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Abstract

Most of this thesis is concerned with a seemingly simple example, referred to as the two- 
boundary problem. The problem illustrates (a) that the use of indefinite inner products can 
illuminate Probabilistic Wiener-Hopf Theory in symmetrizable cases, and (b) that half-winding 
probabilities should be thought of as branching measures for Ray processes.

The use of the indefinite inner product provides us with an efficient way to tackle the 
traditionally difficult issue that is duality. A fully rigorous study o f time reversal is always 
a problem for Probability Theory. The analytic approach reveals some results of considerable 
independent interest.

The thesis is structured as follows:

• Chapter 1 explains the inspiration for the given thesis structure, together with some further 
important information.

•  The two-boundary problem is examined in Chapter 2. We begin with the necessary 
analysis and then confirm everything with the corresponding probability. The nature 
in which everything tallies is amazing, chiefly due to the crucial theorem that shows 
the equivalence of PDE and local martingale properties. Moreover, the way in which the 
analysis effortlessly provides us with the desired duality results cannot be underestimated.

•  In Chapter 3 we look at a one-boundary problem with a drift component. The importance 
of the duality arguments in Chapter 2 is emphasized. In addition, unlike in the two- 
boundary problem, continuity of one of the underlying semigroups poses a rather serious 
problem. This provides motivation for part o f Chapter 4. O f particular interest here is a 
certain mystifying ‘independence of drift’ result.

•  Chapter 4 is concerned with (unorthodox) non-minimal, non-negative solutions o f the 
Riccati equations for both the drift and two-boundary problems. The ‘continuity’ 
difficulty mentioned above is resolved in some generality.

Detailed appendices are also included.
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Chapter 1 

Introduction

____________________________________ Summary_____________________________________

This thesis uses a wide variety of techniques from Probability Theory, Functional Analysis 
and even Complex Analysis. It is therefore unsurprising that we will appeal to  many crucial 
results from each discipline. However, to give even a brief account of some o f the necessary 
theory would significantly lengthen the thesis and would almost certainly distract the reader 
from the main crux of each given problem. Consequently, this thesis has been specifically 
structured to  account for this. This chapter is intended to explain the reason for the given 
structure as well as providing some important additional information.

1.1. Important Remarks

It must be emphasized that indefinite inner products are relevant to Probabilistic Wiener- 
Hopf Theory only in ‘symmetrizable’ cases; and by no means all interesting cases are 
symmetrizable. The kernels II-+  and II+_ and the semigroups {P^} introduced later all have 
simple probabilistic meanings without the assumption o f symmetrizability.

It should be stressed that the relevance of indefinite inner products to ‘symmetrizable’ 
Wiener-Hopf problems has long been recognized by analysts, particularly by Krein and 
Gohberg and their schools. For modem references, see, for example, [5] and [8] and the 
review o f the latter by H. Langer in Mathematical Reviews MR2001m:47001. It is also true, 
of course, that absolutely brilliant work has been carried out by applied mathematicians in the 
Complex Analysis of Wiener-Hopf Theory, with inspired choice of contours. Noble [19] is a 
fine introduction. A little of the Complex Analysis for our main problem is given towards the 
end of Chapter 2.

For introductions to various aspects of Probabilistic Wiener-Hopf Theory, see Bingham [3], 
Bertoin [2], Greenwood and Pitman [12] and Williams [26].

The beauty o f using such a wide variety of techniques is that they serve to illuminate each 
other. We quite frequently see the underlying Analysis and Probability working in conjunction.

1



1.3. Provenance and Prior Publication 2

1.2. Thesis Structure

Here we give more particular details concerning the thesis structure. Due to the comments 
given in the above summary, we refrain from beginning with a detailed chapter containing the 
necessary prerequisite material. After all, this will be a matter of simply providing well-known 
results. For example results on; Brownian motion, Optional stopping, and various results from 
Stochastic Calculus. Indefinite inner products and PDEs feature largely throughout this thesis; 
yet fortunately, no prior knowledge of either of the theories is required. Desired results of 
particular significance are either deferred to the appropriate appendices or included at the point 
when they are needed.

In Chapter 2 we immediately begin with the main problem, namely the two-boundary 
problem. Appendices that are specific to this problem are given at the end o f the chapter. 
However, the main appendix that covers material applicable to the whole thesis is traditionally, 
and in this case, included at the end of the thesis.

Equations which are particularly important elements of the structure are highlighted 
amongst the many other equations in this thesis.

1.3. Provenance and Prior Publication

Chapter 2 is based on joint work with David Williams, and Chapter 4 on joint work with 
Daniel Stroock and David Williams. All this work will be published. Because of the many 
developments which have occurred recently, we are considering the best form in which to 
publish the work. One possibility is that a version o f Chapter 2 will be submitted to the 
Electronic Journal o f  Probability, a high-quality journal with the usual refereeing procedure, 
and that Chapter 4 will appear in a special volume of Methods and Applications o f Analysis to 
be produced in tribute to Papanicolaou.



Chapter 2 

Two-Boundary Problem

___________________________________  Summary_____________________________________

In this chapter we present an example which, though singular in some respects, seems 
to  convey rather nicely something of the flavour of indefinite inner products in Wiener-Hopf 
Theory. As previously emphasized, the main theme of the chapter is that Probability Theory 
and Analysis are working ‘hand in hand'. The advantage of this is that each of the subjects can 
be used to  illuminate the other. Eventually, we are often able to cross-check that the subjects 
tally. Crucial is the fact that we are working with the simple compact space [0,1]. However, it is 
not until the next chapter that the benefits of this fact are highlighted. Here, we are fortunately 
able to obtain a precise spectral expansion for one of our underlying semigroups. Amongst other 
things, this guarantees smoothness properties which cannot be easily established. Chapter 4 
deals with such smoothness issues in a more general case.

2.1. The Operator 7i and Indefinite Inner Product (•, )s

Notation: within the bounds of reason, we use y to denote a point o f the open interval (0,1), 
x  to denote a point of the boundary {0, 1}, and z  for a point of the compact interval [0 , 1].

Throughout this chapter we let mo, m \ £ (0, oo).

2.1A. Definition. We define the operator Tt with domain V(T i) to consist o f  those C-valued 
functions in C 2[0,1] which satisfy the ( ‘reverse Feller’)  boundary conditions

m o /"(0) + / ' ( 0) =  0 , m i f ( l )  -  f { l )  =  0 , ( 1.1)

and, fo r  f  £ T>(H), define 7 i f  — \  f "  .

3



2.1. The Operator TC and Indefinite Inner Product (■, -)s 4

One reason, based on a discrete approximation, for imposing the boundary conditions in 
(1.1) is given in Appendix D. Nowhere do we need to extend further the domain of H.  For 
/  E C[0, 1], we shall be interested in the equation

the final condition not being imposed at the boundary points 0 and 1. The solution F  must 
belong to Crl,2((—oo, 0) x [0,1]) and must satisfy F(p,  •) E V ( H)  for p  <  0.

2.IB. Definition. For C-valued f , g &  C 2[0,1], and with g denoting the complex conjugate o f  
g, define the 'indefinite inner product’ (•, -)3 (subscript ‘s ’ fo r  'signedj via

2.1 C. Lemma. Ti is symmetric relative to (•, -)s.

Proof of Lem m a 2.1C. Given Definitions 2.1A and 2 .IB, following some elementary 
integration by parts we find that for / ,  g E V(H) ,

We first assume several W orking Hypotheses and use these to discover the structure of 
things in some considerable detail. Elements of the discovered structure are then established 
independently, and used to prove that the Working Hypotheses are indeed true. It is the singular 
nature of our boundary conditions which makes this ‘almost circular’ argument appropriate 
here. It must be emphasized that the Working Hypotheses are essential; and in many other 
contexts, they may be established directly at the beginning of the story.

In stating our Working Hypotheses, we consider only real-valued functions. This reason for 
this will soon become clear. As we shall see later, the semigroups {P*} are Ray semigroups.

d<pF +  H F  =  0, ((<£, z) E ( -o o , 0) x [0,1]) ( 1.2)

with final condition
F ( 0 - y )  =  f ( y)  (1/6 ( 0 ,1 ) ) , (1.3)

(o,i)

where v is the signed measure Leb — m. An element f  o f  C 2[0,1] will be called (positive)^ i f  
(/> f) s  > 0, (negative)s i f  ( / ,  f ) s < 0, (neutral)s i f  ( /,  f ) s =  0.

(o.i)
(1.5)

Note that the middle expression in (1.5) is minus the classical Dirichlet form. □
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W orking Hypothesis W H1. For f  E C [0 ,1] with f  >  0, there exists a minimal 
non-negative solution F  o f  equation (1.2) with final condition (1.3) in that any other 
such solution F  satisfies F((p, z )  > F(ip, z )  f or  all ((p,z) E (—oo, 0] x [0,1]. Define 
( P? f ) { z )  = F ( - t , z )  f o r t  > 0 and extend P f  (as we may) to C{0 ,1] by linearity. 

Then { P f  : t > 0} defines a one-parameter semigroup o f  non-negative operators on 
C[ 0 ,1], so Pf+t = P f  P f .  We will have P f l  < 1, where 1 is the constant function 
equal to 1 on [0 ,1]. For f  E C [0 ,1] and z  E [0,1], the limit

(P0+ / )  (z) :=  Urn(Pt+f ) ( z )

exists and

{po f) (y) = f(y) (y e (o, 1)),

(p o f )  (x ) =  f  n _+(x,dy ) f ( y )  ( x  E (0 ,1 } ) ,
■Ao.i)

where II_+(a:, •) is a measure o f  total mass at most 1 on (Borel subsets of) the 
open interval (0,1). Note that P f  does not map (7[0,1] into C [0 ,1]. We have 
p + p +  =  p t+p 0+ =  p+ .

2.1D. Important Example. If /  =  1, then F  =  1 satisfies the PDE subject to the appropriate
conditions, but if  mo +  m i >  1 it not does arise from a non-negative semigroup solution.
Furthermore, we shall see that it is the wrong (that is, non-minimal) solution in that case. In fact, 
the correct (minimal) solution has F  < 1 on (—oo, 0) x [0,1], and F (0—, x) =  ( P f  f ) ( x )  < 1 
for x  E {0 ,1}.

The second Working Hypothesis, much easier to prove for our example, is dual to the first. 
For h E C [0 ,1], we consider the PDE

d<pH + T tH  = 0, E (0,oo) x [0,1]) (1.6)

with initial condition
H (0+ ,x ) =  h{x)  ( i E  {0,1}). (1.7)

Note that H (  0-F, •) is only specified at the boundary points 0 ,1.



2.2. Duality 6

Working Hypothesis WH2. For h G C [0 ,1] with h > 0, there exists a minimal 
non-negative solution H  o f  equation (1.6) with initial condition (1.7) in that any other 
such solution H  satisfies H(tp, z) > H(ip, z) fo r  all (<£>, z) G (0, oo) x  [0 ,1]. Define 
(.Pt~ h)(z ) =  H ( t , z ) f i o r t  > 0 and extend Pt (as we may) to C [0 ,1] by linearity. 
Then { P f  : t > 0} defines a one-parameter semigroup o f  non-negative operators on 
C [0 ,1], so Pf+t = P f P f .  We have P f  1 <  1. For h G C[0 ,1] and z  G [0 ,1], the limit

( P o h ) ( z )  :=  lim ( P f h ) ( z )

exists and

( P f h )  (a;) -  h(x)  (x  G {0,1}),

{p o h ) ( y )  = [  U+~(y,dx)h(x)  (y e  (0, 1)).
7 (0,1}

where IT+ - (i/, •) is a measure o f  total mass at most 1 on subsets o f  {0,1}. This time, 
P f  does map C[0,1] into C[0,1]. We have P f P f  = P f Po  = Pf -  For h G C[0,1], 
( P f h ) ( z )  depends only on the values o f  h a t  the points 0 and 1.

2.IE . Definition. For y  G (0,1) and x  G {0,1} we let

ir(x,y)  :=  m ~ 1U+~(y1{x}).  ( 1.8)

2.2. Duality

Our PDEs for F  (with final value /  in C [0 ,1]) and for H  (with initial value h in C [0 ,1]) may 
be written

d p F +  H F  = 0 on (—oo, 0) x [0,1], d ^ H +  H H  = 0 on (0, oo) x [0,1]. (2.1)

Define G(tp, z) F ( —p, z) on (0, oo) x [0,1], so that

- d vG + H G  =  0 on (0, oo) x [0 , 1]. (2 .2)

2.2A. Lemma. Given the above definitions, we have

(Pt+f , P t- h ) s = (P0+f , P „ h ) s. (2.3)

Proof of Lemma 2.2A. If  we multiply the result for H  in (2.1) by G,  then multiply the 
corresponding result for G in (2.2) by H , and subtract the consequent equations, we get

GdvH  +  H d ^ G  +  G H H  -  H U G  =  0.
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Since d ^ G H )  = GdvH  +  H dv G, the previous result reduces to

dylGH)  +  G H H  -  H U G  = 0. (2.4)

Let v  denote the signed measure L eb(0 ,1) — m.  For t > e > 0, integrate (2.4) over (e, t] x [0,1]
with respect to Leb(e, t] x u, to get

p  1 p t  p t  p i  p t  p i

/  /  dv (GH) dpdu  +  /  /  G H H  dud tp -  H U G  dudp = 0. (2.5)
J 0  J e  J e  J o  J e  J o

Next recall that Ti is symmetric relative to (•, -)s, so that

{ G , H H ) a = ( H G , H ) s. (2.6)

From (2.6) it follows that

p t  p i  p t  p i  p t  p t

/  /  G H H  d v d i p -  /  HHGdvd<p = /  (G , H H ) s d<p {HG, H) .  d<p = 0. (2.7)
J e  J o  J e  J o  J e  J e

Combining (2.7) with (2.5), things reduce to

f  f  dv{GH)d<pdv = Q <s> [  GH\[ du = 0
Jo Je Jo 6

[  G( t , - )H( t r ) d u -  f  G(e,-)H{er ) d u  = 0 
Jo Jo
{G( t , - ) ,H( t , - ) ) .  = {G(e,-),H(€,-))„

Letting e [ 0 in the previous result, we have

<G(t, •), H(t ,  ■)). =  (G(0+ , ■), H(0+,  •)),. (2.8)

From Working Hypothesis WH1 and our definition of G we have, for t  > 0,

= := G(t,-).
(P + /) ( .)  =  F ( 0- ,  ■) := G (0 + ,-) .

(2.9)

Similarly, from Working Hypothesis WH2, we have

(2 .10)

Substitution of (2.9) and (2.10) into (2.8) gives the desired result. □

(Pf/»)(■) =  H(t,  •), 
(Po-fc)(.) = ff(0+,.).

W orking Hypothesis W H3. As t oo, the left-hand side o f  equation (2.3) tends to 0.

2.2B. R em ark. The ‘minimal positive’ nature of {P ^}  is crucial in regard to Working 
Hypothesis WH3 in general situations. (Look ahead to Important Discussion 3.13D.)
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The intuitive probabilistic reason for WH3 is explained at the end of Section 6. However, 
we shall later give an independent proof o f the following result which clearly implies WH3.

2.2C. Corollary, [assuming the current Working Hypotheses]. For f , h  G C[ 0,1], we have

( P j - f ,P0- h ) s =  0. (2.11)

Hence, fo r  x  G {0,1}, we have

n _+(:r,dt/) =  7r(x,y)dy on (0 , 1) 

in the Radon-Nikodym sense.

Proof of Corollary 2.2C. Equation (2.11) is clearly a direct consequence o f Working 
Hypothesis WH3. Moreover, from the definition o f (•, -)s and assuming Working Hypotheses 
WH1 and WH2, (2.11) is equivalent to

f { K ! ) { v ) { P o h ) { y )  Ay -  m Q(Pg /) (0 )(P o- h)(0) -  m i (P+f ) ( l ) ( PQ~h)( l )  =  0 
Jo

&  [  f {y )  [  u +~(y,dx)h(x)  d y - m o  [  U~+(0,dy) f (y)h(0)
J o J {0,1} J o ^  12)

- m j  [  Tl~+( l , d y ) f ( y ) h ( l )  = 0.
Jo

Substitution of (1.8) into (2.12) now yields

/  f ( v )  X I  ™'x'n{x,y)h{x) dy -  m 0 [  U~+(0,dy) f (y)h(0)  
xe{o,i}

- m i  [  U~+( l , dy ) f ( y ) h { l )  =  0 
Jo

&  m 0 f  7r (0 , y ) f ( y )h (0 )dyd-mi  (  7r(l, y ) f ( y ) h ( l )  dy
Jo Jo

— m 0 [  U - +{ 0 , d y ) f ( y ) h { 0 ) - m 1 [  U~+( l , d y ) f ( y ) h ( l )  = 0.
Jo Jo

Clearly the previous result implies that, for x  G {0,1}, we have

n ~ +(x,dy)  = n (x , y )  dy fo rt/G  (0 , 1),

in the Radon-Nikodym sense. □

We now establish some essential additional duality results. These lead us to a conjecture 
on a ‘new’ inner product which contributes to the study of the Hilbert-space structure o f { P f  } 
examined in Section 11.
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Suppose that u ,v  G C [0 ,1]. Consider

d<pU + H U  =  0 on (-o o ,0 )  x [0,1], U ( 0 - , y )  = u(y) {y e  {0,1)),
dvV  + H V  =  Oon (-o o ,0 )  x [0,1], 1^(0- , y ) = v ( y )  (y G (0,1)).

For fixed t such that — t < p  < 0, define

W( p ,  z) := V ( —t — ip, z) on (—oo, 0) x [0, 1], 

so that —dyW  +  H W  =  0.

2.2D. Lemma. Given the above definitions, we have the following result;

(U (0 - ,- ) ,  V ( - t , - ) ) B =  ( U ( - t , - ) , V ( 0 - , - ) ) . ,

so that
{P+u,P0+Pt+v)s = (P+Pt+u ,P 0+v }3, 

which is a particularly important duality result.

Proof of Lem ma 2.2D. If we multiply the above PDE for W  by — JJ, and multiply the 
corresponding result for U by W , then subtract the consequent equations, we get

wdvu + udfw + wnu -  unw  =  o 
& dv{uw) + wnu -  unw  = o.

Once again let v  denote the signed measure L eb(0 ,1) — m. For t > e > 0, we integrate the 
previous result over [—t +  e, —e] x [0,1] with respect to Leb[—t +  e, — e] x v. However, due to 
the symmetry of H  relative to (•, -)s, we have

[  [  £ dv(UW) dpdu =
J 0 J - t + e

&  [  U(—e, - )W(—e, -)dv —
Jo
(U(-e ,  ■), W ( —e, •)). =  m ~ t  +  e, •). W ( - t  +  e, •))..

Next note that

W ( - e ,  ■) = V ( - t  +  e, •) W ( - t  +  £,•) =  V ( - t  +  < - £ , • )  =  V ( - e ,  ■), 

so that we now have

( t / ( -e ,  ■), V ( - t  +  e, •)). =  ( U ( - t  +  e, •), V ( - e ,  •))..

Letting e j  0 yields

(U{0- ,  ■), v ( - t ,  •)), =  m - t ,  ■), V(0- ,  •)).- (2.13)

■0 •»

f ^ -Jo

[  uw\
Jo —i+e dv = 0

t + c, •) W ( —t +  e, -)du = 0
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Next recall the semigroup property, that is,

P + 1 =  P+P+ =  P + P +  ( t , « > 0 ) . (2.14)

From the final conditions for both U and V  given above, we have

(2.15)

Additionally recall from Working Hypothesis WH1 that we define ( P f f ) ( z )  = F ( —t, z) where 
F  is the solution o f the PDE in (1.2), with final condition (1.3). Hence, we make the same 
definitions for the functions U and V.  From (2.14), it follows that

2.2E. Rem arks. The various duality results correspond (not surprisingly!) to time-reversal 
arguments in Probability Theory. See Kennedy [16] and Rogers [23] for uses of time-reversal 
in Wiener-Hopf Theory similar in type to that which we are considering. An alternative proof 
of the striking main result in Rogers [23] may be found in [27]. See Chapter 2 o f Bertoin [2] 
for traditional duality. But it is much easier (if perhaps less meaningful?!) to use the analytic 
arguments described above. Time-reversal in Probability Theory is often plagued by technical 
difficulties. That Analysis leads so directly to the fact that

V ( - t ,  ■) =  V ( - ( t  + 0), •) =  ( P + 4)(.) =  (Po+P+X-). (2.16)

Similarly, we have
u(-t,  ■) =  (p 0+ P(+)(0

Substituting (2.15), (2.16) and (2.17) into (2.13), we have

(2.17)

{P + u ,P ? P ? v), =  {P+Pt+u ,P + v)s,

as desired. □

( P + f , P t- h ) ,  = 0 (i >  0, f , h  e  C [0 ,1]) (2.18)

is particularly striking.

2.2F. Lemma. We have the following important contraction property;

(P0+P(+/ , P 0+P + / ) S =  { P t f , P t f ) ,  <  ( P o f , P o f )

Proof of Lem ma 2.2F. Recalling the definition of (•, -)a in (1.4) we can deduce that

m 0F(<p, 0)d<p {F(p ,  0)} -  rriiF((p, 0)8^ {F ( p , 1)} .
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However, from our PDE for F,  we have d ^ F  = —H F ,  so that

*d<p(F(<p, ■)» -))s =  f  y)d<p { F ( v ,  y )} d2/
J o

-  m 0F(p,  0)dv {F((p, 0)} -  miF(<p, 0)d{p {F(ip, 1)}

= - (F ( < p , - ) , H F ( v , - ) ) s.

Since (F(ip, •), l i F{ p ,  -))s <  0 by (1.5), we have

•), F(<p, •)), =  -<F(y>, •), W(v>, ■ ) ) ,  > 0. (2.19)

For £ > e >  0, integrating the extreme LHS of (2.19) over [—t, —e) w.r.t. Leb[—t, —e) we have

[  s<% ,(F(w ), F(<p,-))dip > 0 ±(F(<p,-), F{tp,-))s > 0
J - t

«• ( F ( - c ,  ■), F ( - e ,  •)), -  ( F ( - t ,  ■), F ( —t, •)>, >  0.

Letting e j  0 in the previous result yields

<F(0—, •), F ( 0 -  •)>. >  < F ( - t ,  ■), F ( —t, •)>.. (2.20)

From the semigroup property and the definition of F  in WH1, we see that

F ( —t, •) =  (P + /X 0  =  F ( —(0 + t), ■) =  (P0\ J ) ( •) =  (P + P + /)(•) .

Combining the previous result with (2.20) yields the desired result. □

2.2G. Temporary Conjecture. Lemma 2.2D and Lemma 2.2F make us hope that, at 
least for suitable mo, m i,

(u, v}+ := (P0+u, P0+i/)5

defines a proper inner product on L 2 [0,1] and that, relative to this inner product, (P t+ } 
is a semigroup of self-adjoint operators of norm at most 1. We shall see that this is true 
precisely when we have the unbalanced situation when mo +  m i ^  1.
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2.3. Eigenfunctions of H

The following example indicates that we must not jump too quickly to conclusions based on 
our knowledge of the symmetric case for a proper inner product.

2.3A. Instructive example. For column vectors x , y  in C2, define

[*,„] :=  (*, x2) (  J  _ ? ) ( £ ) >  ^  :=  (  - 1  0 )  (  S

We will show that A is [•, •]-symmetric in that [Ax, y\ — [x, Ay], but that the eigenvalues of A 
are i and —i and the corresponding eigenvectors are not [•, •]-orthogonal.

Firstly note that

Thus,

Next,

[x, Ay] = {x\ x 2) ( J  - 1  )  (  )  =  (Xl X2) (  ) =  Xl^  +  x 2Vi-

[Ax, y] = ( x2 -  Xi) ( q ^ 'j  =  (X2 Xl) f  =  x i !/2 +  XiVi-

It follows that [Ax, y] = [x, Ay] and so A is [•, ^-symmetric. 

Eigenvalues/eigenvectors o f  A. We need to solve

A - 1  
1 A

det(A7 — A) =  0 +>

<+ (A +  i)(A — i) =  0

Therefore the eigenvalues of A are ±i.

Eigenvector corresponding to +i. Consider the matrix

- i  1

=  0 A2 +  1 =  0

For (a, b)T E C2, we solve

—i 1 \  /  a \  /  0 \  —ia +  6 =  0 , .
- 1  - i ) { b )  = { o )  *  —a — i6 =  0 *  fe- la =  0-

Thus the eigenvector corresponding to the eigenvalue + i is o f the form
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as eigenvectors are undetermined with respect to a scalar multiplier. By considering the matrix 
A  +  il ,  a similar argument shows that the eigenvector corresponding to the eigenvalue — i is of 
the form

1

Next consider

v  =
—l

m = ( u ) ( ;  _ ; ) ( (4 ) = d - i ) ( i

=  1 -  i2 =  2 f  0.

It follows that the eigenvalues are not orthogonal. □

2.3B. Lemma. For p G C, the number \(?  is an eigenvalue o f  hi, and then with corresponding 
eigenfunction (normalized to be 1 at 0)

y  i—► cosh, py — m,Qp smb. py o h  [ 0 , 1 ] ,

i f  and only i f
e(p) := (1 +  m om ip2) sinhp  — (mo +  m ^ p c o sh p  =  0. (3.1)

Proof of Lemma 2.3B. The result trivially follows from solving hih  = ±p2h subject to the 
condition that h G V(hi).  □

We shall see later that it is best to think of \pe(p) =  0 as the ‘characteristic equation’ giving 
the eigenvalues \ p2 of hi. From one point of view, finding the eigenvalues of hi is just a case of 
solving equation (3.1). (Look ahead to formulae (15.10) and (15.11).)

2.3C. Proposition. The function f  G V(hi )  is not a constant function i f  and only i f  (h i f , f ) s = 
( / ,  h i f ) s <  0. /  is a constant i f  and only i f  (hif ,  f ) s = 0.

Proof of Proposition 2.3C. The result follows directly from (1.5). □

2.3D. Lemma. All eigenvalues o f  hi are real.

Proof of Lemma 2.3D. Modifying a familiar elementary argument, we see that if  A is an 
eigenvalue of hi with eigenfunction / ,  then

A ( / , / ) .  =  ( A / , / ) .  =  = X ( f , f ) 3, (3.2)

so that if  (hif ,  f ) s f  0, then A is real. In addition, we see from Proposition 2.3C that 
(hi f ,  f ) s = 0 if and only if /  is a constant function, in which case /  is an eigenfunction 
corresponding to eigenvalue 0. □

We now need only consider M-valued eigenfunctions. Indeed, from now on,

C [0 ,1], C 2[0,1], etc, will denote the spaces ofR-valuedfunctions.
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2.3E. Rem ark. Equation (3.2) makes it unsurprising that (as Instructive Example 2.3A 
demonstrates) the general symmetric operator relative to an indefinite inner product can have 
non-real eigenvalues, the associated eigenfunctions being (neutral) 3.

2.3F. Proposition. A non-zero eigenfunction corresponding to a negative [respectively, 
positive] eigenvalue is {positive) s [respectively, {negative) s] . The eigenfunction 1 is {positive) 3 
i f  m 0 +  m i < 1, {negative) s i f  ttiq +  m \ > 1, {neutral) s i f  mo +  m i =  1.

P roof of Proposition 2.3F. Since all eigenvalues of Ti are real, suppose that —a  (a  G M+) is an 
eigenvalue o f Ti. Then the corresponding eigenfunction, /  say, will satisfy T if  = —a f .  Using 
this fact together with Proposition 2.3C, we have

~ a { f ,  f ) s  = { - a f ,  f ) s =  {Tif,  f ) s <  0,

so that, in particular, we have ( /, / )  « >  0, i.e. /  is (positive) s. A similar argument holds to show 
that the eigenvalue + a  leads to the fact that the corresponding eigenfunction is (negative) s. The 
remaining points are obvious as we have (1, l ) a =  1 — (mo 4- m i). □

The definitions given below of the sets 0  and T are motivated by Proposition 2.3F.

2.3G. Lem ma. Eigenfunctions corresponding to distinct eigenvalues o f  Ti are (•,•)*- 
orthogonal.

Proof of Lem m a 2.3G. From Lemma 2.3D, recall that all eigenvalues of Ti are real. We 
therefore suppose that Ai, A2 G R are distinct eigenvalues corresponding to the eigenfunctions 
/  and g respectively. That is, /  and g satisfy

/  and Hg  =  A2g, together with Ai ^  A2. (3.3)

Since Ti is symmetric relative to (•, -)s, we may use (3.3) to deduce the following results

Ai {f,g), = {f,ng)s, (3.4)
A 2</,9)s = (/>«<?>»• (3-5)

We now simply subtract equation (3.4) from (3.5) to get (A2 — Ai) ( /,  g)s = 0. However, Ai ^  A2
so that we must have ( /, g)s = 0, so that /  and g are (•, -)s-orthogonal as desired. Note that the
argument still holds if one of the A’s is zero. □

2.3H. Definition (The set 0 ). Let 0 + be the infinite set o f  strictly positive solutions 6 o f

(m0 +  m i)0
ta n #  =   --------------—. (3.6)

1 — m o m fi1

(We allow each side to be infinite i f  it should happen that there exists a 0 such that cos 0 = 0 
and 1 — mo m i#2 - 0.  ̂ Define
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2.31. Lemma. For 9 G 0 , the number — \9 2 is an eigenvalue o f  EL with associated eigenfunction

fe{y) =  COS 9y + m 09 sin 9y. (3.8)

Proof of Lemma 2.31. As usual we solve Etfo = —\ 92fe subject to the condition that 
fe G V(EL). We see that the fact that 9 G 0  is a necessary and sufficient condition for fo 
to be in V(EL) and so be an eigenfunction of EL. □

2.3 J. Proposition. Every such eigenfunction fo (9 G 0 )  is (positive) 3, except fo r  the case when 
mo +  m i — 1 in which fo is (neutral)s.

Proof of Proposition 2.3J. The proof follows from Proposition 2.3F.

2.3K. Proposition. I fQ+ — {#i, 9%,. . .} where 9k < 9k+1, then n~ 19n —► 7r.

□

(mo+mi)Q
l—momiO2

t an 9

Figure 2.1: An example of the set 9+.

Proof of Proposition 2.3K. We appeal to elementary calculus. Now, for all n > 1, we know 
that

tan(0) < 0, for 9 G ^— ^ ,n 7 r^  ,

together with
lim tan (0) — —oo and tan(m r) =  0.

2 0 |7 r(2 n -l)

Moreover, tan(0) is certainly monotone increasing on the given interval. Next define

(m0 +  mf)9m  := 1 — m 0m i9 2

Then

In addition, we have

l i m / ( 0) =  —oo, where c — 1 /  J m o m \.
die

f (9)  < 0, f ' (9)  > 0, and f"(9)  < 0, for all 9 > c.
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Finally observe that f (9)  |  0 as 0 —> oo. Let 9n be the n th root of ©+. Putting the pieces 
together, it is now clear that, for n  sufficiently large, we will have

9n £ I  := ?̂r̂ n , (n +  k)7r^ , where k £  {0,1}.

Remark: Figure 2.1 relates to the case when k — 1 as we must ‘wait’ until n = 3 so that 03 £ I  
with k — 1.

Now,
TT /«/ , 7T ( n + k )lim —  (2(n +  k — 1)) =  lim ------------- =  ir.

n —►oo 2U  n —>00 TI

Flence, n~ l 9n —> 7r. □

Working Hypothesis WH4. //"mo +  m \ > 1, there is precisely one strictly positive 
root o f

(m0 + m1)7
tanh7 =  — ------------------------------------------------ (3.9)

1 +  m 0m i Y
Otherwise, i f  m0 +  mi < 1, then there are precisely two strictly positive roots.

Comments on WH4. Proving WH4 directly seems rather difficult. Ruling out the possibility 
of double roots is one of the many complications.

2.3L. Definition (The set T). [Assuming WH4] /jfrao +  rai <  1, then we define the two strictly 
positive roots o f  (3.9) as a, (3 and hence define T — {a , (3}, with a  < (3. I f m Q +  m i >  1, 
then we define the only strictly positive root o f  (3.9) as (3, and we then define a  — 0 and 
F =  {ce, (3} =  {0 , (3}.

Given Definition 2.3L, together with Lemmas 2.3D and 2.3B, we arrive at the following 
definition.

2.3M. Definition. For 7 £  {a, (3}, define

h"y(y) = cosh 72/ — mo7 sinh7y, (3.10)

the eigenfunction corresponding to \ f 1.

We now know that Lemma 2.3G implies

( h 1 , f e ) s  = 0 (0<E©,7 e r ) .  (3.11)

2.3N. Proposition. Each eigenfunction h7 (7 £ is (negative) s, except fo r  the case when 
mo +  m i =  1 in which ho is (neutral) s.

Proof of Proposition 2.3N. The result follows from Proposition 2.3F. □
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2.30. Lemma. For all mo, m \, the function hp(z) is monotonic in z  and hp( 1) < 0.

Proof of Lemma 2.30. If min(mo \  m j-1) <  p < m ax(m ^1, mj-1), then

e(p) =  (1 +  m 0m ip2) sinhp — (mo +  mi )pcoshp 
< (coshp)(l — m 0p)(l  — mip)  <  0 ,

and p < (3. In particular, we see that m 0p  >  1. Hence

h'p(z) = (3sinh (3y — m 0p 2 coshp y  < f3(l — m 0(3) cosh/??/ <  0,

so that hp(z) is monotonic in z. Using Definition 2.3L we may obtain an alternative form for 
hp( 1), namely

mi(3hp(l) = sinh(/3) — m 0P cosh(/?)
< cosh(/?)(l — m of)  <  0,

so that hp( 1) <  0 as required. □

2.3P. Lemma. We have ha( 1) hp{ 1).

Proof of Lemma 2.3P. If mo +  m i >  1, then a  = 0 so that ha( 1) =  1. However, in the 
previous lemma we deduced that hp( 1) <  0. Thus, ha( 1) hp(l)  as desired.

If  mo +  m i <  1, then a  > 0 so we proceed differently. For a contradiction, suppose that

ha(l) = hp(l)  (<  0). (3.12)

Suppose further that m 0 f  m\ .  Looking forward to (9.1) of this chapter we have

i  =  / i ( o ) M i )  =  ^ ( o ) M i ) ,  (3-13)

where h^(0) =  cosh(7 ) — m i7 sinh(7 ). Thus, this result together with our initial supposition 
in (3.12) imply that

^i(O) =  /> > ) .  (3.14)

Multiplying (3.12) by m i, (3.14) by m 0 and subtracting the consequent equations, we have

(m0 — m i) cosh(a) =  (mo — m i) cosh(/3) <̂> a  = P (since mo f  m j.)

However, from Definition 2.3L we know that a  f  P, so that we have the desired contraction.

Now suppose that m 0 =  m^. It is then clear that (0) =  /i7( 1). From (3.13), we therefore 
have, for 7  G T,

/i7( l )2 =  1, so that /i7( 1) =  ± 1.

Conversely, if 7  G (0 , 0 0 )  and h7( l ) 2 =  1, then 7  G T  D  (0 , 0 0 ) .  Consequently, the fact that 
/i7( l ) 2 =  1 ( 7  G (0 , 0 0 ) )  is a necessary and sufficient condition for 7  G T  n  ( 0 , 0 0 ) .  We now
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consider hp( 1) as a function of p > 0. Recall that hp( 1) cosh(p) — m opsinh(p). Then, we
have the following limits;

lim hp(l) = h0( 1) =  1, l im h '(1) =  ti0( l)  = 0,
Pio Pio (3.15)
lim M l )  =■ /i"(l) =  1 — 2mo, lim hp(l)  =  — oo.
p |0  ^ p—>oo

If  mo +  m i =  2mo < 1, then 0 <  a  < (3. Here, 1 — 2m 0 >  0, so the limits in (3.15), together 
with elementary calculus, impose ha( 1) =  +1 and M  1) =  —1.

Note that even without prior knowledge that M  1) <  0, we would have still been able to 
establish the desired result. This is because the argument used for mo f  m i does not require 
restrictions for m 0 +  m j. In addition, for m 0 +  m j >  1 and m 0 =  m i, we observe that 
1 — 2m0 <  0 and 0 =  a  < (3. Hence, the given limits in (3.15) and Definition 2.3L again force
M i )  =  - i .  □
Remark: The fact that ha( 1) f  M l )  obvious from Probability Theory. See Lemma 2.8J
(a).

2.3Q. Lemma. In the 'perfectly-balanced’ case when m 0 +  m i =  1, the function k where

k{z) = z 2 - 2 m 0z = d2h7(z)\y=Q, (3.16)

is a generalized eigenfunction o fT i corresponding to eigenvalue 0.

Proof of Lemma 2.3Q. Note that when m 0 +  m i =  1, 0 is a repeated root of equation (3.1). 
(Look ahead at equation (15.11) and recall that \pe(p) is the analogue of the characteristic 
polynomial for eigenvalue \p 2 of 7i.) We simply solve H k =  1 ,7 i2k =  0 given that k E T>(H).

□
Observe that our function k shares with the function 1 the property that

(k ,h 0)s =  0 =  ( k j e)s (6 E 0 + ). (3.17)

2.3R. Proposition. Suppose that fo r  some constants A , B  and some 9 > 0,

f ( y )  =  A  cos 6y +  B  sin 8y.

Then ( / ,  h f ) 8 = 0 fo r  all 7 E T i f  and only f  is a multiple o f  fe fo r  some 0 E O.

Proof of Propostion 2.3R. (<£=) Suppose that /  =  cfo for some 6 E O and c e R  \  {0}. Then 
the desired result trivially follows from (3.11).

(=>) Given the form of / ,  it is enough to show that the orthogonality condition implies that

B  — A uiqO — 0, and (1 — m o m ^ 2) sin(0) — (m0 +  m{)9  cos (9) = 0.

This is best checked on a computer package such Mathematica due to the awkward nature of 
the calculations. See Section 10 for an alternative proof o f this result. □

Remark. It is interesting to compare (3.6) and (3.9) with the addition formulae for tan and tanh.
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2.4. A Wiener-Hopf Equation

Let us briefly make another (very easily proved) Working Hypothesis.

Working Hypothesis WH5. For 7 G T, we have P0_ /i7 =  h7.

