailing re-organisations in the NADW 

and AMOC during D-O events, no unequivocal evidence exists to confirm whether 

they constitute the primary trigger, or amplify the forcing as a result of atmospheric 

changes initiated elsewhere (Broecker, 2003). This is partly due to the three 

dimensional nature of the deep ocean, which renders it inherently complex to 

reconstruct. If the trigger does reside in the oceans, the reorganisations must have 

perturbed tropical dynamics, which in turn drove global atmospheric changes 

(Broecker, 2003). The key to addressing this critical question is to resolve whether 

atmospheric signals recorded in proxy archives predate the changes in ocean 

circulation; a goal currently confounded by geochronological issues (Blaauw, 2012, 

Blockley et al., 2012) and spatio-temporal dependant expressions of D-O variability 

(Rasmussen et al., 2014).

2.2 The evolving paradigm; were D-O events 
asynchronous?

D-O event variability is expressed in numerous proxy records, ranging from 

evidence recorded in the ice and ocean, to lake and cave records across the globe
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(Fig 2.1) (Bond et al., 1992; NGRIP members, 2004; Wang et al., 2001; Nakagawa 

et al., 2012; Blaauw et al., 2010; Lane et al., 2013). Diatom evidence from 

palaeolake Les Echets in France reveals a number of D-O like events during the last 

glacial period (Fig 2.1b). The oxygen isotope record from speleothems in Hulu Cave, 

China, has been dated using uranium-thorium and suggest a strong resemblance to 

rapid fluctuations recorded in the Greenland GISP2 isotopic record (Wang et al., 

2001) (Fig 2.1a). Although fluctuations recorded in the ice were most likely related 

to the structure and age of millennial-scale events in other archives, it may not be the 

case that records registered the same climatic signal at the same time (Van Andel, 

2005; Rohling, 2009; Blaauw 2012; Rasmussen et al., 2014). Interactions between 

ocean and atmospheric responses propagate in complex ways, which is likely to have 

produced a variety of regional and global manifestations of D-O behaviour 

(Rasmussen et al., 2014). Regional disparities in climate change are likely to span 

multi-decadal scales. Extremely precise and independent integration of different 

records from different regions is essential for detecting leads and lags in the climate 

system (Brauer et al., 2014). Traditional approaches have tuned records through 

wiggle match alignment to abrupt transitions recorded in the ice-cores (Wang et al., 

2001; Shackleton et al., 2000; Skinner, 2008), which assumes artificial synchroneity 

(Hibbert et al., 2010; Austin and Hibbert 2012; Blauuw 2012) and neglects the effect 

of different temporal proxy responses (Brauer et al., 2014). This prevents an 

assessment of phasing relationships that may exist within the climate system.

The application of radiocarbon dating to date marine and terrestrial sediments is 

common but in this context its use is limited. The duration of transition is shorter 

than the precision of the dating technique, within errors of uncertainty (Blaauw, 

2012). Given that abrupt climatic transitions are thought to have occurred within a 

few decades, the technique is not suitable for pinpointing proxy changes to the 

required precision. This is further complicated by uncertain marine reservoir offset 

ages for marine records (i.e. Muscheler et al., 2008). An independent tool to line up 

records with annual precision is required and can now be achieved through the use of 

time synchronous horizons of volcanic ash and the technique of tephrochronology, 

which does not assume co-variance of a climate signal (Davies et al., 2012).
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Tephrochronology is regarded as one of the key techniques for providing time- 

synchronous marker horizons to establish independent and precise tie-points between 

disparate palaeoarchives (e.g. Haflidason et al., 2000; Lowe et al., 2008; Davies et 

al., 2010; Abbott and Davies 2012). Lane et al. (2013) demonstrated that 

synchronising two high-resolution records using a tephra horizon indicated the onset 

of climatic amelioration during the Younger Dryas was abrupt, but time- 

transgressive across Europe. Examining the timing and rate of climatic propagation 

across the region can test various hypotheses regarding forcing mechanisms. This 

highlights the powerful approach of combining tephra isochrons within annually 

resolved records. If ice-cores and marine records can be successfully synchronised 

using tephra horizons, this may create opportunities to decouple ocean-atmosphere 

response to abrupt climate shifts (Blockley et al., 2012; Davies et al., 2012). This 

forms the central motivation for conducting marine tephra investigations presented 

within the study.

2.3 T ephrochronology

2.3.1 Principles of tephrochronology

Tephra is explosively erupted, pyroclastic products from volcanic eruptions 

(Thorarinsson, 1944). It encompasses all volcanological grain sizes; ash (<2 mm in 

diameter), lapilli (2-64 m), or blocks/bombs (>64 mm) (Fisher, 1961). Owing to the 

long distances from active volcanoes, tephra is studied in ash size fragments (Sparks, 

1981; Haflidason et al., 2000). The subsequent deposition of tephra in ice sheets (e.g. 

Zielinski et al., 1996; Mortensen et al., 2005; Davies et al., 2008; Abbott et al., 2012; 

Abbott and Davies 2012; Bourne et al., 2013, 2015), lacustrine environments (e.g. 

Pyne O’Donnell et al., 2008), terrestrial sequences (e.g. Dugmore et al., 1992; 

Wastegard, 2002; Blockley et al., 2007) and marine environments (e.g. Rasmussen et 

al., 2003; Wastegard et al., 2006; Abbott et al., 2011), provide excellent 

palaeoclimatic archives from which to reconstruct a variety of Quaternary processes 

(Haflidason et al., 2000).
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The fundamental prerequisite underpinning the use of tephrochronology is that 

tephra is deposited and preserved rapidly into sequences following an eruption, and 

its stratigraphic position at each site relates to the timing of the event (Lowe, 2011). 

Tephra isochrons provide stratigraphic tie-lines between records, which permit 

precise inter-site correlation and integration of unique proxy records (Lowe, 2011, 

Davies et ah, 2012; Lane et ah, 2013). If the tephra can be dated in one sequence by 

radiocarbon dating of the host sediment, then its age can be transferred to other 

occurrences of that horizon i.e. tephrochronology (Lowe, 2011). High precision ages 

can be applied if the tephra occurs within annually banded sequences such as ice- 

cores (Mortensen et ah, 2005; Davies et ah, 2008; Davies et ah, 2010) or varved 

sediments (Blockley et ah, 2007; Nakagawa et ah, 2012; Lane et ah, 2013). Even if 

the age of tephra is uncertain, the horizon can still act as a stratigraphically fixed tie 

point i.e. tephrostratigraphy (Lowe, 2011).

In order for tephras to be correlated between palaeoarchives, it is essential that each 

horizon is uniquely characterised through geochemical fingerprinting (Turney et ah, 

2004) (see section 2.3.3). Traditionally, if the site were proximal to the eruption site, 

visible properties of the tephra deposits i.e. shard morphology, grain size, colour and 

texture were deemed sufficiently diagnostic (Mangerud et ah, 1984; Turney et ah, 

2004). The Laacher See tephra has highly vesicular shards, whereas the Vedde Ash 

is commonly described as being ‘butterfly’ shaped, with a cuspate and platy 

morphology (Mangerud et ah, 1984). Numerous eruption events can occur from the 

same volcanic centre and produce similar morphological characteristics, making 

visual observations insufficiently diagnostic for pinpointing individual eruption 

events (Turney et ah, 2004). In an ideal scenario, eruptions exhibit unique 

geochemical fingerprints and it is essential that comprehensive laboratory 

examinations of tephras are conducted to characterise the geochemistry of juvenile 

glass shards (see section 2.3.3) (Davies et ah, 2002; Lowe et ah, 2008). Robust major 

and trace element geochemical fingerprinting is an essential step for establishing 

tephra linkages between sequences (Davies et ah, 2012).

Traditionally, records of tephra deposits and associated horizons were derived solely 

from visible layers of ash, usually due to the exceptionally high concentration of 

shards in sedimentary sequences and proximity to the eruption centre (Mangerud et 

ah, 1984). Although some visible layers of ash have been discovered distally from
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their volcanic source, i.e. Vedde Ash found in Norway (Birks et al., 1996) and the 

FMAZ II in the North Atlantic (Wastegard et al., 2006), the scope of 

tephrochronology was predominantly limited to proximal localities or areas where 

conditions favoured intensified shard accumulation (Turney et al., 2004). Persson 

(1966) initially identified several cryptotephras in a Swedish peat bog and the 

adoption of this approach increased when cryptotephras were found within a number 

of peat sequences (Dugmore, 1989). This allowed tephrochronolgical frameworks to 

be developed over larger areas than previously obtainable by extending the limits of 

eruptions by up to 2500 km (Blockley et al., 2007). Consequently, distal tephra 

studies offer a significant potential for providing wide ranging time-stratigraphic tie- 

lines and offer a comprehensive archive for reconstructing volcanic eruption 

histories (Davies et al., 2005; Blockley et al., 2007; Lowe et al., 2008; Davies et al., 

2012).

2.3.2 Cryptotephrochonology

A marked change in tephra extraction techniques facilitated the first discovery of 

distal tephras shards; cryptotephras are typically fine grained (<100 pm in diameter) 

and/or occur in exceptionally low concentrations. Cryptotephras are defined as 

horizons that contain volcanic material in such low concentrations that they are not 

visible upon visual core inspection (Turney et al., 1997). The detection of 

cryptotephras using density separation techniques within terrestrial, marine and ice- 

core records is revolutionising the way palaeoenvironmental archives are dated and 

compared (e.g. Lowe et al., 2001; Wulf et al., 2004; Mortensen et al., 2005; Lane et 

al., 2011; Wulf et al., 2012; Davies et al., 2010; Abbott and Davies 2012; Davies et 

al., 2014; Lane et al 2014). Cryptotephra investigations have now been undertaken 

within a wide-range of different time-intervals (Wastegard et al., 2005; Hibbert et al., 

2014), greatly increasing the area over which a diverse number of sediment 

sequences can be synchronised (e.g. Blockley et al., 2007, Pyne O’Donnell et al.,

2012). For example, the Vedde Ash has been traced in Continental Europe (Turney 

et al., 2006) as far east as Russia (Wastegard et al., 2000) and Slovenia (Lane et al., 

2011), south into the Netherlands (Davies et al., 2005) and most southerly in 

Switzerland (Blockley et al., 2007).
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The application of cryptotephrochronology has been adopted to address a plethora of 

palaeoenvironmental and archaeological questions (e.g. Blockley et al., 2007; Lane 

et al., 2011; Lane et al., 2014). Distal occurrences have been utilised to augment 

volcanic history and dispersal compilations derived from the proximal realm (e.g. 

Larsen et al., 1999, Oladottir et al., 2011). Deposits have additionally been used for 

improving chronological models (Brauer et al., 2014) and assessing landscape 

development (e.g. Dugmore and Newton, 2012). Many researchers’ goal is the 

adoption of cryptotephrochronology in the quest for constraining rapid climatic 

events and assessing synchroneity between different components of the climate 

system (Lowe et al., 2008; Davies, 2015). This requires the construction of a 

comprehensive framework of volcanic events recorded in the Greenland ice-cores 

and marine sequences. Geochemical signatures, stratigraphic positioning and age 

estimates are essential building blocks for these frameworks (Lowe et al., 2008, 

Blockey et al., 2012; Davies et al., 2012; Blockley et al., 2014) (i.e. Fig 2.2). Before 

updating any framework, tephra discovery requires a careful assessment of origin 

and ruling out secondary deposition, which may introduce unwanted complexities to 

the stratigraphical position of the tephra deposit.

2.3.3 Geochemical fingerprinting

2.3.3.1 Major element analysis

Major element geochemical fingerprinting is an essential step for establishing 

correlations between sequences (Davies et al., 2012). Electron probe microanalysis 

(EPMA) has been routinely applied to acquire the geochemical composition of 

tephra deposits (Hunt and Hill, 1993; Hayward, 2012). Wavelength dispersive 

spectrometry is the preferred method of analysis which provides characterisation of 

ten major element oxides. An important progress made in EPMA analysis has been 

the optimisation of operating conditions to permit cryptotephra shards as small as 10 

pm to be successfully analysed (Hayward, 2012).
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Figure 2.2 The INTIMATE event stratigraphy and corresponding tephrostratigraphical framework for 
European volcanic records after Blockley et al. (2014). Tephra located within the ice-core record are 
shown against NGRIP (orange lines) and are reported in Mortensen et al. (2005), Davies et al. (2010) 
and Bourne et al. (2013). Key tephras from other North Atlantic and continental European volcanic 
centres are shown.
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Internationally accepted reference glasses i.e. Lipari and BCR2G are routinely used, 

providing a check on analytical quality (Kuehn et al., 2011). Reporting of secondary 

standards is crucial for the intercomparison of datasets (Kuehn et al., 2011; Davies et 

al., 2012). Reference standards analysed during EPMA conducted in this 

investigation are reported in the appendix.

Following EPMA, comparative compositional analysis of proximal and distal 

deposits is performed to establish volcanic provenance. The majority of Pleistocene 

proximal records are discontinuous but available volcanic histories provide a 

valuable assessment of source origin (Larsen et al., 1999). One of the most 

challenging issues in geochemical analysis is the discovery of several tephras of 

similar age that have repeated similar geochemical signatures (e.g. Bourne et al.,

2013). Employing these deposits is difficult, especially if the potential correlative 

proxy record contains only one component of these deposits (Bourne et al., 2013; 

Davies, 2015). Trace element analysis may be necessary in addition to major 

elements to provide a diagnostic and more robust method of geochemical 

fingerprinting.

2.3.3.2 Trace element analysis

An advancing analytical approach in tephrochronology is the use of laser ablation 

inductively-coupled mass spectrometry (LA-ICP-MS) to provide data for thirty 

petrogenetically significant minor and trace elements (Pearce et al., 1999; 2007). 

Developments in laser technologies have enabled more controlled ablation of glass- 

shards and offer the possibility of analysing shards in the 10-20 pm range (Pearce 

2010; Abbott et al., 2013; Pearce et al., 2014). Subtle variations in trace elements can 

retain the signature of different evolutionary phases of an eruptive event (Abbott et 

al., 2014) and demonstrate that miscorrelations may arise if major elements are used 

in isolation (Davies et al., 2012, 2014; Bramham-Law et al. 2013). Trace-element 

signatures of Katla rhyolites that are close in age proved indistinguishable, 

supporting common origins rather than aiding discrimination (Lane et al., 2011). 

Much is to be gained from future trace element work to expand the search for unique 

geochemical fingerprints. Trace element analysis clearly provides an important 

discriminatory tool for establishing tephra correlations and potential correlatives
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must be characterised through ‘side by side’ microprobe analysis to minimise 

changes arising from different analytical periods (Pearce et al., 2014).

2.4 Taphonomical assessment

Understanding the stratigraphical distribution of a cryptotephra deposit is key to 

determining the exact timing of deposition and defining the precise occurrence of the 

isochron (Davies et al., 2012). The environment of deposition helps govern the 

degree of dissemination of the distal tephra concentration zone and preservation 

following site-specific sedimentation processes (Pyne-O’Donnell 2008; Lowe, 

2011). Some tephras occur as a single, thin, laterally continuous horizon, whereas 

others may be discontinuous and dispersed through a sequence up to ten decimetres 

in thickness (Lowe, 2011). Usually, the point of maximum shard concentration is 

accepted as the isochron, but a variety of taphonomic and re-working processes can 

affect the primary depositional signal (Austin et al., 2004). Incorrect positioning of 

the tephra isochron may lead to erroneous age transfer and inappropriate comparison 

of climatic information derived from the proxy data. It is therefore essential that the 

stratigraphical and depositional integrity are thoroughly assessed. This is an issue 

particularly prevalent in the ocean due to the complexity of processes that transport 

tephra to the water surface and subsequently within the ocean system (e.g. Austin et 

al., 2004; Brendryen et al., 2010; Abbott et al., 2011; Griggs et al., 2014; Davies et 

al., 2014).

2.4.1 Marine tephrochronology: unravelling depositional 
processes

A shift in recent years has seen an increase in the search for cryptotephras within 

marine sequences, particularly during MIS 4 and 5 and the Lateglacial (Brendryen et 

al., 2010; Bourne et al., 2010; Abbott et al., 2011, 2013, 2014; Davies et al., 2014; 

Jennings et al., 2014). Although macroscopic deposits have been reported for many 

years (Haflidason et al., 2000; Rasmussen et al., 2003; Wastegard et al., 2006) it is 

only recently that fine-grained shards have been investigated to expand the potential
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for synchronising distal tephra occurrences. Not only have these studies identified 

previously unknown volcanic events, but have facilitated tephra correlations between 

cores (Davies et al., 2014). Successful construction of a tephrochronological 

framework requires a challenging assessment of the integrity of cryptotephra 

deposits present within marine sequences. Unlike ice-core and terrestrial 

environments where tephra arrives predominantly by wind dispersal, the marine 

realm includes additional deposition mechanisms.

The regional dispersal and localised deposition of tephra in North Atlantic marine 

sequences is the product of several processes occurring aerially and internally within 

the ocean system, in turn influencing their applicability as isochronous horizons 

(Brendryen et al., 2010). Tephra shards in the ocean are subject to both secondary 

transport and depositional processes (Fig. 2.3), which potentially introduces 

stratigraphic and chronological uncertainties. These are particularly relevant for 

cryptotephra deposits that are comprised of a low concentration of glass particles and 

are more susceptible to re-working. Bioturbation may displace or blur the lower 

contact of the tephra horizon by drawing material down through the profile, reducing 

the tephra concentration at the peak of deposition. It may also move material 

upwards through the sequences, again decreasing the concentration of the tephra 

peak (Ruddiman and Glover 1972; Bromley 1986; McCave 1988; Todd et al., 2014; 

Cassidy et al., 2014). Direct sedimentological analysis of tephra and cryptotephra 

deposits, allied to rigorous geochemical fingerprinting and down-core shard 

concentration profiles can provide important diagnostic evidence for the mode of 

tephra delivery to the seabed. The main modes of tephra delivery from eruption to 

ocean water surface and through the water column are presented below (Fig 2.3).

2.4.1.1 Primary airfall

Following an eruption, tephra is ejected into the atmosphere and primary ash fall 

deposits are expected to contain a well-sorted distribution. Size and density-related 

processes determine transport of ash through the atmosphere (Sparks, 1981). A 

primary airfall deposit will most likely contain a greater concentration of fine­

grained tephra particles as the distance from source increases. Primary airfall 

deposits are typically characterised by a homogeneous geochemical population,
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representing a single eruption, or multiple homogeneous populations, from very 

closely timed eruptions (Brendryen et al., 2010).

2.4.1.2 Iceberg rafting

Following an eruptive event, an important transport pathway is the proximal 

deposition of tephra onto ice-sheets that undergo calving and rafting to distal 

locations (Fig 2.3) (Brendryen et al., 2010). This process can deliver larger material 

to a distal depositional site than would typically be associated with primary 

atmospheric fallout. Iceberg rafting is dependant on the time taken for the iceberg to 

calve from the ice-sheet into the ocean. It is likely to contain an amalgamation of 

material sourced from a number of eruptions and different volcanic centres 

(Ruddiman and Glover, 1972; Lackschewitz and Wallrabe-Adams, 1997; Brendryen 

et al., 2010). Tephra delivered via iceberg rafting is expected to be characterised by a 

poorly sorted size distribution and a heterogeneous geochemical signature 

(Brendryen et al., 2010; Abbott et al., 2011). The identification of co-varying IRD in 

the sequence is further criterion for identifying iceberg rafting events (Lackschewitz 

and Wallrabe-Adams, 1997; Davies et al., 2014). Iceberg rafting is likely to 

compromise the integrity of a tephra horizon by causing significant temporal delay 

between eruption and subsequent deposition into a sedimentary sequence, potentially 

by several millennia (Brendryen et al., 2010). It has been suggested that studying 

iceberg rafted tephra deposits could aid in the reconstruction of glacial ocean surface 

circulation patterns (Kuhs et al., 2014).

2.4.1.3 Sea-ice rafting

Another potentially important transport mechanism is deposition of tephra onto sea- 

ice, which can cause time lags of years to decades (Brendryen et al., 2010). Although 

sea-ice persisted in the North Atlantic during the last glacial, modelling estimates 

this was limited to the central Arctic Ocean and areas under the influence of the East 

Greenland Current. This suggests that sea-ice production was typically seasonal, 

particularly in the Nordic Seas (Starz et al., 2012).
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Figure 2.3 Schematic summary of the main processes that can influence the transport and deposition 
of tephra in the marine environment.
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This prevents the accumulation of multiple eruptions and sea-ice rafted deposits are 

likely to have a homogenous geochemical signature (e.g. Austin et al., 2004). Austin 

et al. (2004) interpreted that homogeneous geochemistry and coarser shard sizes of 

the NAAZ II in MD95-2006, were indicative of initial airfall deposition and 

subsequent transport to the core site by sea-ice. However, coarser shard sizes are not 

always a diagnostic indicator of sea-ice rafting, as fine-grained glass shards can also 

be transported long distances on sea-ice. Whilst this mechanism can increase 

regional dispersal of tephra, it is unlikely to affect the integrity of deposits as an 

isochron, as the temporal lag is far shorter than the sampling resolution of marine 

sequences. As this mechanism does not involve calving from ice sheets, the deposit 

is unlikely to be associated with a coeval IRD signal.

2.4.1.4 Ocean Currents

Following tephra deposition onto the ocean surface by means of wind, iceberg 

rafting or sea-ice rafting, glass shards will move from the surface down to the seabed 

(Wallrabe-Adams and Lackschewitz, 2003). Laboratory experiments demonstrate 

that vertical density currents generated by ash loading allow the movement of 

particles to overcome strong density gradients in the ocean and transport ash one to 

three orders of magnitude faster than is possible by Stokes Law (Carey, 1997; 

Manville and Wilson, 2004). Wallrabe-Adams and Lackschewitz (2003) 

hypothesised that glass particles could be transported laterally over a relatively large 

distance (20-55 km) during the sinking process. However, rapid settling of ash 

particles implies that transport through the water column would not affect the 

chronological integrity of the deposit. Although residence time in the water column 

can be affected by turbulence and salinity boundaries (Manville and Wilson, 2004), 

this is unlikely to keep a shard in suspension for more than a few days to weeks, 

since tephra is likely to fall through the water column within marine snow (Fig 2.3). 

Wiesner et al. (1995) demonstrated that the vertical oceanic settling velocities into 

deep-water sediment traps in the South China Sea were >2 cm/s following the 

paroxysmal phase of the Pinatubo eruption in 1991.

One process that may disturb tephra following deposition is redistribution and 

erosion by bottom currents. Michels (2000) calculated that geostrophic bottom
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current velocities may range from 25 to 36 cm/s in the Nordic Seas during storm 

events. This could influence spatial distribution of tephra, resulting in distinct 

variations in horizon thickness and glass shard concentration in nearby cores 

(Wallrabe-Adams and Lackschewitz, 2003). An increase in bottom currents during 

interstadials and storm events may remobilise material from previously deposited 

eruptions. Any bottom-current induced erosion is likely to mobilise tephra material 

and produce an upward gradational distribution or tail-off in shard concentration 

(e.g. Abbott et al., 2013, 2014). For cryptotephra deposits, an upward tail in 

concentration from a main peak would be expected to have a corresponding 

homogeneous geochemical signature throughout the deposit. However, material from 

older eruptions may become remobilised and transported from one site to another, 

resulting in the deposition of material sourced from a number of different events. 

This reinforces the need for careful scrutinisation of cryptotephra shard 

concentration profiles together with an assessment of geochemical results from 

several intervals within these deposits (Abbott et al. 2014; Davies et al., 2014).

2.4.1.5 Post-depositional re-working

Following deposition of tephra onto the seabed it is susceptible to bioturbation, as 

well as being reworked by bottom currents (Abbott et al., 2011). Characteristic 

sedimentological evidence of bioturbation includes a gradational upper contact that 

is spread over several centimetres, introducing a number of stratigraphical 

uncertainties (Manville and Wilson, 2004; Lowe, 2011, Todd et al., 2014). Low 

concentrations of shards below the peak are also considered to be a signature of 

bioturbation, although this is unlikely to affect position of the peak in shard 

concentration (Ruddiman and Glover, 1972). Remobilisation of material can occur as 

a result of turbidity currents, and present-day tephrostratigraphic techniques are not 

sufficient to isolate the complex interplay of post-depositional processes and 

pinpoint the modification mechanisms at work.

2.4.1.6 Exploring micro-sedimentological features
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Two-dimensional (2D) investigations, such as thin section analysis, reveal many 

micro-sedimentological features in a range of sedimentary environments (e.g. Harris, 

1998; Kemp, 1999; Paulsen et al., 2003; Atkins, 2004; Payne et al., 2006; Menzies 

and Brand, 2007; Kooistra and Pulleman, 2010). Recent investigations by Matthews 

et al. (2011a) examined the potential of micromorphology to identity 2D micro- 

sedimentological structures within tephra deposits from a marine core in the 

Southern Adriatic. This work identified features associated with turbidite deposition, 

bioturbation and additional micro-scale evidence of gravitational loading and 

resedimentation. Micromorphological analysis of sediment structures has the 

potential to provide additional supporting evidence for understanding the 

taphonomic processes associated with tephra deposition.

Exciting new studies have demonstrated the potential of applying three-dimensional 

(3D) techniques such as X-ray microtomography (pCT) to Quaternary sediments, 

providing greater insight into sedimentological processes (Kilfeather and van der 

Meer, 2008; Tarplee et al., 2011; Bendle et al., 2015). The ability to examine the 3D 

internal architecture of tephra deposits within cores is currently untested but may 

permit visualisation of a range of sedimentary features, facilitating examination of 

sediment/tephra interface through several planes of the core. This may improve 

stratigraphic accuracy of the tephra isochron, whilst supporting the interpretation of 

marine sedimentary processes. When combined with detailed analysis of the tephra 

geochemistry, shard distribution and particle size analysis, this approach should 

provide a more precise assignment of tephra in the marine environment.

High resolution pCT is a non-destructive method for imaging internal structures in 

three dimensions at micron-scale spatial resolution, based upon the fundamental 

principle that x-ray attenuation is a function of X-ray energy and the density and 

atomic number (Z) of scanned material (Landis and Keane, 2010; Cnudde and 

Boone, 2013). A series of radiographs are compiled to create 3D representations that 

can be computationally manipulated to perform a wide array of visualisation tasks 

(Ketcham and Carlson, 2001). Successful geological applications of pCT include the 

study of the pore geometry of carbonate reservoirs (Purcell et al., 2006), rock fluid 

analysis (Wennberg et al., 2009), glacigenic deformation structures (Tarplee et al., 

2011) and proximal volcanic textures (Polacci et al., 2006). As tephra shards and 

their host sedimentological matrix fall within known density ranges (Turney, 1998;
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Blockley et al., 2005) they should exhibit different X-ray absorption properties, 

allowing the detection and isolation of tephra in a marine core through the use of 

pCT techniques. However, the contrast between these materials is very small, with 

quartz (2.65 g/cm3) and heavy minerals exhibiting similar densities to basaltic tephra 

(>2.5 g/cm3). This may cause an overlap between the sediment and tephra 

reconstructions but, if this contrast can be detected, it should be possible to 

deconvolve the two phases using histograms of density variations (see section 3.10).

2.5 North Atlantic tephrochronological framework for 
MIS 2 and 3: current status

2.5.1 North Atlantic marine framework

Tephra deposits in North Atlantic marine sediments, retrieved mainly from the IRD 

belt, were originally described by Bramlette and Bradley (1941) and later by 

Ruddiman and Glover (1972). They named these Late Pleistocene horizons the 

NAAZ I, II and III. Investigations in the Faroes region during the past decade have 

identified three new tephra deposits; FMAZ II, III and IV (Rasmussen et al., 2003; 

Wastegard et al., 2006; Wastegard and Rasmussen, 2014). Five ash zones, ‘VI-V5’ 

spanning MIS 2-3 have additionally been discovered in numerous cores from the 

Reykjanes Ridge (Lackschewitz and Wallrabe-Adams, 1997). Tephra deposits 

covering this interval have also been detected in the Iceland Sea (Voelker et al.,

2000). These tephras form the current marine tephrochronological framework for 

MIS 3 (Fig 2.6). This work has mainly focused on visible horizons or coarse-grained 

tephra shards, >150 jam in diameter, and may have failed to detect additional 

deposits present in low concentrations within finer fractions. The identification of 

coarser tephra shards in isolation may preferentially target material that has been 

susceptible to secondary deposition. As such, the low number of horizons detected in 

this interval may be a reflection of the limited number of cryptotephra studies 

employed during MIS 3, rather than the relative absence of tephra deposits. The 

following section outlines these previously discovered tephra deposits within the 

marine environment during MIS 2 and 3 (16-55 ka) and discusses their integrity and

25



Chapter 2 Literature review

integration within a marine tephra framework (Fig 2.6). The location of individual 

cores referred throughout the thesis is presented in Figure 2.4.

2.5.1.1 NAAZII

The NAAZ II forms a complex ash zone that has been discovered extensively within 

the marine environment throughout the North Atlantic, rendering it a significant 

marker horizon during DO-15 and MIS 3 (Ruddiman and Glover, 1972; Kvamme et 

al., 1989; Lackschewitz and Wallrabe-Adams, 1997; Haflidasson et al., 2000; Austin 

et al., 2004; Wastegard et al., 2006; Brendryen et al., 2011) (Fig 2.7). A detailed 

geochemical characterisation of this horizon was originally performed by Kvamme 

(1989) and Lacasse et al. (1996), who recognised that the ash zone represents the 

products of multiple Icelandic volcanic eruptions, with one rhyolitic (II-RHY-1) and 

four mixed and dispersed basaltic components (the transitional alkali basaltic II- 

TAB-1, and the tholeiitic II-THOL-1, II-THOL-2, II-THOL-3). These are thought to 

have been deposited by a combination of ice-rafting and primary deposition with 

subsequent transportation via sea-ice (Austin et al., 2004). The II-RHY-1 component 

is the most widespread of the NAAZ II in marine cores across the North Atlantic 

(Fig 2.5), whereas the basaltic components are more irregularly dispersed 

(Wastegard et al., 2006; Brendryen et al., 2011). The II-THOL-2 component 

dominates cores from the Reykjanes Ridge (Lackschewitz and Wallrabe-Adams, 

1997; Haflidasson et al., 2000).

This may be attributed to eruption dynamics; rhyolitic material is injected higher into 

the atmosphere than material of basaltic eruptions due to the greater explosivity of 

Icelandic silicic eruptions than phreatomagmatic basaltic eruptions (Larsen and 

Eiriksson, 2008). It may also reflect different modes of tephra transport and re­

working. The rhyolitic component has been correlated to its geochemically related 

proximal deposit; the Thorsmork ignimbrite, sourced from the Tindfjallajokull 

volcanic system in Iceland and dated to 54.5 ± 2 ka b2k, using argon-argon dating 

(Storey and Stecher, 2009).
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Figure 2.5 North Atlantic marine tephrochronological framework aligned to (a) NGRIP for schematic 
purposes to illustrate stratigraphic position, (b) Marine tephra occurrences are shown schematically 
based upon their relative stratigraphic position (Lackschewitz and Wallrabe-Adams, 1997; Voelker et 
al., 2000; Rasmussen et al., 2003; Wastegard et al., 2006).
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The study of high-resolution marine sequences has revealed a temporal separation 

between the II-RHY-1 and other basaltic components, which may have been 

deposited ca. 2000 years later (Wastegard et ah, 2006) (Fig 2.6). Both basaltic and 

rhyolitic components have been found at the same strati graphical depth in EW- 

3JPC2, which may be a reflection of low sedimentation rate or secondary re­

working. The potential separation between components highlights that caution 

should be given to tie-lines defined by correlations with the NAAZ II and, at present, 

the II-RHY-1 component offers the most significant value for tephra correlations 

(Austin and Abbott, 2010).

2.5.1.2 VZ Ash Zones (V1-V5)

A suite of five ash zones (VI, V2, V3, V4, V5) have been detected by Lackschewitz 

and Wallrabe-Adams (1997) in five individual marine cores in the Reykjanes Ridge 

(Fig 2.8). Glass-shards are basaltic in composition and sourced from Icelandic 

volcanism (Fig 2.9). Relative ages of the ash layers were determined through their 

position in the chronostratigraphical framework derived from the 5lsO record, orbital 

tuning and radiocarbon dates. Downcore ash records reveal characteristic variations 

that can be correlated between records, although it is not possible to correlate single 

ash peaks. Ash layers have been divided into several geochemically similar groups 

based upon time-equivalent intervals with similar peaks (Lackschewitz and 

Wallrabe-Adams, 1997) (Fig 2.8). The ash zones are documented within the 

following time intervals; V5 (52,500-46,200 yr B.P), V4 (45,500-41,000 yr B.P), V3 

(41,000-36,500 yr B.P), V2 (36,500-29,800 yr B.P), VI (28,400-20,000 yr B.P).

An additional distinct peak, Vx, has been discovered within the VI ash zone solely 

in S082-5 (Fig 2.8). The VI-V5 ash zones exhibit a wide geochemical range within 

each deposit and display an affinity to a variety of Icelandic source volcanoes (Fig 

2.9). The Vx peak exhibits a homogeneous geochemistry and displays strong affinity 

to the Hekla system. The VI-V4 deposits correlate with high amounts of IRD (Fig 

2.8) and in conjunction with geochemical heterogeneity (Fig 2.9) imply the ash 

zones were deposited via iceberg rafting and likely to contain an amalgamation of 

individual eruptions.
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NAAZ II (II-RHY-1)

Jan Moyen

Greenland
Iceland

Sea

North Atlantic Octon
Labrador Seo

Figure 2.7 Distribution of the NAAZ II (II-RHY-1) within the North Atlantic (Ruddiman and Glover 
1972; Kvamme et al., 1989; Gronvold et al., 1995; Lackschewitz and Wallrabe-Adams. 1997; 
Zielinski et al., 1996; Haflidason et al., 2000; Austin et al., 2004; Wastegard et al., 2006: Brendren et 
al., 2011).
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A  VI ash zone 

□  V2 ash zone 

O V3 ash zone 

★  V4 ash zone 

V5 ash zone

O 12

A

B

TiO (wt %)

K 0  (wt %)

Figure 2.9 Major oxides (wt%) o f the VI-V5 ash zones derived from four marine cores on the 
Reykjanes Ridge (Lackschewitz and Wallrabe-Adams, 1997). All data have been normalised to 100% 
total oxide concentrations.
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As such, their use as isochronous markers may be limited. However, V5 and Vx 

have no corresponding IRD signal and suggest they were either deposited from a 

primary process or local sediment gravity flows (Fig 2.8). These two deposits have 

the potential to act as isochronous tie-lines between the Reykjanes Ridge and other 

North Atlantic records.

2.5.1.3 Faroe Marine Ash Zones II, III and IV

Investigations in the Faroes region during the past decade have identified three new 

MIS 3 tephra deposits; FMAZ II, III and IV (Rasmussen et al., 2003; Wastegard et 

al., 2006, Wastegard and Rasmussen, 2014). The FMAZs exhibit a basaltic 

composition and vary in geochemical homogeneity, stratigraphic position and 

dispersion within sequences (Fig 2.5). Each horizon exhibits similar geochemical 

compositions to the V ash zones described on the Reykjanes Ridge and these will be 

explored within chapter 4 to establish potential correlations between records (Fig 

2 . 10).

2.5.1.4 FMAZ II

FMAZ II was first discovered in marine cores near the Faroe Islands as a black 

visible horizon that varies from 2-10 cm in thickness and was thought to have been 

deposited by primary airfall (Rasmussen et al., 2003). The tephra occurs in DO-3 in 

all analysed cores, shortly after the warmest peak of the interstadial according to 

magnetic susceptibility measurements (Rasmussen et al., 2003). The deposit has 

been dated to 22,900-23,300 14C years, derived from numerous Faroese cores. The 

geochemistry is similar in all cores and displays affinity to the Hekla/Vatnafj 611 

volcanic system (Wastegard et al., 2006) (Fig 2.10a). A record of the FMAZ II has 

additionally been discovered in the coarse-size fraction within a core from the Barra 

Fan (Austin et al., 2012) and the Labrador Sea (Wastegard et al., 2006). This 

highlights a wide distribution in the North Atlantic, likely to have been aided by ice- 

rafting to more distal locations (Fig 2.11). A secondary geochemical population, 

FMAZ II-2, has been discovered solely in ENAM33 (Fig 2.10a).
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2.5.1.5 FMAZ III

FMAZ III was originally described in the Faroes region as the ’33 ka tephra’, where 

it forms a visible scattered tephra zone spanning the transition into the peak warmth 

of DO-8, identified in the ratio between benthic foraminifera abundances 

(Rasmussen et al., 2003) (Fig 2.11). In ENAM93-21, the deposit forms a dispersed 

zone spread over 40 cm, with a division of fresh basaltic particles in the lower 25 cm 

and higher abundances of weathered, larger particles in the upper 15 cm, considered 

to be ice-rafted (Rasmussen et al., 2003). Assigning an isochron position has been 

hampered by the highly dispersed nature of the ash zone. The majority of shards 

within the deposit exhibit an affinity to the Grimsvotn system but differ in 

homogeneity between cores, which was initially suggested to equate to tephra 

sourced from different stages of a single eruption (Wastegard et al., 2006) (Fig 

2.10b). A sub-ordinate population, FMAZ III-2, was derived from ENAM93-21 and 

exhibits a different source origin, highlighting the variation in geochemical 

compositions with the deposit (Fig 2.10b).

Recent ice-core investigations have detected a suite of eruptions with similar 

geochemistry to shards derived from the FMAZ III in the marine environment (see 

section 2.5.3.3). As a consequence, Bourne et al. (2013) suggest that the FMAZ III 

most likely represents a complex ash zone in the marine environment made up of 

material from several closely timed eruptions (Fig 2.10c). This has major 

implications for establishing tephra correlations during this period and a re- 

evaluation of the deposit is required to assess whether individual, stratigraphically 

equivalent horizons seen in the ice can be resolved in the marine realm.

2.5.1.6 FMAZ IV

The FMAZ IV is a recent discovery and appears as a thick black horizon in a number 

of marine cores in the Faroe Shetland Channel (Wastegard and Rasmussen, 2014) 

(Fig 2.10d, 2.11). The deposit exhibits an affinity to the Grimsvotn system and is 

thought to have been deposited during DO-12 and dates to ca. 47,000 years BP 

according to age model estimates (Wastegard’ and Rasmussen, 2014).

35



Chapter 2 Literature review

i t m  | i r n p | r r'T T 'T i  r i ~i

£ £ 
£ St ?.
S * *

i l l
3 3 I 

x*x

V
I I I I l . l J -1  U  U  U . L l  LA 1.

3 £III I
I  7 § § 8
I I  £ £ I
pJSJ 8
i  i  5 £ £
3 f I I  I

- . S E E
^ 2 r. ■;

< $ 5 3
* " 3 3  a 5 s I 
S 2 £ £ 
♦  *  0 o

0 0

• V

•  ¥ 0

o  Z.
o  TJ jj

(% IM) Q‘ )( (%V*)'0!i

c §£
0 ^

£ £ S= 55 e5 5 *  ̂"> p
.  < m- m r, m «; J * 11 
1 £ « 3>3 S I  i  i  * i  i  $

• 5* □

M i i H H  f  f
i t i i h i i u  
111 I i ill It 
! I l1 III

oM
5
"v

2̂  h

po o 
06 

5
" i
O

(% V̂J ’OLL (% I * )  lO i

<u x> 
o ^
03

U.
<U

-C

3 x
■- s= 
a  5
o <

3
)—I Wh

i l
^  03

-oa>
>

‘C<u
T 3

>

T 3
3
03

I—
O

<Dc>
■'3-
'C
<N

I
02
a.

•2 a  
S ' S
a  2
OJ —C O
t X

o ^'-2 g
03

£  -J

T3 
3 .
03

£ sG u. 
ox T3 

w
O
03 .—-

-J OP)
<u

O0
ca(U
C/3
1a.<u<u

-a
o

-5c_ra
a/

rs -a . 
c2 g 03

<£ a5
S ^  

J r  6
o

c2 m
r r  r- Q3-

x C

8 £  i
03 +2

c/iw O
p  &  
o ^
O i—ia> >•

"O
C
03

c
O '
O '

~o
c
eC

> £: aj Di
•s o
T3 Z  e c
03 . 5

O £o  !t:(N ^
r a>

T3
x

c2
a
-a c

« ^  
"wj u °o °Vh fN

x

o  .x
«j i£ 
"O x
2  °° r a  Q .&0
«j -a 
«  2  

w  G. 

C ^
o 2'So Pi
p  h

co
N

J3
C /3
03

X)

>
03

U-

<U

—  003 
3 01)x (u <u t i

a>c > •’“ 3
x <u aj

ro o
^  i i

3

o
<N
3a/x
X
3
£
x3'Pi ^  

1/0TD
S °3

"O
r i J  G  c

u 5s  .2 ex> ex)
s  a

N  ^< o
—  G
u. a

c
>03 G 

60 £  g -5
x 3  os cm > 3
C  K

36



Chapter 2 Literature review

Greenland
Iceland

Sea

Reykjanes
Ridge

Labrador Sea
North Atlantic Ocean

FMAZ II 

FMAZ III 

FMAZ IV

Figure 2.11 Distribution o f the FMAZ II, III and IV within the North Atlantic. 1: ENAM93-21 
(Rasmussen et al.. 2003). 2: ENAM93-20 (Rasmussen et al., 2003). 3: LINK 16 (Wastegard et al., 
2006). 4: LINK 17 (Wastegard et al., 2006). 5: LINK 15 (Wastegard et al., 2006). 6: ENAM33 
(Rasmussen et al.. 2003). 7: MD95-2006 (Austin et al., 2012). 8: EW 9302-2JPC (Wastegard et al., 
2006). 9: NGRIP (Davies et al., 2008, 2010). 10: JM11-19PC (Wastegard and Rasmussen, 2014).
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The deposit exhibits a similar geochemical composition to the V5 ash zone and a 

basaltic layer presented in Voelker et al. (2000) (see section 2.5.1.7), both of which 

fall within a similar stratigraphic position (Fig 2.10d).

2.5.1.7 Icelandic sea tephras (PS2644)

A deep-sea core sequence, retrieved from the northwestern margin of Iceland has 

revealed fifty-one tephra deposits of varying composition, homogeneity and source 

location (Voelker and Haflidason, 2015). The majority of these results have recently 

been published and as a result are not utilised within the thesis. However, two 

basaltic deposits, 5.18 m and 5.22 m, in the lower part of MIS 3 have been 

previously reported in Voelker et al. (2000) and have been used for comparisons 

where applicable (Fig 2.10d). Correlations between planktonic 5lsO and IRD records 

of sediment core PS2644 and the 8 lsO record of GISP2 suggest deposition occurred 

after the onset of H5 in DO-12 (Fig 2.12). Both deposits are heterogeneous and 

display affinity to a variety of eruptive centres (Fig 2.10d). However, a large basaltic 

component with a Grimsvotn affinity is reported in 5.18 m and is used for a number 

of geochemical comparisons (Fig 2.10d).

Voelker and Haflidason (2015) suggest many of the deposits within the record may 

represent useful chronostratigraphic markers. However, the sequence is characterised 

by numerous indistinct peaks, a predominance of geochemical heterogeneity and a 

relatively high IRD signal throughout (Fig 2.12). These are characteristic secondary 

depositional signals that suggest ash is likely to have been derived from ice-rafting, 

gravity flows and subsequent re-working, which greatly affects the integrity of the 

tephra deposits. Careful stratigraphic and geochemical scrutinisation should be 

exercised when utilising data reported in Voelker and Haflidason (2015) to prevent 

erroneous synchronisation.
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2.5.2 Greenland ice-core framework

Early ice-core tephra studies focused upon the presence of easily identifiable visible 

layers in the Greenland ice-cores, such as the NAAZ II in GISP2 and GRIP 

(Gronvold et al., 1995; Zielinski et ah, 1996). More recent investigations have 

identified cryptotephras present within the records, using peaks in acidity and 

sulphate records to target sampling windows for identifying tephra deposits 

(Mortensen et al., 2005; Davies et al., 2010; Abbott et al., 2012; Abbott and Davies 

2012; Coulter et al., 2012). In some instances, glass shards were detected in the ice 

without an associated acidity peak (Davies et al., 2010). Consequently, Bourne et al. 

(2013, 2015) have conducted a systematic search to reduce the over reliance on 

chemical indicators in order to augment a comprehensive framework of volcanic 

events preserved within the Greenland records.

Continuous sampling has recently been undertaken on four Greenland ice-cores 

(NGRIP, GRIP, NEEM and DYE-3) between 25-45 ka and ninety-nine newly 

identified horizons were assigned an age based upon the GICC05 timescale (Bourne 

et al., 2015) (Fig 2.13). The majority of shards were <50 pm and recent 

advancements in EPMA detection limits permitted robust major-element 

geochemical characterisation (Hayward, 2012) of deposits present within the ice. 

Major element signatures indicate ninety-three horizons exhibit a basaltic 

composition and display an affinity to Grimsvotn, Katla and Kverkfjoll systems, 

demonstrating the dominance of Icelandic basaltic volcanism. The frequency of 

eruptions and predominance of individual eruption centres varies throughout the 

record (Fig 2.13). A number of these deposits could be traced between ice-cores and 

have subsequently acted as reference horizons to facilitate the transfer of the 

GICC05 timescale to the NEEM and GRIP ice-cores (Rasmussen et al., 2013; 

Seierstad et al., 2014). This work greatly enhances the construction of a volcanic 

event stratigraphy for the last glacial period and widens the use of potential tephra 

horizons suitable for the synchronisation of the ice-cores to other disparate 

palaeoarchives. Nineteen tephra deposits within this framework constrain rapid 

climate events of interest and may hold significant value if they can be detected in
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the marine realm. Three horizons have been traced between ice and marine archives 

and allow insight into climatic phasing relationships (Fig 2.6). Section 2.5.3 assesses 

the robustness of these correlations and their potential for assessing leads and lags.

