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ABSTRACT

The heavy-ion collision experiments at RHIC and CERN have pre-
sented the opportunity to study the properties of strongly interacting
matter under extreme conditions. These have been subject to intensive
theoretical investigation and, in this thesis, we will study the transport
properties of QCD matter [1-6].

The transport coefficients known as shear and bulk viscosities as
well as the electrical conductivity have been studied with perturbative
methods to full leading order in the strong coupling «s [7, 8]. How-
ever, these results are in tension with phenomenological observations,
which hints to the fact that, in the range of temperatures reached in
the experiments, the medium created is strongly interacting and non-
perturbative methods need to be employed.

It is this highly desirable to perform a first principles calculation of
the transport coefficients of QCD at a temperature of a few hundreds
MeV. In this work, we employ lattice QCD simulations to study, for
the first time, the temperature dependence of the electrical conductiv-
ity and the charge diffusion coefficient in the range of temperatures
between 100 — 350 MeV.

In order to achieve this, we use an anisotropic lattice action with 241
flavors of clover fermions [9, 10]. The use of a finer lattice spacing for
the time direction provides a better temporal resolution of the correla-
tion functions without increasing the computational cost significantly
and it represents one of the novelties of this work.

We study the conserved vector current correlator both in the light
and strange quark sectors at different temperatures. We compare their
behaviour with the free theory and with the zero temperature case and
look for thermal effects. A Bayesian approach called Maximum Entropy
Method (MEM) is used to extract the electromagnetic spectral functions
from these correlators. This is a non-trivial task since it involves an
analytical continuation of the correlation functions from Euclidean to
real times.

The electrical conductivity is obtained from the spectral functions via
the so-called Kubo relations, whose derivation is reviewed. A detailed
study of the systematic uncertainties that the MEM introduces on the
final observable is presented and discussed.

The fluctuations of conserved quantities, like baryon number, isospin
and electrical charge, are then studied using stochastic techniques. In
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particular, the electrical charge susceptibility will allow for the first
lattice determination of the charge diffusion coefficient for light quarks.

iv



CONTENTS

1 INTRODUCTION 1
1.1 Path Integral Formalism . . ... ... ............. 1
1.2 Euclidean Functional Integral . . . .. ... .......... 4
1.3 Non-Zero Temperature . . . . ... ... ............ 7
1.4 Field Theories on an Hypercube ... ............. 8
1.5 Lattice Formulationof QCD . . . .. ... ... ........ 11
1.6 Numerical Simulations . . . . .. ... ... .......... 19
2 THE QUARK-GLUON PLASMA 23
2.1 Introduction . . ... ... ... ... ... .. . . ... 23
2.2 Quarks,Gluonsand QCD . ... ... ... .......... 24
23 Symmetries. . . . ... ... 25
2.4 Thermodynamics . ........................ 27
2.5 Deconfining Transition . . . ... ................ 30
2.6 Heavy-lonCollisions . . ... .................. 32
3 KUBO’S FORMULAS 39
3.1 Introduction . ... ... ... ... ... .. .. 39
3.2 Linear Response to an External Field . . . . . ... ... ... 39
3.3 Kubo Formula for Conductivity . . . . .. ... ... ..... 42
3.4 Spectral Functions and Euclidean Correlators . . . . . . . .. 44
4 MAXIMUM ENTROPY METHOD 49
4.1 An Introduction on Inverse Problems . . ... ........ 49
4.2 BayesianInference . ... ... ................. 53
4.3 Shannon-JaynesEntropy . . ... ................ 55
4.4 MEMand Bryan'smethod . . . . ... ... ... ....... 56
4.5 Singular Value Decomposition . ... ............. 59
4.6 Modification of Bryan’s Algorithm . . . . ... ........ 62
5 LATTICE QCD CALCULATIONS 63
5.1 Lattice Action .. ... ..... ... .. ... ... ..., 63
5.2 Conserved Current . . .. ... ................. 68
53 Improvement. ... ....... ... ... ... .. ...... 73
54 Results ... ... ... .. ... ... ... 74
6 RESULTS 81
6.1 Spectral functions . . . ... ... ... L L L L 81
6.2 Conductivity . . . ... ..... ... .. ... ... ... 87
6.3 Stabiliity Tests . . . . ... .... ... .. .. ... ... 88
6.4 Susceptibilities . . . . ... ... ... ... oL L, 91
6.5 Diffusion . . ... ... ... .. ... .. . 96
6.6 Discussion . ... ..... ... ... ... ... . . ... 97
7 CONCLUSIONS 101



A APPENDIX 103

A1 Gammamatrices ... ... ... ... .. ... .. .. ... 103
A.2 Dimensional Analysis . ..................... 103
A.3 Noisy Estimators . .. ... ................... 106
BIBLIOGRAPHY 113

vi



ACKNOWLEDGMENTS

Foremost, I would like to thank my supervisor Prof. Simon Hands for
the encouragement and advice he has provided during these years.

I would also like to express my gratitude to my collaborators and
advisors Prof. Chris Allton and Prof. Gert Aarts for making a great
research environment, answering all my questions and the thorough
proofreading of this thesis.

I acknowledge the financial support of Swansea University and the
European Union Grant Agreement 238353 (ITN STRONGnet), as well
as the computing resources provided by HPC Wales, UKQCD, PRACE
and DiRAC.

Many thanks go to the staff of the physics department at Swansea
University. In particular: Prof. Biagio Lucini for his friendliness and ap-
proachability, without him I would have never had the opportunity to
study in Swansea; Dr. Pietro Giudice, whose support has been invalu-
able on both an academic and a personal level; Dr. Benjamin Jéger for
helping me with the thesis. I also thank Prof. Gunnar Bali for giving
me the chance of doing research at Regensburg University.

All of the students on the 5th and 6th floors of Vivian tower have
contributed to make my PhD an unforgettable experience and I am
grateful to them: Wynne, Niall, Dan and Benjo, who started with me;
Ed and Sam, who shared the office with me for many years; Vlad, who
has been a great office mate and has very kindly proofread this thesis;
Lorenzo and Roberto, with whom I climbed almost every possible wall
in South Wales and for the many “pause lunghe”, which have got me
going over the years.

Finally, I want to deeply thank my family: my sister, for taking care
of my parents; my dad and mum, for caring no matter how far away I
was; and Steve for his infinite support and for making me feel at home
during all these years.

vii






DECLARATION

This work has not previously been accepted and is not being concur-
rently submitted for any degree.

Under the supervision of Prof. Simon Hands I have produced this
thesis through my endeavour alone. Sources are acknowledged explic-
itly by references linking to an appended bibliography.

I give consent for my thesis to be available for photocopying and
inter-library loan, and for the title and summary to be made available
to outside organisations.

Swansea, October 27, 2014

7/ Alessandro Amfato







PUBLICATIONS

The work in this thesis have already appeared in the following publi-
cations:

G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands, and ].-I. Skullerud,
Electrical conductivity and diffusion coefficient of the quark-gluon plasma
across the deconfinement transition with 2 + 1 dynamical flavours , In prepa-
ration.

A. Amato, G. Aarts, C. Allton, P. Giudice, S. Hands, and ].-1. Skullerud,
Electrical conductivity of the quark-gluon plasma across the deconfinement
transition, Phys. Rev. Lett. 111, 172001 (2013), arXiv:1307.6763.

A. Amato, G. Aarts, C. Allton, P. Giudice, S. Hands, and ].-I. Skullerud,
Transport Coefficients of the QGP, Proceedings of the 31st International
Symposium on Lattice Field Theory, arXiv:1310.7466.

P. Giudice, G. Aarts, A. Amato, C. Allton, S. Hands, and J.-I. Skullerud,
Electric charge susceptibility in 2 + 1 flavour QCD on an anisotropic lattice,
Proceedings of the 31st International Symposium on Lattice Field The-
ory, arXiv:1309.6253.

C. Allton, G. Aarts, A. Amato, W. Evans, P. Giudice, S. Hands, A. Kelly,

S. Kim et al, Quark-gluon plasma phenomenology from the lattice, Strangeness
in Quark Matter SQM 2013, arXiv:1310.5135.

x1i






i

INTRODUCTION

Quantum ChromoDynamics (QCD), is a non-Abelian gauge theory that
describes the interactions which govern the dynamics of quarks and
gluons. In nature there are six different flavors of quark: up, down,
charm, strange, top, and bottom. They represent the fermionic con-
tent of QCD and carry electric, weak and strong charge. The quantum
number associated with the latter is called color and it comes in N, = 3
different states. The gluons are the bosonic carriers of such force, but
since they posses a color quantum number themselves, they interact
with each other as well.

In order to describe this rich dynamics, we will introduce in this
chapter the fundamental tools of the Quantum Theory of Fields (QFT)
and in particular we will describe the Lattice Gauge Theory (LGT) for-
malism as a non-perturbative regularization of QCD. The starting point
will be the path integral formalism for a scalar theory and we will then
review the Euclidean formulation of QFT, followed by its discretization
on a hyper-cubic lattice. The same scheme will be followed for the in-
troduction of non-Abelian gauge theories, which will then bring us to
the formulation of QCD on a lattice. A more detailed treatment can of
course be found in a variety of textbooks and reviews [11-15].

Everywhere in this thesis, we employ natural units # = ¢ = 1 as well
as Einstein’s summation convention on repeated indices.

1.1 PATH INTEGRAL FORMALISM

In this Section we will introduce the path integral formulation of QFT.
The imaginary time formalism is then introduced and the resulting
Euclidean field theory will be defined on a discretized space-time, in
the form of a lattice. These concepts will be illustrated using a scalar
field theory.

In one spatial dimension, the quantum mechanical transition ampli-
tude for one particle is written as:

(x',¥'|x, t) = (x'|exp [iH(t' — )] |x), (1)
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where the infinitesimal generator for the time translation is the Hamil-
tonian H and is composed of a kinetic and a potential term:

2

H:zp—m+V(x)EH0+V, (2)

where V is time-independent and is only a function of the spatial co-
ordinate x. We can divide the temporal interval in Eq. (1) into two
parts [t,t;] and [#, ¥]. Since H is time independent, the exponential in
Eq. (1) trivially follows algebraic rules and decomposes into a product
of exponentials:

e—lHT = e—zH(T—At)e—lHAt , (3)

with T = (¥ —t) and At = (#; —t). We can insert a complete set of
coordinate eigenstates,

'11‘='/dx'1|'x1)‘(xj|‘,‘ o

between the two exponentials of Eq. (3), which can then be used to
rewrite Eq. (1) as:

(x’, tl'x, t> — / dx; <x1'e—iH(T—At)|x1>(xlle—rHAt'x). (5)

Now we can divide T into n equal parts, T = nAt and insert the reso-
lution of the identity a further (n — 1) times, obtaining:

(X E|x, 1) = / dxy ... dxn_y (e M8z, 1) x
X (xn—l |e~iHN|xn—2> ce <xl|e_iHAt|x> , (6)

where we identify x = xp and x’ = x,,. In each of the matrix elements
above, we want to separate the contribution from the kinetic and the
potential part of the Hamiltonian in Eq. (2). In order to use the first or-
der approximation of the Baker-Campbell-Hausdorff formula, we need
to have At < 1 so that:

(xp1le” HA xp) =

(xk+l le—iHoAte—iVAt'xk> —iHoAtka> e~V (xk)At , 7)

= (xk41le
where we used the fact that V is a function of only the space coordi-
nates. The other matrix element can be calculated by inserting a com-
plete set of momentum eigenstates and performing the Fourier trans-
form. The result is:

2
—i m . m [ Xg41 — Xk
R e EERY 5iAr P {lAf lg (+T) - V(xx)
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(8)

Reiterating this operation for every matrix element, we obtain for the
amplitude (1) the final form:

n—

n 1
n,—~iHTy _ (M \2
(x'le”™|x) = (2m'At) /dxl... dxn_lge

iAt[g(_A—"Hl( x")z——V(xk)]

(9)

If we set the number 7 of intervals to diverge and take the limit At — 0,
then the exponent in Eq. (9) becomes:

n—1 2
m [ Xg41 — X\
Eor 3 (2572) - vie

T
- /0 dtL(x, %) = S[x(1)], (10)

which is nothing but the classical action for the path x(t) from x to
x' with x; = x(kAt). The integration over the x is then interpreted as
an exploration of all possible paths of the system. The measure for the
path integral is defined as:

. m 11/2
D[x] = constl:[ dx(t) = AI}TO (27'(iAt) dxy...dx,_1. (11)

The amplitude in Eq. (1) can then be cast, using the definitions above,
into the compact form:

<xlle—iHT|x) — /@ [x] eis[x] , (12)

which is an integral over all possible paths, starting at x’ and ending
at x, weighted by the classical action. It can also be immediately gener-
alised for N;-dimensional paths x;(t) withi =1,...,N,.

In the framework of QFT, where relativistic effects are taken into
account, the focus is placed on the field ¢(x), function of a space-time
vector x = (t,x), which can be interpreted as a combination of creation
and destruction operators, in a certain basis. Much information about
the physics of the system is then contained in objects called Green
functions:

G(x1, %2, -, %n) = (0]p(x1)¢(x2) - - - ¢(x4)]0) - (13)

These are vacuum expectation value of a product of  fields at different
space-time points. The path integral formalism can be developed in
this context as well, but a formal derivation, like the one given above,
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is out of the scope of this thesis. The result, though, is conceptually
equivalent, so that we can simply translate variables x;(¢) into fields
¢(X, t), in such a way that the integration measure becomes:

IT dxi(t) «— Ij do(x,t) = 2[¢]. (14)
t,i X

The Green functions in Eq. (13) are then represented as functional inte-
grals carried out over all the field configurations

OIp(x1)9(x2) - 9(xn)I0) = 5 [219] 9(x1)9(x2) .- 9(xa) €], (15)
with the normalization
Z= / P[g] 59, (16)

The field configurations are again weighted by the exponential of the
classical action S, which can be written as an integral over a Lagrangian
density:

5 =5[] = /dtdx,Z’(t,x). (17)

The form of .Z dictates all the possible allowed interactions among the
tields. For example:

1 1 1
£ = 5(0,9)(0"¢) — Smi* — 209", (18)

describes the so-called A¢* theory. Note that in Eq. (15) the weight is
represented by an oscillating exponential. This turns out to be problem-
atic at a practical level, when convergence of the integrals in Eq. (15) is
questioned. In the following, we will make use of an imaginary time
prescription to address this problem.

1.2 EUCLIDEAN FUNCTIONAL INTEGRAL

In this section we will introduce the so-called Euclidean correlator G,
which will be of central interest throughout the whole thesis. Let us
consider an operator O, which can create or annihilate states and/or
measure a certain quantity. A Euclidean correlation function is defined
as:

Ge(7) = (0(1)0(0)) 5 = Zi Tr [0 0 Mo (19)
B
where the normalization Zg is given by:

Zg=Tr e BH (20)
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Here H is as usual the Hamiltonian operator, and the trace is evaluated
over a complete set of eigenstates. The parameters T and 8 are real and
non-negative and denote a Euclidean time distance. Note that 7 is the
actual separation we are interested in, while B can be regarded as a
maximal allowed extension. Later we will show that B represents the
inverse of the physical temperature.

We need to choose an orthonormal basis in order to perform the
trace and, for convenience, we use here the eigenstates of H. We can
regard the spectrum |n) of H as discrete, so that the secular equation
reads:

H|n) =E,|n),
where the integer subscript n labels the eigenvalues, which can be or-
dered according to Eg < E; < Ej..... The correlator in Eq. (19) can then
be evaluated by inserting the identity 1 = }_, |n) (n| between the two
operators:

(0(1)0(0))4 = Em|e ~OHO |n) (n]e~"HO |m)

1
Zg
1 ~(B~7)Emp—TEx

Z—Zn |(m| O |n)|* e~ B~T)Emp=TEn (21)
Now the normalization Zg, defined in Eq. (20), can be easily written as

Y. e PF1, so that in both numerator and denominator we can pull out
a factor e~PFo, obtaining:

Ln,m |(m| O In>| ¢~ (B—T) AEm p—TAE,
1+e ﬂAEl +e‘ﬂAEz+.'.

(0(1)0(0))5 =

where we defined AE, = E, — Ep. Then it is apparent that the Eucli-
dean correlator depends only on the energy differences with respect to
the vacuum. We can then renormalize the latter to Eg = 0 and drop the
notation AE,, in what follows.

Let us now explore what happens in the limit where 8 — oc. If the
vacuum is non-degenerate, i.e. AE; > 0 for i > 0, then the denominator
is equal to 1. In the numerator, all the terms with E; # 0 vanish, so
that we are left with the expression:

lim (O(1)0(0))g = Y_ (0] O |n)|* &7 Er. (23)

B—o0

, (22)

This formula can be used to extract physical information from the Eu-
clidean correlator. For example, suppose that O = O is the operator
that creates a pion with zero momentum. Then |(0] Oy |1)]? will vanish
for all the Fock states which do not have the quantum numbers of a
pion at rest. Moreover, if we take T to be large, then Eq. (23) can be
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used to extract the lowest energy level, i.e. the mass of the pion, from
the exponential behaviour of the Euclidean correlator.

In the previous section, we introduced the path integral formalism
as a formal tool to evaluate the Green functions in Eq. (13). We would
like to show here that, with some modifications, the path integral can
be applied to the Euclidean correlators in Eq. (19) as well. We start by
recalling that, in the Heisenberg picture, the operators evolve in time
according to:

O(t) = e 0(0) e7H (24)

The Euclidean correlators in Eq. (19) can then be viewed as a two-
point Green function (see Eq. (13) with n = 2) analytically continued
to imaginary times, i.e. with the substitution

t=—ir, (25)

and the addition of an extra imaginary time transporter e #H, which
projects to the vacuum in the limit B — oco. The transformation in
Eq. (25) is called Wick rotation, and it changes the Minkowski metric
to a Euclidean one, according to:

—ds? = —df?> + dx? + dx} +dx} — dr? +dx} 4 dxi+dx3.  (26)

This observation allows us to use the formula in Eq. (15) to evaluate
Gg as:

Ge((m,x1), -+, (T, xn)) = G((—it,X1), - .., (—iT, Xn))
= 2 [2101 (). px) e, (27)
with

Z= / D[p] e~ Sel9. (28)

Sg denotes here the Euclidean action:
Se[e] = /drdx Le [¢(7,x),0,¢(T,x)]

1/dp\> 1 1 1
= /drdx [E (d_¢> +§(V¢)2+§m2cp2+;—!)t¢4]

T
- / dx [%(B,@)Z + %m2¢2+ ;11—!/\4#] , (29)

which is a positive definite quantity. In chapter 3, we will return to this
topic and the correspondence between real-time and imaginary-time
correlators will be further explored.



1.3 NON-ZERO TEMPERATURE

From now on we shall remain in the Euclidean space and suppress
the subscript E. Note that in Eq. (27) each field configuration is now
weighted by an exponentially decaying factor e~>, which is a better
behaved object than the one appearing in Eq. (15). In the following,
this will allow to draw a formal comparison with the framework and
tools generally used in statistical mechanics, making it possible to use
its well-known numerical algorithms to simulate the theory.

1.3 NON-ZERO TEMPERATURE

The central topic of this thesis will be the study of how certain proper-
ties of QCD depend on the temperature. In this section we will briefly
review how the temperature can be introduced in the discussion above.

In thermodynamics, the canonical ensemble represents all the avail-
able states of a system in thermal equilibrium with a heat bath of tem-
perature T. It is described by the partition function Z(T), which, in the
quantum mechanical case, assumes the form:

__H
Z(T) = Tre ®T = Tre PH, (30)

where H is the Hamiltonian of the system and B denotes the inverse
temperature. In the following, we will use units where Boltzmann con-
stant kg = 1, so that the temperature is given in units of energy or
mass. One immediately realises that Eq. (30) is identical to Eq. (20), in-
troduced in the previous section. This means that we can express the
partition function via the path integral formalism of Eq. (28):

2(T) = [2lg] ecl], G1)

where this time the integration is carried out without taking the limit
B — oo, but on a finite Euclidean temporal interval:

Sel¢] = /f dt /1113 dx Lg [¢(T,x),0,¢(T,X)] . (32)

From this equation we can identify the Euclidean time extent g with
the inverse of the temperature:

Euclidean Time Extent = 8 = %, (33)

which means that in the previous section, by taking the limit § — oo
we were effectively measuring the Green functions at zero temperature.
We will see in the next section other important consequences of having
a finite temporal extent B.