2.4A. Corollary. Given Working Hypothesis WH5 we have the following results;

. s  . hp W hM  -  ha( l )h0 (y) hg{ y ) - h a(y)
■= m . M D - M l ) ]  ’ ' (1’v) ■= m . M D - M D ] -  ( 0

Proof of Corollary 2.4A. Remembering that h7(0) =  1 for 7  G T, we simply solve two 
simultaneous linear equations obtained from WH5. □

In the special case when m 0 =  m i =  we have 7r(0 , y) = 1 +  hp(y),  7r( l, 1/) =  1 — h@(y) 
and ^ ( 2/) +  / ^ ( l  -  y) =  0.

W orking Hypothesis WH5*. For 0 G 0 , we Aovo F0+ fe — /e-

Working Hypothesis WH5* reformulates as the Wiener-Hopf equation for x e  {0,1}:

f  n _+(x,dy)fe(y) = fe{x)  for every 6 e O .  (4.2)
7(0,1)

Proof of Working Hypothesis WH5*. Noting Corollary 2.4A, the desired result follows from 
Corollary 2.2C and equation (3.11). □

Since (4.2) follows immediately from Probability Theory, a natural question, of which 
analogues in other contexts have been studied via Complex Analysis, is the following.

2.4B. Question. For x  G {0 ,1}, does equation (4.2) specify the measure n _+(a:, •) on (0 ,1) 
uniquely?

We shall later prove that

cls{/e : e e  0 }  =  { /  €  C[0 ,1] : {h,, f ) ,  =  0 for 7 e r } , (4.3)

where ‘els’ stands for closed linear span in C[0 ,1]. Note that this result implies that the closed 
linear span of {fe  : 6 E 0 } in L2(0, 1) is L2(0, 1).
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2.4C. Theorem. Assume result (4.3). Let II h(0, •) satisfy equation (4.2) with x  = 0, 
and let Jo be the unit mass at 0. Let £ be the bounded linear functional Jo — II- + (0, •) 
acting on C[0,1]. Then, fo r  f  £ C [0 ,1],

£(f )  = 0 whenever both (ha, f ) s = 0 and (hp, f ) s =  0 .

It follows that fo r  some constants coa and Cop we have

£(f)  = COoc{K,f)s + CQp(hp,f)s ( / e C [ 0 , 1]).

Result (4.3) therefore gives a ‘Yes’ answer to Question 2.4B in that IT must
have density 7r(a:, •).

Proof of Theorem 2.4C. Assume result (4.3). It is then obvious that (4.2) holds for any function 
in the closed linear span (els). Let /  £ els, then from (4.2) with x  = 0, we have

f  U - +(0,dy) f (y)  = f (0) .  (4.4)
Jo

If we let i  be the bounded linear functional J0 — n _+(0, •) acting on C[0,1] then (4.4) is 
equivalent to

( ( f )  =  0.

However, /  £ els if and only if  (/i7, f ) s = 0, so that

£ (/) — 0 whenever both (/iQ, f ) s = 0 and {hp, f ) 3 — 0.

Next we follow a familiar argument from Dunford & Schwartz. Consider the map 'ip : C [0 ,1] —► 
R2 defined by

W )  :=  ( ( ha , f ) s , (hl3j)s)-

Next, by a standard argument, we can define a linear map L : M2 —> R, uniquely via

L(ip(f))  = i ( f ) .  (4.5)

Note that

W )  = (°> °) ^  H W ) )  =  ^ (/)  =  0 and W )  =  ^ ( 9) £( f )  = £{9),

where the latter result can be explained via linearity. It is well-known that a linear functional on 
R2 has the form (va, vp) 1—> coava +  c0pvp for some constants coa and Cop. Hence using (4.5), 
in our case we have

t ( f )  = c0a(ha , f ) s +  c0p(hp, f ) s ( /  £ C[0, 1]), 

for some constants coa and c0p.
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We can now find the density 7r(x, •). From the previous result, we have

/(0 )  -  [  IT +(0,dy) f (y)  = c0a(ha J ) s +  cOp{h0J ) s

[  ha(y) f {y)dy  +  c0/3 [  hp(y) f (y)dy  
J o  Jo

-  Coa m 0h a [ : ) ; [ -  c o p m o h p { 0 ) f ( 0 )

-  c0am i h a( l ) f ( l )  -  c0i3m i ^ ( l ) / ( l ) .

Note that h7( 0) =  1, and that the above result is true fo r  all f  E C [0 ,1]. In addition, both sides 
are signed measures on /  and consequently the masses at zero must agree. Thus, taking /  =  1 
on [0 , 1], we have

1 coam,Q Co/jmo,

0 CoahQ(l)  cophp(<l').

Multiplying the first equation by ha(l),  the second by mo, and adding, we have

hQ(l) = copmolhpil) -  ha( 1)]
C°0 rn0[h(3( 1) -  ha(l)]'

M  1)

Similarly, we have

hp( 1) =  c0am 0[ha{ 1) -  hp( 1)] <̂> c0a = ~

We now have

M 1)
mo[hp( 1) -  ha(l)]'

ha(y ) f ( y )dy

[  hp(y) f (y )dy  
Jo

hg(y)hp(  1) -  ha(l)hp(y)
m o [ h p {  1)  -  h a { 1)]

as expected. A similar argument holds for the density 7r( l, •) if  we consider x  =  1 in (4.2), 
together with the linear functional — II h(l, ■). □

^
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2.5. The Processes Z  and $

The necessary stochastic calculus may be found, for example, in Durrett [7], Karatzas & Schreve 
[15], Revuz & Yor [22], Rogers & Williams [24]. The last of these also contains the ‘Markovian’ 
results and results on resolvents which we need.

Let Z  =  {Z( t )  : t  >  0} be Brownian motion on [0,1] reflected at the boundary points. We 
therefore have

d Z(t )  = d£(*) +  dL0( t ) - d L ^ t ) ,

for some Brownian motion 5 o n R  and continuous non-decreasing processes L x (x  £ {0, 1}) 
with

f  I {x}(Z(s) )dLx(s) = L x(t),
Jo

so that L x grows only when Z  is at x. The process L x is called the local-time process at x.

The fluctuating additive functional <E>. We define via the equation

d $( t )  = d t — 2modLo(t) — 2m \dL i{t).

For the moment, we concentrate on the situation when $(0) =  0.

For z  £ [0,1], we write Pz for the law of the (Markov) process (<F, Z )  when $(0) =  0 and 
Z (0) — z. As usual, Ez denotes the expectation associated with Fz. A statement about Z  will 
be said to hold almost surely (a.s.) if it has Fz probability 1 for every z.

2.5 A. Theorem (Long-term behaviour of $). We have the following situation:

• ifrriQ +  7?7.i <  L then (a.s.) $(£) —> +oo a s t ^ o o ,

• i f  mo +  mi > 1, then (a.s.) $(£) —> —oo a s t  oo.

In addition, i f  m0 +  mi — 1, then (a.s.) fluctuates infinitely in that

lim sup <!>(£) =  -Foe, lim inf $(£) =  — oo. (5.1)

Proof of Theorem 2.5A. It is well-known (see for example, Section 6.8 o f Ito & McKean [14]) 
that (a.s.) t _1La;(t) —> \ for x  £ {0,1}. This secures the former result when mo +  m i ^  1. We 
will prove the remaining result for mo +  m i =  1 at the end o f Section 7. □

Short-term behaviour o f  <F. If Z§ — x  £ {0,1}, then initially Lx(t) will grow faster than t so 
that there will be a (random) non-empty time-interval (0,5) on which $  < 0. See the Instructive 
Example at the end of Appendix C.
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2.6. The Processes Z+ and Z

2.6A. Definition (The time-substitutions r ±). For t  >  0, we define (with the strict ‘> ’ 
conditions being important)

with the usual convention that inf(0) =  oo.

2.6B. Lemma. The following results hold.

(a) Fz( r f  < oo) — 1 i f  and only i f  either m 0 +  m i  < 1 or both t = 0 and z €  (0,1).

(b) Pz ( r f  <  oo) =  1 i f  and only i f  either m 0 +  m ,\ > 1 or both t =  0 and z  6 {0 ,1}.

Proof of Lemma 2.6B. We simply appeal to Theorem 2.5A and Lemma 2.16B of Section 16.

with the usual convention that Z ± (t) = d  if  rf- =  oo, where d  is a ‘coffin state’.

2.6D. Hypothesis. For the process Z +, we have the following situation

(a) i f  m0 +  m i <  1, then Z + is positive recurrent, and (a.s.) fo r  any interval I, 
P ( Z f  € I)  —► f j  7](y)dy as t —> oo, where rj is the invariant density fo r  Z +;

(b) i f  mo +  m i >  1, then (a.s.) Z + has finite lifetime.

Comments on Hypothesis 2.6D. The above result has been deliberately labelled an hypothesis 
as we are not in a position to prove it until the end of the chapter. Despite it being unnecessary, 
the result is given simply to inform the reader.

2.6E. Lemma. Z + and Z~ are strong Markov processes.

Proof of Lem ma 2.6E. We firstly deduce that Z + has right continuous sample paths, that is,

lim Z f , h — Z f .
5|0 t+5 1

Now z t+s = z (Tt+s)• However, Z  is continuous so that Z + inherits its continuity properties 
from r f ,  in that,

r t+ :=  inf{w : $(u)  > £}, r t := inf{u : —$(w) >  t },

□
2.6C. Definition (The processes Z ±). For t > 0, we define

Z+(t) :=  Z ( t +), Z - ( t )  := Z ( rD ,

lim Zf,
<5|0 t+
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Here Z  is associated with the filtered space (fi, T ,  T t, Pz) satisfying the usual conditions.

We know that r  is right continuous. Since {r5+ < t}  =  > s}, and { P J  is right
continuous, for each s, r f  is an {P*} stopping time. From 111.21 of Rogers & Williams [24], we 
need the fact that if  t is an {P T+} stopping time, then r f  is an { T t} stopping time. Furthermore, 
the main point is that

T t+ U  =  T t+  +  T u  ° ° T + 1  ( 6 - 1 )

where 0T+ ‘shifts paths’ through time r f  (see (A.5) of Appendix A). Now,

=  E2 [ Z ( r + J \Fr+

=  E2 [ z ( r t+ +  r + o e T(+) |^ Ti+ 

=  E z <T‘+> [Z(r+)] =  E z<+ (Z+)

(from (6.1)) 

(by the SMP)

□which is exactly the required result.

It is clear that Z~  is a Markov chain on {0,1} U {5}. Under P1 where x  6 {0,1}, the value 
Tq will (a.s.) be strictly positive and Z q will belong to (0,1). We see that Z + is therefore a 
process which behaves like Brownian motion inside (0,1) but which, on approaching a point x  
o f {0,1}, jumps into (0,1) according to some measure IT + 0>v) (of total mass at most 1) on 
(Borel subsets of) (0,1) ( and jumps to d with probability 1 — n _+(x, (0,1)).

2.6F. Definition. The ‘half-winding’ probabilities are defined as follows:

n-+(a?, j )  := Px{ z +  e  J) ( x e  {o, 1}, j  e B(o, l)),
n+-(y, J) := V»(Zo 6  J) (y 6  (0,1), J C {0,1}).

The ‘half-winding’ terminology is natural when one looks at the phase-space path t (<Ft , Z t).

We also recall Definition 2 .IE

7r(x,y)  := n + (y , { x } ) / m x (y e  {0 , 1), x  E {0 , 1}). (6.2)

2.6G. Definition (The transition semigroups P * ). For t > 0, we now define the map on
C[0, 1] via

(P ± /) (z) :=  E2( /(2 t±); <  oo) ( /  e C[0,1], z G [0,1)).

O f course, we shall need to prove that the P ± semigroups satisfy Working Hypotheses WH1 
and WH2.

Intuitive discussion o f  Working Hypothesis WH3. If mo +  m i f  1, then one o f the processes 
Z ± will have finite lifetime, so the fact that for / , / i e  C[0, 1], we have

<Pt+f  > Pt h ) s  ^ 0  (t -H- oo)

is highly plausible.
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Suppose now that mo +  m i =  1. Then each of the processes Z + and Z~  lives for ever. 
However, we then expect ( P f  f ) ( z )  to converge as t —► oo to a constant c+( f )  independent of z  
(and likewise for (P f h ) ( z )). The desired result will then follow from the fact that (1, l ) s =  0 
(when mo +  m i =  1). Pitman (see, for example, Pitman [21]) taught us that the best way to 
prove that ( P f  f ) ( z )  converges as t  —» oo to a constant c+(/)  is by the probabilistic-coupling 
method. See Section 13 for a more detailed study of the probabilistic coupling for this case. For 
a concise account o f the general probabilistic-coupling method and its wide usage, see Lindvall 
[17].

2.7. The Probabilistic Significance of the PDE for F

If $(0) =  0 and Zq E (0,1) then Tq =  0. Consequently, it is now convenient to let $(0) take 
an initial value ip < 0 and to let P^’2 denote the law of ($ , Z)  for this new situation: it is the P2 
law o f (<F +  <p, Z).  This is beneficial in part (a) o f the following theorem. For part (b), we may 
make a similar remark for Z 0 E (0 ,1} and so consider p  >  0. It is clear that we are simply 
horizontally shifting the process. For <p <  0, our Definition 2.6G for P + can now be expressed 
as follows

(P+Vf ) ( z )  = E ‘ [/(Z ± „); <  oo] =  E ^  [/(Z + ); r+  <  oo] . (7.1)

Hence, for <p <  0, it is clear that Lemma 2.6B (a) is equivalent to

F{p'z{Tq < oo) =  1 if  and only if mo +  m i <  1. (7.2)

O f course, we may state analogous results to (7.1) and (7.2) for P~  and r0_ respectively.

2.7A. Theorem .

(a) Suppose that F  E C 1,2 ((—oo, 0) x [0,1]) with continuous extension to {0} x (0,1), 
and define

M t :=  F ( $ ( ( A r 0+ ) , Z ( t A T 0+)).

Then our PDE
d^F  + H F  = 0 

holds on (—oo, 0) x [0, 1] i f  and only i f

M  is a local martingale under each F^,z with z  E [0,1], <p < 0.

(b) Suppose that H  E C 1,2 ((0, oo) x [0,1]) with continuous extension to {0} x (0,1}, 
and define

N t :=  H ( $ { t  A r0" ) ,Z ( t  A r0’ )).

Then our PDE
d^H  + H H  =  0 

holds on (0, oo) x [0 , 1] i f  and only i f

N  is a local martingale under each P^’2 with z  E [0,1], p  > 0.
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2.7B. Reminder. When we say that our PDE for F  holds, it is automatically inferred that the 
necessary V ( H )  condition is satisfied and the required final condition for F  holds (as in (1.3)). 
However, the final condition will be verified separately due to the ‘dual role’ of the stochastic 
integral at 0. Again, a similar remark may be made about the PDE for H  and its initial condition.

Proof of Theorem  2.7A (a). We shall write for $(£), etc, when convenient. When $(0) < 0, 
Ito’s formula gives for t <  Tq ,

d M t =  (dvF ) ^ u z t) d ^  + (dzF ) ( ^ t , z t) d z  + i ( d l F ) ^ u z t)dt
=  {dvF  +  \ d 2zF)d t  + ( - 2 m advF  + dzF)(\L0{t) +  (-2rn-id.f F  -  dzF)dLi ( t )  

+  (dzF ) d B .

Hence M  is a local martingale under P^’* if and only if we have P^* probability 1,

(d<pF +  \ d 2zF)(<bt , Z t) = 0 for Lebesgue almost all t < Tq ,
(—2m 0dlfiF  +  dzF ) ( $ t , 0) =  0 for ‘dL0’ almost all t  < r f ,
(—2m id(pF  — dzF ) ( $ ti 1) =  0 for ‘d L i’ almost alH  < r f .

The ‘only if’ part of the theorem now follows immediately, since if F  satisfies (1.2), so that
in particular F((p, •) G V( H)  for y? <  0, then, for y? <  0, we have

( ^ m o d y F  + dzF)(tp, 0) =  {mQd2z F  +  dzF)  (y?, 0) =  0.

For the ‘if ’ part, we suppose now that F  is C 1,2 as stated and that for some (y>, z) G
(—oo, 0) x [0,1], M  is a P ^’2 local martingale. Then

W 'z ( /  (dtpF +  \ d 2zF){fi>t , Z t)dt = 0 whenever 0 < a < & < T o ' ^  =  1, (7.3)

and for x  G {0,1},

jpv5.

where

( ^ J  (—2mxdvF  +  s(x)dzF ) ( $ t , x) d L x(t) =  0 if 0 < a < b < =  1, (7.4)

J +1 if x = 0, 
s i x ) =  <

V ; \ - l  i f x  = l.

We can now prove that the PDE for F  holds. For a contradiction to (7.3), suppose that there 
exists some (u, y) G (—oo, 0) x (0,1) such that

d ^ F f a y )  +  \ d 2F(u,  y) > 0.

(The modification with ‘<  0’ replacing ‘> 0’ is obvious.) Given that F  G C 1,2, there exists a 
neighbourhood N  of (u, y) and an e0 > 0 such that

^ F ( u 0, y0) +  \ d 2zF( uQ, y0) > e0, for all (u0, y0) G N.
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From Probability Theory we can say:
1° .

P^’2 ((<Ft , Z t) G N  for some t  < r f )  > 0 ,

and hence (by continuity) there is a positive P^’2 probability that there exist times c, d with 
0 <  c < d < Tq such that (<£>*, Z t) G N  for c < t < d, and so (also with positive probability)

f dJ  {O^F +  kd2zF ) ( $ t , Z t) dt > e0(d -  c) >  0.

This contradicts the local martingale property in (7.3).

For a contradiction to (7.4) this time, suppose that there exists some u  G (—oo, 0) such that

- 2 modtpFfa, 0) +  dzF ( u , 0) > 0.

Continuity properties of F  guarantee the existence of a relatively open neighbourhood N* of 
(u, 0) in (—oo, 0) x [0, 1] such that

—2m09vF(wo, x 0) +  dzF ( u0, x 0) > 0, for all (u0, x 0) E N*.

Here Probability Theory tells us that the following statement is true:
2° .

p  <p,Z J In*($t> Zt)dLx{t) > Ôj >0,
so that, for some (^-dependent) e, f  with 0 <  e < f  < r f ,  we have ( $ t , Z t) G N* for 
e < t < f  and L 0( f )  -  L0(e) >  0, whence (with positive P ^’2 probability)

[  ( - 2m 0^ F  +  dzF ) ( $ t , Z t) dL0(t) = f  ( - 2m 0^ F  +  dzF ) ( $ tl 0 ) d L 0(t) > 0 ;
J  e J  e

and this contradicts the local-martingale property in (7.4). A similar argument holds for the 
situation at 1.

Proof of results 1° and 2° are deferred to Appendix C, since some of the arguments presented 
there are useful elsewhere. □

Proof of Theorem  2.7A (b). The proof of the second part of the theorem follows similar 
arguments to that for part (a), but with some obvious ‘minus’ modifications. □

The following Corollary to Theorem 2.7A turns out to be crucial to the whole account.

2.7C. Corollary. For u > 0, the following facts are true:

fo r  7 G T, 1 1—> exp(— 2$ t)h1{Zt) is a local martingale bounded on [0, r “ ], 
fo r  6 £ Q, 1 1—> exp(+l02$ t) fo(Zt) is a local martingale bounded on [0, rf] .
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Proof of Corollary 2.7C. Since both functions are C 1,2 on the appropriate space, the facts 
follow immediately from the ‘only if ’ parts of Theorem 2.7A (a) and (b). □

The ‘minimal non-negative ’ result. Suppose that /  G C[0,1] and that a non-negative function 
F  satisfies the PDE for F  with final value /  on (0,1). Then, under each Pv,z, M  (obvious 
notation!) is a non-negative local martingale, hence a supermartingale, and so

F(<p,z) =  W ' ZM (0 ) >  W *  [ m ( t 0+ ) ; t 0+  <  o o ] =  (P+Vf ) ( z )  = F(<p,z). (7.5)

Moreover, if  we define F ( i/j , w ) := ( P f 7pf)(w)  for (ip,w) G (—oo, 0] x [0,1], then, by the 
Strong Markov Theorem, for any (</?, z) G (—oo, 0) x [0,1],

E ^ ( /(Z o +);ro+ < o o | ^ )  =  F ( $ ( t A r 0+) ,Z ( tA r 0+)),

where { Ft} is the filtration determined by Z, so that the M  corresponding to this F  is a true 
martingale. If we knew that this present F,  constructed from the P + semigroup, is C 1,2, then 
we could conclude that it is indeed the minimal non-negative solution of our PDE.

2.7D. Important discussion. The ‘honest’ way to proceed would be to prove directly that 
the transition semigroup of Z ± does have the required C 1,2 properties. Then, via the ‘if ’ 
part of Theorem 2.7A, we could deduce the duality results as indicated in Section 2. It is 
easy to establish the smoothness results for { P f } ,  but rather more tricky to do so for { P f }. 
(Probabilists often skip such details, and are then surprised that even for a nice ‘Feller-minimal’ 
Markov chain with all states stable, a transition probability pij need not be twice-differentiable.) 
For our problem, the main difficulty concerns boundary behaviour, since everything ‘internal’ is 
‘well-mollified’. To deal with the boundaries, we would need to look carefully at ‘first-entrance 
last-exit’ decompositions, well-known concepts for Markov chains and reflected to some extent 
in our treatment of the Kolmogorov forward equation in Section 15. There is a general theory 
of ‘first-entrance last-exit’ decompositions as part of Maissonneuve’s theory of incursions. See 
Maisonneuve [18].

However, we shall follow a different route. Since we can easily find P f ,  and hence 7r(-, •), 
the duality idea allows us to guess the exact form of { P f  }. Recall that we believe that at least 
when mo +  m i f  1, the P + semigroup is a strongly continuous semigroup of self-adjoint 
operators on the L 2 space associated with the (•,•)+ inner product, and is therefore likely to be 
wonderfully smooth. We can check that our conjectured version { P f } o f { P f } is self-adjoint 
relative to the appropriate inner product, and is correctly related to Ti. The Optional-Stopping 
Theorem then allows us to deduce that { P f } does equal { P f }. The Hilbert-space structure of 
{ P f  } is o f independent interest.

Bounded solutions. If  7770 +  772-1 <  1, so that P ¥’,z(ro < 00) =  1, and /  G C[0,1] is given, 
then (assuming suitable smoothness on the part o f (P t+}, F((p, z)  =  (P*v f ) ( z ) is the unique 
bounded solution of (1.2) subject to condition (1.3).

Infinite fluctuation o f  $  when m 0 +  7771 =  1. We skip some ‘almost surely’ qualifications here. 
Suppose that 7770 +  7771 =  1. We appeal to the concept of quadratic variation o f a stochastic 
process.
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2.7E. Corollary. The process M  is a local martingale, where M t := F ^ ( t A r f ), Z ( t A r f )) = 
k ( Z ( t  A Tq )) — $>(t A To"), k being our generalized eigenfunction z 2 — 2moz.

Proof of C orollary 2.7E. Since F  is C 1,2 on (—oo, 0) x [0,1] and the necessary PDE for F

Therefore, i f  on :=  inf{t : L 0(t) > n} fo r  n  — 0 , 1 , 2 , . . then the ( M ) Un+l — (M ) an are 
independent, identically distributed positive random variables (hereafter referred to as IID ’s).

Proof of Lem m a 2.7F. First, we know that each on is a.s. finite by the ergodic result that
t~ l Lo(t) —» i. Next, we know that

where H t = 2(Zt — m 0) so that the notation conforms with that given in Rogers & Williams 
[24], We now find an expression for the quadratic variation o f M . By the rule

It is clear that on+1 >  crn for each n, so that ( M ) an+1 > ( M ) an and the fact that the random 
variables are positive is obvious. Here we are only concerned with the local time at zero. Hence, 
if  we start in (0 , 1], then we have to wait until the process hits zero in order to accumulate local 
time there. However, the process is strong Markov, so the history until we hit level zero has no 
bearing. We may therefore start the process from zero without any significant loss o f generality. 
Thus, strictly speaking, we are working in terms of the law P°. The benefit o f this is that 
oq =  0. Next suppose that 9U is the familiar ‘time-shift’ map, shifting time through u. Then, by 
the strong Markov property and our particular form for (M)(.), we have for any bounded Borel 
function 6 on [0, oo),

E  [b((M),n+1 -  {M ),n)\F„n} = E [b((M)ai) o fl„.|*•,„]
=  E° [b((M)ai)] , for all n e  N.

The fact that ( M ) an+1 — ( M) ari, for n  G N, are HD’s is now clear, since M ak is F an measurable

2.7G. Corollary. We now have ( M) t —> oo as t —» oo almost surely, so that $  must fluctuate 
infinitely in the sense o f  (5.1).

holds, the result is a consequence of the ‘only if’ part o f Theorem 2.7A (a). 

2.7F. Lem ma. The quadratic variation o f  our local martingale M  is given by

□

dM t = (dzF ) ( dB t) &  M  = H * B ,

(C •  U, D  •  V)  = (CD) •  (U, V),

we have

( M ) t — (M, M ) t = (H • B , H  •  B ) t

= ( H2 .  (B,  B ) t) =  4 (Z.  -  m0)2ds.

for k < n. □
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Proof of Corollary 2.7G. From the proof of Lemma 2.7F, we may legitimately restrict our 
attention to the case in which Zq — 0. For n  E N, we begin by defining the HD’s as follows

K  :=  <M>„„+1 -  (M).„.

Define
p = E (e~Vn) 6 (0,1), for each n  6 N. (7.6)

Recall that a0 = 0. Thus, considering the obvious cancellation, we now have

Vo +  V\ -F . . .  +  Vn — ( M ) an+1. (7.7)

For i f  e  E +, we find that

P  [(M ).„+1 < K] =W[Vo + Vi + . . .  + V„ < K]
= P  [e-(^o+Vi+...+V„) > e-if j

<  eKE  ^e_(vr°+v"1+- +v")j (by the Markov inequality)
n

= eK E \f~ Vi\ =  eKfin (by independence and (7.6))
t= 0

In particular, for K  G R +, we have

P [(M)*n+1 < K ] <  eKp n, for all n  E N, (7.8)

so
P < ^ } )  =  0 for every K,

and (a.s.) (M ) an —> oo, whence, by monotonicity, ( M) t —► oo. Then, by Corollary IV.34.13 
of Rogers & Williams [24], M  fluctuates infinitely, and since k(Z)  is bounded, $  (which is 
continuous) must fluctuate infinitely. We have therefore confirmed (5.1). □

2.8. { P f }  and Positive Eigenvalues of 7i

Without a proof of Working Hypothesis WH4, nothing about positive eigenvalues o f H  is 
yet proved. Probabilistic definitions o f two numbers a, (3 with 0 <  a  < (3 will be given. It will 
then be proved that \c?  and \(32 are indeed eigenvalues o f H  and that for no strictly positive 7  

with 7  ^ {a, (3} is ^ 7 2 an eigenvalue of TL. All o f this will be achieved by firstly obtaining an 
explicit form for the { P f }  semigroup.

Let Q~ denote the Q-matrix of Z~  when Z~  is considered as a Markov chain on {0,1}. 
Then Q~ will be of the form

q -  — ( 7°>° 7o,A 
~  \Qi,o 7 i,i/ ’

where E K.

2.8A. Proposition. The off-diagonal elements qifj (z f  j )  o f  Q~ are strictly positive. 
Consequently, fo r  i E {0,1}, q^  <  —7i,i_i <  0, with equality in the foremost terms i f  and 
only i f  m 0 +  m i >  1.
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Proof of Proposition 2.8A. The former result, which is intuitively obvious, may be proved by 
the method in Appendix C. The remaining point follows from a Q-matrix property, namely

S i \ — ^2 / Qi,j + °i = 0, {i e  {0,1}) (8.1)
m o,iy

where Cj (>  0) represents the ‘rate of entering’ the cemetery state starting from state i. We 
know that d  > 0 if and only if Z f  has a finite lifetime, in which case m 0 +  m i < 1. The result 
is now obvious. □

2.8B. Corollary. The Q-matrix Q~ has distinct real, non-positive, eigenvalues. Then Q~ is 
diagonalizable.

Proof of Corollary 2.8B. The proof relies on a standard argument that begins by solving 
det(AI  — Q~) — 0. Additionally, in such an argument, it can immediately be seen that the case 
when m 0 +  m i > 1 leads to a zero eigenvalue. The fact that Q~ is diagonalizable is elementary 
linear algebra. □

2.8C. Definition. We define the distinct eigenvalues o f  Q~ as — \ot2 and — \/32, where 
0 <  a  < (8 and a  — 0 i f  and only i f  mo +  m i >  1.

2.8D. Remark. Suppose that the eigenvector corresponding to the eigenvalue — i f 2 of Q~ is 
u7, where v7 =  (v7(0), u7( l) )T. If WH4 had already been proved, then we could show that 
eigenvectors of Q~ are related to eigenfunctions of H  so that everything would feature terms 
involving h7 for 7 e  {oc, (3).

2.8E. Lemma. I f  we consider P f  ju st as the transition function exp (tQ~) on (0,1}, then

P -  =  +  (8.2)

where Va, Vp are {0,1} x {0,1} matrices with explicit forms;

_L_ (  ua ( 0 H ( l )  - v a (O)v0(O) \  , v  J _  (  -U Q(1 )^ (0 )  va(0)vp(0)
“ AVy V « a ( l )« ^ ( l )  - « a ( l ) f ^ ( 0 )  /  ’ 9 A u7 V - U a ( l ) ^ ( l )  va(0)vff(l)

with A v7 =  va (0)vp(l)  — va (l)vp(0).

Proof of Lemma 2.8E. We shall firstly express the underlying Q-matrix Q~ in terms o f its 
eigenvectors. Although this is not strictly needed, it is certainly useful in order to check things 
later. Using the eigenvectors of Q~, let

T J - r v  v ) - (  "“ W  ^ ( ° )  \  , r j - 1 _ _ L (  M l )
u  -  -  {  VaW sothat U " A u ,  ( - « „ ( ! )

~ M ° )
M ° )

Since Q is diagonalizable, we have

■ \ a 2  0
0 - \ p

(  va (0) ^ ( 0) ^ (  - \ a l 0 2 \ (  vp(l)  - v p(0)

q -  = u [  r  102 \ u -

A v 7 \  va(l) vp(l) J  \  0 - \ (3  J  \  - v a(l)  va (0)

~ l a 2va (0)vp(l) +  ^/32va(l)vp(0) \ a 2va{0) ^ ( 0) -  \(32va (0 )^ (0 )

'7
A v7 \  - \ a 2va{T)vp{ 1) +  \(32va(l)vp(l )  \ a 2va(l)vpf ))  -  \ P2va(G)vp{l) J  ' ^8'3^
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We now construct the matrices Va and Vp in our alternative form for Pt as follows.

From the forms of U and U 1, we now have

p- = _!-§<«»« (  fa(0)«/j(l) -Va(P)vp(0) V  1 . !  (Pt f  —va(l)vp(0) va(O)v0(O) \
* Au, V J  Au7 V - ^ ( 1 ) ^ ( 1 )  (0)^(1) /  ’

so that simple comparison with (8.2) gives the desired result. Note that we have Va + Vg = / 2. 
This is expected since P f  =  eiQ \t=o = h -  □

2.8F. Im portan t discussion. We have constructed the matrices Va and Vg via eigenvectors of 
Q~. However, as already pointed out, we do not yet know that they are related to eigenfunctions 
of H. In fact, we shall later see that they are actually related, in that, =  h , where 
h7 =  (/i7(0),/i7(1))t . Using this fact in (8.3), we see that J2j9ij  ^  0 anc  ̂ equals zero if 
and only if m0 +  m i >  1. The fact that Q~ is an improper Q-matrix when m 0 +  mj <  1 is 
apparent in light of (8.1), due to the omission of the cemetery state.

Now consider the extension of { P f } .  For x  £ {0,1} let Tx := in f{ t : Z t = x}.

2.8G. Theorem. For z  £ [0,1], and h £ (7[0,1],

(Prh)(z) =  e - ^ \ S ah){z) + e - ^ \ S ffh)(z), 

where fo r  7 £ {a, /3},

(S^h)(z)  :=  E2 ( e - ^ j T o  <  (V ,h )(0) +  E 2 ( e - ^ r -;T 1 <  T0)  (K,/j)(1).

In particular,

V7(0,0)/t(0) +  V ,(0,l)/i(l) \  _ f  (Vyh)(0)

so that the form of (Vyh)(x) in Theorem 2.8G is clear. Observe that Pt h is defined for 
h £ C[0,1], yet we only rely on its value at the boundaries.
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Proof of Theorem 2.8G. Let T  := To A T\.  By the tower property of conditional expectation 
we have

(Pt-h)(z)  : =  E2 [h(Zt-y, Tt~ <  oo]
=  E ZE Z [h(Z^)  |behaviour up to T]

= E z [Ez [h(Z^)  |behaviour up to T0] ; T0 <  Ti]  ̂ ^

+  E z [Ez [h(Zt )  |behaviour up to Ti] ; T\ < T0] .

To deal with the above we consider an application of the strong Markov theorem. We have for
i e  {0, 1},

Ez [h(Z^)  |behaviour up to T  on the set where 7} < T i_J

=  Ez? [h {Z jM)\ =  (PT+th)(i)- }

On the set where T0 <  T\  (i.e. T  =  Tq), from (8.6) we have

Ez [h(Z^)  |behaviour up to T0] = E Zto [h(Z^Q+t)]

=  E° [h{Zio+t)}

=  e-^a2{To+t)(Vah)( 0) +  e - ^ To+t){Vph){ 0).

It follows that

E 2 [(^To+t'l ) ( ° ) ' 'To <  T i]  =  £ 2  ( e ~ i e n h ; T o  <  T i )  (K ,f t ) (0 )

+  e - ^ 2‘ E 2 ( e - ^ To; r 0 <  T \) (Vr/3/i)(0). 

Similarly on the set where Ti < T0 (i.e. T  =  Ti), we have

Ez [/i(Zt” ) |behaviour up to Ti] =  E Zti [/i(Z^i+t)]

=  E 1 [ft(2f1+t)]

=

=  e ' ! “2(ri+i)(T/a /t)(l)  +  e - ^ 2(T‘+‘)(V2<3/i)(l).

This time it follows that

E 2 [ ( ^ +tA )(l);T i <  To] =  e - ^ 2‘ E 2 < T„) (Vah)( 1)

+  e - ^ 2‘ E 2 ( e - ^ 2Tl;T , <  T0) (V>h)(l). 

Finally, from (8.5), (8.7) and (8.8), we have

( P f  &)(*) =  E2 [(Pr0+th m - T 0 <  Ti] + E 2 [(P fl+i/i) ( l) ;7 i  <  T0]

(8.7)

(8.8)

=  e -5 “2‘ (Sah)(z) +  e - ^ 2* (S0h) ( z ),
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where

(S^h)(z) = E‘ (e-^ 2To;T0 < 2\) (V,h)(0) + E* ( e ^ i . 7 \  < T0) (K,/i)(l).

□

It is elementary that the E z expectations define C 2 fimctions of z. Indeed

r ( e - h 2r , ;T o < T l)  =  (8.9)
\  / sinh 7

with the obvious modification for the other expectation.

We now know that (£, z) (Pf h) { z )  is C 1,2. This crucial fact allows us to legitimately 
use Theorem 2.7A in order to prove some of what we have previously hypothesized. We begin 
by proving the following useful result which will be heavily relied upon in the remainder of the 
section.

2.8H. Lemma. Let 7 >  0 be such that I72 is an eigenvalue o f  Ti with corresponding 
eigenfunction hT Then, fo r  t  > 0 , we have

(Pt- l h ) ( z )  =  E* [ ^ ( Z f ) ]  = e ~ ^ Hh, (z) .

Proof of Lemma 2.8H. From Corollary 2.7C, recall that,

for t >  0, 1 1—► exp(—172$ t)h1(Zt) defines a local martingale bounded on [0, rf] .  (8.10)

Furthermore, if r f  = 00, then by the long-term behaviour of <E> we must have $ t —► +00 as 
t —► 00 (this applies only to the case in which m 0 +  m i <  1 or if t — 0 then z f  0 or 1), so that

— 00 on the set { r f  =  00}.

Thus, exp{—572$(Tt- )} =  0 on { r f  =  00}, so such a case gives no contribution to the 
underlying expectation, in that

E 2 [ e x p { - |72$(Tt- ) } h 7(Zt-y ,T t-  <  00] =  E z [exp{-±72$ ( r " )} / i7(Z ")] . (8.11)

Note further that $ ( r t“ ) =  —t  when r f  <  00 (see Proposition A.3 of Appendix A) and 
$(0) =  0. Since r f  is a valid stopping time, we can legitimately apply the Optional-Stopping 
Theorem to get

Ez [ e x p { - i72$ (r~ )} /i7(Zf" ) ; r f" < 00] =  E z [exp{±72t }h7{Zf ) -T~  <  00]
=  ex p { |72t} { P f h ^ i z )

=  E 2 [exp{ |72t }h7{Z^) \  (by (8.11))

=  ex p { |72t} E z [hy(Zf) \
= E2 M Z 0)]
=  E* [h,(z)]
= Jhy(z).
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In particular, we have e x p { ^ j 2t} ( P f h f ) ( z )  = ex p { |72£} W  [h^(Zf )]  = h7(z), from which 
the desired result follows. Note that this result can only become a ‘weapon’ when we know that 
I 72 is a eigenvalue of Ti. □

The following Theorem is clearly an amalgamation of Working Hypothesis WH4 and 
Definitions 2.3L and 2.3M.

2.81. Theorem. +%a2 and +\(32 are eigenvalues ofH,  and fo r  no 7  G (0 ,00) \  {a, p}  
is \ ')2 an eigenvalue ofTi.

Proof of Theorem 2.81. Staying consistent with the notation used in Theorem 2.7A (b), define 
the function H  via H( t , z )  (P f h ) ( z ) for t > 0. Again, we know that H  is C 1,2 and, 
by mirroring the sentence following (7.5) for the situation, H  (<£(£ A t 0- ), Z (t  A r 0- )) is a 
martingale. Hence by the ‘if’ part of Theorem 2.1 A  (b),

{dt + H) H{ t , z )  = 0,

whence S ah and Sph are in V(Ti)  and

(W -  i a 2) e - i aHS ah + ( H -  Sph =  0.

Now we see that | a 2 and \ 0 2 are eigenvalues of H  and that Sah and Sph  are associated 
eigenfunctions. Thus, recalling Definition 2.3M, S^h  must be a multiple o f h7 (7 G T). This is 
fine as eigenvalues are undetermined with respect to scalar multipliers.