2.5.3 Current ice-marine correlations

2.5.3.1 GISP2 2464.275 m, GRIP 2430.95 m (NAAZ II)

The discovery of a visible tephra within GISP2 at 2464.275 m and GRIP 2430.95 m 

with a rhyolitic geochemical composition, corresponds to an age estimate of 53,310 

± 2660 b2k (Gronvold et al., 1995; Bender et al., 1994). The deposit exhibits a 

similar geochemical composition to the II-RHY-1 component of the NAAZ II 

identified in the marine environment (Fig 2.5). The rapid cooling event seen in 

GISP2 oxygen isotopes is matched by a rapid rise in the relative abundance of N. 

pachyderma (sinistral) in the MD95-2006 marine core, indicating a fall in summer 

sea surface temperatures > 8°C (Austin et al., 2004). This has been used to suggest 

the cooling transition at the end of GI-15 was synchronous between the atmosphere 

and oceans, demonstrating the successful synchronisation of these deposits (Austin 

et al., 2004; Brendryen et al., 2011).

2.5.3.2 NGRIP 1848.0 m (FMAZ II)

NGRIP 1848.0 m was identified between 1848.0-1848.1 m and exhibits a basaltic 

geochemical composition with an affinity to the Hekla/Vatnafjoll system (Davies et 

al, 2008). The horizon exhibits an exceptionally similar geochemistry to the FMAZ 

II identified from numerous Faroese cores and is dated to 26,740 ± 390 b2k using the 

GICC05 timescale (Fig 2.13) (Davies et al., 2008). According to the NGRIP 

stratigraphic position, the tephra falls within a cold period ca. 1000 years after the 

onset of GI-3, which is consistent with its position in the marine cores. This suggests 

a close coupling of the atmospheric and oceanic systems during this time (Davies et 

al., 2008). The stratigraphic position of the tephra, deposited during a prolonged
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period, precludes an assessment of rapid climate transitions but demonstrates the 

potential for synchronising between the ice and oceans.

2.53.3 NGRIP 2066.95 m (FMAZ III)

Previous work on the GI-8 interval in the ice-cores identified a single tholeiitic basalt 

horizon, NGRIP 2066.95 m (38,122 ± 723 b2k) and Davies et al. (2010) proposed a 

correlation to the FMAZ III identified in the marine environment based upon the 

broad overlap of geochemistries. Alongside the NAAZ II and the FMAZ II, the 

FMAZ III was thought to represent one of the few tie-points between the ice-cores 

and North Atlantic marine records (Abbott and Davies, 2012) (Fig 2.13). The 

stratigraphic position in the ice-cores suggests that deposition occurred ca. 100 years 

after the onset of GI-8 warming and was suggested to represent a key tephra for 

establishing phase relationships in the climate system (Davies et al., 2010; Davies et 

al., 2012). Given the dispersed nature of the ash in the marine environment, 

establishing a secure isochronous position was a key objective to permit successful 

synchronisation and transfer of the climatic signal. This initially formed the 

overarching aims of this thesis, but was subsequently modified following the 

identification of fourteen new tephra deposits in NGRIP spanning GI-8-GI-9 

(-38,000-40,500 b2k) (Bourne et al., 2013) (Fig 2.10c, Fig 2.13).

With two exceptions, the suite of tephra horizons identified by Bourne et al. (2013) 

exhibit a tholeiitic basaltic composition that could be discriminated by subtle 

differences in TiC>2. Each individual horizon fell within the broad compositional 

range of the FMAZ III defined by Wastegard et al. (2006) and suggest this deposit is 

far more complex and challenging than previously envisaged. As such, the FMAZ III 

could no longer be correlated to NGRIP 2066.95 m defined by Davies et al. (2010) 

and could not be utilised as a secure marine-ice tie-point. Bourne et al. (2013) 

recommends it may be fruitful to conduct investigations in high sedimentation cores 

outside of the Faroes region to increase the likelihood of detecting one or two 

components, rather than the full suite of eruptions documented in the Greenland ice- 

cores. This prompted the search for individual components in high sedimentation 

areas such as MD04-2829CQ and MD99-2281. In order to optimise their use as 

potential isochrons, a detailed high-resolution cryptotephra investigation is necessary
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to fully categorise the geochemical and taphonomic variability of the FMAZ III in 

the marine environment. Given the stratigraphic value of the FMAZ III to resolve 

phasing relationships in the climate system, these recommendations form the central 

aims of the thesis. Although the work of Bourne et al. (2013) shed new light on the 

complexity of the FMAZ III, the overall goals of achieving synchronisation 

remained unaffected.

2.5.4 Complications of the current framework

As demonstrated by the recent discovery of fourteen horizons straddling GI-8-GI-9, 

the occurrence of compositionally similar tephras within a short time interval 

presents a number of challenges (Bourne et al., 2013). Despite their useful 

stratigraphic position, their potential value to link different records rests on their 

distinct geochemical composition relative to others close in age (Bourne et al., 

2015). Major element geochemistry may not be sufficient for establishing secure 

correlations between tephra deposits in these instances. Trace element analysis may 

be necessary to facilitate geochemical discrimination (Davies, 2015). Trace elements 

show greater variability than major elements because they are more strongly affected 

by internal magmatic processes such as crystallisation and assimilation (Pearce et al.,

2010). This study additionally aims to test correlations using trace element 

characterisation, where necessary, to permit robust comparisons.

The current North Atlantic framework relies on the completeness of the Greenland 

ice-core records to document a volcanic event stratigraphy from the last glacial 

period. However, this is unlikely given the complexity of eruption plume dynamics 

and favoured wind dispersal patterns south of Iceland (Larsen et al., 1981). 

Consequently, horizons may be present in marine cores that cannot be correlated to 

the ice because of the absence of an equivalent horizon. However, the extensive 

framework of ice-core horizons (Fig 2.13) provides ample opportunity for detecting 

geochemically similar deposits in the marine environment and this study aims to 

build upon the existing marine framework (Fig 2.4,2.5). This will permit the 

integration of records and insightful comparisons of the climatic and environmental 

records that they constrain (Davies et al., 2014).
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2.6 Conclusions

• D-0 events are a common feature of the last glacial period, expressed as rapid 

climate fluctuations in a variety of proxy sequences. However, dating 

uncertainties and issues associated with tuning have plagued the integration of 

records, precluding an assessment of leads and lags in the climate system

• Ice cores (recording atmospheric changes) and marine cores (recording oceanic 

changes) can be synchronised through the use of independent marker horizons to 

provide an insight into climatic phasing relationships. This forms the TRACE 

synchronisation goals and is a central theme of the thesis.

• The adoption of cryptotephrochronology has greatly increased the area over 

which deposits can be traced. Advancement in geochemical fingerprinting 

techniques has increased the ability to characterise small shards and the 

robustness of tephra correlations.

• Taphonomic issues in the marine environment have provided a variety of 

challenges to robustly assess the integrity of tephra deposits. The use of 

diagnostic indicators is necessary to unravel depositional processes and 

successfully integrate primary isochrons into a marine tephrochronological 

framework.

• Ten tephra horizons forming the current marine tephrochronological framework 

exhibit a range of geochemical and depositional characteristics. Further analysis 

is necessary to assess the integrity of the deposits, potential correlations between 

existing horizons and their value as isochronous markers.

• The marine environment offers untapped potential to increase the number of 

available tephra isochrons that can be built into the existing framework. This can 

then be used to trace coeval deposits in the ice-core framework and facilitate 

synchronisation.
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Chapter 3 Methodology

3.1 Introduction

In order to develop the MIS 2 and MIS 3 tephrochronological framework for the 

North Atlantic region, samples were taken from four individual marine sequences 

retrieved from the North Atlantic and Norwegian Sea. Extraction techniques were 

employed to detect tephra deposits within these sequences. Each tephra deposit was 

geochemically characterised and assessed for their depositional integrity. The 

following sections provide information on; a) the marine cores sampled; b) tephra 

extraction methods; c) major and trace element analysis; d) statistical treatment of 

data-set; e) techniques used to assess depositional integrity; f) construction of thin- 

sections for micromorphological analysis and; g) instrumental pCT parameters used 

to reconstruct 3D structures of tephra deposits.

3.2 North Atlantic marine cores

Four marine cores from the North Atlantic, recovered previously from numerous 

cruise expeditions, were sampled through collaboration with various European 

institutions (see table 3.1). The coring sites are located on a NE-SW transect across 

the eastern Atlantic and Norwegian Sea (Fig 3.1). The ideal criteria for core selection 

are as follows:

1. Cores should have been retrieved from high sedimentation areas;

2. Sites should contain a well-resolved and high-resolution D-0 signal between 

approximately 16-55 ka;

3. D-0 proxy reconstructions should be supported by an independent 

chronology;
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4. Sites should be located away from the main IRD belt to minimise tephra 

sourced from ice-rafting;

5. Sufficient core material should be available to enable continuous U-channel 

sampling.

Unfortunately, not all of the above criteria could be met for each site. For example, 

the availability of MD04-2829CQ material was insufficient for U-channel sampling 

so individual 1 g samples were obtained instead. An abundance of material was 

available from JM11-19PC and this was used for additional thin-section and pCT 

experimentation (see sections 3.9, 3.10). A limited sampling window was targeted 

from MD99-2281 to trace a specific composite of tephra deposits within DO-8 in a 

region of exceptionally high-sedimentation (see table 3.1).

Table 3.1 Core details for each marine sequence. MD04-2829CQ was sampled at the School of Earth 
and Ocean Sciences, Cardiff University. JM11-19PC was sampled at the Centre for Arctic Gas 
Hydrate, Environment and Climate, University o f Tromso. MD99-2281 was sampled at EPOC, 
University of Bordeaux. MD95-2010 was sampled at the Department o f Earth Science, University of  
Bergen. Age ranges are based upon sampling intervals and equivalent ages derived from age 
models/tuning presented in Hall et al., (2011), Ezat et al. (2014), Zumaque et al., (2012), and Dokken 
and Jansen (1999) respectively.

Core name Location Co-ordinates
Water 

depth (m)

Depth 

interval 

analysed (cm)

Age range 

analysed (ka)

MD95-2010
Voring

Plateau

66°41’N,

4°34’E
1226 450-850 -23-41

JM11-19PC
North Faroe 

Slope

62°48.98” N 

03°52.04’ E
1179 190-628 -16-55

MD99-2281 Faroe Bank
60°21’N,

9°27’W
1197 1869-1900 -38-39

MD04-2829CQ
Rosemary

Bank

58°56.93,N,

9°34.30’W
1743 300-1007 tOOT—HI

47



Chapter 3 Methodology

48



Chapter 3 Methodology

3.3 Tephra extraction of marine sediments

The tephra extraction method employed was based on a modified procedure outlined 

in Turney (1998), Blockley et al. (2005) and adapted for marine sediments by Abbott 

et al: (2011). The method involves a stepped flotation protocol that isolates material 

from the host sediment at different stages within the procedure (Fig 3.2) (Blockley et 

al., 2005).

Sediment samples were freeze dried and 0.5 g of dry weight (gdw) sediment from 

each sample was weighed for tephra analysis. The sediment was then immersed in 

dilute hydrochloric acid (HC1) (10%) overnight to remove carbonate material. Each 

sample was subsequently wet-sieved through meshes into three separate grain-size 

fractions (>125 pm, 80-125 pm and 25-80 pm). Density separation was then 

performed on the 25-80 pm grain-size using the heavy liquid sodium polytungstate 

(SPT), separating the sample into three separate density fractions. The first float at

2.3 g/cm removes lighter material, mostly the biogenic component such as diatoms. 

The second float at 2.5 g/cm3 isolates rhyolitic tephra shards from the host material 

as they typically exhibit a density between 2.3-2.5 g/cm . Basaltic material typically 

exhibits a density greater than 2.5 g/cm3 and remains within the denser component 

together with any heavy minerogenic material.

*5
Material from the >125 pm, 80-125 pm and 25-80 pm (2.3-2.5 g/cm ) fractions were 

mounted in Canada Balsam on microscope slides for quantification of tephra content 

using optical microscopy (see section 3.6). Material with a density of >2.5 g/cm was 

magnetically separated to further purify the basaltic material (see section 3.4).

3.4 Magnetic separation of shards

Basaltic tephra exhibits ferromagnetic properties, mainly due to the high Fe content 

and through the influence of paramagnetic elements such as Al, Mg and Na (Walden 

et al., 1999).
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Is the sample being prepared for 
 ̂ geochemical analysis?^-"

foes the sample contain a hi] 
tephra concentration?

NoYes

Yes

No

8. Lycopodium spores added.

9.Shards are picked using a 
micro-manipulator and mounted in 
epoxy resin

9. Evaporate the appropriate grain 
size and density fraction using 
Candada Balsam.

8. >2.5 g cm3 fraction dried and magnetically separated in procedures outlined in Fig. 3.3.

2. Weight out 0.5 gdw of freeze dried sediment.

3. Transfer the sediment into a centrifuge and leave overnight in dilute (10%) HC1.

1.Freeze dry 2 g of sediment from the sample.

10. Shards counted from the 80-125 pm >125 pm 2.3-2.S g em3 and >2.5 g cm3 fractions
using optical microscopy.

4. Sieve samples through 125 pm, 80 pm and 25 pm meshes and retain in separate
centrifuge tubes.

6. Add 4 ml of 2.5 g cm3 to the original centrifuge tube and centrifuge for fifteen minutes at 
2.500 rpm with a brake of 2. Decant into a separate centrifuge tube. Repeat.

5. Add 4 ml of SPT prepared to 2.3 g'cm3 to the 25-80 pm fraction, and centrifuge for 
fifteen minutes at 2,500 rpm with a brake of 2. Decant into a centrifuge tube. Repeat.

7. Remove SPT from the <2.3 g'cm3 and 2.3-2.5 g cm3 floats by adding distilled water 
and centrifuging at 2.500 RPM with a brake of 9. Repeat two times. All samples then 

________ washed with with distilled water to remove any remaining SPT_________

Figure 3.2 Summary o f the stepped density flotation protocol modified from Turney (1998), Blockley 
et al. (2005) and Abbott et al. (2011).

50



Chapter 3 Methodology

This allows tephra shards to be separated from non-magnetic minerals, e.g. quartz, 

when a magnetic current is applied to the sample of interest (Froggatt and Gosson, 

1982; Mackie et al., 2002). Previous experimentation has demonstrated enhanced 

efficiency of this technique by alteration of the magnetic field strength and the 

forward and sideway tilt of the apparatus (Froggatt and Gosson, 1982; Mackie et al., 

2002).

With a Frantz IsoDynamic Magnetic Separator, a series of experiments were 

conducted to determine the optimal parameters to isolate basaltic material from 

marine sediments. Experimentation was conducted on one specific marine sample 

from a Faroe Islands core (LINK 16), which was known to contain basaltic tephra 

(Abbott et al., 2014). Ten sub-samples were extracted from this sample and the total 

tephra to minerogenic material ratio was counted (Table 3.2). Ratios have been used 

as it could not be assured that the total number of shards within each sub-sample was 

consistent and it was assumed that the ten sub-samples would exhibit the same ratio 

between tephra and mineral particles. Different parameters were used for each 

individual sub-sample i.e. the magnetic current, tilt and slope were altered and the 

ratio of basaltic shards to minerogenic particles was determined (Table 3.2). The 

non-magnetic fraction was mounted to quantify the percentage of tephra shards that 

may have failed to be separated. The percentage of tephra in both fractions was then 

quantified. The parameters that delivered the most effective recovery of tephra were 

identified as a current of 0.85 nA, tilt of -15° and a slope of 22.5°. A stepped 

protocol for this process has been developed and is presented in Figure 3.3. These 

parameters were then employed throughout the study to purify any basaltic shards 

present within marine sequences and improve efficiency during shard counting.
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loes the sample contain a lug] 
tephra concentration?

No

2. Settings: tilt o f -15°and a slope o f 22.51

3. Low field intensity off, reversing switch positive (+). range mode high

4. Voltage on die potentiometer is turned to maximum. Current to (+) 0.85 nA

6. After 30 seconds, vibrate for 10 seconds. After a further 30 seconds, current switched off

S. Distilled water added to the bucket on 
the left and sediment transferred into a 

centrifuge tube for spiking with Lycopo- 
dium spore tablets

8. Distilled water added to the bucket on 
the left and pipetted onto a slide for 

mounting in Canada Balsam

5. Sample emptied into the chute and agitated to ensure full transfer

1. Sediment >2.5 g 'cm3 retained after density separation and dried at 40°C for a
minimum of 2 davs

7. Vibration function off. Sediment from the magnetic fraction re-introduced into the 
chute for further purification. Current and vibration function on

Figure 3.3 Summary o f the protocol for the magnetic separation of basaltic shards from mineral-rich 
sediments using a Franz IsoDynamic Magnetic Separator.
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Table 3.2 Magnetic separator parameters used for detecting the most effective recovery o f tephra 
shards. The control sample (CTRL) was not magnetically separated and was counted to obtain the 
known ratio of tephra to minerogenic particles. Total percentages o f tephra in relation to the total 
number of mineral grains are presented from the magnetically separated fraction and non-magnetic 
fractions. Code LA8 delivered the most effective recovery o f basaltic tephra shards.

Code Tilt (°)
Current Slope 

(nA) H
Repeat

Tephra/mineral 

ratio magnetic 

fraction (%)

Tephra/mineral ratio 

in non-magnetic 

fraction (%)

CTRL 12.0/88.0

LAI -10 0.5 15 0 14.0/86.0 5.0/95.0

LA2 -15 0.55 15 1 6.0/94.0 4.2/95.8

LA3 -20 0.6 15 2 10.4/89.6 5.6/94.4

LA4 -15 0.65 15 1 10.0/90.0 1.8/98.2

LA5 -15 0.75 20 2 12.4/87.6 0.2/99.8

LA6 -15 0.85 25 2 19.4/80.6 0.4/99.6

LA7 -15 0.85 10 2 23.4/76.6 0.4/99.6

LA8 -15 0.85 22.5 2 23.6/76.4 0.2/99.8

LA9 -18 0.85 20 2 10.2/89.8 0.6/99.4
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3.5 Lycopodium spiking of samples

A palynological quantification technique, previously applied to the study of tephra 

by Gehrels et al. (2006) and Bourne (2012) was employed in samples where there 

were exceptionally high numbers of basaltic glass shards present in the >2.5 g/cm 

fraction (>1,000 per 0.5 gdw). In this technique, a known number of spores are 

added to the sample and the ratio between those grains and the tephra shards is 

determined to allow the number of tephra shards to be quantified. This technique was 

applied to samples from marine core JM11-19PC.

A Lycopodium spore tablet was added to the magnetically separated residue and 

dissolved in 5 ml of distilled water in a centrifuge tube. These samples were placed 

in a water bath at 50°C for two hours to ensure complete dissolution of the tablet. A 

dilute (10%) solution of HC1 (2 ml) was then added to remove any remaining sodium 

bicarbonate. The spiked sample was then washed three times with distilled water by 

centrifugation and finally 5 ml of distilled water was added to the centrifuge tube. 

The solution was shaken vigorously to mix the sample and eight drops of the mixture 

were pipetted onto a microscope slide and mounted in Canada Balsam. This amount 

was deemed to be the optimal volume to cover the slide beneath the cover slip, 

similar to the 500 pi recommended by Gehrels et al. (2006). Glass shards were 

counted alongside Lycopodium spores in each sample across three vertical transects 

per slide. The concentration of tephra shards, C, was calculated using Eq.3.1.

Eq. 3 .1 :C =  l X f e )

Where a) is the glass shard count, b) is the Lycopodium spore count, d) is the sample 

dry weight, 1) is the number of Lycopodium spores in each tablet (n=20,848 from the 

sample batch used within the investigation) according to the manufacturer estimate 

determined using an electronic particle counter. This methodology was adapted for 

high-resolution sampling intervals, where three tablets (i.e. 62,544 spores) were 

added to the magnetically separated residue due to the exceptionally high tephra 

concentrations.
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3.6 Tephra identification using optical microscopy

Glass shard concentrations within marine sediments were quantified using a high- 

powered light microscope. Morphological and optical properties are used for 

identifying tephra glass shards. Glass particles exhibit a range of characteristic 

morphologies i.e. blocky, platy and cuspate features. Glass fragments may also 

contain open vesicle networks (Heiken and Wohletz, 1985). Typically, silicic glass 

shards are colourless and exhibit a range of platy and cuspate morphologies.

The main optical difference between tephra and minerals is that most minerals show 

interference colours under cross-polarised light. Rapid cooling of magma during the 

formation of glass causes tephra particles to exhibit a non-crystalline structure 

(isotropic) as opposed to minerals which exhibit a crystalline structure (anisotropic) 

(Enache and Cummings, 2006). Examination of isotropic glass shards with cross­

polarised light does not affect the vibration plane of light coming from the lower 

polariser and the upper polariser will absorb the light. This causes the tephra to 

extinguish and appear dark in the microscopic field. In contrast, anisotropic minerals 

rotate the plane of polarization, scattering the light, and show birefringence colours.

The Becke line method is an additional optical property for distinguishing tephra 

particles. The Becke line is a rim of light that appears inside or outside of the grain 

boundary, depending on the contrast in refractive indices between the particle and 

the mounting medium. If the distance between the sample and the objective is 

increased, the Becke line moves into the material with the higher index of refraction 

(Enache and Cumming, 2006). Rhyolitic glass exhibits a refractive index of 1.5, 

lower than that of the mounting medium Canada Balsam (1.55). Thus, the Becke line 

will move outwards from rhyolitic shards, which contrasts to inward movement of 

many minerals which have a refractive index >1.55. Basaltic material exhibits a 

refractive index >1.55 and therefore the Becke line will move into the shard when 

the stage is defocused. This is the same as many minerals, but the morphological and 

colour characteristics of basaltic shards are more distinctive (Enache and Cummings, 

2006).
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3.7 Geochemical analysis

3.7.1 Preparation of slides for geochemical analysis

Samples selected for geochemical analysis were re-prepared using the density and 

magnetic separation procedures outlined previously. Samples containing tephra were 

pipetted in water into a slide-well and individually picked using a micro-manipulator 

with a ~80 jam diameter. Shards were then transferred onto a frosted slide and 

secured using epoxy resin. To prepare shards for geochemical analysis, polished 

sections through the glass shards are necessary. This removes post-depositional 

surface alteration and hydration, which could induce absorption and reduce the 

amount of x-rays reaching the spectrometers (Hunt and Hill, 1993).

Samples were ground down using silicon carbide paper and polished using nine, six 

and one pm diamond suspension to expose polished glass shard surfaces with a 

mirror finish. The slides were then immersed in petroleum spirit and placed in an 

ultra-sonic bath for five minutes. This removed any diamond suspension that may 

have adhered to the surface. A carbon coat was added to the surface of the slide to 

prevent charging during EPMA analysis. Colloidal graphite paint was applied on the 

surface to the edge of the slide to ensure an electrical earthed contact was obtained 

via the sample holder (Hunt and Hill, 1993).

3.7.2 EPMA analysis

Oxide concentrations of ten major and minor elements were analysed using 

wavelength dispersive (WDS) EPMA at the Tephrochronological Analytical Unit at 

the University of Edinburgh, using a Cameca SX100 electron micro-probe equipped 

with five vertical WD spectrometers. The geochemical composition is determined as 

the X-ray energy generated is individual to each element and the intensity 

proportional to the concentration of the element present (Hunt and Hill, 1993).

The operating conditions have been modified from Hayward (2012) and two 

different EPMA operating setups were used. For the first setup, three sets of column
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conditions were employed and a 3 pm beam diameter was used throughout the 

analyses of deposits with small shard diameters. Analysis using narrow beams 

requires extremely low beam currents, which are normally associated with energy 

dispersive analysis, to prevent sodium loss (Hayward, 2012). As such, NaC>2 and 

AI2O3 were determined using an accelerating voltage of 15 kV and a beam current of 

0.5 nA. The exceptionally low beam current of 0.5 nA was used in this setup 

following initial calibration to prevent sodium loss (Hayward, pers comm). 

Secondly, MgO, K2O, CaO, FeO and SiC>2 were determined using an accelerating 

voltage of 15 kV and a beam current of 2 nA. Thirdly, P2O5, TiC>2 and MnO were 

determined using accelerating voltage of 15 kV and a beam current of 60 nA. 

Counting times were 20 s at the peak position and 10s for background for all 

elements except MnO (60 and 60 s).

For the second EPMA setup two column conditions were used. Na2 0 , MgO, AI2O3, 

Si0 2 , K2O, CaO, and FeO were determined using an accelerating voltage of 15 kV 

and a beam current of 2 nA and P2O5, Ti0 2 , and MnO were determined using an 

accelerating voltage of 15 kV and a beam current of 60 nA. A 5 pm beam diameter 

was used on coarser grained shards analysed within the thesis. Counting times were 

20 s at the peak position and 10 s for background for all elements except Ti02  (30 

and 15 s), MnO (50 and 40 s) and FeO (40 and 20 s).

Pure metals, simple silicate minerals and synthetic oxides, including andradite were 

used for calibration, and the secondary standards Lipari and BCR2g were analysed 

regularly to monitor elemental drift and to assess the accuracy of the shard analyses 

(see appendix). These were recorded for both analytical set ups. Both analytical set­

ups produced similar secondary standard analyses, which permitted robust 

comparisons between samples run using either column condition. The co-ordinates 

for each shard were carefully recorded and reference crosses were etched into the 

resin and offset from the shards. This allowed the same shards to be re-located for 

LA-ICP-MS analysis.

3.7.3 LA-ICP-MS analysis
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Trace-element characterisation of individual shards from one marine and one ice- 

core horizon were obtained using an LA-ICP-MS system at the Institute of 

Geography and Earth Sciences, Aberystwyth University during two analytical 

periods in one day. The system couples a Coherent GeoLas 193nm Excimer laser 

with a Thermo Finnigan Element 2 high-resolution sector field mass spectrometer 

(Pearce et al., 2011). Due to the small grain sizes of the ice-core horizon, a laser with 

a beam diameter of 10 pm and a fluence of 10 J/cm was pulsed at 5 Hz with a flash 

duration of ~10 ns. The marine horizon contained considerably larger material but a 

10 pm laser beam diameter was used consistently for all analyses to limit any 

differential impact of fractionation effects. As a correlation between the marine and 

ice-horizons was being tested, the samples were analysed ‘side-by-side’ over the 

course of a day to limit any potential influence of instrumental differences over
90longer time periods (Pearce et al., 2014). An internal standard ( Si) previously 

analysed for each shard during EPMA analysis was utilised and NIST 612 silicate 

glass was used as the calibration standard.

The background level of elements within the system were determined by the 

systematic acquisition of measurements between individual grain analyses when no 

sample was being ablated i.e. a gas blank, and removed when calculating 

concentrations. Trace element concentrations were then calculated using methods 

outlined in Pearce et al. (2007). A correction factor was applied to remove bias in 

analyses caused by fractional affects (Pearce et al., 2011). Analyses of the secondary 

standard BCR2g were monitored at the end of the analyses.

3.7.4 Data normalisation and statistical treatment

Glass shards preserved in the marine realm are susceptible to variable levels of post- 

depositional hydration (Wallrabe-Adams and Lackschewitz, 2003; Abbott et al.,

2011). As such, the results of the EPMA analysis were normalised to 100% total 

oxide values (i.e. an anhydrous basis) to remove any variability that may be apparent 

when comparing data-sets from different depositional environments that have not 

experienced comparable levels of post-depositional hydration (Abbott et al., 2011;
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Pearce et al., 2014). All analyses with total oxide values <93% were rejected as these 

may represent inaccurate EPMA analyses that may not be attributable to hydration.

For correlation of geochemical data with published tephra horizons, all data were 

normalised for comparison purposes. Graphical comparisons were made using 

biplots and similarity coefficients (SC) to calculate the similarity between data-sets 

of major elements (Borchardt et al., 1972). SC are calculated using Eq. 3.2:

Where d(i,2)-d(2,i) is the similarity coefficient for the comparison between samples 

one and two, k is the element number, n is the number of elements, R* = Xki/Xk2 if 

Xk2 > Xk, or Xk2/Xki if Xki>Xk2, Xki is the concentration of element k in sample 1 

and Xk2 is the concentration of element k in sample 2 (Borchardt et al., 1972). SCs 

are obtained using mean values for elements which have all been normalised. Only 

oxides with concentrations > 1.0 wt% have been used for comparisons.

SCs are expressed between 0.6 and 1 and values closer to 1 indicate greater 

similarity between the data-sets. Numerical values in excess of 0.95 suggest a 

possible tephra match (Beget et al., 1992). However, further inspection of the data 

sets presented within the study suggests this may not always be the case i.e. closely 

spaced eruptions with similar geochemistry. Where comparisons have been made 

within the thesis, only those with values with SC >0.95 have been expressed. Values 

between 0.90-0.94 are thought to indicate tephras that originate from the same 

volcanic source. Values below 0.9 are indicative of unrelated tephras.

3.8 Assessing depositional integrity

In addition to assessing shard concentrations and geochemical fingerprinting, an 

examination of taphonomic processes in cryptotephra investigations is crucial. This 

can be achieved by analysing numerous diagnostic indicators. Specifically, high- 

resolution shard concentrations are employed to create a shard distribution profile,

Eq.3.2: d{] 2) = —
n
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which can assist in the likely strati graphical placement of the isochron i.e. peak shard 

occurrence. The relative concentrations of specific grain-size diameters (25-80 pm, 

80-125 pm, >150 pm) that form the concentration profiles can then be used to assess 

the likelihood of primary and secondary depositional processes. The position of the 

isochron determined using shard concentration profiles is then extracted for 

geochemistry.

Geochemical homogeneity can be used to test whether shards are sourced from a 

single eruption, or from multiple eruptions, which would typically exhibit a 

heterogeneous distribution. The position of the isochron can then be compared to 

IRD flux at the corresponding depth interval to assess the likely contribution from 

iceberg rafting. Analysis of; a) shard concentration profiles; b) grain-size; c) 

geochemical homogeneity and; d) IRD co-variance, are routinely employed 

throughout this investigation.

3.9 Sedimentology: preparation of thin-sections

Undisturbed sediment samples from marine core JM11-19PC were extracted in U- 

channels (20 x 20 x 200 mm) spanning the onset of tephra deposition and the decline 

in tephra shard deposition associated with the FMAZ II, III and IV (Fig 3.4) (see 

chapters 4 and 7). The following procedure was conducted alongside Dr Adrian 

Palmer at the Department of Geography, Royal Holloway using methods adapted 

from Palmer et al. (2008).

Initial drying of the samples was conducted to aid polymerization during 

impregnation. The acetone replacement method was employed to limit cracking of 

silty-clay rich sediment during drying (Meer and Menzies, 2011). The sediment was 

immersed in acetone and replaced every seven days for six weeks. After complete 

drying of the sample, resin was mixed with 3 ml of MEKP-LA3 (catalyst) and 

poured onto the sample. The samples were then placed into a vacuum chamber and 

the pressure was incrementally increased for seven hours to ensure the resin was 

gradually drawn into all of the pore spaces. This process does not cause any 

disruption to the fabric of the sample. The samples were then left to harden for a
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further six weeks and heated at 65°C for fifteen hours to ensure complete curing of 

the sample.

Following curing, the sample was split in half using a Buehler Delta Chopcutter. In 

order to attach the sample to a glass-slide with a perfect bond, it was necessary to 

create a flat, polished surface. 75, 40, and 20 pm diamond fixed abrasive wheels 

were used in this part of the process to flatten the block then 14 pm silicon carbide 

papers to polish it. This was achieved using a Buehler Metaserv grinder polisher at 

250 revolutions per minute. The sample could then be attached to a glass-slide using 

Epothin Resin and Hardener and placed under a spring-loaded jig for twenty hours.

Once the block had been successfully bonded to the glass slide, a section suitable for 

hand-polishing was created using a CS-10 Cut-off Saw and the Jones Shipman 

Surface Grinder. The saw is used to trim the block from the slide leaving 1 mm of 

excess sample on the slide. The Jones and Shipman exhibits precision controls which 

allows the sample to be ground down to ~60 pm thickness. Hand polishing of the 

section was achieved using diamond polish on the grinder polisher and subsequently 

ground down to a 25-35 pm thickness. Cover slipping of the thin-section was then 

conducted using resin to bond the slip to the slide. Excess resin was etched away 

from the slide and cleaned for microscopic analysis. Micromorphological and 

microstratigraphical analysis were performed using a standard petrographic 

microscope with a rotating stage with magnification in the 2-40 x range.

3.10 Using pCT to visualize tephra deposits in three- 
dimensions

3.10.1 pCT instrumentation
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Shard concentration  
profiles w.

FMAZII
1000  m m

JM11-19PC

F igure 3.4 Schematic summary of the U-channel sampling from marine core JM11-19PC. Two U- 
channels, with the dimensions 20 mm x 20 mm x 200 mm extracted parallel to each other for a) 
generating shard concentration counts and b) thin-section and tomographic analysis, c) Resin 
impregnated block.

62



Chapter 3 Methodology

In order to utilise X-ray microtomography for 3D visualization of tephra deposits, it 

was first necessary to constrain the greyscale contrasts (amount of X-rays scattered 

or absorbed by the sample) between tephra and non-tephra grains. For this purpose 

an artificial specimen was created in a ~20 mm length of plastic drinking straw of ~5 

mm internal diameter. A ~2 mm thick layer of pure basaltic tephra (>2.5 g/cm ) was 

added between two layers of freeze-dried, marine sediment known to be devoid of 

tephra and composed of a mixture of heavy and light mineral grains (Fig 3.5b).

The straws were analysed using a Nikon XT H 225 microfocus X-ray tomography 

system, with a 1.3 Megapixel Varian PaxScan 2520 amorphous silicon flat panel 

digital X-ray imager, in reflection mode with a tungsten target. Dr Mark Coleman 

(College of Engineering, Swansea University) helped to derive the optimal operating 

conditions for investigating tephra. X-ray tube voltages between 50-100 kV were 

trialed as these are similar to those derived by Ketcham and Carlson (2001) to 

distinguish between quartz and orthoclase. These minerals exhibit a small density 

contrast (2.65 g/cm3 vs 2.59 g/cm3) of a similar magnitude to the density contrast 

expected between tephra and marine sediment. Low voltages are favoured as 

photoelectric absorption is the dominant attenuation mechanism at energies <100 

kV. The practical importance of this phenomenon is that photoelectric absorption is 

proportional to Z4'5 of the attenuating material, and as a result, low energy X-rays are 

more sensitive to differences in composition than higher energy ones (Ketcham and 

Carlson, 2001). Scans revealing the most effective contrast were performed using a 

50 kV X-ray tube voltage, a current of 550 pA, with an exposure of 1000 ms, 

averaging four images per rotation step of 0.119°, resulting in 3016 images per scan 

and a voxel (3D pixel) size of 4.7 pm. The tomograms were reconstructed from 2D 

projections using a Nikon cone-beam reconstruction algorithm and proprietary 

software. The commercial software VGStudio Max 2.1.5 and free software Drishti 

were used to view the reconstructed data, 2D greyscale slices and rendered 3D 

volumes.
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3.10.2 Delineating tephra using voxel-intensity 
histograms

From the pCT analysis of the straw, a histogram of voxel (3D pixel) intensities is 

produced. This plots the frequency or number of occurrences of voxels of a 

particular intensity, which is related to density, within the overall scan. The peaks 

allow us to qualitatively segment the image into different phases by placing 

thresholds between peaks, which correspond to air, sediment and tephra (Gonzalez 

and Woods, 2008) (Fig 3.5a). In order to identify the threshold that differentiates 

between the tephra and sediment phases, the threshold value is moved until the 

tomographic render resembles the expected visual structure of the artificial straw i.e. 

a lateral tephra horizon surrounded by sediment devoid of tephra (Fig 3.5b.c).

Despite the similarity in density of tephra and sediment, a distinct tephra deposit was 

successfully revealed when the threshold is placed at a greyscale intensity of 36 (Fig 

3.5a,c). The basaltic tephra in Figure 3.5a has a higher absorption coefficient and/or 

contains a higher-Z composition than the surrounding sediment dominated by quartz. 

However, one limitation in defining instrument parameters is the overlap between 

the sediment and tephra phase distributions which reflect a common problem with 

qualitative intensity-based segmentation (see Landis and Keane, 2010). In Figure 

3.5a, an overlap of greyscale intensities is apparent between high-density sediment 

and lower-density tephra. Segmentation at the peak of the tephra distribution (Fig 

3.5a) excludes some lower-density tephra (occurring between 20-36 greyscale 

intensity) and therefore represents a minimum estimate of the total abundance of 

tephra present.

The drinking straw experiments show that tephra layers preserved within marine 

sediment can be successfully imaged using suitable experimental pCT parameters. 

Defining thresholds, however, is a qualitative procedure and scan specific. As a 

result, absolute thresholds that will distinguish between tephra and sediment in a 

range of different depositional contexts and scans cannot be defined.
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a) FMAZ II

4 5 1 SedimentAir Resin Tephra

SecondaryOverlap

1810 46 136
Greyscale intensity

b) FMAZ IV

242  A im  Resin Sediment Tephra

>u

cr

Secondary
peak

72 102 1800 16
Greyscale intensity

Figure 3.6 Voxel-intensity histograms generated by the tomographic analysis o f the FMAZ 11 and IV 
resin-blocks respectively. Vertical lines denote the thresholds defined by the histogram to isolate air. 
resin, sediment and tephra.
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The approach presented here provides optimal instrument parameters but requires the 

validation and placement of thresholds with known areas of tephra. pCT scans of 

tephra deposits presented in the study were performed using the resin-impregnated 

blocks created during thin-section preparation (Fig 3.4). Thresholding was 

performed in conjunction with visual tephra comparisons between the thin-section 

and corresponding tomographic render (see section 3.10.3).

3.10.3 Validating jiCT grey-scale thresholds using thin- 
sections

The intensity-based segmentation procedure, outlined in section 3.9.2, was applied to 

the voxel intensity histograms generated for the FMAZ II and IV deposits preserved 

within resin-impregnated blocks. Thin-sections of these deposits were used to define 

the threshold values (Fig 3.6). In comparison to the artificially-created specimen, the 

intensity peaks for these cores are less pronounced and a distinct shoulder is 

observed at the falling limb of the sediment peak (Fig 3.6). The higher greyscale 

intensity values that form this shoulder are thought to represent secondary peaks that 

equate to areas of concentrated tephra particles that are of a higher density relative to 

the surrounding sedimentary matrix (Fig 3.6). This is confirmed by comparing the 

greyscale 2D pCT slice from the surface of the resin-impregnated block with the 

previously acquired 2D thin-section image from the same surface (Fig 3.7, 3.8).

A striking similarity is revealed between the pCT-derived tephra distribution, and the 

darker areas of concentrated tephra shards seen in thin section (Fig 3.7a,b). For 

example, the greatest concentration of tephra, shown in grey, occurs at the sub­

horizontal, sharp contact at 304-304.5 cm depth in the FMAZ II (Fig 3.7ci,di). A 

2.5x magnification of this structure from the thin-section confirms the presence of 

structureless, abundant, well-sorted tephra shards (Fig 3.7di). In addition, below the 

main shard concentration peak, irregularly aligned packages of concentrated tephra 

shards, surrounded by a coarse-silt matrix, correspond with pCT-derived tephra-rich 

areas (Fig 3.7cii,ciii).
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It is worth noting that the shape of the tephra lobes below the isochron exhibit a 

slightly different geometry to those observed in thin section and this may be because 

the thin section was cut from a slightly different angle and plane. This may also be 

due to the nature of the segmentation process which may not completely separate 

tephra in lower concentrations from the host marine sediments. For FMAZ IV, 

however, the lowest concentration of tephra is represented by sporadic grey packages 

within a green-shaded matrix in the 2D pCT render (Fig 3.8cii). A 4x magnification 

of this feature from thin-section confirms the presence of a coarse-silt matrix with 

occasional well-sorted tephra shards.

The excellent agreement between the features observed in the thin-sections and the 

2D pCT-derived reconstructions support the threshold definition and intensity-based 

segmentation procedures. In these examples, it is demonstrated that concentrated 

tephra areas are represented by a secondary peak/shoulder with higher greyscale 

intensity values (Fig 3.6). The prominence of this shoulder/secondary peak relative 

to the sediment phase is shown to vary between deposits due to contrasting 

tephra/sediment concentrations and mineral compositions (Fig 3.6). Nonetheless, the 

visual confirmation approach indicates that the voxel intensity diagrams are 

appropriate for delimiting tephra and sediment and allow a three-dimensional 

reconstruction of the tephra deposits. Three-dimensional structures observed in these 

two samples are discussed in Chapter 7.
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Chapter 4 Tephrochronology of North 
Atlantic marine core JM11-19PC between 

-16-55 ka

4.1 Introduction

The aim of this chapter is to produce a tephrostratigraphy record for North Atlantic 

marine core JM11-19PC spanning MIS 2 and 3 (-16-55 ka BP). The core site is 

susceptible to the deposition of exceptionally high tephra concentrations including 

three visible macrotephra horizons (FMAZ II, III, IV), previously identified by Ezat 

et al. (2014). Tephra shard concentration profiles, grain-size characteristics, degree 

of geochemical homogeneity and shard co-variance with IRD are investigated. These 

features allow a thorough assessment of primary ash-fall preservation and help to 

unravel the depositional mechanisms operating in the ocean environment. Major 

element results from three separate grain-size fractions are used to capture the full 

compositional range of the FMAZ deposits and help to improve their stratigraphical 

placement. Cryptotephra deposits are investigated to provide a full 

tephrostratigraphical record for this core. The geochemical compositions of all 

identified tephras are compared to previously published marine and ice-core tephra 

deposits.

4.2 JM11-19PC: core location, oceanographic setting and 
proxy record

The JM11-19PC core was retrieved by the R-V Jan Mayen in May 2011 from 1179 

m water depth on the central North Faroe Slope in the Southeastern Norwegian Sea
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(62°48’98” N 03°52,04” E) (Fig 4.1). The core is -11 m long and penetrates into 

MIS 6 sediments at the base. Two depth intervals spanning MIS 2 and part of MIS 3 

are investigated: 183-553 cm and 600-635 cm. Whole core magnetic susceptibility 

was measured on-board using a Geotek MSCL core loop sensor following 

procedures outlined in Rasmussen et al. (1996). Eleven radiocarbon dates have been 

measured on monospecific planktonic foraminifera (calibrated using INTCAL 

Marine 13) to provide a chronological framework for this record (Ezat et al., 2014; 

Reimer et al., 2014) (Fig 4.2). Proxy investigations include high-resolution 

foraminifera Mg/Ca analyses to reconstruct bottom water circulation during D-O 

events (Ezat et al., 2014).

As the JM11-19PC record is a recently acquired sequence, no IRD counts currently 

exist. Instead, the IRD record for neighbouring core, ENAM 93-21 is employed (Fig 

4.1, 4.3). The FMAZ II and III deposits, along with peaks and troughs in the 

magnetic susceptibility records, are used to establish correlation points between 

JM11-19PC and ENAM93-21.

The core consists predominantly of coarse silty-clays that vary in colour (Fig 4.4). 

The darker layers have been interpreted to correlate with interstadial events, and 

lighter with stadial events (Ezat et al., 2014). The FMAZ II can be seen as a distinct 

2 cm thick black macrotephra at -303 cm on an XRF scan (Fig 4.4). The FMAZ III 

is not a visible horizon and is present at -430 cm according to analysis conducted by 

Ezat et al. (2014). However, the shard concentration profile for this deposit is diffuse 

and use of this deposit as a marine-ice tie point may be erroneous in this instance 

(Bourne et al., 2013). The FMAZ IV is a thick black macrotephra present between 

-543-545 cm. Tephra is also present between 543 cm and 500 cm appearing as black 

smears (Fig 4.4). The FMAZs, NAAZ II and the additional fourteen AMS dates have 

been used by Ezat et al. (2014) to construct an age model for the record (Fig 4.2) 

and linear interpolation between anchor points provides a sedimentation rate (Ezat et 

al., 2014) (Fig 4.4). This work builds upon previous low-resolution tephra 

investigations conducted by Ezat et al. (2014) and additionally explores the presence 

of cryptotephra within the fine grained fraction. This will permit an assessment of 

depositional processes and re-evaluate the position of the tephra isochron based upon 

the new data set.
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Figure 4.2 Magnetic susceptibility and XRF-K/Ti ratios for core JM11-19PC from Ezat et al. (2014). 
Black lines marks the depths of the tephra horizons identified in this study and Ezat et al. (2014). Red 
lines denote the start o f the interstadials. The grey area denotes the core sequence analysed 
contiguously in this investigation. The green area indicates the low resolution investigation to trace 
the NAAZ II.
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a) ITRAX 
core scan

b) Sedimentary rate 
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Figure 4.4 (a) High resolution core image obtained by ITRAX core-scanner o f the upper 7 m of 
JM11-19PC (Ezat et al., 2014). Arrows represent positions of FMAZ horizons based upon Ezat et al. 
(2014) and refined based upon analysis presented in this study. Sedimentation rate based upon the 
tuned age model of Ezat et al. (2014). The grey bar denotes the section of the core analysed 
contiguously in high resolution. The red bar denotes the core section analysed in low-resolution to 
trace the NAAZ II.
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4.3 Sampling strategy

The tephra content of the record between 183 and 553 cm was initially investigated 

at low-resolution (5 cm contiguous samples) and then intervals of elevated shard 

concentrations were analysed at high-resolution (1 cm samples) (Fig 4.5). This 

sampling interval was chosen to overlap similar stratigraphic intervals covered in 

MD04-2829CQ (see chapter 5) and to ensure coverage of the FMAZ II, III and IV. 5 

cm contiguous samples (25-80 pm fraction only) were investigated between 600-635 

cm to locate the position of NAAZ II. This specific stratigraphical interval was 

chosen following previously obtained coarse tephra counts from Ezat et al. (2014).

