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Abstract

Millions of digital communications are posted over social media every day. Whilst 
some state that a large proportion of these posts are considered to be babble, we 
know that some of these posts actually contain useful information. In this thesis we 
specifically look at how we can identify reasons as to what makes some of these 
communications useful or not useful to someone searching for information over 
social media. In particular we look at what makes messages (tweets) from the 
social network Twitter useful or not useful users performing search over a corpus 
of tweets.

We identify 16 features that help a tweet be deemed useful, and 17 features as to 
why a tweet may be deemed not useful to someone performing a search task. From 
these findings we describe a distributed architecture we have compiled to process 
large datasets and allow us to perform search over a corpus of tweets.

Utilizing this architecture we are able to index tweets based on our findings and 
describe a crowdsourcing study we ran to help optimize weightings for these 
features via learning to rank, which quantifies how important each feature is in 
understanding what makes tweets useful or not for common search tasks performed 
over twitter. We release a corpus of tweets for the purpose of evaluating other 
usefulness systems.
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Chapter 1: Introduction

Everyday millions of posts are made to social media services and this number seems 

to be rising (Twitter, Inc., 2011). Finding useful information in this vast expanse of 

data is a hard task; this sentiment has been echoed by creators of services such as 

twitter.

“I think the challenge not only for Twitter , but for the 

technology industry at large. Is building more relevant filters, 

in real time. Like being able to surface valuable information 

immediately, No matter who it is, who’s listening or who’s 

broadcasting, it is a really really hard problem, and it makes 

Twitter a lot more meaningful[... ] We’ve gotten really really 

good at being able to put content in, into media[... ] getting it 

out in a relevant, valuable way, in real time is still very 

difficult.”

- Jack Dorsey (Creator of Twitter) (Dorsey, 2011)

There are various stakeholders who are interested in getting meaningful data out of 

social media. Twitter has been used in all types of scenarios across a range of areas. 

We know for instance Twitter has been used as a question and answering service 

(Morris, Teevan, & Panovich, 2010). It has been used to reshape healthcare (Hawn, 

2009). Researchers and healthcare professionals are using twitter to analyze public 

health and to track epidemics (Aramaki, Maskawa, & Morita, 2011) (Lampos, De Bie, 

& Cristianini, 2010) (Culotta, 2010). We have seen how twitter has been used in 

disaster events, (Qu, Huang, Zhang, & Zhang, 2011) (Vieweg, Hughes, Starbird, & 

Palen, 2010) delivering news (Kwak, Lee, Park, & Moon, 2010), and offering advice 

and current updates (Imran, Elbassuoni, Castillo, Diaz, & Meier, 2013) (British 

Broadcasting Corporation, 2013). Researchers have also used twitter to correlate 

mood towards companies and stock prices (Boolen, Mao, & Zeng, 2011). We have 

seen how twitter has been utilized to identify new news stories, as well as tracking 

online events. (Petrovic, Osborne, & Lavrenko, Streaming first story detection with 

application to twitter, 2010) (Phuvipadawat & Murata, 2010) One of the most obvious
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uses of twitter is in the marketing domain, for interacting and analyzing perceptions to 

brands, products and services.

Hurlock and Wilson (Hurlock & Wilson, Searching Twitter: Separating the Tweet 

from the Chaff, 2011) conducted an experiment that asked users to rate Twitter search 

results pages with scores out of 5 in terms of relevancy. Overall the mean score for all 

rated tweets over three common search tasks performed on microblogging data sets 

was 2.2. Indicating veiy low relevancy scores, and in one type of task it was as low 

as 1.25. The work carried out by Hurlock and Wilson was a main motivation behind 

this work.

Whilst papers such as Earlybird: Real-Time Search at Twitter (Busch, Gade, Larson, 

Lok, Luckenbill, & Lin, 2012) and Evaluating real-Time Search over Tweets 

(Soboroff, McCullough, Lin, MacDonald, Ounis, & McCreadie, 2012) have 

concentrate on the speed at which the system can ingest content rapidly and make it 

searchable immediately, very few have looked at how users of such a service and data 

type judge the information that is retrieved.

McCreadie and MacDonalad (McCreadie & MacDonald, 2013) acknowledge that 

finding tweets can be a challenging task. However, they state that the relevance of a 

tweet is dependent both on its content and whether it links to a useful document, 

without any reference to research being carried out on this factor.

Work by Naveed et al. (Naveed, Gottron, Kunegis, & Alhadi, 2011) suggests that 

retweets reflect what the Twitter community considers interesting on a global scale, 

and suggests that it can be used as a function of interestingness. In their work they 

also suggest features that contribute to the likelihood of a retweet, and thus 

identifying interesting tweets, they weight these features via learning to rank utilizing 

logistic regression and in their future work intend to use interestingness as a static 

quality measure for IR on microblogs.

Work by Cherichi et al. (Cherichi & Faiz, 2013) and Jabeur et al. (Jabeur, Tamine, & 

Boughanem, 2012) have explored microblog IR by splitting tweets into different
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features such as content relevant features, tweet relevance features and author relevant 

features, however there is no explanation of where these features were derived from.

The TREC microblog track assumes that the best result set for a given query is to 

“return the most recent but relevant information” (Ounis, MacDonald, Lin, & 

Soboroff, 201 l).We know that temporal information is a big part of microblog search 

by classifying tweets via search logs (Teevan, Ramage, & Ringel Morris). However 

we also know there are other types of search tasks performed on Twitter data.

In this Thesis we wish to investigate what really makes tweets useful or relevant to 

users performing microblog search. Is the most recent tweet really the most important 

factor to a user or are there other more important factors? Manning et al. (Manning, 

Raghavan, & Schiitze, 2008) state the following:

“.. .in the final analysis, the success of an IR system depends 

on how good it is at satisfying the needs of these 

idiosyncratic humans, one information need at a time.”

- Manning et al. (Manning,

Raghavan, & Schiitze, 2008)

Whilst classically IR takes the view that users are searching to fulfill an information 

need and that information need (Schneiderman, Byrd, & Croft, 1997) is either 

fulfilled successfully or not (binary judgment).

We now know that depending on the type of search users are performing, searches are 

not just to satisfy an information need, but users also have other intents when 

performing search.

In web search we see such intents that include transactional and navigational search. 

(Broder, 2002) We now know the intent behind a web search query may not at all be 

informational in nature. Andrei Broder found via query log analysis that queries could 

be classified into Navigational (20%), Informational (48%) and Transactional (30%).
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Elsweiler et al. (Elsweiler, Wilson, & Kirkegaard Lunn, Understanding casual-leisure 

information behaviour., 2011) have looked at a newly identified type of search 

’casual-leisure* search; exploratory search scenarios where by the goal is not 

information-oriented. Although not classically seen as IR Morris et al. (Morris, 

Teevan, & Panovich, 2010) have looked at the types of questions that were asked on 

social networks, and whilst most of informational in context, queries were asked 

through social networks regarding recommendations, opinions, factual knowledge, 

rhetorical questions, invitations, favors, social connections and offers

Jansen et al. (Jansen, Spink, & Saracevic, 2000) argue that internet search is very 

different from IR searching as traditionally practiced and researched. The reasons 

behind searching and the way people are searching has evolved. Not only have intents 

changed, but also the way in which people perform search, tools such as keywords 

clouds, tag clouds and faceted search have enabled people to move away from 

traditional keyword search.

We wish to explore how users perceive what makes a result useful to them when 

performing one of the three most common search tasks on Twitter.

This Ph.D. has been partially funded by an industrial partner. Originally called 

Kaimai Research based in Swansea, this company was acquired by Adzeee during the 

duration of this Ph.D. Adzeee offers a dynamic publishing platform enabling content 

monetization via the sponsorship of an intelligent information retrieval service, which 

produces actionable ‘zero latency’ knowledge. As such the motivation of this project 

was to create a search engine that could be utilized by Adzeee to identify useful 

tweets to users. Allowing them to target users who provide the best information, or 

are mostly to be involved with further interactions with a client. The relationship with 

author and Adzeee is via a Knowledge Economy Skills Scholarship (KESS). KESS is 

a major European convergence programme led by Bangor University on behalf of the 

HE sector in Wales. Benefitting from European Social Funds (ESF). KESS supports 

collaborative research projects (Research Masters and PhDs) with external partners 

based in the Convergence area of Wales. As part of the KESS scheme students must 

acquire credits via attending and presenting at conferences, attending a KESS Grad
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School, submitting monthly and quarterly reports based on progress as well as 

spending a 3 month secondment inside of the host company.

As a result of this collaboration the project attempts to help identify useful tweets, by 

introducing a novel set of filtering features for both useful and non-useful tweets, as 

well as describing an architecture on which this detection can run.

Research Contributions

Through evaluation of existing literature, and systems in the wild we have identified a 

need to

• Understand what factors make a tweet useful to people performing searches of 

microblogging data

• Develop a robust framework for indexing and retrieving large amounts of 

microblogging data in a timely fashion

• Create a test corpus to allow us to compare our system against others

• Produce a system whereby we can index large datasets, and retrieve data in a 

timely fashion, and automatically whether a tweet is to be deemed useful or 

not for a given query

Chapter Outline

In this section we give a brief overview of the thesis and what you reader can expect 

to read in each chapter.

Chapter 2: This consists of a literature review as well as background information that 

provides allows the reader to understand the rest of the thesis. We provide 

an overview of Twitter and information retrieval. We also give an 

overview of research performed on Twitter.

Chapter 3: Describes a study we conducted that aimed to find what factors made 

tweets useful or not useful to people performing searches over a 

microblogging data. We based this upon the three most common types of 

search performed over microblogging platforms.
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Chapter 4: Describes both the physical and software architecture we chose that has 

allowed us to build a scalable information retrieval system for operating 

over large data sets. We describe components and methods we evaluated 

as well as rationale as to why we chose certain components. This section 

acts as a guide for anyone else wishing to build a similar system and 

wishes to know the benefits of certain components, as well as how 

components interact with each other.

Chapter 5: In this chapter we describe how we programmatically extract

features/codes from tweets that we found in Chapter 3, and how they 

interact with the system described in Chapter 4. These features/codes will 

then be utilized in Chapter 7. To help optimally rank tweets in terms of 

usefulness.

Chapter 6: This chapter describes a corpus of tweets we have created via

crowdsourcing for the purpose of evaluating retrieval systems looking at 

usefulness. Whilst there is an interest in performing IR over twitter data, 

there is no dataset that provides researchers with both tweet ids, as well as 

user judgments scores for usefulness. We have built the first dataset that 

has both of these metrics available for users to download and utilize. This 

is helpful for other researchers working on this or similar tasks allow them 

to compare their system to ours.

Chapter 7: In this chapter we utilize the work carried out in previous chapters to

automatically assign weightings to the features we extracted in chapter 5. 

The main contribution of this chapter is to inform the reader as to which 

factors are most important and importantly how important are they are, to 

making a tweet useful or not useful.

Chapter 8: Concludes the thesis by summarizing the contributions of the thesis as 

well as giving possible avenues for future work.

10



Chapter 2: Literature Review
In the previous chapter, we identified the need for a search service to provide support 

for users wishing to identify useful information in a microblogging environment.

In this section we provide the reader with an overview of the research landscape 

concerning the problem we wish to address. We touch on several fields in computer 

science, and how they have gone about trying to tackle similar or relevant problems. 

As well as an overview of the research landscape we briefly give an overview of 

Twitter, and some of the conventions used, so the reader is aware o f  some of the 

terminology we use throughout this thesis.

2.1 A Brief O verview  of Twitter.

Twitter is a microblogging service that allows users to post 140 character posts onto 

their profile. It is set at 140 characters for historical reasons relating to the length of a 

SMS (Short Message Service) text. Users can follow other user’s posts, though this 

network does not necessarily require ‘mutual fo llowing’ unlike other social networks.

2.1.1 The Shape of Twitter Data

Twitter started in March 2006, with Jack Dorsey sending the tweet, “just  setting up 

my twttr” (Twitter Inc., 2014), since these humble beginning Twitter has seen 

explosive growth, with the last confirmed reports saying 400 million plus tweets were 

being sent per day (Twitter, Inc., 2013), this growth can be seen in the graphs below.

Tweets per Day
M 0* 20IC

100M
90M

Jan  July Jan  July Jan  July Jan  July Jan  July

Tweets per Day *07-* 13
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Figure 2.1 Shows Tweets per day from January 2007 to 2010 on the left hand side (Twitter, Inc., 

20\0)W hilst the graph on the right hand side shows estimated tweets per day based o ff o f press 

releases via the Twitter blog1.

When we think of a tweet, we think of a 140 character message, with some associated 

data about the user. However, as discussed there is a lot more data “underneath the 

bonnet” , that most users don ’t see.

In terms of data, it was reported Twitter users were generating 12 terabytes of new 

data per day in September 2 0 10.2 However, since this report we know that Twitter is 

seeing over 4 times as many tweets being sent per day as of late 2013 (as seen in 

Figure 2.1). This introduces one of one of our biggest problems, how do we deal with 

this much data and growth?

2.1.2 The Language of Twitter

However, like many services the use of Twitter has evolved and as this transformation 

has taken place certain service specific traits have evolved. We describe some of these 

Twitter specific language traits in this section.

2.12.1 @Mentionsl @Replies

@Mentions are a way of identifying another user in a piece of text, for instance the 

following tweet identifies that the user @ FITLab_Swansea, is referencing the user 

@dodopat

A FITLab Swansea *  Fo"°“
©FITLab_Swansea

FIT Lab's @dodopat is in Stanford Research Institute 
till summer working on the HCI of verification tools
fb.me/2uLH WKDLj

5:43 AM - 27 Apr 2014 

1 RETWEET

Figure 2.2 Tweet demonstrating an @mention.

' http://blogs.twitter.com/

2 http://www.neowin.net/news/storing-tweets-requires-four-petabytes-of-data-a-year
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W hen a user @mentions another user. The user who is referenced, will receive a 

notification that they have been referenced in a tweet.

There are however, some cavets to @mentions. If a tweet starts with a © m entions 

such as that below from the Tesco user account mentioning the user @keewa.

S3 keewa ®keewa 2h
They're so stale in fact, they might have been cooked during the 
Renaissance. ©Tesco

t e s c o  Tesco © *
©Tesco

@kcewa Sorry to hear this. Did you return them?
Which store were they purchased from and were they 
bakery' or packaged? #WeLoveFreshDoughnuts
7:02 PM -21 May 2014

4- VI i t

Figure 2 3  A conversation on Twitter between @keewa and @Tesco. 

@Tesco have used the @mention construct to reply to @keewa.

The user @keewa will receive a notification that they have been mentioned by 

@tesco. However, by default no one else will see this tweet unless they are both a 

follower of @keewa and ©tesco. This is due to it being part of a conversation 

between those two users.

Other users of Twitter may find these tweets via search, or by going to the @tesco 

account and selecting to view ‘tweets and replies’ .

However, this conversation behavior can be countered by putting any character before 

the ‘@ ’ symbol. It is common to see a full-stop/period before the @mention as shown 

in the example below.
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Dennis Brighton ©BrightonDennis 16 May
©stephenfry unless of course it's a play on the name of a certain boy 
band combo Stephen

F !
Stephen Fry Q  *  Fo"°*
©stephenfry

BrightonDennis We’ll obv. But it has no objective 
correlative or meaningful context bad paronomasia it 
fails IMHO...
3:31 PM - 16 May 2014 

14 RETWEETS 68 FAVORfTES

Figure 2.4 A conversation on Twitter between @BrightonDennis and @stephenfry. 

@Stephenfry has used the ‘.@mention' constructpublically reply to @BrightonDennis.

2 .1 2 2  $Companies

As well mentioning other users, there is a convention oh how to mention companies 

via Twitter. This is done by prefix the companies N A SD A Q  code with a dollar sign, 

for instance if we wanted to mention Twitter Incorporated we would tweet something 

with $TW TR, TW TR being the NA SD A Q  code for Twitter.

This is not a widely used convention, and is limited to US based companies based on 

the NA SD A Q  exchange.

We have provided an example of this behavior in use in the following tweet, where 

the financial times have referenced Google via the $GO OG code and Apple via the 

$A A PL code.

\ Go gic 2 3 XBM 4 s*" " 5 r
tr, 2 2?**' ii)*** i 3 Sf4*1 l0,A® 7 **** * 9QJB*

p y  Financial Times O  y  Follow
©FT

Global brands: Google pips Apple, plus social media break into 
world's top too
0 n.ft.com/1qUi3 aN $GOOG SAAPL
11 ’2 2  AM - 21 May 2014

56 RETWEETS 18 FAVORITES ■£!• i t

Figure 2.4 Example o f the SCompanies tag being used to indicate 

Google ($GOOG) and Apple Inc. ($AAPL).
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2.123  #Hashtags

As well mentioning users and companies. Twitter has a convention for tagging a 

tweet about a topic. This is called hashtagging. A word or Phrase (normally written in 

CaMeL case) is used to denote a topic, an example of this can be see in Figure 2.3 

denoting the hashtag #WeLoveFreshDoughnuts.

These conventions whilst popular on Twitter, are also popular on other social media 

sites. Facebook and other large social networking sites have started to incorporate this 

behavior and functionality in their services.

2.12.4 Retweets

Retweeting is a behavior found on Twitter. Which is where a user creates a post and if 

another user wishes to ‘share’ their post on their wall, they retweet the original post. 

(Twitter Inc.)

There are two common ways this is achieved. The first is by using the retweet button 

presented on all tweets. This can be seen in figure 2.4, it is the icon which is located 

next to the star on the bottom right. This then posts this selected tweet, to the user’s 

page unedited, and show the author as the originating author.

Another convention is by using prefixing a tweet with the characters RT followed by 

an ©mention to the original author, then followed by the message. This is normally 

done to then add a comment to the originating tweet.

2.13 Twitter Metadata

As well as in messages, each tweet contains metadata. Whilst a lot of this is to do with 

the person who has sent the tweet, it also contains data about, where and when tweets 

were sent, depending on the user’s privacy options.

If the tweet is part of a conversation or a direct message, it contains information about 

the intended recipient, and if the tweet contains rich media via a Twitter accredited 

media provider, it can also include data about the media to be bundled with the tweet.
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Whilst most users of the service will only see the ‘surface’ of a tweet, there is a 

surprising amount of data that lies underneath. Raffi Krikorian’s white paper 

(Krikorian, 2010) explains a lot of the early metadata included in tweets, however, as 

Twitter has grown this structure has changed, and object have been added, removed or 

modified. (Twitter Inc.) Based on our work in Chapter 6, tweets collected ranged 

between 2-9kb in size.

2 2  Relevant Research on Social Media & Microblogs

Whilst the definition of social media varies depending on whom you are talking to, 

and the purpose of what you are talking about. From a business prospective social 

media may be synonymous with consumer-generated media, however to others social 

media might be the interactive dialogue which is enabled through web-based 

communications.

Social media is huge area of interest to researchers, with conferences and workshops 

being dedicated to understanding, and facilitating social media.

One of the largest social media services at time of writing is Facebook. With more 

than 500 million active users (Zuckerberg, 2010), if Facebook was a country it would 

be the third most populated country in the world, following China and India. An 

average user on Facebook will create 90 pieces of content per month, with more than 

30 billion pieces of content shared each month Facebook (Barnett, 2010), we can see 

that Facebook can provide an interesting insight into how people interact with each 

other.

Social media encompasses everything from blogs, microblogs, social networking 

sites, question and answering sites, review and opinion sites, social news and media 

sharing sites and apps. Microblogs are a form of blog. However, unlike normal blogs, 

there are restrictions placed on the content, this restriction is to with the size of the 

content. A microblog entry may consist of just a few words or an embedded video or 

an image.
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Microblogs force users to try and convey an idea, thought, pieces of information in a 

very concise way. This leads to computation problems in terms of natural language 

understanding. One might think that because the content is concise it would be easy to 

pick out meaning, or perform entity disambiguation, however there may be no 

surrounding content to help perform entity disambiguation, and due to the language 

(in terms of misspells/text speak) and multilingual nature of Twitter it can be hard for 

a machine to understand what a tweet is trying to convey.

Due to their concise nature, microblogs allow people to quickly send up-to-date 

information to one another or share it to the public domain. Twitter has allowed users 

to beat the traditional press to printers. Breaking and spreading news via Twitter has 

almost become a normal practice. With stories such as the US Airways 1549 ditching 

in the Hudson river (Beaumont C . , New York plane crash: Twitter breaks the news, 

again), to the Mumbai terror attacks (Beaumont C . , Mumbai attacks: Twitter and 

Flickr used to break news, 2008), Iranian protests (Grossman, 2009), Egyptian and 

other Middle East/North African political problems have been shared before 

traditional media has had a chance to write a ‘full’ story about the situation 

(Beaumont P . , 2011).

Much research has gone into how we can detect and use data from these events, we 

describe some of the research in the following section

2.2.1 Helping People Utilize Twitter Data

Individuals and organizations read and publish tweets. In this chapter we have briefly 

touched upon examples of how Twitter data had been used by different kinds of 

people in an array of situations. We know journalists use Twitter for finding and 

relaying content, organizations use twitter for promoting their products or services, 

we know that government agencies also use twitter to gather information and 

communicate with the public.

Research has been conducted on how Twitter data is being utilized to inform 

decisions and to help users. In this section we give examples of some of the work 

carried out that has utilized twitter as a means to helping people with certain tasks.
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In a study conducted by Zhao and Rosson (Zhao & Rosson, 2009) participants were 

said to have found Twitter posts more valuable than other media for connected 

information to personal goals. The main reasoning behind this was due to the near 

real-time nature of the service. Allowing them to keep a “pulse” on people or events 

they do not encounter in their daily lives.

Aiding Journalist Inquiry

Diakopoulos et al (Diakopoulos, Naaman, & Kivran-Swaine, 2010) aimed to explore 

how social media can inform journalistic inquiry surrounding large-scale broadcast 

news events. They sought to understand to what extent Vox Civitas (Diakopoulos & 

Shamma, 2010) facilitates the detection of insights, analysis and other activities can 

be obtained through the support of such as system in relation to journalistic inquiry.

The study presented by Diakopoulos et al. concentrated on the 2010 U.S. State of the 

Union presidential address. Instead of using manual tagging of tweets to detect 

sentiment, the authors applied a supervised learning algorithm trained with 1900 

manually tagged tweets from the state of the union corpus.

Not only did they use automatic extraction of sentiment, but they also calculated 

relevance scores, uniqueness scores and keyword extraction.

Relevance was calculated by calculating term-vector similarity of the tweet to the 

moment in the event during which the message were posted. The authors did this by 

comparing the tweet's message, to a transcript of the event. They state that transcripts 

for large-scale news events such as the State of the Union are readily available from 

news services.

Uniqueness is said to be something which may appear to be "unusual" in a social 

media stream, the authors make a comparison that something's "newsworthiness" 

often adopts the importance of the unusual or unexpected nature. The authors created 

a uniqueness metric, to see how a message compares to that of other messages sent 

during a similar time period.
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Keyword extraction was used to identify keywords in the social media stream that 

could be useful and interesting for guiding analysts. The system aimed to extract 

descriptive keywords for each minute of the aggregate message content. This was 

done by extracting the top ten keywords ranked by TF-IDF for each minute of the 

speech.

Finally Vox Civitas performed sentiment analysis to inform analysts understanding of 

the popularity of the social media reaction to an event. A two step procedure was used 

to classify the sentiment of the tweets. Firstly a simple classifier based on a lexicon of 

words that classified messages based on a lexicon of words that classified messages 

based on whether they were carrying subjective (positive or negative) information 

was run over the tweets. Secondly a supervised learning algorithm, which had 1900 

manually tagged messages from the State of the Union corpus was run over the 

dataset.

The authors found the combined classifier resulted in a 5-fold cross validated 

accuracy of 62.4%, which they state is sufficient for giving an overall impression of 

the sentiment, however they do note that the classifier fails on difficult cases, such as 

those involving sarcasm or slang.

When presenting the results of the sentiment in the user interface, sentiment is only 

represented as an aggregate, this is due to the authors concerns over the accuracy of 

the sentiment classifier. Also the authors note that sentiment is not displayed for 

individual tweets, as the authors assume users can quickly surmise sentiment as they 

are skimming through the tweets.

Aiding Exploration

Work by Bernstein et al. (Bernstein, Suh, Hong, Chen, Kairam, & Chi, 2010) have 

explored the visualization of data from Twitter, on top of a exploratory system. 

Currently most systems present lists of results in a reverse chronological order similar 

to that of traditional web results. Eddi (the system developed by Bernstein et al.) 

explored other ways of presenting results and trying to aid exploration, by aiming to
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allow users to browse items of interest. Through user evaluation users found it to be 

more efficient and enjoyable way to browse an overwhelming status update feed than 

standard chronological interfaces.

Identifying and Recommending Interesting Content

Omar et al. (Alonso, Marshall, & Najork, 2013) attempted to address two questions. 

The first question was how to develop a reliable strategy that resulted in high-quality 

labels for collections of tweets, and the second question was concerned with asking 

whether the authors could use labeled collections to predict a tweet’s 

“interestingness”.

The authors believed if human judges could label tweets’ interestingness effectively 

they could produce a training set that distinguishes between interesting and 

uninteresting tweets. From this belief they then said it would be possible to implement 

a classifier that would use the predictive features from the training set to identify 

interesting tweets within a dynamic collection.

Omar et al. noted that judging whether a tweet is interesting or uninteresting is a 

complex and subjective activity, with many factors at play.

When defining the notion of interestingness, the authors maintained a flexible notion, 

and explored its many interpretations. We have taken a similar approach in our work 

as not to define what usefulness is. Allowing users in further chapter to interpret it as 

they wish.

Unlike the studies we performed in later chapters, Alonso et al, recruited participants 

who were familiar with Twitter. Participants were also recruited from two different 

crowdsourcing platforms, one which specialized in relevance judgments and the 

second were recruited from Amazon’s Mechanical Turk (AMT). Alonso et al, saw the 

AMT workers as a proxy for Twitter users with diverse perspectives.