Let 7 >  0 be such that ^72 is an eigenvalue of Ti with corresponding eigenfunction h1. 
Then, from Lemma 2.8H we may conclude that, P f h 7 =  e ~ ^  th1 and that Q~h1 — —̂ 72h^, 
since P f  is viewed as the transition function exp{—tQ~}.  We have therefore shown that if \ l 2 
is an eigenvalue of Ti, then —^72 is an eigenvalue of Q~. Hence 7 G {a, (3}. In addition, we 
have confirmed the fact that u7 =  h7 as pointed out in Important Discussion 2.8F.

Remark: The transition from general function to column vector here is obvious as Q~ relates to 
a Markov chain on {0,1}.

To tie things together, note that for 7 G {a,/?}, application o f the Optional-Stopping 
Theorem at time T0 A T\ shows that =  h1. □

Important Comments. Recall that Definitions 2.3L and 2.3M were entirely dependent upon 
the validity of Working Hypothesis WH4. Our probabilistic proof o f Theorem 2.81 now 
confirms that WH4 is true and that our consequent definitions are indeed correct.

Proof of Working Hypothesis WH5. Since we have now proved Theorem 2.81, it is now clear 
that WH5 is simply a special case of Lemma 2.8H, in that, it corresponds to taking t =  0. □
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2.8J. Lemma. We have the following results:

(a) ha( 1) hpil),

(b) it(x , y), as defined by (6.2), is given by the formulae (4.1), so that formula must produce 
non-negative 7r(:r, y),

(c) For y G (0,1), iy m xir(x, y) <  1 and equals 1 i f  and only i f  mo +  m i >  1,

(d) For x  G {0,1}, we have J |0 ^  7r(x, y)dy  <  1 and equals 1 i f  and only i f  mo +  m i <  1.

Proof of Lem ma 2.8J (a). Lemma 2.8H applied at t  =  0 gives

We know that Zq G {0,1} and that ha{0) =  hp(0) =  1. Hence, from (8.13), if ha{ 1) =  hp(l)  
then ha(z) =  hp(z)  for all z  G [0,1]. However, we know that ha(z) hp{z) for some z. 
Otherwise, a  = (3 which we know is false. It follows that ha{1) hp{l).  □

Proof of Lemma 2.8J (b). From the result for a  in (8.13) with y  G (0,1) and the definition of 
expectation, we have

E2 [hy (Z„)] = K,(z).

Result (8.12) is true for  all 7 G T — {a, (3}, so that we have

W  [ha(Zo)\  =  ha(z), and E z [M ^o~)] =  h0(z). (8.13)

(8.12)

[ha( Z f ) \  =  ha(0)Fy(Zn =  0) +  ha( l )Fy( Z f  =  1) =  ha(y) 

^  Fy( Z f  =  0) +  ha{l )W(Zo  = 1 )  =  K{y) . (8.14)

Similarly, for (3 we have

F ( Z 0-  =  0) +  ht , ( l )W(Zg  =  1) =  h0(y). (8.15)

Solving the equations in (8.14) and (8.15) simultaneously, we have

hp( l )ha (y) -  ha( l )h fi(y)

Noting that
Fv(Zq = x) :=  U+~(y, {z}) :=  m xn(x,  y), from (6.2), 

we get the desired result as 7r, defined in terms of a probability, must be non-negative. □

Under Definition 2.6G with f  = 1, we know the following;

(F0+ l)(a;) =  P x(to' <  00) for x  G {0,1},

(P0~i)(y) =  ^yiro < 0 0 ) for y t  (°> !)•

(8.16)
(8.17)
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P roof of Lem ma 2.8J  (c). From (8.17), for y G (0,1), we have

(.P q I ) ( v ) = ^ 2  m xn(x , y )  = P y (r0_ <  oo) <  1, 
xe{o,i}

where Lemma 2.6B (b) gives us equality when ra0 +  m i >  1. We have therefore checked that 
n +~{y , ') is a measure of total mass at most 1 on subsets of {0, 1}. □

Note. From (8.16) we have, for x  G {0,1},

(P 0+ l ){x) =  [  7T(x,y)  dy =  Px(r0+ <  oo).
Jo

However, we are not able to prove the remaining result of 2.8J by Probability Theory in this 
way because we do not yet know that 7r(a;, •) is the jump-out density from x  for Z +.

Proof of Lem ma 2.8J (d). From Lemma 2.3G, we know that (1, h^)a = 0 for 7 G T D (0 ,00). 
Using the definition of (•, -)s, this is equivalent to

f  h j (y)dy  =  +  m 0, for 7  G T fl (0, 00). (8.18)
Jo

fJo

Suppose that m 0 +  m 1 >  1. Recall that 7r(x, y) is defined as in (4.1) with a  — 0. From (8.18) 
we now get

l0 ^  dy =  mo[hffll) -  1] {(1 _  m i ) h p W  ~  mo} ' (8' 19)

If mo +  mi  — 1, then 1 — m i =  mo, and so the RHS of (8.19) clearly reduces to 1. If 
mo +  m i > 1, then 1 — m i <  mo. Therefore

(1 -  mi)hp( l )  -  m 0 m o[h0{ 1) -  1] =
m 0[hp( 1) -  1] m 0[hy(l) -  1]

giving Jq1 7r(0, y) dy < 1. Note that the validity o f the above inequality is guaranteed by the fact 
that ^ ( 1 )  — 1 < h/3(l) < 0 as shown in Lemma 2.30. Similar arguments hold for Jq 7r(l, y) dy.

Suppose that mo +  m i <  1. Again, recall the form of tt(x , y) from (4.1), noting that a  > 0 
here. Let A h  hp( 1) — ha( 1). Then, from (8.18), we have

a
7r(0, y)dy =  ^  ^  {hp{l ) [miha{ 1) +  m 0] -  ha{l)[mihp(l)  +  m 0]} 

{ m QAh}  =  1.
m oAh

Similarly,

f 1 1J  tt(1, y)dy =  ^  ^  {mihp( \ )  +  m 0 -  mi ha (l) -  m 0}

{ m i A h }  = 1,
m\ A h
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and so we have the desired result. We have therefore verified that II + (x, •) is a measure of 
total mass at most 1 on (Borel subsets of) (0,1). □

P roof of W orking Hypothesis WH2. Most of the desired work has already been done. With 
our usual definition of H,  in the proof of Theorem 2.81 we saw that the necessary PDE holds 
and H(ip, •) E V(Ji ) .  It is also useful to recall Reminder 2.7B at this point. Further details have 
also been proved in Lemma 2.8J. Due to the martingale property, we may justify the remaining 
matters probabilistically as well as analytically. In particular, from Definition 2.6G

C^PX*) := EZ t1;^" < oo] = p*(rr  < oo) < i,

and equals 1 if and only if m 0 +  m i >  1 (see Lemma 2.6B). Albeit tedious, it is trivial to prove 
that

(P0-h )(z )  ■■= lim ( Pf h) { z )  = (S ah)(z) +  (Sph)(z)

(  ^  m xir(x, z)h(x)  i f z e ( 0, 1),
— < X€{0,1}

( h( z ) if z E {0,1}.

Minimality. With our ‘discovered’ H , we may simply mimic the arguments given in Section 7 
for the r f  situation. □

We have now shown that the P f  in Theorem 2.8G is the correct one. We may therefore 
establish the following result on the long-term behaviour of P p. This will be used to prove 
WH3.

2.8K. Lemma. A s t  oo, the following convergence is uniform in z:

(Pt- h)[z)  J C“ W  m o +  * * > ! .
1 0 i f  m 0 +  m i <  1,

where c~ (h) is independent o f  z  and o f  the form

= f - i  M D M O ) -  fc(l)] ■

Proof of Lemma 2.8K. If  m o+ rai <  1 then the result is obvious due to the fact that 7  E {a, j3} 
is strictly positive. Then e ~ ^ 2t —> 0 as t —> 00 for all 7  E T. However, if  m 0 +  m i  > 1, then 
a  — 0 so that (P f h ) ( z ) —> (Soh)(z).  The result then follows from the fact that Z f  is immortal 
so that P2(T0 <  Ti) +  Fz(Ti < Tq) =  1. The fact that the convergence is uniform is now 
obvious. □

We pause to clarify that for h E C[0,1] and w  E (0,1),

( l l+ - /i) (w) =  h(0)m07r(0,w) +  h ( l ) m 17r(l,w),

and that (P0 h)(w)  is given by the right-hand side for all w  E [0,1].
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2.9. Some Identities

It is convenient to collect here some required identities. It should be noted that even 
the seemingly most simple of results turn out to be quite elusive. The computer package 
Mathematica has been used in some instances.

For p >  0 and z  G [0,1], we write

cp(z) :=  coshpz, sp{z) \= sinhpz,
h\{w) :=  cp( l - w )  -  m i p s p(l  -  w), hp(w) := cp(w) -  m 0psp(w).

The hp notation, which will be used for general p > 0, is consistent with the /i7 notation used
earlier for 7 G T. Because of the ‘eigenfunction of H ’ property, we have,

for 7 G T, h^(w) = h^(0)h7(w),  so, in particular, 1 =  /i#(l) =  /^ (0 )/i7(l) . (9.1)

We have, for 7 G T and p > 0,

( p - 7 ) ( P  +  7 ) ( s p A )s  =  ~P + Ph 7(1)^p(0)

and
{ p - l ) { p  + l ) ( hp , h7)s = ph^(l)e(p),  (9.2)

where e(p) is the familiar object from (3.1):

e(p) := (1 +  m 0m i p 2)sp(l) -  p (m 0 +  m i)cp(l).

Moreover, if

(Qf)(z) '■= P~l [  s p ( z  ~ w)f(w) dw,
Jo

then, for 7 G T,

(h'y, Qf)s = [  N ( w) f { w ) d w ,
7 [o,i]

where
( p - l f ) ( p  + l f )N(w) = - / i 7(u;) +  /i7( l) / iJ ,H .

2.10. Calculation of the Conjectured Resolvent : A > 0}

Heuristics. Believing in duality, we predict that Z + has the same laws as Z + where Z + behaves 
like Brownian motion within (0,1) and, on approaching x  G {0,1}, jumps into (0,1) according 
to density 7t ( x , •) given by (4.1). We shall construct the resolvent {R J  : A > 0} which Z + 
would have to possess.

Remark. Think about how to construct an appropriate (fi, T )  and initial laws for Z +. There is 
always a problem at this point because it is difficult to prove that the constructed Z + is Markov, 
let alone strong Markov.
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Let tab^A (the notation suggested by Chung’s ‘taboo’ terminology) be the resolvent o f the 
process {Z t : t < T q A Ti}, and let

4>x{z ,0) :=  E* (e -ATo;T0 <  7 \) , </>A(z, 1) :=  E* (e-Ar‘; <  T0) ,

the explicit forms of which we know from (8.9). For z  G (0,1) and /  G C [0 ,1], we surely 
believe that

0A(*) :=  = (tabR\f)(z)  + ^ 2  ip\ (z ,x) (R%f)(x) .  (10.1)
i G{0,1}

(The analogous result for Brownian motion on R shows that for /  G C[0,1], tab<7A :=  {t&bR\f) 
solves A(tab9A) ~  KtabpJ!) =  /  on (0? 1) with Dirichlet boundary conditions ta.b9\{x) = 0 for 
x  G {0,1}.) Because 0 and 1 are branch points of the Ray process Z +, the relevant strong 
Markov property to which we are making intuitive appeal, is really that (due to Meyer and Ray) 
at Theorem 111.41.3 of Rogers and Williams [24] (See Appendix E for further details). Now,
(10.1) implies that gx G C[0,1] fl C 2(0,1) and

Asa -  \g'L =  /  on (0 , 1). (10.2)

(Wait for Important Comment 2.10M below for clarification.) Moreover, we also believe that 
for x  G {0,1},

gx(x) = j n ( x , y )gx{y)dy.  (10.3)
./(o,i)

The ‘lateral’ condition (10.3) is equivalent to

(h^gx)s =  0 (7 e r ) .  (10.4)

Do remember that equation (10.2) is not the (A — Q+)~l = R x equation of Hille-Yosida Theory 
because /  may not belong to the domain of strong convergence to I  of P f  as t  j  0.

Definition and calculation o f  {R x : A > 0}. We now start from scratch with a rigorous analytic 
definition of the conjectured resolvent. We shall see that for /  G C [0 ,1], there is a unique 
solution gx G C[0,1] D C 2(0 ,1) of (10.2) with lateral condition (10.3) (equivalently, (10.4)). 
We shall define the linear operator on C [0 ,1] via R ^ f  := gX- We are going to show that 
{ R +x : A > 0} is a Ray resolvent, and (in Sections 12 and 13) that it is the desired resolvent of 
Z +.

2.10A. Analytic verification tha t (10.1) holds. Recall that we define gx via (10.2) and (10.3) 
Consequently, we expect tabSA to satisfy the conditions in the comment following equation
(10.1). Consider

tabPAW := 9\{z)  -  i)\{z, 0)pa(0) -  'Ipx(z, 1)0a(1). (10.5)

Recall that S = \/2X  and we already know that



2.10. Calculation o f  the Conjectured Resolvent { R f  : A > 0} 41

It follows that

A ip(z, 0) -  \ d 2zjj(z,  0) =  A ip(z, 1) -  \ d 2z jj(z,  1) =  0, on (0,1). (10.7)

Also note that
^ ( 1, 0) =  ^ ( 0, 1) =  0 and ^ ( 0 , 0) =  ^ ( 1, 1) =  1. (10.8)

Firstly we check that (10.5) satisfies the PDE for tab<?A-

A(tabSA) -  KtabSD =  X9 \ ~  5.9a “  0) -  ld%ll>(z, 0)}fl(0)
-  { A 1) -  i 9 ^ ( z ,  l )} s ( l)

=  A 9 x - h9 ' x  (by (10.7))
=  /  (by (10.2)).

This is exactly what we want. Next we deal with the boundary conditions for tab#A- Considering 
z  =  0, we have

tab̂ ( 0 )  : =  g x { 0 )  -  ^ (0 ,0 )pA(0) -  ^(0, l)pA(l)
= 9x(0) - g x(0) (by (10.8))
=  0.

O f course we get a similar result at z  — 1, so it follows that tab#A(0) =  tab<?A(l) =  0 as desired.
□

By elementary calculus, equation (10.2) implies that, for A > 0, and with cp and sp as in the 
previous section,

gx(z) = A x( f ) cp(z) +  B \ ( f ) s p(z) -  2p~l f  sp(z -  w ) f ( w)  dw,  (10.9)
Jo

where, as we shall consistently use,

p : = (  2X)i ,  A =  \ j? .

Recall that for 7 6 T, we have hy(w) — mo7r(0, u;)/i7(0) +  m i7r(l, w)hy(l).  Using this fact 
and the identities of the previous section we find from (10.4) that

A x ( f )  -  [  A x( 0 , w) f ( w) dw,  Bx ( f )  =  f  B x( 0 , w) f ( w) dw,
J [0,1] J [0,1]

where, for 7 e  T,

-  \m Qp2A x(0, w) -  \ p B x{0 , w) +  m 07r(0 , w)

=  /i7( 1) h\{w) -  \ p A x{0, w ) { - m i p c p(l) +  sp(l)}  -  \ p B x{0, w)h\{C) -  m i7r(l,  w)

Since ha( 1) f  hp( 1), both sides of the equation just obtained are zero, so

±mop2A x(0, w) -F \ p B x(d, w) — m O7r(0, w) = 0 (10.10)
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and

\ p{mipcp(l) -  sp(l)}i4A(0,iy) -  ±hl(0)pBx(0,w) -  mi7t ( l ,w)  +  h\(w ) = 0. (10.11)

As we shall see, equation (10.10) is particularly significant. Multiplying (10.10) by (0) and 
adding to ( 10.11), we find that for p > 0,

hpe(p)Ax(0,w) = { ( / - P f ) h l ) { w) .  (10.12)

For p >  0 and p G T, both sides of equation (10.12) are zero.

2.10B. Lemma. We have R J  : C[0,1] —► C[0,1], and

{Rx f ) ( z )  = [  r f ( z , w ) f ( w ) d w  
J [  0 ,1]

fo r  a jointly continuous kernel with

f I (0, w) = Aa (0, w ), fX(z,  x ) =  0 fo r  x  € {0, 1}, z 6 [0, 1].

P roof of Lem ma 2.10B. This is obvious from (10.12) and symmetry. □

Look forward to Corollary B.7 of Appendix B which motivates the following Lemma.

2.10C. Lemma. As A —> oo, we have the following results

AAa(0, w ) —> 7r(0, w ) ( i ug ( 0 ,  1]), but 0 — AAa(0, 0) 7r(0, 0+)  =  1/mo-

This result will later emphasize that the lack of uniform convergence, or of ‘equi-uniform 
differentiability’ can easily lead one into error in this subject.

P roof of Lem ma 2.10C. Multiplying (10.12) by p and noting that \p 2 = A, we have

Ae(p)AA(0, w) = p h?p(w) — pm Qh^(0)7r(0, w ) — pm i7r(l ,  w). (10.13)

In order to deal with (10.13), we note that A —> oo is clearly equivalent to p —► oo. Observe that

7r(0, 0+ ) =  ^  and tt(0 , 1- )  =  0.

Thus, from (10.13), it then becomes clear that

AAa(0, 0) =  AAa(0, 1) =  0 for all A.

In particular, we see that, as A —> oo,

AAa(0, 0) 7T(0,0+ ), and AAa(0, 1) ^  tt(0, 1).

Next recall that
e(p) \= (1 +  m 0m i p 2) sinhp — (m0 +  m i)p co sh p.
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lim (0, w )
X —►oo

AAa(0,0) = 0

7r(0 , w ) 

A^a(0,u;)

Figure 2.2: AA^(0, w) against 7r(0, w) for large A.

From (10.13), it suffices to show that, for w  G (0,1),

pm0/ij!,( 0) 
lim  r-r—  =  —1, lim

pm0/ij(0) _  p hl(w)  -  pm 17r(l,'u;)
p-oc e(p) ~  ’ A™ e(p)

=  0 . (10.14)

(10.15)

For the first limit in (10.14), using the definition o f hjp in Section 9, we have

p m o ^ (0) mop cosh p — m om ip2 sinh p
e(p) (1 +  m 0m ip2) sinhp  — (ra0 +  m i)p c o s h p ’

Now for sufficiently large p, it is obvious that m 0m ip 2 sinh p is the dominant term in (10.15). 
Consequently, we now have

pm ohl(0) - m 0m ip2 sinhp
 ~ ----------- 2 • u =  _ 1 ’ (10.16)e(p) momipr smh p

for sufficiently large p. Hence, taking the limit as p —► oo in (10.15), we get the desired result 
as in (10.14).

For the second limit in (10.14), we have

p ĥp{w) — pm i7r(l ,  w) _  p coshp(l — w) — m i p 2 s in h p (l — w) — p m i7r(l ,  w)  ^
e(p) (1 +  m 0m ip2) sinhp  — (m 0 +  m i)p  cosh p

Note that, for any fixed w  G (0,1), we can regard 7r( l, w)  as a constant. As in the previous limit, 
the p2 sinh(-) term will dominate in both the numerator and denominator o f (10.17). Hence, for 
sufficiently large p, we have

p h$p(w) — pm i7r(l ,  w) — p2s in h p (l — w) — s i n h p ( l — w)

ip) p2 sinh p
gp(i-™)

sinh p

eP
=
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Since, for w E (0,1), e pw —> 0 as p —> oo, we get the desired result. □
Given our proof of Lemma 2 .10C, symmetry gives the corresponding result at 1, that is, for

process theory from Appendix B.

2.10D. Theorem. {R J  : A > 0} is an honest Feller resolvent on C[0,1].

In order to prove the above theorem, we firstly need several results. Recall that Lemma
2.1 OB already gives us part of what we want.

2.10E. Lemma. We have non-negativity o f  R ^, in that, i f  f  E C[0,1] and f  > 0, then R ^ f  >  0.

Proof of Lemma 2.10E. Let /  E C [0 ,1] and f  > 0. Recall that g(z) := ( R ^ f ) ( z )  satisfies
(10.2) and (10.3). Note that the subscript A shall be dropped for typographic convenience. In 
particular, we need to prove that

Note that since A > 0, Ag* <  0 and f(yo) > 0. Hence, we need g" <  0. However, g* is 
defined as a local minimum (as we are working on (0,1)) and a necessary condition for a local 
minimum is that g" > 0. This contradicts (10.19) and so it follows that

i.e. g attains its infimum at a boundary point x.

It suffices to show that if (10.20) is true, then we get the desired contradiction to (10.3) in 
the case when g <  0. Note firstly that, for some x  E {0,1}, (10.20) implies g{y) >  g{x)  for all 
y E (0,1). Next from (10.3), for the x  such that (10.19) is true, we have

: A > 0} as a Ray resolvent. For the next part o f the section, recall the necessary Ray

(.R ^ f ) ( z ) >  0 for all z  E [0,1].

Now for a contradiction suppose that

g* := in f{g(z) : z  E [0,1]} <  0.

Suppose further that g(yf) = g* for some yo E (0,1). Then by (10.3) we have

A#* -  hg" = /(yo)- (10.19)

(10.18)

g(x) = g*, for some x  E { 0 ,1 } , ( 10.20)

7r(z, y)g(y)dy >

Hence,
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Since g(x)  <  0 by our supposition in (10.18), we have

/ n ( x , y ) d y > l .
Jo

However, this contradicts Lemma 2.8J(d) so that g(x) jt  0. Therefore g(x)  >  0 as desired. □

2.1 OF. Lemma. The resolvent equation holds.

Proof of Lemma 2.10F. For /  G C [0 ,1], define g^ = Ft+f so that we have (10.2) with 
instead of g\,

M u ~  =  /•

Then
-  Ig'l =  (A -  fi)gM +  / ,

so that satisfies the same conditions as {(A — f f g ^  +  /} . Therefore, {(A — fi)g^ +
/} ,  which is exactly the required result. □

2.10G. Lemma. We have

(A .Rjl)(z) <  1 fo r  all z  G [0,1].

Proof of Lemma 2.10G. Once again, for a contradiction suppose that

Ag sup{Ag(z) : z G [0,1]} > 1. (10.21)

Next suppose that g(zf)  =  g for some z0 G (0,1). Then by (10.2) with f  = 1 combined with 
(10.21) we have

Ai? — \g" — 1 ^  g " >  0. (10.22)

Recall that we have defined g as a local maximum (as we are working on (0,1)) and a necessary 
condition for this is that g" <  0. Clearly this contradicts (10.22) so that we must have

g(x) — g , for some x  G {0,1}, (10.23)

i.e. g attains its maximum at a boundary point x.

We need to show that (10.23) contradicts (10.3) in the case when g > 1. Note firstly that, 
for some x  G {0,1}, (10.23) implies g(y) < g{x) for all y G (0,1). Next from (10.3), for the x  
such that (10.23)is true, as before we have

g ( x ) < g ( x )  n (x , y )dy  
Jo

Since g(x) > 1/A > 0 by our presumption in (10.21), we have

[  n(x,  y)dy > 1,
Jo

giving a similar contradiction to before. Hence, we get the desired result. □
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2.10H. Corollary. I f f  G C[ 0,1] and f  < 1, then R ^ f  < 1.

Proof of Corollary 2.10H. Now /  <  1 implies 1 — /  >  0. Hence, by Lemma 2.10E we have 

A i^ ( l  -  / )  >  0 ^  AR + f  < X R+1 < 1,

where the lattermost (highlighted) result follows from Lemma 2 .10G. □

Proof of Theorem 2.10D. Referring to Definition B.l of Appendix B, it can be seen that 
Lemmas 2.10E, 2.10F, 2.10G and Corollary 2.10H give us almost everything we need. Yet 
we have only deduced that X R ^ l  <  1. The desired ‘honesty’ property can easily be achieved 
by adding a coffin state d  and extending R \  in the obvious way. We will later verify that this 
augmentation is only necessary when mo +  mi  > 1, that is, when Z + has a finite lifetime. □

2.101. Theorem. {R J  : A > 0} is a Ray resolvent.

In order to deal with the above theorem, it suffices to firstly establish some necessary results. 

2.10J. Lemma. For f  G C[0,1], as A —> oo, we have

\ ( R t f ) ( z )  -  ( P o 7 ) M ,

where

( j o  / )  ( y )  :=  f i v )  ( y  e  (o , 1)) ,

( P o f ) ( x ) :=  [  * ( x , y ) f ( y ) d y  (a: € {0 ,1 } ) .
V 7 0,1)

Proof of Lemma 2.10J. The result at the boundaries is obvious given Lemma 2.10C and 
symmetry. Away from the boundaries, we recall the decomposition in (10.1). We then follow 
similar arguments to those given in the proof of Lemma 2 .10C to show that, for y  G (0,1) and 
ip in (10.6),

Aip\(y, x)  —> 0 as A —► oo.
Hence, all that it remains to do is to prove that, for y G (0,1),

H t a b R \ f ) ( y )  -*■ f ( y )  as A —> oo.

Suppose that £a is an exponentially distributed random variable with rate A, independent o f the 
process Z.  Then, with T  as in Section 8, the ‘killed’ process may be written as follows

A(tabR x f ) ( y )  = E» 1/(Z (C a)) : Ca < T]
=  E* [ /  ( Z ( ^ ) )  : Ci <  AT] (since ACa =  C l)

Now /  (Z(%)) is clearly bounded by 11/ 11sup for /  £ C[0,1], Moreover, Ci < AT for A 
sufficiently large. Hence, it is clear that, as A —> oo,

A(tabi?A/)(2/) =  E» [ / ( Z ( £ ) )  : Cl <  AT] W  [ f ( Z 0)\ =  f ( y ) .

This completes the proof. □
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2.10K. Lemma. R  separates points o f[0,1], where R  is the common range o f  R  J  on C[0,1].

P roof of Lemma 2.10K. Suppose 1Z is dense in C[0,1]. For a contradiction, suppose that R  
does not separate points of [0,1]. Then given any two distinct points zi and z2 in [0,1], we shall 
have

A (#a7)(* i) =  V * 2 7 )(* 2) (10.24)

for all /  G C[0,1] and all A > 0. Hence, by taking the limit as A —* 0 0  in (10.24), by Lemma 
2.10J we therefore have

(P o 7 )(2 l) =  ( H f ) ( z i )  (10.25)

for all /  G C[0,1]. It suffices to consider the following three cases:

1. Zi, z2 G (0,1),

2. z\ G {0,1} and z2 G (0,1),

3. z0 — 0 and z\ — 1.

Case 1. Since ( P f f ) { y )  = f ( y )  on (0,1), the function f ( y )  = y yields the desired 
contradiction to (10.25) and hence to (10.24).

Case 2. Consider the piecewise linear function

, ,  x 1 * 2 - 2 / ,  if  2/ G [0, z2\,
/ W  =  { o ,  i f y €  [ * , ! ] .

Clearly f ( z )  is continuous and f ( z )  > 0 on [0,1]. In particular, f ( z )  > 0 on [0,z2) and 
f ( z 2) = 0. Now suppose that z\ — 0. Then

( P o f M  = [  tt(0, y ) f ( y ) dy  > 0. (10.26)
7(0,1)

Note that we only know that 7r(0, y) is non-negative (see Lemma 2.8J). However, observe that 
7r(0,0) =  ^  > 0 so that, due to the fact that 7r (*, y) is continuous, there exists a 5 > 0 such
that 7r(0, y) > 0 on [0,5) C [0,1]. Hence, 7r(0, y ) f ( y )  > 0 on [0,6 A z2). This allows us to state
strictly greater than in (10.26).

Result (10.26) together with the fact that f { z 2) = 0 gives the desired contradiction. A 
similar argument applies to the case in which z\ =  1.

Case 3. If z\ = 0 and z2 = 1 then the result in (10.25) is equivalent to

/  n - + ( 0 ,d y ) / ( y ) =  [  n - + ( l ,d  y) f (y) ,
7 (o , i )  7 (o , i )

for all /  G C[0,1]. Looking forward to Lemma 2.16F, we know that C[0,1] is measure- 
determining. As a result, here we have

r r +(o, b) = i r +(i,B),
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for all B  G B(0,1). It is enough to show that

7r(0, y) = 7r(l, y) for all y G (0,1), (10.27)

leads to a contradiction. Recalling the form of ir(x, y) given in Section 5, following some 
manipulation of the result in (10.27) we have

m i { h p ( l ) ha{y) -  ha ( l )hp{y)} = m Q{hp{y) -  ha(y)}.

This clearly implies that hp( 1) =  ha{ 1) which we know is false from Lemma 2.8J.

Remark. Considering the constant function f ( z )  — hp(l)  — ha( 1) would give an equivalent, 
but less theoretic, result.

We now have the desired contradiction in all three cases. It follows that 1Z must separate 
points of [0,1]. □

Proof of Theorem 2.101. From Definition B.4 (of Appendix B), we know that a sufficient 
condition for our honest Feller resolvent {R J  : A > 0} to be a Ray resolvent is that the 
common range 1Z — 1] of the R J  operators separates points of [0,1]. Hence, given
Lemma 2.1 OK we know that R J  is a Ray resolvent. □

2.10L. Theorem. There exists a map P f  (t  > 0) that maps C{0,1] into the space 
bB [0,1] o f bounded Borel functions on [0,1] such that fo r  f  G C[ 0,1] and z  G [0,1], 
t  H* (Pt+f ) ( Z) is right-continuous, and

p o o
/  e - xt{P+f){z )At  =  (R +J ) ( z ) ,

Jo
Pf+t = P f  P * fo r  S, t  >  0,
/  >  0 implies P f f  > 0, and P f  1 <  1 .

Proof of Theorem 2.10L. Given that Theorem 2.101 is now proved, the existence of the P f  
maps is guaranteed by the analytic part o f Ray’s Theorem of Appendix B. □

[For our example, for t > 0 and /  G C{0,1], P f f  is analytic; and the map t  i-> ( P f  f ) ( z )  
is analytic on (0, oo); but that’s for later.]

Note on the probabilistic part o f  R ay’s Theorem. This part implies that there is a right- 
continuous strong Markov process Z + with { P f } as its transition function. O f course, for 
a boundary point x, the Px distribution of Z f  has density rc(x, •). We could now prove that the 
process Z + does behave like Brownian motion inside (0,1) and always jumps in the correct 
way from the boundary points. Yet, we do not need the probabilistic part of Ray’s Theorem. 
We shall eventually prove the result we really require, namely that P f  (t > 0) is the transition 
semigroup of Z + = { Z ( r f )  : t > 0}. However, we concentrate principally on the resolvent 
{ R +x : A > 0} rather than on the semigroup { /* } .
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Connections with the PDE approach. The PDE approach makes us believe that, for /  E C[0,1],

9y{(Pt+f)(y)} + 2moai {(P+/)(0)} = 0, (10.28)
y = 0

whence, on taking Laplace transforms, we would have for g\ R ^ f ,  equation (10.2) with the 
different boundary condition

#a(0) +  2m0 |a^a (0 ) — 7r(0, z ) f ( z )  dz^j =  0, (10.29)

with an analogous boundary condition at 1. Referring back to (10.9), one can check that 
gx — Rx f  does have this property in that

p Bx( f )  +  2\ m 0Ax( f )  -  2m 0 [  7r(0 , z ) f ( z )  dz  =  0.
J[0,1]

Indeed this is exactly what equation (10.10) states. Of course, there is a corresponding result at 
1. The boundary conditions tally, which proves to be a key result o f the thesis.

A direct proof o f (10.29). We shall utilize our explicit formulae such as (10.12) later, but 
it is important to note the crucial point that (10.29) follows from (10.2) and (10.3) may be 
proved directly without complicated calculations. Because of (10.2), the desired result (10.29) 
is equivalent to

p'(0) +  mo [  ir(0,y)g"(y)dy =  0. (10.30)
Jo

Now we know that 7r(0, -) is a linear combination of h a { •) and h p ( - ) .  Moreover, since, for 
7  E {a:, p}, ±72h 1 — H h7, we have

7 2/i7 =  h" ,  rao/i" (0)  =  - h ! ^ (  0 ) ,  =  /i7 ( 1),

whence
mO72/i7(0) =  - h 7(0), m i7 2/i7(l) =  h!y( 1).

Using these facts, we may derive (10.30) via integration by parts. Lurking in the background 
are the facts that P f h y — e ~ ^  th1 and the intuitive equation (2.3). □

We may combine equations (10.2) and (10.29) to obtain, for /  E C [0,1] and A > 0, 

( R \ f ) \ Q )  +  rno{R$f)"(0) + 2 m 0 ^ f ( Q ) -  J  n ( 0 , z ) f ( z ) d z ^  =  0, 

whence we see that

for /  E C [0,1] and A > 0, we have R ^ f  E V( H )  if and only if P0+ f  = f .  (10.31)
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2.10M. Important comment. The reader may feel that we should have required (10.2) only 
when P0+ f  — f ,  and then we would have

( R t f ) (  0) =  A x{f)  whenever f ( x ) =  f  ir(x, y ) f ( y ) dy  (are {0, 1}).
Jo

But then (compare Theorem 2.4C) for some uo, a\ e R, we would have for all f  e C7[0,1],

n(0, y ) f { y ) M  +  « i [ / ( l )  -  [  n{ l , y ) f ( y )dy \ ,
Jo

and, since, as is probabilistically obvious, we do not wish R f  to have an atoms at 0 or 1, we 
want a0 = a\ — 0.

Eigenfunctions o f  R J  in L 2. Let A > 0. Suppose that /  e L 2 = L 2((0, l),L eb) is not the 
zero element and that R J  /  =  c f  for some non-zero constant c. (The possibility that c — 0 will 
be excluded later.) Think of /  as a function in C2 rather than as an equivalence class of such 
functions. The Dominated-Convergence Theorem shows that R f f  E C[0,1], whence, because 
c f  0, we have /  E C[0,1]. It is therefore clear that

P0+R + f = R t f .  (10.32)

This result is obvious away from the boundaries, and at the boundaries, (10.3) gives the desired 
result. From (10.32) we have

p 0+f  =  /•
By (10.31) it therefore follows that R f f  E T>(H) and recalling (10.2) we see that (A — 
H ) R l f  = /•  Hence,

(A -  H ) c f  =  /,
so that

H f  = (A -  c” 1) / ,  (10.33)

so that /  is an eigenfunction of H . Yet, we already know what the eigenfunctions are; namely, 
h7 and fe. We have deduced that P f  f  = f ,  which implies that

(^7> f )s — o f°r aii 7 ^ r .

Since h7 is (negative)s, it follows that

/  cannot be a multiple of h7 where 7  E T fl (0,00). (10.34)

It now suffices to show that /  must be a multiple of fe for some 6 E 0 . We achieve this by 
considering the possible cases for J2 m *-

Case 1: mo +  mi < 1. Here a  and {3 are both positive and so the desired result follows from
(10.34).

Case 2: m 0 +  m j =  1. In this case a  =  0 and (3 > 0. Once again, /  is not a multiple of hp by
(10.34). However, /  is a multiple of ha — 1. Observe that

(ha, hfyjg — (1, l ) s =  0 and ( l , hp )3 = 0 (see Lemma 2.3G ).

( R i f m  =  A X( J )  +  a0[/(0) -  /
Jo
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However, 0 G 0  so that
ha ~  fo\g=o —

which is the appropriate result.

Case 3: m 0 +  m i >  1. As in the previous case a  — 0 and (3 > 0. Again /  is not a multiple of 
hp by (10.34). Moreover, it is also clear that /  is not a multiple of ha — 1 as

(ha, ha)s =  (1, l ) a =  1 -  (m0 +  m i) < 0 .

We have therefore verified that /  is a multiple of fg for some 9 G 0 . Given that 7i f g  = —\ 62 fg, 
from (10.33) we may deduce that

c =  (A +  \ 92) 1.

Thus, for 6 G 0 ,  fe is an eigenfunction of R J  corresponding to eigenvalue (A +  I#2) -1 .

Alternative proof of Proposition 2.3R. Recall that the ‘only if’ part o f the problem is trivial. 
If  /  is of the form

f ( y )  = A  cos(9y) + B s m ( 6y),

for some constants A  and B , then it is obvious that /  G £ 2( (0 ,1), Leb). We basically ‘mimic’ 
the previous discussion. This requires that /  is an eigenfunction o f H.  Thus it is enough to 
show that

(h'y, f ) s =  0 for 7 G T /  is an eigenfunction of H.

Clearly, we can explicitly show that

W ) ( y )  =  \ f " ( y )  =  ~kQ2f (y)-

Hence, all that it remains to do is to show that /  G V(H) ,  so that the conditions in (1.1) are 
satisfied. Now,

(/i7,/)s = 0 e2(hl t f)s = 0 (h1, 2Hf)s = Q

/  h1(y)2('H.f){y) dy -  2m0(W /)(0) -  2m0/t7( l ) ( H /) ( l )  =  0.
Jo

We know that the above result is true for all 7 G T =  {a,  (3}. Hence, if  we multiply the result 
for a  by ^ ( 1), the result for (3 by ha(l),  and subtract the corresponding equations we get

f  {hp( l )ha(y) -  ha(l)hp(y)} (y)2(Hf) (y)  dy -  2mo(Hf ) (0)  {hp( 1) -  ha(l )} = 0 
Jo

o  [  tt(0, y) f " (y)  dy -  / " ( 0) =  0.
Jo

Using (10.30), we may substitute for the integral to yield the boundary condition for 0. Of 
course, due to the simple form of 7r(l, y), it is even easier to establish the analogous result at 1.

Since H f  — —\92f  and /  G V{H) ,  it follows that /  must be a multiple of fo for some 
0 G 0 . □
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2.11. R I  on the Hilbert Space L \  when mo +  mi ^  1

We write I?  for the standard L 2(0,1) space.

2.11 A. Definition. Conjecture 2.2G and our belief in the form  o f  P f  suggest that we define fo r  
real-valued functions / ,  g on (0 , 1),

( / , g ) +  =  f  ( ( I -  W +)f)(y)g(y)dy ,
J{ 0,1)

( 11.1)

where
{ W +f) (y i )  := f  W +(yu y2) f ( y 2)dy2, ( 11.2)

W +(', •) denoting the symmetric kernel

W +(y! ,y2) := m x7r(m, yi)n(x,  y2).
*€{0,1}

the ‘dual’ definition o f  the (0 ,1} x {0 ,1}-matrix W ~ as

(11.3)

( o , i )

7r(xu y)m * 2 n ( x2,y)dy. (11.4)

Intuitive interpretation. The operator W + should represent the full-winding operator

This is because for x  E {0,1} and y E (0,1), we proved in Lemma 2.8J that Pv(Zq — x) = 
m xiv(x, y) and we believe that Px{Zq e dy) = 7r(x, y)dy.  The conjectured dual interpretation 
of W~  is now clear, and this makes the first part o f the following lemma intuitively obvious.

