Swansea University E-Theses

Optimal proof systems and uniform systems.

Razafindrakoto, Jean-Jose

How to cite:
Razafindrakoto, Jean-Jose (2012) Optimal proof systems and uniform systems.. thesis, Swansea University. http://cronfa.swan.ac.uk/Record/cronfa43008

Use policy:
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference above.)
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Optimal Proof Systems and Uniform Systems

Jean-José Razafindrakoto

February 7, 2012

A thesis submitted to Swansea University in candidature for the degree for the Degree of Master of Research

Swansea University Prifysgol Abertawe

SWANSEA UNWERSITY LIBRARY

 NOTTOSE

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10821398
Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

Declaration

This work has not previously been accepted in substance for any degree and is not being currently submitted for any degree.
<date> Wednesday 8 th 2012
Signed:

Statement 1

This thesis is being submitted in partial fulfilment of the requirements for the degree of an MRes in Logic and Computation.

```
<date> Wechesday 8th 20R
Signed:
<
```

\checkmark

Statement 2

This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are specifically acknowledged by clear cross referencing to author, work, and pages using the bibliography/references. I understand that failure to do this amounts to plagiarism and will be considered grounds for failure of this dissertation and the degree examination as a whole.
<date>
Wednesday
8th 2012
Signed:

Statement 3

I hereby give my consent for my thesis to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.

Abstract

In "Uniform Proof Complexity", Beckmann introduced the notion of the Uniform Reduct of a proof system which he defined to be the set of those true bounded formulae (in the language of Peano Arithmetic) which have polynomial-size proofs under the Paris-Wilkie translation. In his comments to Beckmann's paper, Cook pointed out that the existence of a proof system whose uniform reduct is the set of all true Σ_{0}^{B}-formulae is equivalent to the existence of an optimal proof system. In this work, we carry out a detailed proof of that equivalence.

Contents

1 Introduction 5
2 Complexity Theory 6
2.1 Turing Machines 6
2.1.1 Deterministic Turing Machines 6
2.1.2 Non-deterministic Turing Machines 8
2.2 NP and NP-completeness 9
3 Propositional Proof Complexity 11
3.1 Propositional Logic 11
3.1.1 Syntax and Semantics of Propositional Logic 11
3.2 SAT, TAUT and NP vs coNP 12
3.3 Proof System 13
3.4 Frege and Substitution Frege Systems 16
3.4.1 Frege Systems 16
3.4.2 Substitution Frege systems 18
3.4.3 Some Results and Open Problems in Proof Complexity 18
4 Uniform Systems 19
4.1 Second-Order Bounded Arithmetic 20
4.2 Translating Σ_{0}^{B}-formulae 23
4.3 The Uniform Reduct of a Proof System 28
5 Uniform Systems vs Optimal Proof Systems 29
5.1 The Reflection Principle for a Proof System 29
5.1.1 Encoding Polish Propositional Formulae 29
5.1.2 Encoding Truth Assignments 35
5.1.3 Encoding Polytime Turing Machine Computations 37
5.1.4 $\quad \Sigma_{0}^{B}$-formulation of the Reflection Principle 45
5.2 The Main Theorem 45
6 Conclusion 48

1 Introduction

The P vs NP problem is arguably the most important problem in both Computer Science and Mathematics. As a matter of fact, it is the first of seven million-dollar Millenium Prize Problems listed by the Clay Mathematics Institute [Coo03]. Besides, NP-completeness is debatably the most pervasive concept in Computer Science since it captures the computational complexity of many significant problems from different areas of the field (see [GJ90] for many examples).

One major way towards a solution to the P vs NP problem is Propositional Proof Complexity, an area of study developed by Cook and Reckow in their seminal paper entitled "The Relative Efficiency of Propositional Proof Systems" [CR79], where they showed that NP $=$ coNP if and only if a polynomially bounded proof system exists (a polynomially bounded propositional proof system, roughly speaking, is a polynomial-time proof-verifier P for membership in TAUT, the set of all propositional tautologies, such that every tautology has a polynomial-size proof in P in the length of the tautology). In Propositional Proof Complexity, the basic task is to prove that stronger and stronger proof systems are not polynomially bounded, until it is established for all proof systems. Hence, if one achieves that general program of Propositional Proof Complexity described above, then NP is different to coNP, thus separating P from NP.

In keeping with the general program of Propositional Proof Complexity, a lot of work has been done in deriving strong lower bounds for various standard propositional proof systems. For example, it has been shown by Haken, in [Hak85], that the Pigeonhole Principle requires exponential size Resolution refutations. Later, Beame and Pitassi provided an improved lower bound on the the sizes of Resolution refutations for the Pigeonhole Principle in [BP96]. However, unlike Resolution (and other propositional proof systems like AC^{0}-Frege systems and their extensions), no strong lower bounds are known for Frege and Extended Frege systems. The best lower bounds known for them are linear on the number of lines and quadratic on the number of symbols [Bus02] (the Pigeonhole Principle requires polynomial length Frege [Bus87b] and Extended Frege [CR79] proofs).

Since some families of tautologies require polynomial size proofs in some propositional proof systems and exponential size proofs in others, one can then think of comparing propositional proof systems according to their relative efficiencies. To do that, Cook and Reckow defined, in [CR79], the notion of p-simulation. Informally, a propositional proof system P_{1} p-simulates another propositional proof system P_{2}, means that there exists a polynomial time procedure that translates every proof in P_{2} into a proof in P_{1}. A weaker notion of p-simulation between two propositional proof systems, called simulation, also exists, where the existence of a polynomial time procedure is not required. Given these informal definitions, one important question arises: Is there any propositional proof system which simulates every other propositional proof system? In other words, does there exist an optimal proof system?

If an optimal proof system exists, then in order to separate NP from coNP it would suffice to prove that such a system is not polynomially bounded. Partial results have been obtained in [KP89a, MT98, BdG98], relating the existence of optimal proof systems to the equivalence of certain complexity classes. More
recently, Cook pointed out in [Coo06] that the existence of an optimal proof system is equivalent to the existence of a propositional proof system such that its uniform reduct equals the set of all true Σ_{0}^{B}-formulae. Here, the uniform reduct of a propositional proof system (or just uniform system) is a notion defined by Beckmann in [Bec05] and is the set of those true Σ_{0}^{B}-formulae which have polynomial size proofs under some translation in the style of the ParisWilkie translation.

The goal of this project is to carry out the detailed proof of the equivalence between the existence of an optimal proof system and the existence of a propositional proof system whose uniform reduct equals the set of all true Σ_{0}^{B}-formulae.

In Section 2, we introduce some basic background of complexity theory that is needed for our purpose. Then, Section 3 gives an overview of Propositional Proof Complexity and the definitions that we need for later sections. In Section 4 , we define Σ_{0}^{B}-formulae and show how to translate them into propositional logic. From there, we formally define the Uniform Reduct of a propositional proof system. Finally, Section 5 is the main body of this dissertation. In there, we show how to encode Polish propositional formulae, truth assignments, polytime Turing machine computations and the reflection principle for a propositional proof system. Additionally, we present the detailed-proof of the equivalence between the existence of an optimal proof system and the existence of a propositional proof system whose uniform reduct equals the set of all true Σ_{0}^{B}-formulae.

2 Complexity Theory

In this section, we first introduce our model of computation, which is a Turing machine. From there, we define what it means for a language to be in the complexity class NP. Then, we define the notion of NP-completeness.

2.1 Turing Machines

Our exposition of Turing machines (deterministic and non-deterministic Turing machines) follows [Pap94].

Notation We use Σ^{*} (resp. Σ^{+}) to denote the set of all finite (resp. non-empty finite) strings over the finite alphabet Σ under consideration. Additionally, \mathbb{N} denotes the set of natural numbers including 0 and \mathbb{Z} denotes the set of all integers.

2.1.1 Deterministic Turing Machines

The deterministic Turing machine that we are going to describe consists of a string of symbols from a finite alphabet, a finite state control and a cursor that scans the symbols on the string and that is connected to the control. Depending on the state of the control and the symbol scanned by the cursor, the machine assumes a new state, overwrites the symbol scanned by the cursor and moves the cursor to the left or right of the overwritten symbol, or just leaves the cursor at its current position.

Definition 2.1 Define a deterministic Turing machine M to be a quadruple (K, Σ, δ, s) where

1. K is a finite set of states.
2. Σ is a finite set of symbols and is called the alphabet of M. Assume that $K \cap \Sigma=\emptyset$. Furthermore, assume that Σ always contains the symbols \sqcup (blank symbol) and \triangleright (first symbol).
3. δ is a transition function from $K \times \Sigma$ to $(K \cup\{h, y e s, n o\}) \times \Sigma \times\{\leftarrow$ $, \rightarrow,-\}$, where h is the halting state, yes is the accepting state, no is the rejecting state, \leftarrow is the cursor direction for left, \rightarrow is the cursor direction for right, - is the cursor direction for stay. Assume that $(\{h, y e s, n o\} \cup\{\leftarrow, \rightarrow,-\}) \cap(K \cup \Sigma)=\emptyset$.
4. $s \in K$ is the initial state.

Notation . When we write Γ (possibly subscripted), we always mean $\Sigma \backslash\{\sqcup\}$ and $\Gamma^{*} \subseteq(\Sigma \backslash\{\sqcup\})^{*}$, for some Turing machine's alphabet Σ.

For every $q \in K$ and $\sigma \in \Sigma$, there exists a $q^{\prime} \in K \cup\{h, y e s, n o\}$, a $\sigma^{\prime} \in \Sigma$ and a $D \in\{\leftarrow, \rightarrow,-\}$ such that $\delta(q, \sigma)=\left(q^{\prime}, \sigma^{\prime}, D\right)$, where q is the current state of the control, σ is the symbol scanned by the cursor, q^{\prime} is the new state, σ^{\prime} is the symbol to be overwritten on σ and D is the the direction in which the cursor will move. Assume that if $\sigma=\triangleright$, then $\sigma^{\prime}=\sigma$ and $D=\rightarrow$.
M works as follows. Initially, the initial state is s; the string is initialised to $\triangleright x$, where $x \in \Gamma^{*}$ and x is called the input of M; the cursor scans \triangleright. Then M moves according to the transition function δ. Now, M halts if one of the following states is reached: h,yes or no. If the yes state is reached, then M accepts its input; if the no state is reached, then M rejects its output. If M halts on input x, then define the output of M on x, denoted $M(x)$, as follows. If M accepts x, then $M(x)=y e s$; if M rejects x, then $M(x)=n o$; if the state h is reached, then the string, at the time of halting, consists of Δy (y is a finite string whose last symbol is different from \sqcup), possibly followed by a string of blanks, and we consider that $M(x)=y$.

Definition 2.2 Let M be a Turing machine. A configuration of M is a triple (q, w, u) where $q \in K \cup\{h, y e s, n o\}, w \in \Sigma^{+}$, and $u \dot{\in} \Sigma^{*}$. w is the string to the left of the cursor such that the last symbol of w is the current symbol scanned by the cursor. u is the string (may be an empty string) to the right of the cursor. Finally, q is the current state.

Definition 2.3 Let M be a Turing machine and $w=v \sigma$, where $v \in \Sigma^{*}$, and $\sigma \in \Sigma$. Configuration (q, w, u) yields configuration ($q^{\prime}, w^{\prime}, u^{\prime}$) in one step, denoted $(q, w, u) \xrightarrow{M^{1}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$, if in the transition function, $\delta(q, \sigma)=\left(q^{\prime}, \sigma^{\prime}, D\right)$ and: if $D=-$, then $w^{\prime}=v \sigma^{\prime}$ and $u^{\prime}=u$; if $D=\rightarrow$, then w^{\prime} is $v \sigma^{\prime}$ with the first symbol of u appended to it (\sqcup if u is the empty string) and u^{\prime} is u with its first symbol omitted (if u is the empty string, then u^{\prime} remains empty); if $D=\leftarrow$, then $w^{\prime}=v$ and u^{\prime} is u with σ^{\prime} attached in the beginning.

Define the notion of configuration (q, w, u) yields configuration ($q^{\prime}, w^{\prime}, u^{\prime}$) in k steps, denoted $(q, w, u) \xrightarrow{M^{k}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ and where $k \geq 0$, as follows.
$(q, w, u) \xrightarrow{M^{k}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ for $k \geq 0$, if there are configurations $\left(q_{j}, w_{j}, u_{j}\right)$, for $j=1, \ldots, k+1$, such that $\left(q_{i}, w_{i}, u_{i}\right) \xrightarrow{M^{1}}\left(q_{i+1}, w_{i+1}, u_{i+1}\right)$, for $i=1, \ldots, k$, and $\left(q_{1}, w_{1}, u_{1}\right)=(q, w, u)$ and $\left(q_{k+1}, w_{k+1}, u_{k+1}\right)=\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$.

At last, (q, w, u) yields $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ in at least one step, denoted (q, w, u) $\xrightarrow{M^{+}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$, if there exists a $k \geq 1$ such that $(q, w, u) \xrightarrow{M^{k}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$.

Definition 2.4 Given a Turing machine M and a language $L \subseteq \Gamma^{*}$, we say that M decides L iff for every $x \in \Gamma^{*}$ the following conditions hold: if $x \in L$, then $(s, \triangleright, x) \xrightarrow{M^{+}}(y e s, w, u)$, and, if $x \notin L$, then $(s, \triangleright, x) \xrightarrow{M^{+}}(n o, w, u)$ for some w, u.

Definition 2.5 Let M be a Turing machine and L be a language such that $L \subseteq \Gamma^{*} . M$ decides L in time $f(n)$ iff the following two conditions hold: M decides L; for any $x \in \Gamma^{*}$, if $(s, \triangleright, x) \xrightarrow{M^{k}}(H, w, u)$, for $H \in\{y e s, n o\}$, then $k \leq f(|x|)$.

Definition 2.6 Let f be a function from $(\Sigma \backslash\{\sqcup\})^{*}$ to Σ^{*}. Then f is said to be computable if and only if there exists a deterministic Turing machine M with alphabet Σ such that for all $x \in(\Sigma \backslash\{\omega\})^{*}, M(x)=f(x)$. f is said to be computable in time $g(n)$ if and only if M is computable and for all $x \in(\Sigma \backslash\{\sqcup\})^{*},(s, \triangleright, x) \xrightarrow{M^{k}}(h, w, u)$ and $k \leq g(|x|)$.

2.1.2 Non-deterministic Turing Machines

The definition of a non-deterministic Turing machine is much like the deterministic Turing machine one, except that δ is no longer a transition function but now a relation Δ such that $\Delta \subset(K \times \Sigma) \times[(K \cup\{h, y e s, n o\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}]$.

The definition of a non-deterministic Turing machine's configuration is exactly the same as the definition of a deterministic Turing machine's configuration. However, a non-deterministic Turing machine's configuration may now yield more than one configuration in one step.

Definition 2.7 Let N be a nondeterministic Turing machine and $w=v \sigma$, where $v \in \Sigma^{*}$ and $\sigma \in \Sigma$. Configuration (q, w, u) yields configuration ($q^{\prime}, w^{\prime}, u^{\prime}$) in one step, denoted $(q, w, u) \xrightarrow{N^{1}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$, if there exists a rule $\left((q, \sigma),\left(q^{\prime}\right.\right.$, $\left.\sigma^{\prime}, D\right)$) in Δ such that: if $D=-$, then $w^{\prime}=v \sigma^{\prime}$ and $u^{\prime}=u$; if $D=\rightarrow$, then w^{\prime} is $v \sigma^{\prime}$ with the first symbol of u appended to it (\sqcup if u is the empty string) and u^{\prime} is u with its first symbol omitted (if u is the empty string, then u^{\prime} remains empty); if $D=\leftarrow$, then $w^{\prime}=v$ and u^{\prime} is u with σ^{\prime} attached in the beginning.
$\xrightarrow{N^{k}}$ can be defined in the same way as $\xrightarrow{M^{k}}$. Finally, $(q, w, u) \xrightarrow{N^{+}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ if there exists $a k \geq 1$ such that $(q, w, u) \xrightarrow{N^{k}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$.

Definition 2.8 Let N be a non-deterministic Turing machine and L be a language such that $L \subseteq \Gamma^{*}$. N decides L in time $f(n)$ iff for any $x \in \Gamma^{*}$ the following two conditions hold:

- for every configuration C that arises in the computations of N on x, there exists a $k \in \mathbb{N}$ such that $k \leq f(|x|)$ and $(s, \triangleright, x) \xrightarrow{N^{k}} C$;
$-x \in L$ iff $(s, \triangleright, x) \xrightarrow{N^{+}}(y e s, w, u)$.

2.2 NP and NP-completeness

Definition 2.9 A language L belongs to NP iff there exists a non-deterministic Turing machine N and a polynomial p such that N decides L in time $p(n)$.

Theorem 2.10 A language L belongs to NP if and only if there exists a polynomial time Turing machine V (called a proof verifier) and a polynomial p such that for all $x \in \Gamma^{*}$, the following holds:

$$
\begin{equation*}
x \in L \Leftrightarrow \exists \pi \in \Gamma^{*}(|\pi| \leq p(|x|) \wedge V \text { accepts }(x, \pi)) \tag{1}
\end{equation*}
$$

Proof: Before we start the proof, it is worth pointing out that we view configurations and sequences of configurations as strings over a finite alphabet Γ which includes the symbols "(",")" and ",". Obviously, the length of a string over Γ corresponds to the number of symbols in the string.
(\Rightarrow) Suppose that $L \in$ NP. By Definition 2.9, we can let N be a nondeterministic Turing machine and p_{1} be a polynomial such that N decides L in time $p_{1}(n)$. Define V to be a polynomial time Turing machine that takes as its input pairs of strings (x, π), where $x, \pi \in \Gamma^{*}$, and checks:

1. if $\pi=C_{1}, \ldots, C_{j}$;
2. if $C_{1}=(s, \triangleright, x)$;
3. if $C_{j}=(y e s, w, u)$ for some w, u;
4. if $C_{i} \xrightarrow{N^{1}} C_{i+1}$ for all $i=1, \ldots, j-1$.

If all these four conditions are satisfied, then V accepts (x, π). Let x be an arbitrary string in Γ^{*}. Now, prove (1) and define p_{2} in the course of the proof.

Suppose that $x \in L$. Show that $\exists \pi\left(|\pi| \leq p_{2}(|x|) \wedge V\right.$ accepts $\left.(x, \pi)\right)$ holds. Since N decides L in time $p_{1}(n)$, by Definition 2.8, we have $(s, \triangleright, x) \xrightarrow{N^{j-1}}$ (yes, w, u) where $2 \leq j \leq p_{1}(|x|)+1$. So, let $S=C_{1}, \ldots, C_{j}$ such that $C_{1}=$ $(s, \triangleright, x), C_{j}=(y e s, w, u)$, and $C_{i} \xrightarrow{N^{1}} C_{i+1}$ for all $i=1, \ldots, j-1$. Let $\pi=S$. Clearly, V accepts (x, π). Now, derive an upperbound for $|\pi|$. By the definition of "yields in one step" in Definition 2.7, we have $\left|C_{i}\right| \leq\left|C_{i-1}\right|+1$ for all $i=$ $2, \ldots, j$. Unfolding this inequality yields $\left|C_{i}\right| \leq\left|C_{1}\right|+(i-1)$ for all $i=1, \ldots, j$. Since $\left|C_{1}\right|+(i-1) \leq\left|C_{1}\right|+(j-1) \leq 6+|x|+p_{1}(|x|)$ for all $i=1, \ldots, j$, therefore, $\left|C_{i}\right| \leq 6+|x|+p_{1}(|x|)$ for all $i=1, \ldots, j$. Hence, $\sum_{i=1}^{p_{1}(|x|)+1}\left(\left|C_{i}\right|+1\right) \leq$ $\left(p_{1}(|x|)+1\right) \times\left(6+|x|+p_{1}(|x|)+1\right)$. As $|\pi| \leq \sum_{i=1}^{j}\left(\left|C_{i}\right|+1\right) \leq \sum_{i=1}^{p_{1}(|x|)+1}\left(\left|C_{i}\right|+1\right)$, we get:

$$
|\pi| \leq \underbrace{\left(p_{1}(|x|)+1\right) \times\left(7+|x|+p_{1}(|x|)\right)}_{p_{2}(|x|)}
$$

This shows that $|\pi|$ is upperbounded by a polynomial in the length of x. Therefore, $\exists \pi\left(|\pi| \leq p_{2}(|x|) \wedge V\right.$ accepts $\left.(x, \pi)\right)$ holds.

Now, suppose that there exists a string π such that $|\pi| \leq p_{2}(|x|)$ and V accepts (x, π). Show that $x \in L$. So, let π_{1} be a sequence of configurations such that $\left|\pi_{1}\right| \leq p_{2}(|x|)$ and V accepts $\left(x, \pi_{1}\right)$. By the definition of V, we can let $\pi_{1}=C_{1}, \ldots, C_{j}$, where $C_{1}=(s, \triangleright, x), C_{j}=(y e s, w, u)$ and $C_{i} \xrightarrow{N^{1}} C_{i+1}$, for all $i=1, \ldots, j-1$. Hence, $(s, \triangleright, x) \xrightarrow{N^{+}}(y e s, w, u)$. By Definition 2.8, $x \in L$.
(\Leftarrow) Let V be a polynomial time Turing machine and p_{2} be a polynomial such that for all $x \in \Gamma^{*}, x \in L \Leftrightarrow \exists \pi\left(|\pi| \leq p_{2}(|x|) \wedge V\right.$ accepts $\left.(x, \pi)\right)$ holds. Show that there exists a non-deterministic Turing machine that decides L in polynomial time in the length of the input. Define N to be a non-deterministic Turing machine such that for every input $x \in \Gamma^{*}, N$ behaves as follows:

1. guesses a sequence of configurations π such that $|\pi| \leq p_{2}(|x|)$;
2. runs V on input (x, π). If V accepts, then so does N, otherwise N rejects.