Alonso et al. saw participants classify several sets of tweets with different pre-existing 

categories over 3 studies, throughout the studies Alonso et al found low levels of label
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agreement. So in the final study they attempted to try and get workers, to articulate 

why they were assigning certain labels. Also witnessed that workers could quickly 

assess whether a tweet was interesting to a broad audience. However, workers found 

it difficult to describe why this was when trying to assess whether a tweet was 

interesting to a broad audience. When assessing whether a tweet is only interesting to 

a limited audience, workers had less difficulty.

Alonso et al. state that try to identify interesting tweets is a difficult task, as it varies 

with the judges’ own interest and proclivities. In the end they found that a binary 

labelling scheme was the most tractable for workers. As well as this, they discovered 

that the best performance came from a small number of very experienced judges 

rather than a large number of diverse judges.

Due to the low inter-rater agreement on whether a tweet is interesting or not, Alonso 

et al, concluded that interestingness is indeed a fully subjective notion, stating “there 

is little hop in constructing a classifier that identifies such tweets”.

In the final stages of the paper, the authors examined the correlation between 13 

predictive features and a tweet dataset, labeled by the crowd workers. Alonso et al. 

found that a link’s presence is a strong signal of interestingness. We will discuss the 

idea of a link being present a factor in a tweet’s usefulness or making a tweet not 

useful in chapter 3. Alonso et al. also found that features such as tweet length (without 

@ mentions) and average BM25 on Twitter queries are also important indicators of 

quality. We did not find any codes to with tweet length being an indicator of 

usefulness, however, we draw comparisons with the BM25 and tweet’s being TF-IDF 

relevant in our own work

Evaluating the Value of Microblogging Content

Andre et al. (Andre, Bernstein, & Luther, 2012) wanted to understand how people 

assigned value to tweets (worth reading, not work reading, middling), contributing an 

analysis of microblog content from the reader’s point of view.
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This draws similar parallels with our work, in that we take a consumer point of view, 

designing a service which is targeting content which we believe will be useful for a 

given user. The authors created a website that allowed users to obtain anonymous 

feedback of their own tweets if they agree to anonymously rate tweets by other 

Twitter users. In total the site gathered 43,738 ratings for tweet, from 21,014 user 

accounts.

Of the tweets judged, just 36% were considered to be worth reading by users, whilst 

25% were not worthy of reading and finally 39% elicited no strong opinion (neutral). 

As part of this study, the authors looked at categorically labelling each of the tweets 

utilizing a crowdsourced approach. Using an adapted version of Naaman’s (Naaman, 

Boase, & Lai, 2010) tweet categorization scheme authors obtained a 0.62 moderate 

agreement Cohen’s kappa score, but said they could obtain a 0.81 inter-rater 

reliability score if they would be allowed to include multiple categories per tweet..

As part of the study they looked at which categories were considered valuable 

(Question to Follower, Information Sharing and Self-Promotion) as well as what 

categories were strong disliked (Presence Maintience, Conversation and Me Now)

Authors suggested that outcomes from this research might help design tools to help 

filter and display content in the future, as well as providing a feedback to users about 

their perceived value, audience reactions and emerging norms.

First Story Detection

In the paper Streaming First Story Detection with application to Twitter, Petrovic et 

al. (Petrovic, Osborne, & Lavrenko, Streaming first story detection with application to 

twitter, 2010) adapt the locality-sensitive hashing (LSH) algorithm to perform first 

story detection on such a large and high transactional stream of data.

LSH is a randomized technique to perform a nearest neighbor search in vector space, 

by reducing the amount of time need to perform the computation compared to other 

nearest neighbor search algorithms.
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Authors found by applying LSH in its original state, the algorithm performed poorly 

and had a high variance in results. The authors modifications to the algorithm both 

improved the performance and reduced the variance of results.

As well as performing first story detection, the algorithm also proved useful for 

detecting ‘spam’ tweets. The researchers also found the two following insights 

regarding users and news on Twitter:

The number of users that write about an event is more indicative than the volume of 

tweets written about it.

News about deaths of famous people spreads the fastest on Twitter.

To see how well their improved LSH algorithm worked, the authors compared it to an 

existing FSH system, in particular the UMass system. The systems were compared on 

their performance using detection error tradeoff (DET) as a measure, where both 

systems proved to be very similar, with UMass scoring 0.69, and the improved LSH 

scoring 0.70, the systems were also compared in terms of processing time, in this test 

the improved LSH algorithm showed to prove its power, whilst the UMass showed an 

almost linear time to process documents, the improved LSH algorithm showed a near 

constant processing well below that of the UMass system.

Whilst this research was very algorithmically heavy, we can see how it would be 

applied in aiding journalistic inquiry, but also in warning systems.

2.2.2 Why and How People Search Twitter

In this section we introduce the reader to some of the research that has been carried 

out regarding search in a microblogging environment. The following quote is very 

relevant to the state of research surrounding microblogs.

“Research into microblogger’s motivations, habits and strategies 

is in its infancy and our understanding of people’s information 

behavior with respect to microblogs remains murky”

- (Efron & Winget, 2010)
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Work by Elsweiler and Harvey (Elsweiler & Harvey, Engaging and maintaining a 

sense of being informed: Understanding the tasks motivating twitter search, 2014) has 

tried to tackle the above, by reveal numerous characteristics of Twitter search that 

differentiate it from more commonly studied search domains, such as web search. 

Elweiler and Harvey found difficulties encounter by users as well as trying to 

understanding how and why people search for content. Work by Teevan et al such as 

#TwitterSearch: A Comparison of Microblog Search and Web Search by Teevan et al. 

(Teevan, Ramage, & Ringel Morris) and Questions are Content: A Taxonomy of 

Questions in a Microblogging Environment by Efron & Winget (Efron & Winget, 

2010) also look at how and why people perform search over microblogs.

#TwitterSearch: A Comparison of Microblog Search and Web Search explores the 

differences that occur between web search and microblog search. The paper explores 

the search behavior of users via the analysis of large-scale query logs, and 

supplemental qualitative data to explore search behavior on the popular 

microblogging site Twitter, and the Bing search engine.

The authors identified that information seekers used Twitter to find temporally 

relevant information such as breaking news, real-time events, and trending topics. As 

well as this, Twitter was used to find information related to people, examples given 

are that of content directed at the searcher, information about people of interest 

(celebrities) and general sentiment and opinion.

The authors compared structural concepts and behavioral qualities of the 

information seeking behavior of users, Examples given are that of query length the 

user inputted into the search dialogue box, as well as how users repeated queries to 

monitor the associated search results.

Findings in the paper indicate that queries targeted at searching Twitter, are less likely 

to evolve as part of a user session unlike web search. The findings of the study also 

show how users are using specialized syntax and operators in their search queries 

when searching Twitter, with 24.23% of Twitters queries either containing an or 

'#' symbol, whilst prior large-scale log analysis of web search found that only 1.12%
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of web queries contained advanced search operators or syntax such as 

quotations or 'site:'.

As well looking at queries the paper explored the results that were shown to users. 

One interesting result was that 34% of all the Twitter results returned contained an 

external link. Analysis was conducted to compare the similarities between tweets 

returned and web snippets returned. Machine learning techniques were used 

(specifically latent dirichlet allocation - an unsupervised latent variable topic model) 

to calculate the similarities between words. Twitter topics were found to include more 

social chatter and current events, whilst web topics tended to contain more basic facts 

and navigational results.

The authors identified that measures based on term overlap such as TF-IDF tend to be 

noisy because of the results short length. Although the paper does not describe 

information retrieval algorithms it does present valuable information regarding the 

search behavior of people performing searches on Twitter. It also highlights what 

people are using Twitter for, with regards to search tasks.

2.23 Using Twitter as a Question and Answering Forum

As well querying twitter through traditional web forms, Twitter like many other social 

networks is used as a question and answering forum. Question asking in 

microblogging environments and online in general is a large and very active research 

topic. Twitter has even acted as a de facto social search system according to Evans 

and Chi. (Evans & Chi, 2008)

Efron and Winget (Efron & Winget, 2010) have analyzed characteristics and 

strategies that people presented when asking questions in a microblogging 

environment. As part of this analysis, the authors were able to propose a taxonomy of 

questions asked on microblogs. They were also able to look at why users asked 

questions on microblogs and what kind of information task they were trying to 

complete.
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A very interesting and revealing finding that came from this research was that, 

question asking in microblogs is strongly tied to peoples' naturalistic interactions and 

that the act of asking questions in Twitter is not analogous to information seeking in 

more traditional information retrieval environments.

The authors created two corpora, a general corpus consistsing of 2,022,544 tweets 

which were collected via Twitters streaming API, and a community corpus which 

consisted of tweets written mainly by people who are interested in issues related to 

information and their friends and followers.

The authors then proceeded to create a taxonomy of questions on Twitter from their 

corpora, but first to do so they had to define what a question was, to do this they built 

upon work by Karttunen, to create five patterns for detecting questions.

By creating the taxonomy the authors wished to articulate generalities that occurred in 

questions asked on Twitter, and to also build a taxonomy of questions that would 

benefit from further research, such as information retrieval, visualization, or routing. 

To classify tweets, a heuristic approach was taken by 5 individuals asked to analyse 

100 tweets and classify the tweets, with respect to their authors' purpose in writing 

them. The results were then refined, and a taxonomy of 9 codes were created to 

represent types of questions asked on Twitter. Inter-rater agreement was conducted in 

the form of a Fleiss kappa to calculate inter-rater reliability, the score retrieved was 

0.47 and 0.497 which is considered to be of moderate agreement according to Landis 

and Koch. The attributed this to the king value being high (k=9) indicating that they 

may expect other see low levels of agreement.

The authors also strived to create alternative taxonomies to dividing the space of 

microblog questions. In one example they explain how a question can fall within four 

quadrants of visualization, depending on who the question is aimed at, whether it be 

targeted to an individual or to their posed questions total their followers at large. Also 

on the Vertical axis, a tweet could be mesaured by its information need, whether it 

needed to have immediate tangiable response, or if the information seeker expected a 

and response however, the insesity that a reply would not be as intense.
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Other work such as that by Paul et al. (Sharoda, Hong, & Chi, 2011) has expanded on 

this subject recently by looking at question and answering in more detail, detailing 

how a user might receive a higher chance of receiving a response or in some cases a 

more appropriate response.

2.2.4 Algorithmically Ranking Tweets

Twitter has its own search solution, Twitter search originally began life as Summize, 

which was acquired by Twitter in 2008. (Twitter Inc., 2008) It offers users the ability 

to perform keyword search on the Twitter dataset, however at the start of this 

investigation it would only return results created in the last 7 days. It presented 

results in reverse choronological order, with a mixture of heavily retweeted content in 

a prominent position at the top of list.

As well as Twitter, Google and Microsoft (via their Bing search engine) entered the 

realm of social search. Google fellow Amit Singhai revealed that Google not only 

ranked individual tweets, but it aslso ranks user’s accounts (Talbot, 2010). However, 

no more data has been released on how it ranked users.

Much speculation has gone into how best to rank users, ranking users by the number 

of followers, can be perceived to be a bad thing according to Cha et al. (Cha, 

Haddadi, Benevenuto, & Gummadi, 2010) in their paper Measuring User Influence in 

Twitter: The Million Follower Fallacy. Influence is being a popular research topic 

with in microblog research, papers such as that by Bakshy et al. (Bakshy, Hofma, 

Mason, & Watts, 2011) Identifying ‘Influences’ on and by Pal & Counts (Pal & 

Counts, 2011).

Sean Suchter (Sullivan, 2009) explained how tweets are individually ranked 

dependant on a number of factors such as estimated authority of the author tweeting, 

as well as the number of times a tweet had been retweeted and finally the ‘freshness’ 

of a tweer, all contributed to how a tweet was ranked in the Bing search engine.

One of the original proposals to calculating influence over the Twitter network was 

provided by Daniel Tunkelang (Tunkelang, 2009). Whereby a PageRank like
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algorithm was constructed allowing users to pass on influence, depending on who 

they followed.

Mutations of other algorithms such as the HITS algorithm have been modified and 

modeled on the Twitter network. Weng et al. (Weng, Lim, Jiang, & He, 2010) took a 

novel approach to ranking users by measuring influence by both topic similarity 

between users and the link structure of the network into account.

We’ve seen how Twitter is being used to answer peoples questions whether than be 

through keyword search, or being part of a conversation. I have also described briefly 

how several algorithms have attempted to rank tweets.

The temporal nature of microblogs and the web have spurred on much research in the 

next section where we present research that has attempted to use microblogs for the 

detection of certain topics and features.

2 2 5  Prediction, Forecasting & Detection

A large body of research has been conducted into how microblogs, can play their part 

in predicting and detecting trends as well as events. In this section We present 

research that deals with the forecasting of future events, and one which looks at 

detecting events quickly. We predict that this has a large part to play in why a tweet 

may be deemed useful or not.

A paper from Edinburgh University written by Ritterman et al.; (Ritterman, Osborne, 

& Klein, 2009) Using Prediction Markets and Twitter to Predict a Swine Flu 

Pandemic. The authors explore their hypothesis that they could extract useful 

information from social media sources, and by modeling this information they could 

yield better results than a model constructed with information from prediction markets 

in isolation.

The authors looked at using internal and external market data, whereby internal 

market data models the evolving price using previous price movements, and external 

market data consists of data which is externally observable.
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The authors were able to predict the closing price of a prediction market and by doing 

so were able to explicitly model changes in belief, using data from Twitter.

By using bigram extraction, and historical data to predict changes, the authors were 

able to achieve a low percentage of error, when predicting prices within the market. 

As well as predicating future events, researchers have been looking at how we can 

best detect new events that appear on Twitter.

Work described earlier in this chapter to do with First Story Detection and Crisis 

management all play a part in this type of research.

In the next section we look at the temporal aspects of search and how systems have 

been made to make use of this temporal data.

2.2.6 Temporal Data & Microblogs

“uncovering patterns of temporal variation on the Web is difficult 

because human behavior behind the temporal variation is highly 

unpredictable.”

- (Y ang & Leskovec, 2011)

One of the interesting dimensions to social media is the temporal aspect, and the 

ability to detect change of patterns, and the prediction of patters in the future based on 

previous temporal patterns. There is a growing body of research into discovering 

more about temporal patterns in microblogs,

Not all of the work carried out surrounding temporal events, has been primarily 

concerned with detection algorithms.

Work by Yang and Leskovec (Yang & Leskovec, 2011) attempts to uncover the 

temporal dynamics of online content. The authors were able to create a clustering 

algorithm, in the attempted to find distinct shapes of time series, the algorithm was 

tested on two data sets (one contained 580 million tweets, the other 170 million blog 

posts and news media articles).
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The algorithm created by Yang and Leskovec was called K-Spectral Centroid (K-SC), 

the algorithm effectively finds cluster centroids with a similarity measure defined by 

the authors.

The paper set out to understand what kinds of temporal features are exhibited by 

online content, using the datasets mentioned above. As well as this the research aimed 

to discover how different media sites shape the temporal dynamics of the internet, and 

what kind of temporal patterns they produce and influence.

To do this the authors examined the data sets, for the Twitter dataset they examined 

the adoption of hashtags (#something). As well as this they tracked the attention given 

to various pieces of content via counting the number of mentions over a period of 

time.

A time series clustering problem was created, and a time series shape similarity 

metric that was invariant to the total volume and the time of peak activity. Based on 

the metric the authors developed a novel algorithm for clustering time series, the 

authors were then able to improve their algorithm by reducing runtime and allowing 

the algorithm to run over large datasets.

By using their novel algorithm the authors found that the adoption of hashtags in 

Twitter and propagation of quoted phrases on the web exhibited nearly identical 

temporal patterns A s well as this the authors state their model allows a 75% accuracy 

rate to predict which temporal patterns a popularity time series will follow.

The authors suggest the results they were able to create from this work, would have 

direct application for predicting overall popularity and temporal trends exhibited by 

online content, as well as finding influential blogs and Twitter users.

Work carried out by Kulkami et al. (Kulkami, Teevan, Svore, & Dumais, 2011) in the 

paper Understanding Temporal Query Dynamics looks at how queries, their 

associated documents and query intent changes over time. It is worth noting this
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work was not performed on a microblog dataset, but instead on a corpus of web logs 

from the Bing search engine.

The authors were able to identify several interesting features by which changes to 

query popularity can be classified. The authors demonstrate the presence of these 

features, when accompanied by changes in result content, can be a good indicator of 

change in query intent.

This work has similarities to the work carried out by Yang and Leskovec, as the 

authors have also identified structures this time not in content authorship, but instead 

analyzing the structures created from query popularity over time, to identify query 

intent.

In a paper written by Shamma et al. (Shamma, Kennedy, & Churchill); Tweetgeist: 

Can the Twitter Timeline Reveal the Structure of Broadcast Events? the 

authors present two pieces of work surrounding temporal events and social media.

The authors attempts to explore applications for enriching experiences around live 

visual media events using Twitter to enhance the experience for users of their system. 

The authors concentrated on two events, one which had already passed, and one 

which was happening in real time. The authors present a method for segmenting and 

annotating media using conversational activity from Twitter, for post-event data. 

They also present methods to aid discovery of current topics of discussion on Twitter 

and their levels of interest via a real-time feedback display .The paper offers an initial 

exploration of approaches for applying cues mined from conversation via Twitter, 

towards enhanced experiences surrounding (visual) media events.

The software (Statler) aims to identify interesting moments from with tweet streams, 

and is not to purely show overall volume,. It does this by exploring the relationship 

between the news media and community annotation.

The authors were able to create and display an array of metrics to users of their 

system, including metrics for ‘chariness’ and ‘importance’. One of the interesting
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methods the authors came up with to detect salient terms involved creating make-shift 

documents out of temporally co-occurring messages. Using predefined temporal 

boundaries, (though it suggested a sliding window may be used) to create pseudo 

documents using all of the messages sent during a given time frame.

Authors are then able to rank terms according to their frequency within these pseudo 

documents normalized against their overall frequency.

By doing this the authors suggest we can instantly detect temporally salient terms. We 

are then able to track the change of salient terms over time. By doing this we are able 

to create cues about the content and structure of an event.

2 3  Summary

In this chapter we have given a description of Twitter, as well as how researchers and 

industry have tried to create tools to aid people searching over twitter data. One of the 

biggest takeaways from the literature is that performing search on twitter is a difficult 

task, not only have we got sheer amounts of data at such speed, but we also have a 

very noisy dataset with a unique language and set of conventions.

Whilst traditional IR classifies relevancy as something binary. We now know that 

there are lots of factors which make something relevant to us especially in websearch. 

In the next chapter we describe a study we ran that looks at what makes tweets 

useful to people performing microblog search. This will then allow us to make a 

search engine that targets useful information and tries to display the most useful 

information to the user.
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Chapter 3: What Make a Tweet Useful?
Please note that some o f the work described in this chapter was carried out during the 

author’s Masters program and published in their M.Sc. Thesis (Hurlock, Searching 

Twitter: Extracting Useful Information, 2010).

The data collection stage o f this chapter with reference to tweets either being useful 

or not useful to a user’s submitted query was undertaken during the author’s M.Sc.

A version o f the grounded theory, which is discussed in this chapter, was performed 

using a single coder during the Author’s M Sc. However, due to having obtained a 

low kappa score. The Author then performed a more rigorous approach described in 

this chapter (during their PhD.), which was conducted by 2 coders generating codes, 

and analysis included both coders and a third independent coder to perform the 

kappa analysis described in this chapter.

All analysis and results described in sections 3.2 and 3 3  were undertaken during the 

Author’s PhD.

In this chapter describe an experiment we conducted that led us to find features as to 

what may make a tweet deemed to be useful, or not to be useful to a user searching a 

Twitter corpus. Search tasks were based on three of the most common types of search 

task performed over microblogging datasets. We introduce the experiment, explain 

the experimental setup, following this with an explanation of the analysis and results.

As described in Chapter 1 of this thesis our work is motivated towards the 

development of a search service, which provides users with useful information. 

However, there is as of yet no definition of what factors makes a tweet useful to an 

information seeker. Reading through the literature there was no mention of usefulness 

in terms of search.

The closest thing we came to usefulness, was fulfilling an information need. As 

mentioned in Chapter 1, classically IR takes the view that users are searching to fulfill 

an information need, Schneiderman et al. (Schneiderman, Byrd, & Croft, 1997)
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defines an information need as “The perceived need for information that leads to 

someone using an information retrieval system in the first place.”

Jansen et al. (Jansen, Booth, & Spink, 2007) argue that the Internet search is very 

different than that of traditional IR practiced and researched. We now know that users 

are not just performing searches to satisfy information needs, but have other intents 

whilst searching. For instance in web search we can observe transaction, navigational, 

informational as well as casual-leisure search (Jansen, Booth, & Spink, 2007) (Wilson 

& Elsweiler, 2010).

There are millions of communications posted to twitter each day. With 400 million 

messages sent per day as of 2013 (Twitter, Inc., 2013), there have been numerous 

attempts to extract clusters of the type of messages sent (Tsur, Littman, & Rappoport, 

2013) (Java, Song, Finin, & Tseng, 2007).

In 2009 Pear Analytics released a report stating that 40% of tweets were considered to 

be mindless babble with another 37.55% being classified as conversational in nature 

(Pear Analytics, 2009). At this point in time twitter users were only sending 2 million 

tweets per day (Twitter, Inc., 2010).

We propose that within these millions of messages sent there are tweets with valuable 

content that may be considered useful to an information seeker. Morris et al. (Morris, 

Teevan, & Panovich, 2010), as well as Efron and Winget (Efron & Winget, 2010) 

have looked at behavior of users in social networks, and observed that users do ask 

their social networks questions, and in-turn receive replies. As well as this, research 

conducted by Boyd et a.l (Boyd, Golder, & Lotan, 2010) and Java et al. (Java, Song, 

Finin, & Tseng, 2007) have shown that users share valuable information through 

posts and links on twitter.

With the knowledge that people seek answers from their social network, and people 

share information throughout social networks, we infer that social networks such as 

Twitter, have what may be deemed as valuable information in them.
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3.1 Experimental Setup

We know there is a lot of information, and we hypothesis that a certain percentage of 

this information maybe of use to information seekers, based on the current literature.

We wished to test this theory and to see if we could discover key elements as to what 

makes tweets useful to information seekers.

To do this we setup an experiment, whereby we asked participants to perform three 

common search tasks performed over microblog corpuses. These three task were 

informational search tasks based on those observed by Morris, Teevan & Panovich 

(Morris, Teevan, & Panovich, 2010).

Using a custom built search engine, we asked them to enter queries related to these 

tasks, after which participants would rate individual results as either useful or not 

useful. As well as recording the result as useful or not useful participants are asked to 

provide a reason as to why they gave the rating for that specific tweet and task.

At the start of the study we gathered demographic data regarding our users, and 

conducted semi-structured interviews with each participant after they had completed 

each of the tasks, to discuss their thoughts surrounding the task, as well as their 

reasoning to marking certain tweets in the way they had. After completing all of the 

tasks, the study was concluded with a feedback questionnaire and a final and short 

debrief. In total no user was subjected to the study for longer than one hour.

3.1.1 The Tasks

As previously stated we chose three different types of search task, all informational 

based on the finding of Morris et al. (Morris, Teevan, & Panovich, 2010) The first 

task was a temporal monitoring task, the second a subjective choice task and the third 

a location-sensitive planning tasks. During the experiment, task order was 

counterbalanced in order to remove any ordering effects.
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The first task (temporal monitoring task) involved users to identify interesting 

information about an on-going event. At the time of the study the most significant 

culturally relevant event was the BBC Proms.

The second task (subject task) involved users to find information that might help them 

decide whether to buy the new iPhone. Participants were asked to identify information 

that might help them to make their decision.

For the third task (location-sensitive planning tasks) participants were asked to 

identify somewhere nice to eat lunch in London, and identify information that helped 

them decide where they might go.

3.1.2 System

We created a system that allowed users to rate and comment on what made tweets 

useful or not useful to them. An overview of the key components and information 

flow can be seen in Figure 3.1.

A screen shot of the search engine participants used (the study interface) can be seen 

in Figure 3.2. The interface allows users to enter a keyword search in the top bar, then 

press search. This would then in-tum grab results via the Twitter Search API.
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M y
MySQL Database

Review Interface

Participant Study Manager

Figure 3.1. A diagram showing the architecture and communication between the different parts of the study.

These results were then displayed below the search bar, with two buttons next to each 

search result. Allowing the user to then indicate by clicking if the result was either 

useful or not useful. Once a user had clicked one of  these buttons, a text box would 

appear underneath the result, allowing the user to write their reasoning to why the 

result was either useful or not useful. Users could then commit their reason and 

judgm ent by clicking the corresponding save button.

Whilst the user was searching through the results page, the search engine would also 

automatically keep searching for more results in the background via an AJAX request 

at intervals of 15 seconds. It would alert users if it found more results via the bar at 

the top o f  the search page this behavior can be seen in Figure 3.2. If users wished to 

load these results, they could click on the bar, and the new results would appear at the 

top o f  the page.

There were two interfaces created for this experiment, the search engine the 

participants were using, and a researcher’s interface. The researchers interface, 

allowed us as the researcher, to look at all results marked by the user and useful or not 

useful, as well as the reasoning for the judgm ent and the search query inputted by the 

user. This interface would update automatically every few seconds, to allow us to start
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AuthTweet

•* +  f t h ttp ://re sea rch .au th tw e e t.co m /sea rch .p h p ’q -c h u ck C Q.’

