=
&

Swansea University ‘C I'OIlfa

Prifysgol Abertawe Setting Research Free

Swansea University E-Theses

Optimal proof systems and uniform systems.

Razafindrakoto, Jean-Jose

How to cite:

Razafindrakoto, Jean-Jose (2012) Optimal proof systems and uniform systems.. thesis, Swansea University.
http://cronfa.swan.ac.uk/Record/cronfa43008

Use policy:

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms
of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior
permission for personal research or study, educational or non-commercial purposes only. The copyright for any work
remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium
without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from
the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the
repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference
above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa43008
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Optimal Proof Systems
and Uniform Systems

Jean-José Razafindrakoto

February 7, 2012

A thesis submitted to Swansea University in
candidature for the degree for the Degree of Master of Research

Swansea University
Prifysgol Abertawe

Swansea University
/

SWANSEA UNIVERSITY
LIBRARY

NOTTO B8E
Y

ProQuest Number: 10821398

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10821398

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106- 1346

Declaration

This work has not previously been accepted in substance for any degree and is
not being currently submitted for any degree.

<date> ‘Aedn dd o 8 U\ 1012
Signed:

Statement 1

This thesis is being submitted in partial fulfilment of the requirements for the
degree of an MRes in Logic and Computation.

<date> W'&dm% gth Lort-

Signed:
<

\Y)

Statement 2

This thesis is the result of my own independent work/investigation, except where
otherwise stated. Other sources are specifically acknowledged by clear cross
referencing to author, work, and pages using the bibliography/references. I un-
derstand that failure to do this amounts to plagiarism and will be considered
grounds for failure of this dissertation and the degree examination as a whole.

<date> Wedazodey Fh 201
Signed:

Statement 3

I hereby give my consent for my thesis to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to
outside organisations.

(%
<date> Wuul QMO/}{ Y ke‘ @

Signed: -

Abstract

In ”"Uniform Proof Complexity”, Beckmann introduced the notion of
the Uniform Reduct of a proof system which he defined to be the set
of those true bounded formulae (in the language of Peano Arithmetic)
which have polynomial-size proofs under the Paris-Wilkie translation . In
his comments to Beckmann’s paper, Cook pointed out that the existence
of a proof system whose uniform reduct is the set of all true £&-formulae
is equivalent to the existence of an optimal proof system. In this work,
we carry out a detailed proof of that equivalence.

Contents
1 Introduction

2 Complexity Theory
2.1 Turing Machines
2.1.1 Deterministic Turing Machines
2.1.2 Non-deterministic Turing Machines
2.2 NP and NP-completeness

4.1
4.2
4.3

3 Propositional Proof Complexity
3.1 Propositional Logic L.
3.1.1 Syntax and Semantics of Propositional Logic
32 SAT, TAUT and NPvscoNP
33 Proof System
3.4 Frege and Substitution Frege Systems
34.1 FregeSystems
3.4.2 Substitution Frege systems
3.4.3 Some Results and Open Problems in Proof Complexity
4 Uniform Systems

Second-Order Bounded Arithmetic
Translating T -formulae
The Uniform Reduct of a Proof System

Uniform Systems vs Optimal Proof Systems

5.1

5.2

The Reflection Principle for a Proof System
5.1.1 Encoding Polish Propositional Formulae
5.1.2 Encoding Truth Assignments
5.1.3 Encoding Polytime Turing Machine Computations
5.1.4 Lf-formulation of the Reflection Principle
The Main Theorem

Conclusion

11
11
11
12
13
16
16
18
18

19
20
23
28

29
29
29
35
37
45
45

48

1 Introduction

The P vs NP problem is arguably the most important problem in both Com-
puter Science and Mathematics. As a matter of fact, it is the first of seven
million-dollar Millenium Prize Problems listed by the Clay Mathematics Insti-
tute [Coo03]. Besides, NP-completeness is debatably the most pervasive concept
in Computer Science since it captures the computational complexity of many
significant problems from different areas of the field (see [GJ90] for many exam-
ples).

One major way towards a solution to the P vs NP problem is Proposi-
tional Proof Complexity, an area of study developed by Cook and Reckow in
their seminal paper entitled ” The Relative Efficiency of Propositional Proof Sys-
tems” [CR79], where they showed that NP = coNP if and only if a polynomially
bounded proof system exists (a polynomially bounded propositional proof sys-
tem, roughly speaking, is a polynomial-time proof-verifier P for membership
in TAUT, the set of all propositional tautologies, such that every tautology
has a polynomial-size proof in P in the length of the tautology). In Proposi-
tional Proof Complexity, the basic task is to prove that stronger and stronger
proof systems are not polynomially bounded, until it is established for all proof
systems. Hence, if one achieves that general program of Propositional Proof
Complexity described above, then NP is different to coNP, thus separating P
from NP.

In keeping with the general program of Propositional Proof Complexity, a
lot of work has been done in deriving strong lower bounds for various stan-
dard propositional proof systems. For example, it has been shown by Haken,
in [Hak85], that the Pigeonhole Principle requires exponential size Resolution
refutations. Later, Beame and Pitassi provided an improved lower bound on the
the sizes of Resolution refutations for the Pigeonhole Principle in [BP96]. How-
ever, unlike Resolution (and other propositional proof systems like AC®-Frege
systems and their extensions), no strong lower bounds are known for Frege and
Extended Frege systems. The best lower bounds known for them are linear
on the number of lines and quadratic on the number of symbols [Bus02] (the
Pigeonhole Principle requires polynomial length Frege [Bus87b] and Extended
Frege [CR79] proofs).

Since some families of tautologies require polynomial size proofs in some
propositional proof systems and exponential size proofs in others, one can then
think of comparing propositional proof systems according to their relative ef-
ficiencies. To do that, Cook and Reckow defined, in [CR79], the notion of
p-simulation. Informally, a propositional proof system P, p-simulates another
propositional proof system P, means that there exists a polynomial time pro-
cedure that translates every proof in P, into a proof in P;. A weaker notion of
p-simulation between two propositional proof systems, called simulation, also
exists, where the existence of a polynomial time procedure is not required. Given
these informal definitions, one important question arises: Is there any proposi-
tional proof system which simulates every other propositional proof system? In
other words, does there exist an optimal proof system?

If an optimal proof system exists, then in order to separate NP from coNP it
would suffice to prove that such a system is not polynomially bounded. Partial
results have been obtained in [KP89a, MT98, BdG98], relating the existence of
optimal proof systems to the equivalence of certain complexity classes. More

recently, Cook pointed out in [Coo06] that the existence of an optimal proof
system is equivalent to the existence of a propositional proof system such that
its uniform reduct equals the set of all true TF-formulae. Here, the uniform
reduct of a propositional proof system (or just uniform system) is a notion
defined by Beckmann in [Bec05) and is the set of those true £&-formulae which
have polynomial size proofs under some translation in the style of the Paris-
Wilkie translation.

The goal of this project is to carry out the detailed proof of the equiva-
lence between the existence of an optimal proof system and the existence of
a propositional proof system whose uniform reduct equals the set of all true
LE-formulae.

In Section 2, we introduce some basic background of complexity theory that
is needed for our purpose. Then, Section 3 gives an overview of Propositional
Proof Complexity and the definitions that we need for later sections. In Section
4, we define ©F-formulae and show how to translate them into propositional
logic. From there, we formally define the Uniform Reduct of a propositional
proof system. Finally, Section 5 is the main body of this dissertation. In
there, we show how to encode Polish propositional formulae, truth assignments,
polytime Turing machine computations and the reflection principle for a propo-
sitional proof system. Additionally, we present the detailed-proof of the equiv-
alence between the existence of an optimal proof system and the existence of
a propositional proof system whose uniform reduct equals the set of all true
$E-formulae.

2 Complexity Theory

In this section, we first introduce our model of computation, which is a Turing
machine. From there, we define what it means for a language to be in the
complexity class NP. Then, we define the notion of NP-completeness.

2.1 Turing Machines

Our exposition of Turing machines (deterministic and non-deterministic Turing
machines) follows [Pap94].

Notation We use £* (resp. %) to denote the set of all finite (resp. non-empty
finite) strings over the finite alphabet £ under consideration. Additionally, N
denotes the set of natural numbers including 0 and Z denotes the set of all
integers.

2.1.1 Deterministic Turing Machines

The deterministic Turing machine that we are going to describe consists of a
string of symbols from a finite alphabet, a finite state control and a cursor that
scans the symbols on the string and that is connected to the control. Depending
on the state of the control and the symbol scanned by the cursor, the machine
assumes a new state, overwrites the symbol scanned by the cursor and moves
the cursor to the left or right of the overwritten symbol, or just leaves the cursor
at its current position.

Definition 2.1 Define a deterministic Turing machine M to be a quadru-
ple (K,%,6,s) where

1. K is a finite set of states.

2. ¥ is a finite set of symbols and is called the alphabet of M. Assume that
KNX =0. Furthermore, assume that £ always contains the symbols U
(blank symbol) and > (first symbol).

3. § is a transition function from K x ¥ to (K U {h,yes,no}) x £ x {«
,—,—}, where h is the halting state, yes is the accepting state, no
is the rejecting state, + is the cursor direction for left, — is the cur-
sor direction for right, — is the cursor direction for stay. Assume that

({h,yes,no} U {, >, -})N(KUZ)=0.
4. s € K is the initial state.

Notation . When we write I' (possibly subscripted), we always mean T\{U}
and I'™ C (Z\{U})*, for some Turing machine’s alphabet L.

For every ¢ € K and o € L, there exists a ¢ € KU{h,yes,no},ac’ € L and
a D € {«,—,—} such that &(q,0) = (¢, 0, D), where q is the current state of
the control, o is the symbol scanned by the cursor, ¢’ is the new state, o’ is the
symbol to be overwritten on ¢ and D is the the direction in which the cursor
will move. Assume that if ¢ =, then ¢/ = ¢ and D =—.

M works as follows. Initially, the initial state is s; the string is initialised
to bz, where £ € I'* and z is called the input of M; the cursor scans >. Then
M moves according to the transition function §. Now, M halts if one of the
following states is reached: h,yes or no. If the yes state is reached, then M
accepts its input; if the no state is reached, then M rejects its output. If M
halts on input z, then define the output of M on z, denoted M(z), as follows.
If M accepts z, then M(z) = yes; if M rejects z, then M (z) = no; if the state
h is reached, then the string, at the time of halting, consists of by (y is a finite
string whose last symbol is different from L), possibly followed by a string of
blanks, and we consider that M(z) =y.

Definition 2.2 Let M be a Turing machine. A configuration of M is a triple
(g,w,u) where g € K U{h,yes,no}, w € T, and u € T*. w is the string to the
left of the cursor such that the last symbol of w is the current symbol scanned by
the cursor. u is the string (may be an empty string) to the right of the cursor.
Finally, q is the current state.

Definition 2.3 Let M be a Turing machine and w = vo, where v € £*, and
o € X. Configuration (q,w,u) yields configuration (¢',w’,u') in one step, de-

noted (g, w,u) M, (¢',w’, "), if in the transition function, §(q,0) = (¢’,o’, D)
and: if D = —, then w' = vo' and v’ = u; if D =—, then w' is vo’ with the
first symbol of u appended to it (U if u is the empty string) and v’ is u with its
first symbol omitted (if u is the empty string, then v’ remains empty); if D =+,
then w' = v and v’ is u with o' attached in the beginning.

Define the notion of configuration (g,w,u) yields configuration (¢',w’,u’)

&
in k steps, denoted (g,w,u) RN (¢,w',u') and where k > 0, as follows.

k

(g, w,u) M (¢,w',u') for k > 0, if there are configurations (g;,w;,u;), for
. M!)
j=1,...,k+1, such that (g;,w;,u;} — (Qis1,Wit1,Uit1), fori =1,...,k,
and (g1, w1, w1) = (g, w,u) and (qk+1, Wk+1, k1) = (¢, 0, u').

At last, (g, w,u) yields (¢',w’,v') in at least one step, denoted (g,w,u)

+ k

M (¢',w', '), if there exists a k > 1 such that (g, w,u) M, (¢, w',).

Definition 2.4 Given a Turing machine M and a language L C T'™*, we say

that M decides L iff for every x € I'™* the following conditions hold: if x € L,
+

then (s,>,x) M (yes,w,u), and, if z & L, then (s,>,z) M (no,w,u) for some

w,u.

Definition 2.5 Let M be a Turing machine and L be a language such that

L CT*. M decides L in time f(n) iff the following two conditions hold: M
k

decides L; for any x € T'*, if (s,>,z) M (H,w,u), for H € {yes,no}, then

k< f(lal).

Definition 2.6 Let f be a function from (Z\{U})* to X*. Then f is said
to be computable if and only if there exists a deterministic Turing machine
M with alphabet ¥ such that for oll z € (Z\{U})*, M(z) = f(z). [is said
to be computable in time g(n) if and only if M is computable and for all

z € (S\{UD)*, (,0,2) % (h,w,u) and k < g(z]).

2.1.2 Non-deterministic Turing Machines

The definition of a non-deterministic Turing machine is much like the deter-
ministic Turing machine one, except that J is no longer a transition function but
now a relation A such that A C (K x Z) x [(K U {h,yes,no}) X £ x {+=, =, ~}].

The definition of a non-deterministic Turing machine’s configuration is
exactly the same as the definition of a deterministic Turing machine’s configu-
ration. However, a non-deterministic Turing machine’s configuration may now
yield more than one configuration in one step.

Definition 2.7 Let N be a nondeterministic Turing machine and w = vo,
where v € * and 0 € X. Configuration (g, w,u) yields configuration (¢',w’, u')

1
in one step, denoted (q,w,u) X, (¢’ ,w',u'), if there ezists a rule ((g,0), (¢,
d', D)) in A such that: if D = —, then w' =vo’ and v’ =u; if D =—, then w’
is vo’ with the first symbol of u appended to it (U if u is the empty siring) and
' is u with its first symbol omitted (if u is the empty string, then u' remains
empty); if D =<, then w' = v and v’ is u with o’ attached in the beginning.
Lk) can be defined in the same way as M: Finally, (g,w,u) EiAN (¢, w',v)

k
if there exists a k > 1 such that (g, w,u) N, (¢ v,).

Definition 2.8 Let N be a non-deterministic Turing machine and L be a lan-
guage such that L C T*. N decides L in time f(n) iff for any x € T* the
following two conditions hold:

— for every configuration C that arises in the computations of N on z, there

k
erists a k € N such that k < f(|z]) and (s,>,z) ELAN C;

+
— z € L iff (s,p,2) LA (yes, w,u).

