

 Swansea University E-Theses ___

Optimal proof systems and uniform systems.

Razafindrakoto, Jean-Jose

 How to cite: ___
Razafindrakoto, Jean-Jose (2012) Optimal proof systems and uniform systems.. thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa43008

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa43008
http://www.swansea.ac.uk/library/researchsupport/ris-support/

O ptim al P roof System s
and U niform System s

Jean-Jose Razafindrakoto

February 7, 2012

A thesis subm itted to Swansea University in
candidature for the degree for the Degree of M aster of Research

Swansea University
Prifysgol Abertawe

D epartm ent of Com puter Science
Swansea University

ProQuest Number: 10821398

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10821398

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Declaration

This work has not previously been accepted in substance for any degree and is
not being currently submitted for any degree.

<date> u e d n t s d o ^ 2 f t 2 . 0 1 2 ^
Signed:

Statem ent 1

This thesis is being submitted in partial fulfilment of the requirements for the
degree of an MRes in Logic and Computation.

<date>
Signed:

<
VI

Statem ent 2

This thesis is the result of my own independent work/investigation, except where
otherwise stated. Other sources are specifically acknowledged by clear cross
referencing to author, work, and pages using the bibliography/references. I un
derstand tha t failure to do this amounts to plagiarism and will be considered
grounds for failure of this dissertation and the degree examination as a whole.

< date> U fe< * « u x > cb * v \ J ’d 1'
Signed:

Statem ent 3

I hereby give my consent for my thesis to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to
outside organisations.

< date> ^
Signed:

A bstract

In ’’Uniform Proof Complexity”, Beckmann introduced the notion of
the Uniform Reduct of a proof system which he defined to be the set
of those true bounded formulae (in the language of Peano Arithmetic)
which have polynomial-size proofs under the Paris-Wilkie translation . In
his comments to Beckmann’s paper, Cook pointed out that the existence
of a proof system whose uniform reduct is the set of all true Ejf -formulae
is equivalent to the existence of an optimal proof system. In this work,
we carry out a detailed proof of that equivalence.

3

C ontents
1 In tro d u c tio n 5

2 C o m plex ity T h eo ry 6
2.1 Turing M a c h in e s .. 6

2.1.1 Deterministic Turing M a ch in e s ... 6
2.1.2 Non-deterministic Turing M achines.. 8

2.2 NP and N P-com pleteness.. 9

3 P ro p o s itio n a l P ro o f C o m p lex ity 11
3.1 Propositional L ogic ... 11

3.1.1 Syntax and Semantics of Propositional L o g ic 11
3.2 SAT, TAUT and NP vs c o N P ... 12
3.3 Proof S y s te m .. 13
3.4 Frege and Substitution Frege S y s te m s ... 16

3.4.1 Frege Systems .. 16
3.4.2 Substitution Frege systems ... 18
3.4.3 Some Results and Open Problems in Proof Complexity . 18

4 U n ifo rm S ystem s 19
4.1 Second-Order Bounded A rith m e tic .. 20
4.2 Translating E q -form ulae... 23
4.3 The Uniform Reduct of a Proof S y s te m .. 28

5 U n ifo rm S ystem s vs O p tim a l P ro o f S ystem s 29
5.1 The Reflection Principle for a Proof S y s te m 29

5.1.1 Encoding Polish Propositional F o rm u lae 29
5.1.2 Encoding Truth A ssignm en ts .. 35
5.1.3 Encoding Polytime Turing Machine Computations 37
5.1.4 EgUformulation of the Reflection P rinc ip le 45

5.2 The Main T heorem ... 45

6 C onclusion 48

1 Introduction
The P vs NP problem is arguably the most important problem in both Com
puter Science and Mathematics. As a m atter of fact, it is the first of seven
million-dollar Millenium Prize Problems listed by the Clay Mathematics Insti
tu te [Coo03]. Besides, NP-completeness is debatably the most pervasive concept
in Computer Science since it captures the computational complexity of many
significant problems from different areas of the field (see [GJ90] for many exam
ples).

One major way towards a solution to the P vs NP problem is Proposi
tional Proof Complexity, an area of study developed by Cook and Reckow in
their seminal paper entitled ’’The Relative Efficiency of Propositional Proof Sys
tems” [CR79], where they showed that NP = coNP if and only if a polynomially
bounded proof system exists (a polynomially bounded propositional proof sys
tem, roughly speaking, is a polynomial-time proof-verifier P for membership
in TAUT, the set of all propositional tautologies, such tha t every tautology
has a polynomial-size proof in P in the length of the tautology). In Proposi
tional Proof Complexity, the basic task is to prove that stronger and stronger
proof systems are not polynomially bounded, until it is established for all proof
systems. Hence, if one achieves that general program of Propositional Proof
Complexity described above, then NP is different to coNP, thus separating P
from NP.

In keeping with the general program of Propositional Proof Complexity, a
lot of work has been done in deriving strong lower bounds for various stan
dard propositional proof systems. For example, it has been shown by Haken,
in [Hak85], that the Pigeonhole Principle requires exponential size Resolution
refutations. Later, Beame and Pitassi provided an improved lower bound on the
the sizes of Resolution refutations for the Pigeonhole Principle in [BP96]. How
ever, unlike Resolution (and other propositional proof systems like AC°-Frege
systems and their extensions), no strong lower bounds are known for Frege and
Extended Frege systems. The best lower bounds known for them are linear
on the number of lines and quadratic on the number of symbols [Bus02] (the
Pigeonhole Principle requires polynomial length Frege [Bus87bl and Extended
Frege [CR79] proofs).

Since some families of tautologies require polynomial size proofs in some
propositional proof systems and exponential size proofs in others, one can then
think of comparing propositional proof systems according to their relative ef
ficiencies. To do that, Cook and Reckow defined, in [CR79], the notion of
p-simulation. Informally, a propositional proof system Pi p-simulates another
propositional proof system P2 , means that there exists a polynomial time pro
cedure tha t translates every proof in Pi into a proof in P i . A weaker notion of
p-simulation between two propositional proof systems, called simulation, also
exists, where the existence of a polynomial time procedure is not required. Given
these informal definitions, one important question arises: Is there any proposi
tional proof system which simulates every other propositional proof system? In
other words, does there exist an optimal proof system?

If an optimal proof system exists, then in order to separate NP from coNP it
would suffice to prove that such a system is not polynomially bounded. Partial
results have been obtained in [KP89a, MT98, BdG98], relating the existence of
optimal proof systems to the equivalence of certain complexity classes. More

5

recently, Cook pointed out in [C0 0 O6] that the existence of an optimal proof
system is equivalent to the existence of a propositional proof system such tha t
its uniform reduct equals the set of all true Ej^-formulae. Here, the uniform
reduct of a propositional proof system (or just uniform system) is a notion
defined by Beckmann in [Bec05] and is the set of those true Ejf-formulae which
have polynomial size proofs under some translation in the style of the Paris-
Wilkie translation.

The goal of this project is to carry out the detailed proof of the equiva
lence between the existence of an optimal proof system and the existence of
a propositional proof system whose uniform reduct equals the set of all true
E q -formulae.

In Section 2 , we introduce some basic background of complexity theory that
is needed for our purpose. Then, Section 3 gives an overview of Propositional
Proof Complexity and the definitions that we need for later sections. In Section
4, we define E^-formulae and show how to translate them into propositional
logic. From there, we formally define the Uniform Reduct of a propositional
proof system. Finally, Section 5 is the main body of this dissertation. In
there, we show how to encode Polish propositional formulae, tru th assignments,
polytime Turing machine computations and the reflection principle for a propo
sitional proof system. Additionally, we present the detailed-proof of the equiv
alence between the existence of an optimal proof system and the existence of
a propositional proof system whose uniform reduct equals the set of all true
E,f-formulae.

2 C om plexity Theory
In this section, we first introduce our model of computation, which is a Turing
machine. From there, we define what it means for a language to be in the
complexity class NP. Then, we define the notion of NP-completeness.

2.1 Turing Machines
Our exposition of Turing machines (deterministic and non-deterministic Turing
machines) follows [Pap94].

N o ta t io n We use E* (resp. E +) to denote the set of all finite (resp. non-empty
finite) strings over the finite alphabet E under consideration. Additionally, N
denotes the set of natural numbers including 0 and Z denotes the set of all
integers.

2.1.1 D e te rm in is tic T u rin g M ach ines

The deterministic Turing machine th a t we are going to describe consists of a
string of symbols from a finite alphabet, a finite state control and a cursor that
scans the symbols on the string and tha t is connected to the control. Depending
on the state of the control and the symbol scanned by the cursor, the machine
assumes a new state, overwrites the symbol scanned by the cursor and moves
the cursor to the left or right of the overwritten symbol, or just leaves the cursor
at its current position.

6

D efin ition 2.1 Define a d e te rm in is tic T uring m a ch in e M to be a quadru
ple (K ,H ,5 ,s) where

1. K is a finite set of states.

2. E is a finite set of symbols and is called the alphabet of M . Assume that
K fl E = 0. Furthermore, assume that E always contains the symbols U
(blank sym bol) and > (f ir s t symbol).

3. 5 is a transition function from K x E to (K U {h, yes, no}) x E x {•<—
where h is the ha lting sta te , yes is the accepting sta te , no

is the re jec ting sta te , <- is the cursor direction for left, —> is the cur
sor direction for right, — is the cursor direction for stay. Assume that
{{h, yes, no} U {•<—, — —}) n (AT U E) = 0.

4. s E K is the in itia l sta te.

N o ta tio n . When we write T (possibly subscripted), we always mean E\{l_l}
and T* C (E\{U})*, for some Turing machine’s alphabet E.

For every q E K and a E E, there exists a q' E K \j{ h , yes, no}, a a' E E and
a D E —} such that 5(q,o) = (q ',u ',D), where q is the current state of
the control, a is the symbol scanned by the cursor, q' is the new state, a 1 is the
symbol to be overwritten on a and D is the the direction in which the cursor
will move. Assume tha t if a = >, then o' = a and D = —».

M works as follows. Initially, the initial state is s; the string is initialised
to >x, where x e T* and x is called the in p u t of M; the cursor scans >. Then
M moves according to the transition function 5. Now, M halts if one of the
following states is reached: h,yes or no. If the yes state is reached, then M
ac ce p ts its input; if the no state is reached, then M re je c ts its output. If M
halts on input x, then define the o u tp u t of M on x, denoted M (x), as follows.
If M accepts x, then M {x) = yes; if M rejects x, then M (x) = no; if the state
h is reached, then the string, at the time of halting, consists of t>y (y is a finite
string whose last symbol is different from U), possibly followed by a string of
blanks, and we consider that M {x) = y.

D efin ition 2.2 Let M be a Turing machine. A con figura tion of M is a triple
(q ,w ,u) where q E K U {h ,ye s ,n o } , w G E+ , and u E E*. w is the string to the
left o f the cursor such that the last symbol o fw is the current symbol scanned by
the cursor, u is the string (may be an empty string) to the right of the cursor.
Finally, q is the current state.

D efin itio n 2.3 Let M be a Turing machine and w = va, where v E E*, and
a E E. Configuration (q ,w ,u) yields configuration (q1 ,w ',u ') in one step , de-

A/*noted (q ,w ,u) — > (q ',w ',u '), i f in the transition function, 5(q,a) = (q ',o ',D)
and: if D = —, then w' = vo' and u' = u; i f D = —>, then w' is va 1 with the
first symbol of u appended to it (U if u is the empty string) and u' is u with its
first symbol omitted (i fu is the empty string, then u' remains empty); i f D =<—,
then w' = v and u! is u with o' attached in the beginning.

Define the notion of configuration (q ,w ,u) yields configuration (q ',w ',u f)
fyfk

in k steps, denoted (q ,w ,u) — > (q ',w ',u ') and where k > 0 , as follows.

7

(q ,w ,u) (q ',w ',u ') for k > 0 , if there are configurations (qj,W j,U j), for
jtfl

j = 1 , . . . ,fc + 1 , such that (qi,Wi,Ui) — > (qi+i,w i+i ,u i+i), for i =
and (qu w i,u i) = (q ,w ,u) and (qk+i ,w k+i, «fc+i) = (q ',w ',u ').

A t last, (q ,w ,u) yields (q', w ',u ') in a t least one step, denoted (q ,w ,u)

(q ',w ',u '), i f there exists a k > 1 such that (q ,w ,u) (q ',w ',u ').

D efin itio n 2.4 Given a Turing machine M and a language L C T*, we say
that M decides L iff for every x G T* the following conditions hold: i f x G L,

then (s,> ,x) (yes,w ,u), and, i f x ^ L , then (s,> ,x) — > (n o ,w ,u) for some
w, u.

D efin ition 2.5 Let M be a Turing machine and L be a language such that
L C r* . M decides L in tim e f(n) iff the following two conditions hold: M

A/ic
decides L; for any x £ T*, if (s,> ,x) — > (H ,w ,u), for H £ {yes,no], then
k < f(\x \).

D efin ition 2.6 Let f be a function from (E\{l_l})* to E*. Then f is said
to be com putab le i f and only if there exists a deterministic Turing machine
M with alphabet E such that for all x e (E\{U})*, M {x) = f{x). f is said
to be com putab le in tim e g(n) if and only if M is computable and for all

\jfk
x G (E\{U})*, (s,> ,x) —> (h ,w ,u) and k < g(|x|).

2.1.2 N o n -d e te rm in is tic T u rin g M ach ines

The definition of a n o n -d e te rm in is tic T u rin g m ach ine is much like the deter
ministic Turing machine one, except that 5 is no longer a transition function but
now a relation A such that A c (K x E) x [{K U {h,yes,no}) x E x {•*—,-* , —}].

The definition of a non-deterministic Turing machine’s co n fig u ra tio n is
exactly the same as the definition of a deterministic Turing machine’s configu
ration. However, a non-deterministic Turing machine’s configuration may now
yield more than one configuration in one step.

D efin ition 2.7 Let N be a nondeterministic Turing machine and w = va,
where v G E* and a G E. Configuration (q ,w ,u) yie lds configuration {q ',w ',u ')

in one step , denoted (q ,w ,u) — > (q ',w ',u '), if there exists a rule ((q,a),(q
a', D)) in A such that: i f D = —, then w' = va ' and u' = u; if D = —>, then w 1
is va ' with the first symbol of u appended to it (iJ if u is the empty string) and
u' is u with its first symbol omitted (if u is the empty string, then u' remains
empty); if D then w' = v and u' is u with a' attached in the beginning.

can be defined in the same way as Finally, (q ,w ,u) (q ',w ',u ')

if there exists a k > 1 such that (q ,w ,u) — > (q ',w ',u ').

D efin ition 2.8 Let N be a non-deterministic Turing machine and L be a lan
guage such that L C T*. N decides L in tim e f(n) i ff for any x G T* the
following two conditions hold:

— for every configuration C that arises in the computations of N on x, there
N kexists a k G N such that k < /(|x |) and (s,> ,x) — > C;

yy +
— x £ L iff (s, t>, x) — > (yes, w, u) .

2.2 N P and N P-com pleteness
D efin ition 2.9 A language L belongs to NP iff there exists a non-deterministic
Taring machine N and a polynomial p such that N decides L in time p (n).