These simple but fundamental steps are the basic ingredients neces-
sary to introduce the temperature in a QFT calculation. These concepts
will be often used in this thesis and will be illustrated with practical
examples.
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1.4 FIELD THEORIES ON AN HYPERCUBE

The path integral representation of the Euclidean correlation functions
in the form of Eq. (27), despite being formally elegant, is still difficult
to approach from a practical point of view, since it involves an infinite
number of degrees of freedom. The approach followed here consists
in regularizing the theory on a Euclidean hypercubic lattice, where a
position is specified by a vector as:

Xy = any, ny € Z. (34)

The quantity a is called lattice spacing and it represents the minimum
allowed distance. The scalar field ¢(x) is now defined on the lattice
points x only. The lattice action in Eq. (29) assumes the discretized
form:

N

"E'

Here we have introduced the following changes:

ZAF‘P P+ ¢><x)2+ Qo) - (35)

e derivatives of the field ¢ have naturally been replaced by finite
differences:

1 .
I — Bud(x) = —[p(x +aft) — ¢(x)] ; (36)
* space-time integrals have now become sums:

/ dtx  — Y at; (37)

¢ the functional integral of Eq. (27) is now equipped with a measure
involving only a discrete set of lattice points:

219] = [do(x). (38)

Another advantage of formulating the theory on a discretized lattice
becomes clear when we switch to momentum space. In fact, the Fourier
transform ¢(p) of the field, defined by

p) =Y a' e ¢(x), (39)

is periodic and the momenta are restricted to the so-called Brillouin
zone p € (—m/a, t/a}. This means that the inverse Fourier transform

n/a g4 ,
o) = [ e o), (4o)
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Figure 1: Example of a lattice in d = 3 dimensions.

has now an ultraviolet cutoff |p,| < 7r/a, which acts as a natural regu-
lator of the discretized field theory.

As we mentioned in the end of the previous section, the ultimate
aim will be to perform numerical simulations. It is then necessary to
restrict ourselves to finite lattices. Let us assume a hypercubic lattice
with

x” =[U’l;4, ny 20,1,2,...,L}4 _1, (41)
where
Ly foru=1,2,3
L, = ? }4 (42)
Ly fory=4,

where every spatial direction has a length of a;Ls, while in Euclidean
time we have a;L; = B, so that the total volume is V = (asLs)3(a;L).
Here we have generalized to the case where the lattice spacing in the
spatial direction a5 differs from the temporal one a;.

In a finite volume one has to specify boundary conditions. We will
choose periodic b.c., i.e. ¢(x) = ¢(x +aL1), for all the spatial directions.
They imply that the momenta are also discretized, according to:

p1:277'(lz, Withliz—é—f—l,...,%,
and therefore integration over the three-momentum is replaced by fi-
nite sums

d? 1
/ (27:;3 - a3L3;' (44)

(43)

9



10

INTRODUCTION

If we look at the Euclidean correlator in Eq. (19) and taking into
account the cyclic properties of the trace, then it is possible to show
that if the field ¢ (anti-)commutes, then it must have (anti-)periodic b.c.
in the Euclidean time direction:

+¢(7,x) (Bosons)

—¢(1,x) (Fermions). (45)

p(t+T,%) ={

Similarly to the three-momentum case, the Fourier transform over the
time variable yields a discrete set of variables wy called Matsubara
frequencies:

21t n
W :{ at  (Bosons) 0. N—1.  (46)
a—’fz"L—Tl (Fermions)
This concludes our construction of a QFT regularized on a finite lattice.
We note that, in order to recover the continuum physics, results should
in principle be extrapolated by a limiting procedure where the lattice
spacing is sent to zero. This should be done in such a way that the
physical volume remains unchanged. In practice, one would simulate
the theory at smaller and smaller value of the lattice spacing, while
accordingly adjusting the extent of the lattice to maintain V' constant.
In the previous sections, we have already anticipated how the Eu-
clidean formulation of Quantum Field Theory bears many similarities
with the formalism of Statistical Mechanics (SM). First of all, the func-
tional integrals, regularized on a hyper-cubic lattice, have the form of
partition functions:

/@[4)] e Sl Y e FH,

where we have seen in the previous section how the action has the
same role that the Hamiltonian function has in the SM case:

Sl¢] <«— PBH.

Finally in Eq. (23), we noticed how the mass of a bound states can be
extracted by looking at the exponential decay of an ad-hoc correlation
functions in the large Euclidean time:

G(T) ~e™  —  G(x) ~e l/E,

which is the analogous of the inverse £~! of the correlation length
of a statistical ensemble. This formal analogy allows us to use well-
established methods of statistical mechanics in field theory and vice
versa.
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1.5 LATTICE FORMULATION OF QCD

A gauge theory is a field theory that is invariant under a local transfor-
mation. Such transformations may be a continuous function of several
parameters and in general need not commute. Those groups that con-
tain non-commuting elements are generally called non-Abelian. Since
QCD belongs to the class of non-Abelian gauge theories, we will re-
view some of their basic properties in this section. As it is customary,
we will start from the continuum formulation, in order to then apply
the discretization procedure already outlined in the previous section
for a scalar theory. The topics here exposed can be found in a num-
ber of textbooks [16-20], to which we refer for a more detailed treat-
ment. We are interested in the Euclidean space, which is where the
equations of this section will be formulated. The Lorentz index u is
then Euclidean, i.e., we do not distinguish between covariant and con-
travariant indices. The metric tensor is trivial g, = diag{1,1,1,1} and
# =1,2,3,4 simply labels the different components.

The fermionic content of QCD is represented by massive quarks, de-
scribed by 4-spinor Dirac fields ¥ (x) and g5(x). The space-time posi-
tion is denoted by x, which is a shorthand for {x*} with y = 1,2,3,4,
the Dirac index by & = 1,2,3,4 and the color quantum number is la-
beled by ¢ =1, ..., N, where the meaning of N, will be clarified below.

The action is bilinear in the fermion fields and reads:

Sp = [ d*x [§(x) (@ +m) ()] 47)
= [ dtx [F(x) (3u2lban + mbupar) ¥()]

where ¥ are the so-called Dirac matrices in Euclidean space (see Ap-
pendix A.1 for their explicit form) satisfying the anti-commutation re-
lation:

{vw 1} =26 (48)

This theory has a global symmetry SU(N,), the special group of uni-
tary N, x N, matrices, with unit determinant. A matrix A € SU(N,)
will act on the color index c of the fermion fields ¢ as (in matrix nota-
tion):

Y =Ay
¢IZ$A+

and the action in Eq. (47) is invariant under such a transformation.

A € SU(N,), (49)

11
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The transformation in Eq. (49) is then promoted to be a local one,
so that the matrix A — A(x) acquires a space-time index x and the
transformation becomes:

P'(x) = A(x) p(x)
P (x) = (x) A1 (x)

In order to keep the action in Eq. (47) invariant under Eq. (50), the
ordinary derivative d, must be replaced by a covariant one Dy:

A€ SU(Nc), (50)

where A, is called the gauge field. It belongs to the algebra su(N;) of
the gauge group, hence it is a Hermitian traceless matrix. A, trans-
forms according to:

CAu(x) = AL (x) = AR A()AR)T +i0AX))AR)T, (52)

from which the transformation rule for the covariant derivative can be
deduced:

Dy (x) = A(x)Dyp(x). (53)

When we replace 9, — D, in Eq. (47), the action becomes invariant
under local gauge transformations:

Sp= [ dix [§(x) (B +m) p(v)] (54)
= [ d*x [(x) (@ +m) p(x) +B(x) 1 Ay ()]

where, in the last term, we can see how the field A, mediates the
interactions between the quarks. Since A, € su(N,), then it can be
rewritten as a combination of N> — 1 generators T“ of the group:

N2-1
(Ail(x))ij =& a_Zl Ay,a(x)T,f}, (55)
where g is called the coupling constant of the theory. The T* satisfy
commutation relations proper to the group:

1

[Ta, T = ifapcTes Tr (TaTy) = 5% (56)

where f;,. are the structure constants of the group itself. The gluon
field is then identified with the N2 — 1 components A, ;.

Another reason to require the substitution in Eq. (51) can be found in
the evaluation of ¥(x + dx) — ¢(x). The gauge transformation matrix
depends on x and the difference between A(x + dx) and A(x) must be
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taken into account. This is obtained by the introduction of a parallel
transporter that maps the vectorial space V;, related to the vector §(x)
into the one Vy 4y of ¥(x 4+ dx). Let us call €x a curve between two
space-time points x and y. This can be associated to a SU(N,) matrix,
that defines a mapping from V; to V, and transforms under Eq. (50) as:

U (€yx) = U’ (%y0) = AU (%0) AX)"- (57)

Using the parallel transporter operator U(%ydxx) On a straight path
from x to x + dx, the covariant differential can be written as:

Dyp(x) = ¢(x + dx) — U (Cryax,s) P(x) - (58)

As the path %14y, is infinitesimal the operator U(%y+dx,x) is @ matrix
close to the identity:

U (Crrdxx) = 1+ iAyu(x)dxt, (59)

which is then consistent with the definition Eq. (51). For a finite path
%y, we can obtain U by exponentiation:

U(€ry) = expé iA,(x)dxt. (60)
XYy

In order to make the gluon field A, dynamical, we must introduce
another term in the action. This has to be invariant under the trans-
formations in Eq. (52) and it must be a functional of only the gauge
fields and its derivatives. A good candidate is the commutator of two
covariant derivatives, which we will call the field strength F,,

Fy = —i[Dy, D] = 0y Ay(x) —0vAu(x) +i [Au(x), Ay(x)]  (61)

From a geometrical point of view, this tensor is related to the parallel
transport of a vector around an infinitesimal parallelogram y:

from which we can deduce that F gauge-transforms under Eq. (52)
as F, = A(x)Fu(x)A(x)*. If we make explicit the generators T” of
SU(N,) we can factorize the field strength tensor as:

N2-1

a=1

where each component Fyy,q is:

Pyv,a = ayAv,u - avAp,a - fabcAzAf/' (64)

13
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The so-called Yang—Mﬂls action is then defined in terms of the field
strength as:

1
Sym = E/d4x(FﬁV)2‘ (65)

It contains terms quadratic in A, and its derivatives plus quartic and
cubic terms that account for the self-interaction of A s which is one of
the peculiarities of the non-Abelian gauge theory.

The QCD action is then obtained by putting together Eq. (54) and

Eq. (65)
Socp = Sy + Sym- (66)

In order to define the Euclidean theory and its path integral eval-
uation in QCD, we need first to introduce the Grassmann variables.

- These are complex totally anti-commuting fields, which are defined by -

the algebra of elements #; and 7;, which obey:

{771'/ ’7]} =0 (67)
{771'/ 77]} =0 (68)
{171'/ ’7]} = 0 (69)

In this algebra we can formally introduce an integration procedure
defined by:

Jan @+bm) = (70)
for arbitrary complex numbers a,b. We can then reinterpret the quan-
tum field ¥, in Eq. (54), as Grassmann variables at every space-time

point. The fermionic path integrals are then represented as integrals
over fermionic and anti-fermionic Grassmanian field configurations:

719) 2[9) = HHdwa x) dipa (x (71)

The quantum expectation value of any observable O[, 1, A,] in QCD
is then evaluated as:

1 _ -
== [216,9, 44 O, 9, 4,) e5eco. (72)

Since Sy is bilinear in the fermionic fields, we can rewrite it in the form:

Sy = / d*x §(x)D[A,]w(x), (73)
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Figure 2: Representation of a link variable, which represents the gauge paral-
lel transporter on the smallest possible path on a lattice.

where D is the so-called Dirac operator:
D[A,] = v, D" + m. (74)

We can then use the Grassmann integration rules of Eq. (70) to formally
evaluate the functional integral:

[ 216,91 e [#FOPIANE — detDia,, 75)

which is called the fermion determinant. We will see in the next section
how we can put the QCD action on a lattice. Even then, D will be
represented by a huge matrix and the evaluation of its determinant
will remain a non-trivial task.

We now want to define the gauge theory outlined in the previous
pages on a lattice. A local gauge transformation is now defined on the
site x of the lattice:

P(x) = ¢'(x) = Ax)p(x) . (76)

In order to define in a meaningful way finite differences of nearest-
neighbour fermionic fields, we need the smallest parallel transporter
that exists on a lattice. This is called a link and it is a group-valued
object connecting each site with its nearest-neighbour, as we can see in
Fig. (2). We will denote by U,(x) the link connecting the site x with
its neighbour x + afi in the direction fi. The link variables transform
according to:

Uy (x) — A(x) Uy (x) A (x + aft). (77)

15
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1
L’ﬁ
Figure 3: Plaquette Uy, (x) located at the four vertices x,x + fla, x + fla + a
and x + 7a.

In the lattice formulation, the gluonic content of the theory is rep-
resented by the links, rather than the gauge potential A, (the two are
related via the relation Eq. (59)). This is a substantial difference, since
the A, is an element of the su(N;) algebra, while the link U € SU(N;).

In order to describe the dynamics of the link variables, we need a dis-
cretized version of the Yang-Mills action (65). Therefore we need to find
a candidate for the tensor F,, on the lattice, where the smallest closed
path is represented by a square of side a delimited by 4 links. The par-
allel transporter around such elementary loop is called the plaquette
variable and it is the ordered product of the link variables around it. In
Fig. 3 it is displayed a plaquette U, (x) located in x oriented along the
directions fi and 7. The lattice gauge action

Sew=p8Y) |1- NiRe Tr Uy (x) (78)
x Hv ¢

was introduced in 1974 by Wilson [21] and features a sum over all the
possible plaquettes U,,(x) contained in the lattice volume with just
one orientation. The action Eq. (78) is manifestly gauge invariant by
construction.

If we write down the dependence of the link variable on the gauge
filed Ay(x) using Eq. (59), we obtain:

Uy (x) = el4u®) (79)

When we then substitute this expression in the action Eq. (78) (for a
rigorous derivation see e.g. [15]) the result is:

Sow = — 41’; a*Tr Fuy (x)F (x) + O (a2) : (80)
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This proves that, when the lattice spacing vanishes 2 — 0, Sgw coin-
cides with the Yang-Mills action of Eq. (65) if we identify
B = 2Nc
83
For the quantum theory we have to specify how to do functional

integrals. In Eq. (72), the functional integral over A,(x) is replaced by
a group-integral over all the link variables U, (x):

9[A)] — ] dUu(x), (82)

(81)

where the integration is carried via the so-called Haar measure. It has
the following defining properties:

¢ It must be gauge invariant
dUy(x) = dUy(x) = d(A(x) Uu(x) A" (x +ap)), (83)
¢ It must be invariant under left and right multiplication by another
group element V € SU(N,)
du = d(vu) = d(uv), (84)

¢ it is normalized to unity:

/dU:l. (85)

The expectation value of any observable O is then written as:

1
== dU,(x)Oe5ew, (86)
Z / E,[ a

Note that the choice for the gauge action is not unique and a different
gauge action will produce different discretization effects.

In Eq. (54), we wrote the fermionic part of the QCD action. This
can be discretized by replacing the covariant derivative with a finite
difference of neighbouring fields:

U(m)p(x + ) = Uf (x = p)p(x = )

D,p(x) — 211# : 87)
where the parallel transporter U, (n) is inserted according to Eq. (58)
in order to ensure gauge invariance. The so-called “naive” fermionic
action is defined by

S =a* Y moP()y(x)+
At L) g [Up o+ ) = U= =) @9
—a"Zw D(x,y)¥(y), (89)

17
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where D(x,y) is the discretized version of the Dirac operator intro-
duced in the continuum case in Eq. (74). It has the form:

When the lattice spacing is sent to zero, the continuum action is recov-
ered modulo a discretization error of order O(a?).
In momentum space, the Dirac operator Eq. (90) becomes:

D(q,p) = D(p)é(p — 1), (91)
with

D(p) =mo + %w sin(pya) . (92)

In the massless limit, one would expect it to vanish only at p = 0, but
in addition to this, there are 15 other solutions located at

p=(n/a,0,0,0),(0,7/4,0,0),...,(n/a,7/a,n/a,w/a)  (93)
This is known as the fermion doubling problem and the unwanted poles in

Eq. (93) are called the doublers. In order to cure this, Wilson introduced
in [21] an additional two-derivative term D? to the naive Dirac operator

of Eq. (90):

4 Uy (x) Sxqpy — 2065y + Ul (x — 1) 625
A _ M x+uy X,y 1 x—jy
D" = E >4 . (94)

H=1

In momentum-space, the Dirac operator with this addition becomes:

Q[ =

: 4
Dw(p) = mp + %’yy sin(pua) + = Y [1—cos(pua)] . (95)
pn=1

By comparison with Eq. (92), the last term is the newly added one. It
becomes irrelevant in the limit 2 — 0 and for pa < 1, but in the region
p ~ 1/a removes the additional doublers. In this new form, the action
takes the name of Wilson fermion action Sy and in coordinate space is
given by:

—fzw x)Dw (%, ) ¥ (y) (96)
with
4
Dw(x,y) = - (m + E) Oxy
1—o
" ( 24 ,4) ) Oy
1+ X
+ ( 2:" ) Uf(x = 1) gy (97)
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Figure 4: Pictorial representation of the clover-leaf Q.

For the Wilson action, discretization effects enter at the level £(a) in
contrast to the naive and the gauge action. Symanzik [22, 23] has shown
that the leading discretization effects can be removed by adding an ap-
propriate counter-term to the action. By applying Symanzik’s formal-
ism to Wilson fermions, Sheikholeslami and Wohlert [24] have added
a 5-dimension operator to the Wilson action:

Sow = Sw +cowa® L 1 5 () G 9() (99)
x u<v 2
which requires the tuning of the parameter cgyy to remove leading lat-
tice artefacts, e.g. in perturbation theory [25], this has been estimated
as csw = 1+ 0.36533(4)g + O(g*). In Eq. (98) Fyy is the lattice field
strength tensor:

fyv(") = —éz‘ (va(") - va (n)) ’ (99)

can be constructed from the so-called “clover leaves”
Quv(n) = Puy(n) + Pyy(n — f1) + Puv(n — 7) + Py (n — 2 — ¥), (100)
where each consists of four plaquettes as shown in Fig. 4. In this thesis,

we will use a generalization of this action for anisotropic lattices, which
will be described in detail in chapter 5.

1.6 NUMERICAL SIMULATIONS

In the previous sections we have seen how it is possible to define QCD
on a finite dimensional lattice, so that we can write down the partition
function as:

Zoco = / TT d, (n) (det Dy [U])Ns e=Sewlt], (101)
e

19



20

INTRODUCTION

where the determinant of the Dirac operator Dy comes from the in-
tegration of the fermionic degrees of freedom, Ny is the number of
quark flavours and the integral is carried out over the group manifold
SU(N).

Even if the integration variables are finite, the configuration space is
still too large to permit direct evaluation. This is the reason why these
integrations are carried out by means of statistical tools. The Monte
Carlo method consists in sampling the space U of possible configu-
ration by generating an ensemble {lli}{i ;- It is particularly advanta-
geous in those cases where integrals have a high number of dimen-
sions, which in our case exceeds £(107).

A numerical evaluation of the integrals is then achievable by means
of so-called importance sampling. The huge sum appearing in Eq. (101)
is approximated by a comparatively small subset of configurations,

which are sampled according to the weight factor:

W= % (det D[U])Ns e=SclUl, (102)

From a practical point of view, one starts from some arbitrary con-
figuration and then constructs a stochastic sequence that relax to the
equilibrium distribution defined by Eq. (102). This is done with a so-
called homogeneous Markov chain, where the configurations U; are gen-
erated sequentially

Uy U —»U;— ... (103)

where i labels the configuration in the order it appears in the chain.
The change of a field configuration to a new one is called an “update”
or a Monte Carlo step.

A number of algorithms are available to construct such a chain. In
this work, we mainly use a global update step based on the concept of
the Hybrid Monte Carlo algorithm, which combines Molecular Dynamics
with the Monte Carlo algorithm, see e.g. [26] for more details.