AuthTweet c h u c k ' Search

Results for: chuck

Attention! We may have found 151 more results. Click here to refresh to see them.

iJL
A

El Dannv Treio: Mira, you all think Chuck Norris is bad. but he dresses like me for 
Halloween.
10 hours ago from web 
100 recent retweets

GG quotes: Chuck: We don't need tickets... I'm Chuck Bass. kqossipgir
11 hours ago from web 

100 recent retweets

nan oobsh: Who needs a vampire in a Volvo when there's Chuck Bass in a limo?
OGossioGirl*
Yesterday from Twitter for SlackBerry®
1000 recent retweets

lane zmha: We don't need tickets, I'm Chuck Bass! que arraso esse episOdio de gossip 
girl, xoxo
just now from ghramoffl Bird

This is useful to  m e b ecau se  it s ta te s  tick e ts , how ever th e re  is so m e Spanish  in th e  m essa g e . It 
a lso  includes th e  key w ord i search ed  for, w hich is Chuck

$ Thewhiakvmaster: ©Faster Martyr When confronted by a difficult problem, u can solve 
it more easily by reducing it to the question How wud Chuck Norris do it
just now from web

useful

u sefu l

not useful

Figure 3.2. The search interface from the user study. Showing a user marking a tweet as a useful, and entering 

a reason.

thinking of particular questions to ask the user after each task. It also allowed us to 

show the user what they had marked as useful or not useful as well as their judgm ent 

if they wished to reflect on a certain result, or if they stated they made a mistake, by 

accidentally clicking not-useful rather than useful or visa versa.

3.13  The Participants

In total 20 participants were recruited for the study. Participants were recruited 

internally from within the university via an email sent to both staff and students. We 

were able to recruit 10 males and 10 females, though this was not intended. Half of 

the participants were between 20-35 and the other between 36-50, in a roughly normal 

distribution. 90% of participants held a bachelors degree or higher.

As well as asking participants about their general demographic information, we also 

asked them about the computer and internet usage. All 20 participants stated that they 

used the internet everyday, with the majority spending more than 2 hours online per 

day.
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When asked about their twitter usage, 12 of the participants stated that they had used 

Twitter, 30% on a regular basis and only two participants stated that they have 

attempted to search Twitter directly.

It is important to note it was not a condition of our study that participants to have used 

twitter before. The reasoning behind this was that we wished to find useful tweets that 

could be returned on any search system. Google (Search Engine Land, 2011) and 

Bing (Search Engine Land, 2013) used to provide tweets integrated within their 

search results, but have since removed this service. Also by having a mix of 

familiarity with Twitter allowed for a broader perspective on what constitutes useful 

social media content.

3.2 Analysis

In total participants rated 496 tweets, of which 482 were unique. Of the original 496 

ratings, 52% were considered to be useful to participants. After splitting the data from 

the tasks into two sets (useful and not useful), an inductive grounded theory (Glaser & 

Strauss, 2009) approach was used to reveal commonalities in the comments made 

about the tweets.

By using a grounded theory approach we were able to establish a systematic 

procedure for identifying common topics and themes in the open texts gathered when 

a user either marked a tweet as either useful or not useful.

Pieces of text were given ‘codes’ that represented their meaning. These codes we then 

grouped into themes, and used to produce underlying theories about the data. The 

rigor of our approach is detailed in the following paragraphs.

Analysis began with both coders evaluating an initial set of 100 useful and not-useful 

‘tweet+response’ pairs independently. Both coders then met and compared the codes 

created thus far. This allowed the coders to both reflect on the dataset, and broaden 

our perspectives of the dataset and possible codes.
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Each coder then continued to code the remaining tweets independently. Coders 

concluded the inductive coding by collating all the codes we had each created 

together and using a white-board affinity diagramming approach, commonly used to 

organize unstructured sets of ideas and concepts, to begin identifying relationships 

between themes and codes in the tweet+response pairs, until the diagram stabilized. 

This process was then repeated for the not-useful tweets.

From the original set of more than 30 proposed codes, coders settled on 16 codes for 

useful tweets, and were able to agree on 6 categories of 2-4 codes each. Similarly, 

coders reduced the set of proposed not-useful codes and identified 17 codes that also 

fell into 6 categories of 2-5 each.

To validate these codes, Cohen’s kappa (Cohen, 1960) was used to assess the inter­

rater reliability. We achieved a high kappa score of 0.85 (Almost perfect agreement 

according to Landis and Koch (Landis & Koch, 1977)) for the not-useful data set, as 

shown in Table 3.1. To further validate our results we introduced another member of 

our research team who was independent to the work being carried out as an untrained 

coder to the analysis. The independent judge was provided with a set of codes and 

definitions. Table 3.1 shows the Cohen scores achieved between all investigators, and 

that together the three coders achieved a Fleiss’s kappa (Fleiss, 1971) of 0.73 for the 

not-useful tweets.

At first, as shown in Table 3.1, coders did not achieve such high scores with the 

‘useful’ tweets, even between the two authors of the paper. Due to this difference in 

scores, we revisited the tweets and codes, discussed in our findings, and sought to 

discover where the source of disagreement lay.

From our investigations, we discovered that while the not-useful tweets typically had 

a single striking reason to be declared so, the useful tweets often had two or three 

valuable features.

Coder 1 observed an average of 2.14 codes per tweet-response pair in the useful 

tweets data set, with a range of 4 (Max: 5; Min: 1; STD: 0.90). Coder 2 observed an
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average of 2.34 codes per tweet+response pair, with a range of 3 (Max: 4; Min: 1; 

STD: 0.92). For tweets deemed to be not useful, we saw a much lower average of 

1.18, with a range of 2 (Max: 3; Min: 1; STD: 0.44).

As both Cohen and Fleiss analyses are performed when a single code is applied to a 

piece of text, we had originally asked the coders to choose ‘the most appropriate 

code’ for the tweet+response pair. Table 3.1 shows how the investigators easily 

applied different codes to the same tweet+response pair. Consequently, we sought to 

evaluate our codes using an analysis method that was suitable for multi-coding 

individual tweets. We performed a multi-coder, multi-coded kappa analysis detailed 

by Harris and Burke (Harris & Burke, 2005), and achieved a score of 0.73 between 

the two coders, which is strong ‘Substantial Agreement’ according to Landis, and 

Koch (Landis & Koch, 1977). This high score suggests that our original use of 

Cohen’s kappa was indeed inappropriate. With our independent untrained validating 

judge, we also achieved multi-coded kappa score of 0.62; still a ‘Substantial 

Agreement’, and good given the high variability associated with multiple coding.

3 3  Results

In this section we discuss the results in detail regarding to the reasons why tweets 

were deemed to be either useful or not useful to an information seeker. Tables 3.2 and

3.2 give us an overview of the codes, grouped by category, that were derived from the 

data, for both the useful and not-useful collections, respectively.

Useful Tweets Data Set

Coder 1 Coder 2 Independent Coder Fleiss’ Kappa

Coder 1 - 0.5065 0.5097

Coder 2 0.5065 - 0.4607 0.4868

Independent Coder 0.5097 0.4607 -

Not Useful Tweets Data Set

Coder 1 Coder 2 Independent Coder Fleiss’ Kappa

Coder 1 - 0.8585 0.659

Coder 2 0.8585 - 0.6856 0.7331

Independent Coder 0.659 0.6856 -

Table 3.1. Showing Cohen’s Kappa scores between multiple coders for both the Useful and Not Useful data 

sets. Also included is the Fleiss’ Kappa score for each data set for the agreement between all three coders.

41



We saw four key reasons where the content of the tweet was directly useful. Some 

contained facts (e.g. times or prices) or increasingly common knowledge (e.g. 

problems with the iPhone). Others contained direct recommendations, or relayed 

insights from personal experiences. We also saw two types of tweets that the user 

found to be amenable, ones that were funny and ones that shared the searcher’s 

perspective (e.g. Apple products are good or bad). We also saw two codes that 

focused on whether tweets were geographically or temporally still relevant (e.g. 

tweets in British prices). We also observed a key theme of trust, where users reported 

approving of trusted twitter accounts and recognizing trustable avatars for those 

accounts. Also, links to authoritative or trustworthy websites were frequently 

recognized. Other links were also important, whether they provided more detailed 

information, rich media, or services (e.g. buying tickets).

There were also five key reasons that the content of tweets was not useful for the 

searcher. First tweets were frequently vague or introspective (for the author), or were 

quite directly not relevant by topic. While some tweets showed potential, it was easy 

for tweets to be too technical for the reader (containing jargon) or to contain errors 

(e.g. malformed URLs). There were 3 other reasons for tweets to be badly 

constructed: containing dead links, spam-style content, and being in a foreign 

language.

It was important for tweets to be temporally and geographically relevant, many tweets 

were deemed as not-useful because they were not current and about irrelevant 

locations. Similarly, non-trust was an issue, where users were not happy with some 

pieces of information coming from non-authoritative sources, and being linked to 

dubious websites. Further, not-useful tweets were often repeated content, or part of a 

conversation that would only be useful as a whole.
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There were also three more subjective factors of not-useful tweets, including users 

disagreeing with the tweets (e.g. being pro or anti Apple), or not finding them funny.

In Tweet Content Tl T2 T3

Experience Someone reporting a personal experience, but not necessarily 

suggestion / direction.

15 12 13

Direct Someone making a direct recommendation, but not necessarily 3 3 20

Recommendation relaying a personal experience.

Social Knowledge Containing information that is spreading socially, or becoming 

general knowledge.

7 6 6

Specific Where facts are listed directly in tweets e.g. prices, times etc. 51 10 47

Information

Reflection on Tweet

Entertaining The reader finds them amusing. 1 3 2

Shared Sentiment The reader agrees with the author of the tweet. 1 2 1

Relevant

Time The time is current. 14 0 2

Location The location is relevant to the query. 6 1 40

Trust

Trusted Author The twitter account has a reputation / following. 3 2 6

Trusted Avatar The visual appearance cultivates trust. 2 0 2

Trusted Link A link to a trustworthy recognizable domain. 14 1 7

Links

Actionable Link The user can perform a transaction by using the link (heavily 

dependent on trust).

9 0 0

Media Link The link is to rich multimedia content. 9 0 0

Useful Link The link provides valuable information content, e.g. authoritative 

information, educated reviews, and discussions.

61 30 43

Meta Tweet

Retweeted Lots Its information that others have passed on lots. 4 0 4

Conversation It is part of a series of tweets, and they all need to be useful. 1 4 4

Table 3.2. The 16 codes and the 6 categories extracted from responses and tweet pairs from the useful tweets. Further, 

columns 3-5 show how frequently each was associated with the temporal (Tl), subjective (T2) and location-sensitive (T3) tasks.
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Tweet Content Tl T2 T3

No Information Absence of anything, event factual points. 16 14 12

Introspective Personal content and personal thoughts for no social benefit. 5 5 8

Off Topic Result not related to the query given / TF-IDF irrelevant 27 21 18

Too Technical The content requires specific domain knowledge the reader 

doesn’t possess.

1 2 2

Poorly Constructed Tweets that may have grammatical/spelling errors, or 

malformed URLs.

3 2 3

Bad Tweets

SPAM Irrelevant or inappropriate messages. 0 17 2

Wrong Language Messages sent in a foreign language of that to the reader. 3 2 1

Dead Link A URL which does not work i.e. 404 2 4 3

Not Relevant

Time Out of date content. 0 1 1

Location Wrong geographic location. 2 7 2

Trust

Un-trusted Author An author the reader feels at un-eased by or suspicious of. 4 7 1

Un-trusted Link A link the reader feels is suspicious 4 7 2

Subjective

Perspective

Oriented

A tweet that is perspective centric, meaning the author is 

providing their views or projecting an attitude on a subject 

matter or to a subject/reader.

2 3 2

Disagree with Tweet A conflict of agreement between the reader and the author 2 2 1

Not Funny A tweet that is aimed to be humorous, which the reader does not 

feel is humorous.

1 1 1

Meta T weet

QnA Part of a conversation, reader desires the whole conversation, 

not just the question or the answer, but both the question and 

answer

2 4 9

Repeated Content the reader has seen before 3 7 1

Table 33 . The 17 codes, in 6 categories, extracted from responses and tweet pairs from the not-useful tweets. Further, 

columns 3-5 show how frequently each was associated with the temporal (Tl), subjective (T2) and location-sensitive (T3) tasks.

33.1 Analysis by Task

In the next few sections we provide an analysis for each specific search task. Tables

3.2 and 3.3 include counts for how frequently each code was applied to 

tweet+response pairs for each task.

33.1.1 Temporal Search

For the temporal search task, useful and trusted links along with specific information, 

played main factors in deciding if a tweet was useful for that task. We also saw how
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other types of links, including media, were also frequent for the first task. The 

increased popularity of the media link code may have been influenced by the 

broadcast of the BBC Proms over the Internet. Media links, did not account for other 

tweets being regarded as useful for other tasks.

33 .12  Subjective Search

For the subjective task, we were able to observe that experience with or of the subject 

matter was important to the information seekers. We also see two very interesting 

codes appear in this task, which are able to compliment each other, the first being 

shared sentiment, and secondly entertaining. Both of these codes are subjective in 

nature, which could be expected of a subjective task. Useful links and experience 

were also played an important role in this task. Many participants found this task 

frustrating due to the amount of non-useful tweets; many of them were marked as 

SPAM or untrustworthy.

33 .13  Location Sensitive Search

In the third (location-sensitive) task, we again see a high dependency on specific and 

useful information. However for this task, specific information played a more 

important role. As suspected we also see location sensitivity as an important factor, 

dominating this task with 85% of reasons to why location sensitivity is useful being 

allocated to this task. In this task, we see that trust, in the form of avatars and authors 

played an important role, with 2 tweet+response pairs being coded as useful because 

of the participant trusting the avatar, and a further 6 being coded as trusted author. 

Further, we see the introduction of direct recommendation and experience playing a 

part in why a participant found a tweet useful. Perhaps indicating a need for 

knowledge of first hand experience from someone who has been to a lunch venue in 

London, rather than a commercial entity trying to sell an experience or product. 

Location-sensitive task, averaged at 2.75. No participant rated a tweet with a score of 

5 (very relevant). This scale was based on a Likert scale (Likert, 1932). 20% of 

participants, however, gave a score of 0 (not relevant) during the second subjective 

task, but not in the temporal and location-sensitive tasks.

33.2 Common Patterns

As well as statistical analysis of the codes we were able to pick up on structural traits 

of tweets. Some of the structures that we were able to extract combined several of our
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codes combined together to make a structure. One in particular, which we called a 

teaser, combined codes for specific information and a link, which accounted for 22% 

of the useful tweet+response pairs. Another 13% were coded holding both specific 

information and location codes, which we attributed mainly to the location-based task. 

Another structural concept we came across was actually a code QnA which is where a 

user could only see part of a question whether that be the question itself or an answer 

to a question, but could not see both parts, or multiple answers. The QnA code was 

found in 6% of the not-useful dataset and highlights the need for returning responses 

to question-tweets returned by a search.

Twitter itself has tackled some of these concepts when browsing its website. For 

instance the embedding of images and some videos in its new layout. As well as the 

‘in reply to’ feature shown when browsing the site (Williams, 2010). These features 

have failed to make it over to Twitter’s search service.

33 3  Additional Findings

We also found additional evidence for identifying tweets from authors that people 

may recognize. In lieu of identifying tweets that are socially connected to the 

searcher, our analysis suggests that authority measures, such as TunkRank1 and 

Klout2, could also be used to assess estimated trustworthiness.

We were also surprised to see that some codes, such as ‘Retweeted lots’, did not 

feature as highly as we had expected based on emphasis of previous work on retweets. 

With just under half of participants stating they have not used Twitter, and only 30% 

stating they use it regularly, we suspect that unfamiliarity with Twitter specific 

features may be a reason.

Although most of the post-task interviews simply elaborated on the points noted by 

participants during the study, a few additional factors were identified. One potentially 

interesting additional factor was the impact of a tweeter’s avatar. Many users 

suggested that avatars were a factor in choosing whether a tweet was trustworthy or

1 http://www.tunkrank.com

2 http://www.klout.com/
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not; most stating that they like to see faces of individuals. Several participants stated 

that they thought they would be able to tell if a tweeter had similar preferences to 

them by just looking at their avatar. One participant, for example, said: “Why would a 

baby give me a free phone?? Automatically suspect a con or a virus!” This suggests 

that both the type and presence of an avatar have an affect on the trustworthiness of 

tweets. On discussing the importance of trust, another participant said “... Also think 

I know this tweeter - a friend of a friend - so might be inclined to try the restaurant 

anyway!” These findings about trust echo the principles of Aardvark’s social network 

routing efforts (Horton & Chilton, 2010), but the emphasis on visual avatar judgments 

is important to note for future systems.

When asked if users were able to guess where authors were when they tweeted, or 

when they tweeted, most participants stated they were not aware of these factors, 

unless some specifically said ‘I am in ...’ It appeared, through discussions with 

participants, that metadata played a very small role in their search experience. This 

may be a factor of the way results are displayed in Twitter, but could imply that 

metadata is more useful for the algorithms than the searcher.

In regards to query size, participants also mentioned frustration when searching, 

noting that longer queries returned much fewer results, or no results at all. Users 

noted that shorter queries, using one or two general terms were much more 

productive. This is likely due to the short limited size of tweets. Social search user 

interfaces may wish to encourage shorter, more general queries, but will have to work 

harder to identify the implied contexts associated with them.

Whilst we are not strictly looking at relevance, research by Spink et al. (Spink, 

Greisdorf, & Bateman, 1998) suggest that relevance is a very multidimensional 

which our findings agree with. However, in the article goes on to state “so many 

factors have been suggested as affecting relevance judgments that it is not possible to 

list them all here.” , though they do list 80 (which is a subset).

In the article the authors state “The measures of usefulness,... and satisfaction 

measure other important factors that users may employ in making relevance
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judgments and are sometimes used in research as an alternative way to define and 

measure relevance”. It is very important to note that at no point did we define exactly 

what we meant by “useful” or “not useful” to user, we left this open to interpretation. 

Even though we left this definition open, we see many traits of relevance in 

usefulness, and loosely agree with this statement made by Spink et al, due to 

similarities found within the literature and research.

In the article Spink et al. explore 4  studies looking at relevance judgments, and how 

different levels of relevance presented to users effect their information seeking 

process.

One of the key findings was that IR and relevance researchers should question the 

assumption that highly and partially relevant items have the same utility for users.

Their findings suggest that both partially relevant and highly relevant items may have 

a potentially important role to play in the evolution of solving a user’s information 

problem. They suggest that partially relevant results may prove a crucial role in 

providing users with new information and directions that may lead them through 

further stages of their information seeking process toward a possible resolution to 

their information problem and fulfilling their information need.

Whilst we did not formally record this, we saw user’s information seeking behavior 

change based on the information they had observed within the search results. One 

example of this was when a participant found a specific restaurant and location based 

after searching with very generalized queries for sometime, their behavior changed 

that they then started formulating more queries specifically targeting the restaurant 

name and also the general location of the restaurant.

It is hard to predict what the user’s domain knowledge and intent is before them 

telling you, and even harder to programmatically represent this. It would therefore be 

hard to dynamically serve ‘less’ or ‘more’ relevant results to the user. More 

importantly the question is can we tailor an experience to a user in which we either
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fulfill their information need or provide serendipitous results to them depending on 

the type of search they feel like performing (type of interaction) at any given time.

It is worth noting that there are some items in our codes for useful tweets that are 

mirrored in our not-useful codes. Further exploration of this relationship would be 

both interesting and beneficial, and will be discussed in Chapter 5. This analysis helps 

to measure the influence of different features on a single tweet, when it contains both 

useful and non-useful features, as well as comparing codes against each other in terms 

of influence.

Although the majority of our codes can be objectively identified, there were a few 

features that were subjective or perspective-oriented. One clear example was whether 

the searcher and the tweet-author were both pro or anti companies like Apple or 

Microsoft. Such perspective-oriented examples were clearly seen between codes 

‘Entertaining’ (in tweet content from Table 3.2) and ‘Not Funny’ (subjective from 

Table 3.3). Perspective oriented presents us with the challenge of trying to create a 

system that learns about a users preference, and trying to tailor results to that specific 

user.

In an article written by Barry and Schamber (Barry & Schamber, 1998) the authors 

attempt to understand the behaviors of end-users by focusing on the values or criteria 

they employ in making relevance judgments or decisions about whether to obtain and 

use information. They do this by comparing two user criteria studies that are similar 

in terms of methodologies. However, the types of users, information formats, sources 

and environment differ. The authors compared and contrasted user criteria for 

relevance evaluation, producing a list of common criterion categories, which were 

decided to make information relevant to users. The codes and categories which we 

have produced bear some resemblance to those created by Barry and Schamber, such 

as Currency (The extent to which information is current, recent, timely, up-to-date), 

Quality of Sources (The extent to which general standards of quality or specific 

qualities can be assumed based on the source providing the information; source is 

reputable,trusted, expert). There are also some cases where we saw some of the non 

common criterion categories, for instance Barry saw ‘Relationship with author’, and
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when performing the study one participant mentioned they knew one of the authors 

who had returned a result, ultimately this was coded as trusted author, as the user 

knew the author personally. Another example of where we saw similarities, was with 

Schambers categories where Schamber identified geographic proximity, this was 

possible to due with Schamber’s tasks involving weather information. In both our 

useful and not useful codes, we highlighted location / geographic proximity, as if a 

tweet was deemed to be about another geographic location, especially in the location 

based task, it was seen as not useful.

Barry and Schamber conclude that some codes which are not deemed to be ‘common’ 

may appear due to the differences in situational context, and research task 

requirements, however, it is not due to inherent differences in evaluations behaviors 

of respondents.

3 A Summary

The primary' contributions of the work carried out in this chapter has been the 

production of a set of reasons as to why information seekers find tweets to be 

usefulness or not useful, when performing the three most common type of search 

tasks carried out over a microblog corpus.

By using qualitative and quantitative data analysis, we have been able to produce two 

lists that identify the traits of tweets that provide useful information, and of course 

those that do not. We have also observed and discussed how certain combinations of 

codes can enable a tweet to be deemed useful. It was also observed that certain codes 

were deemed to be more important for certain types of search task.

Now that we have discovered reasons as to what constitutes a useful and non-useful 

tweet, it will allow us to create a search system that allows us to analyze tweets for 

these features and combinations of these features. In the hope of allowing us to 

improve the search experience for information seekers, providing more useful results 

to them. The majority of the features we found are objective and easily identifiable 

characteristics, whilst some are subjective in their nature, and are not so easily 

identifiable.
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In the next chapter we present a system which allows us to extract and target the 

features we have identified in this chapter, allowing us to build an information 

retrieval system that allows us to search through a microblogging corpus and filter 

tweets depending on their usefulness.
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Chapter 4: Building a Search Engine

4.1 Introduction

In the previous chapter we described a study we performed which allowed us to find 

reasons as to what made tweets either useful or not useful to people performing 

popular search tasks over a microblog corpus.

Now that we have identified these reasons we wish to build a system that is able to 

identify these attributes in tweets, and allows us to search through a corpus of tweets 

we have collected to return useful results. In this chapter we discuss the architectural 

decisions we have made to allow us to create a system which allows us to identify 

these attributes and to retrieve them in a system which a suitable search time frame.

We start by describing the datasets available, followed by the possible frameworks 

available, finally discussing the chosen implementation.

4.2 Datasets

For the purpose of this Ph.D. it would be impossible and unrealistic for us to obtain a 

copy of all tweets ever sent and currently being sent (See Chapter 2 to see sheer 

volume). So we have had to rely on test corpuses to test our system. In this section I 

describe the corpuses, as well as the advantages and disadvantages of each.

It is worth noting at time of writing, you can no longer obtain full sets of these 

corpuses due to Twitter’s terms of service. You may obtain a list of tweet ids, for each 

corpus, but if a tweet has been deleted, then that tweet can no longer be obtained via 

whilst sticking to the terms of service.

4.2.1 SNAP

The Standford SNAP twitter7 corpus1 consists of 476million tweets from 17million 

users, which were collected between June and December 2009. It is estimated that this 

was 20-30% of all tweets sent via the service at time of collection.

1 http://snap.stanford.edu/data/twitter7.html
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Whilst this collection is supposedly represents a large proportion of all tweets sent, 

the collection only contains the username as well as the message, no meta data is 

included in the corpus. Whilst this makes it very interesting to perform text analysis 

on, it does not allow us to perform all the tasks we wish to on the data. As well as this 

is data from early on in Twitter’s life time, the conventions used are not fully up to 

date with current trends.

4 2 2  Edinburgh Corpus

Researchers Miles Osborne and Sasa Petrovic at Edinburgh University collected the 

Edinburgh Corpus. At time of publication (Petrovic, Osborne, & Lavrenko, The 

Edinburgh Twitter Corpus, 2010) the corpus consisted of 97 million tweets covering 

November 2009 to Feburary 2010. Again like the SNAP corpus, the Edinburgh 

corpus did not offer all the meta data included in a tweet, and was again an ‘old 

corpus’. However, it did provide a little more information than the SNAP corpus. The 

Edinburgh corpus included a timestamp when the tweet was sent, an anonymous 

username for the author of the tweet, the tweet message as well as client information 

(what application was used to post the tweet).

4.23 TREC

Possibly one of the most complete corpuses, was that provided by TREC. This corpus 

was setup after Twitter prevented users from sharing complete corpuses which each 

other. This corpus was created, to allow researchers to compare differences between 

corpuses.

The TREC corpus consisted of approximately 240 million tweets, which were 

collected between February and March 2013. The way these tweets are obtained is via 

the TREC corpus tool, which takes tweet ids as inputs, then queries twitter via the 

API to see if the tweet is still available, and if it is, it then downloads the JSON for 

that tweet. However, due to rate limiting only 150 tweets maybe downloaded per hour 

per account. So this takes considerable time and resource to obtain a full corpus.