Let x be an arbitrary string in Γ^{*}. Clearly, N accepts or rejects x in polynomial time in the length of x, since the first step takes at most $p_{2}(|x|)$, and V accepts or rejects (x, π) in polynomial time in the length of x.

Suppose that $x \in L$. Hence, $\exists \pi\left(|\pi| \leq p_{2}(|x|) \wedge V\right.$ accepts $\left.(x, \pi)\right)$ holds. So, let π_{1} be a sequence of configurations such that $\left|\pi_{1}\right| \leq p_{2}(|x|)$ and V accepts $\left(x, \pi_{1}\right)$. Now, we run N on input x. Let N guess π_{1}. Hence, N accepts x.

Suppose that $x \notin L$. Hence, $\forall \pi(V$ rejects $(x, \pi))$ holds. Therefore, if we run N on input x, then for any sequence of configurations π that N may guess, V will reject (x, π). Therefore, N rejects x.

Definition 2.11 Let L and L^{\prime} be languages such that $L \subseteq \Gamma_{1}^{*}$ and $L^{\prime} \subseteq \Gamma_{2}^{*}$, where Γ_{1} and Γ_{2} are finite alphabets. L is polynomial time reducible to L^{\prime}, denoted $L \leq_{P} L^{\prime}$, iff there exists a deterministic Turing machine M and a polynomial p such that for every input string $x \in \Gamma_{1}^{*}, M$ halts within $p(|x|)$ steps and $M(x) \in L^{\prime}$ iff $x \in L . M$ is called a polynomial time reduction from L to L^{\prime}.

Observation 2.12 The relation \leq_{P} is reflexive and transitive.
Definition 2.13 A language L is NP-complete iff $L \in$ NP and for every language $L^{\prime} \in \mathrm{NP}, L^{\prime} \leq_{P} L$.

Lemma 2.14 If $L \leq_{P} L^{\prime}$ and $L^{\prime} \in N P$, then $L \in N P$.
Proof: Suppose that $L \leq_{P} L^{\prime}$ and $L^{\prime} \in$ NP. Show that $L \in$ NP. Let M be a polynomial time reduction from L to L^{\prime} and N^{\prime} be a non-deterministic Turing machine which decides L^{\prime} in polynomial time. Define a nondeterministic Turing machine N which decides L as follows.
N on input x :

1. Computes $M(x)$.
2. Runs N^{\prime} on input $M(x)$.
N obviously runs in polynomial time since its two stages run in polynomial time. Hence, $L \in \mathrm{NP}$.
Lemma 2.15 If L is NP-complete, $L^{\prime} \in \mathrm{NP}$ and $L \leq_{P} L^{\prime}$ then L^{\prime} is NPcomplete.

Proof: Suppose that L is NP-complete, $L^{\prime} \in$ NP and $L \leq_{P} L^{\prime}$. Show that L^{\prime} is NP-complete. Since L^{\prime} is already in NP, it suffices to show that for any $L^{\prime \prime} \in \mathrm{NP}, L^{\prime \prime} \leq_{P} L^{\prime}$. As L is NP-complete, we get that $L^{\prime \prime} \leq_{P} L$, by Definition 2.13. Since $L \leq_{P} L^{\prime}$ and \leq_{P} is transitive, we get that $L^{\prime \prime} \leq_{P} L^{\prime}$.

3 Propositional Proof Complexity

In this section, we give a brief overview of Propositional Proof Complexity and provide definitions that are needed for our purpose. In the first part, we define the language of propositional logic. Then, we relate the NP vs coNP question to the P vs NP question. The search for an efficient proof system for TAUT can be reduced to finding the most powerful of all propositional proof systems, in terms of efficiency, which is an optimal proof system. Within that section, we also define the notion of optimal proof system, that is going to be at the heart of this dissertation. In fact, if one proves the existence of an optimal proof system P, then proving NP is different from coNP boils down to showing that P is not efficient. Later, in that section, we introduce Frege and Substitution Frege systems, as they are needed for the proof of the main theorem of this thesis. Then, we present some results and open problems in propositional proof complexity.

3.1 Propositional Logic

Our exposition of propositional logic follows [CN10].

3.1.1 Syntax and Semantics of Propositional Logic

The language of propositional logic consists of: the logical constants T (for True) and \perp (for False), a countable set $V=\left\{p_{0}, p_{1}, \ldots\right\}$ of propositional variables, the logical connectives \neg, \vee, \wedge and parentheses (,).
Definition 3.1 Define propositional formulae (or formulae for short) inductively as follows:
(PL1). $\mathrm{\top}, \perp$ and p_{i} are atomic formulae, for any $i \geq 0$.
(PL2). If φ and ψ are formulae, then so are $\neg \varphi,(\varphi \vee \psi)$ and $(\varphi \wedge \psi)$.
The set of all well-formed propositional formulae will be denoted by PL. Propositional formulae will be denoted by φ, ψ, \ldots, possibly subscripted.
Definition 3.2 A formula φ is said to be closed if it doesn't contain propositional variables.
Notation $(\varphi \rightarrow \psi)$ stands for $(\neg \varphi \vee \psi)$ and $(\varphi \leftrightarrow \psi)$ for $((\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi))$.
Also, we write $\bigwedge_{i=1}^{n} \varphi_{i}$ for $\varphi_{1} \wedge \ldots \wedge \varphi_{n}$ and $\bigvee_{i=1}^{n} \varphi_{i}$ for $\varphi_{1} \vee \ldots \vee \varphi_{n}$.

Definition 3.3 Define a truth assignment to be a mapping from V to $\{1,0\}$, where 1 denotes True and 0 denotes False. Given a truth assignment τ, the truth value of a formula φ, denoted φ^{τ}, is defined inductively as follows:

1. $T^{\tau}=1, \perp^{\tau}=0$ and $\left(p_{i}\right)^{\tau}=\tau\left(p_{i}\right) ;$
2. $(\neg \psi)^{\tau}=1-\psi^{\tau} ;(\varphi \wedge \psi)^{\tau}=\min \left\{\varphi^{\tau}, \psi^{\tau}\right\} ;(\varphi \vee \psi)^{\tau}=\max \left\{\varphi^{\tau}, \psi^{\tau}\right\}$.

Definition 3.4 A truth assignment τ satisfies a formula φ, denoted $\tau \models \varphi$, if and only if $\varphi^{\tau}=1$.

Definition 3.5 Let $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{k}$ be formulas. Then φ_{0} is a logical consequence of $\left\{\varphi_{1}, \ldots, \varphi_{k}\right\}$, denoted $\left\{\varphi_{1}, \ldots, \varphi_{k}\right\} \vDash \varphi_{0}$, if and only if for every truth assignment τ, if $\left(\varphi_{1} \wedge \ldots \wedge \varphi_{k}\right)^{\tau}=1$, then $\left(\varphi_{0}\right)^{\tau}=1$.

3.2 SAT, TAUT and NP vs coNP

Definition 3.6 A formula φ is satisfiable if and only if there exists an assignment τ such that $\tau \models \varphi$ (we denote by SAT the set of all satisfiable formulae). φ is a tautology if and only if for all assignments $\tau, \tau \models \varphi$ (we denote by TAUT the set of all tautologies).

Observation 3.7 Let φ be a formula. Then $\} \vDash \varphi$ (or simply written as $\vDash \varphi$) if and only if $\varphi \in$ TAUT.

Notation If L is a language, then denote by \bar{L} the complement of L.
Observation 3.8 A formula $\varphi \in$ TAUT if and only if $\neg \varphi \in \overline{\mathrm{SAT}}$.
Theorem 3.9 [Coo71] SAT is NP-complete.
Cook is the first to show the existence of an NP-complete language: SAT. Thus, for P to be equal to NP, it has to be that SAT is in P.

Corollary 3.10 $\overline{\text { TAUT }}$ is NP-complete.
Proof: One way to prove that TAUT is NP-complete is to show that it is in NP and SAT $\leq_{P} \overline{\text { TAUT }}$. From there, one obtains that TAUT is NP-complete, by Lemma 2.15 .

First demonstrate that $\overline{\text { TAUT }} \in$ NP. Observe that $\overline{\text { TAUT }}=\{\phi \mid \neg \phi \in$ SAT\}. Since $\neg \phi$ can easily be computed in polynomial time by a deterministic Turing machine from ϕ, we get that $\overline{\mathrm{TAUT}} \leq_{P}$ SAT, by Definition 2.11. Thus, TAUT \in NP, by Lemma 2.14.

The proof of SAT $\leq_{P} \overline{\text { TAUT }}$ uses exactly the same strategy as the proof of $\overline{\mathrm{TAUT}} \leq_{P}$ SAT, because SAT $=\{\phi \mid \neg \phi \in \overline{\text { TAUT }}\}$.

Definition 3.11 A language $L \in \operatorname{coNP}$ if and only if $\bar{L} \in \operatorname{NP}$
Observation 3.12 TAUT \in coNP.
Proposition 3.13 If NP \neq coNP, then $\mathrm{P} \neq \mathrm{NP}$.

Proof: Prove the contrapositive. Observe that P is closed under complementation. Suppose that $\mathrm{P}=\mathrm{NP}$. Hence, coNP $=\{\bar{L} \mid L \in \mathrm{P}\}=\mathrm{P}$. Thus, $\mathrm{NP}=\mathrm{coNP}$, by assumption.

Proposition 3.14 NP = coNP if and only if TAUT \in NP.
Proof: First observe that $L \leq_{P} L^{\prime}$ if and only if $\bar{L} \leq_{P} \overline{L^{\prime}}$.
(\Rightarrow) Suppose that NP $=$ coNP. Show that TAUT is in NP. By Corollary 3.10, we have that TAUT is NP-complete. Hence, $\overline{\text { TAUT }} \in N P$, by Definition 2.13. It follows that TAUT \in coNP, by Definition 3.11. Therefore, TAUT \in NP, by assumption.
(\Leftarrow) Suppose that TAUT \in NP. To show that $N P=$ coNP, it suffices to show that for every language in NP, its complement is also in NP. Let L be an arbitrary language in NP. By corollary 3.10, TAUT is NP-complete. Hence, all languages in NP can be polynomially reduced to $\overline{\mathrm{TAUT}}$, by Definition 2.13. In particular, $L \leq_{P} \overline{\text { TAUT }}$. Therefore, $\bar{L} \leq_{P}$ TAUT. Since TAUT \in NP (by assumption), we get that $\bar{L} \in \mathrm{NP}$, by Lemma 2.14.

3.3 Proof System

Definition 3.15 Define a propositional proof system to be a polynomial time deterministic Turing machine P such that:

$$
\forall x \in \Gamma^{*}\left(x \in \text { TAUT } \Leftrightarrow \exists \pi \in \Gamma^{*}(P \text { accepts }(x, \pi))\right)
$$

Sometimes, we will refer to propositional proof systems as just proof systems.
In [CR79], Cook and Reckow defined a propositional proof system to be a polytime computable onto function $f: \Sigma^{*} \rightarrow$ TAUT, for some finite alphabet Σ. A propositional proof system P, as defined in Definition 3.15, can be transformed into a function f satisfying [CR79]'s definition as follows. If P accepts (x, π), then f maps (x, π) to x, else if P rejects (x, π), then f maps (x, π) to T. In the converse direction, one can construct a polytime deterministic Turing machine P such that P accepts (x, π) if and only if $f(\pi)=x$ as follows. Let P^{\prime} be a polynomial time deterministic Turing machine that computes f. Now, P, on input (x, π), runs $P^{\prime}(\pi)$. If $P^{\prime}(\pi)=x$, then P accepts (x, π), otherwise it rejects. Hence, the two definitions are equivalent. Thus, depending on the context, we may use one or the other later.

Note that the runtime of a propositional proof system depends on the length of π.

Definition 3.16 We say that a propositional proof system P is polynomially bounded iff there exists a polynomial p such that:

$$
\forall x \in \Gamma^{*}(x \in \text { TAUT } \Leftrightarrow \exists \pi(P \text { accepts }(x, \pi) \wedge|\pi| \leq p(|x|)))
$$

If P accepts (x, π), then we say that π is a P-proof of x. Additionally, if $|\pi| \leq p(|x|)$, then we say that π is a short P-proof of x.

Theorem 3.17 A polynomially bounded propositional proof system exists iff $\mathrm{NP}=\mathrm{coNP}$.

Proof: (\Rightarrow) Suppose that there exists a polynomially bounded propositional proof system. By the definition of "polynomially bounded" in Definition 3.16, there exists a polynomial time deterministic Turing machine P and a polynomial p such that $\forall x \in \Gamma^{*}(x \in$ TAUT $\Leftrightarrow \exists \pi(P$ accepts $(x, \pi) \wedge|\pi| \leq p(|x|)))$ holds. This implies that TAUT \in NP by Theorem 2.10. Therefore, NP $=$ coNP by Proposition 3.14.
(\Leftarrow) Suppose that NP $=$ coNP. Hence, TAUT \in NP by Proposition 3.14. By Theorem 2.10, there exists a polynomial time deterministic Turing machine P and a polynomial p such that $\forall x \in \Gamma^{*}(x \in$ TAUT $\Leftrightarrow \exists \pi(|\pi| \leq$ $p(|x|) \wedge P$ accepts $((x, \pi))))$ holds. This implies that a polynomially bounded propositional proof system exists, by Definition 3.16.

Theorem 3.17 initiated a program of research (called Cook's program by some) aiming at attacking the NP vs coNP problem by proving that stronger and stronger proof systems are not polynomially bounded, until it is established for all proof systems.

Definition 3.18 Let P_{1} and P_{2} be propositional proof systems. We say that P_{1} p-simulates P_{2}, denoted $P_{2} \leq_{P} P_{1}$, iff there exists a polynomial time deterministic Turing machine M such that:

$$
\begin{equation*}
\forall x, \pi\left(P_{2} \text { accepts }(x, \pi) \Rightarrow P_{1} \text { accepts }(x, M(\pi))\right) \tag{2}
\end{equation*}
$$

We say that P_{1} is p-equivalent to P_{2}, denoted $P_{1} \equiv{ }_{P} P_{2}$, iff they p-simulate each other.

Note that in Definition 3.18, the notion of P_{1} p-simulates P_{2} requires the existence of a polynomial-time deterministic Turing machine that translates every P_{2}-proof π of a tautology φ into a P_{1}-proof of φ. There is also a weaker notion of p-simulation, called simulation, where the only thing required is the existence of a P_{1}-proof π^{\prime} of φ such that $\left|\pi^{\prime}\right| \leq p(|\pi|)$, for some polynomial p. Below, we give a formal definition of the notion of simulation.

Definition 3.19 Let P^{\prime} be a propositional proof system. We say that P^{\prime} is p-optimal iff for all propositional proof systems $P, P \leq_{P} P^{\prime}$.

Definition 3.20 Let P_{1} and P_{2} be propositional proof systems. We say that P_{1} simulates P_{2}, denoted $P_{2} \leq P_{1}$, iff there exists a polynomial p such that:

$$
\forall \phi, \pi\left(P_{2} \operatorname{accepts}(\phi, \pi) \Rightarrow \exists \pi^{\prime}\left(P_{1} \operatorname{accepts}\left(\phi, \pi^{\prime}\right) \wedge\left|\pi^{\prime}\right| \leq p(|\pi|)\right)\right)
$$

We say that P_{1} is equivalent to P_{2}, denoted $P_{1} \equiv P_{2}$, iff they simulate each other.

Definition 3.21 Let P^{\prime} be a propositional proof system. We say that P^{\prime} is optimal iff for all propositional proof systems $P, P \leq P^{\prime}$.

Note that if a proof system $P_{2} \leq_{P} P_{1}$, then $P_{2} \leq P_{1}$. However, the other direction doesn't hold. Therefore, the relation \leq_{P} is a strict subset of \leq. It follows that $\equiv P$ is also a strict subset of \equiv and a p-optimal proof system is already an optimal proof system.

Definition 3.22 Let S be a set and \mathcal{R} be a binary relation on $S . \mathcal{R}$ is a quasiorder or pre-order if and only if:

$$
\begin{aligned}
& \text { 1. } \forall e \in S(e \mathcal{R} e) \text { (reflexive), } \\
& \text { 2. } \forall e_{1}, e_{2}, e_{3} \in S\left(e_{1} \mathcal{R} e_{2} \wedge e_{2} \mathcal{R} e_{3} \Rightarrow e_{1} \mathcal{R} e_{3}\right) \text { (transitive). }
\end{aligned}
$$

Notation We denote by (S, \mathcal{R}) the set S equipped with the pre-order \mathcal{R}.
Definition 3.23 Let S be a set and \mathcal{R} be a relation on S. Then \mathcal{R} is an equivalence relation on S if and only if \mathcal{R} is a pre-order on S and $\forall e_{1}, e_{2} \in$ $S\left(e_{1} \mathcal{R} e_{2} \Rightarrow e_{2} \mathcal{R} e_{1}\right)$ (symmetric).

Proposition 3.24 Let P_{1} be a propositional proof system. Then $P_{1} \leq_{P} P_{1}$.
Proof: Construct a polynomial time Turing machine M_{1} which on input π will do nothing but output π. Obviously, if π is a P_{1}-proof, then $M_{1}(\pi)$ is a P_{1}-proof as well. By Definition 3.18, $P_{1} \leq_{P} P_{1}$.

Proposition 3.25 Let P_{1} be a propositional proof system. Then $P_{1} \leq P_{1}$.

Proof: Trivial.

Proposition 3.26 Let P_{1}, P_{2} and P_{3} be propositional proof systems. If $P_{1} \leq_{P}$ P_{2} and $P_{2} \leq_{P} P_{3}$, then $P_{1} \leq_{P} P_{3}$.

Proof: Suppose that $P_{1} \leq_{P} P_{2}$ and $P_{2} \leq_{P} P_{3}$. By Definition 3.18, let M_{1} be a polynomial time Turing machine such that for any P_{1}-proof π_{1} there exists a corresponding P_{2}-proof $M_{1}\left(\pi_{1}\right)$ and let M_{2} be a polynomial time Turing machine such that for any P_{2}-proof π_{2} there exists a corresponding P_{3}-proof $M_{2}\left(\pi_{2}\right)$. Construct a polynomial time Turing machine M_{3} which on input π behaves as follows: computes $M_{1}(\pi)$ and then run M_{2} on $M_{1}(\pi)$. Clearly, if the input of M_{3} is a P_{1}-proof, then the output produced is a P_{3}-proof. By Definition 3.18, $P_{1} \leq_{P} P_{3}$.

Proposition 3.27 Let P_{1}, P_{2} and P_{3} be propositional proof systems. If $P_{1} \leq P_{2}$ and $P_{2} \leq P_{3}$, then $P_{1} \leq P_{3}$.

Proof: Suppose that $P_{1} \leq P_{2}$ and $P_{2} \leq P_{3}$. By Definition 3.20: there exists a polynomial p such that for every P_{1}-proof π of a tautology ϕ, there exists a P_{2}-proof π^{\prime} of ϕ such that $\left|\pi^{\prime}\right| \leq p(|\pi|)$; there exists a polynomial p such that for every P_{2}-proof π of a tautology ϕ, there exists a P_{3}-proof π^{\prime} of ϕ such that $\left|\pi^{\prime}\right| \leq p(|\pi|)$. Now, we want to show that for every P_{1}-proof π of a tautology ϕ, there exists a P_{3}-proof π^{\prime} of ϕ such that $\left|\pi^{\prime}\right| \leq p(|\pi|)$, for some polynomial p. So, let ϕ be any tautology and π_{1} be any P_{1}-proof of ϕ. Thus, we can let π_{2} be a P_{2}-proof of ϕ such that $\left|\pi_{2}\right| \leq p_{1}\left(\left|\pi_{1}\right|\right)$, for some polynomial p_{1}. Furthermore, we can let π_{3} be a P_{3}-proof of ϕ such that $\left|\pi_{3}\right| \leq p_{2}\left(\left|\pi_{2}\right|\right)$, for some polynomial p_{2}. Thus, $\left|\pi_{3}\right| \leq p_{3}\left(\left|\pi_{1}\right|\right)$, where $p_{3}\left(\left|\pi_{1}\right|\right)=p_{2}\left(p_{1}\left(\left|\pi_{1}\right|\right)\right)$. By Definition 3.20, $P_{1} \leq P_{3}$.

The proofs of Propositions 3.24, 3.25, 3.26 and 3.27 show that \leq_{P} and \leq are pre-orders on the set of all propositional proof systems. The relation \equiv_{P} and \equiv are obviously equivalence relations, since they are both symmetric by definition.

Definition 3.28 A greatest element of (S, \mathcal{R}) is an element $g \in S$ such that for all $e \in S, e \mathcal{R} g$.

Observation 3.29 Let PPS denote the set of all propositional proof systems. $(P P S, \leq)$ has a greatest element iff there exists an optimal proof system within PPS.

Proof: (\Rightarrow) Suppose that a greatest element exists within ($P P S, \leq$). Let P be such element. By Definition $3.28, \forall P^{\prime} \in P P S\left(P^{\prime} \leq P\right)$. Hence, P is optimal by Definition 3.21.
(\Leftarrow) Suppose that there exists an optimal proof system within $P P S$. Let P be such proof system. Hence, $\forall P^{\prime} \in P P S\left(P^{\prime} \leq_{P} P\right)$ holds, by Definition 3.21. By Definition 3.28, P is a greatest element within $\left(P P S, \leq_{P}\right)$.

Note that the existence of an optimal proof system doesn't imply the existence of a p-optimal proof system. However, the existence of a p-optimal proof system implies the existence of an optimal proof system.

3.4 Frege and Substitution Frege Systems

Our exposition of Frege and substitution Frege systems follows [CR79].

3.4.1 Frege Systems

Definition 3.30 Define a substitution σ to be a mapping from the set of propositional variables to the set of propositional formulae. If $\varphi \in \mathrm{PL}$, then denote by $\varphi \sigma$ the result of replacing every variable in φ by its image under σ.