T h e o re m 2.10 A language L belongs to NP if and only i f there exists a poly
nomial time Turing machine V (called a proof verifier) and a polynomial p such
that fo r all i g T * , the following holds:

(1) x £ L £ r* (|7r| < p(\x\) A V accepts (x ,tt))

P ro o f: Before we sta rt the proof, it is worth pointing out tha t we view con
figurations and sequences of configurations as strings over a finite alphabet T
which includes the symbols and Obviously, the length of a string
over T corresponds to the number of symbols in the string.

(=>■) Suppose th a t L £ NP. By Definition 2.9, we can let AT be a non-
deterministic Turing machine and p\ be a polynomial such th a t N decides L in
time pi(n). Define V to be a polynomial time Turing machine th a t takes as its
input pairs of strings (x, 7r), where x ,n £ P*, and checks:

1 . if 7r = C i , . . . , C j;

2 . if Ci = (s,>, x);

3. if Cj = (y e s ,w ,u) for some w,u;

4. if Ci -?—*■ Ci+ 1 for alH = 1 , . . . , j — 1.

If all these four conditions are satisfied, then V accepts (x ,n). Let x be an
arbitrary string in T*. Now, prove (1) and define P2 in the course of the proof.

Suppose tha t x £ L. Show tha t 37r(|7r| < P2 (M) A V accepts (x, 7r)) holds.

Since N decides L in time pi(n), by Definition 2.8, we have (s,> ,x) — >•
(yes,w ,u) where 2 < j < P i(|x |) + 1. So, let S = C \ , . . . , Cj such tha t C\ =

TV1(s,t>,x), Cj = (y e s ,w ,u), and Ci — » Ci+i for all t = 1 , . . . , j — 1. Let 7r = S.
Clearly, V accepts (x ,7r). Now, derive an upperbound for |7r|. By the definition
of ’’yields in one step” in Definition 2.7, we have |Cj| < |C i- i | + 1 for all i =
2 , . . . , j . Unfolding this inequality yields |Q | < |C i| + (i — 1) for all i = 1 , . . . , j .
Since |Ci| + (i - 1) < |Ci| + (j - 1) < 6 + |x| -I- p i(|x |) for all? = 1 , . . . , j ,

pi(M)+i
therefore, \Ci\ < 6 + |x| + p i(|x |) for all t = 1 , . . . , j . Hence,

i=l
j Pi(l*l)+1

(pi(|x |) + l) x (6 + |x |+ p i(|x |) + l). As |tt| < j^ (|C i | + l) < (|Ci| + l),
i=i »=i

we get:
k l < (Pi(l®l) + 1) x (7 + |x| + p i(|x |))

N' ■ v
p2(|x|)

9

This shows th a t |7r| is upperbounded by a polynomial in the length of x. There
fore, 37r(|7r| < P2 (1^1) A V accepts (rr, 7r)) holds.

Now, suppose tha t there exists a string n such tha t |7r| < p2 (I^I) an<3 V
accepts (x, ir). Show tha t x G L. So, let 7Ti be a sequence of configurations such
tha t |7Ti| < P2 (\x\) and V accepts (x, tti). By the definition of V, we can let

7ri = C i , . . . , Cj, where C\ = (s ,> ,x),C j = (y e s ,w ,u) and C* — > Ci+1, for all
jy-f

i = 1 , . . . , j — 1. Hence, (s,t>, x) — > (yes,w ,u). By Definition 2.8, x G L.

{<=) Let V be a polynomial time Turing machine and p2 be a polynomial
such th a t for all x G T*, x G L 37r(|7r| < P2 (\x \) A V accepts (x ,7r)) holds.
Show th a t there exists a non-deterministic Turing machine tha t decides L in
polynomial tim e in the length of the input. Define N to be a non-deterministic
Turing machine such tha t for every input x G T*, N behaves as follows:

1. guesses a sequence of configurations 7r such th a t |7r| < (1^1);

2. runs V on input (x ,7r). If V accepts, then so does N , otherwise N rejects.

Let x be an arbitrary string in T* . Clearly, N accepts or rejects x in polynomial
time in the length of x, since the first step takes at most p2 (\x\), and V accepts
or rejects (x,7r) in polynomial time in the length of x.

Suppose tha t x € L. Hence, 37r(|7r| < p2 (1 1̂) A V accepts (x, 7r)) holds. So,
let 7Ti be a sequence of configurations such tha t |7Ti| < P2 (\x\) and V accepts
(x ,7Ti). Now, we run N on input x. Let N guess 7Ti. Hence, N accepts x.

Suppose tha t x $ L. Hence, V7r(V rejects (x, 7r)) holds. Therefore, if we run
N on input x, then for any sequence of configurations 7r th a t N may guess, V
will reject (x ,7r). Therefore, N rejects x. □

D efin itio n 2.11 Let L and L ' be languages such that L C TJ and L' C Tj,
where T i and 1̂ 2 are finite alphabets. L is p o ly n o m ia l t im e reducible to
L ', denoted L <p L ', iff there exists a deterministic Turing machine M and a
polynomial p such that for every input string x M halts within p(\x\) steps
and M {x) € L' iff x € L. M is called a p o lyn o m ia l t im e red u ctio n from L
to L '.

O b se rv a tio n 2.12 The relation <p is reflexive and transitive.

D efin itio n 2.13 A language L is N P -co m p le te iff L € NP and for every
language V e NP, L' <p L.

L em m a 2.14 I f L <p V and V G NP, then L G NP.

P ro o f: Suppose tha t L <p L' and L' G NP. Show tha t L G NP. Let M be a
polynomial time reduction from L to L' and N ' be a non-deterministic Turing
machine which decides L' in polynomial time. Define a nondeterministic Turing
machine N which decides L as follows.

N on input x:

1 . Computes M (x).

2 . Runs N ' on input M (x).

10

N obviously runs in polynomial time since its two stages run in polynomial
time. Hence, L E NP. □

L em m a 2.15 I f L is N P -complete, L ' E NP and L <p V then L ' is NP-
complete.

P ro o f: Suppose tha t L is NP-complete, L' E NP and L <p L ' . Show that
V is NP-complete. Since L ' is already in NP, it suffices to show th a t for any
L" E NP, L" <p L '. As L is NP-complete, we get that L" <p L, by Definition
2.13. Since L <p L ' and < p is transitive, we get that L" <p U . □

3 P ropositional P roof C om plexity
In this section, we give a brief overview of Propositional Proof Complexity and
provide definitions tha t are needed for our purpose. In the first part, we define
the language of propositional logic. Then, we relate the NP vs coNP question
to the P vs NP question. The search for an efficient proof system for TAUT
can be reduced to finding the most powerful of all propositional proof systems,
in terms of efficiency, which is an optimal proof system. W ithin th a t section,
we also define the notion of optimal proof system, that is going to be at the
heart of this dissertation. In fact, if one proves the existence of an optimal proof
system P, then proving NP is different from coNP boils down to showing that
P is not efficient. Later, in tha t section, we introduce Frege and Substitution
Frege systems, as they are needed for the proof of the main theorem of this
thesis. Then, we present some results and open problems in propositional proof
complexity.

3.1 Propositional Logic
Our exposition of propositional logic follows [CN10].

3.1.1 S y n tax an d S em antics o f P ro p o s itio n a l Logic

The language of propositional logic consists of: the logical constants T (for True)
and ± (for False), a countable set V = {po ,p i, . . . } of propositional variables,
the logical connectives -i, V, A and parentheses (,).

D efin itio n 3.1 Define proposition a l form u lae (or form u lae fo r short) in
ductively as follows:

(PL1). T, ± and pi are atomic formulae, for any i> 0.

(PL2). I f p and if) are formulae, then so are -up, (jp V '0) and (ip A ip).

The set of all well-formed propositional formulae will be denoted by PL.
Propositional formulae will be denoted by <p,ip,..., possibly subscripted.

D efin ition 3.2 A formula <p is said to be closed i f it doesn’t contain proposi
tional variables.

N o ta tio n (</? —> ip) stands for (-■<£ Vip) and (<p <->• ip) for ((<p —> ip) A (ip —> ip)).
n n

Also, we write ^ <pi for ipi A . . . A tpn and \ J tpi for p>i V . . . V ipn .
i= l i= l

11

D efin ition 3.3 Define a tru th a ss ig n m e n t to be a mapping from V to {1,0},
where 1 denotes True and 0 denotes False. Given a truth assignment r , the
truth value of a formula ip, denoted ipT, is defined inductively as follows:

1. T T = 1, ± r = 0 and (Pi)T = r(pi);

2. (^tp)T — 1 - ipT; (ipAip)T = min{ipT,ipT}; (<pV tp)T = max{ipT,xpT}.

D efin ition 3.4 A truth assignment r sa tis fie s a formula ip, denoted t \= tp,
if and only if ipT = 1.

D efin ition 3.5 Let <po,<pi, ■ • ■ ,<Pk be formulas. Then ipo is a logical conse
quence of { p \ , . .. ,ipk}, denoted { ip i,. . . , ipk} f= <Po, if and only if for every
truth assignment r , if (ip\ A . . . A (pk)T = 1, then (ip0)T = 1.

3.2 SAT, TAUT and N P vs coNP
D efin ition 3.6 A formula ip is sa tisfiab le if and only if there exists an assign
ment t such that t (= ip (we denote by SAT the set of all satisfiable formulae),
ip is a tau tology if and only if for all assignments r , t \= ip (we denote by
TAUT the set of all tautologies).

O b serv a tio n 3.7 Let ip be a formula. Then {} (= p (or simply written as |= ip)
i f and only i f ip £ TAUT.

N o ta tio n If L is a language, then denote by L the complement of L.

O b serv a tio n 3.8 A formula tp € TAUT if and only i f ip € SAT.

T h eo rem 3.9 [Coo71] SAT is N P -complete.

Cook is the first to show the existence of an NP-complete language: SAT.
Thus, for P to be equal to NP, it has to be tha t SAT is in P.

C o ro lla ry 3.10 TAUT is N P -complete.

P ro o f: One way to prove that TAUT is NP-complete is to show that it is in
NP and SAT < p TAUT. From there, one obtains tha t TAUT is NP-complete,
by Lemma 2.15.

First demonstrate tha t TAUT € NP. Observe tha t TAUT = {</> | -i0 G
SAT}. Since -><f) can easily be computed in polynomial time by a deterministic
Turing machine from <f>, we get th a t TAUT <p SAT, by Definition 2.11. Thus,
TAUT € NP, by Lemma 2.14.

The proof of SAT <p TAUT uses exactly the same strategy as the proof of
TAUT <P SAT, because SAT = {<j> | € TAUT}. □

D efin ition 3.11 A language L € coNP i f and only if L € NP

O b serv a tio n 3.12 TAUT € coNP.

P ro p o s itio n 3.13 I f NP ^ coNP, then P ^ NP.

12

P ro o f: Prove the contrapositive. Observe tha t P is closed under complemen
tation. Suppose tha t P = NP. Hence, coNP = {L | L £ P} = P. Thus,
NP = coNP, by assumption. □

P ro p o s itio n 3.14 NP = coNP if and only if TAUT £ NP.

P ro o f: First observe tha t L <p L ' if and only if L <p L '.
(=>) Suppose th a t NP = coNP. Show that TAUT is in NP. By Corollary

3.10, we have th a t TAUT is NP-complete. Hence, TAUT £ NP, by Definition
2.13. It follows that TAUT £ coNP, by Definition 3.11. Therefore, TAUT £ NP,
by assumption.

(4=) Suppose tha t TAUT £ NP. To show that NP = coNP, it suffices to
show th a t for every language in NP, its complement is also in NP. Let L be
an arbitrary language in NP. By corollary 3.10, TAUT is NP-complete. Hence,
all languages in NP can be polynomially reduced to TAUT, by Definition 2.13.
In particular, L < p TAUT. Therefore, L <p TAUT. Since TAUT £ NP (by
assumption), we get tha t L £ NP, by Lemma 2.14. □

3.3 Proof System
D efin ition 3.15 Define a proposition a l p ro o f sy s tem to be a polynomial
time deterministic Turing machine P such that:

V2 £ T*(x £ TAUT <*=>■ 37T £ T*(P accepts (x,ir)))

Sometimes, we will refer to propositional proof systems as just proof systems.

In [CR79], Cook and Reckow defined a propositional proof system to be a
polytime computable onto function / : E* —> TAUT, for some finite alphabet E.
A propositional proof system P, as defined in Definition 3.15, can be transformed
into a function / satisfying [CR79]’s definition as follows. If P accepts (2 , 7r),
then / maps (2 , 7r) to 2 , else if P rejects (2 , 7r), then / maps (2 , n) to T. In the
converse direction, one can construct a polytime deterministic Turing machine
P such tha t P accepts (2 , n) if and only if / (n) = 2 as follows. Let P ' be a
polynomial time deterministic Turing machine tha t computes / . Now, P, on
input (2 , 7r), runs P '{tt). If P '{7r) = 2 , then P accepts (2,7r), otherwise it rejects.
Hence, the two definitions are equivalent. Thus, depending on the context, we
may use one or the other later.

Note that the runtime of a propositional proof system depends on the length
Of 7T.

D efin itio n 3.16 We say that a propositional proof system P is polyn om ia lly
bounded iff there exists a polynomial p such that:

V2 £ r *(2 £ TAUT 0 3n(P accepts (2 , 7r) A |7r| < p(|2 |)))

I f P accepts (2 ,7r), then we say that ty is a P -proof of 2 . Additionally, if
M < p(|2 |), then we say that it is a sh ort P-proof of x.

T h e o re m 3.17 A polynomially bounded propositional proof system exists iff
NP = coNP.

13

P roo f: (=>) Suppose that there exists a polynomially bounded propositional
proof system. By the definition of ’’polynomially bounded” in Definition 3.16,
there exists a polynomial time deterministic Turing machine P and a polyno
mial p such that Vx G r * (x G TAUT 3n(P accepts (x ,7r) A |7r| < p(|x|)))
holds. This implies tha t TAUT G NP by Theorem 2.10. Therefore, NP = coNP
by Proposition 3.14.

(<*=) Suppose tha t NP = coNP. Hence, TAUT G NP by Proposition 3.14.
By Theorem 2.10, there exists a polynomial time deterministic Turing ma
chine P and a polynomial p such that Vx G T*(x G TAUT 37r(|7r| <
p(|x |) A P accepts ((x, 7r)))) holds. This implies tha t a polynomially bounded
propositional proof system exists, by Definition 3.16. □

Theorem 3.17 initiated a program of research (called Cook’s program by
some) aiming at attacking the NP vs coNP problem by proving that stronger
and stronger proof systems are not polynomially bounded, until it is established
for all proof systems.

D efin ition 3.18 Let Pi and P2 be propositional proof systems. We say that Pi
p-sim u la tes P2, denoted P2 <p Pi, iff there exists a polynomial time deter
ministic Turing machine M such that:

(2) Vx,7t(P2 accepts (x ,7r) => Pi accepts (x ,M (n)))

We say that Pi is p-equ ivalen t to P2, denoted Pi = p P2, iff they p-simulate
each other.

Note tha t in Definition 3.18, the notion of Pi p-simulates P2 requires the
existence of a polynomial-time deterministic Turing machine tha t translates
every P 2-proof 7r of a tautology <p into a Pi-proof of ip. There is also a weaker
notion of p-simulation, called simulation, where the only thing required is the
existence of a Pi-proof 7r' of tp such tha t |7r'| < p (|7r |) , for some polynomial p.
Below, we give a formal definition of the notion of simulation.