A numerical estimate for the operator O can then be obtained from
a set of N configuration by evaluating its mean and variance:

o-Lyo 0l= 1% (0,- 0y (104)

_N,'zzl 17 Var[ ]_N_li_—.zl( 1 ) ’ 104

where O; corresponds to a measure obtained from the i-th Monte Carlo-
generated configuration. This average value O is a random variable
itself and it comes with an intrinsic statistical uncertainty, which will
vanish in the limit where the total number of available configurations
N becomes very large. This error can be estimated by evaluating the
variance var [O], which for uncorrelated O; is:

var [O] = %var [O]. (105)
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The statistical error is then defined as the square-root of Eq. (105) and
it decreases like N~1/2 with the number N of uncorrelated configu-
rations. The statistical analysis of fitted or derived quantities is then
achieved by the well-known Jackknife procedure, see e.g. [27-29] for
more details.

This concludes our brief introduction to the lattice regularization of
QCD. In the next chapter we will review some of the main properties
and symmetries of QCD, making contact with the experimental point
of view.
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THE QUARK-GLUON PLASMA

2.1 INTRODUCTION

In this thesis, we will study the state of matter above a temperature
T = T. ~ 100 — 200MeV, which is equivalent to about 150000 times
the core temperature of the Sun. This phase is called the Quark-Gluon
Plasma (QGP), since the color charge is transported by quasiparticles
carrying either quark or gluon quantum numbers. In the past few years,
much effort has been devoted to the understanding of the dynamical
and static properties of the QGP. In this thesis, the transport properties
of the QGP will be studied, and in particular, the electrical conductivity,
which is of great interest to the understanding of the output of the
heavy-ion collision experiments at RHIC and CERN.

At the moment, the theoretical interpretation of these experiments
consists of a hydrodynamical description of the evolution of the fire-
ball [30-33]. This turns out to be a very useful tool and it relies upon
an early thermalization of the QGP medium. In this context, QCD has
the important role of giving a description of the QGP at a microscopic
level, providing the low energy parameters which are used in the hy-
drodynamic equations, known as the transport coefficients.

The question of which of the available theoretical frameworks in
QCD is the most appropriate for these calculations is resolved by the
experimental results for the shear viscosity to entropy ratio /s, which
is found to be smaller than for any other known system [32]. From
the point of view of kinetic theory, this means that we are dealing
with strongly interacting matter. As a consequence, perturbative calcu-
lations show poor convergence in the regimes that we are interested in
(see [8, 34] for perturbative results and [35] for a review).

The use of lattice QCD, as a non-perturbative tool to address this
problem, presents its own issues. In fact, it is formulated on an Eu-
clidean space-time, meaning that the transport coefficients can be ac-
cessed only upon analytic continuation to real times. Nevertheless, it
has recently produced a handful of results [3, 36—41], where the study
of the systematic uncertainties takes a central role.

In this chapter we will introduce the basic notions about the QGP,
starting from its building blocks, namely the properties of QCD at non-
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zero temperature. In the latter case, emphasis is put on lattice QCD
results for thermodynamics. Finally, a brief introduction to heavy-ion
collision experiments is provided.

2.2 QUARKS, GLUONS AND QCD

From the earliest of times, philosophers and then scientists have at-
tempted to explain the world around them by giving a description of
matter in terms of forces acting upon more elementary constituents.
The very word “atom” comes from the ancient Greek &topog - atomos,
meaning indivisible - and was introduced from the fifth century B.C.
by Leucippus, Democritus, and Epicurus, reflecting their purely specu-
lative beliefs that matter was not a continuous entity, but rather made
up of discrete units. This paradigm has survived across the centuries
and today, our latest model suggests that nucleons are not elementary
entities, but bound states of quarks, spin 1/2 particles, which interact
by the exchange of gluons, the bosonic carriers of the color force. The
latter gives the name to the theory describing them, Quantum Chromo-
dynamics (QCD), whose formulation has been outlined in section 1.5.

Gluons (like photons in QED) have no mass, but since they carry
a color charge, they are able to interact with themselves as well, as
we have shown in Eq. (64). This additional ‘stickiness’ is what makes
QCD such an interesting and rich theory. In particular, QCD features
three very special properties, which we will briefly discuss. First of all,
nature confines quarks and gluons inside the hadrons, meaning that
the only physical excitations that are allowed are singlets under the
gauge group. This feature is called confinement and it implies that, at
large distances, the potential between two heavy color charges rises
linearly as:

V(r) ~or, (106)

where the parameter ¢ is known as the string tension and has an
approximate value of ¢ ~ 880MeV/fm ~ (420MeV)2. This name de-
rives from the fact that the chromoelectric field lines remain concen-
trated in a region of space called the fluxtube. In this picture, one can
consider hadrons as little pieces of spinning chromoelectric “string”,
whose ends are defined by the two quark sources, moving at relativistic
speeds. Eq. (106) suggests that an infinite amount of energy is needed
to pull apart the two quarks, but this classical picture is bound to fail
when relativistic effects appear. In fact, when the energy density is
enough, a new g — § pair is created, which then breaks the string and
becomes a new source for the broken field lines, so that the system can
effectively lower its free energy.
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On the other hand, experiments performed at SLAC during the 1960s
have shown that processes involving high energy electrons scattering
off a hadron target were dominated by electromagnetic interactions.
This was explained, in 1973 by Gross, Wilczek and Politzer, who found
that the coupling constant g of QCD depends on the energy scale 42 at
which the theory is considered. In particular:

1672 _ 1IN, 2Ny

- , b '
blog(¢2/Adcp) 3 3 (x07)

(7

If the scale ¢? is large then the coupling is small, so that quarks and
gluons are asymptotically free. But when the region of low energy is
approached, their interaction becomes strong. Even if the coupling g
is dimensionless, the theory dynamically generates a parameter Agcp
which is the scale at which it becomes non-perturbative. If all the quark
masses are set to 0, Agcp is also the only dimensionful quantity of
QCD, and in this case it only reflects our choice of units. In standard
units, Agcp =~ 200MeV ~ 1 fm~!. Note that hadrons indeed have sizes
r e~ Aé}:o-

2.3 SYMMETRIES

Beyond this rich dynamics, which is intimately connected with the non-
Abelian nature of the local SU(3) gauge symmetry, there is another fac-
tor which makes QCD so peculiar: the pattern of its global symmetries.
Quark flavors are usually separated into two sets: the charm, bottom
and top are too heavy to be considered a significant factor in the anal-
ysis of the system, leaving only the up, down and strange quarks as
ones to be included. In the following, N [ will denote the number of
quark flavors considered.

When all the quark masses vanish, i.e. in the chiral limit, the left and
right-handed fields, defined as

YLR = %(1 +75)9, (108)

decouple from each other and the Lagrangian becomes invariant un-
der independent flavor transformations of the left-handed and right-
handed fields. These transformations are represented by the U(Ny)r x
U(Nf)L global group:

¥R = URLYRL
NZ_-1

-1
Y aho Tj) € U(Nf)rL, (109)
=0

with Ugy = exp (i
)
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where ag | are the coefficients of the generators T;. Note that when we
discretized the QCD action in section 1.5, the Wilson action of Eq. (96
explicitly breaks chiral symmetry,

{Dw,7s} #0. (110)

In fact, Nielsen and Ninomiya showed in [42] that any local lattice reg:
ularization cannot be free of the doublers of Eq. (93) whilst preserving
chiral symmetry. This is known as the No-Go-Theorem. One of the most
important consequences of Eq. (110) is that the Wilson fermion action
generates an additive renormalization for the quark mass m, which
then needs to be taken into account during the tuning procedure of the
bare parameters.

The chiral group is usually rearranged into the form of unitary vector
and axial transformations:

- U(Nf)r x U(Ng)L ~ U(Ng)y x U(Nf)a. (111)
The two groups are isomorphic with ay = (ar +a1)/2, x4 = (ar —
a1)/2. Moreover, we can also decompose the unitary groups in Eq. (111)
into the direct product of a special unitary group and a complex phase:

U(Nf)R X U(Nf)l_. = SU(Nf)R X SU(Nf)L X U(l)R X U(I)L
(112)
= SU(Ng)r X SU(Ng)L x U(1)y x U(1)4,
(113)
where other two U(1) global symmetries appeared. The first one cor-

responds to the conservation of the baryon number in QCD and it is
exact even when the quark masses are taken into account:

U1y : YL — ei“l/JL, YR — ei“gl)R. (114)

The other one is an axial transformation and it acts on the left and right
spinors as follows:

U(1)a: YL — P, Yr — e SYR. (115)

This holds at the classical level only when the quarks are massless but
it is broken by quantum corrections. This phenomenon is referred to
as an anomaly and the divergence of the U(1) 4 current is given by
- Neg?
M = TJFP;VP;:W (116)
where F;fv = €uva ﬁpzﬁ/ 2 is the dual of field strength tensor introduced
in Eq. (61).
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In the real world though, quarks have non-zero masses, which break
explicitly the chiral symmetry of Eq. (111). The mass term is:

§ iy’ = Phomiyf + PLmipk. (117)

Nevertheless, if the quarks are grouped into a isospin symmetric point,
e.g. my = my for Ny = 2, then the mass term in Eq. (117) preserves an
SU(Ny)y symmetry, while all axial symmetries are explicitly broken.
In nature though, quark masses exhibit a strong hierarchy:

my ~my < ms <K me <K my < my, (118)

so that only an approximate SU(2)y isospin symmetry remains present.

Despite the explicit breaking described above, the remarkable fact
is that chiral symmetry is also spontaneously broken by the ground
state of the theory. In fact, at zero temperature and density, the QCD
interactions modify the vacuum, making it unstable with respect to the
formation of a condensate of tightly bound g4 pairs:

(Py) = (OPLyr + PrypL|0) ~ (250MeV)?, (119)

which implies that the condensate pairs ¢ with (g and yr with ¢p.
The net effect of this pairing is that a quark, travelling through the
vacuum, will flip its chirality at a rate proportional to (Py) as if it
had a mass. This dynamically generated mass, called constituent mass
X, accounts for the 30 — 40% of a nucleon’s mass, which cannot be
exclusively explained by the intrinsic masses m of the constituents.
Chiral symmetry breaking xgsg is a very important phenomenon to
understand the low energy behaviour of QCD. The breaking pattern
SU(Ny)L x SU(N¢)r — SU(Nf)y has a great impact on the dynamics
at low energy. In fact, the Goldstone theorem shows us that the N} -1
broken generators give rise to an equivalent number of (approximately)
massless excitations. For Ny = 2 the latter are represented by the three
pions, over which the effective chiral Lagrangian is constructed.

After exploring the symmetries which represent the building blocks
of QCD, we can attempt a description from a statistical mechanics view-
point, i.e. a system where a few global observables can specify the aver-
age properties. These can exhibit a fundamentally different behaviour
depending on the value of temperature, energy density or net charge,
corresponding to different states of matter, with “phase” transitions
occurring when the system changes from one state to the other.

2.4 THERMODYNAMICS

In this section we want to explore the behaviour of QCD when the
temperature is raised above Agcp. According to Eq. (107), when a large
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energy scale, such as a high temperature in this case, is introduced
into the system, eventually we might expect that the strong coupling
constant runs towards zero, following asymptotic freedom, and that
quarks and gluons become a plasma of weakly interacting particles
carrying a color quantum number [43, 44].

We can gain some insight into this transition by constructing a simple
model for the equation of state (EoS). As we said before, at some high
temperature we would expect weak interactions inside the medium,
so we can approximate its pressure P and energy density € with the
expressions valid for non-interacting massless particles:

2
P = dcg—OT‘l, (120)
€ =3P, (121)

- where  accounts for the statistics and d is the number of degrees of

freedom. Specifically, { is equal to 1 for bosons and 7/8 for fermions,
while in a quark-gluon plasma there are dg = 4N¢N; quarks and dg =
2(N? — 1) gluonic degrees of freedom. If we consider only 2 flavors we
obtain deg = dg + dg7/8 = 37 so that Eq. (120) becomes:

37m?
PQGP = W . (122)

On the other hand, when the temperature is small compared to Agcp,
quarks and gluons remain confined inside the hadrons. In this regime,
the Goldstone bosons will be the relevant degrees of freedom and they
can be considered to be massless near T.. Under these assumptions
d= (N}—l).Foer=2wegetd=3and

2
Phiap = - T* (123)
Comparing the two values for the pressure obtained above, a mismatch
is observed, because at low T, Pyap is always smaller. Since the system
chooses the state with maximum pressure, this would mean that the
phase with chiral symmetry breaking is never favored. A simple solu-
tion to this problem comes from the bag model, which attempts to take
into account non-perturbative effects by assigning a negative vacuum
energy and a positive pressure to the vacuum. In this model, quarks
can freely move inside a space bounded by the size of the hadron, but
cannot travel further because of the pressure applied by the confining
vacuum. We start by writing the vacuum energy momentum tensor,
which by Lorentz invariance assumes the form T, = Bg,, and

€vac = —Pvac = +B, (129)
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the parameter B characterises the model and carries information about
the non-perturbative behaviour of QCD. Without going into too much
detail, this can be estimated via the so called QCD trace anomaly rela-
tion [45]. It characterises the energy of the vacuum, yielding the result
€vac ~ —0.5 GeV/fm®, The pressure predicted by the bag model inter-
sects Pyap at a critical value T, for the temperature, where the transi-
tion from hadronic matter to free quarks and gluons takes place. We
can estimate T, as:

1772

which is over one trillion kelvin. The two phases are characterized by
very different values for the entropy and energy density. An estimate
for the latter above and below T, can be given as:

1/4
T. = (ﬂ) ~ 180 MeV, (125)

enap = lim €(T) = 33’3 T4 ~ 130 MeV/fm?, (126)
T-T,

eocp = lim €(T) = 37 Z_T! 4+ B ~ 2000 MeV /fm3, (127)
ToTH 30

where the latent heat of the transition exceeds 1 GeV/fm®.

We can see that the bag model, though crude, is able to provide
useful information about the QCD thermodynamics. Over the years,
lattice QCD (LQCD) has become the preferred framework used to carry
out more refined calculations (regarding the QCD thermodynamics)
[46—51]. This has received a great amount of interest recently, since
the deconfined phase of QCD has become reproducible in laboratories,
such as those at CERN and RHIC. This has made it possible to deepen
our understanding of matter under extreme conditions, allowing for a
rich interplay between experiment and theoretical interpretation. The
equation of state (EoS) is obtained from the assumption that in the
thermodynamic limit, where the three dimensional volume V diverges,

the pressure is related to the free energy density f = —% log Z as:
p=— lim f. (128)
V—oo

The other observables, such as entropy s and energy € densities, are
then reconstructed via thermodynamical relations from the pressure
p(T). From the numerical point of view, the partition function Z =
Z (B, m) is normally only accessible through its derivatives with respect
to the bare lattice parameters. One of the most-used methods to recon-
struct the pressure p is to perform several simulations at different val-
ues of {B,m} and then apply a careful integration procedure, which
goes beyond the scope of this thesis. We show in Fig. 5 the “state of the
art" result from the Wuppertal-Budapest collaboration for the energy
density € over the transition region.
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Figure 5: Results for Energy density normalized by T4 from [49] as a func-
tion of the temperature for several lattice spacings. The Stefan-
Boltzmann limit ¢c$8 —3Fsb is indicated by an arrow.

25 DECONFINING TRANSITION

Another important aspect that LQCD has clarified is the nature of the
deconfinement transition. The value of the quark masses, which are
the only dimensionful parameters in the QCD lagrangian, have a great
impact on the order of the transition. Since the up and down quark
masses mu, ni4 are very similar, while the strange quark is much heav-
ier, it has become customary to represent the various phases in a mass
diagram where the light quarks are put together on the abscissa, and
the strange quark mass is represented by the value of the ordinate. This
diagram, called the Columbia plot after the institution where it first was
introduced [50, 52], is shown in Fig. 6.

The chiral point, where all the quark masses vanish, is represented
by the origin in Fig. 6, where the transition is of first order [52]. In
this regime, the phase transition is associated with the breaking of the
chiral symmetry, driven by a non-zero value for the chiral condensate
in Eg. (119), which can be used as an order parameter.

The pure gauge theory is represented by the upper right corner in
Fig. 6, where all quark flavors are infinitely heavy and the transition
is still first order [53, 54]. In this case, the order parameter is the ex-
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Figure 6: Nature of the deconfining transition as a function of the number of
flavors and the value of the quark masses. Plot from [50, 52].

pectation value (T(x)) of the Polyakov loop, which is the time ordered
product of temporal links at a given spatial position x:
nt-1
L(x) = Tr vi1 ud(x,t). (129)
T=0
This operator vanishes in the confined phase, while it acquires a non-
zero value in the deconfined one. Physically, the expectation value of
the Polyakov loop can be interpreted as the free energy of an infinitely
heavy quark via (T(x)) ~ exp(—Fa/T). A vanishing (T(x)) implies
that the free energy diverges or, in other words, the color charges are
confined. In fact, the S//(Nc) pure gauge theory admits a global Z(Nc¢)
symmetry and the action does not change when multiplying all time-
like links at a given spatial position x by an elementz = exp(i2nn/Nc¢)
of the centre Z(NQ of the gauge group. This centre symmetry is then
broken spontaneously when, in the deconfined region, the Polyakov
loop acquires a non-zero expectation value, signalling a phase transi-
tion.

The two first-order points described above actually extend into re-
gions bounded by critical lines of second order phase transition. There,
the universality class is the one of the Z(2) Ising model. The massless
Nf = 2 case is located in the upper left corner, where the strange quark
is infinitely heavy. Here, the transition is of second order and it lies in
the 0 (4) universality class.
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Figure 7: Plots from [48]. Behaviour of the renormalized chiral condensate
(left) and renormalized Polyakov loop (right) in the transition
region. In both figures, the different symbols correspond to different
Nt, while the grey band is a continuum estimate. See reference [48]
for more details.

At the physical point though, due to the particular values that quark
masses assume in nature, the transition has been shown to be a cross-
over [47]. This means that all observables will have an analytic be-
haviour with the temperature and might either develop a sharp peak or
exhibit a rapid change, so that no proper order parameter exists. Even
if no singularity occurs, one might decide to locate Tc either at the
peak position or at the inflection point, which are always well defined.
Note though that this definition of the transition temperature will be
different depending on the observable considered; it is the manifesta-
tion of the broad nature of the analytic transition [46, 47, 51]. For this
reason, studies of the QCD crossover transition take into considera-
tion the whole behaviour of the studied observable, which is perhaps
more informative than Tc and gives a measure of the broadness of the
transition. In [48] different observables are studied and the resulting
transition temperature lies in a region between 150 and 170 MeV, see
Fig. 7 for two examples.

26 HEAVY-ION COLLISIONS

The study of QGP, albeit interesting in itself, is relevant to the under-
standing of two main physical scenarios: the early-universe cosmology
and heavy-ion collision experiments (HIC).

In the first case, following Friedmann's solution (Friedmann, 1922)
to Einstein's gravitational equations, we know that the Universe ex-
perienced an expansion from a singularity at time zero. The solution
relates the radius R of the observable universe to its age t (time after
the Big Bang) and its temperature T, e.g. before matter cooled down

and became non-relativistic, the behaviour was R oc T-1 oc fz. We can
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Figure 8: Overview of a heavy-ion event. In the left figure the two nuclei col-
lide along the beam axis usually labelled as z. Due to relativistic
energies the nuclei appear length-contracted in the centre of mass
frame. The right figure shows a schematic view of the transverse
plane. Both the magnitude and direction of the impact parameter
b can be determined on an event-by-event basis. X and Y label the
reaction plane axes and the dotted lines indicate the lab axis. ¥rp
is known as the reaction plane angle. Note the almond shaped area
where the interactions take place.

use this prediction to infer the existence of the QGP between t ~ 107>
and t ~ 10~ seconds. The dynamical properties of the QGP are then
important to constrain those cosmological models aiming to describe
this part of the evolution of the universe. For example, if the confining
transition was first order, it would have been driven by inhomogeneous
processes, e.g. growth of hadronic bubbles. This would result in local
fluctuations in baryon concentration, with potentially observable con-
sequences in the relative abundances of light elements formed at the
nucleosynthesis epoch at t ~ 10 minutes [55].