Lemma 3.31 Let φ be a propositional formula and σ be a substitution. If $\varphi \in$ TAUT, then $\varphi \sigma \in$ TAUT.

Proof: We prove the contrapositive. Suppose that $\varphi \sigma \notin$ TAUT. Thus, there exists a truth assignment τ such that $(\varphi \sigma)^{\tau}=0$. Let τ^{\prime} be a truth assignment defined as follows: for every propositional variable p in $\varphi, \tau^{\prime}(p)=(p \sigma)^{\tau}$. Then, one can show by structural induction that for every subformula ψ of $\varphi, \psi^{\tau^{\prime}}=$ $(\psi \sigma)^{\tau}$, in particular $\varphi^{\tau^{\prime}}=(\varphi \sigma)^{\tau}=0$. Therefore, φ is not a tautology.

Definition 3.32 A Frege rule is a system of propositional formulae of the form

$$
\begin{equation*}
\frac{\varphi_{1}, \ldots, \varphi_{k}}{\varphi_{0}} \tag{3}
\end{equation*}
$$

such that $\left\{\varphi_{1}, \ldots, \varphi_{k}\right\} \models \varphi_{0}$. If $k=0$, then the rule is called a Frege axiom scheme. We shall also write $\left(\varphi_{1}, \ldots, \varphi_{k}\right) / \varphi_{0}$ for (3).

Remark 3.33 If $\left(\varphi_{1}, \ldots, \varphi_{k}\right) / \varphi_{0}$ is a Frege rule, then $\varphi_{1} \wedge \ldots \wedge \varphi_{k} \Rightarrow \varphi_{0}$ is a tautology.

Definition 3.34 Define an inference system \mathscr{F} to be a finite set of Frege rules.

Definition 3.35 A formula ϕ_{0} is inferred from $\phi_{1}, \ldots, \phi_{k}$ by the Frege rule $\left(\varphi_{1}, \ldots, \varphi_{k}\right) / \varphi_{0}$ if there exists a substitution σ such that for every i from 0 to $k, \phi_{i}=\varphi_{i} \sigma$.

Definition 3.36 Let \mathscr{F} be an inference system. A Frege proof, or \mathscr{F}-proof for short, of a propositional formula ϕ from Γ (finite set of propositional formulae) is a sequence $\pi=\phi_{1} \ldots, \phi_{m}$ of propositional formulae such that ϕ_{m} is ϕ and for every i from 1 to m, ϕ_{i} is either in Γ or inferred from $\phi_{u_{1}}, \ldots, \phi_{u_{k}}$ by a rule in \mathscr{F}, where $u_{1}<\ldots<u_{k}<i$.
Notation If Γ is a finite set of propositional formulae, \mathscr{F} an inference system and ϕ a formula, then $\Gamma \vdash_{\mathscr{F}} \phi$ means that there exists an \mathscr{F}-proof of ϕ from Γ.
Theorem 3.37 Let \mathscr{F} be an inference system. Then, for any finite set Γ of propositional formulae and $\phi \in \mathrm{PL}$, if $\Gamma \vdash \mathscr{F} \phi$, then $\Gamma \models \phi$.
Proof: Let Γ be an arbitrary set of propositional formulae and $\phi \in$ PL. Suppose that $\Gamma \vdash_{\mathscr{F}} \phi$. Show that $\Gamma \vDash \phi$. Let τ be any truth assignment. Suppose that $\gamma^{\tau}=1$ for every $\gamma \in \Gamma$. Let $\pi=\phi_{1}, \ldots, \phi_{m}$ be an \mathscr{F}-proof of ϕ from Γ. Show by induction on i that $\phi_{i}^{\tau}=1$. If $\phi_{i} \in \Gamma$, then $\phi_{i}^{\tau}=1$. Suppose that ϕ_{i} is inferred from $\phi_{u_{1}}, \ldots, \phi_{u_{k}}$, where $u_{1}<\ldots<u_{k}<i$, by a Frege rule $\left(\varphi_{1}, \ldots, \varphi_{k}\right) / \varphi_{0}$ in \mathscr{F}. By Definition 3.35, there exists a substitution σ such that for every j from 1 to $k, \phi_{u_{j}}=\varphi_{j} \sigma$ and $\phi_{i}=\varphi_{0} \sigma$. Now, there are two subcases to consider. If $k=0$, then $\phi_{i}^{\tau}=1$. Assume that $k \neq 0$. By induction hypothesis, $\left(\phi_{u_{1}} \wedge \ldots \wedge \phi_{u_{k}}\right)^{\tau}=1$. By Lemma 3.31, we have that $\phi_{u_{1}} \wedge \ldots \phi_{u_{k}} \Rightarrow \phi_{i}$ is a tautology. Thus, $\phi_{i}^{\tau}=1$.
Definition 3.38 Let $\left\{\phi_{1}, \ldots, \phi_{l}\right\}$ be an arbitrary set of propositional formulae. An inference system \mathscr{F} is said to be implicationally complete iff for any $\phi \in \mathrm{PL}$, if $\left\{\phi_{1}, \ldots, \phi_{l}\right\} \models \phi$, then $\left\{\phi_{1}, \ldots, \phi_{l}\right\} \vdash_{\mathscr{F}} \phi$.
Definition 3.39 Let \mathscr{F} be an inference system. We say that \mathscr{F} is a Frege system if and only if \mathscr{F} is implicationally complete.
Theorem 3.40 If φ is a closed formula, then either φ or $\neg \varphi$ has a poly-size Frege-proof.

Proof: Assume that the Frege system under consideration below includes the following Frege rules: $R_{1}=(A, B) / A \wedge B, R_{2}=(A) / A \vee B, R_{3}=(B) / A \vee B$, $R_{4}=(\neg A) / \neg(A \wedge B)$.

Suppose that φ is a closed formula. We show by structural induction on φ that either φ or $\neg \varphi$ has a poly-size Frege-proof. If φ is T or \perp, then it is trivial. Suppose that φ is of the form $\varphi_{1} \wedge \varphi_{2}$. If φ evaluates to True, then φ_{1} and φ_{2} evaluate to True. By induction hypothesis, they have poly-size Fregeproofs. By R_{1}, we obtain a Frege-proof of $\varphi_{1} \wedge \varphi_{2}$. Thus, $\varphi_{1} \wedge \varphi_{2}$ has a poly-size Frege-proof. If φ evaluates to False, then either φ_{1} or φ_{2} evaluates to False. Assume w.l.o.g. that φ_{1} evaluates to False. By induction hypothesis, $\neg \varphi_{1}$ has a poly-size Frege-proof. By R_{4}, we obtain a Frege-proof of $\neg\left(\varphi_{1} \wedge \varphi_{2}\right)$. Thus, $\neg \varphi$ has a poly-size Frege-proof. Similarly, for φ of the form $\varphi_{1} \vee \varphi_{2}$. Suppose that φ is of the form $\neg \psi$. If φ evaluates to True, then ψ evaluates to False. By induction hypothesis, φ has a poly-size Frege-proof. If φ evaluates to False, then $\neg \varphi$, which is ψ, evaluates to True. By induction hypothesis, ψ has poly-size Frege-proof. Thus, $\neg \varphi$ has poly-size Frege-proof.

Corollary 3.41 If φ is a closed tautology, then it has a poly-size Frege-proof.
Corollary 3.41 is a direct implication of Theorem 3.40.
Remark 3.42 The size of a Frege-proof of a closed tautology ϕ is quadratic in the size of ϕ, since the number of lines in a Frege-proof of ϕ is linear in the length of ϕ and the number of symbols in a line of a Frege-proof is linear in the length of ϕ.

3.4.2 Substitution Frege systems

Definition 3.43 Define a substitution Frege system s \mathscr{F} to be a Frege system \mathscr{F} plus the substitution rule $\varphi / \varphi \sigma$, which states that from propositional formula φ infer $\varphi \sigma$, for any substitution σ.

Definition 3.44 Let \mathscr{F} be a Frege system. A substitution Frege proof, or s \mathscr{F}-proof for short, of $\phi \in$ TAUT is a sequence $\pi=\phi_{1}, \ldots, \phi_{m}$ of propositional formulae such that $\phi_{m}=\phi$ and for every i from 1 to m, ϕ_{i} is either inferred from $\phi_{u_{1}}, \ldots, \phi_{u_{k}}$, where $u_{1}<\ldots<u_{k}<i$, by a Frege rule in \mathscr{F} or inferred from ϕ_{j}, where $j<i$, by the substitution rule.

We can eliminate an application of the substitution rule by repeating the part of the proof before the inference. In such a transformation, these repetitions can be nested and the proof may grow exponentially.

Observe that premises are not allowed in the definition of substitution Frege proofs. If premises were allowed in the definition of substitution Frege proofs, then there exists a $\phi \in \mathrm{PL}$ and some substitution σ such that $\phi \vdash_{s \mathscr{F}} \phi \sigma$ and $\phi \not \vDash \phi \sigma$. For example, when $\phi=p_{1} \wedge p_{2}$ and σ maps p_{1} to itself and maps p_{2} to $p_{1} \wedge \neg p_{1}$.

Theorem 3.45 Let $s \mathscr{F}$ be a substitution Frege system. For any $\phi \in \mathrm{PL}$, if $\vdash_{s \mathcal{F}} \phi$, then $\vDash \phi$.

Proof: The proof is similar to the proof of Theorem 3.37.

3.4.3 Some Results and Open Problems in Proof Complexity

Cook and Reckow were the first to identify Frege and substitution Frege systems in [CR79]. They also identified another class of proof systems, called Extended Frege systems and showed that all Frege systems are p-equivalent. Krajícek and Pudlak showed, in [KP89b], that Extended Frege systems are p-equivalent with Substitution Frege systems.

With regard to the general program of Propositional Proof Complexity, a lot of work has been devoted to proving strong lower bounds on the sizes of proofs of specific tautologies in various proof systems.

Example 3.46 For any $n \geq 1$, the Pigeonhole Principle states that if $n+1$ pigeons sit in n holes, then there exists a hole with at least two pigeons.

Definition 3.47 We define the family of tautologies that formalises the Pigeonhole Principle to be the set:

$$
\begin{equation*}
\mathrm{PHP}=\left\{\mathrm{PHP}_{n}^{n+1}: n \geq 1\right\} \tag{4}
\end{equation*}
$$

where PHP_{n}^{n+1} is defined to be:

$$
\begin{equation*}
\left(\bigwedge_{i \leq n} \bigvee_{j<n} p_{\langle i, j\rangle}\right) \rightarrow\left(\bigvee_{j<n i_{1}<i_{2} \leq n} \bigvee_{\left\langle i_{1}, j\right\rangle} \wedge p_{\left\langle i_{2}, j\right\rangle}\right) \tag{5}
\end{equation*}
$$

where $\langle x, y\rangle$ is defined in Definition 4.21 and the intended meaning of $p_{\langle i, j\rangle}$ is that pigeon i sits in hole j.

It has first been shown by Haken, in [Hak85], that $\neg \mathrm{PHP}_{n}^{n+1}$ requires exponential size Resolution refutations. Later, Beame and Pitassi provided an improved lower bound on the sizes of Resolution refutations for $\neg \mathrm{PHP}_{n}^{n+1}$ in [BP96]. On the other hand, in [CR79, Bus87b], it was shown that a proof of PHP_{n}^{n+1} in extended Frege has length $O\left(n^{5}\right)$ and has length $O\left(n^{c}\right)$ in Frege for some constant c (fairly small, e.g. $c=20$), respectively. It follows that Frege and extended Frege simulate Resolution and not the other way around.

It was originally conjectured that for any $m>n, \mathrm{PHP}_{n}^{m}$ would require exponential size, in n, Resolution refutations. However, this conjecture was shown to be wrong for large values of m [BP98], in particular for $m \geq 2^{\sqrt{n \operatorname{logn}}}$. When $n^{2} \leq m<2^{\sqrt{n l o g n}}$, no lower bound was known at all and remained an open problem until [Raz04], where the author has proven that for any m such that $n^{2} \leq m<2^{\sqrt{n l o g n}}$, any Resolution refutation of $\neg \mathrm{PHP}_{n}^{m}$ is of length $\Omega\left(2^{n^{e}}\right)$, where $\epsilon>0$ is some global constant.

Definition 3.48 Let P be a propositional proof system. Then a countable family of tautologies $\left\{\varphi_{i}: i \in I\right\}$ has polysize P-proofs if and only if there exists a polynomial p such that for every $i \in I$, there exists a π such that $P\left(\varphi_{i}, \pi\right)$ holds and $|\pi| \leq p\left(\left|\varphi_{i}\right|\right)$.
Definition 3.49 Let P be a propositional proof system. Then a countable family of tautologies $\left\{\varphi_{i}: i \in I\right\}$ is hard for P if $\left\{\varphi_{i}: i \in I\right\}$ doesn't have polysize P-proofs.

At present time, no strong lower bounds are known for Frege, Extended and Substitution Frege systems. What makes it so difficult when trying to prove strong lower bounds for these systems is that there is a lack of hard candidate tautologies [BP01]. Thus, a natural open problem is to find hard tautologies for Frege, Extended and Substitution Frege systems. Some candidate hard tautologies have been suggested in [BBP95] for Frege systems.

These open problems have been collected from [BP01]. In there, one may find many more open problems related to Propositional Proof Complexity in general.

4 Uniform Systems

In this section, we define the notion of the uniform reduct of propositional proof systems (also called uniform systems) [Bec05] using the language of second-order
bounded arithmetic. The use of second-order bounded arithmetic is justified by the fact that in our main theorem, we assume that the uniform reduct of a proof system is defined using that language. Our exposition of second-order bounded arithmetic and how we translate second-order bounded arithmetic formulae (Σ_{0}^{B}-formulae) into propositional formulae follows [CN10].

4.1 Second-Order Bounded Arithmetic

In second-order bounded arithmetic, there are two kinds of variables: the variables x, y, z, \ldots (possibly subscripted), called number variables, that are intended to range over \mathbb{N}; the variables U, V, W, X, Y, Z, \ldots (possibly subscripted), called set (or string) variables, that are intended to range over the set of finite subsets of \mathbb{N}. We need the first sort (numbers) to measure the length of the second sort (strings). We identify strings with finite subsets of \mathbb{N} (made precise later). Predicate symbols P, Q, R, \ldots can take take arguments of both sorts, and so can function symbols. There are two kinds of functions: the number functions and the string functions. We use f, g, h, \ldots as meta-symbols for number function symbols; we use F, G, H, \ldots for string function symbols and a, b, c, \ldots for number variables (possibly subscripted).

Definition 4.1 We define an (n, m)-ary function symbol to be a function symbol that takes n arguments of the first sort and m arguments of the second sort. A (0,0)-ary number (resp. string) function symbol is called a number constant symbol (resp. string constant symbol).

Definition 4.2 Define \mathcal{L}_{A}^{2} to be $\left\{0,1,+, \times, \|,==_{1},=2, \leq, \in\right\}$, where 0 and 1 are number constant symbols; + and \times are (2,0)-ary number function symbols; $\|$ is $a(0,1)$-ary number function symbol; $=1$ and \leq are (2,0)-ary predicate symbols; $={ }_{2}$ is a (0,2 -ary predicate symbol; \in is a $(1,1)$-ary predicate symbol.

Notation We write $=$ for both $=_{1}$ and $=_{2}$. It will be clear from the context which is intended. Finally, we will use infix notation when using $+, x,=, \leq$ and ϵ.

Definition 4.3 Define \mathcal{L}_{A}^{2}-terms inductively as follows:

1. Every number variable is an \mathcal{L}_{A}^{2}-number term.
2. Every string variable is an \mathcal{L}_{A}^{2}-string term.
3. The symbols 0,1 are \mathcal{L}_{A}^{2}-number terms.
4. If t_{0} and t_{1} are \mathcal{L}_{A}^{2}-number terms, then so are $\left(t_{0}+t_{1}\right)$ and $\left(t_{0} \times t_{1}\right)$.
5. If T is an \mathcal{L}_{A}^{2}-string term, then $|T|$ is an \mathcal{L}_{A}^{2}-number term.

An \mathcal{L}_{A}^{2}-number term is said to be closed if it is not built up from rule 1 and 2.
We will refer to \mathcal{L}_{A}^{2}-number terms (resp. \mathcal{L}_{A}^{2}-string terms) as just "number terms" (resp. "string terms"). We often denote number terms by r, s, t, \ldots (possibly subscripted). Note that the only string terms are the string variables and if a string variable X occurs in a number term, then it must occur in a number term of the form $|X|$.

Notation If t is a number term not involving x, then $(\exists x \leq t) \varphi$ stands for $\exists x(x \leq t \wedge \varphi)$ and $(\forall x \leq t) \varphi$ stands for $\forall x(\neg(x \leq t) \vee \varphi)$.
Definition 4.4 We define Σ_{0}^{B}-formulae inductively as follows:

1. The logical constants T (True) and \perp (False) are atomic Σ_{0}^{B}-formulae.
2. $\left(t_{0}=t_{1}\right),\left(t_{0} \leq t_{1}\right), t_{0} \in X$ and $(X=Y)$ are atomic Σ_{0}^{B}-formulae, for number terms t_{0}, t_{1}.
3. If φ and ψ are Σ_{0}^{B}-formulae, then so are $\neg \varphi, \varphi \wedge \psi$ and $\varphi \vee \psi$.
4. If φ is a Σ_{0}^{B}-formula and x a number variable not occuring in the number term t, then $(\exists x \leq t) \varphi$ and $(\forall x \leq t) \varphi$ are Σ_{0}^{B}-formulae.
Σ_{0}^{B}-formulae will often be denoted by φ, ψ, \ldots (possibly subscripted).
Definition 4.5 We define the universal closure of a Σ_{0}^{B}-formula φ to be the formula $\forall \varphi$ obtained by adding an unbounded universal quantifier for every free number variable and string variable in φ.

Notation As in the case of propositional formulae, we write $(\varphi \rightarrow \psi)$ for $(\neg \varphi \vee \psi)$ and $\varphi \leftrightarrow \psi$ for $(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$. We use the abbreviation $X(t)$ for $t \in X$. Additionally, $x \neq y$ stands for $\neg(x=y)$ and $x<y$ for $x \leq y \wedge x \neq y$. Furthermore, $(\exists x<t) \varphi$ and $(\forall x<t) \varphi$ stand for $(\exists x \leq t)(x \neq t \wedge \varphi)$ and $(\forall x \leq t)(x \neq t \rightarrow \varphi)$, respectively. Finally, when we use $\varphi \in \Sigma_{0}^{B}$, we mean that φ is a Σ_{0}^{B}-formula.

Definition 4.6 An occurrence of a number variable x in a Σ_{0}^{B}-formula φ is bound if and only if that occurrence of x occurs in a subformula of φ of the form $(\exists x \leq t) \psi$ or $(\forall x \leq t) \psi$. Any number variable occurrence in a Σ_{0}^{B}-formula that is not bound is said to be free.

Definition 4.7 Let φ be a Σ_{0}^{B}-formula. Then define $\operatorname{FV}(\varphi)$ to be the set of all free number variables in φ; define $\operatorname{SV}(\varphi)$ to be the set of all string variables in $\varphi . \varphi$ is said to be closed if $\mathrm{FV}(\varphi)=\emptyset$ and $\operatorname{SV}(\varphi)=\emptyset$.

Notation In what follows, let $\mathcal{P}_{f i n}(\mathbb{N})$ denote the set of all finite subsets of \mathbb{N}
We identify a set $S \subseteq \mathbb{N}$ with its characteristic function. Hence, we can use function notation and membership notation interchangeably, as the context demands.

Definition 4.8 Let S be a finite subset of \mathbb{N} and $w: \mathcal{P}_{f i n}(\mathbb{N}) \rightarrow\{0,1\}^{*}$ be the mapping defined as follows

$$
w(S)=S(n-1) \ldots S(1) S(0)
$$

where $n-1$ is the largest element of S. We define the binary representation of S to be $w(S)$.

Note that the binary representation of the empty set is the empty string.
Since w is an injective mapping, we can identify a finite non-empty subset S of \mathbb{N} with its binary string representation.

Definition 4.9 The \mathcal{L}_{A}^{2}-standard model $\underline{\mathbb{N}}_{2}$ consists of the following:

1. Two non-empty sets \mathbb{N} and $\mathcal{P}_{\text {fin }}(\mathbb{N})$ that are called the universes of \mathbb{N}_{2}. Number (resp. string) variables range over \mathbb{N} (resp. $\mathcal{P}_{\text {fin }}(\mathbb{N})$).
2. The number constant symbols 0 and 1 are interpreted by $0,1 \in \mathbb{N}$, respectively.
3. The number function symbols + and \times are interpreted by the addition and multiplication functions on \mathbb{N}, respectively.
4. The number function symbol $\|$ is interpreted by the function $|S|^{\mathbb{N}_{2}}$, which is defined to be the length of the binary representation of the set S (i.e. $1+$ the largest element of S).
5. The predicate symbol $=1$ (resp. $={ }_{2}$) is always interpreted as the true equality relation on $\mathbb{N}\left(\right.$ resp. $\left.\mathcal{P}_{\text {fin }}(\mathbb{N})\right)$.
6. The predicate symbols \leq, \in get their usual interpretations.

Definition 4.10 An object assignment consists of a mapping from the number variables to \mathbb{N} and a mapping from the string variables to $\mathcal{P}_{\text {fin }}(\mathbb{N})$.

Notation Let α be an object assignment. Then we write $\alpha(x)$ for the object in \mathbb{N} assigned to x by α and $\alpha(X)$ for the object in $\mathcal{P}_{\text {fin }}(\mathbb{N})$ assigned to X by α. If $m \in \mathbb{N}$, then $\alpha(m / x)$ is the same as α except that it maps x to m. If $M \in \mathcal{P}_{\text {fin }}(\mathbb{N})$, then $\alpha(M / X)$ is the same as α except that it maps X to M.