2.2 NP and NP-completeness

Definition 2.9 A language L belongs to NP iff there exists a non-deterministic
Turing machine N and a polynomial p such that N decides L in time p(n).

Theorem 2.10 A language L belongs to NP if and only if there exists a poly-
nomial time Turing machine V' (called a proof verifier) and a polynomial p such
that for all x € T*, the following holds:

(1) z €L & 3reT*(|n| < pllz|) AV accepts (z,7))

Proof: Before we start the proof, it is worth pointing out that we view con-
figurations and sequences of configurations as strings over a finite alphabet I’
which includes the symbols ”(”,”)” and ”,”. Obviously, the length of a string
over I' corresponds to the number of symbols in the string.

(=) Suppose that L € NP. By Definition 2.9, we can let N be a non-
deterministic Turing machine and p; be a polynomial such that N decides L in
time p;(n). Define V to be a polynomial time Turing machine that takes as its
input pairs of strings (z,n), where z, 7 € I'*, and checks:

L ifr=0Ch,...,Cj
2. if Cy = (s,p, z);

3. if C; = (yes,w,u) for some w,u;
N . ,
4. if C; — Ciyq foralli=1,...,5—-1.

If all these four conditions are satisfied, then V accepts (z,n). Let x be an
arbitrary string in I'"*. Now, prove (1) and define p; in the course of the proof.
Suppose that z € L. Show that 3w(|w| < pa(|z|) A V accepts (z, 7)) holds.

Since N decides L in time p;(n), by Definition 2.8, we have (s,>,z) N
(yes, w,u) where 2 < j < p1(|z]) + 1. So, let S = Cy,...,C; such that C; =

(s,p>,z), Cj = (yes,w,u), and C; ll) Ci1foralli=1,...,j—1. Let m=S.
Clearly, V accepts (z, 7). Now, derive an upperbound for |r|. By the definition
of "yields in one step” in Definition 2.7, we have |C;| < |C;_1| + 1 for all i =
2,...,j. Unfolding this inequality yields |C;| < |C1|+(i—1) for alli=1,...,j.
Since |Cy|+ (¢ —1) < |Ci|+ (= 1) < 6+ |z| + pi(|z|) foralli = 1,...,7,

p(jz))+1
therefore, |C;| < 6+ |z| +p1{|z|) for all i =1,..., . Hence, Z (Ci|+1) <
i=1
J p1(|z))+1
(er(lz)) +1) x 6+ |zl +p1(el) +1). As|r| <D (ICil+1) < Y (Gl +1),
i=1 i=1

we get:
Iml < (pa(l2l) +1) x (7 + || + pa(|]))

pajal)

This shows that |7| is upperbounded by a polynomial in the length of z. There-
fore, In(|7] < p2(lz|) AV accepts (x, 7)) holds.

Now, suppose that there exists a string w such that |7| < pa(jz|) and V
accepts (x, 7). Show that z € L. So, let m; be a sequence of configurations such
that |m1| < p2(|z|) and V accepts (z, 7). By the definition of V, we can let

1
m =C,...,Cj, where Cy = (s,p,z),C; = (yes,w,u) and C; r, Cit, for all

+
i=1,...,5 —1. Hence, (s,>,z) AN (yes,w,u). By Definition 2.8, x € L.

(<) Let V be a polynomial time Turing machine and pz be a polynomial
such that for all z € I'™*, z € L & 3r(|n| < p2(|z]) AV accepts (z,m)) holds.
Show that there exists a non-deterministic Turing machine that decides L in
polynomial time in the length of the input. Define N to be a non-deterministic
Turing machine such that for every input z € I'*, N behaves as follows:

1. guesses a sequence of configurations 7 such that |7| < pa(|z|);
2. runs V on input (z, 7). If V accepts, then so does N, otherwise N rejects.

Let z be an arbitrary string in I'*. Clearly, N accepts or rejects = in polynomial
time in the length of z, since the first step takes at most p2(|2|), and V accepts
or rejects (z,7) in polynomial time in the length of z.

Suppose that 2 € L. Hence, 3n(|n| < pa(|z]) AV accepts (z,m)) holds. So,
let m; be a sequence of configurations such that |m;| < p2(|z|) and V accepts
(z,m1). Now, we run N on input z. Let N guess m;. Hence, N accepts x.

Suppose that ¢ L. Hence, V7 (V rejects (z, 7)) holds. Therefore, if we run
N on input #, then for any sequence of configurations = that N may guess, V
will reject (z,7). Therefore, N rejects z. ['

Definition 2.11 Let L and L' be languages such that L C T} and L' C T3,
where I'y and 'y are finite alphabets. L is polynomial time reducible to
L', denoted L <p L', iff there ezists a deterministic Turing machine M and a
polynomial p such that for every input string z € I't, M halts within p(|z|) steps
and M(z) € L' iff t € L. M is called a polynomial time reduction from L
to L'.

Observation 2.12 The relation <p is reflexive and transitive.

Definition 2.13 A language L is NP-complete iff L € NP and for every
language L' € NP, L' <p L.

Lemma 2.14 If L <p L' and L' € NP, then L € NP.

Proof: Suppose that L <p L’ and L’ € NP. Show that L € NP. Let M be a
polynomial time reduction from L to L’ and N’ be a non-deterministic Turing
machine which decides L’ in polynomial time. Define a nondeterministic Turing
machine N which decides L as follows.

N on input z:
1. Computes M(x).
2. Runs N’ on input M(z).

10

N obviously runs in polynomial time since its two stages run in polynomial
time. Hence, L € NP. O

Lemma 2.15 If L is NP-complete, L' € NP and L <p L' then L' is NP-
complete.

Proof: Suppose that L is NP-complete, L' € NP and L <p L'. Show that
L’ is NP-complete. Since L’ is already in NP, it suffices to show that for any
L" e NP, L <p L’. As L is NP-complete, we get that L” <p L, by Definition
2.13. Since L <p L' and <p is transitive, we get that L” <p L’. O

3 Propositional Proof Complexity

In this section, we give a brief overview of Propositional Proof Complexity and
provide definitions that are needed for our purpose. In the first part, we define
the language of propositional logic. Then, we relate the NP vs coNP question
to the P vs NP question. The search for an efficient proof system for TAUT
can be reduced to finding the most powerful of all propositional proof systems,
in terms of efficiency, which is an optimal proof system. Within that section,
we also define the notion of optimal proof system, that is going to be at the
heart of this dissertation. In fact, if one proves the existence of an optimal proof
system P, then proving NP is different from coNP boils down to showing that
P is not efficient. Later, in that section, we introduce Frege and Substitution
Frege systems, as they are needed for the proof of the main theorem of this
thesis. Then, we present some results and open problems in propositional proof
complexity.

3.1 Propositional Logic

Our exposition of propositional logic follows [CN10].

3.1.1 Syntax and Semantics of Propositional Logic

The language of propositional logic consists of: the logical constants T (for True)
and L (for False), a countable set V = {pg,p1,...} of propositional variables,
the logical connectives -, V, A and parentheses (,).

Definition 3.1 Define propositional formulae (or formulae for short) in-
ductively as follows:

(PL1). T, L and p; are atomic formulae, for any i > 0.
(PL2). If ¢ and 4 are formulae, then so are ~p, (¢ V¥) and (¢ AY).

The set of all well-formed propositional formulae will be denoted by PL.
Propositional formulae will be denoted by ¢,, ..., possibly subscripted.

Definition 3.2 A formula ¢ is said to be closed if it doesn’t contain proposi-
tional variables.

Notation (¢ —) stands for (—¢ V) and (¢ <> ¢) for ((p = ¥) A (¥ = @)).

Also, we write /\(pi for o1 A ... A pp and V(p,- for ;1 V...Vn.

i=1 i=1

11

Definition 3.3 Define a truth assignment to be a mapping from V to {1,0},
where 1 denotes True and 0 denotes False. Given a truth assignment T, the
truth value of a formula ¢, denoted ©7, is defined inductively as follows:

1. T7=1, L7 =0 and (p:)" = 7(p:);
2. ()" =1—97; (e A) = min{e”,9¥7}; (pV¥)" = maz{p™,¥"}.

Definition 3.4 A truth assignment 7 satisfies a formula ¢, denoted 7 |= ¢,
if and only if ™ = 1.

Definition 3.5 Let g, ¢1,...,9r be formulas. Then g is a logical conse-

quence of {¢1,...,px}, denoted {¢1,...,¢x} = w0, if and only if for every
truth assignment 7, if (p1 A... A)T =1, then (po)" =1.

3.2 SAT, TAUT and NP vs coNP

Definition 3.6 A formula ¢ is satisfiable if and only if there exists an assign-
ment T such that T |= ¢ (we denote by SAT the set of all satisfiable formulae).
v is a tautology if and only if for all assignmenis T, 7 = ¢ (we denote by
TAUT the set of all tautologies).

Observation 3.7 Let ¢ be a formula. Then {} |= ¢ (or simply written as = ¢)
if and only if ¢ € TAUT.

Notation If L is a language, then denote by L the complement of L.
Observation 3.8 A formula ¢ € TAUT if and only if —p € SAT.
Theorem 3.9 [Coo71] SAT is NP-complete.

Cook is the first to show the existence of an NP-complete language: SAT.
Thus, for P to be equal to NP, it has to be that SAT is in P.

Corollary 3.10 TAUT is NP-complete.

Proof: One way to prove that TAUT is NP-complete is to show that it is in
NP and SAT <p TAUT. From there, one obtains that TAUT is NP-complete,
by Lemma 2.15.

First demonstrate that TAUT € NP. Observe that TAUT = {¢ | ¢ €
SAT}. Since —¢ can easily be computed in polynomial time by a deterministic
Turing machine from ¢, we get that TAUT <p SAT, by Definition 2.11. Thus,
TAUT € NP, by Lemma 2.14.

The proof of SAT <p TAUT uses exactly the same strategy as the proof of
TAUT <p SAT, because SAT = {¢ | =¢ € TAUT}. O

Definition 3.11 A language L € coNP if and only if L € NP
Observation 3.12 TAUT € coNP.

Proposition 3.13 If NP # coNP, then P # NP.

12

Proof: Prove the contrapositive. Observe that P is closed under complemen-
tation. Suppose that P = NP. Hence, coNP = {L | L € P} = P. Thus,
NP = coNP, by assumption. [J

Proposition 3.14 NP = coNP if and only if TAUT € NP.

Proof: First observe that L <p L' if and only if L <p L'.

(=) Suppose that NP = coNP. Show that TAUT is in NP. By Corollary
3.10, we have that TAUT is NP-complete. Hence, TAUT € NP, by Definition
2.13. It follows that TAUT € coNP, by Definition 3.11. Therefore, TAUT & NP,
by assumption.

(<) Suppose that TAUT € NP. To show that NP = coNP, it suffices to
show that for every language in NP, its complement is also in NP. Let L be
an arbitrary language in NP. By corollary 3.10, TAUT is NP-complete. Hence,
all languages in NP can be polynomially reduced to TAUT, by Definition 2.13.
In particular, L <p TAUT. Therefore, L <p TAUT. Since TAUT € NP (by
assumption), we get that Z € NP, by Lemma 2.14. O

3.3 Proof System

Definition 3.15 Define a propositional proof system to be a polynomial
time deterministic Turing machine P such that:

Ve € I'*(z € TAUT & 3r € T*(P accepts (z,m)))

Sometimes, we will refer to propositional proof systems as just proof systems.

In {CR79)], Cook and Reckow defined a propositional proof system to be a
polytime computable onto function f : ©* — TAUT, for some finite alphabet X.
A propositional proof system P, as defined in Definition 3.15, can be transformed
into a function f satisfying [CR79)’s definition as follows. If P accepts (z,),
then f maps (z,) to z, else if P rejects (z,), then f maps (xz,7) to T. In the
converse direction, one can construct a polytime deterministic Turing machine
P such that P accepts (z,) if and only if f(r) = z as follows. Let P’ be a
polynomial time deterministic Turing machine that computes f. Now, P, on
input (z,7), runs P’(x). If P/(7) = z, then P accepts (z,7), otherwise it rejects.
Hence, the two definitions are equivalent. Thus, depending on the context, we
may use one or the other later.

Note that the runtime of a propositional proof system depends on the length
of .

Definition 3.16 We say that a propositional proof system P is polynomially
bounded iff there exists a polynomial p such that:

Vz € T*(x € TAUT & In(P accepts (z,m) A 7| < p(|z])))

If P accepts (xz,7), then we say that m is a P-proof of z. Additionally, if
Im| < p(|z|), then we say that w is a short P-proof of x.

Theorem 3.17 A polynomially bounded propositional proof system exists iff
NP = coNP.

13

Proof: (=) Suppose that there exists a polynomially bounded propositional
proof system. By the definition of ”polynomially bounded” in Definition 3.16,
there exists a polynomial time deterministic Turing machine P and a polyno-
mial p such that Vo € T'*(z € TAUT & 3n(P accepts (z,7) A 7] < p(|z])))
holds. This implies that TAUT € NP by Theorem 2.10. Therefore, NP = coNP
by Proposition 3.14.

(<) Suppose that NP = coNP. Hence, TAUT € NP by Proposition 3.14.
By Theorem 2.10, there exists a polynomial time deterministic Turing ma-
chine P and a polynomial p such that Vz € I'™(z € TAUT & 3Fn(|n] <
p(|z]) A P accepts ((z,m)))) holds. This implies that a polynomially bounded
propositional proof system exists, by Definition 3.16. O

Theorem 3.17 initiated a program of research (called Cook’s program by
some) aiming at attacking the NP vs coNP problem by proving that stronger
and stronger proof systems are not polynomially bounded, until it is established
for all proof systems.

Definition 3.18 Let P, and P, be propositional proof systems. We say that Py
p-simulates P, denoted P, <p Py, iff there exists a polynomial time deter-
ministic Turing machine M such that:

(2) Vz, (P, accepts (z,m) = Py accepts (z, M(m)))

We say that Py is p-equivalent to P,, denoted Py, =p P,, iff they p-simulate
each other.

Note that in Definition 3.18, the notion of P, p-simulates P, requires the
existence of a polynomial-time deterministic Turing machine that translates
every Pa-proof 7 of a tautology ¢ into a P;-proof of . There is also a weaker
notion of p-simulation, called simulation, where the only thing required is the
existence of a Pj-proof 7’ of ¢ such that || < p(|7|), for some polynomial p.
Below, we give a formal definition of the notion of simulation.

Definition 3.19 Let P’ be a propositional proof system. We say that P’ is
p-optimal iff for all propositional proof systems P, P <p P’.

