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Abstract

This thesis is concerned with the numerical solution of the partial differential equation 

system that governs incompressible viscous, viscoelastic and viscoelastoplastic flows in the 

presence of dynamic free-surfaces. The Navier-Stokes momentum differential equation and 

continuity differential equation govern the Newtonian and inelastic fluids, whilst for the 

viscoelastic case different constitutive equations are utilised. Numerically, a hybrid finite 

element/finite volume discretisation ife/jv) scheme is proposed to solve the corresponding 

system of partial differential equations. In this context, a Taylor-Galerkin/pressure 

correction finite element method has been adopted for the parabolic-elliptic momentum- 

continuity equations, whilst a finite volume implementation is utilised for the hyperbolic 

sub-system comprising of the constitutive equation.

Certainly, the free surface treatment represents the main part of this study. Initially, 

the die-swell benchmark problem with a single moving free-surface has been studied, using 

a time-dependent free-surface predictions technique, termed the Phan-Thien (dh/dt) 

approach. Subsequently, and as begun under the die-swell problem, the work has been 

extended to address a cable-coating flow problem with two separate free-surfaces, 

presenting inner and outer (lower/bottom and upper/top) surfaces to a moving melt-conduit. 

Here, a new robust free-surface location technique has been proposed, utilising a decoupled 

(independent) approach in calculation between top and bottom conduit surfaces. Moreover, 

different alternative stabilisation strategies have been analysed to enhance the numerical 

stability of this overall procedure.

Concerning viscoelastic fluids, two different constitutive models have been adopted to 

describe and simulate rheological response. Under the die-swell flow problem an 

exponential Phan-Thien Tanner (EPTT) type model has been implemented, with properties 

of shear-thinning, strain-hardening/softening, moderate-high Trouton ratios. In addition, a 

combination of viscoplastic models with the viscoelastic models has been considered: using 

a Papanastasiou-Bingham for the viscoplastic approximation, and an exponential Phan- 

Thien Tanner (EPTT) for the viscoelastic contribution.

Moreover, the cable coating problem has been investigated under the umbrella of the 

exponential Phan-Thien Tanner (EPTT) and Single Extended pom-pom model (SXPP).
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Chapter 1 

Introduction

Partial differential equations (PDE) are equations involving unknown functions of two 

or more variables and their partial derivatives [107]. A PDE is said to be of order p  if it 

contains at least one derivative of order p  and does not contain derivatives of higher order. 

The general form of a PDE of order p  for an unknown function u is:

,, du du d2u d2u dpu . _ _(/>(x„--,xn,u,— - )  = 0, (1.1)
oxx oxn ox, dxxox2 ox„

where, ^is a function of the indicated quantities. Equation (1.1) is in general a nonlinear 

relationship. These equations are classified into three types: elliptic, parabolic and 

hyperbolic. This body of research is mainly concerned with the partial differential 

equations for fluid dynamics. In particular, the Navier-Stokes equations will be studied, 

including time dependent terms to govern the Newtonian case, while a number of models 

have been developed for the non-Newtonian case.

In the field of Computational Fluid Dynamics (CFD), the solution of a non-linear 

system of partial differential equations, which govern the complex flows of compressible 

and incompressible, Newtonian and non-Newtonian fluids, has attracted considerable 

attention in the literature (see for example Crochet et al. [43], Kikuchi [67], Bird et al. [23], 

Abbott and Basco [1], and Zienkiewicz et al. [147]). As is well known, fluid response may 

be classified as Newtonian or/and non-Newtonian [14]. For a simple shear flow, under
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constant pressure and temperature, Newtonian fluids exhibit a linear relationship between 

shear stress and shear rate through a constant viscosity. The behaviour of such fluids can be 

predicted on the basis of the Navier-Stokes differential equations. In contrast, non- 

Newtonian fluids depart from such a linear relationship, and show a variable relationship 

between shear stress and shear rate. Shear-thinning/shear-thickening are typical examples 

of such behaviour. Such fluids may be termed non-Newtonian viscous fluids or generalised 

Newtonian fluids in the absence of elasticity. Shear-thinning demands that viscosity 

decreases with increasing shear rate, whilst shear-thickening designates the opposite trend. 

In such a context, the Navier-Stokes equations may prove less adequate to predict the flow 

behaviour of such fluids. Consequently, additional constitutive differential equations must 

be advanced to characterise the flow behaviour for such fluids.

In classical CFD, a broad spectrum of numerical algorithms is offered based on finite 

difference, finite element, finite volume, boundary integral, spectral methods, and 

combinations thereof. Yet, the range of applications of a particular numerical technique 

may be problem and context dependent. For typical flow problems, it is not possible to 

solve such problems analytically. Throughout the history of computation, numerical 

investigation has advanced in addressing many and various scientific problems. In this 

context several numerical techniques have been developed to solve systems of partial 

differential equations. Indeed, for such problems three main methods have appeared: finite 

difference method (FDM) [113], finite element method (FEM) [148], [149], [150], [151] 

and finite volume method (FVM) [131].

Recently, the finite element method (FEM) has become the most widespread numerical 

scheme used to solve scientific problems (see for example [152], [153], [154], [38]). In 

fact, this method is widely used in numerical procedures to solve systems of differential or 

integral equations (change of type of the equations and mesh refinements can improve 

solution accuracy). Moreover, the finite element method has been applied to a large number 

of physical problems. The method essentially consists of assuming a piecewise continuous 

form for the solution and obtaining the weights of the functions in a manner that reduces

2
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the weighted residual error in the solution. In this method of analysis, a complex region 

defining a continuum is discretised into simple geometric shapes called finite elements. The 

material properties and governing relationships are considered over these elements and 

expressed in terms of unknown values at element junctions. A discretisation (interpolation 

and weighting) and assembly process, duly considering the loading and constraints, results 

in a corresponding set of algebraic equations. Solution of these equations gives the 

approximate behaviour of the continuum. One advantage of the finite element method, over 

the finite difference method, is the relative comfort with which associated boundary 

conditions are handled. Many physical problems have boundary conditions involving 

derivatives and, in general, finite difference techniques require a derivative to be 

approximated by a difference quotient at the grid points; often a difficult task to perform to 

high precision. The finite element method includes the boundary conditions naturally, as 

integrals in a functional to be minimized, so the construction procedure is independent of 

the particular nature of the boundary conditions applied. In contrast, the disadvantage of 

this method lies in the size of the mesh and the computational time needed for the solution 

process with complex flow problems.

The considerable computational demands in modelling complex flows require advanced 

numerical strategies including upwinding, accurate representation of velocity gradients, and 

couplings within the system. Hence, alternative techniques have arisen, such as the finite 

volume approach, which requires less memory and CPU time than the well-known FEM. 

This method is control-volume oriented, being derived from the ideology behind the finite 

difference scheme, and can often be interpreted directly as a finite difference approximation 

to the differential equation [58]. As is well known, the finite difference approximation is 

employed to solve the system of finite-difference algebraic equations equivalent to the 

differential equations, while the finite volume method solves the integral form of the 

differential equations. However, FVM is based on the integral form of the conservation 

law, a starting point that turns out to have many advantages. One of the main advantages of 

the FVM method over the FDM is that it is more appropriate for complex geometries. In

3
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addition, the FVM is suitable for the numerical investigation of different types (elliptic, 

parabolic or hyperbolic, for example) of conservation laws; it has been widely utilised in 

diverse fields, such as fluid mechanics, heat and mass transfer (see for example [3], [19], 

[46], [61], [88], [106], [109], [142]). Some of the important features of the finite volume 

method are similar to those of the finite element method, see Oden [98]: it might be used on 

arbitrary geometries, utilising structured or unstructured meshes, and it leads to robust 

schemes. An additional feature is the local conservation property for the numerical fluxes, 

conserved across the boundary between one discretization cell and another. This last feature 

makes the finite volume method quite attractive when modelling problems for which the 

flux is of importance, such as in fluid mechanics, semi-conductor device simulation, heat 

and mass transfer. The finite volume method is locally conservative because it is based on a 

“balanced” approach (a local balance is written for each control-volume discretization cell) 

and via the divergence formula, gives an integral formulation of the fluxes over the 

boundaries. The fluxes across the boundaries can then be discretized with respect to the 

discrete unknowns.

A hybrid finite element/finite volume (fe/fv) algorithm is introduced to address the more 

complex flows. Here, a combination of finite element method (FEM) and finite volume 

method (FVM) is performed to achieve a much more stable method. The features of this 

approach are the use of the finite element method for elliptic mass and momentum balance, 

and the finite volume method for hyperbolic constitutive equations ([137], [138]).

On another hand, the free-surface concept remains a numerical challenge due to 

accuracy requirements and computational costs. Many schemes can be used to treat free- 

surface computations, such as the volume of fluid (VOF) scheme ([59], [116]) marker and 

cell method (MAC), the arbitrary Lagrangian Eulerian technique (ALE) ([116], [62]), and 

Phan-Thien (dh/dt) method [103]. Under the VOF-method, the flow domain is divided into 

two distinct parts: one wet and another dry. Here, the interface between wet and dry zones 

is defined by the position of the free-surface. When utilising the VOF-method to model the 

free-surface deformation, the initial rectangular mesh is stretched in the axial direction

4
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alone, with axial redistribution performed through an elliptic-mapping mesh redistribution 

strategy. In contrast, with ALE methods, the mesh itself is transported with a mesh 

velocity, a suitable choice o f  which constitutes one o f  the major aspects involved. The dh/dt 

scheme has been employed within the current study, proving ideal to accommodate the 

particular free-surface nodal movement encountered, by restricting this to radial motion 

alone (so with no loss or gain o f  particle nodes) ([35], [139]). This is equivalent to a 

constrained ALE-algorithm.

The present work is concerned with the numerical solution o f  extrusion problems (so- 

called extrudate swell flow), which are o f  particular importance in industrial polymer melt 

processing, involving Newtonian, general Newtonian, and viscoelastic fluid properties. 

Here, a finite element method (FEM) is used alone to address the Newtonian and general 

Newtonian cases, whilst a hybrid finite element/finite volume (fe/fv) approach is employed 

to solve for viscoelastic fluids. In addition, this research is associated with problems that 

involve free-surface boundaries. Consequently, emphasis is given to address two different 

problems; die-swell and cable-coating. Schematic diagrams to illustrate the settings for 

these two problems, o f  die-swell and cable-coating, are presented below in Figure 1.1.

a)

Melt flow

Cable

Melt flow

Figure 1.1: Schematic diagram: a) die-swell, b) cable-coating
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The mathematical equations of fluid motion are introduced in chapter two, including 

constitutive equations relation for Newtonian and non- Newtonian fluids. A detailed study 

is introduced through the network class of models, of exponential Phan-Thien Tanner 

(EPTT) type; shear-thinning, strain-hardening/softening, moderate-high Trouton ratios and 

extended pom-pom (XPP) model. The analysis is then extended into viscoelastoplasticity 

through the viscous-limiting Papanastasiou approximation, coupling this with the Phan- 

Thien Tanner model. Here, the rheological properties are described for the Papanastasiou- 

Exponential Phan-Thien Tanner (Pap-EPTT) model with respect to the model parameters in 

question. In particular, steady-state shear (r|) and extensional (x\e) viscosities, the shear 

stress (xrz) and first normal stress difference (Nj) are presented. Additional focus is given to 

the pom-pom model and the relationship between this model and the others in this chapter.

In chapter three, the theory and implementation of the numerical techniques are 

presented. In this study, a semi-implicit time-stepping Taylor-Galerkin/pressure-correction 

finite element method is used to solve the momentum and continuity flow equations whilst 

the constitutive partial differential equation is dealt with by a cell-vertex finite volume 

(cv/Jv) algorithm. In addition, spatial discretisation has been introduced, the strain-rate 

stabilization (SRS) (D-Dc), and free-surface techniques are all features that are analysed. 

Moreover, the main steps of free-surface calculation are introduced.

Two dimensional/axisymmetric free-surface flows are introduced in chapter four through 

the study of die-swell flow, taking into account shear-thinning, strain-hardening/softening, 

and moderate-high Trouton ratios. This is achieved by combining the viscoplastic 

Papanastasiou-Bingham model with the viscoelastic Phan-Thien Tanner-(EPTT) model, 

suitable for polymer melt response. This permits a systematic study to be conducted on 

swelling ratio and flow response, as a consequence of viscous, plastic and viscoelastic 

material behaviour.

The numerical study of cable coating flows with tube-tooling type is dealt with in 

chapter five. The investigations are performed for Newtonian and inelastic fluids, with an 

axisymmetric system, involving the prediction of free-surfaces. Here, the finite element

6
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method is utilised. Such a complex polymer melt extrusion-draw-coating flow displays a 

dynamic contact line, slip, die-swell and two separate free-surfaces, presenting an inner and 

outer conduit surface to the melt-coating. The application of free-surface location 

methodology, to determine the free-surface position has been considered in this chapter by 

employing coupled and decoupled schemes. The practical interest lies in determining 

efficient windows for process control over variation in material properties, stressing levels 

generated and vacuum pressure levels imposed. In addition, the influence of singularity 

capturing on the die-exit solution is explored using a strain-rate stabilization (SRS) 

technique. Moreover, some alternative numerical stability schemes are also examined in 

order to enhance temporal stability.

In chapter six, numerical investigation of tube-tooling cable-coating flow for 

viscoelastic fluids is demonstrated through the use of an exponential Phan-Thien Tanner 

(EPTT) model. Here, the hybrid finite element/finite volume discretisation fe/jv (sc) scheme 

is considered under both coupled and decoupled solution approaches (across the sub-stages 

within a time-step)). The effect of elasticity, sol vent-fraction and second normal stress 

difference are presented in this chapter.

The numerical solution of viscoelastic tube tooling cable coating flow is presented in 

chapter seven using the single extended Pom-Pom model. Again a hybrid finite 

element/finite volume fe/jv (sc) approached is adopted in this study. Through this study, 

comparison between pom-pom model and EPTT model is conducted.

Finally, overall conclusions and future directions to this study are presented in chapter 

eight.

7



Chapter 2

Mathematical modelling

In this chapter, the structure of the basic mathematical equations are presented 

which relates surrounding forces to the internal response from the fluid along with the 

basic equations of fluid mechanics that allow the description of motion and conservation 

of mass. Various sets of differential equations (models) governing the flow of 

viscoelastic fluids are briefly explained, such as the Maxwell model, Oldroyd-B model, 

Phan-Thien/Tanner model and the Single Extended form of the pom-pom model 

(SXPP). A combination of the viscoplastic Papanastasiou-Bingham model with the 

viscoelastic Phan-Thien Tanner-(EPTT) model is also considered throughout this study.

2.1 Introduction

The definition of rheology is provided by Professor Bingham (Lafayette College, 

Indiana) as the study of the deformation and flow of matter. This definition extends to, 

on the one hand, Newtonian viscous liquids and on the other, Hookean elastic solids. In 

recent years the study of rheology has become much broader, including almost every 

aspect of the internal responses in deformed matter under the influence of imposed 

stress. The main subject of rheology is to map out the kinematics of the continuum 

within the system from the relationships among the material stresses. The equations 

governing such a relationship are known as the constitutive equations or stress equations 

of state.



The system of differential equations governing the flow of Newtonian and non- 

Newtonian fluids with both viscous and elastic properties has attracted some 

considerable attention in the literature in recent years [43]. This system is presented by 

the momentum (Navier-Stokes) equations. Consequently, mass conservation and 

momentum partial differential equations are exhibited for the Newtonian case. In 

contrast for non-Newtonian fluids, the Navier-Stokes equation must be generalised to 

spawn non-linear constitutive differential equations to describe the stress components. 

The highly non-linear nature of the mathematical constitutive equations ensures that, the 

solutions may only be obtained using numerical methods.

Furthermore, many free-surface flow problems are of interest in rheological 

computation, as in so-called die-swell, exhibited by an elastic liquid as it emerges from 

a capillary. For these types of flow and Newtonian fluids, the diameter of the issuing 

liquids is either slightly greater than or slightly less than the diameter of the capillary, 

depending on the value of the Reynolds number. In contrast, for elastic liquids, the 

diameter of the jet can be significantly greater than that of the capillary, and their ratio 

has been observed to reach four in some cases. Another effect is the so-called 

Weissenberg phenomenon or red-climbing effect. When a rotating rod is dipped into a 

vessel containing an elastic liquid, viscoelasticity, manifested through normal stress 

effects, generates a substantial rise in the free-surface near the rotating rod. Meanwhile, 

for the Newtonian fluid there is substantial drop or dip in the free surface to compensate 

for centrifugal forces.

2.2 Rheology and material functions

Rheology, defined as the science of deformation and flow, is now distinguished as 

an important field of scientific research in its own right (see for example 

[133,134,135]). Simple shear flow and extensional deformation flow represent examples 

of ideal rheometrical flows.
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2.2,1 Simple shear flow

Under simple shear deformation and within a Cartesian coordinate system (x, y, z ) , 
the velocity components u = (ux,uy,uz)are defined as:

u* = jy> uy =uz = 0 (2.1)

here y represents the shear-rate define as y =

The deformation rate tensor d is given by

dux
dy

d = - (V u  + Vur ) = -  
2 2

0 / 0  
/  0 0
0 0 0

(2 .2)

Also, the first ( A ,) and second (N 2) normal stress differences are expressed in the 

normal stress components, and r„ as

= rVi(r) (2.3)

(2.4)

where, if/x and y/2 are the first and second normal stress coefficients (see for example 

Bird et al. [23] for details).

2.2.2 Elongational (Uniaxial extensional) flow

For steady uniaxial extensional flow, the velocity field is given by

s  , s  u = £ x ,  u , = — y  and u_ =— z, 
y 2 " 2

(2.5)

here £ represents the elongational rate. Correspondingly, the deformation rate tensor d is 

defined as

rf = I(VH + V i/)  =
0 0
1 .

---- £ 0
2

1 .
0 -----£

2

(2 .6)
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In contrast, the stress differences then take the form

m  (s ) ,  (2-7)

= 0, (2 .8)

where //e is an extensional viscosity which describes the flow behaviour in this state of 

deformation. Usually, the zero extension-rate viscosity pie for Newtonian fluids is 

constant, and satisfies the following relationship

t*.=3f*o. (2-9)

where //0 is the zero shear-rate viscosity in shear flow.

The Trouton ratio (7>) represents the ratio of elongational viscosity to shear 

viscosity. To create a relationship between/ and e and calculate shear and extensional 

viscosities, Jones et al. [64] introduced a definition for the Trouton ratio as:

Tr = ---- . (2.10)
fis{y = Se)

In the Newtonian case and for all values ofe ,  Tr is equal to three, while in viscoelastic 

flow, this ratio is only expected to be satisfied in the limit of vanishingly small 

deformation rate,

Tr(s->  0) = 3. (2.11)

2.3 Mathematical equations and Constitutive models

This section deals with the formulation of the basic equations, in order to predict 

the behaviour of a flow system. These equations are derived from the basic principle of 

conservation of mass and momentum. The basic principle of mass conservation must be 

satisfied at every instant in the type of flow problems considered. This principle is 

expressed mathematically through the continuity equation (see [36,66,72]),

^  + V-(pu)  = 0. (2.12)
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where, p  is the fluid density, u the velocity vector and t represents time. For 

incompressible fluids, p  is constant; hence equation (2.12) reduces to

V -m = 0. (2.13)

Newton’s second law of motion when applied to a fluid element, states that the 

change of linear momentum in a system is equal to the sum of the forces acting upon it 

(also known as the principle of conservation of linear momentum). The forces acting on 

the system may be of two types: body forces acting on the volume of fluid, such as 

gravitational and electromagnetic forces, and surface forces due to Cauchy stress tensor. 

Here, if torque is negligible, the Cauchy stress tensor may be considered to be 

symmetric. In contrast, if torque is applied, the Cauchy stress is unsymmetric as 

observed by Maxwell [77] and Voigt [132]. In the case of incompressible fluids, the 

Cauchy stress can be reduced to an isotropic pressure and an extra stress tensor. In 

differential form, this is given by (see Bird [23]):

J —  + u - V u )= - V p  + V-T  + pF,  (2.14)
\ d t  J

here p  represents the pressure, T the extra stress tensor and F  the body forces.

2.3.1 Newtonian modelling

For Newtonian fluids, the extra stress tensor T is defined as

T = 2 p d . (2.15)

Correspondingly, the rate of deformation d for general flows is expressed as,

d = U V u  + [uf) .  (2.16)

For an incompressible Newtonian fluid, in the absence of body forces and appealing to

equation (2.15) into (2.14), realises the Navier-Stokes equation, which can be written in

the form

c)u
p -  = p V 2u - p u - V u - V p .  (2.17)

dt

2.3.2 Inelastic constitutive modelling

For inelastic (non-Newtonian) case, the extra stress tensor T may be recast as

12



T = 2ju{y,s)d. (2.18)

with a shear-rate y for simple shear flow, and strain-rate s for extensional flow, defined 

generally as

Here, for inelastic fluids the viscosity is a function of combined shear-rate and 

extension-rate. In contrast, Newtonian fluids are both shear-rate and strain-rate 

independent, manifesting a constant shear viscosity, zero first normal stress difference, 

and a constant extensional viscosity.

2.3.2.1 Material modelling considerations

For non-Newtonian fluids, there are many possible inelastic constitutive models to 

consider. Some of these models describe shear viscous stress response and the others 

present extensional response. In addition, many materials are non-Newtonian, and 

exhibit either shear-thinning or shear-thickening behaviour.

The most fundamental constitutive model is that which describes shear viscous stress 

response of power-law form, which describes shear-thinning or shear-thickening

(2.19)

(2 .20)

Here IId and IIId represent the second and third invariants of the rate of strain tensor d

which, under an axisymmetric coordinate system can be defined as

(2 .21)

and

IIId =det {d) =
r dr dz 4 dz dr( V L + ̂ ) 2}- (2 .22)

Hence, for incompressible inelastic fluid flows under an isothermal setting, the 

governing equations may be expressed as:

V • u = 0. (2.23)

p —  = V -(2 p (y ,s )d )~  p u - V u - V p .
dt

(2.24)
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behaviour. Fluids of this type, originally proposed by Ostwald-de Waele, may be 

expressed as

I m - \

t  = ( k \ j \  )y  (2.25)

where & is a consistency parameter and m is a power-law index. Then, higher k-values

are found to exhibit more viscous fluid characteristics. When m=l, the Newtonian

limiting approximation is recovered, with no shear-rate dependence; shear thinning is 

gathered for m<l (as applied in this task) and shear-thickening is observed for m>l.

In contrast to the foregoing, and specifically to address extensional material properties, 

consideration is given to further shear-extensional viscous-inelastic models, Fit-I and 

Fit-II (see Binding et al. [21]). These provide for the following material shear viscosity 

and extensional viscosity dependence:

(a) Fit-I model

(r) = (i + r)2
, (2 .26)

//£(e) = 3//„ cosh(mA£).(l + 3(A:£)2)<"‘i>/2

(b) Fit-II model

= / io(l + ( ^ 1 y ) 2) </”l"l>/2 

juE (e) = 3//0 (1 + Z(K{ s f  )("'~1,/2 (1 + (A:2 g)2 )(^-‘>'2 ’

where, juQ is the zero-shear viscosity, and m and K  in model Fit-I represent the

parameters that describe the shear and extensional components. In addition, in model 

Fit-II Ki and K2 are natural time constants (not related to fluid elasticity), while mi and 

m2 are power-law indices that control shear and strain rate behaviour, respectively.

In this fashion, we are able to introduce and discuss the concept of the Trouton ratio 

(ratio of extensional viscosity to shear viscosity), which is likely to have considerable 

bearing on these polymer melt flows.

2.3.3 Viscoplastic flow modeling

The concept of viscoplastic material was first introduced by Bingham [22] in 

(1922) when describing several types of paint. Viscoelasticity is the property of 

materials that exhibit both viscous and elastic characteristics when undergoing
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deformation. Viscous materials resist shear flow and deform linearly with time under 

applied stress. Elastic materials strain instantaneously when stretched, and just as 

quickly return to their original state once stress is removed. Under this concept the so- 

called ‘yield stressr0 ’ is exhibited. The existence of a “yield stress” is traditionally

recognised to be responsible for the complicated transition between classical solid-like 

and liquid-like behaviour (base yield stress factor, equivalent to a Bingham Number, 

Bn=(ry)*(//poU), with scaling on the dimensional yield stress ry). Many materials such 

as paint, slurries, pastes and some food products have been described by the Bingham 

model. This model may be expressed through the following equation:

r  = JU +

2 K P
y  for II I T \>t I and y  = 0 for IIIx I < t ] . (2.28)

Since in some complex applications, parts of the material flow, while the reminder 

behaves as a solid, the Bingham model assumes sufficient generality. In addition, at 

vanishing shear rates, the apparent viscosity in the Bingham model becomes infinite, 

leading to discontinuity. To handle such issues, Papanastasiou [102] suggested a 

modified Bingham model, by introducing a regularization stress growth exponent (mp) 

to control the rate of rise in stress. This parameter (mp) should be sufficiently large to 

approximate the ideal model without causing further numerical convergence difficulties. 

Accordingly, as in the present study the visco-plastic stress is expressed in the form:

(2.29)

where the function <j){IId) is defined, following expression (2.29), as:

<p{Vd) = Mo +
r0( \ - e

-m \Ild \1/2  X

2/7 |V2
(2.30)

and
1 ,

IId = —trace(d ). (2.31)
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2,3.4 Viscoelastic flow modeling

For non-Newtonian viscoelastic fluids, an additional extra-stress term in the 

momentum equation (2.14) is introduced, giving

Dup ^ - = V a - p u .Vu , (2.32)

where cr is the Cauchy-stress tensor, defined as

a  = - p I  + T, (2.33)

T = 2jusd + r.  (2.34)

Hence, from equations (2.32), (2.33) and (2.34), the system of equation represented by 

continuity and momentum equations for viscoelastic flow can be expressed as:

V-u = 0. (2.35)

Dup —  = V • (2ju, d + r ) - p u - V u - V p . (2.36)
dt

For the viscoelastic stress term of equation (2.33), an additional constitutive differential 

equation (stress model) is required. A brief review covering such equations is provided 

below.

2.3.5 Constitutive equation

Constitutive equations (models) are equations relating suitably defined stress and 

deformation variables. In the viscoelastic case, an extra stress term in the momentum 

equation appears that demands an additional differential equation to provide its 

description. In this context, many constitutive differential equations are used for this 

purpose [70], as described in the following subsections of this thesis.

2.3.5.1 The Maxwell model

The Maxwell model [78] was introduced as an early model for viscoelastic fluids. 

The one-dimensional form of this model is obtained through a combination of a 

Hookean spring and a Newtonian dashpot in series (see Bames et al. [14]), expressed as
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T + ̂ - — T = 2u0d, (2.37)
G0 8t °

where G0 and //0 represent the elastic modulus and the viscosity, respectively; T is an

extra stress tensor, and d the rate of deformation tensor. The ratio —  is equivalent to
Go

the relaxation time ( X ) for a Maxwell fluid.

2.3.5.2 The Oldroyd-B model

Oldroyd (1950) [100] introduced an alternative non-linear equation by replacing the 

time-derivative in the Maxwell equation (2.37) by a convected alternative, which led to 

the non-linear upper-convected Maxwell (UCM) model:

r  + 4 ?  = 2/i0rf, (2.38)

Likewise emerged the lower-convected Maxwell (LCM) form

T + \ T  = 2 ^ d .  (2.39)

V A

Above, the upper ( T ) and lower (T ) convected stress derivatives can be expressed as:

v
7  = —  + u - V T - ( V u)t - T - T - V u, (2.40)

dt

A P T
T = —  + u -VT + (Vu) t -T + T -V u. (2.41)

dt

The Maxwell model does not contain a term to account for solvent presence (a 

purely viscous component). To overcome this, a retardation time is introduced in 

equation (2.38):

T + A, T = 2^0 L + A2 j. (2.42)

V

Equation (2.42) is known as the Oldroyd-B model, where d is the upper-convected 

derivative of the deformation rate tensor. This model, as discussed in Walters [134], is 

appropriate to represent the behaviour of fluids that have constant shear viscosity, such
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as Boger fluids [26]. Additionally, the model is termed an Oldroyd-A model, if the 

upper-convected derivatives are replaced by the lower-convected derivatives. Since
V

d contains second-order derivatives of velocity, a split version of this model is 

presented: one for the polymeric component and another for the solvent. This 

representation has the advantage of avoiding direct approximation of higher order 

derivatives - hence circumventing expoure to larger numerical discretisation errors. 

Such a split system may be arranged as:

T = r + 2fj,sd, (2.43)

V

r  + A, t  = 2jupd,  (2.44)

A, —  = (2ju d - t ) - A j (u ' V t -  (Vu)t ■ r -  r • Vw). (2.45)

Here, fip and jus are polymeric and solvent viscosity contributions, respectively. The 

total viscosity //0 and relaxation time A2 may be recovered through the following 

relations:

Mo = M s + M P (2-46)

(2.47)
M s + M p

where equation (2.42) must satisfy the constraint A, > A2 > 0. When the solvent 

viscosity component jus ^ 0, the Oldroyd-B model is realised.

Unfortunately, the extensional viscosity predicted by the Maxwell and Oldroyd-B 

models becomes unbounded as the strain-rate approaches 1/2A, ; additionally, the shear 

viscosity is constant at every shear-rate and the second normal stress difference is zero 

(except for the lower-convected Maxwell model which over-predicts N2). In uniaxial

extensional flow, of an Oldroyd-B model, the extensional viscosity can be expressed as 

a function of extension rate s , viz,

2 ^ £ z 2 V ) + M ± M .  (2.48)
l-2A,ff 1 + V
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2.3.5.3 The Phan-Thien/Tanner (PTT) model

Phan-Thien and Tanner [104, 105] introduced a modified version of the Oldroyd-B 

model, named the PTT model. This model considers the creation and destruction for a 

framework of network junctions. Shear-thinning and extension-hardening/softening 

material behaviour are exhibited by this class of models, which is expressed as:

T = T + 2jusd , (2.49)

/ ( r ) r  + \  t = 2n pd, (2.50)

0 P  V P  A V
t = (1 ——)r+  —r = r+ %(d.r + r.d), (2.51)

4  ^ 7  = (2Hpd -  / ( r ) r )  -  \  (u • Vr) + \  (1 -  £)((Vu)r • r  + r • Vu)). (2.52)
dt

The extra function / (r) is then,

£ PIT  ̂
/ ( r )  =

exp /r(r) e?q) onential,

1 + tr(r) linear.
MP

(2.53)

Where sPTT and £ are non-dimensional model material parameters, /ip and //s are

polymeric and solvent viscosity coefficients, is a relaxation time, T is the extra stress 

tensor, and d is the rate of strain tensor. Here, the Oldroyd-B model may be recovered 

from the PTT model when£P7T = £ = 0. Moreover, one can observe that from a Taylor 

series expansion of the exponential form, and using truncation that the so-called linear 

PTT model may be extracted. Both alternative model forms exhibit shear-thinning 

behaviour and extension-hardening; strain-softening is anticipated for the exponential 

form, whilst the linear form displays sustained hardening, although, for some extreme 

values ( sprr ->1) moderate softening is also observed. For the PTT model, the shear

behaviour is controlled by both parameters sPTT and £; extensional behaviour is affected 

principally by sPTT, although £ does have some limited effect in certain value ranges 

of sPTT (appears parameter independent).
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2.3.5.4 Pom-pom models

One of the primary problems in constitutive modelling is to derive the desired a 

correct nonlinear behaviour in both extensional and shear flows, simultaneously. Well- 

known constitutive models such as Giesekus, Phan-Thien/Tanner (PTT) and Kaye- 

Bemstein-Kearsley-Zapas (K-BKZ) are unable to overcome this difficulty. Recently, a 

new constitutive model has been introduced by McLeish and Larson [79] to explain the 

behaviour of polymer molecular structures (see Figure 2.1), and as such, is considered 

as a major step forward: the pom-pom model. This model has been developed, mainly, 

for long chain branched polymers, based on tube theory, in which polymer chains are 

denoted by a backbone segment with the same number of dangling-arms (q)  attached at 

both extremes of the backbone section. The drag that the melt exerts on these arms 

causes the backbone to stretch. The presence of branching points slows down the 

reptation of the backbone. The ends of the arms are free to move and the process of 

arm-retraction helps the molecule to free the polymer chain from the tube formed by its 

surroundings. This arm-retraction is triggered when the molecule reaches its maximum 

stretched state. The arms gradually free from the tube by diffusion. Once the arms have 

relaxed, the backbone can subsequently relax by moving the branch points. The 

extension of the polymer chain is represented by the backbone stretch parameter A, 

which represents the actual extension of the molecule scaled by its equilibrium length,

^  “  ^ b a c k b o n e / L 0hackbone  •

A key aspect of this new type of model is the separation of relaxation times, one for 

stretch and another for orientation. The model consists of two decoupled equations, one 

for each relaxation process. In the original formulation of the model, the maximum 

backbone stretch (finite extensibility constraint) introduces a discontinuity in the 

gradient of the steady-state extensional viscosity. Two drawbacks remain however; the 

prediction of a zero second normal stress difference, and the unboundedness of the 

backbone orientation equation at large strain-rates.

Under the multimode approach proposed by Inkson et al. [63], the same deficiencies are 

apparent with this form of the pom-pom model. By modifying the evolution equation 

for stretch (A), Blackwell et al. [24] allowed branch point displacement. This had the 

effect of attenuating non-smooth peaks in t]e [1 0 1 ], though discontinuities can still be
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detected under finite extension. To the same end, Verbeeten et al. [128] introduced the 

eXtended pom-pom (XFP) model (see additionally [129]). Two different versions of 

extended pom-pom (XPP) model were introduced; the Single and Double Extended 

forms o f the pom -pom  model (SXPP and DXPP). In this study, focus is upon the 

single-equation version o f the pom -pom  model.

The constitutive equation for the single equation version o f the XPP model may be 

expressed, using the unit tensor (I) and upper convected stress derivatives in the form,

cr/t.
/ ( r ) r  + A, r +- — [g(r)]J +  t -t = 2ju d , (2.54)

and g(r)  = / ( r ) - l

where

Figure 2.1: Idealized pom-pom molecule

1
/ ( r ) = ” (1 ~ ~z)e V(/*_1) +

£sx)‘P ^  X /
(2.55)

Here a  > 0 is a material parameter defining the degree o f anisotropy present. This 

parameter was incorporated by Verbeeten et al. [128] to represent a non-zero second

2
normal stress ditterence ( N 2) when or > 0. The parameter v is taken to be —, where q

q

represents the number o f arms at the end o f a chain-segment backbone. Moreover, the

A0 .
parameter s sxpp can be dehne as: s SXPP = — - ,  where \ )h and are the orientation

and backbone stretch relaxation times, respectively. Nevertheless, some ‘numerical
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defects’ have been reported for certain values of a  and q with this pom-pom model, as 

shown by Clemeur et al. [40].