D efin ition 3.19 Let P' be a propositional proof system. We say that P' is
p -o p tim a l iff for all propositional proof systems P, P < p P \

D efin ition 3.20 Let Pi and P2 be propositional proof systems. We say that Pi
sim u la tes P2, denoted P2 < Pi, iff there exists a polynomial p such that:

V</>,7t(P 2 accepts (0 , 7r) =3> 3n'(P i accepts {<f>,n') A \v'\ < p(|7r|)))

We say that P\ is equivalent to P2, denoted Pi = P2, iff they simulate each
other.

D efin ition 3.21 Let P' be a propositional proof system. We say that P' is
op tim al iff for all propositional proof systems P , P < P '.

Note tha t if a proof system P2 <p Pi, then P2 < Pi- However, the other
direction doesn’t hold. Therefore, the relation <p is a strict subset of < . It
follows tha t = p is also a strict subset of = and a p-optimal proof system is
already an optimal proof system.

14

D efin ition 3.22 Let S be a set and 71 be a binary relation on S. I t is a quasi-
order or p re -order if and only if:

1. Ve e S(eTVe) (reflexive),

2. V ei,e2 ,e 3 6 S(e\7Ve2 A e-fR,e% =$■ e\TVef) (transitive).

N o ta tio n We denote by (S, TV) the set S equipped with the pre-order 71.

D efin ition 3.23 Let S be a set and TV be a relation on S . Then TV is an
equivalence re la tion on S if and only if TV is a pre-order on S and Vei,e2 G
S(e{TVe2 =>■ e2TVe{) (symmetric).

P ro p o s itio n 3.24 Let P\ be a propositional proof system. Then Pi <p Pi.

P roo f: Construct a polynomial time Turing machine M i which on input 7r will
do nothing but output n. Obviously, if n is a Pi-proof, then M i(n) is a Pi-proof
as well. By Definition 3.18, P i < p P i. □

P ro p o s itio n 3.25 Let Pi be a propositional proof system. Then Pi < P i.

P ro o f: Trivial. □

P ro p o s itio n 3.26 Let P i,P 2 and P3 be propositional proof systems. I f Pi <p
P2 and P2 <p P3, then Pi <p P3.

P ro o f: Suppose that Pi < p P2 and P2 < p P 3 . By Definition 3.18, let M i be
a polynomial time Turing machine such tha t for any Pi-proof 7Ti there exists a
corresponding P2-prooi M i (7Ti) and let M 2 be a polynomial time Turing machine
such that for any P2-proof ir2 there exists a corresponding P 3-proof M 2 (ir2).
Construct a polynomial time Turing machine M3 which on input n behaves as
follows: computes M i(n) and then run M 2 on M i(n). Clearly, if the input of
M3 is a Pi-proof, then the output produced is a P 3-proof. By Definition 3.18,
Pi 5;p n

P ro p o s itio n 3.27 L e tP i,P 2 and P3 be propositional proof systems. I f Pi < P2
and P2 < P 3 , then Pi < P 3 .

P ro o f: Suppose tha t P i < P2 and P2 < P3. By Definition 3.20: there exists
a polynomial p such that for every Pi-proof 7r of a tautology <j>, there exists a
P2-proof 7r' of (f) such that \k'\ < p(|7r|); there exists a polynomial p such that
for every P 2-proof 7r of a tautology 0, there exists a P 3-proof it' of 0 such that
|7r'| < p(|7r|). N o w , we want to show tha t for every Pi-proof 7r of a tautology 0,
there exists a P3-proof id of 0 such tha t |7r'| < p(|7r|), for some polynomial p.
So, let 0 be any tautology and 7Ti be any Pi-proof of 0. Thus, we can let n2 be
a P2-proof of 0 such that |7t2| < P i(|tciI), for some polynomial pi. Furthermore,
we can let 7r3 be a P3-proof of 0 such that |7t3| < P2 (Î 2 1)j for some polynomial
p2. Thus, |tt3| < p3(|7ri|), where p3(k i |) = P2 (P i(k i|))- By Definition 3.20,
Pi < P3- □

The proofs of Propositions 3.24, 3.25, 3.26 and 3.27 show tha t <p and < are
pre-orders on the set of all propositional proof systems. The relation = p and =
are obviously equivalence relations, since they are both symmetric by definition.

15

D efin ition 3.28 A grea test elem ent of (S , TV) is an element g E S such that
for all e E S , elZg.

O bservation 3.29 Let P P S denote the set of all propositional proof systems.
(P P S ,<) has a greatest element iff there exists an optimal proof system ivithin
P P S .

Proof: (=*>) Suppose tha t a greatest element exists within (P P S, <). Let P be
such element. By Definition 3.28, VP' E P P S (P ' < P). Hence, P is optimal by
Definition 3.21.

(4=) Suppose tha t there exists an optimal proof system within P P S . Let P
be such proof system. Hence, VP' E P P S (P ' <p P) holds, by Definition 3.21.
By Definition 3.28, P is a greatest element within (P P S, <p). □

Note that the existence of an optimal proof system doesn’t imply the exis
tence of a p-optimal proof system. However, the existence of a p-optimal proof
system implies the existence of an optimal proof system.

3.4 Frege and Substitution Frege Systems
Our exposition of Frege and substitution Frege systems follows [CR79].

3.4.1 Frege System s

D efin ition 3.30 Define a su bstitu tion o to be a mapping from the set of
propositional variables to the set of propositional formulae. I f p E PL, then
denote by pa the result of replacing every variable in p by its image under a.

Lem m a 3.31 Let ip be a propositional formula and a be a substitution. I f
ip E TAUT, then ipa E TAUT.

Proof: We prove the contrapositive. Suppose tha t pa TAUT. Thus, there
exists a tru th assignment r such tha t (pa)r = 0. Let r ' be a tru th assignment
defined as follows: for every propositional variable p in p, r'(p) = (pa)T. Then,
one can show by structural induction tha t for every subformula ip of p, ipT =
(ipa)T, in particular p T = (po)T — 0. Therefore, p is not a tautology. □

D efin ition 3.32 A Frege mile is a system of propositional formulae of the
form

such that { p i , . . ■ ,Pk} 1= Po- I f k = 0, then the rule is called a Frege a x io m
schem e. We shall also write (p \,. ■. ,Pk)/Po for (3).

R e m a rk 3.33 I f (p \ , . . . , Pk)/Po is a Frege rule, then p \ A . . . A pk =>• V̂o is a
tautology.

D efin ition 3.34 Define an in fe ren ce sy s te m & to be a finite set of Frege
rules.

16

D efin itio n 3.35 A formula fa is in ferred fr o m f a , . . . , fa by the Frege rule
((£>1, . . . ,p k)/p o if there exists a substitution o such that for every i from 0 to
k, *Pi = Ti®•

D efin itio n 3.36 L e t& be an inference system. A Frege proof, or & -proof for
short, o f a propositional formula (p from T (finite set of propositional formulae)
is a sequence 7r = f a . . . , (pm of propositional formulae such that <pm is <p and
fo r every i from 1 to m , fa is either in T or inferred from fa x , f a k by a rule
in & , where U\ < . . . < < i.

N o ta tio n If T is a finite set of propositional formulae, & an inference system
and <p a formula, then T b jr <f> means that there exists an J£"-proof of 0 from T.

T h e o re m 3.37 Let & be an inference system. Then, for any finite set T of
propositional formulae and 0 G PL, i fT b jr 0, then T |= 0.

P ro o f: Let T be an arbitrary set of propositional formulae and (j) G PL. Suppose
tha t T <f>. Show that T \= 0. Let r be any tru th assignment. Suppose that
7 r = 1 for every 7 G T. Let ir = f a , . . . , 0m be an ,^-proof of 0 from T. Show by
induction on i th a t fa[— 1. If fa G T, then fa[— 1. Suppose tha t fa is inferred
from <£Ul, . . . , <j>Uk, where u\ < . . . < u k < i, by a Frege rule (<pi, . . . , <£>fc)/V0
in & . By Definition 3.35, there exists a substitution cr such that for every
j from 1 to k, (j>Uj = ipjcr and fa = v?oa. Now, there are two subcases to
consider. If k = 0, then 4>J = 1. Assume tha t k ^ 0. By induction hypothesis,
(</>Ul A . . . A (j>Uk)T = 1- By Lemma 3.31, we have that f>Ul A . . . </>Ufc => fa is a
tautology. Thus, faf = 1. □

D efin itio n 3.38 Let { fa , . . . ,fa} be an arbitrary set of propositional formulae.
An inference system & is said to be im p lica tio n a lly com plete iff fo r any
(j> G PL, if { f a , . . . , fa} (= (j), then { fa , . . . , f a } b jr 0.

D efin ition 3.39 Let & be an inference system. We say that & is a Frege
s y s te m if and only i f & is implicationally complete.

T h e o re m 3.40 I f ip is a closed formula, then either ip or -up has a poly-size
Frege-proof.

P ro o f: Assume th a t the Frege system under consideration below includes the
following Frege rules: R \ = (A ,B)/A A B, R 2 = (A)/A V B, R 3 = (B)/A V B,
R 4 = (-.A)/i(A A jB).

Suppose that p is a closed formula. We show by structural induction on
<p th a t either p or ->p has a poly-size Frege-proof. If p is T or _L, then it is
trivial. Suppose th a t p is of the form p \ A p%. If p evaluates to True, then p \
and p 2 evaluate to True. By induction hypothesis, they have poly-size Frege-
proofs. By jRi, we obtain a Frege-proof of p iA p 2 - Thus, p i A p 2 has a poly-size
Frege-proof. If p evaluates to False, then either p i or P2 evaluates to False.
Assume w.l.o.g. th a t p \ evaluates to False. By induction hypothesis, ->p\ has
a poly-size Frege-proof. By R 4 , we obtain a Frege-proof of ~<(pi A P2). Thus,
->p has a poly-size Frege-proof. Similarly, for p of the form p \ V P2- Suppose
th a t p is of the form ->ip. If p evaluates to True, then ip evaluates to False.
By induction hypothesis, p has a poly-size Frege-proof. If p evaluates to False,
then -<p, which is ip, evaluates to True. By induction hypothesis, ip has poly-size
Frege-proof. Thus, ->p has poly-size Frege-proof. □

17

Corollary 3.41 I f ip is a closed tautology, then it has a poly-size Frege-proof.

Corollary 3.41 is a direct implication of Theorem 3.40.

R em ark 3.42 The size of a Frege-proof of a closed tautology 0 is quadratic in
the size of 0, since the number of lines in a Frege-proof of <f> is linear in the
length of 0 and the number of symbols in a line of a Frege-proof is linear in the
length of 4>.

3.4.2 Sub stitu tion Frege system s

D efin ition 3.43 Define a su b s titu tio n Frege sy s te m s& to be a Frege sys
tem & plus the su b s titu tio n ru le ip/tpa, which states that from propositional
formula <p infer <po, for any substitution a.

D efin ition 3.44 Let & be a Frege system. A su b s titu tio n Frege proof, or
s& -proof for short, of (j) £ TAUT is a sequence tt = f a , . . . , </>m of propositional
formulae such that 0 m = 0 and for every i from 1 to m , fa is either inferred
from f)Ul, . . . , (j>Uk, where u\ < . . . < Uk < i, by a Frege rule in & or inferred
from f>j, where j < i, by the substitution rule.

We can eliminate an application of the substitution rule by repeating the
part of the proof before the inference. In such a transformation, these repeti
tions can be nested and the proof may grow exponentially.

Observe th a t premises are not allowed in the definition of substitution Frege
proofs. If premises were allowed in the definition of substitution Frege proofs,
then there exists a 0 e PL and some substitution o such th a t 0 \~sg; <po and
0 ^ 0 <7 . For example, when 0 = p\ A P2 and o maps pi to itself and maps P2
to pi A -'P i.

T heorem 3.45 Let s& be a substitution Frege system. For any 0 6 PL, i f
0 , then 0 .

Proof: The proof is similar to the proof of Theorem 3.37. □

3.4.3 Som e R esu lts and O pen Problem s in P roo f C om plexity

Cook and Reckow were the first to identify Frege and substitution Frege systems
in [CR79]. They also identified another class of proof systems, called Extended
Frege systems and showed tha t all Frege systems are p-equivalent. Krajicek and
Pudlak showed, in [KP89b], tha t Extended Frege systems are p-equivalent with
Substitution Frege systems.

W ith regard to the general program of Propositional Proof Complexity, a lot
of work has been devoted to proving strong lower bounds on the sizes of proofs
of specific tautologies in various proof systems.

E xam ple 3.46 For any n > 1, the P igeonhole P rin c ip le states that if n A 1
pigeons sit in n holes, then there exists a hole with at least two pigeons.

18

D efin ition 3.47 We define the family of tautologies that formalises the Pigeon
hole Principle to be the set:

(4) PHP = {PHP£ +1 : n > 1}

where PH P™+1 is defined to be:

where {x , y) is defined in Definition 4.21 and the intended meaning of P{itj) is
that pigeon i sits in hole j .

It has first been shown by Haken, in [Hak85], tha t -iPHP™+1 requires ex
ponential size Resolution refutations. Later, Beame and Pitassi provided an
improved lower bound on the sizes of Resolution refutations for ->PHP™+1 in
[BP96]. On the other hand, in [CR79, Bus87b], it was shown that a proof of
PHP” +1 in extended Frege has length 0 (n 5) and has length 0 (n c) in Frege for
some constant c (fairly small, e.g. c = 20) , respectively. It follows tha t Frege
and extended Frege simulate Resolution and not the other way around.

It was originally conjectured th a t for any m > n, PHP™ would require
exponential size, in n, Resolution refutations. However, this conjecture was
shown to be wrong for large values of m [BP98], in particular for m > 2^nlogn.
When n 2 < m < 2y/nlogn, no lower bound was known at all and remained
an open problem until [Raz04], where the author has proven tha t for any m
such that n 2 < m < 2^™logn, any Resolution refutation of -iPHP™ is of length
H(2n), where e > 0 is some global constant.

D efinition 3.48 Let P be a propositional proof system. Then a countable fam
ily of tautologies {ipi : i £ 1} has polysize P-proofs if and only if there exists a
polynomial p such that for every i £ I , there exists a n such that P{jpi,n) holds
and 17T| < p{\pi\).

D efinition 3.49 Let P be a propositional proof system. Then a countable fam
ily of tautologies {g>i : i £ 1} is hard for P if {ipi : i £ 1} doesn’t have polysize
P-proofs.

At present time, no strong lower bounds are known for Frege, Extended and
Substitution Frege systems. W hat makes it so difficult when trying to prove
strong lower bounds for these systems is that there is a lack of hard candidate
tautologies [BP01]. Thus, a natural open problem is to find hard tautologies
for Frege, Extended and Substitution Frege systems. Some candidate hard
tautologies have been suggested in [BBP95] for Frege systems.

These open problems have been collected from [BP01]. In there, one may
find many more open problems related to Propositional Proof Complexity in
general.

4 Uniform System s
In this section, we define the notion of the uniform reduct of propositional proof
systems (also called uniform systems) [Bec05] using the language of second-order

19

bounded arithmetic. The use of second-order bounded arithmetic is justified by
the fact that in our main theorem, we assume that the uniform reduct of a
proof system is defined using tha t language. Our exposition of second-order
bounded arithmetic and how we translate second-order bounded arithmetic for
mulae (Ejf-formulae) into propositional formulae follows [CN10].