Definition 3.20 Let P; and P, be propositional proof systems. We say that P,
simulates P, denoted P> < Py, iff there exists a polynomial p such that:

Vo, m(Py accepts (¢, m) = In’(Pr accepts (¢,7') A 7’| < p(|7])))

We say that P, is equivalent to P,, denoted P; = Py, iff they simulate each
other.

Definition 3.21 Let P’ be a propositional proof system. We say that P’ is
optimal iff for all propositional proof systems P, P < P’.

Note that if a proof system P, <p P, then P, < P;. However, the other
direction doesn’t hold. Therefore, the relation <p is a strict subset of <. It
follows that =p is also a strict subset of = and a p-optimal proof system is
already an optimal proof system.

14

Definition 3.22 Let S be a set and R be a binary relation on S. R is a quasi-
order or pre-order if and only if:

1. Ve € S(eRe) (reflezive),
2. Vey,e2,e3 € S(e1Rez A e2Resz = e1Res) (transitive).
Notation We denote by (S, R) the set S equipped with the pre-order R.

Definition 3.23 Let S be a set and R be a relation on S. Then R is an
equivalence relation on S if and only if R is a pre-order on S and Ve;, ez €
S(e1Re; = eRey) (symmetric).

Proposition 3.24 Let P; be a propositional proof system. Then P, <p P;.

Proof: Construct a polynomial time Turing machine M; which on input 7 will
do nothing but output . Obviously, if 7 is a P;-proof, then M, (7) is a P;-proof
as well. By Definition 3.18, P, <p P;. O

Proposition 3.25 Let Py be a propositional proof system. Then P; < P;.
Proof: Trivial. O

Proposition 3.26 Let P, P, and P; be propositional proof systems. If P, <p
Pz and Pz <p P3, then P1 <p P3.

Proof: Suppose that P, <p P, and P, <p P;. By Definition 3.18, let M; be
a polynomial time Turing machine such that for any P;-proof m, there exists a
corresponding P,-proof M; () and let M> be a polynomial time Turing machine
such that for any P,-proof w2 there exists a corresponding Ps-proof Ma(ms).
Construct a polynomial time Turing machine M3 which on input = behaves as
follows: computes M; () and then run M, on M;(w). Clearly, if the input of
M3 is a P;-proof, then the output produced is a Ps-proof. By Definition 3.18,
P <pP. O

Proposition 3.27 Let Py, P> and P3 be propositional proof systems. If P, < P
and Pz < P3, then P1 < P3.

Proof: Suppose that P, < P, and P, < P;. By Definition 3.20: there exists
a polynomial p such that for every Pj-proof 7 of a tautology ¢, there exists a
Ps-proof 7’ of ¢ such that |7’| < p(|7|); there exists a polynomial p such that
for every Py-proof 7 of a tautology ¢, there exists a P3-proof n’ of ¢ such that
|7'| < p(]7|). Now, we want to show that for every P;-proof 7 of a tautology ¢,
there exists a Ps-proof n’ of ¢ such that |7'| < p(|n]), for some polynomial p.
So, let ¢ be any tautology and m; be any P;-proof of ¢. Thus, we can let w3 be
a Py-proof of ¢ such that |72| < py(|m1]), for some polynomial p;. Furthermore,
we can let 73 be a P3-proof of ¢ such that |m3]| < pa(|m2|), for some polynomial
pz- Thus, |3 < ps(|m|), where p3(|m1|) = p2(pi(|m1|)). By Definition 3.20,
P <P 0O

The proofs of Propositions 3.24, 3.25, 3.26 and 3.27 show that <p and < are
pre-orders on the set of all propositional proof systems. The relation =p and =
are obviously equivalence relations, since they are both symmetric by definition.

15

Definition 3.28 A greatest element of (S,R) is an element g € S such that
foralle€ S, eRg.

Observation 3.29 Let PPS denote the set of all propositional proof systems.
(PPS, <) has a greatest element iff there exists an optimal proof system within
PPS.

Proof: (=) Suppose that a greatest element exists within (PPS, <). Let P be
such element. By Definition 3.28, VP’ € PPS(P’' < P). Hence, P is optimal by
Definition 3.21.

(«<=) Suppose that there exists an optimal proof system within PPS. Let P
be such proof system. Hence, VP’ € PPS(P' <p P) holds, by Definition 3.21.
By Definition 3.28, P is a greatest element within (PPS,<p). O

Note that the existence of an optimal proof system doesn’t imply the exis-
tence of a p-optimal proof system. However, the existence of a p-optimal proof
system implies the existence of an optimal proof system.

3.4 TFrege and Substitution Frege Systems
Our exposition of Frege and substitution Frege systems follows [CR79].

3.4.1 Frege Systems

Definition 3.30 Define a substitution o to be a mapping from the set of
propositional variables to the set of propositional formulae. If ¢ € PL, then
denote by wo the result of replacing every variable in ¢ by its image under o.

Lemma 3.31 Let ¢ be a propositional formula and o be a substitution. If
@ € TAUT, then po € TAUT.

Proof: We prove the contrapositive. Suppose that wo ¢ TAUT. Thus, there
exists a truth assignment 7 such that (po)” = 0. Let 7’ be a truth assignment
defined as follows: for every propositional variable p in ¢, 7'(p) = (po)”. Then,
one can show by structural induction that for every subformula ¥ of @, %™ =
(¥)7, in particular o™ = (¢o)” = 0. Therefore, ¢ is not a tautology. O

Definition 3.32 A Frege rule is a system of propositional formulae of the
form

P15 Pk
®) Yo

such that {p1,...,0k} E wo. If K =0, then the rule is called a Frege aziom
scheme. We shall also write (1, ... ,9k)/wo for (3).

Remark 3.33 If (©1,...,9k)/wo is a Frege rule, then ¢y A ... Ak = g is a
tautology.

Definition 3.34 Define an inference system F to be a finite set of Frege
rules.

16

Definition 3.35 A formula ¢ is inferred from ¢,,...,¢r by the Frege rule
(p1,---,9k)/ o if there exists a substitution o such that for every i from 0 to
k, ¢; = pi0.

Definition 3.36 Let F be an inference system. A Frege proof, or & -proof for
short, of a propositional formula ¢ from T (finite set of propositional formulae)
is a sequence T = ¢1..., 0, of propositional formulae such that ¢., is ¢ and
for every i from 1 to m, ¢; is either in T or inferred from ¢y, ..., ¢y, by a rule
in %, whereuy) < ... <ug <i.

Notation If T is a finite set of propositional formulae, & an inference system
and ¢ a formula, then I' F & ¢ means that there exists an #-proof of ¢ from T'.

Theorem 3.37 Let & be an inference system. Then, for any finite set T' of
propositional formulae and ¢ € PL, if 'k 2 ¢, then T |= ¢.

Proof: Let T be an arbitrary set of propositional formulae and ¢ € PL. Suppose
that I' g ¢. Show that I' = ¢. Let 7 be any truth assignment. Suppose that
4T =1foreveryy € I'. Let # = ¢y,. .., ¢m be an F-proof of ¢ from I'. Show by
induction on i that ¢] = 1. If ¢; € T', then ¢] = 1. Suppose that ¢; is inferred
from ¢y,,...,Py,, where u; < ... < ug < i, by a Frege rule (¢1,...,9%)/%0
in &#. By Definition 3.35, there exists a substitution ¢ such that for every
J from 1 to k, ¢y, = ¢;0 and ¢; = ppo. Now, there are two subcases to
consider. If £k = 0, then ¢] = 1. Assume that k& # 0. By induction hypothesis,
(pu, A ... A ¢y,)” = 1. By Lemma 3.31, we have that ¢,, A...¢dy, = ¢ isa
tautology. Thus, ¢7 =1. O

Definition 3.38 Let {¢1,...,¢:} be an arbitrary set of propositional formulae.
An inference system & is said to be implicationally complete iff for any

¢EPL1 if{¢1)'~'1¢l} }=¢y then {¢11--'1¢l} l'_.? ¢

Definition 3.39 Let F be an inference system. We say that F is a Frege
system if and only if F is implicationally complete.

Theorem 3.40 If ¢ is a closed formula, then either ¢ or —¢ has a poly-size
Frege-proof.

Proof: Assume that the Frege system under consideration below includes the
following Frege rules: Ry = (A,B)/AA B, R, = (A)/AV B, R3 = (B)/AV B,
Ry = (—A)/~(AAB).

Suppose that ¢ is a closed formula. We show by structural induction on
¢ that either ¢ or —¢ has a poly-size Frege-proof. If ¢ is T or L, then it is
trivial. Suppose that ¢ is of the form ¢; A 2. If ¢ evaluates to True, then ¢;
and @, evaluate to True. By induction hypothesis, they have poly-size Frege-
proofs. By R, we obtain a Frege-proof of ¢1 A pa. Thus, @1 Ayws has a poly-size
Frege-proof. If ¢ evaluates to False, then either ¢; or ¢, evaluates to False.
Assume w.l.o.g. that ¢; evaluates to False. By induction hypothesis, —@; has
a poly-size Frege-proof. By R4, we obtain a Frege-proof of =(¢1 A ¢3). Thus,
- has a poly-size Frege-proof. Similarly, for ¢ of the form ¢; V 3. Suppose
that ¢ is of the form —¢. If ¢ evaluates to True, then 1 evaluates to False.
By induction hypothesis, ¢ has a poly-size Frege-proof. If © evaluates to False,
then —¢, which is 1, evaluates to True. By induction hypothesis, 9 has poly-size
Frege-proof. Thus, —¢ has poly-size Frege-proof. O

17

Corollary 3.41 If ¢ is a closed tautology, then it has a poly-size Frege-proof.
Corollary 3.41 is a direct implication of Theorem 3.40.

Remark 3.42 The size of a Frege-proof of a closed tautology ¢ is quadratic in
the size of ¢, since the number of lines in a Frege-proof of ¢ is linear in the
length of ¢ and the number of symbols in a line of a Frege-proof is linear in the
length of @.

3.4.2 Substitution Frege systems

Definition 3.43 Define a substitution Frege system s.% to be a Frege sys-
tem F plus the substitution rule ¢/po, which states that from propositional
formula ¢ infer po, for any substitution o.

Definition 3.44 Let # be a Frege system. A substitution Frege proof, or

. 8&F -proof for short, of ¢ € TAUT is a sequence T = ¢1, ..., ¢m of propositional

formulae such that ¢, = ¢ and for every i from 1 to m, ¢; is either inferred
from ¢uy,.. ., Qu., where uy < ... < ug < 4, by a Frege rule in F or inferred
from ¢;, where j < i, by the substitution rule.

We can eliminate an application of the substitution rule by repeating the
part of the proof before the inference. In such a transformation, these repeti-
tions can be nested and the proof may grow exponentially.

Observe that premises are not allowed in the definition of substitution Frege
proofs. If premises were allowed in the definition of substitution Frege proofs,
then there exists a ¢ € PL and some substitution ¢ such that ¢ ;2 ¢o and
¢ £ ¢o. For example, when ¢ = p; A p2 and ¢ maps p; to itself and maps p;
to p1 A —p1.

Theorem 3.45 Let s& be a substitution Frege system. For any ¢ € PL, if
Fsz @, then = ¢.

Proof: The proof is similar to the proof of Theorem 3.37. O

3.4.3 Some Results and Open Problems in Proof Complexity

Cook and Reckow were the first to identify Frege and substitution Frege systems
in [CR79]. They also identified another class of proof systems, called Extended
Frege systems and showed that all Frege systems are p-equivalent. Krajicek and
Pudlak showed, in [KP89b], that Extended Frege systems are p-equivalent with
Substitution Frege systems.

With regard to the general program of Propositional Proof Complexity, a lot
of work has been devoted to proving strong lower bounds on the sizes of proofs
of specific tautologies in various proof systems.

Example 3.46 For any n > 1, the Pigeonhole Principle states that if n+ 1
pigeons sit in n holes, then there exists a hole with at least two pigeons.

18

Definition 3.47 We define the family of tautologies that formalises the Pigeon-
hole Principle to be the set:

4) PHP = {PHP?*! :n > 1}
where PHP™T! s defined to be:

(5) </\ V P(w)) - (V V' paa Ap(u.j))

i<nj<n j<nii<iz<n

where {x,y) is defined in Definition 4.21 and the intended meaning of p; jy 1s
that pigeon i sits in hole j.

It has first been shown by Haken, in [Hak85], that ~PHP?*! requires ex-
ponential size Resolution refutations. Later, Beame and Pitassi provided an
improved lower bound on the sizes of Resolution refutations for ~-PHP?*! in
[BP96]. On the other hand, in [CR79, Bus87b], it was shown that a proof of
PHP?*! in extended Frege has length O(n®) and has length O(n®) in Frege for
some constant ¢ (fairly small, e.g. ¢ = 20) , respectively. It follows that Frege
and extended Frege simulate Resolution and not the other way around.

It was originally conjectured that for any m > n, PHP]’ would require
exponential size, in n, Resolution refutations. However, this conjecture was
shown to be wrong for large values of m [BP98], in particular for m > 2vnlogn,
When n? < m < 2V, no lower bound was known at all and remained
an open problem until [Raz04], where the author has proven that for any m
such that n% < m < 2v7P9" | any Resolution refutation of ~PHP™ is of length
Q(2™), where € > 0 is some global constant.

Definition 3.48 Let P be a propositional proof system. Then a countable fam-
tly of tautologies {y; : i € I} has polysize P-proofs if and only if there ezists a
polynomial p such that for every i € I, there exists a m such that P(p;,m) holds
and || < p(|@il)-

Definition 3.49 Let P be a propositional proof system. Then a countable fam-
ily of tautologies {¢; : i € I} is hard for P if {; : i € I} doesn’t have polysize
P-proofs.

At present time, no strong lower bounds are known for Frege, Extended and
Substitution Frege systems. What makes it so difficult when trying to prove
strong lower bounds for these systems is that there is a lack of hard candidate
tautologies [BP01]. Thus, a natural open problem is to find hard tautologies
for Frege, Extended and Substitution Frege systems. Some candidate hard
tautologies have been suggested in {BBP95] for Frege systems.

These open problems have been collected from [BPO1]. In there, one may
find many more open problems related to Propositional Proof Complexity in
general.

4 Uniform Systems

In this section, we define the notion of the uniform reduct of propositional proof
systems (also called uniform systems) [Bec05] using the language of second-order

19

bounded arithmetic. The use of second-order bounded arithmetic is justified by
the fact that in our main theorem, we assume that the uniform reduct of a
proof system is defined using that language. Our exposition of second-order
bounded arithmetic and how we translate second-order bounded arithmetic for-
mulae (Z€-formulae) into propositional formulae follows [CN10].

