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SUMMARY

The initial focus of this thesis is a full characterization study of the UV photodegradation of 
dye-sensitized solar cells (DSCs). This has been achieved by exposing cells to UV light and 
measuring the change in their properties with l-V measurements, EIS and UV-Vis 
spectrophotometry. Insights into the photodegradation mechanisms of DSCs were gained 
and it was found that the principle cause of cell failure is the consumption of l3" by reaction 
with oxidative holes that arise from direct excitation of the T i0 2 semiconductor. Changes to 
the cell properties, particularly the change to the V 0c, were used to assess the effectiveness 
of different levels of UV filtering. It was subsequently found that filtering was required at 
greater than 385 nm but no more than 400 nm. The effects of filtering upon the 
performance of DSCs was also investigated by applying filters at various wavelength cut­
offs. It was shown that the further into the visible region the cut-off moves, the greater the 
reduction in cell efficiency and it was estimated that a 400 nm filter should not reduce 
relative cell efficiency by more than 10% in a forward illuminated cell and should be much 
less than a 2% relative reduction in a reverse illuminated cell. Furthermore it was shown 
that dyes with broader photocurrent action spectra, such as N749, suffer less reduction in 
%q due to UV filtering than dyes with narrower action spectra, emphasising the need for 
sensitizers or co-sensitizers to absorb more red and near infra red radiation. Finally, during 
the characterization study it was found that the depleted l3" could be restored by 
application of a reverse bias. The consequence of this upon the long term stability of DSCs 
was investigated by periodic application of the reverse bias during UV exposure.

The photostability of clear polymer films was also investigated. These films could be used 
for counter electrode materials, and/or encapsulation materials for flexible dye-sensitized 
solar cells (DSCs) built upon a steel substrate. This was achieved by conducting accelerated 
weathering experiments on various polymer films. The extent of photodegradation in these 
films was measured using spectroscopic techniques and it was found that the rate of 
photodegradation could be reduced significantly by the application of a comparatively thin 
layer (20 pm) of a commercially available, polyurethane clear lacquer containing UV 
absorber and Hindered Amine Light Stabilizer additions. As well as preventing 
photodegradation in the polymer film, the application of a UV absorbing clearcoat was also 
considered necessary to filter UV light in order to prevent direct band gap excitation of the 
T i0 2 semi-conductor, which is known to photocatalyse the breakdown of organic chemicals 
adsorbed onto, or in the vicinity of T i0 2 particles. The UV cut-offs of various films, lacquers 
and additives were investigated and a number of possible solutions were put forward.
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Introduction



1. INTRODUCTION

When Michael Gratzel and Brian O' Regan published their seminal paper in 1991 [1], 

photoelectrochemical solar cells were already a well studied subject [25]. Gratzel and O' 

Regan's break-through came when they used colloidal dispersions of T i0 2/ which when 

applied to a conducting glass substrate and after a heat treatm ent, formed large surface 

area photoelectrodes and when used in conjunction with efficient sensitizers, vastly 

increased the efficiency of the photoelectrochemical cell. Further developments of screen 

printable polymer-organic T i0 2 pastes [6] and high efficiency cells built on metal substrates 

[7] has lead to the realisation that it may be possible to produce Dye Sensitized Solar Cells 

(DSCs) utilising a roll-to-roll process. This high-throughput method of manufacturing has the 

potential to reduce the cost of DSCs considerably, meaning that even low efficiency 

modules could be produced on such a scale as to contribute a significant proportion of 

electricity production for a given country. In 2006 TATA Steel Colors (then Corus Colors) 

became interested in DSC technology and after initial feasibility studies, it was announced 

in February 2007 that Dyesol, the Australian manufacturer of DSC materials, and Corus 

Colors would initiate a collaborative program aimed at integrating DSC technology into 

Corus Colors' metal building products [8].

One of the biggest challenges facing the commercialisation of DSCs is their stability and in 

particular their susceptibility to photodegradation by UV light. The main body of work in 

this thesis is a study of UV photodegradation of DSCs, in particular how the degradation can 

be characterised and what measures can be taken to limit it. A flexible metal based DSC will 

almost certainly have a transparent polymer counter-electrode. This thesis will also look at 

the photodegradation of materials likely to be considered for use as the counter-electrode.

1.1 Energy from the Sun

The Earth's atmosphere receives energy from the sun at an average rate of 5.445 x 1024 J or 

1.5125 x 1018 kWh per year [9]. According to the International Energy Agency, total human 

consumption of energy in 2008 was 8428 M toe [10]. A M toe is a unit measure of energy in
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millions of tonnes of oil equivalents. 8428 Mtoe is equal to 3.5 x 1020 J or 9.8 x 1013 kWh or 

in other words our energy consumption is less than one-hundredth of a percent of the 

energy the earth receives from the sun. If it were possible to harness just one-tenth of a 

percent of the total energy received from the sun, there would be virtually limitless 

amounts of energy available for as long as the sun continues to radiate towards earth. The 

supply of energy form the sun is abundant, cost-free and inexhaustible, yet it is thinly 

distributed over a wide area and at ground level and the supply is highly variable [9]. 

Harnessing energy from the sun efficiently, is a challenge that has been facing scientists 

ever since Daryl Chapin, Calvin Fuller, and Gerald Pearson developed the first modern 

silicon photovoltaic cell at Bell Laboratories in 1954 [11].

1.2 Semiconductors

Electrons in isolated atoms can exist only at discreet or quantized energy levels and due to 

the Pauli Exclusion Principle, the number of electrons that can exist at any particular energy 

level is strictly limited. When atoms are brought close together, as in a crystal lattice, their 

potential functions overlap, the exclusion principle still holds and the energy level must split 

and form a cluster of acceptable energy levels . These clusters or bands consist of a large 

number of closely packed, discrete energy levels or bands. The energy of the electrons in 

the material can be represented on a one-dimensional energy diagram showing various 

ranges of energies that electrons are allowed to have and the ranges in between the 

allowed bands where electrons are forbidden to exist (figure 1.1).

The distribution in the outermost or highest energy bands determines most of the electrical 

and thermal properties of the material. This is similar to the outermost electrons in an 

atom. These are called the valence electrons, which determine the atom's chemical 

characteristics. The highest occupied ground state band is known as the valence band. In 

electrical insulators the valence band is full and the energy gap between the valence band 

and the next allowed band (the conduction band) is so large that no energy applied can 

excite a valence electron to the conduction band as there are no empty allowed states 

available.
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o Valence Band T Valence Band T Valence
86 — — ^  ' kT S E_ Band

Filled Band (a) Filled Band (b> Filled Band (c)

Insulator Semiconductor Conductor (Metal)

Figure 1.1 Energy bond gaps in e lectrica l insulators, conductors and sem iconductors

Semiconductors are similar to insulators except that the forbidden gap between the 

valence and conduction bands is much smaller. Electrons in the valence band can receive 

energy, in the form  of photons or thermal energy which allows them to jum p the band gap 

to the conduction band. These electrons are now free to accept electrical energy from an 

applied field and to  move through the crystal generating electrical current. In addition to 

this, the sites or "holes" left vacant in the valence band can become charge carriers 

themselves. An electron near a hole can jum p in and fill it, leaving a new hole in its place; 

another electron can jump into this hole and so on. Although current is carried by moving 

electrons travelling in one direction it can also be viewed as a flow  of positively charged 

holes moving in the opposite direction. Thus conduction is done by both holes and 

electrons. When the conduction of current is due only to those electrons excited from the 

valence band to the conduction band the materials is called an intrinsic semiconductor [12].

1.3 Solar Cell Technologies

Figure 1.2 below shows a timeline of the evolution of d ifferent photovoltaic technologies. 

Table 1.1 below shows the latest figures for the best know efficiencies as published in
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Progress in Photovoltaics in January 2011 [13]. At the time of writing in early 2011 there are 

many competing photovoltaic technologies.

1.4 Excitonic Solar Cells

The p-n junction of the silicon solar cell is the archetype of conventional solar cells whereby 

light absorption produces free electron-hole pairs and charge carrier separation is driven by 

a built in electrical field. Excitonic solar cells, which include Dye-Sensitized Solar Cells (DSCs) 

and Organic Solar Cells (OPV), differ in that excitons (mobile excited states) are generated 

upon light absorption, and if not created directly at the heterointerface as in DSCs, they 

must diffuse to it in order to photogenerate charge carriers [14]. The generation of excitons 

and charge transport in DSCs will be described in detail in the following chapters.
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Table 1.1 Confirmed terrestrial cell and submodule efficiencies measured under the 
global AM1.5 spectrum (1000 Wm'2) at 25°C - adapted from [13]. For an 
explanation the various parameters, refer to chapter 1.11.1

Classification n (%) Area
(cm2)

Voc Jsc 
(V) (mA/cm2)

FF (%)
Test Centre 
(and Date)

Silicon

Si (crystalline) 25.0 4.0 0.706 42.7 82.8 Sandia (3/99)

Si (multicrystalline) 20.4 1.0 0.664 38.0 80.9 NREL (5/04)

Si (thin film transfer) 16.7 4.0 0.645 33.0 78.2 FhG-ISE (7/01)

Si (thin film submodule) 10.5 94.0 0.492 29.7 72.1 FhG-ISE (8/07)

III—V cells

GaAs (thin film) 27.6 1.0 1.107 29.6 84.1 NREL (11/10)

GaAs (multicrystalline) 18.4 4.0 0.994 23.2 79.7 NREL (11/95)

InP (crystalline) 22.1 4.0 0.878 29.5 85.4 NREL (4/90)

Thin Film Chalcoeenide

CIGS (cell) 19.6 1.0 0.713 34.8 79.2 NREL (4/09)

CIGS (submodule) 16.7 16.0 0.661 33.6 75.1 FhG-ISE (3/00)

CdTe (cell) 16.7 1.0 0.845 26.1 75.5 NREL (9/01)

CdTe (submodule) 12.5 35.0 0.838 21.2 70.5 NREL (9/10)

AmorDhous/nanocrvstalline Si

Si (amorphous) 10.1 1.0 0.886 16.75 67 NREL (7/09)

Si (nanocrystalline) 10.1 1.2 0.539 24.4 76.6 JQA (12/97)

Photochemical

Dye sensitised 10.4 1.0 0.729 22 65.2 AIST (8/05)

Dye sensitized (submodule) 9.9 17.1 0.719 19.4 71.4 AIST (8/10)

Organic

Organic polymer 8.3 1.0 0.816 14.46 70.2 NREL(11/10)

Organic (submodule) 3.5 208.4 8.62 0.847 48.3 NREL (7/09)

Multiiunction devices

GalnP/GaAs/Ge 32.0 4.0 2.622 14.37 85 NREL (1/03)

GaAs/CIS (thin film) 25.8 4.0 —  — — NREL (11/89)

a-Si/pc-Si (thin film cell) 11.9 1.2 1.346 12.92 68.5 NREL (8/10)

a-Si/pc-Si (thin film 
submodule)

11.7 14.2 5.462 2.99 71.3 AIST (9/04)

Organic (2-cell tandem) 8.3 1.1 1.733 8.03 59.5 FhG-ISE (10/10)
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1.5 Dye-Sensitized Solar Cells

The advantages often stated of DSCs over other PV technologies are their (relatively) low 

cost, their ability to work well in diffuse and low level light conditions, their aesthetic value, 

in that they can be made transparent and in a variety of colours, and their potential for 

flexible roll-to-roll processing. The basic operating principles of the DSC, such as the 

photoexcitation of the dye, charge injection into and transport through the semi-conductor 

and the redox processes that occur, can be understood by most and have ignited interest 

from scientists of many disciplines as well as engineers and industrialists. The seeming 

simplicity of DSC devices has also caught the public attention and one can buy DIY DSC kits 

for school children. There is even a video on YouTube explaining how to make a DSC device 

using T i0 2 harvested from the icing sugar of powdered donuts which is then dyed using 

Starbuck's Passion Tea! [16] This seeming simplicity of DSC operation belies an inherent 

complexity of DSC devices which when studied in great detail, become irresistible to 

researchers. From a scientist's point of view DSCs are superbly fascinating and the 

complexity of the interactions between the different components of DSCs has led to an 

almost exponential increase in research publications. From 1991 when Gratzel and 

O' Regan published their now famous paper in Nature, the number of DSC research 

publications per year has gone from 1 in 1993 to almost 600 in 2009. Industrial interest is 

also growing with large multinational companies such as BASF and Bosch in Europe and 

Toyota, Sharp, Panasonic, Sony, Fujikura, and Samsung in Asia [17]. Tata Steel and G24i 

both have pilot lines here in Wales and both companies are capable of producing modules 

using roll-to-roll processes.

1.5.1 Basic Operating Principles

The semiconductor most often employed in DSCs is a mesoporous layer of sintered T i02 

nanoparticles [18]. Other oxides have been investigated such as Nb20 5 [19], ZnO and Sn02 

[20; 21]. Adsorbed onto the metal oxide film is a dye, which when photoexcited can inject 

an electron from its LUMO into the conduction band of the oxide. Injected electrons can 

then percolate through the network of interconnected nanoparticles until they reach a
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conductive contact and are then exported to an external circuit to do work. The dye, having 

donated its electron, finds itself oxidised and is subsequently reduced to its original state 

via electron donation from a redox electrolyte, the basis of which is frequently a I / I 3 redox 

couple dissolved in an organic solvent. It is highly im portant that this process occurs quickly 

in order to prevent the oxidised dye from recapturing an injected electron from the 

conduction band of the oxide. Having sacrificed the ir electrical potential to do work, the 

electrons flow ing in the external circuit return to the counter electrode whereby they 

reduce the l3' o f the redox couple that was oxidised in the restoration o f dye, thus 

completing the circuit [18; 22; 23]. Figure 1.3 shows the energy level diagram describing the 

energetics o f the basic processes. Important factors here are that the LUMO of the dye 

must be higher than the oxide conduction band in order to achieve efficient electron 

injection and the Voc of the cell is derived from the energy difference between the electron 

Fermi level in the semiconductor and the redox potential of the electrolyte.

sem iconductor dye electrolyte counter electrode

load

- 0.8
-0.7

0.2

0.8

2.5

V vs. SCE

Figure 1.3 Energy level d iagram  outlin ing  the basic operating principles o f a DSC 
device - reproduced fro m  [24]



In order to visualise the basic principles outlined above, it is helpful to visualise the general 

DSC architecture (see figure 1.4 below). From sunward (top) side to the back contact, this 

usually consists of:

1. A transparent layer or topsheet (glass or polymer film)

2. A transparent conductive oxide (TCO), normally indium or fluorine doped tin oxide, 

coated onto 1.

3. A layer of wide band gap oxide semiconductor, sintered onto 1 & 2

4. A monolayer of sensitising dye adsorbed onto 3

5. An electrolyte, normally containing an iodine/tri-iodide redox couple

6. A thin platinum catalytic layer deposited onto 7.

7. A rear electrode (or counter electrode), usually TCO, coated onto 8.

8. Substrate, often glass.

Elements 1-4 form the working electrode, or photoanode, of the cell whilst elements 6-8 

form the counter electrode with the electrolyte in between. Often both electrode 

substrates are glass and so DSCs are often transparent. In a flexible DSC based on metal 

substrates the working electrode is sintered onto the metal substrate and the counter 

electrode forms the topsheet, meaning that light has to travel through the electrolyte.

Figure 1.3 perhaps presents a simplistic version of the electron transfer processes and only 

shows those processes that are beneficial to photocurrent generation. There are however 

loss mechanisms. Firstly there is the possibility of direct recombination of the excited state 

dye whereby the electron returns to its ground state, there is also recombination of 

electrons in the oxide conduction band with the oxidised dye or with acceptors in the 

electrolyte. The electron transfer processes and loss mechanisms will be discussed more 

thoroughly in chapter 1.9, the following chapters will discuss the various components that 

make up the DSC device.
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1.6 Metal Oxide Semi Conductors as Photoelectrodes

Figure 1.5 below shows the position of valence and conduction band edges of several 

semiconductors and their corresponding band gaps. The band gaps of the metal oxide 

semiconductors are around 3.2 eV for T i02 (anatase), W 0 3 and ZnO and 3.8 eV for Sn02. 

The values of the band gaps mean that the semiconductors absorb UV light and so dye- 

sensitization is essential in order to increase the light harvesting range of photovoltaic 

devices built upon these semiconductors.

A good photoelectrode will facilitate light harvesting, electron injection and electron 

collection. In order to maximize light harvesting the unsensitized semiconductor framework 

should be transparent and of sufficiently high surface area to enable maximum dye 

adsorption. Electron injection efficiency can be maximised by having a large density of 

unpopulated states in the semiconductor at lower absolute energies than that of the 

excited state of the dye (S+/S* - see figure 1.3). The electron collection efficiency is 

determined by the kinetic competition between the effective rate of electron diffusion and 

electron lifetimes, (xn) which are governed by rates of interception and recombination [26].

The metal oxide semi conductors listed in figure 1.5 as well as others not listed have been 

investigated for use in DSCs but T i0 2 still remains the dominant semiconductor in both 

academic research and industry.

1.6.1 Ti02

T i0 2 is perhaps the most versatile of the metal oxides, delivering the highest solar- 

conversion efficiencies. T i02 is readily available in vast quantities, chemically stable and 

non-toxic and is already produced in large quantities [27]. As of May 2011 the price of T i02 

is $3300-3500 per tonne [28] compared to indium, which is used in transparent conducting 

films such as ITO and costs over $900000 per tonne [29], hence it can be seen that T i0 2 is a 

relatively low-cost material.
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For T i02/ the band gaps of rutile (3.02 eV) and anatase (3.2 eV) mean that the most 

common, room temperature stable, crystalline forms of T i0 2 are photoactive from 387 nm 

to 411 nm. Upon absorption of a photon of sufficient energy, an electron-hole pair is 

created and when T i02 is in contact with an electrolyte solution, a space-charge layer is 

formed underneath the T i02 surface. The resulting electric field transports electrons to the 

bulk and holes to the surface where a photoanodic reaction, such as the oxidation of water 

can set in. This process can be remarkably efficient at certain wavelengths with IPCE values 

as high as 80% at 300 nm [30]. The photoactivity of T i02 is also responsible for its role as a 

photocatalyst for the degradation of organic compounds [31] which will be discussed 

further in chapter 1.13.1.2  below.

Sensitization of T i0 2 was discovered by Clark and Sutin in 1977 where they used single 

crystals of rutile T i0 2 sensitized with aqueous R u(bpy)3+ [2] and, by 1985 Gratzel and co­

workers were using colloidal T i0 2 particles [32]. Colloidal dispersions of T i02 nano-particles 

still form the basis of most T i0 2 pastes used in research and manufacture of DSCs but 

research is ongoing into alternative nanometre sized structures such as nano-wires [33] and
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nano-tubes [34]. Figure 1.6 shows the nano-structure of a typical mesoporous T i0 2 film 

consisting of nano-particles of around 20 nm. T i02 film  morphology is a major factor in DSC 

performance and nanoparticles are essential to increase the electrode surface area and 

therefore amount o f dye adsorbed. Conversely, large particles are required to enhance light 

absorption through light scattering. This is often achieved through the addition of a layer of 

larger T i02 particles (ca. 500 nm sized particles) which are deposited onto the mesoporous 

film  in order to scatter photons back into the transparent film and enhance red and near-IR 

light harvesting [35]. The porosity o f the T i02 film  is also important and can be controlled by 

changing the amount o f binder in the paste (ideally about 50-60%). Higher porosities lead 

to higher incidences of term ination particles (dead ends), meaning less interconnects 

between the particles and a decrease in charge collection efficiency [36]. Other 

modifications to the T i02 architecture include the addition of a T i02 blocking layer which is 

sometimes added to prevent recombination between the TCO and the electrolyte. This 

usually consists o f a layer of particles ca. 50 nm thick deposited by spray pyrolysis [37]. 

Another type of modification is TiCI4 treatm ent [38] which forms an ultrapure T i02 shell on 

the photoelectrode, the resulting increased roughness leads to greater adsorption of the 

sensitizer and improvements in Jscand IPCE [39].

Figure 1.6 A typ ical mesoporous T i02 f i lm  consisting o f 20 nm sized nano-partic les  -  

reproduced fro m  [40 ]

13



1.6.2 ZnO

Having a similar band gap and conduction band edge to T i0 2, ZnO has been extensively 

studied as a photoelectrode for DSCs. ZnO is less chemically stable than T i02/ amphoteric 

and so dissolves readily in both acidic and basic conditions. The attractiveness of ZnO to 

DSC researchers can be attributed to the relative ease of synthesizing highly crystalline ZnO 

with different morphologies, such as nanoparticles, nanowires, nanorods, nanotubes, 

tetrapods, nanoflowers, nanosheets, and branched nanostructures [17]. Despite showing 

great promise, ZnO DSCs have not yet matched up to the performance of T i02 based 

devices. One possible reason for the lower overall efficiency of ZnO is its stability, which has 

shown to be compromised in solvent-rich or acidic environments [41]. There is also

evidence that irreversible dye agglomeration occurs in the ZnO electrodes due to the

dissolution of Zn2+ ions from ZnO which may be caused by interactions with the carboxylic 

acid groups of the dye [42]. The dissolution can lead to precipitation of dye-Zn2+complexes 

[43].

1.6.3 Other Metal Oxides

A study of the following metal oxides: T i0 2, Nb20 5, ZnO, Sn02, ln20 3, W 0 3, Ta20 5, and Zr02, 

was conducted by Sayama, Sugihara, and Arakawa [19] and they found that T i0 2 cells 

showed the highest short-circuit photocurrent (Isc). Nb20 5 cells showed the highest V 0c and 

this can be attributed the higher band gap of 3.49 eV [44] compared to anatase at 3.2 eV. 

Of the oxides listed above, a literature survey seems to suggest that (apart from ZnO) Sn02 

is attracting the most recent research interest [45; 46].

1.7 The Sensitizing Dye

In their comprehensive review of 2010 [17], Hagfeldt et al listed some of the essential 

criteria that an effective photosensitizer should possess. These are listed below.
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1. The absorption spectrum of the photosensitizer should be as wide as possible, 

preferably absorbing into the near-infrared (NIR) region.

2. The photosensitizer should have anchoring groups (-COOH, -H 2P03/ -S 0 3H, etc.) to 

strongly bind the dye onto the semiconductor surface.

3. The excited state level of the photosensitizer should be higher in energy than the 

conduction band edge of the semiconductor to achieve sufficient electron injection 

efficiency (see figure 1.3). This is true for n-type semiconductors such as T i0 2 but 

for p-type DSCs, the HOMO level of the photosensitizer should be at more positive 

potential than the valence band of the semiconductor.

4. The oxidized-state potential of the photosensitizer must be more positive than the 

redox potential of electrolyte for effective dye regeneration

5. Dye aggregation on the semiconductor surface should be avoided through 

optimization of the molecular structure of the dye or by addition of coadsorbers 

that prevent aggregation.

6. The sensitizer should be photo-, electrochemically and thermally stable.

Furthermore Nazeerudin and Yum in their chapter in Dye-Sensitized Solar Cells (EPFL Press) 

[47], also emphasise the need for directionality when the sensitizer is in the excited state. 

This directionality refers to the stereochemistry of the sensitizer because for efficient 

electron transfer to occur there is a need for effective coupling of the LUMO of the 

sensitizer to the Ti 3d orbital in the T i0 2 film.

1.7.1 Metal Complexes

Photosensitizers based on ruthenium bipyridyl complexes have been thoroughly 

investigated as sensitizers for water splitting and for photoelectrochemical solar cells 

[2; 32; 48; 49]. To date, photosensitizers of polypyridyl complexes of ruthenium and 

osmium [38; 50] give the best performance in terms of conversion yield and stability. The 

most promising of these have the general structure ML2(X)2 where M stands for Ru or Os. L 

is 2,2'-bipyridyl-4,4'-dicarboxylic acid and X represents a halide, cyanide, thiocyanate or 

water [51]. In general, metal complex sensitizers have anchoring ligands for adsorption 

onto the semiconductor surface. These ligands can also be chromophoric groups. Ancillary
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ligands which are not directly attached onto the semiconductor surface can be used for 

tuning the overall properties of the complexes [52]. Efficient energy conversion has been 

observed using bis-(4,4'-dicarboxylic acid-2,2'-bipyridine) as anchoring ligands, these 

complexes have become well studied and in 1993, Nazeeruddin achieved %q > 10% using 

Ru(2,2'-bipyridyl-4,4'-dicarboxylic acid)2(NCS)2, more commonly known as N3 dye [38]. 

Some efficient and commonly used Ru-complex sensitizers are shown in figure 1.7 below.

For efficient electron injection to occur good dye adsorption is essential. On exposure of 

the semiconductor to the dye solution, the anchor groups result in the formation of a 

monolayer of dye being adsorbed onto its surface, giving near complete coverage. Figure

1.8 shows a dye with hydroxamic acid anchoring group complexes, adsorbed to the T i02 

particle surface. Photoexcitation initiates a metal-to-ligand charge transfer (MLCT) whereby 

excitation causes electron transfer from a d-orbital of the metal to the n *  orbital of the 

ligand anchoring group, which forms the LUMO. The NCS ligand used in the N3 and black 

dyes causes the HOMO level of the dye to shift negatively, resulting in a red shift of the 

absorption property of the complex and a reduction in the energetic losses involved in 

regeneration of the dye by the redox electrolyte. Good electrical interaction between the 

ligand anchor and the conduction band of the T i02 results in effective electron injection 

from the Ru complex into the T i0 2 and once charge transfer has occurred, electron lifetime 

(xn) may be enhanced by using self-assembly assisting agents to improve the organisation of 

the sensitizer monolayer. This helps shield conduction band electrons from recapture by 

the oxidised mediator.

Many different ruthenium complexes comprising a variety of ligand groups have been, and 

continue to be researched. Complexes with different metal centres, e.g. Fe, Os, Re and Pt 

have been investigated. However, none of these can rival the performance of the Ru 

complexes. It is thought that this is as a result of the HOMO level of the Ru complexes being 

best matched to the redox potential of the iodine based electrolytes most commonly used 

in DSC fabrication. In all cases, development of efficient photosensitizers requires close 

matching of the LUMO level to the semiconductor conduction band to effectively inject 

electrons into the conduction band of the semiconductor and of the HOMO level to accept 

electrons from the electrolyte ions. With further development of the ruthenium dye 

structure it is believed that an increase in light harvesting in the 700-900nm region may be
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achieved. The ultimate goal is to produce a dye that has a near vertical rise in 

photoresponse in the 920nm region that could lead to high efficiencies.

'o«

OH

:o o h

Figure 1.7 Structures o f the dyes used in this chapter. Clockwise from  top- left: N3, 
N719, N749 and Z907

H O

OH
TtO;

"R u

CN

CNpyppy

Figure 1.8 Showing dye anchorage to a Ti02 particle of a dye involving a carboxylic 
acid anchoring group -  reproduced from  [52]
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1.7.2 Porphyrins and Phthalocyanines

One of the drawbacks of ruthenium complexes is the limited absorption in the near- 

infrared region of the solar spectrum. Porphyrin and phthalocyanine systems exhibit 

intense spectral response bands in the near-IR region and possess good chemical, photo-, 

and thermal stability, providing good potential candidates for photovoltaic applications 

[17].

Porphyrins are ubiquitous in nature and in fact the haem- group in our own haemoglobin is 

a porphyrin. Chlorophylls are based on reduced porphyrin structure which is probably why 

they were among the first porphyrin related compounds investigated as DSC sensitizers 

[53]. Porphyrins synthesised for DSC sensitization have an appropriate LUMO level that 

resides above the conduction band of the T i0 2 and a HOMO level that lies below the redox 

couple in the electrolyte solution [54]. These are important factors for charge injection and 

separation. Figure 1.9 shows novel porphyrin sensitizers, in which the aryl groups act as 

electron donors and the malonic acid binding group as an acceptor. The figure is taken from 

reference [55] where a multinational collaboration led by David Officer produced a DSC of 

%r\ = 7.1 using dye number 2. As of 2010 efficiencies of 11% have been achieved by a group 

led by Gratzel [56].

Ar

1 (Ar =  Ph)
2 (Ar = 4-methylPh)
3 (Ar = 4-ethyl Ph)
4 (Ar = 4-/7-butylPh)
5 (Ar =  4-/7-octylPh)
6 (Ar = 3,5-dimethylPh)

c o 2h
h o 2c

Figure 1.9 Porphyrin sensitizers, dye No 2 achieved %q = 7.1 in 2007 -  reproduced 
from  [55]
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Phthalocyanines are well known for their intense absorption in the red and NIR regions 

(they are often intensely blue or green in colour). They also show electrochemical, 

photochemical and thermal stability. Because of this, they have become an excellent option 

to explore for solar cell applications and have been the focus of intense research for the 

development of efficient NIR absorbers [57], Efficiencies for phthalocyanines are generally 

lower than the other dye species mentioned so far with rj = 5.3 % achieved in 2012 [58]. 

Despite this they still attract attention for their use as co-sensitizers in conjunction with 

lower wavelength absorbers. Figure 1.10 shows the absorbance spectrum of a 

phthalocyanine dye overlain with that of N719 (both in solution). It can be observed that 

there is hardly any spectral overlap in the NIR region. Co-sensitization of dyes like this has 

the potential to increase cell efficiency by increasing the range of photons that can be 

captured by the DSC device [59; 60].

Phthalocyanine
N7191. 0 -
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Figure 1.10 Absorbance spectrum of a phthalocyanine dye overlain with that o f N719  
(both in solution) showing the potential o f co-sensitization to achieve more 
comprehensive capture of photons across the visible and toward the NIR 
spectrum -  courtesy of [61]
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1.7.3 Organic Sensitizers

M etal-free organic dyes have attracted increasing attention due to their high structural 

flexibility and low toxicity. In contrast to Ru (II) complexes, different light absorbing groups 

can be incorporated into the organic framework to tune the absorption over a broad 

spectral range and to achieve high molar extinction coefficients [62; 63].