With the SXPP model, the backbone stretch X is given as

X = \ \  + ̂ - \ H r ) \ -  (2.56)

In equation (2.56), the absolute value function is not included in the original SXPP 

formulations. Here, this modification is necessary to increase the levels of attainable 

elasticity by avoiding problems when /r(x ) < 0  in complex flows (which may only

occur under discrete numerical modelling). Finally, the extra-stress tensor may be 

written as the sum of polymeric and solvent contributions, T = z + 2fis d .

In particular, the Oldroyd-B, LPTT and EPTT model can be recovered from the 

SXPP model as illustrated in the following Table ( for more detail see for example 

[4,65,118]).

Table 2.1: Characterisation - relationship among Oldroyd-B, LPTT, EPTT and SXPP

model f ( r ) g(r) a

Oldroyd-B 1 0 0

LPTT 1 + SprrAl tr(r)
0

0

EPTT eXp s ptt\
L J

0

0

SXPP m m - 1 a
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2.3.6 Viscoelastoplastic flow  and viscometric functions

In this study, additional consideration is given to the aspects concerning non- 

Newtonian visco-elasto-plastic materials and their representation. Here, a combination

(2.31) represent the essential basis to incorporate the combination of the Phan-Thien 

Tanner (EPTT) model with the Papanastasiou-Bingham model. Thereby, the extra stress 

tensor is defined as:

Under such a description, the Papanastasiou-Exponential Phan-Thien Tanner (Pap- 

EPTT) material functions may be extracted, as follows:

against for the anticipated flow response of this model under ideal shear and extensional 

flow deformation conditions. Hence, one may extend consideration into the context of 

non-viscometric flow, as manifest in the die-swell problem.

A summary of the various material functions that are used to characterise these non- 

Newtonian fluids and their model representations is provided in Table 2.2 below.

of viscoelastic and visco-elasto-plastic models is found. The set of equations (2.29)-

(2.57)

r(,) =2<KII„)Msd,

+ V v<2)= 2^IId)npd .

(2.58)

(2.59)

(2.60)

f (2.61)

(2.62)

These material functions provide the vital background reference to be interpreted

23



Table 2.2: Material function expressions for some common models

model M(r) W\ i f )

UCM Mo 2 M o \ f
2 Mo , Mo 

1 - 2 2 ^ 8  1 + 2 ^ 8

LCM Mo 2 M o \ f
2 Mo , Mo

1 + 2 2 ^ 8  \ - \ e

droyd-B Mo 2 Mo(\ - * i  )r 2

2 jUq(\-2 A28 ) juq(\ + X 2s )  

1 - 2  2 ^s 1 + 2 ^ 8

EPTT MPf iMp^r 2 r 3 , 2 Mp , MP
/ 2 +£(2 - # h V 2

/ 2 + 2 £(2 - £ H r / - 2 ( l - # H e  /  + (

SXPP i 2 G02 m, 3„  , *?„
( / ( r ) ) 2 ( m f ( ^  + + / ( 0 )

ip-EPTT
M n( n i p \{ft( TT \ 'Kn tM IT \ \ **.11 rh( IT \ J\Ms ' r,

/(*■) ( . m f 3Ms<PyUd) 1 SMpVVUd) 2 0 r- 2 . 2
2 2  ̂ 8

2.4 Non-dimensional form

The governing equations are expressed in non-dimensional terms via length scale 

( L , unit length), velocity scale (U),  time scale (L/U),  and pressure and extra-stress 

scale offiU/L.  The parameter // = + fxp is the total viscosity, made up from

consistent viscosity fractions for solvent and solute.

Here, the dimensionless parameters are introduced in the form of Reynolds number 

Re , the Weissenberg num ber^  and solvent fraction/?, which are given by

Re = p — , We = Xl — , P = —^ —  = — . (2.63)
M L MS +MP M

For Newtonian flow, the system of governing equation can be expressed in non- 

dimensional form as:



and the momentum equation for general Newtonian can be written as

Re—  = V • (2/uiy, £ )d ) - 'R eu -V u -V p .  
dt

(2.65b)

In contrast, the governing equations for incompressible viscoelastic flow may be 

express as,

du
Re—  = V-(2/?£/ + r)-R ei/-V «-V /?; (2.66)

dt

with a constitutive equation of the form

We— = (2(1 -  P ) d -  / ( r ) r > -  We(u ■ Vr -  (1 -  #)((V«)1 ■ x + r  • Va)). (2.67)
dt

Here, the Oldroyd-B model corresponds to setting / ( r )  = 1 and £ = 0, while the EPTT

model corresponds to setting / (r) = exp
s PTTWe . . PTT tr{r) in equation (2.67). In addition,
(1 - f t )

if /? = 0 then the UCM model is recovered.

For the SXPP model, the relaxation time is chosen as , with the polymeric viscosity 

defined as pp = , where G0 is the linear relaxation modulus. With these

definitions, the dimensionless parameter, ssxpp is given by

A,O.v
’SXPP I

(2 .68)
'Ob

Then, the constitutive equation for the pom-pom model may be expressed in non- 

dimensional form as

We t + f  (r)r + r  • r  + ——— [ /  (r) - 1]/ = 2(1 -  P)d,
(1 ~P) We

(2.69)

where /  ( t ) and X are given by

m = — { l - i y w - ' J + T
S SXPP A ’ ^

(
1 \ We \ a  , ,
1 - • < -------------> — t r ( T ’ T) (2.70)

and
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A - r w ^ r / < r1- e - m

Finally, for viscoelastoplastic flow the constitutive equation (2.59) can be cast in non- 

dimensional form as:

f r m +Wervm =2<t>(IIdX \ - P ) d . (2.72)
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Chapter 3

Numerical Algorithms and Finite element/volume 
methods

A hybrid method that comprises both the finite element method (FEM) and the finite 

volume method (FVM) is employed in this thesis to solve sets of differential equations. 

The method is applied on triangular FE meshes with FV sub-cells, reminiscent of the 

subelement FE implementation of Marchal and Crochet [76], though that work was on 

rectangular meshes. The triangular FV approach has been adopted by Morton and co

workers [89,45], Struijs et al. [115] and Tomaich and Roe [123] in the cell-vertex form 

and by Berzins and Ware [19] in the cell-centred case. Galerkin finite element methods are 

ideal for discretisation of elliptic operators, and hence may be better suited to solve the 

field equations, concerned with the momentum and continuity equations (elliptic-parabolic 

type). In contrast, finite volume technology has advanced considerably over the last 

decade in its treatment of equations that may be expressed in conservative form such as 

pure advection equations, hence their application to hyperbolic constitutive equations of 

first-order in space and time. In particular, our method takes features of both algorithms to



Chapter 3 Numerical Algorithms and Finite element/volume method

produce a stable high-order finite element/finite volume ife/Jv) scheme, see Struijs et al. 

[115].

3.1 Introduction

Numerical solutions for systems consisting of a very large number of equations have 

improved with modem developments in computer processors. Nowadays, three numerical 

methods are used successfully to solve such systems. Widely used discretisation methods 

include finite difference methods, finite element methods and finite volume methods. The 

finite difference method discretises a differential equation by approximating the differential 

operators with difference operators at each (temporal-spatial) point. In the finite element 

method, the differential equation is multiplied by a weight function and integrated over the 

entire domain, and then an approximate solution is constmcted using shape functions and 

optimized by requiring that the weighted outcome have a minimum residual. In contrast, 

the finite volume method integrates the differential equation over each control volume, 

ensuring that the conservation laws of mass, momentum and energy hold (see [141] for a 

concise review).

The finite difference method (FDM) was first developed by A. Thom (1961) [126], in 

the 1920s under the title “the method of squares” to solve nonlinear hydrodynamic 

equations. This scheme is based upon approximations that permit replacing differential 

equations by finite difference equations. These finite difference approximations are 

algebraic in form, and their solutions are related to grid point locations. Thus, a finite 

difference solution basically involves three steps:

1. Dividing the domain into grids of nodes.

2. Approximating the given differential equation by a finite difference equivalence that 

relates the solution to grid points.

3. Solving the difference equations subject to the prescribed boundary conditions and/or 

initial conditions.

The basic ideas behind the finite element method originated from advances in aircraft 

structural analysis. In 1941, Hrenikoff [60] presented a solution for elasticity problems
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using a framework method. Then, this method was developed in 1943 by Courant [42], who 

utilized the Ritz method of numerical analysis and minimization of variational calculus to 

obtain approximate solutions to vibration systems. The work of Argyris [7] on energy 

theorems and matrix methods laid a foundation for further developments in finite element 

studies. An early book on the finite element method by Zienkiewicz and Cheung was 

published in 1967 [155]. In the early 1970s, finite element analysis was applied to nonlinear 

problems and large deformations. Recently, this method has given rise to adaptive 

techniques (see for example Thompson 1984 [125]) and has become a powerful tool for the 

numerical solution of a wide range of engineering problems. Applications range from 

deformation and stress analysis of aircraft, building, and bridge structures to field analysis 

of heat flux, fluid flow, magnetic flux, seepage and other flow problems.

The literature on finite element methods (FEM) for viscoelastic flows is broad. Some 

of the more robust schemes of recent years have shown that it is possible to solve for highly 

elastic, smooth and non-smooth flows [11,36]. This has produced algorithms as in: EVSS 

[1 1 ], space-time/Galerkin least squares with discontinuous stress [8 ], DEVSS [52] and 

DEVSS/DG [9] and Taylor-Galerkin types [73]. In addition, FEM uses a complicated 

system of points, referred to as nodes, which make up a grid (or mesh). This mesh is 

programmed to contain the material and structural properties which define how the 

structure will react to certain loading conditions. Nodes are assigned at a certain density 

throughout the material depending on the anticipated stress levels of a particular area. 

Regions which will receive large amounts of stress usually have a higher node density than 

those which experience little or no stress. Points of interest may consist of: fracture points 

of previously tested material, fillets, comers, complex detail, and high stress areas. The 

mesh acts like a spider’s web in that from each node, there extends a mesh element to each 

of the adjacent nodes. This web of spatial-vectors is what carries the material properties to 

the object, creating many elements.

In contrast, the finite volume method allows one to more concisely represent and solve 

partial differential equations via the form of algebraic equations (see LeVeque [71]). In 

previous studies, the finite element approach was used broadly for complex differential
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equations. Nevertheless, this approach does carry with it a heavy computational penalty in 

complex flows, with sophisticated numerical strategies dealing with upwinding, accurate 

representation of velocity gradients, and the coupling of the system. This is an important 

issue to address, specifically as three-dimensional [12,143] and viscoelastic [9,18] 

computations are now being undertaken. Through a weighted-residual approach, one may 

identify FV-methods as those employing a uniform constant (unity) weighting function.

It is for this reason that attention has been devoted to alternative techniques, such as 

those embodied in FV methodology, that require less memory and CPU time than do their 

FE counterparts. Similar to the finite difference method or finite element method, values 

are calculated at discrete points on a meshed geometry. "Finite volume" refers to the 

control volume surrounding each node point on a mesh. In the finite volume method, 

volume integrals for a partial differential equation that contain a divergence term 

(conservation equations) are converted to surface integrals, using the divergence theorem. 

Commonly, these terms are then evaluated as fluxes at the surfaces of each finite volume. 

Since the flux entering a given volume is identical to that leaving the adjacent volume, 

these methods are conservative. Another advantage of the finite volume method is that it is 

easily formulated to allow for unstructured meshes. The method is used in many 

computational fluid dynamics software packages, typically those based on conservation 

equation system (as in aerodynamics).

Under viscoelasticity, hybrid approaches have been developed by Sato and Richardson 

[110] and Yoo and Na [144]. They employed a time-explicit FE approach for momentum 

and FV for pressure and stress. A cell-centred FV scheme is solved implicitly in time for 

stress. In contrast, the present hybrid approach includes a time-stepping procedure that 

combines a finite element discretisation for continuity and momentum equations, and a 

cell-vertex finite volume scheme for the constitutive equation. This combination is posed as 

a fractional-staged formulation based upon each time-step. The positioning of finite volume 

nodal values and control volumes is such that (in two dimensions) four linear finite volume 

triangular cells are formed as embedded sub-cells of each parent quadratic finite element 

triangular cell (see Wapperom and Webster [138]). Here, this is accomplished by
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connecting the mid-side nodes of the parent finite element triangular cell. An important 

aspect is that with stress variables located at the vertices of the finite volume cells, no 

interpolation is required to recover the finite element nodal stress values. A brief review is 

provided below on the finite difference method, the Galerkin finite element method, the 

finite volume method and development of the hybrid finite element/volume method.

3.2 Brief description of numerical methods employed

3.2.1 Description o f the Galerkin finite element method

The finite element method deals with splitting a simple or complex domain (geometry) 

into a number of finite elements (mesh) over which the problem is to be solved. To find an 

approximate solution for the primary variables in the system of governing equation using 

the finite element method, a classical trial-solution method is undertaken, with the 

following summarised steps:

1 - Construction of a mesh of N nodes.

2- Interpolating a trial-solution for the primary variables u (x ).

3- Implementation of an optimising criterion (variation or weighted residual 

method) to the primary variables.

4- Approximating the function in the vicinity of each element, to solve the linear/non

linear algebraic system of equations, while at the same time evaluating the accuracy

of the solution.

Here, the first and second steps are implemented in tandem. The primary variables can be 

expressed as a linear combination of basis functions (also known as trial functions). For 

instance the variable of velocity u, can be written as a finite sum of trial functions:

(3-i)
/=i

Here, A^(x)are referred to as the basis (interpolation or shape) functions. The summation

extends over all N-nodes (i=l,2,...,A). There are many different forms of shape functions 

that can be adopted, depending on the applied approximation method. For the finite element
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method, the shape functions N f a )  are locally defined as polynomials within each element,

and are set equal to zero outside the considered element (local compact support). The 

parameters u' are the unknown nodal values of the dependent variables u. After preparation 

of the trial solution u (x) , the governing equations are transformed to finite element 

equations for all elements by using the weighted residual or variational principles 

approaches. Then, one brings together the equations for all elements to form a global 

system of differential or algebraic equations with imposition of proper boundary and/or 

initial conditions. The solution of this algebraic system represents the parameters u' .

For the weighted residual method the process is to minimise the calculated error of the 

differential algebraic equation rather than the equation itself. In that context, the following 

five common implementations are used:

1) The collocation method

2) The sub-domain method

3) The least-squares method

4) The least-squares collocation method

5) The Galerkin method

On the other hand, the variational principle (such as the Rayleigh-Ritz method) requires the 

minimisation of a physical quantity (energy) encompassed in the global system. Due to the 

limitation of variational principles, the weighted residual Galerkin approach was employed. 

As an example, consider the following time independent Poisson equation,

Suitable functions (typically polynomial type of first or second order) can be used to 

interpolate the unknown solution variables. Then, the problem residuals are weighted and 

applied to each of the finite elements belonging to the original domain.

(3.2)

nt

(3.3)
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where ft (x) are the trial functions, ul are unknown solution nodal values and nt is the 

number of nodes in an element. Substituting (3.3) in (3.2) and inserting Wj (x) as the 

weighting functions will yield the following expression,

(3.4)

In the Galerkin method, weighting functions and trial functions are from the same space, 

that is Wj (x) = ftj (x ). Then, integration by parts results in,

Summation of all element contributions leads to the full system over the geometry 

(Q  = Z fie). When the solution values are known at the outer domain boundary, the term

determined on the boundary (Te) of the element is set to zero; otherwise, it cancels out on

interior elements. In the present study this is the case, as the velocity is typically given on 

the boundaries.

In matrix notation, the full system of equations resulting from equation (3.5) can be 

expressed as

where the nodal values are contained in the column-matrix u , K and b may be evaluated 

either analytically or numerically, and are defined as follows,

Configuration of all single elements and their contributions into a total system must 

encompass the specified boundary conditions. For instance, since known certain values are

dx dx dQe ~ j* f {x)<t>j{x) • (3.5)

Ku = b , (3.6)

(3.7)

imposed in this example on the solution, accordingly nodal values are specified at either
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side of the domain (boundary Y ) and may be substituted directly into their corresponding

positions in K , b , and deleted from u . Direct or iterative algebraic procedures are required

number of elements/nodes and the shape functions.

3.2.2 Description o f the finite volume method

Finite volume schemes are quite useful for modelling hyperbolic conservation law. In 

this method, rather than solving the conservation law differential equation directly, an 

integral equivalent expression has been considered. This approach may be applied in the 

differential constitutive equation where one integrates over an /v-subdomain. This can be 

classified as a subclass of the finite element scheme with weighting functions set to unity, 

w(x) = 1. Here, the integral form of the conservation law may be expressed as,

where g represents any quantity to be ‘conserved’ such as mass, momentum or energy; F* 

is the flux which consists of two terms diffusive and convective terms; n is the outward 

pointing unit normal to the domain boundary T over a control volume Q ; and q is a body 

force or source term. In a fv~cell, the mean values are defined as,

to obtain a solution for equation (3.6), where the degree of complexity depends on the

(3.8a)

Using the Gauss divergence theorem, equation (3.8a) can be written as

(3.8b)

(3.9)

Using the mean values g, and q,, applying (3.8b) on a single finite volume gives,

(3.10)
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where k varies over the /v-subcell faces, and T* represents the area of those faces. An

advantage of the FVM is that natural conservation of the variables arises in integral form on 

each individual fv-cell, and hence, over the entire domain as well.

By applying numerical integration procedures, the mean values may be evaluated,

F"  is an approximation of F* -nk and k is the number of faces of the ̂ v-cell.

Employment of all such approximations over each finite volume, including their assembly 

to represent the total domain, gives the discretised form of equation (3.8b). Accordingly, a 

system of algebraic equations is generated similar to that represented by equation (3.6).

3.2.3 Two- step Lax-Wendroff scheme

The Lax-Wendroff method [114], after Peter Lax and Burton Wendroff, is a numerical 

scheme for the solution of hyperbolic partial differential equations, based on finite 

differences. Use is made of the Lax-Wendroff time stepping scheme which uses a Taylor 

series expansion in time resulting in a second order scheme. To explain the two-step Lax- 

Wendroff scheme, consider a one-dimensional problem of the form,

(3.11)

where nc is the number of nodes and (pt > 0  are the weights of the integration procedure. 

Surface integrals can be approximated as,

\ F - - n t dTt ^ F: ' ■
(3.12)

(3.13)

and using

d2u _ d F  _ d F  du _ d F
dt2 dt du dt du

(3.14)
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a second-order Taylor expansion of u around /"results in the following expression

1 ftp
un+] = zF+A /F"+-(A /)2 (— )"F", (3.15)

2  du

where the superscript n denotes the time level. To obtain an <9(A/2) accurate scheme, and to

dFavoid the explicit evaluation of the Jacobian — , a two-step approach is used, known as a
du

i
n+~ ipredictor-corrector scheme. First u 2 is approximated with an error of 0(At  ) by an 

explicit Euler step, and then, the corrector step gives an approximation of un+] with an 

error0(At3). Therefore, the two-step Lax-Wendroff procedure over split time-step
I

/e [ /" , /  2]and t e [/",/"+1]is,

n+- At
stepl: u 2 = u" + — F",

2  (3.16)
1

, n+ —
stepl : un+ =un+AtF 2.

In these equations and in the remainder of the chapter, terms with n indicate evaluation at a 

specific time step («).

3.3 Time discretisation

The framework of the current study is based on a Taylor-Galerkin/Pressure-Correction 

(TGPC) algorithm, as proposed by Townsend and Webster [127]. This algorithm was 

developed to solve viscous incompressible flows of generalized non-Newtonian and 

viscoelastic fluids. The basis of this algorithm is a temporal Taylor series expansion and a 

two-step Lax-Wendroff time-stepping procedure (predictor-corrector) (see section 3.2.3 

above. Here, applying a two-step Lax-Wendroff (3.16) to the momentum equation (2.66), 

gives
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ln+—
step l a : u '2 = u” + —  [h (u” , d ” , r”) -  Vpn\

step 1 b : wM+1 =u" + —
Re

1 1 1  1n-\—  n+— n-\— n+—
H(u \ d  2 , t  2) - V p  2

(3.17)

where,

H(u,d,r) = V • (2/3 d + t) -  Reu • Vu.

For the constitutive equation (2.67), we have also

stepia: x "*~2 = r" + —  G(u"
2 We
A j 1 1 1

i A #  « + — n+—
step\b : t = t" +— G(u 2,r  2 ,V« 2),

We

where,

G(m, r, Vw) = (2(1 -  J3)d -  f ( r ) r )  - W e w V r  + We(Vu •t + t • (Vw)r ).

(3.18)

(3.19)

(3.20)

The pressure p 2 in equation (3.17) is approximated by

P +~2 = e Pn+'+ ( \ - d ) P\ (3.21)

iwhich has an error equal to 0(At  )for 6  = — and equal to 0(tst) for other values of6 . For

second-order accuracy in time, the Crank-Nicolson choice of 6  = ^  is adopted for pressure 

terms. The equation (3.17b) can be rewritten as 

Atun+] =un +
Re

1 1 1n+— a?h— n+—
H(u 2,d  2, r  2 ) - 6 Vpn+l- ( \ - 0 ) V p n (3.22)

In order to solve equation (3.22) together with the incompressibility constraint (2.64), an 

intermediate velocity u* is introduced such that
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u — u + At
Re

H(u
1 i

— /?+—

2 d 2 ) -V p " (3.23)

Subtracting equation (3.23) from equation (3.22) then gives that u"+] can be computed from

„,»+i „ * 0 At w+]u —u  vq ,
Re

(3.24)

where, the pressure difference qn+] = p n+} -  p n.

Taking the divergence of equation (3.24), and usingV-w"+1 = 0, gives the pressure 

differenceqn+] as function ofw* only:

v y +| = — V 'u ' 
0 At

(3.25)

To provide a more stable scheme a semi-implicit Crank-Nicolson time-split is adopted for 

the diffusion term of the momentum equation, whereas an explicit approach is retained for 

other terms (see Hawken et al. [57]). In this particular case, the diffusion term is 

incorporated into the left-hand side of equations (3.22) and (3.23). In addition, where 

boundary conditions are specified, only the term V • d is affected. Here, alongside an 

incremental pressure-correction (PC) procedure with a constant factor 0 < 6 X <1 and a 

forward time increment factor 02 = l/2 . An incremental pressure-correction procedure 

( 0  < 6 X < 1 ) is used to solve the momentum-continuity equation system, introducing semi

discrete fractional-staged equations in time prior to spatial discretisation. Then, the 

fractional-staged formulations within each time-step may be given by 

Stage la:

2 Re w+~ (u 2 -w w) = [V*(r + Rew-Vw)]w+V
At

f ] \

i p
rtH—

d 2 +d"
2

V _ J

- v { Pn +e,[ p " - P"-]])

(3.26a)
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(r ”+1/2 - r ”) = [2(1 - p ) d - f r -  We(u • Vr  - (Vm)7 • r - r • V»)]", (3.26b)

Stage lb:

J J

(3.26c)

Wp /»+-
—  ( r "+1 - r " )  = [2(l-/?)rf-/r-IFe(M -V z--(V w )r - r - r -V a )]  2. (3.26d)
At

Here, the time step index over the interval [n,n+l] is denoted by n. The velocity and stress 

components are calculated at the half time step ( n + ) from data gathered at level n after

stage la and for stage lb, the intermediate velocity and stress components are solved for the
i

n + —

full time step. Given initial velocity and pressure fields, non-divergence-free u 2 and u* 

fields are calculated via a two-step predictor-corrector procedure with a constant factor 

0 < 0X < 1. The corresponding mass matrix equations are solved iteratively by a Jacobi 

method.

Stage 2:

v V + ,= ^ v ' “ *' ( 3 -2 6 e )

Having solved for u , here we calculate the pressure difference ( p n+] -  p ”) 

through a Poisson equation by application of a direct Choleski decomposition method with 

a forward time increment factor 0 2 = 1/ 2 .

Stage 3:

===- (u"*'-u) = - 0 2 Vqn" . (3,26f)
At

— (u -u " )  = \S? t - R e u - V u ]  2 +V- 
At

(
2  p
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using u*, and pressure difference p n+] -  p n , determine a divergence free velocity field 

un+] by Jacobi iteration.

In the iterative process to solve the system of equations, the equations of motion and the 

stress constitutive equation are coupled and solved across the three fractional stages TGPC, 

on a single time step At= \tn,t n+] ] with initial values[un, r n,p a,p n~]].

3.5 Finite element scheme

In the finite element method, we introduce approximations u(x,t) and p(x,t) to the 

velocity and pressure respectively over finite dimensional function spaces. Hence we have,

u(x,t) = Uj(t)0j(x), j  = 1,*".6, p(x,t) = p k(t)y/k(x), k = l,---,3 (3.27)

such that Uj(t)and p k(t)represent the vector of nodal values of velocity and pressure

and(/)j(x) , \pk (x) are their respective basis (shape or interpolation) functions. Similar forms

apply for w*andg. The domain Q is partitioned into triangular elements with velocities 

computed at the vertex and midside nodes, and pressure only at vertex nodes. For the shape 

functions, <pj(x) are selected as piecewise quadratic basis functions and y/k{x) as

piecewise linear basis functions. The corresponding semi-implicit Taylor- 

Galerkin/Pressure-Correction (TGPC) form of equations ((3.26a), (3.26c), (3.26e) and 

(3.26f)) may then be expressed in matrix-form as:

2

Stage la: < ( ^ ”+2 - U n) = bau(Pn,P n~\U" , Tn, D n),  (3.28a)

1 1 1
, * , . n + — n + — n + —

Stage lb: Abu(U - U " )  = bbu(P",P”- ',U",U 2 , T 2, D 2), (3.28b)

Stage 2: K(Pn* '-P")  = b2 (U'),  (3.28c)

Stage 3: - U ' )  = b3 (P" . (3.28d)
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Here the notation is with superscript n denoting the time level, At the time step and U, U , 

p, T, D the nodal values of velocity, non-solenoidal velocity, pressure, extra-stress and 

velocity gradient, respectively. The total stress nodal vector is comprised of its modes
M

k = 1

a ; = —  M  + ̂ - S ,  Abu = —  M  + ̂ -S, A ,= — M ,  (3.28)
At 2 At 2 At

where M  and S are the consistent mass-matrix and diffusion matrix. The stress matrix A T 

equates to the identity matrix for the FV method, whilst under the finite element

implementation would take a mass matrix form. The pressure matrix A2 is the standard

stiffness matrix and A3 is the mass matrix. The terms b° , bhu , 62 and 63 are defined as:

K  = -  [P s  + ReN(U)]U -  B T f  + Lt {P” + <?, (P" ~ P"~')}, (3.29)

K  = ~[/3S + ReN(U)]U- BT}""12 +Lr{P" +0,(P"-P"~')},  (3.30)

0<<9, < 1 ,

b, = —  I t/* , and*. = -0 7LT(P"*'-P"),  (3.31)
OAl

where N(U) and L represent the consistent advection and pressure gradient matrices,

respectively whilst any body force is included through Fj-term. Utilising implied

summation with repeated indicial notation over the problem domain Q , corresponding 

matrices are,

M„ = } MjCto, S„ = J V fy t jdC l ,  N(U)tJ = J ^ U ^ j d a .  (3.32)

The pressure stiffness matrix, K, and remaining matrices adopt the forms:

K,J = = j v M j d n .  (3 .33)
Q  n  k  Q

41



Chapter 3 Numerical Algorithms and Finite element/volume method

The additional stress-related matrices and vectors ( AJ andbT) are described below, under

the fV-context. The scheme becomes implicit (and stable) as approximation of diffusion 

terms is carried out in the momentum equation, via a Crank-Nicolson discretisation over 

each time-step. On the parent triangular fe-ceM, pressure is represented through linear 

( if/k ( x ) ) interpolation, while that for velocity ( ^ . (x )) is quadratic. In nodal (j) notation,

such trial space solutions may be represented, viz.

u(x,t")=Yt*M)u'j,p{x,n=Y.v'jW  • (3-34>
j j

For the temporal increment of pressure, homogeneous Neumann boundary conditions are 

imposed, and for w*the same boundary conditions are imposed as on u"+] , see 

[57,127,138] for details. The pressure is fixed at the outflow to specify the constant of 

integration.

3.6 Numerical methods for solving the linear systems

A range of linear/non-linear methods may be considered for the solution of the resultant 

system of a finite element discretization. Linear methods may involve either direct or 

iterative methods. By a direct method for solving a system of linear equations one means a 

method which after a certain finite number of steps gives the exact solution, disregarding 

rounding error. For the system

Ax = b, (3.35)

where the matrix A is full (that is, most of the elements of A are nonzero), direct 

elimination methods are almost always the most efficient. However, where A is sparse 

(that is, a large proportion of the elements of A are zero), iterative methods offer certain 

advantages, and for some very large sparse system they are indispensable. Iterative methods 

give a sequence of approximate solutions, converging under a finite number of iterative 

steps given suitable conditions. They may give useful results with fewer arithmetic 

operations than direct methods, but this is true only for less stiff systems with particular 

well-conditioned number properties. Thus, the choice between direct and iterative methods
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depends on the proportion and distribution as well as sign and size of the nonzero elements 

of A . Jacobi-based methods exploit the sparseness of the associated matrices via element 

by element implementation in right-hand side vector assembly, matrix assembly and 

solution. This strategy emerges throughout the finite element time-stepping procedure and 

is taken advantage of here to avoid assembly of complete system matrices.

3.6.1 Consistent mass-matrix iteration

Both fe  and fv  discretisation-stencils may be united under a single framework. First, one 

commences with the generalised weighted-residual form (weighting w /x)) for the time-

terms (lhs) of the stress-equation, subsuming temporal gradient discretisation on the time- 

step, and linear interpolation over a/v-subcell 77

If one adopts a Galerkin weighting ( w, (x) = ^ /(x)), one extracts the fe  “consistent mass- 

matrix” and characteristic cell-matrix expression on a/v-subcell, of areaQr :

(3.36)

[M/e/ U A r"+1L ’ where M
Q  2 1 1 (3.37a)

An alternative form, under fv  -weighting, w (̂jc)J=1 = = 1, would yield

(3.37b)
1 1 1

Under fv, singularity is avoided by preconditioning, such as diagonalisation, in row-sum 

form to enhance iterative conditioning ([140], [15]), yielding,
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1 0  0  

0  1 0  

0  0  1

1 0 0 
0  1 0  

0  0  1

(3.38a)

(3.38b)

To enforce nodal updates, one has to assemble the system of equations VQr , seeking to 

invert the mass-matrix. A Jacobi iterative solution procedure is identified to solve the 

created generalised matrix-vector discrete system.

3.6.2 Extrapolated Jacobi iteration

A general system of the following form emerges 

Mx -  b , (3.39)

where M, x and b represent the mass matrix, unknown solution difference vector over the 

time step [n,n+l] and the right hand side vector containing information, respectively. For 

velocity and stress in stage 1 and stage 3 a Jacobi Iterative method is used. A Jacobi 

iterative method for eq. (3.37a) can be written as (see [27,28]):

M d xu ' = (Md -  <oM)x* + mb, (3.40)

where M d is a diagonal matrix of the mass matrix, x is unknown vector at iteration k of 

the Jacobi iteration, and co is a positive relaxation factor, co> 0. Convergence of eq. 

(3.37b) for x yields the matrix equation solution for that particular iteration, as taking into 

account limits on both sides of (3.37b) gives:

M d x = (Md -  coM)x + cob (3.41)

which is of the required form of the eq. (3.37a). The iteration matrix for the above system 

will be the iteration matrix ( I -  o) M d1M ) , and this provides a method that is 

symmetrizable. Convergence for each iteration is possible, so long as the spectral radius of
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the iteration matrix is less than one. Such a condition is satisfied if the diagonal matrix Md 

is the row sum modulus o fM :

me
4 , ^  I K  I- (3-42)

y=]

An alternative Jacobi iteration technique was suggested by Hawken et al. [57] and Ding et

al. [47] where full system matrices can be avoided by a purely vector implementation. The

diagonal matrix M d is stored and the initial iterative starting vector x(0) = c(0) =0 is 

allocated. For each iteration the system of equations is:

M d x (r) =c(r\

M d x {r+]) =c(r) -co(Mxir) -b),
me

M d jc1" 1’ = e(r)-a[C£/LlMeLe)xl') -b)], (3.43)
e ~ \

me
M d x ^ n = c<'> - ® ( £ l '  [ M X ] - 6 ).

e~\

3.6.3 Choleski decomposition

After discretisation of the Navier-Stokes equation, describing incompressible fluid flow 

to its four incremental matrix equations, a Choleski decomposition [28,48] may be 

implemented to calculate the pressure difference through a Poisson equation (3.28c). The
• 1 9matrix K  in stage 2 is symmetric and positive definite with a banded structure, hence it is 

suitable to apply a direct Choleski approach.

Choleski decomposition constructs a lower triangular matrix L whose transpose L can 

itself serve as the upper triangular part. In other words one uses

LLT = K ,  (3.44)

where the element components of L are provided as:

1 Symmetric matrix means that ktJ -  kjt for /, j  = 1, . . . , N

2 Positive definite means that vT • K  • v > 0 for all non-zero vector v
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1 p i = 0  if (? < °) °r (<?>/?)• (3.45)

V k = i - m b J

(3.46)

(  /-i V
/ = k -  Y / 2// ij ik (3.47)

V  k = i - m b  y

Here, mh the band-width for the non-singular matrix L. Hence, the solution of the system 

A3c=b can be found by the following steps:

where, mpr is the total number of pressure nodes in the mesh.

3.7 Strain-rate stabilization (SRS or D -Dc)

Aspects of ‘Strain-Rate Stabilisation (D-Dcy  are herein investigated to hone the 

response of the base finite element and hybrid finite element/volume implementations via 

capture of continuous-discontinuous representation of Vw. At high Weissenberg number 

many numerical methods suffer from instabilities and numerical convergence may not be 

attainable. This is often attributed to the presence of solution singularities due to the 

geometry or dominant nonlinear terms in the constitutive equation. Accordingly, this 

scheme is implemented in the present context to investigate, in particular, the impact of

Ly = b , (3.48)

Lrx = y . (3.49)

The elements of x and y can be express as:

(3.50)
li V  k = ! - m h y

1 f M 1 
y , = T  b'~ (3.51)

/, k = i - m b  y
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such a stabilisation technique upon free surface problems. Following, the derivational 

theory of Guenette and Fortin [52] linking to so-called DEVSS-schemes, the rate of 

deformation tensor D is treated in two forms in the momentum equation, continuous and 

discontinuous representations (see also ‘Strain Rate Stabilisation’ in Belblidia et 

al.[ 15,16]). Accordingly, the momentum equation (in the weak form) becomes:

fRe<pt — d n =  f<p.(V.(r + 2f l D ) - Reu.Vu - V p  + V.(2a ( D - Dc))dQ . (3.52)
J dt J

This is achieved by appending the Galerkin-Least-Squares (GLS) correction term 2a(D- 

Dc) (see Baaijens [10]; or Walters and Webster [136]), in which D is discontinuous and Dc 

is continuous; also the parameter a is an auxiliary viscosity factor. Addition terms under the 

(Z)-Dc)-scheme are introduced into stages la and lb of the three-stage TGPC structure, and 

may be expanded in the following form:

I
Stage la: A‘(U"+1 - U ”) = bl(P",P"~',U",T",D"),  (3.53a)

1 1 1
, * . . m— mh— n-\—

Stage lb: Adu (U - V " )  = bdu{Pn,P"~',U",U 2,T  2 , D  2), (3.53b)

where

Al = ^ m  + £ ( S  + Ssrs), A l  = ^ m  + £ ( S  + Ssks), (3.54)
At 2 At 2

and

bcu = f t -[/}(S + SSRS) + ReN(U)]U-BTY +LT{P" + 0 , (P " -P " ' ) } ,  (3.55)

K  = to  ~[P(S  + Ssbs) + ReN(U)]U- BT}"*'n +LT{P" +0t(P"-P"~')}. (3.56)

One emphasizes here three aspects of detail (Belblidia et al.[15,16]): first, the crucial role 

of the localized capture of velocity gradients in Dc over global approximations (as used in 

conventional DEVSS-based schemes, often prone to solution degradation); second, the high 

solution accuracy available, via superconvergence properties afforded; third, the consistent 

and localized diffusive role played by such stabilisation terms, with properties of non-
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dissipative and thus highly-localized capture of sharp solution features (hence, importantly, 

gradient capture). One may comment that such stabilisation procedures may be used in the 

context of non-smooth flows (as here), to approximate solution singularity (in stress, strain- 

rates), or in fact more generally, to constrain the development of the numerical solution via 

its gradients (hence, indirectly, via the constitutive equation itself and its various 

dependencies).