In the HIC experiments, the main topic of this section, a bulk state
of hadronic matter is artificially produced in laboratory for a time of
the order of 5fm/c. They have been the main “probe” for the study of
the QGP since the mid 1970’s, at facilities like the Alternating Gradient
Synchrotron (AGS) in Brookhaven and the Super Proton Synchrotron
(SPS) at CERN. More recent experiments are the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory and the Large
Hadron Collider (LHC) at CERN. At RHIC, gold (Au) nuclei are the
largest used, with a relativistic energy in the centre of mass frame of
Ecm ~ 200A GeV, where A is the number of nucleons in the nucleus.
At LHC, lead (Pb) ions are used, reaching much greater energies of
2.76 A TeV.
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Figure 9: A schematic view of the different stages of a heavy-ion collision
event. [56].

In Fig. (8), a schematic way to describe these reactions is provided:
the two nuclei of radius R are collided along the axis z. In the centre
of mass frame, the nuclei appear as Lorentz-contracted “pancakes” of
thickness 2R/ ycm, where yem = Ecm/2my is the Lorentz factor. Since
the de Broglie wavelength turns out to be much shorter than the size
of the nucleus, the impact parameter b, connecting the centre of both
nuclei, can be used to characterise the geometry of the collision. In par-
ticular, a non-zero value for b implies a highly anisotropic interaction
region, see Fig. (8).

Providing a complete description of these collisions is an extremely
difficult task. The most successful picture was introduced by Bjorken
(Bjorken, 1976) and it takes into account the existence of low energy
partons surrounding the nuclei as well as the time dilatation of par-
ticle productions. It is outside the scope of this thesis to provide a
detailed analysis of the first stages of the collision, since they involve
non-equilibrium processes of the underlying non-Abelian gauge the-
ory. We will, however, mention the main features.

At ultra-relativistic energies, when E., > 100 GeV, the two nuclei
pass through each other, leaving behind a highly excited region with
a small net baryon number. The different stages of the collision are
usually parametrised by the proper time T = V{2 —z2; it turns out
that there exists a characteristic proper time 75 where the medium has
reached local equilibrium, which produces the initial condition for de-
scribing the evolution of the system for T > 1p, using some effective
model.

In fact, between the time 15 < T < Tf the system can then be de-
scribed by relativistic dissipative hydrodynamics, for a detailed review
on the topic see e.g. [32, 57]. This theory provides a description of the
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flow of the fluid without taking into account its microscopic structure.
More precisely, it can be thought as a low-energy effective theory, in-
volving a few parameters, called transport coefficients, which encode
the infrared behaviour of the underlying microscopic theory (QCD in
our case) and can be computed via first principle calculations. In or-
der to understand the scope of hydrodynamics, it is useful to draw a
comparison with thermodynamics. The latter describes a many-body
system in global thermal equilibrium, where the so-called intensive
quantities (temperature, pressure and chemical potentials) are time-
independent and uniform in the volume V of the system. Hydrody-
namics can be viewed as a generalisation of this picture towards a
state of local equilibrium: the intensive quantities are now allowed to
vary in space and time, but they do that so slowly that one can still
assume thermal equilibrium to hold locally. Gradients of pressure and
temperature naturally lead to flow, with a local fluid velocity which is
itself slowly varying in space and time.

The equations of hydrodynamics are built using the conservation
laws for the energy, momentum and baryon number

9, T" =0, (130a)
o]k =0, (130b)

where TH is the energy-momentum tensor, J; is the density of the
baryonic current. These are then coupled to some constitutive equa-
tions, which are represented by a gradient expansion involving the
transport coefficients mentioned above. For example, when the system
is in equilibrium, the spatial components of the energy-momentum
tensor are described in terms of the pressure P as T/ = §P. A non-
uniform flow field u(t, v) will change this to*:

T = 6P —y (8iuj + ol — ?—Séijalu’) — 789t +0(2%), (131)

where the transport coefficients # and { are called the shear and bulk
viscosity respectively. These can be determined by a matching proce-
dure with the underlying quantum field theory, i.e. QCD.

The hydrodynamics equations can then describe the time evolution
of the system until T ~ 7. After this point, the freezout of the medium
takes place: initially the number of each species freezes (chemical free-
zout) and after that the interaction rates drops off and thermal equilib-
rium is no longer achievable (thermal freezout). After this stage, a typi-
cal number of N ~ O(10%) hadrons are emitted and then detected with

1 We are working in the local rest frame, where T% = 0.
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Figure 10: The elliptic flow predicted by viscous hydrodynamics, for different
values of the shear viscosity per unit entropy ij/ s and for the color-
glass condensate initial conditions, compared to the measurements
by the STAR collaboration at RHIC [31].

a certain distribution along the azimuthal angle ( around the beam
axis. The distribution is then parametrized by Fourier coefficients:

ex [1+2 5 ifcos(2w<p)]. (132)

The second coefficient Vi is called elliptic flow and plays a key role
in unveiling one of the most important observations at RHIC. The ob-
served value for vi is unexpectedly large and it represents (in non-
central collisions) the response of the system to the initial, anisotropic
“almond-shaped" region where the interactions take place. In fact the
pressure gradient in the Y direction is larger than in the X direction
(see Fig. (8)), so that the nuclear medium expands preferentially along
the short axis of the ellipse. We observe that if the mean free path of
the particles were bigger than the actual volume where the interactions
take place, then the particles would be emitted without any "memory"
of what the system looked like, and they would not respond to the
initial geometry.

As shown in Fig. (10), using the hydrodynamic calculations men-
tioned above, it is possible to set some phenomenological bounds on
the shear viscosity // of Eq. (131), see e.g. [30, 58, 39]. It was immedi-
ately clear that, in order to reproduce the large elliptic flow measured
in the experiments, the shear viscosity to entropy density ratio 7/ s of
the formed medium has to be very small compared to any other ob-
served systems [37]. The molecular theory of transport phenomena in
dilute gases goes back to Maxwell. In this framework the shear vis-
cosity of a dilute gas is proportional to the particle mean free path.
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This supports the idea that the hot quark matter produced at RHIC is
actually a strongly-coupled one.

If one takes into account all the systematics involved in the hydrody-
namic treatment (see e.g. [32]), then a conservative bound for #/s can
be inferred from the RHIC data:

LA <
( s )Phem <040 (133)
A first-principle calculation of this quantity from QCD has been at-
tempted using several approaches. In [34], a leading-log perturbative
prediction has been carried out, yielding the result:

1 -__ ¢
( S >leading log 84 log(l /g) ! (134)

where ¢ is a constant and g is the strong coupling constant. At full
leading order this amounts to /s ~ 2.0 using a; = 0.15 [8]. This
result is in tension with the experimental bound given above and it is
clear that the perturbative picture is not applicable at the temperatures
reached in heavy-ion collisions.

A precise bound for the viscosity was proposed by Kovtun et al. [60]
using the formalism of string theory. They argued that

v |3

1
> — ~0.
2 i 0.08, (135)

for all fluids. A fluid which saturates this bound was found in [61], for
the .4 = 4 super-Yang-Mills in the limit of infinite gauge coupling.
Such a fluid dissipates the smallest possible amount of energy, and
satisfies the laws of fluid dynamics in the largest possible domain: it is
called a perfect fluid. The medium produced in the heavy-ion collisions
appears to be very close to this limit.

The discussion carried out above is intended to clarify which one of
the strong or weak coupling paradigms is more appropriate to describe
the QGP at temperatures of a few T, which are characteristic of the
RHIC and the LHC heavy-ion experiments. A non-perturbative treat-
ment is then needed for a first principles calculation of the transport
coefficients and it represents the main topic of this thesis. In particular,
we will study the electrical conductivity ¢ and the diffusion D, which
will be described in the next chapter. From a phenomenological point
of view, the conductivity plays an important role in the evolution of
electromagnetic fields during a heavy-ion collision [62, 63].

In the next chapter, we will introduce the framework of linear re-
sponse theory, which shows how ¢ is related to the Euclidean corre-
lator of the electromagnetic current, which is accessible from lattice
QCD.
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3.1 INTRODUCTION

The very first tool available to physicists in order to interact with the
system being studied is the act of “measuring”. This amounts to ap-
plying a local disturbance using an external force at some space-time
point and to measure the response of the system at a later time. One
might initially guess that if a small perturbation is applied to the sys-
tem, its response will be comparatively small as well. This simple intu-
ition can be made more quantitative, and the formalism under which
this is done is called linear response theory. This powerful tool makes it
possible to express the feedback of the system as a convolution of the
external perturbation with a response function, computed using equi-
librium correlation functions, which do not depend on the strength of
the external source.

3.2 LINEAR RESPONSE TO AN EXTERNAL FIELD

We follow here the treatment of [20]. We aim to obtain the effect that
a small perturbation, e.g. caused by an external field, has on the en-
semble averages of a local observable O(x, t), to first order in such an
external field. The observable under study might be, for example, the
local density, the charge current or the local magnetization. The system
is described by the following Hamiltonian:

H(t) = Hp + Hext(t), (136)

where Hj is the time-independent unperturbed Hamiltonian, which
describes the system and its interactions, Hex(t) is the perturbation
which couples the original system to the external field. We require it
to be weak, so that it can be described perturbatively and also to be
adiabatically switched on and off. In the following, we will assume
that the unperturbed system has already achieved equilibrium when
at t = to the perturbation Hex(t) is turned on.
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The expectation value of a physical observable O in the canonical
ensemble can be written using the density matrix p for the unperturbed
system as:

1 1
(0) = Z-Tr {p O} = -3 (| O ) =5, (1372)

p=e P =Y"|n) (n|e P, (137b)

where Zj is the partition function of the unperturbed system and we
have used a complete set of eigenstates {|n)} of the Hamiltonian Hy
with eigenenergies {E, }. We want to know how the ensemble average
of O changes after we turn on the perturbation. To achieve this we need
to understand how the density matrix evolves in time or equivalently
the time evolution of the eigenstates of the unperturbed Hamiltonian
{|n( ))} In other words

<(t)>——Tr{p O}— 2 |O|n t))e PEn,  (138a)

n

p(t) = T ln(®)) (n(t) e 5. (138b)
n

The meaning of the equations above is the following. The initial states
of the system were distributed according to Eq. (137b). At later times
the system is described by the same distribution of states but these
are now time-dependent and they have evolved according to the new
Hamiltonian. The time dependence of the states |n(t)) is of course gov-
erned by the Schrodinger equation:

idt [n(t)) = H|n(t)) . (139)

Since Hext(t) is to be regarded as a small perturbation, it is useful
to switch to the so-called interaction picture representation {|f(t))}.
The physical observables O(t) of the coupled system are now time
dependent and will evolve according to the Hamiltonian of the isolated
system Hj, but the states will follow the external perturbation. Hence
the time evolution can be summarised as:

|n(1)) = e ™! [a(t)) = e Ut to) |A(to)) , (140)

where by definition |(to)) = Moo |n(ty)) = |n(t)). The evolution op-
erator U satisfies the differential equation:

iU (¢, t0) = Hex()U(tt0),  Ulto,to) = 1. (141)

which we can expand to linear order in Hey; as:

ag, tg)—l—z/ dt' Hext(t') + O(H2,) . (142)
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Now inserting Eq. (142) in Eq. (138) we can obtain the expectation value
of O to linear order in the perturbation:

t ¢~ BEn
(1) = (0)o~i [ dt' L "5 (n(t)] [O(8), Hex(!)] Into))
— (O~ i | a (101) Houl!] (143)

where the notation (), stands for an equilibrium average in the unper-
turbed system described by Hy. Equation (143) turns out to be very
useful, since it expresses the non-equilibrium quantity (O(t)) as a cor-
relation function in the system in equilibrium.

We can apply these ideas to the case where Hey; takes the form:

Hext = / dx J(x, £)O(x,t). (144)

Inserting Eq. (144) into Eq. (143) we obtain:

5(0(x, 1)) =i /t: at' [ ax joe, ) (O, ), 006 0])y - (145

We note that since we assume that the system is in equilibrium, the
correlator in Eq. (145) must only depend on x — x” and t — #'. We can
then define the retarded Green function as:

Gr(x —x;t—t') = —if(t — ') ([O(x', ), 0(x, 1)]), (146)
which then can be rewritten in Fourier components:

3 - ’ . !
Gt st ) = i [ LEEL 0 G40, a1

Using Eq. (146) and letting t) — —oo and the upper integration time
t — oo, Eq. (145) becomes:

5(O(x,t)) =/_°:odt’/dx’](x’,t')GR(x—x’;t—t'). (148)

It is interesting to express the perturbed observable in frequency and
momentum space and to do so we insert Eq. (147) into Eq. (145), ob-
taining:

3 .
300, 1) = [ Gye ™ (e w)Grlkow). (149)

Eventually, we are left with the compact form:
6(0(k,w)) = J(k,w)Gr(k,w), (150)

where the variation in the observable in momentum space is given by
the external source times the retarded Green function.
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3.3 KUBO FORMULA FOR CONDUCTIVITY

In Sec. 2.6, in the context of the hydrodynamical description of the
heavy-ion collisions, we introduced the concept of transport coeffi-
cients. These are low energy parameters, bridging the gap between a
rigorous first-principle treatment of a problem and a classical effective
theory. In this section and for the rest of this thesis, we will focus on a
transport coefficient called electrical conductivity ¢. We want to calcu-
late ¢ in the quark-gluon plasma (see Chapter 2), using orthodox lat-
tice QCD simulations, at temperatures relevant to heavy-ion collision
experiments, described in Sec. 2.6. Using the Kubo formula, derived in
Sec. 3.2 for a generic case, we will show how to relate the calculation
of the electrical conductivity to the evaluation of some Green function
of the system being considered, which will potentially pave the way to
a lattice QCD determination.

- Let us then consider a system composed of charged particles in equi-
librium. We now apply an external electrical field and we want to have
a quantitative description of the current induced in the medium. The
electrical conductivity ¢ is the linear response coefficient that relates
the electromagnetic current Jem at some space-time point (r,t) to the
applied electrical field E at (r’,t'). In formula:

A (5t) = / at’ / dr';aaﬁ(r—rct—t')*ﬁﬁ(rc ¢y, (151)

where the conductivity is represented by a tensor c*#, depending only
only on the combination r — 1" and ¢ — #'. The electromagnetic current
Jem is defined in terms of the current density operator of the charged
particles, which in our system composed of electrically charged quarks
means:

Jem =4 (J) , (152)

where g is the electrical charge and the current density J is defined
as the variation of the Hamiltonian dH due to variation in the vector
potential JA:

5H = —q/ drJ-A. (153)

In terms of the electromagnetic potential, the electric field E.y is writ-
ten as:

Eext(rr t) = "‘vr (Pext(r/ t) - atAext(r/t) . (154)

We can write down the perturbing term Hey; in Eq. (136), due to this
external electromagnetic field by coupling the charged particles to the
scalar and vector potential:

Hext = 4 / dtdr p(x, )pea(r t) — / dtdrJ(, 1) Aeu(r,t). (155)
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We can work in a gauge where ¢ = 0 and drop the first term in
Eq. (155), to simplify the expressions. In the following, we will call
Ay the vector potential of the system in equilibrium, so that the total
vector potential will be A = Ag + A ;. We now switch to the frequency
domain and therefore we rewrite Eq. (154) in Fourier modes as:

Eext (l‘, w)

Aext(r; (U) = iw

(156)

The external perturbation in Eq. (155) in frequency domain becomes:

ext /dl‘] ext(rl ) (157)

Since in Eq. (151) the conductivity tensor is defined through a convolu-
tion, its frequency transform is simply:

J L (r,w) = / dr’%o"‘ﬁ(r—r’,w)h’ﬁ(r’,w). (158)

We can now apply the Kubo’s formulas of Egs. (143) and (145) to ob-
tain the expectation value of the current density (Jem), by replacing O
by J and He« by Eq. (157). Note that the equilibrium state does not
carry any current, so that (Jo); = 0 and (Jo) = 6 (Jo). In the frequency
domain, using Eq. (150) and writing in components we have:

P w)) == L [ ar GQPr— v, w)Ebu(r, @), (159)

which is non-local in space. In Eq. (159) we wrote the retarded Green
function for the electromagnetic current as:

Cr—r,t—t)=—ib(t—t) < []“‘(r, 1), 1(r, t’)] >O . (160)

Now comparing Eq. (159) with the definition of the conductivity tensor
in Eq. (158) and using Eq. (152), we finally arrive at the Kubo formula
for the conductivity:

iq” ap
B —r,w) = UCR (r—r,w). (161)

Now the DC conductivity is obtained by taking the limit k — 0 and
then w — 0 of the real part of o”/. Moreover, we consider homogeneous
translational-invariant systems, i.e. the conductivity tensor is isotropic
and therefore diagonal o'/ = ¢ §'/. In the end we obtain:

Im [Ci{(k,
oleea =g° hmhmB[—&(—w)].

3 w—0k—0 3w (162)
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This formula will be extensively used in the following chapters and in
particular, the combination:

p(w) = lim 2Im [Ci(k, w)] (163)

takes the name of spectral function, which will be described in the
following section. Combining Egs. (162) and (163), we can obtain the
conductivity in terms of the spectral function:

p(w) (164)

3.4 SPECTRAL FUNCTIONS AND EUCLIDEAN CORRELATORS

The main focus of this thesis is the estimate of spectral functions in
QCD starting from imaginary-time correlation functions computed nu- -
merically. In the previous section, we showed how the study of the
correlation functions for the relevant observables of the system is phys-
ically important. They are crucial to analyse the deviations from the
mean values, yielding information about the dynamic behaviour of the
system near equilibrium [64]. In this section we want to derive some
relations between real and imaginary time correlators and to do so let
us start by considering an hermitian observable O(x, t), which we can
use to build the Wightman correlation functions:

Gs () = T{pO(O(0)}, G<(t) = T{pO(0)O(H)},  (165)

where the equilibrium density matrix p = %e'ﬁH has already been
introduced in Eq. (137) and a hat has been added to avoid confusion
with the spectral function. We will now describe some of the properties
of these correlators. From the hermiticity of O and the time-translation
invariance of g, follow two useful relations:

Ge(t) = Gs(=1),  GL(t) = Gs(~t"). (166)

Moreover, from the definition (165) and the form of p, one can deduce
the Kubo-Martin-Schwinger (KMS) relation,

G>(t) = G>(—t—ip), (167)

which in case of imaginary time direction, implies the periodicity of
the correlation function. The commutator [O(t),0(0)] is a physically
relevant quantity since it reflects the causality of the theory. In fact, its
expectation value,

G(t) = iTr {p[O(t),0(0)]} =i(G>(t) — G<(t)), (168)
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vanishes outside the light-cone and by means of Eq. (166), it is straight-
forward to show that:

G(=t) =—=G(),  G*() =G("). (169)

As we mentioned in the beginning, we are interested in the Eucli-
dean time correlator, which is accessible from lattice calculation. This
is expressed in terms of an analytic continuation (or a Wick rotation)
it — T performed on G (t):

Ge(1) = G>(—i7). (170)
Using Eq. (167) it can be shown to be periodic:

Ge(B — 1) = Ge(7), (171)

which allows it to be expressed as a Fourier series on the interval 0 <
T<B:

Ge(1) =B Y G¥emwer with G = /0 dT @Gy (1), (172)
teZ

where wy = wp- £ = 2t ¢ are the Matsubara frequencies introduced
in Eq. (46).

In the following, we will be interested in an observable related to the
Fourier transform of the correlator G(t):

(W) = = /+°° dt et G(t) (173)
p o 271 J—oo ! 73
which is called the spectral function and, using the properties of the
Fourier transform, one can show that is a real odd function.

In Eq. (146) we introduced the retarded correlator as the quantity of
interest for the linear response formalism. It is easy to see that in mo-
mentum space it is related to the correlator in Eq. (168) via an integral
transform over the positive half-axis:

© dt

Gr(w) = | 5 ¢“"G(t), (174)

and it is analytic for Im(w) > 0. Using (169), one shows that
1
p(w) = = (Gr(w) — Gr(w)*) = 2Im Gr(w) € R. (175)

as stated in the previous section in Eq. (163).