Recent progress has been made in the field of highly absorbing metal-free organic dyes and 

organic dyes featuring an electron donor and acceptor moiety connected by a n- 

conjugation bridge have reached over 10% efficiency [64]. Two high performing organic 

sensitizers are shown in figure 1.11 below

Figure 1.11 C220 (top) and C219 (bottom), two high performing organic sensitizers -
reproduced from  [62] and [64] respectively

COOH
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1.7.4 Quantum Dot Sensitized Solar Cells

Quantum dots are small particles of semiconductors such as CdS, CdSe, CdTe, CulnS2, Cu2S 

and PbS. They are of the right size to produce a quantum confinement of the exciton in the 

absorber material leading to a size-dependent absorption spectrum. Depending on their 

particle size, these materials can absorb photons over a broad spectral range or within a 

confined window of the solar spectrum [65]. The replacement of the light harvesting 

material in a standard DSC involves modification of other components to preserve the 

favourable band alignment for charge separation, charge transfer processes, and stability. 

For example, the l / l 3' redox couple employed in standard DSCs is not chemically compatible 

with quantum dots leading to fast degradation of the nanocrystals [66]. As of 2012 cell 

efficiencies of 5.4% have been achieved [67].

1.8 The Redox Electrolyte

The function of the redox couple in the electrolyte is to reduce the dye cation after electron 

injection as well as to carry charge between the electrodes. The redox couple most often 

employed is the l'/l3' couple and in this case the oxidised dye is reduced by the I' ion, which 

is in turn oxidized to l3\  The l3’ ions must then diffuse towards the platinised counter 

electrode where they can be reduced by electrons from the external circuit. The r created 

at the counter electrode must then diffuse towards the photoanode [68]. In order to 

achieve rapid regeneration of the oxidized dye, I' should be present in high concentration or 

diffusion of I' should be fast. In non viscous electrolytes such as acetonitrile, an iodide 

concentration of 0.3 M is sufficient, while in viscous ionic liquids a higher concentration 

may be necessary [69].

The cations of the l'/l3' couple and the solvents used to dissolve them, both have influence 

on electrolyte properties. Different cations such as H+, Li+, K+ or Mg2+alter the conduction 

band energy of the T i0 2 by adsorption onto the surface [70]. Faster dye regeneration is 

observed when using electrolytes containing cations that adsorb at the T i0 2 surface which 

has been attributed to a higher local concentration of the iodide anion near the
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T i0 2/electrolyte interface [71]. Organic solvents are used to dissolve the mediators and any 

additives that might be included. Dipolar aprotic solvents are generally preferred due to the 

electrochemical stability and the solubility of the redox mediators and additives within 

them. The type of solvent employed can influence the flat band potential (V fb) of the cell 

and therefore V 0c and due to the current being carried by mobile charge carriers, the 

viscosity and polarity of the solvent will also have an effect on JSc [68].

Additions are often employed such as imidazolium derivatives like l-propyl-3- 

methylimidazolium iodide (PM M I) to improve cell performance by decreasing the 

resistance of the electrolyte [72]. Tertiary-butylpyridine (t-BP) additions can improve the 

open circuit voltage by causing a negative shift of the T i0 2 conduction band. The increase in 

the open-circuit voltage and fill factor caused by t-BP additions is due to the suppression of 

the dark current at the semiconductor electrolyte interface [38].

Other redox couples have been investigated and the other halides (and pseudohalides) 

behave similarly. Br"/Br3" [73], SCN7(SCN)3~ [74] and SeCN7(SeCN)3" [75] redox couples 

have been tested with some success, as have Co37C o2+ redox couples [76]. Faster redox 

couples such as ferrocene/ferrocenium have been employed, but these are sometimes in 

danger of eliminating the photovoltaic effect due to the rapid recombination of 

photoinjected electrons with the oxidized half of the redox couple [77].

Air and water stable room temperature ionic liquids (RTILs) are attractive as an alternative 

to organic solvents due to their unique characteristics such as chemical and thermal 

stability, negligible vapour pressure, nonflammability, high ionic conductivity and wide 

electrochemical window [78].

1.8.1 Gel Electrolytes and Hole Conductors

The solvents used in the electrolyte are volatile and often aggressive. Because of this, 

aspects such as cell sealing can become an issue as the electrolyte can leach out of the seal 

over time. Even if less aggressive solvents were used, a liquid electrolyte is not ideal and for 

ultra long term cell stability is likely that solid-state or quasi solid-state DSCS need be
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developed. Electrolytes based on both organic solvents and ionic liquids can be gelated, 

polymerized, or dispersed with polymeric materials using gelling agents to transform the 

liquid electrolyte into a quasi-solid electrolyte [17]. These quasi-solid-state cells however 

tend to be lower in efficiency than their liquid electrolyte analogues primarily due to the 

lower mobility of the iodide species through the solid or quasi-solid medium and imperfect 

wetting of pores with the electrolyte [79]. Some interesting work was recently presented 

at the HOPV 2011 conference in Valencia by Satoshi Uchida in which he showed the use of 

hydrotalcite clay nanoparticles as a gelling agent. Uchida achieved n = 10.1% and good 

photocurrents at JSc = 18.2 mA cm'2 due to the high ionic conductivity of the clay-gelled 

electrolyte [80].

Hole transport mediums such as spiro-OMeTAD have been investigated for use in DSCs 

since at least 1998 [81]. Spiro-OMeTAD refers to: 2,2(,7;7(-tetrakis-(N,N-di-

pmethoxyphenylamine)9/9(-spirobifluorene) and is shown in figure 1.12 below. The method 

of charge transport differs from standard DSCs in that the transfer of charge is electronic 

(electron hopping -  see figure 1.12) rather than ionic diffusion.

O C H

OMeTAD

hopping

T i02  Dye HTM Au

Figure 1.12 Chemical structure o f spiro-OMeTAD and electron-transfer scheme showing 
electron hopping through the HTM -  reproduced from  [81]
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1.9 Electron Transfer Processes in Dye Sensitized Solar Cells

The basic DSC electron transfer processes, the cell architecture and the materials used have 

now been described. This chapter will now describe the electron transfer processes in 

greater detail.

The electron transfer processes described so far have mostly concentrated on beneficial 

processes i.e. those processes that contribute towards generating photocurrent. There are 

however, loss mechanisms which compete w ith the beneficial transfer processes.

Figure 1.13 describes an overview of the electron transfer processes w ith the beneficial 

transfers in green and detrimental transfers in red. The time constants for these transfer is 

also shown which is im portant as in high efficiency cells, the detrim ental processes must 

occur much more slowly relatively to the beneficial processes.

0.05 - 150 ps

~1 ps
~1 ps

Ec 20 ns

ms
hv100 ns- 

1 ms I 2 /I

~ 0.5 ps

Dye (D)

WIT

10 ps

Redox mediator

Figure 1.13 Overview o f the electron transfer processes in a DSC w ith  the tim e constants 
o f the beneficial processes in green and de trim en ta l processes in red  -  

reproduced fro m  [71 ]

Electronic injection is extremely fast w ith charge transfer to the T i02 conduction band from 

ruthenium sensitizers being achieved in as little  as 20 fs [82]. This is fast enough to compete 

w ith the excited state decay of S* which has a half life o f as much at 2 ps when measured in
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a model system using transient absorption spectroscopy [83]. In a complete DSC however, 

S* decay may be as fast as 150 ± 50 ps [84], Electron injection is also much faster than 

recombination of conduction band electrons with the electrolyte or oxidised dye which 

occur in the (is to ms domain.

Regeneration of the oxidized dye can be summarised in two steps (equations 1.1 and 1.2 

below), where in the first step an intermediate, [dye+, I ], is formed. Equation 1.1 is fast (ca. 

500 ns) whilst equation 1.2 is at least an order of magnitude slower and so it is the rate 

determining step and occurs usually in the (is domain [85].

In order to achieve an efficient as possible reduction at the Pt counter electrode, the charge 

transfer resistance should be less than 1 Q cm2.

The manufacture of DSC test cells in the laboratory can take almost 24 hours due to various 

heat treatments and an overnight dyeing step. This is not however compatible with the 

industrialisation and scale up of DSC modules, especially if considering roll-to-roll 

manufacturing processes. Fortunately work has been carried out to try and speed up the 

"rate limiting steps" in the manufacturing processes of large area DSC modules.

The first step to be considered is the sintering of the T i02, which in the laboratory involves a 

heat treatm ent that takes around 30 minutes (plus cooling time). This is obviously an 

impossibly slow step to be directly translated onto a roll-to-roll process. Work in Swansea 

University has offered a solution to this problem by rapidly sintering the T i0 2 

photoelectrode by the application of near infra-red radiation (NIR) [86]. It has been shown 

that sintering is achievable in just 12.5 s and that the cells were virtually identical in 

performance to those produced using the conventional heating method. This is promising

dye+ + I' —► [dye+, I ] 

[dye+, I'] + I' —> dye + l2'

(1.1)

(1.2 )

1.10 Industrialisation and Scale-Up of DSC Technology
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for the fast processing of DSCs on a metal substrate but it should be noted that this method 

will not work on glass as it is transparent to NIR.

The next step, dyeing of the T i0 2 which is usually carried out overnight in the laboratory, is 

another step which cannot translate to the production line. Faster dyeing has been 

achieved by Hinsch [87] and Sommeling [88] in which they achieved dyeing in 30-60  

minutes but recent work has reduced the dyeing time to 5 minutes using a pumping 

procedure [59], Using this method, co-sensitization has been achieved with resulting 

efficiencies greater than that of either dye individually. Collaborations between Swansea 

University and Bangor University have also resulted in the development of a technique to 

monitor dye uptake in-situ [86]. This is something which will be of interest to process 

engineers setting up manufacturing pilot lines.

1.11 DSC Measurement Techniques

There is an obvious need for the development of suitable measurement techniques for the 

characterisation of DSCs, not just to measure basic cell operating parameters, but also to 

delve, with great precision and detail into the processes that occur within the cell so that a 

greater understanding of the mechanisms involved in photocurrent generation can be 

achieved. Some of these techniques are the same as those used to characterise older PV 

technologies such as IV and IPCE measurements but they often have to be adapted, usually 

by slowing scan rates, due to the photoelectrochemical nature of DSC devices. Other 

techniques come from electrochemistry such as EIS and from photochemistry and physics 

such as transient absorption spectroscopy and intensity modulated photocurrent 

spectroscopy (IMPS).

1.11.1 IV Measurements

Standard IV measurements are conducted under a light intensity of 1 Sun (1000 W  m'2) with 

spectral matching to ASTM G173-03 [89] or Air Mass 1.5 (AM 1.5) as it is more commonly
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referred to. DSCs are often measured at lower light levels as efficiency can increase at 

lower light intensity. Figure 1.14 shows a typical IV curve. The IV scan can be carried out in 

the direction of lSc to V 0c or vice versa but the scan rate must be slower than Si-PV cells to 

allow for the diffusional processes that occur within a DSC device. The important points on 

the IV curve are therefore:

1. lSc is the short circuit current, at this point the voltage of the cell is zero and 

therefore, the power output is also zero.

2. V 0c is the open circuit voltage at this point the current (and power output) is zero.

3. Pmax is the maximum power point and is the product of V MAx (maximum voltage) 

and IMax (maximum current)

The solar to electrical energy conversion efficiency (%r\) can be calculated from the short 

circuit photocurrent density (JSc) measured in A m'2, the fill factor (FF), V0cand the intensity 

of incident light (P in). The fill factor is the quotient of the actual maximum power point and 

the theoretical maximum power point. The theoretical maximum power point is the 

product of Jsc and V 0c and so FF is given by:

F F  =
Imax-Vmax

Jsc-Voc
(1.3)

The %n is therefore given by:

% T | =  ( 1 .4 )
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Figure 1.14 Typical DSC IV curve showing im p o rta n t values fo r  calcu lating cell 
param eters

1.11.2 IPCE Measurements

The incident-photon to current conversion efficiency (IPCE) is a measure of the spectral 

responsiveness of a photovoltaic device. The JSc of a device is measured at differing 

wavelengths by a monochromatic light source and divided by the incident photon flux at 

that wavelength. The resulting IPCE values can be plotted against wavelength to give a plot 

such as the normalised IPCE plot o f an N719-dyed cell shown in figure 1.15 below.
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1.11.3 Impedance Spectroscopy

The electrochemical impedance spectroscopy (EIS) of DSCs is research topic in itself and 

there have been many papers written on EIS characterization of DSC devices. For a more 

detailed description, refer to the recent works by Bisquert, Fabregat-Santiago and Halme 

[90-97]. The advantages of impedance spectroscopy is that it allows an understanding of 

the electron transfer and transport processes in complete DSC devices.

In EIS a bias potential is applied to a system which is perturbed by a small sine wave 

modulation, usually ± 5-10 mV relative to the bias potential, the resulting sinusoidal current 

response is then measured as a function of modulation frequency. The sinusoidal bias 

perturbation and consequent current response is shown in figure 1.16 below.
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.15 Normalised IPCE spectrum of an N719-dyed DSC device
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phose-shift

Figure 1.16 Sinusoidal bias perturbation and consequent current response in a system 
being measured by EIS

The modulation signal as a function of time can be expressed as: 

Et =  E0 sin(<yt) (1.5)

W here Et is the potential at time t, E0, is the amplitude of the signal and u) is the radial 

frequency. In a linear system the response signal is phase shifted by magnitude, cf> and has 

amplitude l0and so, current response, lt, is given by:

It =  lo =  sin (u>t+ (J)) (1.6)

Analogously to Ohms law, the impedance, Z = Et/It and so can be expressed as:

n _  Et _  E0 sin (cot) _  n sin (cot) 
L  — —  — ~ : : — — Zmq (1.7)

I t I 0 sin (cot+ (JO sin (cot+ (}>)

The impedance is therefore expressed in terms of magnitude, Z0 and a phase shift c(>.

It is possible, using Euler's formula (equation 1.8) to express impedance as a complex 

function.
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ej4> =  costj) +  jsinc|> (1.8)

W here j is the imaginary unit, so that the potential is given by:

Et =  E0 ejwt (1.9)

And the current response given by:

It =  i0 (l.io)

The impedance therefore becomes the complex number described by:

Z ( uj)  =  j  =  Z0 e]<t> =  Z0(cos<t> — jsincj)) (1.11)

Impedance therefore, has a real part and an imaginary part and if the real part is plotted on 

the x-axis and the imaginary part on the y-axis then the result is the Nyquist plot. Figure 

1.17 shows a typical Nyquist plot that would be gained from a resistor/capacitor pair wired 

in parallel (shown inset in figure 1.17). Every point on the plot represents the impedance at 

a particular frequency with higher frequencies on the left hand side of the plot and lower 

frequencies on the right hand side. The impedance can be represented by a vector of length 

| Z | (shown as blue arrow in figure 1.17).
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Figure 1.17 Nyquist p lo t o f a res is to r/capacito r in paralle l, show ing impedance vector

Other ways of presenting impedance data are the Bode phase and magnitude plots. For 

both plots, the impedance is plotted w ith log oo on the x-axis. For the phase plot, the phase- 

shift is plotted on the y-axis and for the magnitude plot, the absolute impedance, |Z| is 

plotted on the y-axis.

Figure 1.18 below shows the Bode magnitude and phase plots o f the same 

resistor/capacitor pair described in figure 1.17 but unlike the Nyquist plots, Bode plots 

show frequency information.
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Figure 1.18 Bode magnitude plot (above) and Bode phase plot (below) of
resistor/capacitor pair in parallel

1.11.3.1 Impedance Spectroscopy of DSCs

A typical Nyquist plot of a DSC device measured with a bias potential near VMAX will look 

similar to that which can be observed in figure 1.19 below. The smaller of the two arcs is 

representative of the resistance at the counter electrode/electrode interface, Rce whilst the 

larger of the arcs is representative of a charge transfer resistance related to recombination 

of electrons at the T i0 2/electrode interface and is denoted by Rr. There also may be a third
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arc at the lower frequency end which is representative of the Nernst diffusion impedance. 

This is often hidden by the Rr arc, and in fact it can be seen that there is a small d istortion of 

the Rr arc on the right hand side which is caused by the Nernst diffusion arc. The spans of 

the arcs on the x-axis give the values for that particular resistance. The length along the x- 

axis from Zreal = 0 Q to the start of the Rce arc gives the series resistance, Rs which is the 

resistance across the TCO and electrical contacts.
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Figure 1.19 Typical Nyquist p lo t o f o DSC device held a t a bias p o te n tia l near VMAX w ith  
the corresponding resistances shown

In order to interpret the data more effectively, a model is often used to  try and explain the 

resistive, capacitive and diffusional electronic processes that are occurring w ithin the cell. 

The models describe the internal distribution of electrochemical potentia l in response to 

the modulated perturbation o f the external electrical potential at steady state [94]. So 

where they may be some capacitance at one of the interfaces in the cell, the model will 

have an element relating to the impedance of a capacitor (equation 1.12) to describe it.

z =  —

jojC
( 1 . 12 )

An easier way to model impedance data is to use equivalent circuit models. Most 

impedance data analysis packages have a model editor where the operator can fit a circuit
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element such as a capacitor to a graphical representation of an equivalent circuit. Figure 

1.20 shows a simple equivalent circuit which can be use to model the data in figure 1.19.

HE. W.E.

beta ce beta r
Qce

Rce

Figure 1.20 Equivalent circuit, as modelled with Gamry's Echem Analyst software

In the model above the series resistance is represented by a single resistor, Rs. The counter 

electrode/electrolyte interface is represented by a resistor, Rce and a constant phase 

element which models capacitance in a non-ideal capacitor, this is represented by two  

values, Qce and beta ce. The T i0 2/electrolyte interface is modelled by another resistor, Rr 

and another constant phase element with parameters, Qr and beta r.

As mentioned, the constant phase element (CPE) represents the capacitance in a non-ideal 

capacitor. Mathematically the impedance of a CPE is given as:

j  =  Q° (j<*>)P (1.13)

Numerically Q° has the same value as admittance ( 1 /1Z|) when w = 1 rad s'1. The units of Q° 

are S.s  ̂w here S = Siemens and s = seconds. The p value is a factor describing the ideality of 

the CPE with respect to capacitance so if p = 1, then the impedance is equal to that of a 

capacitor i.e. Q° = C (see equation 1.12). In some cases the equivalent capacitance, Ceq can 

be calculated can be calculated from the CPE parameters and the impedance of its resistor 

partner using the following equation:



The equivalent circuit model shown in figure 1.20 usually makes a good fit, especially when 

fitting the double-arc Nyquist plot seen in figure 1.19. It is however obvious that there is no 

element that describes the Nernstian diffusion of ions in the electrolyte, so care should be 

taken then when using this model, to only fit it to data points which correspond to the 

impedance at the T i0 2/electrolyte interface and the counter electrode/electrolyte 

interface.

1.11.3.2 Modelling using the Transmission Line Element

In the previous section it was stated that the larger impedance arc of the Nyquist plot 

shown in section 1.19 is representative of the TiO^electrolyte recombination resistance, Rr. 

This however, is not strictly true as this complex impedance arc is also influenced by the 

resistance of electron transport through the film, Rt. This is perhaps easier to visualise when 

looking at the transmission line model (figure 1.21). In figure 1.21, the lighter grey area 

represents filling by the electrolyte into a T i02 pore (the T i0 2 is shown as a dark grey area). 

It can be seen that at any point where the electrolyte is in contact with the T i0 2, there is a 

chance of recombination and the impedance across that interface is represented by a

resistance, rr and a (chemical) capacitance cM. This is just as it was in the simplified model 

(figure 1.20 above). However in the in the transmission line model there is also the 

transport resistance though the film, rt. The number of these repeating units depends on 

the film thickness, L and so because rt is in series, the total transport resistance, Rt is defined 

as Rt = rtL. Conversely as c^and rr are in parallel, total recombination resistance, Rr = rr/L  

and total chemical capacitance, CM = c^L.

To summarise, the elements in this model are: (=q,L), the chemical capacitance that

stands for the change of electron density as a function of the Fermi level. Rt (=rtL), the 

electron transport resistance. Rr (=rr/L), a charge-transfer resistance related to 

recombination of electrons at the T i0 2/electrolyte interface. Rs, a series resistance 

accounting for the transport resistance across the TCO. RTco is a charge-transfer resistance 

for electron recombination from the uncovered layer of the TCO to the electrolyte. CTco is 

the capacitance at the triple contact TCO/Ti02/electrolyte interface. Zd(SOi) is the impedance 

of diffusion of redox species in the electrolyte. Rpt is the charge-transfer resistance at the
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counter electrode/electrolyte interface and Cpt is the interfacial capacitance at the counter 

electrode/electrolyte interface [94].

R s
“-AMrr

R

- -yyy - i— *vvv — .|. *vvv ■ - j . .

10el Q .

'TCO

TCO

r r r
A/W— r - A M — i— W v— i— W V -

solution

T Cj, R r
rAA

TiO'

*d(sol) H

Figure 1.21 Transmission line model o f DSC -  reproduced from  [94]
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The impedance of the transmission line model can be described as:

Z = ( l+fo^>fc) 7 coth[(wfcM i)1/2 (1 + i ^ M * ) 1/2] (1-15)

Where cjd=Dn//-2= l//? t^  and is the characteristic frequency of diffusion in a finite layer 

(Dn being the electron chemical diffusion coefficient), u)k= l //?rQ  is the rate constant for 

recombination, cu is the angular frequency and / =^1-1 [94].

Fortunately the transmission line model is incorporated into some model editing software. 

For example, Gamry's Echem Analyst package incorporates it in to three different elements:

•  Bisquert Open (BTO), which models L, rt, rr, Qr and pr, measured under open circuit 

conditions

•  Bisquert Short (BTS), which models the same as above but under short circuit 

conditions

•  Unified (UTL), which models the above plus Zd(SOi) and th e  triple contact 

TCO/Ti02/electrolyte interface.

The principles of the transmission line model and its theoretical basis has been explained 

figure 1.22 shows how the transmission line model manifests itself in the raw data. Figure
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1.22 shows a Nyquist plot of a device and it can be seen that there is a short straight line of 

45° slope between the Rr and Rce arcs. This is a characteristic o f Rt < Rr and the length o f the 

straight line along the x-axis is equal to Rt/3. This feature is shown in Figure 1.22 beiow.
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Figure 1.22 Nyquist p lo t showing 45° line between the Rr and Rce ores which is o 

characteristic o f Rt < / ? r . The length o f this line along the Zreal axis is equal 

to  Rt/3

It has been shown that EIS can be used to m onitor photodegradation in DSCs. Reported 

trends include a reduction in R, and an increase in during light soaking tests [98].

1.12 DSC Stability

For anyone working towards the industrialisation of DSC, stability is perhaps one of the 

greatest challenges faced. Looking at the cell architecture and components described so far, 

a number of potential stability issues can be postulated.

First o f all the semiconductor is a potent photocatalyst and the photocatalytic properties of 

T i02 are well documented [99101]. The photocatalytic reactions may proceed via  several 

steps [102], the most important o f which is the production of electron-hole pairs by direct 

excitation of the T i02 w ith UV light. This results in a redox process, creating radicals which
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can ultimately result in degradative attack on organic molecules in the vicinity of the T i0 2 

[31]. The dye can be organometallic or organic, as are components of the electrolyte. All 

organic compounds within the cell either adsorb or have the potential to adsorb onto the 

T i02 surface meaning that all these components will be susceptible to UV photocatalytic 

degradation. The Y /\{  redox couple may also be susceptible to UV catalysed 

photodegradation. In DSCs however the hole in the T i0 2 conduction band is said to be 

quenched by the iodide ion in the electrolyte, but it has been reported this still leaves the 

possibility of side reactions occurring with residual oxygen leading to attack on the dye 

surface groups [87].

The seal most of often used to seal the cell is a thermoplastic such as Surlyn or Bynel, both 

from DuPont. Two potential problems could be foreseen here. Firstly the electrolyte often 

contains some fairly aggressive and volatile solvents which have the potential to leach or 

evaporate out through the seal. Secondly, the transmission rates of the seais may not be 

good enough to prevent solvent evaporation out of the cell or indeed to stop the ingress of 

H20  and 0 2 into the cell. For long term stability a water vapour transmission rate (WVTR) of 

less than 10'6 g/cm '2/day is probably needed. One approach to solve the sealing issues has 

been investigated by Andreas Hinsch where he has shown the sealing of cell modules using 

glass frit [103].

One of the problems of studying DSC stability is that there seems to be no defined test 

methods or indeed any well defined measure of stability. Is a cell considered stable if it 

loses 5% relative q over the test period, or is it 10% or indeed 20%? Which cell parameters 

are measured to assess stability? It seems efficiency decreases alone are not enough and 

that other parameters such as JSc, Voc and FF should also be measured to try and gain a 

better understanding of degradation processes [104]. Impedance data also can be used as it 

has been shown that the resistive and capacitive properties of the cell interfaces change 

under ageing tests [98]. Although there are no defined tests, there are some common tests 

employed such as heat cycling stability tests in the dark, visible light soaking at 1 sun with 

or without elevated temperatures, UV stability tests and humidity tests [104],
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Sensitizer Stability

As the sensitizing dye is attached to the T i0 2 via an organic moiety it is perhaps 

understandable why DSC stability studies focussed initially on the stability of the sensitizer. 

As early as 1997, work was being conducted by Gratzel's group in which they ascertained 

that certain Ru senistizers would be stable for 107 to 108 redox cycles giving a predicted 

lifetime of over 20 years [105] but it has been shown using photocurrent mapping 

techniques that localised degradation occurs in unmasked parts of a partially masked cell 

when exposed to light soaking conditions [106]. Another aspect of sensitizer stability work 

is focused on stability at elevated temperatures which has been linked to dye desorption 

[87; 88], this is important for BIPV applications as roof temperatures in summer (even in 

the UK!) can reach 80°C.

1.12.2 Loss of Triiodide from the Electrolyte

Depletion of l3' has been observed in DSC cells subjected to outdoor testing as evidenced by 

an increase in the Nernst diffusion impedance, and changes to the cell's Raman spectra 

[107] and it has been shown that in extreme cases decreased l3 can cause a reduction in JSc 

by diffusion limitation [108]. The mechanism of l3' consumption has been suggested as 

either the sublimination of iodine [109], or perhaps the formation of iodate by reactions 

with water or other impurities in the electrolyte [110]. It appears however that l3'depletion  

could be as a result of a photoreactions as in a study by Sommeling et al it was found that 

electrolyte bleaching occurred rapidly in illuminated cells held at 85° but did not occur in 

cells held at 85°C and kept in the dark [88].

1.12.3 H20  and 0 2 Ingress

W ater can have a serious negative impact upon the chemical stability of a DSC as the ester

linkages of the carboxylic acid groups adsorbed onto the T i0 2 surface can be hydrolyzed.
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Because of this, hydrophobic dyes such as Z907 can be employed which have aliphatic 

chains which prevent water adsorption onto the T i0 2 surface [111].

It is thought that oxygen present inside the DSCs can oxidize the organic components of the 

DSCs. It has also been suggested that l3'can be irreversibly oxidized to I0 3'due to oxidative 

surface states. Many hypotheses regarding degradation of DSCs involve the presence of 

water or oxygen [104]. There exists the possibility that trying to keep oxygen and water out 

of the cell may make DSCs economically unviable due to the costs of specialsit materials 

and processes. Instead of trying to keep water and oxygen out of the cell, the solution may 

be to live with w ater in the cell, and so some research groups are investigating water stable 

dyes and aqueous electrolytes [112].

1.12.4 Counter Electrode Degradation

It has been shown that Pt can be prone to dissolution or anodic corrosion in the presence of 

iodide, with obvious consequences for long-term stability [113]. The degradation of the 

counter electrode may be due to a poor contact between the Pt and the TCO or impurities 

which could lead to detachment of the Pt particles. Counter electrode performance can be 

monitored with EIS [104].

1.12.5 Visible and UV Light Soaking

Although there are no standard tests for DSC stability, a common accelerated ageing test 

often performed is visible light soaking. DSC cells perform remarkably well under visible 

light soaking conditions and in 2008, Dyesol reported cells remaining efficient after 20000  

hours visible light soaking [114]. However, care should be taken when using visible light 

soaking results to infer outdoor stability. For instance, the emission spectra of the two  

leading suppliers of light soaking cabinets do not emit significantly in the UV region 

compared to the AM 1.5 spectrum and in a system where a potent UV activated 

photocatalyst that is surrounded by organic chemicals is unwise to exclude UV light from
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simulated tests. Furthermore, it has been shown that DSCs can degrade quickly under UV 

illumination [115] and that filtering at X < 384 nm improves the stability of a DSC cell [116]. 

This suggests that the photo-catalytic properties of the T i02 contribute at least in part to 

the degradation of the DSC. UV filtering has not been the only method employed, in 2001, 

Hinsch showed that Mgl2 additions to the electrolyte improved UV stability. It was found 

that as well as increasing UV stability, the Mgl2 additions lowered the photovoltage of the 

cell suggesting that the T i0 2 surface polarity might play a role in UV stability of the cell and 

the photoreactivity of the T i0 2 [87]

A number of trends have been reported during long term and accelerated tests. These 

include an increase in Jsc and a decrease in V oc [117]. Electrochemical impedance 

spectroscopy (EIS) has also been used to monitor degradation and it has been shown that 

the modelled resistance of the recombination resistance decreases concurrently with the 

increase in JSc and that the drop in V 0c is due to a positive shift in the T i0 2 conduction band 

[98]. Impedance spectroscopy has also shown that the Nernst diffusion impedance of tri­

iodide (l3~) increases as a result of the change of the components of the electrolyte during 

long term outdoor testing [107].

1.13 Photodegradation of Polymer Films

Part of this project is to look at the photostability of clear polymer films intended for use as 

the counter electrode and topsheet (encapsulation) materials. The following chapters will 

look at the photodegradation in general and specifically that of polymers.

1.13.1 Mechanisms of Photodegradation

Photodegradation in polymers arises from photochemical excitations which occur in one of 

two ways: Homogeneous excitation occurs in organic molecules containing chromophores 

(conjugated 7r-systems, azo compounds, etc) whereby a chromophore will absorb photons 

in the UV spectrum leading to a breakdown in structure. Heterogeneous excitation occurs
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where semi-conducting materials such as T i02 absorb photons to produce high energy 

excited states which can destroy surrounding polymer matrices [118; 119].

1.13.1.1 Homogeneous Excitation

The basis of photodegradation by homogeneous excitation occurs when ground state 

electrons in the valence band of a chromophore become excited through the absorption of 

a photon and become promoted to the conduction band. This excited state is referred to as 

an excited singlet state (S*) and for this to occur the photon must have an energy 

equivalent or greater than the band gap.