In the above equations, the strain-rate stabilisation term (SRS-term) arises, but only once 

spatial discretization and integral weighting has been introduced. The difference factor term 

D-Dc takes the form

over the domain Q with weighting functions (pj (x). Here, a  is a stabilisation parameter, D 

represents the discontinuous rate of deformation tensor under ^-approximation (across

recovery [73]. Nodal stress values are computed at the vertices of each fv-sub-cell, details 

of which are outlined below.

3.8 Finite-volume cell-vertex for stress

The finite volume methodology is utilised here, for the hyperbolic constitutive stress 

equations. The concepts and rationale for application of cell-vertex finite volume 

techniques in this viscoelastic context are presented elsewhere ([137,138]). Concisely, by 

rewriting the constitutive model such as equation (2.67), with flux term ( R  = u 'V t ) and 

upon absorbing remaining terms under the source ( Q ), one may obtain:

(3.57)

element interfaces), and Dc its recovered equivalent based on localized velocity-gradient

(3.58)

with expressions for the source ( Q ) of

Q = 3 -  [2npd  -  / ( r )  r] + (1 -  ■ r + r  ■ V«)]. (3.59)
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Then, cell-vertex yv-schemes are applied to this differential equation utilising fluctuation 

distribution as the upwinding technique, to distribute control volume residuals and furnish 

nodal solution updates (Wapperom and Webster, [137]). Now, consider each scalar stress

component, r, acting on an arbitrary volume Q = , whose variation is controlled
/

through corresponding fluctuation components of flux ( R ) and source (Q),

—  f xdCl = -  f RdQ+ f QdQ.. (3.60)
a, a, a,

Such integral flux and source variations are evaluated over each finite volume triangle (Q/), 

and are allocated proportionally by the selected cell-vertex distribution (upwinding) scheme 

to its three vertices. The nodal update is obtained, by summing all contributions from its 

control volume Q/, composed of all/v-triangles surrounding node (/) as in Figure 3.1(a,b). 

In addition, these flux and source residuals may be evaluated over two separate control 

volumes associated with a given node (/) within the yv-cell T, generating two contributions, 

one up winded and governed over the fv-triangle T, (Rr, Qt), and a second area-averaged 

and subtended over the median-dual-cell zone, (Rmdc, Qmdc)• For reasons of temporal 

accuracy, this procedure demands appropriate area-weighting to maintain consistency, with 

extension to time-terms likewise. In this manner, a generalized fv-nodal update equation has 

been derived per stress component [140], by separate treatment of individual time 

derivative, flux and source terms, and integration over associated control volumes, yields,

2>,a,rnr+ Y, (l-^  XV
V7J V M X ',

where bT = (~RT +QT), -  { - R ^ .  + g WDC ); , Q7 is the area of the fv-triangle T , and

*7' •Q, is the area of its median-dual-cell (MDC). The weighting parameter, 0 < ST < 1,

controls the balance taken between the contributions from the median-dual-cell and the fv- 

triangle T . The discrete stencil (3.61) identifies the fluctuation distribution and median 

dual cell contributions, area weighting and upwinding factors ( a] -scheme dependent). The

^  = ^ - S r ) b r  , (3.61)
V7) VA4DC,
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interconnectivity of the /v-triangular cells (Ti ) surrounding the sample node (/), the blue-

shaded zone of mdc, the parent triangular /e-cell are all features illustrated in Wapperom 

and Webster [137]. In addition, a brief review on the fluctuation distribution (/v-upwinding) 

parameters {a] ), for i = I, j, A:on each/v-cell, is described in section 3.8.1 below.

3.8.1 Fluctuation distribution schemes- choice o f parameters (a ] )

The finite volume scheme utilised in the present study is based on various Fluctuation 

Distribution (FD) approaches. These are compact-stencil upwinding schemes, which update 

the solution in a triangular cell, by splitting flux variations to its vertices according to a 

prescribed strategy, see Figure 3.1a. Here, for the flux R in node i, we have

7 V  (3-62)
T

^  being the summation over all triangles that contain i as a vertex, in case of the
T

triangles 7],• • *,T6 see Figure 3.1b. The a f  are weights which determine the distribution of 

the flux Rt to vertex z of triangles T.

The criteria for the appropriate choice of a] are
(a) Conservation: Conservation gives the requirement that the sum of the coefficients a t over

the vertices i of each triangle T equals:

2 X = 1 -  (3-63)
/

(b) Positivity: that is associated with accuracy in the transient evolution, prohibiting the 

incidence of false extrema in the solution. Particular attention must be paid to the issue of 

dealing with sources, as these may lead to physical extrema that should not be suppressed 

artificially by imposing positivity.

(c) Linearity preservation: that is related to second-order accuracy at steady state.

Furthermore, FD approaches may be divided into linear and non-linear classes. Non-linear 

methods can be both linearity preserving and positive; alternatively, linear schemes may
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only possess one such property. Due to present interest in viscoelastic flows where sources 

can be dominant, the Low Diffusion B (LDB) scheme is selected. Based on the previous 

studies this scheme is performed an accuracy grounds, compared to those that satisfied 

positivity instead (see for example [137]). This is a linear scheme with linearity preserving 

properties, which has proven efficient in dealing with model problems, as well as some 

complex flows [137, 138]. The LDB distribution coefficients a j  can be defined per cell 

node i according to the angles yx and y2 in the fV triangle T, subtended on both sides of the 

cell advection velocity a (see Figure 3.1c). The LDB coefficients are defined as:

T s in r.co s^7- =  /I  /2_? (3 .6 4 )

srnfr, + y 2)

r _ siny2 cosy,  ̂ ( 3  65)
smO, +y2)

a \  = 0. (3.66)

The closer the advection velocity a is to being parallel to one of the cell boundaries, the 

larger the contribution to the downstream node at that boundary, hence minimising the 

introduction of spurious numerical diffusion.

To avoid interpolation when recovering the stress nodal values for the momentum 

equation, the finite volume tessellation is constructed from the finite element grid by 

connecting the mid-side nodes. This generates four triangular fv sub-cells per fe parent 

triangle, as indicated in Figure 3.1a. Then, MDC zones are defined per central node / as 

indicated in Figure 3.1b
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Aub N

Figure 3.1: a) fe parent triangle and fv subcells, b) Control volume about node /. with 

median dual cell (MDC), c) LDB-scheme. defining ^an d  y, in fv cell.

3.9  F r e e  s u r f a c e  m o d e l l i n g

A free-surface can be defined as an interface between a fluid 1 and fluid 2 having to be 

found as part o f the solution. The reason for the free designation arises from the large 

difference in the densities o f the fluid 1 and fluid 2. A low fluid 1 density means that its 

inertia can generally be ignored compared to that o f the liquid. Therefore, the fluid 2 

movement is independent with respect to the fluid 1. The only influence o f the fluid 1 is 

through the pressure applied to the fluid 2 surface. Modelling free surface flows is a multi

disciplinary challenge comprising fluid mechanics, mathematics, rheology, wetting, 

spreading, interfacial phenomena and heat transfer. A numerical model incorporating all
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these phenomena is highly complex to conceive. In that context regardless of the method 

employed, there are two essential features needed to properly model a free surface:

1. A scheme (or algorithm) needs to describe the shape and location of a surface.

2. Boundary conditions applied to the free-surface.

3.9.1 Time dependent free-surface prediction method

This time dependent prediction method, which is termed Phan-Thien (dh/dt) scheme, has 

been selected for the current implementation, to compute free-surface movement. In this 

method, to determine the eventual position of the free-surface (stage 4), after the TGPC 

fractional stages, the following kinematic boundary equation is enforced (see 

[111,145,37]):

DF 3F dF dF . = —  + v_ —  + u —  = 0. (3.67)
Dt dt ' dz dr

Where in cylindrical coordinates F(r,z,t) = [h(z,t)-r] is a function that defines the free 

surface position at time t, ur is the radial velocity component, vz is the axial velocity 

component and h = h(z,t)is the radial height see Figure 3.2. Thus, by differentiating F  with 

respect to r, z and t, one obtains:

dh dh i-v_ u =  0. (3.68)
dt ' dz

Conceptually, the free-surface location of the height function, h(x,t), is determined via the 

solution of the equation (3.68). In addition, the new position of each node on the free 

surface is computed using equation (3.68). Remeshing must be performed after each time- 

step to avoid excessive distortion of elements in the boundary zones.

In brief, the algorithm involved to compute the free-surface position in time is:

(i) Update the kinematic fields (velocity) on the shifted domain (t„+j), solving 

fractional-stages with dynamic boundary conditions.

(ii) Calculate the new position ( /zM+1 ,z) of each node on the free-surface using:
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dhn+] dh
 = (ur - v .  — )" (on the time step )

dt ' dz

(iii) Remesh after each time-step to readjust the boundary zones.

7

(3.69)

Figure 3.2: Time dependent free-surface predictions

3.9.2 Theoretical prediction

Tanner [119.120] reviewed the position on die-swell solutions with updated predictive 

theory for a w ide class o f constitutive equations, including Phan-Thien Tanner (PTT), pom

pom and general network type models. According to Tanner, for the PTT family o f models 

and from a theoretical viewpoint, the extrudate swelling ratio o f an elastic fluid may be 

predicted as:

R
+<f>- + 0.13. (3.70)

Where, N/ is the first normal stress difference, x is the shear stress. Ro is the diameter o f the 

tube and R is the diameter o f the extrudate emerging from the tube. This classical theory 

functionally relates the swell to the ratio between N/ and xw at the die-wall (vr) in fully 

developed shear flow.

Tanner (1970) [119] established the swell ratio relationship as:
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f  R6 J

J  " (2T2j N ])d{r2)JO

Although N/  is often closely proportional to r% it is often even closer to

M = krm.

If one uses (3.71) and (3.70) one gathers accordingly, the correction:

_R_ r
1 +

4 -  m
m + 2 2 r

+ 0.13.

(3.71)

(3.72)

(3.73)

which agrees with (3.70) in the limiting case m —» 2.

The swell ratio is then defined as /  = R/R , where R is the limiting external radius o f the 

extrudate jet and Ra is the die radius (see Figure 3.3).

1
die-geometry and je t extrudate

Figure 3.3: Die-swell geometry

3.9.3 Surface solution reprojection

To compensate for free-surface (lie-segment) adjustment and to satisfy the zero normal 

velocity free-surface boundary condition, nodal coordinates after the die-exit are modified. 

Consequently, the velocity solution must be projected onto the new surface position.
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Therefore, if (r, ,z ,  )and ( r ,,z 2) a  re two sampling points selected from the new surface 

position, then the updated velocity components are divided through the projection:

v- = K m  cos(&)

= '

where. Vtota/is the velocity magnitude on an element that takes the form:

K o l a /  =  V V -' + V r •

(3.74)

(3.75)

For the new free-surface position, the angle 6 between the boundary and horizontal z (see 

Figure 3.4) is:

(3.76)

This procedure happens only at the end o f each time step.
r

r

Figure 3.4: Coordinate

3 .10  M o n i t o r i n g  th e  so lu t io n

To monitor the solution process one needs a criterion to calculate error estimation for 

the hybrid finite element/volume scheme to achieve a convergence tolerance threshold. An 

error estimation criterion |p (* )||;. is given by:
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\\x"+] - x i

“ • < 3 - 7 7 )
I Hr

where x"is a solution vector at time step n and relative increment norms are applied || ||^,

over least square (r=2) or infinity (r=oo) norm measures. In addition, a: is a small 

convergence tolerance value representing the degree of error, while A? is the associated 

time step, At = t"+l - t ".

For non-zero Reynolds number (Re) and Weissenberg number (We), such convergence 

criteria (3.77) may be relatively scaled, in the form:

for velocities

or, Re||x”+1 - x ”|| j j
 n n ~ ot\ = — conventional, a , * — scaled (3.78)

A/|jc | Re ' R e

for stress :-

a 2We\\x"+]- x n\\ i j
 n n tXj = — conventional, a? * — scaled (3.79)

A/|̂ c I We We

3.11 Free-surface tolerance monitoring and convergence criteria

In order to analyse the evaluation of free-surface position and its movement, with 

respect to its accuracy and stability in deformation, it is necessary to monitor its temporal 

relative increment norms (in L2 and measures). Here, an error estimation criterion

||£(r)|| is defined as a relative increment norm factor:

rn+] - i r n
a

r
a

11̂ ) 1= . . .  a * T O L _ C ,  (3-80)

where rn is the free-surface radial coordinate of the vector at time step n. Again, norms 

may be taken over L2 and measures. Here, the L2 norm, forcr = 2, is a root mean
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square measure; correspondingly Lm (where a  —>0 0) represents a maximum norm measure 

over the numerical solution vector. Then, TOL C is a predefined level of tolerance to 

invariance in reaching steady-state convergence and is taken of the order of 

10~5 <TOL C <10_\
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Chapter 4

Numerical Simulation of Viscoelastic and 
Viscoelastoplastic Die swell flow

In this chapter one focuses on the modelling of viscoelastic and viscoelastoplastic fluid 

flow in steady free-surface die swell situations. This common benchmark problem 

introduces a discontinuity at the die-exit extrusion plane and the shape of the free-surface 

must be determined apriori. In this context, some novel algorithmic approaches associated 

with strain-rate stabilisation are introduced to incorporate the die-exit singularity into the 

problem, and alternative dynamic free-surface location strategies are investigated.

The momentum and continuity flow equations are solved by a semi-implicit time- 

stepping Taylor-Galerkin/pressure-correction finite element method, whilst the constitutive 

equation is dealt with by a cell-vertex finite volume (cv/fv) algorithm. This hybrid scheme 

is performed in a coupled fashion on the nonlinear differential equation system using

* Material of the present chapter is based on that submitted under “Simulation of 
Viscoelastic and Viscoelastoplastic Die swell flow”, by A. Al-Muslimawi, H.R. Tamaddon- 
Jahromi and M.F. Webster, Journal of Non-Newtonian Fluid Mechanics.
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discrete subcell technology on a triangular tesselation. The hyperbolic aspects of the 

constitutive equation are addressed discretely through upwind Fluctuation Distribution 

techniques.

The study explores both viscous Newtonian and non-Newtonian flow response. 

Viscoelasticity is introduced through the network class of models, of exponential Phan- 

Thien Tanner (EPTT) type; shear-thinning, strain-hardening/softening, moderate-high 

Trouton ratios. Initially, the influence of variation in Weissenberg number on swelling ratio 

is investigated. The analysis is then extended into viscoelastoplasticity through the viscous- 

limiting Papanastasiou approximation, coupling this with the Phan-Thien Tanner model. 

There, the representation and tracking of yield front movement is pertinent. Findings reveal 

there is significant impact on swelling ratio and exit pressure correction due to variation in 

yield stress levels and viscoelasticity, with viscoplastic influences countering those due to 

elasticity, and vice versa.

4.1. Introduction

This chapter is concerned with solving the extrusion problem under visco-elasto-plastic 

material response, which is of particular importance in industrial polymer melt processing. 

The dynamic free-surface, swell and exit pressure losses generated are the key solution 

features. Early viscoelastic solutions for die-swell and a Maxwell fluid appeared in Tanner 

[119]; followed by generalized Maxwell fluid studies by Chang et al. [39] on slit and 

circular die swell flows with Collocation and Galerkin methods. The upper limits of 

Weissenberg number (We= X y , X characteristic relaxation time, y  based on mean flow rate) 

reached in [39] were J¥e=0.05 for slit and We=0.2 for circular dies, limitation being 

attributed to the Maxwellian lack of finite extensibility at finite deformation rates. In 

contrast, Caswell and Viriyayuthakorn [33] employed backtracking techniques and a single 

integral Maxwell model for viscoelastic calculations, to reach a Deborah number of 1.0 

(De= Zyw, X characteristic relaxation time, yw downstream wall shear-rate). Subsequently, 

Crochet and Keunings [44] addressed the extrudate swell problem, with Oldroyd-B fluids
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and a mixed Galerkin formulation, applied to slit, circular and annular dies; a limiting 

Deborah number (Decrit based on wall shear-rate) of 4.5 was reported for the circular case. 

Bush et al. [29] also conducted investigations, using both finite element and boundary 

integral methods, for planar and axisymmetric extrusion with Maxwell fluids. Under the 

finite element implementation, the Decru achieved was 1.5, whilst boundary integral 

solutions offered a lower limit, Dem/=0.75. Bush [30] also reported polymer concentration 

effects (solvent p  -factor) on swell ratio for Oldroyd-B and circular free jets. At any given 

Weissenberg number, findings revealed that swell ratio was particularly sensitive to high 

polymer concentration {i.e. low f ) .  Clermont and Normandin [41] likewise applied the 

stream-tube method to Oldroyd-B fluids for several values of polymer concentration, 

0.01^?<1.0. Similarly, Ngamaramvaranggul and Webster [94] established semi-implicit 

Taylor-Galerkin/Pressure-correction procedures for such extrudate problems, therein 

appealing to a streamline-based free-surface detection technique.

More recently, Tanner [120] reviewed the position on die-swell solutions with updated 

predictive theory for a wide class of constitutive equations, including Phan-Thien Tanner 

(PTT), pom-pom and general network type models. Bringing citation to the present date, 

more recently Ganvir et al. [50] used the Arbitrary Lagrangian-Eulerian (ALE) technique to 

simulate extrudate swell for PTT model fluids, with comparison to previously published 

numerical and experimental studies for LLDPE and HDPE melts. The simulated extrudate 

swell profiles for long and short dies were found to be in good agreement with reported 

experiments. Considering dilute polymer solutions representative of Boger fluids, Mitsoulis 

[82] determined extrudate swell factors and exit corrections for capillary and slit dies whilst 

employing a multi-mode integral constitutive equation. With respect to the pom-pom model 

solutions for branched polymer melts, Oishi et al. [99] reported on the influence on 

swelling ratio of the various parameters of the extended pom-Pom model (XPP), 

investigating such issues as anisotropy, solvent fraction, entanglement, dangling molecular 

arms and Weissenberg number. There, free surface movement was determined by a Marker 

and Cell (MAC) particle tracking technique using virtual marker-particles and an Euler 

tracking method. Earlier Tome et al. [124] developed these free-surface numerical methods
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to simulate the free-surface flows of viscoelastic Oldroyd-B fluids. This method was 

applied to simulate extrudate swell for various Weissenberg numbers, and a qualitative 

comparison was made with those obtained by Tanner [119] and Crochet and Keunings [44], 

showing greater swelling ratios than those obtained by both these comparative studies.

In more recent years, simulations have been extended to the consideration of 

viscoplastic flow with yield stress, to represent materials such as paints, slurries, pastes and 

some food products, in so-called Bingham fluid modeling [22]. To computationally handle 

low shear-rate limiting behaviour effectively, Papanastasiou [102] suggested the inclusion 

of a regularization stress growth exponent (mp) to control the initial rate of rise in stress. 

Subsequently, such a modified model has found wide appeal and been applied to several 

types of flow problems, as in: one-dimensional channel flow, two-dimensional boundary 

layer flow, and two-dimensional extrusion flow (Papanastasiou, [102]). Ellwood et al. [49] 

used the Papanastasiou model to study steady and transient jets from circular and slit 

nozzles, noting the influence of yield stress on the resulting extrudate. Likewise, Abdali et 

al. [2] solved entry and exit flows of Bingham plastics through planar and axisymmetric 4:1 

contractions to determine extrudate swell factors. This demonstrated that extrudate swell 

decreases as yield stress (x0) increases. In addition by using an extra stress based cut-off 

criterion for exceeding the yield stress, yield fronts were accurately determined, revealing 

the extent of the yielded and unyielded flow regions.

Beverly and Tanner [20] proposed a suitable model for viscoelastoplastic response, in 

simulating some experiments on plastic-propellant dough [32]. These authors [20] 

employed a Herschel-Bulkley model for plasticity, alongside a linearised viscoelastic Phan- 

Thien/Tanner model (LPTT). Such a LPTT model, of shear-thinning, sustained strain- 

hardening quality, is held suitable to represent the material properties of some common 

polymer-solutions. Subsequently, these results were reproduced for an extended range of 

apparent shear rates by Mitsoulis et al. [81] with the addition of the Papanastasiou model to 

the CEF viscoelastic model. On extrudate swell behaviour, these visco-plastic-elastic 

solutions demonstrated close agreement with experiments. Moreover, Belblidia et al. [17] 

also applied a Papanastasiou-Oldroyd approximation to the 4:1:4 contraction-expansion
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flow problem using a hybrid finite element-finite volume subcell scheme. The present 

chapter advances upon this position by considering the dynamics of free-surface die-swell 

flow, whilst also introducing a richer rheological dimension, with the properties of shear- 

thinning, strain-hardening/softening, and moderate-high Trouton ratios. This goal is 

achieved by combining the viscoplastic Papanastasiou-Bingham model with the 

viscoelastic Phan-Thien Tanner (EPTT) model, suitable for typical polymer melt response. 

Thus, a systematic study is undertaken on swelling ratio, exit pressure loss and flow 

response, as a consequence of viscous, plastic and viscoelastic material behaviour. In 

particular, investigation follows variation in solvent fraction (polymer concentration), 

EPTT strain-hardening and yield stress. This leads to identifying principal differences and 

root causes for swell effects due to viscoplastic and viscoelastic response, extent and shape 

of yielded-unyielded flow regions generated, and determination of yield fronts.

4.2 Governing equations and numerical scheme

Under viscoelastic incompressible isothermal flow conditions, the relevant mass 

conservation and momentum equations are introduced in non dimensional terms, in 

equations (2.64) and (2.66) respectively. In addition, the constitutive equation for the 

exponential Phan-Thien Tanner (EPTT) model is given in equation (2.67).

The hybrid finite element/volume method is employed in the present study to provide 

solutions to the relevant governing field equations. Features of the current hybrid approach 

include a time-stepping procedure that combines a finite element discretisation (semi- 

implicit Taylor-Galerkin/Pressure-Correction) for continuity and momentum equations, and 

a cell-vertex finite volume scheme for the constitutive equation (see Webster et al. [140]; 

Wapperom et al. [137]; Walters and Webster [136]; Matallah et al. [73]). Background detail 

on this scheme was introduced in chapter 3. A combination of the viscoplastic 

Papanastasiou-Bingham model with the viscoelastic Phan-Thien Tanner-(EPTT) model is 

achieved in this study (see section 2.3.6). In this context, a minor change in the governing 

equation lead on to a modification in the numerical algorithm. No change occurs in stage 2
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(equation 3.26e) and stage 3 (equation 3.26f) of Taylor-Galerkin/Pressure-Correction 

fractional stages. The main modification is apparent in stages la and lb, which express in 

the following form:

Stage la:

2 Re , »+■
At

2 We 
At

(u 2 -w") = [V-(r + Rew-Vw]" +V

in+—
d 2 +d"

- v i p ' + M p ' - p ”-1]),

(4.1a)

■ i
(r"+l/2 -  r ") = [2(1 - p  j<p(IId j d - f z -  We(u • V r -  (Vi/)r • r  -  r • Vh)]", (4.1 b)

Stage lb:

o e yj | ^
—  ( u ‘ - u ”) = [V T ~ R e u  Vu] 2 +V 
A/

2p><p{IIdj 
L _ - 2 l

d ’ + d "

We
At

- v ( p -  +el[p” -p"-'] , 

(4.1c)

' — 1
(r"+l - r " )  = [2(\- p}<p(IId)d  -  f r  -W e(u-V r -(V u )T - r - t -Vu] 2. (4. Id)

1 II______

The extra term </>(IId) is defined in equation (2.30) in chapter 2.

4.3 Problem specification

4.3.1 Boundary and free surface location

The die-swell problem may be subdivided into two flow regions, each of different 

character, the shear flow within the die and the free jet flow beyond the die. Each region 

has its unique set of boundary conditions and for reasons of symmetry, it is only necessary 

to consider half of the domain, that above the central axis of symmetry. To solve the 

governing system of partial differential equations for the EPTT model it is necessary to 

impose suitable boundary conditions. EPTT/Pap-EPTT inlet stress solutions are set by 

solving the corresponding set of nodal-pointwise ODEs. The inlet velocity profile 

(pressure-driven pure shear flow) at the equivalent set flow-rate, is initially adopted for a
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fully-developed analytic Oldroyd-B form (of constant viscosity), but subsequently is 

iteratively corrected to that of EPTT/Pap-EPTT, using feedback from the internal field 

solution (shear-thinning). This procedure is equivalent to solving the one-dimensional 

equivalent shear flow problem. Fully developed boundary conditions are established at the 

outflow ensuring a constant stream wise velocity component vz and a vanishing crossstream 

component ur. In addition, no-slip boundary conditions are imposed along the stationary 

die-channel walls. Along the free surface, slip conditions are imposed, surface tension may 

be neglected and the normal velocity component vanishes.

In order to detect the free surface evolution, the time dependent prediction scheme (dh/dt), 

which is presented by Phan-Thien has been selected for the current implementation. In this 

approach, equation (3.68) is utilised to compute the new position of each node on the free 

surface following the stages of section (3.9.1).

Moreover, an important feature of this study is the extrudate shape, which is termed as 

the swell ratio. This ratio is defined as^  = ^/i?o, where R and Ra are the final extrudate

radial and die radius, respectively. Additionally, in the present study a finite small value of 

the Reynolds number is assumed, Re= 10'4 and the time-stepping procedure is monitored for 

convergence to a steady state via relative solution increment norms, subject to satisfaction
o a

of a suitable tolerance criteria, taken here as 10’ with typical At set as 0(10 ). The initial 

mesh for the study is illustrated in Figure 4.1. Mesh refinement has also been performed 

across a series of three meshes (see Table 4.1), from which we observe mesh convergence. 

Here, close agreement has been observed between the computed solutions, with variance 

less than 0.1% between coarse-medium-fme meshes. Hence, solutions are reported on the 

medium meshing option. Furthermore to confirm the issue of independence of findings re 

extent of fully developed flow regions, we have doubled the length of the upstream and 

downstream sections, and detect no significant difference in the plotted patterns between 

our standard and longer meshes.
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Die-exit

Figure 4.1: Medium mesh patterns, die length 4, jet length 6

Table 4.1: Mesh characteristic parameters

Meshes Elements Nodes Degrees of freedom 
(u,p, T)

Coarse 1994 4033 25243
Medium 3200 6601 41307
Refined 6000 12261 76697

To construct the essential basis for solution and internal starting conditions, the problem is 

first resolved for viscoelastic fluid properties, using the exponential Phan-Thien Tanner 

(EPTT) representation. Various parameter settings have been chosen for the EPTT model, 

namely with {/?=0.9, £=0.25} - high solvent fraction, low Trouton ratio, and with {/?=l/9 , 

£=0.25} - highly-polymeric, low Trouton ratio. A switch to £=0.02 yields high Trouton ratio 

comparisons. Then, from this position, the viscoelastoplastic problem is initiated with 

additional viscoplastic parameters o f yield stress (x0) and exponent (mp). Throughout such 

solution phases, there was no change in boundary condition settings necessary.

Finally, aspects o f *Strain-Rate Stabilisation (D-Dcf  are investigated for this Pap-EPTT 

constitutive equation. As stated in section (3.7) an extra terms (D-Dc) is applied to avoid the 

instabilities and numerical divergence may be attainable.
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4.4 P a p a n a s t a s i o u - E x p o n e n t i a l  P h a n - T h i e n  T a n n e r  ( P a p - E P T T )  - 

R h eo lo g ica l  p r o p e r t i e s

Here, one describes the rheological properties o f the Papanastasiou-Exponential Phan- 

Thien Tanner (Pap-EPTT) model with respect to the model parameters in question. In 

particular, one presents steady-state shear (//) and extensional (//£•) viscosities, the shear 

stress (xrz) and the first normal stress difference (Nj) (see section 2.3.6). 

t 0 variation: Figure 4.2 shows these rheological functions for this shear-thinning Pap- 

EPTT model when the level o f yield stress ( iG) is varied. Here, the solvent fraction is 

iji=0.9) and 8=0.25 at fixed mp- \ alue o f 1CF. The shear viscosity plot (Figure 4.2(a)) reflects 

the elevation in zero-shear rate value through i o=(0.01,0.1,0.5,1.0) o f (1.5.6.25.50). From 

Figures 4.2b (legend as in Figure 4.2(a)), one detects the lower limit o f extensional 

viscosity (xo=0.01) and upper limit (xo= 1.0), with rising limiting zero-deformation rate 

extensional viscosity o f three time that in shear. The insert expands the plot to show the 

limited strain-hardening achieved around the deformation rate o f unity. Increasing the x0- 

level has a significant impact upon shear stress, as in Figure 4.2(c), which appears at 

deformation rates less than unity, while there is insignificant change at deformation rates 

greater than unity. Data in Figure 4.2(d) infer a strengthening o f N/ for shear-rates lower 

than 101. At the larger extremes o f x0 (x0 ~ unity), further contributions to Nj appear; yet. 

the influence o f x0-variation on the first normal difference becomes negligible at shear-rates 

larger than ~ 101.

10

[1] EPTT

[2] P a p - E P T T ,  x0=0 .01

[3] P a p  - EPTT, t0=0.1

[4] P a p - E P T T ,  t0= 0 .5

[5] P a p - E P T T ,  t0= 1 .0

10° -*—*■---
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[1] EPTT

[2] P a p - E P T T ,  t o=0.01

[3 ] P a p - E P T T ,  t o=0.1

[4 ] Pap -  EPTT, t o=0.5
[5] P a p - E P T T ,  t q—1.0

1 0 °

d)

10

[1]  E P T T
[2 ] P a n -  E P T T ,  t 0= 0 .0 1
[3 ] P a n -  E P T T ,  t 0= 0.1
[4] P a n -  E P T T ,  x0= 0 . 5
[5] P a n -  E P T T ,  x0= 1 . 0

10 °

V

Figure 4.2: a) Shear viscosity, b) extensional viscosity, c) shear stress, d) first normal 

stress: EPTT, Pap-EPTT. To variation. mp= 102, ft=0.9, 8=0.25
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{I, e}-variation: Two pairings of these parameters are considered, s={0.02, 0.25} and 

/={0.9, 1/9}, at fixed x0-value (xo=0.01) and mp-value of 10 (elevation in mp to amplify 

field stress effects), as seen in Figure 4.3. These choices are made to reflect: (i) in e- 

jarameter, high and low Trouton ratios (extensional viscosities), and (ii) in /^-parameter, 

Hgh and low solvent fraction, respectively. The base choice is that of (s, /?}={0.25, 0.9}. 

7he Pap-EPTT response for /?=0.9 and two different s-values (e={0.02, 0.25}), is closely 

natched in both shear viscosity and first normal stress difference, Figure 4.3(a,c). While, in 

ectensional viscosity of Figure 4.3(b), noted differences arise over the deformation rate
1 1  9nnge from 10' to 10 ; and likewise in Nj at low rates less than 10' . Significant differences 

a*e observed in all three functions under the highly-mobile state of /?=l/9, apparent in shear 

move rates of 10° and in extension above 10'1. Here, {s, /?}={0.25, 1/9} is the more shear- 

tlinning of the two 8= (0.02, 0.25} cases, which is also reflected therefore in Nj. Hence, 

vhen (s, /?}={0.25, 1/9}, extensional response is clearly more complex, rich in variation 

aid rate dependent: displaying first strain-hardening1 in the rate-range 1 0 ' 1 to 1 0 °, prior to 

softening2 in the rate-range 10° to 104. Peaks and limiting high-rate plateaux of t|b vary 

fiom case to case: reaching peaks of 5 units for (e, /?}={0.25, 1/9}, 7 units for {e, /?}={0.02, 

09}and 30 units for {e, /?}={0.02, 1/9}; and plateaux at {rates, levels} of {103,4*10’1} for 

/?}={0.25, 1/9}, {102,2* 10°} for {e, £}={0.02, 0.9}and {104,4*10-1} for {e, ytf}={0.02, 

1,9}.

1 Ii this range, shear viscosity is fairly constant, so Trouton ratio (Tr) is dictated by extensional viscosity 

ahne

2 Ii this extended range, decline in shear viscosity strongly contributes to a first rise in Tr (up to unity in shear

viscosity), dropping thereafter.
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[3] P a p - E P T T ,  0 = 0 . 9 ,  e = 0 .0 2
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[1] P a p - E P T T ,  p=(.9,i = 0 . 2 5
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Figure 4.3: a) Shear viscosity, b) extensional viscosit}, c) firs t normal stress: 

Pap-EPTT. mp= 103, r0=0.01
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4.5 Numerical results and discussion

4.5.1 Swelling ratio and exit pressure correction

t 0 variation'. Figure 4.4(a) demonstrates swell profiles as a function of x0, corresponding to 

the free surface location over the jet region at Weissenberg number, We=5. Findings for 

swell reveal, as shown by others (Beverly and Tanner 1989 [20]), that viscoplastic 

influences counter those due to elasticity, with elevation in plasticity suppressing swell 

whilst rise in elasticity stimulates swell. Hence, the jet swelling is observed to diminish as 

yield stress level (x0) rises (akin to inertial over viscous response, governed by zero shear- 

rate viscosity), so that, the minimum swell corresponds to the instance with the largest yield 

stress (xo=0.1). From Mitsoulis [83], it is clear that a Bingham response reduces swelling 

from about 13% to zero as the yield stress increases, and similar considerations apply here 

with a more complex model. Results on swelling ratio are charted in Figure 4.4(b) for 

We={\,5} and mp= 10 , with We=l data showing a quadratic decline from the purely 

viscous level initially up to xo=0 .0 2 , followed by an almost linear fall-off thereafter, noted 

up to t o=0.5. The We=5 data, tends to suppress this early quadratic decline in swell at low- 

x0, but ceases to have any further influence beyond the x0-level of 0 .1 , where after the 

viscoplastic influence dominates. In this low-x0 regime, the evidence at We-1 points to a 

strong influence of shear viscosity and shear-thinning causing the swelling ratio to diminish 

with rising yield-stress (x0). That is, with shear-thinning taken with reference to the 

equivalent Newtonian level of that for the largest yield-stress considered. At We=5 and in 

comparison with We= 1, the difference in levels of shear viscosity and shear-thinning are 

much less prominent for different values of x0, so there is less relative change observed in 

swelling ratio as x0 increases.
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1 .1 4

EPTT, to=0  
P a p - E P T T ,  xo= 0 .01  
P a p - E P T T ,  to= 0 .0 2  
P a p - E P T T ,  Tq—0.1

^  1.12
1 .0 8

1 .0 4

1 .0 8 0.2 0 .3 0 .4 0 .56
T,Z 0

Figure 4.4: a) Swell profiles. We =5; b) swelling ratio vs To, We =1, 5: To variation,

m„=102, /J=0.9

Exit pressure correction results are presented in two forms: normalised with respect to wall 

shear stress, n 'f" , and normalised against the purely viscoelastic fluid, with definitions:

n w a "  =  A P  ~  A f t   ̂ ^ 4  2 )

~ T » . o

n l-PH _  ~ A?- ^ I ’ap-l-pn (4 2)
( A p - A p ) ,pll

vhere A/; is the overall inlet-exit pressure drop in the system. Ap  is the pressure drop 

bised on the fully developed channel flow and twQ is its wall shear stress. The 

r i 'f  correction taken against the wall shear stress reflects the standard form, as taken under 

a ‘Couette Correction accounting for wall shear and viscoelasticity. That taken against 

EPTT, n ^ ‘ri , bases the comparison on the incremental difference due to yield stress alone.