2.1 IB. Lemma. W ~  is a substochastic 2 x 2  matrix and is stochastic i f  and only i f  m o+ m i =  1. 
Furthermore, W ~ has distinct real eigenvalues Aw and pw  which may be labelled so that 
— 1 < Aw < pw  <  and that pw  = 1 i f  and only i f  ttlq +  m i =  1.

P roof of Lem m a 2.11B. Note that W ~  is self-adjoint on L2({0, l} ,m ). We established in 
Lemma 2.8J(b) that the 7r’s are non-negative. It follows that W ~ ( x i, x 2) >  0 as desired. Thus, 
all that it remains to do is to show that

X2€{0,1}

Suppose that m 0 +  m i <  1. Now, from (11.4) we have 

S ( x 1) = W - ( x 1,0) + W - ( x 1, l )

=  /  7r(mi, y ) m O7r(0 , y)dy  +  /  n ( x 1, j/)mi7r(l,  y)dy

( W +f ) (y )  =  E v f ( Z T), where T  :=  inf{f > r Q-  : $ (i)  >  0}.

for xi  E (0,1}. (11.5)
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where the conclusions in the last line follow from Lemma 2.8J(d). Note that we get an 
equivalent result if ra0 +  m i >  1, except that it suffices to interchange the ‘less than’ symbol 
and the final ‘equals’ sign. Moreover, if mo +  m i =  1 then Lemma 2.8J(d) again makes it 
clear that we get equality throughout so yielding a strictly stochastic matrix. We now know that
(11.5) holds in all cases.

Eigenvalues o f W ~ .  We have already remarked that W~(-,  •) >  0. In fact, W'  -(•.•) >  0. 
Referring to the proof of Corollary 2.10K, we have already found that 3 5 > 0 such that 
7r(0 , 2/) >  0 on [0,5). We may establish a similar result for 7r ( l ,y)  in that 7r ( l ,y) > 0 on 
(<5, 1], where 5 < 1. This makes it trivial to show that both VF_ (0 ,0) and 1,1) are strictly 
positive.

The fact that W ~  is self-adjoint on L2 ({0, l} ,m ) allows us to deduce the fact that 
fL - ( l,0 )  >  0 is equivalent to W ~ { 0,1) >  0. Thus, it is enough to deal with only one of 
the terms.

Suppose for a contradiction that W ~ ( 0,1) =  0. Then, as the 7r’s are non-negative, we must 
have

tt(0, y)7r(l, y) =  0 for all y G (0,1).

However, given an earlier remark, this implies that

7r(l, y) =  0 for all y E (0 ,8).

Given the form of 7r in (4.1), this trivially implies ha{y) =  hp(y) on such a neighbourhood. 
This means a  = ft, which gives the desired contradiction.

We now define a, 6, c, d > 0 in the obvious way so that

W - = ( a b.\ c  a

Furthermore, we have established that W ~  is substochastic so that we may now deduce that 
a, 6, c, d < 1. As usual, we solve

det(AJ -  W~ )  = 0 
<=> A2 — A (a + d) + ad — bc = 0

2A =  (a +  d) ±  y/ (a  +  d)2 — 4(ad — be) (11-6)

Define
R  := (a +  d)2 + Abe — Aad.

Due to the fact that the entries of W ~  are strictly positive, observe that

R  =  (a — d)2 +  Abe > 0.

It follows that the underlying eigenvalues o f W ~  are indeed real and distinct. We define the 
largest such eigenvalue to be pw  and the remaining, strictly smaller, eigenvalue to be Aw.
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Firstly suppose that m 0 +  m i — 1. Then, since W  is strictly stochastic, we know that 
b =  1 — a and c = 1 — d. Substituting these facts into R  we find that

R  =  (d -}- d — 2)2.

Thus, from (11.6) we now have

2A =  ft +  d ± ( f t  +  d — 2),

so that
pw  = 1 and Xw =  (ft +  d) — 1 G (—1, 1).

The lattermost result simply follows from the fact that the entries o f W ~  lie strictly in (0,1).

Now suppose that m0 +  m j ^  1. Then, since W ~  is strictly sub-stochastic we now have 
b <  1 — ft and c < 1 — d. This gives

R  <c (ft ■+• d — 2)2,

so that in particular we have

—V R > a  + d — 2 and + V ~ R < a  + d — 2.

Using these simple facts in (11.6) this time yields

p w  <  (ft +  d) — 1 <  1, and Aw  >  (ft +  d) — 1 > —1.

Hence, we may conclude that — 1 < Aw < Hw < 1 - D

If some of the following wording seems rather curious, it is because we have to allow for 
the possibility that Aw  — 0. For x  G {0,1}, let £x =  7r(a:, •) G L 2. Then

W +f  = m o ^ / ^ o  +  m i ^ i , / ) ^ ! ,

and
W ~ ( x  u x 2) = m X2(£xlJ X2)L2.

If a, is a row eigenvector of W ~  so that (ft0 a i )W~ = (a0 a i)A, then

W +{aQ£Q-ya1£1) = A(fto^o +

So, row eigenvectors of W ~  give rise to eigenfunctions of W +. Via this correspondence, we 
get a 1-dimensional subspace L2 [respectively, L \ ] o f L 2 consisting of eigenfunctions of W + 
associated with eigenvalue p w  [respectively, Aw]- We let L2 denote the orthogonal complement 
o f +  L \  in L 2. Clearly,

and every element /  of L2 satisfies VF+/  =  0.
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Let J\,  Jr be orthogonal projections onto L 2 ,̂ L 2X, L 2 respectively. Then, for /  E L 2, we 
have, remembering that W + is self-adjoint on L 2,

f  =  J p f  + J \ f  + Jrf  (orthogonal decomposition)

and

(/> /)  + — (1 -  V>w)(Jnf, J u D l2 +  (1 — J \ / ) l 2 +  (Jrf ,  Jr f )L2- (H-7)

Note that
0 <  ( f j ) + <  2 (/, f )L2 < 2 K ( f J ) +, (11.8)

where K  — m ax { l, (1 — Aw)-1 , (1 — 9w) ~1} <  oo, a fact that turns out to be extremely 
useful.

Important note. It is essential to realize that the projections arising from the
spectral decomposition of W + on L 2, have no connection with a spectral decomposition of 
R x . Remember that R x is not self-adjoint on L 2, something reflected in the fact that Z  can 
jump out from 0 but cannot jump into 0.

Suppose for the rem ainder of this section tha t m 0+ m i ^  1. Then pw  <  1 and K  in (11.8) is 
finite. Furthermore, (-, •)+ is an inner product on L 2 defining the same topology as the standard 
topology of L 2. We write L \  for L 2 with the (•,•)+ inner product.

2.11C. Proposition. R x is compact on L 2+.

Proof of Proposition 2.11C. Let A 0. It is clear from decomposition (10.1) that R x is the 
sum of tab-^A, which is well-known to be compact on L 2, and an operator of rank 2. Hence R x 
is compact on L 2 and, due to the “same topology” comment, is therefore compact on L 2+. Let 
us examine this point in further detail.

Let f n be a bounded sequence in L 2+. By the lattermost inequality in (11.8) it can be seen that 
f n is bounded in L 2. Since R x is compact on L 2, the sequence R x f n must have a convergent 
subsequence. That is, there is a subsequence R x f n k g m L 2. Appealing to the former 
inequality in ( 11.8) ,  it now follows that

-^a f nk 9
^2+

< 2 •̂ A fnk 9 -►0.
L2

□
2.11D. Proposition. R x is self-adjoint relative to (•, •)+.

Proof of Proposition 2.11D. Again let A >  0. Since R x is a bounded operator on L \  and

Sr  := { / 6 C [ 0 , l ] : P o+/  =  /}  (11.9)

is dense in L \  (see Instructive Example 2.16J for justification of a similar result), it is enough 
to show that

for / , « £  S R, we have { R^ f ,  u) s = ( / ,  R l u ) s.
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(Note that for / ,  u G S r , we have ( /, u)s = ( /,  u )+.)

So suppose that / ,  u G S r , and write g =  R f f ,  v — R ^u . We know from (10.31) that 
g, v G V(Ti)  and that

A g — Tig — / ,  Au — =  u.

Hence, since H  is symmetric relative to (•, *)s, we have

H g , v ) s ~  ( f , v ) s = (Hg, v) s =  (g,Tiv)s =  A{g,v)s -  {g,u)s,

so that ( / ,  v)s = (g, u)s, as required. □

Spectral structure o f  P f .  We now know that on C2, P f  is a compact self-adjoint operator with 
{fe  : 0 G 0 }  as its eigenfunctions normalized to be 1 at 0; moreover,

R t h  =  (A +  i#2) - 1*  (9 6 0). (11.10)
2.1 IE . Lemma. {/^ : 6 E 0 }  w a complete orthogonal basis fo r  L 2+.

Proof of Lemma 2.1 IE . The result follows by the Spectral Theorem for compact self-adjoint 
operators (see Theorem 2.17A in Appendix 2 of this chapter). □

To tie things together, we now require the following Lemma.

2.1 IF . Lemma. 0 is not an eigenvalue o f R f .

Proof of Lemma 2.1 IF . Recall that this result simply amounts to saying that c /  0 in the 
eigenfunctions of R f  discussion. Because the maximum modulus of the eigenvalues o f a 
compact self-adjoint operator is equal to the norm of that operator (look forward to Theorem 
2.17A), we know that for p > 0, pR+  has norm at most 1 on L +. Since C [0 ,1] is dense in 
and p R+f ( y )  —> f ( y )  for /  G C [0 ,1] and y G (0,1) (refer back to Lemma 2.10J), we have 
p R ^ f  —> /  in L 2+ for /  G L \ .  If now R f f  = 0 for some /  G L2+) then, by the resolvent 
equation, p R + f  — 0 in L 2+ for all p > 0, so that /  =  0 in L 2+. Clarification. The reason we had 
to treat this differently is that we cannot directly deduce any smoothness property of an element 
/  of L 2+ from the fact that R f  f  = 0 in L 2+. □

Spectral structure o f  P f  (t > 0). For 0 G 0  and z G [0, 1], the map t i—> ( P f  fe)(z) = 
E zfe (Z t) is right-continuous and

poo

/  e~Xt(Pt+fo) ( z )dt  = (R$f e ) { z ) =  (A +  k20 2) ~ l fe{z),
Jo

whence ( P f  fe)(z) = e- 2e2tf e. We now arrive at the following extremely useful theorem.

2.11G. Theorem. For the { P f  : t >  0} semigroup we have the following spectral 
expansion

f ? f  = Y , e~¥ H T r f v i < >  (t > 0 )- ( 1 U »
0G0 \ J O i J 0 )  +
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Proof of Theorem 2.11G. From Corollary 2.17B (from Section 17, which is an Appendix to 
this chapter), for some ip G 0 , we have

f  = ^ 2  so that -W+ =  S  °6 -W+ ( 11.12)
0E©

for some constants c .̂ Due to orthogonality, the RHS o f the second equation in (11.12) is 
non-zero if  and only if  <p = 0. We therefore have

{f , fe)+  =  ce( f eJd )+, 

so that from the former result in ( 11.12) we get

(/./»>+/  = £
0€0 {fe, fe)-

fe.

From linearity we may now deduce that

{ f , f e ) + 
ife, fe)+r t f  =  £ ( 3 7 « )  =  £ e

-he2t

eee

since (P ^  fe) = e 2eHf e

eee

{ f , f e ) i  
{fe, fe)-

-fe,

□

1 0 
1

1
1 11

10
- r  1

(*o U

( P + l ) ( x ) , x £  {0 , 1} 

-  ( P + l ) ,  t  >  0

Figure 2.3: (Pt+ l)(z) for small t and mo +  mi > 1.

2.11H. Note. In fact, for /  6 L \ ,  t  i-> f  is strongly continuous over time-interval [0,00). 
The space L 2+ cannot see the difference between Pq and the identity map on functions on 
[0,1]. The space C[0,1] certainly can. Look forward to Instructive Example 2.16K which 
demonstrates this point.
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2.12. The Probabilistic Semigroup {Pt+ : t > 0} when mo +  mi ^  1

Suppose that mo +  m i ^  1. We now confirm that Pt+ =  P 4+ for £ >  0 . Let /  G C [0 ,1]. It is

immediate from (11.11) that (£, z) i-> (Pt+/) (z )  is C 1,2 on (0, oo) x [0,1]. Moreover, it is an 
easy exercise to deduce from expansion ( 11.11) that

09, -  \ 9 2) ( P f  f ) ( z )  =  0.

If we put t = — p  (so that <p G (—oo, 0)), then the previous result is equivalent to

(A» +  =  ° '

Hence, in particular, for z — 0 we have

9V {(/*/)(“)} = {(£V)(*)} z= 0

( 12.1)

( 12.2)

We know that (10.29) holds, and we may now invert the Laplace transform to show that 
(10.28) holds. Thus, putting t — —<p in (10.28), we have

=  0 .
z = 0

(12.3)

(12.4)

(12.5)

9y { ( /* / ) ( * ) }  L  -  2m °d* { (* V ) ( ° ) }  = °-

We may now substitute (12.2) into (12.3) in order to eliminate the d^ term and get 

9z {(•£!»,/)(»} J=0 + mod2 { (P ^ /)(z )}

Next, for (<p, z) G (—oo, 0] x [0,1], if  we define

F(V,z) :=  (P _ V )W >  

then, for <p < 0, (12.4) is equivalent to

F'(<p, 0) +  moF"(ip, 0) =  0.

Clearly there is a corresponding result at 1. Moreover, the result in (12.1) is exactly the PDE 
in (1.2) . We therefore know that for every (p < 0 and /  G C [0 ,1], we have G V(7i).
Moreover, given Lemma 2.10J , we know that F  has final condition

^ (0 - , y )  =  f ( y)  (y e  (0,1)).

Now, by Theorem 2.7A, F  satisfies the condition that

M t :=  F ( $ ( t A r + ) , Z ( t A T + ) )

defines a local martingale under P^ 2 (with z  G [0,1], ip < 0), indeed a bounded martingale.
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If m 0 +  m i < 1, then r f  is almost surely finite. Thus, for {ip,z) G (—oo, 0) x [0,1], by the 
Optional-Stopping Theorem we have,

F(<p, z) =  E ^ F ( $ ( 0 ) ,  Z ( 0)) =  E ^ F (< L (r0+), Z (r0+))

=  E ^ F ( 0 ,  Z f )  =  E ^ 2/ ( Z 0+),

so that, recalling (7.1), ( P l v f ) ( z )  = (P-Vf ) ( z ) .  Noting that (a.s.) Z f  G (0,1), the lattermost 
result in the above is simply the final condition for F.

Now suppose that mo +  m i >  1. Then 0 ^ 0 ,  and it is obvious from the spectral expansion 
that ( P f  f ) ( z )  —> 0 as t —> oo, uniformly in z. Hence, since $( t )  —> —oo (a.s), we have 
Mt ~ > 0 as t  —> oo (a.s.) on {tq" =  oo}. Thus, for (<p, z) G (—oo, 0) x [0,1], this time the OST 
gives,

F(ip,z)  = E ^ # ( $ ( 0 ) ,^ ( 0 ) )  =  E ^ F ( $ ( r 0+) ,Z ( r 0+))

=  E =  W ' 7, { / ( Z 0+ ); r0+ <  00}  ,

so that, again, ( P t v f ) ( z )  =  ( P t v f ) ( z ) .

2.12A. Rem arks. We do not include ip =  0 in our application of the Optional-Stopping 
Theorem since F { p , z )  is only C 1,2 on (—oo,0) x [0,1]. In addition, our 'almost surely’ 
references here clearly mean with W 'z probability 1. It can easily be seen that this is all in 
order if we recall (7.2).

One cannot overemphasize the importance o f verifying the details of the application of the 
Optional-Stopping Theorem. The next chapter will confirm this fact.

We can now forget the ‘hat’ notations, except in the case when mo +  m i =  1. Note that we 
have proved WH1 when m 0 +  m 2 f  1. However, for completeness, it now seems appropriate to 
link our probabilistic description o f P f  f  for $ ( 0) =  0 to the analytical form for P f  /  as found 
in Lemma 2.10J.

Clarification o f  $(0) =  0 situation. If  y E (0,1) then, under Fy, Tq =  0 almost surely. Then, 
for /  G C[0,1],

(■P o f ) ( y ) = Ey [/(Zo+); T+ < <x>] =  Ey [/(Zo)] =  f ( y )  = (Pq f ) (y) .

If x  G (0 ,1} then, under P1, r f  0 almost surely. Here, for /  G C[0,1], we have 

(P+f ) (x)  = E*[ f (Z+y,T+  < o o ]

=  /  Fx(Zq G dy) f ( y )  (by definition of expectation)
J o

— /  II_+(x ,d y ) f ( y )  (by Definition 2.6F)
J o

=  f  7r ( x , y ) f ( y )dy  (by Corollary 2.2C)
J o

=  ( # / ) ( * ) ■
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We may now conclude that our probabilistic situation for p  =  0 agrees with our final conditions 
for F,  as established in Lemma 2.10J.

Answering Question 2.4B. We emphasize that for t > 0, P f  : C[0,1] —> C [0 ,1]. We denote 
the norm for C[0, 1] as

Thus, for /  G P ,  where 1Z is the common range of the R J  on C[ 0,1], we have ||Pt+ /  — / | | SUp —» 
0 as 11  0. Clearly, if /  G P ,  then P0+ f  = f .

Conversely, suppose that /  G C[0,1], P0+ f  — f  and (for the purposes of contradiction) that 
/  g  71. By the Hahn-Banach Theorem, there exists a bounded linear functional i> on C[0,1] 
such that v ( f )  0 but v(g) — 0 for g G P .  However, A ( P j / )  (z) —> (P0+ / )  (z) = f ( z )  as 
A —> oo; and since (by the Riesz Representation Theorem) v  is a signed measure of finite total 
variation, the Dominated-Convergence Theorem shows that 0 =  i> (\R \f)  —> z>(/) ^  0, the 
desired contradiction. Hence,

However, for /  G C [0 ,1], for each t > 0, the spectral expansion (11.11) converges rapidly in 
the topology of C [0 ,1], so that P t+ f  is the closed linear span in C [0 ,1] of {fe  : 9 G ©}. Putting 
the pieces together, we see that for the case when m 0 +  m i ^  1, we have proved result (4 .3) 
and answered ‘Yes’ to Question 2.4B.

We now find the invariant density o f Z + when ra0 +  m i < 1.

2.12B. Corollary to Theorem 2.11G. Suppose thatrriQ + m i < 1. Then we can rewrite (11.11) 
as

ll/llsup :=  su p { |/(z ) | : z G [0 , 1]}.  

An application of Fubini’s theorem shows that, for /  G C[0 , 1],

{ R +x f - e - xtP + R t f } { z )  = f e - x’ ( P+f ) ( z ) ds ,
Jo

whence
ll-R t/ -  I U  <  ill/llsup

{ /  €  C [0 ,1] : IIP t f  ~  / 1|sup -  0} =  { /  6 C [0 ,1] : P0+/  =  /}
=  { /  €  C [0 ,1] : </i7, f ) ,  =  0, 7  6 r} .

(12.6)

where

ri{y)f{y) dy, g(y) (12.7)

This identifies rj as being the invariant probability density fo r  { P f  }.

Proof of Corollary 2.12B. This is simply a matter of noticing that 0 G 0  when mo +  m i < 1.
□
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2.12C. Corollary. As t —► oo, the following convergence is uniform in z:

A ( / )  :=  fo r]{w)f{w)&w i f  m 0 +  m xi f  m 0 +  m i <  1, 
i f  mo +  m i >  1.

( 12.8)

Proof of Corollary 2.12C. The result is trivial from Corollary 2.12B. □
A weaker version o f the above result may be deduced directly from our definition in 2.6G. 

However, this lacks the benefit o f uniform convergence and it is this property that allows us to 
interchange limit and integral without fuss.

Proof of WH3 when mo +  m i ^  1. Recall Lemma 2.8K in Section 8. I f  mo +  m i < 1, given 
Corollary 2.12C, elementary properties of limits yields

Recalling Corollary B.7 of Appendix B, the following result simply verifies the long-term 
behaviour o f P f .

2.12D. Lemma. I f  m 0 -f m x < 1, we have Jj0 ^ AAa(0, w)  dw = 1, as required, and also 
lim AAa(0, w) = rj{w), tallying with the invariant density role o f  7].

Proof of Lemma 2.12D. Multiplying both sides of (10.12) by p and recalling that \ p 2 = A, we 
have

lim ( P f  f ) ( y )  lim (Pt h) ( y )dy
■ 1
= A  ( / )  = 0

A similar argument holds when m 0 +  m i > 1. □

Ae(p)AA(0, w)  =  ph\{w) -  m 0p/ij,(0)7r(0, w) -  m ip 7r ( l, w).  (12.9)

Integrating both sides o f this equation w.r.t. w,  we get

' v '
= s i  n h  ( p ) — m  i  p  c o s h  ( p ) + m  1 p

-mophUO)  /  7r(0, w )dw  —m \ p  / 7r(l,u;)diy
y [o,i]   ̂ J  [o,i]  ^

w —m i p

=i =i
=  sinh(p) — m ipcosh(p) — mop/iJ,(0)

as desired. Note that we have used Lemma 2.8J and the explicit form of hP from Section 10.
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We now need to deduce that lim AA^(0, w) — rj(w), where 77 is defined in (12.7). Now A j  0
A10

clearly implies p j  0. Recalling (12.9), it is therefore enough to prove the following results

lim/i]*(w) =  lim /i“(0) =  1, ( 12.10)
p | 0   ̂ p | 0

P 1lim —-  =   ----   -. ( 12.11)
Pio e(p) 1 —(m0 +  m i)

Result (12.10) is obvious from the definition of hfp. For the result in (12.11), observe that

P P
e(p) (1 +  m 0m ip2) sinh(p) — p(m 0 +  m  1) cosh(p)

1

^  sinh(p) — (mo +  m i) cosh(p)
( 12.12)

It is also clear that 

Furthermore,

lim{cosh(/9)} =  1 and lim{psinh(p)} =  0. (12.13)
Pio  / 4 0

( sinh(p) 1 d
lim <  > =  —  sinhfa;)
Pto ( p J dx =  1. (12.14)

x —0

Using results (12.14) and (12.13) in (12.12), we get the desired result. □

2.12E. Lemma. The probabilistic semigroup { P f  : t >  0} satisfies P f  fe — e 2 d2tf 0 fo r  
6 e  9 .

Proof of Lemma 2.12E. As a consequence of Theorem 2.7A (a), we already know that

t exp(+ \0 2<&t)fo{Zt) (0 E 0 ) (12.15)

defines a local martingale bounded on [0, r f ]  for t >  0.

Now, if rt+ =  00 (in which case m 0 + m i  >  1 or if t = 0 then 0 or 1), then $ t —> —00
(a.s.) as t —> 00 by the long-term behaviour of <£. Thus exp{+§02$ ( r t+)} =  0 on { r f  = 00}.

Next recall that ) =  t when r f+ < 00 and $(0) =  0. Since r f  is a valid stopping time,
we can legitimately apply the Optional-Stopping Theorem to get

E* [exp{+i(?2<I>(rt+)}/(,(Z(+); r+ < oo] = W [exp{+i02i}/<,(Z+); r+ < oo]
= W [exp{+i02$(O)}/e(Zo)] .
=  E* [f„(Z0)]

= /«(*)

In particular, we have

E z [exp{+^92t } f e ( Z f ) ; T f  <  00] =  f e(z) 

<£> Ez [fe(Z f ) \T+ < 00] =  exp{ - \ 62t } f e(z)

^  (p t+fe)(z ) = e x p { - ± 62t } f e(z).

□
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2.12F. R em ark. On its own, Lemma 2.12E is not good enough, because we do not know a 
priori that the answer to Question 2.4B is ‘Yes’.

2.13. The Case when trq +  m\ =  1

Suppose now that m 0 +  m i = 1. This ‘balanced’ case is the most interesting. For example, we
might expect our generalized eigenfunction k from (3.16) to feature in an important way in the 
Probability. This is well illustrated by the fact that if  mo =  m i =  | ,  then the (P t+} semigroup 
has invariant density 6(z — z2).

In the notation of Section 12, p w  — 1 and L j is the space [1] spanned by the vector 1.

The quotient space L+. We explain the idea that L 2+ will denote the quotient space L 2/[ 1] 
associated with the bilinear form (•,•)+ defined in Section 11. An element o f L 2+ is a coset

/  T  [1] :=  { /  +  c l  : c G R}.

C rucial Fact. For this situation, since 1 — p w  =  0, it is important to observe that the 
term (J^ /,  J^ f ) L 2 — (J{i]/> J[i}I) l2 vanishes in (11.7). However, this is not necessarily the 
case for the corresponding term in the L 2 norm. With this fact in mind, choosing /  so that 
(</[i]/, J[i]f)L2 — 0 will guarantee the ‘norm pinching’ result (analogous to (11.8)) for our 
situation. In particular, for appropriate /  we have

< /,/> +  < 2 ( f J ) v < 2 K ( f J ) +i (13.1)

where K  --- max {1, (1 — Aw)-1 } <  oo.

We define (unambiguously)

ci( /i  +  [1]) +  c2(/2 + [1]) := (ci/i +  C2/ 2 ) +  [1].

Because (1, g)+ — ( ( /  — W +) 1, g)Li =  0 for all g G L 2, we may also unambiguously define

</ +  [ l U + [ l ] ) + :=  ( f , g ) +. (13.2)

Suppose that {g,g)+ = 0, so (g,g)L2 = (W +g,g)L2. Now,

W +g = J {1]g +  Xw Jxg +  0 Jrg, 

and since each J  is self-adjoint with J 2 =  J ,  we have {g,Jg)L2 = 11*̂ 011 £2, whence 

M b  = (9 ,q ) l2 = ( g , w +g)L2 = \\J[i]g\\2L2 +  |Aw | | |^ | |£ 2

 ̂ \\J[i]9\\b + \\J xg\\b  + \\Jr9\\b = \\g\\b>
so that since |Aw| <  1, we have J \g  — 0 = Jrg, and so g E [1]. It is clear now that (•,•) + 
defines an inner product on L \ .  If  ( f n +  [1]) is a Cauchy sequence for this product, we may 
choose the representatives f n so that J[i]/n =  0. Then (f n) is Cauchy in L 2 and so, for some
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f  e L 2, we have f n -> / ,  and now f n +  [1] -> /  +  [1] in L \ .  Hence, (L+, (•, •)+) is a proper 
Hilbert space.

Since P f l  =  1, we may unambiguously define

A+(/+[l]) == (A+/) + [l], AJ(/ + [1]) := ( # / )  + [!]. 03.3)
We may now transfer all of the arguments of Section 11 to show that in L \ ,  we have

P H f + [1]) = E  *-¥HT T 7 T -h  + W (* > °)> (13-4)
0G0+ \J 0 , J 9 ) +

so that

Pt+f  =  Y , e~¥H T r f r f < >  (* > o), (i3.5)
0G0+ {Jej9)+

for some constant at ( f ) .  We now settle some points concerning the claim just made.

2.13A. Proposition. R J  is compact on L+.

Proof of Proposition 2.13 A. As expected, this is similar to the proof of Proposition 2.11C, but 
with a few key observations. Let (f n +  [1]) be a bounded sequence in the ‘blinkered’ space 
L 2+. Then we may shrewdly choose representatives so that J[i]fn =  0 for each n. By the 
lattermost inequality in (13.1) it can be seen that f n is bounded in L 2. However, from the proof 
of Proposition 2.11C , we know that R J  is compact on L2, so that the sequence R { f n must 
have a convergent subsequence. That is, there is a subsequence R x f n k —> g in L 2. Appealing 
to the former inequality in (13.1), it now follows that

( f n k +  I1]) -  (9 +  [1]) < 2 R \ f n k ~  9 -> 0.
L2

□
2.13B. Proposition. is self-adjoint on L \ .

Proof of Proposition 2.13B. The proof follows by identical arguments to those given in 
Proposition 2.1 ID. Due to the definitions given in (13.2) and (13.3) , R ^  is a bounded operator 
on L 2+ and S r  (as defined in (11.9)) is dense in L 2+. □

It is important to observe that our generalized eigenfunction k satisfies

(k, l ) s -  2(m0m i -  ±) < 0 ,

so that P f  k f  k. The expression (momi — f ) will keep appearing.

Assume that /  e  C2 and that

R ^ f  = c f  -f 61 for some real constants 0 and b.
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Since c ^  0, we have successively, /  E C [0 ,1], P0+ /  =  /» /  € P ( f t )  and 

(A — f t ) ( c /  +  61) =  / ,  whence e f t /  =  (cA — 1 ) /  +  6A1.

If  6 7̂  0, the assumption that cA =  1 leads to a contradiction because P0+ k ^  k. Hence, 

f t ( /  — a l )  =  (A — c_1) ( /  — a l )  where a = b \ / (cA — 1)

(with a =  0 if  6 =  0); and now we are on familiar ground.

2.13C. Lem m a. 0 is not an eigenvalue o f  R J  on L 2+.

Proof of Lem m a 2.13C. We can do this by an obvious modification o f the argument for the
corresponding result in Lemma 2.1 IF. □

The proper spectral expansion. Equation (13.4) misses the key information about the
invariant measure of { P f }. For instance, the form

P + f  =  s in (t) l +  Y ,  e~¥ 2‘ H - f \ + ( 13-6)
ee@+ (/«•*>+

would agree with (13.4). However, the desired result reads:

Pt+f  = A ( / ) l  +  e - ^ ‘ ({ ’/ / + h  (13.7)

where

H f )  =  [  v ( y ) f ( y ) d y ,

and
' (0 ,1)

/ a =  k W l hM  -  hp(0)] +  M 0) -  h0(l)]k(y)
2 ( | -  m 0mi)[hfi(l) -  hp(0)]

□
2.13D. R em ark. Due to (13.6), (13.7) is merely a desired result and so it is not yet proved. We 
now appeal to probabilistic coupling to resolve the issue.

Let [ Z ^ +] and { z f ^ +} be independent strong Markov processes each with the transition 
semigroup { P f }. Let IP denote the law of each of Z ^ + and Z ^ + started at z, and let p(2l>22) 
denote the (product) law of { ( Z ^ +, Z ^ +)} started at (z \ , zf ) .  Let

a  := inf ( t : Z \1>+ = Z , f ]f

2.13E. Theorem . Suppose m 0 +  m i =  1. For f  E C [0 ,1], there exists a constant 
c+(f) ,  independent o f  z, such that ( P f  f ) ( z )  —► c+(/) , uniformly in z, as t —> oo.

Recall that we already know the result when mo +  m i f  1 in Corollary 2.12C. In order to 
prove the above Theorem, it suffices to prove the following Lemmas.
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2.13F. Lemma. We have ^ zl'Z2\ a  < oo) =  1 fo r  all Zi , z2 E [0,1].

Proof of Lemma 2.13F.

Technical note. For i E {1,2}, we know that Z ^ + is strong Markov relative to the filtration 
. Due to independence, we therefore know that Z ^ + is strong Markov relative to the

filtration x and hence relative to x ^ 3~^+ . It follows that the joint process
{(Z(1)+, Z ^ +)} is strong Markov relative to Qt :=  x ^ 2̂ + . In particular, given our
definition o f <r, we see that <r is now a stopping time relative to Qt.

For this section it is convenient to temporarily drop any previous definitions of 77 and £. This 
is done so that our notation is consistent with that given in III.9 o f Rogers & Williams [24].

Let Ji and J2 be disjoint compact subintervals of (0,1) each with non-empty interior. The 
significance of these definitions is clear if  one considers one o f the boundaries as a starting 
point. I  will denote the familiar indictor function. For j  E {1,2}, define the events

By a similar argument to that given in Appendix C, we may prove that there exist ti > 0 and 
771 >  0 such that for j  =  1, 2,

(Of course, any t\ > 0 will provide a suitable 771.) In a similar way, we may justify that there 
exist t2 > 0 and 772 > 0 such that for j  — 1, 2,

Recalling that 9tlrj — 6tl o 77 and that 9tl ‘shifts paths’ through time ti,  we may now deduce that

Ej = { z g ) + e J 3- j ; Z P + e ( p , l )  for 0 <  r  <  1 , 

Fj — | £ J$-j\ £ (0, 1) for t\ < r < t\ +  

(13.9)

in f P {z)(Ej) > 772. (13.10)

(Of course, any t2 > 0 will provide a suitable rj2.) Now let

QtiVj I  Fj, so that 9j Fj}'

In particular, we now have

(13.11)

From Theorem 9.4 of III.9 of Rogers & Williams [24], we have

(13.12)
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Given (13.12) and (13.11) we now have

>772 b y  ( 1 3 . 1 0 )

=  r)2 FZ( Z ^ )+ £ Jj) > 771772 (by (13.9)).

Thus, we have deduced that there exist tj > 0 and rjj > 0 such that for j  =  1,2,

r ( 4 (f) + e  Jfi Fj)  >77!%. (13.13)

Z+ Z+

0

Figure 2.4: Examples of the events { z [ ^ + £ Figure 2.5: Examples of the events { Z ^ + e 
Jj)  for j  =  1,2. Jj] Fj)  for j  = 1, 2.

Due to independence of the underlying processes, we have

P (21’*2)(<t <  00) >  FZ' ( Z ^ )+ £  J i; F1)FZ2( Z ^ )+ £  J 2; F 2), (13.14)

for all z i ,Z2 € [0,1]. As a result of (13.13), this implies that

p(Zl,Z2)(<T <  ti + i 2) >  :=  77J772 for all z i ,z 2,

which is equivalent to

p  {*UZ2)(& > t 1+ t 2) < l - 5 o  for all zl5z2. (13.15)

We are now in a position to prove that

P^>^)(«j >  n( t1 -ht2)) < ( l - 60)n for all z u z2, a n d a l ln e N .  (13.16)

Proof o f  (13.16). The proof follows by mathematical induction. From (13.15) we know that 
(13.16) holds when n  =  1. Once again we refresh our definitions 77 and £ so that, for k  >  1,

£ = I{a>k(ti+t2)} 77 I{cr>ti+t2}-

This time 0k(ti+t2) represents a time shift o f k(t \  + 12). It now follows that
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6k(ti+t2)V is the event that the processes Z ^ + and Z ^ + do not collide between
k{t\ T-tf) and (k +  l)( ti +  tf).

Now suppose that (13.16) holds for k e N. It suffices to show that it therefore holds for k +  1. 
Now (13.12) clearly holds under the product law P ^ 1-*2). Thus, we may apply (13.12) under 
our ‘new’ definitions to get

p(zi,z2) p  >  (fc -f- l ) ( t i  -j- £2)) — p(Zl,Z2̂  (<7 >  (k +  1)(U +  tf)', d  >  k(t \  +  t f ))

~ (7 ^ Jr 7-(2)+ \
£ E  fc(tl+t2)’ H t \ + t 2 )  Tj

~ 7(2)+ \
£ p^fc(ti+t2)’Zfc(ti+t2)J (<7 >  +  ^2)

^ ^  s .
<(l-ia) b y  ( 1 3 . 1 5 )

< (1 -  «50)lP(zi'"2)(d > k ( t j +  t 2) )  < (1 -  <S0)

< ( 1 — <5o)fc a s  ( 1 3 . 1 6 )  h o l d s  f o r / c

which is exactly the desired result.

Using (13.16) the (downward) Monotone Convergence Theorem (for sets) yields

p ( z i , Z 2 )  p  =  o o )  <  l i m  _  £ o ) n  =  Q  ^  p ( z 1 > Z 2 )  <  o o )  =  l

k+1

□
2.13G. Lemma. The difference ( P f  f ) ( z i )  — ( P f  f f f z f )  tends to 0 uniformly in (Z1.Z2) as 
t  —■> 00. In addition, fo r  0 < t < u ,

sup (Pt+f ) ( z )  > sup (P+f) ( z )  >  inf(P+f){z)  > in f(Pt+f ) (z ) .
z z z  z

Proof of Lemma 2.13G. Given Lemma 2.13F, define

W t : = \ z r  i f t > a .

We now assume that W  has the same p (21,22i law as Z ^ +. We have

( P + / ) ( Zl) -  (Pt+f ) ( z 2) = E « [ / ( ^ (1)+)] -  E l2[/(Z<2)+)]

=  E ^ '« ) [ / ( Z t(1,+)] -  E<22-22> [/(4 <2)+)] (by independence)

=  E i2l,22'l[/(M /)] — E (22,22*[/(Z(<2i+)] (by our initial assumption)

=  E<2I'22>[/()yt) -  / ( Z (<2)+); t  <  d] (by definition of W)

Thus we may initially deduce that, for all z\, z2, we have

|( P + / ) ( Zl) -  (Pt+f)(.z2) I <  211/11 P<22'22>(f < a).
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Moreover, given (13.16) in the proof of Lemma 2.13F, we have the much stronger result, that
is, for t > n(t i  +  t 2),

\(Pt+f)(z0 -  { f t D W i I < 2II/II < a ) <  2 ||/||(i -  So)",

since {a > t} C {a > n (t\ +  t 2)}. Such a <50 works for all z i , z 2, so that the difference must 
tend to zero uniformly. Simply observe that, for all z  G [0,1], we have

(■P«+/) (^ )  =  (P u - t P t f ) i z ) <  sup ( P f f ) ( z )  (P+_tl)(z ) = sup{Pt+f ) ( z ) .
Z ^ V ' ' ^  z

=  1

Hence, as the above result is true for all z  we have,

sup (Pt+f ) ( z )  > sup (P+f ) ( z )  > in f(P + /)(z ) . (13.17)
Z Z Z

By a similar argument, we also have

( P : f ) ( z )  =  { P t tP +f ) ( z )  > in f( P* f ) ( z )  (P:_t l)(z )  = in f(Pt+f ) ( z ) ,
z  C  s  z

= 1

which is again true for all 2 G [0,1]. We may therefore deduce that

in f(P + /)(z )  >  inf(Pt+ f ) ( z ) ,
z z

so that, together with (13.17) we have the desired result. □

Proof of Theorem 2.13E. Given Lemmas 2.13F and 2.13G the desired result is now obvious. 
By monotonicity we may deduce that

sup{Pt+f ) ( z )  j  S and in f(P + /)(^ )  T i ,

so that, because of Lemma 2.13G, we must now have, for all z,

( P f  f ) ( z )  —* s = i, as t —» 00.