The electron is unstable in its excited state and will seek to lose its absorbed energy as 

quickly as possible to return to the ground state. The excited electron can achieve this in a 

number of ways (see the Jablonski diagram, figure 1.23). The most common deactivation 

route is through internal conversion (1C) back to the ground state which occurs where 

energy is lost thermally. Energy can also be lost through inter-system crossing (ISC) which 

creates excited triplet states which are much longer lived and can undergo bond cleavage.

The relative importance of the different deactivation pathways depends upon the 

absorbing chromophore; aromatics usually undergo fluorescence whilst carbonyls tend to 

undergo inter system crossong and create a triplet excited state (T). It is the bond cleavage 

reaction that is of interest since it is this process that generates the free radicals, which 

ultimately lead to degradation.
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excited vibrational states 
(excited rotational states not shown)

A = photon absorption
F = fluorescence (em ission)
P = phosphorescence
S = singlet state
T = triplet state
1C = internal conversion
ISC = intersystem  crossing

electronic ground state

Figure 1.23 The Jablonski d iagram  illus tra ting  the pathw ays to deactivation o f the 
excited sing let state (S*) [120 ]

1.13.1.2 Activation of T i0 2

T i02 is largely chemically inert and is commonly found as a pigment in paints or even 

toothpaste but in the presence of UV light it is a potent photocatalyst for many reactions 

including those which will eventually lead to degradation of organic chemicals adsorbed to 

or in the vicinity o f T i02 particles. There are three proposed mechanisms all involving 

photosensitized oxidation of surrounding polymer/organics. One theory involves the 

form ation of oxygen radical anions through electron transfer from the excited titanium  

dioxide (equation 1.16). Further to this it has been suggested that singlet state oxygen (10 2) 

could be formed by ion annihilation (equation 1.17). The ion radicals or the singlet oxygen 

then react with water to form  hydroxyl and perhydroxyl radicals (equation 1.18), these are 

highly reactive species that cause the degradation o f surrounding polymers [121]

hi/
T i02 + 0 2 -> T i02+- + 0 2‘- (1.16)

T i02+- + 0 2‘- -> T i02 + ]0 2 (ion annihilation) (117)

T i02+- + 0 2 - [or T i02 + HO- + H02- (1.18)
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Figure 1.24 below gives a graphic representation of the above reactions. Note that the 

oxygen radical is formed by reduction by excited electrons in the conduction band. This 

goes on to form  the perhydroxyl radical that attacks the organic coating. The hydroxyl 

radicals are formed by oxidation at the positive gap left by excited electrons in the valence 

band. The HO- radicals attack the coating producing measurable by-products such as C02 

and HCI.

TiO, Particle
0 2.-~{H:0 2-*H20}

Conduction Band.

UV light

C 0 2. H C I. H 20

Valence Band

Figure 1.24 Graphical representation o f T i02 photosensitised-oxidation o f polymers 

1.13.2 Mechanisms of Photodegradation of Polymers

Polymers in general are fairly stable materials, although when exposed to the physical 

effects o f the environment, some chemical and/or physical changes will gradually occur. 

The occurrence and rate of these changes is primarily dependent on the intensity and 

wavelength of any UV irradiation [122; 123]. These changes can be induced either 

homogenously or heterogeneously and the distinction between these two routes lies in the 

presence and classification of any chromophore. These chromophores can be either organic 

or inorganic and are present as pigments, part o f the structure or act as external impurities. 

When considering the absorption and emission properties of manmade polymers they can 

be classified as one o f tw o types (table 1.2 below). Type A polymers absorb and emit light 

through isolated chromophores situated as in-chain or end-chain groups. Type B polymers
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absorb and emit chromophores present in the repeating units of the backbone structure of 

the polymer [124].

Figure 1.25 below shows the absorption spectra of many common polymers. It is clear that 

Type A polymers, with the exception of polystyrene, do not absorb light below 290nm. This 

value is critical as this is the lower limit of sunlight reaching the earth's surface. It would not 

therefore be expected that these polymers should degrade under normal UV light 

conditions, but they do degrade and this is due to a number of factors. The absorption 

spectra in figure 1.25 are for pure polymers, it doesn't take into account the light scattering 

abilities of crystallites, particularly at shorter wavelengths. Processing, manufacture and 

fabrication leave polymers susceptible to thermal degradation and oxidation, operations 

which can significantly increase the light absorbing capacity of the polymer by introducing 

chromophores such as extended saturation and carbonyl groups. It is now accepted that 

impurities introduced during polymerisation and processing are responsible for the 

absorption of Type A polymers above 290nm. Type B polymers as shown in figure 1.25 

clearly absorb in the visible and near-UV regions of the spectrum and so are susceptible to 

photodegradation with no impurities present [121].
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Table 1.2 Type A and Type B polymers

Type A Polymers
Typical chromophoric groups

— C = C —c = c —

— C—  »««*C=C—C"*nr 
II II
o  o

RjOOH Tt'4, .41*3, ft*3

[r1- h +-o 2]

Typical polymers 

Poly(vinyl halides) 

Polyacrylics 

Poly(vinyl alcohols) 

Aliphatic esters 

Polyurethanes

Type B Polymers
Typical chromophoric groups

C - 0
II
O

O

Typical polymers

Polyethylene
terephthalate

Poly(2,6-dialkyl-l,4- 
phenylene ether)

Poly(ethersulphone)
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Figure 1.25 UV absorption spectra of films o f type A polymers: polypropylene (PP), 
polyethylene (PE), polyvinyl chloride (PVC), nylon 6,6 (N6,6), and polystyrene 
(PS); and type B polymers: polyethersulfone (PES), polyethylene 
terephthalate (PET), polyethylene naphthalate (PEN,) and polyurethane 
(PU). The spectral emission of sunlight is shown as a dotted black line. -  
reproduced from  [125]

Degradation mechanisms include photodegradation, photo-thermal degradation 

(oxidation), photo-oxidation, photolysis and photo-hydrolysis. However regardless of which 

degradation mechanism takes places it is widely believed that all the mechanisms involve 

free radical processes [125]. It is also accurate to say that for most cases the degradation 

processes are similar to those found in thermal degradation with the only significant 

difference being the initiation step and the nature of the degradation products. Figure 1.26 

shows the three major steps of initiation, propagation and termination involved in the free 

radical process.
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Figure 1.26 Initiation, propagation and termination of the free radical 
photodegradation o f polymers

1.13.3 Protection from Ultra Violet Radiation

A number of ways exist, both chemical and physical to minimize the degrading effects of UV 

light upon polymers. There are four main mechanisms: UV screening, UV absorption, 

excited state quenching and free radical scavenging. The latter two of these methods are 

the most effective. Excited state quenching is the acceleration in some way, of the decay, of 

the initial excited state in order to reduce the chances of intersystem crossing and the 

creation of excited triplet states. Free radical scavenging involves the addition of chemical 

stabilisers to neutralise free radicals before they have a chance to interact with the coating, 

these usually have anti-oxidant properties [126]. The most commonly used method for use 

in commercial coatings is UV absorption.
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1.13.3.1 UV absorbers

When choosing a suitable UV absorber it is necessary to consider its compatibility. UV 

absorbers are organic or inorganic compounds which absorb in the best case all UV light 

< 400 nm, are transparent for all visible light > 400 nm, and convert the excitation energy 

entirely into heat [127].

There are two main types of commercial UV absorber: hydroxylbenzophenones and 

hydroxyphenylbenzotriazoles. Hydroxybenzophenones absorb UV light to form excited 

states, but then release heat to return to the original ground state. This functional 

mechanism is characterized by an intra-molecular hydrogen transfer [128] during a keto - 

enol tautomerisation reaction. This reversible reaction of UV absorption and heat 

dissipation leaves the absorber unchanged and thus it can undergo many cycles of UV 

absorbance so long as no other process interferes with the reaction (figure 1.27).

o  o
II
c
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-AH
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Figure 1.27 Keto-enoi toutomer energy- dissipation in hydroxybenzophenones
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Benzotriazoles dissipate energy by a proton transfer reaction (figure 1.28).

O H O H

-A H

Figure 1.28 Benzotriazole stabilization mechanism in hydroxyphenyl benzotriazole

These are relatively new components in the UV stabiliser market and are particularly 

effective in polymer applications. The majority of studies ascribe the function of HALS to 

radical scavenging by the nitroxide that can be formed by the oxidation of the HALS. The 

main function of HALS are to prevent radical initiation by quenching the initiating excited 

states [129]. HALS such as 2,2,6,6-tetramethylpiperidines (figure 1.29) inhibit oxidation by 

transformation of the parent amines to A/-oxyl radicals, either by reaction with peroxyl 

radicals or occasionally by reaction with singlet oxygen, which stops oxidative degradation 

by the coupling of alkyl radicals [130] (figure 1.30). HALS differ from UV absorbers in that 

they do not rely solely on the physical absorption of UV light, therefore their efficiency is 

not dependent upon them being at a high concentration on the surface of the coating.

1.13.3.2 Hindered Amine Light Stabilisers (HALS)

H

Figure 1.29 2,2,6,6-tetramethylpiperidine
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Figure 1.30 Initiation, propagation and termination of HAL stabilisation [131]

1.14 Weathering and Accelerated Testing

In order to assess the stability of the polymer films intended for use as counter electrode 

materials, there is an obvious need for accelerated testing to try and estimate how the films 

will perform in a real world envirnoment. Ideally a test should be rapid and be accurately 

reflect real world performance. The most ideal method available would be to test the 

candidate films in the expected environment in real time. However given that materials are 

expected to perform for 15 years plus, this is type of testing is impracticable. Therefore it is 

necessary to have accelerated tests to give an accurate idea of the degradation results over 

a much shorter time period.

As described previously, the major influences of the environment on degradation tend to 

be sunlight (UV), temperature, oxygen, water and other pollutants. These factors can act 

either on their own or in combination and can also combine with other environmental 

factors such as wind and hail etc to result in coating degradation. The rate at which polymer 

films degrade is predominantly governed by the exposure site, temperature, rainfall and 

the strength of ultra violet radiation. The rate can also be accelerated by certain cycle 

patterns of some of the above factors. Thus it is very difficult to create an accelerated test, 

which mimics the varying real life environments faced by the polymer film. Current
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methods used for assessing performance combine both accelerated and natural weathering 

tests. Accelerated tests involve the following two steps:

1) The use of more extreme conditions than those expected during its service i.e. the 

use of lower wavelength radiation from either xenon arc or carbon arc lamps, or 

through higher intensity incident radiation. However, it should be noted that this 

provides an unnatural environment and can lead to different chemical processes 

occurring within the film and thus different degradation processes being promoted 

than would be otherwise expected.

2) Evaluation of chemical changes that are occurring within the film prior to physical 

manifestations of degradation. Certain techniques such as UV-Vis are, capable of 

picking up on minute changes that are occurring within the polymer that can be 

extrapolated out to give a more rapid but accurate idea of long term performance.

1.14.1 Natural Exposure

When the environment in which the product is going to be used is known, it is possible to 

use one of the many testing sites around the world which gives a similar environmental 

effect. Typically weathering sites are situated in locations where there are climatic 

extremes, around the world. This allows for natural exposure but under more extreme 

conditions than would normally be experienced in service. This combined with novel test 

rigs leads to an accelerated or harsher test than would be necessary for service conditions 

whilst still using the forces nature. Some of the more popular climatic weathering stations 

around the world are: Florida, which provides a sub-tropical climate with high UV exposure, 

high temperature and high humidity, which gives a realistic reproducible acceleration of 

European climates. Arizona has a very low rainfall a hot dry climate and Hoek van Holland 

provides an environment that is both industrial and marine in nature.

53



1.14.2 Artificial Exposure Methods

The main advantage of using a completely artificial exposure technique is that it is fully 

controllable, defined and reproducible. However it can only useful if all the degradation 

processes that occur are accelerated at the same rate. The use of radiation of a higher 

energy than that o f natural exposure (figure 1.31) has the added complication of 

introducing new higher energy photochemistry's that do not occur under normal 

conditions. The commercial accelerated techniques available usually use one o f a relatively 

small number of light sources, these being carbon arc, xenon arc and fluorescent tubes.

Sunlight

— UVA-351

—  UVB-313

£ 0.8 

C

0.6

cn

|  0.4

— Xenon arc

LU

0.2

270 290 390310 330 350 370
W a v e l e n g t h  / n m

Figure 1.31 Emission spectra o f natural sunlight and UV-A, UV-B and Xenon arc 
lamps.

1.14.2.1 Carbon Arc

The spectral output o f the carbon arc lamp has very little in common w ith  that o f natural 

sunlight, mainly consisting of three intense peaks between 250 and 450 nm. It is currently 

being phased out o f the test standards for metals and plastics although it is still commonly 

used for textile evaluation.
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1.14.2.2 Xenon Arc Sources

These provide a better simulation of sunlight than the carbon arc, although filters are 

required to remove UV radiation shorter than that experienced naturally. Emitted radiation 

also contains a high intensity of infrared radiation and so overheating of the samples must 

be prevented. The close simulation of natural sunlight and the ability to control the source 

automatically combine to make xenon arc sources a useful alternative.

1.14.2.3 Fluorescent Tube Lamps

Available most commonly as UVA and UVB spectral outputs, they produce very little 

infrared radiation and are much cheaper to maintain and run than xenon arc lamps. The 

UVB lamps contain radiation of high intensity below that of the solar cut off, and as such 

they provide a high degree of acceleration which may not be representative of natural 

weathering conditions due to the involvement of higher energy photons.

1.15 Aims and Objectives

This thesis will first set out the results of systematic study to characterize the UV 

photodegradation of DSCs so that the mechanisms can be further understood in order to 

apply effective UV protection measures. It is hoped that this can be achieved by exposing 

DSC test cells to UV light and measuring the changes to their properties periodically using 

various analytical techniques. This data will then be used to try and determine the 

minimum level of UV filtering required to ensure long term DSC stability.

UV filtering will have an obvious affect on DSC performance so this will be investigated. As 

UV filtering will block UV and possibly some blue photons, alternative dyes with broader 

action spectra that absorb more in the red end of the spectrum will be investigated to see if
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these suffer less from efficiency losses due to UV filtering, than dyes with narrower action 

spectra.

Finally an investigation of the photostability of clear polymer films intended for use as 

counter electrode materials, and/or encapsulation materials for flexible Dye-Sensitized 

Solar Cells (DSCs), built upon a steel substrate. Accelerated weathering experiments will be 

conducted on various polymer films and the extent of photodegradation of these films will 

be measured using spectroscopic techniques. An investigation of polyurethane clear 

lacquer topcoats will also be investigated as well as the addition of UV absorbers and 

Hindered Amine Light Stabilizers to improve the photostability of these films.
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2. EXPERIMENTAL PROCEDURES

2.1 Fabrication of DSC Test Cells

2.1.1 Manufacture of the Working Electrode

The photoanode was prepared by the doctor blading of a commercial T i02 paste (DSL 

18NRT) onto Solaronix TC022-15 fluorine doped Sn02 glass followed by sintering at 500°C 

for 30 minutes. Strips of TCO coated glass were cut 2.5 cm wide using a glass cutter. The 

strips were cleaned first w ith hot water and detergent and then with IPA or ethanol. Tape 

guides were placed down either side of the strip and across the top using Scotch adhesive 

tape to allow draw down w ith a glass rod (see figure 2.1). A small amount o f DSL NRT paste 

was placed onto the piece of tape running along the top edge o f the glass. A glass rod was 

used to draw down the paste, pushing down firm ly so that the Scotch tape acts as a height 

guide. The tape was then removed and the glass strip(s) placed in a Pyrex dish place and 

put first in an oven at 200 °C fo r 10 minutes to remove binders from the paste. This was 

then placed in a high temperature oven at 500 °C for 30 minutes.

T iO : paste Glass rod

>

Tape is removed

TC O  coated glass
Scotch tape

Figure 2.1 D raw -dow n o f T i02paste on TCO coated glass

The glass strips were removed from the oven and allowed cool. The strips were then cut 

into smaller strips 1.5 cm wide. The sintered T i02 was then scratched away using a
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microscope cover-slip so that there remains a 1 cm x 1 cm square in the centre of the 2.5 

cm x 1.5 cm strip, this is essentially the working electrode. Adsorption of the dye to the 

T i0 2 was achieved by immersion of the electrode in the dye solution over a period of 16-20 

hours. N719 Dye was prepared at 0.3 mM in a 1:1 acetonitrile/T-Butanol solution.

2.1.2 Manufacture of the Counter Electrode

The counter electrodes were prepared by the deposition of 5 m M  chloroplatinic acid and 

heat treated at 400 °C for 30 minutes. ITO coated glass is cut into strips 2.5 cm x 1.5 cm. 

Electrolyte back filling holes are drilled with 0.5 mm tungsten carbide drill bit. The counter 

electrode is then washed first, with water and detergent and then with ethanol or IPA. The 

counter electrodes are placed conductive side up (checked with the multimeter) and a thin 

layer of 5m M  chloroplatinic acid is deposited using a capillary tube to coat the conductive 

glass. These are then placed in a high temperature oven at 400°C for 30 mins.

2.1.3 Filling and Sealing

The working electrodes were removed from the dye solution and rinsed with ethanol or IPA 

and air dried. Surlyn gaskets (50 pm) were used to seal the counter- and working- 

electrodes and act as a spacer between them. The two electrodes were placed together 

with the gasket and sealed, either with a t-shirt press or by using a hot plate and applying 

pressure carefully with a pestle. Once sealed, the cell was checked for short circuiting with 

a multi-meter and then placed in a vacuum desiccator. An 'O' ring is then placed around 

the back filing hole. An electrolyte solution (0.8 M l-propyl-3-methylimidazolium iodide 

(PMII), 0.3 M benzimidazole, 0.1 M l2 and 0.05 M guanidinum thiocyanate dissolved in N- 

methoxy propionitrile) was then introduced to the cell by vacuum injection whereby a drop 

of electrolyte was placed inside the ring and a vacuum is drawn using a vacuum pump. The 

electrolyte was then thoroughly cleaned from the cell surface with EtOH or IPA and the 

back filling hole was sealed with surlyn and a round microscope cover slip. Finally silver
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contacts were painted on using silver, conductive paint and a cocktail stick. Figure 2.2 

below shows a schematic of a completed test cell.

Dyed, sintered T i0 2, 
mounted on WE substrate

WE substrate 
(TCO coated glass)

Platinised
counterelectrode Painted silver contacts

Sealed back filling  hole

Figure 2.2 schematic diagram o f a typical glass-glass DSC test cell (active area = 1 cm
x 1 cm)

2.2 Cell Measurements

2.2.1 IV Measurements

Current-voltage (IV) measurements give all the important cell parameters described in 

chapter 1.11. Cell measurements were carried out using the Newport Oriel, Sol3A Class 

AAA Solar Simulator (figure 2.3) w ith a 450 W att Xenon source. It is certified to IEC 60904-9 

Edition 2 (2007), JIS C 8912, and ASTM E 927-05 standards fo r Spectral Match, Non- 

Uniform ity of Irradiance, and Temporal Instability o f Irradiance. Measurements were 

carried out at an irradiance of 1 Sun.

Before making any measurements, the light source is first calibrated to 1.00 ± 0.01 Sun 

using the NREL certified silicon reference cell. For most 1 cm2 test cells made w ith the 

method described in section 2.1, the following settings apply: max reverse bias = -1.00 V, 

max forward bias = 0.8, Current lim it = -50 mA, sample area = 1 cm2, No of sweep points = 

200, pre-sweep delay = 1 s and dwell time = 200 ms, the power output of the lamp is also 

required, measured in Suns.
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Power Supply

K eith ley d ig ita l 
source m eter

Si reference 
cell stage w ith  
the rm ocoup le

Lamp p o w e r/ 
stage tem pera tu re  
readout

Figure 2.3 Newport Oriel Solar Simulator

2.2.2  EIS Measurements

For a discussion on the theoretical aspects o f DSC EIS measurements, see section 1.11.3. 

Impedance measurements were originally carried out on a Solartron SI 1280 

Electrochemical Measurement Unit using ZPIot software. Cells were measured in a two 

electrode set-up in the dark and held at a potential of -0.68 V. AC amplitude was ± 10 mV 

w ith a frequency range of 20 kHz to 0.1 Hz. Later measurements were carried out under 

the same conditions using a Gamry Reference 600 Potentiostat/Galvanostat/ZRA except in 

this case the upper frequency lim it which was set at 50 kHz. The bias potential o f -0.68 V 

was chosen as this is close to typical cell's max operating power point and so gives Nyquist 

plots that is easy to fit using the simple model described in section 1.11.3. Cells were 

measured in the dark which allowed a higher throughput, this was important as large 

numbers o f measurements were made at any one time , the results are still valid but it is 

acknowledged that measuring the impedance of cells under illum ination gives a better 

approximation to the cell's working conditions.
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2.2.3 IPCE Measurements

IPCEs were measured on a Dyesol IPCE instrument between 300 nm and 1150 nm.

2.3 UV-Vis Measurements

UV-Vis %T measurements of both clear polymer films and DSC test cells were carried out 

using a Perkin Elmer Lamda 750s UV-VIS-NIR spectrophotometer (figure 2.4). UV-Vis 

identify early chemical indicators of the photodegradation of cleat polymer films which is 

often characterised with a yellowing of the film and is evidenced by an increase in film 

absorbance at around 400 nm. The UV-Vis spectrophotometer was aiso used to m onitor 

the electrolyte discolouration of DSC test cells.

Integrating sphere enclosureCuvette holder enclosure

Figure 2.4 Perkin Elmer Lambda 750S
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2.4 FTIR Spectrophotometry and ATR accessory

The spectrophotometer used was a Perkin Elmer Spectrum 100 (Figure 2.5). Spectra were 

measured from 4000 cm 1 to 450 cm 1 w ith a resolution of 4.00 cm '1. ATR reflectance 

measurements were taken using the Perkin Elmer Universal ATR accessory.

Figure 2.5 Perkin Elmer Spectrum 100 with Universal ATR Accessory fitte d

2.5 Accelerated Weathering

2..5.1 QUV Accelerated Weathering

Polymer film samples were cut to fit the Q panel sample holder and taped so that moisture 

would only form on the exposed side of the sample. The samples were then irraditaed 

using a QUV Accelerated Weathering Cabinet (figure 2.6) which conforms to ISO 4892 

(Methods o f exposure to laboratory light sources). The lamps used were QUVA fluorescent 

tubes. The cabinets were operated continuously on an alternate 8 hour light cycle to 4 

hours moisture cycle. The moisture cycle simulates the effect o f rain followed by sunlight 

upon the panels. The cabinet achieves this by having a trough of water beneath the test 

panels which is heated during the period which the lamps are not operating.
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Figure 2.6 QUV accelerated weathering cabinet 

2.5.2 UV Exposure of DSC Test Cells

UV exposure was conducted using a custom made bank of 6 x 8 W UVA lamps held 5 cm 

above the test cells (figure 2.7). Measured intensity of the UV lamps was 0.64 Wm 2 at a 

Amax of 354 nm. This of comparable UV intensity to ASTM G173-03(2008) which is given as

0.61 W m 2 at 354 nm [1],
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Lamp
power
source

UVA

fluorescent
tubes

Figure 2.7 photograph showing the custom made bank of UVA lamps used for the UV 
exposure of DSC test cells

2.5.3 Visible Light Soaking of DSC Test Cells

Light soaking was carried out at in a Dyesol light soaking cabinet supplied w ith a 1000 W 

metal halide, high intensity discharge bulb. Intensity o f illum ination is controlled by 

adjusting the height o f the lamp. As the lamp gets very hot and having the need to rule out 

temperature effects, the cells were light soaked at full lamp height which has been 

measured at 0.25 Sun using the NREL silicon reference cell.

2.6 Spectral Emission Measurements

Spectral emission measurements were carried using an Ocean Optics HR2000+ 

spectrometer which is a USB powered, fibre optic spectrophotometer consisting of a 

diffraction grating focussing spectra onto a CCD.
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2.7 UV Exposure of DSCs under a N2 Atmosphere

To expose cells to UV light under an inert atmosphere, hollow chambers were machined 

out o f Al blocks (5 cm x 5 cm x 1 cm) and spigots were added to allow gas to  flow  through 

the chamber. The base of the chamber was electrically insulated w ith PTFE tape and DSC 

test cells were made w ith the same method described above. This time however, copper 

tape was used instead of silver paint as the contact so that wires could be soldered onto 

the contact to allow in-situ measurement w ithout the need to break the seal. Test cells 

were then placed in the chamber, their connection wires were fed out through holes drilled 

into the side of the chamber which were then sealed w ith epoxy. A glass cover was sealed 

with epoxy to allow light to reach the cells. A schematic of the exposure chambers is shown 

in figure 2.8 below.

Hollow cham ber
Glass cover machined from  Al 

block

5 cm

Figure 2.8 Schematic o f inert atmosphere exposure chambers

2.8 References

1. ASTM International ASTM G173-03 Standard Tables for Reference Solar Spectral 
Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface.
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3. CHARACTERISATION OF UV PHOTODEGRADATION IN DYE-SENSITIZED 
SOLAR CELLS

3.1 Initial Experiment

In order to assess UV protection measure for DSCs it was first necessary to fully understand 

what effects UV irradiation has upon the cell. It is well known that UV photodegradation 

leads to a loss in %r\. However, the aim of this experiment was to look at changes in the cell 

in more detail. This has been done initially with IV measurements and impedance 

spectroscopy. Eight cells were manufactured. Four were exposed using the bank of UV 

lamps described in chapter 2.6.2, the remaining four were kept in the dark.

The obvious method of measurement of the degree of photodegradation is to monitor 

changes in cell efficiency and indeed looking at Figure 3.1 below, it is clear that 

unprotected cells begin to fail at around 400 hours exposure and all have failed completely 

by around 800 hours exposure.

4.0 
— 3.5 -
^  i

-*-UV exposed 

^-Unexposed
>

£  2.0 - 
« 1.5■a
a>
</>

LU

fO 1 . 0  “

O
z
I  0.5 - o
z  0.0 +

0 200 400 600 800
UV Exposure (Hours)

Figure 3.1 Effect o f UV exposure upon the average efficiency o f UV exposed and
unexposed DSC test cells over the exposure period shown
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3.1.1 Cell Characteristics at 120 Hours Exposure

It was found by looking at cell properties in more detail that signs of UV photodegradation 

occur much earlier than changes in %x\. Figure 3.2 shows the IV curves of a typical cell at 

0 and 120 hours exposure.

—0 hours exposure
120 hours exposure

-100 100 300 500 900

Photovoltage (mV

Figure 3.2 Typical IV  curves of DSC test ceils measured at one Sun, a t 0 hours and 120  
hours UV-exposure

Figure 3.2 shows that the V0c has decreased whilst the JSc has increased within just 120 

hours of UV exposure. These changes can be attributed to UV exposure causing a positive 

shift in the T i02 conduction band (CB) possibly due to surface protonation [1]. This would 

explain the drop in V0c as this is given by the energy difference between the T i02 quasi- 

Fermi level and that of the redox potential of the electrolyte [2] (see figure 1.5). The 

increase in Jsc could be due to an increase in electron injection efficiency caused by the 

increase in the energy gap between the excited state electrons in the LUMO of the dye and 

the T i0 2 conduction band [3].

Figure 3.3 shows the typical Nyquist plot and Figure 3.4, the Bode phase plot of cells at 

0 and 120 hours exposure. The larger semi-circle of the Nyquist plot represents the 

resistance of electron transport within the T i02 film as well as the resistance 

T i0 2/electrolyte back reaction ( RBr). It is clear from the Nyquist plot that the cell
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experiences a large decrease in Rbr whilst the decrease in the phase angle at lower 

frequencies shown in the Bode phase plot suggests that electron lifetimes in the T i0 2 are 

reduced. Both of these results can be explained by an increase in the rate of the back 

reaction (equation 3.1) [1], It is possible that the initial increased rate of reaction (3.1) 

could arise from dye ligand desorption (or desorption of another species) which exposes 

the T i0 2 surface.

2e" [T i0 2] +  IJ  — > 3 P (3.1)
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Figure 3.3 Typical Nyquist plot o f cells at 0 and 120 hours exposure
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Figure 3.4 Typical Bode Phase plot of cells at 0 and 120 hours exposure.
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3.1.2 Changes in Cell Properties during the Exposure Period

Figures 3.5 and 3.6 show the mean V 0c and JSc respectively, of the cells tested over the 800 

hour exposure period. The effect of UV exposure on V 0c is characterised by a large initial 

drop followed by a gentler decline. Despite JSc initially increasing, at the point of failure JSc 

decreases dramatically with a collapse in photocurrent which occurs at the point of cell 

failure.
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Figure 3.5 Mean Voc of cells over the exposure period shown
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Figure 3.6 Mean Jsc of cells over the exposure period shown
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Figure 3.7 shows the equivalent circuit used to model the EIS data in this chapter w ith R- 

Series representing the series resistance of the device, R-CE representing the charge 

transport resistance at the counter electrode (RCE) and C-CE representing the platinum 

double layer capacitance (CCE) at the counter electrode. R-BR represents the resistance of 

the electronic back reaction (Rbr) as well as electron transport w ithin the T i02 film ; CC-CPE 

(Q) and CC-CPE (n) are the constant phase element (CPE) parameters used to describe the 

chemical capacitance (Ccc) across the T i02/e lectro lyte interface.

RE. WE

R-CE

R-Series

R-BR

C-CE

Figure 3.7 Equivalent circuit used to model EIS data

Figure 3.8 shows the trends in the all the modelled data, using the equivalent circuit in 

figure 3.7, over the exposure period. The equivalent chemical capacitance (Ccc) can be 

calculated from the CPE parameters and the value of Rbr w ith equation (3.2).