Material from the 25-80 pm fraction in all samples was processed using the heavy 

liquid separation procedure outlined in section 3.3 and the >2.5 g/cm fraction was 

magnetically separated to purity the basaltic material (section 3.4). Due to the 

exceptionally high tephra content (>10,000 brown shards per 0.5 gdw) within the 25- 

80 pm fraction, samples within this fraction were spiked with Lycopodium spores 

(see section 3.5).

4.4 Tephra horizons within JM11-19PC

4.4.1 Shard concentrations and tephra stratigraphy

Shard concentrations from different densities and size fractions are shown in Figure 

4.5. Four distinct peaks in the 25-80 pm fraction have been identified at low 

resolution, relative to background values, with the highest concentration of brown 

shards (-3 million shards per 0.5 gdw) present between 298-303 cm. Specifically, 

peaks in brown shard concentration were identified at -304 cm, -424-443 cm, -545 

cm and 618-623 cm (Fig 4.5) (Table 4.1). The 304 cm and 545 cm peaks span the 

stratigraphical positions of the visible tephra beds (Fig 4.4) and the 424-443 cm and 

618-623 cm peaks overlap with tephra-rich horizons identified by Ezat et al (2014). 

Elevated shard concentrations in the coarser 80-125 pm and >125 pm fractions also 

coincide with these peaks. As the concentrations bracketing the three uppermost 

peaks were relatively high, tephra concentrations were determined at high-resolution
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up to -1 0  cm above and below each peak to fully capture the fluctuations in shard 

concentrations (Fig 4.5).

The fourth peak at -618-623 cm has not been quantified in high resolution. 

Concentrations of colourless and brown shards were exceptionally high between 

618-623 cm and it was considered a sufficient chronological fix-point for this record 

(Rasmussen, pers comm). Within the 2.3-2.5 g/cm fraction, a background of -500 

colourless shards occurs throughout the core, with three distinct peaks identified 

between 193-198 cm, 353-358 cm and 618-623 cm (Fig 4.5e). High-resolution 

samples were investigated -5  cm above and below the two uppermost peaks to 

constrain the stratigraphical position of these deposits. High resolution shard counts 

reveal peaks at 196-197 cm and 357-358 cm (Table 4.1).

4.4.2 JM11-19PC 196-197 cm

4.4.2.1 Shard descriptions and concentration

A peak of 20,000 colourless shards (per 0.5 gdw) at 196-197 cm marks the first 

major influx of tephra particles and is overlain by a gradational upward tail (Fig 4.5). 

The shards exhibit a variety of cuspate morphologies and are highly vesicular in 

appearance. The deposit falls within interstadial DO-2 according to low magnetic 

susceptibility values and rapidly decreasing K/Ti counts (Fig 4.2). An age of 15,663 

± 190 ka b2k is derived from radiocarbon dating at a depth of 195 cm, which falls 1 

cm above the peak in shard concentration (Fig 4.2) (Ezat at el., 2014). Comparison 

with nearby core ENAM93-21 suggests a strong coeval IRD signal during the period 

of deposition and is likely to be an ice-rafted deposit (Rasmussen et al., 2003) (Fig 

4.3).
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4.4.2.2 Geochemistry and source identification

Twenty-five single shards were analysed by EPMA and reveal a heterogeneous 

rhyolitic composition (Fig 4.6). The variability of major oxides is most apparent 

within SiC>2 concentrations that vary between 71.4-77.8 wt% and K2O concentrations 

of 3.1-5.4 wt%. Despite the observed heterogeneity, twelve shards form a 

moderately homogeneous cluster (population one). Distinctive geochemical 

characteristics of this population include FeO concentrations of -1.05-1.87 wt%, 

TiC>2 concentrations of -0.12-0.16 wt% and K2O concentrations of -3.81-4.31 wt% 

(Table 4.2). This population overlaps slightly with the Tindfjallajokull source 

envelope on FeO vs CaO and Si02  vs K2O biplots (Fig 4.7b,d) but this overlap is not 

observed on other geochemical biplots. Shards from this population appear unrelated 

to any source on FeO vs AI2O3 biplots (Fig 4.7). Six shards exhibit K2O 

concentrations >5 wt% and form the second population (Fig 4.6). The only reported 

proximally derived material that exhibit geochemistries with similarly high K2O 

content originate from the Snaefellsjokull system in western Iceland, but only two 

data analyses exist for this volcanic center (Jonasson et al., 2007). However, the 

second population in 196-197 cm does not correspond with other major oxides and 

this prevents a source from being assigned. The scattered geochemical composition 

suggests this deposit is the product of numerous different eruptions from a variety of 

volcanic centers (Fig 4.7).

4.4.2.3 Wider correlations and depositional processes

Population one from 196-197 cm shows some affinity to glass shard analyses 

derived from the Borrobol and other compositionally similar tephras e.g. Penifiler, 

KOL GS-2 and Fosen tephra (Fig 4.8). The Borrobol tephra has been discovered in a 

number of Lateglacial sequences near the onset of GI-1 (Turney et al., 1997; Davies 

et al., 2004; Pyne O’Donnell et al., 2008).
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a)

•  196 197 cm
• 357-358 cm
• 618-623 cm

16

14

12

10

8 Population 1

6
Rhyolite

4

2 Basalt

0
55 6040 45 50 65 70 75 80

SiO (wt %)

b)

Tholeiitic
11

Transitional
alkalic

10
Alkalic

9
Population 1

8

7

6

Rhyolite5

4
68 70 72 74 76 78 80

SiO, (wt %)

Figure 4.6 (a) Total alkalis vs silica plot for analyses from rhyolitic deposits found in JM11-19PC b) 
Inset of TAS plot focusing on the rhyolitic analyses. Chemical classification is defined by Le Maitre 
et al. (1989). The compositional envelopes for the Icelandic rock suites are defined by Jakobsson et al. 
(2008). Population one of 196-197 cm has also been indicated.
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Similar material exhibiting Borrobol-like geochemical compositions have been 

found in different stratigraphic positions in Sweden (Davies et al., 2003), Scotland 

(Pyne O’Donnell et al., 2008; Matthews et al., 201 lb) and the North Icelandic Shelf 

(Eiriksson et al., 2000; Gudmundsdottir et al., 2011). Furthermore, new unpublished 

data suggests that tephras with compositions similar to the Borrobol in the ice are 

located in G l-le and GS-2. Magnetic susceptibility and K/Ti ratio suggest 196-197 

cm was deposited during interstadial conditions associated with DO-2 (Fig 4.2). 

Stratigraphically, the first population in JM11-19PC is likely to originate from the 

GS-2 occurrence of the Borrobol-like tephra found within the Greenland ice-cores.

Marine occurrences of Borrobol-like material have been discovered in MD99-2275 

and MD99-2271 from the North Icelandic shelf, though these have been discovered 

above glacial sediments and in co-occurrence with a basaltic layer (Gudmundsdottir 

et al., 2011), which is not a feature of JM11-19PC 196-197 cm. An additional 

Borrobol-like tephra has been detected in GS-2, derived from AMS ,4C dates and 

biostratigraphy, in cores HM107-04 and HM107-05 from North Icelandic marine 

sediments (Eiriksson et al., 2000). This deposit may be related to JM11-19PC 196- 

197 cm, but cannot be rigorously tested as not all geochemical data for this deposit 

has been reported.

The first population in 196-197 cm is compared to the Gl-le and GS-2 occurrences 

in the ice and other GS-2 marine deposits to assess any geochemical similarities 

between the deposits. Shards on the FeO vs Ti02  biplot fall solely within the Gl-le 

occurrence of the Borrobol, but this is not reflected in other geochemical biplots (Fig 

4.9c). Generally, glass shards from JM11-19PC are distributed equally across all 

three compositional envelopes, with varying degrees of overlap presented on 

different geochemical biplots. The strong geochemical heterogeneity exhibited by 

this horizon implies that the 196-197 cm deposit contains a secondary depositional 

signal (Fig 4.8). Strong covarying IRD influx suggests this horizon is likely to have 

been deposited from iceberg rafting which contains an amalgamation of numerous 

eruptions sourced from different volcanic centers. Consequently, this deposit cannot 

be utilised as an isochron for integration within the marine tephra framework.
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-16-55 ka

4.4.3 JM11-19PC 304-305 cm

4.4.3.1 Shard descriptions and concentration

A visible black macrotephra forms a distinct 2 cm thick horizon between 303-305 

cm depth and coincides with the highest shard concentration (>3 million shards in 

the 25-80 pm fraction and 147 in the >125 pm fraction between 304-305 cm) (Fig 

4.4, 4.5). The sharp increase and decrease in the shard concentration profile over 6 

cm suggests a pulse of tephra with limited post-depositional re-working. The shards 

are dark brown in colour and have a dense blocky morphology, with some showing a 

slightly vesicular appearance. An age of 27,709 ± 170 b2k is derived from 

radiocarbon dating at a depth of 305 cm which falls within the visible macrotephra 

bed (Fig 4.4) (Ezat at el., 2014).

4.4.3.2 Geochemistry and source identification

Eighty-nine single shards were analysed by EMPA, revealing a basaltic composition 

that spans the alkaline and tholeiitic rock series subdivision line defined on a TAS 

plot (Fig 4.10). In total, eighty-five shards form a tight homogeneous population, 

with only three clear outliers in the >125 pm fraction and one in the 25-80 pm 

fraction. Outliers have been omitted from further analyses. Distinctive geochemical 

characteristics include Si02  concentrations of -47.7-51.0 wt%, Ti02  concentrations 

o f -3.7 wt%, CaO concentrations o f - 8 .2-9.6 wt%, K2O concentrations between -0.4 

and 0.8 wt% and FeOtot/MgO ratios between -2.8-3.7 (Table 4.2). These 

geochemical characteristics are more typical of a transitional alkali basaltic 

composition, suggesting a source from the Eastern or Southern Icelandic flank zones 

(Jakobsson, 1979). Comparisons with proximal Icelandic material demonstrate that 

the distinct geochemical population has a close overlap with material sourced from 

the Kverkljoll system (Fig 4.11). This is in contrast to Wastegard et al. (2006) and 

Davies et al. (2008), who previously suggested a Hekla origin. However, there is a 

greater geochemical overlap with Kverkfjoll across all element biplots (Fig. 4.11)
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Figure 4.10 (a) Total alkalis vs silica plot for analyses from basaltic deposits found in JM11-19PC. 
(b) Inset o f TAS plot focusing on the basaltic analyses. Chemical classification is defined by Le 
Maitre et al. (1989). The dashed line represents the subdivision into alkaline and tholeiitic rock series 
defined by MacDonald and Katsura (1964).
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Chapter 4. Tephrochronology of North Atlantic marine core JM11-19PC between
-16-55 ka

4.4.3.3 Wider correlations and depositional processes

Single glass shard analyses from JM11-19PC 304-305 cm show a strong affinity to 

the FMAZ II preserved in five other marine cores from the Faroes region and the 

NGRIP ice-core with an average similarity coefficient of 0.988 (Rasmussen et al., 

2003; Wastegard et al., 2006; Davies et al., 2008) (Fig 4.12). JM11-19PC and the 

NGRIP data-set exhibit a tighter geochemical population than observed for other 

North Atlantic marine cores (Fig 4.12). Glass shard analyses from other cores in the 

Faroes region reveal a wider scatter (Fig 4.12) which has been suggested to represent 

different phases of the same eruption. However, an eruption closely separated in time 

cannot be excluded (Wastegard et al., 2006). Alternatively, this scatter may result 

from the operation of bottom currents and the transportation of material from older 

eruptions to the site. No shards from JM11-19PC fall within the FMAZ II-2 sub­

population originally identified by Wastegard et al. (2006) (Fig 4.12).

Glass shards analysed from JM11-19PC and LINK 17 cores exhibit the tightest 

geochemical populations and plot consistently with the NGRIP 1848.0 m 

compositional envelope (Fig 4.12). This suggests deposition was likely controlled by 

one dominant primary process in the Faroes region and several lines of evidence 

suggest this tephra was deposited isochronously. Firstly, the relative concentration of 

coarse-grained shards (>125 pm) is low in this deposit and the dominant grain size 

i.e. 25-80 pm is typical for primary airfall or sea-ice rafted deposits at this core site 

(Fig 4.5). Secondly, the absence of a strong coeval IRD signal suggests that iceberg 

rafting was not responsible for deposition (Fig 4.3). This horizon represents a well- 

resolved primary deposit that can be used as an isochron in high precision correlation 

studies.

The geochemical population of JM11-19PC 304-305 cm displays some affinities to 

the VI ash zone deposited in marine cores on the Reykjanes Ridge (Lackschewitz 

and Wallrabe-Adams, 1997) (Fig 4.13). According to the magnetic susceptibility 

record for JM11-19PC the VI ash zones fall in a similar strati graphic position to the 

304-305 cm horizon (see section 2.5.1.2).
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However, the VI deposit is heterogeneous (Fig 4.13) and co-varies with high IRD - a 

diagnostic feature of iceberg-rafted deposits. A notable sub-peak, S082-5-Vlx- 

KAL, contains a homogeneous population with no coeval IRD signal and exhibits a 

high similarity coefficient value of 0.972 with JM11-19PC 304-305 cm (Fig 4.13).

4.4.4 JM11-19PC 357-358 cm

4.4.4.1 Shard description and concentrations

This deposit forms a distinct 1 cm horizon between 357-358 cm (-28,000 colourless 

shards per 0.5 gdw) and represents the peak in shard concentration (Fig 4.5). The 

sharp increase and gradational upward tail in shard concentration suggests a pulse of 

tephra with moderate depositional re-working. The relatively high tephra 

concentrations -3 cm below the peak may be indicative of increased levels of 

bioturbation. Shards in this horizon are highly vesicular and exhibit a cuspate 

morphology. A radiocarbon-derived age of 31,103 ± 180 b2k is from 350 cm and 

provides a lower age boundary for this horizon (Ezat et al., 2014). Magnetic 

susceptibility measurements indicate the deposit occurs before the onset of H3 

during DO-5 (Fig 4.2).

4.4.4.2 Geochemistry and source identification

Twenty-nine single shards have been geochemically analysed and reveal a 

homogenous rhyolitic composition with all shards plotting within the field for the 

transitional rock suite on the TAS plot (Fig. 4.6b). One clear outlier with a Si02 

concentration of >75% has been omitted from further analysis. Distinctive 

characteristics of the main population are Si02 concentrations of -70.52-72.63 wt%, 

FeOtot concentrations of -13.00-14.68 wt%, CaO concentrations of -1.32-1.68 wt%, 

Ti02 concentrations of -0.29-0.51 wt% and K2O concentrations of 3.48-4.02 wt% 

(Table 4.2). It is difficult to determine the likely source of this tephra with no 

apparent and consistent relationship with the main transitional alkali sources (Fig
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4.7). However, comparisons with other distal tephra deposits suggest an affinity to 

the Katla system (see below).

Geochemical datasets are compared from distal tephra occurrences from widespread 

Lateglacial eruptions to assist in source assignation. Comparisons are confined to 

Lateglacial tephras, despite a significant difference in age and stratigraphy, as these 

represent the most rigorous geochemical analyses of Katla rhyolites. Several Katla 

sourced eruptions i.e. Vedde, AF555, and Suduroy tephras were compiled to create a 

Katla compositional envelope (Wastegard et al., 2002; Matthews et al., 201 lb; Lane 

et al., 2012) (Fig 4.8). A similarity coefficient of 0.951 indicates a common source 

between JM11-19PC 357-358 cm and Katla rhyolitic glass shards. This is illustrated 

on a number of geochemical biplots, where the population of shards frequently plots 

within the Katla composition envelope (Fig 4.8). However, Figure 4.7 shows no 

source similarity with Katla. This may be attributed to the limited number of 

proximal analyses used to create the geochemical envelope in Figure 4.7 in 

comparison to a large data-set of distal tephra occurrences in Figure 4.8.

4.4.4.3 Wider correlations and depositional processes

Only two horizons of rhyolitic composition have been reported in the ice-core 

framework for 25-45 ka and these display an affinity to material sourced from Hekla 

(Bourne et al., 2015). Significantly different geochemical compositions i.e. CaO 

values >4 wt% and K2O concentrations <3 % highlight that no shards from the 357- 

358 cm deposition show affinity to these horizons. Compositional comparisons 

suggest that this horizon represents a previously undetected Katla-sourced eruption. 

The geochemical homogeneity and dominance of fine-grained shards (25-80 pm) 

strongly implies primary deposition. Iceberg rafting is unlikely to have assisted in 

tephra delivery as there is no coeval IRD signal derived from nearby Faroes core 

ENAM93-21 (Fig 4.3). A distinct feature of this deposit is an upward and downward 

tail on the shard concentration profile (Fig 4.5). This may be evidence of 

bioturbation and mixing, with the peak equating to the correct stratigraphical 

placement of the isochron. The evidence presented suggests the horizon has been 

deposited isochronously, likely via primary airfall. Although no ice-core correlative
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currently exists for this horizon, it may be possible to utilise this horizon as an 

isochron if it can be traced in other marine records (Table 4.1).

4.4.5 JM11-19PC 424-443 cm

4.4.5.1 Shard descriptions and concentration

This deposit straddles the warming transition of DO-8 (Fig 4.5). The deposit forms a 

complex and diffuse zone of tephra that exhibits two indistinct concentration peaks 

in the 25-80 pm fraction. Peaks in the fine-grained fraction are not mirrored in the 

coarser-grained fractions, which contain multiple peaks across 13 cm and there is no 

correspondence between the peaks in the different grain sizes (Fig 4.5). Total shard 

concentrations are lower than the other FMAZ deposits with -700,000 shards in the 

fine fraction and sixty-two in the >125 pm fraction. Shards exhibit a variety of 

different colouration within this deposit that range from a dark yellow to brown and 

are predominantly vesicular.

Glass shards from each of the peaks at 438-439 cm and 427-428 cm in all grain-size 

fractions and the mid-point at 434 cm (25-80 pm fraction only) were extracted and 

prepared for geochemical analysis. In total, 170 single-glass shards were analysed 

for geochemistry. A correlation of the JM11-19PC tephra record with that of 

neighbouring core ENAM93-21 suggests that no coeval IRD signal is associated 

with this deposit (Fig 4.3). A radiocarbon age of 37,410 ± 890 b2k is derived from a 

depth of 430 cm, which falls within the strati graphic interval of this ash zone (Ezat at 

al. (2014) (Fig 4.2,4.4).

4.4.5.2 Geochemistry and source identification

Major element analyses from 170 individual shards are classified as basaltic and 

three are classified as andesitic (Fig 4.10). In total, 156 shards form a relatively 

heterogeneous population and seventeen outlier shards appear unrelated to the main 

population and cannot be regarded as additional sub-populations (Fig 4.14).
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Geochemical characteristics of this deposit include SiC>2 contents of -48.5-51.1 wt%, 

K2O concentrations of -0.4 wt%, TiC>2 concentrations of -2.3-3.7 wt%, CaO 

concentrations o f-8.8-12.1 wt% and MgO concentrations between -4.7 and 7.6 wt% 

(Table 4.2). These characteristics are typical of a tholeiitic basalt, with the TiC>2 and 

K2O concentrations implying a Grimsvotn origin (Jakobsson, 1979) (Fig. 4.11). 

Although a volcanic source can be determined for the material in this deposit, glass 

shards from each individual depth occupy the full range of Grimsvotn-sourced 

material. Moreover, biplots of TiC>2 vs CaO and FeOtot/MgO vs Ti02 highlight the 

heterogeneity and wide range for these oxides (Fig 4.11a,b). Six shards fall within 

the FMAZ III-2 envelope, previously defined by Wastegard et al. (2006), though it is 

not believed that this sub-population is significant enough to represent an additional 

population related to the FMAZ III (Fig 4.14)

Eleven outlier shards display a wide range of geochemistries and fall outside both 

populations on a number of elemental oxides (Fig 4.10a,b). Three shards exhibit 

notably higher TiC>2 concentrations (>4 wt%) and are typically associated with Katla 

sourced basalts (Jakobsson, 1979). It is particularly interesting to note that three 

shards exhibit an andesitic composition with high SiC>2 concentrations (>56 wt%). 

Material of these compositions have been identified in distal peat deposits in the 

Faroe Islands. These display a close affinity to the Hekla system and are typically 

compositionally more evolved (Wastegard et al., 2008).

4.4.5.3 Wider correlations and depositional processes

Glass-shard analyses from the main geochemical population show strong similarities 

with the FMAZ III deposits from three other marine cores in the Faroes region 

(Rasmussen et al., 2003; Wastegard et al., 2006) (Fig 4.14c,d). The geochemical 

composition of these previously published deposits exhibit a similar wide-ranging 

spread to the JM11-19PC 427-439 cm deposit. This can be clearly observed on TiC>2 

vs CaO and FeOtot/MgO vs K2O biplots (Fig 4.14c,d).
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-16-55 ka

Figure 4.15c,d highlights how the wide geochemical range of the FMAZ III deposit 

in JM11-19PC straddles the compositional fields for ten of the cryptotephra deposits 

identified in NGRIP during this time period (38,048 ±731 b2k and 38,826 ± 740 

b2k) and across DO-8 (Bourne et ah, 2013). Due to the heterogeneity of the glass 

shard populations from the individual depth intervals between 427 and 439 cm, they 

cannot be exclusively correlated to a single-ice core horizon.

Wastegard et al. (2006) proposed that a correlation may exist between the V2 ash 

zone and the FMAZ III. The V2 ash zone has been dated to 36.5-29.8 14C ka BP in 

five cores on the Reykjanes Ridge (Lackschewitz and Wallrabe-Adams, 1997). The 

V2 ash zone exhibits a heterogeneous geochemical signature and coincides with a 

high input of IRD sourced from active erosion on the Icelandic ice sheet. A number 

of shards fall within the JM11-19PC 427-439 cm compositional envelope (Fig 

4.15a,b), although the wider geochemical spread across all elemental oxides prevents 

a correlation between the two deposits.

The diffuse nature of the FMAZ III deposit, which contains multiple peaks in shard 

concentration, combined with geochemical heterogeneity suggests either the 

operation of iceberg rafting and/or post-depositional processes (Table 4.1). Iceberg 

rafting is unlikely due to the absence of a coeval IRD signal (Fig 4.3) and the low 

proportion of coarse-grained shards (>125 pm) (Fig 4.2). The evidence suggests that 

primary airfall or sea-ice rafting is the dominant transport process, but implies that 

another process may have operated to modify this depositional signal. The 

geochemical similarities between this deposit and ten separate volcanic events 

identified in NGRIP over this time period (Bourne et al., 2013) suggest that the 

FMAZ III is an amalgamation of glass shards sourced from several closely timed 

Grimsvotn eruptions. The sediment accumulation rate in the marine environment (20 

cm/kyr'1) (Ezat et al., 2014) is most likely too low to preserve each deposit as a 

discrete entity. It is postulated that bottom currents and bioturbation further 

contributed to form the amalgamation of this tephra deposit, following deposition via 

primary airfall. This deposit demonstrates that the integrity of the isochron, despite 

being a product of primary airfall, is compromised by the frequency of eruptions and 

low core-resolution. The FMAZ III forms a diachronous surface; whilst the deposit 

may be useful for broad marine correlations, its use as a high-precision isochronous 

tie-point is limited.
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4.4.6 JM11-19PC 542-543 cm

4.4.6.1 Shard description and concentrations

A visible thick black macrotephra (6 cm) was deposited during the early stages of 

DO-12 and after H5, according to high magnetic susceptibility values (Fig 4.4, 4.5). 

A sharp lower boundary and rapid increase in shard concentration is evident at 542- 

543 cm (Fig 4.5). In the 25-80 pm fraction, a peak shard concentration of -2.9 

million shards per 0.5 gdw is observed. It is suggested that this peak equates to the 

correct stratigraphic placement of the isochron. The initial major influx in the 80-125 

pm fraction is 1 cm below this peak. The slight depth offset could be due to different 

settling velocities through the ocean, or the greater movement of heavier material 

through soft sediment (Enache and Cumming, 2006). Shards at 542-543 cm are 

yellowish-brown in colour, have a vesicular appearance and display a variety of 

platy morphologies. The shard concentration profile forms a similar upward tail to 

the 298-303 cm deposit, although the decline in concentration is more gradual in this 

horizon, forming a tailed, gradational distribution that spans a -40 cm interval. This 

can be seen visibly in the core (Fig 4.4) and is reflected in the relatively high fine­

grained shard concentrations of >1 million per 0.5 gdw throughout the 10 cm high- 

resolution sampling interval (Fig 4.5). A radiocarbon age of 48,162 ± 1890 b2k is 

derived from 555 cm, providing an upper age boundary for this deposit (Ezat et al.,

2014) (Fig 4.2) (Table 4.1).

4.4.6.2 Geochemistry and source identification

Seventy-four single shards were analysed by EPMA revealing a homogeneous 

basaltic composition. Three outliers are observed, with one in the 25-80 pm fraction 

and two in the 80-125 pm fraction. Geochemical characteristics of the main 

population are SiC>2 concentrations of -49.0-51.4 wt%, K2O concentrations of -0.4 

wt% and TiC>2 and MgO concentrations of -2.6 wt% and -5.8 wt% respectively 

(Table 4.2). These geochemistries are characteristic of the tholeiitic rock suite, and 

the latter two oxides suggest a strong affinity to the Grimsvotn system (Jakobsson et

al., 2008) (Fig 4.11).
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4.4.6.3 Wider correlations and depositional processes

Tephra deposits of tholeiitic basaltic composition dominate the marine and ice-core 

records between 41,000 and 46,000 b2k, whilst Katla sourced basalts have 

additionally been detected in marine sequences (Bourne et al., 2015, Wastegard and 

Rasmussen, 2014). A comparison with tephra deposits from four other marine cores 

in the Faroes region suggests a strong statistical similarity (SC= 0.982) with the 

recently discovered FMAZ IV tephra (Wastegard and Rasmussen, 2014). This can be 

clearly observed on FeOtot/MgO vs Ti02 and CaO vs MgO biplots (Fig 4.16a,d). 

JM11-19PC exhibits a tighter distribution of geochemistries in comparison to other 

cores analysed in the Faroes region, and only glass shards isolated in LINK 15 have 

a sub-population with a Katla affinity, according to high Ti02 values >4 wt% 

(Wastegard and Rasmussen, 2014). No Grimsvbtn sourced shards appear in the 

Greenland ice-core framework within this stratigraphic period (Bourne et al., 2015).

Wastegard and Rasmussen (2014) suggest that a potential correlation exists between 

the FMAZ IV and the V5 ash zone found in two cores on the Reykjanes Ridge, with 

an age estimate of 46.2-52.5 ,4C ka BP (Lackschweitz and Wallrabe-Adams, 1997). 

This estimate falls within the radiocarbon age constraint derived from 555 cm in 

JM11-19PC (Fig 4.2) (Ezat et al., 2014). The V5 ash zone has no coeval IRD signal, 

but exhibits a heterogeneous geochemical distribution (Lackschewitz and Wallrabe- 

Adams, 1997). One of the populations from the V5 ash zone in core S082-7-KAL 

shows affinity to a number of shards which fall within the JM11-19PC 542-543 cm 

compositional envelope (Fig. 4.17). A statistical similarity coefficient of 0.951 

suggests a correlation may exist between the two deposits, although the absence of 

shard concentration profiles and heterogeneity prevents a full correlation as the 

stratigraphic position of the Reykjanes Ridge record is uncertain.

A number of basaltic horizons deposited during MIS 3 have been reported in core 

PS2644 in the Iceland Sea, NW of Iceland (Voelker et al., 2000) (see section

2.5.1.7). Two horizons lie in a similar stratigraphic position to JM11-19PC 542-543
1 Xcm, based upon the planktonic foraminfera 5 O record (Voelker et al., 2000; 

Wastegard and Rasmussen, 2014).
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The horizon at 5.18 m within PS-2644 has a relatively homogeneous population but 

exhibits higher TiC>2, FeO and K2O concentrations than JM11-19PC 542-543 cm. 

The horizon at 5.22 m is heterogeneous with multiple geochemical populations, 

although some shards display an affinity to the JM11-19PC 542-543 cm 

compositional envelope (Fig 4.17). The heterogeneity of this deposit makes it 

difficult to provide a correlative link between the Faroes region and the Iceland Sea.

The geochemical homogeneity of the FMAZ IV deposit in JM11-19PC and other 

cores in the Faroes region strongly implies primary deposition. Several lines of 

evidence suggest that this tephra was deposited isochronously, most likely via 

primary airfall. Firstly, the concentration of coarse-grained shards (>80 pm) is low 

and the dominant grain size (<80 pm) is typical for atmospherically derived deposits. 

Secondly, geochemical similarities between this deposit and the V5 ash zone in core 

S082-5, which exhibits no coeval IRD signal, suggests iceberg rafting was not 

responsible for its deposition. In addition, a distinct feature of this deposit is an 

upward tail on the shard concentration profile (Fig 4.5). This evidence may suggest 

high rates of bioturbation and upward mixing (e.g. Jumars and Wheatcroft, 1989; 

Abbott et al., 2013; Todd et al., 2014) or re-working by stronger bottom currents 

during interstadial conditions following primary deposition onto the sea-floor 

(Fronval et al., 1998). It is also possible that the distinct upward tail may be a 

reflection of several closely timed eruptions, though this cannot be presently 

resolved in the absence of a direct ice-core correlative.

The presence of glass shards of Katla composition in the nearby LINK 15 sequence 

implies that the processes controlling deposition at this particular site may have been 

different to those operating at other core locations. This may be a reflection of 

different bottom current transport pathways. The absence of an ice-core correlative 

to the FMAZ IV may additionally be a consequence of differing atmospheric 

dispersal pathways conducive to deposition south of Iceland.

4.4.7 JM11-19PC 618-623 cm

4.4.7.1 Shard description and concentrations
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This deposit forms a zone of high tephra concentration spanning ~10 cm. Both 

brown and colourless shards are identified and deposited during DO-15 as indicated 

by high magnetic susceptibility values and decreasing K/Ti ratios (Fig 4.2, 4.5) 

(Table 4.1). A very sharp rise in brown shards is evident in the fine-grained fraction, 

increasing from 10,000 shards in 623-628 cm to -450,000 shards per 0.5 gdw 

between 618-623 cm (Fig 4.5). The stratigraphical interval between 618-623 cm 

represents the peak and first major influx in tephra concentration. Concentrations are 

relatively high in the adjacent sampling interval between 613-618 cm (-50,000 

shards per 0.5 gdw) and may reflect the continued input of tephra or post- 

depositional re-working. Shards in the >2.5 g/cm3 fraction at 618-623 cm are yellow 

in colour, exhibit a range of platy morphologies and some are vesicular in 

appearance.

Colourless shard concentrations increase from -500 shards to -29,000 shards 

between 623-628 and 618-623 cm (-29,000 shards per 0.5 gdw). Similarly to the 

>2.5 g/cm3 fraction, this interval represents the peak and first major influx in tephra 

shards. Concentrations are relatively high in the sample above the peak (-7,000 

shards per 0.5 gdw). Shards exhibit a platy and cuspate morphology and few are 

vesicular in appearance.

4.4.7.2 Geochemistry and source identification

EPMA analysis of thirty-three single shards in the >2.5 g/cm fraction are classified 

as basaltic (Fig 4.10), with three clear outliers that have significant geochemical 

differences. Geochemical characteristics of the main population include SiC>2 

concentrations of -49.4-51.1 wt%, K2O concentrations of ~0.32-0.48 wt%, TiC>2 

concentrations of -2.40-2.75 wt% and MgO concentrations of -5.50-6.58 wt % 

(Table 4.2). These geochemistries are characteristic of the tholeiitic rock suite and 

suggest a strong affinity to the Grimsvotn system (Jakobsson et al., 2008) (Fig 4.11).

Twelve single-shard analyses from the 2.3-2.5 g/cm fraction in this deposit are 

classified as rhyolitic and nine shards form a homogeneous population (Fig 4.8). 

Distinctive geochemical characteristics of the main population are SiC>2 

concentrations of -75.08-76.27 wt%, CaO concentrations of -0.42-0.57 wt%, Ti02
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concentrations of -0.16-0.18 wt%, FeOtot concentrations of 2.08-2.74 wt% and K2O 

concentrations of ~4.27-4.58 wt% (Fig 4.8a,b) (Table 4.2). Two outliers with K2O 

concentrations <2 wt% were detected.

4.4.7.3 Wider correlations and depositional processes

A comparison of basaltic deposits from four other marine cores in the Faroes region, 

Labrador Sea and Reykjanes Ridge suggest a strong similarity between the II- 

THOL-2 component of the NAAZ II complex and the basaltic shard population at 

618-623 cm (Fig 4.18) (Lackschewitz and Wallrabe-Adams, 1997; Rasmussen et al., 

2003; Wastegard et al., 2006). The rhyolitic population of this deposit exhibits a 

strong similarity with the II-RHY-1 component of the NAAZ II derived from a 

variety of pan-Atlantic records (Wastegard et al., 2006; Brendryen et al., 2011; 

Abbott, unpublished) (Fig 4.8, 4.18). However, unlike other cores found in the 

Faroes region and Reykjanes Ridge, no glass shards exhibit any affinity to the other 

basaltic NAAZ II components (II-THOL-l/II-TAB-1) (Fig 4.18).

North Atlantic cores ENAM93-21, ENAM93-20 and S082-5 contain an initial 

mixed layer consisting of the II-RHY-1 and II-TAB-1 components, followed by an 

upper basaltic component consisting entirely of the II-THOL-2 population 

(Haflidason et al., 2000; Wastegard et al., 2006). JM11-19PC, however, is 

dominated entirely by the co-occurrence of the II-RHY-1 and II-THOL-2 

components, with no stratigraphic separation identified with the low resolution 

counts. This is similar to core EW9302-2JPC in the Labrador Sea that contains an 

amalgamation of both II-RHY-1 and II-THOL-1 components at the same 

stratigraphic interval (Wastegard et al., 2006).

The co-occurrence of two eruptive phases has been interpreted to represent either a 

low temporal resolution or an ice-rafting event that supplied a mixture of 

components (Austin et al., 2004; Wastegard et al., 2006). As JM11-19PC exhibits a 

similar sedimentation rate to that of the surrounding Faroese cores, it is unlikely that 

the co-occurrence of both components is related to low temporal resolution in this 

instance.
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High-resolution counts are needed to test this suggestion and identify if a separation 

may exist within the 5 cm interval.

The strong geochemical homogeneity exhibited by 618-623 cm deposit and the 

dominance of fine-grained shards strongly implies primary deposition (Table 4.1). 

However, the co-occurrence of the rhyolitic component in JM11-19PC suggests that the 

eruptions were either contemporaneous or the operation of secondary depositional 

mechanisms. In the absence of detailed IRD data for all cores, it is difficult to fully 

disentangle the depositional history of the NAAZ II deposit in JM11-19PC. 

Nonetheless, the rapid input of this deposit provides an independent chronological 

anchor for the record.

4.5 Developing a tephrostratigraphy for JM11-19PC

4.5.1 Assessing depositional controls and isochronous integrity

The assessment of down-core shard concentration profiles allied to rigorous 

geochemical characterisation from three separate grain sizes provides important 

evidence for determining the mode of tephra delivery to the sea-bed (Table 4.1). Six 

discrete deposits exhibit a distinctive shard concentration profile that indicates a variety 

of depositional controls operating throughout the core sequence. Tephras at 196-197 cm, 

357-358 cm, FMAZ II (304-305 cm) and NAAZ II (618-623 cm) in JM11-19PC exhibit 

a typical profile for a tephra largely unaffected by post-depositional modification (Table 

4.1). The geochemical homogeneity and dominance of fine grained shards in the FMAZ 

II and 357-358 cm horizons indicates primary deposition and adds confidence that these 

deposits represent well-resolved isochronous horizons. However, the geochemical 

heterogeneity and a coeval IRD signal for the deposit at 196-197 cm probably indicates 

the operation of secondary processes such as ice-rafting. This compromises the integrity 

of the tephra deposit and reinforces the importance of employing a range of indicators to 

fully decouple the operation of primary and secondary depositional mechanisms.
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The FMAZ IV (542-543 cm) in JM11-19PC forms a thick deposit with a significant 

upward tail on the shard concentration profile, consistent with observations from other 

Faroese cores (Wastegard and Rasmussen, 2014). The deposit exhibits a homogeneous 

geochemical composition and a predominance of fine-grained shards, which are 

diagnostic features of primary deposition (Table 4.1). The upward tail is suggested to be 

products of post-depositional reworking by ocean bottom currents. Bottom current 

activity is likely to be stronger during interstadial periods and the ability to remobilise 

previously deposited material is higher. An understanding of ocean currents and the 

climatic legime associated with tephra deposition can provide a further insight into the 

operation of modification mechanisms and assist in the placement of the isochron.

The FMAZ III deposit in JM11-19C exhibits a significantly different shard 

concentration profile with numerous peaks spread diffusely over 20 cm. The deposit 

exhibits a wide compositional envelope, has no coeval IRD peak and is dominated by 

the presence of fine-grained deposits, suggesting primary deposition. However, the 

diffuse distribution and correlation to all ten separate volcanic events recorded in the 

ice-cores suggests that the frequency of eruptions during this time period has 

compromised the integrity of this deposit (Table 4.1). We refer to this deposit as an ash 

zone and suggest that this term be used solely descriptively to depict the dispersion of 

tephra through a core, without any preconceived notions of geochemical characteristics 

and depositional processes. If individual components can be identified within the ash 

zone using diagnostic techniques outlined above, then the deposit could reveal discrete 

isochrons. Implicit in this definition is that the FMAZ II and FMAZ IV are ash zones 

that form well-defined isochronous horizons.
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4.6 Conclusions

The principal findings of this chapter are:

• Four basaltic horizons have been identified in JM11-19PC. Major element 

characterisations of each horizon demonstrate various degrees of geochemical 

homogeneity and exhibit an affinity to the FMAZ II, III, IV and II-THOL-2 

component of the NAAZ II.

• Depositional processes have varied temporally through the sequence and contain 

both primary and secondary signatures.

• Correlation to existing ice and marine archives indicate that the FMAZ II and 

FMAZ IV are well-resolved primary deposits that can be used as isochrons. Key 

primary features of these two horizons are well-defined shard concentration 

peaks, homogeneous geochemical signatures, a high percentage of fine-grained 

shards and the absence of a coeval IRD signal.

• The FMAZ III is a diffuse and heterogeneous deposit. The integrity has been 

compromised by the frequency of eruptions during the period of deposition. The 

deposit represents a stratigraphic marker for DO-8 and may potentially be 

utilised for low resolution marine-marine correlations.

• The II-THOL-2 component of the NAAZ II in JM11-19PC exhibits key primary 

features. However, the co-occurrence of the rhyolitic II-RHY-1 component at the 

same stratigraphic interval makes it difficult to fully unravel the depositional 

history of this deposit.

• Two additional rhyolitic cryptotephra horizons have been identified in JM11- 

19PC. The deposit at 196-197 cm exhibits a heterogeneous geochemical 

signature, with some affinity to Borrobol-like tephra deposited during GS-2 and

111



Chapter 4. Tephrochronology of North Atlantic marine core JM11-19PC between ~16-
55 ka

demonstrates key secondary depositional characteristics. The 357-358 cm 

horizon exhibits an affinity to Katla and is likely to represent a previously 

undetected eruption. This deposit has the potential to act as a high-precision 

isochronous marker horizon.
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Chapter 5 Tephrochronology of North 
Atlantic marine core MD04-2829CQ between 

18-41 ka b2k

5.1 Introduction

The aim of this chapter is to produce a MIS 2 and 3 tephrostratigraphical record for 

North Atlantic marine core MD04-2829CQ. This core has a high sedimentation rate and 

exhibits a continuous high resolution D-O signal between 18-41 ka b2k as reconstructed 

from a variety of proxy data (Hall et al., 2011). Such a high-resolution record presents 

an ideal opportunity for tracing tephras preserved within the Greenland ice-cores 

(Bourne et al., 2015), facilitating synchronisation between the marine and cryospheric 

depositional realms. Detailed geochemical and stratigraphic descriptions are provided 

for three cryptotephra deposits from four volcanic events identified in this sequence. 

Major and trace element compositions are employed to suggest a possible volcanic 

source and test potential correlations with previously published marine and ice-core 

tephra deposits. Shard concentration profiles are derived for each horizon and the 

corresponding proxy signal are assessed to explore the depositional history of the tephra 

deposits. This permits an assessment of the stratigraphic integrity of each isochron 

which helps in building a full tephrostratigraphical record for this sequence.

5.2 Core location, oceanographic setting and proxy record

Marine core MD04-2829CQ (58°56.93’N, 9°34.30’W) was retrieved at 1743 m water 

depth on a contourite drift located southeast of the Rosemary Bank in the northern
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Rockall Trough (RT) (Fig 5.1) during the R/VMarion Dufresne cruise MD141 (Hall et 

al., 2011). The core was pinpointed for rigorous stratigraphic investigation to reconstruct 

the variability of the British-Irish Ice Sheet (BUS) and ocean current migrations during 

the last glacial period. The core location is sensitive to hydrographic conditions and is 

located just inside the boundary of the present-day Sub-Arctic Front (SAF) (Dickson et 

al., 1988) (Fig 5.1). Deep water circulation in the northern Rockall trough is controlled 

by Norwegian Sea Deep Water (NSDW) overflowing the Wyville-Thomson Ridge from 

across the Faroe-Shetland Channel and then west to the Faroe Bank, where the core is 

situated (ICnutz et al., 2001; Hall et al., 2011).

The core is -10 m long and extends back to -41 ka b2k, but only the depth interval ~3- 

10 m, covering 18-41 ka, has been analysed in this investigation. A chrono strati graphic 

framework has been derived for the core from twenty-four AMS 14C dates. The resulting

age model has been extended and fine tuned by tuning the relative abundance of N.
18pachyderma sin. to the GISP2 ice-core 5 O record. The age model has been 

independently constrained by the identification of the Laschamp excursion in the 

magnetic record (-41 ka b2k) (Hall et al., 2011). There is a clear D-O signal recorded in 

the abundance of N. pachyderma sin. (2 cm resolution) (Hall et al., 2011) (Fig 5.2).

5.3 Sampling strategy

Tephra concentrations were initially inspected within 6 cm contiguous samples between 

300-1007 cm depth. Intervals with elevated shard counts relative to background levels 

were subsequently analysed at a 1 cm resolution (see section 5.3.1). In addition, 

replicate samples between 800-830 cm, 850-880 cm and 920-950 cm, taken from 

different lateral positions in the sequence, were re-investigated at 1 cm resolution. Shard 

concentrations were exceptionally low and replicate counts provide a check on the 

lateral variability of the cryptotephra deposits. Material from the 25-80 pm fraction was 

processed using the heavy liquid separation procedure outlined in section 3.3 and the 

>2.5 g/cm3 fraction was magnetically separated to purify the basaltic material (section

3.4).
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Figure 5.1 Location map of marine core MD04-2829CQ with the approximate pathways of present day 
deep water masses (Hail et al., 2011). major hydrographic fronts (Dickson et al.. 1988; Zumaque et al., 
2012) and maximum extents of the northeastern European and Faroe Islands ice-sheet during the LGM 
(Hall et al., 2011). RB = Rosemary Bank. RT = Rockall Trough. RP = Rockall Plateau.
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5.3.1 Shard concentrations and tephrastratigraphy

Low-resolution shard concentrations from all density and size fractions are shown in 

Figure 5.3. Areas with increased levels of shards relative to background values were 

sampled at a high resolution, indicated by the grey intervals on Figure 5.3. Three distinct 

peaks are observed in the low-resolution >2.5 g/cm (25-80 |im) fractions with the 

highest concentration of brown shards (seventy-five per 0.5 gdw) found between 798- 

804 cm. A small corresponding peak is observed between 798-804 cm in the >125 pm 

size fraction. The remaining peaks in the >2.5 g/cm3 fraction occur at 492-498 cm and 

894-900 cm, but there are no corresponding peaks in the coarser-grained fractions for 

these horizons. High-resolution counts were occasionally extended by up to 2 cm 

beyond the 6 cm low-resolution windows to aid the refinement of the stratigraphic 

position of shard concentration peaks. High-resolution samples from 492-498 cm and 

894-900 cm did not contain any tephra particles following repeat analyses and have 

been omitted from further investigation. Successful high resolution investigations 

revealed the presence of cryptotephra deposits at 800-801 cm, 930-931 cm and 934-935 

cm and these will be discussed within the following sections (Table 5.1). The majority 

of brown shards in the 930-931 cm and 934-935 cm horizons were detected solely in 

high-resolution within the 2.3-2.5 g/cm3 fraction. These depths were sampled because 

they contained elevated colourless shards (see below) and no brown shards were 

detected in low resolution.

Within the 2.3-2.5 g/cm fraction, exceptionally low concentrations of colourless shards 

(approximately four shards per 0.5 gdw) occur throughout with no distinct peaks 

observed. Elevated levels of colourless shards (ten shards per 0.5 gdw) were found 

between -930-950 cm. Two sets of replicate high-resolution 1 cm samples were 

obtained from two different lateral positions spanning this depth interval. High- 

resolution investigations were conducted on samples between 800-830 cm, 850-880 cm 

and 920-950 cm to assess the stratigraphy and geochemical composition of the 

background of colourless shards.
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5.4 Basaltic cryptotephra horizons within MD04-2829CQ

5.4.1 MD04-2829CQ 800-801 cm

5.4.1.1 Shard descriptions and concentrations

The highest shard concentrations (187 shards per 0.5 gdw in the 25-80 pm fraction and 

121 shards in the >80 pm fraction) were identified within the 800-801 cm deposit (Fig

5.4) (Table 5.1). Elevated shard concentrations are confined to a 1 cm interval, 

suggesting rapid input of tephra with limited post-depositional re-working (Fig 5.4). 

There is no indication of a gradational increase or decrease in tephra concentration 

bracketing this horizon. The shards have a dark brown colour, exhibit a dense blocky 

morphology and are highly vesicular in appearance. The horizon falls within Heinrich 3 

(29-31 ka b2k) as indicated by high IRD concentrations and low % N. pachyderma sin. 