4.1 Second-Order Bounded Arithmetic
In second-order bounded arithmetic, there are two kinds of variables: the vari
ables x , y , z , . . . (possibly subscripted), called n u m b e r variab les , tha t are in
tended to range over N; the variables U, V, W, X ,Y ,Z , . . . (possibly subscripted),
called se t (or s tr in g) variab les, tha t are intended to range over the set of fi
nite subsets of N. We need the first sort (numbers) to measure the length of the
second sort (strings). We identify strings with finite subsets of N (made precise
later). Predicate symbols P ,Q ,R , . . . can take take arguments of both sorts,
and so can function symbols. There are two kinds of functions: the n u m b e r
fu n ctio n s and the s tr in g functions. We use as meta-symbols for
number function symbols; we use F ,G ,H ,.. . for string function symbols and
a, b, c, . . . for number variables (possibly subscripted).

D efin ition 4.1 We define an (n ,m)-a r y fu n c t io n sym bol to be a function
symbol that takes n arguments o f the first sort and m arguments of the second
sort. A (0,0)-ary number (resp. string) function symbol is called a n u m b er
co n s ta n t sym bol (resp. str ing c o n s ta n t symbol).

D efin ition 4.2 Define to be {0,1, + , x , ||, = i , = 2 , < , £}, where 0 and 1 are
number constant symbols; + and x are (2 , 0)-ary number function symbols; || is
a (0 ,1)-ary number function symbol; = 1 and < are (2 ,0)-ary predicate symbols;
= 2 is a (0 , 2)-ary predicate symbol; £ is a (1 ,1)-ary predicate symbol.

N o ta tio n We write = for both = 1 and = 2 . It will be clear from the context
which is intended. Finally, we will use infix notation when using + , x, = , < and
€ .

D efin ition 4.3 Define CA -te rm s inductively as follows:

1. Every number variable is an C \-n u m b e r term .

2. Every string variable is an C \ -string term .

3. The symbols 0,1 are C?A-number terms.

4. I f to and t\ are CA -number terms, then so are (to + t\) and (to x ti).

5. I f T is an C \-string term, then |Tj is an C2A -number term.

An C?A-number term is said to be closed if it is not built up from rule 1 and 2.

We will refer to -number terms (resp. /^ -s tr in g terms) as just ’’number
terms” (resp. ’’string terms”). We often denote number terms by r , s , t , . . .
(possibly subscripted). Note that the only string terms are the string variables
and if a string variable X occurs in a number term, then it must occur in a
number term of the form |X |.

20

N o ta tio n If t is a number term not involving x, then (3a: < t)ip stands for
3x(x < t A ip) and (Vx < t)tp stands for Vx(->(x < t) V ip).

D efin ition 4.4 We define Ejf -formulae inductively as follows:

1. The logical constants T (True) and J. (False) are atomic Hq -formulae.

2 . (t o = ti) , (to < ti) , to 6 X and (X — F) are atomic E jf -formulae, for
number terms to ,ti.

3. I f ip and ip are Ejf -formulae, then so are ->ip,ip A ip and ipVip.

4- I f ip is a £®-formula and x a number variable not occuring in the number
term t, then (3x < t)ip and (Vx < t)tp are £® -formulae.

£j^-formulae will often be denoted by <p, ip ,. . . (possibly subscripted).

D efin ition 4.5 We define the u n iv ersa l closure of a E ^ -formula ip to be the
formula V<p obtained by adding an unbounded universal quantifier for every free
number variable and string variable in ip.

N o ta tio n As in the case of propositional formulae, we write (ip —»• ip) for
(-i<p> V ip) and ip ■H’ ip for (tp —> ip) A (ip —)■ ip). We use the abbreviation X (t) for
t G X . Additionally, x ^ y stands for -i(x = y) and x < y i o r x < y / \ x ^ y .
Furthermore, (3x < t)ip and (Vx < t)ip stand for (3x < t)(x ^ t A ip) and
(Vx < t)(x ^ t —> ip), respectively. Finally, when we use <p € Ejf, we mean that
ip is a E^-formula.

D efin ition 4.6 An occurrence of a number variable x in a Hq -formula ip is
bound if and only if that occurrence of x occurs in a subformula of ip of the
form (3x < t)ip or (Vx < t)ip. Any number variable occurrence in a Ej^-formula
that is not bound is said to be free.

D efin ition 4.7 Let ip be a E ^ -formula. Then define FV(</p) to be the set of all
free number variables in ip; define SV(<p) to be the set of all string variables in
ip. ip is said to be closed ifFV(ip) — 0 and SV(ip) — 0.

N o ta tio n In what follows, let V fin (N) denote the set of all finite subsets of N

We identify a set S' C N with its characteristic function. Hence, we can
use function notation and membership notation interchangeably, as the context
demands.

D efin ition 4.8 Let S be a finite subset of N and w : V fin (N) —¥ {0,1}* be the
mapping defined as follows

w(S) — S(n — 1) . . . S(1)S(0),

where n — 1 is the largest element of S . We define the b inary re p resen ta tio n
of S to be w (S).

Note tha t the binary representation of the empty set is the empty string.

Since w is an injective mapping, we can identify a finite non-empty subset
S of N with its binary string representation.

21

D efin ition 4.9 The C \-s ta n d a rd m odel N2 consists of the following:

1. Two non-empty sets N and V fin (N) that are called the universes of N2.
Number (resp. string) variables range over N (resp. V fin (N)J.

2. The number constant symbols 0 and 1 are interpreted by 0,1 £ N, respec
tively.

3. The number function symbols + and x are interpreted by the addition and
multiplication functions on N, respectively.

4■ The number function symbol || is interpreted by the function |S |-2, which
is defined to be the length of the binary representation of the set S (i.e.
1+ the largest element of S).

5. The predicate symbol = i (resp. =2) is always interpreted as the true equal
ity relation on N (resp.

6. The predicate symbols <, E get their usual interpretations.

D efin ition 4.10 An object a ss ig n m e n t consists of a mapping from the num
ber variables to N and a mapping from the string variables to Vf%n (N).

N o ta tio n Let a be an object assignment. Then we write a(x) for the object
in N assigned to x by a and a (X) for the object in V fin (N) assigned to X by
a. If m e N, then a (m /x) is the same as a except tha t it maps x to m. If
M £ P/m(N)) then a (M /X) is the same as a except tha t it maps X to M .

D efin ition 4.11 Let a be an object assignment. Then define for each number
term t (resp. string variable X) its value t - 2[a] € N (resp. X - 2[o] € P fin (^))
in N2 under a inductively as follows:

1. a;-* [a] isa (x) .

2. isa { X) .

3. 0^2 [a] and 1-2 [a] are the natural numbers 0 and 1, respectively.

4 . I f to , t i are number terms, then (to + ti)—2[ck] is (^ [a] + ^ [o :]) .

5. I f to , t \ are number terms, then (to x i i) - 2[a:] is (t^2 [a] x t f 2[a:]).

6. |X |- 2[a] is |o;(X)|-2, i.e. the length of the binary representation o fa (X) .

N o ta tio n Note tha t for a closed number term t, we can just write f-a.

D efin itio n 4.12 Let a be an object assignment. Then define, for each Ejf-
formula <p, the relation N2 (= tp[a] (N2 satisfies ip under a) by structural induc
tion on ip:

1. N2 f= T and N2 1 .

2. I f to , t \ are number terms, then N2 |= (to — i 1)[ct] iff tjj2[a] = i f 2[a].

3. I f to , t \ are number terms, then N2 \= (to < ti)[a:] iff t^ 2 [a] < t j 2 [a].

22

4- N2 M X = r)[a] i f f a (X) = a (Y) .

5. I f t is a number term, then N2 |= X(t)[a] iff t—̂[a] G a(X) .

6- N2 |= iff N2 ^ il>[oc).

7- N2 |= (<A)*<£i)M i f fE 2 1= <PoH * N2 \= ipi[a], for * e {A,V}.

8. I f t is a number term not involving x, then N2 (= ((3x < £)?/>) [a]
N2 |= t/)[o:(m/a:)]; for some m < £-2(0 :].

9. I f t is a number term not involving x, then N2 f= ((Vx < t)ip)[a] iff
N2 (= il)[ot{m/x)] for all m < ^ [a] .

A -formula <p is said to be valid if and only if N2 |= y?[a], for every object
assignment a .

N o ta tio n If <p is closed, then we can just write N2 |= <p instead of N2 (= (/?[o?].

N o ta tio n If X is a vector of string variables X q, . . . ,X n- \ , then |X | denotes
the vector |Xo| , . . . , |Xn_ i|. Similarly for |S |, where S is a vector of sets.

N o ta tio n When writing p (x ,X) , we mean tha t FV(</?) U SV(</?) C {x, X}.
Also, when writing £(x, |A |), we mean tha t the set of all variables (number and
string variables) in t is a subset or equal to { x ,X } and string variables are only
occuring in the form \Xi\.

D efin ition 4.13 Let x = Xq, . . . ,£fc_i, s be a vector of number terms so, . . . ,
£(x) be a number term and <p(x) be a E®-formula. Then denote by t(s)

the result of substituting every occurrence of Xi in t by Si and denote by (p(s)
the result of replacing every free occurrence of Xi in ip by Si.

D efin ition 4.14 Let X = Xo . . . X k - i , s be a vector of number terms s o , . . . ,
Sk-i and £(|A|) be a number term. Then denote byt(s) the result o f substituting
every occurrence of |Aj| in t by Sj.

D efin ition 4.15 Let <p(x) be a Eg -formula and t be a number term. Then t
is said to be free ly substitu tab le for x in ip if and only i f fo r any variable y
in t, for every occurence of x in <p, x is not in a subformula of <p of the form
(Vy < t0)i> or (3y < t0)^ .

Let x = x o , . . . , Xfc-i, f be a vector of number terms to ,. . . , tfc-i and p(x)
be a Ej^-formula. From now on, we shall write <p(t) if and only if £j is freely
substitutable for Xi in </?.

4.2 Translating Ejf-formulae

In this section, we are going to show how* to translate each E,f-formula <p(x, X)
into a family

11ip(x, X)11 = {<p(m, X)[n] : m , n e N}

of propositional formulae, where rij is intended to be the length of X i. For
that, we introduce the propositional variables Pq° ,P i° , ■ ■. ,Pq 1 ,P i l , . . . where
the intended meaning of p*1 is X i(j) .

23

D efin ition 4.16 For every n G N, define n, called the num eral for n, induc
tively as follows:

0 = 0,1 = 1,
n + 1 = (n + 1) for n > 1 .

For example, the numeral for 4 is (((1 + 1)4-1) + 1). The numerals 0,1, (1 +
1), ((1 + 1) + 1) , . . . for 0 ,1 ,2,3 , . . . , respectively, will be denoted by 0,1,2,3, —

D efin ition 4.17 Let tp(x, X) be a S q -formula, m and n be in N. Define
cp(m ,X)[n] inductively as follows:

1. I f (p(m ,X) is of the form T or J_, then <p{rn,X)[n\ =dj ip(m ,X)

2. I f ip(m, X) is of the form t(fn, |X |) = u(m , |X |), then

T i f t(m ,n)-^ =
<p(m,X)[n] =df .

-L otherwise

S. Similarly i f ip(m ,X) is of the form t(fn , |X |) < u(m , |X |).

4■ I f y (fn ,X) is of the form X i = X j, then there are two cases to consider.
I f i = j , then <p(m, X)[n] = df T . Else if i ^ j , then we reduce the task of
translating <p{fn,X) to translating its defining axiom |Xj| = \Xj\ AVx <
|X i|(X i(x) X j(x)). Note that the defining axiom of X i = X j is a
formula such that it doesn’t contain any free number variable and it doesn’t
contain any subformula of the same form as <p(m,X).

5. I f (p(m ,X) is of the form X i(t(m , |X |)), then set j = t (m ,n)-* and

(p f { i f j < n i - 1

<f(m,X)[n] = df < T if j = m - 1
J. otherwise

Observe that for Hi = 0, we have that ip(m ,X)[n] =df ± .

6. I fip (m ,X) is of the form ^ { f n , X) , then ip(m,X)[n} = df -'ip(m,X)[n].

7. I f tp(fn, X) is of the form tpo(m, X) * (m , X), then

<p{m,X)[n] = df Wo{m,X)[n]*yi (m,X)[f i \ ,

fo r * e {A,V}.

8. I f tp(fn,X) is of the form (By < t(m , \X \))ip (y ,m ,X), then

ip{m,X)[n\ =df \ J ip{hm ,X)[n]
i= 0

where j = t(m , n)-a .

24

9. I f ip(fn,X) is of the form (Vy < t(fh, \X\))ip(y,m, X) , then

j
=df / \ ip { i ,m ,X)[n]

i =0

where j = t (m ,n)-*.

In [CN10], the authors included, as part of the translation, some pruning.
Since that pruning isn’t relevant for our purpose, we decided to not include it
for the sake of simplicity and readability. Also, note that ip(m,X)[n], where
X = X 0, . ■. , X i - i , has variables p * ° ,p f ° , . . . ,p*°_2, . . . ,p * 1_1, . . . and p n £ l .

N o ta tio n If m is a vector of natural numbers mo , . . . , m ^ - i and S is a vector
of sets 5 o ,.. •, S i - 1, then m e N denotes mo , . . . ,m k - i e N, |£ | = n denotes
|<5o| — n o , . . . , |S i_i| = n i- i and S C N denotes So, . . . , Si- 1 C N. Furthermore,
we have tha t a (m / x , S / X) stands for

a (m o /xo , . . . , m k - \ / x k - \ , Sq/ X q, . . . , S i - \ j X i - \) .

L em m a 4.18 Let rh e N, S C N such that |5 | = n and ip(x,X) be a
formula. Then we have that N2 (= <p(x, X)[a(rh/x, S /X)] i f and only if N2 f=
<p(m,X)[a(S/X)}.

P roof: The proof is by structural induction on ip(x,X). We only cover a few
interesting cases. First, observe that

(6) t (x , \X \) ^ [a (m /x ,S /X) } = t(m , |X |)^ [a (S /X)] .

Additionally, observe that

(7) t(£ , |A |) ^ [a (m /f ,5 /A)] e Si if and only if t(m, |A |)^[<*(5/A)] e 5*.

1. Consider the case when <p(x, X) is of the form t(x, |X |) = u(x, |A |). By
Definition 4.12, we have tha t N2 |= <p(if, X)[a(rh/x, S /X)} is equivalent to

t(x, |X |) -2[o(m/a:, S /X)] = u{x, |A |) - 2 [a{rh/x, S /X)] ,

which is equivalent to

t(m, |X |)^ [o (5 /A)] = u(m, \X \ f* [a{§ /X)] ,

by (6). That is equivalent to

M2 1= i f i (& , X) { a { 3 / X) } ,

by Definition 4.12.

2 . Consider the case when ip{x,X) is of the form Xi(t(\x, |A |)). Then we
have that

N2 f= <p(x, X)[a (m /x , S /X)]
t(x, |A |) -2[o:(m/x, S /X)] G Si (by Definition 4.12)

«■ m , [a (5 /X)| € S, (by (7))
^ N2 |= <p(m, A)[o:(5/X)] (by Definition 4.12)

25

3. Consider the case when ip(x, X) is of the form (3y < t(x, \X\)il)(y,x,X).
By Definition 4.12, we have that

M2 \= v (x ,X) [a (m /x ,S /X) \

is equivalent to

N2 h 1>(y,x,X)[a{i/ytn l /x ,S /X)] ,

for some i < t(x, |X |) - 2 [a(fh/x, S /X)] . That is equivalent to

N3 M & 2&,X) [a (S /X) \ ,

for some i < t(fn, |X |) -2 [a!(,S/X), by induction hypothesis. By Definition
4.12, there exists a n i < t(m, |X |) -2[a(S/X)] such that

N 2 \=4>(im,X)[a(S/X)]

if and only if
N2 N ^ (m ,X)[a (5 /X)] .