□
O f course, we could have established a similar result to Theorem 2.13E for the 

corresponding P f  situation. However, there is no need to! In fact, referring to Lemma 2.8K 
we know exactly what the constant is. In particular, as the underlying convergence is again 
uniform, we now have

lim (P + / ,  P ~ h) a =  c+(f)c~{h)(  1, l ) s
t—> 00

-  c+(f)c~(h)[  1 -  (ra0 +  mi)] -  0

We have therefore proved WH3 for the case in which mo +  m i =  1.

The following result will allow us to confirm that c+( f )  =  A( /) ,  that is, the explicit form 
of the constant for the P f  f  case is A ( / ) ,  where 77 is as in (13.8).
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2.13H. Lemma. I f  mo +  m i =  1, we have Jj01j AA^O,?*;) dw — 1, as required, and also 
lim AAa(0, w ) dw  =  77(w), tallying with the invariant density role o f  77 in (13.8).

Proof of Lemma 2.13H. The fact that JJ0 ^ AA^O, w) dw =  1 can be deduced an identical 
argument to that given in the proof of Lemma 2.12D of the previous section. Referring to the 
remaining arguments given in that Lemma, it suffices to show that

lim AAa(0, w ) = lim — {h\{w) — mo/^(0)7r(0, w) — mi7r(l, w ) \  =  r)(w). (13.18)
A|o pio e(p) H H

However, since limp| 0 e(p) — 0 when mo +  m i =  1, we find we are faced with an indeterminate 
form. We consequently appeal to L’Hopitals rule to tackle the limit in (13.18). Define

P [ĥ p{w) — m o/ip(0)7r(0,w) — m 17r(l,u;)} := pL
<P) 1 y ' v ’ ' V ’ ’ c W

Then elementary calculus shows that

dp{pL)  =  hl(w)  +  p dp{h?p(w)} -  m 0tt(0, w )  { ^ (0 )  +  p dp{hj> (0)}} -  mi7r(l, w) 
e'(p) mom ip2 cosh(p) +  (2momi — l)psinh(p)

If we divide both the numerator and the denominator of the above equation by p2, and examine 
the consequent limit as p j  0, we once again get an indeterminate form. Appealing to L’Hopitals 
rule once more, we now have

d2P{pL}  =  2dp{h!f,(w)} +  p d2p{h*(w)} -  m 0tt(0, w ) {2dp{ ^ (0 )}  +  p dg{fc»(Q)}} 
e"(p) [:m 0m i(p 2 +  2) -  1] sinh(p) +  [(4m0m i -  1 )p\ cosh(p)

(13.19)
In order to deal with the appropriate limit, this time it is sufficient to divide both the denominator 
and numerator of the above by p. It is a trivial exercise to show that

e"(p) / x /lim  =  6m0m i — 2 — (—3)2 Q — m 0m i ) , (13.20)
p i  0  p

where the significance o f the given factorization will soon become clear. Since mo +  m i =  1, 
we know that a  =  0 so that 7r(0, w ) simplifies to the form

m  n M 1) -  hp(y)7 T { 0 , W)  =  —^ — r -r -^  7 .
m 0{hp( 1) -  1}

We therefore have

d2P{PL ) _  ( M 1) -  !} £(p>w) + {hp(y) -  M l ) }  f  (p» °)
P M !) “  1

where
„   ̂ 2 d  P{h\{w)}
£{p, w) = ---------- -̂------- +  dp{hUw)}.

(13.21)
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Recalling the form of in (3.16) and that m i =  1 — m 0, one may easily show that

lim £(p,w) =  (—3){A:(1) -  k(w)},  (13.22)
p i  o

so that, in particular, we have
lim £(p,0) =  (-3 )fc(l). (13.23)
p [ 0

We may now utilize (13.22) and (13.23) in working out the appropriate limit o f the terms in
(13.21). We accordingly have

iim d24 pLi -  (-3) ((Mi/) - Mi)} M) + (M1) -!} [*(i) - *H1)
p i o  p hp(l) -  1

=  ( - 3 )  ({h/)(y) -  1} fc(l) +  {1 -  M l ) }  fcM )

M*) -  1 (13.24)

Noting that hp(0) =  1, we may combine results (13.20) and (13.24) to get the desired result in 
(13.18), where rj is of the form given in (13.8). □

Verification o f  (13.7). Given Corollary B.7, Theorem 2.13E and Lemma 2.13H allow us to 
confirm that A ( / )  =  c+(f) .  It should be noted that (13.7) may be deduced directly from (13.5) 
without Theorem 2.13E. Noting that P f  fe = e~^e2ufe and P f l  = 1 , we may apply P f  to 
both sides of (13.5) to get

p t t + u ) f  =  + a ‘ ( / ) 1  (i > 0 )' ( * 3 -2 5 )

for some constant at ( f) .  Allowing u —> oo shows that P + /  =  at{f) .  This result, together with 
Lemma 2.13H, verifies (13.7).

In light of the above, for mo +  m i =  1, we may now accompany (12.8) with the result

(■Pt+f )(z) A( / )  =  /  r)(w)f(w)dw,
Jo

uniformly in z  and 77 is given in (13.8).

Proof that P f  — P f  can now proceed as for the ‘unbalanced’ case. Of course, we then have 
result (4.3) and also WH1 for the case m 0 +  mi =  1.

2.14. The Kolmogorov Forward Equation and Riccati Equation

We return to the case o f  general mo, mi > 0.

The Kolmogorov forward equation for the transition density p t {•■>•) for { P f  : t > 0} 
relative to Lebesgue measure on (0,1) takes the form:

(dt -  \ d 2y)p+(z,y) =  i  {dwp+ (z,w )}  |w=()7r(0,y) -  |  {dwp f { z ,w ) }  |w=1tt(1 ,y), (14.1)
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and we have the interpretation

(14.2)

where N 0(t) is the number of jumps out from 0 made by {ZJ~ : 0 < s < t j .

We expect equation (14.1) from integration by parts. Compare, for example, equation (V.38.11) 
in Volume 2 o f Rogers & Williams [24].

Let us understand how intuition suggests (14.2). Let e be a small number. Then the 
expectation o f the time spent in space-interval (0, e) by a Brownian motion on R started at e 
before it hits 0 has expectation exactly e2. We therefore believe that for Z +,

and the meaning of equation (14.2) is clear.

The secret o f dealing effectively with the forward equation is to begin by verifying that the 
following Riccati equation holds for x  G {0,1} and y G (0,1):

In Chapter 4 we comment on the existence of non-minimal non-negative solutions and

By using the above two equations and linearity, we can show that, with A \(0 ,y )  as at 
(10.12), we have

and inversion of the Laplace transform (at least formally) yields (14.1) with z  = 0. One has to 
remember Lemma 2 .10C if  one wishes to compare (14.3) with A times (14.5).

E zN 0(t) «  e 2Ez{Time spent by Z + in (0, e) during time-interval (0, t]}

Now, for s >  0, (zj 0) =  0, so that

p+{z,r)  »  r { d wp + {z ,w )} \w=(i,

and that, when ra0 +  m i <  1, the ‘invariant-density’ equation:

-kdyV iy )  =  \d wy{w)\w^ T T ^ ,y )  -  \d wr){w)\w=1Ti{l,y) (14.4)

holds.

In fact, 7r is the minimal non-negative solution of (14.3) subject to conditions

7r(x, •) G C 2[0,1], 7r(0,0) =  m ^1, 7r(0,1) =  0 =  7r(l, 0), 7r(l, 1) =  mj"1.

corresponding { P f } when m 0 +  m i < 1.

XAx{0, y) -  |<9^a(0 , y) -  tt(0, y)

= h { ^ a ( 0 ,  w )} |^=o7r(0, y) -  \ R A a(0, u;)} |w=1tt(1, y)\

(14.5)
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How does the forward equation look from the perspective o f  Spectral Theory? By the spectral 
expansion,

~-d2t
P t(z ,  y ) = U O M V )  +  E„6e+ n4 ~

e 2 fo{0)fe (z) _  „  _ / i  e 2 M V M * 1)-  TO07r(0, y) E 9€e+ 6 (/,./,>; W -  m l7r(1>3/)Ei>ee +

2.14 A. Proposition. TTze Kolmogorov forward equation in (14.1) can be deduced rigorously 
from this expansion, together with (14.3) and (14.4).

Proof of Proposition 2.14A. From (14.6) we have 

(d t - \ d 2y) p t ( z , y ) = - \ d l { q ( y ) } I Q(0) +  ^  { - i 0 2f e{y) }e )

eee+ ^ S' f s ’+ eee+ *>+

(-j \ f 1̂ 2̂  /I\'ie~2d tfo(.z) ,1 fl2f /-n M e~2° tfo( )̂fe( )̂ -  m i7 r ( l ,y )  2 ^  { “ i#  / g( l ) }  . . +  *m o0  {tt(0 , 2/)}  ^   / f  fN--------
0G0+ -W + 0G0+ W  +

i i  «2r /1 m V' e _ ^  t f e W f e ( z )+  ^m i5  {7r(l,j/)}  2 ^  ----- 77 FT •
0G0+ M  +

Next, for x  G {0,1}, let
cy =  ^ 9Hfe{x)fe{z)

X - £ f + ( f e . f e h  •

Recall that fg e  V{TL). Thus, using (14.3) and considering the obvious cancellation, we now 
have

( d t - \ d 2y)p t ( z , y )  =  [ i d yTi(y)\y=o7r(0,y) +  ±dyri(y)\i=1i r ( l , y ) } l e (0)

- ^ ( 0 . 3 / )  5 3  mo{~i^MO)}e,1 {‘’f  — - n~ ( l , y )  5 3  m i { - ^ 2 / a ( l ) }
'-----------------  ' ( /e , J e } +  Q e  N---------- v---------- ' \/(9, / 0/+

*e0+ =-/i(v)|w=o 0G0+ =/i(y)|tf=i
+  m 0{ —±<9™7r(0, w) |^=o7r(0, j/) +  \dwnf), w) |w=17r(l, 2/)}50 

+  m i { - i ^ 7 r ( 0 ,  w)  |w=o7r(0,2/) +  £ ^ ( 0 , 1 )  ^ ^ ( 1 ,  y ) } S i .

Rearranging the above we have

( d t -  h d l ) P t ( z >v) =  C'O7r(0,2/) +  Cfi7r(l,y ),
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where

-  77101̂ ( 0 ,^ ) 1 ^ 5 0  -  mi±dwTr(l,w)\w=QSi,

6>G0+
+  7770̂ 5^ 77(0, 7̂ ) |1£,_15 0 +  7771̂ 77(1, w) |t£/=15i.

By comparison with (14.1), in order for things to tally we need

C0 = \ {dwpt {z,w)}  |w=0, and Ci = {dwpt(z ,w )}  |^= r

However, by differentiating (14.6) with respect to y, it is clear that we have exactly what we 
want. □

2.14B. Note. The fact that the left-hand side of (2.3) tends to 0 as t —> oo has become irrelevant. 
The result may trivially be deduced from the spectral expansion.

2.15. Traces and Factorizations

2.15A. Lemma. For t > 0,

Integrating both sides of (15.3) with respect to w over [0,1], using WH5* (which is now proved,

(15.2)

(15.1)

Proof of Lem ma 2.15A. From (14.6) with z  = w, we have

fe W fe (w )
(15.3)
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of course), we now have

f 1 f 1 e~2°2t f 1J  p t ( w ,w ) d w  -  70 (O) j  r}(w )dw +  X ^  J fe(w)2 dw
060+

=i
,-he2tE e~zd * f

77— f t -  m 0f e(0) / tt(0, w ) fe{w) dw
060+  ( / 0 ’ / e ) +

= f e (  0 )

X I  77— FT- m i/0 (1) /  n ( l ,w ) fe (w )  dw 
\ / 0> / 0/ + 7o

=/«(!)

— -02t ( pi
=  70(°) +  X  2y ^ + | y o / ^ H 2 -  m ofe(0)2 -  m i /0( l ) 2|

=  ^e(O) +  X  { f  f e)+ (fd ' M +
0 e e +  ' • / 0 ’ ■/ 0 /  +

=  ^ e - ^ 2‘.
0 e 0

Remarks: Note that 0 G © if mo +  m i  <  1, and we have already established 77 as the invariant 
probability density for this case. However, if  mo +  rti\ > 1 then 0 ^  0  (so © =  0 +) and so 
7©(0) =  0. This consequently takes care of the fact that there is no invariant probability density 
when m 0 +  mi > 1.

It also suffices to confirm that, for t > 0,

T 2  p r ( x <{x}) = T 2 e~ ^ 2t-
i g { o , i }  7 e r

Recall from Lemma 2.8H that we have already deduced that

E z [h7{Z f)]  =  e - l̂ 2th7(z) fo r7  € r  =  {a,/?}.

From the definition o f expectation, we therefore have

FZ{Z~ =  0)/i7(0) +  FZ(Z~ = l)/i7(l)  =  e ~ ^ 2% ( z ) .  (15.4)

In particular, taking z = 0 and z — 1 respectively in (15.4) and noting that /i7(0) =  1, we have

P ° (Z f =  0) +  P°(Zt-  = l )h 7(l)  =

P \ Z f  =  0) +  P \ Z t  =  l) /t7(l)  =  e - ^ Hh7{ 1).

Now each of the above results is true fo r  all 7 £  {<+/?}■ Hence, we may solve the resulting
equations simultaneously to get

A h P ° (Z f  =  0) =  hg(l)e~sa2t -  ha( l ) e ~ ^ 2\  (15.5)

A h F \ Z f  =  1) =  hff( \ ) e ~ ^ H -  K { \ ) e ~ ^ aH, (15.6)
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where A h  — hp( 1) — ha( 1). Noting that Fx(Zt = x) = Pt (x, {z}) and A h  ^  0, we may add 
equations (15.5) and (15.6) to yield the desired result. □

One of Jacobi’s theta-function formulae, this one known to Gauss, states that

(2 n )2
^ e x p ( - i n 27r2£) =  2 ^ ^ L = e x p  j
^  ^  v 27rt ^ 21

(15.7)

This is the trace formula for Brownian motion on a circle of perimeter 2, the transition density 
function of which (relative to Lebesgue measure) is symmetric. The left-hand side of (15.7) 
reflects the fact that the infinitesimal generator \D 2 has eigenvalues with corresponding
eigenfunctions e±m7ruj. The right-hand side reflects the fact that Brownian motion on M is shift- 
invariant and that the circle is R /(2Z ). The sum on the right-hand side is the appropriate 
p f TC(w,w)  (obvious notation!) for every w, and the 2 multiplying the sum is the perimeter 
length. Taking Laplace transforms with parameter \  — \p 2 shows that equation (15.7) is 
equivalent to

n£  Z

the second equality being trivial. The equality of the ‘extreme’ terms is standard Complex 
Analysis; and Jacobi’s formula follows. Euler knew (15.8) in the form

sinh p — p J J  ( 1 +
71=1

n27r2
(15.9)

(To see the equivalence, simply take In’s and differentiate w.r.t. p.)

This makes it plausible that we can crosscheck (15.1) starting from the obvious predictions 
(with the notation T+ :=  T fl (0, oo)):

if m 0 +  m i ^  1,

\P£(P) =  { l - ^ o  + mOjip2 ! Y [  (1 +  772)
I 0ee+ v ^  '

r s  . 05-10)

if mo +  m i =  1,

1 pe(p) =  2 (m0m i -  §) ( ip 2) 2 ^1 -  |  f j  ( (15.11)

The products certainly converge for p G C and have the correct zeros. To make the Complex 
Analysis rigorous, more is needed.

2.15B. Verification of the product formulae.

We use the Weierstrass-Hadamard Factorization Theorem (see Titchmarsh [25]) to prove 
the formulae by Complex Analysis.
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Suppose m 0 +  m i /  1. Recall that

e(p) =  (1 +  m om ip2) sinh(p) — (mo +  m i)pcosh(p).

It follows that is an integral function of order 1 with zeros ± 7  (7 G T+) and ± i9 (6 G 0+ ).
The Weierstrass-Hadamard Theorem gives us the following factorization

£(£) =  eQV>P(j>),
P

where Q(p) = qo +  qip, (Qi G C) and P(jp) is a product of terms o f the form

where 77 is a general root of However, the terms corresponding to 77 and —77 combine to 
give a factor

Hence, we now have

Next we consider what happens to ^  as we approach zero. This allows us to determine Q(p). 
Considering the Taylor expansions of sinh and cosh about zero, we see that

lim =  1 — (m0 +  m i).
p ->0 p

We now have

— - =  {1 -  (m 0 +  m i)}e qipP(p).
P

In particular,
eqo = 1 -  (m0 +  m i).

Note that this does make sense i f  mo +  m i > 1 as q0 G C. Remember that eni = —1.

Next we show that qi = 0. Remember that e(-) is an odd function. It therefore follows 
that ^  is an even function. Thus, our corresponding factorization must be even. Recall that a 
function /  is even if, and only if, f ( x )  — for all x  in its domain. In brief, we simply
need

e* pp{p) =  e- ^ p p ( - p ) .

However, P  is clearly even, so we need

eqiP = e~qiP?
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which is true for all p if and only if qi = 0. Hence, we now have

e(p)
=  I 1 ~  Vm 0 1- ‘M'Dl

T)>0

e(p) = { l - ( m 0 + m 1)}p  J] (1 + |?) II (1_SV
0£0+ V '  7er+ x 1 '

I f  m 0 +  m i =  1, a similar argument applied to ^ r ,  together with

r  e(p)lim —— =  morrii
p —> o p 6

yields

^  ? 7 > 0  '  '

(̂p) = {mom1- i} p 3 n  ( i  + ^ )  n  f 1 - ^
0G©+ v  y  7 € r +  v  '

One problem with the Complex Analysis is to exclude the possibility of double roots of e(-). □

In the light of these product formulae, the trace formula (15.1) becomes equivalent to the 
identity

f 1 +, €'(P) 1 2 2/  r j (w ,  w) dw = ——  +  —        -r-. (15.12)
Jo x pe{p) p2 p2 - a 2 p2 - j 3 2

2.15C. Verification of (15.12).

Taking Laplace transforms with parameter A =  \p 2 in (15.1), we get

[  r t{w ,w )d w  =  ( 15-13>
Ao.i) + p

Remark. Observe the similarity of (15.13) with the LHS o f (15.8) when our roots are of the 
form 6 ~  mi.

We are now in a position to crosscheck (15.12) using (15.13) together with (15.10) and (15.11).

Case (i): m 0 +  m i < 1. Here it suffices to use the factorization given in (15.10). If  we firstly 
take natural logarithms of both sides of (15.10) and then differentiate w.r.t. p, we have
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Using elementary properties of logarithms together with simple differentiation, the above result 
is equivalent to

«'(/>) =  _d_ l n [ l - ( m 0 +  m 1)] +  ln <9 +  ^  In ^  I n f 7 P
v 7 2

constant 9e0+ ^ r +
e(p) dp

const*

=  i + p E ( * l ^ + ' E '  2p 1' V 02 +  p2 J V p2 — 72p 0G©+ v p 7 7er+ 1

Dividing both sides by p >  0 and rearranging, we now have 

V -  (  2 \  _  e ' ( p )  1 (  2
Z ^  \ 02 I n2 J n; (n\ n2

0G0+ ^ 2 + pew  ^2 “ 72

^  f  4 2  2  2 I  =  +  “ 2 “  f -~ 2 ~ ---- 2 1  ŝ in c e  °  e  0  f ° r t h is  C a se -̂f ^ \ 0 2 + p2J  pe(p) p2 ^ + \ P 2 - 1 2)

e'(p) 1 2 2
-  ~ r \  +  — 2— 2 — 2— in ( s in c e  a>P> 0  •)pe(pj pz pz — or pz — p 2

Recalling (15.13) we get the desired result.

Case (ii): m 0 +  m i >  1. Note that the fact that we are allowing p G C eradicates the issue 
of considering the logarithm of a negative number. All we then need to do is to recall that 
r+  =  {/?}, but 0 G 0 . We may then follow a similar argument to that given in the previous 
case to deduce that

0G0

y W  2 \  __________________________ (15]4 )
^ 0 2 +  p V  pc(p) p2 p2 - / J 2'  ̂ ;

Case (iii): m 0 +  m i =  1. Again T+ =  {/?}, yet 0 ^ 0 ,  so that © =  0+ . Observing these facts 
we may deduce that (15.14) holds. □

2.15D. Direct verification of (15.12).

Direct verification o f equation (15.12) is extremely complicated unless one utilizes the 
indefinite inner product (•, -)s. First, we use Section 10 to find a ‘symmetric’ formula for the 
‘diagonal’ resolvent density:

\pe(p)r^{w, w) = h?p(w)hp(w) — m 17r(l, w)hp(w) — rao7r(0, w)h?p(w). (15.15)

(Observe that the right-hand side is 0 when p G T.)

Proof o f  (15.15). From (10.9) we have

[  r l ( z ,w ) f ( w ) d w  =  A \ ( f ) c p(z) +  B \ ( f ) s p(z) — 2p~l f  sp(z -  w ) f (w )d w ,  (15.16) 
Jo  Jo

so that in particular

[  r f ( w ,w ) f ( w ) d w  = A \ ( f ) c p(w) +  B \ ( f ) s p(w).
J o
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It follows that
r j (w, w ) -  i4A(0, w)cp(w) +  5 a(0, w )sp(w ).

Multiplying both sides by \pe{p) (p > 0 ^ T), we now have

±pc(p)rl{w, w) =  \pc(p)Ax (0, w)cp(w) +  \pe{p)Bx{0, w)sp(w). (15.17)

From (10.12), recall that we have

\pe{p)Ax(0, w) = h\(w) -  m Qh\{0)?r(0, w) -  mi7r(l, w). (15.18)

Next, if we take (10.12), multiply by e(p) and rearrange, then we get

\pe(p)Bx{d,w) = m O7r(0,w)e(p) -  ±m0p2e(p)Ax (0,w).

Substitution of (15.18) into the above equation yields

\pe(p)Bx(0, w) =  m 0mip7r(l, w) +  { m 0e(p) +  m lp h \{0)} 7r(0, w ) -  m Qph\(w). (15.19)

We may now substitute (15.18) and (15.19) into (15.17) to yield

\p e (p )r l(w ,w )  =  h\(w) [cp(w) -  m 0psp(w)] -rai7r(l, w) [cp(w) -  m 0psp(w)\

—hp (w) = h p (w)

-  m 07r(0, u;) [7i]j,(0)cp(u;) -  e(p)sp(w) -  m op/iJ(0)sp(iu)] . 

Clearly all that it remains to do is to prove that

hl(0)cp(w) -  e(p)sp(w) -  mophl(0)sp(w) = h\{w).

This follows by recalling the form of e(p) together with the facts that

cp(l)cp(iu) -  Sp(l)sp(w) -  cp( 1 -  w) and sp(l)cp(iu) -  cp( l) s p(iu) -  sp( l -  w).

□
If we use the fact that r j  (0,0) and r j  (1,1) are both zero, integrating both sides of (15.15) 

w.r.t. the signed measure v , we now get

\pe(p) [  r ^ (w ,w )d w  = (h\, hp)s -  m i(7r(l, •), hp)s -  m o(7r(0, •), h \)3.
Jo

We now verify (15.12) by utilizing (4.1), (9.2) and the result

(h„ h*). = pt{p\  ~  7) (7 € C ,  p e c ,  p * i ) ,
H pz — 7^

and its L’Hopital consequence

{hp,h\)a =  W { p )  +  p~l z(p)\-

2.15E. Rem ark. The product formulae may be deduced trivially from (15.12) and (15.1) by 
simply reversing the argument given in 2.15C. Furthermore, we now have a perfectly legitimate 
direct proof of (15.12), so that the forms given in (15.10) and (15.11) are certainly correct. This 
therefore eradicates the possibility of repeated roots as we would otherwise expect terms o f the

form ( l  +  ^  or ( l  -  , for k >  2.
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2.16. Appendix 1: Some Functional Analysis and Required Measure
Theory

We begin by stating an advanced version of the Monotone-Class Theorem.

2.16A. Theorem (Monotone-Class). Let Ti be a vector space o f  bounded real­
valued functions on a set S. Suppose that Ti contains constant functions, is closed 
under uniform convergence, and has the following property: fo r  a uniformly bounded 
sequence ( fn) o f  non-negative functions in Ti such that f n(s) |  /(s)(Vs), we must 
have f  E Ti. IfTL contains a subset C that is closed under multiplication, then Ti 
contains every bounded c(C)~ measurable function from S  to R.

Notes: l iT i  is closed under uniform convergence then the following holds:

fn  C Ti and fn*-* f  uniformly on S  => f  ETi.

A sequence (/„) is uniformly bounded if, for some constant M  > 0,

|/n (s)| < M  Vs e  S  and Vra.

Hereafter, for typographic neatness, Theorem 2.16A will be referred to as the MCT.

Proof of Theorem 2.16A. See Volume 1 of Rogers & Williams [24]. There, a more elementary 
version of the MCT is also given. Although this alternative version is easier to prove, it 
introduces the difficulty of dealing with indicator functions. □

For the purpose of the following Lemma, we let (5, E, p) be a measure space.

2.16B. Lemma (Monotone-Convergence).

(a) I fF n E E (n E N) and Fn f  F, then p(Fn) T M-F).

(b) I f  Gn G S , G n | G  and p(Gk) < oo fo r  some k, then n{Gn) I  p>{G).

From now on the above lemma will simply be referred to as MON.

Proof of Lemma 2.16B. See Williams [29] for a proof. □

2.16C. Some important spaces. We now introduce the following spaces:

•  C[0,1] where, for /  E C [0 ,1], we define the supremum norm l l / l l  :=  sup \f(z)\;
ze[ o,i]

•  L2[0,1] which is an abbreviation for L2 ([0,1], #([0,1]), Leb) with
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We next establish some helpful results concerning the two spaces. It is well-known that the 
spaces are examples of Banach spaces.

2.16D. Lemma. C [0 ,1] is dense in L 2[0,1].

P roof of Lem ma 2.16D. Suppose for a contradiction that C[0,1] is not dense in L2. Then there 
exists a non-zero bounded linear functional A on L 2 such that A(h) = 0 for all h G C [0 ,1]. But 
for the Hilbert space L 2, the bounded linear functional A must take the form

K f )  = (f>9) = [  f(y )g (y )dy ,
Jo

where g e  L 2. It is a trivial exercise to show that this implies g e  L 1, in that,

\g(y)\dy < oo.

Now let Ti be the class of bounded measurable functions h on [0,1] such that

h(y)g{y)dy = Q ( =  \{h )) .

fJo

L
We now appeal to the MCT. Some fundamental theorems of Measure Theory will be used to 
prove that TL satisfies the necessary assumptions in the MCT.

Ti clearly is a vector space. We simply use linearity. Moreover, TL contains constant 
functions as these are continuous.

TL is closed under uniform convergence if, whenever (hn) G TL and |h(y) — hn(y)\ < e for 
all y  G [0,1] (i.e. we know that for all e >  0 there always exists a suitable n  ), then h G TL. 
Consider the following,

[  h ( y ) g ( y ) d y -  [  hn(y)g(y)dy  
'o Jo

[  { % )  -  hn(y)}g(y)dy  
Jo

[  | { % )  -  K {y )}g (y ) \d y  
Jo

< [  |% )  - h n(y)\ \g(y)\dy

<
Jo

r l  

r0

— 6 f  \9{y)\dy = eK, 
Jo

where K  is simply a constant since g G L l . Hence, we have

/  h ( y )g (y )d y -  [  hn(y)g(y)dy 
Jo Jo

< eK. (16.1)

By allowing e —»■ 0 in (16.1), we see that

0 = f  hn(y )g (y )dy=  [  h(y)g(y)dy, 
Jo Jo
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so  th a t h G TL a s  d e s ir e d .

The final condition is also quite straightforward to satisfy. If  hn G Ti and hn(y) f  h(y) for 
all y G [0,1], then, by the MON we can easily deduce that

0 =  /  hn{y)g(y)dy f  [  h{y)g{y)dy,
Jo  Jo

so that /  h(y)g(y)dy  — 0 and so it follows that h ETC.
Jo

Next take C = (7[0,1] C  Ti. Clearly C is closed under multiplication. Then, by the MCT, 
we have

Ti contains every bounded a(C)-measurable function from [0,1] to R.

In other words,

/Jo
h(y)g{y)dy = 0 (16.2)

'0
for every bounded measurable function h on [0,1]. Recall that g G L 1. However, this does not 
imply that g is bounded on [0,1]. This fact motivates the following definition. Let

9n(v) :=  \ 9{V) i f | s ( ! / ) | - n ’
| o  otherwise.

Then gn is certainly bounded on [0,1] for each n. Thus by (16.2), we have

[  9n{y)g{y)dy = 0, so that [  g(y)2dy = 0.
J o Jo

It follows that g = 0 almost everywhere and so A is the zero functional. This gives us the 
desired contradiction. □

2.16E. Definition. Let S  be a class offunctions on a space U. I f  P\ and P2 w e  finite measures 
on (Borel subsets of) U, then S  is said to be measure-determining i f  p f f )  f  f  dpi  =  p 2 ( / )  
for  all f  in S  implies that p,i =  p 2-

In accordance with the usual convention, ‘measure’ will always mean ‘non-negative 
measure’ (as opposed to ‘signed measure’).

2.16F. Lemma. Suppose that p  and u are finite measures on B[ 0,1]. Then the space C [0 ,1] is 
m easure-determ in ing.

Proof of Lemma 2.16F. From Definition 2.16E, we suppose that

[  f (s )p (d s )  =  [  f(s )u (d s )  (16.3)
j[ 0,1] ■'[0,1]

for every /  G C [0 ,1]. Then it suffices to show that p = u. That is, p { B ) = v (B )  for every 
B  G B[0,1]. We shall show that we can extend (16.3) from functions in C\0,1] to functions in 
b # [0 ,1], the space of bounded Borel functions on [0,1]. Taking f  = Ib  will then clinch things. 
We again appeal to the MCT. Let
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TL = {class of bounded Borel functions /  such that (16.3) holds}.

We now basically ‘mimic’ arguments presented in the proof o f Lemma 2.16D.

Again, by linearity, TL is a vector space which contains constant functions as constant 
functions are continuous.

TL is closed under uniform convergence if, whenever (/„) £ TL and | / ( s ) —/ n(s) | <  e Vs £ 
S  (i.e. we know that for all e >  0 there always exists a suitable n  ), then f  e T L . l t  is clear that

f  f ( s )p (d s )  -  [  f n(s)p(ds) = [  (f ( s ) -  f n(s))p(ds)
J[ 0,1] j[ 0,1] J[ 0,1]

<  [  \f{s) - fn { s ) \n (d s )
A  o,i]

< e [  p(ds).
J\ 0.11

Hence, we have

[  f ( s )p ,(d s )~  [  f n(s)p(ds)
Ao.ll J\0A][0,1] -/[0.1] 

where A" is a constant. A similar argument shows that

[  f n(s)v(ds) -  [  f(s)i/(ds)  
J [ 0 tl ]  J \  0,1]

<  eK,

< eK',

(16.4)

(16.5)

where K '  is also a constant. Adding (16.4) and (16.5), using the triangle inequality, and noting 
that (16.3) holds for f n, we obtain

/  f{s)p,(ds) -  [  f(s)i/(ds)  
J\o. n J\o.i\

< e(K  +  K'), (16.6)
[0,1] [̂0,1]

It is clear that, by allowing e —► 0 in (16.6), /  eTL.

If f n{s) T f (s ) Vs £ S, then, by the MON, we can deduce that

[  fn(s)p(ds) T [  /(s )/i(d s ), [  fn(s)u(ds) |  [  f(s)u(ds).
J[0,1] J[0,1] J[0,1] -/[0.1]

Moreover, if f n(s) £ TL, then (16.3) holds for f n and so it follows that /  eTL, as desired.

Note. The fact that the sequence is uniformly bounded was not needed. However, if  we 
alternatively decided to use the Dominated-Convergence Theorem (see Williams [29]), then 
we would have made use of the fact.

Take C = C[0,1] C  TL. Clearly C is closed under multiplication. Then, by the MCT, we 
have

TL contains every bounded cr(C)-measurabIe function from S  to JR.
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It now suffices to show that a(C) = B[0,1]. To do this, it is enough to prove by bare hands 
that we can express the indicator function of an arbitrary closed sub-interval o f [0,1] as the 
pointwise limit of a sequence of continuous functions.

fn is a continuous sequence of functions =>- fn G mcr(C).
We can also say that

fn(s) ^  f(s) Vs => /  G ma(C).
In our particular case, the following sequence of functions suffices. For 0 <  a < b < 1, define

fn{s) = <

0, fo rs  G [0, a ( l  -  £)),
™ - ( n - l ) ,  for sG  [ a ( l - ± ) , a ) ,
1, for s G [a, 6],

(IZ6j(&-s) +  1j for s G (6 ,6+
0, fo rs  G (6 +  ^ , 1 ] .

Clearly, / n(s) i-> /( s )  =  /[a,&](s) Vs G [0,1]. Hence, as C C a(C),

[a, b] =  {s : f ( s )  = 1} G .'. o(C) contains all closed sub-intervals of [0,1].

We know that the smallest a-algebra on [0,1] containing the closed sub-intervals of [0,1] is 
£[0,1]. This means that cr(C) = B[0,1] (See, for example, Chapter 1 of Williams [29].)

Remark: In Williams [29] we see that B ( S )  is the smallest cr-algebra generated by the open 
intervals of S. The fact that we are dealing with closed intervals in the problem makes no 
difference as we can simply consider the complements of these intervals which are indeed open.

We can now deduce that H  3bH [0 ,1]. Hence,

Ib  E.H  for every B  G B [ 0,1], i.e. (16.3) holds for /  =  I B .

Thus, taking f  = I B in (16.3), we have

f  IB (s)p(ds)  =  [  I B{s)v(ds),
+ 0 ,1] + 0 ,1]

for every B  G B [ 0,1], and so it follows that p (B ) — v(B )  for every B  G B [ 0,1]. We have 
shown that C [0 ,1] is measure-determining. □

2.16G. Some additional spaces. We now introduce the dual spaces of the Banach spaces 
described in 2.16C.

• Considering C [0 ,1], then its dual space C[ 0,1]* is the space o f bounded signed measures 
p  on ([0,1], £[0,1]), so that p  may be written as the difference o f two finite (positive) 
measures. Of course, p ( f )  is simply the integral fd p .  If p  is a (positive) measure, then 
ll/H inC [0,l]*  is just p([0,1]).
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•  For L 2[0,1], then L 2[0,1]* may be identified with L 2[0,1] in that if  £ G L 2[0,1]*, then 
there exists g G L 2[0,1] such that

t ( f )  = {9J ) l2 =  [  g(y)f(y )dy .
J [  0 , 1]

(See Dunford & Schwarz [6] for additional information).

2.16H. Lemma. Let S  be a linear subspace o f  the Banach space C[0 ,1]. Suppose that 
whenever £ G C [0 ,1]* is such that £( f )  = 0 fo r  all f  G S, then £ =  0. Then S  is a dense 
subspace o f  C[0,1].

Proof of Lemma 2.16H. This is a special case o f a result given in III 3.13 of Dunford & 
Schwartz [6], It is a consequence of the Hanh-Banach Theorem. □

2.161. Lemma. Let U = [0,1]. A linear subspace S  o f  C[ 0,1] is measure-determining i f  and 
only i f  S  is dense in C[0,1].

Proof of Lemma 2.161. (=>) Suppose that S  C C [0 ,1] is measure-determining, that is, for p, v 
finite measures on B [0,1],

M )  — v ( f )  fo r  all f  G S  => p (B )  = u(B) fo r  all B  € B[0,1].

Now

y { f )  =  K / )  &  (/  ̂— ^ ) ( / )  =  0 1(f) =  0 fo r  all f  G 5,

where I G C [0 ,1]*. Hence the fact that S  is measure-determining here is equivalent to

1(B) — 0 fo r  all B  G B [0,1].

From Lemma 2.16H, it follows that S  is dense in C[0,1].

(<£=) Next suppose that S  is dense in C[0,1]. In Lemma 2.16F we established that C [0 ,1] is 
measure determining, so that S  is certainly measure-determining. □

2.16J. Instructive Example. We will show that the linear space of functions /  in C [0 ,1] such 
that 5 /(0 ) =  Jj0 j j  f ( y ) dy  is not measure-determining but is dense in L 2 ([0,1], Leb).

Recall that U = [0,1]. Define

S := { /  G C[0,1] : 5/(0) = J  /(y)dy j  c  C[0,1],

Clearly

5 [  f ( y )  d60(y) = [  f ( y )  dLeb(?/) for  all f  e  S,
J  [0 , 1] J [  0, 1]
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where the measures (550)(-) and (Leb)(-) are measures on {U,B{U)). However, it is obvious 
that

and so S  is not measure-determining ( =>■ S  is not dense in C[0,1] =#• 5  is not dense in L 2). 
For example, consider the set B  — (0, | )  G B[0,1]. Then (56o)(B) — 0, but Leb(B) =

Since C [0 ,1] is dense in L 2[0,1] (from Lemma 2.16D), we need only show that if  h G 
C[0,1], then h may be approximated in L 2 by some hn in S. For some a n, hn = h — a nf n G S

where f n is as in the next Instructive Example. We have a n —► h (0) — £ h(z)dz,  so

11hn — h \\L2 = |a n|. | | / n||L2 —> 0. Hence, it follows that S  is dense in L 2[0,1].

2.16K. Instructive Example. This example highlights a distinction between the spaces L 2[0 ,1] 
and C[0,1]. The distinction remains a key point in Chapter 2, especially when it comes to the 
P f  semigroup. Consider the function

and the function identically equal to zero on [0,1]. However, the space C{0,1] does not have 
this difficulty.

L 2(S2, £ 2, pf)- Suppose that T  : H\ —> H 2 is a bounded linear map. Then we define the 
adjoint map T* : H 2 —► Hi via the fact that, fo r  f i  G Hi and g2 G H 2,

The T* is a bounded linear map with the same norm as T.