C cc -   p   (3-2)
K b r

There could be a number o f reasons why the series resistances of cells kept in the dark 

increases whilst the resistances of those under illum ination stay fairly constant (after a 

small initial decrease), it could simply be that the other resistances (Rbr and RCE) in 

unexposed cells are increasing which could have an effect on the series resistance. The 

decreases in Rbr and RCE of the irradiated cells seems to have a small effect on series 

resistance but this is unlikely to affect the R-Series a great deal as the series resistance is 

derived from the electrical contact resistances and resistances across the TCO electrodes.
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Figure 3.8 Trends in modelled cell properties over the exposure period. L-R from  top: 
Series Resistance; RCe (charge transport resistance at the counter 
electrode); CCe (platinum double layer capacitance at the counter 
electrode); RBr (resistance of chemical back reaction/Ti02 e diffusion); and 
Chemical Capacitance across the Ti02 electrolyte interface. UV exposed cells 
are shown with a dashed line, unexposed cells are shown with a solid line
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It has been shown by Hauch and Georg [4] that an increase in l3'concentration results in a 

decrease in RCE (R ct in figure 3.9), so the decrease in RCE seen in irradiated cells is at first 

puzzling. The increase in the rate of the back reaction (equation 3.1), evidenced by a 

decrease in Rbr would suggest there should be a decrease in l3 concentration and therefore 

an increase in RCE and not a decrease as is seen in figure 3.8.

1,5-,

Eo
a

OC

0,0
0,1 0,2 0,3 0,4 0,5

concentration I ' / mol/I

Figure 3.9 Dependence of the inverse o f the charge-transfer resistance, Rct [or RCE]  on 
the triiodide concentration, showing that (1/R ce) oc V [ I f ]  -  reproduced from  

[4 f

It may be a possibility that, initially at least, there is an increase in the rate of reaction 3.3 

at the photogenerated hole of the T i0 2.

31" +  2h + [T i0 2] -> IJ  (3.3)

This would mean an initial increase in l3' concentration is possible in theory, which could 

explain the initial decrease in the resistance at the counter electrode. However, the 

collapse in photocurrent, the large increase in Rbr and the apparent bleaching of the 

electrolyte at the point of cell failure, all point to the removal of l3' from the electrolyte. If 

equation 3.3 was a dominant process then it would be expected that the yellow colour of 

the cell would darken and RCE would reduce further as a result of increased l3' 

concentration. Instead, as the cells move towards failure, RCE starts to increase slightly 

indicating the onset of the reduction in l3' concentration until the point of failure where the 

change in Rbr and other parameters show the near complete removal of l3' from the 

electrolyte. It is therefore necessary to propose a mechanism of l3‘ removal from the
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electrolyte and it could be that l3'is being oxidised further at the T i02 photogenerated hole 

to a higher oxidation state such as l+ , l3+ ,l5+ (as I0 3 ) or perhaps l7+ (as I0 4 ).

Hauch and Georg [4] showed that l3' concentration has little effect on the CCe so it is 

unclear why cells kept in the dark show an increase in capacitance at the counter electrode. 

Perhaps the increased capacitance has some relationship to the increase in V 0c seen in 

unexposed cells or maybe oxygen in the cell is poisoning the catalytic activity of the 

platinum, something which is not seen in UV exposed cells as the residual oxygen in the cell 

is being consumed by T i02 photoreactions. The reason however remains unclear and 

extensive literature searches have provided no clue as to the reason for the increase in CCe 

for cells kept in the dark.

The initial drop in Rbr has already been explained above but it should be reiterated that at 

the point of failure, there is a large increase in Rbr. This along with the collapse in Jsc and 

the apparent photobleaching of the cell strongly suggest a removal of charge carriers, 

namely l3', from the electrolyte. The steady increase in Rbr seen in unexposed cells occurs 

concurrently with the increase of Vocand could be due to adsorption of species on the T i0 2 

surface, causing a negative shift in the conduction band and blocking sites for the back 

reaction to occur resulting in increased l3‘ concentration. The increase in chemical 

capacitance is said to be as a result of the increase of the rate of equation 3.1 and the 

concurrent drop in V 0c [ l i ­

lt has been shown by Bisquert et al [5] that electron lifetimes (xn) in the T i02 film can be 

estimated from the product of RBRand Ccc giving an RC time constant (equation 3.4) . The 

estimated electron lifetime of cells over the exposure period is shown in figure 3 .10  below.

Tn =  RbrCcc (3-4)
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ĉ ioo -
— ■ ■

50 -<b----------  —w~0̂------- -t>
------

0 - 1 1 T 1
0 200 400 600 800

UV Exposure (Hours)

Figure 3.10 Estimated electron lifetime o f the exposed and unexposed cells over the 
exposure period shown

The initial decrease in electron lifetime of exposed cells follows what one might expect if 

the rate of equation (3.1) was increasing due to UV exposure. It is interesting to note that 

between 300 and 400 hours exposure there is an increase in electron lifetime. This could 

indicate a slowing of the back reaction (equation 3.1) due to a reduction in l3' 

concentration. This is also the point where RCe starts to increase which could also be due to 

decreasing ^'concentration; it is the point where JSc starts to drop and it is the point at 

which %q starts to decline. These phenomena all indicate that during the exposure period 

the cell reaches a point, just before failure, where the level of charge carriers in the 

electrolyte drops to a critical level. After this point, cells undergo a rapid and catastrophic 

failure resulting in a collapsed JSc and therefore %r\.

3.2 Reverse Illumination and Cells Exposed under Electrical Load

Figure 3.11 shows the mean efficiencies and the V0c of the cells subjected to UV irradiation 

over the time period shown. Some cells were irradiated from the WE (Forward) side, some 

were illuminated from the CE (Reverse) side and some were irradiated under a load 

provided by 100 fi resistor. These are compared to cells that were kept in the dark at 40°C 

as this was the measured temperature under the UV lamps.
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In Figure 3.11 it is clear that there is a pattern in the relative rates of degradation of the 

cells tested. First to fail are the cells irradiated under load followed by cells irradiated from  

the WE side and cells irradiated from the CE side. Cells kept in the dark at 40°C show 

comparatively little sign of degradation, despite a gradual decline in efficiency. This pattern 

is repeated when looking at the drop in V 0c values but in this case the drop in V 0c manifests 

itself much quicker that the decline in efficiency.

Figure 3.12 shows the change in JSc and the change in Rbr over the exposure period. Despite 

initially showing an initial increase of JSc and a reduction of Rbr, cells that are continually 

exposed to UV irradiation suffer a collapse in photocurrent and a large increase in Rbr. At 

this point the failure of the cell coincides with a bleaching of the electrolyte which along 

with the collapse in Jsc and the large increase in Rbr strongly suggests that the cell 

degradation reaches a point where the l3' had been consumed until there are not enough 

charge carriers available to give the cell a viable photocurrent.

It is possible that apparent photo-bleaching of the electrolyte could be caused by T i02 

catalysed reaction with the l"/l3' redox couple. If this were the case then this could explain 

the relative rates of degradation seen in Figures 3.11 and 3.12. Cells exposed in reverse are 

filtered to a certain extent by the electrolyte. This slows degradation as filtering of the UV 

light decreases direct photo-excitation of the T i02 and thus decreases photodegradation. 

When under load there is less chance of recombination of the electron-hole pair created by 

direct photoexcitation as some of the electrons in the T i02 conduction band are removed 

via the external circuit.

This would result in a net increase in the number of oxidative holes which would increase 

the rate of photodegradation of the electrolyte and ultimately increase the rate of failure 

of the cell compared to those cells exposed without an external load.
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Figure 3.11
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Mean efficiencies (a) and V0c(b) o f 1 cm x 1cm test cells subjected to UV  
irradiation over the time period shown. There are four cells in each set.
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Figure 3.12 The change in JSc (a) and the change in Rbr (b) over the exposure period

Figure 3.13 shows the estimated electron lifetimes of four sets of cells described in this 

chapter. In each case the electron lifetime is characterised by a decrease as the rate of the 

back reaction increases, followed by a gentle increase, which has been ascribed to the 

slowing of the back reaction, possibly due to l3‘ depletion, followed by a large increase 

attributed to passing the threshold of critical l3‘ concentration whereby photocurrent 

collapses and the back reaction virtually stops. The order this occurs in, with regards to the 

cell sets, matches the order of changes in all the other cell properties described in this 

chapter.
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3.3 Photobleaching of the Electrolyte

During the initial experiment described in chapter 3.1 an attem pt was made to measure the 

colour change in the cell as it was thought that the photobleaching of the electrolyte would 

be closely related to the other changes in the properties of the cell. Two methods were 

employed. The first was standard UV-Vis transmission measurements and the second was 

RGB colour analysis of photographs taken of the cells. Both methods were employed at the 

same intervals as the EIS and IV measurements. Unfortunately neither method produced 

reliable results.

It was difficult to maintain a consistent background light for the RGB photographs. The RGB 

value varied greatly for the same cells in pictures that were taken a few seconds apart. This 

could have been solved by using a light box or a deflected flash, however neither method 

was available at the time. The 1 cm2 cells used in chapter 3.1 created alignment problems 

when using the UV-Vis spectrophotometer and so gave very unreliable results. It was 

decided that a new set of larger cells in order to cover the UV-Vis sample aperture and to 

get better results. The results of UV exposure of these larger cells will be described fully in 

chapter 4.
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3.4 Dye Stability

Some work was briefly carried out upon dye stability in air. The samples used in this 

chapter consist o f a titania film  (Dyesol DSL18NRT) cast onto ITO glass and sintered, this 

was then dyed w ith N719 dye. Some samples were subjected to light soaking in the Dyesol 

light soaking unit, some were irradiated w ith UV light and some were kept in the dark in 

the light soaker to compare the effects o f temperature. Dye degradation was measured by 

looking at a decrease in the absorption peak of the dye at 540 nm which can be seen in 

figure 3.14.

1.2

1

0.8
vn
2  0.6 

0.4 

0.2

—0 mins 
-  50 mins 

280 mins 
—708 mins 
—2369 mins 

2941 mins 
4302 mins 
8170 mins

Figure 3.14 Decreases in absorbance o f UV irradiated sample over 8200 minutes 
exposure

Figure 3.15 shows the decrease in absorbance at 540 nm of the samples over the course of 

8500 minutes. These results should be looked at in conjunction w ith the emission spectra 

of the light sources in question (see chapter 5, in particular figure 5.1). It is clear from the 

output o f the two light sources that they have very different emission spectra. There is only 

a small overlap at around 400 nm. Despite the light sources being very different, the 

samples behaviour under their respective sources of illum ination is remarkably similar. The 

rate of degradation in the light soaked sample appears to be higher than the UV irradiated
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sample at first but the rate relaxes after around 1000 minutes. The rate of degradation in 

the UV irradiated sample seems linear until around 3000 minutes where it too relaxes.

N719 has a X max centred at 312 nm and is assigned as an intraligand (tw i* ) charge- 

transfer transition, but this unlikely to be the cause of degradation in the light soaked 

samples as the emission of the light soaker lamps at that wavelength is 0.01 W  m'2. N719 

has another X max at 386 nm assigned to the metal-to-ligand charge-transfer [6], this 

excitation is possible with the UV lamps used but the degradation under the UV lamps 

however, is likely to be caused by the photocatalytic activity of T i0 2. Temperature effects 

can be ruled out as the samples kept in the dark were at similar temperatures to that under 

the UV lamps and in the light soaker. These unexposed cells show a very slow rate of 

degradation. Similarly, degradation in the light soaked sample must be due visible light 

absorption as the lamp emissions in the UV are low (around 0.01 W  m’2 at 360 nm). N719 

has a X max at around 530 nm which is also due to the metal-to-ligand charge-transfer [6], 

so perhaps this is the origin of the mechanism of degradation.

The fast rate of degradation under the visible lamps may be due to charge injection from  

the excited dye into the T i02 conduction band. Where this occurs in an operating cell, the 

oxidised dye is quickly reduced by the I' in the electrolyte. When the oxidised dye is 

exposed to air in this case, it may become unstable. It may be that the charge 

recombination from the T i0 2 to the dye or the relaxation of the excited state may be slow 

enough for the oxidised dye to react with air or moisture. This does not occur under UV 

illumination and the photodegradation is probably due to T i0 2 photocatalysis. As it seems 

that the degradation of the adsorbed dye in air occurs due to different mechanisms 

depending on the light source used, it may be unwise to compare relative rates without 

looking at the relative photon counts at the wavelengths in question for each light source. 

As work was continuing on the photostability of complete DSC test cells and it was seeming 

more likely that electrolyte degradation was more important, at least under UV 

illumination, no further work on dye stability was conducted.
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3.5 Irradiation of Cells under a Nitrogen Atmosphere

When this experiment was initially proposed it was thought the percolation of oxygen 

through the Surlyn seal may play a part in cell degradation. In order to assess this, the 

controlled atmosphere irradiation chambers described in chapter 2.8 were used to irradiate 

cells in a N2 atmosphere as it was thought that if the mechanism of DSC photodegradation 

under UV light is due to photo-oxidation of the electrolyte, then the rate of degradation 

may be slowed if no atmospheric oxygen is present, giving further insight into the 

mechanism. Cells were irradiated under open circuit conditions and under load. Figure 3.16 

shows the IV characteristics of the cells over the exposure period shown it appears that 

cells fail faster under load when irradiated in air than when irradiated under N2, but when 

looking at the open circuit irradiated cells there seems to be no significant difference 

between the air and N2 irradiated cells.

The reason for this could be that under load, the majority o f the oxygen adsorbed onto the 

T i02 surface is consumed quickly via photoreactions. The rate o f photodegradation then 

depends on the rate of oxygen percolation through the seal and in this case the rate of 

percolation through the seal is much slower when a nitrogen atmosphere is present. The
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reason why this does not occur in cells exposed under open circuit could be that the overall 

rate of oxygen consumption within the cell is slower and so percolation through the seal is 

not an important factor in cell degradation. However, the drop in V0c has so far been the 

best indicator of the onset photodegradation and there be appears to be no significant 

difference in the rate of Voc decrease between cells irradiated under a N2 atmosphere and 

those irradiated in air. Nonetheless, as it is hypothesized that the mechanism of failure by 

accelerated UV exposure is the photooxidation of l3‘, and that the l3' concentration is 

directly related to the diffusion limited current in the cell, then it could be inferred that the 

l3' in cells irradiated under load in air is undergoing a faster rate of photooxidation than the 

l3" in cells irradiated under load under an N2 atmosphere.

The obvious next step would be to build cells in an inert atmosphere and to bubble 

nitrogen through the electrolyte prior to cell assembly as this would eliminate the majority 

of oxygen within the cell, although there is also the possibility of oxygen adsorbed to the 

T i0 2 surface being very difficult, if not impossible to remove. Unfortunately at the time  

these experiments were carried out, the facilities were not available to do this. At the time 

of writing however, an atmospheric chamber has become available and it would be 

recommended for use in future work to determine further, the photodegradation 

mechanism of DSCs.
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Figure 3.16 Changing IV  characteristics o f 1 cm x 1 cm test cells over the exposure 
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Figure 3.17 shows the change in Rbr of the cells over the exposure period and much like the 

IV data, it shows that the N2 atmosphere makes a difference in cells irradiated under load 

but not in those exposed under open circuit conditions.
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Figure 3 .17 Change in RBRfor samples over the UV exposure period shown 

3.6 Conclusion

UV irradiation is detrim ental to dye sensitized solar cell performance. This chapter shows 

that there are subtle changes that occur within a few days of exposure that manifest 

themselves before changes in cell efficiency are detected. The open circuit voltage, short 

circuit current and back reaction resistance (V0c, Jsc and Rbr) all change relatively rapidly 

and these are therefore potentially important indicators of cell degradation.

From the results in this chapter, the mechanism of degradation in cell performance seems 

to be through T i0 2 photo-catalysed attack on the electrolyte. This is evidenced by the 

collapse in Jsc seen at cell failure and the large increase in Rbr. This along with the 

photobleaching observed and modelled capacitive and resistive data from EIS 

measurements, suggests that l3' is being consumed by this process and that at some point
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there are not enough charge carriers to carry a viable photocurrent or to facilitate the back 

reaction.

Further evidence of photo-catalytic action upon the electrolyte is given by the fact that 

cells degrade faster under electrical load. At open circuit electrons in the T i0 2 conduction 

band will quickly recombine with the photogenerated holes as there is no external 

transport mechanism. Holes in the valence band should be further stabilised by injection 

from the LUMO of the excited state dye. Under electrical load the electrons in the T i02 

conduction band are exported to the external circuit with the result being a net increase in 

the number of photogenerated holes which in turn leads to a faster rate of 

photodegradation. Further evidence that the mechanism of photodegradation may be T i0 2 

catalysed photooxidation comes from the fact that cells under load degrade marginally 

slower in an inert N2 atmosphere. Cells degrade slower when irradiated from the CE side 

because photons have to travel through the electrolyte which has some UV filtering 

properties. The filtering properties of the electrolyte will be described further in chapter 9.
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4. MEASUREMENT OF PHOTOBLEACHING USING LARGER AREA CELLS

Due to the problems described in the previous chapter with regards to measuring the 

colour change in DSCs as they undergo UV photodegradation, larger area cells were made 

using the same method as described in chapter 2.1, except that these cells had a WE 

electrode area of 6.25 cm2 (i.e. 2.5 cm x 2.5 cm). At first an offset cell design (figure 4.2) 

was used as this would require less glass and would be simple to manufacture but the 

offset cells had poor fill factors due to the long electron transport distance to the electrical 

contact (figure 4.1).

Fill Factor = 0.41
3 a

500 700•100 1 0 0 300

photovoltage (mV)

IV  curve of larger area offset cell showing poor fill factorFigure 4.1

The poor fill factor was partly solved by switching to the cross cell design, meaning that in 

effect theses cells were a direct scale-up of the standard 1 cm2 test cell design. Despite 

solving the poor fill factor problem the cross cells brought further issues which are 

explained in the following sections. Figure 4.2 shows the larger area cross cell along with  

the offset cell and 1 cm2 test cell for comparison.
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The larger area cells were subjected to UV exposure in the same manner described in 

chapter 2.6.2 and the changes to IV and impedance properties were compared w ith cell 

colour changes measured w ith a UV-Vis spectrophotometer.

Figure 4.2 6.25 cm2 offset cell (left), 6.25 cm2 cross cell (middle) and 1 cm2 test cell
(right)

4.1 IV Data for Larger Area Cells

4.1.1 Issues Relating to the IV Measurements of the Larger Area Cells

Figure 4.3 shows the typical IV curve of a larger area cell. Apart from the increased 

photocurrent which is to be expected from a larger area device the most obvious 

difference between the larger cells and those described in chapter 3 is that the IV curve has 

a considerable element of noise. In the case of figure 4.3 the curve has been smoothed 

using M icrosoft Excel. The IV measurement software has an option to smooth the first 20% 

of the data points measured but it is not known if the software uses a similar algorithm to 

Excel. In any case, the data smoothing by Excel includes all data points and is just shown 

here for illustrative purposes. In this particular case the IV scan is in forward bias and 

started at higher voltage and scanned towards lower voltage, in effect scanning from  just 

beyond V0c to just after Jsc. It could be that the spikes seen at higher voltage are due to 

capacitive effects, possible due to charge build up at the CE-electrolyte double layer 

boundary. These effects are more severe at higher voltages and less so at lower voltages as 

seen by the relative smoothness of the curve.
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Figure 4.3 Typical IV curve o f a larger area cell also showing smoothed data

The noise of the IV scans creates two problems for analysing the data from these cells. 

Firstly the fill factor seems to be artificially high. This seems to stem from the capacitive 

jumps from low to high current seen at around 680 mV. These appear to make the vertical 

part o f the curve steeper than is to be expected and it could be that the solar simulator's 

software calculates the fill factor artificially high as a result o f this. Secondly, as can be seen 

from the smoothed curve in figure 4.3 there may be some uncertainty in the calculation of 

the V0c- The IV measurement software has an option to smooth the first 20% of received 

data points, which encompasses the vertical part o f the curve; the V0c is calculated from 

the smoothed data so there may be some uncertainty as to the accuracy of the value of 

Voc-

There could be a number of reasons fo r the capacitive effect. Any effects related to short 

circuiting have been ruled out as all cells were tested for short circuits before back filling 

w ith  the electrolyte and in any case the two cells in this set that were found to be shorting, 

exhibit the same level o f noise in their IV curves. Other reasons could be poor platinisation 

o f the CE leading to high double layer capacitances or insufficient binder removal in the 

T i0 2 film  causing build up (and release) o f charge in electronic traps. In any case, as this 

work is concerned with long term trends rather than basic cell properties, no further 

investigation was made into the reasons for the noise in seen in the vertical section of the
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IV curve. The data calculated by the software was used but it was made sure that the points 

it used to calculate the V 0c were realistic.

4.1.2 Long Term IV Trends in UV Exposed Larger Area Cells

Figure 4.4 shows the trends in IV data for the four sets of cells tested. The same pattern of 

cell failure seen in chapter 3 is also observed here. There are however some differences 

between the larger area cells and the standard 1 cm2 cells. Unexposed larger area cells 

appear to exhibit a large Nernst diffusional feature at lower frequencies (figure 4.6) which 

is not observed in their smaller analogues. Cell failure appears to be slower in these cells 

than the 1 cm2 cells especially the cells exposed from the CE (reverse) side which were still 

giving good photocurrents at around 2000 hours exposure. The same drop in V 0c is 

observed although, in this case, there is no real difference between cells under load and 

cells under open-circuit. The same collapse in photocurrent is observed but again occurs 

much later in the larger area cell than in their smaller analogues.

Although the Surlyn seals used in the larger area cells are the same thickness as the seals 

used in the 1 cm2 cells, due to their larger size, some warping of the seal occurred during 

the sealing process. This warping occurred along the plane of the seal and resulted in an 

electrolyte filling area larger than the 6.25 cm2 area of the working electrode. This would 

mean that the larger area cells have a higher electrolyte volume to working electrode area 

ratio. This might explain the higher Nernst diffusion impedance exhibited and may also 

explain the noise of the IV curves as capacitive effects which have arisen from charge build 

up in the electrolyte. If the ratio of electrolyte volume to WE area is greater in the larger 

area cells then it appears that the higher volume of electrolyte in these larger cells has 

stabilised them somewhat against photodegradation compared to the smaller cells. It has 

been shown in chapter 3 that UV exposure removes l3‘ from the electrolyte as evidenced by 

the photobleaching of the cell, the collapse in JSc and the large increase in Rbr at the point 

of failure. It is thought that this is a reversible reaction as photodegraded cells, once put in 

dark,start to recover some of their photocurrent. Cell recovery will be fully discussed in 

Chapter 8  but what this suggests is that UV exposure pushes the electrolyte far to one side
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of an equilibrium consisting of photodegradation (l3' depletion) in one direction and 

recovery (l3‘ regeneration) in the other (see figure 4.5 below).

In the smaller cells, under constant UV illumination, the rate of photodegradation is much 

faster than the rate of recovery so the equilibrium is pushed far to the right. The higher 

volume of electrolyte in the larger cells means that there is more chance of recovery so it 

takes longer for UV exposure to push the equilibrium to the right hand side. This is seen 

especially in the CE (reverse) side exposed cells where due to filtering by the Pt electrode 

and the electrolyte, the rate of photodegradation is slower, both compared to the other 

cells in the data set and the reverse exposed 1 cm2 cells in chapter 3. As mentioned, the 

recovery of photodegraded cells will be discussed in detail in chapter 8  but it is worth 

mentioning here that once the equilibrium is pushed to the far right the rate of recovery is 

slow, even in degraded cells which are then kept in the dark. The larger area cells do 

however appear to recover faster in the dark than their smaller counterparts lending 

further evidence to the hypothesis that the larger volume of electrolyte stabilizes the cells 

somewhat against photodegradation.
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Figure 4.4
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reduction o fJSc which is typical o f cells exposed to UV irradiation
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Figure 4.5 Photodegradation/recovery equilibrium o f DSC test cells under UV
irradiation

4.2 Impedance Data for Larger Area Cells

4.2.1 Issues Relating to EIS Measurements of Larger Area Cells

As w ith the IV measurements, EIS measurements of the larger cells brought some 

difficulties. Possibly due to the larger volume of the electrolyte, the Nernst diffusion 

resistance of the l3 / l  was large w ith respect to Rbr. This creates a problem for modelling 

cell resistances as the model used to calculate resistance values does not include an 

element to represent the Nernst diffusion impedance of the electrolyte. In cells exposed to 

UV irradiation this was not a problem as although UV exposure causes a decrease in Rbr, it 

seems also to decrease the Nernst diffusion resistance of the cell, so that it becomes 

hidden by Rbr. As the m ajority o f cells were being exposed to UV light, the model described 

in chapter 3, w ithou t a Nernst diffusion element was suitable fo r modelling these cells.

Figure 4.6 shows the Nyquist plot o f a larger area cell before UV exposure and the model fit 

using the circuit model described in chapter 3.1.2. The feature due to Nernst diffusion is 

visible from around 50 Q to 90 Q (Zreal). In order to fit the model, which has no element to 

describe the Nernst diffusion, it was decided to only use those data points in the Nyquist 

plot that corresponded to the impedances at the CE/electrolyte interface and the 

T i02/e lectro lyte interface. The model data is also shown in figure 4.6. The data points used 

to calculate the model plot are shown as "real data points" whilst those that were

100
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calculated by the model are shown as "modelled data points". The modelled Nyquist plot is 

typical o f unexposed larger area cells that do not exhibit the Nernst diffusion feature at 

lower frequencies. The Nyquist plots are typical o f Gerischer shaped photoelectrode plots 

which indicate that electron diffusion length in the T i02 film  is greater than the film 

thickness resulting in large transport resistances and high recombination rates [1]. The 

decision to model the data this way was vindicated as, after around 2200 hours UV 

exposure, those cells kept in the dark exhibited an increase in Rbr which caused the Nernst 

diffusion feature to  become more obscured within the Rbr arc and the measured Nyquist 

plot to become more like the modelled plot. This is illustrated in figure 4.7 below and it 

shows that the modelled data in figure 4.6 is an accurate representation of the Nyquist plot 

had the Nernst diffusion been hidden by Rbr in the first place.

50
45
40
35
30
25
20
15
10

5
0

-^Nyquist Plot 

Model fit

m o d e lle d  

d a ta  p o in ts

re a l d a ta  

p o in ts

0 20 80 100
Zreal (fl)

Figure 4.6 Nyquist p lot o f o larger area cell before UV exposure and the model f i t  using 
a sim ilar circuit model as described in chapter 3.1.2, except this time CCE is 
modelled with a constant phase element
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Figure 4.6 Nyquist p lot o f a larger area cell a fter 2200 hours in the dark and the model 
f i t  using the circuit model as in figure 4.6. The Nyquist p lot a t 0 hours from  
figure  4.6 is also shown.

4.2.2 Long Term Trends in Rbr of Larger Area Cells

Figure 4.7 shows the long term  trend in the normalised Rbr o f the test cells. The familiar 

pattern of initial drop in Rbr caused by the increase in recombination, followed by a large 

increase upon cell failure is observed. As w ith the IV data shown in figure 4.4 the CE 

(reverse) exposed cells survive remarkably well. There is however a sign at 2200 hours that 

the Rbr is about to increase, this coincides w ith a sign that Jsc is about to decrease indicating 

the possibility o f imminent cell failure. Unfortunately the cells were not exposed further 

than 2200 hours so there is no way of knowing if this is the case.
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Figure 4.7 Long term trend in Rbr (normalised) o f larger area cells

4.2.3 Qualitative Analysis of Nyquist Plots

In cells exposed to UV irradiation, the Gerischer shaped impedance curve gave way to the 

more fam iliar double arc representing CE and WE resistances and in most cases a short 

straight line of 45° was observed between the photo and counter electrode impedance 

arcs. This is said to be a characteristic o f the electron transport resistance [1] and is often 

characterised using the transmission line model [2] (see chapter 1.11.3). Figure 4.8 shows a 

typical Nyquist curve before UV exposure, exhibiting the Gerischer type shape w ith a 

feature at lower frequencies that has been attributed to Nernst diffusion in chapter 4.3.1 

and the typical curve after exposure exhibiting the more familiar double arc and 

transmission line. Figure 4.9 shows the transmission line feature in more detail. The 

transmission line feature is indicative of the charge transport resistance being greater than

that of the recombination resistance (i.e. Rt < Rbr), this is in fact the opposite case o f the

Gerischer impedance described above where Rt > R Br. The change from the Gerischer shape 

to the more fam iliar double arc transmission line feature is almost certainly due to  the 

increased rate o f the back reaction whereby the cell begins life under the condition Rt > R br 

and so exhibits a Gerischer impedance. After UV exposure, Rbr decreases relative to the 

transport resistance so that Rt < RBr and so the cell exhibits the transmission line feature.
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The opposite can be seen in cells kept in the dark whereby Rbr is seen to increase, 

maintaining the Rt > Rbr relationship and so the Nyquist plot retains its Gerischer shape.
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Figure 4.8 A typical Nyquist curve before UV exposure, exhibiting the Gerischer type 
shape and after UV exposure exhibiting the fam ilia r double arc w ith  
transmission line feature
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Figure 4.9 The transmission line feature of Figure 4.8 in more detail
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4.3 Colour Change Measured with UV-Vis Spectroscopy

The larger area cells w ith, a WE area of 6.25 cm2, were built in order to cover the sample 

aperture of the UV-Vis spectrophotometer which has a diameter o f 3 cm. This was 

necessary to avoid the alignment issues experienced w ith the smaller cells. Figure 4.10 

shows the UV-Vis spectra of a typical cell exposed from the WE side under open-circuit, at 

different stages o f UV exposure. The two features of note are the \m ax o f the dye (co 530 

nm) and the large absorbance at around 450 nm due to the yellow colouration of the 

electrolyte [3].

Figure 4.10 shows that the absorbance related to the adsorbed N719 dye remains relatively 

constant and the main colour shift is at much lower wavelengths where the electrolyte is 

absorbing. This adds weight to the suggestion that it is the failure of the electrolyte that is 

responsible fo r the failure of the cells. This is perhaps a little  surprising given that the dye is 

adsorbed on the T i02.
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Figure 4.10 The UV-Vis spectra o f a typical cell exposed from  the WE side under open- 
circuit, a t d ifferent stages o f UV exposure
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The relative colour changes are m o r[l]e  clearly illustrated in Figure 4.11 where the 

absorbance of the cell at 531 nm (the Amax of the dye) and 450 nm (a representation of the 

electrolyte absorbance) are plotted as a function of time. 450 nm was chosen to represent 

electrolyte colouration as the Amax of the l / l 3‘ redox couple is obscured by the large 

absorbance o f the T i02 and also because the isosbestic point o f l2/ l 3" is around 460 nm [4]. 