4.1 Second-Order Bounded Arithmetic

In second-order bounded arithmetic, there are two kinds of variables: the vari-
ables z,y, z, ... (possibly subscripted), called number variables, that are in-
tended to range over N; the variables U, V, W, X,Y, Z, . .. (possibly subscripted),
called set (or string) variables, that are intended to range over the set of fi-
nite subsets of N. We need the first sort (numbers) to measure the length of the
second sort (strings). We identify strings with finite subsets of N (made precise
later). Predicate symbols P,Q, R,... can take take arguments of both sorts,
and so can function symbols. There are two kinds of functions: the number
functions and the string functions. We use f,g,h,... as meta-symbols for
number function symbols; we use F,G, H, ... for string function symbols and
a,b, ¢, ... for number variables (possibly subscripted).

Definition 4.1 We define an (n,m)-ary function symbol to be a function
symbol that takes n arguments of the first sort and m arguments of the second
sort. A (0,0)-ary number (resp. string) function symbol is called a number
constant symbol (resp. string constant symbol).

Definition 4.2 Define £% to be {0,1,+, X, ||,=1,=2,<, €}, where 0 and 1 are
number constant symbols; + and x are (2,0)-ary number function symbols; || is
a (0,1)-ary number function symbol; =, and < are (2,0)-ary predicate symbols;
=4 18 a (0,2)-ary predicate symbol; € is a (1,1)-ary predicate symbol.

Notation We write = for both =; and =,. It will be clear from the context
which is intended. Finally, we will use infix notation when using +, x,=, < and
c.

Definition 4.3 Define L% -terms inductively as follows:
1. Every number variable is an L% -number term.
2. Every string variable is an L% -string term.
3. The symbols 0,1 are L% -number terms.
4. Ifto and t; are L% -number terms, then so are (to + t1) and (to % t1).
5. If T is an L£%-string term, then |T| is an £%-number term.
An L% -number term is said to be closed if it is not built up from rule 1 and 2.

We will refer to £2%-number terms (resp. £3-string terms) as just "number
terms” (resp. ”string terms”). We often denote number terms by r,s,t,...
(possibly subscripted). Note that the only string terms are the string variables
and if a string variable X occurs in a number term, then it must occur in a
number term of the form |X|.

20

Notation If ¢ is a number term not involving z, then (3z < t)y stands for
Jz(x < t Ay) and (Vz <)y stands for Vz(=(z < t) V ¢).

Definition 4.4 We define ©F -formulae inductively as follows:
1. The logical constants T (True) and L (False) are atomic L8 -formulae.

2. (to =t1), (to <), to € X and (X =Y) are atomic LE-formulae, for
number terms to, t1.

3. If ¢ and ¢ are S -formulae, then so are —~p, 0 A and @ V 1.

4. If ¢ is a SF -formula and = a number variable not occuring in the number
term t, then (3z < t)p and (Vz < t)p are BF -formulae.

B formulae will often be denoted by , %, ... (possibly subscripted).

Definition 4.5 We define the universal closure of a £F -formula ¢ to be the
formula Y obtained by adding an unbounded universal quantifier for every free
number variable and string variable in .

Notation As in the case of propositional formulae, we write (¢ — %) for
(~@ V) and ¢ « ¢ for (g —) A (3 =). We use the abbreviation X (t) for
t € X. Additionally, z # y stands for ~(z = y) and z <y forz < yAz # y.
Furthermore, (3z < t)¢ and (Vz < t)¢ stand for (Ix < t)(z # t A p) and
(Vz < t)(z # t = @), respectively. Finally, when we use p € 263 , we mean that
¢ is a T -formula.

Definition 4.6 An occurrence of a number variable x in o TF-formula ¢ is
bound if and only if that occurrence of x occurs in a subformula of ¢ of the
form (3z < t)y or (Vz < t)p. Any number variable occurrence in a £F -formula
that is not bound is said to be free.

Definition 4.7 Let ¢ be a =f -formulﬁ. Then define FV () to be the set of all
free number variables in ¢; define SV(p) to be the set of all string variables in
©. @ is said to be closed if FV(p) =0 and SV(p) = 0.

Notation In what follows, let Py;,(N) denote the set of all finite subsets of N

We identify a set § C N with its characteristic function. Hence, we can
use function notation and membership notation interchangeably, as the context
demands.

Definition 4.8 Let S be a finite subset of N and w : Py;n(N) — {0,1}* be the
mapping defined as follows

w(S) = S(n—1)...5(1)5(0),

where n— 1 is the largest element of S. We define the binary representation
of.S to be w(S).

Note that the binary representation of the empty set is the empty string.

Since w is an injective mapping, we can identify a finite non-empty subset
S of N with its binary string representation.

21

Definition 4.9 The £%-standard model N, consists of the following:

1. Two non-empty sets N and Psin(N) that are called the universes of N,.
Number (resp. string) variables range over N (resp. Pyin(N)).

2. The number constant symbols 0 and 1 are interpreted by 0,1 € N, respec-
tively.

8. The number function symbols + and x are interpreted by the addition and
multiplication functions on N, respectively.

4. The number function symbol || is interpreted by the function |S|Nz, which
is defined to be the length of the binary representation of the set S (i.e.
14 the largest element of S).

5. The predicate symbol =, (resp. =3) is always interpreted as the true equal-
ity relation on N (resp. Psin(N)).

6. The predicate symbols <, € get their usual interpretations.

Definition 4.10 An object assignment consists of a mapping from the num-
ber variables to N and a mapping from the string variables to Pyin(N).

Notation Let a be an object assignment. Then we write a(z) for the object
in N assigned to « by & and a(X) for the object in Py, (N) assigned to X by
a. If m € N, then a(m/z) is the same as o except that it maps z to m. If
M € Pyin(N), then a(M/X) is the same as a except that it maps X to M.

Definition 4.11 Let a be an object assignment. Then define for each number
term t (resp. string variable X) its value tN2[a) € N (resp. XX2[0] € P;in(N))
in N, under o inductively as follows:

1. (0] is a(2).

2. X%a] is a(X).

. 0N:[0] and 182[q] are the natural numbers 0 and 1, respectively.

. If to,t, are number terms, then (to + t1)M2 0] is (852 [a] + £2[a).

. If to,t1 are number terms, then (to x t1)Nz[a] is (%2 [a] x t%’ [a]).

Sy » N

X |N2[a) is |o(X)|¥e, d.e. the length of the binary representation of a(X).
Notation Note that for a closed number term t, we can just write tNz.

Definition 4.12 Let « be an object assignment. Then define, for each TE-
formaula @, the relation Ny = pla] (N, satisfies ¢ under o) by structural induc-
tion on p:

1. NoETand N, = L.
2. Ifto,t1 are number terms, then Ny k= (to = t1)[o] iff t5[a] = £:2[a].

3. Ifto,t, are number terms, then N k= (to < t1)[o] iff t2[a] < 2[a].

22

N (X =Y)la] iff a(X) = a(Y).
If t is a number term, then N, = X (t)[o] iff tR2[o] € a(X).

- Ny | (m¥)[o] iff Ny b ¢[o].

- Ny b= (o x 01)[0f i Ny = wola] * Np |= ¢afal, for « € {A, v}

. If t is a number term not involving x, then N, E ((Bxr < tW)e] iff
N, = ¥[a(m/x)], for some m < t8:2{q].

S IS B N S

9. If t is a number term not involving z, then N, = ((Vz < t)¢)[e] iff
N, E ¢[a(m/z)] for allm < t2[q].

A SE-formula ¢ is said to be valid if and only if N, = ¢[a], for every object
assignment a.

Notation If p is closed, then we can just write N, = ¢ instead of N, = ¢lo].

Notation If X is a vector of string variables Xj,..., X,-1, then IX" | denotes
the vector |Xp|,...,|Xn—1]. Similarly for |S|, where S is a vector of sets.

Notation When writing (%, X), we mean that FV(p) USV(yp) C {&, X}.
Also, when writing ¢(&,|X|), we mean that the set of all variables (number and
string variables) in ¢ is a subset or equal to {&#, X} and string variables are only
occuring in the form | X;|.

Definition 4.13 Let & = zg,...,Tk—1, § be a vector of number terms sq, ...,
8k—1, t(Z) be a number term and (%) be a LF -formula. Then denote by t(5)
the result of substituting every occurrence of z; in t by s; and denote by (3)
the result of replacing every free occurrence of ; in @ by s;.

Definition 4.14 Let X = Xg... Xx—1, § be a vector of number terms so, ...,
Sk—1 and t(|X|) be a number term. Then denote by t(3) the result of substituting
every occurrence of | X;| in t by s;.

Definition 4.15 Let p(z) be a £F -formula and t be a number term. Then t
is said to be freely substitutable for z in ¢ if and only if for any variable y
in t, for every occurence of T in @, x is not in a subformula of ¢ of the form
(Vy < to)y or By < to)¢.

Let £ = x9,...,Zk_1, { be a vector of number terms o, ..., ty—1 and ¢(Z)
be a ©F-formula. From now on, we shall write () if and only if t; is freely
substitutable for x; in ¢.

4.2 Translating $2-formulae

In this section, we are going to show how. to translate each XF-formula ¢(Z, X)
into a family . .
(@, X)|| = {o(@t, X)[7] : 7,7 € N}

of propositional formulae, where n; is intended to be the length of X;. For
that, we introduce the propositional variables p{f°,pf°, cee pg(l , pf‘, ... where
the intended meaning of pj-"*’ is X;(j)-

23

Definition 4.16 For every n € N, define n, called the numeral for n, induc-
tively as follows:

0=0,1=1,

n

+1=(n+1) forn>1.

For example, the numeral for 4 is (((1+1) +1)+1). The numerals 0,1, (1 +
1),((1+1)+1),...for 0,1,2,3,..., respectively, will be denoted by 0,1,2,3,.. ..

Definition 4.17 Let <p(i",}_f) be ¢ BF-formula, M and 7 be in N. Define
(i, X)[7i] inductively as follows:

1. If (18, X) is of the form T or L, then (i, X)[f] =af (1, X)

2. If (i, X) is of the form t(zi, | X|) = u(, | X|), then

o T if t(a, A = u(a, A
(i, X)[7] =g { 1 otherwise

8. Similarly if (i, X) is of the form t(if, | X|) < u(®, | X))

4- If o1, X) is of the form X; = X;, then there are two cases to consider.
If i =7, then o(ih, X)[fi] =qr T. Else if i # j, then we reduce the task of
translating (i, X) to translating its defining aziom |X;| = | X;] AV <
1X|(Xi(z) «> X;(2)). Note that the defining aziom of X; = X; is a £F-
formula such that it doesn’t contain any free number variable and it doesn’t
contain any subformula of the same form as (1, X).

5. If p(1i, X) is of the form X;(t(i, | X)), then set j = (1, A)N2 and

pf ifj<mni—1
o, X)A =4 (T ifj=ni—1
L otherwise
Observe that for n; = 0, we have that @(if, X)] =45 L.
6. If p(, X) is of the form —(ii, X), then (1, X)) =4y ~9 (122, X) (7.
7. If (i, X) is of the form po(ti, X) * @1 (12, X), then
Qp(ﬁ, X)[ﬁ] =df ‘Po(ﬁ, X)[ﬁ] * (pl(ﬂi X)[ﬁ]>
for =€ {A,V}.
8. If p(1, X) is of the form (3y < t(z, | X)) (y, 1, X), then

o, X)) =4 \/ $(3 2, X)[]
i=0

where § = t(m, 7i)Na.

24

9. If p(it, X) is of the form (Vy < t(zzt, | X|))9(y, 1, X), then
J
(@, X)) =4 J\ ¢, X)[7]
i=0
where § = t(r, @)Ne,

In [CN10], the authors included, as part of the translation, some pruning.
Since that pruning isn’t relevant for our purpose, we decided to not include it
for the sake of simplicity and readability. Also, note that (m, X)[f], where

73 . X, - -

X = Xo,...,Xi-1, has variables p°,py°, ... ,pf;’_z,...,po ‘=t ...and pp/o, .
Notation If 771 is a vector of natural numbers my, ...,m_; and § is a vector
of sets Sp,...,S;—1, then 7 € N denotes myg,...,mg_1 € N, |S| = 7 denotes

ISo| = no,...,|S1-1] = ni—1 and § C N denotes Sp, . .., S;—1 C N. Furthermore,
we have that a(m/Z, S/X) stands for
a(mo/mo, fee 7mk—1/zk—l'7 So/X(), ey Sg_l/Xl_.l).

Lemma 4.18 Let i € N, § C N such that |S| = 7 and (%, X) be a £B-
formula. Then we have that N, = o(Z, X)[a(/E, 5/ X)) if and only if N, |=
(i, %) a(5/R).

Proof: The proof is by structural induction on ¢(&, X). We only cover a few
interesting cases. First, observe that

(6) t(&, 1 X 1) [a(/%, S/ X)) = (@, | X)% [(S/ X))
Additionally, observe that
(1) & | X)) e/, 5/ X)| € S; if and only if ¢(m, | X |)N2[a(S/X)] € S;.

1. Consider the case when ¢(Z, X) is of the form (&, |X|) = u(&,|X|). By

Definition 4.12, we have that N, = ¢(Z, X)[a(ﬁi/a':’, /X)] is equivalent to

-

t(@,1 X)) Re (i), 5/ X)] = u(@, | X [a(m/z, S/ X)),
which is equivalent to
£, | X)22 [0(S/ X)] = u(ri, | X ¥ [a(S/ X)),

by (6). That is equivalent to
N, E (5, X)[(5/ X)),
by Definition 4.12.

2. Consider the case when (%, X) is of the form X;(¢(|Z,|X|)). Then we
have that

N, F o(& Dlali/z, 5/ %)

& t(Z, | X)N [a(m/Z,S/X)] € S; (by Definition 4.12)
ot XD/ e s, (by (1)

& N, E o(m, X)[a(S/X)] (by Definition 4.12)

25

O

-

3. Consider the case when ¢(&, X) is of the form (3y < t(Z, | X|)¢ (v, &, X).

By Definition 4.12, we have that

-

N, E o(&, X)[a(m/E,5/X)]
is equivalent to
N, F ¥y, &, X)[e(/y, /%, 5/ X)),
for some i < t(Z, | X|)¥e [a(7/&, S/ X)]. That is equivalent to
N, k= ¢, 1, X)a(S/ X)),

for some i < t(r%, | X |)¥2[2(§/X), by induction hypothesis. By Definition
4.12, there exists an i < ¢(r%, | X|)¥2[a(5/X)] such that

N, E 9(i, i, X)[a(S/ X))

if and only if . ..
N, w1, X)[a(S/X)).