Definition 4.11 Let α be an object assignment. Then define for each number term t (resp. string variable X) its value $t^{\mathbb{N}_{2}}[\alpha] \in \mathbb{N}$ (resp. $X^{\mathbb{N}_{2}}[\alpha] \in \mathcal{P}_{\text {fin }}(\mathbb{N})$) in \mathbb{N}_{2} under α inductively as follows:

1. $x^{\mathbb{N}_{2}}[\alpha]$ is $\alpha(x)$.
2. $X^{\mathbb{N}_{2}}[\alpha]$ is $\alpha(X)$.
3. $0^{\mathbb{N}_{2}}[\alpha]$ and $1 \mathbb{N}_{2}[\alpha]$ are the natural numbers 0 and 1 , respectively.
4. If t_{0}, t_{1} are number terms, then $\left(t_{0}+t_{1}\right){ }^{\mathbb{N}_{2}}[\alpha]$ is $\left(t_{0}^{\mathbb{N}_{2}}[\alpha]+t_{1}^{\mathbb{N}_{2}}[\alpha]\right)$.
5. If t_{0}, t_{1} are number terms, then $\left(t_{0} \times t_{1}\right)^{\mathbb{N}_{2}}[\alpha]$ is $\left(t_{0}^{\mathbb{N}_{2}}[\alpha] \times t_{1}^{\mathbb{N}_{2}}[\alpha]\right)$.
6. $|X|^{\mathbb{N}_{2}}[\alpha]$ is $|\alpha(X)|^{\mathbb{N}_{2}}$, i.e. the length of the binary representation of $\alpha(X)$.

Notation Note that for a closed number term t, we can just write $t \mathbb{N}_{2}$.
Definition 4.12 Let α be an object assignment. Then define, for each Σ_{0}^{B} formula φ, the relation $\mathbb{N}_{2} \models \varphi[\alpha]\left(\mathbb{N}_{2}\right.$ satisfies φ under α) by structural induction on φ :

1. $\underline{\mathbb{N}}_{2} \models \mathrm{~T}$ and $\underline{\mathbb{N}}_{2} \not \models \perp$.
2. If t_{0}, t_{1} are number terms, then $\mathbb{N}_{2} \models\left(t_{0}=t_{1}\right)[\alpha]$ iff $t_{0}^{\mathbb{N}_{2}}[\alpha]=t_{1}^{\mathbb{N}_{2}}[\alpha]$.
3. If t_{0}, t_{1} are number terms, then $\mathbb{N}_{2} \vDash\left(t_{0} \leq t_{1}\right)[\alpha]$ iff $t_{0}^{\mathbb{N}_{2}}[\alpha] \leq t_{1}^{\mathbb{N}_{2}}[\alpha]$.
4. $\mathbb{N}_{2} \vDash(X=Y)[\alpha]$ iff $\alpha(X)=\alpha(Y)$.
5. If t is a number term, then $\mathbb{N}_{2} \models X(t)[\alpha]$ iff $t \mathbb{\mathbb { N }}_{2}[\alpha] \in \alpha(X)$.
6. $\underline{\mathbb{N}}_{2} \models(\neg \psi)[\alpha]$ iff $\mathbb{N}_{2} \not \models \psi[\alpha]$.
7. $\mathbb{N}_{2} \models\left(\varphi_{0} \star \varphi_{1}\right)[\alpha]$ iff $\underline{\mathbb{N}}_{2} \models \varphi_{0}[\alpha] \star \mathbb{N}_{2} \models \varphi_{1}[\alpha]$, for $\star \in\{\wedge, \vee\}$.
8. If t is a number term not involving x, then $\underline{\mathbb{N}}_{2} \vDash((\exists x \leq t) \psi)[\alpha]$ iff $\mathbb{N}_{2} \models \psi[\alpha(m / x)]$, for some $m \leq t^{\mathbb{N}_{2}}[\alpha]$.
9. If t is a number term not involving x, then $\underline{\mathbb{N}}_{2} \vDash((\forall x \leq t) \psi)[\alpha]$ iff $\mathbb{N}_{2} \models \psi[\alpha(m / x)]$ for all $m \leq t^{\mathbb{N}_{2}}[\alpha]$.
$A \Sigma_{0}^{B}$-formula φ is said to be valid if and only if $\mathbb{N}_{2} \models \varphi[\alpha]$, for every object assignment α.

Notation If φ is closed, then we can just write $\mathbb{N}_{2} \models \varphi$ instead of $\mathbb{N}_{2} \models \varphi[\alpha]$.
Notation If \vec{X} is a vector of string variables X_{0}, \ldots, X_{n-1}, then $|\vec{X}|$ denotes the vector $\left|X_{0}\right|, \ldots,\left|X_{n-1}\right|$. Similarly for $|\vec{S}|$, where \vec{S} is a vector of sets.

Notation When writing $\varphi(\vec{x}, \vec{X})$, we mean that $\operatorname{FV}(\varphi) \cup \operatorname{SV}(\varphi) \subseteq\{\vec{x}, \vec{X}\}$. Also, when writing $t(\vec{x},|\vec{X}|)$, we mean that the set of all variables (number and string variables) in t is a subset or equal to $\{\vec{x}, \vec{X}\}$ and string variables are only occuring in the form $\left|X_{i}\right|$.

Definition 4.13 Let $\vec{x}=x_{0}, \ldots, x_{k-1}, \vec{s}$ be a vector of number terms s_{0}, \ldots, $s_{k-1}, t(\vec{x})$ be a number term and $\varphi(\vec{x})$ be a Σ_{0}^{B}-formula. Then denote by $t(\vec{s})$ the result of substituting every occurrence of x_{i} in t by s_{i} and denote by $\varphi(\vec{s})$ the result of replacing every free occurrence of x_{i} in φ by s_{i}.

Definition 4.14 Let $\vec{X}=X_{0} \ldots X_{k-1}, \vec{s}$ be a vector of number terms s_{0}, \ldots, s_{k-1} and $t(|\vec{X}|)$ be a number term. Then denote by $t(\vec{s})$ the result of substituting every occurrence of $\left|X_{i}\right|$ in t by s_{i}.

Definition 4.15 Let $\varphi(x)$ be a Σ_{0}^{B}-formula and t be a number term. Then t is said to be freely substitutable for x in φ if and only if for any variable y in t, for every occurence of x in φ, x is not in a subformula of φ of the form $\left(\forall y \leq t_{0}\right) \psi$ or $\left(\exists y \leq t_{0}\right) \psi$.

Let $\vec{x}=x_{0}, \ldots, x_{k-1}, \vec{t}$ be a vector of number terms t_{0}, \ldots, t_{k-1} and $\varphi(\vec{x})$ be a Σ_{0}^{B}-formula. From now on, we shall write $\varphi(\vec{t})$ if and only if t_{i} is freely substitutable for x_{i} in φ.

4.2 Translating Σ_{0}^{B}-formulae

In this section, we are going to show how to translate each Σ_{0}^{B}-formula $\varphi(\vec{x}, \vec{X})$ into a family

$$
\|\varphi(\vec{x}, \vec{X})\|=\{\varphi(\underline{\underline{m}}, \vec{X})[\vec{n}]: \vec{m}, \vec{n} \in \mathbb{N}\}
$$

of propositional formulae, where n_{i} is intended to be the length of X_{i}. For that, we introduce the propositional variables $p_{0}^{X_{0}}, p_{1}^{X_{0}}, \ldots, p_{0}^{X_{1}}, p_{1}^{X_{1}}, \ldots$ where the intended meaning of $p_{j}^{X_{i}}$ is $X_{i}(j)$.

Definition 4.16 For every $n \in \mathbb{N}$, define \underline{n}, called the numeral for n, inductively as follows:

$$
\begin{aligned}
& \underline{0}=0, \underline{1}=1, \\
& \underline{n+1}=(\underline{n}+1) \text { for } n \geq 1 .
\end{aligned}
$$

For example, the numeral for 4 is $(((1+1)+1)+1)$. The numerals $0,1,(1+$ 1), $((1+1)+1), \ldots$ for $0,1,2,3, \ldots$, respectively, will be denoted by $0,1,2,3, \ldots$.

Definition 4.17 Let $\varphi(\vec{x}, \vec{X})$ be a Σ_{0}^{B}-formula, \vec{m} and \vec{n} be in \mathbb{N}. Define $\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]$ inductively as follows:

1. If $\varphi(\underline{\vec{m}}, \vec{X})$ is of the form T or \perp, then $\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]={ }_{d f} \varphi(\underline{\vec{m}}, \vec{X})$
2. If $\varphi(\underline{\vec{m}}, \vec{X})$ is of the form $t(\underline{\vec{m}},|\vec{X}|)=u(\underline{\vec{m}},|\vec{X}|)$, then

$$
\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]=d_{d f} \quad \begin{cases}\top & \text { if } t(\underline{\vec{m}}, \underline{\vec{n}})^{\mathbb{N}_{2}}=u(\underline{\vec{m}}, \underline{\vec{n}})^{\mathbb{N}_{2}} \\ \perp & \text { otherwise }\end{cases}
$$

3. Similarly if $\varphi(\underline{\vec{m}}, \vec{X})$ is of the form $t(\underline{\vec{m}},|\vec{X}|) \leq u(\underline{\vec{m}},|\vec{X}|)$.
4. If $\varphi(\underline{\vec{m}}, \vec{X})$ is of the form $X_{i}=X_{j}$, then there are two cases to consider. If $i=j$, then $\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]={ }_{d f} \top$. Else if $i \neq j$, then we reduce the task of translating $\varphi(\underline{\vec{m}}, \vec{X})$ to translating its defining axiom $\left|X_{i}\right|=\left|X_{j}\right| \wedge \forall x<$ $\left|X_{i}\right|\left(X_{i}(x) \leftrightarrow X_{j}(x)\right)$. Note that the defining axiom of $X_{i}=X_{j}$ is a $\Sigma_{0}^{B}-$ formula such that it doesn't contain any free number variable and it doesn't contain any subformula of the same form as $\varphi(\underline{\vec{m}}, \vec{X})$.
5. If $\varphi(\underline{\vec{m}}, \vec{X})$ is of the form $X_{i}(t(\underline{\vec{m}},|\vec{X}|))$, then set $j=t(\underline{\underline{m}}, \underline{\vec{n}})^{\mathbb{N}_{2}}$ and

$$
\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]==_{d f} \quad \begin{cases}p_{j}^{X_{i}} & \text { if } j<n_{i}-1 \\ \top & \text { if } j=n_{i}-1 \\ \perp & \text { otherwise }\end{cases}
$$

Observe that for $n_{i}=0$, we have that $\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]={ }_{d f} \perp$.
6. If $\varphi(\underline{\vec{m}}, \vec{X})$ is of the form $\neg \psi(\underline{\vec{m}}, \vec{X})$, then $\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]={ }_{d f} \neg \psi(\underline{\vec{m}}, \vec{X})[\vec{n}]$.
7. If $\varphi(\underline{\vec{m}}, \vec{X})$ is of the form $\varphi_{0}(\underline{\vec{m}}, \vec{X}) \star \varphi_{1}(\underline{\vec{m}}, \vec{X})$, then

$$
\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]={ }_{d f} \varphi_{0}(\underline{\vec{m}}, \vec{X})[\vec{n}] \star \varphi_{1}(\underline{\vec{m}}, \vec{X})[\vec{n}],
$$

for $\star \in\{\wedge, \vee\}$.
8. If $\varphi(\underline{\vec{m}}, \vec{X})$ is of the form $(\exists y \leq t(\underline{\vec{m}},|\vec{X}|)) \psi(y, \underline{\vec{m}}, \vec{X})$, then

$$
\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]={ }_{d f} \bigvee_{i=0}^{j} \psi(\underline{i}, \underline{\vec{m}}, \vec{X})[\vec{n}]
$$

where $j=t(\underline{\vec{m}}, \overrightarrow{\vec{n}})^{\mathbb{N}_{2}}$.
9. If $\varphi(\underline{\vec{m}}, \vec{X})$ is of the form $(\forall y \leq t(\underline{\vec{m}},|\vec{X}|)) \psi(y, \underline{\vec{m}}, \vec{X})$, then

$$
\varphi(\underline{\underline{m}}, \vec{X})[\vec{n}]={ }_{d f} \bigwedge_{i=0}^{j} \psi(\underline{i}, \underline{\vec{m}}, \vec{X})[\vec{n}]
$$

where $j=t(\underline{\vec{m}}, \underline{\vec{n}})^{\mathbb{N}_{2}}$.
In [CN10], the authors included, as part of the translation, some pruning. Since that pruning isn't relevant for our purpose, we decided to not include it for the sake of simplicity and readability. Also, note that $\varphi(\underline{m}, \vec{X})[\vec{n}]$, where $\vec{X}=X_{0}, \ldots, X_{l-1}$, has variables $p_{0}^{X_{0}}, p_{1}^{X_{0}}, \ldots, p_{n_{0}-2}^{X_{0}}, \ldots, p_{0}^{X_{l-1}}, \ldots$ and $p_{n_{l-2}}^{X_{l-1}}$.

Notation If \vec{m} is a vector of natural numbers m_{0}, \ldots, m_{k-1} and \vec{S} is a vector of sets S_{0}, \ldots, S_{l-1}, then $\vec{m} \in \mathbb{N}$ denotes $m_{0}, \ldots, m_{k-1} \in \mathbb{N},|\vec{S}|=\vec{n}$ denotes $\left|S_{0}\right|=n_{0}, \ldots,\left|S_{l-1}\right|=n_{l-1}$ and $\vec{S} \subseteq \mathbb{N}$ denotes $S_{0}, \ldots, S_{l-1} \subseteq \mathbb{N}$. Furthermore, we have that $\alpha(\vec{m} / \vec{x}, \vec{S} / \vec{X})$ stands for

$$
\alpha\left(m_{0} / x_{0}, \ldots, m_{k-1} / x_{k-1}, S_{0} / X_{0}, \ldots, S_{l-1} / X_{l-1}\right)
$$

Lemma 4.18 Let $\vec{m} \in \mathbb{N}, \vec{S} \subseteq \mathbb{N}$ such that $|\vec{S}|=\vec{n}$ and $\varphi(\vec{x}, \vec{X})$ be a Σ_{0}^{B} formula. Then we have that $\mathbb{N}_{2} \models \varphi(\vec{x}, \vec{X})[\alpha(\vec{m} / \vec{x}, \vec{S} / \vec{X})]$ if and only if $\mathbb{N}_{2} \models$ $\varphi(\underline{\vec{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})]$.

Proof: The proof is by structural induction on $\varphi(\vec{x}, \vec{X})$. We only cover a few interesting cases. First, observe that

$$
\begin{equation*}
t(\vec{x},|\vec{X}|)^{\mathbb{N}_{2}}[\alpha(\vec{m} / \vec{x}, \vec{S} / \vec{X})]=t(\underline{\vec{m}},|\vec{X}|)^{\mathbb{N}_{2}}[\alpha(\vec{S} / \vec{X})] . \tag{6}
\end{equation*}
$$

Additionally, observe that
(7) $t(\vec{x},|\vec{X}|)^{\mathbb{N}_{2}}[\alpha(\vec{m} / \vec{x}, \vec{S} / \vec{X})] \in S_{i}$ if and only if $t(\underline{\vec{m}},|\vec{X}|)^{\mathbb{N}_{2}}[\alpha(\vec{S} / \vec{X})] \in S_{i}$.

1. Consider the case when $\varphi(\vec{x}, \vec{X})$ is of the form $t(\vec{x},|\vec{X}|)=u(\vec{x},|\vec{X}|)$. By Definition 4.12, we have that $\underline{\mathbb{N}}_{2}=\varphi(\vec{x}, \vec{X})[\alpha(\vec{m} / \vec{x}, \vec{S} / \vec{X})]$ is equivalent to

$$
t(\vec{x},|\vec{X}|)^{\mathbb{N}_{2}}[\alpha(\vec{m} / \vec{x}, \vec{S} / \vec{X})]=u(\vec{x},|\vec{X}|)^{\mathbb{N}_{2}}[\alpha(\vec{m} / \vec{x}, \vec{S} / \vec{X})],
$$

which is equivalent to

$$
t(\underline{\vec{m}},|\vec{X}|)^{\mathbb{N}_{2}}[\alpha(\vec{S} / \vec{X})]=u(\underline{\vec{m}},|\vec{X}|)^{\mathbb{N}_{2}}[\alpha(\vec{S} / \vec{X})],
$$

by (6). That is equivalent to

$$
\underline{\mathbb{N}}_{2} \vDash \varphi(\underline{\vec{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})],
$$

by Definition 4.12.
2. Consider the case when $\varphi(\vec{x}, \vec{X})$ is of the form $X_{i}(t(|\vec{x},|\vec{X}|))$. Then we have that

```
\(\mathbb{N}_{2} \vDash \varphi(\vec{x}, \vec{X})[\alpha(\vec{m} / \vec{x}, \vec{S} / \vec{X})]\)
\(\Leftrightarrow t(\vec{x},|\vec{X}|))^{\mathbb{N}_{2}}[\alpha(\vec{m} / \vec{x}, \vec{S} / \vec{X})] \in S_{i} \quad\) (by Definition 4.12)
\(\Leftrightarrow t(\underline{\vec{m}},|\vec{X}|)^{\mathbf{N}_{2}}[\alpha(\vec{S} / \vec{X})] \in S_{i} \quad\) (by (7))
\(\Leftrightarrow \underline{\mathbb{N}}_{2} \vDash \varphi(\underline{\vec{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})] \quad\) (by Definition 4.12)
```

3. Consider the case when $\varphi(\vec{x}, \vec{X})$ is of the form $(\exists y \leq t(\vec{x},|\vec{X}|) \psi(y, \vec{x}, \vec{X})$. By Definition 4.12, we have that

$$
\mathbb{N}_{2} \models \varphi(\vec{x}, \vec{X})[\alpha(\vec{m} / \vec{x}, \vec{S} / \vec{X})]
$$

is equivalent to

$$
\mathbb{N}_{2} \models \psi(y, \vec{x}, \vec{X})[\alpha(i / y, \vec{m} / \vec{x}, \vec{S} / \vec{X})]
$$

for some $i \leq t(\vec{x},|\vec{X}|)^{\mathbb{N}_{2}}[\alpha(\vec{m} / \vec{x}, \vec{S} / \vec{X})]$. That is equivalent to

$$
\underline{\mathbb{N}}_{2} \vDash \psi(\underline{i}, \underline{\vec{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})],
$$

for some $i \leq t(\underline{\vec{m}},|\vec{X}|)^{\mathbb{N}_{2}}[\alpha(\vec{S} / \vec{X})$, by induction hypothesis. By Definition 4.12, there exists an $i \leq t(\underline{\vec{m}},|\vec{X}|) \mathbb{N}_{2}[\alpha(\vec{S} / \vec{X})]$ such that

$$
\mathbb{N}_{2} \models \psi(\underline{i}, \underline{\vec{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})]
$$

if and only if

$$
\underline{\mathbb{N}}_{2} \models \varphi(\underline{\vec{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})] .
$$

In what follows, let $\tau_{\vec{S}}$, where $\vec{S}=S_{0}, \ldots, S_{l} \subseteq \mathbb{N}$ and $\left|S_{i}\right|=n_{i}$, be any truth assignment such that for every i from 0 to l and k from 0 to $n_{i}-2$, if $S_{i}(k)$ holds, then $\tau_{\vec{S}}\left(p_{k}^{X_{i}}\right)=1$, and if $S_{i}(k)$ doesn't hold, then $\tau_{\vec{S}}\left(p_{k}^{X_{i}}\right)=0$.