We want now to relate the Euclidean correlators obtained from lattice
QCD to their real time counterparts. One way to tackle this problem
is to switch to a spectral representation of the correlators. In order
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to do that, we insert two complete sets of energy eigenstates of the
Hamiltonian (in Fock space) {|A)} in the definition of G(t). The result
is:

G(t) = EZ(Am|e pH [ ¢itHOe~itH o] A

[\]

— 2 [(Aml e PHtHOeH | A ) (4,1 O |Am)
mmn

— (Am| e PHO |Ay) (An| €tHOitH |/\m)]
i B i o
-7 Zoﬂm Onme PEm [6 it(Es—Em) _ pit(En Em):'

Z OmnOnm e ~A(Eu+En)/2 Smh(ééﬂ) _IE"mt (176)

m,mn
~ while for 'GE'(t) we have instead:

Ge(t —Z (Am| e PHe™M0e~™HO |A,,)
Z m

E Omn Onme_ﬁE'"e_T( n_Em)

m.n

N|—= N+~

8
3

OmnOnm e_ﬁEme—E"mT ’ (177)

where we have used the shorthand notation:
Ewm = E, — Ey, Onm = (n|O(O)|m) . (178)

Using the formulas above, we can express the retarded correlator as:

OmnOum . E
Gr(w ﬁ(En+Em)/2 sinh BEum +
R( Z nzm w En”1) ( 2 )

2 E OyinOnme PEntEm)/2 sinh(%“i)é(w — Enm), (179)
nm
and similarly for the spectral function p(w) with w € R, we obtain:

mmn

Note that if we take the imaginary part of Gr(w) we can recover for-
mula (180).

1 Note the formula 5= [* exp (iwt) exp (—iat) 6(t) = $6(w — a) 1

T 2n{w—a)"
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Finally, it is easy to verify, using Eq. (177) and (180), that in configu-
ration space, the Euclidean correlator is obtained from p via:

i coshw(—g—‘c)
Ge(1) —/odwp(w) Sinh /2 (181)

In this equation we can see the Euclidean correlator expressed in terms
of the spectral function. This relation will be the starting point for the
analysis in the following chapter, where a Bayesian method will be
used to reconstruct p from the Monte Carlo data on Gg. This will allow
for an estimate for the conductivity o using Eq. (164).
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In this chapter, we present the numerical and statistical methods used
to obtain the spectral function from the Euclidean correlator, available
from lattice QCD. Firstly, we will give an introduction on the so-called
inversion problems and what are the challenges involved. Then we
will introduce the Bayesian probabilistic approach called Maximum
Entropy Method (MEM), which is widely used in this thesis.

4.1 AN INTRODUCTION ON INVERSE PROBLEMS

When we study a physical process, a mathematical description is de-
veloped in order to be able to make useful predictions on other observ-
ables, described by the same laws of physics. This description often
consists of a set of equations, e.g. ordinary and partial differential equa-
tions or integral equations, featuring a certain number of parameters.
Depending on the nature of the process being analysed, this modelling
procedure falls into three distinct classes [65, 66]:

1. Direct Problem: from the input and the parameters, find out the
output of the model;

2. Reconstruction Problem: starting from the parameters and the
output, recover the original input;

3. Identification Problem: knowing the input and the output, extract
the parameters which best describe the relation between input
and output.

The first case is called “direct” since it is oriented along a cause-effect
sequence. For the opposite reason, the second and third type of prob-
lems are called “inverse” problems and they aim at reconstructing un-
known causes from known consequences. A unified description for the
modelling of the many inverse problems can be achieved by introduc-
ing the following notation. We call X the space of input, Y the space
of output or data, IP the space of system parameters and A, the linear
or non-linear space of operators from X to Y associated with p € P.
Using this notation we can reformulate the problems above as:
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1. givenx € X and p € P, find y = Ap(x);
2. giveny € Y and p € P, find x € X which solves Ay(x) = y;
3. giveny € Y and x € X, find p € P such that A,(x) =y.

Note that there are cases where the inverse problem can be formally
cast into a direct one. For example, if the inverse of A, is known and
is a linear operator, then the problem is solved by x = A, ly. However,
the explicit determination of the inverse does not help if the output y
is not in the domain of the definition of A, 1. This situation is typical
in applications due to the fact that the output may be only imprecisely
known and distorted by noise.

As one can imagine, depending on the number of parameters appear-
ing in the model, different scenarios can open up. When this number
is much greater than the data points, then it is either impossible to find

- a solution or many degenerate ones appear, making it difficult to find

out what features of the solution follow from the data and which ones
are just artefacts of the particular model. Even when the number of pa-
rameters is less than or equal to the data, but the problem is ill-posed,
the inversion procedure can become unstable, preventing any sensible
solution being found. In this regard, let us give a rigorous definition of
an ill-posed problem, introduced by Jacques Hadamard [67]:

Definition Giving a mapping A : X — Y, the equation
Alx) =y (182)
is well-posed provided that
1. (existence) for each y € Y, 3x € X such that A(x) = y;
2. (uniqueness) A(xq1) = A(x2) = x1 = x2;
3. (stability) A~! is continuous.
Equation Eq. (182) is ill-posed if it is not well-posed.

Frequently inverse problems are ill-posed because the forward oper-
ator Ap is smoothing, in the sense that details (small scale structures)
are attenuated by the forward mapping. This means that the reconstruc-
tion must involve some sort of deregularization, whose main drawback
is a loss of uniqueness: different causes can produce almost the same
effects. Another case is when y is obtained from numerical simulations
or from experiments, in which case it is inevitability discretised and
affected by an error €. Knowledge of the probability distribution func-
tion p¢(y) is essential to estimate the error in the results. Typically, for
a lattice QCD simulation we have a Gaussian distribution function, i.e.
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Figure 11: The original function (top), its Laplace transform (center), and
the estimator obtained by solving the inverse problem (bottom).
From this example, it is clear the meaning of ill-posedness. Picture
from [66].

pe(y) ~ e_(Lez)z, where 7 is an estimation of the “exact” value. This
difficulty is accentuated when the problem is unstable. In all the above
cases, one should make use of any available a priori information on
the space of models, e.g. some physical constraints.

In the following we will focus on one of the most important and
widely known inverse problems. On a functional space of normaliz-
able functions x(w), the Fredholm integral equation of the first kind is
defined as:

+o0
y(t) = / dwK (T, w)x(w), (183)
where K(7,w) is the integral kernel of the aforementioned operator A.

Let us consider the inverse Laplace transform as a simple prototype
for an ill-posed problem and show more concretely the difficulties men-
tioned above. It is defined as:

+00
y(t) = /0 dwe™ ™ x(w). (184)

The latter can also be seen as a problem of analytical continuation. Let
us instead consider the Fourier transform:

y(t) = /j: dwe "@x(w). (185)

Now, suppose that it can be analytically continued to define a function
y(z) of the complex variable z = T + it. If we restrict it to the real axis
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z = T, the Laplace transform in Eq. (184) can be recovered. The func-
tion x(w) can then be calculated by either an inverse Fourier transform
from y(t), which is known to be better behaved, or an inverse Laplace
transform from y(7), which is ill-defined. Since in most cases only y(7)
is available, we are forced to follow the second choice, where the ker-
nel K(1,w) has an exponential behaviour, the source of the numerical
instability. In Fig. (11) is shown a naive attempt to make a numerical
inverse Laplace transform of a Gaussian function knowing its Laplace
transform at discretised points [66].

The example above shows the difficulties that the numerical analyti-
cal continuation to imaginary time poses. In order to make contact with
the physics addressed in the previous chapter, let us rename x — p in
Eq. (183) and consider a kernel of the form:

coshw(p/2 — 1)
- sinhBw/2

K(t,w) = (186)
If we also restrict the integral in Eq. (183) to positive frequencies, we
recover Eq. (181), which we rewrite here for convenience:

coshw(——'r)
/ dwplw)=Ghpwra - (187)

The data is represented by the Euclidean correlator Gg (1) obtained by
a Monte Carlo simulation and thus affected by statistical error. Gg(T)
is provided for a discrete set of points, T = 7;, with 1 < 7; < N,
where N: is the number of the temporal lattice sites. Note that, dur-
ing the analysis, a number of different subsets T € [Ty, Tmax) might
be considered. The aim will be the reconstruction of the spectral func-
tion p, which is in principle a continuous function. This falls into the
class of ill-posed problems described above, where the number of data
points is much smaller than the number of degrees of freedom to be
reconstructed.

One possible approach is to perform a standard likelihood analysis
based on strong assumptions on the shape of the spectral function,
see e.g. [36, 39, 68]. Although reasonable in principle, this choice can
present a few drawbacks, i.e. poor stability against a change in the
number of parameters and the impossibility to study the fine structure
of the spectral function.

The Maximum Entropy Method (MEM), discussed in the next sec-
tion, represents another way to circumvent these problems. It is based
on the method of statistical inference and reconstructs the most prob-
able spectral function given some prior information on its properties
and compatible with the available data.
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4.2 BAYESIAN INFERENCE

In this section we review the Bayesian method used to reconstruct the
spectral function p from Eq. (187). The starting point is the concept of
Bayesian inference. Consider a probability space composed by a space
of events (2 and a probability measure P. Given two possible events
A, H, the conditional probability P(A|H) is the probability that A hap-
pens, knowing that H has already happened. This is formally defined
as:

P(ANH)

P(A|H) = ~P(H)

(188)

where P(H) is the probability of H, P(A N H) is the joint probability
function for A and H. Since P(ANH) = P(HN A), we can deduce that
P(A|H) and P(H|A) are related as

P(H|A) = P(A|H)%, (180)

which shows that the symbol | is not symmetric in general. Consider
a complete and mutually exclusive set? of events {A;}, the probability
of event H is:

P(H) = P(1NH) =P((UA;))NH) = ZP(Ai NH), (190)

and from the definition of conditional probability

P(H) = Y P(A)P(H|4;). (191)

Consider a specific set Ax. Then Bayes’s formula is:

P(Ay)P(H|Ay)
Z

P(Ax|H) = , Z=) P(A)P(H|A)). (192)

We will use the following notation:

e D will represent the data, affected by an error, as obtained from
a Monte Carlo simulation of lattice QCD;

* H will summarize all the prior knowledge we have on the spectral
function, e.g. p(w > 0) > 0.

Consider two events A and B such that A} B = &. They are two mutually exclusive
events if P(ANB) = P(&) = 0. Thus, a complete and mutually exclusive set of
events A; withi =1,...,n is such that A; Aj = @, Vi # jand UL, A; = Q.
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We can apply Bayes theorem in the context of statistical inference, by
expressing the conditional probability of having a particular p(w) as:

P[D|pH]P[p|H]
P[D|H]
from which the most probable spectral function is obtained by maxi-

mization:

0P[p|DH]
op
The meaning of the terms in Eq. (193) is:
» P[D|pH] is the standard likelihood function,

Plp|DH] = , (193)

= 0. (194)

e P[D|H] is a normalization constant, which does not depend on
the spectral function p(w),

* P[p|H] is called the prior probability and it is what differentiates
the various algorithms based on Bayesian inference.

According to the central limit theorem, we expect the data obtained
from a Monte Carlo simulation to follow the Gaussian distribution:

1 _
PDlpH] = 7= ¢ ™. (195)

Here Z; is a normalization constant and L is the likelihood function
defined as

L= 2 Y(Ge(w) ~ Gp(1))C (Ge (%) ~ Gol), (196)
l,]

where G is the average correlator from the Monte Carlo simulation,
while G, is the one obtained from the reconstructed spectral function
using Eq. (187). The indices i and j run over the N Euclidean data
points considered in the analysis:

N = Tax — Trin - (197)

The N x N covariance matrix C, encodes the correlations in the data at
different T’s and it is defined as:

Nere
. Y- (GI (%) — Ge (1)) (G2 (%)) — Ge(T})) , (198)

Nere(Nere — 1) 4=

where Ncrg is the number of available gauge configurations, and G¥
is the correlator corresponding to the m—th configuration. The normal-
ization constant Z;, is such that the integration of P[D|pH| over D with
the measure:

C,']' =

[dD] = ﬁ dGe(T), (199)

1=Tin
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is normalized to unity, yielding Z; = (271)N/2v/det C. If only the term
Eq. (195) appeared in Eq. (193), i.e. if P[p|H| was constant, maximizing
P[p|DH] would be equivalent to maximizing Eq. (195) with respect to
p, which is the standard x?-fitting.

4.3 SHANNON-JAYNES ENTROPY

In order to overcome the difficulties due to the ill-posedness of the
problem, the prior probability must be taken into account. In the MEM,
this is defined as:

1
Plp|H] = e (200)

where § is a functional called entropy, while « is a real parameter which
balances the relative weight between the entropy and the likelihood
function L of equation Eq. (195). This parameter will later be integrated
out, so that the final result will not depend on it.

The entropy S assigns a real number S[p] to each spectral function,
which is here regarded as a positive semi-definite distribution. In order
to explain the role of S, let us consider two different spectral functions
p1 and p,. The entropy is such that if S[p;] > S[p2], then p; has less
information than p;. The functional form of the entropy is justifiable
by an axiomatic construction, extensively studied in [69], to which we
refer for more details. Here we justify our choice for the entropy us-
ing an argument based on the law of large numbers (see the monkey
argument in e.g. [70-72]).

Let us consider a discretised space of event composed of N cells.
Suppose that M balls are thrown, where M is assumed to be large. As
a result, there are now #; balls in the i-th cell, which has probability p;
to receive a ball. We can write down the expectation value A; for the
number of balls in the i-th cell as

N
Ai=Mp; with Y A =M. (201)
i=1
In the large M limit, the Poisson distribution Py (n;) describes the
probability that the i-th cell receives n; balls. A particular combination
#l = (nq,ny, - - -,ny) is then realized with probability:
N /\:11 e—/\,'

N
P (r) = HPA,("i) =11 ma (202)

i=1

where the normalization is given by Y 7°_o Py, (n;) =1 (i =1,2,--- ,N).
In order to make contact with physics, we reinterpret the number of
balls n; as the spectral function p(w):

pj = p(wj)Aw =qn;, withw; = jAw, (203)
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where we allowed for a proportionality coefficient 4 and the frequency
w has been discretized into N, = N bins of equal size Aw. We also
introduce the so-called default model m(w) as:

m; = m(w;)Aw = qA;, (204)

which then represents our expectations H on the spectral function. The
probability to obtain a certain spectral function in a domain V is then:

d ; N /\"1 —A;
Plolt] = T pi() = [ 1= o (2052)
eV i=1 -
d eSlol/q
~ / H P RN (205b)

where we have traded the sum for an integral and used the Stirling’s
formula, n! ~ +/27tne™ 18" ~" to approximate the factorial. In Eq. (205b),.
S[p] represents then the so-called Shannon-Jaynes entropy:

I — -

i=1

Comparing Eq. (200) with (205b), we set g = a~! and the integration of
P[p|H] over p is done using the measure [dp] with the corresponding
normalization factor Zg:

Ny

L\/fl
4 =12, zs= (%) " (207)

1=1 x

This concludes our derivation for the prior probability used in this
work. In the next section, more details about the overall MEM proce-
dure will be given.

4.4 MEM AND BRYAN’S METHOD

The MEM reconstruction is composed of three main steps, described
as follows. We call p, the most probable spectral function for a given
« (and default model m) and it is obtained by maximizing P[p|DH],
which combining Egs. (193), (195) and (200) becomes:

Plp|DH] &

1
ZLepr[p] , Qlpl=aS-1L, (208)
so that p, satisfies:

oQ

3p(@) s (209)
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Note that, if the solution p, exists, it can be proven to be unique [69]. As
already mentioned above, the parameter & controls the relative weight
of the entropy S (which tends to fit p to the default model m) and
the likelihood function L (which tends to fit p to the lattice data D).
In the absence of lattice data, the correct spectral function would be,
by definition, the default model. In order to produce a result indepen-
dent of &, we follow here Bryan’s method [73]. Let us write explic-
itly the dependence on «,m in the prior knowledge H by rewriting
P[...|H] = P|...|Ham]. Bryan's prescription is to express the final re-
sult as a weighted average over a:

Pout (W) = / da ps(w) Pla|DHm] . (210)

The posterior probability P[a|DHm] can be evaluated using Bayes’ the-
orem iteratively. First we use it to rewrite P[a|DHm] as:

P[D|Ham)|P[a|Hm]

Pl|DHm) = P[D[Hm] , (211)
and then we use it again to write the following identity:
Plp|DHam]P[D|Ham] = P|D|pHam]P|p|Ham], (212)
from which we can extract P(D|Ham) by integrating over p:
P[D|Ham] = / [dp|P[o|DHam)P|D|Ham]
= [1dpIP[DlpHam]Plp|Ham). (213)
Inserting Eq. (21_ /[dp]P[DIpHam]P[leam].
_ P|D|pHam|P[p|Ham]
P[x|DHm] = / [dp]PlalHm] == 5
1
o Pla| Hm] [[dp] — exp Qlp]. (214)
S&L

Now if we assume that the integrand in Eq. (214) is sharply peaked
around p,(w), which should be satisfied for data with small errors,
then the integral can be performed with a saddle point approximation.
In Eq. (214) we make the change of variables o’ = ,/p, so that we
can reabsorb the measure [dp] defined in Eq. (207) as dp’ = dp/2,/p.
Using the new variable p’ the integral in Eq. (214) becomes:

Ny
[1delexplel =IT [ deiexp Qlor(oi). 215)
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Now we can Taylor expand Q[p] around p, in the new variable p’ and
obtain (we suppress the suffix I for simplicity):

N 1, 8Q@)]|
Q[p(p )] — Q[pl"] + 2p] prléplz Pap2' (216)
with
Q)| _ 41 8°Qlp] ép3
0P80 o, OP10p10p26p021,,
ab(pr—p2) , &L ) }
[\/p_l( p p10p2 Ve 0u

6°L
6p16p2

)

= —4ad(p1 - p2) — 4 (\/P_l

Pu

=—4atn), (217)

where we have called A the real symmetric matrix:

52L
opidpr

(218)

A = (\/ITI \/P_t')

P=Pu

Finally, inserting Eq. (216) and Eq. (217) into Eq. (214) and performing
the gaussian integral, we obtain the final result:

exp Qoa], (219)

| 14
Ple|DHm| < Pla|H
[ DHm] o Plalim] TT /o

where the A;’s are the eigenvalues of the matrix A.

The prior probability for « can be chosen by either following Laplace
rule (Plx|Hm) = const.) or Jeffreys’ rule (P[a|Hm| = 1/a) [74]. We
choose the former, since it has been checked in [69] that the integral in
Eq. (210) does not depend on this choice, as long as the probability is
concentrated around its maximum at & = &.

Numerically, in order to perform the average in Eq. (210), the inte-
gral is restricted to a region [&n, #max|, chosen to satisfy the criterion
Pla|DHm] > 107! x P[&|DHm]. The integral is then carried out with a
stepsize Ax and then normalized so that [ ™" da Pla|DHm] = 1.

In this thesis the error analysis is carried out in two steps. The sta-
tistical error is evaluated by producing jackknife ensembles of the final
spectral function of Eq. (210), by systematically discarding each gauge
configuration. Another source of uncertainty comes from the choice of
default model m appearing in the entropy. This systematic error can be
estimated by studying the sensitivity of the final results to the variation
of m. This will be explained in greater detail later, when the results of
this study will be presented in section 6.3.

PIIIE.
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Figure 12: These plots from [40] show the first four basis functions i7, = uj(cv)
of Eq. (228) for = 5, Nu, = 1000 and the data comes from a
simulation with staggered quarks on a lattice with NT = 24. The
inset shows a blow-up of the small energy region. On the left, the
standard kernel of Eq. (186) is used, while on the right the rede-
fined one of Eq. (235). In the latter case, the inset shows a non-
singular behavior for the low-m region.