Fgure 4.5(a) shows the corresponding findings for n j f  for We={ 1,5} as a function o f 

y eld stress t0, which increases linearly according to t0 rise: with a relative difference rise in 

n f"  over t0 =[0.01.0.5] o f approximately 6% at We= 1, elevating to nearer 15% at We=5.
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Effectively, less swell, is compensated by a larger exit pressure correction. A 

supplementary linear increase in exit correction measure n r" is observed in Figure 4.5(b)

on We—5 data, when normalised against EPTT(We=5); this reaches around 30% above the 

unit-base EPTT reference line when t o=0.5. This finding is replicated for correspondingly- 

scaled We= 1 data (not shown, noting base-line shift in levels), and is unequivocally 

attributable to the viscoplastic contribution alone.

a)
0 .3

0 .2 8

0 . 2 6

0 . 2 4

0.22
0 .50.2 0 .3 0 .40.1

ex

1 .5  r

1 .4

1.3aa
LU xd)

C  1.2

1.1

b)

l/Ve=5

EPTT reference

0.1 0.2 0 .3 0 .4 0 .5

Figure 4.5: a) exit correction nex and xw scaled by 7*xo. We =1, 5. b) exit correction 

nex normalised by EPTT (We =5): To variation. mp= 10 , fl=0.9

We variation: In contrast to the foregoing; we next consider swell profile results through 

variation in We at fixed T0-value ( i0 =0.01) and w/;-value (mp=10 ), as in Figure 4.6(a.b) for 

EPTT and Pap-EPTT models. Here, findings oppose those observed under x0 rise, in that 

larger elasticity provokes greater swell and lesser exit correction. Hence, there is rise in 

swell according to increase in We, where maximum swell is observed at the largest We for 

both cases o f EPTT and Pap-EPTT models: at We=5, swell reaches levels o f 1.151 for the 

viscoelastic EPTT model, and slightly less in 1.149 for the viscoelastoplastic Pap-EPTT 

model.

The pressure distribution along the axis o f symmetry with rising We, is also included in 

Figure 4.6(c-d). For each We, one observes a consistent linear decline in pressure 

throughout the channel, after which the pressure reduction declines quadratically to zero,
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achieved locally at a distance around one unit beyond the die-exit. With a rise in We, there 

is a fall in channel pressure-drop (reduction o f gradient), as apparent in the zoomed-insert 

o f Figure 4.6(c). The zoomed representation for the die-exit zone alone o f Figure 4.6d 

would also indicate a minor undershoot and recovery occurs in the pressure distribution at 

the centre o f the flow, before taking up jet-flow conditions by around 3 units from the die- 

exit.

a) b)

Newtonian, We=0 
EPTT, W e=0.5 
EPTT, We=1 
EPTT, We=5

Newtonian, W e=0  
P a p E P T T , W e=0.5  
Pap_EPTT, We=1 
Pap EPTT, We=5

1.081.08

1.041.04 pure EPTT Pap-EPTT

6
Zz

— I__________ I
0 2 4 6

Z

Figure 4.6: Swell profiles, a) EPTT, (b) Pap-EPTT; c) pressure profiles on symmetry-axis, 

d) zoom of pressure drop in jet region: ife-variation. xo=O.OE mp=l0~, f=0.9

5

CL

EPTT, We=0 
Pap - EPTT, We=0.5 
Pap - EPTT, We=1 
Pap - EPTT, We=5
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For further clarification, swelling ratio is drawn as a function o f We, as depicted in Figure 

4.7. From this data a parametric functional relationship may be established between 

swelling ratio and We for We> 1, rising from 1.14 when We- 1 to around 1.153 when 

We= 10. For We greater than 6, there is gradual relaxation in swelling, approaching an 

ultimate plateau at larger We.

1 . 1 5 5

1 . 1 5

1 . 1 4 5

X  1 . 1 4

1 . 1 3 5

1 3

1 . 1 2 5 2 9  1 00 1 3 5 6 7 84

We
Figure 4.7: Swelling ratio as a function o f We: Pap EPTT To=0.01, m=\02, {3=0.9

At a larger scale in Figure 4.8(a), these swell results may be charted against the elastic 

theory, as expounded by Tanner [l 20] and given in equation (4.4)

Z  = 0A3 + 1 +
4 - m A ( /V, V

2 + m v 2 r y.
(4.4)

with various choices o f factor mT and accuracy o f approximation discussed therein. This

classical theory, based on single relaxation-time elastic recoil with sudden removal o f tube- 

walls in a shearing flow, functionally relates the extrudate swell to the ratio between N) and 

Tw at the die-wall in fully-developed flow. Note from equation (4.4), that a Newtonian 

swelling ratio o f 0.13 is gathered with mT= 4 and vanishing pre-factor; with { mT= 1, 2, 3}

the pre-factor equals {1, 1/2, 1/5}, respectively. In Figure 4.8(a) with 2<m1 <4, the base
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choice of exponent from the theory is m, =2 (derived according to the commonly 

applicable, quadratic relationship between Nj and r , TV, = r '"7 ), which provides an over

strong elastic-theory swell estimate; whilst a reasonable fit is extracted with m, =3.8 

(relevant for these more highly solvent concentration ranges, /?=0.9). This concurs with 

comments in Tanner [120] on common realistic fluid behaviour, that quotes “often N x = r

in proportionality, yet even more often. N ] = t "1' , mr >2”. Hence, it is not surprising that 

mi =2 fitting provides a theoretical overestimate, and clearly therefore, with reference to

common occurrence, the range o f deformation rate considered must also be an issue.

Moreover, the results on exit correction as a function o f We are given in Figure 4.8(b), 

when normalised with wall shear stress n f u . Hence with both viscoelastic and viscoplastic

contributions accounted for, monotonic decline is observed in riff" with minima around 

0.227 units at We= 10. Noting channel pressure-drop declines with We-rise, still a dominant 

factor in the declining i f f " , is the falling wall shear-stress (xw). In contrast, the trend in exit

correction is non-monotonic when normalised against the equivalent EPTT model ( nLp"

data not shown), when only the yield stress contribution is differentiated. The relative 

reference may be taken at variable EPTT(fTe), so that both the EPTT elastic and shear- 

thinning effects are suppressed. When this is the case, a decrease in exit correction is 

reported in the extended range 2 <We < 9 ;  yet. there is a slight increase detected in the 

initial range 0 < We < 2 .
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Figure 4.8: Swelling ratio, a) Tanner theory (2005). ITe-variation, b) exit correction 

nexand xw scaled by 7* To, io=0.01. mp= 102, /?=0.9

/? variation: At fixed 8=0.25, significant swelling may be observed with /?=l/9 (increased 

slope), when compared to that with /?=0.9, bar in the range 0<We<0.5 and as illustrated in 

Figure 4.9(a.b). At any given value o f  We, the swelling ratio is larger with less solvent 

concentration, as concluded by Bush [30], To quantify and at We=7 for example, the 

swelling ratio is only 14% with /?=0.9 but 22% for fi=\/9. Additionally for /?=0.9, final 

swelling is practically insensitive to change beyond We=2; in contrast at /?=l/9, swelling is 

continually rising from We- 1 to We=7, showing increase of almost 8%. Full swell profiles 

o f  Figure 4.9(b) reveal that at the extreme o f  low /?=l/9 and high We=7, a prominent 

solution feature is the overshoot that occurs at a distance o f  around unity from the die 

(curve-[4]). This is an important result and one that is rationalized as primarily due to N) 

influence, as follows. From We=\ data (lower deformation rate), some minor enhanced 

swell is detected in the {/?=l/9. 8=0.25; curve-[2]} solution compared to {/?=0.9} solutions 

(curves-[l .3]) -  this is the region o f  extensional viscosity domination (see Figure 4.3b). 

Alternatively, from We=7 data (larger deformation rate), much larger enhanced swell is 

observed in the {/?= 1/9}-solution above that for the {/?=0.9}-solution (curve-[4] vs curve- 

[3]) -  this is the region in which extensional viscosity is softening (so reducing), and where
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differential in {Â /, >9=1/9} is captured; that is, with Nj weakening upon rise in deformation 

rate, displaying an order o f  magnitude increasing shift at fixed rate from levels for 8=0.25 

to 8=0.02 (see Figure 4.3c). Here, we are able to absorb the rheological benefit of the EPTT 

selection above that o f  the sustained hardening LPPT model-hence rationale for selection.

a) b)
1.22

[1]  P a p E P T T ,  (3=0.9  
•  [2] P a p _ E P T T ,  (3=1/9

8=0.25
1.25
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1 . 1 6
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—  [2] Pap Eptt, (3=1/9, We=1 

[3] Pap Eptt, (3=0.9, We=7
  [4] Pap_Eptt, (3=1/9, We=7
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j  J
7
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Figure 4.9: Swelling ratio. {/?, e}-variation, JTe-variation and position: io=0.01, mp= 103,

/M).9. 1/9; 8=0.25

s variation: At fixed /?=0.9 and shown in Figure 4.10(a) as a function of We, there is 

evidence o f  relatively large final swell increase observed at s=0.02 and We=7; 

characteristically, some 33% in curve-[2] above the unity value. Similarly, one may 

account for the effect o f  /? and 8 variation together. From Figure 4.10(a) data, one may infer 

the impact o f  e-change on the swelling is stronger than that due to /i-parameter adjustment. 

By way of  example, swelling ratio reaches 1.33 in value for {We=7, /?=0.9, 8=0.02}, in 

contrast only reaching 1.14 for {We=7, /?=0.9. 8=0.25}; a rise noted of some 19%. On the 

other hand, this ratio reaches 1.21 for {We=7, /?=l/9. 8=0.25}, substantiating only a rise of 

some 7% (curve-[3]) above the {We=7. /M).9, 8=0.25} solution (curve-[l]). The data for 

the combination {/?=l/9, 8=0.02} of curve-[4], follows the same pattern o f  combined 

trends, displaying extreme behaviour in highly prominent swelling ratio, but remains
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tractable to a convergence level o f  We-0.5. This one attributes to the excessively strong 

extensional response for the {/?= 1/9, 8=0.02} fluid model, which is larger at W e-0.5 with 

{/?=l/9, 8=0.02} than for We=7 with {/?=l/9, 8=0.25}. Moreover, in Figure 4.10(b) for 

swell profiles, there is no evidence here o f  swell overshoot with fj=0.9 data; which was 

apparent in the data for f= \/9  at higher elasticity We—7 (only attainable with 8=0.25). 

Hence, the lower elasticity solution of {We—0.5, /?=l/9, 8=0.02} does not reflect this 

overshoot either, but does achieve a most significant final swell value o f  1.4, practically 

40% of the initial jet-channel width (curve-[5]). The data of Figure 4.10(b) reveal relative 

change in final swell achieved with 8-shift from 8=0.25 to s=0.02 at fixed {We, /?=0.9}- 

level. being: 9% increase (from 13% to 22%) at We= 1 (curves noted fl] to [2]); and some 

19% (from 14% to 33%) at We—7 (curves noted [3] to [4], as in Figure 4.10(a)). The extra 

data provided in this plot for {We=0.5. /i=l/9. e=0.02}, show an additional increment in the 

final swell value o f  some 7%, ( from 33% to 40%) above and beyond that gathered for 

{W e-7, /y=0.9. s=0.02} Here, it is the //-shift that is the most significant factor prevailing. 

One suspects that some overshoot in swell profile would appear around this latter parameter 

setting o f  {We=0.5, /f=l/9. 8=0.02} but this has proven elusive to resolve thus far in our 

parameter search.
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r  3 3 %

Figure 4.10: Swelling ratio. {0. e}-variation. IFe-variation and position: io= 0.01, mp= 103.

0=0.9. 1/9; ^=0.25. 0.02

£ variation: The effect o f  second normal stress differences (AT) in swelling ratio is also 

analysed, in addition to the dominant effect o f  the first normal stress difference (AO). Note 

that in pure shear flow and with the PTT model, an increase in £, proportionally reduces N\ 

and increases AT, [ AT = - ( 4 7 2 ) A/,]. Therefore, one may anticipate that an increase in

parameter c would reduce the swelling ratio. In Figure 4.11 and at fixed {We= 1 and 

£eptt=0.25. 0  =0.9 and 0.1}, the profile-shape of  the free-surface can be interrogated for 

two different ^ / 577-values o f  Ceptt=0.0 and 0.2. Here, one can detect a relative decrease of 

almost 3% and 1.6% in swelling ratio from £ e p t t  = 0.2 to £ep tt=0.0 (from 1.16 to 1.13 and 

from 1.146 to 1.127) for p  =0.9 and p  =0.1 respectively. Values o f  4 e p t t  larger than 0.2 

(AT/A7=20%) lead to numerical convergence difficulties, being subject to onset o f  the well- 

known Gordon-Schowaiter instability.
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Figure 4 .11: Swell profiles, EPTT: ^eptt-variation, We—\ , (5=0.9, /?=l/9: e=0.25

4.5.2 Velocity' profiles

Cross-channel velocity profiles in radial and axial component forms are provided in 

Figure 4 .12 at fixed x0 ( to=0.01) and mp (mp= 10 ). The axial velocity profile shows 

parabolic How structure for z<0; then the magnitude diminishes as it approaches the die exit 

(over z>0) and gradually adjusts to a plug flow over this zone. Along the radial span 0<r<l, 

the radial velocity increases initially, up to z=0.1, after which it drops away with gradual 

decrease observed through the free surface region (z>0). Maxima at z<0 reduce by almost 

half from Ur of 0.3 at z=-0.1 to 0.15 at z=0.1.
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Figure 4 .12: Cross-channel axial and radial velocity profiles: We= l. mp- 10“ /?=0.9.Xo=0.01 

4.5. J  Stress profiles

t() variation: The radial stress profiles, first normal stress difference (TV/), and normal 

stress ( T.r ) along the axis o f  symmetry are plotted in Figure 4.13(a.c.d) at fixed {We= 1, mp 

= 102, /?=0.9, c=0.25} under x0 variation (see additional comparative data in Table 4.2 for 

We= 1.5; shear-rate / (gam m a) and strain-rate I  (sigma)). In all cases, shear-rate, strain- 

rate and stress peaks are observed in the singular region at the die-exit plane (z=0), with 

some relaxation apparent over the jet region and where there is relatively insignificant 

influence of yield stress x0 on deformation rates (data withheld) Shear-rate peaks rise near 

the contact point as x0 increases, with maxima occurring around 17.76 units at xo=0.1; a
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strictly localized effect on the top surface. In Figures 4.13(a,c), one can observe a relative 

increase of almost 52% in x^and 38% in t h peak magnitudes, as x0 increases from zero

(EPTT) to 0.1. Noting from Figure 4.4(b) that the swelling ratio declines with such increase 

in x0; hence one notes an opposing trend in normal stress from that in swell. Moreover, with 

rising x0 between xo=0.02 to 0.1, both x  ̂ and r,, profiles reveal trends of downstream shift

and amplification. In contrast, viewing the xrz data on the top surface (see Figure 4.13(b)), 

an opposing declining trend from shear-rate data occurs at the die-exit singular peak with a 

gradually falling peak as x0 rises (attributable to viscous effects); in the die itself (confined 

shear flow), the shear stress increases in magnitude with x0 rise (see exit correction above, 

due to x0 rise). In extensional data, strain-rate peaks adjust with x0 rise as in shear-rates, 

being strictly localised to the die-exit and top surface (extrema -1.26 units for xo=0.1). Most 

significant solution shifts are detected in Nj (normal stress, rzz -r f)  along the symmetry-axis

in Figure 4.13(d) (vs Figures 4.13(a,c)); this is clearly conspicuous in xo=0.1 data, 

displaying both increased magnitude in the singular zone (doubles xo=0 (EPTT) level, with 

downstream shift) and undershoot/overshoot in pre- and post-die-exit regions. Notably, the 

trend here is of increasing Ni maxima with rising r0 (see below, to contrast against that 

under rising We).
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Table 4.2: Die-swell flow: Stress, shear-rate, and strain-rate as a function of To,

Pap-EPTT, We =1, mp= 102, p= 0.9

solutions

W e = l W e= S

To To

0 0.02 0.1 0 0.02 0.1

Trr Max= 0.086 
Min= -0.051

Max= 0.067 
Min= -0.051

Max= 0.088 
Min= -0.053

Max= 0.049 
Min= -0.010

Max= 0.055 
Min= -0.011

Max= 0.035 
Min= -0.011

Trz Max= 0.268 
Min= -0.253

Max= 0.267 
Min= -0.254

Max= 0.264 
Min= -0.309

Max= 0.094 
Min= -0.076

Max= 0.094 
Min= -0.076

Max= 0.093 
Min= -0.076

Tzz Max= 1.020 
Min= -0.068

Max= 1.024 
Min= -0.063

Max= 1.044 
Min= -0.074

Max= 0.321 
Min= -0.028

Max= 0.322 
Min= -0.034

Max= 0.327 
Min= -0.023

Tqq Max= 0.086 
Min= 0.0

Max= 0.067 
Min= 0.0

Max= 0.087 
Min= 0.004

Max= 0.049 
Min= 0.0

Max= 0.055 
Min= 0.003

Max= 0.035 
Min= 0.004

y Max= 17.16 Max= 17.28 Max= 17.76 Max= 16.95 Max= 17.07 Max= 17.54

i
Max= 0.027 
Min= -1.258

Max= 0.027 
Min= -1.259

Max= 0.370 
Min= -1.264

Max= 0.029 
Min= -1.258

Max= 0.030 
Min=-1.259

Max= 0.319 
Min= -1.264

Ni
Max= 1.002 
Min= -0.154

Max= 1.01 
Min= -0.12

Max= 1.03 
Min= -0.16

Max= 0.304 
Min= -0.074

Max= 0.306 
Min= -0.089

Max= 0.311 
Min= -0.058

n 2
Max= 0.058 
Min= -0.064

Max= 0.057 
Min= -0.065

Max= 0.057 
Min= -0.067

Max= 0.017 
Min= -0.017

Max= 0.017 
Min= -0.017

Max= 0.016 
Min= -0.018
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Figure 4 .13: Stress profiles along symmetry-axis and top surface; T o  variation, a) T r r ,  b) T r

c) Tzz d) Nj; Pap-EPTT, wo=102, /?=0.9

We variation: In contrast to the above. Figure 4.14(a.c.d) plots illustrate change with We in 

the radial stress ( r r r ), first normal stress difference (Nj ), and normal stress ( r , , )  at fixed 

( to=0.01, mp= 10 , /?=0.9. 8=0.25}. One also gives consideration to shear stress along the 

top surface (r/r, Figure 4.14(b)). Through the radial component r r r , one observes slight 

increase in its magnitude with increasing We, as illustrated in Figure 4.14(a); comparably, 

the converse is true (with decline) in first normal stress Nj and normal stress r . . .  One may
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interrogate this rich extensional stress data in Figure 4.14(a.c.d) together, which reveals that 

normal stress effects are highly significant in this flow with rising We. TV/-peaks shift 

downstream and now reduces by about 30% from  We=0.5 to 5 (from around -0.12 to -0.08 

units); dow nstream overshoot is also apparent. To explain such trends through individually 

segregated stress components, one identifies that radial stress amplifies (0.04 to 0.06), 

whilst axial stress magnitude declines (0.06 to 0.03) with rising We, both displaying strong, 

dow nstream shift: from We=0.5 to 5: r „  reduces by about 43%, whilst z rr increases by 

about 21%. This implies that second normal stress effects (via z r r ) adopt a significant role 

in this benchmark problem, and contribute strongly to reduction in first normal stress 

difference levels. Thus, in contrast to the above findings under rising t 0 (yield stress 

influence), the trend now w ith rising We (viscoelastic influence) is one of declining N) 

maxima; a completely opposite finding, and one that correlates the opposing results 

observed on swell. These comments apply to the isolated window of extensional 

deformation on the axis o f  symmetry, pre and post die-exit. In addition in shear 

deformation on the top surface and Figure 4.13(b), and Figure 4.14(b), one may comment 

on shear stress (and N/) trends, where once more yield stress and elasticity effects act in 

opposing directions. From such die-wall shear stress data, one can conclude that shear 

viscosity declines with rising We (relatively thinning) and increases with rising i 0 

(relatively thickening); this trend is replicated therefore in TV/ along the die-wall. 

Consistently, at the die-exit singularity, shear stress (and TV/) peaks are observed to decline 

with rising We, following trends within the die; yet are barely influenced by rising x0. The 

shear stress profile just beyond the die, displays undershoot damping with rising We (elastic 

response), yet is unaffected by rising i 0 (viscoplastic response).

a) b)
P a p E P T T ,  W e = 0 . 5  
P a p E P T T ,  W e = 1  
P a p - E P T T ,  W e = 5

0 . 3 Pa p - E P T T ,  W e = 0 . 5  
Pa p - E P T T ,  W e =1  
Pa p - E P T T ,  W e = 50.20 . 0 8 SYM

irr=0.0l. We variation TOP
0 . 0 6

0 . 0 4

-0.1
0.02

tq=0.01. We variation-0.2

-0. 3
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Figure 4.14: Stress profiles along symmetry-axis and top surface; We-variation, a) i rr, b) 

T rz. c) t zz d) Nj, Pap-EPTT, mp= 102, ft= 0.9

4.5.4 Stress fields-yielded and unyielded regions

With regard to normal stress effects, the field structures in first and second normal 

stress, axial normal stress r „  and radial normal stress r /T are displayed in Figure 4.15, 4.16 

and 4.17. From N/, AS and r„_ the maxima are focused near the zone o f  the singularity. 

Whilst, for the radial stress zrr maxima arise around the symmetry-axis, see Figure 4.17. 

N/ influence at W e-1, see Figure 4.15 shows a rise in Nj with increase i 0 around the 

singular point (z=0). Similar trends in r „  are observed, with maxima of 1.04 units reached 

at t 0 =0 .1
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Figure 4 .15: First normal stress difference (N j). second normal stress difference (No): 

Pap-EPTT.io variation We =1, mp= 102' (3= 0.9

In contrast, there is clear influence of We rise on r „  maxima, which reduces by 30% from 

We- 1 to We=5. Additionally, rrr maxima reduce by 50% from We= 1 to We—5
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4.16: Axial normal stress ( izz): Pap-EPTT.io variation, We =1,5, w„=102, /?=0.9
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Figure 4 .17: Radial normal stress ( i rr): Pap-EPTT.io variation. We =1,5. w/;= 10 . (3= 0.9

Considering yield stress effects, it is informative to interrogate the yielded and unyielded 

regions, according to various t 0 at fixed mp (mp= 102), as depicted in Figure 4.18. With this 

Pap-EPTT model, the cut-off locations between the yielded and unyielded regions are 

based on the second rate-of-strain invariant criterion. In all cases and with larger x0 values, 

there is a slight growth apparent in the unyielded zones. The unyielded material is observed 

to extend over the jet region, where the relatively yielded (greater flow deformation, red) 

region for x0 =0.01 occupies the zones within the channel and one-third o f  the jet region. At 

the same time, one can gather that the unyielded (plug-like, less flow deformation, blue) 

region extends through to the free surface itself. Sharp adjustment is noted in the yield front 

shape towards the free-surface at the low level o f  i 0 =0.01. As the level o f  yield stress i 0 

increases, no significant change is detected between i 0 =0.02 and i 0 =0.01. With further rise 

in i 0 to 0.1, the unyielded zones expand and a narrow zone appears on the symmetry-axis in
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the die; yield fronts are now relatively smooth. Upon further amplification o f  x0 to 0.5. the 

unyielded material now occupies practically all the jet region, and also broadens on the axis 

of  symmetry. As i 0 increases, the progressive growth o f  the unyielded regions is quite 

apparent, which is entirely consistent with findings reported by others (Zisis and Mitsoulis 

[156]; Mitsoulis and Huilgol [84]; Belblidia et al. [17])

T0=0.01

T0=0.1 

t0=0.5

Figure 4.18: Growth of unyielded region (blue): Pap-EPTT model.To variation, second
9invariant o f  rate-of-strain criterion; To variation. We =1, mp= 10". (3=0.9 

4.6  S t r a i n - r a t e  s tab i l i z a t io n  (S R S )  (D-Dc)

Here, results are described for the Pap-EPTT model with (3=0.9 and £=0.25, when 

appealing to the singularity capturing and stabilisation technique, referred to earlier as 

‘Strain-Rate Stabilisation (SRS) (D-Dc) (for more details, see section 3.7). In this regard, 

the focused interest lies in identifying the effective discrete handling of  the die-exit swell 

singularity, for which we present steady-state stress solutions and swelling ratios at selected 

We-levels. See also, the pertinent work of Georgiou et al. [51], which captured solution
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singularity by applying a singular finite element method to accelerate convergence for 

sudden-expansion and die-well problems.

4.6.1 Swelling ratio

The corresponding swelling ratio data is provided in Figure 4.19, at the two different 

values of the Weissenberg number (We=1,5), with fixed ( t o=0.01, w/;=102). According to 

these findings, a lower level o f  swelling is observed when the singularity is directly 

represented through (D-Dc) realisation. One may report that the relative difference in 

swelling ratio with and without (D-Dc) decreases from 0.85% at We— 1 to 0.43% (almost 

half) at W e-5. This is firm evidence o f  the strongly localized nature o f  the die-exit 

singularity and the consequent impact that this can have on the extrudate solution; in 

particular, the swell captured varies with the degree o f  elasticity in the flow. Hence, the 

dominance of such localized effects shifts and the challenge is to sharply capture such 

solution features w ith minimum numerical dispersion (akin to shock capturing).

1.16

1.12 Pap-EPTT, No SRS  
Pap-EPTT, SRS

Pap-EPTT_No SRS, We=1 
Pap-EPTT_ SRS, We=11.08 1.08

1.04 1.04

10 21 3 4 5 6
Z Z

Figure 4 .19: Swelling ratio with D-Dc. a) We =1, b) We =5: Pap-EPTT.io=0.01. mp= 102. 0=0.9 

4.6.2 Stress profiles
Stress and strain-rate profiles are illustrated in Figure 4.20 and 4.21 through W e-1, 5 at 

fixed To-value ( to=0.01 ) and w,,-value (w/;=10“). In Figure 20(a.b) at We= 1 and under strain-
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jate stabilization, there is decrease in shear-rate and r rz -stress peaks compared to that 

without (D-Dc) treatment. This pattern is repeated with elevation in elasticity to We=5, as 

displayed in Figure 21(a.b). These plots reflect the highly-localised influence o f  the (D-Dc) 

correction, particularly at the singular plane (z=0). Elsewhere, away from the singularity 

end along the symmetry axis, there is little effect appearing in strain-rate under (D-Dc) 

treatment; whilst t zz stress shows a slight downstream shift, with magnitude reduction as 

)Ve rises from 1 to 5.

Pap_ EPTT, No SRS  
Pap-EPTT, SRS

0.1 Pap-EPTT, No SRS 20 
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0 . 0 5

No D -D c
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Figure 4.20: Stresses with D-Dc (SRS). (1) along top surface a), shear stress, b) shear-rate, (2) 

along axis of symmetry, c) normal stress, d) strain-ratr : Pap-EPTT, We = 1. To =0.01, mp= 10 , f=  0.9
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Figure 4.21: Stresses with D-Dc, (1) along top surface a), shear stress, b) shear-rate. (2) along 

axis of symmetry, c) normal stress, d) strain-rate : Pap-EPTT. We =5, To =0.01. wp=10 , /M).9

Moreover, this position is further supported with the additional stress profile data of 

Figure 4.22 along the top surface alone, which allows one to directly contrast findings 

between the individual components for the two algorithm settings. The dominance of the 

axial component in is clear and this is strictly localisied to the corner singularity plane. 

Note that the azimuthal i qq component also indicates a downstream shift with elasticity 

increase.
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Figure 4.22: Stresses with D-Dc. along top surface a) i rr b) i rz, (c) rqq, d) Pap-EPTT,

We =5. t 0 =0.01,

Finally, a steady-state three-dimensional plot o f  the D-Dc term is provided in Figure 

4.23 at We-5. This figure exposes the localised nature o f  the stabilisation term (compact 

support for singularity capturing, dispersion restricted), which is strongly constrained to act 

around the die-wall exit/jet-entry position. A comment in passing is that such a deferred
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correction term is observed to principally affect the subsequent accurate capture of the jet 

free-surface position.

Figure 4.23: 3D plot of steady-state (D-Dc) field: SRS-scheme. Pap-EPTT,

We =5. T() =0.01 m;,= 1 0 \  /M).9

4.7 C o n c l u s io n

In this chapter, an analysis has been presented o f  steady free-surface flows for the 

viscoelastic EPTT fluid and extended this into viscoelastoplasticity via viscous- 

regularisation, and the Papanastasiou-EPTT fluid model. Two pairings o f  {p. e}-parameters 

are investigated, £={0.02, 0.25} and /?= {0.9, 1/9}, at fixed yield stress setting ( i0, m}; to 

reflect (i) in £-parameter. high and low Trouton ratios (extensional viscosities), and (ii) in 

/E-parameter, high and low solvent fraction. With the selected set o f  parameters, the study 

began with a fluid o f  high solvent fraction /?=0.9 and £=0.25, after which comparison is 

extended to instances with f= \/9  (highly polymeric) and £=0.02 (highly dynamic). 

Thereby, significant impact has been reported on swelling ratio and exit pressure correction 

due to variation in yield stress parameter x0, Weissenberg number (We), viscosity parameter 

/? and Trouton ratio parameter £.
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Findings on swell reveal that viscoplastic influences counter those due to elasticity, with 

elevation in plasticity suppressing swell whilst rise in elasticity stimulates swell (due to 

normal stress effects, see below). Hence, under yield stress parameter r0-variation and 

fixed elasticity, the swelling decreases (whilst exit correction rises). The We=\ swell data 

reveal a quadratic decline from the purely viscous level initially up to xo=0.02, followed by 

an almost linear fall-off thereafter. At a larger elasticity level of We=5, the tendency is to 

suppress this early quadratic decline in swell at low-x0, but beyond the x0-level of 0.1, the 

viscoplastic influence completely dominates. In the low-x0 regime, the evidence at We— 1 

points to a strong influence of shear viscosity and shear-thinning causing swelling ratio to 

diminish with rising yield-stress (x0). In contrast and as explained through the respective 

material functions, there is little impact on swelling ratio under m variation (yield stress 

growth exponent). Findings under fixed yield stress and with JFie-variation oppose those 

observed under x0 rise, in that larger elasticity provokes greater swell and lesser exit 

correction. Classical elastic theory relates the swell versus We to the ratio between Nj and 

xw at the die-wall in fully developed flow, from which the standard exponent mT =2, clearly 

provides an overestimated swell prediction, whilst a reasonable fit is extracted with 

mT= 3.8.

In the case of {p , c} variation with We, at fixed xo=0.01 and mp= 10 , swelling ratio is 

found to rise with increasing We, reaching the high percentage ranges of 14% with {/?=0.9, 

8=0.25}, 21% with {/?=l/9, 8=0.25} and 33% with {/?=0.9, e=0.02}. At fixed 8=0.25 and 

under p  variation, significant swelling may be observed with /?= 1/9, when compared to that 

with /?=0.9, bar in the low range 0<We<0.5. At any given value of We and as concluded by 

others, swelling ratio is larger with less solvent concentration. Full swell profiles at the 

extreme of low p= 1/9 and high We—7, reveal a prominent solution overshoot that occurs at 

a distance of one unit from the die. One may argue comparatively that this is primarily due 

to N] weakening, as extensional viscosity is softening in the associated parameter ranges. 

At fixed p=0.9 and under s variation, there is evidence of a relatively large final swell 

increase observed at 8=0.02 and We-7; characteristically, some 19% above the reference
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level for {/?=0.9, 8=0.25}. Taken together, one may infer the impact of 8-change (Trouton 

ratio) on swell is much stronger than that due to /^-adjustment (solvent fraction).

With respect to exit pressure correction, a consistent rise is observed with increasing We 

and x0. Under r0 variation, the exit correction increases linearly by some 30% above the 

unity EPTT reference line at xo=0.5, when mp= 10 and We=1. Effectively, less swell, is 

compensated by larger exit pressure correction, and in this regime viscoplastic influence 

dominates. Whereas for exit pressure correction under We variation, and with both 

viscoelastic and viscoplastic contributions accounted for, monotonic decline is observed in 

Kx" with minima around 0.227 units at We= 10. Noting the decline in channel pressure-drop 

with We-rise, still a dominant factor in the declining nM’f , is the falling wall shear-stress 

(tw). In contrast, the trend is non-monotonic in nEpu data, when only the yield stress

contribution is differentiated (with EPTT elastic and shear-thinning effects suppressed). 

Then, a gradual decline in exit correction is reported in the extended range 2<We<9; yet, 

there is a slight increase to a maximum seen in the initial range 0 < We < 2 . Taken on the 

basis of comparison re nPap data, whereupon yield stress influence is nullified, findings

again reveal monotonic decline in exit correction due to the viscoelastic contribution.

On stress data, under We increase at fixed yield stress level, it is notable that radial stress 

strongly amplifies, whilst axial stress declines with rising We, both displaying significant 

downstream shift; resulting in Nj decline. In contrast, under t 0 increase N] rises, and this 

may be attributed to rise in both x̂  and components. This implies that second normal

stress effects (xn) are vitally important in this problem, which have major impact on first

normal stress difference levels and swell damping amplification.