Lemma 4.19 Let $\vec{m} \in \mathbb{N}, \vec{S} \subseteq \mathbb{N}$ such that $|\vec{S}|=\vec{n}, \varphi(\vec{x}, \vec{X})$ be a Σ_{0}^{B}-formula and $\alpha(\vec{S} / \vec{X})$ be an object assignment. Then we have that

$$
\underline{\mathbb{N}}_{2} \models \varphi(\underline{\vec{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})] \text { if and only if }(\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}])^{\tau} \vec{s}=1
$$

Proof: The proof is by structural induction on $\varphi(\underline{\underline{m}}, \vec{X})$. Again, we only cover a few interesting cases. First, observe that

$$
\begin{equation*}
t(\underline{\vec{m}},|\vec{X}|)^{\mathbb{N}_{2}}[\alpha(\vec{S} / \vec{X})]=t(\underline{\vec{m}}, \underline{\vec{n}})^{\mathbb{N}_{2}} \tag{8}
\end{equation*}
$$

- Consider the case when $\varphi(\underline{\vec{m}}, \vec{X})$ is of the form $t(\underline{\vec{m}},|\vec{X}|)=u(\underline{\vec{m}},|\vec{X}|)$. Set $i=t(\underline{\vec{m}},|\vec{X}|)^{\mathbb{N}_{2}}[\alpha(\vec{S} / \vec{X})]$ and $j=u(\underline{\vec{m}},|\vec{X}|)^{\mathbb{N}_{2}}[\alpha(\vec{S} / \vec{X})]$. Then we have that

$$
\begin{array}{ll}
\mathbb{N}_{2} \models \varphi(\overrightarrow{\vec{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})] & \\
\Leftrightarrow i=j & \text { (by Definition 4.12) } \\
\Leftrightarrow t(\underline{\vec{m}}, \underline{\vec{v}})^{\mathbb{N}_{2}}=u(\overrightarrow{\underline{m}}, \overrightarrow{\underline{n}})^{\mathbb{N}_{2}} & \text { (by (8)) } \\
\Leftrightarrow \varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]=d f & \text { (by Definition 4.17) } \\
\Leftrightarrow\left(\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]^{\tau}=1\right. & \text { (by Definition 3.3) }
\end{array}
$$

- Consider the case when $\varphi(\underline{\vec{m}}, \vec{X})$ is of the form $X_{i}(t(\underline{\vec{m}},|\vec{X}|))$. Set $j=$ $t(\underline{\vec{m}}, \mid \vec{X}\})^{\mathbb{N}_{2}}[\alpha(\vec{S} / \vec{X})]$. Then we have that

$$
\begin{array}{ll}
\mathbb{N}_{2} \models \varphi(\overrightarrow{\vec{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})] & \\
\Leftrightarrow S_{i}(j) & \text { (by Definition 4.12) } \\
\Leftrightarrow \tau_{\vec{S}}\left(p_{j}^{X_{i}}\right)=1 & \\
\Leftrightarrow(\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}])^{\tau_{S}}=1 & \text { (by Definition 4.17) }
\end{array}
$$

- Consider the case when $\varphi(\underline{\vec{m}}, \vec{X})$ is of the form $\neg \psi(\underline{\vec{m}}, \vec{X})$. Then we have that

$$
\begin{array}{ll}
\mathbb{N}_{2} \vDash \varphi(\underline{\vec{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})] & \\
\Leftrightarrow \mathbb{N}_{2} \not \models \psi(\overrightarrow{\underline{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})] & \text { (by Definition 4.12) } \\
\Leftrightarrow(\psi(\underline{\vec{m}}, \vec{X})[\vec{n}])^{\tau}=0 & \text { (by IH) } \\
\Leftrightarrow(\neg \psi(\underline{\vec{m}}, \vec{X})[\vec{n}])^{\tau}=1 & \text { (by Definition 3.3) } \\
\Leftrightarrow\left((\neg \psi(\vec{m}, \vec{X}))[\vec{n})^{\tau}=1\right. & \text { (by Definition 4.17) } \\
\Leftrightarrow(\varphi(\underline{\underline{m}}, \vec{X})[\vec{n}])^{\tau}=1 &
\end{array}
$$

- Consider the case when $\varphi(\underline{\vec{m}}, \vec{X})$ is of the form $\exists y \leq t(\underline{\vec{m}},|\vec{X}|)) \psi(y, \underline{\vec{m}}, \vec{X}$. Set $j=t(\underline{\vec{m}},|\vec{X}|)^{\mathbb{N}_{2}}[\alpha(\vec{S} / \vec{X})]$. Then we have that

$$
\begin{array}{ll}
\mathbb{N}_{2} \models \varphi(\underline{\vec{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})] \\
\Leftrightarrow \exists i \leq j\left(\mathbb{N}_{2} \models \psi(y, \vec{m}, \vec{X})[\alpha(i / y, \vec{S} / \vec{X})]\right) & \text { (by Definition 4.12) } \\
\Leftrightarrow \exists i \leq j\left(\mathbb{N}_{2}=\psi(\underline{i}, \vec{m}, \vec{X})[\alpha(\vec{S} / \vec{X})]\right) & \text { (by Lemma 4.18) } \\
\Leftrightarrow \exists i \leq j\left((\psi(\underline{i}, \vec{m}, \vec{X})[\vec{n}])^{\tau_{s}}=1\right) & \text { (by IH) } \\
\Leftrightarrow\left(\bigvee_{i=0}^{j} \psi(\underline{i}, \vec{m}, \vec{X})[\vec{n}]\right)^{\tau_{J}}=1 & \text { (by Definition 3.3) } \\
\Leftrightarrow(\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}])^{\tau_{s}}=1 & \text { (by Definition 4.17) }
\end{array}
$$

Theorem 4.20 Let α be an object assignment, $\varphi(\vec{x}, \vec{X})$ be a Σ_{0}^{B}-formula and $\vec{m}, \vec{n} \in \mathbb{N}$. Then we have that $\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]$ is a tautology if and only if the following holds:
(9)

$$
\mathbb{N}_{2} \models \varphi(\underline{\vec{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})]
$$

for any $\vec{S} \subseteq \mathbb{N}$ such that $|\vec{S}|=\vec{n}$.
Proof: (\Rightarrow) Suppose that $\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]$ is a tautology. Show that for any $\vec{S} \subseteq$ \mathbb{N} such that $|\vec{S}|=\vec{n}, \mathbb{N}_{2}$ satisfies $\varphi(\underline{\vec{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})]$. Let $\vec{S} \subseteq \mathbb{N}$ such that $|\vec{S}|=\vec{n}$. By assumption, $(\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}])^{\tau_{\bar{s}}}=1$. By Lemma 4.19, $\underline{\mathbb{N}}_{2}$ satisfies $\varphi(\underline{\vec{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})]$.
(\Leftarrow) Suppose that $\underline{\mathbb{N}}_{2}$ satisfies $\varphi(\underline{\vec{m}}, \vec{X})[\alpha(\vec{S} / \vec{X})]$ for any $\vec{S} \subseteq \mathbb{N}$ such that $|\vec{S}|=\vec{n}$. Show that $\varphi(\underline{\underline{m}}, \vec{X})[\vec{n}]$ is a tautology, i.e. for any truth assignment $\tau,(\varphi(\underline{\vec{~}}, \vec{X})[\vec{n}])^{\tau}=1$. For the sake of contradiction, suppose that there exists a truth assignment τ_{0} such that $(\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}])^{\tau_{0}}=0$. Let $\vec{M} \subseteq \mathbb{N}$ such that $|\vec{M}|=\vec{n}$ and $\tau_{\vec{M}}=\tau_{0}$. Hence, $(\varphi(\overrightarrow{\underline{m}}, \vec{X})[\vec{n}])^{\tau_{\vec{M}}}=0$. By Lemma 4.19, we have that $\underline{\mathbb{N}}_{2}$ doesn't satisfy $\varphi(\underline{\vec{m}}, \vec{X})[\alpha(\vec{M} / \vec{X})]$, which contradicts our original assumption.

Definition 4.21 Define $\left\langle x_{0}, x_{1}\right\rangle$, called the pairing function, as the following $\mathcal{L}_{\mathcal{A}}^{2}$-term:

$$
\left(x_{0}+x_{1}\right) \times\left(x_{0}+x_{1}+1\right)+2 \times x_{1}
$$

Observe that the pairing function is a one-to-one function.
Recall that $(\varphi \rightarrow \psi)$ and $(\exists x<t) \varphi$ stand for $(\neg \varphi \vee \psi)$ and $(\exists x \leq t)(x \neq$ $t \wedge \varphi)$, respectively. When writing $X(x, y)$, we mean $X(\langle x, y\rangle)$, where $\langle x, y\rangle$ is the pairing function. We now show how to obtain an equivalent form of PHP (Definition 3.47) from a Σ_{0}^{B}-formula $\operatorname{PHP}(z, X)$, where z stands for the number of holes and X is intended to be a two-dimensional Boolean array such that $X(x, y)$ holds if and only if pigeon x sits in hole y, for $x \leq z$ and $y<z$. First, define $\operatorname{PHP}(z, X)$ to be the following Σ_{0}^{B}-formula:

$$
\begin{align*}
& (\forall x \leq z)(\exists y<z) X(x, y) \rightarrow \\
& (\exists y<z)\left(\exists x_{0}, x_{1} \leq z\right)\left(x_{0}<x_{1} \wedge X\left(x_{0}, y\right) \wedge X\left(x_{1}, y\right)\right) \tag{10}
\end{align*}
$$

By translating $\operatorname{PHP}(z, X)$ into a propositional formula (with the appropriate length for X) and then applying a suitable substitution to the resulting formula, we obtain a formula which is equivalent to PHP_{n}^{n+1} as follows. For every $n \geq 1$, $\operatorname{PHP}(\underline{n}, X)[2+\langle n, n-1\rangle] \sigma$ can be proven to be equivalent to PHP_{n}^{n+1} by a short Resolution proof (all that is needed to be done is some pruning), where $\sigma:\left\{p_{\langle i, j\rangle}^{X}: i \leq n\right.$ and $\left.j \leq n-1\right\} \rightarrow\left\{p_{(i, j\rangle}: i \leq n\right.$ and $\left.j \leq n-1\right\}$ is a substitution and is defined by $\sigma\left(p_{\langle i, j\rangle}^{X}\right)=p_{(i, j)}$.

4.3 The Uniform Reduct of a Proof System

Recall that a countable family of tautologies $\left\{\varphi_{i}: i \in I\right\}$ has poly-size P-proofs, where P is a propositional proof system, if and only if there exists a polynomial p such that for every $i \in I$, there exists a π such that P accepts (φ_{i}, π) and $|\pi| \leq p\left(\left|\varphi_{i}\right|\right)$.

Definition 4.22 [Bec05] Let P be a propositional proof system. Then define the uniform reduct of P to be the set

$$
\mathrm{U}_{P}=\left\{\varphi(\vec{x}, \vec{X}) \in \Sigma_{0}^{B}:\{\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]: \vec{m}, \vec{n} \in \mathbb{N}\} \text { has polysize } P \text {-proofs }\right\}
$$

The uniform reduct of a proof system will also be called a uniform system.
Observation 4.23 Let P be a propositional proof system. Then P is not polynomially bounded if there exists a valid Σ_{0}^{B}-formula $\varphi(\vec{x}, \vec{X})$ such that $\varphi(\vec{x}, \vec{X}) \notin$ U_{P}.

Proof: Suppose that there exists a valid Σ_{0}^{B}-formula $\varphi(\vec{x}, \vec{X})$ such that $\varphi(\underline{\vec{m}}, \vec{X}) \notin$ U_{P}. Hence, $\{\varphi(\vec{m}, \vec{X})[\vec{n}]: \vec{m}, \vec{n} \in \mathbb{N}\}$ doesn't have polysize P-proofs by Definition 4.22. Therefore, for every polynomial p, there exists a $\psi \in\{\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]$: $\vec{m}, \vec{n} \in \mathbb{N}\}$ such that for every π, either π is not a P-proof of ψ or $|\pi| \leq p(|\psi|)$, by Definition 3.48. Thus, P is not polynomially bounded, by Definition 3.16.

A reason for studying uniform systems is that we might be able to prove lower bounds by identifying properties which distinguish uniform systems from the set of all true Σ_{0}^{B}-formulae. In [Bec05], Beckmann studied the arithmetic complexity of uniform systems and observed that a given uniform reduct is not in some certain arithmetic complexity class would imply a super-polynomial lower bound of the underlying propositional proof system. He also investigated
whether uniform systems are closed under the typical inference rules of Hilbert style proof systems, i.e. under modus ponens and generalisation.

A natural open problem for uniform systems is to look for properties of uniform systems which might help distinguish uniform systems from the set of all true Σ_{0}^{B}-formule, denoted $\operatorname{TRUE}_{\Sigma_{0}^{B}}$ (this is the last open problem listed in [Bec05]).

Frege systems are p-equivalent with the propositional part PK of Gentzen's sequent-based proof system LK. Another natural open problem for uniform systems would be to prove if U_{PK} is equal or not to $\operatorname{TRUE}_{\Sigma_{0}^{B}}$.

5 Uniform Systems vs Optimal Proof Systems

We finally come to the main body of this thesis. In this last section, we carry out a detailed proof of the equivalence between the existence of an optimal proof system and the existence of a propositional proof system whose uniform reduct equals the set of all true Σ_{0}^{B}-formulae. As a preliminary to that, we first show how to Σ_{0}^{B}-formulate the reflection principle for a propositional proof system.

5.1 The Reflection Principle for a Proof System

In order to Σ_{0}^{B}-formulate the reflection principle for a propositional proof system, we first have to show how to encode propositional formulae, but this time in Polish notation. Then, we define how to encode truth assignments to those formulae. After that, we show how to encode polytime Turing machine computations.

5.1.1 Encoding Polish Propositional Formulae

Polish propositional formulae are propositional formulae, but in prefix notation and where propositional variables will have their indices written in unary. For example, p_{i} is written as $p 11 \ldots 1$ with i many 1 's.

Definition 5.1 Polish propositional formulae (or Polish formulae for short) are over the alphabet

$$
\Sigma=\{p, 1, \neg, \wedge, \vee\}
$$

and defined inductively as follows:

1. Every propositional variable is an atomic Polish formula.
2. If φ is a Polish formula, then so is $\neg \varphi$.
3. If φ, ψ are Polish formulae, then so are $\star \varphi \psi$, where $\star \in\{\wedge, \vee\}$.

Definition 5.2 Define the subformulae of a Polish formula φ inductively as follows:

1. If φ is of the form $p 11 \ldots 1$, then its only subformula is $p 11 \ldots 1$.
2. If φ is of the form $\neg \psi$, then its subformulae are the subformulae of ψ plus φ itself.
3. If φ is of the form $\star \varphi_{0} \varphi_{1}$, where $\star \in\{\wedge, \vee\}$, then the subformulae of φ is the subformulae of φ_{0} plus the subformulae of φ_{1} plus φ itself.

Note that the subformulae of a Polish formula are Polish formulae. For example, the subformulae of the Polish formula $\wedge p 111 \neg \vee p 11 p 1$ are the following Polish formulae: $p 1, p 11, \vee p 11 p 1, \neg \vee p 11 p 1, p 111$ and $\wedge p 111 \neg \vee p 11 p 1$ itself. Also, note that if $s=s_{n} \ldots s_{1} s_{0}$ is a Polish formula, where $s_{i} \in \Sigma$ for every i from 0 to n, and $s_{j} \ldots s_{k}$ is a subformula of s, where $n \geq j \geq k \geq 0$, then the following statement holds: if $k>0$, then s_{k-1} is different from the symbol 1 (otherwise s is not a well-formed Polish formula).

Notation Let $s=s_{n} \ldots s_{1} s_{0}$ be a string over some alphabet and $n \geq j \geq k \geq 0$. Then denote by $s[j, k]$ the substring $s_{j} \ldots s_{k+1} s_{k}$ of s. For $n \geq i \geq 0$, let $s[i]$ denote s_{i}. Thus, if $j=k$, then $s[j, k]$ is the same as $s[j]$.

Observation 5.3 If $s=s_{n} \ldots s_{0}$ is a string over Σ such that s is a Polish formula, then for every $i \leq n$, if s_{i} is the symbol 1, then there exists a $j \leq n$ such that $i<j$ and $s[j, i]$ is a propositional variable.

Observation 5.4 If $s=s_{n} \ldots s_{1} s_{0}$ is a string over Σ such that s is a Polish formula, then s always starts (from the right) with a propositional variable.

Proof: The proof is by structural induction on s.
Definition 5.5 Let $\sigma \in \Sigma$. Then define the weight of σ, denoted weight (σ), as follows:

$$
\text { weight }(\sigma)= \begin{cases}1 & \text { if } \sigma \text { is } p \\ 0 & \text { if } \sigma \text { is } 1 \text { or } \neg \\ -1 & \text { if } \sigma \text { is } \wedge \text { or } \vee\end{cases}
$$

The weight function can be extended to assign a weight to a string $s=$ $s_{n} \ldots s_{0}$ in Σ as follows. If $n=0$, then weight $(s)=\operatorname{weight}\left(s_{0}\right)$. Else, if $n>0$, then weight $(s)=\operatorname{weight}\left(s_{n}\right)+\operatorname{weight}(s[n-1,0])$.

Observation 5.6 If $s \in \Sigma^{+}$such that the length of s is n, then weight $(s) \leq n$.
The conditions (stated in the following Lemma) that are needed for a string s over Σ to be a Polish formula, are slight modifications of those in [Bus87a]. The use of the max function is justified by the fact that we only want values ≥ 0 for the weight of any substring of a string $s \in \Sigma$.

Lemma 5.7 Let $s=s_{n} \ldots s_{1} s_{0}$ be a string over Σ and w be $w_{n} \ldots w_{1} w_{0}$ such that $w_{0}=\max \left(\operatorname{weight}\left(s_{0}\right), 0\right)$ and $w_{k+1}=\max \left(\operatorname{weight}\left(s_{k+1}\right)+w_{k}, 0\right)$, for k from 0 to $n-1$. Then s is a Polish formula if and only if the following conditions hold:

1. For every $i \leq n$, if s_{i} is the symbol 1 , then there exists a $j \leq n$ such that $i<j$ and $s[j, i]$ is a propositional variable.
2. $w_{n}=1$.
3. There exists an $i \leq n$ such that $s[i, 0]$ is a propositional variable and for every $j<n$, if $j \geq i$, then $w_{j}>0$.

Proof: (\Rightarrow) Suppose that s is a Polish formula. We show that condition 1, 2 and 3 hold by structural induction on s. If s is a propositional variable, then those conditions hold trivially. If s is of the form $\neg \varphi$, then condition 1,2 and 3 hold for φ, by induction hypothesis. Thus, they hold for s, since s_{n} is \neg and weight $(\neg)=0$. Suppose that s is of the form $\star \varphi \psi$, for $\star \in\{\wedge, \vee\}$. Assume w.l.o.g. that \star is \wedge. Then, condition 1 holds for φ and ψ, by induction hypothesis. Clearly, condition 1 holds for $\varphi \psi$. Since s_{n} is \wedge, conditon 1 also holds for s. We next show that condition 2 holds for s. By induction hypothesis, condition 2 holds for φ and ψ. Thus, $w_{n-1}=2$ by definition. Since $s_{n}=\wedge$ and weight $(\wedge)=-1$, we get that $w_{n}=1$ by definition. Thus condition 2 holds for s. Finally, we show that condition 3 holds for s. Let $k \leq n$ such that $s[k, 0]$ is ψ (i.e. $s[n-1, k+1]$ is φ). By induction hypothesis, condition 3 holds for $s[k, 0]$. Since condition 2 holds for $s[k, 0]$ (by induction hypothesis), we obtain $w_{k}>0$. By induction hypothesis, condition 3 holds for $s[n-1, k+1]$. Hence, we can let $i \in \mathbb{N}$ between $k+1$ and $n-1$ such that $s[i, k+1]$ is a propositional variable. Therefore, $w_{i}>0$ (since $w_{k}>0$). It follows that $w_{n-2}>0$ (since condition 3 holds for $s[n-1, k+1])$. Since condition 2 holds for $s[n-1, k+1]$, we conclude that $w_{n-1}>0$. Thus, condition 3 holds for s.
(\Leftarrow) Suppose that the conditions 1,2 and 3 hold for s. We show that s is a Polish formula by induction on n. If $n=0$, then the length of s is 1 . The only string over Σ of length 1 that satisfies the conditions 1,2 and 3 is p. Hence, s must be the symbol p. Thus, s is a Polish formula. Suppose that $n \geq 1$. By condition $1, s_{n}$ is not the symbol 1 . Therefore, we can exclude that case. Suppose that s_{n} is the symbol p. Since $w_{n}=1$, by assumption, and weight $\left(s_{n}\right)=1$, we conclude that $w_{n-1}=\max (\operatorname{weight}(s[n-1,0]), 0)=0$. Now, condition 3 states that there exists an $i \leq n$ such that $s[i, 0]$ is a propositional variable and for every $j<n$, if $j \geq i$, then $w_{j}>0$. Clearly, i can't be lesser than or equal to $n-1$: w_{n-1} would then be strictly greater than 0 , by condition 3 , and that implies that $w_{n}>1$ (since s_{n} is p). Therefore, i must be equal to n. Thus, s is a propositional variable. Suppose that s_{n} is \neg. Therefore, $w_{n-1}=\max (\operatorname{weight}(s[n-1,0]), 0)=1$. Thus, condition 2 holds for $s[n-1,0]$. Now, as condition 1 holds for s, then it also holds for $s[n-1,0]$ (since s_{n} is not p). As condition 3 also holds for s, it holds for $s[n-1,0]$. Therefore, $s[n-1,0]$ is a Polish formula, by induction hypothesis. By the definition of Polish formulae, s is a Polish formula. Finally, suppose that s_{n} is either \wedge or V. Assume w.l.o.g. that it is \wedge. Since $\operatorname{weight}(\wedge)=-1$, we conclude that $\operatorname{weight}(s[n-1,0])=2$ (since $\operatorname{weight}(s[n, 0])=1$ by assumption). Thus, $w_{n-1}=2$ by definition. Let i be the largest natural number strictly lesser than n such that condition 1,2 and 3 hold for $s[i, 0]$ (in the worst case, i concides with the " i " in condition 3). By induction hypothesis, $s[i, 0]$ is a Polish formula. We now want to show that $s[n-1, i+1]$ is also a Polish formula, i.e. it satisfies condition 1,2 and 3. Clearly, condition 1 holds for $s[n-1, i+1]$ if it holds for s (since s_{n} is not p). Since $w_{n-1}=2$ and $w_{i}=1$, we get that weight $(s[n-1, i+1])=1$. Therefore, condition 2 holds for $s[n-1, i+1]$. We are now left with proving if condition 3 holds for $s[n-1, i+1]$, i.e. there exists a j between $n-1$ and $i+1$ such that $s[j, i+1]$ is a propositional variable and for every $k \leq n-2$, if $k \geq j$, then $w_{k}>1$. We know that s_{i+1} can't be \neg, since we took i to be the largest natural number strictly lesser than n such that condition 1,2 and 3 hold for $s[i, 0]$. Furthermore, we know that s_{i+1} can't be \wedge or \vee, otherwise it is a contradiction
to our assumption that condition 3 holds for s. Thus, s_{i+1} is either 1 or p. Suppose that s_{i+1} is 1 . Since condition 1 holds for $s[n-1, i+1]$, let j be a number between $n-1$ and $i+1$ such that $s[j, i+1]$ is a propositional variable. We next show that for every $k \leq n-2$, if $k \geq j$, then $w_{k}>1$. For the sake of contradiction, suppose that there exists a k between $n-2$ and j such that $w_{k} \leq 1$. Let k^{\prime} be the smallest number between $n-2$ and j such that $w_{k^{\prime}} \leq 1$. Clearly, condition 1, 2 and 3 hold for $s\left[k^{\prime}, 0\right]$ and $k^{\prime}>i$. Hence, a contradiction to " i is the largest number strictly lesser than n such that condition 1,2 and 3 hold for $s[i, 0] "$. Therefore, for every $k \leq n-2$, if $k \geq j$, then $w_{k}>1$. For s_{i+1} is p, we apply the same reasoning as when $s[n-1, i+1]$ starts, from the right, with $p 11 \ldots 1$. Thus, condition 3 also holds for $s[n-1, i+1]$. Since condition 1,2 and 3 hold for $s[n-1, i+1], s[n-1, i+1]$ is a Polish formula by induction hypothesis. By the definition of Polish formulae, s is a Polish formula.