{Justification: The map f i  i-> ( T f i , g 2) lies in the dual space of Hi, so defines an element 
T*g2 o f H i,  etc.)

2.16M. Definition (Self-adjoint). Suppose that H  = L 2(S,T,,p) and that T  is a Bounded 
Linear Operator from H  to H. We call T  self-adjoint ifT* — T.

560 ^  Leb on (17, B (U ) ) ,

Then, we have

®€[0 ,1]

In particular, we see that

so that

This example demonstrates the fact that the L 2 space cannot see the difference between foo(x)

2.16L. Definition (Hilbert-Adjoint maps). Let Hi = L 2{Si , £ i , / i i )  and H 2

( T f u g 2) = (f i ,T * g 2).
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2.16N. Definition. The space L 2 ({0,1}, m). Suppose that u , v are column vectors o f  length 2 
in L 2 {{0,1}, m), then the associated inner product is given by

(u,v) = E m xu{x)v{x). 
x e { o , i }

2.160. Proposition. The 2 x 2  matrix W ~  as defined in (11.4) is self-adjoint relative to 
L2 ({0, l} ,m ).

Proof of Proposition 2.160. The proof is trivial. □

2.16P. Proposition. W + is self-adjoint on L 2[0,1], where W + is defined in (11.2) and (11.3).

Proof of Proposition 2.16P. This follows by Fubini’s Theorem. □

2.17. Appendix 2: Additional Results for Operators on L 2

Let T  be a self-adjoint compact operator on a (non-zero) Hilbert space X .  For complex A, 
let X \  be the A-eigenspace

X \  — {x  E X  : T x  — Arr} 

of T  on X .  We arrive at the following theorem.

2.17A. Theorem.

•  T  has only countably many eigenvalues, and there is a complete orthonormal 
basis consisting o f  eigenvectors.

• One or the other o f  =L| |T j\x is a eigenvalue o fT .

Proof of Theorem 2.17A. A proof can be found in Garrett [11]. □

2.17B. Corollary. Given any x  6 X , we have

x  = ^ 2  cxx x 
x

where cx G R and x x G X x, the series converging in the topology o f  X .



Chapter 3 

One-Boundary with Drift

___________________________________  Summary____________________________________

For this problem the range of the underlying stochastic process is not compact. As we shall 
see, this almost immediately causes problems with the functional analysis. In particular, we 
have difficulties with domains o f operators and with the description o f symmetry. Furthermore, 
there is no series spectral expansion. This emphasizes the importance, and indeed the great 
benefit, of such an expansion in the previous chapter. The main loss is the ability to  easily 
deduce that the P f  f  semigroup is C 1,2. This alone makes the route through this chapter 
much more arduous. Thus, the detailed study of more general continuity issues is deferred to  
the final chapter.

As demonstrated in the previous chapter, many analytic statem ents either asserted, or were 
consequences of, martingale properties. It is therefore unsurprising that a lack of bounded 
martingales in certain cases for this problem further restrict us.

Due to the similarity of the setup to this problem with the previous two-boundary problem, 
many definitions will be re-stated.

Notation: within the bounds of reason, we use y  to denote a point of the open interval 
(0, oo), and z  for a point of the interval [0, oo).

3.1. The Operator H  and Indefinite Inner Product (•, )s

We begin by defining the following spaces;

L : — ^ [ 0 ,  oo) fl C[0, oo],
M  : — C 1,2((—oo, 0) x [0, oo)) fl C ((—oo, 0) x [0, oo]),
N  : =  C 1,2((0, oo) x [0, oo)) fl C((0, oo) x [0, oo]).

89
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3.1A. Definition. We define the operator Ti with domain V(Ti)  to consist o f  those C-valued 
functions in L  which satisfy the ('reverse Feller )  boundary condition

i m + o u + i x m  =  o, ( i . i )

and, fo r  f  E V(Ti),  T i f  = \ f ” +  p f  .

Nowhere do we need to extend further the domain of Ti. For /  E C[0, oo], we shall be 
interested in the equation

dvF  + T iF  =  0, {{ip,z) € ( -o o ,0 )  x [0,oo)) (1.2)

with final condition
^ ( o - , y )  = f ( y)  (2/ e  (0, 00)), (1.3)

the final condition not being imposed at the boundary point 0. The solution F  must belong to
M  and must satisfy F(tp, •) E V(Ti)  and F(ip, 00) =  /(o o ) for <p <  0.

For the remainder of the section, it will shorty become clear that we need to consider
functions on R + with compact support, hereafter denoted by C/c[0,00). In some instances, 
simply stating that f , g  E L  is insufficient (particularly if  p > 0) as it may lead to problems 
concerning existence of integrals and certain limits. It turns out that this does not restrict us too 
much. It simply means that we are only carrying out the analysis heuristically in order to point 
us in the right direction.

3.1B. Definition. For C-valued f , g  E L  fl Ck[0, oo), and with g denoting the complex 
conjugate o f  g, define the ‘indefinite inner product’ (■,•)* (subscript ‘s ’fo r  ‘signed’)  via

(f>9)s = [  e2tiyf(y )g{y)dy  -  |/(0 )^ (0 )  (1.4)
J  (0,oo]

=  /  f (y)9(y)v(dy) ,
J  [0,oo]

where v is the signed measure with u(dy) =  e2/iydy  (y > 0) and ^{0} =  An element f  o f  
L  fl Ck [0> 00) will be called (positive),, i f  ( / ,  / )  , >  0, (negative)., i f  ( / ,  / ) ,  <  0, (neutral), i f
</,/>„ =  o.

Note that the integral in (1.4) is well defined given our added restraint o f compact support.

3.1C. Lemma. For f , g  E V(Ti)  D C k [ 0, oo)r we have {Tif, g)s = ( / ,  Tig)s.

Proof of Lemma 3.1C. Trivial calculations show that, for / ,  g E V(Ti)  fl Ck[0» oo),

W , p ) a =  I T  i  lim e2™f{y)g'{y)  =  7,
y—*oo

{ f i Ug ) s =  I  +  |  lim e2fiyf { y )g{y )  = 7,
?/-+oo
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where
1 =

POO

I /  e2/xyf ' (y)(gY(y)dy.  
Jo

To understand why the above limits vanish, simply observe that e2fJ,yf (y)g' (y)  = 
e2̂ vf' (y)g(y)  — o for all y outside the compact support. □

3.ID. Rem ark. The compact support assumption suggests that TL is symmetric relative to 

<■,■>..

Under the assumption that TL is symmetric relative to (■,■)*, we may follow an analogous 
argument to that given in the previous chapter to deduce that all eigenvalues are real and so are 
the corresponding eigenfunctions. Thus, from now on, we consider only real-valued functions. 
It will later be confirmed that the semigroups {P*} are Ray semigroups.

W orking Hypothesis WH1. For /  E C[0, oo] with f  >  0, there exists a minimal 
non-negative solution F  o f  equation (1.2) with final condition (1.3) in that any other 
such solution F  satisfies F(p ,  z) > F(p ,  z) f or  all (p, z) E (—o o , 0] x  [0, o o ) . Define 
(P+f ){z)  = F ( - t , z )  f o r t  > 0 and extend P f  (as we may) to C[0, oo] by linearity. 

Then [ P f  : t  > 0} defines a one-parameter semigroup o f  non-negative operators on 
C[0, o o ], so Pf+t — P f  P f . We will o f  course have P f l  <  1, where 1 is the constant 
function equal to 1 on [0, o o ]. For f  E C[0, oo ] and z  E [0, o o ) ,  the limit

(P0+/ )  (*) := lim(P«+/)(^)

exists and

(Po / )  (y) = f ( y )  (v e  (O.oo)),

{Pa S)  (0) = [  n - +(0,dy) f ( y) ,
J  (0,oo)

where n _+(0, •) is a measure o f  total mass at most 1 on (Borel subsets of) the 
open interval (0, o o ) .  Note that P f  does not map C[0, oo] into C[0, oo]. We have
p+ p t+ =  p + p 0+ =  p t+.

3.IE. Im portan t Rem ark. In Chapter 4, we give additional examples of ‘whole solution 
semigroups’ which are non-minimal for the case when p, < —1. For p > —1, we see that 
there is only one semigroup solution of the desired form.

The second Working Hypothesis of the section will be trivial to prove for this example as 
we only have one-boundary. For h E C[0, oo], we consider the PDE

d<pH + TLH = 0, ( (p , z )  E (0, oo) x [0, oo)) (1.5)
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with initial condition
t f (0+ ,0)  -  h(0). (1.6)

Note that H (0+ , •) is only specified at the boundary . The solution H  must belong to N  and 
must satisfy H(ip, •) G V ( H )  for ip > 0.

W orking Hypothesis WH2. For h G C[0, oo] with h >  0, there exists a minimal 
non-negative solution H  o f  equation (1.5) with initial condition (1.6) in that any other 
such solution H  satisfies H(ip, z ) >  H(ip, z) for  all (</?, z) G (0, oo) x [0, oo). Define 
(.P f h ) ( z ) =  H(t ,  z) fo r  t > 0 and extend P f  (as we may) to C[0, oo] by linearity. 
Then { P f  : t > 0} defines a one-parameter semigroup o f  non-negative operators on 
C[0, oo], so Pf+t — P f P f .  We have P f  1 < 1. For h G C[0, oo] and z  G [0, oo), the 
limit

( Po h ) ( z )  := lim (Pf h){ z )

exists and

(.p0- h ) (0) =  M0),
(P a h ) ( y ) =  n+-(i/, {0})ft(0) (y €  (0,oo)).

where II+~(y,  {0}) is a measure o f  total mass at most 1 . This time, P f  does map 
C[0, oo] into C{0, oo]. We have P ^ P f  =  P f P f  = P f  ■ For h G C[0, oo], (Pt~h)(z ) 
depends only on the values o f  h at 0.

3.1F. Definition. For y G (0, oo), let

?r(0, y) :=  2U+~(y, {0}).

3.2. Duality

Drawing an analogy with the two-boundary problem of the previous chapter, this time 
duality arguments suggest that

II_+(0,dy) =  7r(0, y)e2fiy dy  on (0, oo) (2.1)

in the Radon-Nikodym sense.

3.2A. Rem ark. At this stage it must be emphasized that this is only a suggested form of II_+. 
This is because the duality argument here relies on the fact that H  is symmetric relative to (•, -)s, 
a fact that is again only suggested by the compact support assumption. Later arguments will 
then confirm matters, in that, the given II“ + is indeed correct.
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3.3. The Processes Z  and <1>

Let Z  =  {Z(t )  : t > 0} be a reflected Brownian motion, with drift p,  on [0, oo) reflected at 
the boundary 0. We therefore have

d Z(t)  = d B(t )  +  fjidt +  dLo(f), 

for some Brownian motion B  on R  and continuous non-decreasing processes L 0 with

L I {0}(Z (s))dL 0(s) = Lo(t),
'0

so that L 0 grows only when Z  is at 0. The process L0 is the familiar local-time process at 0. 

The fluctuating additive functional <f>. We define $  via the equation

d $ (t)  = d t - d L 0(t).

For the moment, we concentrate on the situation when <F(0) =  0.

For z E [0, oo), we write Fz for the law o f the (Markov) process (<E>, Z)  when $(0) =  0 and 
Z ( 0) =  z. As usual, E z denotes the expectation associated with Fz. A  statement about Z  will 
be said to hold almost surely (a.s.) if  it has Fz probability 1 for every z.

3.4. The Behaviour of $

Before we deduce some crucial results on the long-term behaviour of our functional <F, we 
begin by introducing some additional important results. The following results on Brownian 
motion are well-known.

3.4 A. Definition. After throwing away a null set o f  uj the following statement about BM(M)  B  
is true. Let f  be a continuous function on [ 0,1]. We call f  approximable i f  there is a (random) 
sequence (rif) o f  positive integers with rik —> oo such that given e > 0, there exists (a random) 
ko such that fo r  k > ko,

B (n ku)
y/nk log log n k -  / ( “) < e  fo r  all u E [0,1]. (4.1)

3.4B. Theorem (P art of Strassen’s Law of the Itera ted  Logarithm ).
/  is approximable i f  and only i f  there exists a g E L 1[0 ,1] such that

f  g(s)ds = f ( t )  ( f e [ 0 , l ] ) } 
Jo

(4.2)

and

|  /  p (s)2ds < 1. 
Jo

(4.3)
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Proof of Theorem 3.4B. For the full result and its proof, see Freedman [10]. □

3.4C. Theorem (Law of the Iterated Logarithm). We have the following result:

p i l i m s u p  =  l l  =  1. (4.4)
\  t f o o  y /2 t\og \og t J

Proof of Theorem 3.4C. For a direct proof, consult 1.16 of Rogers & Williams [24]. The 
P(lim sup >  1) =  1, the deeper part of the LIL Theorem, follows from the part o f Strassen’s 
Law given above. The other half follows from the full Strassen Law. Again, see Freedman [10] 
for further details. □

3.4D. Corollary. B t grows much more slowly than t fo r  large t.

Proof of Corollary 3.4D. This is quite clear in light o f Theorem 3.4C. □

3.4E. Theorem. We have the following situation:

• i f  fi > — 1, then (a.s.) $( t )  —> +oo a s t  ̂  oo,

•  i f  f i  < —1, then (a.s.) $( t )  —> — oo as t —> oo.

Additionally, i f  /j, = — 1, then (a.s.) $  fluctuates infinitely, in that,

l i msup$( t )  =  +oo, l i minf$( t )  =  —oo. (4.5)

3.4F. Remarks. For (i > 0, it is obvious that (a.s.) <F(t) —► +oo as t  —► oo. Furthermore, for 
/i <  0, it is well known that (a.s.) t -1L0(£) —> \n\, so that the result when fi —1 is clear. This 
well known result is a consequence of a general account given in Ito and McKean [14]. It should 
be noted that the Ergodic Theorem is used there. This causes the main difficulty. However, such 
results can easily be deduced via Levy’s presentation o f drifting Brownian motion which gives 
us a convenient normalization (in law) for the local time process.

By comparison with the two-boundary case, the result in (4.5) is difficult to justify as the 
generalized eigenfunction £ is unbounded (see Section 9). This fact does indeed hinder us, in 
that we cannot deduce that $  fluctuates infinitely via a quadratic variation result as demonstrated 
in the previous chapter. This is one of the main reasons for considering Levy’s presentation. 
However, only the lim inf can be deduced directly from the Levy presentation. The lim sup 
result can be proved, following some work, by Theorem’s 3.4B and 3.4C above.
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Proof of Theorem 3.4E. Suppose B t is a BM(R) with starting state zero. Then B t +  fit is a 
BMm(R) (obvious notation!). Thus, by Levy’s presentation (see Theorem C.l of Appendix C), 
it follows that

D t :=  Bt +  fit +  C f ,

is a reflecting BMm(R) on [0, oo) where :=  — min{f?s + fis : s < t)  is the local time (at 
zero) of D t. Hence, we now have

$ t = t — C f  = t  +  min{.Bs +  fis : s <  t}. (4.6)

As expected, we consider the following cases separately:

1. fi > -1 ,

2. fi < -1 ,

3. -1 .

Note again that we know exactly what to expect in cases 1 and 2 from Ito and McKean [14]. 

Case 1: f i>  —1. Here,

$ t = t +  m in{Bs +  fis : s < t )
> t +  min{.E?s : s < t}  +  m in j^ s  : s < t}

^  i t  +  min{Bs : s < t}  if fi >  0,
t |  {fi +  l ) t  +  min{£?s : s < t}  if fi E (—1, 0].

We know from Corollary 3.4D that B t grows much more slowly than t. It follows that

lim = oo => lim =  oo.
t—* oo t—* oo

Case 2: fi < —1. In this case, we have

<E>t =  t  +  m in{Ss +  fis : s <  £}
^  t -t- Bt -+■ fit 
— (fi +  1)£ +  Bt
= — K t  +  B t (for some constant K  > 0).

Once again by Corollary 3.4D we know that B t grows more slowly than t, hence we have

lim =  —oo.
t—* oo

Case 3: fi — —1. We hope to deduce that we have infinite fluctuation in this case, in that, 
the conditions in (4.5) hold. The lattermost result in (4.5) follows from the previous case. In 
particular, we saw that

< B t .



3.5. The Processes Z+ and Z 96

However, (a.s.) we know that
lim inf B t =  —oo,

so we must have (a.s.)
lim inf — —oo.

The former result in (4.5) is a little more difficult to justify. By Theorem 3.4B since g(s) = 
y/2 G L l [0,1], it is clear that f ( t )  =  ty j2 is approximable. This f ( t )  is the maximal one 
(simply maximize / ( l )  (given by (4.2)), subject to (4.3), so that g(s) = y/2 (6 L 2[0,1])), yet it 
need not be. Given any e, we therefore know that the inequality in (4.1) is true with f (u )  = u y /2 
for sufficiently large n k. Thus, in particular, we may take e — so that for sufficiently large 
n k we have

B{nkU) -  uV2 y/2
< —  for all u  G [0,1].

y / n k log log n k
Consequently, we have________________________ ____________

B ( n k u )  >  ( u  -  i) y / 2 n k log log n k . (4.7)

Next by simply amending the form for <frt in (4.6) to account for n k , we now get

$ n k = n k +  inf { B ( n k u )  -  n k u  : u  G [0 ,1]}

> n k +  inf { (it -  |)  y / 2 n k log log n k -  n k u  : u  G [0 ,1] |  (by (4.7))

= inf { n k (1 -  u )  + ( u  -  |)  y / 2n k log log n k : u  G [0,1]}.
>o

If u  G [0, §), then for n k sufficiently large

$nfc > n k ( 1 - u )  + ( u  -  I) \/2n^IogIogn^
U— 2

=  h n k -  I y / ^ n k log log n k —> oo as n k oo.

If  u  G [1,1], then for n k sufficiently large

> n k ( 1 - u )  +  ( u  -  \ )  y / 2 n k log log n k
u — 1

=  \  y / 2n/c log log n k —̂ 00 as —► 00.

It now follows that

u=0

lim =  Too,
Tlfc—► OO

so that, as desired, we get
lim sup <E>* — + 00.

□
Short-term behaviour o f  <£. If  Z q = 0, then initially L 0(t) will grow faster than t  so that 

there will be a (random) non-empty time-interval (0 ,5) on which $  < 0. See Appendix C for 
further details.
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3.5. The Processes Z+ and Z
3.5A. Definition (The time-substitutions t* ) .  For t > 0, we define (with the strict > '  
conditions again being important)

r f  :=  inf{u : 3>(u) >  t}, r f  :=  inf{w : —&(u) > t},

with the usual convention that inf(0) =  oo.

3.5B. Lemma. The following results hold.

(a) Fz( r f  <  oo) = 1 i f  and only i f  either p >  — 1 or both t  =  0 and z  G (0, oo).

(b) F z ( r f  < oo) =  1 i f  and only i f  either p  <  —1 or both t  =  0 and z = 0.

Proof of Lemma 3.5B. This is trivial given Theorem 3.4E and Lemma 2 .16B. □

3.5C. Definition (The processes Z ^ .  For t  > 0, we define

Z +(t) :=  Z { r f ) ,  Z - { t )  :=  Z ( r f ) ,

with the usual convention that Z ± (t) =  d i f  r f  =  oo, where d is a 'coffin sta te’. For instance, 
we can only have Z +(t) =  d here i f  p  < — 1.

3.5D. Hypothesis. For the process Z +, we have the following situation

(a) i f  p > 0, then Z + is transient: Z f  —> oo, a.s.;

(b) i f  p  = 0 then Z + is null-recurrent: fo r  any to and any z  G [0, oo), there will (a.s.) 
exist a random t > to such that Z f  =  2, but fo r  any interval I, F ( Z f  G I)  —*■ 0 
a s t  —> 00;

(c) i f  — 1 <  p < 0, then Z + is positive recurrent, and (a.s.) fo r  any interval I, 
F (Z f  G I) —» Jf r}(y)dy as t ^  00 , where 77 is the invariant density fo r  Z +;

(d) i f  p  < — 1, then (a.s.) Z + has finite lifetime.

Comments on Hypothesis 3.5D. This is given for the same reasons as in the corresponding 
point in the previous chapter.

3.5E. Lemma. Z + and Z~ are strong Markov processes.

Proof of Lemma 3.5E. The proof is similar to the corresponding result in Chapter 2. □

It is clear that Z~  is a Markov chain on {0} U {5}. Under P° the value r f  will (a.s.) be 
strictly positive and Z f  will belong to (0 ,00). We see that Z + is therefore a process which 
behaves like Brownian motion inside (0 ,00) but which, on approaching a point 0, jumps into 
(0, 00) according to some measure II l_(0, •) (of total mass at most 1) on (Borel subsets of) 
(0,00) ( and jumps to d with probability 1 — n _+(0, (0,00)).
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3.5F. Definition. To be specific, we let

n-+(o, J) := p°(z+ eJ) (Je B(o, oo)),
n + _ (2/>{0}) :=  Pv(tq <  oo) ( y e  (0,oo)),

to accompany Definition 3.IF.

3.5G. Definition (The transition semigroups P * )m For t > 0, we now define the map P^ on
C[0, oo] via

{ p t f )  W  E Z(/(Z ^ ) ; r f  < oo) ( f  e C[0 ,oo], z e [0 ,oo)).

3.6. The Probabilistic Significance of the PDE for F

Let $(0) take an initial value (p < 0 and let W ,z denote the law of (<F, Z)  for this new situation: 
it is the Pz law of (<F +  (/?, Z). In the following theorem, this allows us to include z =  0 in the 
general starting point.

3.6A. Theorem.

(a) Suppose that F  G M  with continuous extension to {0} x (0, oo), and define

Ut : =  F ( S ( f A T 0+ ) , Z ( f A T 0+ ) ) .

Then our PDE
dv F  + H F  = 0 

holds on (—oo, 0) x [0, oo) i f  and only i f

U is a local martingale under each with z G [0, oo), <p < 0.

(b) Suppose that H  e  N  with continuous extension to {0} x {0}, and define

Vt : =  f f ( $ ( t A 7 0- ) , Z ( i A 7 0- ) ) .

Then our PDE
d ^ H F U H  =  0 

holds on (0, oo) x [0, oo) i f  and only i f

V  is a local martingale under each P^'z with z E [0, oo),<£>> 0.

Proof of Theorem 3.6A. Again, the required proof follows by similar arguments to those given 
in the proof of 2.7A of Chapter 2. □
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3.7. Finding Il+ Rigorously

Let c > 0. We now amend the setup as given in Section 1 o f this chapter, in that the 
following situation corresponds to considering the operator H c with domain V (H C) consisting 
of real valued functions in L  which satisfy the (‘reverse Feller’) boundary condition

\h " (0) +  (p  +  l)/i'(0) -  ch(0) =  0. (7.1)

Additionally for h G V (H C), we have H ch — \h"  4- ph! — ch . This relates to killing the
underlying process at the random time £. One of the main benefits o f this is that we can obtain
n +", for all p, from one calculation.

3.7A. Lemma. For c > 0, the process

M t :=  H (t, $ t , Z t) =  exp( - c t  -  ±72c$ t)h c(Z t) (7.2)

is a local martingale bounded on [0, T~]for u > 0, where hc G C[0, oo] is given by

hc(z) = exp(—̂ 72cz) f o r z  G [0,oo], (7.3)

and 7\  — 2(p +  1) +  +  l )2 +  8c >  0.

P roof of Lem m a 3.7A. Applying Ito’s formula to M t in (7.2), we have

dM t = (dtH )( t , $ t , Z t)d t +  (dv H )(t, Z t)d $ t
+  (dzH )(t, Z t)dZ t +  $ t) Z t)dt

= e x p (-c i -  [~chc(Z t)dt -  7^/tc(Zt)d'S, +  h'c(Z t)d Z t +  \h".(Zt)dt\

=  exp ( - c t  -  [ -  chc(Z f)di -  % h c(Z t) {dt -  dL0(f)}

+  h'c(Z t){ d B t + nd t + dL0(t)} +  \h "{Z t)dt 

Then, by the martingale preservation property, it follows that we need

\b!'c +  fjih'c — 17l h c — chc = 0 on (0, oo),
h!c +  17\h c =  0 at zero,

with \hc(y)\ < oo. This implies hc G C[0, oo], and then elementary calculus gives the desired 
result. □

3.7B. Remark. Clearly hc(oo) =  0. Note that, as expected, hc satisfies (7.1). Therefore, H  
would now satisfy the PDE in Theorem 3.6A(b) with H  = H c, but with an additional +dtH. 
One could have easily further generalized the theorem to account for this case. However, the 
form given there is what is later required.
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3.7C. Theorem. We have the following explicit form  fo r  Il+ ;

(  - 2 { n + l  )z i f n >  — 1

II+-(*,{0}):=P*(r0- < o o )  =  r ifllX

Proof of Theorem 3.7C. Given Lemma 3.7A, we now have an appropriate hc such that H  
in (7.2) is a local martingale. Clearly, exp(—cr0- ) =  0 on the set {r^  =  oo}. Moreover, if 
Tq — oo, then $ (t)  >  0 for all t >  0, simply by definition of r0_ . This makes it clear that

exp{—ctq — Tq )} — 0 on the set {r0_ =  oo}. (7.4)

Note that Theorem 3.4E enables us to strengthen some of the above. If  t 0~~ =  oo (in which case 
we must have p  <  —1), then $ t —> oo as t —> oo, so we additionally have 4>(r0~) =  oo on the 
set {tq- =  oo}, so that exp{ —±7c<I>(t0_)} =  0. This further verifies the result in (7.4). Hence, 
such a case gives no contribution to the underlying expectation, in that

E z [exp{—erg" -  \ l 2M T Q )} h c{ZQ)\TQ < oo]
=  Ez [exp{—cr0-  -  i 7^ ( r 0")}/ic(Z0- )] .

Now observe that $ (r0~) =  0 when r0“ < oo, $(0) =  0 and 1ic(Z q) — hc( 0) =  1. Since r0_ is 
a valid stopping time, we can legitimately apply the Optional-Stopping Theorem to get

E z [exp{—cr0~ -  |7c^>(/ro')}/ic(^o_) ;ro" < oo] =  E2 [exp{-cr0" } ;r0" < oo]
=  Ez [hc(Z0)}
= hc(z).

Thus, in particular, we have

E z [exp{—cr0_ } ;r0_ < oo] =  hc(z). (7.6)

Letting c [ 0 in (7.6), by Lemma 2.16B, we find that

E z[ 1 ; t 0“ < oo] =  lim hc(z).
cl 0

The result now follows by elementary Probability Theory and considering the appropriate limits.
□

3.7D. Corollary. We now have the following explicit form  fo r  n -+ ;

U~+(0,dy) = 2e~kMydy, where k(p) = < 2 (7.7)
\ - 2 p  i f p < - l .

Proof of Corollary 3.7D. Assuming the duality result in (2.1) and recalling the definition given 
in 3.IF, the given result follows from Theorem 3.7C. □
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3.7E. Proposition. It is now clear that II+ (?/, {0}) is a measure o f  total mass at most 1. The 
same can be said about the measure II_+(0, •) on (Borel subsets of) the interval (0, oo).

Proof of Proposition 3.7E. This is trivial. □

3.7F. Important Remark. Observe that, in the case when p > — 1, the probability density 
o f ‘half-winding’ is independent of the drift component. This means that the density of 
half-winding remains unchanged irrespective of the magnitude o f p, which initially seems 
unreasonable. This fact motivates the following section.

3.8. Heuristic Explanation of Why II + is Independent of fi when /x > - 1

For an explanation of the independence result we appeal to the Cameron-Martin-Girsanov 
Theorem below. However, there is a problem in justifying the uniform integrability property 
necessary for its use. This accounts for the use of ‘heuristic explanation’in the section title.

3.8A. Theorem (CMG change of measure). Let ( 0 ,770, {IF]}, IP) relate to a Brownian 
motion on R. Suppose that 7 is an {F]+} previsible R -valuedprocess such that:

Ct =  exp ( /  ' y s d X s  -  \  J  |7 s |2d s (8 .1)

defines a uniformly integrable martingale C on each finite interval [0, u\. Corollary 
IV.37.1I o f  Rogers & Williams [24] shows that this will be true when 7 is a bounded 
process. Then there exists a measure Q on (O, F °) such that:

dP =  C t ,  v t ,
T't+

and, under Q,

7 Jo
7sds

defines a Brownian motion relative to T [ + . If  T  is an {^7+} stopping time, and Q a t  is 
uniformly integrable, then

dQ
V -  Cr, (8.2)

j r o  
J  TdP

T+

It follows from equation (7.6) when p = 0, we have
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where a  =  1 +  y/1 +  2c. Next define

n c- +(0, dy) :=  E° o ■ Z+ e  dy

nc“(y.{0}) :=E » o e 0 ; r 0 <  oo =  E »=0

It is clear that our previous duality argument will hold for the ‘killed’ situation. This therefore 
suggests that

n ; +(o,dy) =  2n+-(y,{o}),

which is equivalent to
E° o{e-CTo ; ^ ( r + ) e d y}  =  2 e-“*dy. (8.3)

As a consequence we now have

E° ne-7Z(T°+)-cr°+ =  ^ 11=oc 7 + OL
(8.4)

Justification that (8.4) can be obtained from (8.3). Multiplying the RHS of (8.3) by e iy and
integrating over [0, oo), it is clear that

CO n

e - iy2 e -aydy  = -------- ,

o 7  +  «

the RHS being exactly the RHS in (8.4). This tells us how to proceed. All that it remains to 
do is to deal with the LHS in (8.3). Using elementary results from conditional expectation, we 
have

LHS in (8.3) =  ; Z(r+ ) 6 dy}

= K=o \e-^+\Z(r0+) e  dy] IP% ( Z +  6  dy)

/Jo
, —c t  TpO

V =0(r+  6  dt\Z+ e  dy)P° 0(Z0+ 6  dy)

Next, if we multiply the lattermost result by e 1V and integrate over [0, oo), we have

&

p o o  p o o

0 Jo
oo poo

- n / y - c t  pOP“=0(t„+ e  d t \ z +  € dy)P°=0(^ 0+ e  dy)

0  JO

, - 7 y - c t  p 0 =o(ro+ ^ d  t,Z +  G d  y)

E° 0e"7Z(To+)- CTo+.

Note that we have used the definition of the conditional density o f the law of r 0+ 1 Z f  in order to 
express the desired result in terms of the joint law of Z f  and r f .  □

Let Wt be the canonical ‘coordinate process’, so fi is the space of continuous functions and 
W t(u) = u (t). Let P °=0 be the Wiener measure, so W  is a IP°=0 Brownian motion.
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p £ R  is clearly {^°+} previsible as it is simply a constant. Moreover, it is well known 
that Q := exp(pW t — \p 2t) defines a P°=0-martingale (  with initial value 1. Hence, by the 
Cameron-Martin-Girsanov Theorem we can consistently define a measure P°=M on (Q, F^f) 
via

dK=a =  Ct on F t+ for finite t. (8.5)

Here the measure P°=/x is said to be equivalent to P °=0 on each {F^+}. However, the equation 
just given is of course false when t = oo, so that the measures are not equivalent on {IF0} which 
is the completion of {JF°+}. In order to fully justify the use of the CMG Theorem, we need to 
show that:

1. W t — p t is a P °=M-Brownian motion,

2. {C*at0+} a UI martingale.

For reasons already given, the latter point in the above is ignored. We therefore concentrate 
solely on point 1. By Levy’s characterization of BM, in order to show that W t — p t is a P j=M- 
BM we need to show that
(i) Wt — p t is a P9 -martingale,

r\
(ii) W t — p t has PJ,=A, quadratic variation t.

However, (i) is the same as saying that

X t G (t, Wt) — (Wt — p t)(t defines a P°=0-martingale.

This can be proved directly as follows.

It is clear that G G C 1,2([0, oo) x R ) .  We can therefore apply Ito’s formula to get

d X t = dtG(t, W t)dt +  dwG(t, W t)dW t + \d lG { t , W t^ d W tf  

= -Ct { i/t2W  -  fit) + /t} dt + Ct -  (it) + 1} dW t

+ Ct { §/t2 W  -  lit) + n} dt 
= (t{li(Wt -[ i t )  + l }dWt 
= {fiXt + Q d W t.

The martingale preservation property now yields the desired result.

Similarly point (ii) is equivalent to (W t — p t)2 - 1 defines a P°=M-martingale, which is the same 
as saying that

Yt :=  H (t, W t) = {(W t — p t)2 — t }Ct defines a P°=0-martingale.

This can be proved in a similar way to (i) as H  E C 1,2([0, oo) x R). However, this time Ito’s 
formula gives

d Yt := {pYt + 2(W t - p t ) } d W u 

so that once again the martingale preservation property prevails.
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Recall that Wt is a P°=0 We now know that, under P°=M, W t — fit is a BM. Then,

d W t =  f i d t  +  [dW t -  f i d t ] .

Hence, we have changed W t to a BM with drift /i under P°=M-

We now introduce Levy’s presentation in order to get the desired reflecting BM on [0, oo). 
We take

Z t = W t -  min Ws, L t =  -  min W 3,
s < t  s < t

so that Z t defines a reflecting BM with zero drift under P°=0 and drift ji under P°=/r Recall 
that such a presentation only gives us an equivalence in law to the underlying processes Z t and 
L t . This accounts for the Z  notation. We write r  for r f .  Then r  — L T =  0. Next we can use 
the characterization in (8.5) in order to relate the two measures.

-e z}
- m=u-  dp<)=() =  E»=0e - 92«+Ct=T

t — T

Now define

-  ]g0 ̂ e - 0 [ W ( T ) + L ( T ) \ + l J . W { T ) - ± f M 2 T '

I  : =  —0[W (t ) +  L{t )\ +  hW {t ) -  \ \ j f r

=  - ( o  ~  f^)[w (T) +  L(j ) }  -  -  \ f i T
= - ( 6  -  fj,)Z£ - r ( f i  + \n 2) (since Z(r) =  r.) 

It follows from (8.4) that

E° e7 =
M 0 6 — n + a

where a  = 1 4- \fi +  1|. Clearly there are two cases to consider.

Case (i): n > — 1 => |/i +  1| =  /z +  1 so that a  — 2 +  /i. Here we have

Eo -ez*  = 2
w  g + 2 ’

and so we expect that

E JU I1; z o e  dy] =  i r + ( 0,dy) =  2e -^ A y ,  

which is the desired independence result.

Case (ii): fi < — 1 => |/i +  1| =  —fi — 1 so that a  = —fi. This case yields

Eo - ez+ =  .2 , ,.
^  6 - 2  n ’

and we therefore expect that

E °=„[l; Zo e  dy] =  n-+(0, dy) =  2e2mdy, 

by using a similar to that used to show that (8.4) may be obtained from (8.3).
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3.9. Eigenfunctions of TC

We now define
:=  n + _ (y» {o})- (9.i)

Trivially, if  p > —1 then 2{p +  1) is an eigenvalue of TL corresponding to the eigenfunction 
hfj,(y). Alternatively, if p < —1 then 0 is the corresponding eigenvalue as is the constant 
function 1. It is not difficult to show that each such eigenfunction hM is (negative) s, except for 
the case when p = —1 in which is (neutral) 3. In light of the above, let

, vr. , *, if p >  —1,
e / i  == ' -f  Z  i (9-2if p < —1.

At first, it seems that fe(y) =  cos(Oy) +  ±0sm(6y)  is an eigenfunction of TL corresponding 
to the negative eigenvalue — \6 2. However, even though fe(y)  is bounded on [0, oo), (/#, fe)s is 
not defined in this case as the corresponding integral turns out to be infinite. Hence, /<? is not an 
eigenfunction of Ti'. it does not belong to the right space. This is one of the main reasons why 
we had to proceed differently in this case.

3.9A. Generalized eigenfunctions. Here, problems concerning the underlying domain o f TL 
are further emphasized. In the case when p — —1, if our underlying functions have to be 
bounded, then a generalized eigenfunction o f TL corresponding to the eigenvalue 0 does not 
exist. Recall that such a generalized eigenfunction, f  say, would have to satisfy £ E V(TL) (so 
that £ must be bounded), TL£ = 1 and TL2£ =  0. One should then observe that, for this case,
(1.1) simply reduces to £"(0) =  0. Ignoring the need for ‘boundedness’, we have £(y) =  —y .

3.10. The {Pt } Semigroup

3.10A. Theorem. For z  E [0, oo) and h E C[0, oo], we have

(.Pt~ h)(z) =  e~eMi*+t)h( 0), 

where e(p) corresponds to the appropriate eigenvalue ofTL as given in (9.2).

Proof of Theorem 3.10A. It suffices to appeal to arguments given in the proof of Theorem 3.7C. 
More specifically, we modify matters in that we apply the Optional-Stopping Theorem at r f  
and we observe the facts that $ ( r f_ ) =  —t  and Z f  =  0. This time the Monotone Convergence 
Theorem gives

r ( T f  <  oo) =  e- e('‘)<z+l).

This result together with Definition 3.5G gives us exactly what we need. □

The following Corollary to the above Theorem is crucial in regard to the legitimate 
application of Theorem 3.6A.
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3.10B. Corollary. We now have ( t , z)  ► (Pt h){z) is C 1'2.

Proof of Corollary 3.10B. This is obvious. □

3.10C. Rem arks. If  we draw an analogy with the calculation of P f h  in Chapter 2, it is 
immediately clear that affairs are much simpler. This is as we only have a single boundary 
so that, in particular, Z f  =  0 if  r f  <  oo. Viewing Z~  as a Markov chain on the solitary state 
0, we see the -matrix’ corresponding to this situation is simply the value —e{n).

Proof of WH2. Given Theorem 3.10 A, we define H( t , z )  := (P f h ) ( z ) fo rt >  0. By arguments 
given in Section 7 of Chapter 2 it follows that H  ($ ( t  A r f ) ,  Z ( t  A r 0- )) is a martingale. We 
may therefore legitimately use the ‘if ’ part o f Theorem 3.6A (b) to show that the necessary 
PDE holds and H((p, •) E V(H) .  The martingale property allows us to legitimately justify the 
remaining matters by probability as well as by analysis. O f course, due to the simple form of 
P f h ,  everything here can easily be confirmed directly. □

3.11. Calculation of the Conjectured Resolvent {R J : A > 0}

If Z ( 0) =  0, there is no good way of applying the Strong Markov Theorem at a stopping time 
which is less than r0+. (The only thing that comes to mind is su p ju  : $(u)  <  0}. However, this 
is clearly not a stopping time!) This is one o f the features which makes it necessary to begin by 
relying on guesswork.