4.3 SINGULAR VALUE DECOMPOSITION

The discretised spectral function pt in Eq. (206) is represented by a
vector with typically N ~ O(103) degrees of freedom:

ool = /Acu, pi = p(u>i)A(v, with / E [0, NA} (220)

This makes the location of the global maximum of Q[p] non-trivial.
In [73] it is shown how this problem can be alleviated by performing
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a singular value decomposition (SVD) of the kernel K, which restricts
this search to a subspace of O(10) degrees of freedom, compatible with
the number N (defined in Eq. (197)) of data points in the correlators.
Using Eq. (187), the extremum condition of Eq. (209)

8Q _ 35 AL _,

o Ve 221
dpr  9p  dpy (221)
can be written as:
01 Tmax oL
—alog =~ = Kij—
wlog . = ). Kiger. (222)

where the kernel is defined as K;; = K(7;, w;) and G;, = Gp(T;) is the
reconstructed correlator. Since the spectral function is positive semi-
definite, it can be parametrized as:

pr =m,expa, withl e [0,N,]. (223)

The solution of Eq. (222) is then represented by the vector @ in the
N, = O(10%) dimensional space and reads

or

_ad = K2
ad KaGp’ (224)

where K! is an N, x N matrix and oL/ aG;; is an N dimensional column
vector. The solution 7 in Eq. (224) turns out to be confined in a smaller
subspace called the singular subspace, of dimension N; < N < N,,. This
can be shown by decomposing K' into a product of three matrices with
special properties. This procedure is called singular value decomposi-
tion and it is defined as

K'=Uuzv
& 0 - 0
~ un oo ul.N 0 & .o U?l vl'N
UN,1 -0 UN,N o0 UN1 " UNN
w w 0 --- 0 &N
(225)
where

e Uisan N, x N matrix, with U'U = 1,
e Visan N x N matrix, with V!V =1,

¢ Eisan N x N diagonal matrix.
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The entries ¢; of & are called the singular values of K! and they are
also equivalently defined as the square root of the eigenvalues of the
matrix (K*)TK!. They are positive semi-definite and can be ordered by
their magnitude so that:

6128 >2...2¢N,>CN,,, =---=0, (226)
with
N; = rank[K'] < N < N.. (227)

For the kernel appearing in Eq. (186), the singular values ¢; are all
non-zero but they are exponentially smaller as j increases. In this case
the singular space can be defined as the space spanned by the first N;
columns of U. Then the SVD admits as a basis the collection of vectors
{it1, iy, ...,1iN, }, where each entry is made up of N, components, i.e.
i = (ui, Uiy, ... ,uin)‘. Since the vector 7 lies in the singular space,
as one can read off from Eq. (224), it can be parametrized by the N;
coefficients (by,...,bn,) as

Ns Ns
=) bil;, orequivalentlya; =) Uyb;. (228)
i=1 i=1
Since the matrix U is orthogonal, Eq. (224) can be simplified as
oL
—ab=§=8V"' - =EV"'"CYG, - Gg), (229)
dGp

where E' and V' are obtained by restricting Z and V respectively to the
singular space, C is the covariance matrix of Eq. (198) and Gg is the
Monte Carlo data.
A Newton search method is implemented to solve Eq. (229). The
increment is given by
ogi

J6b=—ab—g with J;=alj+ ab; (230)

By using the chain rule and the identity dp/0b = diag[p] U, we have

agi _ =yt —1aGP aP _ =t yte—1 . _

3b; vic 9 3b; V*C™ K diag[p] U = MT, (231)
with

M=EV"'CWV'E and T=U'diaglp]U, (232)

so that Eq. (230) is rewritten as

[(+p) I+ MT]6b = —ab—3. (233)
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In the last equation, an artificial parameter y has been added, whose
increase normally produces a decrease in 8b. This trick was introduced
by Marquardt and Levenberg and it ensures that, at each iteration, b
remains small enough so that the lowest order approximation used in
Eq. (230) remains valid.

4.6 MODIFICATION OF BRYAN’'S ALGORITHM

In the analysis we will present in this thesis, the default model is rep-
resented by the function

m(w) = mow(b + w), (234)

where my is a channel dependent constant and b is a parameter which
allows for a non-zero value for p(w)/w at small energies. Choosing

- different values for b will represent an important way to probe the-

systematics of the method. The funcional form in Eq. (234) is motivated
by the large-w behaviour of the mesonic spectral function, which can
be evaluated in perturbation theory.

The kernel in Eq. (186) has a singular behaviour at small frequencies.
This is shown in Fig. 12 from [40], where the first basis functions #;
of Eq. (228) are plotted. This leads to numerical instabilities when the
Bryan method is adopted [40]. These can be cured by a redefinition of
the integrands in Eq. (187) as

K(w,1) = seK(@, 1), plw) = = plaw), (239)

such that K(w, T)p(w) = K(w, T)p(w). This does not affect the identi-
fication of the dimension of the subspace for the SVD, but indeed the
new basis functions 7i; are well behaved at small w.

In chapter 6, a version of MEM, based on the code developed by
J. Clowser and C. Allton [75], will be used to evaluate the conductivity
of the quark-gluon plasma using Eq. (164) and data from lattice QCD
simulations, which will be presented in chapter 5.
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In this chapter we will report on numerical lattice QCD calculations
for the electromagnetic current introduced in Eq. (152). These will be
done using gauge ensembles with different temperatures and volumes,
which have been produced by a previous study [9, 10]. In the first part,
we will give some details about the lattice action used for the gen-
eration of the gauge configurations. We will then describe the lattice
operator used for the electromagnetic current and we will discuss the
issues of renormalization and improvement. The measured Euclidean
correlators are then presented and discussed.

In the following, we will refer to a site on the lattice by either using
its positional vector x,, i.e. a tuple of 4 coordinates, or by labelling each
site with an integer n € [1, Ny| which uniquely identifies it. When no
ambiguity can occur, the two notations will be used interchangeably.
Moreover, the 0-th component of a Lorentz vector xg will be the tempo-
ral one, while the spatial ones are usually indicated by a Latin subscript
xiwithi=1,2,3.

5.1 LATTICE ACTION

In section 1.5, we mentioned the possibility of having a different lattice
spacing in the spatial and temporal directions. Using a finer temporal
lattice spacing provides a better temporal resolution for the correlation
functions without increasing too much the computational cost.

On a practical level, the anisotropy is achieved by assigning a differ-
ent coefficient to the time-like and space-like terms in the action. This
can be done by introducing new bare parameters in the action, which
will be described later in this section. Tuning these parameters is a
non-trivial task, which has been achieved in [9, 10], where a detailed
explanation is provided.

The gauge dynamics is controlled by a Symanzik-improved action,
which is defined by [76]:

6 (1 SQsp 4Otp 1 er Qstr

Sec= — [ — . _
¢ vg 3ul T8 3uu?  yg12ul Ts 12ubu?

- ), e
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7 43 as [fm] 0.1227(8)
vf 34 ar [fm] 0.03506(23)
¢t 0.9027 a; ! [GeV] 1.608(10)
cs 1.5893 a7l [GeV] 5.63(4)
myq —0.0840 ¢ 35
ms —0.0743 My/M, 0.446(3)

Table 1: The parameters in the action (238).

where g is the gauge coupling of Eq. (81), us and u; are the tadpole
improvements and 1 is the bare gauge anisotropy, which will be dis-
cussed later. The gluonic fields are represented by the variables

Qc = 3 Y Re Tr(1—Wc), (237)
C

where Wc denotes the path-ordered product of the gauge links along
a closed contour C on the lattice. In particular, Qsp and ()p are re-
spectively the spatial and temporal plaquettes already introduced in
section 1.5 (see Fig. 3). Additionally, we include planar 2 x 1 spatial
rectangular loops denoted by (), and short temporal rectangles (one
temporal link, two spatial), denoted by (ls,. This action has a lead-
ing discretization error of O(a?,a?,asa2) and it was used in [76] for a
glueball study, to which we refer for more details.

Here we mention that the tadpole parameters u;; are a mean-field
improvement, which provides a better mapping of the lattice gauge
fields to their analogues in the continuum. This has been introduced
by Lepage and Mackenzie in [77] and it is achieved by separately renor-
malizing the spatial and temporal link variables U;(x) — U;(x)/u; and
Ui(x) — Us(x)/us. In our work u, is fixed to 1 and u; is tuned non-
perturbatively. A gauge-invariant definition for us is given in terms of
the mean spatial plaquette as u; = (3ReTrlUsy)!/4. One starts with a
guess us = 1 in the action, measures it in a simulation and then read-
justs the input value accordingly, until the input value matches the
measured one. This has been done in [9] with the result u; = 0.7336.

In the fermion sector, we use a clover improved action with N r =
2 + 1 flavors and stout-smeared links. The Dirac operator of Eq. (74) is
defined as:

n 1 ,.
D[U] = mo + voWo + o AL (238a)
i
[ A C A
- Et ) ooiFoi — 2—5 Y _oiiE;. (238b)
i T8 i<j

S



5-1 LATTICE ACTION
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Figure 13: Plots from [9]. Renormalized gauge £v and fermion £y anisotropies
(left) and the corresponding bare parameter 727 (right). These are
tuned in order to obtain a target anisotropy of £ = = 35
(black symbols), which is achieved by using the bare parameters
79 = 43 and 7/- = 34, with a bare mass of mo = —0.0743.

In the following, we will describe some its features. In Eq. (238a) we
have the usual dimensionless Wilson operator

Wi = Vi —yrAj,/2, (239)

where

Ei; / ;0 —L/+(x —;/)(x —/I
v, /() = {x)/(x + _2+(X )/ (x —I1) (2408)

AL (%) = UM{x)f(x + }) + U*(x - })f(x - }) - 2f(x). (240b)

The operators appearing in Eq. (238b) are the clover terms of Eq. (99)
already described in section 1.5, with uflv = A[7//*Ti'] and Ffiv the lattice
version of the field strength tensor. The parameters in front of the time-
like and space-like clover terms c\ and cs have been chosen with tree-
level conditions as described in [78]. The numerical estimate used in
the simulations is shown in Table 1.

In Egs. (236), (238a) and (238b) we can see the appearance of the bare
gauge (7*) and fermion (7f) anisotropies, which are the ones responsi-
ble for the lattice anisotropy. The strategy followed in [9, 10] is to tune
them simultaneously in order to obtain a desired value for the renor-
malized anisotropy £. This is defined as the ratio of the lattice spacing
in the spatial and temporal directions and it is a function of all the bare
parameters of the action:

{m,,,7f'7g) = - (240

They have been tuned non-perturbatively in [9] with a target value for
the anisotropy of £ = 3.5. In Fig. (13) taken from [9], we can see the re-
sults for the tuning of the anisotropy parameters. Since the anisotropy
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is one of the novelties of this work, we will briefly outline the proce-
dure in the following.

The bare fermion anisotropy -ys, which gives a different weight to the
spatial and temporal Wilson term, is tuned by restoring on the lattice
the mesonic dispersion relation

=2
E() =m+55, (242)

9
where the energy E and the mass m are in units of a¢, and p = 277/ Ls,
with Ls the spatial lattice size, is in units of as. The parameter ¢ ris the
normalized fermion anisotropy;, i.e. the anisotropy felt by the fermionic
fields. It must be equal to the desired value for the lattice anisotropy
¢ = as/a.. This has been done in [10], with a resulting bare fermion

anisotropy of vy = 3.4.
- The bare gauge anisotropy 7y, assigns a different gauge coupling to

| spatial and temporal Wilson loops in the gauge action of Eq. (236). It

is tuned by imposing the equivalence between ratios of spatial Rss and
temporal Ry Wilson loops [79]:

Wss(x, )

= gL —asVs(yas)

RSS (xl y) Wss (x + 1, y) e ’ (243a)
_ Wit (x, 1) —asVy(tay)

RSt(xl t) - Wst(x + 1, t) — € . (243b)

The renormalized gauge anisotropy (, is obtained by minimizing

Rss ’ - Rs ’ 2
L(Zg) = g( Ezgs))z + (tA(;té;gy)) ’ (244)

where ARg are the errors on Rsss. The parameter 1, is then tuned to
have {¢ = ¢ = 3.5. From [10] we use the value v, = 4.3.

In the action Eq. (238), the links U are stout-smeared in the three spa-
tial directions, as described in [80]. The procedure of smearing greatly
reduces the mixing with the high frequency modes of the theory and
provides significant improvement over actions that explicitly break chi-
ral symmetry [81]. An important property of stout smearing is that
it is analytic everywhere and utilizes the exponential function in or-
der to keep the links on the group manifold SU(3) with no projection
required. This makes it possible for it to be used in the HMC algo-
rithm for the generation of configurations. Also the smearing does not
involve the time direction, leaving the transfer matrix physical. The
tuning of the smearing parameters has been done in [82] and the best
choice was found to be smearing weight p = 0.14 and n, = 2 iterations.

The strange quark mass parameter is chosen to reproduce the phys-
ical strange quark mass and our choice of light quark mass results in
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Ns Nr T[MeV] T/T. Ncre Nsrc

24/32 16 352 1.90 1059 4
24 20 281 1.52 1001 4
24/32 24 235 1.27 500 4
24/32 28 201 1.09 502 4
24/32 32 176 0.95 501 4
24 36 156 0.84 501 4
24 40 141 0.76 523 4
32 48 117 0.63 601 4
24 128 43 0.24 401 1

Table 2: A summary of the gauge ensembles used in this work. They have lat-
tice sizes of N3 x N, with Ngrg configurations available for each set
and a number of Nggc sources for the analysis. The critical temper-
ature T, is estimated from the normalized Polyakov loop inflection
point, see [2] for details.

My /M, = 0.446(3) [10], while the physical value is =~ 0.18. The numer-
ical value of all the parameters appearing in Eq. (238) is summarized
in Table 1.

We make use of a large number of non-zero temperature ensembles,
which have been generated using a fixed lattice spacing approach. This
has the advantage that results obtained at different temperatures will
have the same discretization errors. Also, since the bare parameters
are the same, results can be directly compared without any need for
renormalization. In Table 2, the lattice ensembles used in this work are
listed. The temporal lattice extension N; ranges from 128 down to 16
corresponding to temperatures in the range 0.24 < T/ T, < 1.90. Spatial
extents of Ny = 24 and 32 were used corresponding to Ly = Nsa; ~ 3fm
and 4fm respectively and both are available for 4 common values of T
allowing for finite volume effects to be studied.

The critical temperature has been estimated in [2] by looking at the
inflection point of the renormalized Polyakov loop, which is defined in
Eq. (129). We impose a renormalization condition by fixing the value
of L at a specific temperature Tg:

Lr(Tr) =c. (245)

This is necessary since the free energy F = —TlogL(T) is only de-
fined up to an additive constant. We choose 3 different renormalization
schemes corresponding to different choices of Tr and c, see Fig. 14 for
details. The result for the transition temperature is T, = 185(4) MeV,
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0.5 O Scheme A
o Scheme B
O Scheme C
0.03 0.04 0.05 0.06 0.07
Ta = 1/N

Figure 14: The normalized Polyakov loop Lr. The solid curves indicate acubic
splines interpolation of the data points, while the dashed curve
represent their temperature derivatives Three renormalization
schemes are considered, Scheme A: Lr(NT = 16) = 1.0, Scheme B:
Lr(NT = 20) = 1.0, Scheme C: Lr(N T = 20) = 0.5.

where the error reflects the spread from the three renormalization
schemes, while we found the statistical uncertainty negligible in this
context.

This concludes the description of the technical details regarding lat-
tice action used in this work. In the next section we will introduce the
operators considered in the analysis.

5.2 CONSERVED CURRENT

In chapter 3, we showed how to obtain the electrical conductivity from
Euclidean correlators of the electric current /em (see Eq. (152)). In N f =
2+ 1QCD, the expression for the electromagnetic current is given by

tem = 85272/ = £/« - \id~\i§ (246)

where qf is the fractional charge of the quarks and jf is the vector
current relative to the up, down and strange quark channels. In order
to evaluate Jem on the lattice, we chose as an interpolator for jf the
exactly conserved vector current Vc.
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In this section we will derive an expression for the conserved current
for the fermion action (238) used in this work, which has been intro-
duced in the previous section. In order to do so we must derive a Ward
identity for the functional integral.

As we have seen in Eq. (72), the expectation value of an arbitrary
operator O in QCD is expressed by

©) =5 [ 219, $,UjOlp, p,uje 94, (247

where S is the sum of the gauge and fermion actions described earlier.
Let us now consider an infinitesimal symmetry transformation acting
on the fermion fields in Eq. (247) and described by:

Y=Y +op, PoP+p. (248)

If this transformation is a true symmetry of the action, then the ex-
pectation value of O ought not to change. In other words, in case of
a non-anomalous transformation the integration measure is invariant
and it is possible to derive Ward identities of the form

0= (60) —(03s), (249)

where 5O and 6S denote the linear change of the operator O and the
action S under the transformation of Eq. (248). In the simplest case for
O = 1 we have (6S) = 0, which leads to relations analogous to the
classical Noether conservation laws.

Let us now consider a local transformation, acting on the Grassmann
fields on lattice, defined as

5p(n) = ie(n)Ap(n), 59(n) = ie(n)Ap(n), (250)
where A and A are product of matrices which have both Dirac and
flavour indices, e.g. A = 1, T4, 5, v57% and A=-1, —1%, 75, 75T Since

the transformation does not involve the gauge fields, in the following
we will only consider the fermion action. This is quadratic in the Grass-
man fields and, as shown in Eq. (73), it can be cast into the form

S=Y ¢(n)D(n,m)p(m), (251)

where D is the Dirac operator and we suppressed all the color and
Dirac indices, leaving only the space-time ones n,m. Under the trans-
formation in Eq. (250) the action changes and the linear term of the
variation is given by:

6S =i} (n) [D(n,m) Ae(m) + e(n)A D(n, m)] p(m) (252a)

nm
A=-1. -
—ri) [e(m) —e(n)]§(n) D(n,m)yp(m), (252b)

A=1 nm
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where in the second line we have restricted ourselves to the case of the
flavour singlet vector. We notice that in the sum of Eq. (252b), when-
ever n = m the argument inside the parentheses vanishes, so we can
neglect all the terms in the Dirac operator in Eq. (238) that contain &y, 5.
Furthermore if m is not one of the nearest neighbours of n the Dirac
operator vanishes, so we can trade the sum over m with a sum over the
nearest neighbours of n.

05 =i ; [e(m) — e(n)] $(n) D(n,m) p(m)

—IE [e(n+ ) —e(m)] p(n) D(n,n+ ) p(n + )+
lZ[e(n— ) —e(m)]§(n) D(n,n —p)p(n — f). (253)

Selecting the right element in the Dirac operator and taking into ac-
count the anisotropy, we obtain:

6S=1i) Fy, (254)
with
Fy = [e(1+0) ~ (n)] fn) | =51 = 20)Uon)] (1 +0)  (a55)
+[en = 0) = ()] §im) | -5 +20)U5 1~ 0)| pln —0)
+ el ) = (] §n) | =50 = WUl | gl +1)

+ Z [e(n—1) —e(n)] P(n) | —s— (1 +4)U] (n — D] p(n—1).
We define the conserved current a-s

VE(m) = 6 [Flm -+ 1)(1+7,) U () p(m) (256)
= Pm) (1= 7) U ) o+ )

V) = au| B+ 0)(1 = 7) U (n) ()
)1+ 7 Uy o)+ )] (257)

with ¢, = (%, %) and 7, = Y07u70 = (70, —7)- In fact, using these
definitions, we can rewrite the change in the action 45 as:

5S = zEa,,Vﬁs(n )] Vie(n) = —12(—: )[4,V Vie(n)],  (258)
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where VI and V; are respectively the forward and backward dimen-
sionless lattice derivatives:

Vif(x) = f(x+aft) - f(x) (2592)
Vi f(x) = f(x) = f(x —ap). (259b)

Since our choice of €(n) is completely arbitrary, the relation (258) has
to be valid for any n. This observation allows us to derive the following
identity

(V,Vg(n) =0, (260)

which proves that V,f: is the conserved vector current for the clover
action. An important property of such an operator is that it is protected
from renormalization, since the electromagnetic charge is conserved.