Definition 5.8 Let $s=s_{n} \ldots s_{1} s_{0}$ be a string over Σ. Then define the binary string encoding bse (s) of s, where bse is a mapping from Σ^{+}to $\{0,1\}^{*}$, as follows:

$$
b s e(s)= \begin{cases}1000 & \text { if } s=p \\ 1001 & \text { if } s=1 \\ 1010 & \text { if } s=\neg \\ 1011 & \text { if } s=\wedge \\ 1100 & \text { if } s=\vee \\ b s e(s[n]) b s e(s[n-1,0]) & \text { if }|s|>1\end{cases}
$$

The notation $b s e(s) b s e\left(s^{\prime}\right)$, in Definition 5.8, is understood as the concatenation of the binary string encodings of the strings s and s^{\prime}. We denote by $\Sigma_{\text {bin }}$ the alphabet $\{1000,1001,1010,1011,1100\}$.

Definition 5.9 Let $\vec{x}=x_{1}, \ldots, x_{k}, \vec{X}=X_{1}, \ldots X_{l}, \vec{n}=n_{1}, \ldots, n_{k} \in \mathbb{N}, \vec{N}=$ $N_{1}, \ldots, N_{l} \in \mathcal{P}_{\text {fin }}(\mathbb{N})$. A relation $R \subseteq \mathbb{N}^{k} \times \mathcal{P}_{\text {fin }}(\mathbb{N})^{l}$ is Σ_{0}^{B}-definable if there exists a Σ_{0}^{B}-formula $\varphi(\vec{x}, \vec{X})$ such that for all $(\vec{n}, \vec{N}) \in \mathbb{N}^{k} \times \mathcal{P}_{\text {fin }}(\mathbb{N})^{l}$,

$$
(\vec{n}, \vec{N}) \in R \text { iff } \mathbb{N}_{2} \vDash \varphi(\underline{\vec{n}}, \vec{X})[\alpha(\vec{N} / \vec{X})] .
$$

We say that $\varphi(\vec{x}, \vec{X}) \Sigma_{0}^{B}$-defines R.
Remember that the goal of this subsubsection is to Σ_{0}^{B}-define a formula Fla which defines the relation $\operatorname{Fla}(X, W)$ which holds if and only if X encodes a Polish formula $s=s_{n} \ldots s_{1} s_{0}$, where $s_{i} \in \Sigma$, and W encodes $w=w_{n} \ldots w_{1} w_{0}$, where w is defined as in Lemma 5.7 but this time relative to s. Figure 1 provides a high-level description of the structures of X and W, where X and W encode s and w respectively. Before commenting on Figure 1, we first introduce the following abbreviations.

Notation

- $W_{i}[j]$ is a shorthand for $W[(n+2) \cdot i+j]$.
$-X_{i}[j]$ is a shorthand for $X[4 i+j]$.

Figure 1: The structures of X and W.

- $W_{i}[j, k]$ is a shorthand for $W[(n+2) \cdot i+j,(n+2) \cdot i+k]$, where $j \geq k$.
- $X_{i}[j, k]$ is a shorthand for $X[4 i+j, 4 i+k]$, where $j \geq k$.
- W_{i} is a shorthand for $W_{i}[n+1,0]$.
- X_{i} is a shorthand for $X_{i}[3,0]$.
- $X_{i \rightarrow j}$ is a shorthand for $X_{i} X_{i-1} \ldots X_{j}$.
- We write " W_{i} encodes j " if and only if for every $k<j, W_{i}[k]=1$, and for every $k \leq n$, if $k \geq j$, then $W_{i}[k]=0$.

The first axis, labelled " $X:$ " in Figure 1, represents X as a binary string. As we see from Figure 1, X is divided into $n+1$ blocks. A block X_{i} is viewed as the binary string encoding of s_{i} in s.

The second axis, labelled " W :" in Figure 1, represents W as a binary string. As with the first axis, W is divided into $n+1$ blocks. Each block W_{i} has length $n+2$ and where $W_{i}[n+1]$ is always $1 . W_{i}[n, 0]$ is then the representation of w_{i} (in W) in unary. That is to say, if $w_{i}=j$, then W_{i} encodes j.

Lemma 5.10 Let X be $X_{n} \ldots X_{1} X_{0}$, where $X_{i} \in \Sigma_{\text {bin }}$ for every i from 0 to n, and W be $W_{n} \ldots W_{1} W_{0}$ such that:
(W1). $\left|W_{i}\right|=(n+2)$.
(W2). $W_{i}[n+1]=1$, for every i from 0 to n.
(W3). If X_{0} encodes p, then W_{0} encodes 1 . Else if X_{0} encodes $1, \neg, \wedge$ or \vee, then W_{0} encodes 0.
(W4.) For every ifrom 1 to n, we have that:
(W4.1). If X_{i} encodes 1 or \neg, then $W_{i}=W_{i-1}$.
(W4.2). If X_{i} encodes p, then there exists a j between 1 and $n+1$ such that W_{i} encodes j and W_{i-1} encodes $j-1$.
(W4.3). If X_{i} encodes either \wedge or \vee, then there exists a j between 0 and n such that W_{i-1} encodes j and W_{i} encodes $j \doteq 1$.

Then X encodes a Polish formula if and only if the following conditions hold:
(X1). For every $i \leq n$, if X_{i} encodes 1 , then there exists a $j \leq n$ such that $i<j$ and $X_{j \rightarrow i}$ encodes a propositional variable.
(X2). W_{n} encodes 1.
(X3). There exists an $i \leq n$ such that $X_{i \rightarrow 0}$ encodes a propositional variable and for every $j<n$, if $j \geq i$, then W_{j} encodes k, where $k>0$.

Note that Lemma 5.10 is a natural translation of Lemma 5.7.
In the following, we often use the same notation for both the Σ_{0}^{B}-formula and the relation that it defines. Also, remember that we identify a finite nonempty subset of \mathbb{N} with its binary string representation. Finally, $b_{1}(x, y)$ is an abbreviation for $4 x+y$ and $b_{2}(x, y)$ is an abbreviation for $(\underline{n}+2) x+y$, where n is the length of the Polish formula under consideration.

We are now going to provide three examples that illustrate how to Σ_{0}^{B} formulate the conditions in Lemma 5.10, that X and W must satisfy to encode a Polish formula. First, note that two of the conditions that (X, W) must satisfy in order to be an encoding of a Polish formula is that $|X|=4(n+1)$, for some $n \geq 0$, and that every block X_{i} of X is an encoding of a symbol in Σ. Also, note that one of the conditions that W must satisfy is that $|W|=(n+1)(n+2)$. In the following examples, assume that (X, W) satisfy the two conditions mentioned in this paragraph.

For the first example, we Σ_{0}^{B}-formulate "If X_{0} encodes p, then W_{0} encodes 1. Else if X_{0} encodes $1, \neg, \wedge$ or \vee, then W_{0} encodes 0 ." as follows:

$$
\begin{aligned}
& \left(X E n c_{p}(X, 0) \rightarrow W E n c_{1}(W, 0)\right) \\
& \wedge \\
& \left(\begin{array}{c}
\left(X E n c_{1}(X, 0) \vee X E n c_{\neg}(X, 0) \vee X E n c_{\wedge}(X, 0) \vee X E n c_{\vee}(X, 0)\right) \\
\rightarrow \\
W E n c_{0}(W, 0)
\end{array}\right),
\end{aligned}
$$

where

```
(11)
    \(\left.X E n c_{p}(X, x)={ }_{d f} X\left(b_{1}(x, 3)\right) \wedge \neg X\left(b_{1}(x, 2)\right) \wedge \neg X\left(b_{1}(x, 1)\right) \wedge \neg X\left(b_{1}(x, 0)\right)\right)\)
    \(\left.X E n c_{1}(X, x)={ }_{d f} X\left(b_{1}(x, 3)\right) \wedge \neg X\left(b_{1}(x, 2)\right) \wedge \neg X\left(b_{1}(x, 1)\right) \wedge X\left(b_{1}(x, 0)\right)\right)\)
    \(X E n c_{\neg}(X, x)={ }_{d f} X\left(b_{1}(x, 3)\right) \wedge \neg X\left(b_{1}(x, 2)\right) \wedge X\left(b_{1}(x, 1)\right) \wedge \neg X\left(b_{1}(x, 0)\right)\)
    \(X E n c_{\wedge}(X, x)={ }_{d f} X\left(b_{1}(x, 3)\right) \wedge \neg X\left(b_{1}(x, 2)\right) \wedge X\left(b_{1}(x, 1)\right) \wedge X\left(b_{1}(x, 0)\right)\)
    \(X E n c_{\vee}(X, x)={ }_{d f} X\left(b_{1}(x, 3)\right) \wedge X\left(b_{1}(x, 2)\right) \wedge \neg X\left(b_{1}(x, 1)\right) \wedge \neg X\left(b_{1}(x, 0)\right)\)
```

and

$$
W E n c_{m}(W, x)={ }_{d f}\left(\begin{array}{c}
(\forall y<\underline{m})\left(W\left(b_{2}(x, y)\right)\right) \tag{12}\\
\wedge \\
(\forall y \leq \underline{n})\left(y \geq \underline{m} \rightarrow \neg W\left(b_{2}(x, y)\right)\right)
\end{array}\right) .
$$

Here, $X E n c_{\sigma}(X, x)$, where $\sigma \in \Sigma$, asserts that X_{x} encodes the symbol σ. $W E n c_{m}(W, x)$ asserts that W_{x} encodes m.

Before we go to the next example, let us first Σ_{0}^{B}-define the function $x \dot{-y=}$ $\max (0, x-y)$ as follows:

$$
\begin{equation*}
z=x \dot{\succ} y=_{d f}((y+z=x) \vee(x \leq y \wedge z=0)) \tag{13}
\end{equation*}
$$

For the second example, we Σ_{0}^{B}-formulate "For every i from 1 to n, if X_{i} encodes 1 or \neg, then $W_{i}=W_{i-1}$." as follows:

$$
\begin{aligned}
& (\forall x \leq \underline{n})(x \geq 1 \rightarrow \\
& \quad\left(\left(X E n c_{1}(X, x) \vee X E n c_{\neg}(X, x)\right) \rightarrow\right. \\
& \quad(\exists y \leq x)(y=x \dot{\prime} \wedge E q(W, x, y)))),
\end{aligned}
$$

where $E q(W, x, y)$ is defined by:

$$
\begin{equation*}
(\forall z \leq \underline{n}+1)\left(W\left(b_{2}(x, z)\right) \leftrightarrow W\left(b_{2}(y, z)\right)\right) \tag{14}
\end{equation*}
$$

For the last example, we Σ_{0}^{B}-formulate "For every $i \leq n$, if X_{i} encodes 1 , then there exists a $j \leq n$ such that $i<j$ and $X_{j \rightarrow i}$ encodes a propositional variable." as follows:

$$
(\forall x \leq \underline{n})\left(X E n c_{1}(X, x) \rightarrow(\exists y \leq \underline{n})\left((x<y) \wedge X E n c_{v a r}(X, x, y)\right)\right)
$$

where $X E n c_{v a r}(X, x, y)$, which asserts that $X_{x \rightarrow y}$ encodes a propositional variable $p 11 \ldots 1$ with $(x-y)$ many 1 's, is defined by:
(15)
$(x \geq y) \wedge(\exists z \leq x)\left(x=z+y \wedge X E n c_{p}(X, x) \wedge\left(\forall z_{0}<z\right)\left(X \operatorname{Enc}_{1}\left(X, z_{0}\right)\right)\right)$
The other conditions that X and W must satisfy, for (X, W) to encode a Polish formula, can be Σ_{0}^{B}-formulated in the same way as those examples. Hence, let $\operatorname{Fla}(X, W)$ be a conjunction over the conditions (W1), (W2), (W3), (W4), (X1), (X2), (X3) and Σ_{0}^{B}-defines the relation $\operatorname{Fla}(X, W)$.

5.1.2 Encoding Truth Assignments

Our way of encoding a truth assignment to the variables in a Polish formula follows [CN10].

Recall that $|S|$ is the length of the binary string representation of the set S (finite subset of \mathbb{N}) and that the indices of propositional variables in a Polish formula are written in unary notation. Hence, if s is a string in Σ^{*} such that s is a Polish formula, then there are $\leq|s|$ distinct variables in s and their indices are $\leq|s|$. Now, suppose that X encodes s. Then, a set $Z \subseteq \mathbb{N}$ specifies a truth assignment to the variables $p 11 \ldots 1$ in X as follows:
$p 11 \ldots 1$ is assigned the value of $Z(|p 11 \ldots 1|-1)$.
Therefore, all truth assignments to the variables in X can be specified by sets $Z \subseteq \mathbb{N}$ such that $|Z| \leq|X|$. Thus, the Σ_{0}^{B}-formula $\operatorname{Assign}(X, W, Z)$, where the relation $\operatorname{Assign}(X, W, Z)$ holds if and only if the relation $F l a(X, W)$ holds and Z specifies a truth assignment to the variables in X, is defined by:

$$
\begin{equation*}
F l a(X, W) \wedge(|Z| \leq|X|) \tag{16}
\end{equation*}
$$

We will next define the Σ_{0}^{B}-formula $\operatorname{Eval}\left(X, W, Z, Z^{\prime}\right)$, where the relation $\operatorname{Eval}\left(X, W, Z, Z^{\prime}\right)$ holds if and only if the relation $\operatorname{Assign}(X, W, Z)$ holds and Z^{\prime} extends Z to the subformulae of the formulae encoded by X. For that, we first need to define what it means for $X_{i \rightarrow j}$ to encode a subformula of a Polish formula encoded by X and define how Z^{\prime} extends Z.

Lemma 5.11 Let $s=s_{n} \ldots s_{1} s_{0}$ be a Polish formula and $w=w_{n} \ldots w_{1} w_{0}$ be defined as in Lemma 5.7. Then, for every $j, k \in \mathbb{N}$ such that $n \geq j \geq k \geq 0$, $s_{j} s_{j-1} \ldots s_{k}$ is a Polish formula if and only if the following conditions hold:

1. For every $i \leq j$, if $i \geq k$, then the following statement must hold. If s_{i} is the symbol 1 , then there exists an $l \leq j$ such that $i<l$ and $s[l, i]$ is a propositional variable.
2. There exists an $i \leq j$ such that $i \geq k$ and $s[i, k]$ is a propositional variable and for every $l<j$, if $l \geq i$, then $w_{l} \geq w_{i}$, and $w_{j}=w_{i}$.

Proof: The proof is similar to Lemma 5.7.
Lemma 5.12 Let $X=X_{n} \ldots X_{1} X_{0}$ encode a Polish formula, where $X_{i} \in \Sigma_{b i n}$ for every i from 0 to n, and W satisfies the conditions (W1), (W2), (W3) and (W4) in Lemma 5.10. Then, for every $j, k \in \mathbb{N}$ such that $n \geq j \geq k \geq 0, X_{j \rightarrow k}$ encodes a Polish formula if and only if the following conditions hold:

1. For every $i \leq j$, if $i \geq k$, then the following statement must hold. If X_{i} encodes 1 , then there exists an $l \leq j$ such that $i<l$ and $X_{l \rightarrow i}$ is a propositional variable.
2. There exists an $i \leq j$ such that $i \geq k$ and $X_{i \rightarrow k}$ is a propositional variable and for every $l<j$, if $l \geq i$ and W_{l} encodes n_{0} and W_{i} encodes n_{1}, then $n_{0} \geq n_{1}$, and $W_{j}=W_{i}$.

Clearly, Lemma 5.12 is a natural translation of Lemma 5.11.
Lemma 5.13 Let $X=X_{n} \ldots X_{1} X_{0}$ encode a Polish formula, where $X_{i} \in \Sigma_{\text {bin }}$, and W be defined as in Lemma 5.10. Then, for every $j, k \in \mathbb{N}$ such that $n \geq$ $j \geq k \geq 0, X_{j \rightarrow k}$ encodes a subformula of the Polish formula encoded by X if and only if the following conditions hold:
(S1). $X_{j \rightarrow k}$ encodes a Polish formula.
(S2). If $k>0$, then X_{k-1} doesn't encode the symbol 1.
Proof: Obvious.
Condition 1 and 2, in Lemma 5.13, can be expressed by a Σ_{0}^{B}-formula. Thus, let $\operatorname{Subf}(X, x, y, W)$ be a Σ_{0}^{B}-formula (a conjunction of (S1), (S2), (W1), (W2), (W3), (W4)) which asserts that $\left(X_{x \rightarrow y}, W\right)$ encodes a subformula of the formula encoded by X.

Assume that $\operatorname{Assign}(X, W, Z)$ holds. A set $Z^{\prime} \subseteq \mathbb{N}$ extends Z to the subformulae of X as follows:

1. For every $j, k \leq|X|$, if $X_{j \rightarrow k}$ encodes a propositional variable and that $\operatorname{Subf}(X, j, k, W)$ holds, then $Z^{\prime}(j)$ holds if and only if $Z(j-k)$ holds.
2. For every $j, k \leq|X|$, if the relation $\operatorname{Subf}(X, j, k, W)$ holds and X_{j} encodes \neg, then $Z^{\prime}(j)$ holds if and only if $\neg Z^{\prime}(j-1)$ holds.
3. For every $j, k \leq|X|$, if $\operatorname{Sub} f(X, j, k, W)$ and X_{j} encodes $\star \in\{\wedge, \vee\}$, then there exists an l such that: $k \leq l<j-1, \operatorname{Subf}(X, j-1, l+1, W)$ and $\operatorname{Sub} f(X, l, k, W)$ hold and $Z^{\prime}(j)$ holds if and only if $Z^{\prime}(j-1) \star Z^{\prime}(l)$.
4. $\left|Z^{\prime}\right| \leq|X|$.

Clearly, all those four conditions are Σ_{0}^{B}-definable. Let $\varphi_{C_{1}}, \varphi_{C_{2}}, \varphi_{C_{3}}$ and $\varphi_{C_{4}}$ be the Σ_{0}^{B}-formulae that express condition $1,2,3$ and 4 above, respectively. Then,

$$
\begin{equation*}
\operatorname{Eval}\left(X, W, Z, Z^{\prime}\right)=_{d f} \operatorname{Assign}(X, W, Z) \wedge \varphi_{C_{1}} \wedge \ldots \wedge \varphi_{C_{4}} . \tag{17}
\end{equation*}
$$

5.1.3 Encoding Polytime Turing Machine Computations

From now on, we assume that every Turing machine M that will be discussed is a polytime Turing machine which takes binary strings (empty string included) as inputs and outputs binary strings (empty string included). Furthermore, for a Turing machine $M=(K, \Sigma, \delta, s)$, we assume that $\Sigma=\{0,1,2,3\}$, where 2 and 3 always encode \triangleright and the blank symbol, respectively (\triangleright and \sqcup will often be used to refer to 2 and 3 , respectively), and $K=\{4,5, \ldots,|\Sigma|+|K|-1\}$, where 4 and 5 always encode s and h, respectively (s and h will often be used to refer to 4 and 5 , respectively). This idea of coding symbols and states of a Turing machine into natural numbers is from [Pap94]. Additionally, Turing machines will never write $\mathrm{a} \triangleright$ on their string except when they see one. Moreover, a Turing machine configuration (q, w, u), as defined in Definition 2.2, is redefined here as $w q u$. Here, $w=w_{n} w_{n-1} \ldots w_{1} w_{0}$ such that $w_{n}=\triangleright, w_{0}$ is the symbol read by M at state q and if $n \geq 1$, then for every $i \leq n-1, w_{i} \in \Sigma \backslash\{\triangleright\}$ (since we never write \triangleright except when we see one); $q \in K$ and $u \in(\Sigma \backslash\{\triangleright\})^{*}$. Finally, if $w_{n} w_{n-1} \ldots w_{0} h u_{m-1} \ldots u_{0}$ is the final configuration of a Turing machine M on input X, then $M(X)=w_{n-1} \ldots w_{0}$, where $w_{i} \in\{0,1\}$ for every i from 0 to $n-1$.
5.1.3.1 A method of encoding configurations of a Turing machine on a given input. The purpose of this paragraph is to describe a method of encoding configurations of a Turing machine on a given input.

Definition 5.14 Let $M=(K, \Sigma, \delta, s)$ be a Turing machine. Then, we define enc to be a mapping from $\Sigma \cup K$ to $\{0,1\}^{*}$ such that for all $n \in \Sigma \cup K$,

$$
\begin{equation*}
e n c(n)=1 b \tag{18}
\end{equation*}
$$

where b is the binary representation of n such that $|b|=\left\lceil\log _{2}(|\Sigma|+|K|)\right]$.
enc can then be extended to assign a binary string to a string $\mathrm{s} \in \Sigma^{+}$as follows:

$$
e n c(\mathrm{~s})= \begin{cases}1 b, \text { where } b \text { is defined as in (18) } & \text { if } \mathrm{s} \in \Sigma \\ \operatorname{enc}(\mathrm{~s}[n]) \operatorname{enc}(\mathrm{s}[n-1,0]) & \text { if }|\mathrm{s}|>1\end{cases}
$$

where enc(s)...enc($\left.\mathrm{s}^{\prime}\right)$ is the result of concatenating enc(s) and enc($\left.\mathrm{s}^{\prime}\right)$.

For example, if $|\Sigma|+|K|=8$, then $\left\lceil\log _{2}(|\Sigma|+|K|)\right\rceil=3$. Hence, enc $(3)=$ 1011 and $\operatorname{enc}(33)=10111011$.

This is a preparation for the definition of the encoding of a configuration of a Turing machine on a given input. Let $t(|X|)$ be a bound on the running time of a Turing machine M on input X. Hence, for any configuration $w q u$ of M on $X,|w|+|u| \leq t(|X|)+1$. Thus, $\mid \operatorname{enc}(w)$ enc $(q) \operatorname{enc}(u) \operatorname{enc}(\sqcup) \mid \leq k \cdot(t(|X|)+3)$, where $k=1+\left\lceil\log _{2}(|\Sigma|+|K|)\right\rceil$ (here, k is the length of the encoding of a symbol $\sigma \in(\Sigma \cup K))$.