Heuristics. Believing in duality, we guess that Z + is a Ray process and has the same laws 
as Z + where Z + behaves like a drifting Brownian motion on (0, oo) and, on approaching 0, 
jumps into (0, oo) according to the conjectured density 7r(0 , f e 2̂  = 2e~k^ ' \  where k is 
given in (7.7). We shall construct the resolvent {R J  : A >  0} which Z + would have to possess.

For typographic neatness we shall use the following notation:

f3 i— (yii T  2A)2 , so that : — (fi2 -1- 2A)^ T fi — (3 fi*,

a* : =  (fi2 +  2A) 2 — yL = (3 — fi.

Since A >  0, note that both a* and a* are strictly positive. Furthermore, a* -F a* = 2(3 and
a*a* -  2A.

Suppose that T0 :=  inf{£ : Z t = 0} as usual. Let tab#A be the resolvent o f the process 
{Z t : t < T0}, which is therefore the resolvent of drifting BM killed at 0. Note further that

W  (e_AT°) =  e~a*z.

For /  E C[0, oo], we expect to have

X(R^f ){oo)  = X(tabR xf)(oo)  = f(oo).  (11.1)

Now for z  E (0, oo], we surely believe that

gx(z) -.= = U R x f ) ( z )  + e~a-z ( R l f m - ( 11.2)
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From the analogous result for drifting Brownian motion on R, it is a trivial exercise to show 
that for /  G C[0, oo],

PO O

(tabRx/ ) ( * ) = /  tabr\(z1w ) f ( w ) d w 1 (11.3)
Jo

where

II |  e-a* («,-*) _  e-a ,z -a * ^ | if * <  w,

(11.4)

1 | e - a *  (* -« ; )  _  e - « . z - a * w  j  i f  ^  ^

Hence it is clear that tab#A := (tabR \ f )  solves X(tabgx) ~  5(tab9x) ~  A*(tab9x) = f  on (0 ,00) 
with Dirichlet boundary condition tab<?A(0) =  0 and that it converges to the limit as given in
(11.1). Additionally, note that tabrx(z, {0}) =  0 and that A tab^oo, {°°}) — 1 f°r all X. Of 
course, as we shall soon see, the corresponding result is true for the kernel f +. This reflects the 
fact that the ‘point’ 00 is absorbing.

Because 0 is a branch point of the Ray process Z +, the relevant strong Markov property to 
which we are making intuitive appeal, is really that (due to Meyer and Ray) at Theorem 111.41.3 
of Rogers and Williams [24]. Now, (11.2) implies that g\ G C[0 ,00] n C 2(0 ,00) and

Xgx ~  \9x - M x  =  f  on (°i 00)> (H -5)

with (11.1) at 00. Moreover, we also believe that,

gx( 0) =  f  n-+(0 ,d  y)gx(y), (11.6)
J  (0,oo]

where the guessed value of II-+  is given in (7.7).

Trivially, the ‘lateral’ condition (11.6) is equivalent to

( h ^ g x ) s = 0, (11.7)

where h ^ z )  is defined in (9.1).

Do remember that equation (11.5) is not the (A — Q+)~l — R J  equation of Hille-Yosida 
theory because /  may not belong to the domain of strong convergence to I  of P f  as 11 0.

Definition and calculation o f  : A > 0}. We now begin the rigorous study of
the conjectured resolvent. We shall see that for /  G C[0, oo], there is a unique solution 
gx e  C[0, oo] n C 2(0 , oo) of (11.5) with lateral condition (11.6) (equivalently, (11.7)). We 
shall define the linear operator R J  on C[0, oo] via R ^ f  :=  gx- We are going to show that 

>  0} is a Ray resolvent, and (eventually) that it is the desired resolvent of Z +.3.11A. Analytic verification tha t (11.2) holds. With the definition o f R  J  just given, we simply 
verify the ‘Dirichlet’ description of tabRxf  as defined via (11.2) from R J  as in Section 10 of 
the previous chapter. □
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By elementary calculus, equation (11.5) implies that

<&(*) =  A \ ( f ) e ~ a' z +  -  /  {£-“'(”>-*) _  e-» — «**»} /(u )) du)

PJ z  , r  (11-8) 
+ a {e~tt' lz- w) - e - a' z- a’w} f { w ) d w .

H JO

Using (11.7) we find that

A \ ( f )  = f  A x{0,w) f (w)  dw,
J  [0,oo]

where

A \(0 ,w ) = -jT-r\ T77T1—\— ^ . (11.9)
M ' (fe(/i) -  a*)((fc(/i) -  2) + a .)  1 ;

From (11.8) we can easily check that g \ satisfies (11.5) and (11.1), in that,

lim gx (z) =  lim g’x(z) = 0 and lim Agx{z) = /(oo).
z —>oo z —> oo z —+oo

All that one needs to do is to observe that

f°° 1
lim e°*z /  e~a*wf ( w) dw  — — /(o o ),
z_+°° J  z a *

lim e~a*z [  ea*wf ( w) dw  =  — /(o o ), 
z^°° J o  a ,

together with

p o o  p z

lim e~a*z /  e~a*wf ( w) dw  — lim e~a*z /  e~a*wf ( w) dw  — 0.
z^°o J z  z ^ ° °  J o

3.1 IB. Lemma. We have R x : C[0, oo] —» C[0, oo], and

(R \ / ) 0 ) = [  f ^ ( z 1w ) f ( w ) d w
J  [0,oo]

fo r  a jointly continuous kernel rx with 

f j(0 ,u ;)  =  ^4a(0, w ), ? \ ( z , 0) — Ofor all z  G [0, oo], A rJ(oo , oo) =  l f o r  all A.

Proof of Lem ma 3.1 IB. Given (11.9), matters are obvious here. □

As in the previous chapter, look forward to Corollary B.7 o f Appendix B which motivates 
the following result.

3.11C. Lemma. We have

AAa(0, w ) —» e2/i™7r(0, w) (zu 6 (0, oo]), but 0 =  A Aa(0,0)^> lim {e2/iu;7r(0,ro ) | =  2.
w—>0+
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0
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0
2

0 0

l i m X A \  ( 0 ,  w )

AAa(0,0) = 0

e2̂ wTr(0,w)

XAx (0,w)

Figure 3.1: AA\(0, w) against e2fJ,wir(0, w) for large A.

Proof of Lemma 3.11C. All that we need to do is to observe that, for w > 0,

4
lim e a w = 0 and lim -------- — —-------   =  —2,

A—>oo a—oo (k(fj) — a*)((k(/i) — 2) +  a*)

for both cases for A;(/i). The result at 0 is obvious.

Noting that gx(0) = A \ ( f ) ,  we can substitute (11.8) into (11.6) to get

<7a ( 0 )  =  1 + (k (/i ) - 2 )  + a.
n - +(0,d y)URxf)(y).

□

( 11.10)

One should simply observe that the particular solution in (11.8) is exactly what recognize as 
(tabRxf) in ( 11.4). Given the numerous ways of expressing the solution to ( 11.5), this is the main 
reason why the form in (11.8) was chosen. Formula (11.10) is the ‘Reuter’ formula (actually a 
Feller-Reuter-Neveu formula) which has a useful interpretation. This will help us to deduce the 
desired C 1,2 properties o f the underlying semigroup, which we have not yet shown exists.

3.1 ID. Remark. Note that, as expected, (11.10) follows by substituting the resolvent 
decomposition (11.2) directly into (11.6). However, this was not the correct route to take given 
our preliminary guesswork!

>  0} as a Ray resolvent. Firstly recall the necessary Ray process theory from
Appendix B.

3.11E. Theorem. { R f  : A > 0} is an honest Feller resolvent on C[0, oo].
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In order to prove the above theorem, we firstly need several results. We have already 
established that R i  : C[0, oo] —» C[0, oo].

3.1 IF. Lemma. We have non-negativity o f  R J, in that, i f  f  E C[0, oo] and f  > 0, then
Rtf > o.

Proof of Lemma 3.11F. Let /  E C[0, oo] and f  > 0. Recall that g(z) := (R i f ) ( z ) satisfies 
the conditions in (11.5) and (11.6). Note that the subscript A will be dropped for typographic 
convenience. It suffices to prove the following

( R i f ) ( z )  >  0 for all z  E [0, oo].

Now for a contradiction suppose that

g* :=  mf{g(z)  : z  E [0, oo]} < 0. (11-11)

Suppose further that g(yf) = g* for some y0 E (0, oo). Then by (11.5) we have

^9* ~  \9 'l ~  = f ( y o)- (11-12)

Recall that g* is defined as a local minimum so that we must have g' =  0 and g'l >  o. However, 
Ag* < 0 and we have/ ( ?/o) >  0, which clearly gives the desired contradiction to our supposition 
in (11.12). It therefore follows that

g(x) = g*, for x  E {0, oo}, (11.13)

i.e. g attains its infimum at the boundary point 0 or at oo. The result at z =  oo follows 
immediately from (11.1) since A, /  >  0. We can therefore restrict out attention to 0.

It suffices to show that if (11.13) is true, then we get the desired contradiction to (11.6) in 
the case when g < 0. Note firstly that (11.13) implies g(y) > g{0) for all y E (0, oo). Using 
this fact in ( 11.6) we have

/
oo roo c\

2e~k^ yg(y)dy > g(0) J  2e~kMydy = g(0) - .

Since 5r(0) <  0 by our supposition in (11.11), we have

k(n) <  2 ,

which clearly contradicts what we recognize as k(fi) in (7.7). □

3.11G. Lemma. The resolvent equation holds.

Proof of Lemma 3.11G. The desired proof is identical to that given in Lemma 2.1 OF. □

3.11H. Lemma. For f  E C[ 0,1], we have the following results:

(a) A (tab-R A l)(z) =  1 -  e ~ a - z ,

(b) A(fl+1)(0) <  1.
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Proof of Lemma 3.11H (a). We take /  =  1 in (11.3) and then use elementary integration. 
Observe that A(tab^A f ) ( z ) is simply the probability that Brownian motion killed at 0 is alive at 
an exponential time. □

Proof of Lemma 3.11H (b). From (11.9), we can easily deduce that

A(fltl)(0) =  - — „ 4\  , ,  , ,
(k — 2 + af)c>L*k(n)

which equals 1 if  k(fi) — 2. If  k(fi) =  —2/i (in which case /i <  — 1) we have

A(fltl)(0) =  ^ ---------------- r .
/z2a* — fia* — /iA

However,
— fia* — n A >  cm* +  a* +  A > A > 0, 

and so we have the desired result. □

3.111. Corollary. XR+l  <  1.

Proof of Corollary 3.111. From the decomposition in (11.2) we have

A (£+l)(z) =  A(tabf2Al)(z) +  e - a**A(A+l)(0)

=  1 -  +  e_a*zA ( ^ l ) ( 0 )  (by Lemma 3.11H (a))
<  1 -  e~a*z + e~a*z (by Lemma 3.11H (b))

1.

Finally from (11.1) we have A(R^l ) (oo)  = 1, which yields the desired result. □

3.11J. Corollary. I f f  £ C [0,1] and f  < 1, then R + f  < 1.

Proof of Corollary 3.11J. The result is a trivial consequence of Lemma 3.1 IF and Corollary
3.111. □

Proof of Theorem 3.1 IE. Recalling Definition B .l (of Appendix B), to get the desired result, 
it suffices to combine the results in Lemmas 3.11G and 3.1 IF and Corollary’s 3.111 and 3.11 J. 
However, as in the proof Theorem 2.10D, the desired ‘honesty’ property may require adding a 
coffin state d  and extending R \  in the obvious way. This only applies to the case when fi < —1.

□

3.11K. Theorem. {#+  : A > 0} is a Ray resolvent.

Before we are able to prove the above theorem, some important results need to be 
established.



3.11. Calculation o f  the Conjectured Resolvent {R J : A > 0} 1 1 2

3.11L. Lemma. For f  G C[0, oo], as A —> oo, we have

-  ( # / ) ( * ) ,

where, as expected,

(^o+ / )  fe) :=  / to )  to e  (0 , oo]),

0 &o+/ ) ( 0) : =  [  e2w 7r(0 , 2/ ) / to) d2/-
V '  d  (0,oo]

Proof of Lem ma 3.11L. The result for z — 0 follows directly from Lemma 3.11C. We also 
know that A (/2 j/)(oo) =  /(o o ), so we only need to deal with the points in (0, oo). We do this 
probabilistically.

Suppose that ( \  is exponential with rate A, independent of the process Z. Then, with To as 
at the beginning of the section, we have

\ U R J ) ( z )  = E2 [/(Z(Ca)) : Ca <  To]
=  E 2 [ /  (Z(% )) : Ci < AT0] (since ACa =  Ci)-

Now /  (Z(§-)) is clearly bounded by 11/ 11sup for /  G C[0, oo]. In addition, Ci < AT0 for A 
sufficiently large. Hence, as A —> oo,

A(„bflA/)(z) =  E2 [ /  (Z(5A)) : C, <  \Ho] ^  E 2 \ f ( Z 0)} =  f ( z ) .

□
3.11M. Lemma. 1Z separates points of{ 0, oo], where 1Z is the common range o f  R J" on C[ 0, oo].

Proof of Lem ma 3.11M. Suppose TZ is dense in C[0, oo]. Then if  1Z does not separate two 
distinct points z\ and z2 o f [0, oo] so g(zi) = g{z2) for all g G TZ, then for all A,

(AR t D i z , )  = (\ R +J ) { z2), for all /  G C[0, oo].

£Tl

Taking the limit as A —> oo in the above we have

(P0+/ ) ( Zl) =  (P0+/ ) ( Z2), for all /  e  C[0, oo].

Hence, in order to get the desired contradiction, it suffices to show that if  z\ and z2 are distinct 
points of [0, oo], then for some continuous /  on [0, oo] we have

(T0+/ ) ( ^ )  (P0+f ) ( z 2).

It is now trivial to prove that 1Z separates points. We just take /  =  1 and /  =  e~ky. □

Proof of Theorem  3.1 IK . From Definition B.4, we know that a sufficient condition for 
our honest Feller resolvent {R% : A > 0} to be a Ray resolvent is that the common range
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jZ =  R jC [0 , oo] of the R J  operators separates points of [0, oo]. Hence, given Lemma 3.11M 
we know that R' l  is a Ray resolvent. □

3.1 IN . Theorem. There exists a map P f  (t > 0) mapping C[0, oo] into the space 
bi3[0, oo] o f  bounded Borel functions on [0, oo] such that fo r  f  G C[0, oo] and 
z  G [0, oo], 1 1—> ( P f  f ) ( z )  is right-continuous, and

p o o

/  e~Xt(Pt+f ) ( z ) d t  =  a ( # a /)(* )>
Jo
pf+ t = P fP t+ f o r s f  >  0,

/  >  0 implies P f  f  >  0, and P f  1 <  1 .

Proof of Theorem 3.11N. We have now proved Theorem 3.1 IK so the existence of the P f  
maps is guaranteed by Theorem B.5 of Appendix B. □

3.110. Remark. For comments on the probabilistic part o f Ray’s Theorem see the 
corresponding section of Chapter 2.

Connections with the PDE approach. The PDE approach makes us believe that, for 
/  G C[0, oo],

d y { ( P ? f ) ( y ) }  + a « { (P ,+/ ) ( 0)}  =  0. (11.14)
y = 0

Note the use of ‘believe’ here, due to the fact that we do not yet know that ( P f  f ) ( z )  is C 1,2. 
On taking Laplace transforms in (11.14), we would have for g\  \= P ^ f ,  equation (11.5) with 
the different boundary condition

p o o

1̂ ( 0) +  A<ft(0) -  /  i r + (0 , c = 0. (11.15)

One can easily verify that g\ = R { f  does have this property. From (11.8), it is simply enough 
to prove that

{a, -  A)Aa(0,ui) =  2e~a’w -  2e~k(>‘)w. (11.16)

Noting that a* =  a* +  2/i, this is exactly equation (11.9). The boundary condition tallies, in 
that (Pt+f ) ( ■) e  V(H) .

A direct proo f o f  (11.15). For this case, the fact that (11.15) follows from (11.5) and 
(11.6) may not be proved directly, unless we make some vital assumptions. This time, as a 
consequence of (11.5), the desired result in (11.15) is equivalent to

p o o  p o o

9 x ( 0 ) P p  /  n ~ +(0,dy)g'x(y) +  |  /  I I"+ (0, dy)gl(y)  = 0. (11.17)
Jo Jo
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However, we only know that g\ E C[0, oo] D C 2(0, oo). This certainly does not imply that both 
gx and gx are bounded in the limit as y —► oo. Given the presence o f g'x and gx in (11.17), this 
clearly causes a problem!

Recall that h ^ y )  =  e ~ y k̂ ^ +2^  and that TL h^  — 2 ( g  +  1 in the case when f i  >  — 1. 
Furthermore, h!^{y) =  —2(n  +  1 )h^(y),  so that in particular we have /iM(0) =  1 and 
h'n(0) =  — 2(/i +  1). Assuming that both gx and gx are bounded in the appropriate limit, 
elementary integration by parts combined with these facts then allows us to simplify matters 
considerably and therefore prove (11.17).

If /x ^  I? then — 1 and so zero is the corresponding e-value of TL. As a result, (11>7) 
now becomes redundant, in that (11.17) may be deduced solely from (11.5) via integration by 
parts.

The lack of rigour here in our assumptions about gx and gx further emphasize the importance 
o f finding an explicit solution to (11.5) as in (11.8).

3.12. Deducing that Pp  is C 1,2

Due to the absence of eigenfunctions corresponding to negative eigenvalues here, it is almost 
impossible to achieve a precise spectral expansion for P p /  as we did for the two-boundary 
problem. Consequently, deducing that P f  is C 1,2 immediately becomes a more strenuous issue. 
The continuity problem is considered in complete generality for the driftless case in the final 
chapter. Therefore, we shall merely comment on calculations specific to this case. In fact, it 
turns out that the calculations for this particular case are more ‘awkward’ than those for the 
general case.

Clearly we need a convenient explicit form for the { P f  } semigroup. Due to the connection 
between Laplace transforms and convolutions, it is unsurprising that such an explicit form can 
be written in terms of the convolution of two functions. We therefore begin with the following 
definition.

3.12 A. Definition. The convolution o f  two functions f ( t ) and g (t) is defined as

I ) ■= [  f { s ) g ( t - s ) d s .
Jo

It is trivial that ( /  * g)(t) =  (g * /)(£), when the underlying integrals exist. Next we 
consider the following useful theorem concerning convolutions. £  denotes the familiar laplace 
transform.

3.12B. Theorem. I f C { f ( t ) }  = F ( A) and C{g(t)} — G (A), then 

£ { ( /  * <?)«} =  C{f ( t ) }C{g( t ) }  = F( \ )G(X) .

We now have the following useful corollary.
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3.12C. Corollary.

Proof of Theorem 3.12B and its Corollary. For a proof, see Finney & Ostberg [9]. □

3.12D. Working Hypothesis. For all /i E M, we have

( P f f ) ( z )  e  N  := C 1'2^ ,  oo) x [0, oo)) n  C ((0 ,oo) x [0,oo]).

Comments on proof of Working Hypothesis 3.12D. For a proof in the ‘driftless’ case, see 
the final section o f Chapter 4. It will become quite clear that the argument given there may be 
modified to account for this case. However, we shall now comment on issues specific to this 
case. The following function plays a key role;

p o o

u{t) := /  n - +(0,d^)(tab^+/)fe ) , (12.1)
Jo

and referring to VI.55 of Rogers & Williams [24], we find that for /  E C[0, oo]

p o o

(tab Pt+f ) ( z ) =  /  tahp+(z7w) f (w)dw,
Jo

where

tabp t ( z , w )  = - j L = e x p { f i ( w - z )  -  ^ 2t} [ e x p { - ^ ^ }  - e x p { - ^ ± ^ } ]  . (12.2)

The explicit form of u{t) is now clear. Corollary 3.12C may be used with the ‘Reuter’ formula 
in ( 11.10) to deduce that

:=  (A /)(o )  =  u(t) + {u*T))(t).  (12.3)

where

rj(t) = e x p | -  exp +  /x -  2)2*} (/c(/i) + fi -  2)T M( f ) | , (12.4)

where T  ̂ (t) — 2 — 2 4>^(/z +  k(fi) — 2 and $(•) is the distribution o f the standard normal 
variable.

Initially, the key step is to prove that a(-) is continuously differentiable on (0, oo). Though
both u and 77 are differentiable on (0, 00), the problem is that they do not behave well at t = 0.
The way to proceed by bare hands is explained in Chapter 4.
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It is possible to further generalize matters in order to get an expression for ( P f  f ) ( z )  for 
general 2 E (0 ,00). In particular, we may now deduce that

(Pt+f ) ( z ) =  (tab^+/ ) M  +  [  b ( s ) a ( t -  s)ds,  (12.5)
Jo

where

V  27rs*5
Notice that b(t) represents the probability density for the first-passage time of Brownian motion 
with negative drift, to hit level y starting from 0. In particular, we have

p o o

Jo
y  e x p { = l ^ } d s  =  I  1_,„„ ~  (12.6)

0 V 2 n ?  [ e - 2™ if  f i >  0.

(Referring to 1.8 of Rogers & Williams [24], it can be seen that the case given there corresponds 
to taking a* rather than a * in the above. There it can also be seen that C ( 6(£)} =  e~a*y, a fact 
used to deduce (12.5).) □

3.13. The Probabilistic Semigroup { P f  : t  > 0}

As promised, we now confirm that P f  = P f  for t > 0 . Recall that for the two boundary 
case, we had to consider the ‘problem’ case separately as the spectral expansion was only valid 
for mo +  m i ^  1. However, for this example there are no such worries, in that we do not need 
to consider quotient spaces in order to deal with the case when p = — 1.

Let /  E C [0,00]. In the previous section we have deduced that (Pt+ f ) ( z )  e  N  for  all 
p. Furthermore, we may also deduce that (dt — \ d y ) ( P f  f ) {y)  = 0. We know that (11.15) 
holds, and we may now legitimately invert the Laplace transform to show that (11.14) holds. 
We therefore know that for every t  > 0 and /  E C[0, 00], we have P f f  E V(Tt).  Moreover, 
given Lemma 3.11L , we know that F  has final condition

P { 0 - , y )  = f ( y )  {y e  (0,oo)).

Hence, if for (<£>, z) E (—00,0] x [0,00] we define

F ( p , z )  :=  ( P _ V ) ( 2)- d 3-1)

then F  satisfies the condition (see Theorem 3.6A) that

M, := F ( m A T + ) , Z ( t A T + ) )

defines a local martingale, indeed a bounded martingale. We are now in a position to utilize the 
Optional-Stopping Theorem.
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If p  >  —1, then Tq is almost surely finite, so we have for (tp, z) G (—oo, 0) x [0, oo],

F(<p, z) = E*’zF ( m ,  m )  =  E ^ F (< F (r0+), Z (r0+))

=  E^’zF (0 , Zg") = E <p,z/ ( Z q ),

so that ( P- Vf ) ( z )  =  ( P ^ f ) { z ) .  The lattermost result is simply our final condition for F.

Now suppose that p < — 1. First, we pause to make some important remarks.

3.13A. Rem arks. In the corresponding section of the previous chapter (i.e. w henm o+m i > 1), 
we were easily able to deduce that ( P f  f ) ( z )  —> 0 as t —► oo, uniformly in z, via the spectral 
expansion. Here, however, we are not so fortunate, as we do not have an explicit form for 
(Pt+f )  (z) to exploit.

Note too that we cannot yet talk about <Ft in relation to Pt+/  (as in Definition 3.5G) as this 
is precisely what we are striving to prove.

Even with the previous remarks in mind, all is not lost, as we have enough material in our 
‘hatted’ scene to deduce the following lemma.

3.13B. Lem ma. For f  E C#[0, oo), we have (Pt+ /)(0 )  —> 0 as t —* oo.

Proof of Lem m a 3.13B. Suppose that Z + has transition semigroup { /* } .  Suppose that Z + 
‘starts at O’: in fact it jumps away from 0 immediately. But Z + must keep approaching 0 (since 
p < — 1, but p  <  0 is enough) and every time it approaches 0, it has chance 1 — l / \p\  of dying. 
So, it must die at some random time (.  Now for /  e  Ck [0, oo), we have

(Pt+/)(0 )  =  E° ( / ( £ + )  ; t  <  c ) <  ll/ILp p°(t <  C) -  0 (13.2)

as t —> oo. □

3.13C. Rem arks. The result in (13.2) may clearly be generalized for (P* f ) ( z )  with the IP 
measure. Now suppose /  =  1, so that (Pt+ l)(z) =  IP(£ < ().  Then, whatever the value of t, 
for very large z, (P* f ) ( z )  will be very close to 1. Consequently, even though (P+f ) ( z )  —> 0 
pointwise, no uniformity can be claimed! This explains why we choose to focus solely on the 
case in which z = 0.

Suppose that /  is non-negative and in Ck [0, oo). Then M  is a non-negative local martingale, 
hence a non-negative supermartingale, and so (a.s.) exists by Doob’s Convergence
Theorem (see (11.5) of Williams [29]). We now show that if  Tq (uj) = oo, then M ^ i u )  =  0 
(a.s.) for the IP ’* measure. We now appeal to the underlying Z  process which we know is 
a reflecting Brownian motion with drift p < —1. Then there must be a sequence of times 
T\{u) < T2(u>) < ••• with Tn(uj) —> oo at which = 0 (because p  < —1, but
again p  < 0 is enough!). For example, let Tn(u) be the first time, after time n, when 
Z(- ,u)  is at 0. Next assume that Tq(lj) = oo. Now, using Lemma 3.13B. and the fact that 
$t(cj) —> —oo , we have M ( T n{uj)) —» 0, so -  0 and M t (v )  —> 0 as t —> oo. Thus, again,

(^-+„ / ) w  =  (* % /)& ■
The fact that our initial analysis was only heuristic is now unimportant. Also, any remaining 

issues for the <p — 0 situation may be resolved in a similar fashion to the argument presented in 
Section 12 of the previous chapter.
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3.13D. Extremely Im portan t Discussion. Suppose that p  < —1. In light o f (7.7) we 
now generalize our definition o f F  in (13.1) so that, for k > 2, we let {P*} be the Ray 
semigroup for “Brownian motion with drift p  and with jump-out measure J  from 0 satisfying 
J(0,d?/) =  2e~Kydy”. The notation F K and M K is therefore obvious! A rather complicated 
calculation shows that both for k — 2 and k, — —2p, and for no other n >  2, we have

{dv +  pdz +  \ d 2z ) F K =  0 on ( -o o , 0) x [0, oo),

with
(pdz +  \ d 2z ) F K +  dzF K =  0 on (-o o , 0) x {0}, 

so that (PHyf)  E V ( H )  for both values of k . Equivalently, both for n =  2 and k =  —2p,

M?  := r ( $ ( t A T 0+) ,Z ( tA r 0n )

defines a bounded martingale. However, when k — 2, does not tend to 0 on the set where 
Tq — oo; and this explains why {P*}  is not the correct probabilistic (‘minimal non-negative’) 
semigroup.

3.14. The Kolmogorov Forward Equation and Riccati Equation

The Kolmogorov forward equation for the transition density •) for {Pf+ : t  > 0} 
relative to Lebesgue measure on (0, oo) takes the form:

(dt - \ d l  + p \ d v) p i ( z , y )  = ± {dwp+(z ,w)}  \w=Qe2tiy7r(0,y), (14.1)

with the interpretation and explanation given in Chapter 2. As before, it is extremely useful to 
show that the following Riccati equation holds for y  E (0, oo):

- § 3 s { e 2'" M 0 , y ) }  +  ixdv{e2m it((S, y )}

=  \d w{e2>lwiT((), u ,)}\w=oe2“H (0 , y) -  2y.e2ra7r(0, y)

and that, when p  e  [—1, 0), the ‘invariant-density’ equation:

- i ^ r ] ( y ) - \ - p d yrj(y) = ±dwr}{w)\w=Qe2tiyTr(0,y). (14.3)

holds, where rj is the invariant density of Pt+. Here, we initially ‘cheat’ as we shall soon use 
(14.3) to find 77. However, once we have 77 we can independently crosscheck that it is indeed the 
correct one, which is equivalent to showing that (14.3) holds.

By using the above two equations and linearity, we can show that, with the alternative form 
for Aa(0 , y) as at (11.16), we have

AAa(0, y) -  \d 2A \(d , y) +  pdyA x(0, y) -  e2M2/?r(0, y) (14.4)

=  |  { ^ A a(0, w )} |w=oe2/iy7r(0, y)\
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and inversion of the Laplace transform (at least formally) yields (14.1) with z =  0. One has to 
remember Lemma 3.11C if one wishes to compare (14.2) with A times (14.4).

Once again, recall that we do not have a spectral expansion for P f .  Hence, even with the 
aid of (14.2) and (14.3), deducing (14.1) rigorously is demanding.

Invariant probability density fo r  { P f } when p  E [—1,0). Here we give the invariant 
measure remarked on in Hypothesis 3.5D. For p  E ( -1 ,0 ) ,  from (14.3) together with 
elementary calculus, we may show that

v{w)  =  r q t i  (e" 2|'‘l“’ "  e_a” l ’

and, in the case when p = — 1, we have

r){w) — 4 we~2w. (14.5)

As expected, we may easily check that f  rj(w)dw — 1.

In the following Lemma, we may now crosscheck matters via the expected properties of 
>4a(0, y ) (see Corollary B.7 of Appendix B).

3.14A. Lemma. I f  p  >  — 1, we have AAa(0, y)dy = 1, as required, and also 
lim AA<\(0, w ) =  r)(w), so that everything tallies.
A|0

Proof of Lem ma 3.14A. Using (11.16), the first part o f the Lemma follows by elementary 
integration. L’Hopitals rule deals with the limit. □



Chapter 4 

Non-Minimal Solutions and Regularity

___________________________________  Summary_____________________________________

The Riccati equation in (14.2) of Chapter 3 is used to  reveal some rather surprising 
explicit non-minimal non-negative solutions to a corresponding PDE. Moreover, as promised 
in the previous chapter, smoothness issues for the general semigroup case are resolved here. 
Further details and different methods may be found in the paper with Stroock and Williams 
which presents the satisfying general existence and uniqueness theorem for the type of PDEs 
we have been studying.

4.1. Further Solutions to the PDE in Chapter 3

Before beginning this section, one should recall the necessary PDE in (1.2) o f Chapter 3 
and the conditions that follow it. Hence, in the material that follows, when we say ‘our PDE’ 
we clearly mean the PDE in (1.2) equipped with the appropriate boundary conditions.

Here we will comment on ‘non-negative semigroup solutions’ o f our PDE in (1.2). 
Repeating some of what has been said previously, we mean that we have a one-parameter 
semigroup {Pt : t > 0} of bounded non-negative operators on C[0, oo] such that F(ip, z)  := 
(P-<pf)(z) for (ifitz) G (—oo,0) x [0, oo] defines a solution o f (1.2). Our semigroups on 
C[0, oo] will be strongly continuous on (0 , oo) but not at 0; however, for every z  in [0, oo], 
(Pof)(z)  limt|o (Pt f){z)  will exist (though not uniformly in z). Assuming Working 
Hypothesis 3.12D, we insist that

(p t~f ) ( z ) C C 1)2((0,oo) x [0 , oo)) n c ( ( 0,oo) x [0, oo]). ( 1.1)

Lateral conditions. As seen in Sections 10 and 11 of Chapters 2 and 3 respectively, the 
natural thing to do is to focus on non-negative semigroup solutions where the ‘infinitesimal 
generator’ of {Pt} has certain lateral conditions determining its domain. Hence, by analogy 
with Chapter 3 for this case, we begin with the desired resolvent conditions, but with a 
generalized version of the lateral condition given in (11.6).
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To be precise, we let J G C 2[0, oo) with J(-) > 0 and / 0°° J(y)dy < 1. Let /  G C[0, oo].
Then for A > 0, we may define g \  :=  R \ f  to be the unique solution in C[0, oo] fl C 2(0, oo) of

^9x ~  \ 9 \  ~  T9x =  f  on (0, oo), (1.2)

subject to conditions

9 \ ( 0 )  =  /  J ( y ) 9 \ ( y ) d y ,  A#a(oo) =  /(oo). (1.3)
J (0,oo)

Then, for z G [0, oo], the function t  (Ptf)(z) on (0, oo) is the unique right-continuous (in
our context, continuous) function such that for A > 0,

L
OO

- X  tie (Pt f ) (z)  dt  = ( R \ f ) ( z ) .  (1.4)
r0

The semigroup property PtPu — Pt+U holds, and /  >  0 implies that Ptf  > 0. The limit

( f t / ) ( z )  := ' '“ (■Pi/JC2)

exists, and

(Pof)(y) = f ( y )  for y e  (0, 1), while
p o o

(Pof ) (0 )=  /  J(y) f (y )dy .
Jo

4.1A. R em ark. Existence of a semigroup with the above properties may be established by the 
‘Ray’methods of previous chapters.

4.1B. Theorem  (Comparison). I f  {Pt} is associated with the non-negative function 
J  and {Pt} is associated with the non-negative function J  then

(Pt f ) (z)  > (Ptf ) { z ) fa r  all (t, z) i f  and only i f  

J ( y ) > J ( y )  for  a l l y  0 ,oo).

In (1.5), t > 0, 2 G [0, oo].

Proof of Theorem  4.1B. The ‘only if’ part is obvious on letting t j  0. The ‘if ’ part is obvious 
from the probabilistic interpretation of Ray processes. □

4.1C. Theorem. The function J  in C[0, oo] yields a non-negative semigroup solution 
o f our PDE i f  and only i f  the following ‘Riccati ’ equation holds:

\ J" (y )  -  nJ' (y)  +  { ^ ' ( 0) -  M 0)} J(y ) =  0 , (1.6)
p o o

J ( 0) =  2, J ( . ) >  0, /  J(y)dy  < co. (1.7)
Jo
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Proof of Theorem 4.1C. We begin with the ‘only if’ part of the result. Firstly observe that if
gx E C k [  0, oo) (the space of smooth functions on [0, oo) with compact support) and one defines 
f  via (1.2), then /  E C ^ [ 0, oo) and R \ f  = g\.  Assuming the continuity result in (1.1), we 
have already confirmed that (see Section 13 o f Chapter 3) the fact our PDE holds is equivalent 
to, for /  E C[0, oo],

O f course, strictly speaking, what we did previously was for the ‘minimal’ J,  but we are now 
considering a general non-minimal J.  Drawing further analogies with Chapter 3, we see that 
(1.9) is equivalent to

We know that (1.10) holds for any function gx E Cj?[0, oo) such that A (gx) =  0, where A is 
the linear functional on Cjj?[0, oo) defined by

Hence, by an argument already seen in the proof of Theorem 2.4C of Chapter 2, we may 
uniquely define a linear map £ : R —> R via

for all g in C^?[0, oo).

We can avoid direct appeal to distribution theory via the following elementary argument. 
Choose a uniformly bounded sequence gn of functions in with compact support in [0, oo] such 
that g'n{0) =  1 for every n  and gn(z) —► 0 for z  E [0, oo]. By the Dominated-Convergence 
Theorem, we must have 1 — \ Jo(0) =  0. Now choose a uniformly bounded sequence gn of

or, in Laplace-transformed version for A > 0,

( 1.8)

POO

Pa(°) +  a3a(0) -  / J{y ) f ( y )dy  =  0 
Jo

(1.9)

and now, integration by parts reduces this to the form

(0,oo)
R{y)g\ {y)dy  =  o ( 1.10)

where
( 1.11)

£(A(g\))  :=  C(gx) for C£?[0,oo) 

so that C(gx) = cA(gx) for some c E l .  Hence, we have

POO

/  J{y)g\ (y)dy  
Jo
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functions in C%[ 0, oo) with gn(0) =  1 and gn(z) —► 0 for z  G (0, oo]. We see that c =  0 and 
our Riccati equation follows immediately.

The ‘if ’ part here is obtained by reversing the argument.

Solving the Riccati equation (1.6) subject to (1.7). If we put J'(0) = 6 a n d c =  y / p 2 + 4 p. — b,
we find that (except for the case when c — 0 considered separately below) the solution of
equation (1.6) is

J(y)  = J ^ c{y) :=  eM2/ [2coshcy +  c~l (p2 +  2p  — c2) sinhq/] .

Now for J  to be non-negative, c must be real because if c =  icq then J ( y ) would have the form 
RePv cos(u(y  +  ip)), and so would oscillate in sign. So c is real and we may and do assume 
that c > 0. Since c o sh q //s in h q / —► 1 as y —► oo, for J  to be non-negative we must have
c~l {p2 +  2p — c2) > —2. Thus,

J{y)  >  eMy2 (c o sh q /— sinhq /) =  2e^~ ĉ y.

But p2 +  2p — c2 >  —2c, so that (p +  l ) 2 >  (c — l ) 2, and

.  i  I , i i  / - 2 i f p > - l ,

If c =  0, we have the solution

S{y) = em  [2 +  (p2 +  2p)y] .

We see that S  can be non-negative only if p 2 +  2p > 0 so that p > 0 or p < —2. If  p > 0 then
S(y)  > 2 >  2e~2y; and if p < - 2 ,  then S(y)  > 2&y >  2e2̂ .

So, we have found that the minimal non-negative solution J min of equation (1.6) is given by

J™ "^ ) =  / 2e 2V lfM -  - 1 ,  (1.12)
\2e2w iffi < —1,

thus confirming what we already know. □

4.1D. A uniqueness result when p  > — 1. When p > — 1, the solution with c =  p  -f 2 is the 
only one with f  J M,c(y)dy <  1 (yet, not the only one < oo), and then f  J fJ,,c(y)dy = 1. Thus 
there is only one semigroup solution of the type we are considering.