There are two versions of the tool. One which downloads the JSON for the tweet, and 

one which HTML scrapes twitter, which is considerably faster as it not rate limited by 

twitters API, however it does not obtain all meta data for the tweet.
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Unlike the SNAP and Edinburgh corpuses, which were full corpuses you could 

download in one block. The TREC corpus ‘degrades’ over time. This has been 

documented by Ounis et al. (Ounis, MacDonald, Lin, & Soboroff, 2011). The reason 

for this is, as you are fetching tweets on the fly, the corpus is always changing, for 

instance if a user deletes their account, then all the tweets with that user are removed 

from Twitter, and are no longer obtainable. Also if a user changes anything to do with 

their profile, e.g. their name, avatar, bio etc. then this is what will be saved at time of 

scrape, so if two people run the same scrape at different time frames, then they are 

likely to have two different datasets.

4.2.4 Custom Twitter Data

The way in which all of previous corpuses were generated, were by utilizing Twitter’s 

data streams. Twitter allows users to see a glimpse of data running through their 

service, via something commonly called the Spritzer Stream1. This is a constant 

stream which returns a small random sample of all public status.

As well as this there is also the Firehose2. The Firehose, returns all public statuses, 

few applications have access to this stream and access has to be granted via twitter, 

realistically it is a very expensive task to be able to process and store tweets that are 

delivered through the firehose3. Ideally our system would utilize the firehose allowing 

indexing and retrieval of all tweets, however we do not have access to the firehose, so 

have instead used the spritzer stream through out this project.

We have created scripts that allow us to save the output of the spritzer stream, in a 

manageable format. As well as the spritzer stream, we have generated scripts that 

allow us to query the search API at intervals and save any output that is returned for 

any list of given queries.

1 https://dev.twitter.eom/docs/api/l .1/get/statuses/sample

2 https://dev.twitter.eom/docs/api/l. 1/get/statuses/firehose

3 https://dev.twitter.com/discussions/2752
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4.2.5 GNIP & DataSift

As well as storing our own copies of data we have recorded from either the streaming 

API or search API, Twitter also allows you to buy data from one of its resellers. GNIP 

and DataSift are services which allow you to ‘buy tweets’. Each company allows you 

to either buy realtime tweets or historic tweets.

In terms of real-time tweets, GNIP allows you to buy a sample stream called the 

Decahose -  10% of the firehose, or allows you to use one of their products to help 

you filter and buy relevant tweets. DataSift on the other hand allows you buy all 

tweets that have been filtered through their system, using their custom filtering 

language.

In terms of Histories, GNIP offers tools allowing users to search via filters for specific 

features and/or keywords and for historical tweets, DataSift offers a similar service. 

However, neither provider allow you to download blocks of tweets in terms of getting 

all tweets between date and time x and date and time y.

4.2.6 Choosing a DataSet

When we originally started this project we started to build the system using 

DatiaSift,to identify tweets that contained attributes for the codes we found in Chapter

3. At the time, it was free to use DataSift with twitter data, however in late 2011 

DataSift changed this, so that we would have to be charged to use these codes. At this 

point we abandoned using DataSift due to the cost of building a system in this way 

would be too expensive.

After this change, we started to use the SNAP corpus for testing some of the codes. 

However, we quickly found that even though the SNAP corpus was great for testing 

some of the codes, it was not a good corpus to utilize for other codes as it does not 

include all of the meta data. As well as this, due to the size of the corpus, it took a 

considerable amount of time to index the whole corpus on the resources available to 

us.
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After trying both the DataSift and SNAP corpus, we decided to generate our own 

corpuses for testing. We discuss one of these corpuses in detail in the next Chapter. 

The corpuses we generated were created using custom scripts that scraped both the 

Twitter Search API and the Spritzer Stream.

4 3  Processing

One of the biggest questions we had to quickly resolve with this project was how do 

we processes all of this data. Do we attempt to process the data on the fly in near­

realtime, to do we opt for a batch processing approach. At first when we were using 

the DataSift platform to filter tweets, we were hoping for a near real-time processing 

approach. However, ultimately we ended up with a batch processing approach- 

utilizing Hadoop. We give an overview of some of the frameworks and technologies 

we encountered and why advantages and disadvantages of both in this section.

43.1 Hadoop

Hadoop is an Apache project, it is an opensource framework which deals with the 

storage and processing of large data-sets. Hadoop processes data in a batch. It was 

created by Doug Cutting, and is an open-source implementation of the map-reduce 

framework that was described in the 2004 paper MapReduce: Simplified Data 

Processing on Large Clusters by Dean and Ghemawat (Jeffrey & Ghemawat, 2008).

Hadoop is probably the most popularly used Batch Processing system for processing 

‘Big Data’, with more than half of the Fortune 50 companies using Hadoop (Noyes, 

2014). Companies such as Yahoo and Facebook, use Hadoop to enhance their search 

services. In 2010, facebook claimed that they had the largest Hadoop cluster in the 

world with 21 Petabytes of storage, however by June 2012, this had grown to 100 PBs 

and as of November 2012, they annoced that the data gathered in the warehouse grow 

by roughly half a PB per day. As we can see it is suitable for processing the amount of 

data we are likely to encounter, and proves that it is scalable to the desired size, 

however this would require substantial capital investment.

Due to Hadoop’s popularity, it is a well documented project, and has many branches 

and side projects created which have enhanced the project as a whole, we discuss 

some of these projects in the Retrieval and Storage section of this Chapter.
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The main disadvantage of Hadoop is that is unable to process data in real 

time/streaming data. It would be ideal for a search service to be able to take a stream, 

then do all the processing on the fly. We discuss some solutions that are able to do 

this later in this section.

4 3 2  HPC Wales

During the late stages of the project, we were introduced to HPC Wales. HPC Wales 

is an ERDF project, which hopes to allow businesses and researchers access to high 

performance computing resources.

HPC Wales allows researchers and businesses in the convergence area to access their 

computing resources at little to no cost. HPC Wales does not provide a framework 

such as hadoop or any libraries to make use of the number of cores available to the 

customer. Instead any code deployed to the cluster must be optimized to utilize all 

cores that are available.

Due to having programmed all the appropriate codes to run on a hadoop architecture 

and with third party libraries, it was seen as unnecessary work at the point at which 

HPC was introduced to us, as it would require us to reprogram the codes to utilize the 

cluster appropriately. That coupled with the guaranteed availability and limited access 

to the machines meant we chose not to use these resources.

4 3 3  S4

The S4 framework is an Apache incubator project that allows for developers to create 

programs which deal with continuous unbounded streams of data. It is designed to 

work in a distributed, scalable, fault tolerant architecture.

S4 was designed to fill the gap between proprietary stream based frameworks and 

batch-oriented open source platforms (such as hadoop). Like hadoop, s4 is primarily 

written in Java. At time of writing version 0.6.0(The last commit at time of writing 

was October 2013.) has been released, and it due to the infancy (Apache project since
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September 2011) and lack of documentation with the project that we decided not to 

pursue using S4.

However, we know that S4 has been used by Yahoo for processing of search queries 

(Neumeyer, Robbins, Nair, & Kesari, 2010).

4 3.4 Storm

Storm is another Apache incubator project that is primarily concerned with the 

distributed and fault-tolerant real-time computation of stream data. It is very similar to 

S4 and is actually used by Twitter. On the Storm website they compare what they are 

doing with stream processing, as what Hadoop did for batch processing.

One of the biggest advantages of Storm is that it allows any programming language to 

be used via a Thrift definition, that allows communication over a JSON-based 

protocol.

There were two main disadvantages to us potentially using storm, like S4 it is still 

very much in its infancy, and like S4 it has little documentation, this meant if we were 

to hit any problems, we could be stuck and have no where to turn to.

Based on these options we decided to implement a hadoop to process our data. As 

was the most stable, well documented processing option available at time of 

conducting this project. It allowed us the freedom to do some interesting analysis of 

tweets, as well as not binding us to any one language. We will discuss the hadoop 

architecture we have employed further in this chapter.

4.4 Storage and Retrieval Engines

Now that we have discussed how we are to process the data, we must deal with the 

problem of how we store the data and how once we have stored it how we retrieve it 

with a reasonable response time. In this section we discuss appropriate storage 

systems, as well as retrieval engines, giving advantages and disadvantages of each 

solution. We start with HDFS which is used by Hadoop for processing the data in its 

system, then move on to how we are to retrieve this data originally inserted into 

HDFS.
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4.4.1 HDFS

Hadoop Distributed File System or HDFS is the file system that hadoop uses. It is a 

distributed file system which is designed to run on commodity hardware. HDFS is 

based upon the Google File System (GFS), it is highly fault-tolerant. HDFS provides 

high throughput access to application data and is suitable for applications that have 

large data sets.

One of the main advantages of HDFS is that it enables streaming access to file system 

data, it was originally built as part of the Apache Nutch web search engine project, 

however was moved from Nutch to the Hadoop project.1

The Apache Nutch project is tasked with building a highly extensible and scalable 

open source web crawler, stemming from the Apache Lucene project.2

4.42 Hive

Hive is an Apache project concented with offering software facilites for querying and 

managing large datasets which reside in distributed storage such as HDFS. One of the 

biggest advantages to use about hive what that it offers mechanisms not only to store 

the large datasets we need to work with, but it also offers a declarative SQL like 

language for performing queries on the data in its store. This language is called 

HIveQL (Hive Query Language). As well as offering the usual query like operations, 

Hive also allows users to inject custom mapper and reducers when it is inconvient or 

inefficient to express this logic in HiveQL.

Hive offers many desirable features for our system, allowing for advance querying 

and data manipulation. However, when we tested hive the iob initialization time was 

unsatisfactory. Taking five seconds just to run a select query on a hive table with only 

one row.

1 http://hadoop.apache.org/docs/rl .2. l/hdfs_design.html

2 https://nutch.apache.org/#What+is+Apache+Nutch%3F
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Whilst this would acceptable if we were just performing one pass along the data, this 

is not the case. Due to some of the codes, we perform multiple passes over existing 

data, to check SPAM scores as well as URL checking.

4.43 MySQL

MySQL is the world’s most popular open source database. MySQL is a relational 

database management system. It also offers full-text search and indexing. As well as 

this a variant of MySQL called MySQL Cluster also offers distributed storage and 

replication of data.

When originally choosing a storage engine we looked at using MySQL. However 

when performing select queries from our database retrieval times were unsatisfactory, 

again like Hive, retrieval was taking a couple of seconds to minutes depending on the 

query being run. This was an unsatisfactory amount of time. So we searched for other 

retrieval engines.

4.4.4 Pig

Pig is an Apache project that is concerned with allowing users to write high-level map 

reduce programs used with Hadoop. The programs are written in a language called 

Pig Latin, it resembles a SQL like language, however, it can also be extended using 

user defined functions, alloing users to write java, python, javascript, ruby or groovy 

programs tand call them directly from within Pig. Also unlike SQL which is a 

declaritive language, Pig Latin is a procedural language.

The main advantages of Pig was that it allowed easy creation of map reduce jobs, in a 

well documented and logical language. However, possibly its biggest advantage was 

where a suitable Pig Latin function could not found/existed, we were able to program 

the functionality in another language such as python, and import that functionality via 

a user defined function.

We programmed some functionality in Pig, however found the same issues arose as 

that with Hive. The initialization time was considerable and could not be used for on 

the fly querying of existing data.
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4.45 Lucene

Lucene is an apache project which develops open-source search software including 

Lucene Core, Solr, Open Relevance Project and PyLucene. The project offers high 

performance search services, advance tokenization and analysis of text, as well as 

implementations of many common search algorithms.

Solr the enterprise search platform built onto of Lucene allows full-text search, near 

real-time indexing, as well as allowing for scalable fault tolerant and distributed 

indexing as well as load balancing. All of these qualities are very desirable features 

when building a system such as this.

Solr is an enterprise search platform and as such there is a lot of through 

documentation, which is ideal. However, it is written in Java, and whilst this may 

seem as an advantage as it is cross platform compatible. It meant if any customization 

such as result boosting or custom tokenization of strings would have to be done in 

Java, or written in another language with a Java wrapper.

As we had not written any Java code for a few years, we wished to see if there were 

any other frameworks which supported a language that we felt more comfortable.

4.4.6 Katta

Katta is distributed search framework. It allows indexes to be imported straight from 

either Lucene or Hadoop. Which is advantageous, as we have chosen to use Hadoop 

to process our data. The Figure 4.1 describes how Katta integrates with Hadoop.
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Figure 4.1 Showing how Katta integrates with Hadoop.

Whilst Katta offers some features which would be advantageous to the overall 

architecture the documentation is very lacking and weak. At time the current release 

version is 0.6 and has not had any code committed to the project for over a year.1 So 

for this reason we decided to look for similar projects that were more suitable to our 

needs.

1 https://github.com/sgroschupf/katta
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4.4.7 Elastic Search

Elasticsearch is an open source search service based on the Apache Lucene project. It 

allows for a distributed architecture and near real-time retrieval.

The distributed nature and near real-time retrieval of elastic search really appealed to 

us. Whilst Pig offered a very flexible framework, its retrieval time was not suitable 

for our system. Lucene offers a great retrieval framework, though due to the amount 

of data being put into the system, we need a system which would scale horizontally. 

This is where projects such as Katta and Elasticsearch excelled.

Like Pig and Lucene Elastic search is accompanied by lots of documentation. This 

was one of the biggest advantages of Elasticsearch over Katta. Whilst Katta offered a 

good base to build a system on top of, its documentation was lacking depth and 

quality, as well it being a relatively new project, we were unsure about how stable the 

system would be, and if we were to encounter problems how we could fix them or 

how long it would take to fix.

One of the biggest advantages of elastic search is how it stores data. Elasticsearch 

allows the index to be either stored in-memory (no persistence) or on-disk(this is the 

default setting). Indexes that are stored in memory offer better performance. 

Obviously this is limited by the amount of physical memory available across the 

cluster.

As well as being scalable, fast, having good documentation and continual updates. 

Elastic search allows for the customization that we wish to implement. It allows us to 

do these customizations by passing parameters via JSON to it’s HTTP API.

Custom Tokenizers

Due to twitter having a unique language, which special tokens, we needed a system 

that would allow us to use tokeniser that allowed for special tokens to be preserved. 

Due to Elasticsearch being built on top of Lucene this feature was available.

(Elastisearch, 2014) This means rather than the following sentence

“Hi @jonhurlock, how are you? #question”

63



Being tokenized as:

[‘Hi’ ,’jonhurlock’,’how’,’are’ ,’you’,’question’]

the special tokens (i.e. hashtags and mentions) are preserved so it would instead be 

tokenized as:

[‘Hi’,’ @jonhurlock’,’how’,’are’ ,’you’ ,’#question’]

This is an important feature as we know that users search using @mentions and hash 

tags. (Hurlock & Wilson, Searching Twitter: Separating the Tweet from the Chaff, 

2011) (Teevan, Ramage, & Ringel Morris)

Custom Weightings

One of the requirements for the system is to allocate custom weightings to search 

results. For instance if a query returns a tweet which contains a link, we want to be 

able to say, because this tweets contains a link in is x times important that a tweet 

which is exactly the same but does not contain a link. This will happen at query time, 

to we need a way to be able to assign dynamic weightings to results.

Elastic search allows us to do this via the function Score Query, this allows the 

document to be boosted by a value in any field of a document / enriched tweet. The 

default behavior is to multiple the score by the desired score. However, it also allows 

other options such as replacing the score entirely, summing multiple scores, averaging 

scores, taking the max or min value, as well as having custom scoring scripts 

calculate a desired score. (Elasticsearch, 2014)

Due to all the advantages of Elasticsearch, we ended up choosing this for our 

implementation. In the next section, we discuss key components of the architecture in 

more detail.
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4.5 Overall Architecture

In this section we discuss the final choices of architecture, and how we have setup the 

system.

Our system had to be designed to be robust, scalable, but also simple enough to allow 

us to write code that could be easily deployed and tested.

The system was to be run on commodity hardware, so had to be able to cope if one 

machine was to fail, either through network problems, or mechanical/electrical failure 

such as hard disk failure. The architecture and solutions we have chosen has allowed 

us to take into account these sorts of problems. Hadoop and elastic search whilst 

having certain nodes allocated to specific tasks, also allow for ‘backup’ nodes to 

gracefully take over if one node fails.

The system also had to be scalable allowing for expansion depending on the amount 

of data that is to be processed by the system. Hadoop and Elastic Search both scale 

linearly allowing more nodes to be added to cluster if more processing power is 

needed.

Both Elastic Search and Hadoop are predominately written in Java, and allow for 

customization. By having a system built with a language which is easy to learn, it 

allows easy access for us to customize it. One such customization we made was to do 

with the tokenization of strings within elastic search, allowing the twitter specific 

language to kept intact. One of the main advantages of hadoop was that it allows for 

programs to be written in other languages such as Python, Perl, Ruby and C++ (Noll, 

2007) and then executed via the Hadoop Streaming API (The Apache Software 

Foundation, 2013).

The system ran on 10 machines. Three of which were bought through the project, 

whilst the remainder were old server blades sitting unused on the departmental 

network. We then repurposed these machines to be hadoop slaves.
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Figure 2.2 Photos of  some of the Hadoop Cluster we built and ran during the Ph.D.

This took a considerable amount of time and effort, first checking each blade to see 

that all the physical components were actually working, then removing all data from 

the existing hard drives, installing a new operating system (ubuntu server), 

configuring the machine to it connected the university network, then installing hadoop 

on each machine, and configuring permissions for each machine to enable them to 

communicate with each other. Each machine was individually labeled so that we 

knew what each m achine’s role was. Over the course of the Ph.D. some of the 

machines experienced physical faults (hard drive failure, PSU failure). However, due 

to hadoop and elastic search’s robustness and fault tolerance, the machines were 

constantly replicating data, and when one machine died, the other machine would 

share the load of the machine which had died. This is the case in all machines except 

for the name node, when this experience trouble. We had to restore from the 

Secondary NameNode.

In the next few paragraphs we will describe the main components of the architecture, 

splitting the system into two parts. Firstly the preprocessing part (hadoop work) and 

then the retrieval side of the system (elastic search).

4.5.1 Hadoop Architecture

In the diagram below we can see the physical architecture of the system, and how 

Hadoop was distributed over the cluster.
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V.

Figure 4.3 The Hadoop architecture we ran during this thesis.

Each machine is given a color that indicates what type of machine it is. Blue indicates 

it being on the departmental blades, whilst purple indicates a machine bough on the 

project.

Each node is also labeled with its role(s) as well as its IP address on the network. 

There several roles or daemons that run across a Hadoop cluster. These are:

• NameNode

• Secondary NameNode

• DataNode

• JobTracker

• TaskTracker

We will explain each of these roles. Hadoop allows for each machine to run single or 

multiple daemons. This allows for hadoop to be run over one machine in standalone, 

pseudo-distributed or full-distributed cluster.

NameNode

This NameNode acts as the brain of the cluster. Hadoop works on a master/slave 

architecture for both storage and computation. The NameNode is a master in this 

architecture.



It controls the filesystem (Hadoop File System / HDFS), providing tracking of how 

files are broken down into file blocks, where these blocks are stored across the cluster 

and monitors and maintains the health of the system.

Secondary NameNode

This is an assistant for monitoring the state of the cluster. Unlike the NameNode the 

Secondary NameNode in that it does not process real-time changes to HDFS. Instead 

it takes snapshots from the NameNode, allowing for a role back if the NameNode 

fails.

DataNode

As mentioned before Hadoop runs on a master/slave architecture. The DataNodes are 

the slaves in this architecture. The DataNode perform reading and writing of data to 

HDFS to actual files on the local file system.

JobTracker

The job tracker is the liason between the application running and Hadoop. Once a user 

has submitted a code to the cluster, the JobTracker determines the execution plan by 

determining which files to process, assigns nodes to different tasks and monitors all 

tasks as they’re running. Should a task fail, the JobTracker will automatically 

relaunch the task, possibly on a different node, up to predefined limit of tries.

Task Tracker

As with the storage daemons, the computing daemons also follow a master/slave 

architecture. The JobTracker is the master overseeing the overall execution of a 

MapReduce job and the TaskTrackers manage the execution of individual tasks on 

each slave node.

Each TaskTracker is responsible for executing the individual tasks that the JobTracker 

assigns. Although there is a single TaskTracker per slave node, each TaskTracker can 

spawn multiple JVMs to handle many map or reduce tasks in parallel.

One responsibility of the TaskTracker is to constantly communicate with the 

JobTracker. If the JobTracker fails to receive a ‘heartbeat’ from a TaskTracker within
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a specified amount of time, it will assume the TaskTracker has crashed and will 

resubmit the corresponding task to other nodes in the cluster.

4.5.2 Elasticsearch Architecture

As well as running hadoop the system also ran an elasticsearch cluster. Elastic search 

is a distributed variant o f  Lucene. Lucene is an Apache project, which provides high- 

performance, full-feature text search. Elastic search is a peer to peer based system, 

nodes communicate with each other directly.

The elasticsearch cluster was run across the same machines that the hadoop cluster 

was run on. There are three roles a node can play in the elastic search architecture. 

These three roles can be seen in the diagram below (load balancer, master node, work 

horses).

Elastic Search A rchitecture

jW-mstresearehr

Search Load Balancers

Hadooo

Figure 4.4 The Elastic Search architecture we ran as well as interaction points with

users of the search engine.

Load Balancers

These nodes are used for distributing the workload across the cluster. They aim to 

optimize resource use, maximize throughput, minimize response time and avoid any 

overload of one particular resource. All queries are directed to one of the load 

balancers, which then assess which work horse(node) to run the query on. W hen we 

are adding data to the system, they are inserted via the load balancers, to make sure 

we do not overload any particular machine.
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Master Node

All the main APIs (index, delete, search) do not communicate with the master node. 

The responsibility of the master node is to maintain the global cluster state, and act if 

nodes join or leave the cluster by reassigning shards. Each time a cluster state is 

changed, the state is made known to the other nodes in the cluster (the manner 

depends on the actual discovery implementation).1

Work Horses

Whist there is no name associated to nodes which are not load balancers or the master 

node, we have chosen to call them the work horses. These nodes deal with the 

requests put forth by the load balancers, and those made by the master node into 

relation of the status of the cluster.

4.6 Data Flow

Now that we have seen the main two components of the system, we will explain how 

data flows through the system. From Twitter to user retrieval.

There are six main steps in our system, these are listed below.

1. Obtaining Tweets from Twitter/Source

2. Classifying Tweets

3. Output Tweets regardless of classification (useful or not)

4. Indexing Tweets in ES

5. User Querying Index

6. Returning Ranked Tweets to User

At step 1, tweets are either gathered by one of our scripts. We have a script which 

scrapes the spritzer hose, as well as script which takes in a query as an input, then 

scrapes twitter Search API for tweets. We have tested the system with both, we have 

used the second method to help us calculate optimum weightings for each of our 

codes found in our initial study. We will talk about this in more detail in the following 

chapters. Both of these scripts generate flat files of JSON data.

1 http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-discovery.html
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Step 2 now occurs, this is where the tweet JSON files get inserted into the Hadoop 

cluster, at this point all tweets in the files are classified based on the findings of our 

ICWSM paper. Towards the end of this step hadoop stores the output in HDFS.

Step 3 then occurs. We extract the output from step 2, removing the output from 

HDFS. The output consists of flat files, which contain JSON objects, each JSON 

object is the original tweet inserted into the system, with more meta data included to 

do with whether or not the tweet contains the codes identified in chapter 3.

Step 4, at this point we have flat files which contain the data we wish to retrieve data 

from. We need to index this data into elastic search. At this point data a script is run 

which indexes the JSON data into elastic search ready for retrieval.

Step 5. Now that data is indexed it is ready to be retrieved by a user or process. A 

HTTP request is made to elastic search from a client. At which point the request will 

hit one of the load balancers, the load balancer will then choose an appropriate node 

to fire the request to, this node will then retrieve the result. At which point Step 6 is 

initiated and a HTTP response is given back to the client.

It is worth noting we have made a search interface to allow keyword search to be 

performed by users to showcase the system. Screen shots can be seen in the figures 

below.

< *3 ,
I_____________ mwfofty__________ ‘

m as*  tn ttf Your Qu«r\-
Amity University AMIMUNaon: Start: 
03/24/2011 00:00 End: 02/26/2011 00:00 
Start; 02/24— http://biUy/dLkW22

Mnhidol university (#  Mafaidoi 
Witthayanusom NWTT)
http:. /4*q com/hthrWi

f -1

Figure 4.5 Showing screenshots of the search system in use.
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4.7 Summary

In this chapter we have discussed, the architecture of the system, and rationale behind 

the choices we made to select this architecture. In the next chapter we will discuss 

how we determine if a tweet is either to be deemed useful or not, as well as how we 

rank each tweet. Specifically looking at the weightings for each of the codes.
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Chapter 5: Automatically Identifying Usefulness

5.1 Introduction

In the previous chapters we have discussed a study which identified reasons for tweets 

being labeled as useful or not useful to people performing three types of common 

search tasks found on Twitter data. (See Chapter 3) We then introduced a distributed 

architecture in Chapter 4 that has allowed us to build a system that would allow us to 

index and search over twitter data.

In this chapter we describe the way in which we programmatically identified the 

codes described in Chapter 3. We borrow techniques from other research to enable to 

us perform some of the code checks we have implemented.

It should be of note to the reader that the architecture described in Chapter 4, is being 

utilized in this chapter to help process tweets. We modify tweet’s JSON objects to 

include additional meta data about the tweet based on the codes described in Chapter

3. This is done via our Hadoop cluster described in the pervious chapter, to which the 

output is then fed into our Elasticsearch cluster after having custom weights applied to 

the JSON object, which are described in Chapter 7.

We utilize the architecture in Chapter 4, not only to speed up some calculations, but 

also to optimize for when collecting data from external websites. This is especially 

relevant when checking if a link is dead or not, and also to see what content is 

contained with a link. As it creates multiple (distributed) network request queues 

rather than have all requests being sent from one machine and having one large 

network request queue.