We now want to evaluate current-current correlator as a function of
the Euclidean time separation:

YAVEE ) VEF o+, (261)
i

Let us consider the quantity (V- (m) V,"(n)*). If we plug in it the con-
served current in Eq. (256) we obtain four pieces, which we evaluate
by means of Wick contractions:

(euey) ™ (Vi (m) Vi (n)") =

——

(PO + ) (1 + ) L () () n + 9) (1~ 7o) U () ()
(262a)
() (1 — ) Uy () i + ) () (1 + 7o) Uy () (2 + )

(262b)

— (P Om+ 2L+ 70 UL () (o) B(n) (1 -+ F) Uy () (n + )

(262¢)
— () (1 = ) Uy(m) p(m + ) B+ 0) (1 — 7)) UL (n) 9(m),
(262d)

where the disconnected pieces have been neglected (see below for dis-
cussion). These four diagrams are not all independent from each other.
In fact, one can show that (262a) is the complex conjugate of (262b)
and (262c) is the complex conjugate of (262d), which leaves us with
only two diagrams to deal with.

The expectation value of i is called the fermion propagator S

$(x,y) = (P(x)P(y)) - (263)

71



72

LATTICE QCD CALCULATIONS
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Figure 15: The two diagrams that contributes to the current-current correlator.
The dashed lines are the fermion propagators and the solid lines
are the gauge links.

It can be evaluated, using Wick’s theorem [15], by calculating the in-
verse of the Dirac operator D. More precisely, in the lattice computa-
tion, only one column of D~! will be used. This can be understood by
writing down all the indices in the definition of the fermion propagator,
which gives us

Dy Sp=06(a —a*)o(a~a*)6(m—m"), : (264)

ab b
mn n

where n,m € [1, Ny] are space-time indices, &, 8 € [1,4] are Dirac in-
dices and a,b € [1, 3] are the color ones. The r.h.s. of Eq. (264) is then a
vector of dimensions Ny X 4 x 3 with zeros everywhere except at the
source point (a*, a*, m*) where there is a 1. If we multiply (264) on both
sides by D~! we obtain

—1 * * *
D7x Dyg Sg —Dmx (e —a*)o(a—a*)d(m —m*) (265a)
ca ab b ca
Im mn n Im
.S, =D =S(I,m*), (265b)
c ca*
I Im*

where it is shown that we selected in D~! the column (a*,a*,m*).
Using the notation above for the fermion propagator, we can rewrite
Eq. (262) as:
(cpes) 1 (Vi (m) Vi (n)") =
—2Re Tr |S(n,m + w)U(m)(1+7,)S(m,n+ YU (n) (1 = 7)
(2664a)
+2Re Tr [S(n-+0,m -+ @)U} (m) (1 +7,)S(m, 1)Uy (1) (1 +7) |
' (266Db)
In Fig.15 the two contributions are represented in a pictorial way.

The zero-momentum Euclidean correlator for a single flavour is then
defined as

G (1) = VZ 1) VE(0,001), (267)
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and in particular we will study the diagonal spatial components

iGI, (1) = iz (VE(Z 1) VE(0,0)%), (268)

i=1 i=1 X

as well as the temporal one
Goo(7) = 5 2 Vo (%,7) V5 (0,0)") . (260)

The full electromagnetic current correlator is given by

Gem T) V EZ ]em(x T Iem(o O) ) (270)

i=1 ¥

where Jom has been defined in Eq. (246). Following [83], at the flavour
symmetric point Ny = 3 we can decompose Eq. (270) into a sum of
disconnected Myjsc and connected Mconn diagrams:

(Jem (%, T) Jem(0,0)" [(Z ‘Jf) Mgisc + (E Qf) Mconn] (271)

where g7 denotes the electric charge of flavour f in units of the ele-
mentary charge e. Neglecting the disconnected pieces is then justified
by the fact that their contribution is identically zero in the Ny = 3

case, since ):;Z 195 = 0. We note that the same choice has been applied
in all previous studies of the electrical conductivity, see e.g. [36, 39—
41, 68]. Furthermore, we will show in section 6.4 that the disconnected
diagrams for the charge susceptibility are compatible with zero.

5.3 IMPROVEMENT

In section 1.5, we introduced the discretised version of the continuum
QCD action by trading first derivatives for symmetric differences on
the lattice. This procedure gives rise to discretization effects, which, as
we already pointed out, are of O(a) for fermions and of O(a?) for the
gauge fields. These artefacts would disappear in the continuum, where
the lattice spacing vanishes, a — 0. However, this limiting procedure is
expensive.

We already mentioned that the discretization we chose in section 1.5
is not unique. It is then possible to add other terms in the action
which do not spoil its continuum interpretation, but actually improve
it. A systematic implementation of these ideas goes under the name
of Symanzik improvement. In particular in section 1.5, we claimed that
adding the clover term to the standard Wilson action Sy, of Eq. (96) can
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reduce the discretization errors from O(a) to O(a?, 54, . . .) [24]. In prin-
ciple, one should also take care of reducing the discretization errors in
the observables used in the study.

Following an argument illustrated in [84], we can define a current
which is both improved and conserved up to the precision we require.
We call it Vi7"

Vlfil(x) = Vyc(x) + eyt (x) oy P(x) (272a)
= Vi(x) + O(a%). (272b)

We see from (272a) that V! differs from the conserved current Vi
by a term of O(a) which is a total divergence. Thus, since 9,9 oy ¢
has no power divergences in perturbation theory, one can conclude
that the renormalization constant ZV,F‘ is also equal to 1. On the other

- hand, from (272b) at tree level V! differs from the improved current

V, only by terms which are O(a?). This implies that Zyer # Zyy, but
they cannot give rise to any terms of O(a) in VFCI, which then is both
conserved and improved.

In this work, we are interested in the zero-momentum limit of the
Euclidean correlators, which is achieved by a summation over all the
lattice points (see Eq. (5.2)). The spatial components of the improve-
ment term in Eq. (272a), which is a total divergence, vanish in this
limit. We are left with a term, which is highly suppressed in the mass-
less limit. For this reason, we choose not to add the costly improvement
term in the construction of the operator and use the form in Eq. (256)
for the analysis.

5.4 RESULTS

In this section we present the results for the Euclidean correlators evalu-
ated for temperatures in the range between 43 and 352 MeV (see Table 2
for details). These data appeared in [2—4], where they have been used
to obtain the spectral functions in the vector channel, see chapter 6 for
details.

The correlators were obtained using a modified version of the Chroma
software suite [85, 86]. When possible, the bi-conjugate gradient sta-
bilised method was used for the inversion of the Dirac operator of
Eq. (264). The number of sources Ngzc used for each configuration
is shown in Table 2, although in most ensembles Ngpc = 4. The first
source sl0 = (stl)o],sgo],slzo],sgol) was chosen randomly. The other j =
1,2,3 were picked at the locations:

si[j] = s,[.O] +6;L/2. (273)
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Figure 16: The time-time component of the conserved current in Eq. (269), for
the light quark sector. The correlation function is rescaled by T3
and it is calculated at different temperatures T as a function of the
Euclidean time rT. Since it is related to the conservation of the
electrical charge, the correlator relaxes to a constant, modulo some
boundary effects, which are discussed in the text.

Data from different sources but from the same configuration were av-
eraged together to reduce autocorrelation. The statistical error was es-
timated via data-blocking and the jackknife procedure.

The temporal correlator in Eq. (269) is connected to the conserved
electrical charge and we expect it to be constant in Euclidean time. In
Fig. (16) we show Goo normalized by T3 for all the temperatures avail-
able, for the light quark channel. We observe some boundary effects,
probably due to the presence of a singularity at the origin, as shown
in [87] in the free case. One could argue that, due to the anisotropy the
effect of the singularity is propagated to the neighbouring sites. We
observe a clustering effect for correlators above Tc.

The lattice configurations at our disposal come with 2 different spa-
tial extensions Ns = 24,32. Both volumes are available for 4 different
temperatures corresponding to NT = 16,24,28,32, as is shown in Ta-
ble 2. This allows for a study of the volume effects for the conserved
current. In Fig. (17) we plot the ratio between the correlators obtained
in the Ns = 32 and Ns = 24 ensemble. We found no significant system-
atic volume effects in this context.

We show in Fig. 18 the diagonal spatial components of Gflv(r). We
note an important separation of scales separating the lowest tempera-
ture T = 43 MeV from the other ones. In Fig. (19) we show the same
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Figure iy: An estimate for the volume effects affecting the spatial-spatial cor-
relator G(t) in Eq. (268) in the light quark channel. The ratio of
G(t) in the Ns = 32 and Ns = 24 is evaluated for 4 temperatures
corresponding to Nr — 16,24,28,32.

correlators normalized by their value in the free massless case. The lat-
ter can be achieved by setting all the links to unity in the simulation.
As we noted for Goo/ correlators above TG measured in ensembles of in-
creasing temperature, show little differences between each other, while
below Tc their behaviour rapidly changes with T. The deviation we
observe from the expected free behaviour at high temperatures might
come from different sources of systematics. One of these is related to
the difficulty of defining the anisotropy in a free theory. Moreover, our
determination £ = ds/at carries an uncertainty as well as one can see
from the plot in Fig. (13).

In Fig. (20) we instead normalize the spatial correlator with the one at
the lowest temperature available. This has been achieved by fitting the
NT= 128 correlator with aspline and then using its functional form for
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the normalization of correlators at higher temperatures. Remarkably,
the clustering effect noted above disappears.

In the next chapter, we will use the Euclidean correlators presented
here as a source for the MEM reconstruction (see chapter 4) of the
spectral functions.
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Figure 18: The spatial-spatial correlator G(t) = G,, of Eq. (268) in lattice

units for the light (top) and strange (bottom) quark channels, see
Table 1. Its behaviour is shown for different temperatures T.
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Figure 19: Euclidean correlator G(r) of Eq. (268), normalised by its value in
the free massless case (on the lattice), for the light quark (top) and
for the strange quark (bottom) channels. See section 5.4 for more
details.
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In the first part of this chapter, we will show the spectral functions
relative to the vector channel obtained with the MEM method (see
chapter 4). The results for the temperature dependence of the electrical
conductivity in QCD will then be presented, along with a detailed dis-
cussion of the systematics involved. The susceptibilities of conserved
charges are then analysed. In particular, the electrical charge suscepti-
bility xo will allow for a determination of the diffusion coefficient. We
will then compare our findings with those obtained by other groups.

6.1 SPECTRAL FUNCTIONS

Spectral functions represent one of the most important diagnostic tools
of the medium created in heavy-ion collisions (see section 2.6). In par-
ticular, we can use them to study the transport coefficients of the quark-
gluon plasma, as well as its in-medium properties, such as dissolution
of quarkonia states at high temperature, see e.g. [88—90].

In this thesis, we are interested in the spectral functions relative to
the electromagnetic channel pem,, which yield information about vector
mesons, such as the p and ¢ particles, and the electrical conductivity o,
which will be discussed later. They are related to the Euclidean corre-
lators Gem presented in section 5.4 by*:

o) h T —
Gen() = [ a0 pem(e) T 2= (274)

where T is the Euclidean time and N; is the extent of the lattice in the
temporal direction. In the following, it will be useful to normalise the
electromagnetic observables of interest by the sum of the square of the
individual quark charges contributing to the electromagnetic current?:

Ny
Cem =€) 45 (275)
f=1

1 See section 3.4 for a detailed derivation.
2 See Eq. (271) and discussion therein.
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Figure 21: Spectral functions in the light quark channel normalized by cvT for
different values of the temperature T. The intercept is proportional
to cr/T, see Eq. (164).

When only light quarks are considered Cem = 5/9 e2 otherwise, when
the strange quark is included Cem = 2/3 e2. We can then define

p(cv) = C'lpem M , & = C~*(Tem- (276)

Spectral functions extracted using the MEM procedure are shown in
Figs. 21-24 f°r the available temperatures, which are listed in Table 2.
In Appendix A.2, we show that the physical dimension of p expressed
in units of the lattice spacing is (asnt)~}. We plot the spectral function
through a dimensionless ratio, either dividing by cuT or by co2 which
both carry a dimension of a2. Because of this, we need to add a factor
of the anisotropy J = as/at, which is implied in all the plots. Note that
we considered £ = 3.5 without error, which might affect the results for
no more than 2 —3%, while the area of the filled curves is a jackknife
estimate of the statistical error on the MEM reconstruction.
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Figure 22: Spectral functions in the strange quark channel normalized by coT
for different values of the temperature T. The intercept is propor-
tional to (i/T, see Eq. (164).

In the free theory and for massless quarks, the spectral function as-
sumes the form [87]:

3
Pfreei®) — 271TT 2u’S(co) + 71 col tanh(cu/4T), (277)

which increases quadratically for large values of co, as one would ex-
pect from naive dimensional analysis (see Appendix A.2). In the regime

of large frequencies, perturbation theory is applicable because of asymp-
totic freedom and can be used to evaluate the radiative corrections to

the coefficient of co2 [91, 92].

At small energies, the spectral function is dominated by a transport
peak. In the free case, this is represented by a “-function, as we can
see from Eq. (277), but when interactions are turned on, this singular
behaviour is smoothed out.

For example, if we consider heavy quarks with M T, they wiill
have a typical thermal momentum p and velocity v of

p~ VMT, v~ VT/M <C 1. (278)
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Figure 23: Spectral functions in the light quark channel divided by squared
frequency to enhance the peak close to the origin. The vertical
dashed line indicates the mass of the p meson from [9].

The system is then considered non-relativistic. Since p "% T it takes
many collisions to change the momentum substantially. It is then a
good approximation to model the interaction of the heavy quark with
the medium as uncorrelated momentum kicks. This is done by the
Langevin effective theory [93-95]:

A= 2y(<)- GPi/ (Ei(Y)Ej(t) =g (2MT)6ijS (t-t'). (279)

Here 9 is a momentum drag coefficient and delivers random mo-
mentum kicks. Following [93-95], this theory predicts a Lorentzian
form for the transfer peak:

Phq(v, T) oc m» T. (280)
v -f cy

Note how the delta function is recovered in the limit 9 0o, which
supports the fact that, in a free theory the mean free path is infinite
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Figure 24: Spectral functions in the strange quark channel divided by squared
frequency to enhance the peak close to the origin. The vertical
dashed line indicates the mass of the (p meson from [9].

and transport coefficients diverge. The case of massless quarks can be
treated with perturbation theory and the Boltzmann equation [7,94,96]
and results in a spectral function which has the same functional form
of Eq. (280).

These theoretical expectations are qualitatively present in our data.

In Fig. 21 and Fig. 22 we plot the ratio p(w)/coT, where, according to
Eq. (164), the conductivity a/T is proportional to the intercept. This
is manifestly dependent on the temperature: it vanishes at low T and
it is non-zero when T > 0.76 Tc. This will be investigated further in
section 6 .2.

From Eq. (180), we know that a stable meson state contributes with
a 5 function peak to the spectral function:

P(U>)~\{O\IH\H)\26(P2-M 2), (281)

where M is the mass of the state. When the system is heated up, the
thermal effects change the delta function into a smeared peak, with
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Figure 25: Temperature dependence of Cg”a/T, including the contributions
from the up, down and strange channels as in Eq. (246). The verti-
cal size of the rectangles reflects the systematic uncertainty due to
changes in the default model, when varying 0.4 < b < 1. The error
bars instead include the statistical jackknife error as well.

a definite thermal width, which increases with temperature. The con-
tribution from the mesonic state in the spectral function becomes, at
sufficiently high temperatures, very broad and eventually disappears.
This is often referred to as melting of a hadronic state.

This effects are shown in Figs. (23) and (24), where the spectral func-
tion p{co) is divided by the squared frequency u’2in order to enhance
the bound state peak. The vertical dashed line is a zero temperature
estimate from [9] of the mass of the bound state. This is represented by
the p particle, in case of the light quark channel (Fig. 23) and by the (p
meson for the strange one (Fig. 24). At temperatures T < TCQi.e. below
the deconfinement transition, the spectral function shows a clear peak
at the position of the bound state mass co ~ A4. As the temperature is
increased, the peak becomes broader and broader until it is no longer
distinguishable at T > 1.27TC
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Figure 26: Comparison between light and strange quark conductivities.

6.2 CONDUCTIVITY

The electrical conductivity a is extracted from the spectral functions
shown above by taking the low frequency limit3:

1 JA

a=-Ilim --——- with a = frem, (282)

6 a>-»0 OJ
where Cem has been introduced in Eq. (276). The results for the tem-
perature dependence of a/T are shown in Fig. 25 for all the available
temperatures straddling the QGP transition.

We observe an increase in a/T as the transition to the deconfined
phase is made, with the rise starting already below Tc. For tempera-
tures lying deep in the confined region, i.e. T < 0.75 TCQ the conductiv-
ity is compatible with zero. Around Tc it rises up to ~ 0.05 and then
keeps increasing. When the temperature reaches T = 352 MeV its value
is almost 5 times bigger, with a/T « 0.3. We note that since the tran-
sition is a crossover (see section 2.5), a smooth behaviour between the
cold and hot regimes may be expected. The conductivity might be un-
derestimated below TC where the transport of charged hadrons must
contribute. These might lead to a narrow transport peak, whose details
cannot be resolved by the Euclidean correlator (95].

3 See section 3.3 for more details.
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Figure 27: Dependence of the conductivity C*a/T on the parameter bin the
default model. Stability is achieved for b > 0.4.

In Fig. 26 we can see how a/T depends on the quark mass used
in the inversion of the Dirac operator. Results for the strange sector
show a smaller conductivity than the light one, especially below the
crossover region.

6.3 STABILIITY TESTS

In chapter 4, we discussed how the inversion of Eq. (274) to obtain the
spectral function p represents an ill-posed problem. This means that,
independently from the tool adopted to perform the task, the results
are bound to suffer from systematic uncertainties and it is important
to keep them under control. The MEM method was introduced in the
context of QCD around 10 years ago, but few groups have used it
since [40, 69, 97-99]. It is then highly desirable to rely on a series of
tests, which will be shown in this section, to check the robustness of
the results obtained.
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Figure 28: Stability tests for the MEM reconstruction. The conductivity
C™a/T is plotted when only a subset of the available time slices
is used.

As we anticipated in section 4.2, we can vary the interval of Eucli-
dean points used in the process:

— Tmax  THin » (283)

We kept rmax = Nr/2, but explored the effect of changing rmjn =
1,.. .,4. We found that stability was achieved when rmjn > 3. The re-
sults shown for the conductivity a in Figs. 25-26 were obtained with

Tmin — 4. Similarly, we varied the to range with 0 < ¢v < cumax and
found stability provided mmax ~ 3 —5; here we used cvmax = 3. Also,
we discretised the frequency interval (see Eq. 220) with = 1000
points. Increasing it to Nu, = 2000 produced no difference in the re-
sults.

In section 4.6, we introduced the default model m(cv) used in our
analysis. It is quadratic in to, in order to match the theoretical expecta-
tions listed in section 6.1 and we choose it to have a minimal number
of parameters:

m((o) = mo(b coOUJ. (284)

The normalization coefficient wo is determined by a x 2 fit to the cor-
relator. In absence of data, the default model m(co) becomes the most
probable spectral function, so that the parameter b permits a non-zero
value of the intercepts of m(cv)/co, i.e. a non-zero conductivity. Vary-
ing b effectively changes the default model and it provides a crucial
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test to verify the robustness of our results. The dependence on b of the
conductivity is shown in Fig. 27. It is clear how setting b = 0 should
be avoided, since it unnaturally pushes the conductivity to zero. In-
stead, when b 2 0.4 the value for o stabilises, forming clear plateaux.
A larger sensitivity to b at the highest temperature is to be expected,
since a smaller number of time slices is available to perform the MEM
analysis.

From the point of view of the MEM algorithm, it is clear how a
higher resolution in the correlator G(7) is more desirable. In our case,
this was achieved by the introduction of the anisotropy. In order to
justify this choice a posteriori, we run MEM using only a subset of
the available time slices in the correlator, and check whether the result
is stable. This is shown in Fig. 28, where the red symbols use all the
available points 4 < T < Nz /2, the blue ones use only the even times
slices T = 4,6,8, ..., N¢:/2, while the green ones use one every three
T =4,7,10, ... which is roughly the number of points available without
the anisotropy. It is clear that for high temperatures, the anisotropy is
crucial to extract a signal for the conductivity. For colder ensembles the
result is instead stable.