Present findings demonstrate that the extent and shape of the yielded and unyielded 

regions depend on the level of yield stress imposed (level of x0 or Bingham number). The 

unyielded zone begins to appear first in the jet region, and then expands with further 

increase in x0 to gradually emerge around the symmetry axis, simultaneously retreating 

further back within the die. Once more, these results are consistent with the findings of 

others.
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Finally, strain-rate stabilisation has also been investigated for this problem to 

interrogate the influence of singularity capturing on the die-exit solution. In this respect, 

there is successful demonstration that such treatment can have a significant impact on peak 

stress and strain rates exiting the die. In turn this has been shown to influence the accurate 

determination of the free-surface profile, where such variation has been detected in swell 

ratio at selected Weissenberg numbers and yield stress levels.
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Chapter 5

Numerical study of the Finite element method for tube- 
tooling cable-coating flow: Newtonian and inelastic 
fluids

5.1 Introduction

In this chapter, a numerical analysis of Newtonian and inelastic fluids is performed 

with a semi-implicit time-stepping Taylor-Galerkin Pressure-Correction finite element 

(TGPC) algorithm as mentioned in chapter 3. The momentum and continuity equations 

that govern the Newtonian and general Newtonian fluids are elliptic partial differential 

equations. In this instance, the Galerkin discretisation represents an optimal selection to 

solve this type of equation. Briefly, this algorithm is based upon two phases. The first 

phase is a Taylor-Galerkin approach expressed through a two-step Lax-Wondroff time 

stepping procedure (see section 3.2). The second phase involves a pressure-correction 

method which provides second-order accuracy in time.

This investigation addresses the tube-tooling extrusion coating problem, where 

steady solutions to this free surface flow problem are obtained through a transient finite 

element procedure. Here, free-surface movement is accommodated via a particle- 

tracking/surface height-function technique (dh/di), developed by Phan-Thien [103]. Two
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scenarios are considered to resolve the flow dynamics and determine a suitable shape 

for the extrudate swell. Initially, a solution is obtained when free surface movement is 

suppressed, and a domain-interior solution is generated. Then, at the second stage, the 

solution to the free surface problem is resolved commencing from this interior solution, 

using coupled and decoupled free-surface approaches. In the coupled technique, the 

problem is solved with freedom of movement on both the top and bottom surfaces of the 

draw-down conduit. In contrast, the decoupled method subdivides itself into two phases 

of analysis. The first phase permits movement of the bottom surface of the draw-down 

section alone; hence with fixed top surface position. Then, the second phase is used to 

solve the equivalent top-surface movement alone.

Cable coating procedures play an important role in the modem industrial process 

setting. This process involves the extension of a molten polymer over a moving cable, 

and typically requires a cable preheater, an extruder with a cross-head shaped die, a 

cooling trough for the extruded cable, and a take-up and payoff device ([93,85,86]). 

There are two main types of annular extrusion coating designs: namely tube-tooling, 

used for wide-bore coating, and pressure-tooling, associated with narrow gauge 

wires/cables ([56]). For pressure-tooling the coating is delivered directly to the coating 

substrate/carcass from the die, whilst for tube-tooling, there is an air-gap beyond the 

die. Here, the molten polymer is drawn down onto the cable-carcass by virtue of the 

additional drag flow component induced by the motion of the cable. Since contact 

between the polymer coating and the cable occurs beyond the die for tube-tooling, the 

control and shape of the extmdate is of considerable importance in the process.

Numerically, the subject matter of cable-coating, with dual free-surface location, 

die-swell and slip, dynamic contact point singularity and influence of vacuum effects, 

remains a significant challenge, yet despite its commercial importance, relatively little 

tube-tooling cable-coating research has been reported in the literature. The finite 

element method has become a powerful tool for the numerical solution of free surface 

cable coating problems. A finite element analysis of tube-coating for a power law fluid 

was presented by Caswell and Tanner [34]. In this study, finite element approximation 

was able to accommodate complex shaped geometries and non-Newtonian fluid 

properties in a realistic manner, and produce streamline and stress patterns within the 

die. Sun et al. [117] analysed the expansion of a thick tube between a pipe die and a 

sizing sleeve employing an integral viscoelastic fluid model. This problem resembles
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tube-coating, except that the tube expands instead of contracting. Kuyl ([68], [69]) 

reported predictions for both isothermal and non-isothermal high-speed tube-coating 

melt flow using a finite element method. He concluded that various parameters 

influence the melt cone shape and stability; also, predicting the distance from the die 

exit to the contact-point. Under isothermal analysis, Kuyl [68] demonstrated that 

applying vacuum both shortens and stabilizes the contact length. In his non-isothermaal 

study, Kuyl [69] showed that cooling the melt cone extends the contact length; but also 

cone cooling destabilizes the cone length.

Theoretically, Slattery et al. [112] derived an analytic solution for cable-coating 

draw-down of an extruded annular melt. Their analysis was for Newtonian, power-law 

and Noll simple fluids, and excluded the effects of vacuum. In this study, the solution 

was developed with the assumption that pressures inside and outside the film (coating) 

are equilibrated (balanced and equal); a process in which these pressures differ, such as 

a vacuum inside the film, was treated as a limiting case. Moreover, Webster and 

Ngamaramvaranggul [95] used a semi-implicit Taylor Galerkin/pressure-correction 

finite element scheme (STGFEM) to solve annular incompressible coating flows for 

Newtonian fluids, associated with coatings of wire and cable, fibre-optic cables or glass- 

rovings. Both annular tube-tooling and pressure-tooling type extrusion-drag flows were 

investigated for viscous fluids. A modified free surface location technique was 

employed to determine the shape of the die extrudate. This method involved remeshing 

and a three-stage iterative cycle, using appropriate convergence criterion. Moreover, the 

effects of die walls Navier slip conditions on the stress singularities at the die exit were 

considered throughout this study. Similarly, Hade and Giacomin [54] presented analysis 

for isothermal power-law tube-coating flow, under vacuum or with an externally applied 

pressure. This study was concerned with the effect of shear-thinning on the drawing 

force and contact-length of the melt-cone. These authors found that, shear-thinning 

properties tend to increase the drawing force, and for power-law index m>0.5, only 

slightly affect the contact-length. In addition, an analytic solution was also derived by 

Hade and Giacomin [55] for the reduced problem, of isothermal Newtonian conduit 

coating-drawing flow, under vacuum but devoid of extrudate swell, and under a set of 

prescribed flow assumptions. This result established the melt cone shape as the solution 

of a Boundary Value Problem (BVP), composed of a system of two coupled ordinary 

differential equations, from which and by iteration, various draw-down ratios and
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balances may be established. This result has been found useful in providing a starting 

point for the conduit-cone free-surface initial positioning. Moreover, with a view to 

viscoplastic analysis, Mitsoulis and Kotsos [87] studied the wire-coating flow of non- 

Newtonian pseudoplastic and viscoplastic fluids using a Herschel-Bulkley model and 

finite element approximation. These authors observed that yielded/unyielded zones exist 

only beyond the die-exit, where the coating fluid moves on the wire as a rigid body.

In brief, the present finite element study covers a steady isothermal analysis for the full 

and combined tube-tooling/draw-down annular flow -  hence, a predominately die shear- 

flow to a draw-coating flow. This includes practical considerations of dual inner-outer 

free-surfaces (dynamic location), extrudate swell and slip, dynamic contact point 

representation (melt-to-cable) and effects of vacuum imposition. Initially, a Newtonian 

analysis has been conducted to construct an essential kinematic basis and steady, zero- 

vacuum solution, under prescribed flow-rate and cable-speed process conditions. This 

may then be utilised as a base-flow state and internal starting condition for the time- 

stepping algorithm to explore other flow scenarios, encompassing vacuum imposition 

and viscous inelastic melt flow representations.

5.2 Problem specification

In this study, consideration is given to tube-tooling flow with special design as 

displayed in Figure 5.1a. In this Figure, a schematic representation for the whole 

geometry with zoomed die section, draw-down section and cable region is presented. In 

addition, sectional details are provided in zoomed form in Figure 5.1b for the finite 

element mesh. In contrast, the finite element mesh for the draw-down section and cable 

region is shown in Figure 5.1c, and the free surface of this position is observed with 

zooming for the critical region near the comers in the draw-down exit. Moreover, the 

relative dimensions are given in Table 5.1. Mesh refinement has been performed 

throughout across a series of three meshes, from which mesh convergence is observed.
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Free surface
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Figure 5.1: Schematic diagram for; a) die section, b) draw down section and cable 
region c) mesh pattern fo r draw down section and cable region
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Typical finite element mesh characteristics are included in Table 5.2, following notation 

M-r4, M-r6, M-r8, which implies four, six, and eight element widths, respectively, 

across the die inlet. From this selection and subject to satisfaction of sufficient accuracy 

criterion (less than 1% change in sampled solution values), the middle mesh design is 

highlighted and chosen for computations.

Table 5.1: Geometry non-dimensions measurements

Die-inlet
(Li)

Converging 
section (L2)

Land section 
(Ls)

Draw-down 
length (L4)

Cable region
(L5)

1 .0 1.88395 1.93384 0.542299 0.542301

Table 5.2: Mesh characteristic parameters

Mesh Elements Nodes Degrees of freedom 
(u, p)

M_r4 1024 2313 5271
M r  6 1536 3341 7585
M_r8 2048 4369 9899

Boundary conditions are taken as no-slip applied at the die walls prior to die exit. 

For the draw-down section and cable region the boundary conditions read as follow: at 

the top free surface section tractions vanish, free velocity with zero pressure; at the 

outflow a plug flow is imposed travelling with the moving cable; the lower domain 

boundary corresponds to the moving cable. Furthermore, all results pertain to 

Newtonian and Inelastic flows at minimal levels of inertia, equating to Re=10‘5. In 

addition, to construct the essential basis for our solution and internal starting conditions, 

the problem is first solved for Newtonian fluid properties. Then, from this solution 

position, the inelastic problem is initiated. Throughout such solution phases, there was 

no change in boundary condition settings necessary.

5.2.1 Free-surface procedure

A free-surface location method is employed as a modified iterative technique by 

which the shape of the die extrudate is derived. In this section, the time dependent 

prediction method, which is named the Phan-Thien (dh/dt) method, has been selected to

[
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compute the new position of  the boundary nodes of the free surface zone. To avoid 

excessive distortion of elements in the boundary zones, an updating o f  the free surface 

must be performed in time, by starting from suitable initial conditions and applying the 

stages in section (3.9.1).

5.2.2 Dynamic contact point adjustment

In this study an important factor to take into consideration throughout the coating 

process is the approximation o f  the dynamic contact point solution, where the melt 

interfaces meet the cable with the moving substrate surface. Here, the dynamic contact 

point (line) is allowed freedom of movement under slippage, through wetting or peeling 

of adjacent surface sections, onto or off the moving cable-carcass. In this manner, the 

contact point is traversed relatively smoothly, so that, when the contact angle (9) is 

adjusted, as subtended by the adjacent free-surface line-segment (linear straight-sided 

surface element approximation), any node on that bottom free-surface line-segment (see 

for example, nodes 3. 2, and 1 in Figure 5.2) which makes contact with the cable is 

assumed to wet the cable boundary. Thereupon, cable conditions then apply to such 

segments and nodes. Under such a procedure and due to the sucking-drawing down of 

the polymer melt onto the cable, the horizontal distance between the die-exit of the tube 

and the contact-point on the cable slightly reduces throughout the coating process.

cable

contact pointFree surface

cable

Figure 5.2: Dynamic contact point
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5.2.3 Slip conditions on the die-wall

A further factor to consider relates to the influence of slip boundary conditions, as 

pertaining to and applied at the die-wall location. Based on a momentum balance at the 

wall, it can be shown that the slip velocity may be taken as a function of the velocity 

gradient at the wall:

uslip ~ & slip Trz (5 *1 )

where f}^  is the slip coefficient and rrz is the shear stress. So, for example with 

Newtonian fluids, usjip is given by:

where, S is referred to as the slip-length and du/dr is the die-wall shear velocity- 

gradient. This is the basis employed and reported upon below under a selection of 

sampled results.

5.3 Governing equations and mathematical modelling

The system of governing equations for Newtonian and non-Newtonian inelastic 

flows under isothermal setting are stated in chapter 2. This system consists of the 

continuity and momentum equations with constant viscosity for Newtonian case and 

variable viscosity in the inelastic case (see Equations (2.64), (2.65a), (2.65b)). Moreover, 

two different inelastic shear-extensional viscosity model fits to experimental data are 

proposed, namely Fit-I and Fit-II (see section 2.3.2.1). Each offers its own individual 

quality of match to the data.

5.4 Numerical scheme

To solve the momentum equation (2.65), together with the continuity equation 

(2.64), a semi-implicit time-stepping procedure, namely Taylor-Galerkin/pressure- 

correction finite element scheme is employed. This scheme is based on a fractional-step 

method, utilising semi-discretisation in the temporal domain, through a Taylor series 

expansion in time and a pressure correction procedure, to extract a time stepping

i
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scheme of second order accuracy. For the Newtonian case, the polymer stress is zero, 

then T=0 and jus = 1 in equation (3.28a) and (3.28b), allowing for the reduction of these 

equations (step la and lb), viz

r j  ■% 1
Step la: [—  M+-S](u"*~2 -U " ) = {-[S+ ReN(U)]U + LT P}" (5-3a)

At 2

R 1 +-
Step lb: [—  M + -S ] (U '-U " )  = {-SU + LT p } " -R e [ N (U )u f 2 (5-3b)

At 2

In contrast, for the inelastic case p s = p(y, s ) , with a shear-rate y for simple shear flow, 

and strain-rate e for extensional flow. Hence, the step la and lb can be written as:

Step la: [—  M  + ̂ —  S](u "* 2 - U ”) = {-{ii(i,e)S  + ReN(U)]U + LT P}n 
At 2

(5-4a)

Step lb: [—  M  + i ^ ^ - S W  = + Lr p } " -R s [ N (U )u f ~2
At 2

(5-4b)

The pressure and velocity equations (stage 2 and 3) are identical among Newtonian, 

inelastic and viscoelastic case.

As shown in chapter 3, the Taylor-Galerkin Pressure-Correction Scheme has three 

distinct fractional stages per time step:
in+—

Stage 1: Given initial velocity and pressure fields, non-divergence-free u 2 and u* 

fields are calculated via a two-step predictor-corrector procedure (step la and lb). The 

corresponding mass matrix governed equations are solved iteratively by a Jacobi 

method.

Stage 2: Having solved forw*, here one calculates the pressure difference p n+l -  p n 
through a Poisson equation.
Stage 3: usingu*, and pressure difference p"+] -  p n , determine a divergence free 

velocity field un+] by Jacobi iteration (for more details see Hawken [57]).
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5.5 Stability and convergence of numerical computations

5.5.1 Strain-Rate Stabilization (SRS)

Considering the numerical oscillations and poor stability response, once spatial 

discretisation has been established, localised singularity capturing for die-swell and 

contact-point solution, and may be invoked stabilisation methodologies. This may be 

introduced through the Strain-Rate Stabilisation (D-Dc) approach. Background detail 

on the Strain-Rate Stabilisation scheme and it implementation are provided in section 

3.7.

5.5.2 Numerical stability and treatment o f the momentum diffusive matrix (S-Matrix)

Under the present temporal schema, the generalised diffusion terms in the 

momentum equation are treated in a semi-implicit manner in order to enhance temporal 

stability. Hence, by adopting a Crank-Nicolson representation for such inelastic 

diffusion terms at stage 1 of TGPC fractional-stages, the following fully-discretised 

equations may be derived (see Hawken [57]):

Stage la:

[ ~ M  + -E/") = H jS> + ReN(u)U] + LT P } \  (5.5)
At 2 —

Stage lb:

M  + ± S j( t/ ' -  U") = [-jsV + Lt p Y  - R e[JV («)t/p , (5.6)
At 2 —

where S represents the symmetric positive semi-definite momentum diffusive matrix 

(positive definite augmented mass-matrix), defined under axisymmetric frame of
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S.r= \fi  r d Q
•> dz drQ

*= = /
W j +2?t, d f.

dr dr dz dz
r dQ .

To enhance numerical stability under iteration for low solvent-viscosity levels and 

inelastic settings (as with melts), and hence to determine optimal scheme configuration 

for time-stepping and iterative convergence, different system-matrix filters have been 

investigated. This has lead to five alternative scheme approaches being considered (see 

below), when applied to the diffusive matrix (S) component of the augmented mass- 

matrix on the left-hand side (Ihs) of Stage-1, equations (5.5) and (5.6). Under free- 

surface problem numerical solution, this is particularly important for low solvent 

fractions (P<10“2), and indeed for more severe problem settings of low power-law index 

(m<0.5) or stronger vacuum level settings (AP<-80). These schematic approaches may 

be summarised as:

Approach 1 (Full-S-matrix): the diffusive matrix (Ihs-S) remains unaltered, as in 

equation (15).

Approach 2 (Full-1S'-matrix_r(lhs)=l): Here, the radial-factor (r) is replaced by unity in 

the integrand components of Ihs-S alone (as in Cartesian reference).

Approach 3 (Diag-S-matrix_r(lhs)=l): As Approach 2, by discarding off-diagonal Srz- 

matrix component terms but also diagonalised lhs-S with r=l.

Approach 4: (Newtonian S-matrix_r(lhs)=l): Here, a Newtonian approximation is 

adopted on the Ihs-S-matvix with r=l. This diagonalises the lhs-S-matrix, by application 

of continuity and the chain-rule to off-diagonal ^-m atrix component terms.

Approach 5: (Full-5-matrix_Gauss_Samp): As Approach 1, but with varying 

quadrature points (GQP) for numerical integration per element.

In addition, a single Jacobi-iteration version under each of the above approaches, yields 

a resultant diagonalised system-matrix (via the corresponding iteration matrix, see Ding 

et al. 1992 [47]). Furthermore, a single Gauss-Quadrature point approximation for the 

integrands per element renders piecewise-constant viscosity approximation, as in a 

constant Newtonian level viscosity per ̂ -triangle (parent) control volume. Findings on 

the application of each of these individual scheme variants are discussed below.
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5.6 M a t e r i a l  f u n c t io n s

Here, the rheological properties are described o f Fit-I and Fit-II (shear-extensional 

viscous-inelastic) models with respect to the model parameters in question. In this 

context. Fit-I offers a single power-index response, identical in shear and extension; this 

is generalized under Fit-II, with independent choice o f power-indices. {/?//, m2). These 

may be evaluated by fitting to the experimental data, as shown in Figure 5.3(a.b). Fit-I 

introduces the extension-rate dependence via cosh-functionality, so that large and early 

rise in extensional viscosity data may be accommodated. Under inelastic Fit-I, the 

model parameters taken are m=0.5, A,=l, and K=\; whilst under inelastic Fit-II, the 

parameter choice is /77/=0.3, /7?2==0.4. A"/=20 and Af/=0.45 (see Eq(2.26), (2.27)). This 

model selection permits a three-way comparison between: Newtonian. Fit-I and Fit-II 

models: also exposing the attractive independent shear-extensional fitting under Fit-II. 

not realized within Fit-I. Note, the order o f magnitude difference in extrapolated levels 

o f zero shear-rate viscosity for the two model fits. Here, the common basis o f zero 

shear-rate viscosity is taken as the constant Newtonian value (same as that based on Fit- 

I). so that the comparison o f Fit-I and Fit-II is meaningful.

Exp 2 - Extensional Viscosity 
Exp 2 - Shear Viscosity 
Fit-II

Extensional
Fit-II

rio

o Shear

y or s

10:

Fit-I101 - Extensional

10°
Shear

Exp 1 - Extensional Viscosity 
Exp 1 - Shear Viscosity 
Fit-I

10°

Figure 5.3: Experimental viscosity data: Inelastic; a) Fit-I, b) Fit-II
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5.7 Computational predictions for Newtonian and inelastic model fits

5.7.7 Surface friction effects

With specific attention paid to surface slip for viscous flows, the influence of slip 

onset ( p  =40%), as opposed to no-slip conditions within the die, is examined. Pure slip 

is defined as 100% slippage on the die-walls (at full slip velocity, defined on the steady 

mean velocity in the die, consistent with a plug-flow approximation and vanishing 

deformation rates), total friction equates to 0% slippage (no-slip) and the 40% slip 

condition implies that 40% of the slip velocity is imposed. The impact of imposing such 

slip conditions on pressure profiles is to generate almost 12% reduction in pressure- 

maxima (at die-entry, hence, in pressure-drop), see Figure 5.4a. The maximum velocity 

attained at the land-region reduces correspondingly by around 20%. In Figure 5.4b, a 

plug flow is seen to be reached by the middle of the land-region and sustained beyond. 

Over the land die-region, and on both top and bottom surfaces, as observed in Figure 

5.4c, there is around 70% decrease in exposure to shear-deformation (T) with the 

selected slip-BC imposed. This translates to bottom surface shear rates of 15.5 units 

without slip, and to 4.7 units with slip. Slip imposition also impacts on deformation 

about the complex zone of land-entry. In addition, central streamwise profile results 

reveal slight reduction in the generalised measure of extensional deformation (not 

shown). The shear stress levels and distribution in Figure 5.4d, are held to be consistent 

with these deformation rate profiles.

I l l
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Figure 5.4: Surface friction effects, a) pressure, b) velocity, c) shear-rate. 
d) shear-stress profiles, inelastic (m=0.5)

112



coating flow: Newtonian and inelastic fluids

5.7.2 Coupled free-surface tracking, Newtonian solutions

The present study documents the application o f the free surface location 

methodology, to determine the free surface evaluation. A coupled (dependent) method 

is used in the free-surface calculation commencing from a fixed position interior 

solution. In this process, the problem is solved with freedom o f movement on both top 

and bottom surfaces o f the draw-down conduit for Newtonian and inelastic fluids. The 

shape is determined from only vertical node-movement. interpreted in terms o f change 

in the radial direction only; then new r-coordinates are calculated, depending on the 

radial and axial velocity components, and governed by the equations (3.68). The 

temporal development free surface o f draw down section alongside axial velocity fields 

is presented for the Newtonian case in Figure 5.5 for 0.05<t<200. From this Figure, one 

is clearly able to detect the evolution o f both top and bottom free surface profiles 

through the calculation process.

t = 100 t = 150 t = 200

Figure 5.5: Time-frame evolution through surface development process, top and 
bottom zone movement, axial velocity field

5.7.2.1 Pressure drop

Figure 5.6 with zoomed draw-down, provides comparisons for pressure fields 

between Newtonian, inelastic Fit-I and Fit-II solutions. Findings reveal that, pressure- 

drop (essentially that across the die) decreases significantly from the Newtonian
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position for inelastic shear-extensional models, with an overall minimum level taken up 

by Fit-I o f 554 units. The Newtonian field prediction suggests that in relative terms, 

large pressures are endured throughout much o f the die. only significantly declining 

over the land region. In contrast. Figure 5.7 provides comparison in pressure-drop 

between purely-viscous approximations in Newtonian, inelastic Fit-I and Fit-II 

solutions. At the die-inlet and for Newtonian solutions, an overall maximum o f 2260 

units is observed, while for inelastic Fit-I model this peak is reduced by about a factor 

o f  four, and with Fit-II model by about one-half. Furthermore over the draw-down 

section, similar trends at the die-exit are detected across all three solutions, whilst Fit-II 

provides the most significant solution features (in size, negative in value, at -3 units) at 

the cable-melt contact zone.

Newtonian

Inelastic-Fit-I

Inelastic-Fit-II

Figure 5.6: Pressure fields: full geometry, draw-down section. Newtonian, Fit-I and Fit-II
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Figure 5.7: Pressure drop, along centreline: a) full geometry, b) draw-down section,
Newtonian, Fit-I and Fit-II

S.7.2.2 Stress profiles

Figure 5.8 (a.b) provides associated three-way sampled and localised profiles in 

shear stress ( i rz) and shear-rate (T). with reference to top and bottom surface locations. 

In shear stress, a constant level is observed at the tube-inlet (reflecting pure shear), with 

maxima in magnitude o f 36 units for the Newtonian solution and switch in sign in Trz 

observed between both top and bottom surfaces. Over the converging section on either 

surface. t rz decreases in absolute value. Once more throughout the land section, pure- 

shear is established in all three cases. Close levels are upheld for inelastic fluids that are 

notably reduced from the Newtonian solution; manifesting a five-fold decrease with Fit- 

I and 3.5-fold decrease with Fit-ll. Over the draw-down section, melt-cable contact- 

point peaks are observed, o f absolute value 28 units for Newtonian solutions; these are 

held at levels much reduced from Newtonian but comparable for inelastic solutions (4 

units). These effects are more exaggerated on the inner-surface, but are also reflected 

onto the top surface beyond the termination o f the draw -down region. Comparing shear- 

rate (T) over top and bottom surfaces, similar but sign-reflected features are observed. 

At the end o f the die-inlet bottom surface, Fit-II generates the largest maximum T-level 

o f 60 units, which explains the larger stress levels amongst the inelastic solutions. 

Throughout the converging section, there is a sharp drop at its start, reaching a 

minimum over its middle section, with a rise over its latter section. Through the land 

region, the degree o f shearing rises to a constant plateau once more. First, this is
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manifest with a sharp localized peak at its start on the top surface, rising to a maximum. 

In contrast and on the bottom surface, there is a corresponding initial sharp decline 

followed by an obvious increase. Subsequently, at the inlet o f the draw-down cone, 

there is a dramatic sharp drop and oscillation in shear-rate. On the top-surface and for 

the Newtonian solution, the shear-rate peak around the melt-cable contact-point 

observes a local maximum o f 28 units; whereas, on the bottom-surface the largest 

apparent peak lies with Fit-II at 34 units. In all cases and as anticipated with viscous 

solutions, stress fully dissipates over the cable region.

B o t t o m  s u r f a c e

Newtonian
Fit-1
Fit-ll

Newtonian
Fit-1
Fit-ll

Newtonian
Newtonian
Fit-1
Fit-ll

Figure 5.8: Stresses along top and bottom surfaces: a) shear stress, b) shear-rate.
Newtonian. Fit-I and Fit-II

In contrast, centreline profiles o f normal stress ( izz) and strain-rate ( I )  are plotted in 

Figure 5.9 for Newtonian. Fit-I and Fit-II solutions. The i zz-profiles amply illustrate 

sharp solution changes at geometry intersections. This is an important feature to observe 

with the largest peak corresponding to the Newtonian die-exit value o f -4 units, whilst
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throughout the die. tzz for Fit-II solution is the largest. In contrast and taken over the 

draw-down section. Newtonian and Fit-I solutions provide close results in whilst 

Fit-II generates a slightly lower level (see zoomed insert). Similar trends and variations 

(peaks, troughs) are observed in the strain-rate across the whole flow-domain for each 

o f the three fluid approximations. In contrast and throughout the draw-down section, 

maxima in strain-rate are observed near the melt-cable contact-point for the Newtonian 

solution (~2 units); whilst minima correspond to Fit-II in this same location (around -0.4 

units).

a) Full-geometry

-4

-6

Newtonian
Fit-I
Fit-ll »

-3

2
Newtonian
Fit-I
Fit-ll

1.5

1

0.5

0

-0.5 3 2 •1 0 1-4

b) Draw-down

Newtonian
Fit-I
Fit-ll

Newtonian
Fit-I
Fit-ll

Figure 5.9: Normal stress and strain-rate along centreline: a) full geometry, b) draw
down section. Newtonian. Fit-I and Fit-II
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5.7.2.3 Strain-Rate Stabilization (SRS)

Here, the problem is solved by appealing to singularity capturing and stabilization 

techniques, referred to earlier as ‘Strain-Rate Stabilization (SRS) (D-Dc). Two choices 

o f stabilization factor {a=0.25, a=0.5} have been trialled. In this regard, the focused 

interest lies in the effects o f such strategies upon the die-exit stress singularity and 

resulting swell. According to these findings, a smaller level o f swelling is observed (not 

shown) when the singularity is additionally accounted for through the (D-Dc) 

realisation. Moreover, one can extract the effects o f (D-Dc) treatment on the dynamic 

contact point solution, which follows slower movement under singularity capturing (i.e. 

the distance from the die-exit to contact point is greater under (D-Dc) treatment). In 

Figure 5.10 with and without strain-rate stabilization (D-Dc), shear-rate (T) and shear 

stress (xrz) profiles along the top and bottom surfaces and strain-rate (X) and normal 

stress (xzz) along draw-down centre are presented for the Newtonian fluid. From these 

profiles, notable reduction is displayed in shear-rate (T), shear stress (xrz) at the top 

surface, and strain-rate (X) along the draw-down centre (almost 60% reduction in shear- 

rate peak with D-Dc). Therefore, this technique is observed to have a significant impact 

on the capture o f peak stress and strain rates exiting the die on the top surface (though 

note, there is little influence from the variation in level o f constant factor a). 

Alternatively, on the bottom surface, there are insignificant variations observed in T and 

xrz with a=0.5; while for a=0.25. there is notable change near the contact point, with 

reduction in its magnitude. In the normal stress xzz profile, one can note change only 

near the contact-point region, where a larger normal stress is noted under (D-Dc) 

treatment: lying around 4 units with D-Dc and 2.5 units without D-Dc. These findings 

are anticipated to remain localised within this viscous approximation.
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Figure 5.10: I . Z. xrz and xzz profiles: SRS scheme. a=0.25 and 0.5; Newtonian

5.7.2.4 Free-surface line-segment mid-side node calculation-coupled schemes

Furthermore, the coupled method has been tested w ith two different free-surface 

location line-segment oriented schemes, in order to more accurately capture the 

temporal-update positions o f the nodes that lie on the dynamic free-surface. Firstly, 

from the prevailing velocity field, nodal temporal-updates (h," ') are computed via 

equation (3.68). In the vertex-node oriented scheme this provides the raw data on nodal 

position for vertex nodes, so that mid-side node positions are determined by linear 

interpolation along each straight-line surface-segment (Vertex Node FS Cal). Secondly 

and by way o f alternative, a similar strategy is adopted by appealing to equation (3.68) 

computation, but with solution retained primarily on mid-side nodes (Mid-Side Nodes 

FS Cal), instead o f vertex-nodes. In this form, the average o f each pair o f surrounding 

mid-side node heights is employed to determine the height o f the common-connected 

vertex nodes. The principle behind such an alternative is that surface dynamics is better 

controlled by surface segments (and not nodal-points), and in addition mid-side node 

data (shared by maximum of two interior /e-elements) is often o f superior quality to
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vertex node data (potentially unlimited sharing between /e-elements on irregular 

meshing; see [57] for superconvergence properties,^-interpolation on tessellations and 

solution sampling). The corresponding temporal-history profiles o f the relative error 

increment norms in nodal surface height, velocity and pressure are illustrated in Figure 

5.11 for both vertex and mid-side node-based procedures. From these profiles, one can 

detect similar trends and levels o f convergence in all variables and under both strategies 

up to time ( f - 1 0  units) beyond which faster convergence is clearly apparent under the 

mid-side node strategy (equivalently, 0(50% ) less compared to that enjoyed under the 

vertex-node strategy). Hence, the mid-side node strategy is selected as the superior free- 

surface location scheme o f choice.
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Figure 5.11: History o f convergence, a) free-surface height, b) pressure, and c) velocity, 
vertex node free-surface calculation vs mid-side node free-surface calculation

5.7.2.5 Momentum diffusive matrix (S-Matrix) treatments

History plots o f the relative error increment norms in velocity and pressure are 

provided in Figure 5.12 for the four different temporal-iterative approaches described 

above. These results reflect a higher rate o f convergence for the two Approaches (2 and 

4) under Ihs-S-matrix with r= l. as compared to that extracted under Approach 1 with the 

full Ihs-S-matrix. As a consequence, larger time-steps are required under Approach 1 

(with full-S-matrix -  rendering more constraint on its time-stepping capability), as 

opposed to w ith the alternative approaches. Note, almost the same rate o f time-stepping 

convergence is observed for Approaches 2 and 4 (Fw//-S'-matrix_r(lhs)=l and 

Newtonian A-matrix_r(lhs)= 1). Hence. Approach-2 is the preferred choice here. Table

5.3 presents the findings in direct mode o f comparison on the rates o f  convergence 

observed, when employing different numbers o f Jacobi mass-iterations o f 1, 3, and 5. 

Likewise and under Approach-5, the rates o f convergence are also displayed in Table

5.3 for different Gauss-Quadrature point approximations o f GQP=1, 4, and 7 

(equivalent to exact piecewise-constant, linear, quadratic integrand function 

approximations). Reduced integration is implied for GQP<7. Here, findings reveal that 

numerical solutions are stable for GQP=4, and GQP=7; whilst numerical instability is 

encountered under the piecewise-constant function approximations o f GQP=1. This 

result would indicate that reduced integration is not a favourable option here, and that 

Newtonian constant-viscosity approximation at the element level would demand much 

further mesh refinement to offer any advantage.
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Figure 5.12: History o f the relative error increment norms in pressure and velocity. mint=3

Table 5.3: Rate o f convergence (time Units) with different numbers o f mass- 
iterations. Approaches 1-5. GQP=7

Approach No. of mass 
iteration

Convergence Rate 
(Time Units)

1 20

l)Full-S-Mat 3 20
5 N o t  s t a b l e

2)FuIl-S-Mat_r(lhs)=l
1 0 . 0 0 2
3 1 . 3
5 1 . 5

3)Diag-S-
Mat_r(lhs)=l

1 3 . 5
3 3 . 4
5 2 . 9

4)Newtonian S- 
Mat_r(lhs)=l

1 0 . 0 0 2
3 1 . 6
5 1 . 6

5)FuIl-S- 1 (GQP=1) N o t  s t a b l e
M a tG a u sssa m p 1 (GQP=4) 20

(mint=l) 1 (GQP=7) 20

5.7.2.6 Pressure vacuum imposition

To explain the influence o f different factors on the cable coating process, the 

Newtonian problem is first resolved with negative pressure (vacuum) on the bottom 

surface of the draw-down section and by appealing to a coupled free-surface solution 

strategy. This has the effect o f imposing an inward sucking force on the conduit, 

drawing it down upon the cable carcass. Then, in practice, the top free-surface boundary
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conditions may still be retained for the draw-down conduit perimeter, with various 

selected values o f negative pressure-differential being imposed on its inner (bottom) 

surface. The effect o f negative pressure-differential on the contact-point position may be 

observed in Figure 5.13a for alternative settings o f imposed negative pressure vacuums 

{AP=0,-10.-30.-80,-200}. There is insignificant adjustment in contact-point position for 

AP=0 up to AP=-30; but this state adjusts with further amplification o f vacuum pressure 

level. The results reveal that relative to a zero vacuum conduit state (AP=0), there is 

between 2% and 5% change in contact-point position for pressure vacuum changes from 

AP=-80 to AP=-200, respectively. The relationship between imposed negative pressure- 

differential and uptake o f contact-point position is clearly apparent in the profile plot o f 

Figure 5.13a. From this profile, one can anticipate a reduction in draw-down length as 

the pressure vacuum level rises. In addition, the pressure along the centreline o f the 

draw-down section is displayed in Figure 5.13b for various settings o f  inner-surface 

negative pressure. Findings reflect that, as vacuum levels rise (inner pressure falls), 

undershoot occurs near the die-exit and overshoot around middle o f the die.