In what follows, let 75, where S = So,...,5 € N and |S;| = n;, be any

truth assignment such that for every ¢ from 0 to ! and & from 0 to n; — 2, if
Si(k) holds, then T5(p*) = 1, and if S;(k) doesn’t hold, then T5(pp*) = 0.

Lemma 4.19 Let i € N, § C N such that |S| = &, o(&, X) be a 8 -formula
and a(5/X) be an object assignment. Then we have that

N, k= o(i, X)[(S/ X)) if and only if (o(, X)[7])"s = 1.

Proof: The proof is by structural induction on w(_@,)_f). Again, we only cover
a few interesting cases. First, observe that

(®)

t(ed, | X)N [a(S/ X)) = t(m, 7).

— Consider the case when go(ﬁ,)?) is of the form t(z, | X|) = u(a, |X]). Set

i = t(m, | X))%[a(S/X)] and j = u(m, | X|)Ne[a(S/X)]. Then we have
that

N; k= (e, X) S/ X)]

Si=j (by Definition 4.12)
& t(m, DN = u(@ D) (by (8))
& (i, X)[7] =g (by Definition 4.17)

& (p(@, X)[@)™# =1 (by Definition 3.3)

— Consider the case when ¢(1ii, X) is of the form X;(¢(, |X|)). Set j =

t(r, | X N2 {(S/ X)]. Then we have that

N, k= o, X)[a(S/X)]
& Si(J) (by Definition 4.12)

=3 Tg(pj“)ﬂ: 1
& (p(m, X)[A])7s =1 (by Definition 4.17)

26

~ Consider the case when o(ifi, X) is of the form —(if,) Then we have
that

< N, o, X)[a(S/X)] (by Definition 4.12)
& (P, Xl[ﬁ])rg =0 (by IH)

& (@, X)[A])"s = (by Definition 3.3)
((~(, X))[Al7s =1 (by Definition 4.17)
(

— Consider the case when (i, X) is of the form Jy < (i, | X|))¢ (v, @, X.
Set j = t(r, | X |)N2[a(S/ X)]. Then we have that

N, F o(m, X)[a(8/ X)) o
& 3i < j(N, F (w1, X)[alify, §/X))) (by Definition 4.12)

o F <N, Ev@ m,X)[a(g/)?)]) (by Lemma 4.18)
@ 3i< J'((¢(1,m_,X)[n]§§ =1) (by IH)

g T,
& (\/ 'z/}(i,m,)?)[ﬁ]) =1 (by Definition 3.3)
& (cpl(j_%,)_(. ya)e =1 (by Definition 4.17)

O

Theorem 4.20 Let o be an object assignment, ¢(Z, X) be a TF-formula and
n,% € N. Then we have that p(, X)[fl] is a tautology if and only if the
following holds:

) N, k= o, X)la(S/ X))
for any § C N such that || = .

Proof: (=) Suppose that (i, X)[A) is a tautology. Show that for any S C
N such that |§] = 7, N, satisfies @(s7t, X)[a(S/X)]. Let § C N such that
|S| = 7. By assumption, (¢(i, X))[A])™s = 1. By Lemma 4.19, N, satisfies
(a2, X)[e(5/ X)) o 3

(«=) Suppose that N, satisfies (i, X)[a(S/X)] for any S C N such that
|S| = 7. Show that o(r, X)[fi] is a tautology, i.e. for any truth assignment
7, (p(zi, X)[f])™ = 1. For the sake of contradiction, suppose that there exists
a truth assignment 7y such that (p(, X)[A])™ = 0. Let M C N such that
|M| = i and T, = To. Hence, (o(, X)[Ai])™ = 0. By Lemma 4.19, we
have that N, doesn’t satisfy ¢(ifi, X)[a(M /X)), which contradicts our original
assumption. [

Definition 4.21 Define (zg, 1), called the pairing function, as the following

L% -term:
(o+z1) X (o +z1+1)+2x 1,

27

Observe that the pairing function is a one-to-one function.

Recall that (¢ — 1) and (3z < t)p stand for (~p vV ¥) and (Fz < t)(z #
t A @), respectively. When writing X (z,y), we mean X ({z,y)), where (z,y) is
the pairing function. We now show how to obtain an equivalent form of PHP
(Definition 3.47) from a £5-formula PHP(z, X), where z stands for the number
of holes and X is intended to be a two-dimensional Boolean array such that
X (z,y) holds if and only if pigeon z sits in hole y, for z < z and y < z. First,
define PHP(z, X) to be the following LF-formula:

(Vz < 2)(Fy < 2) X (z,y) =

(10) (Jy < 2)(3zo,z1 < 2)(xo < 1 A X(20,Y) A X (21,7))

By translating PHP(z, X)) into a propositional formula (with the appropriate
length for X) and then applying a suitable substitution to the resulting formula,
we obtain a formula which is equivalent to PHP?+? as follows. For every n > 1,
PHP(n, X)[2 + (n,n — 1)]o can be proven to be equivalent to PHP?*! by a
short Resolution proof (all that is needed to be done is some pruning), where
o {pﬁ,j) ri<nandj <n-1} - {pus; i <nandj < n-1}isa
substitution and is defined by o (pf{ ;1) = Pei,5)- :

4.3 The Uniform Reduct of a Proof System

Recall that a countable family of tautologies {¢; : ¢ € I'} has poly-size P-proofs,
where P is a propositional proof system, if and only if there exists a polynomial
p such that for every i € I, there exists a 7 such that P accepts (¢;,7) and

7| < p(leil).

Definition 4.22 [Bec05] Let P be a propositional proof system. Then define
the uniform reduct of P to be the set

Up = {p(Z, X) € £8 : {p(w, X)[fi] : M, € N} has polysize P-proofs}
The uniform reduct of a proof system will also be called a uniform system.

Observation 4.23 Let P be a propositional proof system. Then P is not poly-
nomially bounded if there ezists a valid ©F -formula (%, X) such that ¢(%, X) ¢
Up.

Proof: Suppose that there exists a valid £8-formula o(Z, X) such that (i, X) ¢
Up. Hence, {o(if, X)[] : 7ii, 7 € N} doesn’t have polysize P-proofs by Defini-
tion 4.22. Therefore, for every polynomial p, there exists a 1 € {(p(ﬁ,)?)7 -
m,7 € N} such that for every w, either 7 is not a P-proof of ¢ or |7| £ p(|¥]),
by Definition 3.48. Thus, P is not polynomially bounded, by Definition 3.16. O

A reason for studying uniform systems is that we might be able to prove
lower bounds by identifying properties which distinguish uniform systems from
the set of all true =F-formulae. In [Bec05], Beckmann studied the arithmetic
complexity of uniform systems and observed that a given uniform reduct is not
in some certain arithmetic complexity class would imply a super-polynomial
lower bound of the underlying propositional proof system. He also investigated

28

whether uniform systems are closed under the typical inference rules of Hilbert
style proof systems, i.e. under modus ponens and generalisation.

A natural open problem for uniform systems is to look for properties of
uniform systems which might help distinguish uniform systems from the set of
all true £&-formule, denoted TRUEgg (this is the last open problem listed in
[Bec05]).

Frege systems are p-equivalent with the propositional part PK of Gentzen’s
sequent-based proof system LK. Another natural open problem for uniform
systems would be to prove if Upyk is equal or not to TRUEzés.

5 TUniform Systems vs Optimal Proof Systems

We finally come to the main body of this thesis. In this last section, we carry
out a detailed proof of the equivalence between the existence of an optimal proof
system and the existence of a propositional proof system whose uniform reduct
equals the set of all true ZF-formulae. As a preliminary to that, we first show
how to ¥F-formulate the reflection principle for a propositional proof system.

5.1 The Reflection Principle for a Proof System

In order to LF-formulate the reflection principle for a propositional proof sys-
tem, we first have to show how to encode propositional formulae, but this time
in Polish notation. Then, we define how to encode truth assignments to those
formulae. After that, we show how to encode polytime Turing machine compu-
tations.

5.1.1 Encoding Polish Propositional Formulae

Polish propositional formulae are propositional formulae, but in prefix notation
and where propositional variables will have their indices written in unary. For
example, p; is written as p11...1 with ¢ many 1’s.

Definition 5.1 Polish propositional formulae (or Polish formulae for
short) are over the alphabet

‘ T ={p,1,7,A,V}
and defined inductively as follows:
1. Every propositional variable is an atomic Polish formula.
2. If v is a Polish formula, then so is —p.
3. If v, are Polish formulae, then so are xpyp, where + € {A,V}.

Definition 5.2 Define the subformulae of a Polish formula ¢ inductively as
follows:

1. If ¢ is of the form pll...1, then its only subformula is p11...1.
2. If ¢ is of the form —, then its subformulae are the subformulae of ¢ plus
@ itself.

29

3. If @ is of the form xpop1, where x € {A,V}, then the subformulae of ¢ is
the subformulae of @o plus the subformulae of p1 plus p itself.

Note that the subformulae of a Polish formula are Polish formulae. For
example, the subformulae of the Polish formula Apl111-Vpl1p1 are the following
Polish formulae: pl,pll, Vpllpl, ~Vpllpl,pl11 and Apl11-Vpllpl itself. Also,
note that if s = s, ...818¢ is a Polish formula, where s; € ¥ for every ¢ from 0
to n, and s;...sx is a subformula of s, where n > j > k > 0, then the following
statement holds: if k& > 0, then s,_; is different from the symbol 1 (otherwise s
is not a well-formed Polish formula).

Notation Let s = s, ...818¢ be a string over some alphabet andn > j > k > 0.
Then denote by s[j, k] the substring s; ...Sk418% of s. For n > ¢ > 0, let s[i]
denote s;. Thus, if j = k, then s[j, k] is the same as s[j].

Observation 5.3 If s = s,...8 is a string over ¥ such that s is a Polish
formula, then for every i < n, if s; is the symbol 1, then there ezists a j < n
such that i < j and s[j,1] is a propositional variable.

Observation 5.4 If s = s, ...s8180 i5 a string over ¥ such that s is a Polish
formala, then s always starts (from the right) with a propositional variable.

Proof: The proof is by structural induction on s. [J

Definition 5.5 Let 0 € X. Then define the weight of o, denoted weight(o),
as follows:

1 ifoisp
weight(o) = 0 ifoislor-
-1 ifoisAorV

The weight function can be eztended to assign a weight to a string s =
Sp...80 in X as follows. If n =0, then weight(s) = weight(sg). Else, if n >0,
then weight(s) = weight(sy) + weight(s[n — 1,0]).

Observation 5.6 If s € % such that the length of s is n, then weight(s) < n.

The conditions (stated in the following Lemma) that are needed for a string
s over I to be a Polish formula, are slight modifications of those in [Bus87a).
The use of the maz function is justified by the fact that we only want values
> 0 for the weight of any substring of a string s € .

Lemma 5.7 Let 8 = s,,...8180 be a string over ¥ and w be wy, ... wrwy such
that wo = maxz(weight(so),0) and wr+1 = maz{weight(sk+1) + wk,0), for k
from 0 ton—1. Then s is a Polish formula if and only if the following conditions
hold:

1. For every i < n, if s; is the symbol 1, then there exists a j < n such that
i < j and s[j,i] is a propositional variable.

2. wp=1.
8. There ezists an i < n such that s[¢,0] is a propositional variable and for

every j <m, if j > i, then w; > 0.

30

Proof: (=) Suppose that s is a Polish formula. We show that condition 1, 2
and 8 hold by structural induction on s. If s is a propositional variable, then
those conditions hold trivially. If s is of the form —¢, then condition 7, 2 and
3 hold for ¢, by induction hypothesis. Thus, they hold for s, since s, is -~ and
weight(—) = 0. Suppose that s is of the form xpy, for x € {A,V}. Assume
w.l.o.g. that % is A. Then, condition I holds for ¢ and v, by induction hypoth-
esis. Clearly, condition I holds for ¢2). Since s, is A, conditon ! also holds
for s. We next show that condition 2 holds for s. By induction hypothesis,
condition 2 holds for ¢ and . Thus, w,—1 = 2 by definition. Since s, = A and
weight(A) = —1, we get that w, = 1 by definition. Thus condition 2 holds for
s. Finally, we show that condition & holds for s. Let k < n such that s[k,0] is
(i.e. sfn—1,k+1] is p). By induction hypothesis, condition 3 holds for s[k, 0.
Since condition 2 holds for s[k,0] (by induction hypothesis), we obtain wy > 0.
By induction hypothesis, condition & holds for s[n—1, % +1]. Hence, we can let
i € N between k + 1 and n — 1 such that s[¢, k + 1] is a propositional variable.
Therefore, w; > 0 (since wg > 0). It follows that wp_z > 0 (since condition 3
holds for s[n — 1, k + 1]). Since condition 2 holds for s[n— 1,k + 1], we conclude
that wnp—1 > 0. Thus, condition 3 holds for s.