□
In what follows, let rg, where S = Sq, . . . ,Si Q N and \Sl \ = rij, be any

tru th assignment such that for every i from 0 to I and k from 0 to n* — 2 , if
Si(k) holds, then ^ (p * *) = 1 , and if S i(k) doesn’t hold, then Tgip**) = 0.

Lem m a 4.19 Let m S N, S C N such that |5| = n, <p(x,X) be a Hq-formula
and a (S / X) be an object assignment. Then we have that

M2 N viiik'i X)[ol{S/ X)] if and only i f (g>(m,X)[n])T£ = 1 .

P ro o f: The proof is by structural induction on ip(m,X). Again, we only cover
a few interesting cases. First, observe that

(8) t(m, |X |) -2 [q:(5/X)] = t (m ,n) - 2.

- Consider the case when <p(m, X) is of the form t(m, |AT|) = u(m, |X |). Set
i = t(m, |X |) -2[q:(5 /X)] and j = u(m, |X |) - 2[q(5/A)]. Then we have
th a t

N2 b </>(!£, X)[a(5 /X)]
& i = j (by Definition 4.12)

t(m ,n)-2 - u (m ,n)- i (by (8))
O ip(m,X)[n] =df T (by Definition 4.17)

X)[n\)T£ = 1 (by Definition 3.3)

— Consider the case when v (m ,X) is of the form Xi(t(m , |X |)). Set j =
t(m, |X |) - 2[q!(5/X)]. Then we have that

P febvK m , *)[<*(£/*)]
4$ S i (j) (by Definition 4.12)
*>Ts (p f % = 1

(p(m, X)[n\)T£ = 1 (by Definition 4.17)

26

— Consider the case when ip(m,X) is of the form ~'ip(m,X). Then we have
that

H2 H

& X)[n])Ts - 0
4$ (-‘ip(m,X)[n])Ts - 1
O { (^ (m ^ X))[n]) rs = 1
o {<p(m,X)[n])Ts = 1

(by Definition 4.12)
(by IH)
(by Definition 3.3)
(by Definition 4.17)

— Consider the case when p(rh ,X) is of the form 3y < t(m, \X \))xp(y ,m ,X .
Set j = t(m, |X |) -2[q!(5 /X)]. Then we have that

N2 f=<£(m, *) [« (£ /*)] ^

3* < j(N 2 (= ip (y ,m ,X)[a (i /y ,S /X)]) (by Definition 4.12)
O 3i < j (N 2 (= ' ip(i ,m ,X)\a(S/X)}) (by Lemma 4.18)
o 3* < = 1) (by IH)

O ^ \ J X)[n]^j = 1 (by Definition 3.3)

O X)[n])Ts = 1 (by Definition 4.17)

□
T heorem 4.20 Let a be an object assignment, </?(x, X) be a Ejf -formula and
fh ,n € N. Then we have that <p(m,X)[n\ is a tautology if and only i f the
following holds:

(9) N 2 \=<p(m,X)[a(S/X)\

for any S C N such that |5| = n.

Proof: (o) Suppose tha t p(fn,X)[n] is a tautology. Show that for any S C
N such that |5 | = n, N2 satisfies <p(m,X)[a(S/X)]. Let S C N such that
|5 | - ii. By assumption, X)[n])T5 = 1. By Lemma 4.19, N2 satisfies
v{m ,X)[a {S /X) \ .

(o) Suppose th a t N2 satisfies ip(m, X)[a (S / X)\ for any 5 C N such tha t
|5 | = n. Show that ip(m,X)[n] is a tautology, i.e. for any tru th assignment
t , (ip(fn,X)[n\)T = 1. For the sake of contradiction, suppose tha t there exists
a tru th assignment tq such tha t (p(m, X)[n])T° — 0. Let M C N such tha t
\M\ = n and = tq. Hence, (v(m ,X)[n \)TM = 0. By Lemma 4.19, we
have th a t N2 doesn’t satisfy y?(ra,X)[a (M /X) \ , which contradicts our original
assumption. □

D efin ition 4.21 Define { x q , x \) , called the pairing fu n ction , as the following
C\-term:

(xq + x i) x (x 0 + x i + 1) + 2 x x-i

27

Observe tha t the pairing function is a one-to-one function.

Recall tha t (p —» ip) and (3x < t)tp stand for (-up V ip) and (3x < t)(x ^
t A tp), respectively. When writing X (x ,y) , we mean X ((x ,y)) , where (x , y) is
the pairing function. We now show how to obtain an equivalent form of PHP
(Definition 3.47) from a -formula PH P(2 , X), where z stands for the number
of holes and X is intended to be a two-dimensional Boolean array such tha t
X (x ,y) holds if and only if pigeon x sits in hole y, for x < z and y < z. First,
define PH P(2 ,X) to be the following Ejf-formula:

(10) (Vx < z)(3y < z) X (x , y) ->
(By < z)(Bxo,xi < z)(x0 < ®i A X (x 0 ,y) A X (x i , y))

By translating PHP(z, X) into a propositional formula (with the appropriate
length for X) and then applying a suitable substitution to the resulting formula,
we obtain a formula which is equivalent to PH P£ +1 as follows. For every n > 1,
P H P (n ,X)[2 + (n ,n — l)]a can be proven to be equivalent to PH P” +1 by a
short Resolution proof (all tha t is needed to be done is some pruning), where
a : : i < n and j < n — 1} —» {p(i,j) : i < n and j < n — 1 } is a
substitution and is defined by a{p* j)) = P{i,j)-

4.3 The Uniform Reduct of a Proof System
Recall tha t a countable family of tautologies {<pi : i G 1} has poly-size P-proofs,
where P is a propositional proof system, if and only if there exists a polynomial
p such tha t for every i 6 / , there exists a n such tha t P accepts (y?i,7r) and
M < p (k i l) .

D efin ition 4.22 [Bec05] Let P be a propositional proof system. Then define
the u n iform reduct of P to be the set

Up = {p>{x, X) € Ejf : {p(m,X)[n\ : fh ,n 6 N} has polysize P-proofs}

The uniform reduct of a proof system will also be called a u n iform system .

O b serv a tio n 4.23 Let P be a propositional proof system. Then P is not poly
nomially bounded if there exists a valid Ejf -formula <p{x, X) such thatip(x ,X) $
U p .

P ro o f: Suppose th a t there exists a valid E^-formula <p(x, X) such th a t y?(m, X) ^
Up. Hence, {y(m_,X)[fi\ : m ,n G N} doesn’t have polysize P-proofs by Defini
tion 4.22. Therefore, for every polynomial p, there exists a ip £ {p>{m,X)[n\ :
m ,n £ N} such tha t for every 7r, either 7r is not a P-proof of ip or |7r| ^ p(\ip\),
by Definition 3.48. Thus, P is not polynomially bounded, by Definition 3.16. □

A reason for studying uniform systems is th a t we might be able to prove
lower bounds by identifying properties which distinguish uniform systems from
the set of all true Ejf-formulae. In [Bec05], Beckmann studied the arithmetic
complexity of uniform systems and observed th a t a given uniform reduct is not
in some certain arithmetic complexity class would imply a super-polynomial
lower bound of the underlying propositional proof system. He also investigated

28

whether uniform systems are closed under the typical inference rules of Hilbert
style proof systems, i.e. under modus ponens and generalisation.

A natural open problem for uniform systems is to look for properties of
uniform systems which might help distinguish uniform systems from the set of
all true Ejf-formule, denoted TRUEeb (this is the last open problem listed in
[Bec05]).

Frege systems are p-equivalent with the propositional part PK of Gentzen’s
sequent-based proof system LK. Another natural open problem for uniform
systems would be to prove if Upk is equal or not to TRUEe b .

5 U niform System s vs O ptim al P roof System s
We finally come to the main body of this thesis. In this last section, we carry
out a detailed proof of the equivalence between the existence of an optimal proof
system and the existence of a propositional proof system whose uniform reduct
equals the set of all true Ej^-formulae. As a preliminary to that, we first show
how to E^-formulate the reflection principle for a propositional proof system.

5.1 The Reflection Principle for a Proof System
In order to Ejf -formulate the reflection principle for a propositional proof sys
tem, we first have to show how to encode propositional formulae, but this time
in Polish notation. Then, we define how to encode tru th assignments to those
formulae. After that, we show how to encode polytime Turing machine compu
tations.

5.1.1 E ncoding Polish Propositional Formulae

Polish propositional formulae are propositional formulae, but in prefix notation
and where propositional variables will have their indices written in unary. For
example, pi is written as p l l . . . 1 with i many l ’s.

D efin ition 5.1 P olish proposition a l form u lae (or P olish fo rm u lae for
short) are over the alphabet

S = {p, I , -1, A, V}

and defined inductively as follows:

1 . Every propositional variable is an atomic Polish formula.

2. I f ip is a Polish formula, then so is -up.

3. I f <p,i> are Polish formulae, then so are *<pip, where * G {A, V }.

D efin ition 5.2 Define the subform ulae of a Polish formula <p inductively as
follows:

1. I f <p is of the form p l l . . . 1 , then its only subformula is p l l . . . 1 .

2. I f ip is of the form ->V> then its subformulae are the subformulae of if plus
ip itself.

29

3. I f p is of the form *popi, where * € {A, V}, then the subformulae of ip is
the subformulae of ipo plus the subformulae of p \ plus p itself.

Note tha t the subformulae of a Polish formula are Polish formulae. For
example, the subformulae of the Polish formula A p lll- 'V p llp l are the following
Polish formulae: p i ,p l l , V pllp l, - iV p llp l ,p l l l and A p lll- 'V p llp l itself. Also,
note th a t if s = sn . . . s\So is a Polish formula, where s* £ E for every i from 0
to n, and Sj . . . Sk is a subformula of s, where n > j > k > 0 , then the following
statement holds: if k > 0 , then Sk-i is different from the symbol 1 (otherwise s
is not a well-formed Polish formula).

N o ta t io n Let s = sn . . . s \Sq be a string over some alphabet and n > j > k > 0.
Then denote by s[j, k] the substring S j . . . Sk+iSk of s. For n > i > 0, let s[i]
denote s*. Thus, if j = k, then s[j,k] is the same as s[j].

O b se rv a tio n 5.3 I f s = sn . . . so is a string over E such that s is a Polish
formula, then for every i < n, i f Si is the symbol 1 , then there exists a j < n
such that i < j and s[j,i] is a propositional variable.

O b se rv a tio n 5.4 I f s = sn . . .s\So is a string over E such that s is a Polish
formula, then s always starts (from the right) with a propositional variable.

P ro o f: The proof is by structural induction on s . □

D efin itio n 5.5 Let a E E. Then define the weight of a, denoted weight{o),
as follows:

The weight function can be extended to assign a weight to a string s =
sn . . .so in E as follows. I f n = 0, then weight(s) = weight(so). Else, i f n > 0,
then weight(s) = weight(sn) + weight(s[n — 1 , 0]).

O bservation 5.6 I f s € E+ such that the length of s is n, then weight(s) < n.

The conditions (stated in the following Lemma) that are needed for a string
s over E to be a Polish formula, are slight modifications of those in [Bus87a].
The use of the m ax function is justified by the fact tha t we only want values
> 0 for the weight of any substring of a string s € E.

Lem m a 5.7 Let s = sn . . . siSo be a string over E and w be wn . . . wiWq such
that wo = max(weight(so),0) and Wk+i = max(weight(sk+1) -h xojt, 0), for k
from 0 to n — 1. Then s is a Polish formula i f and only if the following conditions
hold:

1. For every i < n , if Si is the symbol 1, then there exists a j < n such that
i < j and is a propositional variable.

2 . wn = 1 .

3. There exists an i < n such that s[i,0] is a propositional variable and for
every j < n, if j > i , then Wj > 0 .

30

P roof: (=>) Suppose that s is a Polish formula. We show tha t condition 1, 2
and 3 hold by structural induction on s. If s is a propositional variable, then
those conditions hold trivially. If s is of the form -xp, then condition 1, 2 and
3 hold for <p, by induction hypothesis. Thus, they hold for s, since sn is -> and
weight(->) = 0. Suppose tha t s is of the form *ipip, for * e { A ,V } . Assume
w.l.o.g. th a t * is A. Then, condition 1 holds for p and ip, by induction hypoth
esis. Clearly, condition 1 holds for pip. Since sn is A, conditon 1 also holds
for s. We next show tha t condition 2 holds for s. By induction hypothesis,
condition 2 holds for ip and ip. Thus, wn- \ = 2 by definition. Since sn = A and
weight(A) = —1, we get tha t wn = 1 by definition. Thus condition 2 holds for
s. Finally, we show tha t condition 3 holds for s. Let k < n such tha t s[k, 0] is ip
(i.e. s[n — 1, k + 1] is <p). By induction hypothesis, condition 3 holds for s[k,0].
Since condition 2 holds for s[k, 0] (by induction hypothesis), we obtain Wk > 0.
By induction hypothesis, condition 3 holds for s[n — 1, k +1]. Hence, we can let
i € N between k + 1 and n — 1 such that s[z, k + 1] is a propositional variable.
Therefore, Wi > 0 (since Wk > 0). It follows that wn- 2 > 0 (since condition 3
holds for s[n — 1 , + 1]). Since condition 2 holds for s[n — 1, fc + 1], we conclude
th a t wn -1 > 0. Thus, condition 3 holds for s.