Figure 4.11 shows that the electrolyte is clearly being degraded whilst dye absorbance 

remains fairly constant.

If the relative rates of colour change of the cells is compared (figure 4.12), the same 

pattern of degradation is seen as the in the IV and Impedance data showing that colour 

change is a fundamental aspect o f the UV photodegradation of DSCs and that the bleaching 

of the electrolyte is the dominant failure mechanism which leads to the collapse in 

photocurrent and the large increase in Rbr.
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Figure 4.11 The changing absorbance o f cells a t 531 nm (representing dye
colouration) and at 450 nm (representing electrolyte colouration) 
over the exposure period. The absorbance values were normalised to the 
absorbance value before exposure. A ll values were averaged from  sets o f 
fo u r cells

Having observed that the electrolyte was being degraded it was desirable to work out the 

origin o f the failure. It could be that the electrolyte is directly attacked or that it is related 

to T i02 photo-reactions. Figure 4.13 illustrates the changes in electrolyte absorbance at
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450 nm as a function of UV exposure time for two model cells. The first model cell was 

assembled from tw o counter electrodes (to examine whether UV alone caused the failure). 

The second cell type was essentially a full DSC assembly but w ithout any dying step.

It can be seen from the data in Figure 4.13 that the UV alone does not cause failure but 

that having a T i02 electrode causes very rapid failure. Indeed, comparing this data w ith 

that from figure 4.11 where the dye is included on the T i02, the presence o f the dye 

dramatically slows the rate of electrolyte failure. This is probably for tw o reasons. Firstly 

the dye will have taken up active sites on the T i02 and secondly it seems that at open 

circuit the dye is able to inject electrons into the T i02 (as evidenced by the accelerated 

failure under load). Hence it appears that it is the T i02 and photo-oxidation by photo­

generated holes that is the primary reason for attack on the electrolyte.
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Figure 4.12 Relative rates o f colour change (measured at 450 nm) o f cells exposed to 
UV irradiation
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Figure 4.13 Change in absorbance of model cells. The undyed cell is essentially a

The rapid bleaching observed in undyed cells is accompanied by impedance spectra (figure 

4.14) which shows the typical initial reduction in Rbr of a DSC exposed to UV light. In this 

case where there is no dye the reduction in Rbr is very fast and is reduced considerably 

after just 48 hours exposure. This initial reduction is followed by a large increase in Rbr 

indicative of a very rapid consumption of charge carriers (l3‘/ 0  within the electrolyte. The 

relative stability of the electrolyte without the presence of T i0 2 as indicated by the figure 

4.13 is supplemented by the impedance data shown in figure 4.15 below. In figure 4.15 the 

smaller arc represents the Nernst diffusion resistance of the l3' /  I' redox couple, this is often 

hidden in DSCs and undyed cells by the much larger arc representing e‘ diffusion in the T i0 2 

and recombination resistance, referred to in his thesis as Rbr. It can be seen in figure 4.15 

that although the series resistance of the cell has increased which is indicated by the shift 

of the Nyquist plot to higher Zreal between 0 and 639 hours exposure, the Nernst diffusion 

resistance of the electrolyte doesn't change indicating that there is no change to the 

composition of the electrolyte. This is of course also shown in figure 4.13 where the 

constant absorbance at 450 nm of the CE-CE cell indicates no change in the concentration 

of l3‘ despite a considerable amount of constant UV exposure.

complete DSC. The CE-CE cell consists o f two counter electrodes and the 
electrolyte. This clearly shows that Ti02 is required fo r electrolyte 
degradation under UV illumination.
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All the evidence above points to the possibility that the T i02 surface in fresh cells initially 

has a greater coverage of adsorbents. These may be electrolyte components or some other 

residual material and their adsorption onto the surface makes recombination d ifficult and 

so results in larger Rbr values. UV exposure then initiates the removal o f these adsorbed 

species allowing greater recombination and hence lowering Rbr. Once the l3' has been 

consumed to a critical level, Rbr then increases dramatically as the T i02/l3 interfacial 

reaction is no longer possible. Perhaps most importantly, this occurs in cells where there is 

no dye present and also that it occurs rapidly in these undyed cells. In a normal DSC it 

might seem more probable that this initial exposure of the T i02 surface should be caused 

by desorbing dye ligands as these are the major adsorbents on the T i02 surface. The 

evidence here however, suggests that the initial increase in the recombination rate is due 

to the desorption o f some component o f the electrolyte and not desorption of the dye or 

one of its ligands.
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Figure 4.14 Change in Nyquist p lots o f  undyed T i02 cells over the UV exposure period  
(inset is the same data  expanded to a la rger scale)
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4.4 Conclusion

The end of chapter 3 concluded w ith the hypothesis that cell degradation under constant 

UV illum ination occurs via a TiOz photo-catalysed attack on the electrolyte as evidenced by 

the collapse in Jsc seen at the point o f cell failure and the large increase in Rbr. The 

photobleaching of the electrolyte has been characterised in this chapter and the relative 

rates of l3 consumption, as measured by a reduction in the absorbance of the cell at 450 

nm, have been shown to follow  the same pattern as other changes in cell properties such 

as Vqg Jsc ar|d Rbr, the pattern being that the rate of change of properties used to measure 

photodegradation always occurs fastest in cells irradiated from the WE side and under load 

and slowest when irradiated from the CE side and under open circuit. This is fu rther 

evidence of a T i02 catalysed reaction and confirms that the electrolyte is undergoing a 

change in composition, along with, and in some cases as a cause o f the other changes 

observed. The final observation that confirms T i02 as the cause of the cell failure is seen in 

figure 4.13. In a model cell w ith no T i02 the electrolyte does not change colour. Also in 

figure 4.13, the rapid change in colour seen in the undyed cell suggests that the dye helps 

stabilise the cell against photodegradation, probably by blocking active sites on the T i02 

and by charge injection into the T i02 conduction band to increase the rate of 

recombination of the photogenerated electron-hole pair. Furthermore the evidence in this
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chapter points to the fact that in accelerated UV exposure it appears that the electrolyte 

and not the dye is the most important factor in the initiation, propagation and termination 

of photodegradation in DSC test cell.
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Chapter

5.

Visible Light Soaking 
vs. UV Irradiation



5. VISIBLE LIGHT SOAKING VS. UV IRRADIATION

Accelerated DSC stability testing is often carried out in a visible light soaking cabinet such 

as that described in chapter 2.6.3. In long term visible light-soaking tests, DSCs have shown 

remarkable stability [1]. However in some long term outdoor testing, DSCs have shown 

similar changes to those described in chapters 3 and 4, such as a change in electrolyte 

composition and an initial decrease in V0c and increase in Jsc [2]. Figure 5.1 shows the 

emission spectra of the light soaker used in this chapter and the UVA lamps used in this and 

the previous tw o chapters. ASTM G173-03 -  "Global Tilt" Solar Irradiance Spectrum [3], or 

AM 1.5 as it is more commonly known, is shown for comparison. The emission spectrum of 

the light soaker lamp is shown at 0.25 Sun as this was the level o f intensity o f the lamp 

during testing. The light soaker has a maximum power output of 0.9 Sun but this is only 

achievable when the lamp is virtually touching the test cells in the cabinet. The 

tem perature of the cells exposed in this way is too high to rule out temperature effects on 

cell stability so it was decided to conduct the light soaking experiments at 0.25 Sun which 

gave a cell tem perature of 40-50°C.
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Figure 5.1 Emission spectra o f light sources used in chapters 3, 4 and 5, compared to 
the emission spectrum given by AM  1.5
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Two things are clear from Figure 5.1. The first is that there is a lack of intensity of UV light 

emitted by the lamp in the light soaking cabinet compared to that of the emission spectrum 

given by AM 1.5. The average intensity emitted by the light soaker between 300 nm and 

400 nm is around 0.016 W  m '2 with a maximum UV emission of 0.17 W  m '2 at 399 nm. In 

contrast the maximum emission of the UVA lamps was measured at 0.64 W  m 2 at around 

354 nm with average emission intensity between 300 nm and 400 nm of around

0.25 W  m'2. The average intensity of AM 1.5 between 300 nm and 400 nm is 0.46 W m '2 

with 0.61 W  m '2 power density at 354 nm. The power of the UVA lamps is therefore  

reasonably consistent with respect to the emission spectrum of the sun between 300 nm 

and 400 nm.

The emission spectrum of the light soaking cabinet is not a good spectral match to that of 

the sun. The manufacturer of this cabinet is not alone however as a major competitor 

produces a light soaking unit which whilst having a good spectral match to AM 1.5 above 

400 nm, misses out most of the solar spectrum from 300 nm to 390 nm as well. This is 

perhaps because these light soaking cabinets were originally designed for inorganic 

photovoltaics.

5.1 IV Data

Similarly to the experiments conducted in chapters 3 and 4, the cell sets consists of cells 

exposed from the WE side "LS (forward)", cells exposed from the CE side "LS (reverse)", 

cells exposed from the WE side under load "LS (load)" and cells kept in the light soaker in a 

light-tight container "Dark 40°C". Figure 5.2 shows the trends in %n, V0c and JSc over the 

exposure period.

Looking at figure 5.2 at the cell efficiency it is striking how quickly cells exposed to UV light 

fail compared to those exposed under visible light soaking conditions. The order of %q 

decline follows the familiar pattern of cells under load failing faster than cells under open 

circuit which in turn fail faster than reverse illuminated cells under open circuit. However, 

in contrast to the cell sets tested in chapters 3 and 4, the cells kept in the dark fail faster 

than those under illumination as if visible light somehow stabilises the cell.
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Looking at the V 0c of the cells, the pattern is again very familiar. Cells exposed to UV light 

shows a rapid drop in V 0c whilst cells kept in the dark show an increase. Out of the cells 

exposed in the light soaker, only the cells under load show a drop in V 0c close to that of 

cells exposed to UV light. This could show how important a factor photogenerated T i0 2 

holes are to the degradation of DSCs.

The photon flux, <J) of each light source can be calculated at a particular wavelength with 

the following equation.

<f> =  Pd qE  (5.1)

Where Pd is the power density at a particular wavelength, q is the elementary charge 

= 1.602 x 1 0 19 coulombs and E is the photon energy in electron volts. Photon energy can be 

calculated from the Planck-Einstein relationship, E = hc/A where E is the energy in electron 

volts (eV), h is the Planck constant and c the speed of light, so that E = (1240 eV.nm)/A.

At 380 nm the power density of the UV lamps is around 0.22 W  m '2 and the light soaker 

lamps around 0.01 W  m"2. Using equation 5.1 and the Planck-Einstein equation this gives a 

photon flux of 4.2 x 1017 m '2 s'1 for the UV lamps and 1.9 x 1016 m '2 s'1 for the light soaker. In 

other words, the number of hole generating photons emitted at 380 nm by the UVA lamps 

is an order of magnitude greater from the UV lamps than it is from the light soaker. This is 

true for nearly all wavelengths below 390 nm. Despite this fact, the photon flux of the light 

soaker in the UV is still significant enough to cause some amount of photoexcitation of the 

T i0 2. In light soaked cells under load, the electrons, as before, are exported to the external 

circuit leaving an excess of holes which could contribute to the protonation of the T i0 2 

surface which is said to be the cause of the drop in V 0c- There is no real difference in the 

drop in V 0c between two sets of cells exposed under open circuit suggesting that electronic 

transport to the external circuit is an important factor in the downward shift of the 

conduction band. The V 0c of cells kept in the dark decreases initially which could be due to 

the temperature dependency of the back reaction rate constant, which has been shown to 

increase at elevated temperatures [4]. The V 0c then increases and has been observed 

before in cells subjected to elevated temperatures but kept in the dark [5]. An explanation 

has been offered that the increase in V 0c is caused by an increase of electrolyte species
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adsorbed onto the T i0 2 surface. The V 0c then starts to decline at around 2300 hours, 

possibly due to thermal degradation of the electrolyte.

The larger initial increase in Jsc seen in UV exposed cells is less severe in cells exposed in the 

light soaker with the rate of increase slightly higher in light-soaked cells under load. The 

ensuing rate of decline in Jsc in the light soaked cells could possibly be due to depletion in l3' 

concentration and it is interesting to note that the normal pattern of decay is reversed in 

that the rate decay in JSc of cells is faster under open circuit than it is under load. This might 

be due to a continuing shifting of the conduction band, as evidenced by the V 0c decreases, 

which is causing increasing electron injection efficiency. This is obviously not the dominant 

mechanism as all cell sets show declining JSc but it could be the reason why the rate of JSc 

decrease in cells under load is slower because the relative increase in electron injection 

efficiency is faster when compared to cells exposed under open circuit.

The cells kept in the dark show the greatest rate of Jsc decrease and it is possible that this is 

caused by a negative shift in the conduction band, this would explain why the V 0c increases 

and the decreasing Jsc may be due to narrowing of the energy gap between the LUMO of 

the dye and the T i0 2 conduction band causing decreasing electron injection efficiency [6 ].

5.2 EIS Data

Figure 5.3 below shows the back reaction resistance (Rbr) of the cell sets over the exposure 

period. Similarly to the drop in V 0c, the drop in Rbr for light soaked cells under load is of a 

similar magnitude to the UV exposed cells which reiterates how important electronic 

transport to the external circuit is to cell stability. Even the small amount of UV generated 

by the light soaker, and even with the charge injection that must be coming from the dye 

under visible light, external electronic transport in cells under load is enough to cause the 

drop in V 0c and Rbr on a similar scale to that seen in UV exposed cells. Under open circuit, it 

appears that the cells exposed from the CE side are degrading faster than those exposed 

from  the WE side. This may be because charge injection from the dye excited at around 530 

nm is stabilising the cells, slowing down the V 0c/Rbr drop in forward exposed cells. In
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reverse exposed cells, less dye charge injection occurs due to the filtering properties o f the 

electrolyte.

0 2000 4000 6000 8000 10000
Light Soaking Hours
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Figure 5-3 Rbr o f cells over the exposure period

For unexposed cells, an initial decrease in Rbr, which may be caused by the temperature 

dependency o f the back reaction rate constant is seen which is then followed by an 

increase in Rbr. This could again possibly be due to increased adsorption of species onto the 

T i02 film , blocking sites for the back reaction to occur (and increasing V0c) a fter time 

thermal degradation may have degraded electrolyte components sufficiently for the Rbr 

and Voc to begin decreasing.
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5.3 Conclusion

This chapter shows how important UV light is to DSC stability. It shows that even small 

amounts, such as that emitted by the light soaker, are enough to cause the ageing 

characteristics, in cells under load, that have already been described in chapters 3 and 4. 

This chapter also shows how important electronic transport to the external circuit is to DSC 

stability in that electrons exported to the external circuit result in less recombination of 

T i0 2 electron-hole pairs, and increased rates of degradation, which occurs despite the 

stabilising effects of electronic injection from the dye which must be occurring under visible 

light soaking conditions. These conclusions lead to two recommendations.

The first is that future accelerated stability testing should always be done under load, or 

perhaps short circuit conditions so that electronic transport can occur to an external circuit. 

The first advantage of this is obvious as this would better simulate a DSC module under 

operating conditions. The second advantage is that the characteristic signs of cell 

degradation occur faster under load and so UV protection measures can be rapidly 

assessed.

When the manufacturer of the light soaker quotes an output of 0.9 Sun all that is meant is 

the power of the lamp is 900 W  m'2, as can be seen from figure 5.1, there is little spectral 

match to AM 1.5. The second recommendation therefore, is that accelerated ageing should 

be carried under a light source that is a spectral match to the solar emission spectrum with 

both the visible and UV components emitted at realistic power densities. The plastics and 

coatings industry use xenon-arc weatherometers for just this purpose.

Neither of the exposure methods presented in this work is perfect as although UV 

photodegradation has been shown to be the dominant degradation mechanism, the 

stabilising effect of charge injection from dye electrons excited at 530 nm is also an 

important factor.
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6. UV FILTERING OF DYE-SENSITIZED SOLAR CELLS

6.1 UV Filtering as Protection against UV Photodegradation

The data in chapters 3,4 and 5 have shown that UV irradiation is highly detrimental to DSC 

stability over a period o f up to 2000 hours and that in visible light soaking experiments, it is 

likely that the cause o f cell degradation is the small amount of UV light em itted by the light 

soaking lamps. One o f the most obvious methods of UV protection would be to use UV 

filters. Three filters were obtained from Schott AG (UK), their UV-Vis %T curves can be seen 

in figure 6.1 below, the ir UV cut-offs are defined by Schott as 385 nm, 400 nm and 420 nm.

100

80
-  385 nm 

400 nm
-  420 nm

60
%T

40

20

300 400 500
nm

Figure 6.1 UV-Vis %T curves o f the filters used in this chapter

Cells were irradiated under these filters as well as a control group w ith  no filter. As in 

chapter 3, the most obvious feature to measure would be the change in %i] over time. 

Figure 6.2 shows the change in %r\ over the exposure period and the first thing to notice is 

that all cells degrade at a similar rate but it may be that the cells filtered at 385 nm are 

degrading faster. The difference may not seem significant at first until the change in V0c is 

observed. This is shown in figure 6.3.
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Figure 6.2 Change in %// over the exposure period shown
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Figure 6.3 Change in Voc over the exposure period shown. Measurement o f cells 
exposed with no UV f ilte r  was stopped at around 800 hours due to cell 
fa ilure

In figure 6.3 it can be seen that in all cases except the cells exposed w ithout a filte r the Voc 

initially increases. This is very typical o f cells kept in the dark and makes sense as cells 

filtered at 420 nm from a UV lamp w ith a maximum emission at around 360 nm are 

effectively in the dark. At 3000 hours exposure, the cells filtered at 400 nm and 420 nm are 

still behaving as though they have been kept in the dark (compare to shown data in figure 

5.2), at least as far as the increase in V0c is concerned, but at 1000 hours exposure the cells
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filtered at 385 nm begin to see a decrease in V0c, a clear sign of the onset of UV 

photodegradation. Figures 6.2 and 6.3 suggest two things. The first is that UV filtering can 

extend the life o f a DSC by preventing UV photodegradation. The second is that filtering is 

required at a level above 385 nm but no more than 400 nm. There appears to be no 

evidence that increasing the level of filtering from 400 nm to 420 nm has any benefit in 

terms of DSC UV stability.

Figure 6.4 shows the change in RBRover the exposure period. Cells filtered at 400 nm and 

420 nm show an increase in Rbr which is typical o f cells kept in the dark. Cells filtered at 385 

nm show neither the initial decrease in Rbr which is typical of cells exposed to UV light nor 

the increase which is typical o f cells kept in the dark suggesting that the cell is absorbing 

some UV light but not enough to cause the changes which are typical of UV exposed cells. 

All three sets o f filtered cells start see a reduction in Rbr at around 2800 hours this is 

unlikely to be caused by photodegradation, at least in the case of those cells filtered at 400 

nm and 420 nm, and may be caused by some other element such as heat or 0 2/H 20  ingress.
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Figure 6.4 Change in Rbr o f filte red  cells over the exposure period shown
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6.2 The Effect of UV Filtering on Cell Performance and Efficiency

This chapter has so far shown how UV filtering can increase DSC stability. However, DSCs 

still convert photons at less than 400 nm into photocurrent and so cutting off light at 400  

nm will result in less photons reaching the device, leading to lower photocurrents and 

lower %r|. Work therefore was needed to quantify the effects of UV filtering upon DSC 

performance and %r\. For this experiment, four polymer filters were chosen, with varying 

UV cut-off wavelengths that were being considered for use as CE materials for a flexible 

DSC based on a steel substrate. Furthermore as the filter was cutting of light in the UV part 

of the spectrum it was thought that the further into the red that the dye absorbed the less 

detrimental the UV cut off would be to cell efficiency, so four dyes were chosen which have 

differing photocurrent action spectra.

6.2.1 The Dyes

The dyes are all ruthenium based dyes and all were obtained from Dyesol. Figure 6.5 below 

shows the chemical structure of the dyes. The dyes used were:

1. N3 which Dyesol say is the baseline dye for DSC, it has chemical formula:

RuL2(NCS)2 (L=2,2'-bipyridyl-4,4'-dicarboxylic acid)

2. N719 is a modification of the N3 dye (it is in fact a tetrabutylammonium salt of

the N3 dye) to increase cell voltage. It is the most common high 

performance dye. Chemical formula: [RuL2(NCS)2]:2TBA (L=2,2'~ bipyridyl- 

4,4'-dicarboxylic acid; TBA=tetra-n-butylammonium)

3. Z907 is a hydrophobic dye with chemical formula: RuLL'(NCS)2 (L=2,2'-bipyridyl-

4,4'-dicarboxylic acid; L'=4,4'-dinonyl-2,2'-bipyridine)

4. N749 also known as 'black dye', is designed for the widest range spectral

sensitisation up to wavelengths beyond 800nm. It has chemical formula: 

[RuL(NCS)3]:3TBA(L=2,2/ :6,,2"-terpyridyl-4,4,,4M-tricarboxylic acid; TBA 

=tetra-n-butylammonium)
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Figure 6.5 Structures of the dyes used in this chapter. Clockwise from  top- left: N3, 
N719, N749 and Z907

Figure 6 .6  below shows the IPCE plots of cells made with the four dyes. Five cells were 

made with each dye. In each case there were two outliers (in terms of efficiency) and so 

the IPCE plots here are the median IPCE of the three "good" cells of each dye. Cells made 

with N719 and N3 dye show the highest overall quantum efficiency (QE) with very similar 

IPCE spectra. The broadest spectrum dye was the N749 dye. Cells made with N749 show 

activity to just over 800 nm with a quantum efficiency that doesn't reach above 2 0 % at any 

wavelength. This may be because the electrolyte used is a specific electrolyte for N3 and 

N719 cells and might not give good performance with other dyes. It was necessary to keep 

the electrolyte the same in each case in order to rule out any effects due to the absorption 

characteristics of the electrolyte when looking at the cells in the reverse cell set up. The 

narrowest spectrum dye was the Z907. The IPCE of Z907 cells only just passed 30% at an 

absorption maximum of around 540 nm; again the low IPCE of Z907 cells compared to 

N3/N719 based cells might be because the electrolyte is not entirely suitable for use with 

Z907 dye.
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Figure 6.6 IPCE plots o f the cells made with the fo u r dyes used in this chapter. Despite 
having an overall lower IPCE, it  can be seen that N749 dye extends its 
absorption fu rthe r toward the NIR region than the other three dyes

Figure 6.7 shows the median IV curves of the cells and Table 6.1, the mean parameters of 

the cells. In contrast to their respective IPCE plots the N3 and N719 based cells have 

different IV curves. It might be expected looking at the IPCE plots that cells made w ith the 

N3 and N719 dyes w ill behave similarly. When looking at the IV curves and cell parameters 

however it is clear that cells made with N719 dye perform better. Both dyes have very 

similar current densities but N719 cells have an increased V0c compared w ith N3 cells. This 

results in N719 dyed cells having a higher maximum power point, and since %r\ oc Pmax, an 

increased efficiency compared to cells made w ith N3 dye.

Figure 6.7 also shows the IV curves of the cells made w ith the Z907 and the N749 dyes. As 

would be expected when looking at their respective IPCE plots, these cells do not perform 

as well as the N3 and N719 dyed cells. They have lower V0c, Jso Pmax and therefore lower

%n-
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Figure 6.7 Median IV curves o f cells made with the fo u r dyes used in this chapter

Table 6.1 M ean properties of cells made with the four dyes used in this chapter

Voc !sc FMI
IV ] (mA cm'2) Factor %n

N3 0.702 (±0.009) 7.25 (±0.02) 0.76 (±0.02) 3.9 (±0.08)
N719 0.731 (±0.005) 7.15 (±0.09) 0.77 (±0.02) 4.0 (±0.02)

Z907 0.682 (±0.007) 4.21 (±0.15) 0.73 (±0.02) 2.1 (±0.10)
N749 0.685 (±0.016) 3.83 (±0.31) 0.74 (±0.01) 1.9 (±0.09)

6.2.2 The Filters

Four filters were chosen, all based on PET films, to give a range of UV cut-offs. The filters 

were:

1. M elinexST505 is a PET film available from DuPont Teijin Films

2. BASF HP is Melinex ST505 coated w ith a UV absorbing lacquer

obtained from BASF

3. Kimoto B4 is an experimental film supplied by Kimoto, Japan (this film

has transmission properties close to the "ideal" values -  

see chapter 8)
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4. Spring Yellow is a yellow PET filte r obtained from  Lee Filters. It was

coated with BASF HP lacquer (20 pm) to reduce its original 

UV transmittance (around 40% at 340 nm)

A summary of the ir spectral properties can be seen in Table 6.2 below. The last column of 

the table is entitled "UV cut-off". This term will be used extensively in this chapter and it is 

im portant to clarify what this means. UV cut-off refers to the steepest part o f the UV-Vis 

%T curve where %T = 50%. As the instrument was scanning w ith a resolution of 5 nm, these 

values have been rounded to the nearest 5 nm. The %T curves o f the filters are shown in 

figure 6.8 below.

Table 6.2 Im portant spectral properties of the filters used in this chapter

Mean %T A where A where
(500-800 nm) %T < 50% (nm) %T < 1% (nm) UV 'cut-i

Melinex 88.2 320 306 320
BASF HP 90.2 384 317 385
Kimoto 87.4 422 404 420

Spring Yellow 87.2 484 466 485
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Figure 6.8 %oT curves o f the filters used in this chapter

Melinex 
- BASF HP 
—Kimoto B4 
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6.3 The Effect of Filtering on Cell Performance -  Forward Illumination

Figure 6.9 shows the IPCEs of cells made w ith the four dyes. The solid black line represents 

the IPCE of the unfiltered cell w ith the dashed black lines showing the effect o f filtering 

upon the IPCE. These are overlain w ith the %T spectra of the polymer filters (coloured 

lines). Figure 6.10 shows the IV curves of the cells both unfiltered and with the filters used 

in this chapter.

Figure 6.9 The effect o f filte ring  upon the IPCEs (dotted block lines) o f the cells mode 
with the fou r dyes (N3, N719, Z907 and N749), overloin w ith the %T o f the 
filte rs  (solid coloured lines -  see figure 6.8 fo r  legend). The solid block line 
represents the IPCE o f the cell w ith no filte ring  -  N.B. the scale o f the IPCE 
axis is different in each cose
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Figure 6.10 IV curves o f cells mode with the fo u r dyes, both unfiltered (block line) and 
f ilte red  (coloured lines -  see figure 6.7 fo r  legend)

6.3.1 Filtering of Cells Made with N719 Dye

Looking at the IPCE data in figure 6.9, it is immediately obvious how filtering affects the 

IPCEs of the cells in that the IPCE is cut-off at the same wavelength as the cut-off o f the 

filter. In all cases where a filte r is used, the maximum IPCE value is the same whilst the 

magnitude of the maximum IPCE is slightly higher in the unfiltered cells. The reason for this 

is clear when looking at the %T curves in that all o f them have a %T of around 90% at 540 

nm and so ignoring the effects o f the UV cut-off, usage of a filte r will immediately reduce 

the number of photons reaching the photoelectrode, reducing photocurrents (figure 6.10) 

and therefore reducing efficiencies.
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Table 6.3 shows the important cell parameters for N719 dyed cells gained from the IV 

measurements.

Table 6.3 Mean cell parameters of N719 cells, filtered and unfiltered

N719-Unfiltered 

N719-Melinex Filtered 

N719-BASF HP Filtered 

N719-Kimoto Filtered 

N719-Yellow Filtered

l'0<
I

n

^  2
M (mAcm )

0.731 7.15
(± 0.006) (± 0.09)

0.718 6.33
(± 0.006) (± 0.09)

0.720 6.27
(± 0.004) (± 0.05)

0.709 5.66
(± 0.007) (± 0.08)

0.698 4.35
(± 0.008) (± 0.06)

Fm
Factor %n

0.77 4.01
(± 0.007) (±0.02)

0.77 3.5
(± 0.004) (±0.01)

0.77 3.47
(± 0.009) (± 0.01)

0.77 3.09
(± 0.004) (± 0.01)

0.77 2.34
(±0.003) (± 0.005)

% Loss cf. % Loss cf.
unfiltered Melinex

N/A N/A

12.7 N/A

13.5 0.9

22.9 11.7

41.6 33.1

Figures 6.9, 6.10 and Table 6.3 all show clearly how filtering affects cell performance. The 

IPCE curves in figure 6.9 show how the filters block out photons at their respective UV cut 

off wavelengths resulting in virtually zero IPCE at wavelengths beyond the cut-off. Looking 

at the IV curves and cell parameters in Figure 6.10 and Table 6.3, it is clear that there is a 

significant decrease in JSc of the cell as the UV cut off of the filters shifts towards the blue 

end of the spectrum. The open circuit voltage V0c decreases also, but on a smaller scale 

compared to the Jsc. It seems obvious why there is a decrease in JScas the photocurrent is 

dependent on the incident photon flux and wavelength. The photon flux and wavelength 

are clearly altered by the filters as can be seen in the %T spectra of the filters and the IPCEs 

of the filtered cells. It seemed puzzling at first why the V0c would decrease with increased 

filtering but the energy of the Fermi level and therefore the V0c are dependent on incident 

light intensity. It has been shown [1] that the photovoltage, qUphoto,of an ideal DSC is 

proportional to the log of the incident photon flux (/0), which is shown in equation (6 .1 ) 

below where kB is the Boltzmann constant, T is the temperature, r|ih and r|jnj are respectively 

the light harvesting and the electron injection efficiencies and To is the conduction band 

electron lifetime determined from the back reaction kinetics.

qUpboto ~ Iri
^lh V i n j

l c,eq
+  kBT \r\ t 0 +  kBT \n  I 0 (6.1)
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The relationship is confirmed in figure 6.11 where the V0c of all the cells used in this 

chapter are plotted against the log of incident light intensity, which was measured in W m 2 

and obtained by placing the filte r over a silicon reference cell when the lamp was set at 

1.000 Sun (1000 W m '2).
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Figure 6.11 Mean Voc vs. In l0fo r  all cells used in this chapter

The %n losses due to filtering can be seen in the last two columns of Table 6.3. The 

efficiency loss due to using a Melinex PET filte r could be taken as a base level and ignored 

as in a flexible DSC, the filtering effects of PET would be intrinsic to the device module if it is 

used as the top electrode in reverse illuminated devices. In that case, %r\ losses due to 

filtering at 385 nm (PET coated w ith BASF HP lacquer) only represent a 0.9% relative loss in 

efficiency. It has already been shown in chapter 6 that filtering at 385 nm can significantly 

increase the lifetime o f cells subjected to UV irradiation. It was also shown in section 6.1 

that filtering at 400 nm would probably be required and that there seems to be no 

advantage of filtering w ith a cut-off above 400 nm. Unfortunately there were no polymer 

filters available w ith a 400 nm cut-off at the time of testing but despite that, as a cut-o ff of 

420 nm gave a relative % loss of 11.7% cf. Melinex, it can be safely estimated that filtering 

at 400 nm would give relative losses in %q o f less than 10%, meaning that in practice a cell 

of say %q = 8.0 w ith a flexible PET electrode, should be expected to have %q of no less 

than 7.2 % if the PET encompassed a filte r w ith a UV cut-off o f 400 nm.
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6.3.2 Filtering of Cells Made with N3 Dye

The results of N3 cell performance are very similar to the cells made with N719 dye. This is 

to be expected as these two dyes are very similar. One important parameter is that in all 

cases the V 0c of cells made with N719 are higher than those made with N3. This is due to 

the tetrabutylammonium salt, and has been attributed to the influence of dye protonation 

upon the energetics of the T i0 2 conduction band. The less protonated N719 dye (compared 

to N3) results in a more negative conduction band edge, and therefore a higher open circuit 

voltage [2]. Table 6.4 shows the important cell parameters for N3 dyed cells gained from 

the IV measurements.