(Hall et al., 2011) (Fig 5.2). The age model provided by Hall et al. (2011) suggests this 

horizon was deposited at ~30 ka b2k.

5.4.1.2 Geochemistry and source identification

EPMA analyses from thirty-six individual shards confirm the basaltic (tholeiitic series) 

composition of this deposit (Fig 5.5). Overall, the deposit exhibits a bimodal 

composition with two homogenous populations and no significant outliers are observed. 

The bimodality is best expressed in the CaO and Ti02 concentrations (Fig 5.6). Eighteen 

shards from the 25-80 pm fraction form the first population and no shards from the >80 

pm fraction contribute to this population. Distinctive geochemical characteristics 

include K2O concentrations between ~0.19-0.26 wt%, average Ti02 concentrations of 

-2.52 wt% and CaO and MgO concentrations of -10.37 wt% and -5.83 wt% 

respectively (Table 5.2).
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The latter two oxide values are characteristic of the tholeiitic rock suite and suggest a 

strong affinity to the Grimsvotn system in the Eastern Volcanic Zone of Iceland 

(Jakobsson et al., 2008). This can be clearly observed on and CaO vs TiC>2 geochemical 

biplots (Fig 5.6).

Population two is defined by eighteen shards (six shards from the 25-80 pm fraction and 

twelve shards from the >80 pm fraction). All coarse grained shards analysed from 800- 

801 cm fall within this population. Distinctive characteristics include average K2O 

concentrations of '--0.59 wt%, TiCT concentrations of -3.43 wt% and CaO and MgO 

concentrations of —9.21 wt% and -5.16 wt% respectively (Table 5.2). The latter two 

oxide values are characteristic of the Iholeiitic rock suite and plot largely within the 

Kverkfjoll volcanic system compositional envelope (Fig 5.6).

5.4.1.3 Wider correlations and depositional processes

Transitional alkali and tholeiitic basaltic tephras dominate the Greenland ice-core record 

between 25-32 ka b2k (Bourne et ah, 2015). The interval brackets the approximate age 

of this horizon according to radiocarbon measurements and the age-depth model derived 

by Hall et ah (2011). Stratigraphically, the 800-801 cm horizon falls during Heinrich 3 

and precedes the wanning associated with DO-4 (Fig 5.2). Ice-core tephra horizons 

found between GI-3 and GI-5 cluster within Katla and Kverkfjoll compositional 

envelopes (Bourne et ah, 2015). A comparison with glass shard analyses from thirteen 

stratigraphically and geochemically similar cryptotephra horizons found within NGRIP, 

GRIP, NEEM and DYE-3 ice-cores highlights the geochemical range exhibited by 

Kverkfjoll deposits in this period (Fig 5.7). Despite similar compositions, small 

differences in Ti02 concentrations are apparent and aid discrimination (Bourne et ah,

2015). Population two of 800-801 cm shows affinities to ice-core horizons that exhibit 

mean Ti02 values of > 3.2 wt% (Fig 5.7).
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Chapter 5. Tephrochronology of North Atlantic marine core MD04-2829CQ between
18-41 ka b2k

Several of these reveal a similarity coefficient value >0.97 (Table 5.3), though there is 

significant variability in some of the ice-core horizons in comparison to the relatively 

homogeneous 800-801 cm geochemical population (Fig 5.7). These have subsequently 

been excluded from further analysis. The strongest geochemical overlaps are observed 

between population two in 800-801 cm and NGR1P 1882.50 m, GRIP 2081.40 m and 

GRIP 2067.85 m (Fig 5.8). Due to the geochemical similarities between the ice-core 

deposits (Fig 5.8), it is not possible to assess the potential correlations without also 

considering their stratigraphic positions. The highest similarity coefficient of 0.991 

exists between population two of 800-801 cm and NGRIP 1882.50 m (Table 5.3). 

However, this horizon falls stratigraphically on the cooling associated with GI-4 (28,594 

t  887 b2k), significantly after deposition of 800-801 cm which occurs during the peak 

stadial conditions associated with DO-5 (Fig 5.9). Unless there was significant 

downward migration of tephra shards through the marine sequence, it is unlikely that 

NGRIP 1882.50 m represents a correlative horizon.

In contrast, GRIP 2067.85 m and GRIP 2081.40 m are positioned in GI-5.1 and GS-5.2 

respectively and fall in a relatively similar stratigraphic position to 800-801 cm (Fig 

5.9). GRIP 2067.85 m probably represents the most stratigraphically-related deposit and 

may provide a direct ice-marine correlative (Fig 5.9). A tentative correlation to GRIP 

2067.85 m can be suggested according to strong overlap with the TiC>2 vs MgO 

concentrations (Fig 5.8). Future trace-element analysis may help geochemically 

discriminate between these deposits and assist in providing a more secure correlation.

The first population in 800-801 cm exhibits a geochemical affinity to deposits sourced 

from Grimsvotn. However, no Grimsvotn-sourced horizons are present in the ice-core 

framework during the interval associated with deposition. It is interesting to note that 

ice-core horizons NGRIP 1931.60 m, GRIP 2064.35 m and DYE-3 1869.15 m, 

deposited between 25-32 ka b2k, exhibit outlying shards of Grimsvotn origin (Fig 5.7). 

Although the concentration of outlying shards is exceptionally small, this suggests that 

Grimsvotn may have been active during this period with only a few shards transported 

to Greenland.
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Figure 5.7 Major oxide results for the 800-801 cm deposit identified in MD04-2829CQ. (a), (b) Glass 
shard analyses compared to nine geochemical compositional envelopes for selected cryptotephra deposits 
identified in NGRIP, GRIP. NEEM and DYE-3 between 28.594 ± 885 b2k to 31,581 ± 1078 b2k (Bourne 
et al., 2015). All data have been normalised to 100% total oxide concentration.
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Table 5.3 Similarity coefficients between the major element composition of the 800-801 cm second 
geochemical population and ice-core horizons from NGRIP, GRIP, NEEM and DYE-3 between (25-32 
ka b2k) (Bourne el al., 2015).

Ice-core horizon Age (b2k) 800-801 cm SC

GRIP 2002.20 in 26,544 ± 768 0.983

NGRIP 1882.50 rn 28,594 ±887 0.991

DYE 3 1869.15 m 29,400 ± 1000 0.933

GRIP 2060.85 m 30,066 ± 976 0.964

NGRIP 1908.70 m 30,082 ± 977 0.967

NEEM 1664.95 m 30,083 ± 977 0.953

GRIP 2064.35 m 30,353 ±993 0.950

GRIP 2067.85 m 30,628 ± 1010 0.978

NEEM 1671.85 m 30,825 ± 1023 0.984

GRIP 2081.40 m 31,581 ± 1078 0.977

NGRIP 1973.16 m 33,686 ± 1207 0.975
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Chapter 5. Tephrochronology of North Atlantic marine core MD04-2829CQ between
18-41 kab2k

However, this may also be a consequence of aeolian activity redistributing shards 

previously deposited on the ice-sheet surface. Nonetheless, this population may be 

sourced from a previously undiscovered Grimsvotn eruption.

A bimodal population in 800-801 cm may be the product of coeval eruptions or shards 

sourced from separate eruptions with a short temporal lag. 800-801 cm falls during a 

Heinrich event, as shown by low (21%) N. pachyderma sin. and high influx of IRD 

grains (Fig 5.4), suggesting high rates of ice-berg calving. This is demonstrated by the 

high concentration of coarse-grained tephra shards found within this horizon that range 

up to -500 pm in diameter. Large grain sizes are greater than would be typically 

associated with primary atmospheric fallout and may represent transportation via 

iceberg rafting from proximal locations. This process can accumulate numerous 

eruptions onto the ice-sheet surface and delay deposition into the marine sequence by 

several millennia. However, typical diagnostic features of ice-rafted deposits include 

geochemical heterogeneity and a diffuse shard concentration profile, both of which are 

not features of 800-801 cm. It is suggested that the geochemical homogeneity and 

exceptional stratigraphical constrainment exhibited by this horizon are the product of 

primary airfall or sea-ice. The primary signal may overprint sediments that contain an 

additional ice-rafting signal. Large grain sizes within this horizon may be a consequence 

of sea-ice deposition, which does not affect the integrity of the deposit (Austin et al., 

2004). Both populations may represent potentially useful isochronous horizons, 

providing a secure geochemical correlation can be established in future investigations 

(Table 5.1).

5.4.2 MD04-2829CQ 930-931 cm

5.4.2.1 Shard descriptions and concentrations

A distinct 1 cm peak of thirty-six brown shards per 0.5 gdw is observed in the 25-80 pm 

fraction between 930-931 cm (Fig 5.10) (Table 5.1). A sharp increase from zero shards
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to thirty-six glass shards within 1 cm and a rapid cessation of input to zero shards at 

929-930 cm suggests a pulse of tephra with limited depositional re-working. Only one 

shard was present in a replicate sample taken from a different lateral transect and no 

other shards were identified in surrounding samples (Fig 5.10c). This suggests that this 

tephra deposit may not be preserved as a continuous horizon and highlights the possible 

lateral variability of cryptotephra deposition (Table 5.1). The shards are light brown in 

colour and exhibit a platy morphology. The horizon falls within the peak warmth of DO- 

8 (—38.3 ka b2k), as indicated by the low abundance of N. pachydernia sin. (41%) (Hall 

et al., 2011) (Fig 5.2, 5.10).

5.4.2.2 Geochemistry and source identification

Major element results from thirty-one single shards reveal a basaltic tholeiitic 

composition (Fig 5.5). Overall, the deposit exhibits a reasonably homogeneous 

geochemical population. Twenty-nine shards from the 25-80 pm fraction and two from 

the >80 pm fraction form this population (Fig 5.11). Geochemical characteristics 

include Si02  concentrations of -49.08-50.88 wt%, K2O concentration of -0.40 wt%, 

TiC>2 concentrations of -2.23-2.98 wt%, CaO concentrations of -9.63-11.67 wt% and 

MgO concentrations between -5.22-7.32 wt% (Fig 5.10) (Table 5.2). These 

characteristics are typical of a tholeiitic basaltic composition, with the Ti02  and K2O 

concentrations typical of a Grimsvotn origin (Jakobsson, 1979) (Fig 5.6). Despite the 

relative homogeneity of the deposit, some elements exhibit a wide range of values i.e. 

K2O (Fig 5.11a) and Ti02  (Fig 5.11c). No significant outliers were detected in this 

deposit.

5.4.2.3 Wider correlations and depositional processes

Grimsvotn-sourced tephra deposits of tholeiitic basaltic composition dominate the 

marine and ice-core records between 37,200 -  41,200 b2k (Rasmussen et al., 2003; 

Wastegard et al., 2006; Bourne et al., 2015).
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Glass shard analyses from 930-931 cm plot within the broad FMAZ III compositional 

envelope derived from four other marine cores in the Faroes region (Rasmussen et al., 

2003; Wastegard et al., 2006; this study) (Fig 5.11). 930-931 cm shows no consistent 

affinity to any of the fourteen volcanic events identified in NGRIP, GRIP and NEEM 

during this time period (Fig 5.12). This can be clearly observed on TiC>2 vs CaO and 

FeO/MgO vs Ti02 geochemical biplots (Fig 5.12). This deposit may be sourced from a 

Grimsvotn eruption that is not preserved within the ice-core records.

The low concentration of coarse-grained brown shards (eighteen in the 80-125 pm 

fraction) and well-constrained nature of this deposit is typical of primary atmospheric 

lalloui with minimal post-depositional modification. No diagnostic tailed shard 

distribution is present, indicating limited operation of bottom current re-working and/or 

bioturbation. However, this may be a consequence of low shard concentrations, which 

may not be of sufficient quantity to act as a tracer for bioturbative activity. The horizon 

occurs during DO-8 with no coeval IRD signal (Hall et al., 2011), suggesting iceberg 

calving is unlikely to have assisted in tephra delivery (Fig 5.10a). This horizon could 

potentially act as a high-precision isochronous marker, although no direct correlation 

can currently be established. The horizon falls within the broad FMAZ III marine 

compositional envelope derived from the Faroes region and may tentatively be useful 

for low resolution marine-marine correlations.

5.4.3 MD042829CQ 934-935 cm

5.4.3.1 Shard description and concentrations

This horizon forms a distinct 1 cm peak between 934-935 cm (thirty-six brown shards 

per 0.5 gdw in the 25-80 pm fraction and two shards in the >80 pm fraction) (Fig 5.10) 

(Table 5.2).

135



Chapter 5. Tephrochronology of North Atlantic marine core MD04-2829CQ between
18-41 ka b2k

a)

o
H

NGRIP 2064 35m
—  NGRIP 2065 65m 

NGRIP 2065 80rr
 NGRIP 2066 95a
—  NGRIP 2071 50a 

— NGRIP 2073 15m
NGRIP 2C78 01m 

»  NGRIP 2078 37rr 
- -  NGRIP 2078 97a 
 MGRIP 20 ’9 ^Oa

F eO ^ M g O

b)

orcU

14

13

12

11

•cdU
10 V

C 930-931 cm 25-80 prr. 

□  930-931 cm >80 |xm
*  934-935 cm 25-80 urn
* Outliers?

9

8

TiO, (wt %)

F igu re  5.12 Major oxide results for the 930-931 cm and 934-935 cm deposits identified in MD04- 
2829CQ. (a) and (b) Glass shard analyses compared to geochemical compositional envelopes for 
crvptotephra deposits identified in NGRIP between 38.048 ± 721-38,826 ± 740 b2k (Bourne et al., 2013). 
All data have been normalised to 100% total oxide concentration.
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A sharp increase from five to thirty-six shards between two contiguous 1 cm samples 

and a subsequent decline to five shards at 933-934 cm suggests a pulse of tephra with 

limited depositional re-working. Replicate samples taken from a different lateral 

position exhibit a concentration of twenty-three shards and highlight the lateral 

continuity of this horizon (Fig 5.10c) (Table 5.1). Shards are very light brown, exhibit a 

blocky morphology and display strong evidence of hydration. The majority of shards 

discovered in this horizon were detected in the 2 .3-2 .5 g/cm fraction, possibly due to 

hydration processes altering the shard density. The horizon falls within the rapid 

wanning limb of DO-8 as indicated by the decreasing abundance of A. pcichydenna sin. 

(58 %) (Hall et al., 2011) (Fig 5.2, 5.10)

5.4.3.2 Geochemistry and source identification

Major element results from forty-nine single shards reveal a basaltic tholeiitic 

composition (Fig 5.5). The horizon exhibits a strongly homogeneous geochemical 

population. Ten outliers with notable differences in Ti0 2 , K2O and AI2O3 concentrations 

were detected and subsequently removed from the data-set (these are highlighted in blue 

on ice-core comparison biplots) (Fig 5.12). Distinctive geochemical characteristics 

include SiC>2 concentrations of -49.24-52.06 wt%, K2O concentration of -0.31 wt%, 

TiC>2 concentrations of -2.13-2.39 wt%, CaO concentrations of -11.48-12.64 wt% and 

MgO concentrations between -6.96-8.00 wt% (Table 5.2). These characteristics are 

typical of a tholeiitic basalt composition, with the Ti02 and K2O concentrations 

implying an origin in the Grimsvotn system (Jakobsson, 1979) (Fig 5.6).

5.4.3.3 Wider correlations and depositional processes

Glass shard analyses from the 934-935 cm population fall within the compositional 

envelope of FMAZ III (Rasmussen et al., 2003; Wastegard et al., 2006; this study) (Fig 

5.11). Specifically, it falls within the upper end of the FMAZ III composition on TiC>2 vs 

CaO biplots i.e. low Ti02 values and high CaO concentrations. The deposit falls within
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the lower end of the FMAZ III composition on TiC>2 vs FeO/MgO biplots and exhibits 

the lowest FeO/MgO concentrations within the FMAZ III envelope (Fig 5.11). The tight 

homogeneous population exhibited by 934-935 cm suggests that this horizon may be 

representativ e of a single eruption present within the FMAZ III complex.

A comparison of 934-935 cm with fourteen separate volcanic events identified in the 

Greenland ice-cores during this time period demonstrates that this falls tightly within the 

compositional envelopes of the correlated NGRIP 2071.50 m and NEEM 1759.65 m 

horizons (Fig 5.12, 5.13). These horizons exhibit the lowest TiC>2 and highest CaO 

values of all the ice-core horizons identified within this period and aid their 

discrimination from other Grimsvotn-sourced cryptotephra horizons. However, there is a 

relatively wide elemental spread in both ice-core correlative populations which may be 

the consequence of several factors. The geochemical variability may be indicative of 

several eruptive phases closely spaced in time and/or the product of aeolian re-working 

of previously deposited shards. The stronger homogeneity exhibited by main population 

in 934-935 cm in comparison to the stratigraphically equivalent ice-core horizons 

suggest that this deposit is likely to originate from a single phase of a Grimsvotn 

eruption.

The low concentration of >80 pm shards and predominance of shards in the 25-80 pm 

fraction are typically associated with deposits derived from primary atmospheric fallout. 

Absence of a diagnostic tailed shard distribution suggests post-depositional modification 

was minimal (Fig 5.10). The horizon was deposited on the warming limb of DO-8 with 

no coeval IRD influx (Fig 5.10a), which suggests iceberg calving is unlikely to have 

assisted in tephra delivery to the site. Strong geochemical homogeneity and similarity 

with NGRIP 2071.50 m and NEEM 1759.85 m horizons, as shown on biplots in Figures 

5.12 and 5.13, suggest the 934-935 cm horizon is representative of a single primary 

input event.
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The perplexing absence of other horizons that constitute the FMAZ III may be a 

consequence of atmospheric dispersal pathways or variations in ocean gyres 

unfavourable to deposition at the site. Nonetheless, the stratigraphic integrity of this 

horizon has been demonstrated and major element correlations suggest the deposit may 

be utilised as a high-resolution isochronous marker between the ice and oceanic realms 

(Table 5.1). This correlation will be tested with trace element data (see section 5.4.4).

5.4.4 Trace element characterisation

5.4.4,1 Assessing comparability of marine and ice-core trace 
element data

Glass shards from 934-935 cm and NEEM 1759.85 m were analysed for their trace 

element composition to provide a secondary fingerprint and to test the proposed 

correlation between the horizons. A number of analyses were conducted in two 

analytical periods over the course of a single day; ice-core shards were analysed in both 

AM and PM sessions and marine shards were analysed in the PM session. As such, 

comparisons between data sessions are first employed to assess the reliability and 

comparability of the marine and ice-core data-sets.

Initially, shards from the same analytical period (PM) were compared. For a large 

number of elements, the ice-core data is generally lower in concentration than the 

marine data, as observed on Pr vs Ce and La vs Ce geochemical biplots (Fig 5.14a,b). 

When the AM ice-core data is included, there is greater overlap between the marine and 

ice-core shards, but the marine concentrations are generally higher than the ice-cores 

(Fig 5.14c,d). There are significant differences in concentrations of Ba, Rb and Nb 

exhibited by the AM and PM ice-core and marine data-sets (Fig 5.15). These differences 

are apparent in both the AM and PM datasets, which suggest that compositional 

differences are real and have not been affected by variability between different 

analytical periods.
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5.4.5 Testing correlations using trace element data

The overall concentrations of REE’s fall within the evolved classification of tholeiitic 

basalts presented in Oskarsson et al. (1982) (Fig 5.16a). The average REE profiles lor 

the two basaltic horizons display a gentle gradient between La and Lu (Fig 5.16b). 

However, there are differences in the slopes of the deposits, most notably shown by 

differences in Ce, Tb and Lu concentrations. Both profiles fall within the Grimsvotn 

envelope constructed from trace-elemerit end member characterisation by Oskarsson et 

al. (1982). Geochemical biplots were also constructed to test trace-element source 

assignation with Grimsvotn (Fig 5.16c,d). Generally, fev shards plot within the 

Grimsvotn envelope, which may be due to the bulk analyses used to gain source 

characterisations, which may incorporate phenocrysts and lithic phases. Bulk analyses 

may also fail to detail the same heterogeneity of deposits that can be captured from 

single-shard analyses. In addition, small spot sizes may add variability due to analytical 

issues (Pearce et al., 2007). As such, Grimsvotn source envelopes provided by Meyer et 

al. (1985) may not offer sufficient diagnostic capabilities.

Geochemical biplots of Ba vs Rb and Ba vs Nb demonstrate significant compositional 

differences between MD04-2829CQ 934-935 cm and NEEM 1759.85 m, and no 

overlaps are observed between data points (Fig 5.15c,d). Barium concentrations are 

consistently <80 ppm in 934-935 cm and >80 ppm in NEEM 1759.85 m, with averages 

of 52.81 ppm and 115.95 ppm respectively (Fig 5.15c,d) (see appendix). Differences are 

additionally observed in niobium concentrations, with an average of 11.42 ppm in 934- 

935 cm and 6.61 ppm in NEEM 1759.85 m. Due to the incompatibility of barium, 

compositional differences cannot be attributed to differing levels of geochemical 

evolution or fractionation. This suggests the two samples are not genetically related and 

cannot be explained by shards originating from separate phases of an eruption.
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Major element similarities indicate that the shards were derived from the same system, 

but differences in trace elements suggest they may have originated from separate magma 

chambers. This raises important questions regarding the frequency of Grimsvotn activity 

during DO-8 and suggests even though a large number have already been identified, 

more eiuptions may have occurred throughout the last glacial period than are 

documented in the ice-cores. More work is necessary to capture the geochemical range 

of deposits preserved within the marine environment during DO-8 to fully assess the 

potential for ice-marine correlations (see section 6.7). The importance of employing 

trace-element analysis is highlighted in this instance to prevent erroneous correlations.

5.5 Rhyolitic horizons within MD04-2829CQ

5.5.1 MD04-2829CQ 810-811 cm

5.5.1.1 Shard descriptions and concentrations

A small indistinct peak between 810-811 cm contains a very low shard concentration 

(fifteen colourless shards per 0.5 gdw in the 25-80 pm fraction) (Fig 5.4) (Table 5.1). 

The sampling interval has an average background concentration of five shards per 0.5 

gdw which fluctuates from a peak of fifteen to zero, which indicates frequent input of 

shards into the sequence (Fig 5.4). Shards exhibit a platy and fluted morphology with a 

varying concentration of vesicles. The horizon precedes Heinrich 3 (~31 ka b2k) as 

indicated by rapidly increasing % N. pachyderma sin. abundances (Hall et al., 2011) 

(Fig 5.2, 5.4).

5.5.1.2 Geochemistry and source identification

Eleven shards exhibit a rhyolitic composition with an affinity with the transitional alkali 

rock suite defined on the TAS plot (Jakobsson et al., 2008) (Fig 5.17). The deposit 

exhibits a distinct bimodal geochemical population (Fig 5.18).
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Bimodality is most distinct within the FeO vs CaO geochemical biplot (Fig 5.18d) and 

no significant outliers from these populations were detected. The bimodality could 

imply each population has been sourced by a different volcanic system or one system 

with strong geochemical variability (Table 5.2).

Five glass shards form population one. Geochemical characteristics include Si02 

concentrations o f-72.43 wt%, FeO concentrations o f-3.75 wt%, CaO concentrations of 

-1.35 wt%, K2O concentrations o f -3.67 wt% and Ti02 concentrations of -0.31 wt% 

(Table 5.4). Identifying a volcanic source for this horizon is confounded by a lack of 

data sources as only a few studies have reported geochemical charaterisations of 

proximal Icelandic silicic material (Larsen et al., 2001; Jonasson. 2007). This may not 

be sufficient to capture the full geochemical range exhibited by source volcanoes. A 

comparison of 810-811 cm with whole rock data from five transitional alkali volcanic 

systems is shown in Figure 5.18. The majority of population one fall within the 

Torfajokull compositional envelope on N2O+K2O vs SiC>2 biplots and some fall within 

the same envelope on FeO vs CaO biplots. However, shards additionally fall within the 

Katla and Tindfjallajokull envelopes on K2O vs Si02 biplots and highlight that no 

consistent relationships can be identified (Fig 5.18).

Six shards form population two. Distinctive geochemical characteristics include Si02 

concentrations o f-76.07 wt%, FeO concentrations of -2.56 wt%, CaO concentrations of 

-0.56 w1%, K2O concentrations o f -4.19 wt% and Ti02 concentrations of -0.17 wt% 

(Table 5.4). On Si02 vs K2O and FeO vs CaO biplots, there is an overlap within the 

Torfajokull compositional envelope but this is not consistent (Fig 5.18). Akin to the first 

population, there are no consistent relationships observed between geochemical biplots 

and a volcanic source cannot be ascribed.
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Figure 5.17 (a) Total alkalis vs silica plot for analyses from rhyolitic deposits found in MD04-2829CQ. 
(b) Inset of IA S plot focusing on the rhyolitic analyses. Chemical classification is defined by Le Maitre et 
al. (1989). The compositional envelopes for the Icelandic rock suites are defined by Jakobsson et al., 
(2008).
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5.5.1.3 Wider correlations and depositional processes

The constant low background of shards identified within the high-resolution shard 

concentration profile with peaks marginally above background levels suggest no 

isochron can be discerned. It is likely that shards have exhibited a long residency within 

the ocean environment and are subsequently derived from bottom current re-working. 

Comparisons made within this section focus on widespread and voluminous eruptions 

that have characterised Pleistocene marine records, even though these eruptions fall 

outside the appropriate strarigraphic interval.

Within the period of 25-32 ka b2k, only two deposits reported in the Greenland ice-core 

framework exhibit a rhyolitic/dacite composition and these display an affinity to 

products sourced from Hekla (Bourne et al., 2015). These ice-core deposits differ 

significantly from the 810-811 cm deposit on elements including SiC>2, CaO and TiC>2. 

The relative infrequency of rhyolitic deposits may be a reflection of changes in ash 

plume dispersion, or alternatively reflect limited silicic volcanic activity. The two 

rhyolitic populations present in 810-811 cm may represent two previously undiscovered 

silicic volcanic events or shards re-worked from previous eruptions that have a dispersal 

pathway towards this core site (Thomalley et al., 2011).

Although a source volcano for population one in 810-811 cm cannot be assigned using 

proximal volcanic data, some overlap with the Katla compositional envelope is 

demonstrated on SiC>2 vs K2O biplots (Fig 5.18). Rhyolitic Katla sourced eruptions in 

early Holocene and Lateglacial marine deposits exhibit similar geochemical 

compositions to this population (Thomalley et al., 2011; Jennings et al., 2014). As the 

glass shards for these events were compositionally similar, this may indicate 

geochemical stability of the Katla magma system. Assuming continued magmatic 

stability, other known rhyolitic deposits from the Katla system i.e. Vedde Ash, AF5 and 

Suduroy tephras were compiled to create a geochemical composition envelope to check
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for potential common sources with 810-811 cm (Fig 5.19) (Wastegard et al., 2002; 

Mortensen et al., 2005; Matthews et al., 2011b; Lane et al., 2012). A similarity 

coefficient of 0.976 indicates a strong common source similarity between population 

one in 810-811 cm and Katla sourced rhyolitic deposits. This is illustrated on a number 

of geochemical biplots where all shards from this population plot within the Katla 

compositional envelope on a number of element oxides (Fig 5.19). Single-shard 

analyses from distal occurrences of Katla shards are likely to capture the full 

compositional range of Katla products, as opposed to bulk data derived from proximal 

material. This may explain the differences in source assignation between Figure 5.17 

and Figure 5.18.

A comparison of population two in 810-811 cm with the rhyolitic component of the 

NAAZ II complex (II-RHY-1) (see section 2.5.1.1) suggests a close geochemical 

similarity between these two deposits (Fig 5.19). Six shards from 810-811 cm plot 

consistently within the NAAZ II compositional envelope, derived from a number of 

pan-Atlantic marine cores (Fig 5.19) (Wastegard et al., 2006; Brendryen et al., 2011; 

Abbott, unpublished). Furthermore, characteristic bubble walled morphologies of the 

NAAZ II deposit are similar to those found in 810-811 cm. However, there is a 

significant temporal delay (~24 ka b2k) between the eruption and subsequent 

preservation at the core site (Fig 5.2). In the absence of covarying IRD influx at this 

depth, the delay is unlikely to be a feature of iceberg calving and is likely the 

consequence of substantial bottom current re-working.

The NAAZ II deposit is widely dispersed across the North Atlantic and often exhibits a 

thickness of ~20 cm with a distinctive upward tail (Austin et al., 2004; Wastegard et al., 

2006). The exceptionally high input of rhyolitic shards into the marine system is likely 

to provide a source for ocean currents to constantly mobilise and redistribute glass 

shards across the ocean floor.
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Furthermore, low geochemical totals for this population (-95.18 wt%) can be taken 

as an indicator of post-emplacement hydration and extended residence in the ocean 

environment (Jennings et al., 2014). The second population is likely to be composed 

of redistributed NAAZ II rhyolitic glass shards with a strong secondary 

transportation signal and cannot be considered isochronous.

5.5.2 MD04-2829CQ 934-935 cm

5.5.2.1 Shard descriptions and concentrations

This horizon forms a relatively distinct peak between 934-935 cm (fifty-one 

colourless shards 0.5 gdw in the 25-80 pm fraction) (Fig 5.10d) (Table 5.1). The 30 

cm sampling interval encompassing the horizon has an average background 

concentration of nine shards per 0.5 gdw, fluctuating from a peak of fifty-one to 

zero. Replicate samples from a different lateral position between 929-942 cm do not 

exhibit a single distinct peak. This highlights the lateral variability of rhyolitic shards 

within the sequence. Shards exhibit a platy and fluted morphology with varying 

degrees of vesicularity and often occur attached to sedimentary and biological 

material retained during density floatation. The horizon falls on the warming limb of 

DO-8 and immediately precedes Heinrich 4 as indicated by rapidly decreasing % N. 

pachyderma sin. abundances (Fig 5.2, 5.10a) (Hall et al., 2011).

5.5.2.2 Geochemistry and source identification

EPMA results from eighteen individual shards reveal a rhyolitic composition with an 

affinity to the transitional alkali rock suite defined on the TAS plot (Jakobsson et al., 

2008) (Fig 5.17). Overall, the deposit exhibits geochemical bimodality similar to 

810-811 cm (Fig 5.18), which is most distinct within the FeO vs CaO geochemical 

biplot (Fig 5.18d). Two significant outliers were observed in this deposit which 

exhibit a notably low total alkali concentration of -6.71 wt% in one shard, and one 

shard with a notably low FeO concentration o f -1.07 wt%.
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Eleven shards form population one (Fig 5.18). Distinctive geochemical

characteristics include SiCF concentrations of -71.48 wt%, FeO concentrations of 

-3.98 wt%, CaO concentrations of -1.45 wt%, K2O concentrations of -3.73 wt% 

and Ti02  concentrations of -0.33 wt% (Table 5.4). There are no consistent

relationships observed between this population and proximal Icelandic deposits and 

therefore a volcanic source cannot be ascribed (Fig 5.18).

Five glass shards form population two (Fig 5.18). Distinctive geochemical

characteristics include SiC>2 concentrations of -75.31 wt%, FeO concentrations of 

-2.58 wt%, CaO concentrations of -0.43 wt%. K2O concentrations of -4.28 wt% 

and Ti02  concentrations of -0.17 wt% (Table 5.4). Similarly to 810-811 cm. there 

are no consistent relationships observed between this population and proximal 

Icelandic deposits and this makes source assignation difficult (Fig 5.18).

5.5.2.3 Wider correlations and depositional processes

Population one overlaps with the first population in 810-811 cm with a similarity 

coefficient of 0.976 (Fig 5.19). It is likely this population also consists of a 

composite of Katla-sourced rhyolitic glass shards (Fig 5.19). The second population 

in 934-935 cm overlaps with the second population in 810-811 cm and exhibits a 

similarity coefficient of 0.984 (Fig 5.19). This geochemical population shares a 

common source to the NAAZ II (II-RHY-1) deposit, indicating a temporal delay of 

-15 ka b2k between the eruption and subsequent emplacement. Similarly to 810-811 

cm, there is no coincident peak in IRD concentration, suggesting the geochemical 

populations may be the result of a bottom current re-working and long residence 

time of some large-volume and widespread tephras.

The presence of a very similar geochemical bimodal composition to 810-811 cm 

indicates that the same secondary transport mechanisms have controlled deposition. 

The stratigraphic separation of 1.24 m between these deposits adds confidence to the 

notion that high silicic input into the marine system from the NAAZ II and Katla- 

sourced rhyolites have been redistributed by bottom currents.
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5.6 Developing a tephrostratigraphy for MD04-2829CQ:

5.6.1 Assessing isochronous integrity: basaltic vs rhyolitic 
depositional controls

Analysis of three basaltic cryptotephra horizons in MD04-2829CQ reveals that each 

deposit occurs as a distinct 1 cm peak in shard concentration with sharp contacts to 

the underlying sediment, indicating rapid influx of basaltic glass shards. Absence of 

gradational upper boundaries following the peaks, coupled with the absence of a 

background brown shard signal indicates the occurrence of three distinct input 

events. Moderate homogeneity exhibited by 930-931 cm indicates primary airfall 

deposition and lateral discontinuity is a likely consequence of the patchy distribution 

and preservation of low shard concentrations. Strong geochemical homogeneity 

exhibited by 934-935 cm and the dominance of tephra shards in the 25-80 pm 

fraction strongly indicates primary deposition, demonstrating the isochronous 

integrity of this horizon. Despite only a 4 cm separation, both horizons exhibit 

significantly different geochemical compositions, which provides evidence that they 

are well constrained and derived from separate events.

A thorough systematic assessment of high-resolution shard concentration profiles 

derived from the 2.3-2.5 g/cm3 fraction across several lateral transects, provides 

important information for assessing the stratigraphic integrity of rhyolitic deposits. 

Shard distributions are diffuse and suggest the operation of post-depositional re­

working, resulting in a low shard background throughout the core. Variable 

concentrations between replicate samples taken from a different lateral position 

reflect the lateral discontinuity of these deposits. The 810-811 cm and 934-935 cm 

rhyolitic deposits exhibit similar bimodal geochemical populations. Both populations 

display strong affinities to NAAZ II (1I-RHY-1) and Katla rhyolities, which may 

indicate a significant temporal delay between the eruption and deposition. No 

rhyolitic deposits in this core can be considered to constitute peaks and represent a 

background signal of tephra with long residency times.
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Contrasting diagnostic features of basaltic and rhyolitic deposits highlight the 

different mechanisms controlling cryptotephra deposition at this locality. The lower 

density and platy morphologies of rhyolitic shards may be more conducive to 

remobilisation than basaltic material and explain the continuous rhyolitic 

background signal. The 934-935 cm horizon exhibits a peak in basaltic shards and 

coincides with elevated levels of rhyolitic shards. This illustrates that different 

depositional processes have operated simultaneously i.e. primary airfall controlling 

basaltic deposition and bottom currents controlling rhyolitic deposition. As such, 

depositional mechanisms controlling the rhyolitic concentration profiles can be 

dissociated from the basaltic concentration profiles This notion strengthens the 

interpretations of primary deposition for the basaltic deposits 800-801 cm, 930-931 

cm and 934-935 cm and enhances the integrity of these horizons as isochronous 

markers.

5.7 Conclusions

• Three basaltic cryptotephra horizons have been identified in MD04-2829CQ. 

Major element characterisations of these horizons demonstrate a Kverkfjoll 

and Grimsvotn source for 800-801 cm and a Grimsvotn source for 930-931 

cm and 934-935 cm.

• The 800-801 cm deposit exhibits a bimodal geochemical population that 

displays an affinity to Kverkfjoll and Grimsvotn. No potential Grimsvotn 

correlatives have been identified in the ice during this interval. The 

Kverkfjoll population exhibits a strong geochemical similarity with GRIP 

2067.85 m and GRIP 2081.40 m. Despite coinciding with a strong IRD 

signal, the discrete nature of this horizon suggests the deposit was deposited 

isochronously. This may provide a useful isochron if trace element data can 

geochemically distinguish between the potential ice-core correlatives.
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• The 930-931 era horizon is considered a primary deposit. No direct ice-core 

correlative can be established, although this horizon may still be useful for 

low-resolution marine correlations to the FMAZ III complex.

• The 934-935 cm horizon is a primary deposit and exhibits strong 

geochemical homogeneity. This horizon represents a well resolved 

isochronous marker and major element correlations with NGRIP 2071.50 m 

and NEEM 1759.85 suggest a marine-ice link can be established. However, 

trace element data indicates significant compositional differences between 

934-935 cm and NEEM 1759.85 m, indicating the samples are not 

genetically related. As such, the 934-935 cm horizon cannot be correlated to 

the Greenland ice-eores.

•  Investigation of the 2.3-2.5 g/cm' fraction reveals a continuous background 

of rhyolitic shards exhibiting the same bimodal geochemical populations. 

These share a common source with the NAAZ II (II-RHY-1) and a composite 

of Katla-sourced rhyolites. These shards have been vulnerable to intensive 

bottom current re-working; therefore no rhyolitic isochronous markers can be 

established in this core.
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Chapter 6 The search for the FMAZ III in 
the NE Atlantic: tephrostratigraphical 

records from MD95-2010 and MD99-228I

6.1 Introduction

This chapter has two aims. Firstly, to present a tephrostratigraphical record for 

Norwegian Sea marine core MD95-2010 between 23-41 ka b2k and secondly, to 

explore the full geographical extent of the FMAZ III (or individual components of it) 

in the NE Atlantic. This will be achieved with a focus on MD95-2010 and a short 

sediment section from MD99-2281 (between 38-39 ka). MD95-2010 represents the 

most northerly investigated record and exhibits a well-resolved D-O signal, 

reconstructed from dinocyst and foraminifera assemblages (Dokken & Jansen, 1999; 

Eynaud et al., 2002). The site presents a potential opportunity to link ice-core and 

marine records to the Norwegian Sea and it is anticipated that the FMAZ III is 

preserved within the sampled sequence. The second investigated record, MD99- 

2281, exhibits an exceptionally high sedimentation rate and presents an opportunity 

to stratigraphically separate closely spaced eruptions preserved in both the ice-cores 

and marine core MD04-2829CQ, which are thought to form distinct components of 

the FMAZ III. As such, this core was specifically selected to trace individual 

components of the FMAZ III identified within MD04-2829CQ and sampling is 

limited to a high-resolution window between 38-39 ka.

6.2 5.2 MD95-2010: core location, oceanographic setting 
and proxy record
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North Atlantic marine core MD95-2010 (66°41’N, 4°34’E) was retrieved from 1226 

m water depth on the Voring Plateau in the southern part of the Norwegian Sea 

during the IMAGES cruise MD 101 (Dokken & Jansen,, 1999; Eynaud et al., 2002.) 

(Fig 6.1). The core site is located on the main axis of the warm Norwegian Atlantic 

Current (NwAC) that transports Atlantic water masses northwards through the 

Nordic seas, as well as being close to the limit of the Fennoscandian ice-sheet 

(Mangerud et al., 1991).

The core is -10.7 m long, covering MIS 2 and 3 and consists of dark grey silty clays 

alternating with greenish clays (Kissel et al,, 1999). Twenty-eight AMS 14C samples 

were measured and calibrated using the Bard (1998) ‘glacial polynomial’ (Dokken 

and Jansen, 1999). The resulting age model was constructed by directly correlating
i o

the positions of abrupt transitions recorded in magnetic susceptibility, 6 O and IRD

records to the GISP2 ice-core record, based on the assumption that these records

represent stadial-interstadial variability (Dokken and Jansen, 1999). The NAAZ I

and II have also been added to independently constrain the model (Kissel et al.,

1999). High resolution dinocyst and foraminifera analysis (Fig 6.2) have been
1 8conducted by Eynaud et al. (2002), which shows good agreement with the 8 O

signal of the GISP 2 ice-core. However, between 30-48 ka, the correlation suggests a
1 8paradoxical response; when the Greenland 5 O signal reflects warm conditions; the 

Norwegian Sea depicts cold SSTs with quasi-perennial sea-ice cover (Eynaud et al., 

2002). This highlights the isolation of the Norwegian Sea and the potential to test 

oceanic responses in different regions of the North Atlantic, providing isochronous 

tephra horizons can be detected.

6.3 5.3.1 Sampling strategy: MD95-2010

The tephra content of the core sequence was investigated in a 4 m section between 

450-850 cm (-23-41 ka b2k), bracketing the stratigraphic position and ages of tephra 

deposits found within MD04-2829CQ. The sampled section of the core is shown in 

Figure 6.2, plotted against magnetic susceptibility and dinocyst assemblages. 

Initially, the sequence was investigated at a 5 cm contiguous low-resolution.
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Two intervals with elevated shard counts were further analysed at a 1 cm high- 

resolution (Fig 6.3). Sediment from the 25-80 pm fraction was processed using the 

heavy liquid separation procedure outlined in section 3.3 and the >2.5 g/cm3 fraction 

was magnetically separated to purify the basaltic material (see section 3.4).

6.4 Shard concentrations and tephrastratigraphy: MD95- 
2010

Low-resolution shard concentrations from different depths, densities and size 

fractions are shown in Figure 6.3 In total, 320 individual tephra slides, covering 4 ni 

of core, were prepared and inspected for their tephra content. The predominant 

absence of tephra shards in all grain size and density fr actions is notable in this 

record. An exceptionally low-level of brown shards was detected between 485-490 

cm and 790-795 cm, consisting of two and four shards respectively in the 80-125 pm 

fraction (Fig 6.3b). As these were the only intervals containing shards, they were 

further investigated at 1 cm contiguous resolution between 483-493 cm and 788-797 

cm. These intervals were selected to ensure full coverage of potential tephra 

deposits. Unfortunately, no shards were detected in high-resolution between 483-493 

cm and have been omitted from further investigation. A low-level of shards (<15 per 

0.5 gdw) were detected in high resolution between 787-797 cm in the >2.5 g/cm , 

80-125 pm and >125 pm fractions. These samples were subsequently prepared for 

geochemical analysis. Within the 2.3-2.5 g/cm3 fraction, there is a consistent 

background of ~1 shard per 0.5 gdw and no distinct peaks or sections of elevated 

colourless shard concentrations were detected across the whole studied interval (Fig 

6.3f).

6.5 Cryptotephra deposits in MD95-2010: 788-798 cm

6.5.1 Shard concentration and descriptions
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This deposit forms a diffuse/patchy distribution between 788-797 cm. The 

concentration of shards is exceptionally low, with a peak of seven shards per 0.5 gdw 

in the 2.5-80 pm fraction between 790-791 cm (Fig 6.3c). A total of twelve tephra 

shards were detected in all grain sizes across this interval (Fig 6.3g,h,i). Six shards 

were identified between 793-794 cm in the 80-125 pm fraction and a total of 

fourteen tephra shards were detected across all grain sizes at this interval (Fig 6.3 

g,h.i). This may represent the first input of tephra into the sequence and so shards 

from this depth were sampled for geochemical analysis. Shards exhibit a brown 

blocky morphology and show no signs of hydration. During preparation for 

geochemical analysis, shards were only detected in the 80-125 pm fraction and so 

only the coarse fraction has been geochemically characterised. This highlights the 

patchy distribution and lateral discontinuity of the tephra, which is more noticeable 

when dealing with shards in such low concentrations. As such, these shards cannot 

be considered of sufficient quantity to constitute an isochron.

The deposit straddles the peak warmth and falling limb of DO-8 according to the 

magnetic susceptibility record derived by Dokken and Jansen (1999) (Fig 6.3a). 

Total IRD concentrations are exceptionally low at this depth and suggest ice-rafting 

is unlikely to have assisted in deposition (Dokken and Jansen, 1999; Eynaud et al., 

2002) (Fig 6.3b). The age of the 793-794 cm interval extracted for geochemical 

analysis equates to -38.37 ka b2k according to the Dokken and Jansen (1999) age 

model. This interval falls within the later section of the FMAZ III and 

stratigraphically equivalent horizons present in the ice-core records.

6.5.2 Geochemistry and source identification

EPMA analyses from nine individual shards within the 80-125 pm fraction of 793- 

794 cm are classified as basaltic and fall within the tholeiitic series (Fig 6.4). Eight 

shards from the 80-125 pm fraction constitute a heterogeneous geochemical 

population. Geochemical characteristics of this deposit include SiC>2 concentrations 

of -49.62-50.11 wt%, K2O concentration of -0.39 wt%, TiC>2 concentrations of 

-2.36-3.04 wt%, CaO concentrations o f -10.37-11.52 wt% and MgO concentrations
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between -5.84-6.75 wt% (Table 6.1). The TiCb and K2O concentrations imply an 

origin in the Grimsvotn system (Fig 6.5). One outlier shard with a Ti02  contents of 

-1.67 wt% and K2O contents of -0.23 wt% was also detected and excluded from 

further analysis.

6.5,3 Wider correlations and depositional processes

Glass shard analyses from 793-794 cm plot within the broad FMAZ III 

compositional envelope and potentially extend the known distribution of this ash 

zone to the Norwegian Seas (Wastegard et al., 2006) (Fig 6 .6a,b). The V2 ash zone 

on the Reykjanes Ridge falls within a similar stratigraphic interval to the FMAZ III 

and has been compared to assess a potential correlation. Similarly to the FMAZ III in 

JM11-19PC, the shards share a common Grimsvotn component but the heterogeneity 

across all element oxides prevents a correlation from being established (Fig 6 .6c,d). 

Figure 6.7 highlights how the wide geochemical range exhibited by 793-794 cm 

occupies a range of ice-core compositional envelopes deposited during this time- 

period. This suggests that the deposit in MD95-2010 is composed of a composite of 

shards sourced from a variety of closely spaced Grimsvotn eruptions.