(<) Suppose that the conditions 7, 2 and 3 hold for s. We show that s
is a Polish formula by induction on n. If n = 0, then the length of s is 1.
The only string over £ of length 1 that satisfies the conditions 1, 2 and & is
p. Hence, s must be the symbol p. Thus, s is a Polish formula. Suppose that
n > 1. By condition 1, s, is not the symbol 1. Therefore, we can exclude
that case. Suppose that s, is the symbol p. Since w, = 1, by assumption, and
weight(s,) = 1, we conclude that w,—1 = maz(weight(sin—1,0]),0) = 0. Now,
condition & states that there exists an i < n such that s{é,0] is a propositional
variable and for every j < n, if j > i, then w; > 0. Clearly, i can’t be lesser
than or equal to n —1: w,_; would then be strictly greater than 0, by condition
3, and that implies that w, > 1 (since s, is p). Therefore, i must be equal
to n. Thus, s is a propositional variable. Suppose that s, is =. Therefore,
Wn—1 = maz(weight(sin —1,0]),0) = 1. Thus, condition 2 holds for s[n—1,0].
Now, as condition ! holds for s, then it also holds for s[n —1, 0] (since s, is not
p). As condition 3 also holds for s, it holds for s[n—1,0]. Therefore, s[n—1,0] is
a Polish formula, by induction hypothesis. By the definition of Polish formulae,
s is a Polish formula. Finally, suppose that s, is either A or V. Assume w.l.o.g.
that it is A. Since weight(A) = —1, we conclude that weight(s[n — 1,0]) = 2
(since weight(s[n,0]) = 1 by assumption). Thus, wy,-; = 2 by definition. Let
i be the largest natural number strictly lesser than n such that condition 1, 2
and 8 hold for s[i,0] (in the worst case, 4 concides with the ”4” in condition
3). By induction hypothesis, s[i, 0] is a Polish formula. We now want to show
that s[n — 1,7 + 1] is also a Polish formula, i.e. it satisfies condition 1,2 and 4.
Clearly, condition 1 holds for s[n — 1,4+ 1] if it holds for s (since s, is not p).
Since wp—1 = 2 and w; = 1, we get that weight(s[n — 1,7 + 1]) = 1. Therefore,
condition 2 holds for s[n — 1,7 + 1]. We are now left with proving if condition
3 holds for s[n — 1,7 + 1], i.e. there exists a j between n — 1 and i + 1 such
that s[4, 7+ 1] is a propositional variable and for every k < n— 2, if k£ > j, then
wg > 1. We know that s;4+1 can’t be -, since we took i to be the largest natural
number strictly lesser than n such that condition 1, 2 and & hold for s[i,0).
Furthermore, we know that s; 1 can’t be A or V, otherwise it is a contradiction

31

to our assumption that condition & holds for s. Thus, s;4+1 is either 1 or p.
Suppose that s;;; is 1. Since condition ! holds for s[n — 1,7 + 1], let j be a
number between n — 1 and i + 1 such that s[j,7 + 1] is a propositional variable.
We next show that for every & < n — 2, if £k > j, then w, > 1. For the sake
of contradiction, suppose that there exists a k between n — 2 and j such that
wg < 1. Let k' be the smallest number between n — 2 and j such that wy < 1.
Clearly, condition 1, 2 and & hold for s[k’,0] and k¥’ > i. Hence, a contradiction
to 71 is the largest number strictly lesser than n such that condition 7, 2 and &
hold for s[¢,0]”. Therefore, for every k <n—2, if k > j, then wyx > 1. For 844,
is p, we apply the same reasoning as when s[n — 1, + 1] starts, from the right,
with pl11...1. Thus, condition 8 also holds for s[n — 1,¢ + 1]. Since condition
1,2 and 8 hold for s[n —1,i+ 1], s[n— 1,7+ 1] is a Polish formula by induction
hypothesis. By the definition of Polish formulae, s is a Polish formula. O

Definition 5.8 Let s = s,,...8180 be a string over L. Then define the binary
string encoding bse(s) of s, where bse is a mapping from T+ to {0,1}*, as
follows:

1000 ifs=p
1001 ifs=1
1010 ifs=n

b =
se(s) 1011 ifs=A
1100 ifs=V

bse(s[n])bse(s[n — 1,0]) if |s| > 1

The notation bse(s)bse(s’), in Definition 5.8, is understood as the concate-
nation of the binary string encodings of the strings s and s’. We denote by ¥y,
the alphabet {1000, 1001, 1010,1011,1100}.

Definition 5.9 Let ¥ = z1,..., 25, X = X1,...Xi, A=n1,...,nk €N, N =
Ni,...,N; € Psin(N). A relation R C NF x Pyin(N)! is EF -definable if there
exzists a BB -formula o(Z, X) such that for all (i, N) € N* x Pin(N)},

(7, N) € R iff N, = (@ X)[e(V/X)].
We say that o(Z, X) SB-defines R.

Remember that the goal of this subsubsection is to £F-define a formula Fla
which defines the relation Fla(X, W) which holds if and only if X encodes a
Polish formula s = s,,...5189, where s; € £, and W encodes w = w, ... wwo,
where w is defined as in Lemma 5.7 but this time relative to s. Figure 1 provides
a high-level description of the structures of X and W, where X and W encode
s and w respectively. Before commenting on Figure 1, we first introduce the
following abbreviations.

Notation
— Wi[j] is a shorthand for W{(n + 2) - i + j].
— X;[j] is a shorthand for X[4¢ + j].

32

X3 X;[0}

X : = : , : —t :
X, X; Xy Xo
Wiln+1 Wi0)
W 1 t } } 1 ;|
Wh Wi wi Wo

Figure 1: The structures of X and W.

Wi[j, k] is a shorthand for W[(n+2) - i + j,(n + 2) - i + k], where j > k.

X;[j, k] is a shorthand for X [4i + j,4¢ + k], where j > k.

|

W, is a shorthand for W;[n + 1,0].

X is a shorthand for X;(3,0].
— Xj; is a shorthand for X;X;_1... Xj.

— We write ”W; encodes j” if and only if for every k < j, W;[k] = 1, and for
every k < n, if k > j, then W;[k] = 0.

The first axis, labelled ” X :” in Figure 1, represents X as a binary string.
As we see from Figure 1, X is divided into n + 1 blocks. A block X; is viewed
as the binary string encoding of s; in s.

The second axis, labelled "W :” in Figure 1, represents W as a binary string.
As with the first axis, W is divided into n + 1 blocks. Each block W; has length
n+ 2 and where W;[n + 1] is always 1. W;[n, 0] is then the representation of w;
(in W) in unary. That is to say, if w; = j, then W; encodes j.

Lemma 5.10 Let X be X, ... X1 Xo, where X; € Ty, for every i from 0 to n,
and W be W, ... W1 Wy such that:

(W1). Wil = (n+2).
(W2). Win+1] =1, for every i from 0 to n.

(W3). If Xy encodes p, then Wy encodes 1. Else if Xy encodes 1,—, A or V, then
Wy encodes 0. .

(W4.) For every i from 1 to n, we have that:

(W4.1). If X; encodes 1 or -, then W; = Wi_,.

(W4.2). If X; encodes p, then there ezists a j between 1 and n+ 1 such that
Wi encodes j and Wi_; encodes j — 1.

(W4.3). If X; encodes either A or V, then there erists a j between 0 and n
such that W;_, encodes j and W; encodes j ~ 1.

Then X encodes a Polish formula if and only if the following conditions hold:

33

(X1). For everyi < m, if X; encodes 1, then there exists a j < n such thati < j
and X;_,; encodes a propositional variable.

(X2). Wy, encodes 1.

(X3). There exists an i < n such that X;0 encodes a propositional variable and
for every j <, if j > i, then W; encodes k, where k > 0.

Note that Lemma 5.10 is a natural translation of Lemma 5.7.

In the following, we often use the same notation for both the £F-formula
and the relation that it defines. Also, remember that we identify a finite non-
empty subset of N with its binary string representation. Finally, b;(z,y) is an
abbreviation for 4z + y and by(z,y) is an abbreviation for (n + 2)z + y, where
n is the length of the Polish formula under consideration.

We are now going to provide three examples that illustrate how to IZ-
formulate the conditions in Lemma 5.10, that X and W must satisfy to encode
a Polish formula. First, note that two of the conditions that (X, W) must satisfy
in order to be an encoding of a Polish formula is that |X| = 4(n + 1), for some
n > 0, and that every block X; of X is an encoding of a symbol in . Also, note
that one of the conditions that W must satisfy is that |W| = (n + 1)(n + 2).
In the following examples, assume that (X, W) satisfy the two conditions men-
tioned in this paragraph.

For the first example, we EF-formulate *If X, encodes p, then Wy encodes
1. Else if X encodes 1,—, A or V, then Wy encodes 0.” as follows:

(XEncp(X,0) —» WEnc;(W,0))

(XEnc(X,0) V XEnc~(X,0) \;\XEnc,\(X, 0) V XEncy(X,0))
(W Enca(W,0)) ’
where
(11)

XEncp(X,:c) =df X(bl (l‘,3)) A “X(bl (.’l:, 2
XEnci(X,z) =g X(b1(z,3)) A =X (b1(x,2
XE’nC_.(X, a:) =df X(bl (:C, 3)) A —'X(bl(.’L‘, 2) A X(bl(:c, 1)) A —'X(bl (:c, 0))
X Enca(X,z) =gt X (b1(z,3)) A =X (b1(z,2)) A X (b1(z,1)) A X(b1(z,0))

XEncy(X,z) =4r X (b1(x,3)) A X (b1(z,2)) A=~X (1(z,1)) A =X (b1 (z, 0))

)A=X (bi(z,1)) A =X (b1(x,0)))
) A _'X(bl(x’ 1)) A X(bl(x)o)))

-~ —

8 8

?

and

((Vy < m)(W (ba(z,v))))
(12) W Encm (W,) =4 A .

(Vy < n)(y =2 m — ~W(ba(z,y)))

Here, XEnc,(X,x), where ¢ € X, asserts that X, encodes the symbol o.
W Encn, (W, x) asserts that W, encodes m.

34

Before we go to the next example, let us first ©§-define the function z -y =
maz(0,z — y) as follows:

(13) s=zry=g (y+2=2)V(@<yAz=0)

For the second example, we .5 -formulate "For every i from 1 to n, if X; encodes
1 or -, then W; = W;_,.” as follows:

(Vz<n)(z>1—
((XEnci1(X,z) V XEnc.(X,z)) =
(Fy < 2)(y =z~ 1 A Eq(W,z,7)))),

where Eq(W, x,y) is defined by:
(14) (Vz < n+ 1)(W(ba(z, 2)) & W(ba(y, 2)))

For the last example, we L¥-formulate ”For every i < n, if X; encodes 1,
then there exists a 7 < n such that ¢ < j and X;_,; encodes a propositional
variable.” as follows:

(Vz < p)(X Ency(X,z) = (3y < n)((z <y) A XEncyer (X, ,9)))

where X Encyqer(X, z,y), which asserts that X,_,, encodes a propositional vari-
able pl11...1 with (z — y) many 1’s, is defined by:
(15)

@@= A@z<z)(z=2+y A XEnc(X,z) A V2o < z)(XEnc1(X, z0)))

The other conditions that X and W must satisfy, for (X, W) to encode
a Polish formula, can be If-formulated in the same way as those examples.
Hence, let Fla(X, W) be a conjunction over the conditions (W1), (W2), (W3),
(W4), (X1), (X2), (X3) and ZF-defines the relation Fla(X,W).

5.1.2 Encoding Truth Assignments

Our way of encoding a truth assignment to the variables in a Polish formula
follows [CN10].

Recall that |S| is the length of the binary string representation of the set S
(finite subset of N) and that the indices of propositional variables in a Polish
formula are written in unary notation. Hence, if s is a string in £* such that g
is a Polish formula, then there are < |s| distinct variables in s and their indices
are < |s|. Now, suppose that X encodes s. Then, a set Z C N specifies a truth
assignment to the variables pl1...1 in X as follows:

pll...1 is assigned the value of Z(|p1l...1| —1).

Therefore, all truth assignments to the variables in X can be specified by sets
Z C N such that |Z| < |X|. Thus, the ZF-formula Assign(X,W, Z), where the
relation Assign(X, W, Z) holds if and only if the relation Fla(X,W) holds and '
Z specifies a truth assignment to the variables in X, is defined by:

(16) Fla(X, W) A (12| < |X])

35

We will next define the £F-formula Eval(X,W, Z,Z'), where the relation
Eval(X,W,Z,Z') holds if and only if the relation Assign(X, W, Z) holds and
Z' extends Z to the subformulae of the formulae encoded by X. For that, we
first need to define what it means for X;_,; to encode a subformula of a Polish
formula encoded by X and define how Z’ extends Z.

Lemma 5.11 Let s = s, ...8189 be a Polish formula and w = wy, ... wiwp be
defined as in Lemma 5.7. Then, for every j,k € N such thatn > j > k > 0,
8jSj—1...5k is a Polish formula if and only if the following conditions hold:

1. For every i < j, if i > k, then the following statement must hold. If s;
is the symbol 1, then there exists an | < j such that 1 < ! and s[l,i] is a
propositional variable.

2. There ezists an i < j such that i > k and s[i, k] is a propositional variable
and for every l < j, if 1 > i, then wy; > w;, and w; = w;.

Proof: The proof is similar to Lemma 5.7. O

Lemma 5.12 Let X = X, ... X1X, encode a Polish formula, where X; € Lyin
for every i from 0 to n, and W satisfies the conditions (W1), (W2), (W3) and
(W4) in Lemma 5.10. Then, for every j,k € N such thatn>j >k >0, X;_ &
encodes a Polish formula if and only if the following conditions hold:

1. For every i < j, if ¢ = k, then the following statement must hold. If
X; encodes 1, then there exists an | < j such that i < | and X;_,; is a
propositional variable.

2. There exists an i < j such that i > k and X, is a propositional variable
and for everyl < j, if l > i and W; encodes ng and W; encodes n,, then
ng > mn , and W; =W;.

Clearly, Lemma 5.12 is a natural translation of Lemma 5.11.

Lemma 5.13 Let X = X,,...X1Xo encode a Polish formula, where X; € Xy;y,
and W be defined as in Lemma 5.10. Then, for every j,k € N such that n >
J2 k20, Xjor encodes a subformula of the Polish formula encoded by X if
and only if the following conditions hold:

(81). X;k encodes a Polish formula.
(82). If k>0, then Xy_1 doesn’t encode the symbol 1.
Proof: Obvious. O

Condition I and 2, in Lemma 5.13, can be expressed by a E(?-formula. Thus,
let Subf(X,z,y, W) be a £f-formula (a conjunction of (S1), (S2), (W1), (W2),
(W3), (W4)) which asserts that (X, W) encodes a subformula of the formula
encoded by X.

Assume that Assign(X,W,Z) holds. A set Z’ C N extends Z to the subfor-
mulae of X as follows:

36

1. For every j,k < |X|, if X; & encodes a propositional variable and that
Subf(X,j,k, W) holds, then Z’(j) holds if and only if Z(j — k) holds.

2. For every j,k < | X], if the relation Subf(X, j,k, W) holds and X; encodes
=, then Z’(j) holds if and only if —=Z'(j — 1) holds.

3. For every j,k < |X|, if Subf(X,j,k, W) and X; encodes x € {A, V}, then
there exists an ! such that: £ <l < j—1, Subf(X,7—1,l+1,W) and
Subf(X,1,k, W) hold and Z’(j) holds if and only if Z’'(j — 1) x Z'(l).

4. |2 < |X].

Clearly, all those four conditions are 8-definable. Let oc,,¢c,,vc, and ¢,
be the Z-formulae that express condition 1, 2, 3 and 4 above, respectively.
Then,

1 Eval(X,W,Z,Z') =4 Assign(X,W,Z) Apc, A ... A pg,.

5.1.3 Encoding Polytime Turing Machine Computations

From now on, we assume that every Turing machine M that will be discussed is
a polytime Turing machine which takes binary strings (empty string included)
as inputs and outputs binary strings (empty string included). Furthermore, for
a Turing machine M = (K, %, 6,), we assume that ¥ = {0,1, 2, 3}, where 2 and
3 always encode > and the blank symbol, respectively (> and U will often be
used to refer to 2 and 3, respectively), and K = {4,5,...,|Z| + | K| — 1}, where
4 and 5 always encode s and h, respectively (s and h will often be used to refer
to 4 and 5, respectively). This idea of coding symbols and states of a Turing
machine into natural numbers is from [Pap94]. Additionally, Turing machines
will never write a > on their string except when they see one. Moreover, a
Turing machine configuration (g, w, u), as defined in Definition 2.2, is redefined
here as wqu. Here, w = wpwp—; ... wjwy such that w, = >, wy is the symbol
read by M at state ¢ and if n > 1, then for every i <n — 1, w; € Z\{>} (since
we never write > except when we see one); g € K and u € (X\{>})*. Finally,
if wpwn—1 ... WohUm—1-...Ug is the final configuration of a Turing machine M
on input X, then M(X) = wp_1 ...wq, where w; € {0,1} for every ¢ from 0 to
n—1.