Table 6.4 Mean cell parameters of N3 cells, filtered and unfiltered

Voc he Fin % Loss cf. % Loss cf.
JV1 (mA cm' ) Factor %n unfiltered Melinex

N3 -Unfiltered 0.702 7.25 0.77 3.86 N/A N/A
(± 0.009) (± 0.02) (± 0.018) (±0.02)

N3-Melinex Filtered 0.688 6.42 0.77 3.38 12.4 N/A
(± 0.009) (± 0.02) (±0.012) (±0.02)

N3-BASF HP Filtered 0.683 6.38 0.77 3.35 13.2 0.9
(± 0.009) (±0.07) (±0.012) (±0.02)

N3-Kimoto Filtered 0.679 5.73 0.77 3.00 22.3 11.2
(±0.010) (± 0.07) (± 0.010) (± 0.02)

N3-Yellow Filtered 0.668 4.39 0.77 2.27 41.2 32.8
(±0.011) (± 0.06) (± 0.007) (±0.02)

6.3.3 Filtering of Cells Made with Z907 Dye

The progressive red shift of the UV-cut-off of the filters has similar effects to those that are 

observed in the N3 and N719 dyes. The main difference between cells made with the Z907 

and those made with N3/N719 dyes is that the Z907 cells are affected slightly more by 

filtering, especially when compared to the unfiltered cells and at higher UV cut-offs. This 

could be explained when looking at Figure 6 .6  as the IPCE of the Z907 has a much narrower 

action spectrum when compared to the other dyes. UV filtering causes a greater proportion



of useful photons to be blocked from the cell when compared to cells made with dyes with 

broader IPCE spectra.

Table 6.5 M e a n  cell param eters o f Z907 cells, filte red and unfiltered

Voc Jsc % Loss cf. 1% Loss cf.
M (mA cm'2) Fill Factor %n unfiltered Melinex

Z907-Unfiltered 0.682 4.21 0.73 2.09 N/A N/A

(± 0.007) (±0.15) (± 0.018) (± 0.09)
Z907-Melinex Filtered 0.668 3.68 0.72 1.78 14.8 N/A

(± 0.006) (±0.13) (±0.018) (± 0.09)
Z907-BASF HP Filtered 0.665 3.62 0.72 1.74 16.7 2.2

(± 0.007) (±0.14) (± 0.019) (± 0.09)
Z907-Kimoto Filtered 0.658 3.21 0.72 1.53 26.8 14.0

(± 0.008) (±0.13) (± 0.018) (± 0.09)
Z907-Yellow Filtered 0.647 2.41 0.72 1.12 46.4 37.1

(± 0.007) (±0.10) (± 0.019) (± 0.09)

6.3.4 Filtering of Ceils Made with N749 Dye

The results (table 6 .6 ) show similar patterns to the three previously used dyes. There are 

two exceptions however. The first is that the efficiency losses due to filtering are less 

severe in the N749 cell than in cells made with the other dyes. This is almost certainly 

because of the broader absorption spectrum of the dye. The second is that cells filtered 

with the BASF lacquered PET have a higher efficiency than those filtered with ordinary PET, 

despite the higher UV cut-off of the BASF lacquered sample. This may also be a factor of 

the broader absorption spectrum of N749 but combined with the anti-reflection properties 

of the lacquer. Figure 6 .8  and table 6.2 show that Melinex coated with BASF HP lacquer has 

a higher %T than the Melinex itself. This must be due to some anti-reflection properties 

caused by differences in the refractive indices of the PET and of the polyurethane in the 

BASF HP lacquer. This leads to the question: Why does this increase in %r\ only manifest 

itself in cells made with N749 dye and not with the cells made with the other dyes?

The answer could be that as the UV cut-off of the filter becomes less important with the 

broadening spectrum of the dye then other factors, such as a small increase in transmitted 

light through the filter may have an effect. A slight increase in light transmission would
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obviously cause a slight increase in cell efficiency. This is not observed in cells made with 

other dyes as the decrease in efficiency due to the UV cut-off far outweighs any 

antireflection benefits caused by the lacquer.

Table 6.6 Mean cell parameters of N749 cells, filtered and unfiltered

Moc Isc Hmax % Loss cf. % Loss cf.
M (mA cm’2) (mW) Fill Factor %Q unfiltered Melinex

N749-Unfiltered 0.685 3.83 1.74 0.74 1.93 N/A N/A

(±0.016) (±0.31) (± 0.09) (± 0.006) (±0.10)
N749-Melinex Filtered 0.669 3.41 1.51 0.74 1.68 13.0 N/A

(± 0.016) (±0.29) (± 0.09) (± 0.005) (±0.10)
N749-BASF HP Filtered 0.674 3.45 1.54 0.74 1.71 11.4 -1.8

(± 0.016) (±0.33) (±0.11) (± 0.04) (±0.13)
N749-Kimoto Filtered 0.664 3.13 1.38 0.74 1.53 20.7 8.9

(± 0.016) (± 0.30) (±0.01) (± 0.005) (±0.11)
N749-Yellow Filtered 0.655 2.51 1.09 0.74 1.21 37.3 28.0

(± 0.016) (± 0.24) (± 0.08) (± 0.004) (± 0.09)

6.3.5 Forward Illumination Summary

Figure 6.12 shows a summary of the results shown so far in chapter 6.3 with regards to the 

efficiency losses (and increases) caused by the differing levels of filtering . For a discussion 

of the results see the conclusions discussed in section 6.5.
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6.4 The Effect of Filtering on Cell Performance -  Reverse Illumination

Figure 6.13 shows the IPCE data of cells made with the four dyes, measured w ith reverse 

illum ination. Figure 6.14 shows the IV curves of the cells, illuminated in reverse, both 

unfiltered and w ith the filters used in this chapter. Table 6.7 shows the mean cell 

parameters of the cells made w ith the four different dyes.

Looking generally at all the data presented in figures 6.13, 6.14 and table 6.7, it can be seen 

that in all cases the effect of reverse illum ination is similar to that seen when a filte r is used 

in forward illum ination. The shape of the IPCE is modified by the spectral properties of the 

electrolyte, the Voc is only slightly affected but the Jsc is considerably reduced thereby 

reducing overall %r\. The electrolyte could in fact be regarded as a filte r analogous to the 

polymer filters in the way it spectral characteristics alter cell parameters. The filtering 

effect o f the electrolyte can be seen in figure 6.15 below where the IPCE of a cell made 

w ith N719 dye is shown overlain w ith the transmission spectrum of the CE-CE cell
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described in chap ter 4. The dotted black line shows the IPCE of the same cell, illuminated in 

reverse.
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Figure 6.13 The e ffect o f f ilte r in g  upon the IPCEs (do tted  black lines) o f reverse 
illu m in a ted  cells made w ith  the fo u r  dyes (N3, N719, Z907 and N749), 
overla in w ith  the %T o f the filte rs  (solid coloured lines  -  see fig u re  6.8 fo r  
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Table 6.7 Mean cell parameters of reverse illuminated cells, filtered and unfiltered

Mqc he % Loss cf. % Loss cf.
M (mA c m ' ) Fill Factor %n unfiltered Melinex

N719-Unfiltered 0.721 4.62 0.77 2.56 N/A N/A
(±0.008) (±0.13) (± 0.007) (±0.08)

N719-Melinex Filtered 0.707 4.12 0.77 2.25 12.1 N/A
(± 0.010) (±0.10) (±0.005) (±0.07)

N719-BASF HP Filtered 0.706 4.17 0.78 2.28 10.9 -1.3
(± 0.011) (± 0.11) (± 0.005) (± 0.07)

N719-Kimoto Filtered 0.702 4.07 0.77 2.2 14.1 2.2
(± 0.010) (± 0.10) (± 0.006) (±0.07)

N719-Yellow Filtered 0.695 3.58 0.78 1.93 24.6 14.2
(± 0.013) (± 0.11) (± 0.004) (±0.06)

N3-Unfiltered 0.688 4.66 0.78 2.49 N/A N/A
(±0.011) (± 0.20) (± 0.010) (±0.12)

N3-Melinex Filtered 0.675 4.15 0.78 2.19 12.0 N/A
(±0.012) (±0.17) (± 0.007) (± 0.11)

N3-BASF HP Filtered 0.672 4.2 0.78 2.20 11.6 -0.5
(±0.011) (± 0.17) (± 0.006) (± 0.11)

N3-Kimoto Filtered 0.67 4.08 0.78 2.13 14.5 2.7
(± 0.007) (±0.17) (± 0.007) (± 0.09)

N3-Yellow Filtered 0.664 3.61 0.78 1.87 24.9 14.6
(± 0.009) (± 0.15) (± 0.004) (± 0.09)

Z907-Unfiltered 0.66 2.04 0.73 0.98 N/A N/A
(± 0.004) (± 0.20) (± 0.034) (±0.14)

Z907-Melinex Filtered 0.649 1.79 0.72 0.83 15.3 N/A
(±0.005) (± 0.18) (± 0.034) (±0.11)

Z907-BASF HP Filtered 0.647 1.79 0.71 0.83 15.3 0.0
(± 0.004) (±0.17) (± 0.034) (±0.10)

Z907-Kimoto Filtered 0.644 1.74 0.71 0.8 18.4 3.6
(± 0.002) (±0.15) (± 0.036) (± 0.09)

Z907-Yellow Filtered 0.641 1.55 0.71 0.71 27.6 14.5
(± 0.005) (± 0.13) (±0.035) (± 0.08)

N749-Unfiltered 0.674 2.83 0.74 1.41 N/A N/A
(±0.015) (± 0.45) (± 0.006) (±0.20)

N749-Melinex Filtered 0.657 2.54 0.72 1.24 12.1 N/A
(±0.015) (±0.39) (± 0.048) (±0.17)

N749-BASF HP Filtered 0.658 2.58 0.74 1.25 11.3 -0.8
(±0.017) (± 0.41) (± 0.004) (± 0.17)

N749-Kimoto Filtered 0.654 2.52 0.74 1.21 14.2 2.4
(± 0.016) (±0.41) (± 0.003) (±0.17)

N749-Yellow Filtered 0.647 2.28 0.74 1.09 22.7 12.1
(±0.015) (± 0.36) (±0.005) (± 0.15)
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Looking at the IPCE spectra (figure 6.13) of the reverse illuminated cells it appears that the 

IPCEs fit w ith in the %T curves of the first three filters (Melinex, BASF HP and Kimoto). It 

would therefore be expected that these filters would all cause a similar drop in efficiency 

due to the 10% drop in light transmission from 450 -  900nm but no fu rther losses due to 

the red shifting of the ir UV cut-offs. Indeed looking at the IV curves of the cells filtered with 

these three filters it can be seen that the photocurrent is only slightly reduced in each case. 

This is contrasted by cells illuminated in the forward direction (figure 6.10) where there is a 

significant difference in photocurrent between the BASF HP filtered cells and the Kimoto 

filtered cells. In the reverse illuminated cells however there is still a drop in V0c due to 

decreasing light intensity which means that the Kimoto filtered cells have a lower efficiency 

compared to the Melinex and BASF HP filtered cells.

Perhaps the greatest contrast between the forward and reverse measurements is that in 

reverse illuminated cells, the anti-reflection properties of the filters are more prominent. It 

can be seen that even though the BASF HP filte r has a higher UV cut-off than the Melinex 

filter, the anti-reflection properties outweigh the UV cut-off properties and efficiencies 

actually increase in all cases except for the cells made w ith Z907 which retains the same 

%n.
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The anti-reflection properties of the flexible polymer electrode could be an im portant 

factor in future module design as more sophisticated anti-reflection layers and 

embossment techniques can significantly improve light transmission through a polymer 

film.

The only filte r that intersects the IPCEs of the cells is the spring yellow filte r and cells 

measured w ith this filte r show a much greater drop in photocurrent and efficiency 

compared to cells measured w ith the other filters. Even though a proportion of the action 

spectrum o f the dyes is filtered out by the electrolyte the broadness of their IPCE spectrum 

is still important. As w ith the forward illuminated cells, the dye that suffers least from 

filtering is the dye with the broadest action spectrum, i.e. N749. The results for reverse 

illum ination filtering are summarised in figure 6.16 below.
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6 .5 Conclusion

It has already been established that the mechanism of cell failure, at least in the 

accelerated tests described in this thesis, is likely to be the direct photoexcitation of the 

T i0 2 semiconductor leading to photo-oxidation of the electrolyte and depletion of l3\  This 

chapter has shown that filtering can reduce the onset of UV photodegradation. It has been 

shown that for long term  stability, filtering will be required above 385 nm but perhaps at 

no more than 400 nm. Despite the results presented here, there might still be a need for 

some filtering above 400 nm as rutile titania is still photoactive to around 412 nm. 

However, this is probably not necessary as rutile titania is generally considered not to be as 

photoactive as anatase due to a higher rate of electron-hole recombination which is 

attributed to rutile's lower capacity to adsorb oxygen onto its surface [3].

In a solar cell with a transparent polymer electrode manufactured from PET, the losses in 

light transmission and ultimately %q will be intrinsic to that device. It is therefore possible 

to use the %q values obtained with the Melinex filter as a baseline to compare the other 

filtering values to. Figures 6.12 and 6.16 summarise the relative losses in %r\ when using 

the UV cut off filters compared to the %q of the cells with the Melinex filter.

It has already been shown in this chapter that filtering above 400 nm gives no extra 

benefits in terms of cell stability at least in the timescale of the experiments conducted. So 

it can safely be assumed that for forward illuminated cells the right amount of filtering 

required for long term  stability will give relative losses in %r\ of much less than 1 0 % 

compared to losses caused by the PET and in reverse illuminated cells, the relative losses 

should be no more than 3% compared to the losses caused by PET. In fact if a broad action 

dye such as N749 were optimised and more sophisticated anti-reflection technologies were 

employed there may even be an increase in efficiency when using a PET based UV filter.

This is good news for those working on the industrialisation of metal based DSCs as in a 

reverse cell set up, which will be necessary if the WE is deposited on the metal, filtering at 

400 nm, which has been shown to give adequate protection against UV degradation, will 

not affect the %q in a detrimental manner. When used with anti-reflection technology, 

polymer based filters could actually improve efficiency. However, those who are working
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on reverse illuminated DSCs should be looking towards developing clear electrolytes as the 

current l"/l3' redox couple can reduce %r\ by up to around 35%.

The results shown in this chapter also show that the spectral response of the DSC is 

important when considering UV filtering. It has been shown that the narrower the action 

spectrum of the dye, the more it is affected by UV filtering. Synthesis of new dyes with 

broader action spectra reaching further toward the NIR region will be essential for DSC 

development in general as well as being important when considering UV screening.
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7. ELECTROLYTE REGENERATION AND PHOTOCURRENT RECOVERY IN UV
PHOTODEGRADED DYE-SENSITIZED SOLAR CELLS.

It has been found during the course of this work that severely UV degraded DSCs start to 

make a slow recovery when they are removed from UV exposure and put in the dark. 

Figure 7.1 shows the IV curves of a typical cell from the work described in chapter 3. This 

particular cell was exposed under load until it failed at around 400 hours total UV exposure. 

It was then left in the dark for around 2500 hours before making further IV measurements. 

The cell in question showed the drop in V0cand a collapse in photocurrent which is typical 

of severely UV degraded DSCs, yet after being left in the dark the photocurrent is almost 

restored to original conditions. The V0c and fill factor do not recover completely however, 

meaning that the "recovered" cell has %r\ = 2.5 compared with its original %r\ = 3.8; 

nevertheless, 2.5% efficiency is considerably better than 0.2% which is the %r| of the cell 

after just 400 hours exposure under electrical load. The fact that the cell can recover in this 

way supports the photodegradation/recovery equilibrium hypothesis discussed in chapter 

4 (figure 4.5).
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Figure 7.1 IV  curves of a typical photodegraded DSC cell before UV exposure, a fter UV 
exposure and after being left in the dark fo r 2500 hours
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7.1 Electrolyte Regeneration by Application of a Reverse Bias

During the experiments described in chapter 4 on the photodegradation of larger area test 

cells, it was discovered that applying a reverse bias of around +1.2 V to an undyed cell 

restores the colouration of the bleached electrolyte. Figure 7.2 shows two still images from 

a video taken of the colour restoration occurring whilst conducting a cyclic voltam m etry 

(CV) experiment on the cell. The experiment cycled the voltage from 0 V to +1.4 V in a two 

electrode set-up. It can clearly be seen that the yellow colour associated w ith electrolyte is 

much darker after the CV cycle indicating the regeneration of l3‘.

Figure 7.2 Still images taken from  an undyed cell undergoing a cyclic voltammetry  
cycle. Left is the cell a t 0 V before cycling. Right is the cell at +1.3 V at the 
end o f the firs t cycle

It was thought that if the photobleached electrolyte can be regenerated in an undyed cell 

then it may be possible to regenerate it in normal DSCs, and as it was shown in chapters 3, 

4, and 5 that the cell's ultimate failure arises from a loss of l3', it might be possible to 

restore the cell to a working condition. Figure 7.3 shows the IV curves o f a typical DSC 

before UV exposure, after UV exposure and after regeneration treatment. It can be seen 

that the cell undergoes a partial recovery of photocurrent upon regeneration but virtually 

no recovery of open circuit voltage, suggesting that there has been an irreversible change 

to the electrolyte composition or possibly a permanent change to the T i02 surface.
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Figure 7.3 IV  curves of a typical DSC before UV exposure, after UV exposure and after 
regeneration treatm ent which consists o f applying a positive bias, scanning 
from  0 V t o  + 1 . 4 V

Figure 7.4 shows a typical cyclic voltammogram of a cell that has been irradiated for around 

600 hours, and subsequently failed, undergoing the electrolyte regeneration process. The 

diffusion limited current seen from around 0.4 V to around 1.1 V is followed by an increase 

in current indicative of the degraded electrolyte undergoing reduction. The hysteresis of 

the second scan and subsequent scans, which follow an identical path, suggests that the 

first polarisation is responsible for the regeneration of the electrolyte.

It has been found that ramping up the voltage from 0 V to + 1.4 V, as in a CV experiment, 

seems to be more effective at restoring the cell properties than by simply applying the 

polarising voltage. It has also been found that the sooner the regeneration treatm ent is 

applied, the closer the cell properties are restored to original values. This leads to the 

possibility that by refining this treatm ent (in terms of the polarisation time, magnitude and 

its frequency of application) that the regeneration of the devices could be more effectively 

controlled. This is an attractive solution to restoring device performance since it could be 

periodically applied (for example at night) to maintain cell longevity.
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in the time scale o f the experiment

7.2 Period Electrolyte Regeneration

7.2.1 Case Studies of Individual Cells

Figure 7.5 shows the change in efficiency over time of two individual cells, R1 and R2, both 

exposed to UV irradiation under load. In figure 7.5 it can be seen that both cells undergo 

UV exposure for 287 hours, both cells are subsequently given regeneration treatm ent. R1 is

held at 1.3V for 60 seconds whilst R2 undergoes a CV cycle from 0 V to + 1.4 V, both cells

make a partial recovery in efficiency and then both cells are placed in the light soaking 

cabinet. The regeneration seems to be short lived as after just 55 hours light soaking their 

efficiencies drop back down to a level only slightly above the their efficiencies after UV 

exposure. However, after being placed under load in the light soaking cabinet the cells start 

to recover more permanently. In particular, cell R2 seems to make a significant recovery. 

The fact that the cells recover once put in the light soaker shows once again how critical UV 

exposure is to DSC stability.
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Figure 7.6 shows the changing %r\ of another cell. This time, the cell was subjected to 

constant UV illum ination under load and periodically treated w ith a CV ramping cycle at 20 

mV s 1 to 1.4 V. It can be seen that after treatm ent, the cell makes a partial recovery but 

this seems to be short lived as the %r\ drops again quite quickly. Both the %x\ before 

recovery treatm ent and the %r\ after recovery treatm ent continue to decline throughout 

the exposure period which suggests that the periodic cell regeneration does not, at least in 

this case, extend cell lifetim e. Nonetheless, after around 600 hours exposure, when looking 

at the %r\ values before treatm ent, the rate of degradation decreases and seems to 

plateau. If this is the case then it means that the periodic regeneration has prevented total 

cell failure even though it hasn't prevented UV degradation and the decline in %q.
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Figure 7.6 Changing %>r) o f one cell throughout UV exposure and periodic regeneration 
treatment. The blue values represent the %q before regeneration the red 
values represent the %q after regeneration.
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7.2.2 Systematic Study of Periodic Cell Regeneration

Two groups of cells were irradiated by UV light under open circuit conditions for the 

exposure period shown in figure 7.7 below. One set of cells were periodically regenerated 

the others were not. Figure 7.7 shows the mean %r\, Jsc and V0c of the cells, the plots only 

include data before cell regeneration has taken place and do not include the values after 

regeneration. Looking at the V0c, which so far has been identified as an important marker 

of UV degradation in DSCs, there appears to be no difference between the two groups of 

cells. Looking at JSc and %r\ however, it can be seen that periodic regeneration seems to 

prevent the total failure of the cells by conserving a minimum amount of charge carriers 

within the electrolyte and maintaining a photocurrent density of around 2.5 mA cm'2.
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Figure 7.7
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Although the power of the UV lamps has been shown to be reasonable with respect to 

AM 1.5, the constant UV illumination received by the cells means that the cells are being 

tested for stability under accelerated conditions. The amount of UV radiation received by 

the cells per hour is far greater than the average that would be received by the cells, even 

in high insolation areas. It was thought that if the cells were exposed under less severe 

conditions, then the regeneration treatm ent may be more effective. It has been shown that 

cell degradation is impeded somewhat when cells are exposed to UV light in reverse 

illumination due to the UV filtering effects of the electrolyte. It was thought it might be 

possible that periodic regeneration may be more effective in reverse exposed cells due to 

the net decrease in UV light received by the T i0 2 when cells are irradiated this way. As in 

figure 7.7, cells were irradiated, this time from the CE side and periodic regeneration was 

applied. Figure 7.8 shows the mean %n, Jsc, and V0c, over the exposure period of cells 

irradiated from the CE side. Looking at figure 7.8 it is clear that there is no difference in the 

long term stability of the regenerated and non-regenerated cells.
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Figure 7.9
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7.3 Conclusion

From the experiments conducted so far, it appears that periodic cell regeneration cannot 

prevent the inevitable photodegradation of DSCs irradiated by UV lamps. It appears that 

the equilibrium discussed in chapter 4.1.2 (and shown in figure 7.11 below) can be 

tem porarily pushed to the left hand side via reverse polarising the cell but it seems that the 

l3 that is regenerated as a result, is soon re-consumed. Nonetheless, the exposure 

conditions are accelerated and the cells do not receive the same recovery period as 

operating cells would overnight. A more suitable experiment might involve irradiating the 

cells for 8 hours and then following a regeneration treatm ent, left in the dark for 16 hours. 

This might give the cells a chance to recover before the photocatalysed consumption of l3 

is allowed to continue once again.

Recovered cell 
(l3‘ restored)

P hotod egrad ation  

hv[ \ JV)  ,

Recovery

Photodegraded cell 
(l3' depleted)

Figure 7.10 Photodegradation/recovery eguilibrium o f DSC test cells under UV 
irradiation

It is clear that the regeneration treatm ent cannot prevent photodegradation of the cells 

but if the JSc data shown in figure 7.8 is replotted, this time w ith the post-regeneration 

treatm ent values included (figure 7.11), it can be seen how cells subjected to periodic 

regeneration might maintain a higher average maximum power output over a given UV 

exposure period compared to those that do not receive the treatm ent.
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Figure 7.11 Jsc o f cells irradiated by UV light and periodically regenerated. The blue
values represent the Jsc before regeneration the red values represent the 
Jsc after regeneration.

This does warrant fu rther investigation. Ideally this would involve measuring the maximum 

power output during operation to ascertain whether the periodically regenerated cells 

have a higher average maximum power output during the exposure period and allowing 

longer recovery times after exposure and regeneration.
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8. UV PHOTODEGRADATION OF POLYMER FILMS INTENDED FOR USE AS
COUNTER ELECTRODE MATERIALS IN FLEXIBLE DYE-SENSITIZED SOLAR 
CELLS

In a flexible, metal based DSC, the counter electrode is most likely to be a polymer film 

coated with a TCO. This polymer film will perform many more functions than just carrying 

current, and acting as a substrate for the Pt catalysed reactions at the CE surface. The 

polymer film will form part of the encapsulation layer to keep the VOCs of the electrolyte 

from escaping and act as a barrier to prevent atmospheric oxygen and water ingress. The 

importance of UV filtering has been discussed extensively in this thesis and so the polymer 

film will need to provide UV filtering in order to assure long term stability. The polymer film 

itself will be susceptible to direct photodegradation and therefore one of the challenges to 

ensure durability in flexible DSCs ultimately relates to the stability of the transparent CE 

material. Polymer films are known to be susceptible to photodegradation by UV light, 

leading to the loss of mechanical and optical properties, resulting in embrittlement and 0 2 

and moisture ingress. This would ultimately lead to loss in efficiencies and cell module 

failure.

Because of its multi-functional role, the polymer film will henceforth be referred to as the 

"topsheet" as this will form the part of the module that is uppermost and therefore will be 

the part of the module that faces the Sun. Other desirable properties of the topsheet 

include anti-reflection, easy or self cleaning and impact protection.

8.2 The Topsheet as a UV Filter

It has already been shown in section 6 that, in terms of DSC stability, there seems to be no 

extra benefit of filtering above 400 nm, at least in the time period of the experiments 

described there. The work described in this was carried out before the work in chapter 6 

was started and at that time it was thought that filtering may be needed at 410 nm due to 

the band gap of rutile T i0 2 being 3.02 eV meaning that it is theoretically photoactive at A < 

410 nm. Anatase T i0 2 on the other hand has a bad gap of 3.18 eV so is photoactive at A < 

390 nm.
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The photocatalytic activity of T i0 2 arises from the creation of an electron-hole pair which 

forms when a T i0 2 electron absorbs a photon. Oxygen and water molecules adsorbed to the 

T i0 2 particle surface form oxygen radicals (reduced by the electron) and hydroxyl radicals 

(oxidised by the hole). These radicals attack organic compounds in the vicinity leading to 

degradation. Despite being excited by lower energy photons than anatase molecules, rutile 

molecules are not as photoactive because rutile has a lower surface area than anatase 

meaning less water/oxygen adsorption and so fewer radicals are created [1]. In addition to 

this, the heat treatm ent used to sinter the T i0 2 means that the T i0 2 film should consist 

almost entirely of anatase. Despite this, at the time these experiment were started, Dyesol 

believed that small rutile impurities may be present or that anatase trap states may be 

present with lower band gaps that will excite at higher \ ,  because of this they set a 

requirement of < 1 %T at \  < 410 nm.

8.2.1 The UV Cut-Off

It is thought that the topsheet of the DSC module will be a PET film such as Melinex which is 

manufactured by DuPont Teijin Films. These films offer good flexibility and scratch 

resistance, but as it can be seen in Figure 8.1 below in the transmission spectrum of 

Melinex ST505 that these films do not screen UV light above 315 nm. Two methods of 

improving the UV screening properties were thought possible. One method was to coat the 

PET film with a UV screening clearcoat; another was to co-laminate another film onto the 

PET. Alternatively a supplier could be sought that could manufacture unique films just for 

this project. The ultimate aim of this part of the project at the time was to achieve a UV cut­

off of around 410 nm.
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Figure 8.1 UV-Vis %Tspectrum of Melinex ST505

8 .2.1.1 Original Samples

The original samples in this part of the project consisted of Melinex ST505 (PET) coated 

with various UV absorbing polyurethane clearcoat lacquers (BASF LP; BASF HP and Beck). A 

last sample was included: Icosolar® T 2823 from Isovolta which is a co-laminate of a PVF 

and PET film with added UV absorbers (UVAs). The samples will be explained in more detail 

in section 8.3.

Figure 8.2 shows the transmission curves of the original samples, the figure contains a %T 

curve for an "ideal" curve where %T < 1 (at A < 410 nm). It is clear that none of the samples 

could offer the level of screening that was required by Dyesol at the time.
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Figure 8.2 The transmission curves o f the original samples tested

Figure 8.3 shows the transmission curves of some of the samples coated with Bayer UV 

cured polyuretyhane lacquers. Although they do offer some UV screening, the UV cut-off, 

even coated at 60 pm, is not as good as that o f the BASF lacquers which are coated at 20 

pm.
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Figure 8.3 The transmission curves o f the samples coated with the UV cured Bayer 
lacquers
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8.2.1.2 The use of Additional UV Absorbers -  Tinuvin 477

A sample o f Tinuvin 477 was obtained BASF. Tinuvin 477 is a high performance organic UV 

absorber w ith a high UV cut-off so it was decided to see if the filtering performance of the 

BASF HP lacquer could be improved by additions of Tinuvin 477. Figure 8.4 shows the 

transmission curves of lacquers made w ith these additions. Increasing additions improve 

the UV cut and cause it to red-shift but even at a 10% addition, Tinuvin 477 does not give 

the level o f UV screening required to completely remove T i02 band gap photons. However, 

Tinuvin 477 does improve the UV cut-off o f BASF HP at a 2% addition. Chapter 6 showed 

that UV screening needs to occur between 385 nm and 400 nm to ensure long term stability 

and as BASF HP cuts o ff at 385 nm, any improvement on this can only increase cell lifetime.