AP=-200
\P=-80
\P=-30
\P=-2
\P=0

40 . 5 2

0 .51 2
0 . 5

00 . 4 9

CL
N 048 2

0 . 4 7

-4

0 . 4 5 ■60 0.2 0.4 0.6 0.8 1 1.2-200 - 1 5 0 -100 - 5 0 0
AP

Figure 5.13: a) Contact point position, b) pressure drop along centreline, c) coupled free- 

surface solutions, vacuum effects. Newtonian

Newtonian and Inelastic Fit-II for w /=0.9 solution pressure fields are displayed in 

Figure 5.14a, for two various alternative settings o f imposed negative pressure- 

differential (AP=-60, -80}. Here, it is also relevant to show direct contrast between 

coupled and decoupled free-surface strategy solutions (see later), to expose the positive 

benefits o f the decoupled approach whilst more severity is introduced into the problem
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through vacuum pressure elevation (see arrow added in Figure 5.14). From these fields, 

one can observe a distinct impact on conduit shape with increase o f  vacuum pressure 

level (inward sucking pressure rises in magnitude). For stable steady inelastic solutions, 

a critical vacuum pressure level o f AP--80 is achieved for Fit-II (see AP=-60 stable 

solution), which occurs considerably sooner in vacuum pressure elevation than under 

Newtonian rheology (AP--200). Findings reflect that the outer conduit top-surface 

shape is majorly affected for AP<-20, whilst the inner surface shape remains relatively 

unaltered. There is also significant downstream shift in contact point location, between 

inelastic solutions with AP=-60 and AP=-80, approaching critical conditions. Describing 

extrema in top-surface shape change for the largest vacuum level imposed (AP=-80), 

there is greater concavity experienced in the swell region post-die-exit. the conduit 

surface is more wavy throughout its length, and there is obvious pinching in the vicinity 

o f  the melt-cable contact-point. This structure represents a dramatic change when 

compared to the Newtonian solution position, which showed a prominent corresponding 

decrease in draw-down length. Taking into account the variability in critical vacuum 

pressure levels between Newtonian and inelastic representations, it is quite apparent that 

inelastic solutions are more sensitive to contact-point conditions and Newtonian 

solutions to die-swell conditions. This contrast is drawn out in Figure 5.14a and Figure 

5.14b. Hence, to overcome this drawback the decoupled free-surface strategy is 

implemented. This technique has been successfully trialled for Newtonian, inelastic and 

vacuum pressure scenarios as illustrate below.

Newtonian
AP=-60

Inelastic, Fit-II

\P=-60

Figure 5.14: a) Newtonian, b) Inelastic, Fit-II: coupled free-surface solutions,
vacuum effects. m/=0.9
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5. 7.3 Decoupled free-surface techniques

This aspect of the study documents the application of a new robust free-surface 

location technique, utilising a decoupled (independent) approach in calculations 

between top and bottom conduit surfaces. In this process, two solution sub-phases are 

considered. The first, seeks a solution when free-surface movement is suppressed, and a 

domain-interior solution is generated. Here, internal solution variables of velocity and 

pressure are determined, without boundary movement. Then, at a second phase, the 

draw-down section is subdivided into three sub-sections: (i) top-surface A - including 

the whole draw-down conduit and half of the coating region (surface-A); (ii) bottom- 

surface B of the draw-down conduit (surface-B); and (iii) second/final half C of the 

coating region (surface-C). Accordingly, the double free-surface problem may be 

tackled by commencing from a fixed position interior solution (step 1), subdivided itself 

into four stages o f analysis. The first stage (i) permits only lower conduit surface-B 

movement, with fixed surface-A and surface-C (B free; A, C fixed). The cable velocity 

is imposed at the moving cable surface, and the contact point location itself is to be 

determined as part of the problem. The second stage (ii) is then to solve with 

independent top-surface A movement alone, that is with fixed surface-B (of the draw

down conduit) and surface-C (of the coating region) (labelled A free; B,C fixed). The 

procedure may terminate at this point, as the third and fourth stages constitute 

consistency checks. The third stage (iii) reassesses surface-B movement, as a 

consequence of repositioning of surfaces-A (labelled B free; A,C refixed). Finally the 

fourth stage (iv), the double free-surface solution may be checked in two ways: (a) with 

recoupling surface-A and surface-B simultaneously (labelled A, B free; C fixed); and 

(b) rechecking surface-A movement alone, after B-movement in stage (iii) (labelled A 

free; B,C refixed). This systematic approach allows for separate interpretation of free- 

surface degrees of freedom in the problem, and their relative strength of impact on the 

process.

Experience would indicate that, each of the above intermediate steps yields a solution to 

a specified level of solution invariance, when commencing from a previous solution. It 

is also apparent that perturbation to one or either of the free-surfaces will influence the 

other, and that some sufficient conditions are demanded to seek steady-solutions. To 

this end, tolerance monitoring on the free-surface location has been instigated, both as a
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guide to error estimation and assessment of suitable convergence criteria across the 

sequence of time steps (see section 3.11 of chapter 3).

5.7.3.1 Decoupled free-surface tracking, Newtonian solutions

Through the time-stepping solution procedure to update the free-surface location, 

first the solution commences from initial conditions of the previously derived 

Newtonian solution satisfying a fixed surface position. Then, the temporal equations for 

the free-surface are integrated through time to solve for a steady solution position using 

the specific tolerance for the radial coordinate to satisfy sufficiency in free-surface 

convergence over the time-step sequence. In order to present findings with clarity, this 

task is reported upon as segregated into four solution phases:

Stage (i) -  To seek the solution under free-surface B movement, applied to the 

bottom surface alone (surface-B)

Stage (ii) -  To seek the solution under free-surface A conditions, permitting only 

top surface of draw-down conduit movement (surface-A)

Stage (iii) -  To re-assess the solution under free-surface B movement alone, 

following resettlement of surface-A

Stage (iv) -  To re-assess the solution under free-surface movement for:

(a) both top and bottom surfaces combined (surface-A and surface-B)

(b) top surface of draw-down conduit alone (surface-A)

5.7.3.1.1 Decoupledfree-surface, bottom zone movement (surface-B) - Stage (i)

Here, only the bottom-part of the draw-down conduit (surface-B) is permitted to 

move (free-surface and mesh nodes), whereas the other surfaces remained fixed. The 

shape is determined from vertical node-movement, interpreted in terms of change in the 

radial direction only. New r-coordinates are then calculated, dependent on the radial and 

axial velocity components. Two different tolerance levels have been utilised to assess 

trends in temporal development and convergence of the lower conduit surface-B 

{TOL_C=5xlO"5, 10'5}. The temporal radial coordinate evolution increment is plotted in 

Figure 5.15(a,b) by tracking two different points on the lower surface-B, one near the 

die-exit and the other near the contact point, respectively (two central plots). Findings 

reveal that, under TOL_C=10"5, free-surface B convergence occurs rather quickly, and 

meets the tolerance at n-step= 10000 (time=10 units) (see Figure 5.15c). The solution
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location-point near the contact-point takes nearly twice as long to settle down to an 

invariant state, as the location-point near the die-exit. Further evidence on time-trace 

and development o f the lower surface-B lies in the profile (Figure 5.15d), which 

indicates that this solution is invariant over further time (*20).
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Figure 5 .15: Convergence o f bottom free-surface B position. Newtonian

5 .7.3.1.2 Decoupled free-surface , top surface movement (surface-A) - Stage (ii)

Here, the same techniques are applied once more as in the previous subtask, with the 

distinction that, now, only the top free-surface o f the draw-down conduit (surface-A) is 

unrestricted in movement. Likewise as in Figure 5.16(a.b), the results o f free-surface 

convergence are considered through tracking two different points on surface-A, one 

near the die-exit and the other above/close to the contact point region. In addition, the 

tolerance history and full profile o f the top surface are also displayed in Figure 5.16c. 

Convergence rates are clearly slower for the point located above the dynamic contact 

point than that near the die-exit. From the profile o f tolerance histories one detects that.
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the top free-surface in stage (ii) demands appreciably more time to reach this stringent 

convergence criteria TOL_C= 1.1x10°; n-step=200000 (time=200); which represents 

twenty times more than is required for the bottom free-surface B o f stage (i). One 

concludes that, the convergence o f the top surface requires much longer computation 

times compared to the bottom surface. Moreover, comparative data are presented on 

top-surface solutions derived from both the coupled scheme (previous method) and this 

decoupled method (current method) (see Figure 5.16d). These profiles reflect that, there 

is practically no difference observed between the top-surface shapes for the two separate 

solutions.
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Figure 5.16: Convergence o f top-free-surface A position, Newtonian

5.7.3.1.3 Decoupled free-surface, bottom zone repositioning (surface-B) -  Stage (iii)

This stage constitutes a consistency check, where free-surface movement is re

applied to the low^er conduit surface (surface-B). once surface-A has been located, again 

with other parts fixed. Findings reveal that, convergence is relatively quick for the
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setting TOL_C=10"\ noted in the early time (n-step=6200; time=6.2) when compared 

with stages (i) and (ii) (not shown). There is practically no readjustment necessary for 

surface-B from the result in stage (i).

5 .7.3.1.4 Final consistency check with decoupled free-surface movement - Stage (iv)

(a) Top and bottom (surface-A and surface-B) - coupled

Here, the combination o f section A and section B lree-surfaces is considered 

(interacting, coupled) while, section C is held in a fixed position. A number o f different 

tolerance levels have been monitored over the time-stepping sequence to assess their 

attainment {TOL_C=1.3xlO°, 1.25x10°, 1.2x10°, 1.1x10°}, surface interaction and 

convergence trends (see Figure 5.17). The history profiles in Figure 5.17a demonstrate 

that, an appropriate level o f tolerance lies between 1.3x10° and 1.2x 10^; there is no 

significant change observed beyond these ranges. In addition, the predicted shapes for 

the draw-down sections illustrate that one cannot enforce both free surface-A and 

surface-B simultaneously to long times, without stimulating long-term dissipation (see 

Figure 5.17b for solution drifting). This ultimately tends to violate mass conservation 

across the radial cross-section. Hence, the decoupled free-surface solution approach is 

advocated to avoid this issue (see below).
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b)

Figure 5.17: Convergence o f top & bottom free-surface A&B positions, Newtonian

(b) Top surface o f draw-down zone re-movement (surface-A) - decoupled

The profile o f the tolerance history is displayed in Figure 5.18a to an appropriate 

tolerance (TOL_C= 1.3x10°), providing a direct comparison between coupled (free 

surface-A and surface-B simultaneously) and decoupled solutions (free surface-A 

alone). Convergence is relatively rapid for stage (iv)-b: 730 time-steps, time=0.73; 

whilst in contrast is considerably protracted under stage (iv)-a: 12000 time-steps, 

time=12. In terms o f conduit shape, insignificant change occurs under both scenarios at 

this tolerance setting (pre long-term dissipation) as illustrated in Figure 5.18b.

TOL C=1.3xl0 5

TOL C=1.25xlO 5

TOL_C=1.2xlO 5

TOL C=l.lxlO 5
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Consequently, both to reduce computational cost and to avoid solution drifting, the 

decoupled approach is pursued under the more severe scenarios o f interest (inelastic 

rheology, imposed vacuum pressures).
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Figure 5 .18: Convergence o f top & bottom free-surface A&B positions vs 
Convergence o f top free-surface A position. Newtonian

5.7.3.2 Decoupled free-surface tracking for inelastic solutions 

5.7.3..2.1 Results without vacuum pressure applied

For the inelastic Fit-II model and the decoupled strategy outlined above, whilst 

incrementing between different levels o f power-indices, /w/, and this task is segregated 

into the following three phases:

i- Seek the internal fie ld  inelastic solution (current in/) under frozen free-surface

movement

ii- Seek the solution under free-surface movement applied to the conduit bottom

surface alone (surface-B)

iii- Seek the solution under free-surface conditions permitting only conduit top

surface movement {surface-A)

As above and to commence the time-stepping procedure, the initial conditions (and 

shape) are adopted from the previous solution (Newtonian). The corresponding results 

wath different power-index settings (w /= {0.9, 0.8. 0.7, 0.5}) are shown in Figure 5.19, 

using an appropriate tolerance extracted as (TOL_C=l .3x10°). Findings indicate that in 

surface readjustment (shape), there is insignificant change, apparent over all phases, 

with power-index variation (not shown). In addition comparative tolerance histories are

131



coating flow: Newtonian and inelastic fluids

presented on free-surface convergence for stage (ii)-B and stage (iii)-A with four 

different w/-values. Overall, the results reflect that quick convergence is noted for both 

top and bottom surfaces, and to the same tolerance the bottom surface converges 

considerably quicker (10*). In addition and for all cases, one observes the consistent 

trend o f an increase in time to convergence with decreasing mj (with increased relative 

thinning).
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Figure 5 .19: tolerance histories for convergence o f top & bottom free-surface.
Fit-II. mj variation

5.7.3.2.2 Vacuum effects & inelastic solutions

As discussed above, a decoupled free-surface approach has also been introduced 

when required to improve the numerical capture o f the conduit surface shape (see for 

example, the degradation in solution quality as shown in Figure 5.14a with AP=-80 at 

/;?/=0.9 and gathered under the coupled free-surface approach). Here, improved solution 

quality is accessible with the decoupled free-surface approach, as noted in Figure 5.20b, 

AP=-80, where significant improvement in free-surface shape is observed. This free- 

surface location technique utilises a decoupled (independent) approach in calculation 

between the two independent surface sections, top and bottom conduit surfaces. This 

technique has been successfully trialled for Newtonian, inelastic and vacuum pressure 

scenarios. With respect to bottom (inner) conduit free-surface zone movement, findings 

reveal that convergence occurs relatively rapidly to meet the specified convergence 

tolerances. The solution point-location near the contact-point takes nearly twice as long 

to settle down to an invariant state, as does the point-location near the die-exit. On 

convergence to steady state o f the top (outer) free-surface o f the conduit, one concludes
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Inelastic, Fit-II

decoupled

that much longer computation times are required here, when compared to those for the 

bottom surface. In Figure 5.20b. and under this decoupled approach, a solution for AP=- 

100 is also obtained, whilst for the coupled approach, this was not computationally 

possible (divergence ensued). Overall, the results reflect that rapid convergence is noted 

for both top and bottom surfaces with the decoupled free-surface approach in 

comparison to that for the coupled approach. In addition, one observes a consistent 

trend o f an increase in time to achieve a common convergence threshold upon 

decreasing m / further away from unity (notably, with increased relative thinning 

effects).

I
-5.0 -3.6 -2.1 -0.7 0.7 2.1 3.6 5.0

Figure 5.20: a) Coupled b) decoupled free-surface solutions, vacuum effects, Fit-II, w /=0.9

Figure 5 .21 provides the development o f the pressure fields under vacuum variation 

{AP= -60. -80, -100} for two sample values o f power-index {mj=0.9, 0.8} with the 

corresponding tolerance history profiles; Figure 5.22 gives the corresponding data for 

fluids with pow'er-index {m/=0.7, 0.5}. From this information, one is able to detect the 

consequence o f greater vacuum influence on the ensuing melt cone shape - which
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causes the top free-surface o f  the conduit to he sucked inwards. In contrast, the effect o f 

reducing mj is also clear, in that it also reduces the critical level o f vacuum pressure that 

may be sustained. In this context the results reflect that, for m/=0.9 the limit o f vacuum 

was AP=-120 (not shown), AP=-100 for /77/=0.8. AP=-20 for /??/=0.7 (not shown), while 

for 7?7/=0.5 it was AP=-15. In all cases, at larger levels o f vacuum pressure, there is 

significant indentation in top surface shape, when observed in comparison to the lower 

surface, with a pinching effect just beyond the die-swell region and a ramping bulge 

opposite the cable contact-point location. Moreover, pressure layers arise along and 

inside the inner free-surface o f the draw-down conduit, and eventually inside the upper 

surface just beyond the die-exit. An isolated pressure peak also occurs just beyond the 

contact-point. In addition and from history profiles, one notes an increase in tolerance 

estimation criterion as the pressure vacuum level rises at fixed /77/-level; likewise, there 

is an increase in tolerance criterion as m\ decreases at fixed vacuum pressure level. 

Accordingly, one can predict an appropriate convergence tolerance for each level of 

vacuum and power-index. Here one can conclude the larger levels o f tolerance 

necessary to capture accuracy and convergence as 777/-declines in value.
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b) mj=0.8
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Figure 5.21: Evolution o f shape and tolerance histories for convergence o f top 
free-surface, vacuum variation, Fit-II, a) m/=0.9, b) m\=0.8
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Figure 5.22: Evolution o f shape and tolerance histories for convergence o f top 
free-surface. vacuum variation. Fit-II, a) /??/=0.7. b) /?7/=0.5

5.8 C onclusion

This chapter has investigated the numerical solution o f Newtonian and viscous 

inelastic flows for the combined tube-tooling/draw down flow. Many factors that have a 

bearing upon the process as a whole have been investigated -  including those o f surface 

friction; vacuum pressure applied across the conduit; aspects o f dynamic contact-point 

and die-exit singularity capturing, via localised shock-capturing; coupled and decoupled 

free-surface solution. Regarding the effects o f surface friction, one can gather that slip is 

a mechanism to significantly reduce pressure-drops in the die-section o f the flow- 

process. In addition, computational predictions for inelastic model fits show die-inlet 

pressure-maxima, or pressure-drops, reduce from Newtonian levels by about a factor o f  

four with Fit-I, and by about one-half with Fit-ll model. Over the draw-down section, 

Fit-II provides the largest solution changes around the cable-melt contact zone. Shear 

stress maxima manifest a five-fold decrease with Fit-1 from Newtonian levels, and 3.5- 

fo ld  decrease with Fit-ll. This is borne out in shear-rate adjustment likewise. Fit-II 

generates the largest shear-rate maxima, which explains the larger stress levels amongst 

the inelastic solutions, and on the bottom-surface, the largest peak over the contact
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point. On tensile stress, there is plenty of evidence for the impact and clear consequence 

of viscosity variation; thinning from Newtonian, but hardening of Fit-II compared to 

Fit-I. Throughout the draw-down section, maxima in strain-rate are observed near the 

melt-cable contact-point for the Newtonian solution; whilst minima correspond to Fit-II 

in this same location.

The influence of singularity capturing on the die-exit solution has been explored 

successfully using the strain-rate stabilization {D-Dc) technique. In this respect, it has 

been demonstrated that such treatment can have a significant impact on peak stress and 

strain rates exiting the die, which themselves influence the levels of die-swell 

encountered. Throughout the study, some additional numerical convergence aspects 

have also been addressed, specifically pertaining to temporal solution stability for these 

free-surface problems, and as solvent fractions diminish, power-indices lower or 

vacuum pressures rise. Moreover, a new free-surface location technique has been 

established, utilizing a decoupled (independent) approach in calculation between top 

and bottom (outer and inner) conduit surfaces. This technique has been successfully 

trialled for Newtonian, inelastic and vacuum pressure scenarios. Further improvements 

in free-surface procedures are also documented through mid-side node/line-segment 

oriented approximations. In addition, taking into account the variability in critical 

vacuum pressure levels between purely-viscous Newtonian and inelastic 

representations, it is quite apparent that inelastic solutions are more sensitive to contact- 

point conditions and Newtonian solutions to die-swell conditions.
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CHAPTER 6

Numerical study of the hybrid finite element/volume 
method for tube-tooling cable-coating flow: with EPTT 
viscoelastic differential model

This study investigates the numerical solution of viscoelastic flows for tube-tooling 

die-extrusion coating using a hybrid finite element/finite volume discretisation ife/jv). 

The finite volume scheme is used for hyperbolic constitutive equation, introduced here 

of an exponential Phan-Thien Tanner (EPTT) model. The continuity/ momentum 

equations are solved through a semi-implicit fractional staged/pressure correction finite 

element scheme. The corresponding non-dimensional momentum-continuity deferential 

equations and constitutive deferential equations are provided in chapter 2.

6.1 Introduction

The modelling of cable coating with free surface location for axisymmetric and 

annular systems remains popular topic, which has provoked many studies (see for 

examples [93], [85], [88], [56]). In addition, there have been a number of studies that 

have addressed the modeling of wire coating for tube-tooling; see for example Gunter et 

al. [53], Mutlu et al. [90, 91]. These have provided some progress within the inelastic, 

non-isothermal and viscoelastic regimes. In their work, viscoelastic coating flows were 

simulated as with a PTT model and solved with a finite element technique. Based on, a 

time-stepping Taylor-Galerkin/pressure-correction finite element framework [31], tube
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tooling extrusion coating with a low density polymer melt has been analysed by Mutlu 

et al. [92]. In this study, both decoupled on velocity and stress and coupled numerical 

approaches were employed with the EPTT model. There, the decoupled method was 

used to overcome the numerical convergence difficulties when solvent contributions 

were minimal. Again, Matallah et al. [74] used the finite element method to simulate 

viscoelastic wire-coating employing coupled and decoupled schemes. There, a multi- 

mode EPTT model was used to emphasise the influence of die-design on optimal 

process settings. The draw-down residence time, which dictates the dominance of 

certain modes within the relaxation time spectrum, was found to be a major factor in the 

decay of residual stressing in the coating. Further work was conducted by Matallah et 

al. [75] to include a comparison of both single and multi-mode viscoelastic analysis for 

such wire-coating flows using the same numerical approach. There it was shown that 

the differences in findings appeared minimal from single to multi-mode modelling, 

specifically in the draw-down and coating regions. Similarly, Baloch et al. [13] 

conducted a comparative study of annular wire-coating flows with polymer melt 

materials using a single EPTT model. Additionally, Ngamaramaramvaranggul and 

Webster [96, 97] used a semi-implicit Taylor Galerkin/pressure-correction finite 

element scheme (STGFEM) to solve annular incompressible coating flows with the 

EPTT model. The authors showed that the EPTT model presents a better fit for 

viscoelastic fluids than other models due to its ability to accommodate the high 

elasticity regime (to the comparison curve), see for example the text of Tanner[121].

Most earlier studies on tube-tooling coatings has been performed through finite 

element implementations. In contrast, this study advocates a hybrid finite- 

element/flnite-volume approach, which consists of a Taylor-Galerkin finite element 

discretisation for momentum-continuity-surface calculation, and a cell-vertex 

fluctuation-distribution finite volume approach for stress. This is an amenable choice 

made to meet differential equation-typing demands, being of parabolic-elliptic form for 

the momentum-continuity sub-system, whilst of hyperbolic form for the first-order 

space-time tensorial constitutive equation ([140]) (also see section 3.9 for more details).

This chapter covers the application of viscoelastic analysis for the tube-tooling cable- 

coating using the network class of models, of exponential Phan-Thien Tanner (EPTT) 

type; shear-thinning, strain-hardening/softening, moderate-high Trouton ratios. Initially
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and under chapter 5, Newtonian and viscous inelastic coating fluids models have been 

introduced into the simulations. It is well known that viscoelastic fluids, as opposed to 

Newtonian and inelastic fluids, exhibit a non-zero first normal stress difference (Nj), 

hence requiring description of fluid memory and indeed a constitutive equation of state 

for stress (governing viscoelastic stress, see chapter 2). Here, instances of ideal flow 

deformation, as in simple shear and uniaxial flows, are used to identify the PTT 

parameter set (s e p t t , 5), for which a close fit to the experimental data is sought. 

Throughout the study influences of variation in Weissenberg number {We), polymeric 

viscosity and second normal stress difference (Nj) are analysed, whilst considering the 

impact of variation in shear-thinning properties. To gain some insight into residual 

stressing, close attention is paid to cross-stream stress profiles in the coating and its 

extended zones, necessary to accommodate the various relaxation modes involved.

6.2 Numerical algorithm

To solve the related governing equations, a hybrid finite element/volume 

discretisation scheme is performed for both coupled and decoupled procedures (across 

the sub-stages within a time-step)), where the results are found to be comparable (see 

for example Mutlu et al. [92]). Coupled (u, % p, h) solutions are considered only for
1 9moderate levels of solvent-fraction [/?=O(10‘ )-O(10’ )], where relatively large 

Weissenberg number solutions may be obtained without difficulty. This method 

involves solving for kinematics and stress simultaneously using the fractional stages 

(3.26a)-(3.26f) in chapter 3. However, for pragmatic stabilisation reasons and relative 

simplicity, a decoupled scheme, which allows for frozen kinematics within the 

viscoelastic solver, has also been deployed, suitable for smaller levels of solvent- 

fraction [/?=O(10‘ ), high polymer concentrations]. Hence, with the decoupled approach, 

the calculation of the viscoelastic extra-stress (r) is performed separately from the flow 

kinematics and surface adjustment {u, p, h) using stages (3.26b) and (3.26d). Thus, from 

anchored velocity and pressure fields, one resolves the extra-stress; then, the kinematics 

is updated by solving the conservation equations for a given extra-stress employing 

fractional stages (3.26a), (3.26c), (3.26e) and (3.26f). This strategy is supported by the 

fact that in many flows the kinematics themselves do not vary significantly with
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material variation. In such a decoupled procedure and through IFe-solution 

incrementation, the surface position (h) may itself be fixed, at say, the initial conditions 

of the previously derived coupled viscoelastic solution, or remain free to be determined 

alongside (u, p) kinematics.

6.3 Problem specification

Two schematic diagrams (short and long meshes) for the complete geometry are 

provided in Figure 6.1. The difference between the short and long meshes lies within 

the cable-coating region (L5-section), where the long mesh is almost four times more 

extended (see Table 6.1). In this study and due to the demands of long-range memory 

effects (see on), solutions are reported principally on the long mesh. Mesh 

characteristics are provided in Table 6.2 for both meshes, detailing numbers of finite 

elements, nodes and total numbers of degrees of freedom. Element distribution per 

region is also shown in Table 6.3. In addition, the relevant finite element mesh structure 

for the long-mesh is presented with sectional details, both to larger scale and zoomed, 

inclusive of detailed geometric design features of the draw-down section (DDS), free 

surface position, and cable-coating region.

Boundary conditions are taken as no-slip, and applied to the annular die-wall prior to 

the die-exit. For the draw-down section and cable-coating region the following 

boundary conditions are accepted: along the top and bottom (outer and inner) free 

surface sections, traction vanishes (natural conditions apply, at atmospheric pressure); 

along the free surfaces in the cable-coating region, the velocity components are defined 

assuming a plug-like velocity profile and a constant flow-rate per cross-sectional area; 

at the outflow, a plug flow is imposed that travels with the moving cable; along the 

lower domain boundary in contact with the cable, velocity conditions match those of the 

moving cable surface. The characteristic velocity and length respectively, are taken of 

(U) cable speed, and (L) the length of the draw-down section.

141



tooling cable-coating flow: with EPTT viscoelastic differential model

Table 6.1: Geometry dimensions

Cases L, u l3 U l5 Rintl Rint2 r3 R4 r5 R6
S-M 1 1.8839 1.9338 0.5423 0.5423 1.9648 1.9134 0.9436 0.8189 0.4772 0.4122
L-M 1 1.8839 1.9338 0.5423 2.4577 1.9648 1.9134 0.9436 0.8189 0.4772 0.4122

Table 6.2: Mesh characteristic parameters per region

Sections
S-M L-M

Elements

Inlet tube 312 312

Converging section 612 612

Land region 528 528

DD section 240 240

Cable region 312 912

Total 2004 2604

Table 6.3: Mesh characteristic parameters

Mesh Elements Nodes Degree of freedom 
(u,p,T)

S-M 2004 4355 27306

L-M 2508 5447 34152
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Figure 6.1: Schematic diagram for tube-tooling domain: a) short mesh (S-M), b) long mesh (L-M),

c) Finite element mesh for draw-down section
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6.4 Material functions

The material properties for the polymer melt exhibit shear-thinning and strain- 

softening, as illustrated in Figure 6.2. A suitable model to employ in matching this 

experimental data is an exponential Phan-Thien Tanner (EPTT) viscoelastic model, as 

this may display a suitable form in its shear-thinning and strain-softening properties. 

The functionality in the EPTT model provides the following shear viscosity (t/5), 

extensional viscosity (rje), first (Nj) and second (A?) normal stress-difference 

dependence:

n ,= n ,P + — — , (6 .1)
/s ^  r + w / e a - e )

r/e =  3 T}J + 2r>PX~ P )  +  V.C^-P)  (6.2)
f - 2 \ s ( \ - 4 ) f  + \ e ( \ - 4 )

N  1 r i,(\-P )K r------  N = _ i N  (6.3)
1 r + ( \ r f - 4 (2 -4 )  2

Here, X] may be interpreted as a principal relaxation time, /?= jus/( fie +ns) as a solvent 

fraction, and fie and fis represent polymeric and solvent viscosity component fractions, 

respectively. Then, the zero-shear viscosity jLio=i*e+Jis- Model constants s and £ are 

additional scale-less constitutive law parameters, e governing the non-linear function/ £ 

the combination of upper and lower convected material derivatives (Gordon- 

Schowalter). The second normal stress difference, N2 , may be expressed via £ 

dependency on N ]. In this form, it may be observed that as £ tends to zero, then so does 

N2 . This PTT model displays a slight increase of the extensional viscosity at extension 

rates less than unity, before decreasing to a high strain-rate limiting plateau. We observe 

from Figure 6 . 2  (a,b,c), the elongational viscosity fits provide appropriate trends in 

general behaviour, but at higher strain-rates, yield slightly lower estimated values than 

the limited set of experimental data provide. With regard to shear viscosity, the EPTT 

model provides acceptable fits to the experimental data, throughout a wide range of 

shear-rate. This is achieved by adjusting the £ parameter to match the industrial 

characterisation data for any isolated shear rate extreme. At low rates ( /  < 102), a better 

fit for the shear-data is attained with EPTT ( £  = 0 . 2 ,  s e p t t = 0 . 5 ,  / ? = 1 0 ‘3 ) .  At higher rates
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o f  (  y  >  1 0"  ), EPTT ( £ = 0 . 1 5 ,  S e p t t = 0 . 5 , / j = 1 0 ° )  provides a near-optimal least squares fit 

across the complete range o f shear rates displayed (see Figure 6.2d). Note that, the 

elongational viscosity is unaffected by adjustment in the c-parameter.
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Figure 6.2: shear and extensional viscosity fits: (l)/^-variation, 8 e p t t = 0 . 5 :  a) § =0.0, b) §=0.15,
c) § = 0 . 2 ,  ( 2 ) ,  d )  ^-variation, 8 e p t t = 0 . 5 ,  / i = 1 0 °

At low rates ( / < 1 0 : ), this is also true for the first normal stress difference (AO), see 

Figure 6.3. Flowever, as the shear rate increases somewhat further, and with increasing 

parameter c, the dependence o f Nj on y becomes weaker (tending to cap N/). Second 

normal stress-difference (AT) is also given in absolute terms and comparative form in

£
Figure 6.3, where AT departure from N/ ( N, = - —N t) is clearly apparent at all rates.
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§ = 0 . 1 5

Figure 6.3: First (N/) and second (AT) normal stress differences: EPTT, c={0.0.1.0.15.0.2},
/ ?  = 1 0  3 , s e p t t - 0 . 5

In Figure 6.4, the impact o f increasing S e p t t  is also considered, at constant values o f (/?,

C). In steady shear flow and at lower rates, the viscosity marginally decreases with an 

increase o f £ e p t t -  At moderate and higher rates, a best fit for shear-viscosity (in a least- 

squares sense, averaged through the data and range) emerges for shear rate 

ranges, 1 0 ‘ < y  < 4 * 1 0 '  with 8 e p t t = 0 . 7 ,  4 * 1 0 '  < y  < 3 * 1 0  with £ e p t t = 0 . 5 ,  and

/ > 3 * 1 0  with 8 e p t t = 0 . 3 .  Here, the range and 8EPTT-setting o f £ e p t t = 0 . 5 ,  is held to be 

most representative (hence, such a selection below). Furthermore, in uniaxial extension, 

a reducing trend is observed in elongational viscosity with increase in S e p t t - Extensional

viscosity values predicted, at low-rates (£ < 1 0 ° )  for S e p t t  =0.7, and medium-rates

s  < 1 0 1 for 8 e p t t  = 0 . 5 ,  lie closer to the experimental data; whilst for S e p t t  = 0 . 3 ,  the
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theoretical values provide a better match at higher ra te s s < 1 0 2. Intercepts with the 

experimental data shift through increasingly larger rates as the EEPTT-parameter is 

decreased. Overall, an optimal match to the experimental data, in a least-squares sense, 

and covering both shear and extensional viscosity data, is achieved with S e p t t  = 0.5.

Extensional

Shear
0>
■C</>
o

Exp 1_Extensional Viscosity 
Exp 2_Shear Viscosity 
|i= 0 .0 0 1 _ r .Eplt= 0 .7 _ I = 0 .1 5  
[3=0.001_i;Ep(1=0.5_c=0.15 
[5=0.001_r.Epn=0.3_c=0.15

y or 8

Figure 6.4: Shear and extensional viscosity, EPTT, Eeptt variation, /? =10 ' , c =0.15

6.5  C o m p u t a t i o n a l  P r e d i c t i o n s

6.5.1 c=0 (zero N2), Variation in fl and We

6.5.1.1 Geometry adjustment

To begin consistency is first confirmed in solution trends through the short and long 

mesh options. In this respect, one considers shear stress (xrz) profiles along the top 

(outer-annular) and bottom (inner-annular) surfaces, and normal stress (xzz) and first

normal stress difference (Nj) profiles along the axial direction for the particular
2instance, selecting We= 1, /?= 10' , S e p t t  = 0-5 and ^=0.0, (see Figure 6.5). Clearly and 

with two different cable lengths considered, there is little difference detected in these 

solution patterns throughout the die. In contrast, the changes observed are significant 

over the cable region and between solutions for the short and long coating sections. 

Significant stress relaxation occurs throughout the cable coating region, and resolution 

demands approximation with the long mesh (see use below). As such, a plug-flow state 

with vanishing shear stress (xrz). normal stress (xzz), and first normal stress difference Nj 

is only appreciably realised throughout the cable section when using the long mesh.
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Figure 6.5: i rz, xZ7 and jV/, Short mesh vs Long mesh, EPTT. /?=10" , JT<?=l .0 8 e p t t = 0 . 5 ,  c =0.0

6.5.1.2 Pressure-drop profiles

Pressure profiles along the centreline for the EPTT model with different settings of 

/?={ 10’1, 10'2. 10°} for PEe={ 1,5,10,20} at fixed eEPTT-value (eEPTT=0.5) are displayed in 

Figure 6.6 and Table 6.4.

Table 6.4: Total pressure-drop in units, EPTT. variation in /? and We, c =0-0

We .
10 1 10 2 10 3

l 456.3 233.7 228.1

5 305.8 103.3 66.8

10 281.0 77.5 42.2

20 267.2 62.8 28.5
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The pressure profiles reveal a linear decline in pressure throughout the die-inlet section; 

after which the pressure declines non-linearly over the converging die-section. 