Notation Let $M=(K, \Sigma, \delta, s)$ be a Turing machine. From now on, let $1+$ $\left\lceil\log _{2}(|\Sigma|+|K|)\right\rceil$ be denoted by k_{M}. Additionally, $t_{M}(|X|)$ always denotes the bound on the running time of a Turing machine M on input X. At the formal language level, k_{M} denotes the numeral that evaluates to $1+\left\lceil\log _{2}(|\Sigma|+|K|)\right\rceil$ in the standard model and $t_{M}(|X|)$ denotes a number term that evaluates to the bound on the running time of M on X in the standard model. We abbreviate $t_{M}(|X|)$ by t_{M}.

Definition 5.15 We define the encoding of a configuration wqu of a Turing machine M on input X to be the binary string

$$
\begin{equation*}
V=e n c(w) e n c(q) e n c(u) e n c(\sqcup) e n c(\sqcup \ldots \sqcup) \tag{19}
\end{equation*}
$$

such that $|V|=k_{M}\left(t_{M}+3\right)$.

Note that the substring enc($\llcorner\ldots \sqcup)$ of V, in (19), maybe an empty string and (19) always ends with a \sqcup (that will be clear later, when we describe how to recognise if two binary strings encode two consecutive configurations of a certain Turing machine on a certain input). Let $b_{3}(x, y)$ be a shortand for $k_{M} \cdot x+y$. The other conditions are clearly Σ_{0}^{B}-formulable. Thus, let $\operatorname{Con} f_{M}(V, X)$ be a Σ_{0}^{B}-formula which asserts that V is a potential encoding of a configuration of a Turing machine M on input X.
5.1.3.2 $\quad \Sigma_{0}^{B}$-defining the relation $\operatorname{Init}_{M}(X, V)$. Remember that the initial configuration of a Turing machine M on input X is

$$
\triangleright s X(|X|-1) \ldots X(1) X(0)
$$

and whose encoding is the binary string

$$
\operatorname{enc}(\triangleright) e n c(s) e n c(X) e n c(\sqcup) e n c(\sqcup \ldots \sqcup)
$$

of length $k_{M}\left(t_{M}+3\right)$. Thus, the relation $\operatorname{Init}_{M}(X, V)$, which holds if and only if $V=V_{n+1} V_{n} \ldots V_{0}$ encodes the initial configuration of M on input X, is Σ_{0}^{B}-defined as follows:
(20)

$$
\begin{gathered}
\operatorname{Init}_{M}(X, V) \\
={ }_{d f} \\
|V|=k_{M}\left(t_{M}+3\right) \\
\wedge \\
\operatorname{Symbol}_{\triangleright}^{M}\left(V, t_{M}+2\right) \wedge \operatorname{State}_{s}^{M}\left(V, t_{M}+1\right)
\end{gathered}
$$

\wedge

\wedge

$$
\left(\exists y \leq t_{M}+1\right)\left(y=\left(t_{M}+1\right)-|X| \wedge(\forall x<y)\left(\text { Symbol }_{\cup}^{M}(V, x)\right)\right)
$$

where $\operatorname{Symbol}_{0}^{M}(V, x)$, Symbol $_{1}^{M}(V, x)$, Symbol $_{\triangleright}^{M}(V, x), \operatorname{Symbol}_{\cup}^{M}(V, x)$ and $\operatorname{State}_{s}^{M}(V, x)$ are defined as follows:

$$
\operatorname{State}_{s}^{M}(V, x)=_{d f}\left(\exists z<k_{M}\right)\left(\begin{array}{c}
z=k_{M}-1 \tag{21}\\
\wedge \\
V\left(b_{3}(x, z)\right) \\
\wedge \\
V\left(b_{3}(x, 2)\right) \\
\wedge \\
(\forall y<z)\left(y>2 \rightarrow \neg V\left(b_{3}(x, y)\right)\right) \\
\wedge \\
(\forall y<2)\left(\neg V\left(b_{3}(x, y)\right)\right)
\end{array}\right)
$$

which means that $s=4=100_{2}$ is encoded by $10 \ldots 0100$, and
(22)

where $b_{3}(x, y)$ is a shortand for $k_{M} \cdot x+y$.
5.1.3.3 $\quad \Sigma_{0}^{B}$-defining the relation Yields $s_{M}\left(V, V^{\prime}, X\right)$. In this paragraph, we Σ_{0}^{B}-define the relation ields $_{M}\left(V, V^{\prime}, X\right)$, which holds if and only if V and V^{\prime} encode two consecutive configurations of the Turing machine M on input X. Before we do so, first consider the following example.

Example 5.16 Consider the Turing machine $M=(K, \Sigma, \delta, s)$, where $\Sigma=$ $\{0,1, \triangleright, \sqcup\}$ and $K=\{s, h, 6\}$ and δ as shown in Table 1. M simply turns its input X into a string of 0 's if X is not the emptystring; if X is the empty string, then $M(\epsilon)=\epsilon$, where ϵ denotes the empty string. Note that we omit rules that will never be encountered in a legal computation and, since $|\Sigma|+|K|=7$, the length of the binary string encoding of every symbol in $(\Sigma \cup K)$ is then 4.

Let us consider the two configurations $c_{0}=\triangleright s 11$ and $c_{1}=\triangleright 1 s 1$ of M on

$q \in K$	$\sigma \in \Sigma$	$\delta(q, \sigma)$
s	0	$(s, 0, \rightarrow)$
s	1	$(s, 0, \rightarrow)$
s	\triangleright	$(s, \triangleright, \rightarrow)$
s	\sqcup	$(6, \sqcup, \leftarrow)$
6	0	$(h, 0,-)$
6	\triangleright	$(h, \triangleright,-)$

Table 1: A Turing machine.
input 11, and whose binary string encodings are c_{0}^{\prime} and c_{1}^{\prime} respectively, where

$$
\begin{aligned}
& c_{0}^{\prime}=\operatorname{enc}(\triangleright) \operatorname{enc}(s) \operatorname{enc}(1) \operatorname{enc}(1) \operatorname{enc}(\sqcup) \operatorname{enc}(\sqcup \ldots \sqcup) \\
& c_{1}^{\prime}=\operatorname{enc}(\triangleright) \operatorname{enc}(1) \operatorname{enc}(s) \operatorname{enc}(1) \operatorname{enc}(\sqcup) \operatorname{enc}(\sqcup \ldots \sqcup) .
\end{aligned}
$$

Now, a way to tell, if c_{0}^{\prime} and c_{1}^{\prime} encode two consecutive configurations of M on 11 , is that they are identical except that the substring enc($(\square) \operatorname{enc}(s) \operatorname{enc}(1)$ of c_{0}^{\prime} has been replaced by the substring enc(\triangleright)enc(1)enc(s) of c_{1}^{\prime} and this replacement corresponds to the rule $\delta(s, \triangleright)=(s, \triangleright, \rightarrow)$, in Table 1 (this idea is from [Pap94]). Thus, a move of M entails a replacement of triples of binary strings. The complete table of these triples and their replacements, for the machine M of Table 1, is shown in Table 2. Table 2 is then encoded into a binary string T

Original substring	Replacement
$l c_{0,0}=e n c(\triangleright) e n c(s) e n c(0)$	$l c_{0,1}=e n c(\triangleright) e n c(0) e n c(s)$
$l c_{1,0}=\operatorname{enc}(\triangleright) \operatorname{lnc}(s) \operatorname{enc}(1)$	$l c_{1,1}=\operatorname{enc}(\triangleright)$ enc $(1) e n c(s)$
$l c_{2,0}=\operatorname{enc}(\mathrm{D}) \operatorname{enc}(s) \operatorname{enc}(\mathrm{U})$	$l c_{2,1}=\operatorname{enc}(\triangleright)$ enc (\sqcup) enc (s)
$l c_{3,0}=e n c(0) e n c(s) e n c(0)$	$l c_{3,1}=\operatorname{enc}(0) \operatorname{enc}(0) \operatorname{enc}(s)$
$l c_{4,0}=\operatorname{enc}(0) \operatorname{enc}(s) \operatorname{enc}(1)$	$l c_{4,1}=e n c(0) e n c(1) e n c(s)$
$l c_{5,0}=\operatorname{enc}(0) \operatorname{enc}(s) e n c(\cup)$	$l c_{5,1}=e n c(0) e n c(\sqcup) e n c(s)$
$l c_{6,0}=e n c(1) e n c(s) e n c(0)$	$l c_{6,1}=\operatorname{enc}(0) e n c(0) e n c(s)$
$l c_{7,0}=\operatorname{enc}(1) e n c(s) e n c(1)$	$l c_{7,1}=\operatorname{enc}(0) \operatorname{enc}(1) e n c(s)$
$l c_{8,0}=e n c(1) e n c(s) e n c(\cup)$	$l c_{8,1}=\operatorname{enc}(0)$ enc (\cup) enc (s)
$l c_{9,0}=\operatorname{enc}(\mathrm{U}) \mathrm{enc}(\mathrm{s}) \mathrm{enc}(0)$	$l c_{9,1}=e n c(6) e n c(\sqcup) e n c(0)$
$l c_{10,0}=$ enc((\sqcup) enc (s) enc (1)	$l c_{10,1}=e n c(6) e n c(\sqcup) e n c(1)$
$l c_{11,0}=e n c(\sqcup) e n c(s) e n c(\sqcup)$	$l c_{11,1}=e n c(6) e n c(\sqcup) e n c(\downarrow)$
$l c_{12,0}=\operatorname{enc}(0) \operatorname{enc}(6) \operatorname{enc}(0)$	$l c_{12,1}=\operatorname{enc}(0)$ enc $(h) e n c(0)$
$l c_{13,0}=\operatorname{enc}(0) \operatorname{enc}(6) \operatorname{enc}(1)$	$l c_{13,1}=\operatorname{enc}(0)$ enc $(h) e n c(1)$
$l c_{14,0}=e n c(0) e n c(6) e n c(\sqcup)$	$l c_{14,1}=e n c(0) e n c(h) e n c(\sqcup)$
$l c_{15,0}=\operatorname{enc}(\triangleright) \operatorname{enc}(6) \operatorname{enc}(0)$	$l c_{15,1}=\operatorname{enc}(\triangleright) \operatorname{enc}(h) \operatorname{enc}(0)$
$l c_{16,0}=\operatorname{enc}(\triangleright)$ enc (6) enc (1)	$l c_{16,1}=\operatorname{enc}(\triangleright) \operatorname{enc}(h) e n c(1)$
$l c_{17,0}=e n c(\triangleright) e n c(6) e n c(\sqcup)$	$l c_{17,1}=\operatorname{enc}(\triangleright) \operatorname{enc}(h) e n c(\downarrow)$

Table 2: A Table of triples and their replacements.
such that $|T|=6 k_{M} \times 3 \cdot r$, where r is the number of rows in Table 1 , and for every $i \leq r-1$, there exists a $j \leq r-1$ such that $V_{i}=l c_{j, 0} l c_{j, 1}$, where $V_{i}=V\left[6 k_{M} \cdot i+\left(6 k_{M}-1\right), 0\right]$. An example of a valid encoding of Table 2 is as follows:

$$
\begin{equation*}
l c_{1,0} l c_{1,1} l c_{2,0} l c_{2,1} \ldots l c_{12,0} l c_{12,1} \tag{23}
\end{equation*}
$$

In general, for a Turing machine M, its table of triples and their replacements is encoded into a binary string T_{M} satisfying the same conditons as T above, but this time relative to T_{M}.

We are now ready to Σ_{0}^{B}-define the relation Yields $_{M}\left(V, V^{\prime}, X\right)$. For that, let $T \in \mathcal{P}_{f i n}(\mathbb{N})$ such that T is an encoding of the table of triples and their replacements for M. Then,

$$
\begin{gather*}
Y{\text { ield } s_{M}\left(V, V^{\prime}, X\right)}={ }_{d f} \\
|V|=k_{M}\left(t_{M}+3\right) \wedge\left|V^{\prime}\right|=|V| \\
\wedge \\
\left(\exists x \leq t_{M}+1\right)\left(\begin{array}{c}
\text { (} \\
(\exists z \leq x)\left(z=x-1 \wedge\left(\forall y<k_{M} \cdot z\right)\left(V(y) \leftrightarrow V^{\prime}(y)\right)\right) \\
\wedge \\
\text { Replacement }_{M}\left(V, V^{\prime}, x\right) \\
\left(\forall y<k_{M}\left(t_{M}+3\right)\right. \\
\left(y \geq k_{M}(x+2) \rightarrow\left(V(y) \leftrightarrow V^{\prime}(y)\right)\right)
\end{array}\right) \tag{24}
\end{gather*}
$$

where Replacement ${ }_{M}\left(V, V^{\prime}, x\right)$ asserts that the substring $V_{x+1}^{\prime} V_{x}^{\prime} V_{x-1}^{\prime}$ of V^{\prime} is a valid replacement of the substring $V_{x+1} V_{x} V_{x-1}$ of V (i.e. there exists two substrings T_{y+1} and T_{y} of T such that T_{y} is a replacement of T_{y+1}, in the table of triples and their replacements for M, and $T_{y+1}=V_{x+1} V_{x} V_{x-1}$ and $\left.T_{y}=V_{x+1}^{\prime} V_{x}^{\prime} V_{x-1}^{\prime}\right)$ and is defined as follows

$$
\begin{gather*}
\text { Replacement }_{M}\left(V, V^{\prime}, x\right) \tag{25}\\
={ }_{d f} \\
\left(\exists z_{0} \leq x\right)\left(\begin{array}{c}
z_{0}=x-1 \\
\wedge \\
(\exists y \leq|T|)\left(\forall z<3 k_{M}\right)\left(\begin{array}{c}
\left(T\left(3 k_{M}(2 y+1)+z\right) \leftrightarrow V\left(k_{M} \cdot z_{0}+z\right)\right) \\
\wedge \\
\left(T\left(3 k_{M} \cdot 2 y+z\right) \leftrightarrow V^{\prime}\left(k_{M} \cdot z_{0}+z\right)\right)
\end{array}\right)
\end{array}\right)
\end{gather*}
$$

Figure 2 shows a pictorial description of (25).
5.1.3.4 $\quad \Sigma_{0}^{B}$-defining the relation $O u t_{M}(V, X, Y)$. Remember that for a final configuration $w h u$, where $w=w_{n} w_{n-1} \ldots w_{0}$, of a Turing machine M on input X, we have that $M(X)=w_{n-1} \ldots w_{0}$, where $w_{i} \in\{0,1\}$ for every i from 0 to $n-1$.

The relation $O u t_{M}(V, X, Y)$, which holds iff V encodes the final configuration of M on input X and $M(X)=Y$, is Σ_{0}^{B}-defined as follows:

Figure 2: Pictorial description of what the formula Replacement $_{M}$ expresses.

$$
\begin{gathered}
\text { Out }_{M}(V, X, Y) \\
=d f \\
|V|=k_{M}\left(t_{M}+3\right)
\end{gathered}
$$

\wedge
(26)

$$
\begin{gathered}
\left(\exists x \leq t_{M}+2\right)\left(\begin{array}{c}
x=\left(t_{M}+2\right) \dot{\wedge}|Y| \\
\wedge \\
(\forall y<|Y|)\left(\begin{array}{c}
\left(Y(y) \leftrightarrow \operatorname{Symbol}_{1}^{M}(V, x+y)\right) \\
\wedge \\
\left(\neg Y(y) \leftrightarrow \operatorname{Symbol}_{0}^{M}(V, x+y)\right)
\end{array}\right)
\end{array}\right) \\
\wedge \\
\left(\exists x \leq t_{M}+1\right)\left(x=\left(t_{M}+1\right)-|Y| \wedge \operatorname{State}_{h}^{M}(V, x)\right)
\end{gathered}
$$

where $\operatorname{State}_{h}^{M}(V, x)$ is defined as follows:

$$
\left(\exists z<k_{M}\right)\left(\begin{array}{c}
z=k_{M}-1 \tag{27}\\
\wedge \\
V\left(b_{3}(x, z)\right) \\
\wedge \\
V\left(b_{3}(x, 0)\right) \\
\wedge \\
\neg V\left(b_{3}(x, 1)\right) \\
\wedge \\
V\left(b_{3}(x, 2)\right) \\
\wedge \\
(\forall y<z)\left(y>2 \rightarrow \neg V\left(b_{3}(x, y)\right)\right)
\end{array}\right)
$$

Figure 3: A pictorial description of (26). Here, $n=t_{M}+1$.

Figure 3 shows a pictorial description of (26).
5.1.3.5 $\quad \Sigma_{0}^{B}$-define the relation $\operatorname{Comp}_{g}(V, Y, X)$. The goal of this paragraph is to Σ_{0}^{B}-define the relation $\operatorname{Comp}_{g}(V, Y, X)$, which holds if and only if V encodes the computation of a Turing machine and V shows that $g(Y)=X$, where g is a polytime computable onto function from $\{0,1\}^{*}$ to $\{0,1\}^{*}$. To Σ_{0}^{B}-define $\operatorname{Comp}_{g}(V, Y, X)$, we first need to describe a method of encoding the computation of a Turing machine M on X. For that, the following definitions are needed, but first recall that when writing $Z(x, y)$, we mean $Z(\langle x, y\rangle)$, where $\langle x, y\rangle$ is the pairing function.
Definition 5.17 [CN10] The function $Z^{[x]}$ is defined by

$$
\begin{equation*}
Z^{[x]}(i) \leftrightarrow(i<|Z| \wedge Z(x, i)) \tag{28}
\end{equation*}
$$

Definition 5.18 [CN10] The string tupling function $\left\langle X_{0}, X_{1}, \ldots, X_{n-1}\right\rangle$ is defined by

$$
\begin{equation*}
\left\langle X_{0}, \ldots, X_{n-1}\right\rangle(i) \leftrightarrow(i=\langle j, x\rangle) \wedge(j<n) \wedge X_{j}(x) \tag{29}
\end{equation*}
$$

Definition 5.19 Let $\psi(U)$ be a Σ_{0}^{B}-formula. Then we denote by $\psi\left(V^{[x]}\right)$ the result of replacing every occurence of $U(t)$ in ψ by $V^{[x]}\left(t^{\prime}\right)$, where $t=\left\langle x, t^{\prime}\right\rangle$.

The computation of a Turing machine M on an input X can be encoded by a binary string $V=\left\langle V^{[0]}, V^{[1]} \ldots V^{\left[t_{M}\right]}\right\rangle$ such that $V^{[0]}$ is the initial configuration of M on X and for every $i<t_{M}, Y$ ield $s_{M}\left(V^{[i]}, V^{[i+1]}, X\right)$ holds, and $O u t_{M}\left(V^{\left[t_{M}\right]}, X, M(X)\right)$ holds. Note that the length of V is bounded by $\left\langle t_{M}, k_{M}\left(t_{M}+2\right)\right\rangle$.

Now, let g be a polytime computable onto function from $\{0,1\}^{*}$ to $\{0,1\}^{*}$ and M be a polytime Turing machine that computes g. Then, we Σ_{0}^{B}-define the relation $\operatorname{Comp}_{g}(V, Y, X)$ as follows:

$$
\begin{array}{ll}
\operatorname{Comp}_{g}(V, Y, X)={ }_{d f} & |V| \leq\left\langle t_{M}, k_{M}\left(t_{M}+2\right)\right\rangle \wedge \\
& \varphi_{M}(X, V) \wedge \operatorname{Out}_{M}\left(V^{\left[t_{M}\right]}, X, Y\right) \tag{30}
\end{array}
$$

where $\varphi_{M}(X, V)$ is defined as follows:

$$
\begin{equation*}
\varphi_{M}(X, V)=_{d f} \operatorname{Init}_{M}\left(X, V^{[0]}\right) \wedge\left(\forall x<t_{M}\right)\left(\text { Yields }_{M}\left(V^{[x]}, V^{[x+1]}, X\right)\right) \tag{31}
\end{equation*}
$$

5.1.4 $\quad \Sigma_{0}^{B}$-formulation of the Reflection Principle

From now on, we assume that propositional proof systems are defined as in [CR79], but whose domains are $\{0,1\}^{*}$, i.e. propositional proof systems are polytime computable onto functions from $\{0,1\}^{*}$ to TAUT, where TAUT \subset $\{0,1\}^{*}$.

We finally come to the central point of this subsection, which is to Σ_{0}^{B} formulate the reflection principle for a propositional proof system g which states that

$$
\begin{equation*}
\forall X(\exists Y(g(Y)=X) \Rightarrow X \in \text { TAUT }) \tag{32}
\end{equation*}
$$

We Σ_{0}^{B}-formulate the reflection principle of a proof system g as in [Coo06]:

$$
\begin{gather*}
\operatorname{Sound}_{g}\left(X, W, Z, Z^{\prime}, V, Y\right) \tag{33}\\
={ }_{d f}
\end{gather*}
$$

$\operatorname{Eval}\left(X, W, Z, Z^{\prime}\right) \wedge \operatorname{Comp}_{g}(V, Y, X) \rightarrow(\exists x \leq|X|)\left(|X|=4(x+1) \wedge Z^{\prime}(x)\right)$
where $Z^{\prime}(x)$ is the truth value of the entire Polish formula encoded by X (remember that a symbol in $\{p, 1, \neg, \wedge, \vee\}$ is encoded by a binary string of length 4).

Theorem 5.20 Let g be a polytime computable onto function from $\{0,1\}^{*}$ to $\{0,1\}^{*}$. Then $\mathbb{N}_{2} \models \forall$ Sound $_{g}$ if and only if $\forall X(\exists Y(g(Y)=X) \Rightarrow X \in$ TAUT $)$.