Due to codes being subject, query dependent and certain indexing techniques some of 

the codes described in Chapter 3 either not be detected or indexed. We give a brief 

overview of how well each of these codes has been implemented in the table below. 

We then go on to describe how we used techniques found in literature and techniques 

we identified to help automatically identify these codes.
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Code Level of Implementation
Useful Codes

Experience Fully implemented
Direct Recommendation Fully implemented
Social Knowldege Unable to implement at indexing time *
Specific Information Implemented through various means
Entertaining Not Implemented due to subjectiveness
Shared Sentiment Partially implemented due to indexing time *
Time Implemented *
Location implemented *
Trusted Author Implemented via SPAM detection
Trusted Avatar Not implemented due to subjectiveness
Trusted Link Fully Implemented
Actionable Link Fully Implemented
Media Link Fully Implemented
Useful Link Implemented based on Lexical Quality
Retweeted Lots Implemented *
Conversation Implemented *

Not Useful Codes
No Information Partially implemented
Introspective Partially implemented
Off Topic Not implemented *
Too Technical Not implemented *
Poorly Constructed Fully implemented
SPAM Fully implemnted
Wrong Language Partially implemented *
Dead Link Fully implemented
Time Implemented *
Location Implemented *
Untrusted Author Fully implemented as inverse of trusted author
Untrusted- link Fully implemented as inverse of tusted link
Perspective Oriented Implemented
Disagree with Tweet Not implemented due to subjectiveness *
Not Funny Not implemented due to subjectiveness *
QnA Fully implemented *
Repeated Not implemented *

Table 5.1 Showing Codes from Chapter 3 that have been implemented.

* indicates that due to the stream, we cannot index this feature at index time, and 

can only be performed at query time, because it is either query or user specific.

5.2 Detecting Experience

Tweets that were labeled as being useful contained personal experience. We used 

natural language processing techniques to look at the structure of tweets which
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contained personal experience, and identified two ways in which personal experience 

was being conveyed.

The first way was when a tweet contained a pronoun (I/We), followed by 0 or 1 verbs 

(e.g. have) or a contraction of these to produce something such as I’ve or We’ve. This 

would then be followed by a verb which was either in the past of presence tense.

The second way we identified tweets as containing personal experience was when a 

tweet contained a sentiment rich word (verb or adjective such as hate/hated, 

bore/bored, love/loved) followed by a pronoun describing themselves or another 

object e.g. my/myself. A list of sentiment rich words was curated by ourselves, which 

contained present and past tense words.

The above detection was performed using regular expressions, and resulted in a 

binary score, of either containing an experience or not containing an experience.

5 3  Direct Recommendations

Another of our codes found in useful tweets was direct recommendation. We again 

look at the sentence structure of tweets to estimate if the tweet contains direct 

recommendation.

In this instance a person must be identified, either by using their twitter username e.g. 

@jonhurlock or using a pronoun word such a ‘you’ or ‘we’, followed by a modal verb 

with either present or future tense.

This again was detected using a regular expression, giving a binary score to either a 

tweet containing or not containing a direct recommendation, with 0 representing no 

direct recommendation and 1 representing that the tweet contained a direct 

recommendation.
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A list of commonly used pronouns and modal verbs was manually created by the 

author to facilitate this detection. As the POS tagger we were using (NLTK) did not 

allow for identification of modal verbs.

5.4 Social Knowledge

We defined tweets with Social Knowledge as containing information that is spreading 

socially, or becoming general knowledge. This code is temporally relevant, as it is 

query time specific, due to this fact we were unable to process it utilizing the Hadoop 

cluster we had setup.

5.5 Specific Information

The second most frequent of codes encountered in Chapter 3 was that of specific 

information. We had several tests to see if a tweet contained specific information. We 

defined what specific was based on the following factors time, price, and mention of a 

proper noun.

We detected if a time was mentioned by using regular expressions to detect 

combinations of time and dates, as well as detecting words based on a dictionary of 

words to do with mentions of time and dates. Examples of the some of the terms we 

detected are mentioned in the following paragraphs.

Day time descriptors are terms describing points within a day. Examples are: 

morninglmid-daylmiddaylafternoonleveninglnightlduskldawn

We searched for descriptors describing times within the week: 

todaylyesterdayltomorrowlweekendlweeklmidweek

mondayltuesdaylwednesdaylthursdaylfridaylsaturdaylsundaylmondaysltuesdayslwedne

sdayslfridayslsaturdayslsundaysllmonltueltueslwedlwedslthulthurslfri

Words to do with the month:

januarylmarchlaprilljuneljulylaugustlseptemberloctoberlnovemberlDecemberlmonthlmo

nthlyljanlfeblmarlaprljunljullauglseptloctlnovldec
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When implementing the code initially we were over reporting time matches, this was 

due to the term “may” appearing. Although in our test cases we did not find any 

tweets containing the term “sun” or “sat” we believe we potentially could have over 

reported on this too. So when implementing this, mentions of the term “sat”, “sun” 

had to be prefix by the terms thislnextllast or alternately then have another mention of 

time or date in the tweet, for the tweet to be labeled as containing time based 

information in it. If the term “may” had a numerical date, and an optional ordinal 

suffix (e.g. nd, th, st) preceding it, we deemed this to be a mention of a date.

As well as the fore mentioned detection, we also built two regular expressions to 

capture whether a user mentioned a time. These are given below:

General time mention:

( ( [  I J , l - I J I ( l ) l ! l* ] ) ( [ 0 - 2 ] ? ) ( [ 0 - 9 ] ) (  ) ? ( a m lp m la .m lp .m la .m .lp .m .) ( [  l . l , l- IJ I ( l) l ! l* ] ) )

24 Hour clock detection:

( [  1.1, l - L I I ( l ) l ! l* ] ) ( [ 0 - 2 ] ? ) ( [ 0 - 9 ] ) : ( ( [ 0 - 5 ] [ 0 - 9 ] ) ) ( [  ] ? ) ( [a m lp m la .m lp .m la .m .lp .m .]? ) ( [  1.1,1- 

U(l)l!l*])

Detection of prices was done again via regular expressions. We looked for patterns 

where by a currency symbol (e.g. £) or code (GBP) was either proceeding or after a 

number.

As well as mentioning times and currencies we also looked for mention of proper 

nouns. A proper noun is a word that refers to a unique entity, for instance a name of a 

city, a person’s name or a company name. We count @mentions as proper nouns, 

however if the ‘in_reply_to_status_id’ meta field is included we ignore any mentions, 

this is due to the person via a @mention is not being referenced and is instead being 

used as a linking mechanism.

We detected proper nouns by utilizing NLTK’s POS tagger, this POS tagger is trained 

on the Brown Corpus which contains 500 samples of English-language text, compiled
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from works published in the United States in 1961. (Bird, Klein, & Loper, 2009) 

(Wikipedia, 2015)

At the time of writing the code detection we looked to see if anyone had written a 

POS tagger aimed specifically for Twitter data. Unfortunately at the time we could 

not find such a tagger, though since completing the implementation, several taggers 

have been created with varying levels of success. (Owoputi, O'Connor, Dyer, Gimpel, 

Schneider, & Smith, 2013) (Derczynski, Ritter, Clark, & Bontcheva, 2013)

Twitter poses interesting questions to how we tag, certain terms, e.g. emoticons, emoji 

as well as the question of how we tag terms that are ‘new’ or are intentionally 

misspelt or elongated. E.g. ‘noooooooo’ or ‘yeeeeesssss’, which are misspelt and 

elongated to provide emphasis.

We performed some preprocessing of the text, to remove hashtags from hashtags in 

tweets,for instance ‘#something’ just became ‘something’. As we believed that some 

valuable information maybe hidden within hashtags. We also converted @mentions to 

real names, such that a tweet which look like ‘@userl and @user2 liked @userl’s 

car’ became ‘Alice and Bob liked Alice’s car’. We did this to try and naturalize the 

sentence to something that would appear in the Brown corpus.

Whilst the Brown corpus is outdated, it would be able to detection proper nouns in 

terms of location and people’s names, but would not necessarily be able to decipher 

whether the term ‘Apple’ was proper noun (Apple the company) or a common noun 

(the fruit). As well as date, the corpus is based on high quality texts, whilst we know 

the quality of text with in the twitter-sphere may not be as high quality. (Rello & 

Baeza-Yates, 2012)

Utilising the methods mentioned in this subsection we were able to extract three 

binary scores one for proper nouns (individual’s names, places and/or organizations), 

one for price and one for time.

5.6 Entertaining Tweets

We are unable to classify tweets as entertaining due to the subjective nature.
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5.7 Shared Sentiment

Whilst we can’t detect if sentiment matches the personal sentiment of the user 

performing whilst indexing the data, we can detect whether sentiment is being 

displayed in the tweet.

We detect sentiment utilizing two different machine-learning approaches. We use a 

naive Bayesian classifier and a Fisher’s classifier.

Naive Bayesian Classification is a machine learning technique that calculates the 

probability of a document belonging within a ‘bucket’ (classification). It is called 

naive because the algorithm assumes that the probabilities being combined are 

independent of each other. (Segaran, 2007)

Fisher Classifier, named after R.A.Fisher, is a probabilistic approach to classification. 

Unlike the naive Bayesian classifier approach, whereby feature probabilities are used 

to create a single classification for the document. The Fisher method calculates the 

probability of a classification for each feature in the document, then combines the 

probabilities and tests to see if the set of probabilities is more or less likely than a 

random set. (Segaran, 2007) We intern get a probability score for each 

bucket/classification for each document. We took the bucket with the highest 

probability as the sentiment for a given tweet. If probabilities between a strong 

sentiment (either positive or negative), were equal to either (irrelevant or neutral), we 

took the stronger sentiment. However, if the probability of the strong sentiments were 

the same, we decided that the sentiment was neutral, as they cancelled each other out.

We trained both the classifiers on an existing set of 5513 hand labeled data from 

Sander Analytics. (Sanders Analytics, 2011). Tweets were either classified as 

Positive, Negative, Neutral or Irrelevant. However, due to the way in which this 

corpus was generated, it has some bias. Not only in terms of size, but also content.

The Sanders corpus, was generated from search results pages which searched for the 

following terms “#Google”, “#Microsoft”, “#Twitter” and “@Apple”. Ideally we 

would have liked to have had a large sample of tweets which had no term bias, as well 

as having these tweets manually labeled by expert judges. However, due to the lack of
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time and budget, we decided to utilize this existing resource. At time of implementing 

this was one of the largest manually labeled twitter datasets available in terms of 

sentiment.

When training the naive Bayesian classifier, we used a unigram approach, taking each 

term as a feature. This assigns each trained term a weighting/probability for belonging 

to each of the sentiment buckets.

We performed some preprocessing before submitting the data to our classifiers, as 

well as when we trained our classifiers. We replaced all @mentions and links with the 

terms person and link. We deemed @mentions and links to be free of sentiment, and 

did not want the classifier to ‘learn’ certain @mentions or links as having sentiment. 

Hashtags also get their *#* removed e.g. #love becomes love.

We also manipulate all twitter entities and words that have consecutive repeating 

letters. We reduce the number of consecutive repeating letters so there is a maximum 

of two repeating consecutive letters per word e.g. helllllllllo would become hello. We 

did this in an attempt to minimize the amount of terms that haven’t been seen by the 

classifier.

When recording the output of the sentiment analysis, results were recorded as positive 

being 1, negative being recorded as -1, and both irrelevant and neutral being recorded 

as 0. We decided to combine irrelevant and neutral for ease of coding, and allowing 

us to assign a scalar value to the code. We recorded sentiment scores for both types of 

classifier.

5.8 Time

As mentioned in the specific information section, we are able to detect when a user is 

talking about a point in time, by using regular expressions at index time. However, we 

wanted to know if the user is talking about a current event if the tweet is deemed to be 

useful, or if the time is said to ‘outdated’ if the tweet is deemed to be not useful.

These are both subjective, and query time dependent variables, thus it we are not able 

to be index this at index time.

80



To counter this we have decided to split any mentions of times into three categories 

past, present and future.

All tweets that contain a time, which could be considered up to an hour before 

posting, we count as present. We do this due to the user may not have had signal 

when the event occurred and are mentioning something that is ‘nearly’ current. Any 

mention of a time +6 hours from time of positing is also counted as present.

We encountered some false positives, such as if we see a tweet saying ‘Party 

estimated to finish 2:00AM’ posted at 22:00, we can read that the event is running 

from 22:00 on day 1, to 02:00 on day 2. So will not be detected as present or future it 

will instead interpret this as the past. It does this, because there is no mention of 

‘tomorrow’ or a reference to day+1. We calculate day+1 and day-1, based on the 

tweets creation date, and any mention of the day either side of it. E.g. if a tweet is 

posted on Monday the 14th of August, if it mentions Sunday (with a past tense verb), 

Tuesday, 13th (with a past tense verb) or 15th, we infer we are talking about an event 

within a 24 hour period surrounding the current date, we then try to estimate whether 

the date and time is within the 6 hour time frame if it is within the 24 window, or 

alternatively an hour if it is in the past.

If no mention of time is mentioned no value is entered, if it is in the future, we give it 

a value of 1. If it is in the past we give it a value of -1, and if it is in the present we 

give it a value of 0.

5.9 Location

Like the time code, location is again query dependent. Entity disambiguation is a big 

problem. If I ask someone where London is. It is logical that someone in Europe 

would say London is located in the UK. However if I ask someone in Canada, they 

may say Ontario, very few clues are given at query time as to where a person is 

actually trying to refer to. One of the biggest clues may be using the accept-language 

header in the user’s HTTP request. However there is a disproportionate amount set to 

en-us, and in the case of London, this does not help us if I mean London, UK.
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Instead of trying to tackle the problem of location disambiguation, and matching 

between tweet and query, we instead search for proper nouns in tweets, and of those, 

we see if any of them are locations via the google geocoding API. Though we are now 

rate limited to 2,500 request per hour. Thus like the Link analysis described later, we 

have a ‘caching’ service to see reduce the number of requests sent.

Whilst we don’t perform any further analysis on this code as it is query specific, we 

do record the longitude and latitude returned from the Google geocoding API based 

on the first longest noun-chained string, we pass it.

A noun-chained string is where we have a noun followed by a noun, followed by 

another noun and so on. We take this n-gram and pass it to the API, we also generate 

a list of sub n-grams for the original n-gram, until we are left with a list of unigrams, 

and pass all of these to check if there is a result.

We use the longest, first returning n-gram, we do this because Alice London England 

Bob is 4  proper nouns, however, London England is the n-gram we want.

This in theory could be used to attempt to produce a measure between query location 

and locations mentioned in the code, though this is query time specific, so is not 

implemented.

5.10 Trusted Author

Trusting an online entity is a very subjective matter, people place trust in certain 

attributes that others may disagree with. When we described trusted author in chapter 

3, we described it as a ‘twitter account has a reputation/following’. Whilst there have 

been papers such as Measuring Influence in Twitter: the million follower fallacy 

(Cha, Haddadi, Benevenuto, & Gummadi, 2010), saying that audience size doesn’t 

prove that someone is more influential. We found that people still put a lot of 

emphasis on these numbers via the study described in Chapter 3.

As people decided to put their trust in these numbers, we have decided to utilize a 

reputation metric developed by Wang (Wang, 2010), which we feel reflects the 

comments made by participants.
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R(v.)-------------------
^ (v ,)  + <f0 (v,)

Which says reputation(R) of a user is equal to the number of indegrees (followers) 

divided by the indegree (followers)+outdegree(following) of users. We implemented 

Wang’s scoring metric into codes, we were able to extract all these numbers from the 

JSON object when processing the tweet.

5.11 Trusted Avatar

Trusted based on avatars is also very subjective. Work has been carried out on 

understanding trust based on facial avatars, however, due to users can upload pictures 

of anything as long as it adheres to the terms of use, we find that it would be 

unfeasible for us to try and extract trust based on user avatars.

5.12 Detecting Questions in Tweets

Like other social network services, micro blogging platforms facilitate interaction 

among people. Boyd and Ellison note these interactions often entail reinforcements 

and maintenance of social ties that were created in more traditional venues. (Boyd & 

Ellison, 2007)

Morris et al, (Morris, Tee van, & Panovich, 2010) report a detailed survey of people 

with respect to question-asking and question-answering behavior on Twitter. Their 

analysis suggests that in many cases people turn to their Twitter network to help them 

resolve information needs. In these situations users rely on Twitter as an informal 

social search service.

Twitter is full of idosyncrasies, which makes processing it difficult. On the other it is 

very restricted in length and tends to employ simple syntactic constructios, which 

could help wthe performace of NLP processing.

Evans and Chi (Evans & Chi, 2008) analyze social search interactions under the lens 

of Broder’s taxonomy of search (Broder, 2002):transactional, navigational and
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informational. They note that social interactions entail an especially promising tool 

for searchers with informational needs, i.e. people trying to gather information, 

aspopposed to people trying to accomplish a particular task(transactional) or find 

(navigate to) a particular Web resource.

Of particular interest is the dissection of social search tactics outlined in Evans & 

Chi’s work. (Evans & Chi, 2008) The authors make a distinction between targeted 

asking and public asking.

Targeted asking includes modalities such as email, where a searcher directs a question 

to a particular individual or delineated group. On the other hand, public asking 

involves broadcasting a question to a wide audience, either through posting a question 

to a wide audience, either through posting a question to a public feed on Twitter, or 

by enlisting a search service such as Aardvark (vark.com). Targeted asking in Twitter 

can be accomplished by the use of the @ symbol or through the use of direct 

messages (DMs), which created a private conversation between the sender and 

receiver.

When people ask questions on twitter they typically do so in a fashion that lies 

somewhere between targeted and public asking. Excluding direct messages, which are 

private, and will not be covered in this thesis, questions on Twitter are posted to all of 

a user’s followers, and therefore have a significant public component. On the other 

hand, questions are only available to a user’s self-selected followers, thus limiting the 

scope of the question audience. Directing a question to a particular follower via an @ 

mention signals the user’s intent that his or her question has a narrow target, but it 

presence on the public feed (Rather than a private direct message) means that the 

question is serving another purpose within the ongoing exchange between user and 

followers.

A causal perusal of Twitter shows that people use the service for many reasons, 

including social search.
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Not all “questions” on Twitter end with a question mark. Indeed the linguistic 

literature on the semantic of questions is large. Here we enlist a portion of that 

literature to help us operationalize the idea of a question in order to draw a 

meaningful sample of user questions form our corpus of Twitter data.

To guide our analysis, we refer to Karttunens (Karttunen, 1977) description of 

question embedding verbs in Karttunen 1977. Question embedding verbs are phrases 

that lend a declarative sentence interrogative semantics. The sentence I would like to 

know where you will be after the plenary is, in Karttunen’s analysis the same as 

asking, Where will you be after the plenary?

To the best of our knowledge, no canonical list of question embedding verbs exists. 

Thus we combined an analysis of the verbs listed by Karttunen and our own reading 

of a large number of tweets to arrive at the following working definition of what 

constitutes a question in our analysis. A tweet contains a question if:

• It contains a question mark that is not part of a URL.

• It contains the phrase I* [try*,like,need] to find

• It contains the phrase I* [try*,like,need] to know

• It contains the phrase I*m looking for

• It contains the phrase I* wonder*

In these cases the * sign is a wildcard, signaling 0 or more instances of any character. 

The list above is admittedly ad hoc, but our initial analysis focuses on tweets that 

match these patterns yielding plausible samples.

After implementing this solution further work has been carried out to detect questions 

within bodies of text.

Wang and Chua used syntactic shallow pattern mining in an attempted to 

automatically detect questions in online content. Whilst Dent and Paul applied a 

different NLP approach in an attempt to automatically detect questions on twitter 

which an accuracy of .67881. Dent and Paul commented that their scores were rather
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low and indicated that well formedness is probably not a good indicator of 

information seeking questions on Twitter.

We based our question detection algorithm on the work carried out by Efron and 

Winget (Efron & Winget, 2010). We were able to produce a program which cleaned 

the data, stripping out punctuation and other entites such as URLs, special symbols 

such as @ and #. After cleaning the data regular expressions based on the work of 

Efron and Karttunen are applied to see if we can detect questions.

Any twets which contained a question, were given a QnA score of 0.5 indicating we 

had found a question, if a subsequent tweet had the meta data with the 

‘in_reply_to_user_id’ field as that tweet’s id, we would then give both tweets a score 

of 1.

5.13 Conversation

One of the codes we identified was the conversation code. The code says that the 

tweet is part of a series of tweets, and they all need to be useful. Whilst we can not at 

index time decide if all tweets are considered useful, we can identify tweets which are 

in reply to another tweet utilizing the ‘in_reply_to_user_id’ meta data. If the tweet 

contains this then we automatically mark this tweet as part of a conversation, also if 

another tweet references a pre indexed tweet (via searching for it’s tweet id), we mark 

both as conversation (via a HTTP PUT statement in elastic search).

We recorded this as a binary measure 1, being, part of conversation, 0 being not part 

of a conversation.

5.14 Link Analysis

A lot of the codes to do with a tweet being either labeled useful or not useful were to 

do with the links that were either prevalent or missing from a tweet. We even 

dedicated a category to links in our Useful codes, and identified Dead links as a 

reason for a tweet being deemed not useful.
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At the time of coding we used regular expressions to enable us to extract links from 

tweets. The process has now become simplified with twitter automatically extracting 

links and now including them in the list of entitles found in a tweet’s meta-data.1

5.15 Performing Link Analysis via HTTP Response Headers

We perform many types of checks on links to see if a tweet is to be deemed useful or 

not. In this section we describe how we utilize HTTP response codes, to classify links.

Below is a sample of HTTP response headers2. Responses are grouped into five 

different classes: information responses, successful responses, redirection, client 

errors and server errors.

1 https://dev.twitter.eom/overview/api/entities-in-twitter-objects#urls

2 https://developer.mozilla.org/en-US/docs/Web/HTTP/Response_codes
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Status Code Status Text Description
Informational Responses

100 Continue This interim response indicates that everything so 
far is OK and that the client should continue with 
the request or ignore it if it is already finished.

101 Switiching
Protocol

This code is sent in response to an Upgrade: 
request header by the client, and indicates that the 
protocol the server is switching too. It was 
introduced to allow migration to an incompatible 
protocol version, and is not in common use.

Successful Responses
200 OK The request has succeeded. The meaning of a 

success varies depending on the HTTP method: 
GET: The resource has been fetched and is 
transmitted in the message body.
HEAD: The entity headers are in the message 
body.
POST: The resource describing the result of the 
action is transmitted in the message body. 
TRACE: The message body contains the request 
message as received by the server

201 Created The request has succeeded and a new resource has 
been created as a result of it. This is typically the 
response sent after a PUT request.

202 Accepted The request has been received but not yet acted 
upon. It is non-committal, meaning that there is no 
way in HTTP to later send an asynchronous 
response indicating the outcome of processing the 
request. It is intended for cases where another 
process or server handles the request, or for batch 
processing.

Redirection Messages
300 Multiple

Choice
The request has more than one possible responses. 
User-agent or user should choose one of them. 
There is no standardized way to choose one of the 
responses.

301 Moved
Permanently

This response code means that URI of requested 
resource has been changed. Probably, new URI 
would be given in the response.

302 Found This response code means that URI of requested 
resource has been changed temporarily. New 
changes in the URI might be made in the future. 
Therefore, this same URI should be used by the 
client in future requests.

Client Error Responses
400 Bad Request This response means that server could not 

understand the request due to invalid syntax.
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401 Unauthorized Authentication is needed to get requested response. 
This is similar to 403, but in this case, 
authentication is possible.

403 Forbidden Client does not have access rights to the content so 
server is rejecting to give proper response.

Server Error Responses
500 Internal 

Server Error
The server has encountered a situation it doesn't 
know how to handle.

501 Not
Implemented

The request method is not supported by the server 
and cannot be handled. The only methods that 
servers are required to support (and therefore that 
must not return this code) are GET and HEAD.

502 Bad Gateway This error response means that the server, while 
working as a gateway to get a response needed to 
handle the request, got an invalid response.

Table 5.2 Showing HTTP Response Codes

Checking URLs is possibly the biggest bottleneck in our system. As the time it takes 

to check an external resource takes along time. We have tried to minimize this 

bottleneck by introducing the following architecture.

We perform a HTTP Response header check on all previously unseen URLs that are 

contained in tweets. We do not perform multiple checks on URLs due to this would 

increase the time to perform processing of all tweets.

A list of URLs is saved into a MySQL database along with its response code, and all 

other relative data to do with indexing, so that when it comes to indexing, we can 

quickly see if a URL has been indexed before or not. One down side of this however 

is, if the URL becomes dead or alive, anytime after indexing, our corpus is out of 

date.
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M y S Q L

Figure 5.1 Showing how our system checks and caches links

The following processes occur during indexing. Step one involves the indexer builder 

located on the hadoop cluster, detecting a link. When this is triggered, a request is 

sent to our M ySQL database (1) to check if the URL has been seen before.

Information then flows from the M ySQL database back to the indexer (2), if the link 

has been seen before, then the indexer, indexes based on the data held in the M ySQL 

database.

If the link has not been seen before then, the indexing program will attempt to index 

the URL. A request is sent to the URL from the hadoop cluster (3), it then waits for a 

response (4), if the response is in the 200 range (successful response range) then we 

perform a scrape of the content as long as it does not fall in the media link category, 

this is further described later in this chapter. The reason for the scrape is to see if the 

link falls into the actionable link or useful link category
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The relevant data is collected and the tweet is marked appropriately, an entry for the 

link is then put into the M ySQL database, to allow for this link to ‘cached’ and allow 

for quicker indexing.

If at stage 4  the H TTP response header is in the redirection range (300-399) then we 

attempt to follow the redirection of the URL (steps 5 and 6), we set a limit on upto 

three redirects to stop any link cyclic links (see image below) looping and freezing the 

indexing, as well as to reduce indexing time.