4.1E. A strange aspect of the case when p < — 1. Consider the case when p  < — 1. Then 
max(2 +  //, 0) <  c < —p. For the minimal non-negative semigroup P mln (corresponding to 
c =  — p), we have /  J mm(y)dy < 1, so that P™ml  < 1 for all t > 0. However, all the other 
(p,c)  semigroups have f  J tJ,,c(y)dy — 1, and so are ‘honest’ Markov semigroups satisfying 
P ^ ,cl  = 1 for all t > 0. When c ^  —p  we have for /  E C[0, oo],

as £ —> oo, (P t cf ) ( z ) rj(f) =  J f (y)rj(y)dy,  (1.13)
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where 77 =  r f ' c satisfies

i ’n " ( y ) - p ,n'(y) +  W ( Q ) J fi'c{y) =  °> 
^(o) =  / 0°° v ( y ) d y  =  i-

(1.13a)
(1.13b)

Bounded solutions. If  P '^ T q ' <  00) =  1 for all ip <  0 and all z G [0,00), something which 
happens if  and only if  p  > — 1, then F prob is the unique bounded solution of (1.2). We have 
discovered other bounded solutions F M,C when p  < — 1. For a solution F M,C, we have

Again, one should recall the necessary PDE in (1.2) of Chapter 2 and the conditions that 
follow it. It is also necessary to recall the basics of that chapter concerning the eigenvalues and 
eigenvectors of Li.

Here we will comment on ‘non-negative semigroup solutions’ o f our PDE (1.2). Again 
repeating some of what has been said previously, we mean that we have a one-parameter
semigroup {Pt : t > 0} of bounded non-negative operators on C [0 ,1] such that F((p,z)  :=
( P- Vf ) { z )  for (tp,z) G (—oo,0) x [0,1] defines a solution of (1.2). Our semigroups on
C[0, 1] will be strongly continuous on (0 , 00) but not at 0; however, for every z in [0, 1],
(P0f ) ( z )  lim*|o (Ptf ) ( z )  will exist (though not uniformly in z).

Semigroup solutions link together in a coherent way solutions for individual / .  But, of 
course, there is no reason why a solution for an individual /  need be part of a semigroup 
solution. Indeed, as already mentioned in Example 2 .ID, it seems that when m 0 +  mi  > 1, 
and /  =  1 on [0,1], then the obvious, but non-minimal, solution F  =  1 does not derive from a 
semigroup solution.

Lateral conditions. As seen in Section 11 of Chapter 2, the natural thing to do is to focus 
on non-negative semigroup solutions where the ‘infinitesimal generator’ of {Pt} has certain 
lateral conditions determining its domain. Hence, by analogy with Chapter 2, we begin with 
the desired resolvent conditions, but with a generalized version of the lateral condition given in

To be precise, we consider two non-negative functions Jo(-) and Ji(-) in C 2[0 ,1]. Let 
/  G C[0,1]. Then there exists A0 > 0 (independent of / )  such that for A >  Ao, we may define 
gx := R \ f  to be the unique solution in C[0, 1] fl C 2(0, 1) o f

z) = E«'z [f(Z+) : Tq <  00] +  r f * ( f ) I T - * [ t 0+  =  00] (1.14)

where r]^0 is given by (1.13). Equation (1.14) explains a great deal.

4.2. Further Solutions to the PDE in Chapter 2

(10.3).

* 9 \ - k 9 \  = f  on (0 , 1), (2 .1)

subject to the lateral conditions

9\{b) = Jb(9x) :=  [  Jb(y)g\(y)dy,  (6 G {0,1}). 
7(0,1)

(2.2)
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4.2A. Rem ark. The key difference to what we have seen previously is that we must allow 
fo M v )  > 1. As a consequence, the resolvent corresponding to the above setup need not 
be a Ray resolvent. In fact, it turns out that only the minimal satisfies the condition 
that Jo Jb(y) <  1. Referring to Lemmas 2.10E and 2.10G (of Chapter 2) we see that this 
immediately causes problems. In particular, we may not use Ray’s Theorem to justify the 
existence of the appropriate semigroup. The only way to get around this would be to introduce 
processes with births and deaths, a study of which would substantially increase the length of 
this chapter. Clearly, we may establish analogues to Theorem’s 4 .IB and 4.1C. See the paper 
by Andrews, Stroock and Williams.

A non-minimal semigroup. If mo +  m i < 1, so that 0 < a  < (5, we may obtain a non­
negative solution semigroup {Pt} by taking a  =  0 with the usual (3 in (4.1) o f Chapter 2. The 
question of whether or not the resulting J*’s are non-negative is resolved by Lemma 2.30, which 
says that hp(z) is monotonic in z.

In this instance P t f e  = e ~ ^ 92tf e  for 6 £ 0 + but the condition that Ptfo =  fo fails, but 
can be replaced by P t h a = ea" th a . From the point o f view of Wiener-Hopf Theory which 
generally ‘splits things’ according to the complete set o f eigenvalues in some half-plane, this 
is a rather strange switch. For example, (P o ha, P o h a ) s =  {h a, h a ) s <  0, so we do not have a 
proper inner product in analogy with (•, •)min := (P0mmu, P0mmu)5.
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4.3. Regularity at the Boundary

The continuity hypothesis in the latter part of the previous chapter is now dealt with. Here the 
‘driftless’ case is considered in order to simplify matters. We have already commented on the 
nature o f the underlying functions in the general drift case.

4.3A. Theorem. Let J  be a bounded non-negative continuous function on (0, oo) 
with J0°° J{y)dy  <  1. Then there exists a semigroup {Pt} o f  bounded non-negative 
operators on C[0, oo], strongly continuous on (0, oo) but not at 0, uniquely determined 
by the following property: 
fo r  A >  0 and f  G C[0, oo], the function g \  with

POO

gx{z) :=  (R \ f ) { z ) :=  /  e~xt(Ptf ) ( z ) d t
Jo

is the unique solution in C 2[0, oo) fl C[0, oo] o f

poo
* 9 \ ~ k 9 \  = f ,  Pa(oo) =  A_1/(oo), gx(0) =  /  J(y)g(y)dy.

Jo

For f  G C[0, oo], the limit (P0f ) ( z )  :=  limti0(Ptf ) ( z )  exists, and (P0f ) ( y ) =  f ( y )  
fo r  y G (0, oo], while (P0f ) ( 0) =  / 0°° J(y) f {y)dy.
For f  G C[0, oo],

(t, z)  i-> (Pt f ) (z)  is in C 1,2((0, oo) x [0, oo))

and
{dt -  l d 2)(Ptf ) ( z )  =  0 on (0, oo) x [0, oo).

Moreover, fo r  f  G C[0, oo],

poo

5a(°) =  /  e - A,̂ ( P t/ ) ( z ) |z=0d t
Jo

Note. The crucial point is the extension of regularity to the boundary (0, oo) x {0}.

Proof of Theorem  4.3A. The existence results follow immediately from similar arguments to 
those used in Section 11 o f Chapter 3, but with our general ‘jump out’ measure J.

Let {tab-Pf : t > 0} be the Dirichlet heat kernel for (dt — \ d 2) on (0, oo), so that
POO

(tabPtf)(z) = /  tabPt{zJw ) f ( w ) d w i 
Jo

where

tabPt{z,w) = (27rf)-5 jexp ( - ^ 2^  )  -  exP )  }  ■
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Let {tab^A : A > 0} be the resolvent kernel for {tab^t}, so that

poo poo
(tab^A f ) ( z )  = /  e~xt(tahPtf ) ( z ) d t  = /  tab pt ( z , w) f (w)dw,

J o  Jo

ta b M - ^ )  =  7 _1 (e - 'l ’”-*  -  e_'l'lz+“' l ) ,

7  =  \ / 2A.

9x(y) =  U ^ / ) ( y )  +  ^ ( /) e -™ , (3.1)

where

7 again denoting 

We now have 

where

t f A( / )  =  ( l  -  J , ) ~ l URx f ) ( y )J ( . y )&y-  (3.2)

This is exactly the Reuter formula for our situation. In contrast to (11.10) of Chapter 3, we take 
H — 0 and J7 =  J0°° e~iy J(y)dy.  An alternative form for J 7 will be given shortly.

The map ( t , x)  ■-> (tabPt f ){x)  is C 1,2 and satisfies (<% -  \ d l ) ( tahPtf ) ( x )  =  0 on 
(0, oo) x [0, oo). This may be proved by applying Fubini’s theorem to the expressions obtained 
by formally differentiating through integrals to show that they ‘integrate up correctly’ (see 
Appendix A16 of Williams [29]).

, n \  f°° k  exp (—y2/ 2 )̂ ^
m  '-= I  J { y )  V w  d y ’

then J 7 =  / 0°° e~Xi,ilj(t)dt. We have, with || J\\ := sup J(y),

Now, since we have the arc-sine/beta-function formula

1 1
ds =  1.

Jo V ™  y j 7t(t -  s) 
we have (with **’ denoting convolution) ^  * ^ ( t )  <  | | |  J\\2 for all t >  0. If

ipk* * • * • * ^  (k factors),

then, by induction using the beta-function formula,

U n~l
VwW <  Co pTTTT> °0 ■

r U™)

Differentiating convolutions. If  a(-), b(-) G C 1^ , oo) and 6(0) =  0, then

(a * 6)' =  a * (67).
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In general, for a(-), &(•) G C 1(0, oo) with suitable growth at 0, we have to write

(a * b)(t) = t [  a(tu)b(t( 1 — u))du,
J o

and differentiate to get

(a*b) ' ( t )  = t~x{a * b){t) +  t f  ua' (tu)b(t(l  — u))du
J o

+ t I a(tu)( l  — u)b'(t(l  — u))du.
J o

So,

i / /  I\// M (-0 * '0)(-t) f 1 uCi  Co
n t . m m  < aHai+2,/0

<  2C0C!
“  t t

Now, we find that \(ip4*y(t)\ < M4, a constant, and by the easy formula for differentiating 
convolutions, we have, for n  >  3,

w,m ^  M 4C ^ n 
K^n+4).) (t)l < r ( i n + l ) '

Let T  be an arbitrary, but now fixed, number in (0, oo). We shall henceforth restrict t to lie in 
(0, T], and we shall work with a fixed /  in C[0, oo].

Now, for A > 0,
POO

K x U )  =  /  e ~ * K f (t)dt = C { K f (t)} ,
J o

where Kf( t )  is our (Ptf)(0) .  Equation (3.2) may alternatively be written

**(/) = ( i  + £  J', ) l  U R

Hence, by inverting the Laplace transform and using Corollary 3.12C, we have

K f (t) = W( t )  + (<p*W)(t),

where
roo 00

W(t )  := /  ( ta b Pt f ){y)J{y)dy  and C {(p{t)} = ^  Xy .
0 fc=i

Since C {ip(t)} = J7, we may use Theorem 3.12B to deduce that

oo

(p(t) =  J}{t) +  * i))(t) +  • • • =  ^ 2  W-
k =  1
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Our estimates show that ip is in C 1(0, oo) and ip(t) < A 0t 2, \(p'(t)\ < A i t  a (for t G (0, T]). 
Since f  J  < 1, we find that for some constant C(J)  determined by J ,

W(t )  <  C(J), W'( t )  < C(J ) / t .

We therefore find that K( t )  — Kf ( t )  satisfies

K( t )  < A { J ), K \ t )  < A ( J ) t ~ \  (t G (0,T]).

We assume that the reader will trust that similar arguments to those above establish that K  
is in fact in C 2(0, oo). We do not need estimates on K " .

Regularity at the boundary. From (3.1), we have

(Pt f)(y)  = U P t f ) ( y )  + u( t , y ) ,

where
pt — / s

U(t ,y)  := /  - 6)--=-- K ( t - s ) ds. (3.4)
J o  V 2 7 T S 6

We wish to show that
1 1—>• U{t,y)  G Cfl,2((0, oo) x [0, oo)) 

and that U(t, y) satisfies the heat equation. Of course,

U(t,  0) =  K(t) .

We base everything on the formula

00 ye~ \y2!s

’t V%7TS3
+  K( t )  -  K( t )  — ds.

(3.5)

It is now easy to check that, as y —> 0,

dvU(t ,y)  —> D yU(t,  0) :=  dzU( t , z ) \ z=0.

From equation (3.5), we obtain for y > 0,

d t U ( t , y )  =  f yA ^ 4 [ K ‘( t - s ) - K ' { t ) } A s  +  K ' ( t )
J o  y z t t s 6

[ ° ° y e - ^ y2/s ye~^y2/t /N

As y —> 0, this does tend to K'{t) ,  as we wish. It was in the above formula that we needed the 
fact that K"(t )  exists.
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We need to prove that dtU(t,  y) =  \dyU(t ,  y) at y =  0. As y  —► 0, the expression

needs to converge to 2K' (t ) .  It is easy to check that this amounts to saying that

rl e~\y2/s — 1 — s~lv2e~^y2/s 1
/  -------------------------;-----   =  [ f f ( t - « ) - * ■ ( * ) ]  d «  2 ^ ( 0 .

Jo y V2irs3

But because o f a well-known ‘hitting-time’ convergence to the delta function,

nt tio-hv2/3
[  - s - iŷ J [ K ( t  - a ) -  K( t ) \  ds -  K'(t) .  

Jo y 2 l TS6

So, we need to prove that

/** 1 -  e“ ^y2/s 1
/   7= [ m - K Q t - 8 ) ] d 8 ^ K ' ( < t ) ;

Jo V v 2 n s 3

and it is enough to show that as y —> 0,

1 _  e ~ b 2/s
5 ( y , s )  := ------

yy/2ns

converges to the ^-function <50(s). But it is obvious that for 77 > 0,

noo /“OO 2

/  <%,s)ds < / —/= =  ds —> 0 (y->0) .
Jr) Jr) y V 2 n s6

Moreover, as 7 J. 0,
f°° 1 2  1 -  e_7y
/  e 2  ̂ s) ds — -------------- > 1,

7o 72/
and we have the result we need.

To be sure, there are some other things to check; but we have done all that matters. □



Appendix A 

Additive Functionals

In Wiener-Hopf theory, continuous additive functionals play a vital role. They are responsible 
for the consequent ‘windings’ of the (Wiener-Hopf) process when the stochastic process is 
viewed with respect to the additive functional rather than simply time. We therefore establish 
some useful results.

Here we assume that we are working with the canonical model in which the sample space 
f  I is the space of paths u.

A.I. Definition. For 0 < t < oo, we define the ‘time-shift’ map 6t as

6t : Q, —> ft such that 6tuj{s) = u>(t +  s), fo r  all s,

with the usual convention that oo +  s =  s +  oo =  oo , for  all s. Furthermore, i fT  is a map from  
Vito [0,oo], define

6tw =

A.2. Definition. A  is a fluctuating perfectly continuous additive functional o f  some process X  
i f  the following properties hold:

•  t i—> A t is continuous,

•  A t is [Ft]  adapted,

•  A s+t — A s +  At o 9S, Vs, \ft.

In addition, we also define the inverses o f  A  as follows

r f  :=  in fju  : A(u)  > t} and r f  inf{u : A(u)  < — t}. (A .l)

In the above definitions we make the usual convention that inf 0 =  oo and we allow the
usual notational switches A(t)  =  A t.

We now establish some useful results concerning both r f  and r f . However, due to the 
similarity of the proofs, we concentrate solely on proving the ‘plus’ case for each result.

131



Appendix A: Additive Functionals 132

A.3. Proposition. For t > 0, < oo i f  and only i f  there exists some u such that ±A (it) > t;
then we have A ( r f )  = ±t .

Proof of Proposition A.3. The former part o f the proposition is simply a consequence of our 
convention that inf 0 =  oo.

Suppose r f  <  oo. Given the definition of r f ,  note that A(s)  < t for s < r f .  Given any
5 > 0, r f  +  6 is not a lower bound for the set {u  : A(u)  > t }. Hence, for some u  with
u < r f  +  5, we have A (it) >  t. Furthermore, A(u)  is continuous, and

lim A(v) > t, lim A(s) < t.
v l  r +  sT-Tt+

It follows that A ( r f ) =  . □

Next define
A*(it) :=  sup A (r), and A*(u) :=  inf A (r), (A.2)

r < u  1">-u

which naturally lead us to the following definitions

f f  :=  inf {it,: A*(u) > t} and f f  :=  inf{u : — A* (it) > t}.

In order to simplify matters we arrive at the following proposition.

A.4. Proposition. We have f t± =  fo r  all t > 0.

Proof of Proposition A.4. We know that

A* (it) >  A (it) for all it. (A.3)

Hence, from (A.3) and the definitions in (A.l), it is clear that

<  ~- +
T t  S  T t  *

For a contradiction suppose that ft+ < r f .  Once again, given any 5 > 0, we are familiar with 
the fact that ft+ +  5 is not a lower bound for the set {u : A*(u) > t}. Hence, there must exist a 
it <  ft+ +  5 such that A* (it) >  t for all S > 0. However, ft+ < r f  and since the result is true
for all 5 > 0 (in which case it is true fo r  5 — r f  — f t+), it follows that there exists a u < r f
such that

A* (it) >  t.

As A* is defined as the supremum of A as in (A.2), trivially there must exist slv < u < rt such 
that

A(v) > t.

However, this contradicts the definition of rt, in that, we must have

A(it) <  t for all u < r f .

We now have the desired contradiction so that ft+ =  r f .  □
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Given Proposition A.4, we are now able to make the following alternative definition of r f ;

r f  :=  inf{zi: A*u > £}, for every t >  0. (A.4)

Clearly, we can make a similar definition for r f .  We can now work with A* (or A*), so that we 
have the benefit o f the monotonicity at our disposal.

A.5. Proposition. For t > 0, r f  <  oo [respectively, r f  < oo] i f  and only i f  there exists some 
u such that A*(u) > t [respectively, —A*(u) > tj; then we have A * ( r f ) =  t [respectively, 
A*(t<T) =  - t j .

Proof of Proposition A.5. Given the definition in (A.4), this is now simply an alternative 
version of Proposition A.3. □

A.6. Proposition. We have the following characterizations o f  r f  a n d r f :

r f  =  r < oo i f  and only i f  A*(r) = t and A*(v) > t whenever v > r. 
r f  = r < oo i f  and only i f  A*(r) =  —t and A*(v) < —t whenever v > r.

Proof of Proposition A.6. (=*>) Suppose that r f  = r < oo. Then A*(r) — t by Proposition
A.5. Again, given any S > 0, r f  +  5 is not a lower bound for the set {u  : A* > t}. Hence, by 
monotonicity of A*, A*(v) > t for all v > r.
(4=) Conversely suppose that A*(r) = t and A*(v) > t whenever v > r. Then the set 
{u : A*u > t}  is not null so that r f  =  r < oo. Note that we cannot have r f  < r in the 
previous statement due to monotonicity of A* again. □

We now have enough ammunition to state and prove the following three Lemmas.

A.7. Lemma. r t+ and r f  are right and left continuous respectively.

Proof of Lem m a A.7. Again, similarity of the two proofs makes it enough to only prove the 
‘plus’ result. In particular, we need to show that

lim r ,| =  r f .
v i  t  v  1

Define L  :=  l im ^  r+ , which exists by monotonicity. Then it suffices to prove that L — r f .  
Using our characterization of r f ,  we need to prove that A*(L) — t and A*(v) >  t whenever 
v > L. Now, as A* is continuous,

A*(L) = A* ( lim ) — lim A*(r f )  — lim v =  t.
Y v [ t  J  v l t  v l t

We can certainly say that L  simply by monotonicity of r f .  Therefore, v > L  implies
v > rt . Recall that A* is also monotone. Let v — r f  +  5, for some S > 0. Then, r f  +  5 is not a
lower bound for the set {u : A*(u) > t},  and so A * ( r f  +  5) > t. It follows that

limTu - r f .
v l t

□
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A.8. Lemma. The function (ut u)  ► t+(u)  on [0, oo) x Q is the unique function such that 
A( t +( l j ) , lj)) — u and u t—> rf(uj)  is right-continuous.

Proof of Lemma A.8. Suppose that (u,uj) i-> rf{uj)  has the described properties and that 
v > t+(u) .  Right-continuity shows that for some 5 > 0, v > t*+s(u>), whence A*(cj) >  u  +  6.

□
A.9. Lemma. For all u and all t, we have

Tt+u =  Tt '  +  r u ° er+- (A-5)

Proof of Lemma A.9. It is clear that

A  (Tu+t) -  A  (Tt ) = u + t - t  = u.

Thus, from the ‘time-shift’ condition in Definition A.2 we may deduce that

■A. + t \ 1 \ o  0 -|- — u .Tt+uH -TtM  Tt

Because in addition u > (rf+u — r f ) {0 T+{uj)) is right-continuous, we have

Tt+uM -  ri+M  = Tu ° ert+(u )i

as desired. □

Remark. The above material is intended to apply to our 4>’s in Sections 5 and 3 of Chapters 2 
and 3 respectively. The given $ ’s are continuous additive functionals as the corresponding local 
times are additive functionals, proof of which can be found in Rogers & Williams [24],



Appendix B

Some Ray Process Theory

Notation: Let E  be a compact real interval. We write C(E)  for the space o f all (R-valued) 
continuous functions on E.  For reasons that have already been pointed out, consider d  as an 
isolated point from E.

We now present some necessary results that form part o f the rich theory of Ray processes. 
For further details, see Chapter 3 of Rogers & Williams [24].

B .l. Definition, : A > 0} is said to be an honest Feller resolvent on C(E)  i f  the following 
conditions hold:

1. R+ : C(E)  -> C(E),

2. 0 <  /  <  1 =» 0 <  A R i f  < 1,

3. XR+1 =  1,

4. The resolvent equation holds;

R1 -  K  +  (A -  »)Rl Rt  =

B.2. Definition (CSMa). For a  > 0, a function f  E C ( E ) is called a (continuous) a- 
supermedian function relative to {R\ } ,  hereafter written f  ECSMa, i f

0 < * R x + a f < f  (VA > 0).

B.3. Lemma. Let  a , /  >  0 and f  E C [0 ,1]. I f  { R \ }  is an honest Feller resolvent, then 
R i f  eCSM a .

Proof of Lemma B.3. For /  >  0 in C [0 ,1], we may use the resolvent equation to deduce that

o <  AR t+aR +J  = K f  -  R \+af  < R i f ,

which is exactly the desired result. □
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B.4. Definition (Ray resolvent). An honest Feller resolvent on E  is called a Ray resolvent i f

CSMa separates points o f  E.
Q > 0

B.5. Theorem (Ray’s Theorem: analytic part). Let {R x : A > 0} be an honest Ray 
resolvent on a compact metric space. Then there exists a unique honest measurable 
transition function {Pt } on (E , B(E))  such that

(i) 1 1—► (Pt f ) { z ) is right-continuous on [0, oo) fo r  z  E E  and f  E C(E);

(ii) (R xf ) ( z ) =  / 0°° e~xt(Ptf ) ( z )d t  (z e  E,  f  e  C ( E ), A > 0).

Remark: The above theorem not only provides us with the existence o f a semigroup, but it tells 
us that the semigroup inherits honesty properties from the honest resolvent.

Proof of Theorem B.5. Again see Chapter 3 of Rogers & Williams [24]. □

For the purpose of the following Lemma, assume that {R x : A > 0} is an honest Ray 
resolvent on a compact metric space E  with density r \. Then Ray’s Theorem guarantees the 
existence of an honest semigroup. Suppose that such a semigroup has transition density pt .

B.6. Lemma. For z  E E, we have
POO

\ r x(z ,w)  = /  e~sps/ \ ( z ,w)ds .  (B .l)
J  o

Proof of Lemma B.6. Now, for z  G E,

( R \ f ) ( z )  = [  rx ( z , w) f (w)dw
JE

POO POO P

=  /  e~x\ P tf ) ( z ) d t  =  /  e~xt pt ( z , w) f ( w ) d w dt
J 0 «/ 0 v E

*oo

e~Xtpt (z , w)dt  f ( w) d w  (by Fubini’s Theorem)IJJE Jo'E JO
From the above, it follows that

P OO

\ r x( z , w ) =  \ e ~ xtp f ( z , w) d t .  
Jo'0

The obvious substitution gives us the desired result. □

B.7. Corollary. We have the following limits;

lim \ r x(z ,w)  = p £ ( z , w ) ,  lim Arx (z ,w)  = p ^ ( z , w ) .
A—+oo AJ.0

Proof of Corollary B.7. This is trivial. □



Appendix C

Applications of Levy’s Presentation of 
Brownian Motion

C.l. Remaining Points in the Proof of Theorem 2.7A

The following result turns out to be extremely useful, mainly as it provides us with a simple 
normalization (in law) to our local time processes. Script notation is used here to make the 
important distinction between ‘pathwise’ and Taw-wise’ equivalence.

C .l. Theorem (Levy’s presentation). Suppose that W  is a Brownian motion, with 
drift p  € R, on IR started at zero. Let Cu \= — min{W s : s < u}, then {W u +  £ u} is 
a reflecting Brownian motion with drift p  on [0, oo) with local time C at 0.

Proof of C .l. Refer to Volume 2 of Rogers & Williams [24]. □

We now examine results 1° and 2° in the proof of Theorem 2.7A (a). The results are re-stated 
below. The symbol e now reverts to its normal use in Mathematics.

1°. If  N  is any neighbourhood in (—oo, 0) x (0,1), then we have

P^’2 ((<!>*, Z t) £ W; for some t < r f )  > 0 .

2°. Let x £ {0,1}. If N* is a relatively open subset o f (—oo,0) x [0,1] such that 
N* n  {(—oo, 0) x {x}} is non-empty, then with positive P^’2 probability, we have
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C.2. Proof of Result 1°. We consider the case when Z(0) — 0 and $(0) — ip < 0. Choose 
(ip*,z*) in N  and e G (0, — (p/4) such that if |ipi — ip*\ < 4e and |^i — z*\ < 4e, then 
(<Pi,zi) € N.  Note that max(ip,ip*) < —4e and z* < 1 — 4e. Let t > max((^* — ip,0). 
We wish to show that the event that the following statements hold simultaneously:

\Zt - z * \  < 2e, < 2e,
sup <  — e so that r f  > t,
u < t

sup Z t < 1 — e so that =  <p +  u — 2moLo(u)  for u < t ,
u < t

has positive P^* probability.

Because it refers to a situation in which Z  stays away from 1 during time-interval [0, t], the 
event just described has the same probability as it would have for a Brownian motion on [0, oo) 
reflected at 0. If  W  is a Brownian motion on K started at 0 and Cu — min{W s : s < u},  
then by Levy’s Theorem above applied at n = 0, { W u +  Cu} is a reflecting Brownian motion 
on [0, oo) with local time £  at 0.

We can easily find a piecewise-linear continuous function w : [0, t] —» R (consisting of just 
two linear pieces) such that if  i t :=  — min{u;s : s < t},  then

wt + i t — z*, (p + t - 2 m Q£t = ip*, 
sup((/? +  u -  2m 0£u) < —3e,
u < t  fG . 1 ;

swp(wt + £t) < 1 -  3e.
u < t

By the Cameron-Martin formula, the event that \ W U — iyu| <  e / ( l  +  2mo) for all u  in [0, t] has 
positive probability. But on this event,

|Wf +  C>t — z*\ ^  2e, \<p +  t — 2vn§C,t — ip*\ <  2e,
sup(<^ +  u — 2m 0Cu) < —e,
u < t

sup(W* +  Ct) < 1 -  e,
u < t

so that Result 1° is proved when z  =  0. I f  z  e  (0, |] , then Z  can hit 0 almost immediately, an 
idea that can again be dealt with using a straight line. Hence, all that remains is the case when 
the ‘new’ $ 0 is very close to ip and the ‘new’ Z 0 = 0. This is exactly what we have above! 
Therefore, Levy’s idea may be started afresh with respect to the new starting situation. The 
remaining cases follow by symmetry. □

C.3. Proof of result 2°. Result 2° follows by similar, but surprisingly much simpler, arguments 
to those used to prove 1°. It turns out that a single straight line suffices, provided the fact that 
t < Tq is obeyed.

The following figures consider the case when x  =  1 and z0 6 (0,1) in result 2°. Notice that 
Levy’s idea is started afresh once wu hits 1. □
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Figure C .l: An appropriate wt. Figure C .l : An appropriate wt against

C.4. Further comments on the proof of Proposition 2.8A. Recall that we let Q~ denote the 
Q-matrix of Z~  when Z~  is considered as a Markov chain on {0,1}. Proposition 2.8A states 
that the off-diagonal elements o f Q~ are strictly positive and it was remarked that such a fact 
could be proved by the arguments presented above. Further details will now be given. It is 
certainly enough to prove that

P° (Z f  =  l)  >  0, for some t.

O f course, symmetry gives the corresponding result at 1. It is now clear that the proof o f the 
result in 2° covers this case. □

C.2. Growth of Local Time: Instructive Example

The object o f this example on Levy’s C and W  (started at 0) is to show that C initially grows 
faster than any positive multiple at o f t. We have Ct =  max5<* W s (identity in law) so that for 
c >  0, Cc2 t =  cCu and hence, for t  <  1, we have (taking c =  t~ 2)

Cc2t = Ci =  so that V i c ,  = Ct .

Thus, we have
P [Ct < Sat] =  P [£ i < 3uv^]- 

By considering a simple diagram, it is clear that

P [Ct < u] = P  [pu > t],

where pu :=  inf{u : W v = u},  so that

P [£ i <  u] = P [pu > 1].

Let u = Say/t.  Using the probability density function for pu we have
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Considering the substitution v = we equivalently have

IPfyu > 1] /Jo

•u

exp dw.

w  . -
Next note that e~ 2 <  1 so that

L
3 a y / t

P [Pu > 1] < dw — 3 ayft = Ky/ t ,

where K  is clearly a constant. We now have

P[£f <  3 at] < Ky/ t .  

Next let t = 2~n (<  1) for n  G N, so that

P[£(2~n) < 3a2"n] <  K2~%.  

Summing both sides over n  G N, we find that

and so we have
P[(lim sup E n)c] = 1 P[lim inf E cn} = I.

By using the definition o f lim inf we have

lim inf E^ — {w : w E E ^  for all large n}
= {uj : for some m{u)  > 0, u  G E°,  for all n > m ( u ) }
= (3m(w) >  0 such that C(2~n) > 3a2~n for all n > m(w)}.

Clearly we are dealing with a discrete time event, and we need a real time statement.

Let S(lj) =  If t < 5{u) then 2~(n+1') < t < 2~n for some n > m(u) .  Then since C
is a non-decreasing process, we have

C{t) > C (2“ (n+1)) >  3a2“ (n+1) > a2~n > at.

Hence on the set lim inf of probability 1, there exists £(fj) > 0 such that C > at
for t < 5(w). □

£ p [ £ ( 2 " “) <  3a2-"] =  <  00.
n  *

Thus, by the First Borel-Cantelli Lemma, it follows that

P [lim sup£ 'n] =  0 <=> P[(lim sup E n)c] = 1,

where we define E n :=  {£ (2~n) <  3a2_n}. Now note that

(lim sup E n)c =  lim inf



Appendix D

Further Probabilistic Aspects

Classical Probabilistic Wiener-Hopf Theory is about fluctuations of functionals; and in the case 
o f Chapters 2 and 3, the relevant functional is <E>. A typical problem of the classical theory is 
the following: what is the distribution of the supremum of the $  process? (The supremum will, 
o f course, a.s. be oo if m 0 +  <  1 or p  > —1.) In the two-boundary problem for instance,
we have solved this particular question because

and we know r^ ( z ,w) .  The classical theory would utilize such expressions as Eexp(i0$^) 
where (  is an exponentially distributed random variable of rate c, whence mean c-1 , (  being 
independent of the Z-process. A limiting case of this reads: for m 0 +  m-i < 1 and 0 < p < a  
(the smaller positive root of e), we have

±pe(p)E°exp(-±p2$ t)d£ =  [  h\{w)dw,
Jo

as follows (after some calculation) from the Feynman-Kac formula.

Analogues of the splendid results in Bertoin [2], Bingham [3], Greenwood and Pitman [12], 
are, o f course, well worth pursuing here. A familiar difficulty is that killing our process at the 
random time (  greatly complicates calculations. The effect of the killing is to replace H  by H c 
where

n j  =  \ f " - c f

with boundary condition 2mo[ |/" (0 )  — c/(0)] +  / '(0 )  =  0 at 0 and the analogous condition at 
1. Refer back to (7.1) of Chapter 3 for the ‘killed’ setup for the drift case.

Taking up such matters here would substantially lengthen this thesis and would introduce 
material o f a completely different flavour from the ‘indefinite inner product’ approach which 
we have been trying to advertise.

Let us now answer one final question.

How did we know what boundary conditions to impose on TC at (I A) o f  Chapter 2?
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One answer is to take a Markov-chain analogue. Let E n = { 0 ,1/n, 2 /n , . . .  , n /n }  with 
n  +  1 points, and let Qn (the Q-matrix of an approximating Markov chain Z n) be the E n x E n 
matrix

Qn fl'

Let vn be the function on E„ with

/  - i

I - 1
1 - 1  1 2 2

• \

1 on {1/n, 2 /n , . . . ,  (n — l) /n } ,
vn — { —mo(n — 1) atO,

—r a i ( n — 1) at 1,

and let Vn be the operator of multiplication by vn. For we take

[  vn( z n(s))ds. 
Jo

Wiener-Hopf theory for Markov chains tells us that the analogue of H  is H n = V ~ l Qn. For 
further details see, for example, Barlow, Rogers and Williams [1], Williams [26] and references 
therein. Clearly V ~ l is the E n x E n matrix

y - 1 =

( - i
m o ( n - l ) \

m i( n —1) /

Suppose the function /  on [0,1] restricts to E n, so that it can be viewed as a column vector of 
length n +  1. Then

K  1(3 n /  =  n u

( - l
2 m o ( n - l )  2 m o (n - 1)

h - 1

V

In particular, we see that

(KT'Qn/XO) =
2 m o ( n  — 1 )

( m  \
/(A)

- i  I I I  f ^
2 m i ( n - 1) 2 m i ( n - 1) )  \  m  )

(D .l)

Using the Taylor series expansion for / ( £ )  about 0 and considering the obvious cancellation we 
alternatively have

( V ^ Q n f M  =
—n m + m + 0 ( 1 ) i

2m 0(n — 1) { n  2n 2
(D.2)
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From (D .l) we also have

A) = #  {/(0) -  2 / ( i )  +  /(*)} .

This time we consider the Taylor expansions of /(0 )  and / ( £ )  both about £ to get

(KT1<3./)(i) =  i /* ( i )  +  0 ( i ) -  (°-3)

As n —► oo we expect
( C 'e . / X i )  -  (K T 'ft./M ) -  0. (D.4)

Now from (D.2) and (D.3) we have

(KT'Qn/XA) -  ( v - lQnf)(0) =  | - i n ± )  -  2mo(: _ i ) / '( ° )}

1 f"(0) + O( i ) .4mo(n — 1)

In order to tally with the result in (D.4), we clearly need

lim ( /" (£)  +  — =  0 =* mof"(0) +  f'(0) =  0.
rc—►oo (  777.o(l — 1 /7 2 ) J

Similar calculations for (V~1Qnf ) (  1) and (V ~ 1Qnf ) ( g i v e  the corresponding result 
at 1. □

F u rth er Calculations. One could further pursue this discrete problem. However, the 
calculations are horrendous! One should find that the matrix V ~ l Qn has two strictly positive 
distinct eigenvalues if  and only if  7770 +  7771 <  1, and so on.



Appendix E

Derivation of the Resolvent Decomposition 
in Chapter 2

Here we derive the resolvent decomposition given in (10.1) of Chapter 2. The argument can 
clearly be modified to give the corresponding decomposition in (11.2) o f Chapter 3.

It is well-known that the resolvent may be defined as follows

p o o
- A  tgx(z) : =  ( R t f ) ( z )  : =  EZ e - xtf ( Z+ )  At

Jo
p T  poo

= E e e~xtf ( Z f )  At +  E2 /  e~xtf ( Z +)
J o  J t

/oo

It suffices to examine the last term in (E.l). Recall that T  — T0 A Ti, so that

“ POO

/  e~xtf ( Z+)  d t - T 0 < T ,

" POO

/  e - xtf ( Z+)  A t ; 71 <  T0 
J t

dt

Ez J  e~xtf ( Z+)  At = E J
L JT

+  E*

Next define Yt — Z f +t and note that

For convenience define

p o o  p o o

/  e~xtf  ( Z * ) At = e~XT /  e~xtf ( Y t) At. 
J t  J o

F(Zt  ) := / d t,

(E .l)

(E.2)

(E.3)

(E.4)

noting that
E a F(Z+) =9x(z ) .

144
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Because 0 and 1 are branch points of the Ray process Z +, the relevant strong Markov property 
to which we are making intuitive appeal, is really that (due to Meyer and Ray) at Theorem
111.41.3 of Rogers and Williams. This allows us to avoid any confusion as we know that the Z + 
process only ‘lives’ on (0,1). Next we consider an application of the strong Markov property 
(SMP).

E* [F (y )  | F T] =  gx{Y0)

=  E ^  \ F { Z t

=  9x(Z*)

fffA(O) i f r  = r0, 
|3a(1) if T = Tj .

(E.5)

We are now in a position to simplify the RHS of (E.2)

e~xtf ( Z + )  dt ■ T0 < T,
IJt

POO
-AT /  e -X t/ ( y 4) d t  . To <  T i

Jo

[  e~XT° f  e~x‘f { Y t) d t  dP2
- '{r 0<T i} L Jo

f  E* e~XT° [  e~xtf ( Y t) df|
J{T„<T,}  L Jo

f  e~XToE z [ f ° °  e~xtf ( Y t) d t| T 7
J { tq< t a  U o

(by (E.3))

'{T o<T x}

, - X T q TffZ.E  To dP,

dP2 (by Tower Property)

dP2

(by the SMT in (E.5))

/  e ' AToSA(0) dP j =  5a(0) E* [e~XTo; T0 < T,]
{T o < T i}

=  (fj+/)(0)</>A(z,0).

A similar argument yields the corresponding condition at one.

E 2 X e~xtJ { Z t )  df ; Tj <  T0

(E.6)

(E.7)

Substitution of (E.6) and (E.7) into (E .l) yields

gx(z) :=  (R $ f ) ( z ) =  (t*bRxf ) ( z ) +  ^ 2  ( R \ f ) ( x ) M z >x )-
xe{o,i}

Note that we rely on the following points:
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{To < Ti )  £ f To and e XT° is measurable w.r.t. F Tq.

We need to prove these points, so we must show

{To < Ti}  A {To < t} G T f

We have Tq(uj) < T f u )  and T0(tu) <  t i f  and only if  for some rational r  <  1 it is true for every 
n  in N that for some rational s <  t  we have

sup{ Z q(u) : q e  Q, 0 < q < s} < r  and inf{ Z q(u)  : q G Q, 0 < q < s} < —.

As matters are only intuitive here, proof of these points will be ignored.
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