Proof: (\Rightarrow) Suppose that \forall Sound $_{g}$ is true in the standard model. We show that $\forall X(\exists Y(g(Y)=X) \Rightarrow X \in$ TAUT $)$. For the sake of contradiction, suppose that $\exists X(\exists Y(g(Y)=X) \wedge X \notin$ TAUT $)$. Let $X, W, Z, Z^{\prime} \in\{0,1\}^{*}$ such that $\operatorname{Eval}\left(X, W, Z, Z^{\prime}\right)$ is true in \mathbb{N}_{2} and let $V \in\{0,1\}^{*}$ such that $\operatorname{Comp} g_{g}(V, Y, X)$ is true in \mathbb{N}_{2}. Since $X \notin$ TAUT, we have that $\mathbb{N}_{2} \not \models(\exists x \leq|X|)(|X|=$ $\left.4(x+1) \wedge Z^{\prime}(x)\right)$. Therefore, \forall Sound $_{g}$ is not true in the standard model, which is a contradiction.
(\Leftrightarrow) Suppose that $\forall X(\exists Y(g(Y)=X) \Rightarrow X \in$ TAUT $)$. We want to show that \forall Sound $_{g}$ is true in \mathbb{N}_{2}. For the sake of contradiction, we assume that $\left(\exists X^{\prime}, W, Z, Z^{\prime}, V^{\prime}, Y^{\prime}\right)\left(\operatorname{Eval}\left(X^{\prime}, W, Z, Z^{\prime}\right) \wedge \operatorname{Comp}_{g}\left(V^{\prime}, Y^{\prime}, X^{\prime}\right)\right)$ is true in \mathbb{N}_{2} and $\left(\exists x \leq\left|X^{\prime}\right|\right)\left(\left|X^{\prime}\right|=4(x+1) \wedge Z^{\prime}(x)\right)$ is not. Since $\operatorname{Comp}_{g}\left(V^{\prime}, Y^{\prime}, X^{\prime}\right)$ is true in the standard model, we conclude that $X^{\prime} \in$ TAUT, which is a contradiction to our original assumption.

5.2 The Main Theorem

Remember that the uniform reduct of a proof system f is defined to be the set

$$
\mathrm{U}_{f}=\left\{\varphi(\vec{x}, \vec{X}) \in \Sigma_{0}^{B}:\{\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]: \vec{m}, \vec{n} \in \mathbb{N}\} \text { has polysize } f \text {-proofs }\right\}
$$

Let f^{+}be the system f augmented to allow substitution Frege rules to be applied to tautologies after exhibiting their f-proofs.

Theorem $5.21 \mathrm{U}_{f^{+}}=\operatorname{TRUE}_{\Sigma_{0}^{B}}$ iff f^{+}simulates every proof system.
Proof: (\Leftarrow) Suppose that f^{+}simulates every proof system. Let $\varphi(\vec{x}, \vec{X}) \in$ $\operatorname{TRUE}_{\Sigma_{0}^{B}}$. We want to show that there exists a proof system g such that $\{\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]: \vec{m}, \vec{n} \in \mathbb{N}\}$ have polysize g-proofs. We assume an efficient encoding of tautologies and proofs over $\{0,1\}^{*}$, which can be different from the one we described previously. Let p be any proof system. We modify p in order to obtain g in the following way. For every $\pi \in\{0,1\}^{*}, \psi \in\{\varphi(\overrightarrow{\underline{m}}, \vec{X})[\vec{n}]: \vec{m}, \vec{n} \in \mathbb{N}\}$, $g(0 \pi)=p(\pi)$ and $g\left(1 Y_{\psi}\right)=Y_{\psi}$, where Y_{ψ} is the encoding of ψ, and for every other string $\pi^{\prime} \in\{0,1\}^{*}, g\left(\pi^{\prime}\right)=$ T. Clearly, g is a proof system and $\{\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]: \vec{m}, \vec{n} \in \mathbb{N}\}$ have polysize g-proofs. Since f^{+}simulates g, we conclude that $\{\varphi(\underline{\vec{m}}, \vec{X})[\vec{n}]: \vec{m}, \vec{n} \in \mathbb{N}\}$ has polysize f^{+}-proofs.
(\Rightarrow) Suppose that $U_{f^{+}}=\operatorname{TRUE}_{\Sigma_{0}^{B}}$ holds. We show that for every proof system g, there exists a polynomial p such that

$$
\forall X, Y\left(g(Y)=X \Rightarrow \exists Y^{\prime}\left(f^{+}\left(Y^{\prime}\right)=X \wedge\left|Y^{\prime}\right| \leq p(|Y|)\right)\right)
$$

Let g be any proof system. Then g satisfies (32). Therefore, \forall Sound $_{g}$ is true in \mathbb{N}_{2}, by Theorem 5.20. Therefore, $\left\{\operatorname{Sound}_{g}\left(X, W, Z, Z^{\prime}, V, Y\right)[\vec{n}]: \vec{n} \in \mathbb{N}\right\}$ has polysize f^{+}-proofs, by assumption.

Now, let A and B be any binary string such that $g(B)=A$ (i.e. A encodes a tautology and B is a g-proof of A), and let C be any binary string such that C encodes a computation of a Turing machine and C shows that $g(B)=A$. Furthermore, let D be a binary string such that D encodes the weight of the tautology encoded by A. Additionally, let $n_{A}=|A|, n_{B}=|B|, n_{C}=|C|, n_{D}=$ $|D|, n_{Z}=n_{A}$ and $n_{Z^{\prime}}=n_{A}$.

Note that the propositional formula encoded by A is in Polish notation. Thus, a propositional variable has its index written in unary notation. We write p_{i} for $p 11 \ldots 1$, where $p 11 \ldots 1$ has i many l's. Now, we denote by $\varphi\left(p_{0}, \ldots p_{l-1}\right)$ the formula encoded by A, where p_{0}, \ldots, p_{l-1} are all the propositional variables in φ.

We show that there exists a binary string B^{\prime} such that $f^{+}\left(B^{\prime}\right)=A$ and $\left|B^{\prime}\right| \leq p(|B|)$, for some polynomial p.

The formula $\operatorname{Sound}_{g}\left(X, W, Z, Z^{\prime}, V, Y\right)\left[n_{A}, n_{D}, n_{Z}, n_{Z^{\prime}}, n_{C}, n_{B}\right]$ has atoms $p_{0}^{X}, \ldots, p_{n_{A}-2}^{X}, p_{0}^{W}, \ldots, p_{n_{D}-2}^{W}, p_{0}^{Z}, \ldots, p_{n_{Z}-2}^{Z}, p_{0}^{Z^{\prime}}, \ldots, p_{n_{z^{\prime}-2}}^{Z^{\prime}}, p_{0}^{V}, \ldots, p_{n_{C}-2}^{V}$ and $p_{0}^{Y}, \ldots, p_{n_{B}-2}^{Y}$, and more importantly, it has polysize f^{+}-proof, since we have that $\operatorname{Sound}_{g}\left(X, W, Z, Z^{\prime}, V, Y\right) \in \operatorname{TRUE}_{\Sigma_{0}^{B}}$.

Let σ_{1} be a substitution such that:

$$
\begin{aligned}
& \sigma_{1}\left(p_{0}^{X}\right)=A(0), \ldots, \sigma\left(p_{n_{A}-2}^{X}\right)=A\left(n_{A}-2\right), \\
& \sigma_{1}\left(p_{0}^{Y}\right)=B(0), \ldots, \sigma\left(p_{n_{B}-2}^{Y}\right)=B\left(n_{B}-2\right), \\
& \sigma_{1}\left(p_{0}^{V}\right)=C(0), \ldots, \sigma\left(p_{n_{G}}^{V}\right)=C\left(n_{C}-2\right), \\
& \sigma_{1}\left(p_{0}^{W}\right)=D(0), \ldots, \sigma\left(p_{n_{D}-2}^{V}\right)=D\left(n_{C}-2\right)
\end{aligned}
$$

and for every other atom p in $\operatorname{Sound}_{g}\left(X, W, Z, Z^{\prime}, V, Y\right)\left[n_{A}, n_{D}, n_{Z}, n_{Z^{\prime}}, n_{C}, n_{B}\right]$, $\sigma_{1}(p)=p$. Then, we have

$$
\begin{equation*}
\frac{\operatorname{Sound}_{g}\left(X, W, Z, Z^{\prime}, V, Y\right)\left[n_{A}, n_{D}, n_{Z}, n_{Z^{\prime}}, n_{C}, n_{B}\right]}{\operatorname{Sound}_{g}\left(X, W, Z, Z^{\prime}, V, Y\right)\left[n_{A}, n_{D}, n_{Z}, n_{Z^{\prime}}, n_{C}, n_{B}\right] \sigma_{1}} \tag{34}
\end{equation*}
$$

by the application of the substitution rule (cf. Definition 3.43). We denote the formula Sound $_{g}\left(X, W, Z, Z^{\prime}, V, Y\right)\left[n_{A}, n_{D}, n_{Z}, n_{Z^{\prime}}, n_{C}, n_{B}\right] \sigma_{1}$ by Sound d_{g}^{1}. Sound d_{g}^{1} is of the form

$$
\left(\begin{array}{c}
\operatorname{Eval}\left(X, W, Z, Z^{\prime}\right)\left[n_{A}, n_{D}, n_{Z}, n_{Z^{\prime}}\right] \sigma_{1} \tag{35}\\
\wedge \\
\operatorname{Comp}_{g}(V, Y, X)\left[n_{c}, n_{A}, n_{B}\right] \sigma_{1}
\end{array}\right) \rightarrow \varphi_{t a}\left(X, Z^{\prime}\right)\left[n_{A}, n_{Z^{\prime}}\right] \sigma_{1}
$$

where $\varphi_{t a}\left(X, Z^{\prime}\right)\left[n_{A}, n_{Z^{\prime}}\right] \sigma_{1}$ is

$$
\begin{equation*}
\bigvee_{i \leq n_{A}}\left(\underline{n}_{A}=4(\underline{i}+1)\right)\left[n_{A}\right] \wedge Z^{\prime}(\underline{i})\left[n_{Z^{\prime}}\right] \tag{36}
\end{equation*}
$$

where we have that

$$
Z^{\prime}(\underline{i})\left[n_{Z^{\prime}}\right]={ }_{d f} \begin{cases}p_{i}^{Z^{\prime}} & \text { if } i \leq n_{Z^{\prime}}-2 \tag{37}\\ T & \text { if } i=n_{Z^{\prime}}-1 \\ \perp & \text { otherwise }\end{cases}
$$

Now (36) is equivalent to $Z^{\prime}(\underline{j})\left[n_{Z^{\prime}}\right]$, for some $j \leq n_{A}$. Clearly, this equivalence has polysize Frege-proof (all that is needed to be done is some pruning). Let Sound d_{g}^{2} denote the formula

$$
\left(\begin{array}{c}
\operatorname{Eval}\left(X, W, Z, Z^{\prime}\right)\left[n_{A}, n_{D}, n_{Z}, n_{Z^{\prime}}\right] \sigma_{1} \tag{38}\\
\wedge \\
\operatorname{Comp}_{g}(V, Y, X)\left[n_{c}, n_{A}, n_{B}\right] \sigma_{1}
\end{array}\right) \rightarrow Z^{\prime}(\underline{j})\left[n_{Z^{\prime}}\right]
$$

Let m be the runtime required by the Turing machine M on B, which computes g and whose computation is encoded by C. Since $\operatorname{Comp}_{g}(V, Y, X)\left[n_{c}, n_{A}, n_{B}\right] \sigma_{1}$, in $S_{o u n d}^{g}{ }^{2}$, is a closed tautology, we conclude that it has polysize Frege-proof, by Corollary 3.41. Thus, we obtain

$$
\operatorname{Sound}_{g}^{3}=\operatorname{Eval}\left(X, W, Z, Z^{\prime}\right)\left[n_{A}, n_{D}, n_{Z}, n_{Z^{\prime}}\right] \sigma_{1} \rightarrow Z^{\prime}(\underline{j})\left[n_{Z^{\prime}}\right]
$$

Let σ_{2} be a substitution such that $\sigma_{2}\left(p_{0}^{Z}\right)=p_{0}, \ldots, \sigma_{2}\left(p_{l-1}^{Z}\right)=p_{l-1}, \sigma_{2}\left(p_{l}^{Z}\right)=$ $\perp, \ldots, \sigma_{2}\left(p_{n_{z}-2}^{Z}\right)=\perp$ and for every other atom p in $\operatorname{Sound}_{g}^{3}, \sigma_{2}(p)=p$. Then, we have that

$$
\begin{equation*}
\frac{\text { Sound }_{g}^{3}}{\text { Sound }_{g}^{3} \sigma_{2}} \tag{39}
\end{equation*}
$$

by the application of the substitution rule.
Now, for each subformula φ^{\prime} of φ, we substitute φ^{\prime} for $p_{i}^{Z^{\prime}}$ in $\operatorname{Sound}_{g}^{3} \sigma_{2}$, where $Z^{\prime}(i)$ codes the truth assignment to φ^{\prime}, and we set the remaining $p_{j}^{Z^{\prime}}$ to \perp. Let σ_{3} denote that substitution. The resulting formula has the form

$$
\begin{equation*}
E v a l^{4} \rightarrow \varphi \tag{40}
\end{equation*}
$$

We now argue that Eval ${ }^{4}=$ Assign $^{4} \wedge \varphi_{C_{1}}^{4} \wedge \ldots \varphi_{C_{4}}^{4}$ has short Frege-proof.
Remember that $\operatorname{Eval}\left(X, W, Z, Z^{\prime}\right)={ }_{d f} \operatorname{Assign}(X, W, Z) \wedge \varphi_{C_{1}} \wedge \ldots \wedge \varphi_{C_{4}}$, where $\operatorname{Assign}(X, W, Z)=_{d f} F l a(X, W) \wedge(|Z| \leq|X|)$. Since Assign ${ }^{4}$ is a closed tautology, by corollary 3.41 , it has polysize Frege-proof. Now, every variable in $\varphi_{C_{i}}^{4}$ occurs in a subformula of the form

1. $\varphi_{j}^{Z^{\prime}} \leftrightarrow \mathrm{T}$,
2. $\varphi_{j}^{Z^{\prime}} \leftrightarrow \perp$,
3. $\varphi_{j}^{Z^{\prime}} \leftrightarrow \neg \varphi_{j-1}^{Z^{\prime}}$ or
4. $\varphi_{j}^{Z^{\prime}} \leftrightarrow \varphi_{j-1}^{Z^{\prime}} \star \varphi_{l}^{Z^{\prime}}$,
which will turn into tautologies, by σ_{3}, with short Frege-proofs. As an example, let us look at $\varphi_{C_{2}}^{4} . \varphi_{c_{2}} \sigma_{1} \sigma_{2}$ is of the form

$$
\bigwedge_{j, k \leq n_{A}} \operatorname{Subf}(X, \underline{j}, \underline{k}, W)\left[n_{A}, n_{D}\right] \sigma_{1} \sigma_{2} \wedge X E n c_{\neg}(X, \underline{j})\left[n_{A}\right] \sigma_{1} \sigma_{2} \rightarrow \psi_{1}
$$

where

$$
\psi_{1}= \begin{cases}\perp \leftrightarrow \perp & \text { if } j=n_{Z^{\prime}} \\ \top \leftrightarrow \neg p_{j-1}^{Z^{\prime}} & \text { if } j=n_{Z^{\prime}}-1 \\ p_{j}^{Z^{\prime} \leftrightarrow \neg p_{j-1}^{Z^{\prime}}} & \text { if } j \leq n_{Z^{\prime}}-2\end{cases}
$$

$\varphi_{C_{2}}^{4}$ can be shown to be equivalent to

$$
\begin{equation*}
\bigwedge_{j, k \leq n_{A}-2} \underbrace{\operatorname{Subf}(X, \underline{j}, \underline{k}, W)\left[n_{A}, n_{D}\right] \sigma_{1} \sigma_{2} \wedge X E n c_{-}(X, \underline{j})\left[n_{A}\right] \sigma_{1} \sigma_{2} \rightarrow \psi_{2}}_{\psi} \tag{41}
\end{equation*}
$$

by a short Frege-proof, where ψ_{2} is the tautology $\neg \varphi^{\prime} \leftrightarrow \neg \varphi^{\prime}$, which also has short Frege-proof and where φ^{\prime} is the subformula of φ corresponding to $\operatorname{Subf}(X, j-1, k)$. Since the tautology ψ_{2} has short Frege-proof, we conclude that ψ has short Frege-proof. Then, (41) has short Frege-proof. Similarly, for $\varphi_{C_{1}}^{4}, \varphi_{C_{3}}^{4}$ and $\varphi_{C_{4}}^{4}$. Thus, Eval ${ }^{4}$ has short Frege-proof.

We conclude that φ has an f^{+}-proof polynomial in the length of B.

6 Conclusion

In this dissertation, we carried out a detailed proof of the equivalence between the existence of an optimal proof system and the existence of a proof system whose uniform reduct is the set of all true Σ_{0}^{B}-formulae. In this regard, we described how to encode Polish propositional formulae into binary strings (or sets, more precisely) and Σ_{0}^{B}-defined Polish propositional formulae. Our description of how to encode truth assignments to Polish propositional formulae is partly from Cook and Nguyen's book, "Logical Foundations of Proof Complexity". Combining the ideas of Papadimitriou's [Pap94] and Cook and Nguyen's, of how to encode a Turing machine computation, we described how to encode
a polytime Turing machine computation on a given input and provided a Σ_{0}^{B} formula that captures such computation. We also gave a Σ_{0}^{B}-formulation of the Reflection Principle.

In Cook's sketch of the main theorem [Coo06], he used $Z(0)$ instead of our $Z(\underline{n})$, where \underline{n} is a natural number such that the length of the encoding of the Polish formula under consideration is equal to $(n+1)$, to represent the truth value of a Polish formula. This allowed him to do a direct proof without having to go through the equivalence between (36) and $Z^{\prime}(\underline{n})\left[n_{Z^{\prime}}\right]$. This suggests that, instead of Polish formulae, we could use reverse Polish formulae. Thus, $Z(0)$ would then represent the truth value of the reverse Polish formula under consideration.

As we have seen, if one can show that a proof system f is optimal, then separating NP from coNP boils down to showing if there exists a true Σ_{0}^{B} formula $\varphi(\vec{X})$ such that $\{\varphi(\vec{X})[\vec{n}]: \vec{n} \in \mathbb{N}\}$ is hard for f. Thus, a possible future direction would be to investigate the uniform reducts of propositional proof systems whose no strong lower bounds are not known yet: Frege, extended Frege, etc. For example, one may look for properties of uniform reducts of those systems which might help distinguish them from $\operatorname{TRUE}_{\Sigma_{0}^{B}}$.

References

[BBP95] Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there hard examples for Frege systems? In Feasible mathematics, II (Ithaca, NY, 1992), volume 13 of Progr. Comput. Sci. Appl. Logic, pages 3056. Birkhäuser Boston, Boston, MA, 1995.
[BdG98] Shai Ben-david and Anna Gringauze. On the existence of optimal propositional proof systems and oracle-relativized propositional logic. Technical report, Electronic Colloquium on Computational Complexity, 1998.
[Bec05] Arnold Beckmann. Uniform proof complexity. J. Logic Comput., 15(4):433-446, 2005.
[BP96] Paul Beame and Toniann Pitassi. Simplified and improved resolution lower bounds. In 37th Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996), pages 274-282. IEEE Comput. Soc. Press, Los Alamitos, CA, 1996.
[BP98] Sam Buss and Toniann Pitassi. Resolution and the weak pigeonhole principle. In Computer science logic (Aarhus, 1997), volume 1414 of Lecture Notes in Comput. Sci., pages 149-156. Springer, Berlin, 1998.
[BP01] Paul Beame and Toniann Pitassi. Current trends in theoretical computer science. chapter Propositional proof complexity: past, present, and future, pages 42-70. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2001.
[Bus87a] Samuel R. Buss. The boolean formula value problem is in alogtime. In in Proceedings of the 19-th Annual ACM Symposium on Theory of Computing, pages 123-131, 1987.
[Bus87b] Samuel R. Buss. Polynomial size proofs of the propositional pigeonhole principle. J. Symbolic Logic, 52(4):916-927, 1987.
[Bus02] Samuel R. Buss. Some remarks on lengths of propositional proofs. Archive for Mathematical Logic, 34:377-394, 2002.
[CN10] Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge University Press, New York, NY, USA, 1st edition, 2010.
[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC '71: Proceedings of the third annual ACM symposium on Theory of computing, pages 151-158, New York, NY, USA, 1971. ACM.
[Coo03] Stephen Cook. The importance of the p versus np question. J. ACM, 50:27-29, January 2003.
[Coo06] Stephen Cook. Comments on Beckmann's uniform reducts. CoRR, abs/cs/0601086, 2006.
[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems. J. Symbolic Logic, 44(1):36-50, 1979.
[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman \& Co., New York, NY, USA, 1990.
[Hak85] A. Haken. The Intractability of Resolution. Theoretical of Computer Science, 39:297-308, 1985.
[KP89a] Jan Krajíček and Pavel Pudlák. Propositional proof systems, the consistency of first order theories and the complexity of computations. J. Symbolic Logic, 54(3):1063-1079, 1989.
[KP89b] Jan Krajíček and Pavel Pudlák. Propositional proof systems, the consistency of first order theories and the complexity of computations. J. Symbolic Logic, 54(3):1063-1079, 1989.
[MT98] Jochen Meßner and Jacobo Torán. Optimal proof systems for propositional logic and complete sets. In Proceedings of the 15th Annual Symposium on Theoretical Aspects of Computer Science, STACS '98, pages 477-487, London, UK, 1998. Springer-Verlag.
[Pap94] Christos M. Papadimitriou. Computational complexity. AddisonWesley, Reading, Massachusetts, 1994.
[Raz04] Ran Raz. Resolution lower bounds for the weak pigeonhole principle. J. $A C M, 51(2): 115-138$ (electronic), 2004.