D
Figure 5.2 Showing cyclic redirection links

Above is an example of cyclic links, where page A redirects to B, B to C , C to D, and 

D to B. If we were to try and index content on A we followed all redirects, we would 

never be able to index this data as we would be continually chasing links. If the there 

are more than three redirects we declare the link to be dead.

During the redirection stage we also ping the M ySQL database to see if the redirect 

links have been already indexed in an attempt to speed up indexing.

If a redirect does return a page in under three redirects o f  more, we then scrape the 

endpoint for indexing just as we would do if a page returned a successful status code,
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and we add the redirection path to the M ySQL database, to prevent us from having to 

perform the full redirection process again.

Below, we can see output from the program, showing the redirection process. It 

shows the extraction of the URL from the original text.. The URLs it found, Then any 

Tive’/successful responses it found, as well as any URLS which have been found via 

a redirection process, The redirection process it has been through, and any URLs 

which are deemed to be dead.

################################################################################
# Link A n a ly s i s  #

>>> O r ig in a l  T e x t .

This  i s  showing a r e d i r e c t  to the  Swansea Computer Sc ience in a c t i o n  h t t p : / / b i t . 
ly/lnPeGKW

>>> E x tra c te d  URLS tram  o r ig in a l  T e x t .

h t t p : / / b i t . l y / l n P e G K W  

» >  L IVE  URLS

h t t p :  //www, Swansea, ac. uk/cornpsci / 

» >  MOVED FROM TO URLs

h t t p : / / b i t . ly/lnPeGKW
-> h t t p :  / /www. Swansea, ac.  uk/cornpsci /

» >  DEAD URLs

No E n t r ie s  :D
cs jo n h u r lo e k :D e sk to p  cs jonhu r lo ck $

Figure 5.3 Showing our link analysis tool extracting and checking links

One of  the most important checks that we perform is to see if the URL is dead or 

unreachable, this was highlighted in chapter 3, as one of the reasons a tweet would be 

deemed to be not useful. We classify any response in the 400 (Client Error) and 500 

(Server Error) range to be deemed as a dead link.

We give an over all score for each tweet in terms of dead links, this is calculated as 

the sum number o f  dead links that are contained within the tweet.
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5.16 Media Links

When it comes to classifying a link as media link, we use a list of regular expressions 

which checks for media types, as well as checking the URL against a list of known 

media services such as youtube, instagram, twitpic, BBC iplayer, as well as a number 

of other popular media serving sites. The original list was based on a list of photo 

sharing services listed by Wikipedia1 as well as a list of video hosting services created 

on Wikipedia2. Some additional services, such as BBC iplayer were added.

If the link returns a successful response, and one of the regular expressions is matched 

we deem this to be a media link and no scraping of the content occurs. It its worth 

mentioning we detect images, movies and audio based media. When we record this 

code, it is stored as a binary value, if any links contain a media link, a value of 1 is 

stored, if no media links are found a value of 0 is stored.

5.17 Trusted Links

Trust is an important factor according to the study performed in chapter 3. We 

discovered that the trust a user assigns to a link can either make the tweet be useful or 

not useful. Looking through the literature there are many examples of systems which 

crawl the web and assign trust scores to webpages, however there is little literature on 

how people assign trust to links.

BJ Fogg (Fogg, et al., 2001) has produced several publications with peers looking at 

how people assign credibility to computing products and assess the credibility of web 

sites.

Prominence-Interpretation theory suggested by Fogg, posits that two things happen 

when people assess credibility online. Firstly the user notices something (prominence) 

and secondly they user makes a judgment about it (interpretation).

If one or the other does not happen, then there is no credibility assessment. The 

process of noticing a prominent element and making an interpretation happens more

1 https://en.wikipedia.org/wiki/List_of_photo-sharing_websites

2 https://en.wikipedia.org/wiki/List_of_video_hosting_services
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than once when a person evaluates a web site, with new aspects of the site being 

noticed and interpreted as the user makes and overall assessment of credibility.

Fogg suggests that there are at least five factors that affect prominence.

1. Involvement -  of the user (i.e. the motivation and ability to scrutinize Web site 

content)

2. Topic -  of the Web site (e.g. news, entertainment)

3. Task -  of the user (e.g. seeking information, seeking amusement, making a 

transaction)

4. Experience -  of the user (e.g. novice vs. expert in regard to the subject matter 

or web conventions)

5. Individual Differences -  (e.g. a person’s need for cognition, learning style or 

literacy level)

Fogg also stipulates that there are various factors which influence Interpretation.

1. Assumptions -  in a user’s mind (i.e. culture, past experiences, heuristics and 

so on)

2. Skill/Knowledge -  of a user (e.g. user’s level of competency in the site’s 

subject matter)

3. Context -  (e.g. the user’s environment, user expectations, situational norms 

ans so on)

Promience-Interpreation theory, is subjective, individualist and task oriented. We 

cannot program a subjective trust score, nor can we account for each user of our 

search system. In the paper entitled elements of computer credibility Fogg and Tseng, 

make reference to the following factors being cues for credibility -  Familiarity and 

Social Status.

We have thus built a trust system that concentrates on the familiarity and social status 

of a link. The way in which we have programmed this, is to gather a list of the top 

1000 domains being accessed by a country for a given time frame, then determining if
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the link is in the list of top domains being accessed for a given time frame. The score 

is binary, either it is trusted or not trusted. With 1 being trusted.

The list of domains is gathered from a third party -  Alexa Internet. Alexa is a 

subsidiary company of Amazon.com which provides commercial web traffic data. It 

collects this data via either the Alexa/Amazon toolbar or via javascript which is 

embedded into the webstie.

5.18 Actionable Links

An actionable link is defined whereby a user can perform a transaction by using the 

link. An example of this might be making a purchase, or filling in a form to complete 

a transaction. To define whether a link was actionable, we first had to find out if the 

link returned a successful HTTP response.

If we receive a 200 ranged HTTP response, then we attempt to scrape the content of 

the webpage. We then check to see if there are any form elements via counting form 

elements within the DOM. This is done via the beautiful soup library for python, 

allowing use to use CSS selectors to count the number of form elements.

If there are 0 form element the link is labeled as not actionable (0), if there are form 

elements, we then calculate the average number of inputs for each form on each form. 

This involves check for input, button, submit, textbox, checkbox, dropdown and radio 

elements within a form element (we do not include hidden form elements).

If this number is above a threshold of 3, we state that the page is probably actionable. 

Allowing for a transaction to be made. As for recording a score with give it a floating 

point value, which is calculated as the mean number of inputs per form.

5.19 Useful Links and Lexical Quality

We defined a useful link as a link which provides us with valuable information 

content e.g. authoritative, educated reviews and discussions. To detect that the link 

provided valuable information, we decided to run a lexical analysis on the content. 

We stipulated that links which provide valuable information will have a high lexical
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score, and again information from authoritative sources will also have a high lexical 

score. The way in which we calculated the lexical score was based on work by Rello 

and Baez Yates (Rello & Baeza-Yates, 2012). Where lexical quality is defined as 

follows:

LQ = mean
f d f misspell (o^

(0:GW K d f correct a>i

Where W is a set of frequently misspelled words. Those words were chosen such that 

they were frequent and had large relative error. They then use data from a leading 

search engine to estimate the document frequency (df) values, computing the relative 

ratio of the most popular misspells to the correct spellings, averaged over a word 

sample W.

We did not have a large document base from a leading search engine to estimate 

document frequency values so instead we have stayed within document, and have 

done an inverse function, so instead of the score 0 showing perfect lexical quality, 1 

instead reflects perfect lexical quality. If a link was dead a score of 0 was given to this 

link as its usefulness score, as there was no data to be retrieved.

Originally we used a machine learning approach to see if we could detect misspells, 

with the training data being sourced from texts on project Gutenberg. We then 

changed our approach as when performing simple test the run time and results we 

tested gave poor results. Instead we utilized a mixture of NLTK and wordnet as well 

as the python enchant package which allowed us to check the spelling of words.

As we already have a check to see if a URL is misformed through the deadlink check, 

we also had to check lexical quality of tweets. We check lexical quality of tweets to 

detect poorly constructed tweets. The detection of this code was performed by 

utilizing the method described above.

5.20 Retweeted

Although we can not see if a link is retweeted at index time due to us performing 

batch processing (Hadoop), we can update the retweet_count meta data after
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processing the data in Hadoop and add it into elastic search. This is done by just 

incrementing the retweet count value every time a tweet is retweeted. This will only 

work in a system which continually runs. We increment the retweet_counter, when 

we observe a tweet which has meta data stating that it is a retweet, and contains the 

retweeted tweet’s original id. By default at index time this given a value of 0.

5.21 Summary

In this chapter we have identified how we programmatically extract the codes 

described in chapter 3 utilizing the architecture we described in chapter 4. We have 

not been able to automatically extract all codes due to the way in which we process 

data, the subjectivity of some of the codes as well as technical limitations (e.g. trusted 

avatar).

In the next section we introduce a dataset we have collected which will enable us to 

compare our system against others as well as allow us to optimize how we assign 

weightings (importance) to each of the codes.
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Chapter 6: Building a Test Data Set

So far in this thesis we have discussed how we have built a system which is able to 

index and retrieve large data streams (Chapter 4) and is able to identify properties in 

tweets that may highlight that tweet as either being deemed useful or not useful to a 

user (Chapter 5).

However, we don’t as yet know how useful these codes actually are. For instance is a 

tweet which includes a media link more useful than say a tweet with a trusted link, or 

is a tweet which contains a media link and has a higher lexical quality more or less 

useful than a tweet with a trusted link. To do this we have to have a test corpus on 

which to perform experiments.

In this chapter we describe a crowd sourcing study that we performed to create a test 

corpus that will allow us to generate weights (see Chapter 7) for the features we have 

extracted described in Chapter 5. The corpus we present is unique in that it gives all 

information needed to perform IR evaluation as described by Mannning (Manning, 

Raghavan, & Schiitze, 2008)

In this Chapter we first describe the idea of weighting via an example explaining TF- 

IDF, followed by how we perform meaningful IR evaluation. From this we Describe 

the steps we have taken to produce this test corpus, and give stats as well as analysis 

regarding the collection of the data.

6.1 .Weightings

The simplest of search engines are those that support Boolean queries: a document 

either matches or does not that match query. (Manning, Raghavan, & Schiitze, 

2008)In the case where corpuses are large, there may be a large set of results which 

match the query, this number could far exceed the number a human user could 

possibly search through.

As this set may be so large, we may wish to order these documents by some criteria. 

The search engine will compute for each matching document a score with respect to 

the query at hand.
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6.1.1 TF-IDF Example

One of the most basic examples of weighting is the TF-IDF weighting algorithm. 

(Manning, Raghavan, & Schiitze, 2008) This is calculated by obtaining the product of 

the term frequency for a given search term and the inverse document frequency for a 

given search term.

In the following section we will explain both term frequency and inverse document 

frequency, and give the final calculation to calculate TF-IDF .

Term Frequency

Term frequency, is a calculation where we calculate how many instances of a given 

term there are in a given document.

TFtem,document — n u m b e r  o f  t i m e s  t e r m  o c c u r s  i n  d o c u m e n t

This is a ‘bag of words’ model where we do not care about the location of the terms 

within a document. We are just interested in the number of occurrences of each term 

within the document (the frequency).

In table 6.1 we have provided 3 example documents, if we try and calculate the TF for 

the term ‘the’ across all three documents we will arrive at the following results.

TFttie.documentl =  2 

rFFthei(i0Cunient2 ~ 1 

FFthg'documents ~  ^

The reason for this is, the term ‘the’ occurs twice in document 1, only once in 

document 2 and only once in the document 3.

However, normally we do not want the raw TF. As it may not necessarily be true that 

a document which has 10 occurrences of a term is 10 times more relevant than a
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document that only contains one instance of the given term. (Manning & Jurafsky, 

2015)

Log Frequency Weighting of TF

The idea behind TF weighing is that relevance goes up as the number of occurrences 

goes up. However, this may not be a linear increase, so we want to dampen this by 

utilizing a log function. We can use the following calculation to calculate a new 

weighting: (Manning & Jurafsky, 2015)

¥*j    “b C ^term ,docum ent)' i f  T^term,document ^  ^
term,document -  [  ^  o t h e r w i s e

We have a conditional statement in the above equation as if there are zero occurrences 

of the term in the document the log of 0 is negative infinity, so we have to have 

conditions to handle this.

Document Number Document

1 The cat sat on the mat

2 Porto is a city in Portugal, Lisbon is the capital city.

3 The mean squared error is a statistical measure.

Table 6.1 Example set of documents 

Inverse Document Frequency:

Document frequency (DF) of a term is the number of documents that contain the 

term; regardless of the number of times the term occurs over the corpus or for each 

document. For instance if we look at our example documents in Table 6.1. The DF for 

the term ‘cat’ is 1 as it appears in document 1 only. The DF for the term ‘the’ is 3, as 

it appears in document 1, document 2 and document 3. Document frequency is an 

inverse measure of informativeness of a term (Manning & Jurafsky, 2015).

D F f e r m  =  n u m b e r  o f  d o c u m e n t s  t h a t  c o n t a i n  N

Inverse document frequency for a term is the total number of documents divided by 

the DF. We commonly use a log function to dampen the effect of IDF. The absolute



score may be seen as too strong a factor. (Manning & Jurafsky, 2015) The equation 

for IDF is given below.

I D F t e r m  ~  l 0 9 l o f f l / D F t e r m )

Where N is the number of documents (the size of the corpus). If a term occurs in 

every document IDF will be = 0, but as the DF decreases for a fixed size corpus, the 

value of IDF will increase.

IDF gives us the notion that rare terms are more informative than frequent terms. If 

we are querying for a very ‘unique/rare/unusual’ term, and the term appears only in 

very few documents across the corpus, we assume that the user would be highly 

interested in viewing these documents, as they are likely to be relevant to the user’s 

query.

IDF takes the view that frequent terms are less informative than rare terms, whilst a 

document might contain a frequent term, it may not necessarily be the most relevant 

document.

So we wish to give documents with frequent terms positive weightings for documents 

matching a query, but lower than that of rare terms.

Calculating TF-IDF

The TF-IDF weighting of a term is the product of its TF weight and IDF weight.

^term,document ~  ^dloO 'fterm ,docum ent))** ^ 9 1 0 / DFteTm)

According the Manning and Jurafsky TF-IDF is the best-known weighting scheme in 

for terms in IR. (Manning & Jurafsky, 2015) TF-IDF increases as the number of times 

a term occurs in the document (TF), but also goes up with the rarity of the term in the 

corpus(IDF).

To calculate the TF-IDF score of a document, we use the following calculation:
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Score(q ,d) = > t f . i d f td
^-^tEqnd

The score is calculated by summing the TF-IDF weighing where the term appears 

both in the query and the document.

Whilst the example given in this section is a weighting based on terms, we have 

multiple criteria which we have identified as reason for a tweet to be deemed useful or 

not useful to a user. By utilizing work in this chapter we hope to assign a weight to 

each of these codes, and to calculate how ‘important’ each code is to decided whether 

a document is useful or not useful via a machine learning based method called 

learning to rank, these steps are described in Chapter 7.

6.2 Perform ing IR Evaluation

To measure ad hoc IR effectiveness in the standard way we need the following things 

according to Manning: (Manning, Raghavan, & Schiitze, 2008)

1. A document collection

2. A test suite of information needs, expressible as queries

3. A set of relevance judgm ents, standardly a binary assessment of either 

relevant or nonrelevant for each query-document pair.

In this chapter we explain the following steps seen in Figure 6.1 , that will allow us to 

evaluate our system against future systems. Please note that the final step ‘Applying 

Learning to Rank’ is described in the following Chapter of this thesis.

Acquire Corpus Acquire Test Queries ►  Acquire Judgements

Perfrom Analysis Apply Learning
of Judgements

1J  ifP l l
to Rank

Figure 6.1 Steps involved in creating and using our Copora
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6 3  Acquiring and Generating Test Tweet Corpus

In this section we explain the process we used to acquiring a suitable corpus and test 

query set for our evaluation of the system. We discuss existing evaluation corpora as 

well as the method we used to generate our own collection of test queries and a test 

corpus.

63.1 Existing Corpora

Whilst there were various corpuses available (see chapter 4.1), none satisfied the 

requirements to allow us to proceed with meaningful IR evaluation for the system we 

had created.

NIST offer the microblogging corpus, which deals with a very similar tasks, but is not 

an open corpus, that it does not allow researchers access to the user acquired 

judgments of the data. (Ounis, MacDonald, Lin, & Soboroff, 2011) Thus making the 

assessment of IR systems blind to the users who take part in the TREC microblogging 

track. Also rather than being open in what is meant by usefulness TREC assumes that 

the best result set for a given query is to “return the most recent but relevant 

information” (Ounis, MacDonald, Lin, & Soboroff, 2011), in this thesis we wish to 

investigate what is really the best information to return. This is what we hope this test 

corpus will deliver.

Due to not already having a corpus we have had to generate a corpus for this task. As 

we know we can not gather every tweet on Twitter (due to API and physical 

limitations), and get judgements for each tweet for a given set of queries, we have had 

to devise a system whereby we collect a subset of tweets which we think could be 

relevant to a set of pre defined queries, and test based on that data.

In the following sections we explain how we generated a list of queries to collect 

tweets, and how we generated the corpus based on these tweets.

63.2 Generating Queries

Ideally we would like a list of queries that have been generated by a group of users 

who have used a search engine to search over a microblogging corpus. Unfortunately
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no publically available corpus is available with this data. This is unfortunate, as it will 

not allow us to compare our system against a pre-existing system.

As no query corpus is available, we had to resort to creating our own. To do this we 

already had a set of queries which had been generated by users from the experiment 

described in Chapter 3, which involved the users performing search tasks based on 

three of the most common search tasks undertaken by people performing search over 

a microblog corpus. (Teevan, Ramage, & Ringel Morris)

Although we had an existing set of queries from Hurlock and Wilson (Hurlock & 

Wilson, Searching Twitter: Separating the Tweet from the Chaff, 2011), some of 

these queries were temporally relevant, as they are specific to certain events (BBC 

Proms in 2011) and the launch of products (iPhone).

For use in the experiments that we would be carrying out we had to modify these 

temporal aspects to be up to date with current events and products. Rather than the 

BBC Proms, we modified content so that it would be relevant to the Coachella 

festival, and the launch of the iPhone to launch of the iPad Mini.

We created a list of 48 unique queries from the set of original queries entered by 

users. The complete list of queries can be seen in Appendix A. These queries were not 

equally spread over each task in number.

Now that we had a test suite of information needs, expressed in the form of queries, 

the second things identified by Manning et al. (Manning, Raghavan, & Schiitze, 

2008), we need a corpus, and set of relevance judgments.

6 3 3  Our Corpus

Now that we have a list of queries, we need a corpus, which will allow us to query 

over. Whilst there are several twitter copra available, there were problems with using 

them. We wish to have system to compare our system against that would return 

results based on our queries.
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The ideal situation would be to use the TREC corpus, but due to the lack of data 

regarding the corpus (judgments and queries) we felt that it was not suitable for the 

type of evaluation we wished to perform.

We wished to use Twitter’s own search engine as a baseline. We therefore had to 

retrieve data from the same source. This meant grabbing data from Twitter, there are 

two ways to access this data. We could either record data from the sprinkler stream1, 

or we could use the search API2.

If we used the sprinkler stream, it meant gathering a large amount of data, however, 

only receiving an actual fraction of tweets. Alternatively we could query the search 

API, and record results that came through. The advantage of using the Search API is, 

that it will create a much smaller corpus, which will allow for quicker evaluation. 

However, it means we are relying on Twitter Search to return relevant tweets. Neither 

method will allow us to capture all tweets, however, we wish to compare usefulness, 

not relevance. So we have opted to use the second method (Twitter Search API).

Now that we have chosen a method to generate a corpus, we could generate the 

corpus.

We created a script that would access the twitter search API, then pick a queiy from 

our query list and return results for that query and save it with a timestamp to a file. 

This script ran via a cron job to run every hour, for a specified amount of time. Due to 

the size of the query list, it meant that we would exceed twitter’s Search API rate 

limit. This meant we needed to split the script over several IP addresses and accounts, 

to get all the data.

We started to collect data on the 14th of April 2013, and finished collection on the 11th 

of June 2013. In total we collected approximately 5million query responses. Due to 

budgetry constraints we selected a subset of these queries and their responses to be

1 https://dev.twitter.com/streaming/public

2 https://dev.twitter.com/rest/public/search
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featured in this corpus, with only 40,000 query, time of query, result tuple sets being 

selected. We split the type of task between the 40,000 as equally as possible.

Now that we have created a corpus (requirement number 1), and have a set of 

information needs (requirement number 3). We needed a set of relevance judgments.

This means we now have a set of queries, we also have a corpus of tweets. However, 

the tweets also have lots of other extra data, such as their position in a list of results 

for a given query, that was queried at a specific time. Allowing us to utilize this data 

as a baseline for any further evaluation. The only thing missing now to allow this 

corpus to be utilized for evaluation is human judgment of how useful that tweet is for 

a given query, when queried at a specific time. In the next section we describe how 

we gathered these judgments.

6 A Generating Judgments

We needed to generate usefulness judgments for our tweets. However, we were 

constrained by several factors, time and available expert judges. In order gain the 

maximum number of judgments in the minimum amount of time we turned to 

crowdsourcing.

Crowdsourcing has been used in different areas of computer science and social 

sciences to obtain large amounts of data in short periods of time. It has been used for 

obtaining relevance scores (Alonso & Baez-Yates, 2011), as well as labeling tasks. 

(Lease & Yilmaz, 2012) (Welinder & Pietro, 2010)

Due to the constraints put upon us in terms of time and money. We decided selected 

just shy of 40,000 tweets to obtain judgments on. The tweets were selected to cover 

all three search tasks.

When deciding to choose which crowdsourcing platform to utilize, we were restricted 

in choice. Amazon’s Mechanical Turk (AMT) is possibly the biggest and most well 

known of the crowdsourcing platforms. However, it is only directly accessible if you 

are a US based customer. Our next choice was to use Crowdflower. Crowdflower is 

one of the world's leading crowdsourcing service, with over 800 million tasks
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submitted by over four million contributors. Crowdflower specializes in microtasking: 

distributing small, discrete tasks to many online contributors, in an assembly-line 

fashion. For instance, Crowdflower has been used to check hundreds of thousands of 

photos every day for obscene content. Crowdflower, has been used by other 

researchers, and offered us access to a large crowd of workers (It even allowed us 

access to AMT users through their platform, though at time of writing they no longer 

offer this service).

For each query and each result we need a minimum of three participants to acquire a 

meaningful DCG score (we discuss this in further detail later in this chapter) 

(Manning, Raghavan, & Schiitze, 2008).

Participants were compensated based on the number judgments they successfully 

completed. We compensated participants $0.01 per judgment, we decided to 

compensate $0.01 per judgment based on works by Duncan Watts and Winter Mason 

(Winter & Watts, 2010) Though we also acknowledge that other authors have looked 

at how financial incentives improve quality of work performed by crowd sourced 

workers. (Horton & Chilton, 2010) (Buhrmester, Kwang, & Goslin, 2011)

As part of the process all participants had to agree to read and agree to an ethics and 

study design document, these documents can be found in the Appendix A.

As part of the work surrounding the crowdsourcing experiment we had to build a 

custom interface to deal with some interactions (such as consenting to the study and 

ethics) as well as getting the tweets to display as best as we could (to mimic twitters 

search result page). This involved using the Crowdflower markup language CML, 

HTML, CSS and JavaScript. Screenshots from the tasks can be seen in Appendix A 

and in Figure6.2 later in this Chapter.

6.4.1 Trusting Participants

In order to make sure participants did not ‘game’ the system, measures were put in 

place to detect whether a participant was to be trusted or not. We utilized 

Crowdflower’s gold standard system as a mechanism to measure trust that a user is 

performing the task in a sensible manner.
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CrowdFlower allows for gold standards to be put into the data, to check that 

participants are not bots. Participants will be scored for accuracy. If they fail these 

gold standard test, then they will be considered a bot and will not receive any 

compensation. More information about gold data can be found at 

http://success.crowdflower.com/customer/portal/articles/1365763-test-question-best- 

practices

We created two types of gold standard data. One where the query was a mathematical 

question consisting of the following:

What is (number from 0-10) with an operator (addition, subtraction, multiplication or 

division) followed by another (number from 0 to ten) followed by a question mark 

e.g.:

What is 2 x 10?

The responding tweet, then had the following text:

2 x 10 = 20

Replying with the question, and the answer. We had a similar set of questions where, 

the question would be:

What is the capital city of [Country]?

With the response text being:

The capital city of [Country] is [Country’s captial city].

These were picked, as they are basic tasks, where answers could either be calculated 

quickly or could be looked up with great ease. When creating these test questions, we 

provided questions with the correct response, and incorrect responses. If the response
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was incorrect, then the question was tagged as one of the answers on the not useful 

scale, if it was correct, then it was tagged as one of the responses on the useful side of 

the scale.

Users were shown a set of these test questions throughout the study. Users had to 

answer a minimum of 5 of these test questions before receiving payment. When 

answering these questions, they were assigned a trust score. This meant that if they 

incorrectly answered a certain percentage of these questions they would not receive 

payment, as they were counted as SPAM/Bots.

6.4.2 Participant Selection

Participants were selected based on their countries primary first language. It was 

desirable to have English native speakers for the basis of this task. We targeted users 

in the USA, Canada, United Kingdom, Australia and New Zealand. However, all 

users ended up residing in the United States, based on data provided by Crowdflower.