100

80

60 
%T 

40

20

— BASF HP
2% T477 20 micron 
3% T477 40 micron 

— 5% T477 40 micron 
— 7% T477 40 micron 

10% T477 40 micron 
- Ideal cut-off

Figure 8.4 %T curves o f samples with Tinuvin 477 additions

8 .2.1.3 Inorganic and Yellow Pigments

Some T i02 UV absorber dispersions were obtained from Sachtleben (RM200 and RM400), 

these were tested to see if they could give the required level o f UV screening. The 

dispersions were added to BASF HP at varying concentrations between 1% and 5% by
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weight. Their %T curves spectra are shown below in figure 8.5. It is clear that a higher 

concentration than 5% would be needed to achieve the level o f UV filtering required. It is 

also clear however that increasing the concentration of the T i02 dispersions would also 

resuit in a large loss of iight transmission above 400 nm. The effect o f this on cell efficiency 

would be too great and therefore these dispersions are unsuitable for use as UV protection 

for DSCs.

1 0 0  -i

200 400 600 800
nm

Figure 8.5 %T curves i f  samples with Sachtleben Ti02 dispersion additions

Some iron oxide pigment dispersions were obtained from AMPS Ltd as FeO pigments are 

often used as UV absorber in wood lacquers. The dispersion was added to the BASF HP 

lacquer in the quantities shown in Figure 8.6. Similarly to the T i02 dispersions, it appears 

that the level o f UV filtering required can be achieved but w ith the loss of a great deal of 

visible light. The effect this would have on cell efficiency means that these pigments would 

not be suitable either.

Finally it was decided to try some yellow organic pigment as it was thought that a yellow 

pigment would absorb blue light and may give the cut-off required. Two yellow pigments 

from  BASF were added in the proportions shown. The pigments were 2P26-M158 (Yl), and 

90-A105 (Y2). The transmission curves can be seen in Figure 8.7. In a similar way to T i02
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and FeO pigments it appears that increased UV protection comes w ith a decrease in visible 

light transmission. These yellow pigments would not be suitable for UV protection of DSCs.

Figure 8.6

Figure 8.7

200 400 nm 600 800

%oT curves o f samples with FeO dispersion additions in BASF HP 
lacquer

100

%T

0

/  _ Y10.1%
Y l 1.0%
Y2 0.1%
Y2 1.0%

j
- -  Ideal cut-off•iiiiiii~**r--------------------- 1---------------------- 1

200 400 mn 600 800

%oT curves o f samples with yellow pigment additions in BASF HP 
lacquer
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8.2.1.4 Kimoto Films

Kimoto, a Japanese film  converter, had been contacted and they sent samples to be 

evaluated. They have many films in development which may provide a solution to the UV 

screening problem. The films %T curves are shown in Figure 8.8 below. The films have sharp 

UV cut-offs that f it the “ ideal curve" almost completely. These films have not however been 

tested fo r long term stability as this would break the terms and conditions of the non­

disclosure agreement which Tata Steel had w ith Kimoto. The Kimoto films have a slight 

yellow discoloration so whether the UV filtering is caused by organic UV absorbers or some 

other pigment is unclear.
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Figure 8.8

8 .2.1.5 UV Absorbers in a UV Cured Adhesive

Whilst looking at ways to laminate and adhere two sheets o f PET together it was thought 

that it might be possible to disperse some UV absorbers in an adhesive to give UV filtering. 

Two adhesives were sourced. Devcon Tru Bond 18401 is a UV activated pressure-sensitive
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adhesive. Devcon Tru Bond 18210 is a UV cured adhesive. Tinuvin 477 was added to the 

adhesive in the proportions shown in Figure 8.9 below. The adhesion of both adhesives was 

found to be satisfactory even at 30% (by weight) UVA addition and this almost gives the 

lever o f filtering required. After a few weeks however the UVAs were found to have leached 

out o f the adhesive and the adhesion had been compromised. This method o f creating a UV 

filte r is promising but would require more work finding the right combination of adhesive 

and UV absorber.
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301

Figure 8.9 %T curves o f film s colaminoted with UVA doped adhesives (the percentages
show the amount o f Tinuvin 477 added by weight to the adhesive)

8 .2.1.6 UV Filtering by the Electrolyte

The ultimate aim of this project is to produce flexible DSCs on a metal substrate and 

because of this the cells must work in a reverse illum ination set up. At the tim e the 

experiments in this section were being carried it was hoped that the electrolyte may offer 

some UV protection to the cell. This has since been shown not to be the case. Chapters 3, 4 

and 5 show that cells do degrade more slowly when they a reverse illuminated w ith UV 

light but still eventually fail nonetheless.

1821010%  
18210 20% 
18210 30% 
1840110%  
1840120%  
1840130%  
Ideal cut-off

400 500 600
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The electrolyte has its own spectral properties and fits well inside the ideal %T curve as 

figure 8.10 shows. Figure 8.10 shows the %T spectra o f a model cell made w ith TCO-coated 

and platinised glass, but no T i02 photoanode. When filled w ith electrolyte and measured 

w ith UV-Vis the cell gives an impression of what the photoanode might "see" in a reverse 

set up by characterising the %T properties of the TCO, platinum and the electrolyte 

combined.

Despite the fact that it has already been shown that the electrolyte offers only lim ited UV 

protection, it still would have been wrong to rely on the electrolyte for UV protection for a 

number of reasons. Firstly the electrolyte that is represented in figure 8.10 may not have 

the same spectral characteristics as the electrolyte that ends in up in the firs t generation 

product. For example, the iodine content may be reduced, the layer o f electrolyte may be 

less than that represented in figure 8.10 or a transparent electrolyte may even be 

developed. In addition to this, a flexible cel! under tension/compression w ill not have a 

uniform layer o f electrolyte. All these reason could decrease the level o f filtering provided 

by the electrolyte.
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%T Electrolyte "Cell 
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Figure 8.10 UV-Vis spectra o f the electrolyte "cell", a device made w ith two platinised 
TCO glass "electrodes", sealed and backfilled w ith electrolyte. There is no 
Ti02present in these devices meaning that the %Tspectrum should give an 
impression o f the light that should reach the photoanode in a normal DSC 
device.
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8.3 UV Stability of the Topsheet

The polymer films that will form the substrate for the counter electrode will be themselves 

susceptible to UV photodegradation. It is important therefore to be able characterise the 

photodegradation of these films and to assess UV protection measures. The following 

sections will address both these issues.

8.3.1 UV Protection with Polyurethane Clearcoat Lacquers

Three polyurethane two-pack (2k) clearcoats were obtained. Two from BASF, one 

designated low performance (BASF LP) and one designated high performance (BASF HP). 

The third clearcoat was from Beckers (Beck). The %T spectra of the lacquers coated onto 

Melinex ST505 can be seen in figure 8.2 above. It can be seen that whilst BASF HP and LP 

offer good UV screening the Beckers lacquer offered no UV screening at all compared to 

ordinary PET. Neither of the BASF lacquers offers the protection specified by the "ideal 

curve".

Some free films of the BASF lacquers were made by coating onto a Teflon baking sheet and 

carefully removing the film when cured. Figure 8.11 below shows the transmission spectra 

of both the BASF lacquers as free films. The spectra are what one would expect to see in 

that they are very similar to those of the Melinex ST505 coated with the lacquers. It can 

also be seen that the BASF HP is has slightly better UV absorbers than the BASF LP as it has 

a lower %T in the region of 350 - 250 nm. This is shown perhaps more convincingly in figure 

8.12 which shows that BASF HP has a larger UV absorbance, particularly in the region of 230 

nm.
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Figure 8.11 UV-Vis %T spectra o f the BASF lacquers as free-films, i.e. they have been
coated at 20 pm on a Teflon baking sheet and carefully removed fo r  UV-Vis 
sample preparation.
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Figure 8.12 Absorbance spectra o f the BASF lacquers as free-films
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8.3.2 Colaminates and other Films

For the initial weathering experiments, three films were obtained, these were:

1) Norton® ETFE from St Gobain: an ethylene tetrafluoroethylene (ETFE) film

2) Icosolar® T 2754 from Isovolta: an ETFE film coated with inorganic SiOx on
one side

3) Icosolar® T 2823 from Isovolta: a co-laminate of a polyvinyl fluoride (PVF) and PET
film coated on one side with a primer

Films 1) and 2) were laminated onto Melinex ST505 film using an ordinary office laminator 

and then sealing the edges with epoxy resin. This was not an ideal method as air and water 

would inevitably be trapped between the films. A solution was needed to get the tests 

running and this was found to be the best alternative at the time. If research continues into 

using co-laminates then perhaps a better method would be to use a clear EVA adhesive in 

combination with a heated roller/laminator, if this was used then it might be possible that 

PET films might need to be surface treated. Film 3) is bought from Isovolta already co­

laminated. If this was used for PV module encapsulation then no other treatments would 

be needed.

Figure 8.13 shows theUV-Vis %T spectra of the films. Only one of the laminates (Icosolar® T 

2823) offered substantial additional UV screening. The other films could have probably 

been disregarded from the start, however they were subjected to the same accelerated 

weathering conditions as the other samples and the results will be presented below.
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Figure 8.13 UV-Vis %T spectra o f the film s and colaminates

8.3.3 Accelerated Weathering of Polyurethane Clearcoats and Colaminated
Films

Accelerated weathering was carried out in QUV cabinets that comply w ith the international 

standard ISO 4892. They were operated on an alternate 8 hour light cycle to 4 hours 

moisture cycle continuously and samples were tested approximately every 250 hours. The 

levels o f degradation were measured using the change in UV-Vis and FTIR spectroscopy and 

through observation.

8.3.3.1 Photodegradation Observed with UV-Vis Spectroscopy

Melinex ST505 (PET) film  shows a large absorbance from 200 nm to 315 nm. It can be 

observed overtime that, due to QUV weathering, this absorbance decreases (Figure 8.14) 

resulting in an observed change in the %T spectra (Figure 8.15). Figure 8.15 shows that over 

tim e photodegradation causes a decrease in the amount o f UV light transm itted whilst 

appearing to increase the amount o f visible light. This might be considered somewhat
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beneficial were it not for the fact that over the course of 2562 hours QUV exposure the 

Melinex became hazed and em brittled and by 2500 hours was far too mechanically weak to 

continue testing. The reduction in absorbance is probably due to consumption or 

breakdown o f the UV absorbers over the exposure period.
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Figure 8.14 Decrease in UV-Vis Abs (200 nm to 300 nm) o f M elinex ST505 exposed to  
QUV over 2562 hours
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Figure 8.15 Changes to  the UV-Vis %T spectra o f M elinex ST505 exposed to QUV over 
2562 hours

Figures 8.14 and 8.15 suggest that it might be possible to get an idea of the amount of 

photodegradation occurring in a sample by looking at the change in its UV-Vis spectra over 

time. This is correlated w ith physical evidence such as yellowing em brittlem ent and hazing.
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Figures 8.16 summarises the changes in the UV-Vis %T spectra of the samples described in 

sections 8.3.1 and 8.3.2 over the time periods shown.

Correlation w ith physical evidence and FTIR spectroscopy shows that the best performing 

films show the least change in their %T spectra. UV-Vis %T spectra can therefore give a 

good indication of the extent o f photodegradation.
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Figure 8.16 UV-Vis %T spectra o f samples described in sections 8.3.1 and 8.3.2 over the 
exposure periods shown -  NB. time period is different in the case o f 
each sample
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8.3.3.2 Quantifying Photodegradation using UV-Vis - The Yellowness Index

It has been shown [2] that photodegradation of PET films causes a yellowing which leads to 

an increase in absorbance in the region of 400 nm (Figure 8.17). It was also shown in [2] 

that this photodegradation could be quantified by measuring the increase in absorbance at 

400 nm. The increase in absorbance is caused by quinone and diquinone formed during 

photodegradation [3], Figure 8.18 shows the relative increase in absorbance at 400 nm of 

all the original samples.
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Figure 8.17 The increase in absorbance in the region o f 400 nm due to UV exposure of 
uncoated PET (Melinex ST505) over the exposure period shown

Figure 8.18 clearly shows that BASF HP, BASF LP and T2833 have outperformed the other 

samples even though they have endured almost three times the amount of QUV exposure. 

T2754 and St.G. have a larger increase in absorbance at 400 nm than uncoated Melinex, 

and therefore appear to have suffered more from photodegradation. This is because T2754 

and St.G. o ffer no protection from photodegradation whatsoever and in effect, when these 

films are laminated onto Melinex ST505 and irradiated, there is double the amount of 

material undergoing photodegradation and therefore one would expect a greater increase 

in Abs at 400 nm when compared to uncoated Melinex ST505.
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Figure 8.18 Increase in absorbance at 400 nm o f the samples shown. Irradiation o f 
some samples was stopped at 2562 hours due to the poor physical condition 
o f the samples

The Melinex coated w ith the Beckers lacquer also has an increased Abs at 400 nm 

compared to uncoated Melinex. This is, at first, puzzling as the Beckers lacquer is supposed 

to be a UV-screening automotive topcoat. This evidence plus the that seen in figure 8.2, 

which shows no additional UV protection offered by the lacquer, strongly suggests that the 

author was either given the wrong formulation by Beckers or that the right form ulation was 

given but w ithout any UV absorbers. If this is true then what is seen in Figure 8.18, where 

the Beckers coated film  appears to degrade more than the uncoated film, is in effect the 

photodegradation of a polymer film coated w ith another polymer film , w ith no additional 

UV protection. This would mean a greater mass of polymer undergoing photodegradation 

than just the uncoated film by itself which would therefore give an increase in absorbance 

at 400 nm compared to that given by the uncoated film.

8.3.4 FTIR spectroscopy

When PET is exposed to UV light and in the presence of oxygen (in air), it undergoes a 

number of photo-oxidative reactions which eventually lead to the form ation of carboxyl 

end-groups (Figure 8.19) [4]. Because of this, it would be expected that the FTIR spectra of
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PET should see an increase in the carbonyl peak at 1720cm'1 and peak broadening at 

4000cm '1 to 2500cm'1 due to the presence pf hydroxyl groups.
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Figure 8.19 Photo-oxidative reactions undergone by PET during UV exposure leading to 
carboxyl and hydroxyl end-groups [A] .

All samples were analysed with an FTIR spectrophotometer at 250 -  500 hour intervals. 

Figure 8.20 below shows how the spectrum of Melinex ST505 changes over time. It can be 

seen that the peaks seen from 4000cm'1 to 2500cm'1 broaden over time. Unfortunately the 

films are too thick for a through transmission measurement and the IR absorbance at 

1720cm'1 is too strong to see any change in the carbonyl peak at 1720cm'1.

As FTIR gives information on the fundamental chemistry of the substance being analysed, it 

is to be expected that the spectra of unstable samples should change after UV irradiation 

due to photodegradation changing their chemistry. Those samples which are more stable 

under UV light should see little change in their spectra. Indeed this was the case seen when 

looking at the FTIR spectra shown in figure 8.21 below. The samples which show the least
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yellowing when measured w ith UV-Vis are also the samples that show the least changes to 

their FTIR spectra.
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Figure 8.20 Overlaid FTIR spectra o f Melinex ST505 taken over the exposure period 
during QUV accelerated weathering

Some the samples in this trial have already been ruled out of being used as a DSC topsheet 

material due to the evidence already seen from UV-Vis spectroscopy which is backed up 

here in figure 8.21. The samples which have shown the greatest physical damage due to 

irradiation are also the samples whose FTIR spectra has experienced the most peak 

broadening in the region of 4000 -  2500cm \  Two of the samples stand out in that they 

suffer very little  from peak broadening in this region, these are also the samples which 

appear to have suffered no physical affects from irradiation. The samples are: Melinex 

ST505 coated w ith BASF HP and the Icosolar T2823 film.
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Figure 8.21 Changes to the FTIR spectra o f samples undergoing QUV accelerated 
weathering over the exposure periods shown

The above results show the FTIR spectra taken at around 0 - 3500 hours QUV weathering. 

The best films were actually irradiated further until around 8000 hours. Figure 8.22 below 

compares the best films from 0 hours to the time shown.
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samples over the QUV exposure periods shown
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Figure 8.22 shows that the FTIR spectra of the BASF LP samples had, by 6555 Hours QUV 

weathering, suffered peak broadening similar to that seen in the worst performing samples. 

This suggests that the BASF LP sample had undergone significant photodegradation. This 

was backed up by physical evidence as by 6555 hours the samples were heavily embrittled 

and mechanically weak. Strangely the FTIR spectra of the BASF HP show a slight narrowing 

of the broad band centred around 3430cm'1. This band is probably due to N-H stretching in 

the polyurethane lacquer. The reduction of this peak could be due to degradation of the 

polyurethane topcoat instead of the PET film as degradation of PET would cause the peak 

broadening seen in Figure 8.20. Looking at the T2823 sample, peak broadening is observed 

suggesting a degree of photodegradation although not as severe as that seen in the BASF LP 

sample. One feature of note is the complete disappearance of the band at 3633cm"1. This 

maybe an O-H stretching a band and its disappearance was at first puzzling. When looking 

back at the data however, the intensity of this band increases and decreases over time. 

Bands at around 3630cm'1 are consistent with hydrogen bonded water molecules, so the 

size of the band could be due to how wet the sample is when tested. The QUV process has 

both a wet and dry cycle. It may be possible that when the measurements were taken when 

the sample was on a just after a wet cycle the band at 3633cm'1 may have been larger and 

when the measurement was taken after or during a dry cycle the band 3633cm"1 at may 

have been smaller. Unfortunately there is no way of telling from the data which cycle the 

sample was on when the measurements were taken.

8.3.5 ATR-FTIR Spectroscopy

After around 2500 hours into the QUV accelerated weathering testing an ATR reflectance 

accessory became available for the FTIR spectrophotometer. ATR spectra were taken of un­

irradiated reference samples from this chapter, of samples that ceased being irradiated at 

2562 hours QUV and of the samples that continued to be irradiated after 2562 hours. Only 

having two values, i.e. irradiated and not irradiated for the samples that were stopped at 

2562 hours QUV, a pattern is at first hard to see. For this reason each sample shall be 

analysed individually.
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8.3.5.1 Uncoated Melinex ST505 (PET)

In figure 8.20 (the FTIR %T spectrum of Melinex ST505) it can be seen that absorption bands 

in the fingerprint region of the spectrum are far too strong to be able to get any detail, this 

is in part, due to the fact that the films are too thick to take through film %T measurements. 

ATR-FTIR being a reflectance technique only analyses the surface of a sample and so the 

strength of the absorption bands is not determined by sample thickness. Figure 8.23 shows 

the ATR spectra of Melinex ST505 which hasn't been exposed to UV irradiation. Table 8.1 

outlines some of the absorption bands in the fingerprint region.
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Figure 8.23 ATR-FTIR spectrum o f unexposed Melinex ST505 showing close up of the 
fingerprint region, a PET monomer is shown inset

Figure 8.24 shows the ATR spectra of the unirradiated Melinex overlain with that of the 

same sample that has received 2562 hours total QUV exposure. Like the through film 

measurements there is peak broadening observed in the region, 4000 -  2500cm'1. Looking 

at the finger print region, all the peaks have reduced in intensity; this is in contrast to some 

photodegradation studies which use the increase in the carbonyl peak at around 1720cm"1 

to quantify photodegradation. There are however studies that have returned similar results 

to those seen in Figure 8.24 when ATR-FTIR is used to observe photodegradation of PET [5]. 

Of the most noticeable changes between the spectra, is the decrease in absorbance at the 

positions close to major PET absorbance bands (Table 8.1). The C=0 stretch at about 1720 

cm"1; the ring in plane deformation at 1410 cm"1; the -C H 2-  wagging at 1340 cm '1; the ring 

and ester modes at 1300-1000 cm"1; and the ring C-H + C=0 out of plane bending at 724
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cm -1 all reduce in size after the film has been irradiated. The decreases in the absorption 

bands in the fingerprint region for the PET functional groups strongly suggest there is a 

large breakdown in the chemical structure of the polymer through processes such as chain 

scission. The peak broadening at around 3000cm 1 suggests that high concentrations of 

carboxylic acids are being formed from the breakdown products.

Table 8.1 The absorption bands of PET in the fingerprint region

Wavenumber (cm 1) Corresponding PET band

1716 C=0 stretch

1410 Ring in-plane deformation of benzene ring

1342 CH2 wagging (trans)

1246 Ring-ester in-plane mode

1122 . Ring-ester in-plane mode

1099 Symmetric glycol C -0  stretch (gauche)

1019 Ring C-H in-plane deformation

975 0-CH2 stretch

724 Ring C-H + C=0 out-of-plane deformation
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Figure 8.24 Overlain spectra o f Melinex ST505, unirradiated (blue) and after 2563 hours
QUV (red)

8.3.5.2 ATR spectra of BASF LP and BASF HP Lacquers at 3517 Hours QUV

Figures 8.25 and Figures 8.26 show the overlain spectra of BASF L.P and BASF HP 

respectively. Unlike the spectra of the Melinex which is typical o f PET. The reflectance 

spectra fo r these two samples are typical o f that of polyurethane. This shows that ATR-FTIR 

only collects the IR spectra of the surface of the film.
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Figure 8.25 FTIR-ATR spectra o f BASF LP at 0 hours (blue) and 3517 hours irradiation  

(red)
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Figure 8.26 FTIR-ATR spectra o f BASF HP at 0 hours (blue) and 3517 hours irradiation  
(red)

The main features of the above spectra are: a N-H stretch at 3370cm'1, a C-H2 asymmetric 

stretch at 2940cm \  C-H2 stretching at 2870cm-1, a O O  stretch at 1725cm-1, a vibrational 

band at 1691cm"1 which is characteristic o f the NH-(C=0)-NH of polyurethane and a C-H 

stretch at 1460cm"1. The broad band between 1300cm’ 1 and 1100cm 1 could be due to an 

ester linkage. The peak at 760cm could be due to C-H rocking and the band at 702cm 1 

could be a due to a styrenated polyol.

It has been shown [6] that when polyurethane degrades, there are band reductions at 

1680cm"1 and 1720cm 1 and that there should be reductions of both 1460cm 1 and 

1230cm"1 vibrational bands. The study also shows that photodegradation o f polyurethane 

causes the appearance of broader N-H bands at 3370cm"1. Looking at figures 8.25 and 8.26 

it is quite clear that there are no signs of major degradation of the polyurethane lacquer by 

3517 hours total QUV exposure, although there is a slight broadening of the N-H peak in the 

BASF LP. This suggests that both the BASF LP and the BASF HP lacquers are extremely stable 

to UV photodegradation w ith the BASF high performance lacquer living up to its name and 

being the higher performing lacquer.

Further irradiation of these samples was undertaken and the ATR spectra were measured. 

Figure 8.27 shows the overlain spectra of the BASF LP sample at 0 hours and 6053 hours 

QUV. Figure 8.28 shows the overlain spectra of BASF HP at 0 hours and 7964 hours QUV.
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Figure 8.27 FTIR-ATR spectra o f BASF LP at 0 hours (blue) and 6053 hours irradiation  
(green)
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Figure 8.28 FTIR-ATR spectra o f BASF HP at 0 hours (blue) and 7964 hours irradiation  
(green)

When looking at Figure 8.27 it is clear that the BASF LP sample has undergone 

photodegradation. The reduction in the bands show in [6] have clearly taken place along 

w ith broadening of the peak at 3370cm"1. In Figure 8.28 there is little  reduction o f the 

bands in the fingerprint region, a very small reduction of the C-H2 bands at around 2900cm 

1 and a very slight broadening at around 3370cm-l. This strongly suggests that the BASF HP 

lacquer is extremely stable under QUV accerlated weathering conditions.
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8.3.5.3 ATR spectra of Melinex (PET)Coated with the Beckers Lacquer

Figure 8.29 shows the overlain spectra of the Melinex coated w ith the Becker Lacquer, 

before irradiation and after 2562 hours irradiation. These spectra show changes due to 

photodegradation which match those found in [6], Figure 8.29 shows that this sample has 

undergone considerable photodegradation compared to the BASF lacquers, especially when 

considering the exposure period.
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Figure 8.29 ATR spectra o f Melinex coated with the Beckers lacquer a t 0 hours and 2562
hours QUV exposure

8 .3.5.4 ATR spectra of T2754 and St Gobain Co-laminates

The Icosolar film  T2754 and the St. Gobain film  are both ETFE films. Figure 8.30 shows the 

ATR spectra of the Icosolar film  T2754 laminated to the Melinex. Figure 8.31 shows the ATR 

spectra of the St. Gobain film (St. G) laminated to the Melinex. As ATR is a reflectance 

measurement all that is seen is the spectra of the ETFE film. The main absorption bands to 

take note of are: the weak band due to the CH2 asymmetric stretching vibration at 2976 

cm-1, and the sharp band at 1454 cm 1 representing the CH deformation. The strong bands 

in the region 1000-1300 cm '1 are characteristics o f CF2 groups. Except for some small peak 

broadening around 3000 cm-1 and the evolution of a carbonyl peak at 1720 cm-1, there 

appears to be little sign of photodegradation when looking at the fingerprint region. This is 

because ETFE does not absorb very well in the UV region (figure 8.32), so UV photons
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cannot cause much damage to its polymeric structure. So whilst not being susceptible to UV 

damage, ETFE offers no protection to the underlying PET. Thus the evidence of 

photodegradation seen in the T2754/Melinex and the St. G /Melinex co-laminates must be 

purely caused by degradation of the underlying PET. The increased degradation seen in 

these samples when compared to ordinary PET is probably due therefore to air and 

moisture being trapped between the laminates this could increase the rate of 

photodegradation and give the result o f the ETFE/PET co-laminates having an increased 

yellowness index compared to uncoated PET.
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Figure 8.30 ATR spectra o f T2754/Melinex co-laminate a t 0 hours and at 2562 hours 
QUV exposure
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Figure 8.31 ATR spectra o f St Gobain/Melinex co-laminate a t 0 hours and at
2562 hours QUV exposure
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Figure 8.32 UV-VIS spectra o f T2754 (ETFE film  only) showing very little
absorbance in the UV

8 .3.5.5 ATR spectra of Icosolar T2823

Icosolar's T2823 film is a co-laminate of PET and PVF. ATR spectra of the front sheet (PVF) 

show a C-H stretch at 2934cm 1. The two broad peaks between 1000cm 1 and 1100cm 1 are 

due to the C-F stretch. The peak at 825cm -l is due to CH2 rocking. At 3517 hours QUV 

(figure 8.33), T2823 appears to undergo little  photodegradation if looking at the fingerprint 

region and there is no sign of any peak broadening around 3000cm 1 which has been seen 

in other polymer films. The only sign of degradation is a small increase in the carbonyl peak 

at 1725cm'1. When the T2823 sample is subjected to fu rther QUV, a slight increase is seen is 

the bands in the fingerprint region as well as a slight increase in the band around 2950cm'1. 

This is inconsistent w ith the degradation seen in the other samples in this section whereby 

chain scission reduces the intensity of the bands in the fingerprint region. Oreski and 

Wallner [7] have shown that thermal degradation produces the appearance of a broad 

band between 1700cm 1 and 1500cm \  This is not observed in the T2823 sample. The only 

sign of degradation in the ATR spectra of T2823 is the appearance of the carbonyl peak at 

1740 c m 1, indeed this peak increases in Abs from 0.0101 (at 3517 hours) to  0.0162 (at 7964 

hours) showing that there is some continuing degradation occurring.
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Figure 8.33 ATR spectra o f T2823film  at 0 hours (blue), 3517 hours (red) and 7964 

hours (green).

8.4 Conclusions of Work on Original Film Samples

Of the samples tested so far, two stand out as being candidates for DSC module 

encapsulation. These are: PET coated w ith BASF HP and the Icosolar T2823 film . These two 

samples have been shown to be exceptionally stable under UV irradiation w ith all three 

achieving around 8000 hours of QUV and showing only small signs of photodegradation. 

Mechanically, the BASF HP sample is showing slight signs of em brittlem ent and the T2823 

still appears mechanically sound. It is worth pointing out that the grade of Melinex used, 

ST505, is for indoor applications meaning that both BASF lacquers have been very effective 

in protecting the underlying PET, however the BASF LP lacquer did not perform as well as 

the BASF HP lacquer and the sample was w ithdrawn from QUV testing due to mechanical 

failure at around 6500 hours.

The advantages of using the T2823 film  over the BASF HP sample is that it is a complete film 

that would not need any further treatment. Current collectors could be printed onto the 

underside (PET) and the film could then be applied directly to the module. The major 

disadvantage is that T2823 is expensive. PET coated w ith the BASF HP would be much 

cheaper and has the added advantage that the lacquer can post applied to individual

186



modules. This could offer a true encapsulation in that the lacquer would not just coat the 

upper surface, but encapsulate around the module edge.

8.5 UV Cured Lacquers from Bayer

Samples of Melinex ST505 were sent to Bayer Materials Science in Germany to be coated 

with their UV cured "Desmolux" polyurethane clearcoat. The samples sent back were 

coated with two experimental variations of the Desmolux coated at 20 pm, 40 pm and 

60 pm. One of the variations is designated FWO 5754-01 and the other designated FWO 

5754-02. The only difference between the two is that FWO 5754-02 contains an isocyanate 

urethane acrylate. This additive is used to affect NCO cross linking in shadow areas. Shadow 

areas are a problem when radiation curing of three dimensional parts. Radiation curing is a 

'line of sight' technique and so there may be areas of the part which may be in shadow with 

respect to the radiation source. Urethane acrylates containing reactive NCO groups can give 

crosslinking in geometrically unfavourable areas.

8.5.1 Action of the Lacquers

No free films were obtained as the samples were coated in Germany but the transmission 

spectra of the coated films can give some insight into the action of the lacquer. The %T 

curves of the Bayer lacquer is shown above in figure 8.3 and it is clear that the Bayer 

lacquer, even at 60 pm does not offer as much UV screening as the BASF HP lacquer, having 

a 'cut off point' further into the UV region.