MD95-2010 represents the most distal core to Iceland investigated within the thesis 

(-1300 km NE) and may explain the predominant absence of tephra. The only shards 

identified can be considered as a somewhat tenuous cryptotephra deposit with the 

majority of shards being >80 pm in size (Fig 6.3). Modeling studies have 

demonstrated ash clouds can transport cryptotephra particles <80 pm up to -1 0 0 0  

km in 24 hours (Stevensson et al., 2015). This suggests that shards in the 25-80 pm 

should be the dominant grain-size component. In the absence of high IRD input 

during this interval (Fig 6.3b), the presence of coarse-grained shards may be a 

consequence of tephra delivery via sea-ice with a temporal lag (Austin et al., 2004).
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Figure 6.7 Major oxide results for each grain size from MD95-2010 between 793-794 cm. (a).(b) 
Glass shard analyses compared to geochemical compositional envelopes for cryptotephra deposits 
identified in NGRIP between 38.048 ± 721 b2k to 38.826 ± 740 b2k (Bourne et al.. 2013). All data 
have been normalised to 100% total oxide concentration.
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The presence of additional tephra shards in this deposit may be the consequence of 

bottom currents and/or additional influx from sea-ice.

Conversely;, the persistence of sea-ice during MIS 3 (Eynaud et ah, 2002) may have 

capped the site and prevented tephra from reaching the seabed. Although MD95- 

2010 is predominantly devoid of tephra, there may be tephra deposits present in 

other sections of the record, particularly during warmer interstadials and periods of 

reduced sea-ice cover. The exceptionally low concentrations and patchy distribution 

within 793-794 cm, in conjunction with geochemical heterogeneity suggests that the 

shards do not constitute a crypto tephra deposit that can act as an isochronous 

horizon. It is likely that several depositional mechanisms i.e. sea-ice and bottom 

current:  ̂ brought isolated shards to the site, which may have been remobilised 

following deposition in other locations. Geochemical similarity and strati graphical 

positioning within DO-8 suggests these shards are derived from the FMAZ III 

complex in the marine environment. As such, the shards may still tentatively be 

useful for low-resolution marine-marine correlations in DO-8 , which permits a 

means to link other marine records to the Norwegian Sea.

6.6 Extending the search for the FMAZ III

Several cryptotephra deposits that are thought to form part of the FMAZ III complex 

have been identified between 38-39 ka b2k within MD95-2010, JM11-19PC and 

MD04-2829CQ. In JM11-19PC and MD95-2010, the FMAZ III deposit exhibits a 

heterogeneous geochemistry and contains a composite of numerous Grimsvotn 

derived eruptions spanning DO-8 . This has affected their integrity and prevented 

precise correlations to the Greenland ice-cores. However, MD04-2829CQ contains 

homogeneous, stratigraphically constrained components of this ash zone and exhibits 

the potential to act as high-resolution isochronous markers (see section 5.6). In light 

of this information, MD99-2281 was selected to assess whether the tephras identified 

in MD04-2829CQ could be traced into this nearby core location. MD99-2281 

exhibits an exceptionally high sedimentation rate (~1 cm/30 yrs), a well-resolved 

high-resolution D-O signal and the site is ideally situated -150 km north of MD04- 

2829CQ (Zumaque et al., 2012). Given the frequency of eruptions during the
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targeted interval, the high sedimentation rate should permit the strati .graphic 

separation of horizons constituting the FMAZ III complex. If the same isochronous 

horizons from MD04-2829CQ can be traced, this will allow a further assessment of 

their depositional integrity and corresponding proxy record.. The following sections 

examine the targeted search for the FMAZ III in marine core MD99-2281.

6.7 MD99-2281; core location, oceanographic setting and 
proxy record

North Atlantic marine core MD99-2281 (60°21 "N, 9°27’W) was retrieved at 1197 m 

water depth at the foot of the Faroe Bank located at the northern end of the Rockall 

Trough by the RV Marion Dufresne during the IMAGES V-MD99-114 cruise 

(Labeyrie et al., 1999) (Fig 6.1). The core is sensitive to hydrographic conditions and 

is presently located under the influence of the modified North Atlantic surface waters 

between the Arctic Front (AF) to the north and the sub-Arctic Front (SAF) to the 

south (Fig 6.1). The water mass distribution and deep circulation are primarily 

controlled by the bathymetric complexity of the Rockall Trough (Holliday et al.,

2000). Similarly to MD04-2829CQ, previous palaeoceaongraphic investigations 

have demonstrated high sensitivity of the Faroe/Rockall area to millennial-scale 

climate variability and influence of the BUS (Rasmussen et al, 1996; Eynaud et al., 

2002; Hall et aL, 2011).

The core sequence consists of 29 m of hemipelagic silty clays (Boulay, 2000) and 

spans MIS 2 and 3. The chronostratigraphic framework of the core has been derived 

from nine AMS 14C dates measured on planktonic foraminifera from the top -11 m. 

Four additional 14C dates were obtained between -12-19 m and calibrated using the 

‘glacial polynomial’ after Bard (1998). The magnetic susceptibility record from 

MD99-2281 was then correlated to the GICC05 5180  record, an approach 

comparable to an event-based stratigraphy (Austin and Hibbert, 2012).
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As a result, eighteen stratigraphic control points have been added to the AMS l4C 

dates to create an age-depth model on the basis of linear interpolation between tie- 

points (Fig 6.8, 6.9). This has been independently constrained with the addition of 

the Laschamp excursion at ~41 ka b2k (Zumaque et al., 2012). Isotopic analysis of 

biogenic proxies, i.e. foraminfera and dioncyst assemblages at 10 cm contiguous 

intervals provide a high resolution reconstruction of coherent and sensitive oceanic 

response to MIS 3 climatic variability (Labeyrie et al., 2005; Zumaque et al., 2012) 

(Fig 6.8).

6.8 Sampling strategy: MD99-2281

In order to target depth intervals that are most likely to contain a range of FMAZ III 

deposits, an age-depth model and associated sedimentation rates were constructed 

after Zumaque et al. (2012) (Fig 6.9). Specifically, sediment between 1869-1900 cm 

equates to 38,079-38,843 b2k (Zumaque et al., 2012) and stratigraphically bracket 

deposits detected in MD04-2829CQ. These depths were analysed for their tephra 

concentration. The tephra content of this interval was sampled at a 1 cm contiguous 

high-resolution across three separate grain-sizes (25-80 pm, 80-125 pm, >125 pm). 

Material from the 25-80 pm fraction was processed using the heavy liquid separation 

procedure outlined in section 3.3 and the >2.5 g/cm fraction was magnetically 

separated to purify the basaltic material (see section 3.4). Preliminary shard 

concentrations were quantified as containing <1000 shards and as such, spiking with 

Lycopodium spores was not deemed necessary.

6.8.1 Shard concentrations and tephrastratigraphy of 
MD99-2281

Shard concentrations from different depths, densities and size fractions are shown in 

Figure 6.10. Generally, there is a high concentration of brown and colourless shards 

within each grain-size fraction and they exhibit a complex diffuse distribution 

throughout the investigated section.
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There are numerous indistinct peaks exhibited by each size fraction and these are not 

commonly mirrored by each equivalent grain-size. There are three main peaks in 

brown shard concentration in the 25-80 pm fraction (1872-1873 cm, 1876-1877 cm, 

1881-1882 cm) but a high background of shards dilute the relative magnitude of the 

peaks (Fig 6.10c). Shards from each of the three main peaks were extracted for 

geochemical analysis and their stratigraphic position is illustrated on Figure 6.10, 

The most significant peak, relative to background concentrations, is exhibited in the 

80-125 pm fraction at 1883-1884 cm, which has additionally been selected for 

geochemical analysis. Shards within each peak exhibit a light brown/yellowish 

colour and exhibit a strongly hydrated cuspate morphology

There is a similarly high background of colourless shards in the 2.3-2.5 g/cm 

fraction. The highest concentration of colourless shards (sixty-five per 0.5 gdw) 

occurs at 1872-1873 cm. The addition of quantitative colourless shard counts 

highlights the consistent input of a range of cryptotephra shards throughout the 

investigated sequence. The deposit immediately proceeds the cooling of DO-9 and 

falls on the rising limb of DO-8 according to decreasing N. Pachyderma sin. 

percentages (Zumaque et al., 2012) (Fig 6.11). There is a moderate influx of IRD 

around the sampling interval, although the proxy resolution is lower than that of the 

tephra record (Fig 6.11).

6.9 Basaltic cryptotephra deposits within MD99-2281 
1869-1890 cm

6.9.1 Geochemistry and source identification

6.9.1.1 1872-1873 cm

EPMA analyses of twenty-five shards within this horizon are classified as basaltic 

and twenty fall within the tholeiitic series on a TAS plot (Fig 6.12).

177



Chapter 6 The search for the FMAZ III in NE Atlantic: tephrostratigraphical records
from M D95-2010 and M D99-2281

a)

o,
+
O
fZ

16

♦ 1872-1873 cm 
▲ 1876-1877 cm 
□ 1881-1882 cm 
K 1883-1884 cm

14

12

10

8

Trachy3
____

6

4

2 basa t

0
4C 45 55 65 70 7550 50 80

SiCUwt %

*

+
o

8

7

o

5

4

3

2
Tholeiitic
series

Basalt
1

0
42.5 52.545 47.5 50 55 57.5

S iO ,(w t %)

Figure 6.12 (a) Total alkalis vs silica plot for analyses from basaltic deposits found in MD99-2281. 
(b) Inset of TAS plot focusing on the basaltic analyses. Chemical classification is defined by Le 
Maitre et al. (1989). The dashed line represents the subdivision into alkaline and tholeiitic rock series 
defined by MacDonald and Katsura (1964).
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The deposit exhibits a heterogeneous geochemical distribution. Five shards fall 

within the alkaline series of the TAS plot and highlight the heterogeneity of the 

deposit (Fig 6.12). Geochemical characteristics of the tholeiitic population include 

K2O concentrations between ~0.26-0.63 wt%, TiCb concentrations between —2.19- 

3.55 wt% and CaO and MgO concentrations of -7.61-12.00 wt% and -5.46 wt% 

respectively (Table 6.1). The latter two oxides suggest the tholeiitic basalts are 

sourced from the Grimsvotn system (Jakobbson et al., 2008) and this can be 

observed on a number of geochemical biplots (Fig 6.13). However, there is a 

significant range of data within this population. Four outliers exhibit Ti(> 

concentrations >3.8 wt% and K2O >0.7 wt%, indicating a potential affinity to the 

Hekla and Katla systems (Fig 6.13).

6.9.1.2 1876-1877 cm

EPMA analyses of fifty-six shards within this horizon are classified as basaltic and 

predominantly fall within the tholeiitic series on a TAS plot (Fig 6.12). The deposit 

exhibits a heterogeneous distribution. Forty-four shards fall within the tholeiitic 

series of the TAS plot and form the main population and twelve shards fall within 

the alkaline series (Fig 6.12). Geochemical characteristics of the tholeiitic population 

include K2O concentrations between -0.18-0.56 wt%. TiC>2 concentrations between 

-2.09-3.38 wt% and CaO and MgO concentrations of -8.63-13.34 wt% and -6.35 

wt% respectively (Table 6.1). CaO vs Ti02 and K2O vs Ti02 biplots display a close 

affinity to the Grimsvotn system (Jakobsson et al., 2008) (Fig 6.13). Geochemical 

biplots highlight the heterogeneity and wide range of values for these oxides (Fig 

6.13).

6.9.1.3 1881-1882 cm

EPMA analysis of twenty-five shards within this horizon are classified as basaltic 

and fall within the tholeiitic series on the TAS plot (Fig 6.12). The deposit exhibits a

heterogeneous population. In contrast to 1872-1873 cm and 1876-1877 cm, no

outlying shards sourced from other volcanic systems were detected in this deposit
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(Fig 6.13). Geochemical characteristics include K2O concentrations between -0.16- 

0.32 wt%, TiCb concentrations between -1.83-3.03 wt% and CaO and MgO 

concentrations of -10.11-13.47 wt% and -6.48 wt% respectively (Table 6.1). The 

latter two oxides suggest an affinity to the Grimsvotn system (Jakobsson et al., 2008) 

and this can be observed on numerous geochemical biplots (Fig 6.13).

6.9.1.4 1883-1884 cm

EPMA analyses of seventy shards within this horizon are classified as basaltic and 

sixty-five fall within the tholeiitic series on a TAS plot (Fig 6.12). A greater number 

of shards have been analysed for geochemistry as it appeared that during initial 

EPMA analysis, a distinctive geochemical composition may be present. However, it 

later became apparent that the deposit is heterogeneous. Sixty-five tholeiitic shards 

exhibit geochemical characteristics which include SiCF concentrations of -48.71- 

51.81 wt%, TiCb concentrations of -2.44 wt%, CaO concentrations of -8.86-12.05 

wt% and K2O concentrations between -0.25-0.55 wt% (Table 6.1). Despite the wide 

geochemical spread, these geochemical characteristics also share a common source 

similarity to Grimsvotn. as observ ed on a number of geochemical biplots (Fig 6.13). 

Five shards exhibit a Ti02 concentration >4 wt% and are consistent with material 

sourced from Katla (Fig 6.13c,d).

6.9.2 Wider correlations and depositional processes

Glass shard analyses from tholeiitic shards in MD99-2281 indicate a Grimsvotn 

source and exhibit strong affinities to the FMAZ III deposit from other marine 

archives, as demonstrated on a range of geochemical biplots (Wastegard et al., 2006) 

(Fig 6.14a,b). The V2 ash zone on the Reykjanes Ridge falls within a similar 

stratigraphic interval to the FMAZ III and has been compared to assess a potential 

correlation (Fig 6.14c,d). The shards share a common Grimsvotn component but the 

heterogeneity across all element oxides prevents a correlation from being 

established.
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Chapter 6. The search for the FMAZ III in NE Atlantic: tephrostratigraphical records
from MD95-2010 and MD99-2281

In order to test for potential correlations to stratigraphically equivalent horizons in 

the Greenland ice-cores, geochemical composition envelopes for each ice-core 

horizon were constructed and shards from individual depth intervals in MD99-2281 

were plotted (Fig 6.15). Biplots of TiC>2 vs CaO were considered to provide the best 

way of geochemically discriminating between closely timed eruptions (Bourne et al.. 

2013). Generally, the wide geochemical distributions of shards in MD99-2281 

straddle all of the ice-core envelopes (Fig 6.15). Shards that fall into individual 

compositional envelopes were counted to assess the relative proportion of individual 

NGRIP horizons that may contribute towards shards that occupy each depth interval 

in MD99-2281 (Fig 6.16). This method was employed to detect whether there were 

different inputs over various depths and to assess the potential contribution of 

stratigraphically equivalent NGRIP horizons with similar geochemical compositions. 

This may be useful for assessing whether shards from each depth interval were 

derived from the same volcanic event. This is a qualitative process and some shards 

fall into multiple compositional envelopes due to the overlapping geochemistry 

exhibited by some ice-core horizons. Similarity coefficients were not utilised in this 

instance due to the geochemical heterogeneity at each depth between 1869-1890 cm 

in MD99-2281. Similarity coefficients may polarise averages and prevent subtle 

geochemical differences exhibited by stratigraphically equivalent NGFJP horizons 

from being robustly compared.

Generally, the proportions of shards that exhibit similar geochemistries to 

stratigraphically equivalent NGRIP horizons are very similar across the four depth 

intervals (Fig 6.16). The majority of shards (-50%) exhibit a similar geochemistry to 

NGRIP 2071.50 m in 1881-1882 cm and 1883-1884 cm. There is an increase in the 

percentage of shards that exhibit a similar geochemistry to NGRIP 2064.35 m and 

NGRIP 2065.80 m at 1872-1873 cm and may reflect influx from different eruptions 

compared to lower depths. Generally, there is a similar input from multiple volcanic 

events with strong similarities to horizons in NGRIP within individual depth 

intervals. This suggests the frequency of eruptions has contributed to the high 

concentration of Grimsvotn sourced shards.
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F ig u re  6 .16 The relative abundances of shards in MD99-2281 that may be derived front Grimsvotn 
sourced horizons detected within NGRIP between 38,048 ± 721 b2k to 38,826 ±  740 b2k (Bourne et 
al.. 2013). Uncorrelated refers to shards that do not fall within an ice-core compositional envelope 
and/or sourced from a different volcanic center, n is greater than the number of shards geochemically 
characterised as some shards fall into multiple geochemical fields.
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This may have been perpetuated by elevated bottom-currents initiated during a 

period of bottom-water formation during DO-8 (Ezat et al., 2014). Co-variance with 

moderate IRD influx indicates that an ice-rafting component may have additionally 

contributed towards tephra delivery (Fig 6.11). Despite the high sedimentation rate, 

there is no clear stratigraphic separation of cryptotephra deposits observed in nearby 

core MD04-2829CQ. Furthermore, despite similar major element geochemistries, it 

is unclear whether the same suite of eruptions recorded in the FMAZ III in MD99- 

2281 are the same as those preserved in the Greenland ice-cores.

6.10 Conclusions

• An intensive tephrostratigraphic investigation of MD95-2010 proved 

unfruitful and is predominantly devoid of tephra. However, an area of 

isolated shards was detected between 787-797 cm. The geochemical 

heterogeneity and dominance of coarse-grained shards suggests secondary 

input. The stratigraphic position suggests that this tephra may be related to 

the FMAZ III but low concentrations raise important questions regarding the 

definition of cryptotephra deposits and isochrons.

• The presence of isolated shards that may be derived from the FMAZ III 

complex in MD95-2010 tentatively extends the known distribution of this ash 

zone in the North Atlantic to the Norwegian Seas. This may permit a means 

to link other marine records containing the FMAZ III complex and piece 

together oceanic changes that occur during DO-8 to other records in the 

North Atlantic.

• MD99-2281 exhibits a complex and diffuse shard concentration profile, 

characterised by elevated shard concentrations at different depth intervals. 

Each indistinct peak broadly corresponds with the FMAZ III geochemical 

compositional envelope derived from Faroese marine cores.
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• The high sedimentation rate in MD99-2281 was unable to stratigraphically 

separate multiple closely spaced eruptions in DO-8, most likely due to the 

site proximity to ash dispersal pathways during a period of frequent 

Grimsvotn activity.

• Shards identified in this sequence show similarities to several ice-core 

horizons spanning DO-8 and suggest that each depth in MD99-2281 contains 

an amalgamation of shards sourced from several closely timed Grimsvotn 

eruptions. Despite exhibiting similar major element compositions, these may 

not be derived from the same eruptions preserved in the Greenland ice-cores. 

The presence of a moderate IRD signal in conjunction with a diffuse shard 

distribution indicates the operation of bottom currents and ice-rafting. This 

has compromised the integrity of the deposits and prevented the separation of 

distinct homogeneous horizons.
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Chapter 7 Utilising sedimentology in 
marine tephrochronology

7.1 Introduction

The aim of this chapter is to examine the innovative application of thin-section and 

X-ray micro-tomography (pCT) techniques to visualise micro-sedimentological 

structures in 2D and 3D within marine tephra deposits. In chapter four, the 

taphonomic history and isochron position of the FMAZ II (304-305 cm) and FMAZ 

FV (542-543 cm) deposits in JM11-19PC have been assessed using conventional key 

diagnostic information such as shard distribution and size, geochemistry and IRD co- 

variance. Micro-sedimentological techniques are explored here to test the 

interpretations outlined in chapter four and assess their future contributions to marine 

tephrochronology. These FMAZs were selected as a suitable testbed for this work 

due to the excellent preservation of visible tephra horizons and availability of 

material in JM11-19PC. The aims of this chapter are: a) to use 2D thin-section 

analysis to explore micromorphological structures within the two FMAZs; b) to re­

evaluate the taphonomic history of these tephra deposits using the visualisation of 

3D structures and; c) to establish a protocol for applying 2D and 3D analytical 

methods to tephra deposits.

7.2 Sediment sampling

Two parallel U-channels with a 20 mm by 20 mm cross-sectional area were 

extracted from core-sections spanning both the FMAZ II (304-305 cm) and IV (542- 

543 cm) (Fig 3.6). Shard concentration profiles indicate that these U-channels span 

the onset of deposition, visible expression and overlying decline in tephra 

concentration of the two ash zones. Sediment samples from one U-channel were
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used for quantifying the tephra content of the sequence (Fig 3.4a) and for extracting 

shards for geochemical analysis, as outlined in chapter three. Thin-sections were 

prepared from the second U-channel (Fig 3.4c) following procedures outlined in 

section 3.9. The resin-impregnated blocks produced for the thin-section work were 

then scanned using the pCT system and validation techniques outlined in section 

3.10.

7.3 2D and 3D analysis of the FMAZ II

The following section utilises 2D and 3D sedimentological renders of the FMAZ II 

and IV to re-assess the mechanisms responsible for deposition and refine the position 

of the tephra isochron in light of this new evidence (Table 7.1, 7.2 ).

7.3.1 2D results

The FMAZ II deposit forms a thick 2 cm macro-tephra. This macro-sedimentologv is 

presented in section 4.3.3. The deposit is characterised by two distinct units, based 

upon micro-sedimentological observations (Fig 7.1). The first occurs between 307 

and 304.5 cm and consists of a poorly-sorted silty clay with occasional tephra shards 

(—55 pm in diameter), distributed within the matrix (Fig 7.1a). Occasional (~13 

mm) lenses of well-sorted tephra grains up to ~200 pm in size are present in the top 

of this unit. Lenses are irregular, aligned horizontally and vertically within the host 

sediment (Fig 7.1b), and generally composed of sediment from unit two. The second 

unit identified between 304.5 cm and 298 cm is composed of well-sorted tephra 

dominated by shards of 25-80 pm (Fig 7.Id). Unit two has a sub-horizontal, sharp 

contact at 304-304.5 cm depth (Fig 7.1c). There is evidence of discrete lobate 

structures below this level in unit one; below the contact, material from unit two has 

penetrated into unit one. These features are explained as loading structures (see 

section 7.3.3.1). The tephra becomes less densely concentrated in the upper part of 

unit two and appears dispersed within a coarse-silty clay matrix (Fig 7.Id). No 

grading is observed within this tephra deposit and a similar shard size is apparent 

throughout this short core section.
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7.3.2 3D results

The structure of this deposit is complex, with a number of additional features 

apparent between -300.8-307.2 cm when viewed in 3D (Fig 7.2, 7.3). There are 

three distinct units that can be defined through their 3D sedimentological 

architecture, which includes an additional unit to those from the 2D reconstruction. 

The first occurs between -304.5-307.2 cm and consists of numerous tubes of high 

tephra concentration that are orientated at different angles within the sediment. There 

is a large narrow ellipsoidal structure which is aligned vertically between -304.9- 

306.5 cm. with a width of -2  mm (Fig 7.2iv). In addition, a large tube is present that 

penetrates perpendicularly through the centre of this ellipsoid structure (Fig 7.2iii). 

The largest tube is approximately -0.5 mm in width. -20 mm long and has a 

noticeable curvature with a shift in orientation at -304.9 cm.

The second unit occurs between -304.0-304.5 cm and consists of a distinct blocky 

structure (Fig 7.2ii) representing a high concentration of tephra, with minor 

undulations at the base of this input. Despite the high concentration of tephra within 

this blocky structure, there are numerous sediment-filled burrows and voids 

penetrating throughout at numerous locations and angles with the best branched 

example having a sub-horizontal repose (Fig 7.3c). Thin veneers of sediment are also 

seen draping this blocky tephra structure (Fig 7.3b). These structures are observed by 

segmenting (threshold value defined in section 3.10) the tomographic data to 

digitally remove the tephra and visualise the sediment (Fig 7.3c).

The third unit occurs between -300.8-304.0 cm and consists of a pyramidal-like 

structure between 303-304 cm comprised mainly of tephra shards. Shard distribution 

over 1 cm indicates a diffuse contact with the highest concentration of shards 

between 304.5-305.0 cm (Fig 7.2a).
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Chapter 7 Utilising sedimentology in marine tephrochronology.

Tephra is more concentrated on one side of the scanned block, at a -60° incline (Fig 

7.2b). The concentration of tephra declines rapidly above 303 cm with a loss of any 

structure by -303.2 cm (Fig 7.2a). The rest of this unit is characterised by sporadic 

and low concentration tephra packages.

7.3.3 Re-interpretation of depositional processes

7.3.3.1 Sedimentation rate

The presence of a geochemically homogeneous and fine-grained deposit has been 

previously interpreted to reflect primary airfall with bottom current re-working 

(Table 7.1). However, micro-sedimentological features preserved within the FMAZ 

II suggest the operation of post-depositiona) loading. A sudden influx of high tephra 

concentrations is identified by the sharp contact between units one and two in thin 

section. The discrete tephra lenses and lobate structures in unit one suggest that glass 

shards have loaded into the sediment (Fig 7.1b). Gravitational loading and the 

vertical movement of dense tephra shards down into less dense underlying sediment 

may have occurred due to the rapid influx of tephra to the sediment water interface at 

the seabed. Low shard concentrations beneath the main concentration peak at 304- 

305 cm may reflect the presence of these lenses and lobate structures (Fig 7.1). 

These observations are corroborated with 3D evidence where the lobate structures 

seen in unit one are the same as the loading structures seen in thin-section. 3D 

evidence additionally reveals the presence of bioturbation structures that were not 

originally detected in thin-section as they likely represent a 2D slice through some of 

these tubes (Table 7.2).

Bioturbation burrows seen in unit one in 3D reveal the mixing of tephra through 

sediment and vice versa (Fig 7.3c). This suggests that bioturbation may have been 

active during tephra deposition as Wheatcroft (1992) and Bromley (1996) suggest 

that burrows become filled with material that differs from the surrounding sediment 

in most endobenthic communities. It is suggested that tephra deposition was rapid 

and as a consequence the bioturbation mixing layer shifted upwards at a similar rate. 

This would result in the preservation of burrows as seen in unit one, as the sediment
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below the tephra layer was quickly isolated from the influence of bioturbation. Ash 

deposits >1 cm thick, similar to the FMAZ II, typically smother the benthos (Carter 

et al.. 1995) and McCave (1995) note that a consequence of rapid ash deposition is 

the enhanced preservation of burrows beneath an ash horizon. This supports the 

interpretation that the blocky structure was deposited rapidly, either via primary 

airfall or sea-ice deposition (Table 7.1). It is possible that the burrowing features 

may have been superimposed on the sediment fabric following post-depositional re­

colonisation, but there is no strong evidence to support this scenario.

No visible burrows are evident within unit three (Fig 7.2). Given the gradual decline 

in shard concentration in this unit (Fig 7.1) it is likely that bioturbation continued to 

be active. The absence of preserv ed burrows may reflect a higher bioturbation rate, 

resulting in the complete homogenisation of the tephra and sediment. This may be 

due to a slow-down in the upward migration of the mixing layer after tephra 

deposition. It is also possible that additional post-depositional processes such as 

current re-working may have altered the ichnofabric of the sediment and prevented 

the preservation of burrows.

The use of 2D and 3D imaging has revealed a range of depositional processes, i.e. 

bioturbation and loading, previously undetected using traditional tephrostrati graphic 

techniques (Table 7.1). This highlights the potential for combining a range of 

tephro strati graphic and visualisation techniques to fully unravel the sedimentary 

history of deposits. In this instance, the new depositional evidence has not affected 

the integrity of the isochron and the FMAZ II continues to represent a well-resolved 

primary deposit.

1 3 3 2  Isochron placement

The 2D and 3D reconstruction of this deposit supports the isochron placement 

defined in chapter 4 and provides a more comprehensive analysis of the processes 

operating. The high concentration of tephra in unit two (between -304-304.5 cm) has 

a dense appearance in all planes and a sharp contact with the underlying material 

suggests rapid influx of a high tephra volume. As such, sedimentological
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visualisations additionally confirm that the position at -304.5 cm equates to the 

correct stratigraphical placement of the isochron (Table 7.2) (Fig 7.1b, 6.2c).

7.3.4 2D and 3D analvsis of the FMAZ IV•/

7.3.4.1 2D

There are two distinct units in this section based upon the 2D micro-sedimentology. 

The first occurs between 549 and 543.3 cm and is composed of a massive, 

moderately-sorted coarse silt with a low concentration of tephra shards, ~50 pm in 

diameter, distributed randomly within the matrix (Fig 7.4c). The second unit 

identified between 543.3 and 540 cm is composed of moderately-sorted, abundant 

25-30 pm tephra shards within a coarse silt host sediment (Fig 7.4b). This second 

unit has a diffuse contact with the underlying sediment and there are occasional 

horizontally aligned lenses (-1.5 mm) of well-sorted tephra grains up to -140 pm in 

size (Fig 7.4b). The visible tephra component has a similar shard size (25-80 pm) 

throughout the second unit. The tephra is highly concentrated but poorly mixed 

within the host sediment (Fig 7.4a). The isochron position was placed between 542- 

543 cm to coincide with the peak in shard concentration. This strati graphic interval is 

characterised by horizontally aligned tephra lenses of well-sorted and concentrated 

glass shards (Fig 7.4c). The contact between the designated isochron position at 542- 

543 cm (Table 7.1) and the underlying sediment is diffuse.

7.3.4.2 3D

Based upon the 3D architecture there are three units within this deposit. The first 

occurs between -545.4-548.0 cm and is characterised by discontinuous tephra 

packages that vary in concentration and appear across all planes of the core (Fig 

7.5d).
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t***1 Unit 
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541 8-,
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544 1

545 4 -

548.0 J

3D render m  Tepfira

Concentrated 
tephra (i)

tephra

Structureless 
tephra 
package (li)

Isochron
position
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Discontinuous
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Tephra
package
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ej Isosurface render

Depth
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5 4 5  4  -J

1) Seuvnent clipping box

F ig u re  7.5 3D pCT isosurface render of the FMAZ IV deposit, a) Render of the whole resin block, 
displaying only the tephra phase. Structures have been magnified to highlight the indicative 
sedimentological features in b), c) and d). The isochron position has also been highlighted and is 
defined according to features observed in Figure 7.4. e) Render of the whole resin block, displaying 
the tephra phase with the addition of region of interest between 543.5-545.4 cm which displays both 
sediment and tephra phases, f) Magnification of the region of interest to illustrate the planar 
discontinuity between the tephra packages. The isochron position has been illustrated.
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The overall appearance of this unit is a dispersed zone of tephra. The second unit, 

between -544.1-545.4 cm. consists of a large structureless, concentrated unit of 

tephra, with variable concentrations through different planes of the 3D render (Fig 

7.5f). A diffuse contact is observed between unit two and the underlying sediment of 

unit one. There is -10 mm of sediment separating unit two from the highly 

concentrated and structureless tephra deposit in unit three -541.8-544.1 cm (Fig 7.5f 

and 7.5b).

7.3.5 Re-interpretation of depositional processes

7.3.5.1 Sedimentation rate

Similar to the FMAZ 11. the presence of a geochemically homogeneous deposit and a 

shard concemration profile with a clearly discernible peak were the main indicators 

used to interpret primary deposition (Table 7.1). The comparative absence of distinct 

micro-sedimentological features in the microfacies of the FMAZ IV deposit suggests 

differing depositional controls to the FMAZ II. The presence of horizontally aligned 

tephra lenses at the previously defined isochron position of 542-543 cm provide 

additional evidence for enhanced concentrations of tephra delivery into the sequence 

(Fig 7.4c). The absence of distinct structures provides an insight into the nature of 

tephra deposition at the site. It is suggested that this style of sedimentation may 

reflect primary airfall onto the ocean surface and subsequent deposition through the 

water column. The absence of load structrues may reflect a more gradual rate of 

sedimentation in comparison to the FMAZ II. A lack of structure may be an 

additional consequence of post-depositional modification through bottom current re­

working and bioturbation. This interpretation has been previously suggested in 

response to the distinctive upward tail reflected in the shard concentration profile for 

this deposit (section 3.2.2).

A key contrast between this deposit and FMAZ II is the absence of bioturbation 

burrows detected in 3D (Fig 7.5a). This may be a result of enhanced bioturbative 

activity and slow upward migration of the bioturbation mixing layer (Table 7.2). It is 

suggested that bioturbation may have completely homogenised the sediment and
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tephra, destroying any diagnostic sedimentological features such as tubular burrows. 

Deposition of this ash zone occurred during the interstadial of DO-14, which may 

have provided favourable conditions for a diverse range of ocean-dwelling 

organisms. The increase in fauna may have been an additional factor that promoted 

bioturbative activity. Furthermore, in comparison 10 the FMAZ II. there are no 

distinct loading structures w hich indicates that tephra deposition was not of the same 

rapidity. Greyscale renders of the FMAZ IV suggest there is a significant amount of 

sedimentary matrix within the tephra deposit (Fig 3.6), which may reflect a slower 

rate of tephra sedimentation.

7.3.5.2 Isochron placement

3D evidence from this deposit suggests the operation of more complex 

sedimentological processes than those deduced in chapter four and that the isochron 

position should be realigned accordingly (Table 7.2). The concentrated tephra 

package seen in unit two of the pCT-derived reconstruction is not observ ed in thin- 

section or in the shard concentration profile (Fig 7.5f), which highlights lateral 

variability within this core. The tephra package in unit two (Fig 7.5f) may represent 

the initial influx of ash into the sequence as a result of primary airfall and subsequent 

deposition through the water column. The highest concentration of tephra is seen in 

unit three, which may reflect subsequent input of tephra from bottom current 

redistribution during a period of intensified deep water formation (Ezat et al., 2014). 

Major element analysis indicates that the shards from unit two and three have 

identical geochemical signatures, as demonstrated on FeO/MgO vs TiC>2 and TiC>2 vs 

CaO biplots (Fig 7.6) (see appendix). No Grimsvotn sourced basalts have been 

detected in the Greenland ice-core framework for this period and no correlative 

events have been found in the ice-core records (Bourne et al., 2015). Consequently, 

it is not possible to determine whether the significant upward tail is a reflection of 

upward mixing of a deposit from a single eruption, an amalgamation of tephra 

deposits sourced from several closely spaced eruptions or continuous tephra delivery 

to the core site.
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<*)

1
oroU

A  544.5-546 >125 pm

□  544.5-546 80-125 prr
□  544.5-546 25-80 um 
£  542-543 25-80 prri

t

0
FeO/MgC

TiO, (w t %)

F ig u re  7.6 Major oxide results (wt %) for glass-shards extracted from 544.5-546 cm. The JM11-19PC 
542-543 cm (FMAZ IV) compositions are derived from shard analyses obtained from all grain size 
fractions present in chapter three. Data have all been normalised to 100% total oxide concentrations. 
Outliers have been omitted.
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Alternatively, bioturbation may have acted as a mixing agent and dragged sediment 

down into the tephra horizon, subsequently diluting the concentration through the 

mixing. It is suggested that the isochron should be placed at the initial primary influx 

of tephra at ~544.3-545.3 cm. This is 2.3 cm below the isochron placement defined 

using traditional shard concentration profiles in chapter four (Fig 7.5f) (Table 7.2). 

This realignment highlights the importance of employing 3D reconstruction to aid 

correct stratigraphical placement of the isochron.

7.4 Advantages of sedimentological visualisation and 
future recommendations

Two and three-dimensional visualisations of tephra deposits have provided an 

exceptional insight into sedimentation processes within the marine environment, and 

highlighted the structures and distribution of tephra material within a sedimentary 

record. The micro-structural features observed highlight the complexity and 

variability of tephra concentration within a sedimentary core. Uneven distribution of 

tephra is a cause for concern when seeking isochrons, but this visualisation tool can 

be used to enhance confidence in the stratigraphic placement of isochrons. In relation 

to the FMAZ II, bioturbation was clearly an active process, but this has had limited 

impact on the position of the tephra isochron which is clearly discerned by a thick, 

densely-packed tephra deposit. In the same way, it is proposed that vertical mixing 

has had very little impact on the integrity of other proxies within this record. This 

observation would be difficult without sedimentological visualisation. No direct 

evidence for bioturbation processes were observed in the down-core shard 

concentration profile (Table 7.1). This demonstrates that traditional techniques will 

not always fully capture the complexity of tephra distribution that has been 

demonstrated in the 3D visualisations, but in this context the isochron and its 

stratigraphic position are intact (Table 7.2).

For the FMAZ IV, lateral variability across the core was a prominent feature that 

only became apparent from the 3D visualisations.
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Figure 7.7 shows different clipping planes through the FMAZ IV deposit and 

highlights the lateral variability of the subsurface structure. During extraction of 

sediment for shard counting, a small sub-sample of ~1 g is taken from one side of a 

core. The internal lateral variability observed from the pCT scan clearly highlights 

that this type of sampling may not capture, or even over-represent, areas of 

concentrated tephra packages. This may produce a biased concentration profile and 

potentially affect the correct stratigraphical placement of the isochron (Fig 7.7), 

explaining the change required in the position of the FMAZ IV isochron (Fig 7.7ii) 

(Table 7.2).

Due to the spatial complexity and variability observed within these samples, multiple 

sub-samples across several parallel vertical profiles may provide a better constraint 

on shard concentrations and the lateral and horizontal continuity of a horizon. This is 

potentially important for cryptotephra deposits that exhibit a diffuse distribution and 

lower concentration peaks of <100 shards. Where higher tephra concentrations 

permit the use of pCT, analysis can be used to corroborate the position of the 

isochron. For the successful application of pCT analysis, thin-sections are crucial to 

permit an assessment of; a) composition, grading and sorting of sediments; b) 

contacts between sediment layers; c) micro-fabrics and textures to determine any 

imposed stresses to the sediment and; d) mineralogy (Bendle et al., 2015; Meer and 

Menzies 2011). These analyses represent important diagnostic sedimentological 

information that provide crucial building blocks for interpreting depositional 

processes that cannot be obtained using pCT. Each time a new core is investigated it 

may be necessary to create a thin-section for greyscale threshold validation, i.e. to 

check that segmentation corresponds with tephra shards. The pCT scan can help 

guide the optimal position of thin-sectioning based on the 3D structures. Bendle et 

al. (2015) recommend that pCT scanning be performed prior to sediment 

impregnation. Micromorphological analysis and pCT offer complementary 

approaches to understanding the micro-sedimentological characteristics of tephra 

deposits. A protocol for applying sedimentological analysis to sedimentary deposits 

is presented in Figure 7.8.
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1 Sub-sample core into 
U-channel __

2 Impregnate sam ple and scan using CT

3 Thin-section created from 
block

7 Presence of key
sedim entological
features?

8 Thin section created from desired  
position of the resin block (according to 
scan)

9 Integrated sedim entological analysis

Greyscale validation with thin-section

4 . Phases 
segem ented 
using greyscale 
intensity 
histograms

6. 3D visualisation render

Figure 7.8 A protocol for 3D reconstruction of tephra deposits

208



Chapter 7 Utilising sedimentology in marine tephrochronology.

While pCT and thin-section analysis have been successfully employed to examine 

high concentration tephra deposits with a visible expression, it is unclear whether it 

can be used to visualise tephra deposits in low concentrations (i.e. cryptotephras). It 

may be possible to detect cryptotephras within host sediments that exhibit a 

significantly different absorption coefficient to tephra than marine sediments, e.g. 

peat sediments. This may increase the attenuation contrasts and reduce overlap 

between tephra and host sediments on the greyscale histograms, which would make 

threshold definition clearer. This study has solely focused on visualising basaltic 

tephra deposits that have a small density contrast to marine sediments. Less dense 

rhyolitic material may show a greater density contrast to the host sediment which 

could aid intensity segmentation.

If the size of the scanned block is reduced, or if the scan is more focused on a section 

of the block, it may be possible to increase the scanning resolution of the deposit. 

This would permit the employment of edge detection, gradients, or local variance to 

provide a more robust method of phase segmentation (Landis and Keane, 2010). It is 

likely that targeted scanning of specific intervals within sequences would increase 

the pCT detection limits suitable for cryptotephra identification. The proportion of 

tephra relative to sediment should increase and improve segmentation with the 

different phases more clearly defined on the histograms.

7.5 Conclusions

• The application of 2D analysis was applied to the FMAZ II and IV to identify the 

presence of micro-sedimentological structures. This permitted a further assessment 

of the processes governing the taphonomic history of the deposits.

• Load structures were identified in thin-section for the FMAZ II deposit and suggest 

deposition via primary airfall or sea-ice. 3D visualisation of the FMAZ II is spatially 

complex and the presence of a large blocky structure confirms the correct 

stratigraphical placement of the isochron.
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• The absence of burrows in the FMAZ IV has been linked to a more uniform 

sedimentary input that is less severe and subsequently conducive to enhanced levels 

of bioturbation. The identification of a package of tephra ~2.3 cm beneath the 

isochron, previously positioned using shard concentration profiles, resulted in 

realignment of the isochron.

• The correct stratigraphical placement of the isochron is not always represented by a 

peak in shard concentration, likely due to post depositional modification. Shard 

concentration profiles may fail to capture discontinuous tephra packages and create a 

biased profile that influences incorrect isochron placement.

• Thin-section analysis and pCT offer complementary approaches to understanding 

the micro-sedimentological characteristics of tephra deposits and subsequently, their 

depositional contexts. A protocol has been developed to assist in the application of 

2D and 3D analysis.
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Chapter 8 Synthesis and Discussion

8.1 Introduction

The following discussion outlines the main implications and findings of results 

presented in the previous four chapters. The initial focus presents a taphonomic 

assessment of contrasting tephrostratigraphical profiles from the network of North 

Atlantic cores. An inventory of shard distribution profiles together with diagnostic 

geochemical and sedimentological information underpins a robust protocol for 

assessing the integrity of marine tephra deposits. This facilitates the construction of a 

marine tephra framework for the NE Atlantic between 16 and 55 ka. Potential 

correlations between this framework and others reported in the literature e.g. 

Greenland ice-cores, are considered to assess phasing relationships within the 

climate system. Finally, issues preventing robust comparisons are discussed and 

suggestions are made for locating the most valuable isochrons in the marine 

environment.

8.2 Unraveling taphonomic processes in the marine 
environment

Shard concentration profiles and key diagnostic indicators including geochemical 

homogeneity, grain-size distributions and IRD co-variance are synthesised from each 

record to define indicative types of cryptotephra profiles with similar characteristics 

and features (see Table 8.1). These are examined to assess the relative value of 

accompanying diagnostic indicators (see Table 8.1).
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This permits the development of a marine protocol to assess depositional pathways 

and ultimately to explore the integrity of each tephra horizon as an isochron for 

inclusion within a tephrochronological framework.

8.2.1 Shard concentration profiles and related diagnostics

Twelve tephra deposits have been detected within the network and form five distinct 

shard concentration profile types. Schematic representations of concentration 

profiles have been illustrated in Fig 8.1 and summarised in Table 8.1. The following 

section provides a summary of each profile and their occurrence across the NE 

Atlantic network.

8.2.1.1 Single discrete peak

Single-discrete peaks are only found in one core and are quite rare amongst marine 

deposits (Table 8.1). This type of profile is characterised by a discrete peak in shard 

concentration, often constrained to 1 cm (Fig 8.1a). The clear peak represents the 

likely stratigraphical placement of the isochron and is a common profile exhibited by 

basaltic deposits in MD04-2829CQ (Table 8.1). Shard concentrations represented by 

each peak are <200 shards per 0.5 gdw and are manifested as cryptotephra horizons 

with varying degrees of lateral continuity (Fig 8.2). In each occurrence, a distinct 

homogeneous or’two homogenous populations are observed. In deposits where a 

single geochemical population exists (MD04-2829CQ 930-931 cm, MD04-2829CQ 

934-935 cm), IRD input and the percentage of coarse-grained shards is low. These 

are typical diagnostic features of primary airfall (Abbott et al., 2011). In contrast, the 

geochemically bimodal deposit 800-801 cm in MD04-2829CQ coincides with high 

IRD influx, which is not a common feature of primary deposits. An additional 

characteristic of the bimodal deposit is the predominance of coarse-grained shards 

>80 pm. Based upon initial deduction of geochemical homogeneity, the deposit is 

likely to have been affected by sea-ice deposition and highlights the potential of 

utilising grain-sizes to decipher transport processes.
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Each discrete profile is characterised by a clearly defined primary isochron, likely to 

be derived from primary airfall or sea-ice, which can be securely integrated within a 

framework (Table 8.1).

8.2.1.2 Peak with upward and downward gradational tails

Profiles of this nature are the most commonly observed within marine and lacustrine 

environments, but in this network are detected exclusively within JM11-19PC (Table 

8.1). These deposits are characterised by a clearly discernible peak with 

exponentially decreasing shard dispersion above and below (Fig 8.1b). Four JM11- 

19PC deposits (196-197 cm, 304-305 cm, 357-358 cm, 618-623 cm) exhibit a 

concentration profile of this kind and three of these contain homogeneous 

geochemical populations (Table 8.1). Peak shard concentrations vary according to 

composition of the tephra (Fig 8.2). Peaks at 196-197 cm and 357-358 cm are 

rhyolitic and exhibit concentrations of <30,000 shards. In contrast, basaltic peaks at 

304-305 cm and 618-623 cm exhibit shard concentrations >450,000 (Fig 8.2) and the 

peak at 304-305 cm manifests as a macrotephra horizon. In each homogeneous 

deposit, there is no associated IRD input and fine-grained shards dominate the grain- 

size distribution; both of which are characteristic of primary airfall deposits (Abbott 

etal., 2011) (Table 8.1).

Upward and downward tails in each instance are likely to represent bioturbation 

and/or bottom current re-working, both of which are not features of singular peak 

profiles. These dispersed profiles may be indicative of slower site-specific 

sedimentation rates. As a consequence, the peak, as opposed to the position of first 

influx, is suggested to represent the correct stratigraphical placement of the isochron. 

In some instances these profile types reveal a heterogeneous tephra geochemistry 

and coincide with an increase or peak in IRD e.g. 196-197 cm (Fig 4.3). These are 

typically interpreted as ice-rafting signatures and suggest a significant temporal 

delay between the timing of eruption and deposition at the core site. As such, the 

deposit is not isochronous and is unsuitable for integration within the framework. In 

most instances, profiles of this kind are likely to represent primary airfall with post 

depositional re-working, but may also be a consequence of secondary deposition.
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Co-variance with IRD is a key indicator to assess the role of iceberg rafting in this 

instance.