The number of Euclidean points available in the correlator will de-
crease as the temperature is raised. One might think that this difference
in the extent of G(T) is responsible for the T-dependence of the con-
ductivity, rather than a genuine thermal effect. To show that this is not
the case, we run the MEM analysis on correlators at different tempera-
tures, but constrained to have the same number of time slices, which is
achieved by systematically discarding the last points in colder ensem-
bles. A graphical representation of the procedure is shown in Fig. 29.
We observe excellent stability as the Euclidean time range is varied.

6.4 SUSCEPTIBILITIES

An estimate of the fluctuations of a conserved charge in an excited
medium can provide useful physical information. In fact, these fluctu-
ations can be measured [100] in heavy-ion collision experiments (dis-
cussed in section 2.6), so that a combination with a first principles
lattice QCD calculation is possible, which can then provide a reliable
thermometer for such experiments.

The fluctuations are quantified by the susceptibilities, which are the
second order derivatives of the free energy with respect to the chemi-
cal potential associated with the investigated charge. In particular, the
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quark number density n; and the quark number susceptibilities x; are
defined as:

T 9 T o
""_Va_y,-h‘z' Xij—vwlnz. (285)
Here Z is the partition function of QCD, introduced in chapter 1 (see
Eq. 101) and y; are the quark chemical potentials for each flavour, with
i € {l,s}, where I stands for "light", as we are considering degenerate
up and down quarks, and s for strange.
We now proceed with some technical remarks. It is useful to intro-
duce the following terms:

- T [ _.9D . T 32D
i _ /2 -1v= i/ -1
Tl—(VTr _D a#i]>, T} (VTr D _ay,Z ), (286a)
T) = (= Tr D‘l—] Tr |D71=|), 286b
3 <V i ayi ayj ) ( )
T [ .0D oD
T = (=Tr D‘l—D_l—] , 286¢
4 <‘/ i ayi ayi ) ( )

where D is the Dirac operator defined in Eq. (238), T is the temperature
and V is the physical volume. The terms T;, T, Ty are called connected
since they only contain one trace, while T3 is called disconnected. In
Appendix A.3 we will see that, from a numerical point of view, it is the
most expensive to evaluate.

The quantities defined in Eq. (285) can then be rewritten using the
definitions above. We obtain:

n=Tj, (2872)
xi=—(T)?+ T+ T5 - T}, (287b)
Xi=—TiT| +T] (herei# j). (287¢)

The lattice evaluation of the different T terms of Eq. (286) has been
done in collaboration with P. Giudice [5] and the results are shown
in Fig. 30. Note that we only used lattices with spatial extent N; =
24, see Table 2 for more details. The numerical evaluation has been
carried out using noisy estimator techniques, which are described in
Appendix A.3. In particular, we used N, = 9 noise vectors ¢; for the
connected terms T,, Ty and N, = 100 for the disconnected term T3. For
the N; = 40 ensemble, this was increased to N, = 200.

We can see that only the connected terms T, and T, contribute signif-
icantly to the susceptibilities in Eq. (287). Note how the terms relative
to the light quark channel are considerably bigger than the strange
ones. In [101], a hopping parameter expansion predicted a negative
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Figure 30: Terms T2, T4 and T3.



94 RESULTS

T/Tc
0.75 .00 1/25 1.50 1.75 2.00

0.8
0.6
0.4
0.2

0.0

\ss

- 0/2
100 150 200 250 300 350 400

T[MeV]

Figure 31: Quark number susceptibilities for light Xn and strange Xss quarks.
All the quantities are normalised with respect to the value obtained
for free massless Wilson fermions on the lattice.

value for the term T13. This is, within errors, consistent with our results
in Fig. 30 (Bottom). The off-diagonal term T3§ representing the corre-
lation between different flavors, is expected to be different from zero,
as shown in the context of Hard thermal loop (HTL) perturbation the-
ory [102]. More recent lattice calculations [103] have shown that T"s
has a clear dip in the crossover region. Our results are consistent with
this, but also compatible with zero, both at low and high temperature,
which might be a consequence of our rather large pion mass. The only
negative non-zero value is achieved for TJS at the temperature of 156
MeV.

In Fig. 31 the quark number susceptibilities of Eq. (285) are shown
separately for light and strange quarks. They exhibit a rapid rise in
the crossover region; at low temperature they are small due to quark
confinement, but at high temperature they are large and approach the
ideal gas limit. We note that fluctuations have also been used to probe
quark deconfinement [104] by studying event-by-event fluctuations of
charged particle ratios [105].

We also consider the second order susceptibilities of baryon number,
electrical charge and isospin, which have been studied by many groups
in the past [103, 106- 108]. These are defined as:
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normalised with respect to the value obtained for free massless
Wilson fermions.

Electrical charge:

TdinZ 3

vV al'q fci alQ
(288)

Baryon number:

» rainz 3 3B 2, 3
T L

Isospin (with //I = —;/u):
Td2lnZz _ 1T a2nz aZnz 2a2inz
L, acne .
Vo 02 ¢ 4V alf, all; "diudild
1 2
=52 V2-V A (290)
/=

Note how xi depends only on the terms T2 and T4 but not T3 which,
from anumerical point of view, is the most expensive quantity to deter-
mine since it comes from a disconnected diagram. The results for these
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quantities are shown in Fig. 32, where they have been normalised by
their value in the free massless Wilson case.

For x; and x(, a steep increase is observed above 150 MeV and for
T 2 250 MeV the value of x; is above 85% of the Stefan-Boltzmann
value. As we discussed in section 5.4 regarding the Euclidean correla-
tors, this might be considered as a systematic error due to the uncer-
tainty affecting the lattice anisotropy and the difficulty of defining the
latter in the free theory.

The value of the electrical charge susceptibility reaches an apparent
saturation value above 250 MeV. This result will be used in Section 6.5
to determine the diffusion coefficient.

The data for the baryon number susceptibility present larger error-
bars due to the different combination of the terms in Eq. (286). The
result clearly shows the release of baryon degrees of freedom when
the system undergoes the transition from confined to QGP matter.

6.5 DIFFUSION

In the long wavelength limit, the correlator Eq. (181) can be described
by the diffusion equation. This can be seen as a low energy effective
theory which can be solved by coupling the equation for the current
conservation to some constitutive equation. These are expressed in
terms of a derivative expansion with unknown parameters, which are
determined by a matching procedure with QCD. We follow here the
treatment of [35, 96] and write down the constitutive equation for the
electrical current Jem in presence of an external electric field E as:

Jem = —DVQ + oE + higher order terms. .. (291)

where D is the diffusion coefficient, and Q is the electrical charge of
Eq. (288).

In the Hamiltonian describing the evolution of this system, both pg
and Ag couple to the charge density, which implies that a perturbation
of the form pp(x) + Ag(x) = 0 leaves the system unaffected. The con-
sequence is that in Eq. (291) the coefficients in front of these quantities
are not independent, so that we have:

o
== 2

D . (292)

where X is the electrical charge susceptibility defined in Eq. (288). The

conservation law for the current 3,j5m(x) = 0 can then be solved in

the presence of an electric field in the long wavelength limit [96, 109],

yielding a result for the electromagnetic spectral function similar to

that of Eq. (280). In fact, the drag coefficient ¢ appearing in Eq. (280) is
directly related to D by D = T/ (mg) [110].
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Figure 33: The diffusion coefficient D of Eq. (292) as a function of the tem-
perature. The vertical size of the rectangles reflects the systematics
from the estimate of the conductivity (see Fig. 25), while the error
bars include the statistical jackknife error from both < and Xqg- A
noisier value for the latter is responsible for the larger uncertainty
at low T.

In Fig. 33, we plot our result for the diffusion coefficient, obtained by
taking the ratio between our lattice evaluation of a and xqQmDespite the
large error bars, one can see that D is of the order (27iT)_1 and shows
a dip in the crossover region. Similar conclusions were found in [111],
where the authors combined our data for the light quarks conductiv-
ity with the results for the susceptibility from [103]. The results for D
were then used to study the charge density fluctuations with stochastic
hydrodynamics in QCD matter undergoing Bjorken expansion.

6.6 DISCUSSION

The electrical conductivity of the quark-gluon plasma has been the
subject of many studies in the past [8, 34, 36-41,68, 112-120].

Many attempts have been made to describe the temperature depen-
dence of c by either some effective QCD models or semi-analytical
tools [8, 34, 37, 38, 112, 114-120]. A detailed analysis of them is out
of the scope of this thesis, here instead we list them for the interested
reader: the calculation in perturbation theory [8, 34]; the conductivity
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Figure 34: Temperature dependence of the electrical conductivity a/T in
the light sector compared with previously obtained results: dia-
monds [40], circle [39], hexagon [e8], triangle [112]. Note that the
Nf = 0 results are inserted matching the values of 7/Tec.

of a gas of pions [114, 115]; the dilute instanton-liquid model [116]; a
calculation using the Dyson-Schwinger method [112] (also shown in
Fig. 34); an approach involving the off-shell Parton-Hadron-String Dy-
namics (PHSD) [117]; results obtained via the relativistic Boltzmann
equation [118, 119] and a holographic calculation [38].

Now we discuss results in the context of lattice QCD, obtained by
other groups [36, 39-41, 68, 113]. An early study of the conductivity
was performed in 2004 by Gupta [41], using a quenched calculation
with staggered fermions. Note that matching the physical degrees of
freedom in the staggered formulation is troublesome and the Eucli-
dean correlator Gem receives a signal from an opposite parity partner,
which effectively reduces the number of usable points in the temporal
direction. Results were obtained by fitting the Fourier transform of the
electromagnetic correlator, which gave a/T = 7 at 1.5 < T/Tc < 3.0,
where the critical temperature in pure su¢3) gauge theory is around
290 MeV.

In 2007, another lattice study with staggered fermions was performed
by Aarts et al. [40] using the same MEM method as in this thesis. They
found a value a/T = 0.4(1) corresponding to T/Tc = 1.5, represented
by a green diamond in Fig. 34.



6.6 DISCUSSION

A quenched study using Wilson-Clover fermions with a continuum
limit extrapolation, was performed in 2011 by Ding et al. [39]. The
conductivity was obtained as a result of fitting the correlator using a
simple ansatz for the spectral function, featuring a Breit-Wigner term
and a free spectral function. The result was 0.33 < ¢/T < 1 at a tem-
perature of T = 1.45T, [39] and it is represented by the orange circle
in Fig. 34. This work was then extended in [36, 113] by Kaczmarek et
al. to the temperatures 1.1T;, 1.2 T, and 1.4 T,, for which the authors
found no temperature dependence for ¢ within the systematic errors.

In [68], Brandt et al. produced a Ny = 2 lattice calculation with
Wilson-Clover fermions. The difference of the thermal and zero temper-
ature spectral functions was constrained using an exact sum rule. This
was then fitted using an ansatz with many coefficients to parametrize
the transport and bound state peak and the deviation from the free the-
ory of the spectral function. They obtained ¢/T = 0.40(12) at T = 250
MeV as shown in Fig. 34.

Our results, shown as well in Fig. 34, are the first Ny = 2+ 1 cal-
culation of ¢ over a wide range of temperatures across T,. Inside the
QGTP, they are comparable with the ones described above, but we have
for the first time observed an increase of ¢, which starts already in the
confined phase.
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CONCLUSIONS

In this thesis, we studied the temperature dependence of the electrical
conductivity and the charge diffusion coefficient, in the framework of
lattice QCD.

We used a clover-improved fermion action with Ny = 2+ 1 flavors on
anisotropic lattices [9, 10]. In particular we worked with an anisotropy
of { = as/a; = 3.5 with a; = 0.03506(23) fm on lattices with spa-
tial extension N5 = 24,32 and a temporal extension varying between
N: = 16 = 128. We scanned a temperature range between 43 MeV and
352MeV with a critical temperature of T, = 185(4) MeV, which is es-
timated by looking at the inflection point of renormalized Polyakov
loops.

We studied the conserved vector current, which though more expen-
sive to compute, does not require any renormalization. We analysed
the ratio of the correlators between the interacting and the free the-
ory and noticed that they tend to cluster together in the QGP phase,
where they approach clear plateaux. The numerical value of the lat-
ter is different from 1, which might be due either to the influence of
the uncertainty on the anisotropy or discretization artefacts. A defi-
nite answer can be given only by taking the continuum limit. We also
compared thermal correlators with their vacuum value at T ~ 0, and
found out that they differ by many orders of magnitude. The volume
effects have been estimated by inspecting the ratio between correlators
obtained in the N; = 32 and in the N5 = 24 ensembles and appeared
to be negligible.

Spectral functions p(w) in the electromagnetic channel were extracted
from the correlators using the Maximum Entropy Method (MEM) with
a modified version of the Bryan algorithm [40, 69, 73]. At low temper-
ature we found evidence for a bound state peak corresponding to the
mass of the vector meson (p or ¢), which matches hadron spectroscopy
calculations carried out at zero temperature [10]. The peak survives un-
til T =~ T, and is then no longer distinguishable at higher temperatures.
When plotting p(w)/wT we see a transport peak at the origin, whose
intercept depends on the temperature. It is absent at low temperatures
and appears when T 2 0.76 T.
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The conductivity is obtained from the low-frequency limit of p(w)/w
by using the Kubo relations for all the available temperatures. It is
non-zero in the crossover region and rises smoothly until it reaches
c/T =~ 0.3 at the highest temperature. Inside the QGP its value is
compatible with previously obtained results [36, 39, 40, 68, 113], while
for the first time its temperature dependence is evaluated from lattice
QCD.

The MEM reconstruction has been subject to several tests to ensure
the robustness of the results. First, we check the independence from the
default model m(w) = mow(b + w) by varying the value of b between
0 and 1. We found that for values of b 2 0.4 the conductivity stabilises
into a plateau, while for small b it is unnaturally forced to 0. This
systematic effect is taken into account in the final error by considering
all the values with b 2> 0.4.

The impact of the anisotropy, i.e. having more time slices available in
the correlator, is checked by performing the MEM reconstruction using
only a subset of the available points. This leads to high instabilities at
high temperatures where N; is small, which shows how the anisotropy
pays off in this regime.

The susceptibilities x of the baryon, electrical and isospin charge
have been evaluated. These are expressed as a linear combination of the
diagonal and cross terms for the quark number susceptibilities, which
are then numerically evaluated using stochastic estimators. The discon-
nected piece are small and, in most cases, compatible with zero. All the
susceptibilities experience a steep increase at the crossover point, at the
lowest temperature of 141 MeV are different from zero and at high tem-
perature they reach 85% of the Stefan-Boltzmann value.

Finally, we calculated the charge diffusion coefficient by taking the
ratio between the electrical conductivity and the electrical charge sus-
ceptibility. This is affected by rather large error bars and it varies be-
tween 0.5+ 2 x (2rT)~!, showing the signs of a dip in the crossover
region.

The analysis presented in this thesis is based on data at non-zero
lattice spacing. It would be interesting to repeat the analysis in the con-
tinuum limit, as has been done in the quenched theory [36, 39, 113].
In this respect the results obtained here should be regarded as prelimi-
nary.




APPENDIX

A1 GAMMA MATRICES

The Euclidean gamma matrices 7y, with y = 0,1,2,3 satisfy the anti-
commutation relations:

{'Yw T} = 264y . (293)

In this work, we choose the so-called chiral representation [14], where
Y5 = Y07Y17273 is diagonal. They are defined as:

0 0 -1 0 00 0 —i
o o 0o -1 oo =i o
=110 0 0 o "=1oi 0 o

0 -1 0 0 i0 0 0

0 00 —1 0 0 —io0
o o1 o0 oo o0 i
=10 10 0 B 0 o

100 0 0 —i 0

10 0 0
75=010 (294)

00 -1 0

00 0 -1

A2 DIMENSIONAL ANALYSIS

In this appendix we want to derive the dimension of the spectral func-
tion p(w) in terms of the temporal 4; and spatial 4 lattice spacing. In
this context, we will label with “phys” quantities which carry a dimen-
sion O™. Dimensionless quantities, like the ones obtained from the
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lattice, do not carry any label instead. Let us consider the dimension-
less Dirac operator we use in our study (see Eq. 238). Neglecting its
mass, it has the form:

D = Dy + % Y 1B; + clover. (295)

We can consider the free case without any loss of generality so that:

Dol[J(X) — 1p(x +O) ; lp(x — O) , (296)

Dip(z) = LD =02 =1) (257)

The action then assumes the form (neglecting the clover term):

.__a at E lpphys Mphys !Pphys ( )

=@ T | BP0 () + o DD ()
(298)
We remind that the anisotropy is defined as
as =Gay, (299)

so the spatial Dirac term has effectively a a;! in front of it. In Eq. (238)
the factor a4, then drops out and we are left with:

S — E I: Phys x)DOlPPhys lephys(x m 1Py)hys(:x‘.)] . (300)
If we apply the substitution

les — as_ % II) , (301)
we obtain

Z[ (x) Doy (x Ell’ } , (302)

where all the quantities are dimensionless. The conserved current, de-
fined in section 5.2, is:

Vi(m) = [¢(m+l)(1+%)¢( m)

2%,
Py — i) p(m + f)] | (303)




A.2 DIMENSIONAL ANALYSIS

Physically, the current is the amount of charge that flows in a unit
surface per unit time, so that:

VP =ag %V (304)
In fact, we have
a2t
VP (m) = =—t—p(m + 1) (1+ ;) p(m) + ...
2%
-3
= S g(m +)(1+7) plm) +
1._
= L + 1) (14 7)) 4., (305)

where in the second line we used Eq. (299). Let us consider the current-
current correlator. The vacuum |0) is normalized as (0/0) = 1 and the
only object that carries a dimension is the current. We want to compute
the zero momentum limit of the correlator:

G(t)™ =a3 } (VP (%, %0) VP (7t + x0)") (306)
yz
=a3 a5 22( Vi(®,x0) Vi(F, £ + %0)") (307)
=a; 4 2G(t) . (308)
Now the relation to the spectral function is (see Eq. 181):
= /Ooo dwp(w)K(w,t), (309)

where the frequency scales with the temporal lattice spacing as

W™ = way -1 (310)

Multiplying Eq. (309) by a; a;2 on both sides and using (310) we have:
1272G(t) = Gt = / dwa;1a;2p(w)K(w, )

= /dw""ys a7 p(w)K(w, t) (311)

So it must be that:

P =a;tailp. (312)
Introducing the temperature as usual

T = (a:Np)™', (313)
and taking the dimensionless ratio between p(w) and T, we have:

1 p™ P 1, 1PNt _ pNi

Twphys (a N) wat atas w - wg 4 (314)

where we can see that a factor of the anisotropy has to be introduced
in order to get the right result.
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A.3 NOISY ESTIMATORS

Here we will describe the stochastic method used to evaluate the trace
of an N x N matrix, where N is very large. These are widely used in
the context of lattice QCD for the calculation of flavor singlet quantities,
also referred to as disconnected diagrams. In particular, we will employ
them in the calculation of the susceptibilities discussed in section 6.4,
where in the case of Eq. (286), N = N; x Np x Ny with color N = 3,
Dirac Np = 4 and space-time Ny indices.

In this method, one generates an ensemble of random, independent
N —dimensional complex vectors &, where each component ¢; is drawn
from a Gaussian distribution of unit variance. The identity

d T
2 /H Ck exp |C|2/2 = (51-]-, (315)

follows from the propertles of the Gau551an mtegral and can be sym-

bolically rewritten in the form
(67 ¢j) = dij, (316)

where the average () is intended over the set { £ } of the N, generated
noisy vectors. These are then used as a source for the inversion of the
Dirac operator (cfg. Eq. (264))

D;iS; =¢;. (317)

A stochastic estimate of the inverse D! can then be obtained on each
gauge configuration by an average over the noise vectors using the
formula:

(¢} 5i) = DE' (&} &) = D, (318)

from which the trace Tr D~! can be obtained by setting i = j.
In the case one has to evaluate the square of a trace (Tr A)?, it is
more efficient to use L sets of independent noisy vectors [121, 122]:

(TrA)z-——mD

L
Ty L @Al @ad;, (319)
]:
where (), represent the estimate from the i—th ensemble. The diago-
nal terms are then not taken into account, as they would introduce a
bias in the final result given by a term whose relative significance is
O(1/Ny). This is the reason why the disconnected term T3 in Eq. (286)
is numerically expensive to obtain.
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