Figure 8.3 shows that the UV screening of the Bayer lacquers is not as effective compared 

to the BASF HP lacquer. It should not be however, ruled out immediately as it would be 

beneficial to see how the Bayer-lacquered films behave upon irradiation compared to the 

BASF lacquered films.
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8.5.2 Yellowness Index of the Bayer Lacquers

Figure 8.34 shows the increases in absorbance at 400 nm of the sampies of PET coated with 

the Bayer UV cured lacquers. It is quite clear that the lacquered PET films have performed 

better than the unmodified PET. Figure 8.34 also shows there is a marked difference 

between the FWO-5754-Ol and the FWO-5754-02 samples, w ith the "-02" samples all 

performing better. This is probably due to the NCO cross linking agent present in the "-02" 

formulation promoting greater cross-linking and increasing UV photodegradation 

resistance. The best performing samples are the FWO-5754-02 samples coated at 40 pm 

and 60 pm and it would be helpful if these were compared to the BASF lacquers. Figure 

8.35 shows FWO-5754-Ol (40 pm) and FWO-5754-02 (40 pm and 60 pm) compared to the 

BASF lacquers.
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Figure 8.34 Increase in abs a t 400 nm o f the Bayer lacquered samples
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Figure 8.35 above shows that the FWO 5754-01 (40 [am) has a comparable performance to 

that of the BASF LP lacquer and that the FWO 5754-02 (both 40 pm and 60 pm) have a 

comparable performance to the BASF HP. It should be noted however that the BASF 

lacquers were coated at 20 pm and that a thicker coating of the Bayer lacquer is needed to 

match its performance. It should also be noted that whilst the Bayer lacquer match the 

BASF lacquers in performance, it is only w ith respect to protecting the PET film  from 

photodegradation. It has already been seen in this section that the UV cut-off properties of 

the Bayer lacquers cannot match that o f the BASF lacquers.

8.5 .3  FTIR Spectroscopy

Figure 8.36 shows the overlain spectra of samples FWO 5754-01 and FWO 5754-02, the 

latter containing the NCO cross-linking additive, both coated at 20 pm. The spectra are very 

alike except some obvious peak broadening. One point in which the spectra are d ifferent is 

the peak at 2265cm 1 which is much larger fo r FWO 5754-02 than for FWO 5754-01. This 

peak is associated w ith isocyanate groups and so the absorbance of FWO 5754-02 at 

2265cm 1 is greater due to the addition of the NCO cross-linking additive.
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Figure 8.36 FTIR spectra o f samples FWO 5754-01 (blue) and FWO 5754-02 (red)

Figure 8.37 and figure 8.38 show the FTIR absorbance spectra of FWO 5754-01 and FWO 

5745-02 respectively, both coated at 20 pm, from 0 hours to 5105 hours QUV. It could be 

argued that the level o f peak broadening in the "-02" sample is less than that seen in the 

"-01" this would be consistent w ith evidence seen from the yellowness index and further 

suggests that the NCO cross linking agent in the -02 form ulation gives a significant 

improvement in performance. The pattern seen in the difference in degrees of peak 

broadening between the -01 and the -02 formulation is repeated at the heavier coating 

weights. The degree o f peak broadening is lessened somewhat in both formulations as the 

higher coating weights give increased protection against UV photodegradation.
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Figure 8 .37  FTIR absorbance spectra of FWO 5754-01 (20 pm) from 0 hours to 5105 
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Figure 8.38  FTIR absorbance spectra of FWO 5754-02 (20 pm) from 0 hours to 5105 
hours QUV

8 .5 .4  Disappearance o f the NCO Cross Linker Peak at 2265cm  1

Figure 8.39 shows the spectra of FWO 5754-02 at 0 hours and 250 hours QUV and it can be 

seen that there is a shortening of the isocyanate peak at 2265cm'1. This is due to free NCO 

groups present in the coating after UV curing. According to Bayer, these free NCO groups 

then react w ith moisture to give further crosslinking. This means that that the NCO additive 

transforms the UV cured coating into a dual cure coating, whereby the initial cure is
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in itiated through UV irradiation and photoinitiators. A second curing step then occurs when 

the NCO groups react w ith moisture to initiate curing in shadow areas. The change in the 

spectra seen in figure 8.39 is representative of all 5754-02 samples.

FWO 5754-02 0 hours 

-  FWO 5754-02 250 hours70
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Figure 8.39 Spectra o f  FWO 5754-02 (20 pm ) fro m  0 hours to  250 hours QUV show ing
the reduction o f the NCO peak

8.5.5  ATR Spectroscopy of Bayer UV Cured Lacquers

Figure 8.40 shows the ATR spectra of FWO 5754-01 (20 pm) at 0 hours, 3709 hours and 

5105 hours QUV. There is some peak broadening around the area of the N-H stretch at 

3360cm 1 from 0 to 3709 hours w ith the band then decreasing in intensity at 5105 hours. 

There are decreases in the all the major bands in the finger print region which is typical of 

the photodegradation seen in polyurethane topcoats. Figure 8.41 shows the ATR spectra of 

FWO 5754-02 (20 pm) at 0 hours, 3709 hours and 5105 hours. The pattern is the same as 

above and there seems to be no difference in performance between the -01 and -02 

coatings. This is in contrast to the evidence seen in UV-Vis and %T FTIR measurements 

where there is a clear difference in performance between the -01 and -02 formulations. 

This may be because the extent o f photodegradation of these tw o samples may be similar 

at the surface o f the coating where the ATR takes it measurement but in the whole film, 

where the UV-Vis and FTIR through %T measurements are taken, PET w ith the -02 

form ulation outperforms the PET w ith the -01 form ulation. All the other Bayer samples
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show a similar pattern of photodegradation in their ATR spectra w ith respect to their 

form ulation and coating weight.

Figure 8.40
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8.5.6 Conclusions to  W ork  on Bayer UV Cured Clearcoats

Looking at the UV-Vis (yellowness index) data it could be argued that the Bayer 

formulation, FWO 5754-01 performs comparatively to BASF LP lacquer and that the 

formulation, FWO 5754-02 performs comparatively to the BASF HP lacquer. When looking 

at FTIR spectra however it appears that both Bayer formulations (at 5105 hours) have 

undergone a degree of photodegradation similar to that o f the BASF LP lacquer at 6053
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hours. It is only when looking at the ATR spectra of BASF HP at 0 and 7964 hours (figure 

8.28) that it can be seen how stable the BASF HP coating is. The ATR spectra hardly changes 

despite the sample being subject almost 8000 hours QUV. Mechanically the Bayer 

formulation samples became embrittled much faster than the BASF samples.

Overall the Bayer formulations do very well at protecting the PET from photodegradation, 

however their performance cannot match that of the BASF HP lacquer. There is also the 

problem of the position of their UV cut which cannot match that of the BASF HP lacquer 

and so even though UV cured coatings could vastly increase the throughput of a coil coated 

DSC module the Bayer formulations cannot be considered as candidates.

8.6 PET vs. PEN as the Topsheet Material

Figures 8.42 shows the UV-Vis Absorbance spectra of PET and PEN and from these spectra, 

some predictions about the films' respective behaviours upon exposure to UV irradiation 

can be made. It is at first difficult to say which film absorbs more strongly in the UV as 

although PET absorbs at double the intensity of PEN, PEN absorbs a wider range of photons 

between 200 nm and 400 nm. However, given that PET absorbs more intensely of higher 

energy photons it is likely that PET might be more susceptible to UV photodegradation 

given similar exposure conditions.

Figure 8.43 shows the emission spectra of a QUV-A lamp such as those used in this project. 

The QUV-A lamps emit light from around 300 nm to 400 nm with a A. max emission at 

around 340 nm. If this is then compared to the Abs spectra of PET and PEN, it is clear that 

although the PET absorbs highly from 300 nm to 320 nm, it would be the PEN which will 

absorb the majority of the energy emitted by the QUV-A lamps and therefore would be 

expected to show a greater degree of photodegradation.
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8.6.1 PET vs. PEN -  Yellowness Index

Much like PET, when PEN undergoes photodegradation a yellowing effect is observed. This 

is thought to  be caused by the production of 2-naphthanoic acid. Schiers and Gardette have 

used this previously to compare rates of photodegradation in PET and PEN films [8]. Figure
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8.44 shows the increasing yellowness index of PEN and of PET over the QUV exposure 

period. It is clear from this that PEN is showing a greater degree of photodegradation (in 

terms o f the increase in Abs at 400 nm) compared to that of PET.

0.3

E
o 0.2 
o
"3-

0.1
u
c
in
_Q
<

30000 1000 2000
QUV exposure hours

Figure 8.44 Yellowness index o f both PET and PEN exposed to QUV-A

8.6.2 FTIR and ATR Analysis of PEN

The Infra Red spectra of the PET and PEN share some common features. However the exact 

wavenumber of the bands are often shifted due to the effect o f the different chemical 

environment of the polymers. Figure 8.45 shows the structures of PET and PEN for 

reference. Figure 8.46 shows the %T spectra of PEN and PET film and figure 8.47 shows a 

close-up of the fingerprint region of the ATR spectra of the films. One thing to notice is that 

the presence of the naphthalene group in PEN shifts certain absorbances cf. PET. In PET, the 

band at 3431cm 1 is an overtone of the stretching vibration of the C=0 bond. In the case of 

PEN this overtone is shifted by -15 wavenumbers to 3416cm 1 (Figure 4.43). PEN shows a 

strong band at 1580cm 1 whereas in PET it occurs at 1600cm 1 and is much weaker. The ring 

in-plane deformation seen in PET at 1410cm 1 is absent from PEN due to the presence of 

the naphthalene group. The ring-ester in plane-mode at 1246cm 1 is the same for both PET 

and PEN; however the band at 1122cm'1, also ring-ester in plane-mode for PET, becomes a 

doublet, or possibly even a trip le t for PEN. At 1020cm'1, there occurs fo r PET, a band due to
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a Ring C-H in-plane deformation which is absent from the spectra of PET. Lastly the ring 

C-H + C=0 out-of-plane deformation has shifted in PEN to 762cm'1 from 724cm'1 where it 

occurs in PET [9].

Schiers and Gardette point out that care must be exercised in interpreting the spectral 

changes that occur in polyester films after irradiation since some of these originated from 

conformational and crystallinity changes as a result of the temperature of irradiation. For 

example, in PET the absorption at 974cm'1 has been attributed to the trans form of PET 

since rotation around the ethylene glycol linkages presents the possibility of two 

conformational isomers. The peak at 974cm'1 has been found to decrease with progressive 

UV exposure reflecting a conversion from the trans isomer to the gauche [8].

PET

o

PEN

Figure 8.45 the molecular structures of PET and PEN monomers
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Figure 8.47 Close-up in the fin g e rp rin t region o f the ATR spectra o f PET and PEN film s

8.6.3 Measuring Photodegradation of PEN with FTIR and ATR Spectroscopy

Figures 8.48 and 8.49 show respectively, the FTIR and ATR spectra of PEN, at 0 hours QUV 

and at 3065 hours QUV. The most striking observation to be made is that the through %T 

spectra of the PEN changes little  whilst the ATR reflectance spectra displays signs of
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photodegradation to a similar extent to, if not greater than, that seen in PET. This is at first 

could seem puzzling but an explanation could be that the photodegradation is only 

occurring at the surface of the film within the few microns that the ATR can penetrate. If 

the degradation was more severe at the surface of the film compared to that of the bulk 

film then it could be possible that the extreme band reduction seen in the fingerprint 

region of ATR spectra will be observed, whilst the through %T spectra shows little change. 

An explanation for this may be due to PEN's optical properties (figure 8.42), in that PEN 

absorbs most of the light emitted by the QUV-A lamp. It could therefore be possible that 

the surface of the PEN film absorbs all the UV light, undergoing photodegradation, whilst 

filtering out the UV light from the bulk of the film.

If this hypothesis were correct then at fist it may seem strange that photodegradation is 

observed using with UV-Vis measurements as these are also through %T measurements. 

The difference must be that the UV-Vis measurements, especially regarding the yellowness 

index, are measuring the increase in absorbance due to the creation of a few by-products 

(mainly naphthanoic acids in the case of PEN) with similar \  max values, and due to the 

Beer-Lambert law (A = ec\) the absorbance of the film at or around these \  max values is 

directly proportional to the concentration of these by-products. On the other hand, the 

FTIR measurements are measuring vibrational-rotational energy change in a large complex 

polymer molecule and so small changes in end groups and limited chain scission, when 

looking at the bulk film, may not have much of an effect on the spectrum before and after 

the sample has been subjected to QUV. This is despite the fact that ATR-FTR shows 

significant degradation at the surface of the film.
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Figure 8.48 The FTIR spectra o f PEN a t 0 hours and a t 3065 hours QUV
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Figure 8.49 The ATR spectra o f PEN a t 0 hours and a t 3065 hours QUV

8.6.4 PEN vs. PET-Conclusion

If comparing PEN to PET, the UV-Vis evidence suggests that PET is more stable to UV light. 

This makes sense as PEN absorbs a greater proportion of the UV spectrum than PET. It
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would be interesting however to see what the results would be under UV-B lamps as the 

emission spectra would be blue shifted compared to UV-A lamps and therefore PET might 

absorb a greater proportion of the radiation being emitted. FTIR Evidence at first may seem 

inconclusive as it appears that the surface of the film  exposed to UV light experiences a 

great degree of photodegradation whilst the bulk film shows little  sign. C02 evolution data 

does indicate that PEN is far more photoactive than PET under UV-A lamps, but again this 

could be due to surface photodegradation rather than photodegradation in the bulk film.

8.7 The Effect of Coating Weight on the Efficacy of the Lacquer

Figure 8.50 shows the increases in the Yellowness Index (the absorbance at 400 nm) of the 

samples shown. The samples are sheets of PEN coated w ith either BASF LP or HP and 

coated at 20 pm 40 pm and 60 pm. It is quite obvious that when the coating thickness is 

increased then the protection from photodegradation is also increased. This can be 

explained simply by the fact that the thicker the coating, the more o f it the photon has to 

travel through and the more likely that that photon will be prevented from reaching the 

substrate by a UVA molecule. The case is not quite so clear for PET (Figure 8.51) but the 

patterns are the same in that generally a heavier coating weight gives more protection 

against photodegradation.
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Figure 8.50 The increases in the Yellowness Index (abs a t 400 nm) o f the samples shown
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8.8 The Effect of Increasing Additives on the Coating Performance

BASF HP and BASF LP lacquers were doped w ith varying levels of Tinuvin 400 UV absorber 

and Tinuvin 5100 HALS. Figure 8.52 shows the cumulative increase of the Yellowness Index 

of the samples shown. It is clear from Figure 8.52 that increasing the amount of HALS in the 

coating has very little  effect on performance whereas increasing the levels of UVAs, 

increases the performance o f the coating. This may be because HALS are radical scavengers 

which neutralise photo-oxidation products that catalyse further degradation. If there are 

already enough HALS in the coating to do the job in the first place then adding more will 

have little  effect. Increasing the levels o f UVA will mean, due to the Beer-Lambert Law, that 

more UV light w ill be absorbed. Why then does BASF not just put more UVAs in their 

coatings to make them more UV stable? The answer must be that BASF have to weigh up 

their cost to performance ratio as UVAs are expensive. Another reason is that in general the 

more additives there are in a coating, the harder it is to cure and this can lead to problems 

such as poor adhesion. The pattern seen in the BASF HP coating is almost identical to that 

seen in Figure 8.52 for the BASF LP coating.

—PET HP 20 1 
—PET HP 40 1 
-P E T  HP 601  

PET LP 201  
-P E T  LP 40 1 
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The increases in the Yellowness Index (abs a t 400 nm) o f the samples shown

202



0.3

E
c
oo
II

<v
in
ro
0)i_
u
c
in
-Q
<

0.2

0.1

0

-H .P  + 1% HALS 

-*-LP + 1% UVA + 1% HALS 

-•-LP+ 1% UVA 

LP + 2% UVA 

■^BASF LP - no addition

1000 2000 
QUV exposure (hours)

Figure 8.52 Increase o f the Yellowness Index o f the samples shown

8.9 Curing of the BASF iacquers

A visit was undertaken to Tata Steel's PV Accelerator facility at Shotton, the main purpose 

of which was to understand the curing rates of the BASF lacquers and to see if they could 

be cured quickly using a belt furnace equipped w ith IR lamps. The assessment o f the level 

of cure is carried out using a solvent rub technique that conforms to the ASTM D5402-06 

standard. Tables 8.2 and 8.3 below show the number of MEK double rubs needed to cause 

coating failure or breakthrough of the BASF LP and BASF HP lacquers respectively. As the 

lacquers are polyurethanes the testing standards of Colorcoat Prisma® were used. Prisma is 

considered cured if the number of double rubs is greater than 100 although this is a 

minimum value and ideally should be greater than 150.
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Table 8.2 Number of MEK double rubs needed to cause coating failure or
breakthrough of the BASF LP lacquer. Tata Steel Colours would consider a 
polyurethane coating cured if it could withstand 100 double rubs, 
although > 150 double rubs is the desired result.

BASF LP Cure Time

Cure Temp (°C) 5 mins 10 mins 15 mins 20 mins 25 mins 30 mins Touch dry

60°C 1 2 2 3 10 30 15 mins

80°C 20 38 38 40 50 100 5 mins
100°C 45 40 70 150 230 400 5 mins

120°C 100 130 280 350 500 5 mins
140°C 300 360 500 5 mins

Table 8.3 Number of MEK double rubs needed to cause coating failure or 
breakthrough of the BASF HP lacquer

BASF HP Cure Time

Cure Temp (°C) 5 mins 10 mins 15 mins 20 mins 25 mins 30 mins Touch dry

60°C 3 10 18 30 50 100 15 mins
80°C 20 55 95 160 200 320 5 mins
100°C 120 130 350 5 mins
120°C 160 300 500 5 mins

3 mins 5 mins
140°C 290 500 3 mins

PET film will wrinkle at about 150°C so this is the processing temperature lim it. Table 8.2 

shows that the minimum needed to fully cure the BASF LP is 100°C for 20 minutes. 100°C 

may too high for the components of the cell to withstand and 20 minutes is far too long to 

be involved in any kind of coil coating process. To fully cure the BASF HP (Table 8.3), 80°C 

fo r 20 minutes is needed. These cure times are also far too slow for coil coating, however 

80°C will be w ithin the temperature limits of the cell components as this is the temperature 

a roof could reach in full summer sunlight.

As the polyurethane is a 2-pack system which relies on the presence of a catalyst to form 

crosslinkages, it should continue to cure even when taken away from the heat source. Table

8.3 shows that the BASF HP was dry to the touch after 5 mins at 80°C, this could mean that 

it might be possible to cure the coating enough to enable manual handling and then further 

cure maybe achieved by setting aside the finished module for a number o f hours until it is 

fully cured. Table 8.4 shows the results o f a trial where the BASF HP lacquer was cured at
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80°C for varying amounts of time. The samples were subject to solvent rub tests 

immediately after leaving the oven, and then 24 and 48 hours after leaving the curing oven.

Table 8.4 Number of MEK double rubs needed to cause failure of the BASF HP 
lacquer after curing and then being left for the times shown

W ait time

Oven tim e 0 hours 24 hours 48 hours

5 mins 20 105 280
10 mins 55 170 350

15 mins 95 280
20 mins 160 320

Table 8.4 shows that it would be possible to lacquer a module and then 'cure' the lacquer at 

80°C for just 5 minutes so that manual handling would be possible. A full cure would then 

be achieved if the module was left for 48 hours after coating. This is a positive result for 

module production as the module will not be subject to high temperatures for a long period 

of time.

8.9.1 Spray Coating and Curing the Lacquers on the PV Accelerator Pilot Line

All coatings in this section were applied w ith a wire wound bar but it is likely that any 

coatings used on the pilot line at Shotton will be spray-coated. For this reason it was 

decided that the lacquers should be applied w ith a spray gun to get an idea of what coating 

thicknesses were achievable. The spray gun used is shown in Figure 8.53. There are three 

adjustment knobs on the spray gun and changing any of the settings can have a large 

impact on coating thickness. Operator technique is also highly im portant to the quality and 

thickness of the coating and getting consistent coatings takes some considerable practice 

on behalf o f the operator. A fter some practice the author was able to get a consistent 

coating so that one pass of the gun would give a 20 pm dry film  thickness. When the 

consistency of coating thickness had been achieved, samples o f steel strip that had been 

laminated w ith PET were sprayed and cured in the belt furnace on the pilot line at Shotton.
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Figure 8.53 The spray gun used in the coating tr ia l

The pilot line at Shotton has a Hengli Belt Furnace fitted w ith IR lamps. It is known from the 

BASF TDS that the lacquers can be cured quickly using IR radiation so it was decided to run 

a trial to see if the spray coated panels mentioned above could be cured usiing the belt 

furnace. In this trial all sections of the furnace were set to 80°C. Thermocouples were put 

through the furnace to get a heating profile and the panels were put onto the belt and the 

cure was measured by the solvent rub test. Figure 8.54 below shows the heating profile of 

the first trial where the belt speed was set to 0.8m/m in (the slowest setting allowed). This 

meant the sample was above 80°C fo r almost 7 minutes. Two samples were put through 

the furnace, one at 20 pm and one at 40 pm. Both samples were completely cured, in fact 

the lacquer could not be removed even after over 500 double MEK rubs. After the success 

of the first trial it was decided to double the speed of the belt to 1.6m/min, the heating 

profile is shown in Figure 8.55 below
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Figure 8.54 The heating p ro file  o f the be lt fu rnace  was a t 0 .8m /m in

Figure 8.55 shows that the samples d idn 't get up to 80°C during the heating process and 

was only above 60°C fo r around 2.6 minutes. W ith the information given in the thermal 

cure trial it was not expected that the sample would even be 'touch dry' when they exited 

the belt furnace, yet the samples were fully cured, again the lacquers could not be removed 

even after 500 MEK double rubs. This means that the curing process can be vastly 

accelerated using the IR lamps in the belt furnace. There were no more belt furnace curing 

trials after this as there was not enough time.
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Figure 8.55 The heating p ro file  o f the be lt fu rnace was a t 1 .6m /m in
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8.10 Chapter 8. Conclusion

A flexible DSC built upon a metal substrate will almost certainly have a polymer-film  

counter electrode and it has been shown in this section that polymer films are susceptible 

to photodegradation by UV light. UV stabilised polymer films are commercially available but 

are expensive and could add a considerable amount to the cost per w att produced by the 

module. It has also been shown in this section that it is possible to match the performance 

of one of these commercial films by simply coating a cheaper "indoor grade" film with a 

clear UV absorbing lacquer. With more research into suitable coatings this has the potential 

to bring down the cost per m2 and therefore the cost per watt produced, of the complete 

module.

Whilst it would be ideal to have a fast cured coating, such as a UV cured coating to enable 

roll to roll processing, the UV cured coatings in this section could not match up to the 

performance of the BASF 2-k coatings, that is not to say however, that they will never 

match up to them but this is an issue for coating formulation scientists and is beyond the 

scope of this work.

Some formulation work has been carried out and it has been shown that increasing levels 

of UVAs and increasing coating weights can increase UV protection performance. This 

however will inevitably affect cost and possibly the mechanical properties of the coating. 

Again these issues need to be weighed up on a cost/performance basis by formulation 

scientists.

Hopefully, one of the greater benefits of the work carried out for this section will be the 

identification of simple methods to detect photodegradation in clear polymer films. If new 

films become available in the future then it may be possible to identify relatively quickly, 

their UV stability by using the methods described.
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9. CONCLUSIONS AND FUTURE WORK

Although the UV photodegradation of DSCs has been alluded to in past literature and 

mechanisms have been proposed, no particular mechanism has been proven. From the 

outset, it was never the aim of this project to characterize UV photodegradation in the way 

it has been presented in this thesis. However, there was a need to look at subtle changes to 

DSC properties as they were undergoing UV exposure, so that these changes could be used 

to quickly assess the effectiveness of UV protection measures.

During this initial study, aspects of the photodegradation of DSCs, particularly the fact that 

they degrade faster when placed under electrical load, gave insights into the mechanism of 

UV photodegradation of DSCs which required further investigation. A systematic 

characterization of the UV photodegradation of DSCs was carried out and aspects 

mentioned in the literature were confirmed. These include the drop in V0c, the initial 

increase in Jsc and the apparent bleaching of the electrolyte. Even the eventual reduction in 

JSc has been reported before but this has not been linked with the large increase in 

recombination resistance which in this work is observed concurrently. These two  

observations point to a removal of charge carriers from the electrolyte and along with the 

photobleaching observed, shows that it is the l3' that is being removed. Something which is 

not mentioned in the literature however is the fact that cells fail considerably faster when 

irradiated under an electrical load. This seems to suggest that the main mechanism for cell 

degradation is by reaction with photogenerated holes, as under load, electrons in the T i02 

conduction band will be exported to the external circuit lowering the rate of electron-hole 

recombination and so increasing the rate of degradation. This is the mechanism proposed 

but it does not explain what has happened to the l3'. One hypothesis is that the iodine has 

been oxidized to l3+, I0 3' or perhaps I0 4' and it is recommended that any future work would 

start by trying to find these oxidation states in the degraded electrolyte.

The role of T i0 2 in the photodegradation of DSCs is further implicated by the fact that the 

electrolyte does not appear to degrade when UV illuminated in the absence of T i0 2. The 

fact that the electrolyte degrades faster in a cell where there is no dye could also point to 

the importance of photogenerated holes as electronic injection from the dye appears to be 

a stabilising mechanism in that it may increase hole recombination by increasing the
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population of electrons in the T i0 2 conduction band. It is possible however that the dye is 

just blocking active sites in the semiconductor surface and slowing photoreactions with the 

electrolyte.

Another aim of the characterization study was to try to identify degradation processes that 

are associated with UV exposure so that these may be separated out from other 

degradative mechanisms. To certain extent this was not achieved as although test cells 

degraded more slowly under visible light soaking, the degradation characteristics were 

similar to those observed in cells under UV exposure, albeit at much reduced rate. It is also 

likely that the degradation characteristics observed under visible light soaking were due to 

the small amount of UV light emitted by the light soaker. One way of achieving a separation 

of UV and visible light mechanisms would have been the use of varying cut off filters on 

visible light soaked cells so that only visible light would reach the cell. If this study were to 

be conducted then it would be recommended that this be carried out under a lamp 

emitting 1 Sun power and with a good spectral match to that of AM 1.5, furthermore the 

cells should be placed on a cooling table to rule out the effects of elevated temperatures.

Despite not fully being able to reconcile the degradation caused by direct excitation of T i0 2 

from degradation that might be caused by visible light alone, it was shown that the light 

soaking cabinet emits very little light in the UV spectrum compared to the emission 

spectrum given by AM 1.5. This presents a potential problem as arguably the most 

common test for DSC durability is visible light soaking, yet neither of the two leading 

suppliers of light soaking units emit significantly from 300 nm to 400 nm. Having shown 

how detrimental UV light is to the DSC, it is therefore the author's opinion that visible light 

soaking tests at ambient temperatures do not stress the cells enough to conduct 

comparative stability studies in a time frame suitable for commercial/industrial R & D. It is 

therefore recommended that a standard be set for light soaking tests and that the standard 

output should be as close a spectral match to AM 1.5 as possible including the appropriate 

emissions in the UV spectrum.

It has been shown that a very effective way of stopping UV degradation is simply by use of 

a UV filter. It was shown that filtering is likely needed above 385 nm but probably no more 

than 400 nm. A question that might be asked therefore is: Why bother carrying out this 

work if all you have to do to prevent photodegradation is use a UV filter? The answer to



this was presented in chapter 6. UV filtering is an easy solution but it is far from ideal as 

photons which otherwise might have been converted into current are blocked. This will 

obviously lower photocurrents but it was also shown that this lowers the photovoltage as 

well because the quasi-Fermi level and therefore the V 0c are dependent on incident light 

intensity. Future work to try and resolve this issue will require a two-pronged approach. 

Firstly, photons in the red and NIR region need to be captured more effectively. This can be 

achieved either by extending dye absorption spectra into the red/NIR or by co­

sensitization. The second approach would be to investigate the use of light down- 

converters that absorb UV light and re-emit visible photons so that some of the UV photon 

energy can be utilised and not just dissipated thermally as with standard organic UV 

absorbers.

The apparent recovery of photodegraded DSCs was investigated and it was shown that the 

depleted electrolyte can be restored somewhat by application of a reverse bias. This could 

have implications for long term stability. The periodic application of the recovery treatm ent 

does not appear to prevent degradation however, and a least at this stage, cells could not 

be restored to their original conditions. This is especially evident when looking at the V 0c, 

which doesn't recover suggesting that UV exposure might cause a permanent change to 

the electrolyte or to the surface of the T i02. Nonetheless, cells which had undergone a 

periodic regeneration did appear to retain a higher overall photocurrent throughout their 

lifetimes meaning that whilst not preventing degradation, the regeneration treatm ent 

could result in a greater power output for the cell over its lifetime than those cells that do 

not undergo regeneration. It is recommended therefore that investigations into cell 

regeneration continue. For example looking at less severe exposure periods and more 

frequent application of regeneration treatments.

Finally an investigation was conducted on the photostability of clear polymer films 

intended for use as counter electrode materials for DSC modules. It was shown that a 

number of spectroscopic methods can be used to easily identify the extent of 

photodegradation in these films when they are exposed to QUV accelerated weathering. It 

was shown that the photostability films can be vastly improved by application of 

inexpensive, UV absorbing clearcoat lacquers.
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If there is only one recommendation to come from this work, it is the need for standardized 

testing for DSC test cells, especially light soaking tests which should have a spectral match 

to that of AM 1.5. In the tests conducted for this thesis, UV photodegradation causing 

consumption of l3‘ seems to be a dominant failure mechanism and evidence suggests that 

this occurs via a reaction with a UV photogenerated hole. If a simulation of sunlight is 

required then neither UV exposure nor visible light soaking can achieve this alone. For 

effective accelerated stability testing the whole UV-VIS-NIR spectrum needs to be 

considered. As such it is suggested that the ideal 'weathering' system be adapted from that 

used in the paint industry with xenon arc weathering being the most suitable because of its 

close spectral match to AM 1.5.
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