5.1.3.1 A method of encoding configurations of a Turing machine
on a given input. The purpose of this paragraph is to describe a method of
encoding configurations of a Turing machine on a given input.

Definition 5.14 Let M = (K, %, 4,8) be a Turing machine. Then, we define
enc to be a mapping from YU K to {0,1}* such that for alln € YUK,

(18) enc(n) =1b

where b is the binary representation of n such that |b| = [log,(|Z| + |K])].
enc can then be extended to assign a binary string to a strings € Tt as
follows:

_) 1b, where b is defined as in (18) ifs€ X
enc(s) = {e'nc(s[n])enc(s[n -1,0]) if |s] > 1

37

where enc(s) .. . enc(s’) is the result of concatenating enc(s) and enc(s').

For example, if |Z| + |K| = 8, then [log2(|Z]| + |K|)] = 3. Hence, enc(3) =
1011 and enc(33) = 10111011.

This is a preparation for the definition of the encoding of a configuration of
a Turing machine on a given input. Let ¢(|X|) be a bound on the running time
of a Turing machine M on input X. Hence, for any configuration wqu of M on
X, |w| + |u] < t(]X]) + 1. Thus, |enc(w)enc(q)enc(uw)enc(U)| < k- (¢(|X]) + 3),
where k = 1+ [log2(|Z|+|K|)] (here, k is the length of the encoding of a symbol
o € (ZUK)).

Notation Let M = (K,X,4,s) be a Turing machine. From now on, let 1 +
[log2(JZ| + | K|)] be denoted by kas. Additionally, ta (| X|) always denotes the
bound on the running time of a Turing machine M on input X. At the formal
language level, kps denotes the numeral that evaluates to 1+ [logz(|Z| +|K][)] in
the standard model and tpr(|X|) denotes a number term that evaluates to the
bound on the running time of M on X in the standard model. We abbreviate
tm(|X]) by tar.

Definition 5.15 We define the encoding of a configuration wqu of a Tur-
ing machine M on input X to be the binary string

(19) V = enc(w)enc(q)enc(u)enc(U)enc(U . ..)

such that |V| = ka(tar + 3).

Note that the substring enc(U...U) of V, in (19), maybe an empty string and
(19) always ends with a U (that will be clear later, when we describe how to
recognise if two binary strings encode two consecutive configurations of a certain
Turing machine on a certain input). Let b3(z,y) be a shortand for kpr - 2 + .
The other conditions are clearly £F-formulable. Thus, let Confar(V, X) be a
8 -formula which asserts that V is a potential encoding of a configuration of a
Turing machine M on input X.

5.1.3.2 XF-defining the relation Inita(X,V). Remember that the initial
configuration of a Turing machine M on input X is

psX(JX]|-1)...X(1)X(0)
and whose encoding is the binary string
enc(>)enc(s)enc(X)enc(U)enc(U. .. U)
of length kar(tpr + 3). Thus, the relation Inita(X,V), which holds if and

only if V = V41V, ... Vp encodes the initial configuration of M on input X, is
F-defined as follows:

38

(20)

(Vz < |X) 3y < |X])Pyo < y)(B20 < tm)

where Symbol}! (V, x), Symbol} (V,), SymbolM (V,), Symbol¥ (V, z) and StateM (V,x)

Initp(X,V)

=df

V| = kn(tar +3)

A

SymbolM (V,tar + 2) A Statel (V,tp + 1)

are defined as follows:

(21)

StateM (V,z) =g (32 < knr)

A

A

39

y=1X|+1
A
Yo=y—~2z
A
=M

20 M=
A

(3y < tar + 1)y = (b2 + 1) = | X| A (V2 < y)(Symbol (V,2)))

zZ= kM =1
A

V(bs(z, 2))
A

V(bs(,2))
A

(Vy < 2)(y > 2 = =V (bs(x,9)))
A
(Yy < 2)(-V (ba(z,9)))

(X (yo) © Symbol}(V, z))
A

(=X (y0) ¢ Symbolg! (V, z0))

/

which means that s =4 = 1002 is encoded

SymbolM (V,z) =g (2 < kn)

Symbol} (V,z) =g (3z<km)

SymbolM (V,z) =4 (Fz<km)

SymbolM (V,z2) =4 (Gz<kn)

where b3(z,y) is a shortand for kpr -z + y.

5.1.3.3 XIP-defining the relation Yie

we TF-define the relation Yieldsy (V, V', X

V' encode two consecutive configurations o

by 10...0100, and

z2=kpy -1
AN
V(bg(l‘,z))
A

(Vy < 2)(=V (bs(=,y)))

z = kM =1
A
V(bs(z, 2))
N
V(bs(z,0))
A

(Vy < 2)(y > 0~ =V (bs(z,y)))

z2=kp =1
A

V(bs(x, 2))
A

V(bs(z, 1))
A

. =V (b3(z,0))A

\(Vy < 2)(y > 1 =~V (bs(z,y)))

z=ky =1
A

V(bs(z, 2))
A

V(b3(z,0))
A

V(bS(x) 1))
A

My < 2)(y > 1 - =V (bs(z,y)))

ldsa(V, V', X). In this paragraph,
), which holds if and only if V' and
f the Turing machine M on input X.

Before we do so, first consider the following example.

Example 5.16 Consider the Turing machine M = (K,X,6,8), where ¥ =
{0,1,>,0} and K = {s,h,6} and § as shown in Table 1. M simply turns its
input X into a string of 0’s if X is not the emptystring; if X is the empty string,
string. Note that we omit rules that
‘will never be encountered in a legal computation and, since |Z| + |K| = 7, the

then M (e) = €, where € denotes the empty

length of the binary string encoding of every symbol in (XU K) is then 4.

Let us consider the two configurations

40

co = >sll and ¢; = >lsl of M on

geK oceX | d(g,0)
s 0 (s, 0, =)
] 1 (s, 0, =)
s > (s, >, =)
s u 6,4, «)
6 - 0 (h, 0, -)
6 > (h, >, —)

Table 1: A Turing machine.

input 11, and whose binary string encodings are ¢y and c| respectively, where

ch ne(>)enc(s)enc(l)enc(l)enc(U)enc(U . . . L)
c enc(>)enc(1)enc(s)enc(l)enc(U)enc(U...U).

Now, a way to tell, if ¢ and c| encode two consecutive configurations of M on
11, is that they are identical except that the substring enc(>)enc(s)enc(l) of ¢
has been replaced by the substring enc(>)enc(l)enc(s) of ¢j and this replacement
corresponds to the rule §(s,>) = (s,>,—), in Table 1 (this idea is from [Pap94)).
Thus, a move of M entails a replacement of triples of binary strings. The
complete table of these triples and their replacements, for the machine M of
Table 1, is shown in Table 2. Table 2 is then encoded into a binary string T

Original substring

Replacement

leo,o = enc(>)enc(s)enc

leo1 = enc(>)enc(0)enc(s)

lc1,1 = enc(>)enc(l)enc(s)

(0)
lc1,0 = enc(p)enc(s)enc(1)
leap = enc(p)enc(s)enc(U)

leo,1 = enc(b)enc(U)enc(s)

les g = enc(0)enc(s)enc(0)

les,1 = enc(0)enc(D)enc(s)

leg,0 = enc(0)enc(s)enc(1)

leg,1 = enc(0)enc(l)enc(s)

les,0 = enc(0)enc(s)enc(U)

lcs,1 = enc(0)enc(U)enc(s)

leg g = enc(1)enc(s)enc(0)

lcg,1 = enc(0)enc(0)enc(s)

ler o = enc(1)enc(s)enc(l)

le71 = enc(0)enc(l)enc(s)

lcg o = enc(l)enc(s)enc(U)

lcg1 = enc(0)enc(U)enc(s)

leg 0 = enc(U)enc(s)enc(0)

)
leg,1 = enc(6)enc(U)enc(0)

leyo,0 = enc(U)enc(s)enc(l)

le1p,1 = enc(6)enc(U)enc(l)

leir,o = enc(U)enc(s)enc(U)

lei1,1 = enc(6)enc(U)enc(L)

leiz,0 = enc(0)enc(6)enc(0)

lc12,1 = enc(0)enc(h)enc(0)

leis,o = enc(0)enc(6)enc(l)

lcys,1 = enc(0)enc(h)enc(l)

leys,o = enc(0)enc(6)enc(L)

leis,) = enc(0)enc(h)enc(L)

leis,1 = enc(p)enc(h)enc(0)

leys,p = enc(p)enc(6)enc(0)
lcig,0 = enc(p)enc(6)enc(l)

lc1s,1 = enc(p)enc(h)enc(l)

leiz,0 = enc(p)enc(6)enc(U))

leir,1 = enc(p)enc(h)enc(U)

Table 2: A Table of triples and their replacements.

such that |T| = 6kpr x 3 - r, where r is the number of rows in Table 1, and
for every i < r — 1, there exists a j < v — 1 such that V; = lc;plc;1, where
Vi = V[6kpr - i+ (6kar — 1),0]. An ezample of a valid encoding of Table 2 is as
follows:

(23) lC1,ol01,1lCQ_0102’1 e 1012,01012,1

41

In general, for a Turing machine M, its table of triples and their replacements
is encoded into a binary string T, satisfying the same conditons as T above,

" but this time relative to Thy.

We are now ready to L§-define the relation Yieldsy (V,V’, X). For that,
let T € Pyin(N) such that T is an encoding of the table of triples and their
replacements for M. Then,

Yieldsp (V, V', X)

=df

VI =kp(tm +3) A V| = V]

(24) A
Replacementp (V, V',)
A
Az <ty +1) | FSDE=2=1A (Vy/\< kn - 2)(V(y) © V'(©)))

(Vy < kpa(tar +3)
(¥ km(z+2) - (V(y) © V'(y)

where Replacementy(V,V’,) asserts that the substring V] VJV/_; of V' is
a valid replacement of the substring V;41VzVz—1 of V (i.e. there exists two
substrings Ty41 and Ty, of T such that Ty, is a replacement of Ty41, in the
table of triples and their replacements for M, and Ty = V11V V-1 and
T, = V7, 1V2V]_,) and is defined as follows

(25)
Replacement s (V, V', z)
Z=cz+1
A
(Fz0 <) ((T(3kM(2y +1)+2) o Vikn 20+ z)))
By < |T))(Vz < 3km) A
(T(Bkp -2y +2) © V'(krs - 20 + 2))

Figure 2 shows a pictorial description of (25).

5.1.3.4 If-defining the relation Outp(V,X,Y). Remember that for a
final configuration whu, where w = wpWn—1 ... wp, of a Turing machine M on
input X, we have that M(X) = wn_1 ...wo, where w; € {0,1} for every i from
Oton—1.

The relation Out s (V, X,Y'), which holds iff V encodes the final configuration
of M on input X and M(X) =Y, is ©§-defined as follows:

42

dkye =1 03ky -1]

kyt-1 B ky -1 0ky =1 g kw1 bky=1 (RITER!
— 1

r » of ri
Viar v, Viai Vies V) Via

Figure 2: Pictorial description of what the formula Replacementys expresses.

Outy(V, X,Y)
=qf
V| = ks (tas +3)
A
(26) o= (tm +2) = Y]
(¥ (v) HASymf\ol{" (Vi +y))

(=Y () > Symbol}! (V,z +y))

(31: <tm+ 2)
(Vy < |Y1) (
A

Bz <ty +1)(z = (tar + 1) = [Y| A StateM (V,z))

where State} (V,z) is defined as follows:

z=kpy -1
A
V(bs(z, z))
A
V(b3((l),0))
27) 3z < knm) A
-V (b3(z,1))
A
V(bs(z,2))
A

(Vy < 2)(y > 2 - ~V(bs(z,v)))

43

Figure 3: A pictorial description of (26). Here, n = tj + 1.

Figure 3 shows a pictorial description of (26).

5.1.3.5 YTZ-define the relation Comp,(V,Y,X). The goal of this para-
graph is to Zg-deﬁne the relation Compy(V,Y, X), which holds if and only if
V encodes the computation of a Turing machine and V shows that g(Y) = X,
where g is a polytime computable onto function from {0,1}* to {0,1}*. To
8 -define Compy(V,Y,X), we first need to describe a method of encoding the
computation of a Turing machine M on X. For that, the following definitions
are needed, but first recall that when writing Z(z, y), we mean Z((z,y)), where
(z,y) is the pairing function.

Definition 5.17 [CN10] The function Z!? is defined by
(28) Z¥ () & (i < |Z| A Z(x,1)

Definition 5.18 [CN10] The string tupling function (Xo, X;,...,Xn_1) is

defined by

(29) (X0, Xn-1)(3) © (i = (4,2)) A (J < n) A X(x)

Definition 5.19 Let ¥(U) be a TF-formula. Then we denote by (VIel) the

result of replacing every occurence of U(t) in ¥ by VIEI(t'), where t = (z,t).
The computation of a Turing machine M on an input X can be encoded

by a binary string V = (VIO V{1l vltml) such that VI is the initial con-

figuration of M on X and for every i < tp, Yieldsy (VI VIt X) holds,

and Outy (V™I X, M(X)) holds. Note that the length of V is bounded by

(tar, kae (Ear + 2)).

Now, let g be a polytime computable onto function from {0,1}* to {0,1}*
and M be a polytime Turing machine that computes g. Then, we £ -define the
relation Comp,(V,Y, X) as follows:

Compg(V,Y,X) =4f |V| < (tM,kM(tM + 2))/\
om(X, V)/\OutM(V[‘M],X,Y)

where (X, V) is defined as follows:
(31) oum(X,V) =g Initp(X, VI A (Vo < tar)(Yieldsa (VE, VEH X))

(30)

44

5.1.4 XJZ-formulation of the Reflection Principle

From now on, we assume that propositional proof systems are defined as in
[CR79], but whose domains are {0,1}*, i.e. propositional proof systems are
polytime computable onto functions from {0,1}* to TAUT, where TAUT C
{0,1}*.