(<+) Suppose tha t the conditions 1, 2 and 3 hold for s. We show tha t s
is a Polish formula by induction on n. If n = 0, then the length of s is 1 .
The only string over £ of length 1 that satisfies the conditions 1, 2 and 3 is
p. Hence, s must be the symbol p. Thus, s is a Polish formula. Suppose that
n > 1 . By condition 1, sn is not the symbol 1. Therefore, we can exclude
tha t case. Suppose tha t sn is the symbol p. Since wn = 1 , by assumption, and
weight(sn) = 1, we conclude tha t wn- 1 = max(weight(s[n—1,0]), 0) = 0. Now,
condition 3 states tha t there exists an i < n such tha t s[z,0] is a propositional
variable and for every j < n, if j > i, then Wj > 0. Clearly, i can’t be lesser
than or equal to n — 1 : wn- i would then be strictly greater than 0 , by condition
3, and that implies that wn > 1 (since sn is p). Therefore, i must be equal
to n. Thus, s is a propositional variable. Suppose th a t sn is Therefore,
iun_i = max(weight(s[n — 1,0]), 0) = 1. Thus, condition 2 holds for s[n — 1,0].
Now, as condition 1 holds for s, then it also holds for s[n — 1,0] (since sn is not
p). As condition 3 also holds for s, it holds for s[n —1,0]. Therefore, s[n —1,0] is
a Polish formula, by induction hypothesis. By the definition of Polish formulae,
s is a Polish formula. Finally, suppose tha t sn is either A or V. Assume w.l.o.g.
tha t it is A. Since weight(A) = —1, we conclude tha t weight(s[n — 1,0]) = 2
(since weight(s[n, 0]) = 1 by assumption). Thus, wn~i = 2 by definition. Let
i be the largest natural number strictly lesser than n such tha t condition 1 , 2
and 3 hold for s[i,0] (in the worst case, i concides with the ”z” in condition
3). By induction hypothesis, s[*,0] is a Polish formula. We now want to show
tha t s[n —l , i + l] is also a Polish formula, i.e. it satisfies condition 1,2 and 3.
Clearly, condition 1 holds for s[n — 1 , i + 1] if it holds for s (since sn is not p).
Since wn- \ — 2 and Wi — 1 , we get tha t weight(s[n — l , i + 1]) = 1 . Therefore,
condition 2 holds for s[n — 1 ,* + 1]. We are now left with proving if condition
3 holds for s[n — l , i + 1], i.e. there exists a j between n — 1 and i + 1 such
th a t s\j, i + 1] is a propositional variable and for every k < n — 2 , if k > j , then
Wk > 1. We know tha t Sj+i can’t be since we took i to be the largest natural
number strictly lesser than n such tha t condition 1, 2 and 3 hold for s[z,0].
Furthermore, we know tha t s^+i can’t be A or V, otherwise it is a contradiction

31

to our assumption tha t condition 3 holds for s. Thus, Sj+i is either 1 or p.
Suppose tha t Sj+i is 1. Since condition 1 holds for s[n — l , i + 1], let j be a
number between n — 1 and * + 1 such tha t s[j, i + 1] is a propositional variable.
We next show tha t for every k < n — 2, if k > j , then tu* > 1 . For the sake
of contradiction, suppose that there exists a k between n — 2 and j such that
Wk < 1 • Let k1 be the smallest number between n — 2 and j such tha t Wk< < 1.
Clearly, condition 1, 2 and 3 hold for s[fc',0] and k' > i. Hence, a contradiction
to ”i is the largest number strictly lesser than n such tha t condition 1, 2 and 3
hold for s[i,0]” . Therefore, for every k < n —2, \ i k > j , then Wk > 1. For
is p, we apply the same reasoning as when s[n — l , i + 1] starts, from the right,
with p l l . . . 1 . Thus, condition 3 also holds for s[n — l , i + 1]. Since condition
1,2 and 3 hold for s[n — 1, i + 1], s[n — 1, i + 1] is a Polish formula by induction
hypothesis. By the definition of Polish formulae, s is a Polish formula. □

D efin ition 5.8 Let s = sn . .. S\Sq be a string over S . Then define the binary
string encoding bse(s) of s, where bse is a mapping from E + to {0,1}*, as
follows:

1000 if s — p
1001 if s = 1

1010 if s — -i
1011 if s = A
1100 if s — V
bse(s[n})bse(s[n — 1 , 0]) if |s| > 1

The notation bse(s)bse(sr), in Definition 5.8, is understood as the concate
nation of the binary string encodings of the strings s and s'. We denote by Ef,jn
the alphabet {1 0 0 0 , 1 0 0 1 , 1 0 1 0 , 1 0 1 1 , 1100}.

D efin ition 5.9 Let x = x \ , . . . ,X k ,X = X i , .. .X i , n = n i , . . . , rife € N, N =
N \ , . . . , Ni e P/in(N). A relation R C N k x 7?/m (N)i is Djf -definable if there
exists a Eq -formula gj(x,X) such that for all (n , N) e x V fin (N)1,

(n ,N) g R iff N2 f= ip (n ,X)[a(N /X)\ .

We say that (p(x,X) E q -defines R.

Remember that the goal of this subsubsection is to -define a formula Fla
which defines the relation Fla(X, W) which holds if and only if X encodes a
Polish formula s = sn . . .s iSo , where Sj £ E, and W encodes w = wn . . . w \Wq,
where w is defined as in Lemma 5.7 but this time relative to s. Figure 1 provides
a high-level description of the structures of X and W , where X and W encode
s and w respectively. Before commenting on Figure 1, we first introduce the
following abbreviations.

N otation

— Wi\j] is a shorthand for W[(n + 2) • i + j\-

— Xi\j] is a shorthand for X[Ai + j].

32

m *[o]
X : |----- H--- 1 I 1 [-----1 ■ ■]

xn Xi Xi x0
Wi[n+1] W,[0]

W -. |....... j.. 1....1------------------------ 1-------- -I---1- - -;.... -■)
Wn Wi Wi Wo

Figure 1: The structures of X and W.

— Wi[j, A:] is a shorthand for W[(n + 2) • i -f j, (n + 2) • i + k], where j > k.

— Xi[j, k] is a shorthand for X[4i + j, 4i + k\, where j > k.

— Wi is a shorthand for Wi[n + 1,0].

— Xj is a shorthand for X j[3,0].

— Xi_>.j is a shorthand for X iX i_ i . . . Xj.

— We write ” W* encodes j ” if and only if for every k < j , W t [k\ = 1, and for
every k < n, if k > j , then Wi[k] = 0.

The first axis, labelled ”X in Figure 1, represents X as a binary string.
As we see from Figure 1, X is divided into n + 1 blocks. A block Xj is viewed
as the binary string encoding of Sj in s.

The second axis, labelled ” W in Figure 1, represents W as a binary string.
As with the first axis, W is divided into n + 1 blocks. Each block Wi has length
n + 2 and where Wi[n + 1] is always 1. Wi[n, 0] is then the representation of Wi
(in W) in unary. That is to say, if Wi = j , then Wi encodes j .

L em m a 5.10 Let X be X n . . . XiXo, where Xi 6 Ebm for every i from 0 to n,
and W be Wn . . .W iW o such that:

(W I). \Wi\ = (n + 2).

(W2). Wi[n + 1] = 1, for every i from 0 to n.

(W3). I f X o encodes p, then Wo encodes 1. Else if Xo encodes 1, — A or V, then
W q encodes 0.

(W4.) For every i from 1 to n, we have that:

(W4.1). I f X i encodes 1 or then Wi = W i- 1-

(W4.2). I f X i encodes p, then there exists a j between 1 and n + 1 such that
Wi encodes j and Wi-1 encodes j — 1 .

(W4.3). I f X i encodes either A or V, then there exists a j between 0 and n
such that W i- i encodes j and Wi encodes j — 1 .

Then X encodes a Polish formula i f and only i f the following conditions hold:

33

(XI). For every i < n , if X{ encodes 1, then there exists a j < n such that i < j
and X j ^ i encodes a propositional variable.

(X2). Wn encodes 1.

(X3). There exists an i < n such that Xi->o encodes a propositional variable and
for every j < n, if j > i, then Wj encodes k, where k > 0.

Note tha t Lemma 5.10 is a natural translation of Lemma 5.7.

In the following, we often use the same notation for both the -formula
and the relation tha t it defines. Also, remember tha t we identify a finite non
empty subset of N with its binary string representation. Finally, bx(x, y) is an
abbreviation for Ax + y and b2 (x, V) is an abbreviation for (n + 2)x + y, where
n is the length of the Polish formula under consideration.

We are now going to provide three examples tha t illustrate how to E®-
formulate the conditions in Lemma 5.10, tha t X and W must satisfy to encode
a Polish formula. First, note tha t two of the conditions tha t (X , W) must satisfy
in order to be an encoding of a Polish formula is tha t |X | = 4(n + 1), for some
n > 0, and tha t every block Xi of X is an encoding of a symbol in E. Also, note
that one of the conditions that W must satisfy is tha t |W| = (n + l) (n + 2).
In the following examples, assume tha t (X, W) satisfy the two conditions men
tioned in this paragraph.

For the first example, we E^-formulate ”If Xo encodes p, then Wo encodes
1. Else if Xo encodes 1, A or V, then Wo encodes 0.” as follows:

(X E n cp(X , 0) -> WEnc\(W,Q))
A

/ { X E n c i (X, 0) V X E n c ^ (X , 0) V X E n c A(X, 0) V X E n c y (X, 0))\

\ W E n c o{W,0)) ’

where

(11)
X E n c p(X , x) =df X (b i(x , 3)) A ->X(6i(x,2)) A -X (6 i(x , 1)) A ->X(bi(x, 0)))
X E n c i (X , x) = d/ X [bx(x, 3)) A -X(&i (x, 2)) A -X (6 i(x , 1)) A X(&i(x, 0)))
X E n c ^ (X ,x) —df X(b \(x , 3)) A -X (6 i(x ,2)) A X (b x(x, 1)) A ->X(bx(x, 0))
X E n c A(X, x) =df X (6i(x,3)) A -X (5 i(x ,2)) AX (6x(x, l)) A X (6!(x ,0))
X E n c y (X, x) =df X (b x(x, 3)) A X (6i (x, 2)) A -X (& i(x, 1)) A --X(5i(x, 0))

and

/ (Vy < m)(W (b 2 (x,y))) \
(12) WEnCm(W,x) =df A

\(Vy < n)(y > m ->• -^W(b2 (x ,y))) /

Here, X E n c a {X ,x), where a € E, asserts th a t X x encodes the symbol a.
W EnC m(W ,x) asserts th a t Wx encodes m.

34

Before we go to the next example, let us first Ejf-define the function x — y —
max(0 , x — y) as follows:

(13) 2 = x - y =df ((y + z = x) V (x < y A 2 = 0))

For the second example, we -formulate ’’For every i from 1 to n, if X i encodes
1 or -i, then Wi = as follows:

(Vx < n)(x > 1 —»
((X E ncx (X ,x) V X E n c ^ (X ,x)) —>

(3y < x)(y — x — 1 A Eq(W, x, y)))),

where Eq(W, x, y) is defined by:

(14) (Vz < n + l)(W{b2 (x,z)) <-► W(b2 (y,z)))

For the last example, we E^-formulate ’’For every i < n, if X i encodes 1,
then there exists a j < n such tha t i < j and Xj->i encodes a propositional
variable.” as follows:

(Vx < n) (X E n c i (X ,x) —> (3y < n)((x < y) A X E n c var(X , x , y)))

where X E n c var(X ,x ,y) , which asserts tha t X x^ y encodes a propositional vari
able p l l . . . 1 with (x — y) many l ’s, is defined by:
(15)

(x > y) A (32 < x)(x — z + y A X E n cv {X)x) A (V20 < z) (X E nc i(X ,zo)))

The other conditions that X and W must satisfy, for (X, W) to encode
a Polish formula, can be Eq -formulated in the same way as those examples.
Hence, let F la (X ,W) be a conjunction over the conditions (W I), (W 2), (W3),
(W4), (XI), (X2), (X3) and E^-defines the relation F la (X ,W).

5.1.2 E n co d in g T ru th A ssignm en ts

Our way of encoding a tru th assignment to the variables in a Polish formula
follows [CN10].

Recall tha t |Sj is the length of the binary string representation of the set S
(finite subset of N) and that the indices of propositional variables in a Polish
formula are written in unary notation. Hence, if s is a string in E* such that s
is a Polish formula, then there are < |s| distinct variables in s and their indices
are < |s|. Now, suppose that X encodes s. Then, a set Z C N specifies a tru th
assignment to the variables p l l . . . 1 in X as follows:

Therefore, all tru th assignments to the variables in X can be specified by sets
Z C N such tha t \Z\ < |X |. Thus, the E®-formula Assign(X , W, Z), where the
relation Assign(X, W, Z) holds if and only if the relation F la (X , W) holds and
Z specifies a tru th assignment to the variables in X , is defined by:

p l l . . . 1 is assigned the value of Z (| p l l . . . 1 | — 1).

(16) F la (X ,W) A(\Z\ < \X\)

35

We will next define the Ejf-formula Eval(X , W, Z, Z'), where the relation
E v a l (X ,W ,Z ,Z ') holds if and only if the relation A ssign(X ,W , Z) holds and
Z 1 extends Z to the subformulae of the formulae encoded by X . For that, we
first need to define what it means for Xj_^ to encode a subformula of a Polish
formula encoded by X and define how Z 1 extends Z.

L em m a 5.11 Let s = sn . . . S\Sq be a Polish formula and w = wn . . . w \Wq be
defined as in Lemma 5.7. Then, for every j , k G N such that n > j > k > 0,
S j S j - i . . . Sfc is a Polish formula if and only if the following conditions hold:

1 . For every i < j , if i > k, then the following statement must hold. I f Si
is the symbol 1, then there exists an I < j such that i < I and s[i,z] is a
propositional variable.

2. There exists a n i < j such that i > k and s [z, fc] is a propositional variable
and for every I < j , if I > i, then wi > Wi, and Wj = Wi.

P ro o f: The proof is similar to Lemma 5.7. □

L em m a 5.12 Let X = X n . . . X iX o encode a Polish formula, where X i G E(,jn
for every i from 0 to n, and W satisfies the conditions (W l), (W2), (W3) and
(W4) in Lemma 5.10. Then, for every j , k G N such that n > j > k > 0, Xj->k
encodes a Polish formula if and only if the following conditions hold:

1. For every i < j , if i > k, then the following statement must hold. I f
X i encodes 1, then there exists an I < j such that i < I and X i ^ i is a
propositional variable.

2. There exists an i < j such that i > k and is a propositional variable
and for every I < j , if I > i and Wi encodes no and Wi encodes n \ , then
no > ni , and Wj = W i.

Clearly, Lemma 5.12 is a natural translation of Lemma 5.11.

L em m a 5.13 Let X = X n . . . X \X o encode a Polish formula, where X i G T>bin,
and W be defined as in Lemma 5.10. Then, for every j , k G N such that n >
j > k > 0, Xj-+k encodes a subformula of the Polish formula encoded by X if
and only if the following conditions hold:

(51). k encodes a Polish formula.

(52). I f k > 0, then X k - \ doesn’t encode the symbol 1.

P ro o f: Obvious. □

Condition 1 and 2, in Lemma 5.13, can be expressed by a E^-formula. Thus,
let S u b f (X ,x ,y ,W) be a -formula (a conjunction of (SI), (S2), (W l), (W2),
(W3), (W4)) which asserts that (X x->y, W) encodes a subformula of the formula
encoded by X.

Assume that Assign{X, W, Z) holds. A set Z ' C N extends Z to the subfor
mulae of X as follows:

36

1. For every j , k < \X\, if X j ^ k encodes a propositional variable and that
S u b f (X , j , k , W) holds, then Z ' (j) holds if and only if Z (j — k) holds.

2. For every j , k < |X |, if the relation S u b f (X , j , k, W) holds and X j encodes
->, then Z '(j) holds if and only if ->Z'{j — 1) holds.

3. For every j , k < |X |, if S u b f (X , j , k, W) and X j encodes * £ {A , V}, then
there exists an I such that: k < I < j — 1, S u b f (X , j — 1,1 + 1 ,W) and
S u b f (X , l , k ,W) hold and Z'{j) holds if and only if Z'{ j — 1) * Z'{1).

4. \Z'\ < \X\.