Subsequently, the pressure falls away linearly within the land region. The shear- 

thinning behaviour o f the EPTT model, with increasing elasticity (We) and decreasing 

solvent-fraction (/?), generates a decline in the pressure-drop. As shown in Table 6.4 and 

for solvent-fraction o f /?= 1 O'3, the total pressure-drop reduces nearly by a factor o f eight 

from We=l to We=20 (from 228.1 units to 28.5 units). The corresponding reduction 

factor is almost 3.7 for /?=10'2 (from 233.7 units to 62.8 units), and 1.7 for /?=10'' (from

456.3 units to 267.2 units). Theoretically in steady shear flow (see Figure 6.2a), by 

decreasing the solvent-fraction (/?) and keeping (eepti. Q  fixed, the EPTT model thins at 

high shear-rates and accordingly, will provide a decline in pressure-drop. This is clearly
1 9 Tapparent in Table 6.4 at different levels o f /?={10’ , 10’ , 10' } for any given value o f

We.
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Figure 6 . 6 :  Pressure-P, EPTT: /?. We variation, £ Ep t t = 0 . 5 ,  c = 0 . 0
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6.5.1.3 Stress profiles

Normal stress (Tzz) and first normal stress difference (Ay) profiles along the centreline 

are plotted in Figure 6.7 for different settings of We=1, 5, 10, 20 and /?={ 10'1, 10'2, 10"3} 

at fixed eEPTT-value (sEPTT=0.5) and §=0.0. Here, the general trends and patterns in xzz 

and Ay profiles exhibit a constant value along the inlet-tube followed by a sudden 

change in normal stress and first normal stress differences with each adjustment in 

geometry. Subsequently, and as the polymer departs from the die to enter the draw

down section, a sharp decrease within the draw-down is generated. A smaller level of 

stressing is established with larger values of We, at any given solvent-fraction (/?), due 

to the dominant influence of shear-thinning. Maxima in normal stress (x^) and first 

normal difference (Ay) are located over the draw-down section around the contact point 

for all values of solvent-viscosity (fl) at We= 1. Note that, the relative and more 

significant decrease in and Ay, is noted as We rises from 1 to 5. There is nearly 

0(60%) decrease in Ay, when comparing peak draw-down zone values between We=1 to 

We=5 at the solvent-fraction level of >0=10”3, and 0(59%) and 0(58%) for /?=10'2 and 

respectively. The reduction in peak draw-down zone value in Ay is about 

0(39%) from We=5 to We—10, and 0(37%) from We= 10 to We—20 at /?=10'3. Once 

more, this reduction in Ay is associated with the shear-thinning behaviour of the EPTT 

model choice and with respect to decreasing the solvent-fraction (J3). A further point for 

discussion, new to this memory fluid approximation, is the stress relaxation 

phenomenon. Relaxation in tensile stress occurs in the coating flow on the cable and is 

linked to the relaxation time, for a fixed process time-scale. The rapid decay of normal 

first normal difference (Ay) for the smaller value of We (shorter relaxation-time) is 

much more marked, indicating that the stress gradient is much greater in its early spatial 

development. Here, an increasing value of We from 5 to 10, and 20, has the effect of 

inhibiting stress decay. The implication is that for larger values of We, longer times 

(hence, distances) will be required for the stress to decay to an acceptable minimal level.

150



tooling cable-coating flow: with EPTT viscoelastic differential model

4

W e = 1 .0 
W e= 5.0  
W e= 1 0 .0  
W e= 2 0 .0

3

2

0

1

2 ■4 3 -2 1 0 1 2 3
Z

N 
^ 1

4

W e = 1 .0 
W e= 5 .0  
W e = 1 0 .0  
W e = 2 0 .0

3

2

Z  1

0

D ie-e \it1

■2
-4 3 ■2 ■1 0 1 2 3

/i= l0 -2

-------------- We=1.0 3
-------------- We=5.0
-------------- We=10.0 n .

- --------------  We=20.0 /  \ 2

- Z  1

- -1

i I i i i i i i o

------------  We=1.0
------------  We=5.0 ^
------------  We=10.0 \

—------------  We=20.0 /  \

-

i i i i i i i i-2 -2 -1
Z

4 4
W e= 1 .0 
W e= 5.0  
W e= 10 .0  
W e= 20 .0

W e= 1 .0 
W e= 5.0  
W e= 10 .0  
W e= 20 .0

3 3

2 2
N
N

1

0 0
1 •1
2 2 2-4 ■3 -2 •1 0 1 3Z

Figure 6.7: xzz and jV / ,  EPTT: /?, ffe variation. 8 e p t t = 0 . 5 ,  £=0.0

Tensile normal stresses (xzz and xrr) and first normal difference (N/) profiles are 

provided in Figure 6.8, again with zoomed draw-down extracts. The effect o f xrr in Nj is 

barely significant. From xzz and xrr profiles, one may observe that the maximum xzz 

value is almost five times larger than the xrr level. This is clearly apparent in the Nj 

profiles, where these follow the same trend as displayed for xzz.
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Figure 6.8: TzzTrr and N j , EPTT: ITe variation, /?=10"3, £ e p t t = 0 . 5  , £=0.0

The influence o f solvent-fraction (fi) on profiles o f normal stress (xzz) and first 

normal stress-difference (AO) is shown in Figure 6.9. covering different levels of 

elasticity. In all such instances, the dominance o f shear-thinning leads to a stress-ratio 

decrease as the Weissenberg number (We) increases (the levels o f draw-down zone 

peaks for i zz profiles are 2.3, 1.0. 0.7. and 0.4 units for We= 1, 5. 10, and 20, 

respectively). In addition, larger values o f i zz and Nj in the die-section are generated for
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1 • 1 3 I • • •P= 10' , in comparison to /?=T0'" and 10' . One also notes that /?=10" exhibits slightly 

smaller values for xzz and TV/ in the draw-down section after the contact point.
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Figure 6 . 9 :  x zz and Nj, EPTT: /?, We variation, s e p t t = 0 . 5 ,  < 2 = 0 . 0

Furthermore to consider the shear flow zones, component shear stress ( i rz) profiles 

along the top (outer) and bottom (inner) surfaces are provided, at the same settings as 

normal stress ( t zz)  above. Here again, sudden change occurs in shear stress with each 

adjustment in geometry, noticeably for W e-\ (see Figure 6.10). There are changes of 

sign in xrz observed between both top and bottom surfaces. The bottom-surface shear- 

stress profile demonstrates most clearly, the localised effect o f the die-exit point 

discontinuity. A violent jump in shear stress is observed over the land region. These are 

held at levels that much reduce across the elasticity values o f W e- l to We—5, 10. and 

20. One may observe that the maximum positive level o f shear stress (about 3 units) is 

attained for We= l on the inner-wall around the contact point. For We=5, 10. and 20, 

some slight shearing arises over the draw-down region (extrudate). An acceptable plug 

flow then emerges over the cable region, where the shear stress is practically fully 

relaxed at all parameter settings.

Top-surface2

1

o

2
W e=1.0 
We=5.0  
W e=10.0 
We=20.0

•3

■4 ■42-4 3 1 0 1 2 3

Bottom-surface

-4 -3

W e=1 .0 
We=5.0  
W e=10.0 
We=20.0

J ____-2

p T "

Die-exit

■

154



tooling cable-coating flow: with EPTT viscoelastic differential model

3

2

1

o

1

W e = 1 .0 
W e = 5 .0  
W e = 1 0 .0  
W e = 2 0 .0

2 W e = 1 .0
W e = 5 .0
W e = 1 0 .0
W e = 2 0 .0

3

•4 1 2 33 2 1 0■4

2 W e = 1 .0  
W e = 5 .0  
W e = 1 0 .0  
W e = 2 0 .0

1

0

2

3

■4
3 2 1 0 1 2 3■4

3

2

1

E 0

1

2 W e = 1 .0  
W e = 5 .0  
W e = 1 0 .0  
W e = 2 0 .0

3

•4 1 2■4 3 2 1 30

Figure 6.10: Shear stress-xrz, EPTT: /?, Ife variation, 8nptt=0.5, t  =0.0

6.5.1.4 Shear and strain-rate profiles

In addition, shear-rate (gamma) (T) profiles along the top and bottom surfaces, are 

shown in the axial direction (Figure 6.11) for different solvent-fraction (/i) and elasticity 

(We). Shear and strain-rates are important measurable quantities that describe the state 

o f flow deformation and, according to the ranges encountered, may explain the 

polymeric response under the different flow scenarios. Throughout the converging 

section, there is a sharp drop in shear-rate, reaching a minimum over its middle section. 

Beyond the die-exit. once entering the draw-down flow, a sharp drop in shear-rate is 

noted. Similar behaviour is observed in both top and bottom surface shear-rate profiles.

There is only a gradual decrease in shear-rate over the draw-down section, followed by 

a sharp decline when the polymer meets the cable. Travelling with the cable, the rate o f 

decrease in shear-rates is minimal. Through the land region, the degree o f shearing 

adopts a constant plateau. At the end o f the die-inlet, solvent-fractions and /?=10"
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generate the largest maximum T-ievel o f about 62 and 53 units for bottom and top
1 9 Tsurfaces, respectively. For /?= 10’ , a similar trend is observed as with / M 0 '“ and /M O ’ , 

in both top and bottom surface shear-rate profiles throughout the die-section, but 

observing lower shear-rate values. This is true for all Weissenberg number (We), 

although the level o f shear-rate declines as We increases from We=\ to 5, and 20, again 

due to dominant shear-thinning.
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Figure 6.11: Shear-rate (T) profiles: EPTT,/? variation. s f . p t t = 0 . 5 ;  We=\.5, 20. £=0.0
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For contrast, flow-centreline profiles o f strain-rate ( I )  are shown in Figure 6.12 (see 

Figure 6.9 for corresponding normal stress. t zz). The profiles for X along the axial 

direction show sharp adjustments as the flow negotiates transition throughout the 

geometry. Maxima in the strain-rate are observed near the nielt-cable contact-point for 

the various levels o f solvent-fraction (/?) and elasticity (We). Strain-rates reached in the 

die-section are about 0.5 units, almost half o f that observed in the draw-dow n section.
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Figure 6.12: Strain-rate ( I )  profiles: EPTT./? variation, S e p t t  =0.5; We= 1,5,20, c= 0.0

6.5.1.5 Field plots, pressure (p), normal stress (tzz), and shear stress (rrz)

Comparative pressure fields are provided in Figure 6.13, over the whole domain for
1 2 3three different levels o f solvent-fraction /?=10" , 10" , and 10" at We=5. Here, greatest 

concentration o f pressure drop is noted across the die-entry section (narrowest width of 

die). At the draw-down and coating regions, the pressure holds to an ambient level. The 

most important rate o f change in pressure-drop arises across the land-region (see also 

pressure-drop profiles in Figure 6.6). As to be anticipated, the pressure-drop is most 

prominent across the tube-die. From these fields, one can observe a distinct level o f
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pressure rise along the inlet-tube with increase o f solvent-fractions (maximum pressure 

level o f 0(306). 0(103), and 0(67) for/?=10"', 10'2, and 10"3, respectively).

0.0 6.7 13.3 20.0 26.7 33.3 40.0 46.7 53.3 60.0

( 3 = 0 .1

(3=0.01
Max= 1 0 3 . 2 5

(3=0.001
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Figure 6 . 1 3 :  Pressure-P. EPTT: /7  variation, fixed We—5  and 8 e p t t = 0 . 5 ,  c = 0 . 0

Field plots on the normal stress component for We= 1 .5 . 10, and 20 at fixed sEPXT- 

value (sEPTT=0.5) and /?=10'3 o f Figure 6.14 illustrate the shear-thinning behaviour o f 

the EPTT model, that (x^, We-Y) in maxima is almost 3 . 7 ,  6.7, and 12.5 times larger 

than the ( tzz, We—5), (xzz, We= 10), ( izz, We=20), respectively. In this annular flow, the 

maximum value o f the normal stress emerges at the lower and upper die-wall 

boundaries. The maximum i zz-value in draw-down and cable-coating flow sections for 

We= 1 is in the order o f 2.1, 3 . 3 ,  and 5.6 times larger than the i zz-values for We-5, 10, 

and 20. respectively.
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Max=2.44

We= 1 . 0

158



tooling cable-coating flow: with EPTT viscoelastic differential model

M ax= l. 12

Max=0.73

Max=1.16
 ^

Figure 6.14: Normal stress-Tzz, EPTT: We variation, fixed / ? = 1 0 " 3 , S e p t t = 0 . 5 ,  <=0.0

In comparison, shear-stress i rz field plots are presented in Figure 6.15. Again, the

maximum shear-stress level attained is shown to decrease with increasing We.

Increasing the level o f elasticity (We) has had less impact on shear-stress ( irz) levels

than on normal stress (xzz) levels. A quantitative summary o f data-maxima is provided

in tabular form in Table 6.5. covering values o f pressure (P), normal stresses ( i rr, i zz),
1 2and shear-stress (xrz) components for different levels o f solvent-fraction (/?= 10' , 10' , 

10°) and elasticity ( We= 1, 5. 10, 20). This comparative data emphasizes the major 

stress solution shifts between We= 1 and We={5, 10, 20}; also the minor adjustments 

apparent with //-shift over {10‘2, 10°}.
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Figure 6.15: Shear stress-Trz, EPTT: We variation, fixed/T=10"3, S e p t t = 0 . 5 .  <5=0.0

Max=0.04
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Table 6.5: Stress and pressure, EPTT: /?, We variation, s e p t t = 0 . 5 ,  <5=0.0

p = w '

solutions We=1.0 We=5.0 We= 10 We=20
Max p 456.25 305.84 280.94 267.15

Max Trr 2.34 0.81 0.52 0.31
Max xrz 1.54 0.44 0.25 0.14
Max tzz 6.30 1.76 0.98 0.55

p = w 2

solutions We= 1.0 We=5.0 ^ = 1 0 We=20

Max p 233.71 103.25 77.45 62.83

Max T rr 2.66 0.76 0.45 0.26

Max T rz 1.74 0.47 0.23 0.14

Max rzz 7.86 2.05 1.10 0.61

/?=10'3

solutions We= 1.0 We=5.0 0^=10 We= 20

Max p 228.05 66.80 42.22 28.46

Max xrz 5.74 0.76 0.51 0.27

Max T rz 2.82 0.48 0.26 0.14

Max t zz 7.90 2.12 1.16 0.63

6.5.2 f -variation (non-zero N 2), variations in p  and We 

Effect of second normal-stress difference (parameter Q

In this section, the effect of second normal stress differences (Ay upon field 

response is analysed, in addition to the dominant effect of the first normal stress 

difference (Ay. Recall that in pure shear flow and with the PTT model, an increase in £ 

proportionally reduces N], and mildly increases Afc (see Figure 6.3). Values of \  larger 

than 0.2 (N2/Ny=20%) lead to numerical convergence difficulties, onset by the well- 

known Gordon-Schowaiter instability (demonstrated in shear through the non-
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monotonic nature o f the shear stress-shear rate relationship). Fortunately, values o f 

(N2/N,) rarely exceed 0.2 (20%) and more often physically do not exceed 0.1 (10%).

6.5.2.1 Pressure-drop profiles

1 2EPTT-pressure profiles along the centreline with different settings o f /?={10' , 10' , 

10°} and We={ 1, 5. 10, 20} at fixed sEPTT-value (sEPTT=0.5) are displayed in Figure 

6.16. Overall, due to non-zero second normal stress difference (^=0.15), we observe a 

reduction in the pressure-drop. For example, the pressure-drop for {/?=10’ , We=\.09 £, = 

0.15} is 145.44 units compared to 228.05 units for the {/?=10'3, We= E0, £, = 0.0}. 

Almost 36% reduction in pressure-drop is observed at this low level o f solvent-fraction

(/y=io-3).
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Figure 6 .16: Pressure-P. EPTT: /?, tfe, £, variation, S e p t t = 0 . 5

6.S.2.2 Shear-stress profiles

Figure 6 . 1 7  represents the i r/-profiles for EPTT{/T=10‘ , We, c , £ e p t t = 0 . 5 } ,  covering 

both outer and inner surfaces with |0< c< 0 .l5 . \<We<20}. Here, profiles are similar 

over top and bottom surfaces with <5£y>rrvariation, differing only around singularities 

and die-design adjustments. At each level o f elasticity (We), there are major features 

noted within the shear Tow and the die. Here, smaller levels in i rz-stress are observed as 

C e p  77-value increases. This may be associated with the material properties o f the EPTT 

model in steady shear flow, where the model shows greater tendency to thin with 

increase in the &;p77~value, whilst maintaining fixed (sEPTT, /?) (Figure 6.2(a.b)).

T o p  s u r f a c e  _  B o t to m  s u r f a c e
^rz
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Figure 6 .17: Shear stress profiles EPTT, {We^-variation, /?=10'3, 8 e p t t = 0 . 5

6.5.2.3 Normal-stress profiles

The corresponding position in normal stress i zz-pro files throughout the geometry 

centreline is conveyed in Figure 6 .18; with the zoomed views o f full DDS and coating 

section. Firstly, considering solution variation with increase in t-value; from the full 

geometry more-global viewpoint, little distinction may be drawn at each individual We- 

level. In the DDS o f Figure 6 .18 this is also true, in general noting slight reduction in 

stressing around the contact point for larger c-value.
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Figure 6 .18: normal stress ( tzz). /?=10’ , We, c variation. 8eptt=0.5

The position is summarised in normal stress profiles for {<M).15, /?=10"3}, through 

Figure 6.19, which reflect full Nj and individual source component i zz and i rr-stress 

profiles; Figure 6.19a covers the full geometry-centreline, Figure 6.19b its DDS zoom, 

and Figure 6.19c its DDS outer-surface zoom. This additional data provides insight as to 

the zonal localisation and relative strength and importance o f i rr-stress in the overall
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normal stress generated. Within the die, N] is dominated by i zz-stress, being 

predominantly shearing flow. In the DDS, from We= 1 to We—20 one might identify that 

izz-stress and Tn-stress decline (2.3 to 0.4 (0(82%) units; and 0.4 to 0.05 (0(88%) units, 

respectively). Moreover, may be seen to be of around 0(20%), 0(15%), 0(10%), and 

0(13%) of xzz for We— 1, 5, 10, and 20, respectively; and hence amplifies the overall 

levels of Nj generated there (the impact of Xrr on Nj is barely significant). In addition, 

the second normal stress difference effects (via x,-,-) contribute slight mitigation to the 

first normal stress difference level.

The elastic effects and first normal stress difference (Nj) comparison between the 

various We-mode solutions, We={ 1, 5, 10, 20}, are shown in Figure 6.19 for the full 

geometry-centreline, and its draw-down section zoom at £=0.15. N] peak draw-down 

zone value at We=1 is 2.6 units, whilst this reduces to 1.03, 0.6 and 0.3 units for We—5, 

We= 10 and We—20, respectively. At the exit, the Nj residual stress value undergoes a 

relatively sharp decay reaching 0.28 units for We—5 (almost 73% drop from its peak- 

level). In contrast, the residual-stress level of 0.2 units for We—20 indicates the 

relatively slow decay for this higher level of elasticity (almost 30% drop from its peak- 

level) when compared to values for the We-5 solution (for residual stressing, see Figure 

6.19c).
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Figure 6.19: Normal stress (xzz), radial stress ( i rr) and First normal stress difference (AO),
/?=10 3, 8eptt=0.5, c =0.15

Figure 6.20, combines a direct comparison for decreasing //-solvent fractions {10"1.10"2,
■310" } solutions over AO-profile data, at each separate We-level running through {1 .5 ,
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10. 20}. This data is restricted to DDS zones, and along the centreline. From this 

information, one can detect that solution data with /?= 10'" is faithful in trend and a close 

guide therefore to that at /?= 10°; particularly so for We<20. Trends are upheld cross

stream. noting the exaggerated undershoot in the {We= !,/?=! 0 '3} solution.
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Figure 6 . 2 0 :  First normal stress difference ( 2 / 7 ) ,  EPTT: /?, f l ' e  variation, £ e p t t = 0 . 5 ,  5 = 0 . 1 5

In order to investigate the residual stress across the cable region, velocity gradient 

(durdr) and first normal stress (TV/) profiles are shown at six different cross section 

positions in Figures 21 and 22 for EPTT(5=0.15, S e p t t = 0 . 5 ,  /?=10"2). Overall, one can 

detect significant variations in both durdr and Nj in the positions o f 6, 5. and 4 for 

different level o f elasticity o f We= 1, 5, and 10. This is clearly apparent in the vicinity 

o f the contact point at position 6 with relatively more changes in velocity gradient 

(durdu) and first normal stress difference (AO) in comparison with durdr and Nj at
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positions 5 and 4. A sharp decrease in the first normal stress-difference and velocity 

gradient (du,du) over a small distance from the position 4 to position 3 is observed. The 

gradient practically vanishes as one approaches the exit region that is sustained over 

successive stations (positions 5 and 6). Here, one can also observe a notable reduction 

in the levels o f residual stress Nj in last station (position 1) o f the cable region o f about 

0(92% ), 0(75% ) and 0(70% ) in comparison to Nj in position 6 for We= 1, 5.10 

respectively. In addition and for any level o f elasticity (We= 1. 5, 10) at positions 3 to 6. 

the vertical variation in velocity gradient (durdr) and first normal stress (N /) is 

especially significant from top to bottom surfaces due to the influence o f two different 

settings o f the boundary conditions imposed on theses surfaces.

Positions1

Contact point

Position 6 Position 5

0.540.54
We=1

W e =5 0.520.52

We=10.50.5 W e = 1 0
W e = 5

0.480.48 We=1  0

0.460.46

0.440.44

0.420.42

d u d rd u d r
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6.6 C o n c l u s io n

The numerical solution o f viscoelastic flows for the combined tube-tooling/draw 

down flow has investigated, principally through the variation o f material parameters. An 

exponential Phan-Thein/Tanner (EPTT) model has been employed to predict pressure- 

drops and residual stresses, and considers how these are affected within the process. 

Notably, attention has been paid to the influence and variation in Weissenberg number 

(We), solvent-fraction (fi) and second normal stress-difference (Nj) (£, parameter for 

EPTT).
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The shear-thinning response of the viscoelastic EPTT model, with increasing elasticity 

(We) and decreasing solvent-fraction (fi), generates a decline in the pressure-drop. For 

solvent-fractions of fi= 10' , the total pressure-drop reduces nearly by a factor of eight 

from We= 1 to We—20. With respect to stress profiles at any given solvent-fraction (fi), a 

smaller level of stressing is established with larger values of We due to the dominant 

influence of shear-thinning.

In addition, second normal stress difference effects are vitally important in this 

problem, which has a major impact on shear stress, normal stress and first normal stress 

difference levels. Furthermore, it is shown that a decoupled approach may provide a 

pragmatic strategy to stabilise the nonlinear calculation, and to provide predictive 

solutions at low levels of solvent-fraction (fi= 10’ ) and under the influence of non-zero 

second normal stress-difference (N2).
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CHAPTER 7

Numerical study of differential constitutive equations 
with polymer melts: The Single extended pom-pom 
(SXPP) model

7.1 Introduction

This chapter covers the numerical investigation of complex flow, tube tooling cable- 

coating using the single-equation representation of the pom-pom (SXPP) model 

discussed in section 2.4. Here, again, the hybrid scheme consists of a Taylor-Galerkin 

finite element discretisation, and a cell-vertex fluctuation-distribution finite volume 

approach is employed. Quantitative comparison against experiments requires, first and 

foremost, the use of constitutive models that can reproduce the steady rheological 

properties of the fluid in both pure shear and extensional flows (uniaxial and planar). As 

detailed in the previous chapter, the exponential Phan-Thien Tanner (EPTT) type with 

shear-thinning, strain-softening, and moderate-high Trouton ratios is discussed. 

Although PTT-like models can account for both uniaxial and planar strain-hardening, 

shear-viscosity also reflects a dependence on the same parameters that govern 

extensional properties, see Matallah et al. [74], This brings awkwardness in attempts to 

fit both viscosity functions independently; hence the advent and success of the pom

pom class of models, see McLeish and Larson [79], extracted in integral and differential 

forms. Such a framework is able to describe the complex rheological behaviour of 

polymer melts with essential separability over shear and extensional response. These
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pom-pom forms have been shown to provide quantitative agree with experimental data 

for melts with long side-branched architecture [79], as in low-density polyethylene 

(LDPE) melts. The original pom-pom model was modified into an extended form 

(XPP) by Verbeeten et al. [128], and then implemented in finite elements, to overcome 

three major descriptive drawbacks: discontinuity in steady-state elongation;

unboundedness in the orientation-variable at large strain-rates; lack of support for non

zero second normal stress difference in shear. In [108], good matching is also achieved 

for the rheology of LDPE-melts in both shear and extension using the pom-pom 

differential model. In addition, Inkson et al. [63] used a hypothetical melt of pom-pom 

type with different numbers of arms, to model the behaviour of LDPE melts. These 

authors found for three different flow problems, that multi-mode versions of the pom

pom equation with physically reasonable distributions of branching, are capable of 

predicting LDPE rheology over some four decades in deformation-rate.

Furthermore, Zatloukal [146] investigated the fitting and prediction with the 

modified Leonov model, along with XPP and modified White-Metzner (mWM) 

models. Zatloukal considered steady shear and uniaxial elongational flows for three 

different polymer melts (LDPE, mLLDPE, PVB). There, the study showed that the XPP 

model provides improved fitting and prediction for steady shear and elongational 

viscosity at lower deformation-rates when compared to the mWM model. In Bogaerds 

et al. [25], stability of the XPP model of Verbeeten et al. [128] was investigated for 

simple viscometric flows, utilizing two-dimensional finite element computations and a 

one-dimensional spectral eigenvalue analysis. The authors introduced a robustly 

stabilizing effect on these simple shear flows by including a relatively small second 

normal stress difference (a=0.1). They also documented that despite the resemblance 

between the material functions of the XPP and the EPTT models, the response to 

perturbation with the XPP model was significantly different. As a consequence, a new 

form of PTT model, termed PTT-XPP was introduced by Tanner and Nasseri [122] to 

essentially reproduce the steady extensional response of the XPP model of Verbeeten et 

al. [128,130]. There, the Giesekus (a) and g(x)=(f(x)-l)I terms that appear in the 

standard XPP model are neglected, in generating this new PTT-XPP model variant. 

Notably, shear viscosity response at larger shear-rates differs with this PTT-XPP model 

from its XPP counterpart: the XPP-form shows a greater tendency to shear-thin
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(increased rate) over its PTT-XPP alternative. More recently, a number of 

computational studies of steady viscoelastic flows have been undertaken, using Single 

extended approximations of the pom-pom model (SXPP); see for example Aboubacar 

et al. [4], Aguayo et al. [5, 6], Michiel et al. [80], Tamaddon Jahromi et al. [118]. This 

body of work with SXPP-models has aided in advancing numerical solution capability 

for polymeric fluids in contraction flows, where the evolution equation for the polymer- 

chain backbone-stretch structure variable is replaced by a steady-state idealised 

algebraic alternative.

In this chapter, the Single extended pom-pom model (SXPP) is used to investigate 

the particular problem of annular axisymmetric tube-tooling cable-coating, using a 

hybrid finite element/finite volume discretisation fe/jv(sc). Here, the influence and 

variation in Weissenberg number (We), solvent-fraction (/?) and second normal 

difference (N2) is considered. In addition, a comparison between an extended pom-pom 

(SXPP, kinematic-based) model and an exponential Phan-Thien Tanner (EPTT, 

network-based) model is presented.

Finally, contrast is made between alternative approaches to generate non-zero 

second normal stress differences, through the various constructive terms within the 

pom-pom constitutve framework. Here, the proposal is to provide comparison over 

solution response when .Afe-efFects are stimulated through alternative sources -  by 

adjusting either the standard anisotropic a-parameter on the Giesekus dyadic stress- 

product term, or via the ^-parameter on the Gordon-Schowaiter convected derivative 

term (an additional modification to the pom-pom equation, utilising the linear 

combination of lower- and upper-convected derivatives).

7.2 Governing equations and Numerical scheme

For the solution of incompressible viscoelastic flow, the governing non-dimensional 

equations may be given by the stress, momentum and continuity equations, as explained 

in section 2.4. In the present chapter, the hybrid finite element/finite volume 

discretisation (fe/fv) is implemented. The general framework of the time-marching 

hybrid fe/jv scheme employed here involves two distinct aspects. Firstly, velocity and 

pressure are computed via a semi-implicit incremental pressure-correction procedure
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with finite element spatial discretization. Secondly, a finite volume based fluctuation 

distribution scheme is adopted for computation of the hyperbolic extra-stress equations. 

A comprehensive discussion on this approach is presented in chapter 3.

7.3 Problem specification

A schematic diagram for the tube-tooling problem with its finite element mesh 

discretisation (draw-down section) was already displayed in section (6.2) of chapter 6. 

Here, the long mesh of 2508 elements, 5447 nodes and 34152 degrees of freedom was 

adopted (see Figure 6.1 and Tables 6.1, 6.2 and 6.3 for more details). In addition, the 

boundary conditions are also discussed in chapter 6. Furthermore, all numerical 

solutions pertain to viscoelastic creeping flows at minimal levels of inertia, equating to 

Re=10*4. To construct the essential basis for steady-state solutions and domain-internal 

starting conditions (kinematics, at fixed flow-rate and cable-speed), the flow problem is 

first solved for Newtonian fluid properties. Then, from this Newtonian position, 

viscoelastic flow solutions are instigated. As mentioned earlier, numerical solutions are 

presented for the SXPP constitutive equation. Here, simulations are conducted at 

different solvent fraction ^-settings ({/N10"1, 10'2, 10"3}), two different settings of the 

anisotropy-parameter ( o r  ={0.0, 0.1}), £ s x p p = 0 . 1  and number of arms (q=2). In addition, 

attention is paid to the influence of and variation in the Weissenberg number (We) 

through a graded progression in We calculation. Ultimately, a comparison between 

pom-pom and EPTT solutions is provided. The SXPP and EPTT model are referred to

here in parametric form as SXPP{q, £ s x p p , a} and E P T T { s e p t t , § e p t t } ,  respectively.

7.4 Material functions

In a previous chapter, the rheological response for the EPTT model has been 

investigated, under different relative parameters. To provide a wider study and discuss 

different rheological behaviours, the SXPP model is presented in this chapter. The 

SXPP model represents a shear-thinning fluid of strain-softening form under 

extensional deformation. Under this model, the parameters, which affect the material 

functions, and in consequence, the flow response, are: the ratio of relaxation times 

(stretch/orientation) of the backbone, represented by the non-dimensional parameter
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(Esxpp); solvent fraction (/?); the number of arms at both ends of the molecular chain- 

segment (q); the anisotropy-parameter (a). Figure 7.1(a,b) shows the shear and 

extensional viscosity for two different settings of solvent fraction /?=10' and 10' , and 

the non-dimensional parameter £sxpp=0.1 and 0.2 at fixed anisotropy-parameter a=0.0 

and q=2. From the profiles one can observe that, the best fitting in a least-square sense 

arises with /?=10" and Esxpp =0.1. Figure 7.1a displays a best fit in shear deformation
3 2with /?=10‘ and £sxpp=0.1, when compared to a choice of /?=10" . In contrast and for 

elongational viscosity, there is insignificant change apparent in response between both 

levels of solvent fraction. Moreover, comparison between EPTT{septt=0.5, 5eptt=0.15}
'y

and SXPP{q=2, s s x p p = 0 . 1 ,  a=0.0 and 0.1} settings at fixed /?=10' , are shown in Figure 

7.1(c,d), helping to identify optimal fits against the experimental data. From such fits 

one can conclude that the SXPP model provides a near-optimal least-squares fit across 

the complete range of extensional viscosity, matching closely to the experimental data 

with {/?=10'3, q=2, e s x p p ^ O .1 ,  a= 0.0 or 0.1}. The shear and elongational viscosity 

remain unaffected by adjustment in «-parameter, as illustrated in Figure 7.1(c,d). At low 

rates ( <  102), the SXPP model exhibits greater thinning in shear viscosity than that 

manifested with the EPTT variant; whilst this position is reversed in the deformation- 

rate range ( /  > 10 ).In addition, at fixed 0=10’ , Figure 7.1e provides comparison over 

the first normal stress difference (N]) between the response extracted under 

E P T T { s e p t t = 0 . 5 ,  § e p t t = 0 . 1 5 }  and SXPP{q=2, s s x p p = 0 . 1 ,  o e = 0 . 1 }  models. Such material 

data demonstrate that, under exposure to larger shear-rates, the dependence of Nj on y 

becomes weaker and tends to a constant plateau-level with the EPTT model, while for 

the SXPP version an increasing trend in Nj is substantiated. Comparative data are also 

presented on the second normal stress-difference (N2) in Figure 7.If, where and for 

at /  > 10°, it is conspicuous that N2 for SXPP adopts a monotonically declining trend, as 

opposed to the constant plateau-level observed with EPTT.
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Figure 7 .1: a.b) shear and extensional viscosity fits, SXPP: {/?, £ s x p p } -variation, c.d) shear and 

extensional viscosity fits. SXPP vs EPTT. e.f) First normal stress (N /) and second normal stress

(AT), SXPP vs EPTT
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7.5 Numerical solutions (SXPP model vs EPTT model)

7.5.1 Zero second normal stress (N2=0)

In this section, numerical solutions for the SXPP{q=2, s s x p p = 0 . 1 ,  a = 0 . 0 }  model are 

discussed, in the absence of second normal stress difference (N2) effects. An aspect of 

this study has been to compare and contrast the behaviour in complex flows of both 

EPTT (network-based) and SXPP (kinectic-based) models. Here, a comparison between 

the SXPP{q=2, s s x p p = 0 . 1 ,  a = 0 . 0 }  and the E P T T { s Ep t t = 0 . 5 ,  § e p t t  = 0 . 0 }  model is 

explored, for /?=10' and We variations.