We finally come to the central point of this subsection, which is to XZ-
formulate the reflection principle for a propositional proof system g which states
that

(32) VX(3Y (9(Y) = X) = X € TAUT)
We EZ-formulate the reflection principle of a proof system g as in [Coo06]:

(33)
Sound,y (X, W, Z, 2',V,Y)

=df
Eval(X, W, Z,Z') A Compy(V,Y, X) = (Fz < |X|)(|X| = 4(z + 1) A Z'(z))

where Z’(z) is the truth value of the entire Polish formula encoded by X (re-
member that a symbol in {p,1, -, A, V} is encoded by a binary string of length
4).

Theorem 5.20 Let g be a polytime computable onto function from {0,1}* to
{0,1}*. Then N, = VSoundy if and only if VX(3IY (g(Y) = X) = X € TAUT).

Proof: (=) Suppose that VSound, is true in the standard model. We show
that VX (Y (g(Y) = X) = X € TAUT). For the sake of contradiction, suppose
that 3X(3Y(g(Y) = X) A X ¢ TAUT). Let X,W,Z,2' € {0,1}* such that
Eval(X,W,Z,Z') is true in N, and let V € {0,1}* such that Compy(V,Y, X)
is true in Ny. Since X ¢ TAUT, we have that N, = (3z < | X|)(|X]| =
4(z +1) A Z'(z)). Therefore, VSound, is not true in the standard model, which
is a contradiction.

(<) Suppose that VX (IY (g(Y) = X) = X € TAUT). We want to show
that VSound, is true in N,. For the sake of contradiction, we assume that
QX" \W,z,Z2'V',Y')(Eval (X', W, Z, Z'YACompy (V',Y’, X)) is true in N, and
(3z < |X')(|X'] = 4(z + 1) A Z'(z)) is not. Since Compy(V',Y’, X') is true in
the standard model, we conclude that X’ € TAUT, which is a contradiction to
our original assumption. O

5.2 The Main Theorem

Remember that the uniform reduct of a proof system f is defined to be the set
U; = {¢(& X) € T8 : {(t, X)[fi] : M, 7 € N} has polysize f-proofs}

Let f* be the system f augmented to allow substitution Frege rules to be
applied to tautologies after exhibiting their f-proofs.

45

Theorem 5.21 U+ = TRUEgp iff T simulates every proof system.

Proof: (<) Suppose that f* simulates every proof system. Let o(Z X) €
TRUEsp. We want to show that there exists a proof system g such that

{o(h, X)[7A] : M, € N} have polysize g-proofs. We assume an efficient encod-
ing of tautologies and proofs over {0,1}*, which can be different from the one
we described previously. Let p be any proof system. We modify p in order to ob-
tain g in the following way. For every 7 € {0,1}*,¢ € {¢(r%, X)[7] : 7,7 € N},

g(0m) = p(w) and g(1Yy) = Yy, where Yy is the encoding of %, and for ev-
ery other string 7’ € {0,1}*, g(n') = T. Clearly, g is a proof system and
{¢(th, X)[A] : 7,7 € N} have polysize g-proofs. Since f+ simulates g, we con-
clude that {¢(r, X)[7] : 7,7 € N} has polysize f+-proofs.

(=) Suppose that Us+ = TRUEgz holds. We show that for every proof
system g, there exists a polynomial p such that

VX,Y(g(Y) = X = V' (S*(Y) = X AlY'| < p(IY]))).

Let g be any proof system. Then g satisfies (32). Therefore, VSound, is true
in N,, by Theorem 5.20. Therefore, {Soundy(X,W, Z,Z',V,Y)[#] : i € N} has
polysize f*-proofs, by assumption.

Now, let A and B be any binary string such that g(B) = A (i.e. A encodes
a tautology and B is a g-proof of A), and let C' be any binary string such that
C encodes a computation of a Turing machine and C shows that g(B) = A.
Furthermore, let D be a binary string such that D encodes the weight of the
tautology encoded by A. Additionally, let ny = |[A|,ng = |B|,n¢ = |C|,np =
|D|,nz =na and nz: = ny.

Note that the propositional formula encoded by A is in Polish notation.
Thus, a propositional variable has its index written in unary notation. We write
p; for p11...1, where p11...1 has i many 1’s. Now, we denote by w(pg, .. .pi-1)
the formula encoded by A, where py, ..., p;—; are all the propositional variables

in .

We show that there exists a binary string B’ such that f+(B’) = A and
|B'| < p(|B|), for some polynomial p.

The formula Soundy(X,W,Z,Z',V,Y)[na,np,nz,nz,nc,np) has atoms

pé(y s »pfA—mpOW’ e)anD—z;pg; e ,sz-zypoz 1t rpﬁz,—mpé/) e 7p1‘1/c—2 and
Py ... PY,_2, and more importantly, it has polysize f*-proof, since we have
that Soundy(X, W, 2,2',V,Y) € TRUEgs.

Let o1 be a substitution such that:

U](P) = A(0)7 ’U(pfr,(—2) = A(nA - 2)7
Ul(pO) B(0)> 70(pn —2)=B(n5_2)7
0'1(1’0) = C(O)’ ,U(Pn‘y—z) = C(nC"_ 2)1
Ul(p)" ()) »U(an—2)=D(nC_2)

46

and for every other atom p in Soundy(X,W, Z,Z',V,Y)[na,np,nz,nz/,nc,nsl,
o1(p) = p. Then, we have
Soundy(xav‘/)zy ZI:V;Y)[nA:nDynZan'an01nB]

34
(34) Soundy (X, W, Z,2',V,Y)[na,np,nz,nz,nc,nploi

by the application of the substitution rule (cf. Definition 3.43). We denote the
formula Soundy(X,W, Z,Z',V,Y)[na,np,nz,nz ,nc,nglo1 by Sound_};. Sound_}]
is of the form

Eval(X,W,Z,Z")lna,np,nz,nz]o1
(35) A = ¢ta(X, Z')[na, nzjon
Compy (V’ Yv X) [ncy na, n3]01
where 30 (X, Z")[na,nz]o is
(36) V (ra = 4G +1))lna) A Z'(§)[nz]
i<na

where we have that

pizl ifz’SnZ:—2
37) Z'@)nz)= T ifi=ngzg -1

1 otherwise
Now (36) is equivalent to Z'(j)[nz], for some j < n4. Clearly, this equivalence

has polysize Frege-proof (all that is needed to be done is some pruning). Let
Sound? denote the formula

(E'val(X, W,2,2")[na,np,nz,nzlo1

A = Z'(j)[nz’]
Compy(‘ll Y7X)[ncyn.4) nB]UI

(38)

Let m be the runtime required by the Turing machine M on B, which computes
g and whose computation is encoded by C. Since Compy(V,Y, X}[n,na, nglo1,
in Soundg, is a closed tautology, we conclude that it has polysize Frege-proof,
by Corollary 3.41. Thus, we obtain

Sound} = Eval(X,W, Z,2')[na,np,nz,nzlo1 = Z'(j)[nz]

Let o2 be a substitution such that a2(p€) = po, .. .,02(pZ,) = pi—1,02(p%) =
L,...,02(pZ,_;) = L and for every other atom p in Smmdg, o2(p) = p. Then,

we have that

Sound?

(39) _Doundg
Sound3o;

by the application of the substitution rule.

Now, for each subformula ¢’ of ¢, we substitute ¢’ for pZ’ in Soundgoz, where

Z'(4) codes the truth assignment to ¢’, and we set the remaining pjz' to L. Let
o3 denote that substitution. The resulting formula has the form

(40) Eval* = ¢

47

We now argue that Eval* = Assign® A p&, A...p¢, has short Frege-proof.

Remember that Eval(X, W, Z, Z’) =g Assign(X,W,Z)Apc, A...Apc,, where
Assign(X, W, Z) =g Fla(X,W) A (|Z| < |X]). Since Assign? is a closed tau-
tology, by corollary 3.41, it has polysize Frege-proof. Now, every variable in <p‘é.‘,
occurs in a subformula of the form

L7 T,

2. 9% & 1,

3. @f’ © —wjzil or
4. o7 & o7 xpF,

which will turn into tautologies, by o3, with short Frege-proofs. As an example,
let us look at ¢, . ¢c,0107 is of the form

/\ Subf(X,j,k, W)lna,nplo102 A XEnc—(X, j)[naloroz = ¢1

Jk<na

where
el ifj=nzl
h={Te-pZ, ifj=nz-1
pZ o -pf, ifj<ng -2

¢%, can be shown to be equivalent to

(41) /\ SUbf(XnLE, W)[”A, nD](Tle A XETLC-.(X,__];)[TLA]OjUZ — 1/)2
dk<na—2> ~ 4

v

by a short Frege-proof, where v, is the tautology —¢' < —¢’, which also
has short Frege-proof and where ¢’ is the subformula of ¢ corresponding to
Subf(X,j — 1,k). Since the tautology v, has short Frege-proof, we conclude
that % has short Frege-proof. Then, (41) has short Frege-proof. Similarly, for
<p‘é.l,<p‘é.3 and ¢¢,. Thus, Eval® has short Frege-proof.

We conclude that ¢ has an f*-proof polynomial in the length of B. O

6 Conclusion

In this dissertation, we carried out a detailed proof of the equivalence between
the existence of an optimal proof system and the existence of a proof system
whose uniform reduct is the set of all true SF-formulae. In this regard, we
described how to encode Polish propositional formulae into binary strings (or
sets, more precisely) and L¥-defined Polish propositional formulae. Qur de-
scription of how to encode truth assignments to Polish propositional formulae is
partly from Cook and Nguyen’s book, "Logical Foundations of Proof Complex-
ity”. Combining the ideas of Papadimitriou’s [Pap94] and Cook and Nguyen'’s,
of how to encode a Turing machine computation, we described how to encode

48

a polytime Turing machine computation on a given input and provided a %J-
formula that captures such computation. We also gave a L -formulation of the
Reflection Principle.

In Cook’s sketch of the main theorem [Coo06], he used Z(0) instead of our
Z(n), where n is a natural number such that the length of the encoding of the
Polish formula under consideration is equal to (n + 1), to represent the truth
value of a Polish formula. This allowed him to do a direct proof without hav-
ing to go through the equivalence between (36) and Z’'(n)[nz/]. This suggests
that, instead of Polish formulae, we could use reverse Polish formulae. Thus,
Z(0) would then represent the truth value of the reverse Polish formula under
consideration.

As we have seen, if one can show that a proof system f is optimal, then
separating NP from coNP boils down to showing if there exists a true LF-
formula (X) such that {@(X)[Al] : @ € N} is hard for f. Thus, a possible
future direction would be to investigate the uniform reducts of propositional
proof systems whose no strong lower bounds are not known yet: Frege, extended
Frege, etc. For example, one may look for properties of uniform reducts of those
systems which might help distinguish them from TRUEEg.

49

References

[BBPYS]

[BdG9S]

[Bec05]

[BPY6)

[BP9g]

[BPOL]

[Bus87a]

[Bus87b]
[Bus02]

[CN10]

[Coo71]

[Coo03]
[Coo06]

[CR79]

Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there
hard examples for Frege systems? In Feasible mathematics, II (Ithaca,
NY, 1992), volume 13 of Progr. Comput. Sci. Appl. Logic, pages 30—
56. Birkhiuser Boston, Boston, MA, 1995.

Shai Ben-david and Anna Gringauze. On the existence of optimal
propositional proof systems and oracle-relativized propositional logic.
Technical report, Electronic Colloquium on Computational Complex-
ity, 1998.

Arnold Beckmann. Uniform proof complexity. J. Logic Comput.,
15(4):433-446, 2005.

Paul Beame and Toniann Pitassi. Simplified and improved resolution
lower bounds. In 87th Annual Symposium on Foundations of Com-
puter Science (Burlington, VT, 1996), pages 274-282. IEEE Comput.
Soc. Press, Los Alamitos, CA, 1996.

Sam Buss and Toniann Pitassi. Resolution and the weak pigeonhole
principle. In Computer science logic (Aarhus, 1997), volume 1414 of
Lecture Notes in Comput. Scti., pages 149-156. Springer, Berlin, 1998.

Paul Beame and Toniann Pitassi. Current trends in theoretical com-
puter science. chapter Propositional proof complexity: past, present,
and future, pages 42-70. World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 2001.

Samuel R. Buss. The boolean formula value problem is in alogtime.
In in Proceedings of the 19-th Annual ACM Symposium on Theory of
Computing, pages 123-131, 1987.

Samuel R.. Buss. Polynomial size proofs of the propositional pigeonhole
principle. J. Symbolic Logic, 52(4):916-927, 1987.

Samuel R. Buss. Some remarks on lengths of propositional proofs.
Archive for Mathematical Logic, 34:377-394, 2002.

Stephen Cook and Phuong Nguyen. Logical Foundations of Proof
Complezity. Cambridge University Press, New York, NY, USA, 1st
edition, 2010.

Stephen A. Cook. The complexity of theorem-proving procedures. In
STOC ’71: Proceedings of the third annual ACM symposium on The-
ory of computing, pages 151-158, New York, NY, USA, 1971. ACM.

Stephen Cook. The importance of the p versus np question. J. ACM,
50:27-29, January 2003.

Stephen Cook. Comments on Beckmann’s uniform reducts. CoRR,
abs/cs/0601086, 2006.

Stephen A. Cook and Robert A. Reckhow. The relative efficiency of
propositional proof systems. J. Symbolic Logic, 44(1):36-50, 1979.

50

(GJ90]

[Hak85]

[KP89a)

[KP89b)

[MT98]

[Pap94]

[Raz04]

Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity; A Guide to the Theory of NP-Completeness. W. H. Freeman &
Co., New York, NY, USA, 1990.

A. Haken. The Intractability of Resolution. Theoretical of Computer
Science, 39:297-308, 1985.

Jan Krajicek and Pavel Pudlék. Propositional proof systems, the
consistency of first order theories and the complexity of computations.
J. Symbolic Logic, 54(3):1063-1079, 1989.

Jan Kraji¢ek and Pavel Pudldk. Propositional proof systems, the
consistency of first order theories and the complexity of computations.
J. Symbolic Logic, 54(3):1063-1079, 1989.

Jochen MeBner and Jacobo Tordan. Optimal proof systems for propo-
sitional logic and complete sets. In Proceedings of the 15th Annual
Symposium on Theoretical Aspects of Computer Science, STACS 98,
pages 477-487, London, UK, 1998. Springer-Verlag.

Christos M. Papadimitriou. Computational complezity. Addison-
Wesley, Reading, Massachusetts, 1994.

Ran Raz. Resolution lower bounds for the weak pigeonhole principle.
J. ACM, 51(2):115-138 (electronic), 2004.

51

_AN
"'»3"“” Sey
(LIBRARY

C
%’L’E no