Clearly, all those four conditions are E®-definable. Let <pci > T c 2, T c 3 and </?c4
be the E^-formulae that express condition 1, 2, 3 and 4 above, respectively.
Then,

(17) Eval(X , W, Z, Z') Assign(X, W, Z) A <pa A . . . A <pc4 •

5.1.3 E n co d in g P o ly tim e T u rin g M ach ine C o m p u ta tio n s

From now on, we assume tha t every Turing machine M that will be discussed is
a polytime Turing machine which takes binary strings (empty string included)
as inputs and outputs binary strings (empty string included). Furthermore, for
a Turing machine M = (K , E, 5, s), we assume th a t E = {0,1,2,3}, where 2 and
3 always encode > and the blank symbol, respectively (> and U will often be
used to refer to 2 and 3, respectively), and K = {4, 5 , . . . , |E| + \K\ — 1}, where
4 and 5 always encode s and h, respectively (s and h will often be used to refer
to 4 and 5, respectively). This idea of coding symbols and states of a Turing
machine into natural numbers is from [Pap94], Additionally, Turing machines
will never write a > on their string except when they see one. Moreover, a
Turing machine configuration (q,w,u), as defined in Definition 2.2, is redefined
here as wqu. Here, w — wnwn- \ . . . w \vjq such th a t wn = >,wo is the symbol
read by M at state q and if n > 1, then for every i < n — 1, Wi € S\{>} (since
we never write > except when we see one); q e K and u € (E\{>})*. Finally,
if wnwn- 1 . . . wohum- i . . . Uq is the final configuration of a Turing machine M
on input X , then M (X) = wn- \ . .. tuo, where Wi £ {0,1} for every i from 0 to
n — 1 .

5 .1.3.1 A m e th o d o f encod ing con figu ra tions o f a T u ring m ach ine
o n a given in p u t. The purpose of this paragraph is to describe a method of
encoding configurations of a Turing machine on a given input.

D efin ition 5.14 Let M = (K ,T , ,5 ,s) be a Turing machine. Then, we define
enc to be a mapping from E U K to {0,1}* such that for all n £ E U K ,

(18) enc(n) = 16

where b is the binary representation of n such that |6 | = |7o<72(|L!| + 1-^1)] ■
enc can then be extended to assign a binary string to a string s £ E + as

follows:

J 16, where 6 is defined as in (18) i / s £ E
671C(S) — /

[enc(s[n])enc(s[n — 1 , 0]) i / | s | > l

37

where enc(s) . . . enc(s') is the result of concatenating enc(s) and enc(s').

For example, if |E| + \K\ = 8 , then |7o<72(|£| + |R1)1 = 3. Hence, enc(3) =
1011 and enc(33) = 10111011.

This is a preparation for the definition of the encoding of a configuration of
a Turing machine on a given input. Let t(|X |) be a bound on the running time
of a Turing machine M on input X . Hence, for any configuration wqu of M on
X , |w| + |u| < t(|X |) + 1. Thus, \enc(w)enc(q)enc(u)enc(U)\ < k • (f(|A"|) + 3),
where k — 1 + \log2 (\%\ + l-KDl (here, k is the length of the encoding of a symbol
a e (EURT))-

N o ta tio n Let M = (K , E, 5, s) be a Turing machine. From now on, let 1 +
| + |ifl)] be denoted by kju- Additionally, tM{\X\) always denotes the

bound on the running time of a Turing machine M on input X . At the formal
language level, km denotes the numeral tha t evaluates to 1 + \log2 (\T,\ + |K |)] in
the standard model and t^f(|A |) denotes a number term tha t evaluates to the
bound on the running time of M on X in the standard model. We abbreviate
tM{\X\) by t M .

D efin ition 5.15 We define the encoding o f a configuration wqu o f a Tur
ing m achine M on in pu t X to be the binary string

(19) V = enc(w)enc(q)enc(u)enc(U)enc(U . . . U)

such that \V\ = ^m(^m + 3).

Note th a t the substring enc(U . . . U) of V, in (19), maybe an empty string and
(19) always ends with a U (that will be clear later, when we describe how to
recognise if two binary strings encode two consecutive configurations of a certain
Turing machine on a certain input). Let bz{x,y) be a shortand for • x + y.
The other conditions are clearly Eq-formulable. Thus, let C onfM (V ,X) be a
Ejf-formula which asserts that V is a potential encoding of a configuration of a
Turing machine M on input X .

5.1.3.2 E jf-defin ing th e re la tio n In itM {X, V). Remember that the initial
configuration of a Turing machine M on input X is

> s X (| X | - l) . . . X (l) X (0)

and whose encoding is the binary string

enc(>)enc(s)enc(X)enc(U)enc(U.. . U)

of length /cm(^m + 3). Thus, the relation /mtjvf(X, V), which holds if and
only if V = Vn+iVn . . . Vo encodes the initial configuration of M on input X , is
Ejf-defined as follows:

38

(20)
InitM ^X, V)

=df

\V\ = kftt (tM + 3)

A

Symbol™ (V,tM + 2) A State™ (V,tM + 1)

A

(Vs < |X |)(3y < |X|)(3y® < y)(3z0 < tM)

(V = \X \ ^ 1 \
A

y0 = y - x
A

Zq = tM X
A

(X (y0) «-> Symbol™(V, zq))
A

\ h X (y Q) <-> Symbol™(V, zq))J

(3y < t M + 1)(y = (tM + 1) - \X\ A (Vs < y)(Symbol™(V,x)))

where Symbol™(V, x), Symbol™(V, x), Symbol™(V, x), Symbol™(V, x) and State™(V, x)
are defined as follows:

(21) State™(V,x) = # (3z < k M)

(z = kM - 1 \
A

V(b3(x ,z))
A

V(b3 (x,2))
A

(Vy < z)(y > 2 -> -^V(b3(x,y)))
A

V (Vy < 2)(^y (63(x,y))))

39

which means that s = 4 = IOO2 is encoded by 10. . . 0100, and

Sym bo l^ (V ,x) = df (3z < kM)

Symbol™(V,x) = df (3z < kM)

(z — kM - 1 \
A

V{b3 (x , z))
A

V(Vy < z)(->V(b3(x,y)))J

(z = kM ^ 1 \
A

V(b3(x ,z))
A

V(63(s , 0))
A

\{Vy < z)(y > 0 -* ^V(b3(x,y)))J

(22)

Symbol™(V,x) = df (3z < kM)

z = kM — 1
A

V{b3{x,z))
A

V(b3 (x , l))
A

. ^V{b3 {x, 0))A
\ (Vy < z){y > 1 ->• -1 V(b3(x ,y))) /

Symbol™ (V,x) =d} (3 z < k M)

z = kM — 1
A

V{b3 (x, z))
A

V(63 (* ,0))
A

V(b3(x, 1))
A

\(V y < z){y > 1 ~^V{b3 {x,y)))J

where b3 (x, y) is a shortand for kM ■ x + y.

5.1.3.3 E q-defin ing th e re la tio n Y ie ldsM (V ,V ', X) . In this paragraph,
we Ejf-define the relation Yieldsm (V, V ' ,X) , which holds if and only if V and
V' encode two consecutive configurations of the Turing machine M on input X .
Before we do so, first consider the following example.

E x am p le 5.16 Consider the Turing machine M = (K, E,<5, s), where E =
{0,1, >,□} and K — {s,h , 6} and 5 as shown in Table 1. M simply turns its
input X into a string ofO’s if X is not the emptystring; i f X is the empty string,
then M{e) = e, where e denotes the empty string. Note that we omit rules that
will never be encountered in a legal computation and, since |E | -1- \K\ = 7, the
length of the binary string encoding of every symbol in (E U K) is then 4.

Let us consider the two configurations Cq = > s ll and Ci = > ls l of M on

40

q e K a e S 6 (q,a)
s 0 (s , 0, —»)
s 1 (s, 0, -»)
s > (s , >, —>)
s U (6, U, <—)
6 ■ 0 (h, 0, -)
6 > (h, >, -)

Table 1: A Turing machine.

input 11, and whose binary string encodings are c'0 and c[respectively, where

c'0 = enc(>)enc(s)enc(l)enc(l)enc(U)enc(U. . . U)
c’x = enc(>)enc(l)enc(s)enc(l)enc(U)enc(U. . . U).

Now, a way to tell, if Cq and c ̂ encode two consecutive configurations of M on
11, is that they are identical except that the substring enc(>)enc(s)enc(1) of Cq
has been replaced by the substring enc(>)enc(l)enc(s) ofc[and this replacement
corresponds to the rule 5(s,>) — (s,>, —►), in Table 1 (this idea is from [Pap94])-
Thus, a move of M entails a replacement of triples of binary strings. The
complete table of these triples and their replacements, for the machine M of
Table 1, is shown in Table 2. Table 2 is then encoded into a binary string T

Original substring Replacement
lco,a — enc(>)enc(s)enc(0) /co,i = enc(>)enc(0)enc(s)
Icifi = enc(>)enc(s)enc(l) Zci,i = enc(>)enc(l)enc(s)
lc2,o = enc(E>)enc(s)enc(u) /c2,i = enc(>)enc(U)enc(s)
lc 3,0 = enc(0)enc(s)enc(0) lc3,i = enc(0)enc(0)enc(s)
/c4,o = enc(0)enc(s)enc(l) lc4ti = enc(0)enc(l)enc(s)
lc5,o = enc(0)enc(s)enc(\J) lc5,i — enc(0)enc(U)enc(s)
/ce) o = enc(l)enc(s)enc(0) lce,i = enc(0)enc(0)enc(s)
lc7to = enc(l)enc(s)erac(l) lc7,i = enc(0)enc(l)enc(s)
lcsto — enc(l)enc(s)enc(\J) Zc8,i = enc(0)enc(U)enc(s)
lcgt o = enc(U)enc(s)enc(0) lcgti = enc(6)enc(U)enc(0)
lcio,o = enc(U)enc(s)enc(l) Icio.i = enc(6)enc(U)enc(l)
Zcn(o = enc(U)enc(s)enc(U) lcu,i = enc(6)enc(U)enc(U)
Jci2,o = enc(0)enc(6)enc(0) lci2,i = enc(0)enc(/i)enc(0)
lci3to — enc(0)enc(6)enc(l) lci3ti = enc(0)enc(h)enc(l)
^ci4,o = enc(0)enc(6)enc(U) lc\4ti = enc(0)enc(h)enc(\J)
^ 15,0 = enc(>)enc(6)enc(0) lci5ti = enc(>)enc(h)enc(0)
^ci6,o = enc(>)enc(6)enc(l) ici6,i = enc(\>)enc(h)enc(1)
lcu,o = enc(>)enc(6)enc(U) lc\7t\ = enc(>)enc(h)enc(U)

Table 2: A Table of triples and their replacements.

such that |T| = 6 km x 3 ■ r, where r is the number of rows in Table 1, and
for every i < r — 1 , there exists a j < r — 1 such that Vi = Icj^lcj^, where
Vi — V[6 kM ■ i + (6 km — 1), 0]. An example of a valid encoding of Table 2 is as
follows:

(23) lCifilCitilC2fllC2,l . . . /Ci2,0^12,1

41

In general, for a Turing machine M , its table of triples and their replacements
is encoded into a binary string Tm satisfying the same conditons as T above,
but this time relative to Tm -

We are now ready to E®-define the relation Y ie ld sM (V ,V ',X) . For that,
let T e V / in iW such tha t T is an encoding of the table of triples and their
replacements for M . Then,

Yields M { V ,V ' ,X)

~df

(24)

(3z < t M + 1)

\V\ = kM(tM + 3)A \V '\ = \V\

A

(Replacement m (Y ,V 1 ,x) \
A

{3z < x)(z = x - l A (V y < k M - z)(V(y) <r> V'(y)))
A

(Vy < + 3)
V (l / > M * + 2) - * (V (i /) * + V " (! /)))

•where Replacementm (V, V1 ,x) asserts tha t the substring V^+i V ' V U of V is
a valid replacement of the substring Vx+\VxVx- i of V (i.e. there exists two
substrings Ty+\ and Ty of T such tha t Ty is a replacement of Ty+1, in the
table of triples and their replacements for M , and Ty+1 = Vx+iVxVx-\ and
Ty — Vx+iVxVx-i) and is defined as follows

(25)
Replacementm (V, V', x)

= d f

/ z0 = x - 1 \
A

(3^0 < x) / (T (3 k M(2y + 1) 4- z) o V {kM ■ z0 + z))'
(3 y < \T\)(Vz < 3 kM) A

\ \ (T(3kM -2y + z) •«-> V '(k M • z0 + z)) J J

Figure 2 shows a pictorial description of (25).

5 .1 .3 .4 E jf-defin ing th e re la tio n O u tM (V ,X ,Y) . Remember tha t for a
final configuration whu, where w = wnwn- \ .. . w q , of a Turing machine M on
input X , we have th a t M (X) = tun- i • • - Wo, where Wi £ {0,1} for every i from
0 to n — 1.

The relation OutM{V, X , Y), which holds iff V encodes the final configuration
of M on input X and M (X) = Y, is E^-defined as follows:

42

D

v, Ki-i K v,-i

Figure 2: Pictorial description of what the formula Replacementm expresses.

OutM(V ,X ,Y)

(26) /

(3x < t M + 2)

V

=df

\V\ = Icm (thf + 3)

A

x = (tM + 2) - \Y\ \
A

/ (Y(y) Sym bo l^{V ,x + y)) N
(Vy < \Y\) A

\(-,l'(y) S ym b o l^ (V ,x + y))J J

(3x < t M + l)(x = {tM + 1) - \Y\ A Sta te f f (V,x))

where S ta te f f(V ,x) is defined as follows:

(27) (:3z < kM)

z = kM — 1
A

V(b3(x ,z))
A

V(b3 (x, 0))
A

A
V(b3 (x, 2))

A
\(Vy < z)(y > 2 ^V (b 3 (x ,y)))J

43

t
ri + 1 b n - 1 i f 1 z

f n c (V)

Figure 3: A pictorial description of (26). Here, n = + 1 .

Figure 3 shows a pictorial description of (26).

5 .1.3.5 Ej^-define th e re la tio n Compg(V, Y, X) . The goal of this para
graph is to E^-define the relation Compg(V ,Y ,X) , which holds if and only if
V encodes the computation of a Turing machine and V shows tha t g(Y) = X ,
where g is a polytime computable onto function from {0,1}* to {0,1}*. To
Eq-define Compg(V ,Y ,X) , we first need to describe a method of encoding the
computation of a Turing machine M on X . For that, the following definitions
are needed, but first recall tha t when writing Z(x, y), we mean Z((x ,y)) , where
(x,y) is the pairing function.

D efin ition 5.17 [CNIOJ The function Z ^ is defined by

(28) z W (i) < r * (i< \Z \ A Z (x i i))

D efin ition 5.18 [CN10J The s tr ing tupling fu n c t io n (X q, X i , . . . , X n- i) is
defined by

(29) (X0 , . . . , X n_i)(t) «->(» = O’.*)) A 0 < n) A X j (x)

D efin ition 5.19 Let 'tpiU) be a E ^ -formula. Then we denote by ip (V ^) the
result of replacing every occurence o fU (t) in ip by V ^ { t ') , where t = (x , t ').

The computation of a Turing machine M on an input X can be encoded
by a binary string V = (V’I°1,V’[1) . . . V ^ l) such that is the initial con
figuration of M on X and for every i < tM, Y ie ld sm (V ^ ,V ^ 1+1\ X) holds,
and (VltMl, X, M (X)) holds. Note tha t the length of V is bounded by
(fjW> + 2)).

Now, let g be a polytime computable onto function from {0,1}* to {0,1}*
and M be a polytime Turing machine tha t computes g. Then, we E^-define the
relation Compg(V ,Y ,X) as follows:

Compg(V ,Y ,X) =df \V \< {tM ,k M (tM + 2))A
1 j <Pm (X, V) A OutM(V t ^ l , A, Y)

where </?m (A, V) is defined as follows:

(31) <pM(X , V) =df In i tM(X , v W) A (Vx < t M)(YieldsM(V W ,V \x+1\ X))

44

5.1.4 E jf-fo rm u lation of th e R eflec tion P rin c ip le

Prom now on, we assume that propositional proof systems are defined as in
[CR79], but whose domains are {0 , 1}*, i.e. propositional proof systems are
polytime computable onto functions from {0,1}* to TAUT, where TAUT C
{0 , 1}*.