7.5.1.1 Solution of SXPP(aSXpp=0.0) vs EPTT(^EPtt=0.0)
7.5.1.1.1 Shear and strain-rates profiles with p  variation

The deformation history and response of the fluid can be characterized through the 

ranges of strain-rates and shear-rates attained. Figure 7.2, displays the shear-rate (T) 

profiles over the top and bottom surfaces and strain-rate (X) through centreline for the 

SXPP{q=2, Ssxpp=0.1, 0=0.0} model for /H I0~ ', 10‘2, 10‘3} and fixed We=5. Overall, 

the plots exhibit a minor difference in shear and strain-rates with variation in solvent- 

fraction p. Moreover, Similar behaviour is observed in both top and bottom surface 

shear-rate profiles. The lowest value for shear-rate (T) in the whole geometry up to the 

cable region is observed with low solvent fraction (p= 1 O'1), due to dominant shear- 

thinning influence. In contrast, the data reflect that: the maxima in T is (48.55 units) at 

the converging-inlet for bottom surface, and X is (1.46 units) near the contact point 

region for p= 10" . In accordance with the above results, the range of shear and strain 

rates are (T<48.55) and (X<1.46) respectively; which practically agrees with findings 

under EPTT{ 8 e p t t = 0 . 5 , § e p t t = 0 . 0 }  model (see Figure 6.11 and 6.12). In that range of 

shear and strain-rates, more thinning in shear is encountered with this SXPP model, as 

compared to the EPTT (see Figure 7.1c).
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Figure 7.2: shear-rate (T), strain-rate (X). SXPP{q=2, 8sxpi>:=0.1.a=0.0}: We=5,/? variation 

7.5.1.1.2 Pressure-drop profiles with (1 and We variation

Pressure profiles results along the centreline for a SXPP{q=2, £ s x p p = 0 . 1 ,  a=0.0} 

model and through variation in [1 and We are shown in Figure 7.3. The findings reveal 

that, the largest value o f pressure occurs at /?=10"' with We=5 (248 units), with a 

significant reduction in the pressure drop as We increases from We=5, to We—10, and 

then We=20. This is attributed to the influence o f shear-thinning behaviour with the 

SXPP representation. In addition, and for We=20. a considerable decline in total 

pressure-drop is observed for the low solvent fraction o f  p - 10"3, with a minimum value 

o f around 5.87 units (almost 0(94% ) and 0(88% ) reduction in comparison to p= 10’1 

and p=10"“ solutions, respectively).
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Figure 7.3: Pressure-P. SXPP{q=2, 8sxpp= 0.1.a=0.0}: /?, JTe variation

In addition, a comparison o f pressure results for SXPP{q=2, Ssxpp=0.1,a=0.0} and 

EPTT{ 8eptt=0.5,^eptt=0.0} models is considered in Figure 7.4 with /?= 10" for three 

different ITe-values o f 5, 10 and 20. In all instances, SXPP data present a significant 

decline in pressure drop when compared to EPTT data. This reduction in pressure drop 

may be associated with a weaker first normal stress Nj for SXPP, in the range o f 

l< y < 1 0 0  in comparison to that for EPTT (see Figure 7.1e). Note that, SXPP is also 

more shear-thinning in the same range when compared to EPTT. From the profiles, one 

can detect that the reduction in the pressure drop between pom-pom and EPTT models 

is 0(72% ), 0(76% ) and 0(79% ) for We=5,10, and 20. respectively. The maximum 

values o f total pressure-drop for both models are tabulated in Table 7.1.
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Figure 7.4: Pressure-P, SXPP{q=2, eSXpp=0.1 .a=0.0} vs EPTT{ 8 Ep t t = 0 . 5 ^ ep1t = 0 . 0 }

(3= 10°, We variation

Table 7 . 1 : Total pressure-drop in units, SXPP(q=2, s s x p p - 0 . 1 . a = 0 . 0 ]  vs 

E P T T { e E p t t = 0 . 5 , ^ E p t t = 0 . 0 } :  / ? = 1 0 ' \  We variation

m o d e T \.
5.0 10.0 20.0

EPTT 66.80 42.22 28.46

SXPP 18.36 9.91 5.87

7.5.1.1.3 Stress profiles (TV/, t-z and Tr-J

The normal stress xzz and first normal stress TV/ along the centreline are displayed in 

Figure 7.5. with zoomed draw-down section for SXPP{q=2, ssxpp=0.1,a=0.0}at fixed 

(3— 10 \  and different setting o f We=5,10,20. Constant normal stress levels are observed
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along the die-inlet section, with increase and then sharp decrease over that converging 

section, and again constant levels in the land region with decline at the die exit. Through 

the draw-down section, one observes a decrease in level o f normal stress as We 

increases, which may reflect the effects o f shear thinning behaviour. The profiles in the 

draw-dawn section show a decrease in xa  -values of: 0(33% ) from We=5 to We-TO; 

and of 0(50% ) from W e-5 to W e-20; and o f 0(25% ) from We= 10 to We=20.

Full-geometry

We=5.0 
We=10.0 
We=20.0 T
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Figure 7.5: Normal stress (xzz), first normal stress (Nj), SXPP(q=2, 8 s x p p = 0 . 1 , a = 0 . 0 } :  /?=10"3,
We variation

Normal stress t zz is displayed in Figure 7.6 along the centreline, with zoomed draw

down section, for model selection, SXPP{q=2, S s x p p = 0 . 1 ,  «=0.0} and E P T T { s e p t t = 0 . 5 ,  

£,e p t t = 0 . 0 } .  This covers parameter choices: fixed /?=10‘ , with different setting of 

We={ 1, 5, 10). Similar trends in normal stress ( i zz) are gathered, when comparing 

SXPP and EPTT model solution data, with smaller levels o f stressing gathered in SXPP 

solutions. Here, constant levels are observed along the die-inlet section, with first
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increase and then sharp decrease over the converging die-section; and again, constant 

levels in the die-land region, with decline at its die-exit. Major reduction is observed in 

xzz-value over the draw-down section under the SXPP solution when compared to that 

for EPTT. The xzz-peak draw-down zone value at We= 1 is 2.3 units with EPTT; whilst 

this reduces to 1.8 units under SXPP solution (almost 22% reduction). At JTe=10. xzz- 

peak draw-down values are 0.6 and 0.4 units for EPTT and SXPP, respectively. A 

decrease in the level o f normal stress as We rises, reflects the effects o f shear-thinning 

response in the solutions gathered with both these models.
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Figure 7.6: Normal stress t zz, SXPP{q=2, s s x p p = 0 . 1 ,  a=0.0} vs EPTT{ 8 e p t t = 0 . 5 ,

C e p i 't  =0 .0 }: p= 10 '3, We variation

In addition to the foregoing, shear stress ( irz) profiles along the top surface are plotted in 

Figure 7.7. for comparison between E P T T {sep tt=0.5, ^ e p t t = 0 . 0 }  and SXPP{q=2, 

8 s x p p = 0 . 1 ,  a=0.0} models, at fixed /?=10'3 under We variation. In all these instances, 

dominant shear-thinning leads to a stress ratio decrease as We rises. In addition, a major 

difference in the levels o f i rz-stress is observed between solutions with both models. 

These profiles reveal that, over the die section, high levels o f i rz occur for the EPTT 

model, opposite to that observed over the draw-down section with some relaxation 

apparent over the cable region. In all cases, large peaks are observed with the pom-pom 

model near the die exit. On the cable region the stress levels are practically 

indistinguishable. Through the die section the difference in the i rz-levels between both 

models diminishes at higher elasticity levels (We=\0), compared to We=\ and We=5; 

i rz-level decreases by around one-half from We=5 to We= 10. The increase o f the stress 

magnitude in the die section may again be due to shear-thinning influence for both 

models, as displayed in Figure 7.1c.
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Figure 7.7: Shear stress (xrz) along top surface, SXPP{q=2. 8 s x p p = 0 . 1 , a = 0 . 0 }  vs 

EPTT{8eptt=0.5. ^eptt=0.0}: fi= \W \ We variation

7.5.2 Non-zero second normal stress difference (N2fi0)

Here, the results for SXPP{q=2, s s x p p = 0 . 1 .  a=0.0  and 0.1} at fixed solvent fraction
n 3 * i i  n rfi— 10 are considered to demonstrate the influence o f non-zero second normal stress 

difference (AS) on solution data. In addition, a comparison is also undertaken against 

E P T T { s e p t t = 0 . 5 ,  ^ e p t t = 0 . 1 5 }  solution data, with Weissenberg numbers (We) o f 1, 5.

7.5.2.1 Solution of SXPP(aSXpp=0.1) vs EPTT(£EPr,=0.15)

7.5.2.1.1 Pressure-drop profiles

For the SXPP model, the effect o f the second normal stress difference on pressure- 

drop is also investigated, through variation in the anisotropy parameter a. In this 

respect, the pressure-drop along the centreline for SXPP{q=2, s s x p p = 0 . 1 ,  a = 0 . 0  and 

0 . 1 }  with W e-1,5 and fi= 1 0 '  , is illustrated in Figure 7.8(a,b). Here, decreases in the
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pressure-drop level is detected as the a-param eter increases from « = 0 . 0  to « = 0 . 1 .  For 

instance, almost 0(8% ). 0(12% ) reductions in pressure-drop are encountered with 

SXPP(q=2, 8 s x p p = 0 - 1 ,  a = 0 . 1 }  for We={ 1 , 5 } ,  respectively, in comparison to similar 

observations for SXPP{q=2, £ s x p p = 0 . 1 ,  « = 0 . 0 }  solutions.

In addition, at fixed /?=10’3, comparative data are presented on pressure-drop profiles in 

Figure 7.8(c.d). This corresponds to data along the centreline for SXPP{q=2, 8sxpp= 0.1, 

« = 0 .1 } and EPTT{8eptt=0.5, ^ e p t t = 0 . 1 5 }  models, with two values o f We={ 1,5}. Here, 

a significant decrease in the level o f SXPP pressure-drop is observed in comparison to 

EPTT results for both We- 1 and 5. This amounts to around 0(33% ) reduction from 

{145.88 units for EPTT} to (96.88 units for SXPP} at We= 1; and 0(27% ) reduction 

from {25.28 units for EPTT} to {18.36 units for SXPP} at the more elevated level of 

We=5. This reduction in pressure can be associated with a weaker Erst normal stress N/ 

in the rate-range l< y < 1 0 0  for SXPP, when taken in comparison to that supported with 

EPTT (see Figure 7.1 e). Note that also, SXPP thins more rapidly than does EPTT, over

the same range o f \ <y <100. as shown in shear viscosity plot Figure 7.1c.
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Figure 7.8: Pressure-P, SXPP{q=2, 8s x p p =0 .1, a= 0.0  and 0.1}, EPTT{ 8e p t t =0.5.
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7.5.2.1.2 Stress profiles (T, X, Nj, rzz and Tr-J

In Figure 7.9. SXPP(a=0.1) and EPTT(£,eptt=0.15) profiles at p=10° and We=5 are 

compared for: shear-rate ( r )  along the top and bottom surfaces, and strain-rate (X) 

profiles along the centreline. The same trend is observed in shear-rate (T) for both top 

and bottom surfaces, but with lower values for SXPP in comparison to EPTT 

established throughout the die-section. This may be attributed to the higher shear- 

thinning rate o f SXPP when compared to EPTT. For example, the maximum T peak- 

value o f 50 units at the bottom surface o f the inlet section with EPTT. has reduced to 40 

units for SXPP (almost (9(20%) reduction). At the top surface o f the die-inlet and for 

the EPTT solution, a constant level o f around 40 units is observed. This level is reduced 

by around (9(17%) with SXPP. In addition, and for both models, a sharp decrease in T 

occurs throughout the converging section with a minimum level observed in the middle 

o f that section, whereas a constant level is achieved over the land section, followed by a 

peak at the die exit. At the same time, the same level in T is observ ed through the draw

down zone for both models, with full dissipation over the cable region. In contrast, 

through strain-rate (X) profiles, one can observe that there is insignificant change in 

strain-rate (X) for both models with a maximum near the contact-point region (1.15 

units). Generally, with We=5 one may conclude that the range o f T and X for both 

models fluctuate around 0<T<50 and X< 1.15. respectively.
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70 70
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Figure 7.9: Shear-rate ( r )  and strain-rate (X), SXPP{q=2, 8sxpp= 0.1, a = 0 .1 } vs 

E PT T {sEptt= 0 .5 , 5eptt=0.15}: We=5, f i=l0°

Furthermore, in Figure 7 . 1 0 ,  the normal stress {x^) profiles along the centreline are 

displayed for SXPP{q=2, 8 s x p p = 0 . 1 ,  a = 0 . 0  and 0 . 1 } .  This includes a zoomed view of 

the draw-down section and accounts for two different level o f elasticity o f We= 1 and 5,
3 f . . .

at p= 10' . Here, insignificant change in xa  is detected over the die section; whereas 

reductions in stress-peaks over the draw-down section are clearly apparent, due to the 

contribution o f the second normal stress differences (AT). The rate o f this reduction in 

xa  decreases as We increases: reducing from 0(37% ) for We= 1, to reach 0(30% ) for 

We=5. Hence, one may deduce that as elasticity levels rise, second normal stress 

difference effects become minimised under SXPP(a). At the same time, the influence o f 

shear-thinning properties o f the SXPP model causes a significant decrease in xzz as We 

rises, for both a={0, 0.1}. For instance, with a=0 the maximum level o f izzfor We= 1 is 

around 1.9 units, compared to 0.65 units for We=5; almost 0(66% ) reduction. Almost 

identical levels o f normal stress are observed for the two values o f anisotropy-parameter 

a=0 and 0.1 over the cable region.
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Figure 7.10: xzz, SXPP{q=2, 8 s x p p = 0 .1  , a=0.0  and 0.1}: We variation, fi= \O'3

The corresponding com parison betw een SXPP(«=0.1) and E PT T(^eptt= 0. 15) results is
"2

provided in Figure 7.1 l(a,b) for/?=10‘~ and We={ 1, 5}. This covers normal stress (xzz) 

along the centreline and with draw-down zoomed section. Normal stress (xzz) profiles 

drop in the die-section o f the flow, with insignificant difference indicated between 

SXPP and EPTT solutions at We= 1. In contrast, and over the same region, higher levels 

o f xH are observed with EPTT than with SXPP, at the higher level o f elasticity o f We=5. 

In addition, throughout the draw-down section and for We= 1 and We=5, EPTT solutions 

show elevated values o f xzz-stress compared to those under SXPP (see zoomed view o f 

draw-down section in Figure 7.11 (a.b)). Here, considering decrease in x^, when 

comparing peak draw-down zone values between SXPP to EPTT at We-T and We=5,
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respectively, there is nearly (0(46% ) drop, from 2.3 to 1.25 units}, and (0(52% ) drop, 

from 0.94 to 0.45 units}.

The Figure 7.1 l(c-f) comparisons, in radial stress (xrr) and first normal stress difference 

(N/) between SXPP and EPTT, are also provided in profiles along the centreline. The 

results reveal that there is insignificant change in in- for either models over the die- 

section. with only slight differences apparent throughout the draw-down section. In 

addition, one can observe that the contribution o f the second normal stress (via i rr) is 

quite modest, which has led to Nj  being dominated by xzz-stress.
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Figure 7 .11: xzz, i rr, Ni profiles at centreline. SXPP{q=2. £sxpp= 0.1, a = 0 .1 } vs 

EPTT{sEptt=0.5, 5=0.15}. variation, |5=10'3

Comparative data in Figure 7.12 are also presented in shear stress ( i rz) profiles at /?=10' 

and We={ 1.5}. This data is along the top and bottom surfaces for SXPP{q=2. Ssxpp= 0.1, 

a =0.1 }and EPTT{8eptt=0.5. ^eptt=0.15}. Generally, more thinning is introduced in 

SXPP over EPTT results (see Figure 7.1c), which leads to low levels in xrz-stress. Ffere, 

the maximum peak is attained for We= 1, over the bottom surface near the contact point 

region. In contrast, a slight change is observed for We=5, with a higher level in EPTT 

xrz-stress recorded over the die-section when compared to SXPP (more thinning). Since 

both SXPP and EPTT support shear-thinning, a notable decrease in the levels o f  xrz is 

observed as We rises. For example with EPTT. maximum magnitude in xrz for We— 1 is 

2.57 units compared to 0.7 for We=5 over the inner surface.
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7.5.2.2 Solution of SXPP(^S\ pi =0.01) vs EPTT(^ ,», ,=0.15)

7.5.2.2.1 Modified model (SXPP(Csxpp))

Here and within the SXPP context, in addition to the Giesekus a-parameter, the £- 

parameter o f the Johnson-Segalman model is also introduced within the SXPP 

constitutive equation (2.69) to replicate second normal stress differences, N2. Then the 

constitutive equation for the modified SXPP model may be stated in the following form:

0 aWe (1 -  B) r iWe r + ./ (r)r + — —  r • r + ^  [ / ( r ) -  l]/ = 2(1 -  p ) d . (7.1)
( 1 - /7 )  We
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where r  = ( l - —) r +  —r ,  represents the linear combination o f lower-convected 

(covariant) and upper-convected (contravariant) material derivatives (see section 2.4)

7.5.2.2.2 Response functions

The shear and extensional viscosity o f SXPP(«=0.1), SXPP(§sxpp=0.01) and
1 . . • 

ppTT(qEpTT=0.15) at [)— 10 are plotted for direct comparison purposes in Figure 7.13a.

The material functions reveal that, the behaviour o f SXPP(a=0.1) model is particularly

close to that for SX PP(^sxpp= 0.01), both in shear and extensional viscosities, except at

high shear-rate, (y > 5 0 ) . There. SX PP(^sxpp= 0-01 ) more rapidly thins than does

SXPP((x=0.1). In addition, the corresponding viscometric comparison in the first normal

stress (Nj) is shown in Figure 7.13b. Flere, N/  for these three models are identical at

lower rates o f y <2. The first normal stress difference o f  EPTT(^eptt=0.15) is slightly

higher than both SXPP models at medium rates o f 2<y <  100. In addition. Nj  for both

EPTT(^eptt= 0.15) and SX PP(^sxpp=0.01 ) are weaker than SXPP(a=0.1) at higher rates

o f y>100.

a)
10

Exp 1_Extensional Viscosity 
Exp 2_Shear Viscosity

10 -  Extensional

EPTT, p=0.001, eEpTT=0.5, =0.15

10 4  SXPP, [1=0.001, q=2, e.■SXPP-=0.1, a, 
=0.1, a.

■s x p p '= 0 .1 ,d SXpp=0.0

=0.0,£sxpp=0.01
, = 0 . 1 ,4 .

SXPP, 0=0.001, q=2, E,f'S X P P ' s x p p ‘

1 0 1 10 °  101 102 103 10 
y or 8
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Figure 7.13: a) Shear viscosity, Extensional viscosity b) First normal stress (Nj): SXPP{q=2, 
£sxpp= 0- 1 ? oc=0 .1, ^sxpp= 0-0} vs SXPP{q=2, s Sxpp=0.1, o. ~ 0. ^s x p p ~ 0.01 } vs EP T T {£e:p t t =0-5,

4Eptt= 0.15!,P =1O -3

7.5.2.2.3 Stress (rzz. rrz) profiles

The profiles o f normal stress (xzz) are provided in Figure 7.14a. with data along the 

centreline for SXPP(«=0.1), SXPP(^sxpp=0.01 ) and EPTT(£eptt=0.1 5), at parameters o f 

We= 1 and p= 10'3; data is also extracted in zoomed form over the draw-down section. 

Findings show that, solutions for SXPPf^sxpp^O.Ol ) over the draw-down section lie 

between SXPP(a=0.1) and EPTT(^eptt=0.15). Throughout the die-section. there are 

only minor differences in xzz responses observed in solutions for SX PP(a:=0.1). 

SXPP(^sxpp=0.01 ) and EPTT(^eptt=0.15) models. In contrast, over the draw-down 

section, one can observe a relative decrease of: almosit 25% in xzz peak magnitudes,

from EPTT(5eptt=0-15) to SXPP(^sxpp=0.01) (values varying from 2.25 to 1.7 units); 

and o f 35% from SXPP(£,sxpp=0.01) to SX PP(a= 0.1). U nder this latter comparison, one 

has the same model choice and comparable v V /,  ^ -re sp o n se  in shear (y< 100), yet 

alternative fundamental driving sources to their generation, from which such variant 

complex flow results emerge. Furthermore, Figure 7.1 4b allows consideration o f top 

(outer) surface data in normal stress (xzz) profiles. Fdere. EPTT(^eptt=0.15) shows 

significantly larger xzz throughout the die-section w hen comparing to SXPP results 

(almost 28% larger at die-inlet. from 3.9 to 5.4 unitts). Beyond the die-exit. once 

entering the draw-down flow, there is only a gradual decline in xzz over the draw-down 

section, followed by a sharp drop when the polym er meets the cable. Here, the
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corresponding magnitudes in at the draw-down exit zone are {0.1, 0.4, 0.5} units, for 

{EPTT(§Eptt=0.15), SXPP(5sxpp=0.01), SXPP(a=0.1)}, respectively. These findings 

may be largely attributed to viscometric shear response, in that the EPTT form provides 

distinctly lesser shear-thinning rate over the moderate rate range (1</<10 ), than either 

of the SXPP versions; whilst in contrast, Nj is always larger (due then to rate, rather 

than viscosity domination). Clearly, EPTT results are more influenced by Nj than by 

shear viscosity behaviour. On extensional grounds, EPTT viscometric response would 

provide lower normal stresses in the range of (£>10) (which is not the case), and only 

slightly larger for (£<10). Hence, the shear argument is more persuasive than that 

offered by extension. In addition, and with respect to comparison based solely between 

the two SXPP solutions, SXPP(£sxpp=0.01) and SXPP(a=0.1), one can observe lower 

extensional viscosity with SXPP(a=0.1) option, for rate-range 0.5<£<1 (zoomed 

section in Figure 7.13a; in extension). Moreover, similar comments also apply in shear, 

for rate-range 10</<10 . Hence, both these influences impact to generate lower

SXPP(a=0.1) normal stress (izz), when compared against SXPP(£sxpp=0.01) results. 

Furthermore to consider the shear flow zones, shear stress (xrz) profiles along the top 

(outer) and bottom (inner) surfaces are provided in Figure 7.14c, at the same settings as 

covered in normal stress (xzz) above. Here, with the EPTT^eptt^O.^) model, larger 

values of i rz are observed over the die-section and draw-down region, in comparison to 

those with SXPP(a=0.1) and SXPP(^sxpp=0.01) models. Throughout the whole 

geometry, shear stressing over the top and the bottom surfaces proves the lowest in 

magnitude for SXPP(^sxpp=0.01) choice, when comparing with EPTT(^eptt=0.15) and 

SXPP(«=0.1) solutions. This may be explained through viscometric response. From the 

shear viscosity plots in Figure 7.13a, it is apparent that SXPP(^sxpp=0.01) thins more 

rapidly for deformation-rates of y > 1, when taken in comparison to response with 

EPTT(^eptt=0.15) and SXPP(a=0.1) options. Hence, this provides the rational for 

reduction in shear stress levels which arise in SXPP(£sxpp=0.01) data, see Figure 7.14c.
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7.6  Conclusion

In this chapter, numerical solutions for tube-tooling cable-coating utilising shear 

thinning viscoelastic SXPP model have been presented. Here, a near-optimal least- 

squares fit to experimental data across the complete range of extensional viscosity is 

introduced for SXPP model compared to EPTT model. With the EPTT and SXPP 

models, the respective influences of Weissenberg number (We) (elasticity), solvent- 

fraction (ft) and second normal stress-difference, N2 ( § e p t t  for EPTT, ^ s x p p  and a s x p p  

for SXPP) have each been systematically investigated. Under shear-thinning properties, 

a decline in the total pressure-drop is observed as Weissenberg number (We) increases 

and solvent-fraction (ft) decreases. Under We variation, a weak contribution of radial 

stress (Tpr) arises, leading to minor adjustment in the normal stress t zz and first normal 

stress (Nj). Comparative data are presented for SXPP and EPTT solutions, governing 

total pressure-drop and stress production, both with and without N2 contributions. 

Generally, lower levels of pressure-drop and stress are observed in SXPP as opposed to 

EPTT predicted solutions, due to the exaggerated trend of SXPP to thin at faster rate 

than for EPTT.

Finally, contrast has been established between alternative approaches to generate 

non-zero second normal stress differences (N2), in SXPP and EPTT models: by 

adjusting either (i) the standard anisotropic a-parameter on the Giesekus dyadic stress- 

product term, or (ii) via the ^.-parameter on the Gordon-Schowaiter convected derivative 

term. Only the second alternative /^-generation route is available under EPTT, whilst 

both are accessible under SXPP. Findings reveal that with the SXPP(^sxpp) and 

SXPP(a) variants, there is a reduction in the level of shear and normal stressing 

observed throughout the whole flow-domain, which is strongly significant when taken 

in comparison against stress-levels generated under EPTT(^eptt ) representations.
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Chapter 8

Concluding Remarks and Suggestions

Numerical investigations of axisymmetric free-surface problems of Newtonian, viscous 

and viscoelastic fluids in two-dimensional geometries have been considered in this work. 

The Taylor-Galerkin/pressure-correction finite element method has been used for 

Newtonian and inelastic fluids, while a hybrid finite element/finite volume discretisation 

(fe/jv) has been employed for viscoelastic fluids. Regarding the treatment of dynamic free- 

surface movement; the Phan-Thien (dh/dt) approach has been selected to determine free- 

surface location. Moreover, new free-surface location strategies are documented in this 

study, using decoupled (independent) scheme and mid-side nodes/line-segment oriented 

scheme. Additionally, several numerical stabilization schemes have been investigated 

throughout this study to enhance stability and convergence of numerical solutions, 

including those of strain-rate stabilization (SRS), mass lumping (Jacobi mass iteration) and 

variation of quadrature points.

Some effort has been placed upon relating fluid response to background rheometrical 

properties, such as extensional and shear viscosity. The extrusion or die-swell problem has 

established itself as a key benchmark problem with particular significance for polymer- 

processing. Here, both die-swell flow and cable-coating flows have been considered, which 

play an important role in the modem industrial perspective. Each involves a surface height 

location method, with dependency on surface nodal velocities and surface element sections;
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two such schemes have been investigated. A number of different models, involving 

viscous, viscoplastic, viscoelastic and viscoelastoplastic approximations, have also been 

utilized. These models include Newtonian, inelastic extensional models, exponential Phan- 

Thien/Tanner (EPTT) model, Single Extended pom-pom (SXPP) model and 

Papanastasiou-Exponential Phan-Thien/Tanner (Pap-EPTT).

First, the die-swell problem has been investigated for both inertial Newtonian and non- 

Newtonian flow response. There, the EPTT model has been used to introduce viscoelastic 

effects, and then, extended into viscoelastoplasticity through the viscous-limiting 

Papanastasiou approximation. This has been achieved by coupling the Papanastasiou 

approximation with the Phan-Thien/Tanner model. Two different levels of (P, £}- 

parameters have been studied, e={0.02, 0.25} and |3={0.9, 1/9}. In addition, various 

parameter levels have been investigated: for yield stress parameter, x0, at fixed elasticity; p- 

parameter; and e-parameter. That is,, to detect the influence of yield stress on swelling ratio 

and exit-pressure correction. On these aspects, findings reflected that with x0-increase, 

swelling ratios drop; whilst swelling ratios rise under ITc-increase. In addition, for exit- 

pressure correction a consistent rise is observed with increasing We and x0. Moreover, at 

fixed elasticity and yield stress, higher swelling ratios are produced with lower levels of P- 

parameter (lower solvent fraction) and lower e-parameter (greater strain-hardening). In 

addition, to analyse the impact of singularity capturing on the die-exit solution, strain-rate 

stabilization (SRS) has been investigated. Findings reveal that (D-Dc) stabilization provides 

reduction in swelling ratio; also in, shear stress and shear rate, localized to the die-exit. 

Newtonian and inelastic annular cable-coating flow in tube-tooling dies, have been 

addressed adopting Navier-Stokes differential equations through two different inelastic 

shear-extensional viscosity models. This has introduced problem features of a dynamic 

contact line, slip, die-swell, negative pressure (vacuum) and decoupled-coupled free- 

surface solution techniques. Key observations from this study may be summarised as 

follows:

(i) Newtonian die & draw-down approximation results

Notably, over the draw-down section, maximum local pressure is observed in the vicinity 

of the melt-cable contact point. Here, shear stress xrz on the top free-surface reaches its
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localised peak (mid-way along); attaining a minimum near to and opposite the melt-cable 

contact point (-25 units), prior to gradual relaxation within the cable-coating flow. This is 

mirrored in shear-rate, noting localised peaks in die-swell and contact point zones. 

Localised peaks observed in tensile stress are due to the abruptness in die-shape change and 

the solution-singularity at the die-exit. Around the melt-cable contact point, the local peak 

in tensile stress is half that at the die-exit. In addition, under strain-rate stabilization (SRS), 

there is significant localized impact on stress levels identified at the die exit. Additionally, a 

new free-surface location strategy has been establish, innovated through dependency upon 

surface line-segments and mid-side nodal velocity values as opposed to vertex-node values. 

Then, free-surface mid-side node heights become primary data, from which vertex node 

heights may be determined as secondary data, by employing averages from surrounding 

mid-side nodes heights. Through this approach, which draws upon localized 

superconvergence background solution properties, notable improvement in solution quality 

has been extracted -  interpreted through improvement in the shape of the draw-down 

section solution when compared to that from a classical scheme derivation.

Furthermore, to enhance numerical solution convergence, some additional numerical 

strategies have been developed and applied to the diffusive matrix (S) component of the 

augmented mass-matrix, positioned on the left-hand side (Ihs) of the system of equations. 

This solution matrix component always enters the element-by-element Jacobi iterative 

solver, and as such is never explicitly assembled in storage. Through such treatments, major 

breakthrough has been recognised in the various new and advanced levels of numerical 

solution convergence attainable.

(ii) Inelastic shear-extensional viscosity models die & draw-down results 

In this study with improved self-consistent material characterisation of data, two different 

inelastic shear-extensional viscosity model fits, Fit-I and Fit-II, have been compared and 

contrasted, in a three-way comparison exercise against Newtonian solutions.

(a) Computational predictions for inelastic model fits show die-inlet pressure-maxima, or 

pressure-drops, reduced from Newtonian levels by about a factor o f four with Fit-I, and by 

about one-half with Fit-II model. Over the draw-down section, Fit-II provides the largest 

solution changes around the cable-melt contact zone. Shear stress maxima manifest a five
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fold decrease with Fit-I from Newtonian levels, and 3.5-fold decrease with Fit-II. This is 

also observed in shear-rate adjustments likewise. Fit-II generates the largest shear-rate 

maxima, which explains the larger stress levels amongst the inelastic solutions; and on the 

bottom-surface, the largest peak over the contact point. On tensile stress, there is much 

evidence for the impact and clear consequence of viscosity variation; thinning from 

Newtonian, but hardening of Fit-II compared to Fit-I. Throughout the draw-down section, 

maxima in strain-rate are observed near the melt-cable contact-point for the Newtonian 

solution; whilst minima correspond to Fit-II in this same location.

(b) Overall comments on negative vacuum conduit pressure application with the inelastic 

Fit-II model: Taking into account the variability in critical vacuum pressure levels between 

Newtonian and inelastic representations, it is quite apparent that inelastic solutions are 

more sensitive to contact-point conditions and Newtonian solutions to die-swell conditions. 

(Hi) Robust solutions with decoupled free-surface techniques

A new robust free-surface location technique has been established, utilizing a decoupled 

(independent) approach in calculation between top and bottom conduit surfaces. This 

technique has been successfully tested for Newtonian, inelastic and vacuum pressure 

settings. On bottom conduit free-surface zone movement (surface-B) - stage (i): findings 

reveal that convergence occurs relatively rapidly to meet the specified convergence 

tolerance. Through time-stepping, the solution point-location near the contact-point takes 

nearly twice as long to settle down to an invariant state, as does the point-location near the 

die-exit. On convergence of the top free-surface of the conduit (surface-A) - stage (ii): one 

concludes that much longer computation times (*20) are required, when compared to the 

bottom surface. Moreover, comparative solution data, derived from both the coupled 

scheme (previous method) and the decoupled method (current robust method), confirm 

there is practically no difference observed between conduit-solution shapes for the two 

separate approaches. Further consistency checks re-assess and confirm solution states, after 

adjustment of both surfaces A and B independently.

(a) Free-surface tracking for inelastic solutions under decoupled approach, results without 

vacuum pressure: findings indicate that in surface readjustment (shape), there is 

insignificant change, apparent over all phases, with inelastic power-index (mi) variation.
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Overall, the results reflect that rapid convergence is noted for both top and bottom surface 

shapes. To the same tolerance specification, the bottom surface converges considerably 

quicker (*10). In addition and for all cases, one observes a consistent trend of an increase in 

time to convergence with decreasing mj ( so , with increased relative thinning).

(b) Vacuum effects & inelastic solutions: greater vacuum influence on the ensuing melt 

cone shape causes the top free-surface of the conduit to be sucked inwards. At larger levels 

of vacuum pressure applied, there is significant indentation in top-surface conduit shape, 

with a pinching effect noted just beyond the die-swell region and a ramping bulge opposite 

the cable contact-point location. As the power-index declines away from Newtonian unity 

level, to m/=0.7 and mj=0.5, there is significant lowering in the limiting levels o f vacuum 

pressure that may be sustained. From tolerance history profiles, one notes an increase in 

tolerance estimation criterion as the pressure vacuum level rises at fixed mi-level; likewise, 

there is an increase in tolerance criterion as mi decreases at fixed vacuum pressure level. 

Accordingly, one can predict an appropriate convergence tolerance for each level of 

vacuum and power-index.

The numerical solution of viscoelastic flows for tube-tooling completes this work, where 

solutions for two different viscoelastic models have been compared and contrasted; based 

on EPTT and pom-pom models. Here, the interest lies in determining efficient windows for 

process control over variation in material properties and stressing levels generated. 

Attention has been paid to the influence and variation in Weissenberg number (We), 

solvent-fraction (p) and second normal difference (N2) (£ parameter for EPTT and a  

anisotropy parameter for SXPP). As arise in both models, strain-softening properties aid in 

resolving numerical convergence, and in combination with shear-thinning and memory 

effects, reduce the levels of stressing in the coatings generated. Moreover, the impact of 

low solvent-fraction (p) and high elasticity, on numerical convergence has also been 

investigated. In this regard, numerical convergence difficulties have been noted to arise for 

large {§, a  }-values and high elasticity, under both EPTT and SXPP implementations. The 

decoupled approach, arising from a pragmatic strategy to stabilize the nonlinear calculation, 

has proved most promising. A comparison has been included with the EPTT model at 

different levels of ̂ -parameter ^={0.0,0.1,0.15,0.2} with variation in shear and extensional
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response. In all instances, a significant decline in pressure-drop has been observed as We 

increases, which reflects shear-thinning influence. The same feature is observed in the 

stress response, with only minor influence from second normal stress (N2) contributions.

Overall, present findings of this study have demonstrated the effectiveness of the numerical 

approaches applied, through improved free-surface procedures and impact of varied 

rheology properties. This leaves a number of avenues for possible future developments, 

some suggestions being:

1) On improved free-surface location methods - through the use of other schemes such as 

streamline prediction method, Arbitrary Lagrangian Eulerian technique (ALE)

2) Under cable coating flow, to consider alternative -

a) flow-rate settings, to analyse their effects and variations upon residual stressing in the 

process

b) polymer-melts and die-designs, to assess their further impact on residual stressing, 

through material and process design influences

3) To consider the use of commercial software packages, such as COMSOL 

Multiphysics, to resolve non-isothermal, three-dimensional (3D) and viscous 

approximations for cable coating. This would also provide the necessary background 

help and support accompanied with such packages, to transfer this intelligent predictive 

capability into industry.

4) To provide a fully integrated cable coating analysis, drawing upon the combination of 

non-isothermal (temperature-cooling) effects, multi-mode viscoelastic polymer melt 

representation (comparison to single-mode solutions) and inclusion of yield stress 

approximation (viscoelastoplasticity, in such creeping flow settings).

5) To recognize the need for and encourage the pursuit of experimental validation, in order 

to qualify precision and correctness of the various predicted stress solutions provided in 

this study. That is specifically with reference to the cable-coating solution-data made 

available for EPTT and SXPP models, in particular.
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