8.2.1.3 Peak with significant upward tail

Peaks with distinctive upward tails, where high shard concentrations are apparent 

several centimeters above the peak, are infrequently detected and only one marine 

deposit of this nature was found within the network (Table 8.1). The profile is 

characterised by a peak with a sharp lower contact and a significant upward tail of 

vertical tephra dispersion (Fig 8.1c). Although these profiles are similar to the peaks 

with gradational tails outlined above, the distinction is made to emphasise the 

extensive upward tail in relation to the downward tail i.e. high concentrations over 

several cm’s and no exponential decrease. JM11-19PC 544.3-545.3 cm exhibits 

these properties, and in this instance the peak and position of first main influx occur 

at the same stratigraphic depth. There is minimal dispersion below the peak in shard 

concentration. Shards extracted from several depth intervals within the upward tail 

were found to have the same homogeneous geochemical composition as the 

lowermost peak. An assessment of the palaeoceanographic regime suggests the 

deposit occurs within a period of increased bottom water formation that favours 

bottom current re-working (Ezat et al., 2014). It is therefore advantageous to assess 

whether deposition occurred during stadial or interstadial climates, which exert a 

control upon bottom currents and subsequently the ability to re-mobilise previously 

deposited material. Additionally, there is no evidence of high IRD input and fine­

grained shards dominate the grain-size distribution, both of which are common 

diagnostic features of primary airfall deposition (Table 8.1).

Davies et al. (2014) observed a similar shard concentration profile in MD99-2253, 

which yielded two unrelated homogeneous populations to the main peak within the 

declining tail of the deposit. This highlights the importance of exploring the 

geochemical composition of glass shards from multiple depths in this type of profile. 

This will assess whether the shards were derived from secondary re-working or 

determine the presence of additional primary tephras hidden within the declining tail 

(Davies et al., 2014).
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8.2.1.4 Diffuse distribution with multiple peaks

Distributions of this type have been detected in two deposits from JM11-19PC (423- 

443 cm) and MD99-2281 (1869-1890 cm), both of which represent the FMAZ III 

complex (Table 8.1). The deposits are characterised by a high background of glass 

shards over a notable core interval (-20-30 cm) with numerous indistinct peaks (Fig 

8.Id). Although the distributions in both cores are similar, the concentrations of 

shards in each core are contrasting. JM11-19PC peaks exhibit concentrations of 

-750,000, compared to -500 in MD99-2281 (Fig 8.2). Both deposits exhibit 

heterogeneous geochemical signatures derived from multiple depths and peaks. IRD 

input in association with these deposits show some contrasting features, with 

moderate covariance associated with MD99-2281 and low IRD input in JM11-19PC 

(Table 8.1). This suggests an ice-rafting component may have assisted in tephra 

delivery in MD99-2281. Assigning a precise isochron position is challenging and 

generally not possible due to the heterogeneity of shards and diffuse nature of the 

deposit. In light of these observations, these diffuse deposits may only be useful as 

low-resolution markers in the marine environment i.e. where the same geochemical 

composites occur at corresponding stratigraphical intervals. It is suggested that these 

diffuse profiles have been compromised by secondary re-working, but may be used 

as a marker for the same prolonged ice-rafting event seen in different marine cores. 

However, in MD99-2281 1883-1884 cm, a distinct peak occurs in association with a 

moderate heterogeneous geochemistry, which may represent primary airfall 

imprinted upon a dispersed profile i.e. (Fig 8.1e).

8.2.1.5 Diffuse distribution with no discernible peaks

Shard profiles of this kind do not usually reveal the presence of isochrons and are 

characterised by very low tephra concentrations with minor fluctuations and no 

definitive peaks (Fig 8.If). This profile typically reflects a low background of shard 

concentrations, e.g. rhyolitic material in MD04-2829CQ and a period of minor influx 

in MD95-2010 793-794 cm (Table 8.1). In both examples, the deposits exhibit a 

heterogeneous geochemical signature and IRD input is low. In MD04-2829CQ, a
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background of rhyolitic material is characterised by fine-grained shards. In 

conjunction with geochemical heterogeneity, the background signal is interpreted to 

reflect post-depositional re-working. Similar geochemically heterogeneous 

compositions indicate a continuous input of similar shards into the system and may 

highlight a memory effect at the site. In MD95-2010, the shards are predominantly 

coarse and likely to be deposited by a range of primary and secondary depositional 

processes (Table 8.1). These profiles are useful for understanding the depositional 

history at the core site but their use as isochrons is limited.

8.2.2 Visualising sedimentological features to assess post- 
depositional modification

After combining diagnostic information outlined in the previous section, it may be 

crucial in some instances to utilise sedimentological analysis to confirm the correct 

stratigraphical position of the isochron. This can also be used to pinpoint 

modification mechanisms that may not always be captured using traditional 

techniques. Two deposits, JM11-19PC 304-305 cm (FMAZ II) and 544.3-545.3 cm 

(FMAZ IV), exhibit peaks with gradational tails and a homogenous composition (Fig 

8.1b). These were explored using 2D and 3D techniques to test sedimentation 

interpretations (see chapter 7) (Table 8.1).

The FMAZ II and FMAZ IV deposits provide contrasting examples of tephra 

depositional structures. Evidence of several bioturbation burrows can be seen in unit 

one of the FMAZ II penetrating ~20 mm below the initial primary input of the 

sediment (Fig 7.2c). However, these structures are not visible in the FMAZ IV and 

several lines of evidence are presented that suggest this is due the nature of 

sedimentation. The presence of a dense blocky structure in the FMAZ II and 

sedimentary loading below indicates rapid, high volume tephra delivery to the 

seabed. The severity of this ash fall is interpreted to have been sufficient to disrupt 

normal sedimentation processes and cease the operation of bioturbation. Therefore, 

in intervals where there is serious disturbance to the sedimentary system i.e. a 

catastrophic tephra input event or a turbidite, stratigraphical dispersion may be
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limited. Such disturbances to the system may be highly beneficial for marine 

tephrochronology, preserving the deposit as an intact isochron and retaining its 

stratigraphic integrity. The absence of structures in the FMAZ IV suggests 

bioturbation may be enhanced in core sections where there is relatively uniform 

sedimentation. However, this may not apply in situations where stratigraphic 

dispersion is not a feature of the concentration profile i.e. in MD04-2829CQ. In these 

cases, the sedimentation rate may be of sufficient rapidity to consistently shift the 

biological mixing layer and preserve the integrity of the deposit. It may also be due 

to the exceptionally low tephra concentrations that prevent tephra from acting as a 

bioturbation tracer.

The application of sedimentological analysis provides new insight into estimating 

the extent of bioturbation processes and operation of other marine depositional 

processes, particularly in deposits that exhibit shard dispersion. Although not 

exhaustive, the identification of similar sedimentary structures, i.e. burrows, may be 

pivotal for assessing the true robustness of isochrons being employed in high 

precision correlations. Sedimentological analysis may be particularly useful for 

deposits requiring precise and secure isochron placement i.e. those that bracket a 

climate transition and traceable in ice-cores. It may be useful in circumstances where 

the isochron is not clearly discernible, such as profiles with gradational tails either 

side of the peak.

8.2.3 Dispersal and depositional controls at each core site

Each investigated core has revealed different cryptotephra profile types and absolute 

shard concentrations (Table 8.1, Fig 8.1). This section builds on the depositional 

controls for individual cryptotephra deposits and explores how atmospheric dispersal 

and oceanic transport may have affected the distribution and concentration of glass 

shards at each core site.

8.2.3.1 JM11-19PC

220



Chapter 8 Synthesis and discussion

This core contains three different types of shard concentration profile (Fig 8.1 b,c,d). 

In each instance, the shard concentrations represent the highest detected within the 

network (Fig 8.2). This is likely to be a consequence of its proximity to Iceland and 

the main southeasterly trajectory of ash plumes within the east-flowing polar jet 

stream (Jennings et al., 2014). Others suggest the Faroe Shetland-Channel provides a 

detailed history of Icelandic volcanism due its proximity to Iceland (Wastegard et al., 

2001, Wastegard and Rasmussen, 2014). On one hand, this is a great opportunity for 

detecting numerous tephra layers, but on the other, it provides significant glass shard 

input into the system. In periods of closely spaced eruptions e.g. FMAZ III, glass 

shards of varying geochemistry are deposited to form a heterogeneous amalgamation 

of tephra at the core site.

Benthic foraminifera abundances in the Nordic Seas suggest deep-water conditions 

during interstadials were very similar to present-day circulation patterns; dominated 

by bottom currents generated by thermohaline convection (Rasmussen et al., 1996). 

Bottom water formation in the Faroe-Shetland gateway may have focused material 

towards the site and enhanced re-working during interstadials (Rasmussen et al., 

1996). As such, periods of bottom water formation may be responsible for enhanced 

gradational upper tails i.e. 544.3-545.3 cm. The presence of an ice-rafted deposit is 

likely due to the proximity to ice-rafting pathways during intense cold periods i.e. 

196-197 cm. It is suggested that bottom currents, proximity to Iceland and ice-rafting 

pathways impart a strong control on tephra deposition and preservation in JM11- 

19PC. These controls have varied temporally and can partly be related to the overall 

climatic regime.

8.2.3.2 MD99-2281

MD99-2281 contains only one type of shard distribution profile (Fig 8.1c), although 

the absence of additional types may be a consequence of the targeted sampling 

window. The site is located ~300 km southwest of JM11-19PC (Fig 8.2) and is likely 

to be in an area susceptible to delivery from atmospherically derived tephra, 

reflected in moderate shard concentrations (Table 8.1).

221



Chapter 8 Synthesis and discussion

O  00 
00 .
a  «

- otHCO cc

“O

to >- 
CD X  
CD Cd

-D
-  O

T3

fM
■

in
CL
<r>

C3
<b

c
Q
Cn
Q)
£
o

ĉ?
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Bottom currents affecting MD99-2281 are influenced from circulation around the 

Faroe Islands and are likely to have followed the same pathway as currents affecting 

JM11-19PC. Geomorphological evidence suggests interglacial/interstadial

sedimentation in the Faroe Bank is almost entirely controlled by bottom currents

(Kuijpers et ah, 1998). Hence, it is likely that deep-sea circulation has influenced

tephra sedimentation and re-working (Kuijpers et al., 2002). Lower tephra 

concentrations in comparison to JM11-19PC may be due to depletion in the number 

of tephra particles entrained in suspension when overflowing the site.

An additional factor controlling deposition at MD99-2281 is the potential of tephra 

delivery through ice-rafting. During the last glacial period, southern parts of the 

Faroe Islands were under direct influence of the proximal Fennoscandian and BIIS 

ice-sheets. High concentrations of IRD grains in the record suggest the site may have 

been susceptible to iceberg calving. However, Hall et al. (2011) suggest the greatest 

contribution of IRD influx in the region is sourced from the BIIS. This is likely to 

reflect local ice-rafting signals, as opposed to ice-rafting sourced from proximal 

Icelandic and/or Laurentide ice sheets. As such, the icebergs are much less likely to 

contain tephra sourced from multiple eruptions and deposits may reflect a short delay 

between the eruption and subsequent deposition from calving.

8.2.3.3 MD04-2829CQ

MD04-2829CQ is situated ~100 km south east of MD99-2281 (Fig 8.2) and exhibits 

significantly lower tephra concentrations manifested as single discrete peaks (Fig 

8.1a). This may be due to increasing distance from the main dispersal axis and local 

topographic controls. Specifically, sedimentation in MD04-2829CQ is likely be 

influenced by the Rosemary Bank, a seamount in close proximity to the site. The 

surrounding area exhibits a complex bathymetry and a peak vertical relief of 2000 m, 

with topographic depressions related to erosion between the seamount and the 

flanking contourite drift deposits, on which MD04-2829CQ is located (Howe et al., 

2006). As a result, sedimentation around the seamount and surrounding basin is 

complex, a combination of the highly variable nature of seabed morphology,
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sediment supply and the downslope process operating (Howe et al., 2006). These 

controls enhance bottom current velocities and keep particles in suspension for 

longer periods, potentially affecting the lateral transport of tephra particles. This may 

explain the memory effect/background of rhyolitic material at the site. Circulation 

around the Rosemary Bank is affected by eddies and gyres superimposed upon the 

net transport, inducing turbulence and potentially stopping tephra particles reaching 

the sea-bed. Thus, physical conditions may have reduced deposition of glass shards 

in this location.

The absence of tailed shard distributions in contrast to other sequences may be a 

consequence of high sedimentation and short pulses of tephra input, limiting the 

opportunity for re-working and preserving isochronous integrity. The presence of a 

continuous background of rhyolitic material in the record may reflect rhyolitic 

deposits that have remained mobile in the marine system and constitute the matrix of 

sedimentary influx to the site (Fig 8.If).

8.2.3.4 MD95-2010

MD95-2010 represents the most distal core to Iceland (~1300 km) and is 

predominantly devoid of tephra (Fig 8.2). The presence of a diffuse, somewhat 

tenuous basaltic deposit (Fig 8.Id) may be the consequence of sea-ice rafting. The 

site is located on the northern limit of the North Atlantic Drift and is close to the 

former limits of the Fennoscandian ice-sheet, which completely covered the Voring 

Plateau during the last glaciation (Mangerud et al., 1991). This affected glaciomarine 

controlled sedimentation and is likely to have had a significant impact upon tephra 

deposition. Additionally, dinocyst assemblages have been used by Eynaud et al. 

(2002) to establish the persistence of sea-ice cover at the site during interstadials in 

comparison to the rest of the Atlantic. As such, perennial sea-ice may have 

permanently capped the northern Norwegian Sea during the last glacial period and 

prevented tephra from reaching the sea-bed.
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Exceptionally low concentrations of IRD throughout the record suggest that ice- 

rafting is unlikely to have contributed towards tephra deposition. This is in contrast 

to the high IRD influxes recorded in the other Atlantic cores within the study. 

Enhanced sea-ice cover duration and infrequent ice-rafting episodes are likely to 

account for the predominant absence of tephra.

8.2.4 Marine tephrochronological protocol

Given the diagnostic indicators identified in this study and an understanding of their 

local depositional controls, a stepped analytical protocol for resolving depositional 

pathways in the marine realm is proposed (Fig 8.3). The protocol highlights the 

importance of employing contiguous shard concentration profiles, comprehensive 

geochemical characterisation, IRD co-variance and where appropriate, micro- 

sedimentological features to unravel potential depositional mechanisms.

The protocol places strong emphasis on the geochemical characteristics of tephra 

deposits and more specifically the level of geochemical homogeneity. Previously, 

high IRD co-variance was automatically equated to tephra delivery from ice-rafting 

and integrity of the deposit was thought to be compromised. However, a number of 

examples of high IRD covariance with homogenous populations suggest that 

primary deposition may have occurred contemporaneously with ice-rafting. The 

bimodal deposit 800-801 cm in MD04-2829CQ coincides with high IRD influx yet 

the homogeneity of the two components is not a common feature of ice-rafted 

deposits. This suggests that IRD co-variance is not always a diagnostic indicator of 

secondary deposition and that emphasis should initially be placed on geochemical 

homogeneity. As a consequence, IRD indicators are included to corroborate ice- 

rafting following initial deductions of geochemical heterogeneity. If low IRD 

indicators are associated with geochemical heterogeneity, it is likely the deposit has 

been compromised by the frequency of eruptions or significant post-depositional re­

working (Fig 8.3).
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High-resolution concentration profiles represent the next critical diagnostic indicator 

within the protocol. Providing a homogeneous geochemical signature is observed, it 

is likely these profiles represent primary input and their stratigraphical expression is 

related to local sedimentation and sensitivity to re-working. A predominance of fine­

grained shards is typically associated with primary airfall or seasonal sea-ice. If 

coarser shards are found within the deposit, it is likely that sea-ice rafting caused 

greater transport of shards away from the source. This would likely induce a limited 

temporal delay between the eruption and subsequent deposition, irresolvable within 

the resolution of the marine sequences. An understanding of the climatic regime and 

associated palaeoceaongraphic processes may provide additional information 

regarding the potential for sea-ice deposition. It is stressed this is unlikely to affect 

the temporal integrity of the isochron. The application of dinocyst assemblages and 

IP25 biomarkers may additionally assist in deciphering the presence of sea-ice (Belt 

et al, 2013). The final section of the protocol utilises sedimentology to validate the 

process mechanisms interpreted from other indicators and potentially refine the 

position of the tephra isochron (Fig 8.3).

The protocol highlights the importance of using a range of indicators in order to 

unravel the operation of different depositional mechanisms. It is accepted that the 

protocol is not exhaustive and further iterations and refinements are envisaged due to 

the complex interplay of processes that are spatially and temporally dependent across 

the North Atlantic. A key section of the protocol that is likely to be subject to future 

revision is the application of sedimentological techniques, currently in their infancy. 

The identification of structures i.e. burrows, within the micro-facies of a deposit 

provide a valuable starting point for substantiating the modes of tephra delivery to 

the sea-floor. As more structures are observed, this should permit greater 

understanding of the range of diagnostic sedimentological signatures of primary and 

secondary deposits.

.As the number of investigations employing a range of diagnostic indicators 

increases, a catalogue of shard concentration profiles and their associated 

depositional processes can be compiled. It is anticipated that an inventory, outlined 

here, should permit a deduction of the deposits that should be pursued further as they 

are likely to reflect primary deposition. This study has revealed that discrete peaks
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have been found ubiquitously in association with homogeneous geochemistry and 

consequently reflect primary deposition. In contrast, a diffuse distribution is unlikely 

to be homogeneous and its value as an isochronous marker is limited. As such, 

profiles of this type may not be worth pursuing further.

8.3 Updating the tephrochronological framework for the 
North Atlantic

The marine toolkit and an understanding of spatially dependent sedimentation 

controls have been used to assess which deposits are suitable for integration within 

the North Atlantic framework. Specifically, eight cryptotephra and two macro tephra 

deposits have been identified as potential isochrons within marine cores spanning 

MIS 2 and 3. Eight are basaltic in composition, and two are rhyolitic; these have 

been deemed isochronous deposits of varying potential (Fig 8.4). Two of these 

horizons, JM11-19PC 304-305 cm (FMAZ II) and JM11-19PC 618-623 cm (NAAZ 

II) are previously known tephra deposits and represent ice-marine tie-points. MD04- 

2829CQ 800-801 cm represents a previously unidentified tephra deposit within the 

framework and may act tentatively as an ice-marine tie-line (Fig 8.5, 8.6). The 

emerging framework forms a basis for the identification of coeval cryptotephra 

deposits and assessments of climatic phasing (Fig 8.5). For clarity, tephra deposits 

that exhibit ice-marine correlations and occur in more than one record are considered 

first, followed by single tephra occurrences detected exclusively in a single core.

8.3.1 FMAZ II

A basaltic macrotephra, JM11-19PC 304-305 cm (FMAZ II), exhibits a 

homogeneous peak sourced from the Kverkfjoll system and correlates with NGRIP 

1848.0 m, forming a strong ice-marine correlation (Fig 8.5, 8.6). The integrity of this 

deposit has been tested rigorously through the use of sedimentological analysis to 

corroborate primary deposition and refine the position of the tephra isochron (Table 

8 . 1).
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Figure 8.4 North Atlantic marine tephrochronological framework. Tephra deposits detected within 
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indicated. JM11-19PC 304-305 cm and JM11-19PC 544.3-545.3 cm are macrotephras. The integrity 
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unknown tephras and * indicate additions to the framework presented in this study.
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Chapter 8 Synthesis and discussion

Although this horizon has not been detected in other cores within this investigation, 

this deposit is widespread in other Faroese records (Rasmussen et al., 2003), the 

Labrador Sea (Wastegard et al., 2006) and a single Reykjanes Ridge record 

(Lackschewitz and Wallrabe-Adams, 1997) (Fig 8.4).

According to the strati graphic position of 304-305 cm, the tephra was deposited in a 

cold period above the warmest phase of DO-3, as inferred from the magnetic 

susceptibility record in JM11-19PC (Fig 8.5). The FMAZ II has additionally been 

detected in association with low magnetic susceptibility values, after the warmth of 

DO-3, in nearby Faroese cores (Fig 8.7). Similarly, the tephra falls stratigraphically 

in a prolonged cold period after GI-3 within NGRIP, which permits an assessment of 

climatic phasing (Fig 8.4, 8.7). The FMAZ II is located on the falling limb of DO-3 

in JM11-19PC, LINK15 and ENAM93-21, which may reflect a slight delay in 

cooling recorded in the North Atlantic (Fig 8.7). However, this may reflect a lag in 

the deposition of magnetic particles into the local system. Although the tephra fell 

within a cold period, precluding an assessment of abrupt climate transitions, the 

correlation can be used to suggest a coupling between the oceans and atmosphere at 

this point (Fig 8.4, 8.7). Therefore, the deposit represents a well-defined isochronous 

marker that can be used for high-resolution correlations.

8.3.2 NAAZII

A bimodal homogeneous deposit, JM11-19PC 618-623 cm, exhibits a significant 

peak of basaltic (II-THOL-2) and rhyolitic (II-RHY-1) geochemistries. In the 

absence of high-resolution shard concentration profiles, it is difficult to assess 

whether these populations exhibit a stratigraphic separation or occur 

contemporaneously. Nonetheless, the II-RHY-1 component exhibits an ice-core 

correlative (GRIP 2430.95 m) and is detected in a number of North Atlantic records 

and nearby Faroese sequences (Fig 8.5, 8.6, 8.7). The stratigraphic position of the II- 

RHY-1 component in JM11-19PC, LINK 16 and ENAM 93-21 falls on the peak 

warmth according to the magnetic susceptibility record (Fig 8.6).
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However, II-RHY-1 falls on the rapid transition between GI-15 and GS-15 in the ice- 

core records, indicating cooling may have been initiated in the atmosphere prior to 

cooling in the marine realm (Fig 8.7). This may indicate an atmospheric driver of 

climatic events during GI-15. This is in contrast to previous studies by Austin et al. 

(2004) and Brendryen et al. (2011), who suggest the rapid climate transitions 

between GI-15 and GS-15 occurred synchronously between the ice and oceanic 

realms. These investigations utilise other paleoceanographic proxies i.e. N. 

pachyderma sin., which do not record the same changes as magnetic susceptibility. 

As such, the proxy used within each study affects these interpretations. DO-15 is not 

as pronounced in the magnetic susceptibility record of LINK15 in comparison to 

nearby records and appears to fall in the peak cooling associated with DO-15 (Fig 

8.7). The initial II-RHY-1 occurrence in ENAM93-21 falls on the warming limb of 

DO-15 (Fig 8.7). Despite the close geographical location of Faroese cores, their 

corresponding magnetic susceptibility record is variable and suggests local 

depositional controls have affected the magnetic signal. As a consequence, this 

affects the reliability of the climatic signal recorded in the magnetic record and 

plagues judgment on the phasing of rapid climatic changes.

The widespread distribution of the NAAZ II across the North Atlantic provides a 

viable means to correlate between distal marine records. This will be particularly 

useful for deciphering the presence of other geochemical components of this ash 

zone and regional dispersal mechanisms. NAAZ II is additionally useful for 

comparing paleoclimate signals in a time period where chronological control is rare
1 Q

and models are largely constructed by direct synchronisation of 6 O stratigraphies.

8.3.3 FMAZ III

A composite of cryptotephra deposits and shards, defined as the FMAZ III in the 

marine environment, have been identified straddling DO-8 within JM11-19PC, 

MD99-2281 and tentatively in MD95-2010 (Fig 8.5, 8.6). Rigorous geochemical 

analyses reveal significant heterogeneity in JM11-19PC, MD99-2281 and MD95- 

2010. It has been suggested that the frequency of Grimsvotn-sourced eruptions 

during this period, as observed in the Greenland ice-core framework, has contributed
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towards the observed heterogeneity. There is disparity identified within the 

heterogeneous distributions between cores. JM11-19PC exhibits a greater 

concentration of shards with higher TiC>2 and lower CaO contents, whereas MD99- 

2281 exhibits a greater number of shards with lower TiC>2 and higher CaO contents 

(Fig 8.8a). This suggests differing depositional controls and may be related to shifts 

in the dominant wind dispersal trajectories following individual eruptions. Even 

within heterogeneous deposits, a different suite of eruptions may be represented.

The presence of two homogeneous populations in MD04-2829CQ and the absence of 

additional populations associated with the FMAZ III composite are unique, and 

likely related to both air dispersal and site-specific sedimentation processes (Fig 8.6). 

One of the distinct populations, MD04-2829CQ 930-931 cm, appears to be unrelated 

to glass shards from other marine cores as demonstrated on Ti02 vs CaO biplots, but 

falls within the general FMAZ III envelope (Fig 8.8a). A greater number of shards 

from this population overlap with other element oxides on Ti02 vs FeO/MgO 

biplots, but these geochemical compositions are generally low in other records (Fig 

8.8b). There is minimal overlap of this population with stratigraphically equivalent 

ice-core horizons, but the composition falls within the general Grimsvotn 

evolutionary trend for this period. It is likely that this horizon represents an eruption 

that is currently undetected in the Greenland records and other marine records.

The second homogeneous horizon, 934-935 cm, was initially thought to represent a 

strong correlation to NGRIP 2071.50 m and NEEM 1759.85 m. If a correlation were 

to exist, the stratigraphic position of this horizon indicates warming in the oceans 

preceded warming in the atmosphere. This implies that the ocean was the primary 

driver of abrupt climate changes (Fig 8.4). However, significant differences in 

barium and niobium concentrations between 934-935 cm and NEEM 1759.85 m 

highlight discrepancies in trace element composition. This suggests that these two 

deposits have been derived from a separate magma chamber and are therefore likely 

to represent two separate eruptions. It is likely that more eruptions may have 

occurred in DO-8 than are documented in the Greenland ice-core framework.
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Figure 8.8 Major oxide results for FMAZ III deposits found within each of the four investigated 
marine cores. All data have been normalised to 100% total oxide concentration. Individual 
populations in MD04-2829CQ have been highlighted (outliers have been included).
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Figure 8.9 Distribution of the FMAZ III in the North Atlantic. Marine occurrences in the Faroes 
region consist of a heterogeneous complex of multiple eruptions (Rasmussen et al., 2003; Wastegard 
et al., 2006; this study). MD04-2829CQ consists of two stratigraphically separated homogenous 
horizons that may not be related to the FMAZ III. MD95-2010 consists of shards that share 
geochemical similarity to the FMAZ III but cannot be confidently be considered of sufficient quantity 
to constitute an isochron.
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As a consequence, correlations between cores that exhibit similar major element 

geochemistries may also contain composites of glass shards sourced from different 

magma chambers within the Grimsvotn system and may not be genetically related. 

MD04-2829CQ is located outside of the Faroes region and the two homogeneous 

horizons may be unrelated to the FMAZ III complex detected in Faroese records, 

despite exhibiting similar major element geochemistry. As such, there is no 

unambiguous geochemical evidence to provide a correlative link between the FMAZ 

III and strati graphically equivalent ice-core horizons. Tephra preserved in the ice 

may be sourced from eruptions that exhibit different dispersal pathways compared to 

those recorded in the marine environment. In light of this information, marine- 

marine correlations of the FMAZ III are to be exercised with care. More work is 

needed to characterise trace-element compositions of the FMAZ III and ice-core 

horizons in DO-8 to assess genetic similarities between different occurrences in the 

North Atlantic.

A fundamental perquisite for synchronising records between the marine and 

cryospheric realms relies on the completeness of the Greenland ice-core records for 

documenting eruption histories and the preservation of common tephra horizons. An 

incomplete volcanic event stratigraphy reduces the likelihood for locating a 

stratigraphically distinct horizon in the oceans that exhibits the same geochemical 

composition as an ice-core horizon. Generally, geochemical heterogeneity is a 

common feature of marine sequences during DO-8 and this plagues the integration of 

records. Despite the stratigraphic importance of the FMAZ III and stratigraphically 

equivalent ice-core horizons, there may be more important isochrons to focus on 

tracing in the marine environment. Ideally, these will bracket rapid climate 

transitions, be geochemically distinctive and occur during a period of relative 

volcanic quiescence. These characteristics should increase the likelihood of 

stratigraphic separation in the marine environment, coupled with a diagnostic 

geochemical fingerprint. Essentially, it may be advantageous to focus on tephras 

sourced from volcanic centres other than Grimsvotn to increase the likelihood of 

tracing a geochemically distinct deposit.

Nonetheless, a rigorous investigation into the FMAZ III has revealed a wealth of 

complexity associated with eruption frequency, geochemical subtleties and marine
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deposition. By its very nature, the FMAZ III forms a diachronous surface in the 

marine environment and may be useful exclusively as a low-resolution marker in 

marine studies for DO-8 (Fig 8.5, 8.6). The deposit has been traced in the Rockall 

Trough, the Faeroes Region and tentatively to the Norwegian seas, which provides a 

means to link records together in DO-8, similarly to the way the NAAZ II is used as 

a marker for DO-15.

8.3.4 FMAZ IV

A basaltic macrotephra, JM11-19PC 544.3-545.3 cm (FMAZ IV), exhibits a 

homogeneous peak with a significant upward tail sourced from Grimsvotn. Despite 

the stratigraphic dispersion, the integrity has been tested rigorously using 2D and 3D 

analysis to realign the position of the isochron to best reflect the initial input of 

primary deposition (Table 8.1). No Grimsvotn-sourced deposits exist within the ice- 

core framework for this period and it is difficult to assess whether the upward tail is 

a reflection of re-working or several closely spaced eruptions. However, FMAZ IV 

has been found in numerous other Faroese records and provides a useful marine- 

marine correlation (Fig 8.7) (Wastegard and Rasmussen, 2014). High magnetic 

susceptibility values suggest deposition occurred during peak interstadial conditions 

associated with DO-12 in JM11-19PC, LINK16 and ENAM93-21 (Fig 8.7). 

However, the initial FMAZ IV input falls on the warming limb of LINK15 (Fig 

8.7d). This may be a consequence of post-depositional modification and incorrect 

isochron placement. If other marine occurrences of this deposit can be traced outside 

the Faroes region, it may facilitate the piecing together of a reconstruction of oceanic 

responses in the marine realm during DO-12.

A potential caveat with FMAZ IV is the diffuse nature of the deposit. Without the 

addition of 3D analysis, isochron placement would be challenging and this may have 

implications for similar FMAZ IV deposits detected in other cores. Nonetheless, 

FMAZ IV in JM11-19PC has been well constrained, and caution is encouraged when 

linking this deposit to other FMAZ IV records.
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8.3.5 MD04-2829CQ 800-801 cm

A homogeneous horizon, MD04-2829CQ 800-801 cm is a new discovery and 

exhibits a well-resolved discrete peak and represents a tentative ice-marine 

correlation (Fig 8.5). Although no similar correlatives have been detected in the 

marine environment, there are numerous ice-core horizons that exhibit a similar 

tholeiitic basalt composition of Kverkfjoll origin. Subtle differences in TiC>2 indicate 

a strong geochemical overlap with GRIP 2067.85 m and GRIP 2081.40 m but cannot 

be distinguished using major element signatures in isolation. Stratigraphically, GRIP 

2067.85 m falls on the cooling transition of GI-5.1 and is more likely to be related to 

the 800-801 cm horizon, which is located during peak stadial conditions following 

DO-5 (Fig 8.5). As this horizon brackets a rapid climatic transition, future trace 

element geochemistry is necessary to facilitate potential synchronisation and permit 

an assessment of phasing relationships. The presence of a secondary Grimsvotn 

population in 800-801 cm is highlighted, due to the absence of Grimsvotn-sourced 

basalts in the ice-core framework during this period. It is likely this represents a 

contemporaneous eruption with a dispersal pathway south of Greenland. This deposit 

may hold considerable potential for use as a high-resolution isochronous marker 

horizon.

8.3.6 JM11-19PC 357-358 cm

A homogeneous rhyolitic horizon, JM11-19PC 357-358 cm, is a new addition to the 

tephrochronological framework. The horizon exhibits a well-resolved peak that is 

likely to be sourced from the Katla system and shows no affinity to any horizons 

present within the Greenland ice-cores (Fig 3.5). The predominant absence of 

rhyolitic material in the ice may be a reflection of eruption dynamics and preferential 

transport pathways south of Iceland. Additionally, no homogeneous rhyolitic 

deposits have been previously discovered within the North Atlantic during MIS 3 

(Fig 8.4). Homogeneous rhyolitic tephras are rare, although numerous rhyolitic 

deposits have been detected in marine sequences spanning MIS 4 and 5 (Brendryen 

et al., 2010; Abbott et al., 2013; Davies et al., 2014). This may be a consequence of
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limited cryptotephra investigations conducted during MIS 3, or the use of different 

methods employed to isolate rhyolitic cryptotephra shards. The tight homogeneity 

indicates it may be useful for high-resolution correlations. However, Katla sourced 

rhyolites appear to exhibit very similar geochemical compositions throughout 

Pleistocene and Holocene records, and distinguishing between individual eruptions 

may be problematic (Lane et al., 2012). Indeed, rigorous trace element 

characterisation may not offer sufficient diagnostic capabilities (Lane et al., 2012). 

Careful stratigraphic scrutinisation may aid correlations between sequences, but it is 

currently unclear how many Katla eruptions occurred during this period and 

therefore any future correlations are to be exercised with care.

8.4 How valuable is the framework? Potential and future 
challenges

The identification of twelve tephra deposits during MIS 2 and 3 within four cores 

makes a significant contribution to the tephrochronological framework for the North 

Atlantic region (Fig 8.6). The emerging framework contributes to previous low- 

resolution tephra frameworks for the North Atlantic and forms the basis for 

identification of coeval cryptotephra deposits in other disparate archives. Successful 

framework development has resulted from the fulfillment of key criteria such as 

robust geochemical characterisation and rigorous taphonomic assessments to 

successfully pinpoint the correct strati graphical placement of the isochron.

Key functions of the framework include the ability to facilitate synchronisation 

between the ice and marine realms to assess climate phasing. JM11-19PC 304-305 

cm is constrained to a 1 cm interval and exhibits a homogeneous geochemical 

population, with a unique geochemical signature directly comparable to an ice 

correlative. Tephras of this nature satisfy stringent criteria to demonstrate the utmost 

integrity of the deposit. An insight into phasing associated with abrupt climate events 

is prevented due of the timing of deposition during stable climatic conditions, 

although it still has value for constraining time-slices. In contrast, ice-core horizons 

deposited during DO-8 bracket an abrupt transition but, as yet, there has been a 

failure to detect a common stratigraphically equivalent horizon in the marine
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environment that is well-constrained and exhibits a distinct geochemical 

composition. It is essential that a distinction is made to determine whether a valuable 

isochron is defined by; a) a primary deposit with secure isochron placement, or; b) 

important stratigraphic placement facilitating an assessment of abrupt climate 

phasing. There is little value in a geochemically heterogeneous deposit or one where 

an isochron position cannot be confidently discerned, even if  it falls on a rapid event. 

In essence, primary deposition must first be discerned before evaluating its 

stratigraphic placement. This has important ramifications for targeting future core 

locations and stratigraphic sampling windows.

The fundamental purpose of a secure isochron is the ability to trace coeval deposits 

with confidence, precision and to successfully integrate unique proxy evidence. This 

study set out to test phasing relationships over abrupt transitions, however it has 

become clear that a variety of complex challenges must be addressed before this can 

be achieved. Given the complexity associated with atmospheric dispersal patterns 

and processes operating internally with the marine environment, targeting site 

locations that are likely to produce well-constrained primary isochrons represents an 

integral task. Marine cryptotephra investigations are still in their infancy and much is 

to be gained from future examinations of shard distributions and taphonomy. When 

this information is used in conjunction with ongoing tephra searches in the 

Greenland ice-cores, it should permit a deduction o f tephras that have the potential to 

fulfil a pivotal role in testing climatic phasing relationships. Primary isochrons also 

have a clear role in augmenting volcanic histories and dispersal compilations where 

proximal and medial evidence is limited. Additional uses include an assessment of 

marine reservoir offsets when used in tandem with radiocarbon dating.

This study has additionally demonstrated that a unique set o f depositional parameters 

are required to produce well-resolved primary deposits with diagnostic chemical 

signatures. Fundamentally, these are dependent upon the diagnostic chemistry o f the 

eruptive source and are compromised by the eruptive frequency, oceanographic 

regime and site-specific sedimentation. Recent cryptotephra studies have encouraged 

investigations o f deposits in high-sedimentation areas of the North Atlantic in order 

to increase the chances o f tephras preserved as discrete deposits (Bourne et al., 2013, 

Davies et al., 2014). However, as demonstrated in MD99-2281, even in records o f

242



Chapter 8 Synthesis and discussion

high-sedimentation, intervals characterised by numerous closely spaced eruptions 

have provided significant tephra input into the ocean system. As a consequence, in 

tandem with bottom current reworking, eruptive frequency has prevented a clear 

stratigraphic separation of the tephra deposit. This indicates that in locations 

sensitive to bottom current circulations, cores may be composed of tephra-rich 

material that produces a high background of glass shards. It may be more fruitful to 

target areas outside of the Faroes region or specific intervals unaffected by intense 

bottom current circulations, irrespective o f sedimentation rate. Areas of sheltered 

bathymetry i.e. south of MD04-2829CQ in the Rockall Trough, may provide ideal 

conditions for preserving discrete tephra horizons. Conversely, JM11-19PC 304-305 

cm represents a strong primary isochron, despite influence from the above 

aforementioned factors. This is attributed to a catastrophic input event that preserved 

the deposit. Indeed, even in unfavorable locations, unique input events may be 

crucial for seeking isochrons.

It is clear that a variety o f complex challenges are associated with North Atlantic 

marine tephrochronology. Correlating deposits to the Greenland ice-cores has been 

more difficult than previously envisaged. This is due to subtle geochemical 

differences between equivalent horizons and a potentially incomplete volcanic event 

stratigraphy that might not preserve common horizons due to different transport 

pathways. Nonetheless, the comprehensive geochemical dataset of deposits 

presented are o f great importance for tracing these into other sequences. Each 

building block in the framework has the potential to widen the geographical area 

over which precise correlations are achievable. Future success in this approach is 

dependent upon rigorous assessments o f marine taphonomy and robust geochemical 

fingerprinting. Undoubtedly, cryptotephrochronology is a powerful tool that has the 

potential to test climatic synchroneity. This requires a concerted effort to reconstruct 

the full tephra distribution in the North Atlantic region and subsequent construction 

of a more complete volcanic event stratigraphy.
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Chapter 9 Conclusions

9.1 Summary of the main findings

The overall aim of this work was to develop a framework of isochronous tephras in 

North Atlantic marine sequences during MIS 2-3 that could act as tie-points to the 

Greenland ice-cores. A key premise o f this work was the development o f a protocol 

that facilitated an assessment of the isochronous nature of tephra deposits in the 

marine environment with a particular focus on those present in cryptotephra form. 

To achieve this goal, the potential o f utilising innovative sedimentological 

techniques was explored to fully unravel the transport and depositional processes 

operating in the marine environment. This multi-faceted approach has resulted in the 

development of a considered framework of volcanic events that represent the most 

valuable deposits for the correlation of disparate records o f Late Pleistocene age. 

Two ice-marine tie-lines demonstrate the future potential o f assessing the relative 

timing of rapid climatic changes. The main findings are outlined as follows:

(a) Twelve tephra deposits are identified in four North Atlantic marine records 

using a combination of density and magnetic separation techniques. Methodological 

procedures for the latter technique were optimised to successfully extract basaltic 

cryptotephra from mineral-rich marine sediments. Ten deposits are determined to be 

primary isochrons based on diagnostic indicators such as geochemical homogeneity 

and dominance of fine-grained shards (<80 pm). Eight o f these are cryptotephra 

deposits and single-shard geochemical analyses together with stratigraphic positions 

are employed to develop a tephrochronological framework for the North East 

Atlantic. Basaltic deposits from the Grimsvotn system dominate the framework and 

highlight the eruptive frequency of this system during the last glacial period. Four 

deposits (one rhyolitic and three basaltic deposits) have not been detected in the ice-
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core framework and expand the volcanic event stratigraphy. Six deposits extend 

previously known tephra horizons into other marine records. Rhyolitic isochrons in 

marine sequences are rare during MIS 3 and may reflect differing air dispersal 

trajectories or relative infrequency of silicic eruptions. Only two o f the tephras in this 

framework, FMAZ II and NAAZ II, represent ice-marine tie-lines. The remaining 

tephras in this framework, however, are considered the most valuable as potential 

tie-points that remain to be identified in the ice-core records or may well be present 

in other marine or terrestrial deposits.

(b) Geochemical, stratigraphical and sedimentological indicators are embedded 

within a new protocol to help assess the depositional integrity o f tephra deposits. 

Only deposits considered to represent primary events are included within the 

tephrochronological framework. Diagnostic signs of secondary transported 

cryptotephra deposits include a heterogenous geochemical population that may 

straddle several rock suites, an associated peak in IRD and a diffuse shard 

concentration profile. Such characteristics may indicate an ice-rafted origin. This 

range of indicators was used in conjunction with a variety of climatic and 

palaeoceanographic information to help determine the dominant method of tephra 

delivery to the sea-floor. A key condition o f this protocol is that the indicators are 

considered collectively and an assessment o f depositional integrity cannot be 

founded solely on a single indicator. The development of this protocol represents a 

significant step for optimising the application o f marine-based isochrons for both the 

TRACE project and future work. What is more, this marine tephra protocol has 

potential applications for palaeoceaongraphers for estimating bioturbation processes 

and provides the foundation for taphonomic tephra toolkits for terrestrial 

environments.

(c) The application o f thin-section and pCT analysis to visualise tephra deposits 

offers new insight into the processes controlling transportation and deposition. These 

techniques have revealed post-depositional processes that were not fully captured 

using conventional stratigraphic methods. Micro-sedimentological analysis 

represents a new addition to the protocol and enables refinement and correct
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stratigraphical placement of the isochron. Indeed, these techniques have suggested 

the tephra isochron is not always laterally continuous or represented by the peak in 

shard concentration.

(d) Cryptotephra records from the different marine records are spatially and 

temporally variable particularly in relation to: a) the presence/absence of marine 

tephra deposits; b) the concentration o f glass shards within a tephra deposit; c) their 

stratigraphic dispersion and shard concentration profiles, and d) the depositional 

processes operating at the site. These characteristics may reflect different air 

dispersal trajectories, internal dynamics o f the ocean environment, sedimentation 

rate and proximity to ice-rafting pathways.

(e) The two ice-marine correlatives facilitate an exploration of the relative timing 

of climatic transitions. JM11-19PC 304-305 cm (FMAZ II) is located in association 

with low magnetic susceptibility values during DO-3 and within NGRIP the horizon 

falls stratigraphically in a prolonged cold period after GI-3. This suggests a close 

coupling between the oceans and atmosphere at this point. In contrast, JM11-19PC 

618-623 cm (II-RHY-I) falls on the peak warmth of GI-15 according to the magnetic 

susceptibility record but falls on the rapid transition between GI-15 and GS-15 in the 

ice-core. This may indicate that cooling may have been initiated in the atmosphere 

prior to cooling in the oceans. However, this may also be a consequence of local 

controls on the magnetic signal and limited understanding o f the sensitivity and 

response of this proxy.

(f) One of the disappointing outcomes of this work is the difficulty of 

establishing an ice-marine tie-line during GI-8. The FMAZ III is a key marker 

horizon in the marine environment during this interval and the geochemical range of 

this deposit exhibits a broad compositional overlap with fourteen cryptotephra 

deposits preserved within the Greenland ice-cores. This is thought to indicate that the 

FMAZ III is an amalgamation of several closely spaced Grimsvotn eruptions that 

cannot be stratigraphically separated within the marine records investigated here.
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One homogenous horizon detected in the Rockall Trough, however, exhibits 

exceptional major element overlap with a single equivalent ice-core horizon dating 

to 38.3 b2k. This was considered a significant finding and a potential ice-marine tie- 

line that would replace the compromised FMAZ III deposit. Differences in trace- 

element composition, however, suggest that the ice and marine deposits do not relate 

to the same volcanic event and hence no tie-line can be established. It seems that 

some eruptions may not be documented in the ice-core records during GI-8 and that 

this interval is characterized by an exceptionally complex period o f volcanic activity. 

The FMAZ III, therefore, may only be used as a stratigraphic marker for the marine 

environment during DO-8 just as the NAAZ II is utilised as a marker for DO-15.

9.2 Recommendations for future work

(a) A concerted effort is necessary to explore whether the tephras in this 

framework can be traced into other records o f last glacial age. Favourable locations 

include sequences retrieved from high sedimentation areas that are sheltered from 

intensive bottom currents. These are most likely to contain stratigraphically well- 

resolved, primary tephra deposits. MD04-2829CQ satisfied these criteria and 

therefore future searches may prove fruitful in locations to the south of this core site. 

What is more, there is much to be gained from targeting time-intervals that are 

characterised by tephras with unique and diagnostic geochemical signatures. 

Grimsvotn basalts have confounded the DO-8 interval and distinguishing between 

them has provided many challenges.

(b) A key component of any marine tephra study will require a full 

characterisation of geochemical fingerprint. Trace element analysis provides 

additional information for differentiating between deposits exhibiting similar major 

element compositions. Further trace element work, however, will also require a full 

consideration of magmatic evolution and characterisation o f proximal deposits from 

different source volcanoes for data comparison exercises with distal deposits. Further
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trace element analysis on deposits in this study includes characterisation of FMAZ 

III complexes from different sequences in the North Atlantic. Trace element analysis 

of stratigraphically equivalent ice-core horizons may provide an evaluation of 

compositional similarities with FMAZ III. These analyses are crucial to assess the 

synchronising potential o f Grimsvotn tephras straddling DO-8.

(c) Together with rigorous characterisation procedures, the marine tephra 

protocol requires a careful consideration of a range of sedimentological indicators. It 

is imperative that the full range of indicators are considered and dependence on one 

characteristic is avoided. Following this protocol, it is crucial to ensure that the 

integrity o f a deposit is assessed before being incorporated within the regional tephra 

framework.