No age restriction was put on the users, and no prior experience of twitter was 

required of users as we can envision and have seen twitter results being embedded in 

non twitter specific search engines. However, to be able to sign up to Crowdflower 

you must be 18 years of age. So all participants were considered to be 18+1

Crowdflower acts a third-party provider tapping into the API of various 

crowdsourcing platforms, this means if we build tasks on Crowdflower, it will run via 

their payment system, or it could be outsourced to other crowdsourcing platforms 

such as AMT. We decided to allow our jobs to be sent to all available crowdsourcing 

platforms to enable the jobs to be completed in the minimum amount of time.

6.43 Usefulness Judgments

Now that we have described how we gathered our judgments we describe what the 

judgments consisted of.

1 http://elite.crowdflower.com/index.php?view=terms

109



There are several ways in which we can generate a set of relevance judgments. 

Traditionally in IR judgments are seen as a binary indicator as either relevant or 

nonrelevant. However, relevance can be measured in levels. (Manning, Raghavan, & 

Schiitze, 2008)

To properly evaluate a system, the test information must be relevant to the documents 

in the test corpus, and appropriate for predicted usage of the system.

According to Manning these information needs are best designed by domain experts. 

Using random combinations of query terms as an information need is generally not a 

good idea because typically they will not resemble the actual distribution of 

information needs. (Manning, Raghavan, & Schiitze, 2008) This is why we have 

chosen to use actual query log data.

As mentioned in section 6.3.3 we collected approximately 5 million tweets, for our 

list of queries. It would have been too costly in terms of both monetary cost and time 

for us to have gathered judgments for all of these tweets.

So, we had to select a subset of these tweets. Our selection was made so that each task 

had as even coverage as possible. In total 40,000 tweet + search term pairs were 

selected, these were from search result ranging from the 14th April 2013 to the 22nd of 

April 2013. A maximum of 20 results per query were taken from each query.

We are aware that this corpus generation method will have introduced bias into our 

results, as we are basing our corpus on the accuracy of the Twitter search API 

returning relevant documents to us.

Manning does also note that a human is not a device that reliability reports a gold 

standard judgment of relevance of a document to a query. Stating that humans and 

their relevance judgments are quite idiosyncratic and variable. This is why we have 

decided to employ a large number of humans to perform a large task in hope of 

reducing this variability.
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We have been able to see how idiosyncratic and variable judges are by utilizing a 

kappa statistic that creates a simple agreement rate for the rate of chance agreement. 

We discuss the agreement rate of our dataset later in this chapter.

Like TREC and other evaluation systems, we have adopted an ordinal notation of 

usefulness with documents divided into four classes distinguish documents being not 

useful from those which are very useful.

There are several ways in which to traditionally perform relevance for a retrieval 

system, depending on how we mark documents as useful or not. We can also look at 

how we evaluate a list of unranked results, or ranked results. We are most interested 

in ranked retrieval results as we hope to bring the most useful tweets to users. Below 

introduce two of the common measures which allow us to the do this.

Mean Average Procession(MAP)

Possibly the most common measure is mean average precision (MAP) (Manning, 

Raghavan, & Schiitze, 2008), which provides a single figure measure of quality across 

recall levels. Results from MAP have been shown to have especially good 

discrimination and stability. (Manning, Raghavan, & Schiitze, 2008)

For a single information need, average precision is the average of the precision value 

obtained from the set of top k documents existing after each relevant document is 

retrieved, and the value is then averaged over information needs.

For a single information need, the average precision approximates the area under the 

interpolated precision recall curve, and so the MAP is roughly the average area under 

the precsion-recall curve for a set of queries.

DCG and NDCG

Discounted Cumulative gain and Normalized Discounted Cumulative Gain, are 

measures that have seen increasing adoption, especially when employed with machine 

learning approaches to ranking. NDCG is designed for situations of non-binary 

notions of relevance. (Manning, Raghavan, & Schiitze, 2008)
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Due to there being various levels of usefulness we have decided to use NDCG as the 

primary evaluation of our system.

As we have chosen to use NDCG and we have a large dataset with paired queries, we 

needed a way in which to collect usefulness judgments for each tweet and its 

corresponding query. To do this we implemented the crowd sourcing tasks to gain 

usefulness scores.

In the next Section we describe the Crowd Sourcing Experiments we ran in detail.

6.5 Generating the Corpus

Over the course of the Ph.D. we generate 4 different corpuses. This was due to low 

kappa scores. We discuss the corpuses we generated chronologically and discuss the 

reasons for generating the 4 corpora and utilizing one in the end.

It is worth noting that the layout of the interface did not change, nor did the amount of 

questions per page change (set at 5) over all corpus generation, the only thing that 

changed was the wording to do with the answers users could give, as well as the 

amount of answers to pick from. All units were judged by three trused contributors 

from the Crowdflower platform in these experiments.
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How useful is the following tweet for the following search?

Search:"coachella"

Searched at 2013-04-18 00:07:47

ijl Joyce Reyes @
JoyceReyes

Would die if I won those tickets to see @Metric at Coachella this 
weekend. Would DIE.
Wed Apr 17 22:55:59 +0000 2013

How Useful is the tweet for the given 
query?
O 1 
O 2 
O 3 
0 4

O  1 is Not Useful, 4 is Very Useful.

Figure 6.2 Screenshot from Crowdsourcing study -  Corpus 1 (215802)

Please not that even though there is a missing image at time of running the experiment 

images were present. Also the @symbol in the top right of the tweet would be next to 

the user’s twitter alias in gray (this is an error to do with the image missing).

6.5.1. Corpus 1 (215802)

Experiment 215802 was the first crowd sourcing study we undertook. It consisted of 

39994 units, o f  which 4998 were test questions and 105001 judgments were made.

The wording used was based on the literature presented in Introduction to Information 

Retrieval (Manning, Raghavan, & Schiitze, 2008).

Participants were presented with a scale of 1 to 4. W here 1 was -  Not Useful and 4 

being Very Useful. 2 and 3 were left open to interpretation to the participants.

To evaluate the judges agreement we used a K rippendorff  s alpha (Krippendorff,
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2013) which is used to measure inter-rater reliability. The alpha score, scored was 

0.0945349960529 rated as low agreement according to Reiss and No agreement 

according the Landis and Koch.
\

Based on this low score we decided to look at our experimental setup. Each piece of 

data had three judges judging it. No judge was seemed to be gaming the system. We 

examined the results and even ran the experiments taking out the top contributors; this 

made little difference to the alpha score. Indicating no one user of the top 5 

contributors was skewing results.

As a result we looked at the wording used in the experiment and decided to change it 

to see if it mad a difference. This then led us on to conduct experiment 390484.

6.5.2 Corpus 2 (390484)

Experiment 390484 was the second study conducted. It was conducted to see if the 

openness of experiment 215802 was creating disagreement between users. Due to 

budgetary constraints we used a subset of the data used in the 1st experiment. With 

17422 units, 2425 test questions generating 45017 judgements. Again a low alpha 

score was achieved (0.0665999143908) indicating even lower agreement.

Participants were asked to How useful is the tweet for the given query, with 1 - 

Definitely Not Useful 2-May be not Useful 3-may be Useful 4-Definately 

Useful

Based on this, we ran another experiment keeping with the same language as 

experiment 1, though giving options 2 and three an explicit answer.

6.53 Corpus 3 (392186)

Experiment 392186 was also in response to the low kappa statistic found in 

experiments 1 and 2. This time an even lower alpha score was retrieved 

(0.0419000427235). Indicating that possibly four possible options was too much.
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The participants were asked the same query, with the following options: 1-Not Useful 

2-A Little Useful 3-Quite Useful 4-Veiy Useful. Instead of giving users 4, options we 

also ran a binary experiment (see corpus 4)

6.5.4 Corpus 4 (414908)

Experiment 414908 was the final experiment conducted, due to all the previous 

experiments receiving low kappa scores, we decided to investigate whether our scale 

was too sparse. The participants were given a binary option in this task rather than the 

4 point scale in the previous experiments with 1-Not Useful and as 2-Useful. This was 

run as a larger experiment with 3994 units, 4998 test questions and gathering 105055 

judgements. This returned an alpha score of 0.132293455368 achieving the highest 

alpha score.

Whilst this offered the highest alpha score of all corpuses generated it was not what 

we wished to have in terms of a usefulness score.

6.5.5 Further Analysis of Corpora

As the alpha scores were so low, we also experimented with grouping judgments, for 

instance in Corpus 1, we combined scores 1 and 2 to make not useful, and 3 and 4 to 

make useful, thus turning it into a binary task, however no great gains were found, we 

also tried groupings of 123-4 and 1-234.

From looking at the alpha scores from these experiments we can only conclude that 

judging a query, response for a particular period in time is a very subjective task, and 

thus may make defining a tweet as either useful or not useful for commonly found 

search tasks harder than originally though.

We release all corpuses in the following as two files is CSV (Common Separated 

Value) format, the corpora file, which contains the key data which adheres to the 

Twitter terms of service. As well as Query File, which is a copy of the queries found 

through the experiment. The structure can be seen in the paragraphs below.

Corpora File Format:

Query_time, Query J d  Tweet_Id, Rating_for_NDCG, Judge_Id, Golden_Data
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Query File Format:

Query Id, Query

As well as our judged corpora files, we also release a copy of the original twitter 

search results pages, in a format which adheres to the Twitter terms of service. This 

will allow users to perform analysis between both ours and twitter’s search engine.

6.6 Summary

In this chapter we have described the methodology and reasoning that we 

implemented, constructing four crowd sourced IR evaluation test corpora. Through 

analyzing the inter-rater agreement we have discovered that usefulness is a very 

subjective measure based on the judgments we have collected.

Despite the low inter-rater agreement, we have chose to explore if any of the codes 

we found in Chapter 3, can be of use in detecting useful or not useful tweets. We 

show how learning to rank can be utilizing in the next Chapter to weigh codes based 

on the data collected in this Chapter.
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Chapter 7: Ranking Factors of a Useful Tweet

7.1 Introduction

In this Chapter we aim to gain insight into how features in tweets, can make a tweet 

be deemed useful or not to some one performing search over a microblogging dataset. 

Most importantly though in this chapter we wish to understand exactly how important 

each of these features are.

Using the corpora and judgments provided in Chapter 6 we can create optimal ranked 

lists based on these judgments to optimize NDCG scores. By understanding what 

features are in these lists, we can then apply a machine learning technique called 

learning to rank, which will calculate boosting scores for these features, telling us 

how important each feature is.

In this chapter we firstly introduce the notion of learning to rank, and some work that 

has used learning to rank to optimize retrieval models, we then describe how we 

performed learning to rank on our data and the scores we received for the features.

1 2  Learning to rank

There are many ways of ranking documents in Information retrieval such as cosine 

similarity (Manning, Raghavan, & Schiitze, 2008), TF-IDF (Manning, Raghavan, & 

Schiitze, 2008)(an example of this is given in Chapter 6), proximity (Manning, 

Raghavan, & Schiitze, 2008), pivoted document length normalization (Manning, 

Raghavan, & Schiitze, 2008) and pagerank (Brin & Page, 1998) to name a few ways.

There are also many ways in which we can classify documents using supervised 

machine learning classifiers such as naive Bayes (Murphy, 2012), kNN (Murphy, 

2012) and SVMs (Murphy, 2012) (Manning, Raghavan, & Schiitze, 2008).

Learning to rank is a way of utilizing machine learning to rank documents displayed 

in search results. It is also referred to as machine-learned ranking or machine-learned 

relevance.
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Many major search engines already employ learning to rank, to rank their search 

results. Amit Singhal admitted Google employed over 200 features to calculate how 

relevant a document was and where it was to be placed in a search engine results 

page. (Hansel1,2007)

Learning to Rank has been used in Twitter specific retrieval research. It was used by 

McCreadie and Macdonald who looked at increasing relevance in microblogs search 

by looking at the content of links in tweets. (McCreadie & MacDonald, 2013). 

Naveed et al also used a generalized linear regression learning to rank model to give 

weights to features they had identified (Naveed, Gottron, Kunegis, & Alhadi, 2011).

Learning to rank is usually performed by supervised, semi-supervised or 

reinforcement learning. In our case we will be using a supervised approach, with 

training data consisting of data gathered in the previous chapter. Typically binary or 

ordinal scoring is used in training data to show how relevant each item is for a given 

query. (Manning, Raghavan, & Schiitze, 2008) In our case we will be using an ordinal 

score on a sale of 1 to 4 as setout in the previous chapter.

The purpose of learning to rank is to find a function that produces a permutation of 

items, which is similar to the ranking of the training data. By doing this we can find 

which features are more important or less important to finding what makes a tweet 

useful or not useful. This will allow us to perform ‘boosting’ (Manning, Raghavan, & 

Schiitze, 2008) of results to display the most useful tweets at the top of a search 

results page.

7 3  Learning to Rank Useful Tweets

We have taken the approach of a supervised learning approach to learning to rank. 

This involves us generating a training set of data. By using the data generated in 

chapter 6, we can obtain a preferential ordering for tweets given certain queries by 

ordering to maximize NDCG. We utilize the usefulness scores in chapter 6, as a way 

of ordering documents. We have averaged the usefulness scores between judges to 

produce a target value, of where we would like documents to appear in a search 

engine results page. Several documents may share the same value target.
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Each document is put through our search system whereby each document has its 

features extracted based on the codes described in chapters 3 and 5.

After each document has been given a target value for each of the queries where it 

appeared in a search engine results page, and each document has its features extracted 

this data in collated and synthesized into a training file.

The file takes the form of  that SV M rank uses (Thorsten, 2006).An example is given 

below

<line> <target> qid:<qid> <feature>:<value> <feature>:<value>...
<feature>:<value> # <info>

where each o f  the inputs are of the following values

<target> .=. <float>
<qid> .=. <positive integer>
<feature> <positive integer>
<value> .=. <float>
<info> .=. <string>

An example input file can be seen below

3 q i d : 1 1 1 2 : 1 3 0 4 : 0 . 2 5 : 0 # 1A

2 q i d : 1 1 0 2 : 0 3 1 4 : 0 . 1 5 : 1 # IB

1 q i d : 1 1 0 2 : 1 3 0 4 : 0 . 4 5 : 0 # 1C

1 q i d : 1 1 0 2 : 0 3 1 4 : 0 . 3 5 : 0 # ID

1 q i d : 2 1 0 2 : 0 3 1 4 : 0 . 2 5 : 0 # 2A

2 q i d : 2 1 1 2 : 0 3 1 4 : 0 . 4 5 : 0 # 2B

1 q i d : 2 1 0 2 : 0 3 1 4 : 0 . 1 5 : 0 # 2C

1 q i d : 2 1 0 2 : 0 3 1 4 : 0 . 2 5 : 0 # 2D

2 q i d : 3 1 0 2 : 0 3 1 4 : 0 . 1 5 :1 # 3A

3 q i d : 3 1 1 2 : 1 3 0 4 : 0 . 3 5 : 0 # 3B

4 q i d : 3 1 1 2 : 0 3 0 4 : 0 . 4 5 : 1 # 3C

1 q i d : 3 1 0 2 : 1 3 1 4 : 0 . 5 5 : 0 # 3D

Where 1A is greater than 1B, 1A is grater than l c ,a n d  IB is greater than 1C and so 

on so forth.
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1 direct recommendation -0.92958492

2 Language score -0.13046047

3 lexical quality -0.13046047

4 link actionable links -0.050322037

5 link dead links -1.1377115

6 link media links *

7 link trusted links 0.37946385

8 link untrusted links *

9 link useful links -0.68356311

10 part o f  conversaion *

11 Personal experience -0.99849784

12 Question and answer 0.08155752

13 Retweets *

14 sentiment fisher 0.47088608

15 sentiment naive bayes -0.4607574

16 Specific information 

presence of nouns

-0.77061963

17 Specific information 

presence of price

0.24662203

18 Specific information 

presence of time

0.16819793

19 SPAM  wang *

Table 7.1 Showing boosting scores to be applied based on linear kernel function of 

SVM  learning to rank. * denotes that due no instances were detected in the dataset 

and all values were set to 0 in the corpus.

We then run the data through a learning to rank algorithm that provided us with 

boosting scores. Although there are many variants of learning to rank algorithms we 

have chosen to adopt a linear learning function, as provided by the SV M rank tool 

(Thorsten, 2006)
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By running the data through the learning to rank program we are given an output that 

computes feature gains. Feature gains give us hints to how much useful the features 

used in the training set are. This enables to boost features based on these scores, thus 

enabling us to re-rank the data returned from the default elasticsearch output.

7.4 Learned Weightings

In this section we present the learned feature gains for our codes described in 

Chapters 3 and 5. This is based on the 19 features, 392, rankings and 2565 results 

utilizing corpus 1 (215802). We used the default linear classifier provided by SVMrank, 

with a linear kernel function are shown in table 7.1

7.5 Analysis of Weights

As we can see from table 7.1 there appears to be a lack of some of the codes in the 

test corpus, or that the programs detected a score of 0 for all instances, these are 

denoted by asterisks in table 7.1.

Perhaps unsurprisingly dead links is the feature with the biggest boost .This shows 

that links that are working are possibly the biggest useful feature in tweets being 

deemed as useful. Personal experience and direct recommendation are the biggest 

boosts to follow, however boost in the opposite direction as expected based on the 

work carried out in Chapter 3.

Perhaps some of the most interesting boosts are that of the specific information and 

useful links. It is of no surprise that presence of price and a mention of time is 

considered to be more useful, however if a proper noun is detected that tweet is to 

then be boosted negatively. This could perhaps be put down to the POS tagger 

incorrectly tagging words as proper nouns when in fact they are not.

As for useful links being less useful it maybe down to links not being able to be 

scraped so then a poor lexical score is given, thus affecting the useful link score.
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Not all boosts were as one might expect based on work in Chapter 3. However, this 

may also be down to the low agreement scores between judges in Chapter 6, causing 

erratic boosting.

7.6 Weights learnt from other Datasets

Due to some of the unexpected results found from running SVMrank over the 215802 

(802 -  this is a shortened name using the last 3 characters of the corpus id) corpus. 

We decided to run the SVMrank over all of the corpuses we had collected during the 

crowdsourcing stages of this work. We ran S V M ^  four times in total.

We present the results of this process in the Table 7.2 (including the results from the 

802 corpus).
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Larger Sm aller Smaller Larger

Non Binary Binary

Best Alpha for 

non binary 

judgm ents

Best overall alpha

direct

recommendation

-0 .92958492 * * -0 .029490978

Language score -0 .13046047 -0 .057084251 -0 .12709083 -0 .0061487784

lexical quality -0 .13046047 -0 .057084251 -0.12709083 -0 .0061487784

actionable links -0 .050322037 -0 .2949864 -0 .37272727 -0.18888389

link dead links -1 .1377115 0 .006418766 0 .13097546 -0 .54472011

link media links * * * *

link trusted links 0 .37946385 0 .031602722 0.26761159 0.14894152

link untrusted links * * * *

link useful links -0 .68356311 -0 .086665802 -0.26475281 -0.14595798

part o f  conversation * * * *

Personal experience -0 .99849784 * * -0 .032967035

Question and answer 0 .08155752 0 .72931153 0 .4982377 0.47662315

Retweets * * * *

sentiment fisher 0 .47088608 -0 .12611616 -0 .020621078 0 .074158199

sentiment naive 

bayes

-0 .4607574 -0 .31410402 -0.16607563 0.057382833

SI presence o f nouns -0 .77061963 0.028215462 0 .27272728 0.46349153

SI presence o f price 0 .24662203 -0 .19917543 0 .25409713 0.28403515

SI presence o f time 0.16819793 -0 .21735726 0.29046082 0.011222886

SPAM  wang * * * *

Table 7.2 Showing boosting scores for all for corpuses generated.

From looking at the results in table 7.2 we can instantly see that the size of the corpus 

has some effect on the boosting scores. W e can see that direction recommendation 

and personal experience codes are not assigned scores for corpuses 484 and 186. This 

is due there being no instances of these codes within these corpuses. So the classifier 

is unaware of them.
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This is not purely due to the size of the corpus, but is down to the amount of coverage 

of codes (i.e how many times do they appear in the corpus). Ideally we would like to 

as even coverage of all codes as possible, with as many instances as possible, to help 

train a good model. Alonso et al discussed corpuses sizes and the issues surrounding 

corpuses size and coverage, when it comes to judgment tasks. (Alonso, Marshall, & 

Najork, 2013)

Like many of the codes we extracted we see opposite scores to the ones we thought 

we would have seen based on our findings in Chapter 3. One examples of this is direct 

recommendations, this was a positive code in chapter 3. However, when when using 

SVMrank, we are presented with a negative boosting.

Boosting such as that described in the pervious paragraph could be due to a number of 

reasons. Initially it could be due to poor detection of the code itself, if we think of this 

as a classification task, we may aim for precision when detection codes, over recall 

depending on what kind of code we are searching for. Thus we actually under or over 

sample on the code we are targeting.

Alternately it could be due to the kernel function utilized in the classifier. SVMrank 

utilizes a linear classifier. We are using a high dimensional space onto which the 

classifier must find an optimal hyper plane. Due to this kernel being a hyper plane, 

and not a more complex kernel function, we may be under fitting our model, thus 

giving us non representative outcomes.

In chapter 3 we noticed that combinations of codes, provided either positive or 

negative reasons as to why tweets were deemed useful. In chapter 3, we provided a 

brief analysis as to some of the combinations which made tweets either useful or not 

useful. In terms of the classification we created scores for individual codes, however, 

we did not provide scores for combined codes. E.g. personal experience and direct 

recommendation. Perhaps from taking this naive approach we missed important 

combinations of codes.
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As previously mentioned we know that corpus bias can effect the outcome of 

performing learning to rank. We can see from table 7.2 that when a code is not 

present in a corpus it will not have a score associated with it, as the machine can not 

make a judgment based on something which is not explicitly represented in the 

corpus. As well having 0 instances of a code, having a small dataset may hamper the 

boosting scores, as there are not enough samples to create a generalized model for all 

tweets. This is true of all supervised learning approaches.

Work by Alonso (Alonso, Marshall, & Najork, 2013) found as we add more judges to 

a task we increase the coverage of the topic we are trying to understand by adding 

more perspective (in their case interestingness), but in doing so we are also decreasing 

consistency. Ultimately Alonso recommends using a small number of very experience 

judges rather than a large number of diverse judges.

We had three judges, judge each data point. However, these judges were not expert 

judges, and we did not have three judges in total, judging the datasets. Each dataset 

had a large number of judges, each judge was contributed to a small proportion of 

each set, allowing for a decrease in consistency and increase in variability. Perhaps 

due to the variability we see different scoring.

When looking at the scores obtained for Questions and Answering we find that this it 

he most highly boosted score across three of the four datasets, indicating that there 

may be some consistency between judges for singular codes in terms of what makes a 

tweet useful. We also find that dead links has the lowest boosting score for both of the 

larger datasets, meaning unsurprisingly that tweets with links that are alive are a 

positive trait.

In terms of specific information, we see that in all but two cases (corpus 484), specific 

information is considered to be a positive boost. When looking at this, further, we 

notice that price is considered to be a negative, for this corpus, this could be due to the 

fact a lot of the tweets in the corpus especially to do with the task concerning finding 

specific information may be labeled as not useful. This could be due to there being a 

lot of “spammy” messages along the lines of “good news ipads are now only £100”,

125



and thus may be labelled towards the not useful side of the scale, which in turn could 

mean that the classifier learnt whenever a price was detected, it leamt that this tweet 

is not useful / spam because price is being attributed to spam tweets.

We see that for both of the smaller corpuses, sentiment play a negative effect on a 

tweet considered to be either useful. Based on our coding in Chapter 5. Tweets with a 

negative sentiment are given the score of -1, and tweets with a positive score are 

given a score of 1. For the smaller datasets, we see that boosting is a negative floating 

point number, meaning this will reverse the value of the sentiment. Thus meaning that 

negative sentiment is positive, and positive sentiment is negative. Again similar to the 

specific information, we may find that spammy tweets overly utilize positive 

sentiment. Otte et al. (Ott, Cardie, & Hancock, 2013) have observed how sentiment 

richness has been able to be an indicator of spam. We believe this is the underlying 

cause of this scoring.

The lexical quality of a tweet consistently had very little influence on how well a 

tweet was deemed useful or not. This is perhaps dues to the nature of the medium, 

where people expect the language not to be perfect, and due to the constraints accept 

some errors. Rello and Baeza-Yates commented on how well lexical quality was over 

the twitter dataset compared to other online social networks. (Rello & Baeza-Yates, 

2012)

Links had a very interesting story to tell when it came to weightings. If a tweet 

contained a trusted link this seemed to be a consistently good indicator of a tweet 

being useful. However, actionable links some had a negative effect, this may be due 

to the content of actionable links, where originally we saw an actionable link as an 

online store, or tool, we may find that actionable links are actually asking for details, 

and users just want to fulfill an informational or transactional need as quickly as 

possible. So have more forms on a page is seen as a negative trait. Whilst this code 

had a small boosting effect in corpus 802, for the remaining corpuses it had a more 

significant boosting. Being the most negatively boosted code for corpus 186.
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We also looked at a link’s usefulness, this was looking to see if a link was an 

authoritative source, we inferred that authoritative sources had a high lexical quality 

as discussed in chapter 5. A score of 1 mean a link’s lexical quality was perfect 0 

meant it was just jibberish or the link was dead. We find consistently across the 

boosting scores in table 7.2 That a links “usefulness” was to be deemed a negative 

indicator of usefulness. After apply SVM, we went back and tested the coding for this 

code, and found that keywords such as iPhone iPad and Coachella were not detected 

as words correctly spelt, and due to the tasks being concerned with the above 

keywords, we believe that expanding our dictionary to taken in terms such as those 

relevant to the task could have played a small part in improving this. This code 

suggestests that imperfectly written content or content containing unique terms, 

maybe more useful than higher lexical quality content. This may be due to the nature 

of the content e.g. reviews, opinions etc. However, we come onto a very important 

point in the next paragraph.