We finally come to the central point of this subsection, which is to Ej^-
formulate the reflection principle for a propositional proof system g which states
that

(32) V X (3T(0(y) = X) => X G TAUT)

We Ej^-formulate the reflection principle of a proof system g as in [C0 0 O6]:

(33)
Soundg(X, W, Z, Z ' ,V ,Y)

=df

Eval(X , W, Z, Z') A Compg(V, Y, X) -> (3x < |X |)(|X | = 4(x + 1) A Z'(x))

where Z'(x) is the tru th value of the entire Polish formula encoded by X (re
member tha t a symbol in {p, 1, -i, A, V} is encoded by a binary string of length
4).

T h eo rem 5.20 Let g be a polytime computable onto function from {0,1}* to
{0,1}*. Then N2 \= 'iScmndg if and only i fVX(3Y{g{Y) = X) => X G TAUT).

P roo f: (=>) Suppose that 'iSoundg is true in the standard model. We show
tha t VX(3Y(g{Y) = X) => X € TAUT). For the sake of contradiction, suppose
tha t 3 X (a r (s (r) = X) A X £ TAUT). Let X , W , Z , Z ' G {0,1}* such that
Eval(X ,W , Z, Z') is true in N2 and let V G {0,1}* such tha t Compg(V ,Y ,X)
is true in N2. Since X TAUT, we have that N2 (3x < |X |)(|X | =
4(x + 1) A Z'{x)). Therefore, VSoundg is not true in the standard model, which
is a contradiction.

(4=) Suppose tha t VX (3Y (g(Y) = X) => X € TAUT). We want to show
tha t VSoundg is true in N2. For the sake of contradiction, we assume that
(3X ’,W, Z, Z ', V ', Y ') (E va l{X ’, W, Z, Z')ACompg(V ', Y ' , X ')) is true in N2 and
(3x < IX' ljdX'l = 4(x + 1) A Z'(x)) is not. Since Compg(V ' ,Y ' , X ') is true in
the standard model, we conclude tha t X ' G TAUT, which is a contradiction to
our original assumption. □

5.2 The Main Theorem
Remember tha t the uniform reduct of a proof system / is defined to be the set

U / = {ip(x,X) e E® : {y(m,X)[n] : m ,n G N} has polysize /-proofs}

Let / + be the system / augmented to allow substitution Frege rules to be
applied to tautologies after exhibiting their /-proofs.

45

Theorem 5.21 Uy+ = TRUEs b iff f + sim ulates every proof system .

P ro o f: (<^) Suppose that / + simulates every proof system. Let ip(x,X) G
TRUEs b. We want to show tha t there exists a proof system g such that
{(p(m,X)[n\ : fh ,n G N} have polysize p-proofs. We assume an efficient encod
ing of tautologies and proofs over {0 , 1}*, which can be different from the one
we described previously. Let p be any proof system. We modify p in order to ob
tain g in the following way. For every 7r 6 {0 ,1}*,ip € X)[n\ : m , n G N},
g(0w) = p(7r) and p(lF ’i/>) = Y$, where Y$ is the encoding of ip, and for ev
ery other string G {0,1}*, p(n') = T. Clearly, g is a proof system and
{<p(m,X)[n] : rh,n G N} have polysize p-proofs. Since f + simulates p, we con
clude tha t {<p(m} X)[n\ : m, n G N} has polysize / +-proofs.

(=>) Suppose tha t U/+ = TRUEs b holds. We show th a t for every proof
system p, there exists a polynomial p such that

VX, Y (g(Y) = X ^ 3 Y ' (f +(Y') = X A |T '| < p (\Y |))).

Let p be any proof system. Then p satisfies (32). Therefore, VSoundg is true
in N2, by Theorem 5.20. Therefore, {Soundg(X, W ,Z , Z ',V , Y)[n] : n G N} has
polysize / +-proofs, by assumption.

Now, let A and B be any binary string such tha t g{B) = A (i.e. A encodes
a tautology and B is a p-proof of A), and let C be any binary string such that
C encodes a computation of a Turing machine and C shows tha t g{B) = A.
Furthermore, let D be a binary string such tha t D encodes the weight of the
tautology encoded by A. Additionally, let ua — \A\,ub — \B \ ,n c — \C \,nn =
\D \,nz = fiA and nz> = u a -

Note that the propositional formula encoded by A is in Polish notation.
Thus, a propositional variable has its index written in unary notation. We write
Pi for p l l . . . 1, where p l l . . . 1 has i many l ’s. Now, we denote by <p(Po>.. -Pi-i)
the formula encoded by A, where po, . . . ,P/- i are all the propositional variables
in <p.

We show that there exists a binary string B ' such tha t f +(B') = A and
\B'\ < p{\B\), for some polynomial p.

The formula Soundg(X, W, Z, Z', V, Y)[tia, nz>, ric, tib] has atoms
nX nX nW nW ~.Z J.Z' ~.Z' nV nv anH
P o i ‘ ‘ • >Pt i a — 2 > P o > • ‘ ‘ l P r i D — 2 ’ P o > • • • > P n z —2 i P o > ■ • ■ > P n z i —2 >P o > • ■ ■ i P n c — 2 a

Po > • • • i PnB - 2> and more importantly, it has polysize / +-proof, since we have
that Soundg(X, W, Z, Z ' , V, Y) G TRUEe b .

Let c i be a substitution such that:

<ri(Po) = -A(O). • • • > 2) = A (n A ~ 2),
a\{Po) = B{Q), . . . , (j{p l 2) = B (n B - 2),
<ri(Po) = C (0) , . . . , o - (p j L - 2) = C (nc - 2) ,
v i i P o) = D(0) , . . . ,o - (p ;D_ 2) = D (n c - 2)

46

and for every other a tom p in Soundg(X , W , Z, Z ' , V, Y)[u a , n B ,n z ,n z > ,n c ,n B\,
a i(p) = P■ Then, we have

^ Soundg(X , W, Z, Z ' ,V ,Y)[n A,n D, n z , n z >,nc , n B\
Soundg{X, W, Z, Z 1, V, Y)[nA, n D, n z , n z >, n c , n B\cr\

by the application of the substitution rule (cf. Definition 3.43). We denote the
formula Soundg(X, W, Z, Z ' , V, Y)[nA,n B , n z , n z >, n c , n B]o\ by Soundg. Soundg
is of the form

(Eval(X , W, Z , Z')[nA ,n D,n z ,n z ']cr i \
A j ->• (pta(X ,Z ')[nA,n z >}(Ti

Compg(V ,Y ,X)[nc,n A, n B]<Ti /

where ipta(X , Z')[nA ,nz'\cri is

(36) \ f (n A = 4(i + l))[ru] A Z'(i)[nz']
i<n.A

where we have that

(p f if i < n z > - 2
(37) Z\i)[nz>] =df < T if i = n z > - 1

[J. otherwise

Now (36) is equivalent to Z'(j)[nz'}, for some j < n A. Clearly, this equivalence
has polysize Frege-proof (all tha t is needed to be done is some pruning). Let
Soundg denote the formula

(E va l (X , W, Z, Z 1)[nA, n o ,n z , nz-JirA
A -> Z '(j)[nZ'\

Compg(V,Y,X)[nc,n/t,nB}ai j

Let m be the runtime required by the Turing machine M on B, which computes
g and whose computation is encoded by C. Since Compg(V, Y, X)[nc, n A, n B}oi,
in Soundg, is a closed tautology, we conclude th a t it has polysize Frege-proof,
by Corollary 3.41. Thus, we obtain

SoundI = E va l (X ,W ,Z ,Z ') [n A ,n D, n z , n Z']o-i -* Z '(j)[n z‘]

Let 02 be a substitution such tha t o2 (p f) = po,.. ■ ,o 2 (pf_1) = p ;- i , u2 (pf) =
_L,. . . , cr2(Pnz - 2) = -L and for every other atom p in Soundg, o2 (p) = p. Then,
we have th a t

, v Soundg
(39) 9

S o u n d g 0 2

by the application of the substitution rule.

Now, for each subformula ip' of ip, we substitute </?' for p f in Soundzgo2, where
Z'{i) codes the tru th assignment to p ' , and we set the remaining p f to _L. Let
o3 denote th a t substitution. The resulting formula has the form

(40) Eval4 —> ip

47

We now argue tha t Eval4 = Assign4 A p 4Ci A . . . p 4Ci has short Frege-proof.

Remember that E va l (X , W, Z , Z ') =df Assign(X , W , Z) A pci A . . . A 0 c 4 > where
Assign(X , W, Z) = # F la (X ,W) A (\Z\ < |X |). Since Assign4 is a closed tau
tology, by corollary 3.41, it has polysize Frege-proof. Now, every variable in <Pq.
occurs in a subformula of the form

1. p f O T,

2. p f _L,

3. p f o ^ p f_ x or

4. p f «-* pf_

which will turn into tautologies, by cr3, with short Frege-proofs. As an example,
let us look at p 4c . p C2(Ji (J2 is of the form

/ \ S u b f (X , i , k ,W) [n A,n D\aicr2 / \X E n c - , (X , i) [n A\a ia 2 - t ip i
j , k < n A

where
{ ± o 1 if j — n z >

T - i p f i if j = n z > - I

p f <-> if j < n z > - 2

can be shown to be equivalent to

(41) / \ S ub f (X , i , k ,W)[n A,nD\a1a2 AX En c^(X, i) [n A]cria2^rp2
j , k < n A -2 ~

"0

by a short Frege-proof, where ip2 is the tautology -k// <->• -xp', which also
has short Frege-proof and where <pf is the subformula of <p corresponding to
S u b f (X , j — l , k) . Since the tautology ip2 has short Frege-proof, we conclude
that ip has short Frege-proof. Then, (41) has short Frege-proof. Similarly, for
<Pq1 , <Pc3 and 0 c 4 • Thus, Eval4 has short Frege-proof.

We conclude tha t ip has an / +-proof polynomial in the length of B. □

6 Conclusion
In this dissertation, we carried out a detailed proof of the equivalence between
the existence of an optimal proof system and the existence of a proof system
whose uniform reduct is the set of all true E^-formulae. In this regard, we
described how to encode Polish propositional formulae into binary strings (or
sets, more precisely) and Ejf-defined Polish propositional formulae. Our de
scription of how to encode tru th assignments to Polish propositional formulae is
partly from Cook and Nguyen’s book, ’’Logical Foundations of Proof Complex
ity” . Combining the ideas of Papadimitriou’s [Pap94] and Cook and Nguyen’s,
of how to encode a Turing machine computation, we described how to encode

48

a polytime Turing machine computation on a given input and provided a £®-
formula that captures such computation. We also gave a -formulation of the
Reflection Principle.

In Cook’s sketch of the main theorem [C0 0O6], he used Z (0) instead of our
Z(n), where n is a natural number such tha t the length of the encoding of the
Polish formula under consideration is equal to (n 4- 1), to represent the tru th
value of a Polish formula. This allowed him to do a direct proof without hav
ing to go through the equivalence between (36) and Z'(n)[nz>}- This suggests
that, instead of Polish formulae, we could use reverse Polish formulae. Thus,
Z (0) would then represent the tru th value of the reverse Polish formula under
consideration.

As we have seen, if one can show that a proof system / is optimal, then
separating NP from coNP boils down to showing if there exists a true T,q-
formula <fi(X) such tha t {<p(X)[n} : n € N} is hard for / . Thus, a possible
future direction would be to investigate the uniform reducts of propositional
proof systems whose no strong lower bounds are not known yet: Frege, extended
Frege, etc. For example, one may look for properties of uniform reducts of those
systems which might help distinguish them from TRUEs b .

49

R eferences
[BBP95] Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there

hard examples for Frege systems? In Feasible mathematics, I I (Ithaca,
NY, 1992), volume 13 of Progr. Comput. Sci. Appl. Logic, pages 30-
56. Birkhauser Boston, Boston, MA, 1995.

[BdG98] Shai Ben-david and Anna Gringauze. On the existence of optimal
propositional proof systems and oracle-relativized propositional logic.
Technical report, Electronic Colloquium on Computational Complex
ity, 1998.

[Bec05] Arnold Beckmann. Uniform proof complexity. J. Logic Comput.,
15(4):433^46, 2005.

[BP96] Paul Beame and Toniann Pitassi. Simplified and improved resolution
lower bounds. In 37th Annual Symposium on Foundations of Com
puter Science (Burlington, VT, 1996), pages 274-282. IEEE Comput.
Soc. Press, Los Alamitos, CA, 1996.

[BP98] Sam Buss and Toniann Pitassi. Resolution and the weak pigeonhole
principle. In Computer science logic (Aarhus, 1997), volume 1414 of
Lecture Notes in Comput. Sci., pages 149-156. Springer, Berlin, 1998.

[BP01] Paul Beame and Toniann Pitassi. Current trends in theoretical com
puter science, chapter Propositional proof complexity: past, present,
and future, pages 42-70. World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 2001.

[Bus87a] Samuel R. Buss. The boolean formula value problem is in alogtime.
In in Proceedings of the 19-th Annual ACM Symposium on Theory of
Computing, pages 123-131, 1987.

[Bus87b] Samuel R. Buss. Polynomial size proofs of the propositional pigeonhole
principle. J. Symbolic Logic, 52(4):916—927, 1987.

[Bus02] Samuel R. Buss. Some remarks on lengths of propositional proofs.
Archive for Mathematical Logic, 34:377-394, 2002.

[CN10] Stephen Cook and Phuong Nguyen. Logical Foundations of Proof
Complexity. Cambridge University Press, New York, NY, USA, 1st
edition, 2 0 1 0 .

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In
STOC ’71: Proceedings of the third annual ACM symposium on The
ory of computing, pages 151-158, New York, NY, USA, 1971. ACM.

[Coo03] Stephen Cook. The importance of the p versus np question. J. ACM,
50:27-29, January 2003.

[C0 0 O6] Stephen Cook. Comments on Beckmann’s uniform reducts. CoRR,
abs/cs/0601086, 2006.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of
propositional proof systems. J. Symbolic Logic, 44(l):36-50, 1979.

50

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractabil
ity; A Guide to the Theory of NP-Completeness. W. H. Freeman &;
Co., New York, NY, USA, 1990.

[Hak85] A. Haken. The Intractability of Resolution. Theoretical of Computer
Science, 39:297-308, 1985.

[KP89a] Jan Krajicek and Pavel Pudlak. Propositional proof systems, the
consistency of first order theories and the complexity of computations.
J. Symbolic Logic, 54(3):1063-1079, 1989.

[KP89b] Jan Krajicek and Pavel Pudlak. Propositional proof systems, the
consistency of first order theories and the complexity of computations.
J. Symbolic Logic, 54(3):1063-1079, 1989.

[MT98] Jochen Mefiner and Jacobo Toran. Optimal proof systems for propo
sitional logic and complete sets. In Proceedings of the 15th Annual
Symposium on Theoretical Aspects of Computer Science, STACS ’98,
pages 477-487, London, UK, 1998. Springer-Verlag.

[Pap94] Christos M. Papadimitriou. Computational complexity. Addison-
Wesley, Reading, Massachusetts, 1994.

[Raz04] Ran Raz. Resolution lower bounds for the weak pigeonhole principle.
J. ACM, 51 (2):115—138 (electronic), 2004.

L1SRARY