(d) Each cryptotephra deposit and macrotephra deposit, where the basal contact 

is blurred, requires careful assessment of where to place the isochron. Given the 

spatial complexity and variability observed within small core sub-samples analysed 

using pCT, multiple sub-samples across several parallel vertical profiles should be 

extracted (where possible) to better constrain shard concentration profiles. This will 

hopefully identify and explore the lateral and horizontal continuity of tephra deposits 

in future tephra investigations. Further work is also required to test the viability of 

pCT for detecting cryptotephras.
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application o f tephrochronology to m eet the INTIMATE synchronisation goals.
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1. Introduction

1.1. Synchronisation  o f  disparate clim atic archives

T ep h ro ch ro n o lo g y  is reg ard ed  as o n e  o f  th e  key te c h n iq u e s  for 
p ro v id in g  tim e -sy n c h ro n o u s  m ark e r h o rizo n s  w h ic h  can  be u sed  to 
e s ta b lish  in d e p e n d e n t and  p rec ise  tie -p o in ts  b e tw e e n  d isp a ra te  
p a laeo a rch iv es  (e.g. H aflidason e t al„ 2 0 0 0 ; Lowe e t al„ 2008 ; 
D avies e t al„ 2010; A bbott and  Davies, 2012). E stab lish ing  p rec ise  
co rre la tio n  b e tw e e n  proxy reco rd s is crucial for assess in g  th e  d e ­
g re e  o f  c lim atic  sy n c h ro n e ity  b e tw e e n  d iffe ren t c o m p o n e n ts  o f  th e  
c lim a te  sy stem  d u rin g  a b ru p t c lim atic  sh ifts o f  th e  last glacial 
p e rio d  (A ustin  and  H ibbert, 2012; D avies et al„ 2012). The 
g eo g rap h ica l ran g e  over w h ich  te p h ra  can  be traced  h as been  
e x te n d e d  fo llow ing  th e  iden tifica tio n  o f c ry p to te p h ra  d e p o s its  in

* Corresponding author. Tel.: +44 1792 295233.
E -m a i l  a d d r e s s e s :  607416@swansea.ac.uk, lake_tahoe4@hotmail.com (A.J. Griggs).

1 INTIMATE: INTegrating Ice core, MArine and TErrestrial records 60.000— 
8000 yrs b2k (EU COST Action ES0907 http://cost-es0907.geoenvi.org/.)

u ltra -d is ta l locations and  as such h as in c rease d  th e  n u m b e r  o f  tie -  
lines b e tw e e n  w id e ly  se p a ra te d  a rch iv es (e.g. Blockley e t al„ 2007 ; 
Lane e t al„ 2011; P yne-O ’D onnell e t  al., 2012). A n u m b e r  o f h o rizo n s  
cu rre n tly  ex ist w h ich  en ab le  d ire c t sy n c h ro n isa tio n  b e tw e e n  th e  
o cean ic  and  c ry o sp h e ric  rea lm s in th e  N orth  A tlan tic  reg io n  d u rin g  
th e  last glacial p erio d  (A ustin  e t al., 200 4 ; D avies e t al., 2008). 
H ow ever, in o rd e r  to  fully exp lo it th e se  tie - lin es , it is e s se n tia l to  
a ssess th e  d ep o s itio n a l in teg rity  o f  th e  te p h ra  h o rizo n s  in th e  
m arin e  e n v iro n m e n t — an  issue w h ic h  is cu rre n tly  co n fo u n d e d  by 
th e  co m p lex ity  o f  p ro cesses th a t  co n tro l d e p o s itio n  in th e  o cean s 
(e.g. A ustin e t  al., 2 0 0 4 ; B rendryen  e t al., 2010; A bbo tt e t  al., 2011). 
H ere w e  p re se n t a d e ta iled  geoch em ica l an d  se d im e n to lo g ica l 
analysis o f M arine  Iso tope  Stage (MIS) 2 an d  3 (2 6 —50 ka BP) age 
te p h ra  d ep o s its  found  in a single N o rth  A tlan tic  m a rin e  co re  (JM 11- 
19PC). W e ex p lo re  th e  p o ten tia l d ep o s itio n a l p ro cesses in o rd e r  to 
refine  and  assess th e  s tra tig rap h ic  p o sitio n  o f  each  te p h ra  isoch ron . 
This core w as se lec ted  becau se  o f th e  ex ce llen t te p h ra  p re se rv a tio n  
w ith  am p le  co re  m a te ria l availab le  for th e  p re p a ra tio n  o f  th in  
sections.

http://dx.doi.org/10.1016/j.quascirev.2014.04.031
0277-3791/© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.Org/licenses/by/3.0/).
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1.2. U nderstanding depositiona l processes in the m arine  
environm ent: prim ary  vs secondary m ix ing  and taphonom ical 
considerations

The reg ional d isp e rsa l an d  localised  d e p o s itio n  o f  te p h ra  in 
N orth  A tlan tic  m a rin e  se q u e n c e s  is th e  p ro d u c t o f  severa l p ro cesses 
occu rrin g  aeria lly  an d  in te rn a lly  w ith in  th e  o cean  sys tem , w h ich  in 
tu rn  in fluences th e ir  ap p licab ility  as iso ch ro n o u s h o rizons 
(B ren d ry en  e t al.. 2010). O ne o f  th e  fu n d a m e n ta l p re re q u is ite s  of 
te p h ro c h ro n o lo g y  is th a t  te p h ra  is d e p o s ite d  an d  p re se rv ed  in a 
se q u en ce  rapid ly , i.e. geo log ica lly  in s tan tan e o u sly , fo llow ing  an 
e ru p tio n  (Lowe, 2011). H ow ever, te p h ra  sh a rd s  in th e  m arin e  realm  
a re  su b je c t to  b o th  se c o n d a ry  tr a n sp o r t  an d  d ep o s itio n a l p ro cesses 
(Fig. 1), w h ich  p o te n tia lly  in tro d u c e s  s tra tig ra p h ic  and , th e re fo re , 
ch rono log ica l u n c e r ta in tie s . T hese  a re  p a rticu la rly  re lev an t for 
c ry p to te p h ra  d e p o s its  th a t  a re  c o m p rise d  o f  a low  c o n c e n tra tio n  o f 
g lass p a rtic les  an d  a re  th u s  inv isib le  to  th e  n aked  eye. D irect 
sed im en to lo g ica l ana ly s is  o f te p h ra  an d  c ry p to te p h ra  d ep o sits , al­
lied to  rigo rous g eo ch em ica l f in g e rp rin tin g  an d  d o w n -c o re  sha rd  
c o n c e n tra tio n  p ro files can  p ro v id e  im p o rta n t ev id en ce  for th e  
m o d e  o f te p h ra  d e liv e ry  to  th e  se ab ed . The m ain  m o d es o f te p h ra  
d elivery  from  th e  e ru p tio n  to  th e  o cean  w a te r  su rface  and  th e n  
th ro u g h  th e  w a te r  c o lu m n  a re  p re se n te d  below .

1.2.1. Prim ary airfall
Follow ing an  e ru p tio n , te p h ra  is e jec ted  in to  th e  a tm o sp h e re  

an d  p rim a ry  ash  fall d e p o s its  a re  ex p e c te d  to  c o n ta in  a w e ll-so rted  
d is tr ib u tio n , d e te rm in e d  by size an d  d e n s ity -re la te d  p rocesses 
d u r in g  th e  tra n sp o r t o f  a sh  th ro u g h  th e  a tm o sp h e re  (Sparks, 1981). 
Thus, a p rim a ry  airfall d e p o s it w ill m o st likely c o n ta in  a g re a te r  
c o n c e n tra tio n  o f fin e -g ra in ed  te p h ra  p a rtic le s  as th e  d is tan c e  from  
so u rce  increases. P rim ary  airfall d e p o s its  a re  also  ch a ra c te rise d  by a 
h o m o g en eo u s  g eo ch em ica l p o p u la tio n , re p re se n tin g  a sing le  
e ru p tio n , o r p o ten tia lly  a co u p le  o f h o m o g e n e o u s  p o p u la tio n s , from  
very  c lo se ly -tim ed  e ru p tio n s  (B ren d ry en  et al., 2010).

1.2.2. Iceberg rafting
Follow ing an  e ru p tiv e  e v en t, an  im p o rta n t tra n sp o r t p a th w a y  is 

th e  p rox im al d e p o s itio n  o f  te p h ra  o n to  ice -sh ee ts  w h ich  th e n  
su b se q u e n tly  u n d e rg o  ca lv ing  an d  ra ftin g  to  d ista l locations (Fig. 1) 
(B ren d ry en  e t al., 2010). T his p ro cess can  d e liv er la rg er m a te ria l to  a 
d ista l d ep o s itio n a l s ite  th a n  w o u ld  typ ically  be asso c ia ted  w ith  
p rim a ry  a tm o sp h e ric  fallou t. Iceberg  ra ftin g  is also  d e p e n d a n t on 
th e  tim e  ta k e n  for th e  iceb erg  to  calve from  th e  ice -sh ee t in to  th e  
ocean ; h en ce  it is likely to  c o n ta in  an  am a lg am atio n  o f m ate ria l 
so u rced  from  a n u m b e r  o f  e ru p tio n s  an d  d iffe ren t vo lcan ic  c e n tre s  
(R u d d im an  an d  C.lover, 1972; L ackschew itz  and  W allrabe-A dam s, 
1997; B rendryen  e t al., 2010). Thus, it is ex p ec ted  th a t  te p h ra  
de liv ered  via iceb erg  ra ftin g  w o u ld  b e  ch a rac te rised  by  a poo rly - 
so rted  size d is tr ib u tio n  an d  a h e te ro g e n e o u s  geoch em ica l s ig n a­
tu re  (B ren d ry e n  e t al., 2010; A bbott e t al., 2011). The id en tifica tio n  
o f  co -v ary in g  IRD in th e  su c cess io n  is a fu rth e r  c r ite rio n  for id e n ­
tify ing  iceb erg  ra ftin g  e v e n ts  (L ackschew itz  and  W allrabe-A dam s, 
1997; D avies e t al. 2014). Iceb erg  ra ftin g  is likely to  c o m p ro m ise  
th e  in te g r ity  o f  a te p h ra  h o rizo n  by cau s in g  a s ign ifican t te m p o ra l 
d e lay  b e tw e e n  th e  e ru p tio n  an d  su b s e q u e n t d e p o s itio n  in to  a 
se d im e n ta ry  se q u en ce , p oss ib ly  by  up  to  severa l m illen n ia  
(B rendryen  e t al., 2010). H ow ever, it  h as b een  su g g ested  th a t  th e  
s tu d y  o f iceb e rg  ra fted  te p h ra  d e p o s its  cou ld  aid in th e  reco n ­
s tru c tio n  o f  glacial o cean  su rface  c ircu la tio n  p a tte rn s  (K uhs e t al., 
2014).

1.2.3. Sea-ice ra fting
A n o th e r  p o te n tia lly  im p o r ta n t  t r a n s p o r t  m e c h a n ism  is th e  

d e p o s itio n  o f  te p h ra  o n to  se a -ice , w h ic h  can  cau se  tim e  lags o f
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Sea-ice rafting Sea-surface

Delay

Primary transport 

|  Secondary transport 

Secondary deposition

Tephra deposition 
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Bottom current
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Fig. 1. Schematic summary of the main processes that can influence the transport and 
deposition of tephra in the marine environment.

y e a rs  to  d e c a d e s  (B re n d ry e n  e t  al., 2010). A lth o u g h  se a -ice  p e r­
s is te d  p e rm a n e n tly  in so m e  a re a s  o f  th e  N orth  A tlan tic  d u r in g  
th e  last g lacial, m o d e llin g  e s t im a te s  su g g e st th a t  th is  w as lim ited  
to  th e  c e n tra l A rctic O cean  a n d  a re a s  u n d e r  th e  in flu e n ce  o f  th e  
East G re e n la n d  C u rre n t, a n d  th a t  se a -ic e  p ro d u c tio n  w as typ ica lly  
se aso n a l, p a r tic u la rly  in th e  N ord ic  Seas (S ta rz  e t al., 2012). This 
p re v e n ts  th e  a c c u m u la tio n  o f  m u ltip le  e ru p tio n s  an d  th u s  se a -ice  
ra fted  d e p o s its  a re  likely  to  h av e  a h o m o g e n o u s  g eo ch em ica l 
s ig n a tu re  (e.g. A ustin  e t al., 2 0 0 4 ). For ex am p le , A ustin  e t al. 
(2 0 0 4 )  in te rp re te d  th a t  th e  h o m o g e n e o u s  g e o c h e m is try  and  
c o a rse r  sh a rd  sizes o f  th e  N o rth  A tlan tic  Ash Z one II (NAAZ II) in 
M D 95 -2 0 0 6 , w as  in d ic a tiv e  o f  in itia l a irfa ll d e p o s itio n  an d  su b ­
se q u e n t tr a n s p o r t  to  th e  co re  s ite  by se a-ice . H ow ever, c o a rse r  
sh a rd  s izes a re  n o t a lw ay s  a d ia g n o s tic  in d ic a to r  o f se a -ice  ra f t­
ing, as f in e -g ra in e d  g lass  sh a rd s  can  a lso  b e  tr a n s p o r te d  long  
d is ta n c e s  on  se a -ice . W h ils t  th is  m e c h a n ism  can  in c rease  th e  
reg io n a l d isp e rs a l o f  te p h ra . it is u n lik e ly  to  a ffec t a d e p o s its  
in te g r ity  as a n  iso c h ro n  b e c a u se  th e  te m p o ra l lag is far less th a n  
th e  sa m p lin g  re so lu tio n  o f  m a r in e  se q u e n c e s . As th is  m e c h a n ism  
d o es  n o t  inv o lv e  ca lv in g  fro m  ice sh e e ts , th e  d e p o s it  is u n lik e ly  to  
be  a s so c ia te d  w ith  a coeval IRD signal.

1.2.4. Ocean currents
F o llow ing  te p h ra  d e p o s itio n  o n to  th e  o cean  su rface  by m e a n s  

o f w in d , ic e b e rg  ra ftin g  o r  se a -ic e  ra ftin g , th e  g lass  sh a rd s  
w ill m o v e  fro m  th e  su rface  d o w n  to  th e  se a b e d  (W allrab e -A d am s 
an d  L ackschew itz , 2 0 0 3 ). L ab o ra to ry  e x p e r im e n ts  d e m o n s tra te  
th a t  v e rtica l d e n s ity  c u r re n ts  g e n e ra te d  by  a sh  lo ad in g  a llo w  
th e  m o v e m e n t o f p a r tic le s  to  o v e rc o m e  s tro n g  d e n s ity  g ra d ie n ts  
in th e  o cean  an d  tr a n s p o r t  a sh  o n e  to  th re e  o rd e rs  o f  m a g n itu d e  
fa s te r  th a n  is p o ss ib le  by  S tokes s e ttl in g  Law (M an v ille  and  
W ilso n , 2 0 0 4 ). W allrab e -A d am s an d  L ackschew itz  (2 0 0 3 ) 
h y p o th e s is e d  th a t  g lass  p a r tic le s  co u ld  be  tr a n s p o r te d  la te ra lly  
o v e r a re la tiv e ly  la rg e  d is ta n c e  (2 0 —55 k m ) d u r in g  th e  s in k in g  
p ro cess . H ow ever, rap id  se t tl in g  o f  ash  p a r tic le s  im p lie s  th a t  
th e  t r a n s p o r t  th ro u g h  th e  w a te r  c o lu m n  w o u ld  n o t affec t th e  
ch ro n o lo g ica l in te g r ity  o f  th e  d e p o s it. A lth o u g h  re s id e n c e  tim e  in
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the w ater column can be affected by turbulence and 
salinity boundaries (Manville and Wilson, 2004), this is unlikely 
to keep a shard in suspension for more than a few days to weeks, 
since tephra is likely to fall through the w ater column 
w ithin m arine snow (Fig. 1). For example, W iesner e t al. (1995) 
dem onstrated tha t the vertical oceanic settling velocities 
into deep-w ater sedim ent traps in the South China Sea were 
>2 cm/s following the paroxysmal phase of the Pinatubo erup­
tion in 1991.

| One process tha t may disturb this signal, however, is redis- 
i tribution and erosion by bottom currents. Michels (2000) 

calculated th a t geostrophic bottom current velocities may range 
from 25 to 36 cm/s in the Nordic Seas during storm events, which 
may influence the spatial distribution of tephra, resulting in 
distinct variations in horizon thickness and glass shard concen- 

| tration in nearby cores (Wallrabe-Adams and Lackschewitz, 
| 2003). Thus, an increase in bottom currents during interstadials 
| and storm events may remobilise material from previously 
! deposited eruptions. Any bottom -current induced erosion is 
I likely to mobilise tephra material and produce an upward 
[ gradational distribution or tail-off in shard concentration (e.g. 
i Abbott et al., 2013, 2014). Thus, for cryptotephra deposits, an 
; upward tail in concentration from a main peak would be ex­

pected to have a corresponding homogeneous geochemical 
■ signature throughout the deposit. However, material from older 

eruptions may become remobilised and transported from one 
site to another, resulting in the deposition of material sourced 
from a num ber of different events. This reinforces the need for 
careful scrutinisation of cryptotephra shard concentration pro­
files together w ith an assessm ent of geochemical results from 
several intervals w ithin these deposits (Abbott et al. 2014; Davies 
et al., 2014).

12.5. Post-depositional reworking o f material
Following deposition of tephra onto the seabed, as well as being 

reworked by bottom currents, tephra is also susceptible to bio- 
; turbation (Abbott et al., 2011). Characteristic sedimentological ev- 
: idence of bioturbation includes a gradational upper contact that is 
: spread over several centimetres which introduces a num ber of 

stratigraphical uncertainties (Manville and Wilson, 2004; Lowe,
| 2011). Low concentrations of shards below the peak are also 
I considered to be a signature of bioturbation, although this is un- 
\ likely to affect the position of the peak in shard concentration 
; (Ruddiman and Glover, 1972). Remobilisation of material can also 
| occur as a result of turbidity currents, and present-day tephros- 
I tratigraphic techniques are not sufficient to isolate the complex 
S interplay of post-depositional processes and pinpoint the modifi- 
| cation mechanisms at work.

However, recent investigations by Matthews et al. (2011) 
i examined the potential of micromorphology to identify micro- 
; sedimentological structures within tephra deposits from a marine 

core in the Southern Adriatic. This work identified features asso- 
; da ted  w ith turbidite deposition, bioturbation and additional 
I micro-scale evidence of gravitational loading and re- 
| sedimentation. Micro-morphological analysis of sedim ent struc- 
| tures has the potential to provide additional supporting evidence 
| for understanding the taphonomic processes associated with 

tephra deposition. W hen combined with the detailed analysis of 
the tephra geochemistry, shard distribution and particle size 
analysis, this approach provides a more precise assignment of 
tephra and in the marine environment. We adopt this approach to 
investigate three ash zones in one marine core and assess its po­
tential value for the examination of tephra and cryptotephra de­
posits in this sedimentary environment.

1.3. The Faroe Marine Ash Zones: optimising their employment as 
time-stratigraphic marker horizons

Tephra deposits in North Atlantic marine sediments, mainly 
retrieved from the IRD belt, were originally described by Bramlette 
and Bradley (1941) and later by Ruddiman and Glover (1972), who 
named these horizons the 'North Atlantic Ash Zones’ (NAAZ I and 
II). Investigations in the Faroes region during the past decade have 
identified 4 new tephra deposits, 'Faroe Marine Ash Zones' (FMAZ) 
I, II, III and IV (Rasmussen et al., 2003; Wastegard et al., 2006; 
Wastegard and Rasmussen, 2014), although only the latter three 
horizons, fall within the time-interval of this investigation.

FMAZ II was first discovered in marine cores near the Faroe 
Islands as a black visible horizon that varied from 2 to 10 cm in 
thickness and was thought to have been deposited via primary airfall 
(Rasmussen et al., 2003). This tephra has since been discovered in the 
Labrador Sea, NE Atlantic, and the Greenland ice cores 
(26,740 ±  390 a b2k2) (Wastegard et al., 2006; Davies et al., 2008; 
Svensson et al., 2008; Austin et al., 2012). According to the NGRIP 
stratigraphic position, the tephra falls within a cold period ca. 1000 
years after the onset of Greenland Interstadial (GI) - 3  which is 
consistent with its position in the marine cores, suggesting a close 
coupling of the atmospheric and oceanic systems during this time 
(Davies et al., 2008).

FMAZ III was originally described in the Faroes region as the 
'33 ka tephra’, where it forms a visible scattered tephra zone 
spanning the transition into the peak w arm th of Dansgaard- 
Oeschger (DO) event 8, identified in the ratio between planktonic 
to benthic foraminfera abundances (Rasmussen et al., 2003; 
Wastegard et al., 2006). Davies et al. (2010) proposed the correla­
tion of a NGRIP tephra at 2066.95 m (38,122 ±  723 a b2k2) to the 
FMAZ III, which suggested deposition ca 100 years after the onset of 
the GI-8 warming. However, Bourne et al. (2013) have subsequently 
discovered a suite of tephra layers in the NGRIP and NEEM ice-cores 
tha t represent 14 volcanic events between Greenland Stadial (GS) 9 
and GI-8 — all of which fall within the compositional range of the 
FMAZ III found within the Faroes region. As such. Bourne et al. 
(2013) suggest that the FMAZ III most likely represents a complex 
ash zone in the marine environment made up of material from 
several closely-timed eruptions. This has major implications for 
establishing tephra correlations between ice core and marine re­
cords at this time and a re-evaluation of this deposit is required to 
assess w hether individual stratigraphic horizons seen in the ice can 
be resolved in the marine realm.

The FMAZ IV is a recent discovery and appears as a thick black 
horizon in a number of marine cores in the Faroe Shetland Channel 
(Wastegard and Rasmussen, 2014). The horizon is thought to have 
been deposited during DO-12 and dates to ca. 47,000 years BP ac­
cording to age model estimates (Wastegard and Rasmussen, 2014).

Initial work on the FMAZs focused on shards >150 pm in 
diam eter (Rasmussen et al., 2003; Wastegard et al., 2006). Our 
study builds upon these investigations and employs cryptotephra 
extraction techniques to additionally explore the fine-grained 
fraction (25—150 pm) and present a contiguous shard concentra­
tion profile within a single marine core from the Faroes region. 
These profiles are considered alongside detailed geochemical re­
sults obtained from three separate grain-size fractions to capture 
the full compositional range of these tephra deposits. Micro- 
sedimentological structures across the depositional contacts are 
also investigated to refine the stratigraphical placement of the 
tephra isochron.

2 Age u n certa in ties are reported as 1-sigm a corresp on d ing  errors for th e  G1CC05 
chron ology  fo llo w in g  Sven sson  e t  al. (2 0 0 8 ).
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2. M ethodology

2.J. Core recovery and m easurem en ts

T heJM 1 1 -l9 P C  co re  w as re triev ed  o n b o a rd  th e  R-VJan M ayen in 
May 2011 from  1179 m  w a te r  d e p th  on  th e  cen tra l N orth  Faroe 
S lope in th e  S o u th e a s te rn  N orw eg ian  Sea ( 6 2 '4 8 '9 8 "  N 03 5 2 '0 4 " 
E) (Fig. 2). T he co re  is - 1 1  m  long an d  p e n e tra te s  in to  MIS 6 se d ­
im e n ts  a t th e  base. In th is  in v estig a tio n  w e  ex am in e  th e  d e p th  in ­
terv a l b e tw e e n  183 an d  558 cm , co vering  MIS 2 an d  p a r t o f MIS 3. 
W h o le  co re  m ag n e tic  su scep tib ility  w as m ea su re d  o n b o ard  u sing  a 
G eo tek  MSCL co re  loop se n so r  fo llow ing  p ro c e d u re s  o u tlin ed  in 
R asm ussen  e t  al. (1996).

2.2. D ensity separation and  identification o f  tephra shards

T he te p h ra  c o n te n t o f  th e  co re  se q u en ce  b e tw e e n  183 and  
558 cm  d e p th  w as in itia lly  in v estig a ted  a t a 5 cm  co n tig u o u s  re s ­
o lu tio n  an d  th e n  in te rv a ls  o f e lev a ted  sha rd  co n c e n tra tio n s  w e re  
fu r th e r  an a ly sed  at a 1 cm  reso lu tio n . The sa m p le s w e re  p rep a red  
an d  q u an tif ie d  acco rd in g  to  th e  m e th o d o lo g y  o u tlin e d  in T urney  
(1998) an d  Blockley et al. (2 0 0 5 ) an d  m od ified  for m arin e  te p h ra s  
by  A bbott e t al. (2011, 2013). S ed im en t sa m p le s  w e re  freeze d ried  
an d  0.5 g o f d ry  w e ig h t se d im e n t for each  sa m p le  w as w e ig h ed  for 
te p h ra  analysis. The se d im e n t w as th e n  im m ersed  in d ilu te  HC1 
(10%) o v e rn ig h t to  rem o v e  c a rb o n a te  m ate ria l. Each sa m p le  w as 
su b se q u e n tly  w e t-s iev ed  in to  th re e  se p a ra te  g ra in -s ize  frac tions 
(> 1 2 5  pm , 8 0 —125 pm  an d  2 5 —80 pm ). T he 2 5 —80 pm  frac tion  w as 
d e n s ity  se p a ra te d  in to  th re e  frac tions u sin g  th e  heavy  liquid so ­
d iu m  p o ly tu n g s ta te  to  aid  th e  iso la tion  o f rhyo litic  (2 .3—2.5 g /c m 3) 
and  basa ltic  g ra in s  (> 2 .5  g /c m 3). M aterial from  th e  >125  pm , 8 0 -  
125 pm  an d  2 5 - 8 0  pm  (2 .3 -2 .5  g /c m 3) frac tio n s w as m o u n te d  in 
C anada Balsam  on m icroscope slides an d  in sp e c ted  for te p h ra  
c o n te n t u sing  op tical m icroscopy. M ateria l w ith  a d e n s ity  o f 
> 2 .5  g c m 3 w as m ag n e tica lly  se p a ra te d  to  p u rify  th e  basa ltic  
m a te ria l.

2.3. M agnetic separation  and sp ik ing  o f  basaltic tephra shards

Basaltic te p h ra  ex h ib its  fe rro m a g n e tic  p ro p e rtie s , m ain ly  d u e  to 
th e  high Fe c o n te n t  an d  th ro u g h  th e  in flu en ce  o f p a ram ag n e tic  
e lem en ts  such as Al, M g an d  Na (W ald en  e t al., 1999). This allow s 
te p h ra  sh a rd s to  be se p a ra te d  w h e n  a m a g n e tic  c u rre n t is app lied . 
Such se p a ra tio n  sig n ifican tly  red u ces  th e  a m o u n t o f n o n -m a g n e tic  
particles, p a rticu la rly  q u a rtz , in th e  sa m p le  o f in te re s t, im prov ing  
efficiency d u r in g  op tica l id en tifica tio n  o f b asa ltic  te p h ra  (F roggatt 
and G osson, 1982). P rev ious use  o f  m ag n e tic  se p a ra tio n  to  aid  th e  
iso lation  o f b asa ltic  m a te ria l from  o th e r  m in era l c o m p o n e n ts  has 
d e m o n s tra te d  th e  efficiency  th a t  th is  te c h n iq u e  can ach ieve  by 
a lte ra tio n  o f th e  m a g n e tic  field s tre n g th  an d  th e  fo rw ard /s id e w ay  
tilt o f th e  a p p a ra tu s  (F roggatt an d  G osson, 1982; M ackie e t al., 
2002).

W ith  th e  u se  o f a F ran tz  IsoD ynam ic M agnetic  S epara to r, a se ries 
o f ex p e r im e n ts  w e re  co n d u c te d  on  ten  d iffe ren t m arin e  sam p les 
from  a n ea rb y  Faroe Islands co re  (LINK 16) w ith  p rev io u sly  q u a n ­
tified sha rd  co u n ts  (A b b o tt e t al., 2014). T he m ag n e tic  c u rre n t, tilt 
and  slope  w e re  a lte re d  a t in te rv a ls  o f  0 .05  nA b e tw e e n  0 .60  and  
1.00 nA and  five d e g re e s  b e tw e e n  - 1 5 °  an d  25° re sp ec tiv e ly  and  
th e  to ta l n u m b e r  o f  se p a ra te d  b asa ltic  sh a rd s  in th e  m ag n e tic  
frac tion  w as d e te rm in e d . T w o rep lica te s  o f  each  sa m p le  w e re  
p rocessed . The p a ra m e te rs  th a t  d e liv e red  th e  m o st effective re ­
covery  o f te p h ra  w e re  id en tified  as a c u r re n t  o f 0 .85  nA, tilt o f  - 15° 
and  a slope o f 22.5° (Fig. 3). T hese  p a ra m e te rs  w e re  th e n  used  to  
q uan tify  th e  n u m b e r  o f  b asa ltic  g lass sh a rd s  p re se n t w ith in  th e  
JM11-19PC se q u en ce .

A palynological quan tifica tio n  tech n iq u e , prev iously  app lied  to 
th e  s tudy  of te p h ra  by G ehrels et al. (2 0 0 6 ) and  B ourne (2012) w as 
em ployed d u e  to  th e  excep tionally  h igh  n u m b e r  o f basaltic  glass 
shards in th e  > 2 .5  g /c m 3 fraction. A Lycopodium  spore  tab le t w as 
added  to th e  m ag n e tica lly -sep ara ted  re sid u e  and  d issolved in 5 ml o f 
distilled w a te r  in a cen trifu g e  tube . T hese sam p les w ere  p laced in a 
w a te r  ba th  at 50  C for tw o  h o u rs to  e n su re  co m p le te  d isso lu tion  o f 
th e  tablet. A d ilu te  (10%) so lu tion  o f  HC1 (2 m l) w as th e n  ad d ed  to th e
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f i g .  2 . Location map of the coring sites for JM11-19PC and Greenland ice and North Atlantic marine cores referred to in the text.
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D o es th e  sa m p le  contain  a high  
tep hra co n cen tration ?

N oYes

2. Settings: tilt o f  -1 5 °a n d  a s lo p e  o f  22 .5 '

3. Low field  in ten sity  off, reversing sw itch  p ositive  (+), range m o d e  high

4. V oltage on  th e  p o te n tio m ete r  is turn ed  to  m axim um . Current t o  (+) 0 .8 5  nA

6. After 3 0  se co n d s , vibrate for 10  se co n d s . After a fu rth er 3 0  s e c o n d s , curren t sw itc h e d  o ff

8 . D istilled  w a ter  ad d ed  to  th e  b ucket on  th e  
left and se d im e n t transferred  into  a 

c en tr ifu g e  tu b e  for spiking w ith  Lycopodium  
sp o r e  ta b le ts

8 . Distilled w a te r  a d d ed  to  t h e  b uck et o n  th e  
left and p ip e tted  o n to  a s lid e  for m o u n tin g  in 

C anada Balsam

5. S am p le em p tied  in to  th e  ch u te  and ag ita ted  to  en su r e  full tran sfer

1. S ed im en t >2.5 g /c m 3 reta in ed  after d en sity  sep aration  and dried at 40°C for a m in im u m  o f  2
days

7 . V ibration fu n ction  off. S ed im en t from  th e  m agn etic  fraction  re-in trod u ced  in to  t h e  c h u te  for  
further purification. Current and vibration fu n ctio n  on

Fig. 3 . Summary o f protocol for the m agnetic separation o f basaltic shards from mineral-rich sedim ents.

solution to remove any remaining sodium bicarbonate. The spiked 
sample was washed three times with distilled water by centrifuga­
tion and finally 5 ml of distilled water was added to the centrifuge 
tube. The solution was shaken vigorously to mix the sample and 
eight drops of the mixture were pipetted onto a microscope slide and 
mounted in Canada Balsam. This amount was deemed to be the 
optimum volume to cover the slide beneath the cover slip, similar to 
the 500 pi recommended by Gehrels et al. (2006). Glass shards were 
counted alongside Lycopodium spores in each sample across three 
vertically-defined transects per slide. The concentration of tephra 
shards, C, was calculated using (Eq. (1)):

c = ' * ©  o)
W here a) is the glass shard count, b) is the Lycopodium spore count, 
d) is the sample dry w eight and /) is the number of Lycopodium 
spores in each tablet (n =  20,848) according to the manufacturer 
estimate determ ined using an electronic particle counter. This 
methodology was adapted for the high-resolution sampling in­
tervals, w here three tablets (i.e. 62,544 spores) were added to the 
magnetically-separated residue due to the exceptionally high glass 
shard concentrations.

2.4. Geochemical characterisation o f glass shards

Glass shards were extracted for major elem ent geochemical 
analysis from each grain-size fraction. Samples were processed 
according to the methodology outlined above and then mounted in 
epoxy resin on glass slides. The slides were then ground using sil­
icon carbide paper and polished using 9, 6 and 1 pm diamond 
suspension to expose polished glass shard surfaces for electron- 
probe microanalysis (EPMA). The oxide concentrations of ten ma­
jor and minor elements were analysed using wavelength- 
dispersive EPMA at the Tephrochronological Analytical Unit at the 
University of Edinburgh, using a Cameca SX100 electron micro­
probe equipped with five vertical WD spectrometers. The operating 
conditions are modified from Hayward (2012) and are outlined in 
the Supplementary information. Pure metals, simple silicate min­
erals and synthetic oxides, including andradite were used for cali­
bration, and the secondary standards Lipari and BCR2g were 
analysed regularly to monitor elemental drift and to assess the 
accuracy of the shard analyses. Glass shards preserved in the ma­
rine realm are susceptible to variable levels of post-depositional 
hydration (Wallrabe-Adams and Lackschewitz, 2003; Abbott 
et al., 2011). As such the results of the EPMA analysis were nor­
malised to 100% total oxide values (i.e. an anhydrous basis) to
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rem o v e  any  variab ility  th a t  m ay  be a p p a re n t  w h e n  c o m p a rin g  d a ta ­
se ts  from  d iffe ren t d ep o s itio n a l e n v iro n m e n ts  th a t  have n o t 
ex p e rien ced  co m p arab le  levels o f p o s t-d e p o s itio n a l h y d ra tio n
(A bbott e t al., 2011; P earce e t al., 2014). All analyses w ith  to ta l ox ide  
values <94% w e re  re jec ted . All raw  d a ta  va lues a re  p ro v id ed  in th e  
S u p p le m e n ta ry  in fo rm atio n  (see  Tables 1 -3 ) . S im ila rity  coeffic ien t 
(SC) co m p ariso n s  w e re  em p lo y ed  u sing  th e  m e th o d s  o u tlin e d  in
B orchard t e t al. ( 1972) an d  B eget e t al. ( 1992).

2.5. Thin-section preparation

U n d istu rb ed  se d im e n t sa m p le s w e re  e x trac ted  in U -ch an n e ls  
(2 0  x 20  m m ) sp a n n in g  th e  o n se t o f te p h ra  d e p o s itio n  an d  th e  
d ec lin e  in te p h ra  sh a rd  d e p o s itio n  asso c ia ted  w ith  each  o f  th e  th re e  
ash  zones. T h in -sec tio n s w e re  p re p a re d  fo llow ing  th e  p ro c e d u re s  
o u tlin ed  in Palm er e t  al. (2008), inc lud ing  th e  ap p lica tio n  o f 
ace to n e  re p la c e m e n t m e th o d s  to  lim it crack ing  of silty  clay se d i­
m e n t d u rin g  d ry in g  (van d e r  M eet and  M enzies, 2011). Each th in -  
sec tio n  w as po lished  to  a th ick n ess o f b e tw e e n  25 an d  35 pm .

3. Results

3.1. Tephrostratigraphy, geochem istry  and m icrom orphology

The te p h ro s tra tig ra p h y  for JM 11-19PC is p re se n te d  in Fig. 4. 
T h ree  d is tin c t te p h ra  d ep o s its , co m p o sed  o f b ro w n  sh a rd s , w e re  
o b se rv ed  in th e  > 2 .5  g /c m 3 (2 5 —80 pm ), 8 0 -1 2 5  pm  an d  > 1 2 5  pm  
frac tions, sp a n n in g  th e  p o sitio n  o f th e  v isible te p h ra  ho rizo n s. Each 
d e p o s it ex h ib its  d is tin c t peak s in sh a rd  c o n c e n tra tio n  re la tiv e  to  
b ack g ro u n d  values. G eochem ica l resu lts  reveal th a t  each  m ajo r

peak  is m ad e  u p  o f m ate ria l w ith  a b asa ltic  co m p o s itio n  (Fig. 5, 
Table 1).

3.2. FMAZ II

3.2.1. Tephrostratigraphy: JM11-19PC 2 9 8 —308 cm
A visib le black m a c ro te p h ra  fo rm s a d is tin c t 1 c m -th ic k  ho rizo n  

b e tw e e n  304 an d  305  cm  d e p th  an d  co in c id es w ith  th e  h ig h e s t 
sh a rd  co n c e n tra tio n  (> 4  m illion  sh a rd s  g d w  in th e  2 5 - 8 0  pm  
frac tion  an d  147 in th e  > 1 2 5  pm  frac tion ). A s h a rp  in c rease  an d  
d ec rease  in sh a rd  c o n c e n tra tio n  profile  o v er 6 cm  su g g e sts  a rap id  
p u lse  o f te p h ra  w ith  lim ited  p o st-d e p o s itio n a l re -w o rk in g . The 
sh a rd s  have a d a rk  b ro w n  colour, d e n se  b locky  m o rp h o lo g y  and  
so m e a re  s ligh tly  v es icu la r  in a p p ea ran ce .

3.2.2. M icro-sedim entology
T h ere  are  tw o  d is tin c t u n its  in th is  sec tion . T he firs t o ccu rs b e ­

tw e e n  307 an d  304.5  cm  and  co n sists  o f a p o o r ly -so rte d  silty  clay 
w ith  occasional te p h ra  sh a rd s  ( ~ 5 5  pm  in d ia m e te r ;  n =  20), 
d is tr ib u te d  w ith in  th e  m a tr ix  (Fig. 6a). T ow ard th e  to p  o f  th is  un it, 
th e re  a re  occasional ( ~ 1 —3 m m ) len ses o f w e ll-so r te d  te p h ra  
g ra in s  u p  to  ~ 2 0 0  p m  in size w ith in  th e  h o st se d im e n t. T hese 
len ses a re  irregu lar, a lig n ed  h o rizo n ta lly  o r  v e rtica lly  w ith in  th e  
h o s t se d im e n t (Fig. 6b ) an d  g en era lly  co m p o sed  o f s e d im e n t from  
U nit 2. T he seco n d  u n it  id en tified  b e tw e e n  304.5  cm  a n d  298 cm  is 
co m p o sed  o f w e ll-so r te d , a b u n d a n t te p h ra  sh a rd s  d o m in a te d  by 
th e  size frac tion  o f 2 5 —80 pm  (Fig. 6d). T he u n it  h as a su b - 
h o rizo n ta l, sh a rp  c o n ta c t a t 3 0 4 -3 0 4 .5  cm  d e p th  (Fig. 6c). T h ere  
is ev id en ce  o f d isc re te  lob a te  s tru c tu re s  b e lo w  th is  level. H ere, 
b e lo w  th e  co n tac t, m a te ria l from  u n it 2 h as p e n e tra te d  in to  u n it  1.

Marine a) b) C) d) Basaltic Shard
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Fig. 4. Tephra stratigraphy for MIS 2 and late MIS 3 section from the JM11-19PC core, a) Magnetic susceptibility b) Number of basaltic shards with a density >2.5 g/cm3 within the 
25 80 pm fraction, c) Number of basaltic shards within the 80 125 pm fraction, d) Number of basaltic shards within the >125 pm fraction. Grey dotted lines denote samples for 
which glass shards were extracted for geochemical analysis. The shaded blue area denotes the depth intervals sampled for thin section analysis (see Fig. 6). H Heinrich event 
approximate positions. DO Dansgaard-Oeschger event and the number denotes the associated Greenland Interstadial event following the recommendations of Rasmussen et al. 
(2014). gdw grams dry weight sediment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



128 A.J. Griggs et al. /  Quaternary Science Reviews 106 (2014) 122 139

6

5

4 /  Hekla

3

2

\  y  VeiSivotn1

00 2 3 5 6 71 4

FeOw/MgO

TiO; (wt %)

16

14

12 Grimsvotn

10

8

6 1 2 3 4 5 60

6

5

* 4 
i
o 3K

2

1

0

I

b)
I I I 1 I I I I I I I 1 I 1 1 1 1

Katla

'P'x
'  ' ' - 'W  /

v K
j i i  Hekla

Grim svotn v  N

/
\  '

J
u

i

V eifiivotn

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i i

0.5 1.5
K O (wt %)

A  JMll 19PC 304 305 ( 

□  JM11-19PC <27-439. 

X JM1119PC 542-543
1.5

O
52

0.5

Grimsvotn

2 3 4 5 6 7 8 9 10
MgO (wt %)

Fig. 5. Glass shard analyses for the 3 FMAZs in JM11-19PC compared to geochemical envelopes for different source volcanoes based on individual whole rock analyses presented in 
Jakobsson (1979), Boygle (1994), Larsen et al. (2002), Oladottir et al. (2008) and Jakobsson et al. (2008). Data have all been normalised to 100% total oxide concentrations.

T hese  fea tu re s  a re  m o st easily  ex p la in ed  as load ing  s tru c tu re s . The 
te p h ra  b eco m es less d e n se ly  c o n c e n tra te d  in th e  u p p e r  p a r t  o f th is 
u n it an d  m o re  m ixed  w ith in  th e  co a rse -s ilty  clay m a tr ix  (Fig. 6d). 
The v isib le te p h ra  c o m p o n e n t h as a s im ila r sh a rd  size th ro u g h o u t 
th is  u n it and  no  g rad in g  is o bse rved .

3.2.3. G eochem istry and w ider correlations; JM11-19PC 304—
305 cm

In total, 85  sh a rd s  fo rm  a d is tin c t h o m o g e n e o u s  p o p u la tio n  
(Fig. 7), w ith  on ly  fou r c lea r o u tlie rs  in th e  co a rse r  > 1 2 5  pm  frac tion  
an d  o n e  in th e  2 5 —80 pm  frac tion . D istinctive geoch em ica l ch ar­
a c te ris tic s  in c lu d e  SiC>2 co n c e n tra tio n s  o f  ~ 4 7 .7 —51.0 wt%, TiC>2 

co n c e n tra tio n s  o f ~ 3 .7  wt%, CaO co n c e n tra tio n s  o f  ~  8 .2 —9.6 wt%, 
K2 O c o n c e n tra tio n s  b e tw e e n  ~ 0 .4  and  0.8 wt% an d  FeOtot/M gO 
ra tio s b e tw e e n  ~ 2 .8  an d  3.7 (see  Table 1). T hese  c h a rac te ris tic s  are  
typ ical o f a tra n s itio n a l alkali basa ltic  co m p o s itio n , su g g e stin g  a 
so u rce  from  th e  E astern  o r S o u th e rn  Iceland ic flank zo n es 
(Jakobsson, 1979). C o m p ariso n s w ith  p rox im al Ice land ic  m a te ria l 
d e m o n s tra te  th a t  th e  d is tin c t g eo ch em ica l p o p u la tio n  has a close 
affin ity  to  m ate ria l so u rced  fro m  th e  H ekla/V atnafjo ll sy stem  
(Fig. 5) (Jakobsson , 1979; Larsen, 1981; L ackschew itz  and  W allrabe- 
A dam s, 1997; D avies e t al., 20 0 8 ; Jak o b sso n  e t al., 2008).

G lass sh a rd  ana ly ses from  JM 11-19PC sh o w  s tro n g  affin ity  w ith  
FMAZ II p re se rv e d  in five o th e r  m a rin e  co res from  th e  Faroes region 
an d  th e  NGRIP ice-co re  w ith  an  av erage  s im ila rity  coeffic ien t o f 
0 .98  (R asm ussen  et al., 2 0 0 3 ; W asteg a rd  e t al., 2 0 0 6 ; Davies e t al., 
2008). JM 11-19PC an d  th e  NGRIP d a ta - s e t  e x h ib it a tig h te r  
g eochem ical p o p u la tio n  th a n  o b se rv ed  for th e  o th e r  m arin e  cores 
(Fig. 7). The w id e r  geoch em ica l sc a tte r  o f  sh a rd s  from  p rev iously  
pu b lish ed  Faroese co res an d  EW  9302-JPC in th e  L abrador Sea 
p o ten tia lly  e x te n d s  th e  full co m p o s itio n a l ran g e  o f  th is  e ru p tio n . 
A lternatively , th is sc a tte r  m ay  be th e  re su lt  o f  b o tto m  c u r re n t  re ­
w o rk in g  (see  D iscussion  4.1.1 below ). W e also  n o te  th a t  no  sh a rd s

in v es tig a ted  in th is s tu d y  fall w ith in  th e  FMAZ II-2 su b -p o p u la tio n  
o rig ina lly  id en tified  by  W asteg a rd  e t al. (2 0 0 6 ) (Fig. 7).

The geochem ical p o pu la tion  o f JM 11-19PC 3 0 4 - 3 0 5  cm  also 
disp lays so m e affinities to  th e  V1 ash  zo n e  d ep o sited  in m arin e  cores 
on  th e  R eykjanes Ridge (Lackschew itz and  W allrabe-A dam s, 1997). 
A ccording to th e  m ag n e tic  suscep tib ility  record  from  JM ll-1 9 P C  and  
a few  rad iocarbon  d a te s  an d  IRD record  from  th e  R eykjanes Ridge, 
th e  VI ash  zo n e  falls in a s im ilar stra tig rap h ic  position  to  th e  3 04— 
305 cm  h orizon  (Lackschew itz and  W allrabe-A dam s, 1997). The VI 
deposit, how ever, is h e te ro g en eo u s (Fig. 7) and  co-varies w ith  high 
IRD, a d iagnostic  fea tu res o f iceberg  rafted  d eposits . Flowever, a 
no tab le  sub -p eak , S082-5-V lx-K A L, con ta in s a h o m o g en o u s p o p u ­
lation  w ith  no  coeval IRD signal and  exh ib its a h igh  sim ilarity  coef­
ficient va lue  o f  0 .95 w ith  JM ll-1 9 P C  30 4 —305 cm  (Fig. 7).

3.3. FMAZ III

3.3.1. Tephrostratigraphy: JM11-19PC 4 2 3 —443 cm
This d e p o s it  s tra d d le s  th e  w a rm in g  tra n s itio n  o f  DO-8 (Fig. 4). 

The d e p o s it fo rm s a co m p lex  an d  d iffuse zo n e  o f te p h ra  w h ich  
ex h ib its  2 m in o r  p eak s in sh a rd  c o n c e n tra tio n  in th e  2 5 —80 pm  
frac tion , a lth o u g h  th e  te p h ra  is n o t v isib le  to  th e  n ak ed  eye. T hese 
p eaks in th e  fin e -g ra in ed  frac tion  a re  n o t m irro red  in th e  co arse r- 
g ra in ed  frac tions, w h ich  c o n ta in  m u ltip le  peak s ac ro ss 13 cm  and  
are  offset from  th e  2 5 —80  pm  p eaks in c o n c e n tra tio n s  (Fig. 4). Total 
sh a rd  c o n c e n tra tio n s  p e r  0.5 g d w  do  n o t exceed  ~  7 0 0 ,0 0 0  in th e  
fine frac tion  an d  62 sh a rd s  in th e  co arse  (> 1 2 5  p m ) frac tion , w h ich  
is sign ifican tly  less th a n  th e  o th e r  d e p o s its  e x a m in e d  w ith in  th is 
study . G lass sh a rd s  from  each  o f  th e  p eaks a t 4 3 8 —4 3 9  cm  and  
4 2 7 -4 2 8  cm  in all g ra in -s ize  frac tio n s an d  th e  m id -p o in t a t 4 3 4  cm  
( 2 5 - 8 0  pm  frac tion  on ly ) w e re  e x trac ted  an d  p re p a re d  for 
g eoch em ica l analysis. In to ta l, 173 g lass sh a rd s  w e re  an a ly sed  for 
g eo ch em istry . A co rre la tio n  o f th e  JM 11-19PC te p h ra  reco rd  w ith
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Table 1
M ean and 1a  m ajor e le m e n t resu lts o f  g lass shards extracted  from  th e  m ain popu lations for th e FMAZ II, III and IV. Total ox id e  va lu es are raw  v a lu es prior to  norm alisation . All 
major e lem en ts  are ex pressed  as percen tage w e ig h t. Total iron is exp ressed  as FeO. n =  num ber o f  shards analysed . T w o d ifferen t EPMA op eratin g  se tu p s w ere  u sed . For th e  first 
setup , three se ts  o f  co lu m n con d ition s w ere  em p lo y ed . Firstly, N a 0 2 and Al20 3 w ere  determ in ed  u sing an acceleratin g  v o ltage o f  15 kV and a beam  current o f  0 .5  nA. Secondly, 
MgO, K20 ,  CaO, FeO and S i0 2 w ere  d eterm in ed  u sing an acceleratin g  v o ltage  o f  15 kV and a beam  curren t o f  2  nA. Thirdly, P2Os, T i0 2 and MnO w e r e  d eterm in ed  u sing  
accelerating  vo ltage o f  15 kV and a beam  curren t o f  6 0  nA. A 4  pm  b eam  d iam eter w as used throughout. C ou nting t im es w ere  2 0  s at th e  peak p o sition  and 10 s for background  
for all e lem en ts  ex cep t MnO (6 0  and 60  s). For th e  secon d  EPMA setu p  tw o  colu m n conditions w ere  used . Na20 ,  MgO, Al20 3, S i0 2, K20 ,  CaO, and FeO w ere  determ in ed  u sin g  an 
accelerating  vo ltage o f  15 kV and a beam  current o f  2 nA and P2Os, T i0 2, and MnO w ere  determ ined  u sin g  an acceleratin g  v o lta g e  o f  15 kV and a beam  curren t o f  6 0  nA. A 5 pm  
beam  d iam eter w as used  throughout. C ounting t im es  w ere  2 0  s at th e  peak p osition  and 10 s for background for all e le m e n ts  e x cep t T i0 2 (3 0  and 15 s), MnO (5 0  and 4 0  s) and  
FeO (4 0  and 20  s). The full d ata -set and reference va lues are g iven  in th e  S upplem entary file.

Tephra layer D epth (cm ) Grain s iz e  (p m ) n S i0 2 T i02 Al20 3 FeO MnO MgO CaO N a20 K20 P2O5 Total

FMAZ II 3 0 4 - 3 0 5 2 5 - 8 0 22 50 .13 3.71 12.77 15.35 0 .2 4 4 .7 8 8.92 3.05 0 .5 6 0.48 97 .6 8
0 .4 4 0.09 0 3 0 0.51 0.01 0.27 0 .2 6 0 3 3 0 .0 6 0 .0 4 1.18

FMAZ II 3 0 4 - 3 0 5 8 0 - 1 2 5 41 4 9 .4 9 3.70 13.15 15.33 0 3 5 4.83 9.15 3.13 0 .5 7 0.41 9 7 .3 4
0 .6 4 0.05 0 3 8 0 .5 0 0.01 0 .1 9 0 3 0 0 3 5 0 .0 5 0 .0 2 1.37

FMAZ II 3 0 4 - 3 0 5 > 1 2 5 22 5 0 .1 4 3.70 12.70 15 .34 0 3 4 4.75 9 .1 0 3 .0 6 0 .5 9 0 .3 9 98 .0 5
0 .3 0 0.04 0 3 6 0 .3 4 0.01 0 .1 9 0 3 1 0 .1 2 0 .0 5 0 .0 2 0 .8 0

FMAZ II A verage 3 0 4 - 3 0 5 2 5 - 8 0 ,  8 0 - 1 2 5 ,  > 1 2 5 85 4 9 .8 2 3.70 12.93 1 5 3 4 0 3 4 4.8 0 9.08 3 .0 9 0 .5 7 0 .4 2 97.61
0.61 0.06 0.41 0 .4 6 0.01 0 3 1 0 .2 3 0 .2 5 0 .0 5 0 .0 4 1.22

FMAZ 111 4 2 7 - 4 2 8 2 5 - 8 0 25 4 9 .9 4 2.99 13.16 14 .18 0 3 3 5.68 1 0 3 8 2 .7 5 0 .4 3 0 .2 6 9 8 .5 4
0.43 0 3 0 0.42 0 .9 7 0.01 0 .5 6 0 .7 0 0 .2 6 0 .0 8 0 .0 4 0.75

FMAZ III 4 2 7 - 4 2 8 8 0 - 1 2 5 28 4 9 .4 6 2.86 13.40 13.87 0 3 2 6.01 10 .56 2.91 0 .4 2 0 .2 7 97 .7 8
0.51 0.40 0.64 1.09 0.02 0.72 0 .8 0 0 3 7 0 .1 0 0 .0 6 1.55

FMAZ III 4 2 7 - 4 2 8 > 1 2 5 8 4 9 .6 2 2.61 13.66 13 .0 0 0 3 1 6.43 11.13 2 .7 3 0 3 7 0.23 98 .0 5
0 .3 0 0.28 0 3 8 0.71 0.01 0 .5 4 0 .4 7 0 .1 6 0 .0 6 0 .0 4 0 .8 6

FMAZ III 4 3 4 - 4 3 5 2 5 - 8 0 23 4 9 .9 6 3.02 12.98 14.49 0.2 3 5.54 10.15 2 .8 9 0 .4 6 0 .2 7 9 8 .3 6
0.43 0.28 0.37 0 .7 4 0.02 0.52 0 .5 5 0 .1 9 0 .0 7 0 .0 3 1.07

FMAZ 111 4 3 8 - 4 3 9 2 5 - 8 0 24 4 9 .9 7 3.03 13.06 14 .24 0 3 3 5 .6 6 10 .18 2.91 0 .4 6 0 .2 6 9 8 .7 6
0.37 0.26 0.37 0.71 0.01 0.47 0 3 1 0 3 1 0 .0 6 0.0 3 0.89

FMAZ III 4 3 8 - 4 3 9 8 0 - 1 2 5 25 4 9 .8 9 2.95 13.12 14.08 0 3 2 5.83 10.38 2 .8 6 0 .4 2 0 .2 6 9 8 .8 9
0 .4 0 0.21 0 3 8 0 .7 9 0.01 0 .4 9 0.51 0.1 7 0 .0 6 0 .0 2 0.97

FMAZ III 4 3 8 - 4 3 9 > 1 2 5 23 49 .7 3 2.90 13.26 13.98 0.22 6.00 1 0 3 8 2 .8 5 0 .4 2 0.2 7 98.31
0.32 0 3 0 0.47 1.02 0.02 0.53 0 .6 2 0.13 0.0 5 0 .0 4 0 .7 0

FMAZ III Average 4 2 7 - 4 3 9 2 5 - 8 0 ,  8 0 - 1 2 5 ,  > 1 2 5 156 49.81 2.94 13 3 0 14.07 0.23 5.83 1 0 3 8 2 .8 5 0.4 3 0 .2 6 98 .4 2
0 .4 4 0 3 1 0.47 0 .9 3 0 .0 2 0 .5 9 0 .6 5 0 3 2 0 .0 7 0 .0 4 1.09

FMAZ IV 5 4 2 - 5 4 3 2 5 - 8 0 25 50.58 2.56 13.26 14 .17 0.23 5.67 10 .0 9 2 .8 0 0 .3 9 0.2 3 98 .1 8
0.36 0.09 0.23 0 .4 7 0.01 0.27 0 3 8 0.1 2 0 .0 5 0.01 0.78

FMAZ IV 5 4 2 - 5 4 3 8 0 - 1 2 5 32 50.11 2.59 13.30 14 .2 4 0 3 3 5.76 1 0 3 0 2 .8 4 0 .4 0 0 .2 3 97 .8 3
0 .4 6 0.09 0.24 0 .5 7 0.01 0 3 3 0 3 5 0 3 3 0 .0 4 0 .0 2 1.08

FMAZ IV 5 4 2 - 5 4 3 > 1 2 5 14 50 .3 4 2.63 1 3 3 3 13.93 0 3 3 5.8 4 10 .4 6 2.71 0 .4 0 0 .2 3 9 8 .2 4
0.38 0.12 0.28 0 .4 9 0.01 0 3 7 0 3 6 0 .1 8 0 .0 6 0 .0 2 0 .8 6

FMAZ IV Average 5 4 2 - 5 4 3 2 5 - 8 0 ,8 0 - 1 2 5 ,  > 1 2 5 71 50 .32 2.59 13.27 14 .1 5 0 3 3 5.75 1 0 3 6 2 .8 0 0 3 9 0.23 98 .0 3
0 .4 6 0.10 0 3 4 0 .5 3 0.01 0 3 0 0 3 6 0 .1 9 0 .0 4 0.02 0.95

that of a neighbouring core (ENAM93-21) suggests that no coeval 
IRD signal is associated with the FMAZ III deposit (Fig. 8).

3.3.2. Micro-sedimentology
This deposit is composed of a single unit from 443 to 423 cm and 

contains massive, poorly-sorted coarse silty clay (Fig. 6ii). Tephra 
shards, ~ 45  nm in diam eter (n =  20), are randomly distributed 
within the host sediment, although there are occasional small 
(~ 1  mm) sub-horizontal and irregular lenses of tephra concen­
trated within the unit (Fig. 6e). There are no distinct micro- 
sedimentological features that coincide w ith the peaks in shard 
concentration (Fig. 6ii).

3.3.3. Geochemistry and wider correlations JM11-19PC 427—
4 3 9  cm

Distinctive geochemical characteristics of this deposit include 
Si02 contents of ~ 48 .5—51.1 wt%, K2O concentrations of ~ 0 .4  w t 
%, TiC>2 concentrations of ~  2.3— 3.7 wt%, CaO concentrations of 
~  8.8—12.1 wt% and MgO concentrations betw een ~4.7 and 
7.6 wt% (Fig. 9). These characteristics are typical of a tholeiitic 
basaltic composition, w ith the Ti0 2  and K2O concentrations 
implying an origin from the Grimsvotn system (Jakobsson, 1979) 
(Fig. 5). Although a volcanic source can be determ ined for the 
deposit, glass shards from each individual depth sample occupy

the full range of Grimsvotn-sourced material. Each grain-size 
fraction from 438 to 439 cm appears to exhibit a relatively 
tight population, although no other distinct populations can be 
observed for the other depth-intervals tha t have been analysed. 
Moreover, biplots of Ti02 vs CaO and FeOtot/MgO vs Ti02 high­
light the heterogeneity and w ide range of values for these oxides 
(Fig. 9d).

Seventeen outlier shards are found in this deposit and appear 
unrelated to the main FMAZ III population and cannot be regarded 
as additional sub-populations (Fig. 9a). Although six of these shards 
fall within the FMAZ HI-2 envelope, previously defined by 
Wastegard et al. (2006), we do not believe tha t this sub-population 
is present w ithin JMll-19PC due to the low num ber of analyses that 
fall within this envelope.

Glass shard analyses from the main geochemical population 
show strong similarities and a similarity coefficient of 0.98 with 
FMAZ III deposits from three other marine cores in the Faroes re­
gion (Rasmussen et al., 2003; Wastegard et al., 2006) (Fig. 9). The 
geochemical composition of these previously published deposits 
exhibit a near-identical spread to the JM ll-19PC 427-439 cm de­
posit. This can be clearly observed on TiC>2 vs CaO and FeOtot/MgO 
vs K2O geochemical biplots (Fig. 9a and b).

Wastegard et al. (2006) proposed tha t a correlation may exist 
between the V2 ash zone and the FMAZ III. The V2 ash zone has
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Units ®  Basaltic Shard C oncentration  I

Iso ch ro n  p o s it io n '

JM-119PC 304-305cm  TS  
(FMAZ II)

T ephra len se s]

Basaltic Shard C oncentration  
(xlO 6) >2 5 g /c m 3 2 5 -8 0  Jim p er 0 .5  gdw

0 0.2 0.4 0 .6 0 8

JM U9PC 423 443cm  
(FMAZ III)

Basaltic Shard C oncentration  
(xlO*) >^-5 S /Crr|3 2 5 -80  pm  per 0 .5  gdw

JM11-19PC 542-543cm  
(FMAZ IV)

Fig. 6. Thin-section micromorphology images aligned to high-resolution shard concentration profiles (25-80 pm fraction) across each ash zone. Indicative microfacies features 
observed throughout each of the FMAZ deposits are presented. Units 1 and 2 are defined according to the micro-sedimentological features observed, (i) FMAZ 11 deposit (a) unit 1 
(307 304.5 cm) with a massive, relatively poorly-sorted matrix of silty clay. Light and dark brown glass shards are dispersed in relatively low concentrations, (b) Irregular
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been dated to 36.5—29.8 14C ka BP in five cores on the Reykjanes 
Ridge (Lackschewitz and Wallrabe-Adams, 1997). The V2 ash zone 
exhibits a heterogeneous geochemical signature and coincides with 
a high input of IRD, sourced from active erosion on the Icelandic ice 
sheet (Lackschewitz and Wallrabe-Adams, 1997). A number of 
shards fall within the JM11-19PC 427—439 cm compositional en­
velope (Fig. 9c), although the wide geochemical spread across all 
elemental oxides prevents a correlation between the two deposits.

Fig. 9d highlights how the wide geochemical range of the FMAZ 
III deposit in JM11-19PC straddles the compositional fields for ten of 
the cryptotephra deposits identified in NGRIP during this time 
period (between 38,048 ± 721 a b2k and 38,826 ± 740 a b2k) 
(Bourne et al., 2013). Thus, none of the glass shard populations from 
the individual depth intervals between 427 and 439 cm can be 
exclusively correlated to a single ice-core horizon.

3.4. FMAZ N

3.4.1. Tephrostratigraphy; JM11-19PC 533—548 cm
A visible thick black macrotephra (6 cm) was deposited during 

the early stages of DO-12 and after H5, according to the high 
magnetic susceptibility values (Fig. 4). A rapid increase in shard 
concentration is evident in the 25—80 pm fraction at 542— 
543 cm, increasing to ~2.9  million shards per 0.5 gdw. Thus, 
542—543 cm represents the peak in shard concentration and is 
suggested to equate to the correct stratigraphical placem ent of 
the isochron. The initial major influx in the 80—125 pm fraction is 
1 cm below this peak. This slight depth offset could be due to 
different settling velocities through the  ocean, or the movem ent 
of heavier material through soft sedim ent (Enache and Cumming, 
2006). Shards at 542—543 cm are yellowish-brown in colour, 
have a vesicular appearance and display a variety of platy mor­
phologies. In general, the shard concentration profile forms a 
similar upward tail to that of the 298—303 cm deposit, although 
the decline in concentration is far more gradual in this horizon; 
forming a tailed, gradational distribution tha t covers a ~ 4 0  cm 
interval. This can be seen visibly in the core and is reflected in the 
25—80 pm fraction, which maintains shard concentrations >1 
million per 0.5 g (gdw) at the end of the 10 cm high-resolution 
sampling interval.

3.4.2. Micro-sedimentology
There are two distinct units in this section. The first occurs 

betw een 549 and 543.3 cm and is composed of a massive, 
moderately-sorted coarse silt w ith a low concentration of tephra 
shards, ~ 50  pm in diam eter (n =  20), distributed randomly 
w ithin the matrix (Fig. 6f). The second unit identified betw een 
543.3 and 540 cm is composed of moderately-sorted, abundant 
tephra shards dom inated by the 25—80 pm size fraction w ithin a 
coarse silt host sediment. This second unit has a diffuse contact 
w ith the underlying sedim ent and there are occasional hori­
zontally aligned lenses ( ~  1.5 mm) of w ell-sorted tephra grains 
up to ~140 pm in size (Fig. 6h). The visible tephra com ponent 
has a similar shard size (25—80 pm) throughout the second unit. 
The tephra is highly concentrated but poorly mixed w ithin the 
host sedim ent (Fig. 6g).

3.4.3. Geochemistry and wider correlations: JM11-19PC 542—
543 cm

In total, 71 shard analyses form a homogeneous population 
(Fig. 10), with 1 clear outlier in the 25—80 pm fraction and two clear 
outliers in the 80—125 pm fraction. Distinctive geochemical char­
acteristics of the main population are SiC>2 concentrations of 
~  49.0—51.4 wt%, K2O concentrations of ~ 0 .4  wt% and Ti02 and 
MgO concentrations of ~ 2 .6  wt% and ~ 5 .8  wt% respectively 
(Fig. 10). These geochemistries are characteristic of the tholeiitic 
rock suite, and the latter tw o oxides suggest a strong affinity to the 
Grimsvotn system in the Eastern Volcanic Zone of Iceland 
(Jakobsson et al., 2008) (Fig. 5).

A comparison of the glass shard analyses w ith deposits from 
four other marine cores in the Faroes region suggests a strong 
statistical similarity (SC =  0.98) w ith the recently discovered ‘FMAZ 
IV* tephra (Wastegard and Rasmussen, 2014). This can be clearly 
observed on FeOtot/MgO vs Ti02 and CaO vs MgO biplots (Fig. 10a). 
JM11-19PC exhibits a tighter distribution of geochemistries in 
comparison to other cores analysed in the Faroes region, and only 
glass shards isolated in LINK 15 have a sub-population w ith a Katla 
affinity.

Wastegard and Rasmussen (2014) suggest tha t a potential 
correlation exists betw een the FMAZ IV and the V5 ash zone 
found in tw o cores on the  Reykjanes Ridge, w ith an age estim ate 
of 46.2—52.5 14C ka BP (Lackschewitz and Wallrabe-Adams, 
1997). The deposit has no coeval IRD signal, bu t exhibits a het­
erogeneous geochemical distribution (Lackschewitz and 
Wallrabe-Adams, 1997). One of the  populations from the V5 
ash zone in core S082-7-KAL includes a num ber of shards which 
fall w ithin the JM11-19PC 542—543 cm compositional envelope 
(Fig. 10b). A statistical similarity coefficient of 0.95 suggests a 
correlation may exist betw een the tw o deposits, although the 
absence of shard concentration profiles prevents a full correla­
tion as the stratigraphic position of the isochron w ithin the 
Reykjanes Ridge record is uncertain.

A number of basaltic horizons deposited during MIS 3 have also 
been reported in core PS-2644 in the Iceland Sea, NW of Iceland 
(Voelker et al., 2000). Two horizons lie in a similar stratigraphic 
position to JM11-19PC 542—543 cm, based upon the planktonic 
foraminifera 5lsO record (Voelker et al., 2000; Wastegard and 
Rasmussen, 2014). The horizon at 5.18 m w ithin PS-2644 has a 
relatively homogenous population but exhibits higher TiC>2. FeOtot 
and K2O concentrations than JM11-19PC 542—543 cm. The horizon 
at 5.22 m is heterogeneous w ith multiple geochemical populations, 
although some shards display affinity to the JM11-19PC 542— 
543 cm compositional envelope (Fig. 10b). The heterogeneity of this 
deposit, however, makes it difficult to  provide a correlative link 
between the Faroes region and the Iceland Sea.

4. Discussion

4.1. Determining transport and depositional processes

4.1.1. FMAZ II
A striking feature of the FMAZ II deposit is the strong 

geochemical homogeneity reflected in the JM11-19PC data-set.

horizontally and vertically aligned tephra lenses, com posed o f  abundant, w ell-sorted  glass shards, (c) Isochron position o f  JM11-19PC at 3 0 4 - 3 0 5  cm  w ith a sharp contact o f  
abundant w ell-sorted tephra. (d) Unit 2 (3 0 4 .5 -2 9 8 .0  cm) o f  the FMAZ II deposit; the glass shards are less d en sely  concentrated in the upper part o f  this unit and m ore m ixed within  
the host sedim ent, (ii) FMAZ III deposit (e) Indicative m icrofacies features w ith  structureless/m assive, relatively poorly-sorted matrix o f  coarse clays and coarse silts, w ith  glass 
shards distributed in len ses random ly throughout. A high num ber o f  m ineral grains are also present, (iii) FMAZ IV deposit (f) M oderately-sorted coarse silts w ith  glass shards 
distributed random ly in low  concentrations throughout unit 1 (5 4 9 .0 -5 4 3 .3  cm ) (g) Unit 2 (5 4 3 .3 -5 4 0  cm ) o f  the FMAZ IV com posed o f  m oderately-sorted, abundant glass shards 
w ithin  a coarse silt host sedim ent, (h) Isochron position o f JM11-19PC 5 4 2 -5 4 3  cm  w ith  occasional horizontally aligned len ses o f  w ell-sorted  and concentrated glass shards 
(highlighted). The contact betw een  unit 1 and unit 2 is diffuse. (For interpretation o f the references to colour in this figure legend, the reader is referred to the w eb  version o f  this 
article.)
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Glass shard analyses from other cores in the Faroes region reveal a 
w ider scatter (Fig. 7) which has been suggested to represent 
different phases of the same eruption, although an eruption closely 
separated in time cannot be excluded (Wastegard et al., 2006). 
Alternatively, this scatter may result from the operation of bottom 
currents and the transportation of material from older eruptions to 
these sites. Glass shards analysed from the JM11-19PC and LINK17 
cores exhibit the tightest geochemical populations and plot 
consistently w ithin the NGRIP 1848.0 m (FMAZ II) compositional 
envelope. This suggests that deposition was likely controlled by one 
dominant primary process in the Faroes region and several lines of 

| evidence suggest that this tephra was deposited isochronously,
I most likely via sea-ice rafting. Firstly, the concentration of coarse- 
I grained shards (>125 pm) is very low in this deposit and the 

dominant grain size (i.e. 25—80 pm) is typical for primary-airfall or 
sea-ice rafted deposits. Secondly, the absence of a strong coeval IRD 
signal suggests tha t iceberg rafting was not responsible for depo­
sition (Fig. 8). Thirdly, micro-sedimentological features w ithin 
JM11-19PC suggest the operation of sediment loading. A sudden 
influx of high tephra concentrations is identified by the sharp 
contact between units one and two, and the discrete tephra lenses 
in unit one suggest that glass shards have loaded into the sedim ent 
(Fig. 6b). This may result from the rapid influx of tephra to the 
sedim ent/water interface at the seabed and the vertical movem ent 
of denser tephra shards into the less dense underlying sediment. 
Thus, the discrete packages of tephra beneath the isochron are 
interpreted to be the result of gravitational loading. This feature is 
also apparent in the low shard concentrations beneath the main 
distribution peak a t 304-305 cm (Fig. 4). We postulate tha t this 
may be evidence for sea-ice deposition, as we suggest tephra is 
likely to have fallen to the ocean floor rapidly, following the high 
accumulation of primary airfall deposits onto seasonal sea-ice. High 
concentrations of visible tephra occur ~ 2  cm above the load 
structure at 302—303 cm and although the sedimentary matrix is 
structureless, this suggests the density contrast was no longer 
sufficient for the sediment to become unstable and deform. This 
could represent the diminishing input of tephra into the succession. 
Importantly, the isochron is placed at 304—305 cm in the JM11- 
19PC core, marking the sharp contact between the tw o sedimen­
tary units and the loading of high tephra delivery into the sequence, 
which is further re-inforced by a peak in shard concentration at this 
depth interval.

The correlation of this horizon to the S082-5-Vlx-KAL horizon 
on the Reykjanes Ridge provides further evidence for the operation 
of sea-ice rafting. The high num ber of coarse-grained shards (up to 
500 pm in diam eter) within the VIx horizon suggests that primary 
airfall is unlikely. Although Lackschewitz and Wallrabe-Adams 
(1997) propose tha t the horizon is a product of local sedim ent 

j gravity flows, the evidence presented here cannot rule out the 
| possibility of sea-ice rafting which was particularly prevalent dur- 
I ing the stadial conditions at the tim e of tephra deposition.

4.12. FMAZ IV
The geochemical homogeneity of the FMAZ IV deposit in JM ll- 

19PC and other cores in the Faroes region strongly implies primary 
deposition. Several lines of evidence suggest that this tephra was 
deposited isochronously, most likely via primary airfall. Firstly, the 
concentration of coarse-grained shards (>80 pm) is very low and 
the dom inant grain size (i.e. <80 pm) is typical for atmospherically- 
derived deposits. Secondly, geochemical similarities betw een this 
deposit and the V5 ash zone in core S082-5, which exhibits no 
coeval IRD signal, suggests iceberg rafting was not responsible for 
its deposition. Thirdly, unlike the FMAZ II, the absence of load 
structures in the microfacies of this deposit suggests a sea-ice 
component did not assist in tephra delivery to the site. In

addition, a distinct feature of this tephra deposit is an upward tail 
on the shard concentration profile (Fig. 4). This evidence may 
suggest greater rates of bioturbation during this period and upward 
mixing (e.g. Jumars and Wheatcroft, 1989; Abbott et al., 2013; Todd 
e t al., 2014) or re-working by stronger bottom currents during 
interstadial conditions following primary deposition onto the sea- 
floor. There is also a possibility that material from this one erup­
tion may have been repeatedly overlain at the site following 
deposition in other regions. Implicit in this interpretation is that 
movement of particles through the ocean was not as aggregated or 
as rapid as when it was deposited from the melting of sea-ice and 
was of insufficient concentration to cause gravitational loading. We 
believe tha t these processes are unlikely to have affected the depth 
and value of the isochron.

The presence of glass shards of Katla composition in the nearby 
LINK 15 implies that the processes controlling deposition a t this 
particular site were different to those operating at other core lo­
cations. Given the absence of loading at JM11-19PC, there is un­
likely to be a sea-ice component and thus, the heterogeneity within 
the LINK 15 deposit may be a reflection of different bottom current 
transport pathways. Importantly, the isochron is placed at 542— 
543 cm in the JM11-19PC core, marking the peak in shard con­
centration and the initial presence of tephra lenses identified 
within the microfacies. The isochron position also falls w ithin high 
magnetic susceptibility values in the JM ll-19PC core, suggested to 
equate to the warmth of DO-12, providing further evidence tha t a 
sea-ice component is unlikely to have assisted in the deposition of 
this tephra deposit.

4.1.3. FMAZ 111
The diffuse nature of the FMAZ III deposit, which contains 

multiple peaks in shard concentration, combined w ith geochemical 
heterogeneity, suggests either the operation of iceberg rafting and/ 
or post-depositional processes. Iceberg rafting is unlikely due to the 
absence of a coeval IRD signal (Fig. 8) and low concentrations of 
coarse-grained shards (>125 pm) (Fig. 4). Instead, the evidence 
suggests that primary airfall is the dom inant transport process, but 
implies tha t another process may have operated to modify this 
depositional signal.

The diagnostic tailed shard distribution and homogeneous 
geochemistry exhibited by the FMAZ IV has been interpreted to be a 
signature of bottom current remobilisation and/or bioturbation of 
material from a single eruption, which implies that these processes 
alone were insufficient to produce the heterogeneous composition 
of the FMAZ III deposit. However, the geochemical similarities be­
tween this deposit and ten separate volcanic events identified in 
NGRIP over this time period (Bourne e t al., 2013) suggests tha t the 
FMAZ III is a tephra zone made up of an amalgamation of glass 
shards sourced from several closely-timed Grimsvotn eruptions. 
The sedimentary accumulation rate in the marine environm ent is 
most likely insufficient to isolate and stratigraphically separate 
glass shards from each closely-timed individual eruption as pre­
served in the ice-core record (Bourne et al., 2013). We postulate 
that bottom currents and bioturbation further contributed to form 
the amalgamation of this tephra deposit, following deposition via 
primary airfall. This is further supported by the microfacies of 
JM11-19PC, which consists of a structureless mass of sedim ent w ith 
sporadic tephra packages dispersed randomly throughout the 
sequence, reflecting frequent input into the system and/or remo­
bilisation of shards (Fig. 6). In this instance, the microfacies analysis 
for FMAZ III cannot help to assign the position of the isochron. 
Furthermore, this deposit demonstrates tha t the integrity of the 
isochron, despite being a product of primary airfall, is compromised 
by the frequency of eruptions during this period of deposition.
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(a) FMAZ II - JM11-19PC 304-305 cm com parisons with ash deposits from o ther Faroes cores, NGRIP and th e  Labrador Sea
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Fig. 7. Major oxide results (wt %) for glass shards from the FMAZ II deposit, (a) (i iv) The JM11-19PC 304-305 cm compositional envelope is derived from shard analyses obtained 
from all grain size fractions investigated in this study. An envelope rather than the individual data points are shown for clarity. Geochemical results for other reported FMAZ II deposits 
in the North Atlantic are shown for comparison and the FMAZ II-2 compositional envelope is defined by Wastegard et al. (2006). Glass shard analyses from six marine cores from the 
Faroes region and EW9302-2JPC in the Labrador Sea are from Wastegard et al. (2006). Data for NGRIP 1848.0 m from Davies et al. (2008). (b) (i iv) Geochemical envelopes for the 
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T he FMAZ III fo rm s a d iach ro n o u s surface and  w h ils t th e  d ep o s it 
can  be usefu l for m arin e  co rre la tions, its use as a h ig h -p rec is io n  
iso c h ro n o u s t ie -p o in t is lim ited . H igh se d im e n ta tio n  areas m ay 
w ell p re se rv e  w e ll-d e fin ed  sh a rd  co n cen tra tio n  peaks w ith  d istin c t 
geoch em ica l p o p u la tio n s. W e refer to  th is d ep o s it as an  ‘ash  zone ' 
an d  su g g e st th a t  th is te rm  be used  solely as a descrip tiv e  te rm  to 
d e p ic t th e  p re sen c e  o f  te p h ra  w ith in  a core, w ith o u t any  p reco n ­
ceived  n o tio n s  o f g eochem ical charac te ris tics  and  d ep o sitio n a l 
p ro cesses. If h o rizo n s can be resolved w ith in  th e  ash  zone using  
te c h n iq u e s  o u tlin e d  above, th en  th e  d ep o s it could w ell reveal 
d isc re te  isoch ro n s . Im plicit in th is defin itio n  is th a t  th e  FMAZ II and 
FMAZ IV a re  ash  zo n es th a t form  w ell-d efin ed  isoch ronous 
ho rizons.

4.2. The deve lo p m en t o f  a protocol fo r  assessing tephra deposition  
in the m arine enviro n m en t

U sing ex is tin g  kno w led g e  from  p rev ious m arin e  te p h ra  in­
v es tig a tio n s  (e.g. H aflidason e t al., 2000 ; R asm ussen et al., 2003; 
W asteg a rd  e t al., 2 0 0 6 ; B rendryen e t al., 2010; A bbott et al., 2011, 
2013) an d  th e  d iag n o s tic  s ig n a tu res o f th e  FMAZs o u tlin ed  here, 
w e  a re  ab le  to  reco m m en d  a s te p p ed  analy tical p ro toco l for 
reso lv in g  te p h ra  d ep o s itio n a l p a th w ay s in th e  m arin e  realm  
(Fig. 11). This p ro c e d u re  h igh ligh ts th e  im p o rtan c e  o f em ploy ing  
c o n tig u o u s  sh a rd  c o n c e n tra tio n  profiles, geochem ical c h a rac te ris ­
tics an d  IRD ind ica to rs . M icrom orphological analysis prov ides 
im p o rta n t ad d itio n a l sed im en to log ica l ev idence  for th e  d o m in a n t 
p ro cesses o f  te p h ra  delivery  to  th e  sea floor and  su p p o rts  th e  cor­
rect s tra tig rap h ica l p lacem en t o f th e  isochron. The o ccu rren ce  o f

se d im e n ta ry  load ing  h as b een  su g g e sted  h e re  to p o ten tia lly  reflec t 
th e  delivery  o f te p h ra  to  th e  s ite  via sea-ice . H ow ever, d is­
tin g u ish in g  b e tw e e n  sea-ice  ra ftin g  and  p rim a ry -a irfa ll is n o t 
e ssen tia l, as sea-ice  tr a n sp o r ta tio n  is un lik e ly  to  have affec ted  th e  
position  o r in teg rity  o f th e  te p h ra  h o rizo n  for use  as an  iso c h ro n o u s 
m arker. Iden tifica tion  o f  te p h ra  d e p o s its  tra n sp o rte d  by iceberg  
rafting, how ever, is crucial.

This p ro toco l a lso  e n c o u ra g e s  an  u n d e rs ta n d in g  o f  o cean  
c u r re n ts  an d  th e  c lim a tic  reg im e  a sso c ia te d  w ith  te p h ra  d e p o ­
sition . The te p h ro s tra t ig ra p h ic  reco rd  from  th e  F a ro e -S h e tlan d  
C hannel p ro v id es so m e  o f  th e  h ig h e s t c o n c e n tra t io n s  o f  te p h ra  
p re se n tly  found in th e  N orth  A tlan tic  (W a ste g a rd  and  
R asm ussen . 2014). T his m ay  b e  d u e  to  its  p ro x im ity  to  Iceland  
a n d /o r  d u e  to  e le v a te d  b o tto m  c u r re n t  tr a n sp o r t  p a th w a y s  
c o n c e n tra tin g  m a te r ia l fo llo w in g  e ru p tio n s . T hus, it is e s se n tia l 
to assess  w h e th e r  d e p o s itio n  o c c u rre d  d u r in g  sta d ia l o r  in te r-  
s tad ia l c lim ates, w h ic h  e x e r t  a c o n tro l on  th e  s tr e n g th  o f  b o tto m  
c u r re n ts  and  su b se q u e n tly  th e  a b ility  to  re m o b ilise  p re v io u s ly  
d e p o s ite d  m a te ria l. T his p ro to co l h ig h lig h ts  th e  im p o rta n c e  o f  
u sin g  a range o f in d ic a to rs  in o rd e r  to  u n rav e l th e  o p e ra t io n  o f 
d iffe ren t d e p o s itio n a l m e c h a n ism s . W e a lso  s tre s s  th a t  th is  p ro ­
tocol is n o t e x h a u s tiv e  an d  en v isag e  fu r th e r  i te ra t io n s  a n d  a d ­
d itio n s  based  on fu r th e r  w o rk  a t a n e tw o rk  o f s ite s  in th e  N orth  
A tlan tic  to  refine  th e  c o m p lex  in te rp la y  o f p ro cesses  th a t  a re  
sp a tia lly  d e p e n d a n t. N o n e th e le ss , w e  b e liev e  th a t  th e  p ro to co l 
o u tlin e d  in Fig. 11 p ro v id e s  a ro b u s t fra m e w o rk  a n d  a su ite  o f 
in d ica to rs  th a t  w ill aid  in th e  a s s e s sm e n t o f  d e p o s itio n a l p ro ­
cesses in flu en c in g  b o th  te p h ra  an d  c ry p to te p h ra  d e p o s its  in th e  
m a rin e  en v iro n m e n t.

M arine 9 )  JM11-19PC b )  ENAM93-21 C)
I s o t O D e  M agnetic Susceptibility M agnetic Susceptibility ENAM93-21
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Basaltic Shard Concentration per 0.5 gdw Basaltic Shard Concentration per 1 gdw
>2.5 g/cm ^ 25-80 pm >150 pm

Fig. 8. Comparison ofJM1l-!9PC and ENAM93-21 magnetic susceptibility and tephrostratigraphies to ascertain a corresponding IRD signal, a) Magnetic susceptibility forJM1l-l9PC 
with corresponding tephra counts with a density 2.5 g/cm3 within the 25-80 pm fraction (gdw grams dry weight sediment) b) Magnetic susceptibility for ENAM93-21 
(Rasmussen et al., 1996) with corresponding tephra counts from the >150 pm fraction (Rasmussen et al., 2003). c) Number of ice-rafted grains >500 pm per gdw (IRD) in 
ENAM93-21 (Rasmussen et al., 1996). The grey bars represent correlation between records based upon the position of the FMAZ II and FMAZ 111 horizons in both sequences. 
H -  Heinrich evenl approximate positions. DO Dansgaard-Oeschger event following the recommendations in Rasmussen et al. (2014).
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(a) JM11-19PC geochemical distribution of all grain size fractions between 427-439 cm
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(b) Comparison of the geochemical populations from JM11-19PC 427-439 cm with ash deposits from marine cores from the Faroes region
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(c) Comparison of the geochemical populations from JM11-19PC 427-439 cm with ash deposits from marine cores from the  Reykjanes Ridge
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(d) Comparison of all grains sizes from JM11-19PC 427-439 cm with 10 horizons from NGRIP
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Fig. 9. Major oxide results (wt%) for the FMAZ III deposit identified in JM11-19PC. (a) (i&ii) The FMAZ III compositional envelope is derived from the main geochemical population from 427 
to 439 cm in JMll-19PC and the FMAZIII-2 envelope is a sub-population defined by Wastegardetal. (2006). (b)(i& ii)JM 11-19PC FMAZ III and FMAZ III-2 envelopes compared to glass shard 
analyses from three marine cores in the Faroes region (Wastegard et al., 2006). (c) (i & ii)JM1l -19PC FMAZ III and FMAZ III-2 envelopes compared to the V2 ash zone identified in four marine 
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(a) JM11-19PC 542-543 cm comparison with ash deposits from  other marine cores in th e  Faroes region
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Fig. 10. Major oxide biplots (wt %) for the FMAZ IV deposit in JM11-19PC. a) JM11-19PC 542-543 cm compositional envelope derived from glass shard analyses extracted from all 
grain-size fractions, (a) (i-iv) This envelope is compared to tephra deposits from four other marine cores from the Faroes region and additional JM11-19PC glass shard analyses 
reported by Wastegard and Rasmussen (2014). b) Glass shard analyses from JM11-19PC and ENAM93-21 are combined to create a separate compositional envelope named ‘JM11- 
19PC 542-543 cm + marine correlatives', (b) (i- iv) This envelope is plotted alongside glass shard analyses from the V5 ash zone compiled from two marine cores on the Reykjanes 
Ridge (Lackschewitz and Wallrabe-Adams. 1997) and two horizons derived from one marine core in the Iceland Sea (Voelker et al.. 2000). Data have all been normalised to 100% 
total oxide concentrations. Outliers from JMU-19PC have been omitted.



A.J. Griggs el at. / Quaternary Science Reviews 106 (2014) 122 139 137

Proxy
in fo rm ation

Indica tor

D epositional m echan ism
IRD i n d i c a t o r s  i

Low relative IRD counts H igh IRD c o u n ts

G e o c h e m ic a l : 

c h a ra c te r is t ic s  ;

S t r u c tu r e  o f  
sh a rd

c o n c e n tr a t io n

p ro file R apid  f ir s t  in flux  w ith  a  
ta ile d  d is tr ib u tio n

G ra in  sl2e 

d is tr ib u t io n

O c e a n o g ra p h ic
re g im e

C lose to  s o u rc e U ltra  d is ta l

Sea ice rafting with 
temporal delay

M icro -
s e d im e n to lo g y

Tephra d e p o s it

S tro n g  b o t to m  

c u r r e n t  s t r e n g th

H o m o g e n e o u s
g e o c h e m is try

W e a k  b o t t o m  

c u r r e n t  s t r e n g t h

H e te ro g e n e o u s
g e o c h e m is try

D isc re te  s in g le  s h a rd  p e a k

H igh % o f c o a rs e  

g ra in e d  s h a rd s

Low  %  o f  c o a rs e  

g ra in e d  s h a rd s

Ice-berg rafted

Primary airfall/ 
seasonal sea-ice

D iffu se  d is t r ib u t io n  w ith  

m u lt ip le  p e a k s

Isochron  d e fin e d  by ana ly sin g  th e  p re se n c e  
of m icro -sed im en to lo g lca l s tru c tu re s

Material from closely spaced  
eruptions from th e same 
volcanic center

Primary airfall: m aterial from  
num erous eruptions  
rem obilised  by bottom  currents

Fig. 11. Protocol for the investigation of primary and secondary depositional processes in marine tephrochronologica! studies. SD Standard Deviation.

5. Conclusions

The te p h ro s tra tig ra p h y  o f a N orth  A tlantic m arine  core from  th e  
so u th e a s te rn  N orw eg ian  Sea has been  p resen ted , focussing  on 
th re e  basa ltic  te p h ra  ho rizons, refe rred  to  as th e  Faroe M arine Ash 
Zones. H ig h -reso lu tio n  co n tig u o u s sha rd  c o n cen tra tio n  profiles, 
r ig o ro u s geoch em ica l ch arac te risa tio n  o f th ree  se p a ra te  g ra in -s ize  
frac tio n s an d  m icro m o rp h o lo g ica l tech n iq u es are  em ployed  to 
su ccessfu lly  d eco u p le  seco n d ary  depo sitio n a l signals. C orrelation  
to  p rev iously  o b ta in e d  g eochem ical da ta  from  m arin e  an d  ice-core 
arch iv es in d ica te  th a t  i.) th e  FMAZ 111 can n o t be used  as a m arin e-ice  
iso c h ro n  in h ig h -p rec is io n  stu d ies , un less indiv idual h o m o g en eo u s 
h o rizo n s can  be reso lved  in co res from  high se d im e n ta tio n  areas, 
an d  ii) th e  FMAZ II and  IV a re  w ell-reso lved  p rim a ry  d ep o s its  th a t 
can  be u sed  as iso ch ro n s for h igh -p rec is io n  co rre la tio n  stud ies. Key 
p r im a ry  fea tu re s  o f  th e se  tw o  ho rizons are a w ell-d efin ed  sha rd  
c o n c e n tra tio n  peak , h o m o g en eo u s  geochem ical s ig n a tu res , a high 
p e rc e n ta g e  o f fin e-g ra in ed  sh a rd s  and  an  absence  o f a coeval IRD 
signal. T he d iag n o s tic  fea tu re s  o f  each  o f th e  th re e  te p h ra  d ep o sits  
have  en a b le d  th e  d e v e lo p m e n t o f  a protocol to  assess d ep o sitio n a l 
p a th w a y s  for fu tu re  m arin e  tep h roch rono log ica l s tu d ie s  in th e  
N orth  A tlantic. This pro toco l h igh ligh ts th e  need  for ad o p tin g  a 
rig o ro u s s tra tig ra p h ic  inv estig a tio n  w ith  in tensive  geochem ical 
acqu is itio n . W h en  th e se  tech n iq u es  are  com bined  w ith  an  u n d e r­
sta n d in g  o f s ite  specific p a laeo cean o g rap h ic  p rocesses, th is  enab les 
th e  d eco u p lin g  o f th e  com plex  in te rp la y  o f p rocesses th a t  o p e ra ted  
in th e  N orth  A tlan tic  d u rin g  th e  last glacial period . W h ere  sufficient 
m ate ria l ex ists , w e  reco m m en d  th e  use  o f m icro m o rp h o lo g y  to 
p ro v id e  fu r th e r  d isc rim in a to ry  ev id en ce  for th e  d o m in a n t m e th o d  
o f te p h ra  d elivery  to  th e  sea floor. H ow ever, as yet, it is u n certa in  
h o w  usefu l th is tec h n iq u e  w ill be for c ry p to tep h ra  d ep o sits

com p rised  o f low  c o n c e n tra tio n s  o f  g lass sh a rd s . M oreover, th is  
s tu d y  re in fo rces th e  im p o rta n c e  o f em p lo y in g  d o w n -c o re  h ig h - 
reso lu tio n  sh a rd  c o n c e n tra tio n  p rofiles fo r reso lv ing  tr a n sp o r t  and  
d ep o sitio n a l m e c h a n ism s an d  w e  re c o m m e n d  ro u tin e  u se  o f  th is  
tech n iq u e  in tep h ro ch ro n o lo g ica l s tu d ie s . T he p ro toco l o u tlin e d  in 
th is s tu d y  re p re se n ts  an  im p o rta n t s te p  to w a rd s  o p tim is in g  th e  
app lica tion  o f  m a rin e -b a se d  te p h ra  and  c ry p to te p h ra  iso c h ro n s  for 
co rre la tin g  to  coeval d e p o s its  in th e  G reen lan d  ice-co res an d  o th e r  
d isp a ra te  reco rds.
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