Unfortunately, one thing we were not able to track was if judges actually clicked on 

the links when judging tweets. We don’t know if they knew what lay behind the links 

they were presented with, meaning some of the weightings to do with links may be 

biased to how people interpreted the links that were shown to them, rather than the 

content behind the link.

7.7 Summary

In this Chapter we give a brief overview of how learning to rank has been applied to 

other twitter retrieval models. We also introduce how we have performed learning to 

rank, and have presented the results of a linear learning model applied to the features 

we extracted in Chapter 5. We discussed some of the interesting boosting values 

shown in Table 7.1

In this following Chapter we conclude this thesis giving an overview of how we have 

attempted to achieve our research contributions and give a brief overview of the work 

covered in this thesis.

127



Chapter 8: Conclusions

8.1 Introduction

In this section we conclude the work this thesis covers. Firstly we revisit the research 

contributions we aimed to fulfill in Chapter 1. We then discuss how well we achieved 

at fulfilling these research objectives. We then discuss the limitations, commenting on 

limitations we had and how the work may be limited in representing the population as 

a whole. In the limitation and discussion s section we also discuss how changing our 

approach could have benefited our analysis. At the end of this chapter we discuss 

future work that could be conducted to further knowledge in areas relevant to this 

research.

8.2 Research Contributions Revisited

In Chapter 1 we set out four research contributions we wished to achieve.

• To understand what factors make a tweet useful to people performing searches 

of microblogging data

• Develop a robust framework for indexing and retrieving large amounts of 

microblogging data in a timely fashion

• Create a test corpus to allow us to compare our system against others

• To produce a system whereby we can index large datasets, and retrieve data in 

a timely fashion, and automatically whether a tweet is to be deemed useful or 

not for a given query

The first objective we had was to gain an understanding of what factors make a tweet 

useful to people performing searches on microblogging data. We addressed this using 

a qualitative and quantitative approach in chapter 3. Through this approach we found 

reasons as to why a tweet may be deemed either useful or not useful to someone 

searching a Twitter corpus based on the three common search tasks performed on 

microblogging data.

By exploring and utilizing the architectures described in chapter 4, when then tried to 

programmatically identify features in chapter 5 based on the work carried out in

128



chapter 3. From there we wished to evaluated how important each of the 

programmatically programmed features were in chapter 7, based on a test several 

corpuses we had created in chapter 6.

Whilst we identified a list of reasons as to why tweets may be deemed useful or not in 

chapter 3, there seemed to be some conflicting evidence in chapter 7, as to what made 

tweets either useful or not useful to someone performing search over a microblogging 

corpus.

This may be due to a mixture of the subjective nature of the person providing 

judgments when creating our crowd sourced corpuses, the method utilized when 

gathering content for corpuses, and the way in which codes were programmatically 

extracted. We discuss this in greater detail later in this chapter.

The second research objective was to build a scalable robust framework which would 

allow indexing and retrieving of search results in a manner that was appropriate for 

users using the system. This was demonstrated in the work described in chapter 4.

We have presented a batch indexing system. At the time of research and development 

there were no systems mature enough which we could utilize to perform near real­

time indexing of large social streams of data. Whilst this would be favorable 

unfortunately this was unfeasible at the time. Since the development of this system, 

technologies such Storm1 and Flink2 have come about allowing for this type of near­

time real time computation to occur.

We have described a method in chapter 6, that describes a test collection which allows 

researchers to perform microblog search performance against our system but also 

against Twitter’s search engine based on the results we originally gathered.

1 https://storm.apache.org/

2 https://flink.apache.org
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As mentioned in chapter 1 we are seeing more and more interest in social media, it is 

becoming more and more prevalent and part of our everyday lives. Research 

surrounding online and mobile social networks is continuing the increase. We are 

generating more and more content every day and a large amount is being generated by 

social networks. The ability to index and surface valuable content to users is a form 

which is easily digestible is a very hard and interesting problem. We have attempted 

to answer this question in this thesis.

Whilst performing this work we have seen changes in behavior of how people have 

utilize social networks as well as seeing new social networks appear and disappear. 

We are collecting more data now than ever, and a lot of the time it is richer data. 

Telling us where, where and what something is about, as well as some kind of 

content. We can see this even with Twitter by looking at Raffi Krikorian’s white 

paper on what meta data a tweet contained in 2010 (Krikorian, 2010) to what the 

payload looks like now (Twitter Inc.).

Utilizing the is rich data, we only hope to see search across web, mobile, internal 

product search to improve. Delivering more relevant / useful / interesting / fun content 

to the user. We are seeing massive jumps in terms of advancement with new machine 

learning techniques such as deep neural networks to help build better learning models, 

and to better help understand data. We hope this work can contribute to building 

better mechanisms for search and go on to help people find useful results quicker, and 

easier. Even if this work helps to define features as to what makes tweets useful or 

not.

8 3  Limitations & Discussion

There have been limitations as to what we could achieve with this work. The research 

that we conducted used a lot of resources, not only in terms of computing power, but 

also in terms of monetary expense.

Ideally we would have like to have gathered more judgments per datapoint. We would 

have liked to have attempted this in the hope that this may have reduced the amount 

of variation between judges and increased the alpha score when creating the corpuses
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in Chapter 6. Although, by adding more judgments we may in fact actually increase 

variation between judges, allowing us enforce the point that usefulness is a very 

subjective matter, and varies with the judges’ own interests and proclivities.

As well as increasing the amount of judgments per data point. It would also be useful 

to have obtained more datapoints. As the corpus increased in size (see table 7.2), we 

started to see codes being activated, as well as codes generalizing.

We believe that due to the content which may have been collected in the specific 

information task, it may have caused several codes to have “flipped” due to the 

content surrounding these tweet+query pairs. On further manual inspection a majority 

of these tweets seemed to be spammy in content. They did however, correctly detect 

other codes.

Further more, this leads us to believe we need a better way of detecting spam based 

on a tweets content, not in terms of duplication, but it terms of trustworthiness or 

motivation behind the message. E.g. unsolicited messaging or advertising fake / scam 

deals. Rather than just looking at the network structure or elements such as links, 

hashtags, mentions contained within an tweet.

As well as increasing the amount of judgments made upon each data point, we believe 

it would have been useful to have run the experiment in a similar way to Alonso’s 

work. (Alonso, Marshall, & Najork, 2013) Allowing for two types of judges, both a 

mix of expert judges and crowd sourced workers, with the exception of allowing non 

twitter users the chance to become a judge. We feel that having users who are not 

necessarily knowledgeable about Twitter but who could come into contact with 

Twitter based content is an important design decision.

One of the problems faced whilst undertaking this work and was also faced by 

(Alonso, Marshall, & Najork, 2013) was that of low agreement based on the 

Krippendorff alpha scores we retrieved.
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We tried modifying the rating schema, and looking for users who were ‘gaming’ the 

results, and found to no avail, that judges were unable to agree for a random 

tweet+question its usefulness (depending on the scale used).

Like Alonso we also found that a binary judgments provided us with the highest 

scoring alpha (0.132), though was not sufficient enough to warrant real appraisal. We 

tried modifying the scales (using different groupings) used within the mutli-level 

judgment corpus to see if we could elicit a higher alpha score. Which ultimately led to 

us attempting the binary scale of either useful or not useful.

However, having said this one of the biggest limitations of this work is how 

applicable it is to the population as a whole. We have been working with subsets of 

data throughout this thesis. Unless you are retrieving the firehose stream, you don’t 

really know how much of the actually twitter feed you are receiving, making it hard to 

estimate how representative your sample is. Only a few companies have access to this 

data resource, and from the statistics based on tweets per day, we would not be able to 

handle storing and processing that amount of data in the current lab environment we 

work in.

Twitter is a multilingual, multicultural, and a global network. Through out this thesis 

we have concentrated on English language content and US and UK centric events. It 

is hard to say if the findings in this work will translate over to other cultures, 

languages or communities with in the twitter network.

Whilst this work has been set in the context of Twitter, we have seen strong relations 

to work carried out in the field of information retrieval as a whole. Work described by 

Barry and Schamber (Barry & Schamber, 1998), bore striking similarities to work we 

carried out in Chapter 3, even though both Barry and Schamber were looking at 

relevance. However, we did notice some subtle differences, though this was most task 

specific. This is not to be seen in a negative light, but it helps us work towards a 

better understanding of how we help improve the user’s experience, by surfacing 

relevant and useful information to the user. Finding these similarities helps to further 

define how we can best surface information to a user.
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As well as seeing similarities to Barry and Schamber’s work, Spink et al. (Spink, 

Greisdorf, & Bateman, 1998) state “The measures of usefulness,... and satisfaction 

measure other important factors that users may employ in making relevance 

judgments and are sometimes used in research as an alternative way to define and 

measure relevance”, this may explain why we may have seen such similarities 

between our work and others.

SA Future work

As part of this work we have made several contributions in an attempt to understand 

what makes tweets useful to users performing search over microblogging data.

We have seen that the results can in some cases be conflicting and very subjective. 

Further work building looking at how variations of judges, corpus size and corpus 

content would be beneficial to this, helping to confirm or either deny the results we 

have found.

As well as either confirming or denying our findings. To more thoroughly understand 

behavior to do with people finding information useful, we could attempt to profile 

users, in an attempt to see if certain types/classes of users find certain types of 

information or traits found within a tweet useful. If this is found to be true, taking a 

multi model approach and building a recommendation engine could be beneficial to 

the user.

We believe that the major motivation behind future work should be to try and 

discover the reasons as to why our Krippendorff’s alpha score is so low, and to try 

and iterate on ways to increase this alpha score, till we obtain a moderate agreement. 

This could be done by taking inspiration from Alonso’s work. (Alonso, Marshall, & 

Najork, 2013)

In chapter 7 we performed learning to rank utilizing a SVM with a linear kernel. It 

would be of interest to see if other kernels (for SVMs) and other learning to rank 

algorithms could be applied to reduce error rate, though being aware of not over 

fitting this model.
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This leads on to something we did not cover at the end of this work, human testing of 

the search engine. We started with a very humanistic approach at the start of this 

thesis, looking at how humans classify tweets as either being useful or not useful for a 

search task, we then started to build technology to automatically extract these 

features, from there we utilized humans again as judges, in the hope of building 

ranked datasets. Once we had these ideally ranked datasets, we then again turned to 

technology to quantify weights for these factors. However now we have obtained 

these weights we have not actually seen if they provide better results from a human 

perspective.

It would be very interesting to compare whether the weights we found provide better 

results to that of another search engine, which does not use these weights. There is 

however a problem, we do not have entire history of tweets, nor could we conceivably 

collect and process this amount of data. So this evaluation would have to be restricted 

to a closed dataset. This could simply be run as several A/B test to compare which 

system provides better results from a purely human point of view. We suggest having 

both a mix of non-expert and expert assessors, as we believe that non-expert users 

will likely use the system and therefore be interested in the results.

Near real time processing frameworks have come along way since starting this work, 

with no near-real-time big data processing frameworks available at the start of this 

project we now have several to choose from. From both an engineering perspective 

and user experience it would be very interesting to have near-real time solution to this 

problem. However, from a purely engineering perspective this is a very hard and 

complex task. From a user perspective it allows us to deliver up-to-date temporally 

relevant content which is one of our codes found in chapter 7 and was also seen as a 

reason for relevancy between Barry and Schamber. (Barry & Schamber, 1998)
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Appendix A

List of Queries to Build Test Copora 

Study Plan for Crowd Sourcing Study 

Ethics Approval Document 

Research Consent Form
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List of Queries Used to Generate

#Mini

buy iPad Mini 

cost of iPad Mini 

#iPad Mini 

#iPad

London cheap restaurant 

eating in London 

Restaurants in London 

"good food London"

London cafes

London cheap eating

Restaurants in London%2C London

eat lunch in London

#London restaurant reviews

cafe London

London restaurants

best London restaurants

London eating out

eating out in London

London lunch

good restaurant in London

#London restaurants

London restaurant

great lunch London

Corpora in Chapter 6.

dinner in London 

London cafe 

London food 

cafes in London 

London

#foodie London 

#London London 

coachella programme 

coachella & Hotels 

coachella review 

coachella California 

coachella events 

coachella tickets 

coachella tickets book 

coachella reviews 

coachella schedule 

coachella June 

coachella location 

tickets coachella 

price of coachella 

coachella 

#coachella

coachella who is going 

coachella so far
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Study Plan

Research Project Title

Advance Information Retrieval: Matching the Perspectives of User & 

Document Profiles for Effective Retrieval.

Researcher 

Mr. J. Hurlock

Objective of Study

The study wishes to gather a large amount of data regarding weights for ranking on a 

search engine. The weightings relate to certain criteria based on the following paper 

‘Searching Twitter: Separating the Tweet from the Chaff.’ By Hurlock & Wilson.

We do this by, firstly performing searches at timed intervals, and retrieving the 

results, then asking participants to rate individual results for the given query on a 

scale, which then allows us to calculate DCG (Discounted Cumulative Gain), which 

will allow us to add weighted measures to each of the criteria we found in our initial 

study.

In the sections below I will describe parts of the study in greater detail.

Participants

We wish to recruit participants via the crowd sourcing platform CrowdFlower. 

CrowdFlower is the world's leading crowdsourcing service, with over 800 million 

tasks submitted by over four million contributors. They specialize in microtasking: 

distributing small, discrete tasks to many online contributors, assembly-line fashion - 

for instance, using people to check hundreds of thousands of photos every day for 

obscene content.

The number of participants we wish to use is based on the data we gather. However, 

for each query and each result we need a minimum of three participants to acquire a 

meaningful DCG score.
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Participants will be compensated based on the number judgments they complete and 

amount of data gathered by the initial data collector. The exact amount will be 

calculated once all data is collected. However we will be basing the payment rated 

based on works by Ducan Watts and Winter Mason (see ‘Financial incentives and the 

“performance of crowds’” ACM SIGKDD) Though other authors have looked at the 

financial incentives (Horton, John Joseph, and Lydia B. Chilton. "The labor 

economics of paid crowdsourcing." Proceedings of the 11th ACM conference on 

Electronic commerce. ACM, 2010., Paolacci, Gabriele, Jesse Chandler, and 

Panagiotis Ipeirotis. "Running experiments on amazon mechanical turk." Judgment 

and Decision Making 5.5 (2010): 411-419., Buhrmester, Michael, Tracy Kwang, and 

Samuel D. Gosling. "Amazon's Mechanical Turk A New Source of Inexpensive, Yet 

High-Quality, Data?." Perspectives on Psychological Science 6.1 (2011): 3-5.)

CrowdFlower also allows for gold standards to be put into the data, to check that 

participants are not bots. Participants will be scored for accuracy. If they fail these 

gold standard test, then they will be considered a bot and will not receive any 

compensation. More information about gold data can be found at 

http://crowdflower.com/docs/gold

Data

There are two types of data involved with this study firstly the query data, and then 

the returned data. We wish to query the Twitter search engine for 24 hours at each 

hour, for a set of queries. This will then return a list of results. In the sections below I 

will describe the data in more detail.

Query Data

Just as you type query data into search engines such as Google, you can do the same 

in Twitter’s search engine. The query data we are using are slightly modified queries 

based on three information retrieval tasks found in our initial study, one in a location 

based query, one is a temporal based query and the other is an information specific 

query. For instance in the first study we asked people to find somewhere to eat lunch 

in London, we asked people to find information about the BBC proms (temporal), and 

finally we asked them imagine they wanted to buy a new iPhone and to find 

information about it.
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The queries that will be submitted to the search engine will be based on a query log 

submitted in our first study, modified so that the event (BBC Proms) and device 

(iPhone) will be more relevant to today.

Returned Data

When the queries are submitted to the search engine, results are returned, in the form 

of tweets. These will be used with the query string and a time stamp to ask the user 

for a rating of usefulness.

As this data is from a public data source, there may be offensive content in the tweet 

itself and/or the links contained in the tweets. Participants may find offensive (e.g. 

swear words) We wil attempt to remove all such material however, there is a very 

small likelihood of someone still being offended. To further mitigate this participants 

are warned of this at the top of the page and are told they may be offended by the 

content in the tweet, or any external website the tweet links to. They are explicitly 

told they may leave the study at any time.

Example Interface & Instructions for Participants

An example of instructions, consent form, participants rights, as well as the interface 

presented to the participants can be found at the following URL:

Long U R L:

https://tasks.crowdflower.com/remix/assignments/editor_preview/175373 

Short URL: http://bit.lv/Yh5NBv

Screenshots of the user agreement process is shown on the following pages, as well as 

the interface. If the user does not consent or agree to either the participant rights or the 

consent form, then the can press the I wish to exit the study button, which will 

redirect them to Google.com
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E ditor Preview  o f  T ask  — T ask s by  C row dFlow er

-f  0  usks.crow df1ow er.com

Participants Rights
The following is a list of your rights if you participate in a research project 
organised within the Department of Computer Science at Swansea University.

As a research participant, you have the right:

To be treated with respect and dgnity in every phase of the research 
To be fully and clearly Informed of all aspects of the research prior to becoming 
involved in It
To enter into clear, informed, and written agreement with the researcher prior 
to becoming involved in the activity. You should sense NO pressure, explicit or 
otherwise, to sign this contract.
To choose explicitly whether or not you will become involved in the research 
under the clearty stated provision that refusal to participate or the choice to 
withdraw during the activity can be made at any time without penalty to you 
To be treated with honesty, integrity, openness, and straightforwardness in all 
phases of the research, including a guarantee that you will not unknowingly be 
deceived during the course of the research 
To receive something In return for your time and energy.
To demand proof that an independent and competent ethical review of human 
rights and protections associated with the research has been successfully 
completed

I wish to exit the study I understand my rights and wish to continue

Screen shot showing participants rights form, which appears when page is loaded.

E ditor Preview of T ask  — T asks by CrowdFlower

©  i  +  H  tasks.crowdf1ower.com; rem lx/assl0nm ents/editor_preview/17S

Participant Consent Form

This consent statement is part of the process of informed consent It should 
give you the basic idea of what the research is about and what your 
participation will involve. If you would like more detail about something 
mentioned here, or information not included here, please ask. Please take the 
time to read this section carefully and  to understand any accompanying 
information.

Research Project Title

Advance Information Retrieval: Matching the Perspectives of User & Document 
Profiles for Effective Retrieval

Mr. J. Hurlock M.Sc. B.Sc.(Hons) 

Experiment Purpose

The purpose of this experiment is to investigate ranking metrics for a search 
engine, thus allowing us to rank certain results more highly based on their 
content and their usefulness for a given task. We will achieve this bv asking

I agree and wish to continueI wish to exit the study
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Screen shot showing participants consent form, which appears once the user agrees to 

participants rights form.

0 0  o
1 5  . ► , ©

Editor Preview  o f  T ask  — T ask s  by  C row dFlow er

■  tasks.crowdf1ower.com a
Measuring Tweets for Usefulness

Participant Instructions
Thank you for ag reeing  to  tak e  part In th is study.

The purpose of this experiment is to investigate ranking metrics for a search engine, thus allowing us to rank certain results more
highly based on their content and their usefulness for a given task. We will achieve this by asking participants to rate queries and
results paired with the given query.

Below you will be presented with multiple query and result tasks. Each tasks asks you to rate each tweet in terms of usefulness for 
the given query. As well a s  the query and tweet, you will also be able to see a time stamp, which indicates at what time the search 
was performed. Participants are asked to rate as many query and result pairs as they feel comfortable with.

You will be asked to rate a tweet for a given query, on a scale of 1 to  4.
1 indicating tha t the tweet is not useful for the given query, and 4  for the tweet being useful.

This response could warrant a 4. as the tweet answers the question.

Most queries will be to do with the following:

1. Finding somewhere to eat lunch In London
2. Information regarding the possible purchase of an IPad Mini
3. Information regarding the Glastonbury Musical Festival

How useful Is the following tweet for this search? 

Search:“Where to eat lunch in London"

Searched at 17:00PM on the 14th January 2013

■ LakiaFRocasahfn
® LavonD487

x.co/rpqF #raw she is seriouslly funny
Tue Jon 08 12 5725 .0000 2013

Please select the Level of Usefulness:
o i  Not Useful 0  2  0 3 0  4 -  Useful

How useful is the following tweet for this search? 

Search:“Where to eat lunch in London"

A page showing the instructions and one of the tasks
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Swansea University -  Computer Science Department

Research Participant’s Bill of Rights

The following is a list of your rights if you participate in a research project organised

within the Department of Computer Science at Swansea University.

As a research participant, you have the right:

• To be treated with respect and dignity in every phase of the research.

• To be fully and clearly informed of all aspects of the research prior to becoming

involved in it.

• To enter into clear, informed, and written agreement with the researcher prior to 

becoming involved in the activity. You should sense NO pressure, explicit or 

otherwise, to sign this contract.

• To choose explicitly whether or not you will become involved in the research under 

the clearly stated provision that refusal to participate or the choice to withdraw 

during the activity can be made at any time without penalty to you.

• To be treated with honesty, integrity, openness, and straightforwardness in all 

phases of the research, including a guarantee that you will not unknowingly be 

deceived during the course of the research.

• To receive something in return for your time and energy.

• To demand proof that an independent and competent ethical review of human

rights and protections associated with the research has been successfully 

completed.

• To demand complete personal confidentiality and privacy in any reports of the 

research unless you have explicitly negotiated otherwise.

• To expect that your personal welfare is protected and promoted in all phases of the 

research, including knowing that no harm will come to you.
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• To be informed of the results of the research study in a language you understand.

• To be offered a range of research studies or experiences from which to select, if 

the research is part of fulfilling your educational or employment goals.

The contents of this bill were prepared by the University of Calgary who examined all 

of the relevant Ethical Standards from the Canadian Psychological Association’s Code 

of Ethics for Psychologists, 1991 and rewrote these to be of relevance to research 

participants.

Descriptions of the CPA Ethical Code and the CPA Ethical Standards relevant to each 

of these rights are available at http://ww w .cpa.ca/ethics2000.html and 

http://www.psvch.ucalgarv.ca/Research/ethics/bill/billcode.html if you would like to 

examine them.

The complete CPA Ethical Code can be found in Canadian Psychological Association 

“Companion manual for the Canadian Code o f Ethics for Psychologists” (1992).
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Swansea University -  Computer Science Department

Research Consent Form

This consent statement is part o f the process o f informed consent. It should 

give you the basic idea o f what the research is about and what your 

participation will involve. I f  you would like more detail about something 

mentioned here, or information not included here, please ask. Please take 

the time to read this section carefully and to understand any accompanying 

information.

Research Project Title

Advance information Retrieval: Matching the Perspectives of User & 

Docum ent Profiles for Effective Retrieval.

Researcher 

Mr. J. Hurlock 

Experiment Purpose

The purpose of this experiment is to investigate ranking metrics for a search engine, 

thus allowing us to rank certain results more highly based on their content and their 

usefulness for a given task. We will achieve this by asking participants to rate queries 

and results paired with the given query.

Participant Recruitment and Selection

Participants are recruited through crowdflower, a crowd sourcing engine. Participants 

will only be compensated for their time if they complete the tasks to a satisfactory level 

(see: http://crowdflower.com/solutions/self-service/faqs)
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Procedure

Below you will be presented with multiple query and result tasks. Each task asks you 

to rate each tweet in terms of usefulness for the given query. As well as the query and 

tweet, you will also be able to see a time stamp, which indicates at what time the search 

was performed. All links on the tweets are ‘live’ and can be clicked by participants. 

Participants are asked to rate as many query and result pairs as they feel comfortable 

with.

Data Collection

Crowdflower collects data about each participant regarding their location, time they 

completed task, as well as the service used to access the crowdflower platform. Most 

importantly crowdflower collects data regarding the participants actions during the task 

such as which answers were given for each task, as well as a trust metric, to help filter 

out bots and users misusing the service.

Data Archiving/Destruction

Data will be kept securely. The investigator will destroy study data after it is no longer 

of use. Usually, this will be at the end of the research project when results are fully 

reported and disseminated.

Confidentiality

Confidentiality and participant anonymity will be strictly maintained. All information 

gathered will be used for statistical analysis only and no names or other identifying 

characteristics will be stated in the final or any other reports.

Likelihood of Discomfort

We have gathered data from a publically available dataset (Twitter Search API), some 

content in the dataset may be explicit/offensive in nature. While every effort has been 

made to avoid exposing participants to offensive/explicit content, we cannot always 

guarantee that you will not be exposed to such content.

We have attempted to remove and filter out any content or links that may contain 

offensive/explicit content. However, you may find that some of the content from 

external sites/links has changed since we reviewed the content.

In the event you find some of the content offensive or discomforting, you may quit the 

study at any time or alternatively move onto the next task, if you feel comfortable to do
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so. If you want to report any offensive / explicit content to us, you may do so by 

emailing the researcher using the email address found in the next section.

Researcher

Mr. J Hurlock is working on his doctorate in the Computer Science Department at the 

Swansea University. This study will contribute to his research regarding advanced 

information retrieval. His supervisor is Prof Matt Jones.

J Hurlock can be contacted in room 500 Faraday Tower, Swansea University, Singleton 

Park, Swansea, SA2 8PP, United Kingdom. His email address is 

jfdotlHurlockratlswanrdotlacrdotluk

Finding out about Results

Participants can find out the results of the study by contacting the researcher after 

February 1,2014.

Agreement

By taking part in this study you have understood to your satisfaction the information 

regarding participation in the research project and agree to take part as a participant. In 

no way does this waive you legal rights nor release the investigators, sponsors, or 

involved institutions from their legal and professional responsibilities. You are free to 

not answer specific items or questions in interviews or on questionnaires. You are free 

to withdraw from the study at any time without penalty. Your continued participation 

should be as informed as your initial consent, so you should feel free to ask for 

clarification or new information throughout your participation. If you have further 

questions concerning matters related to this research, please contact the researcher.
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To: Matt Jones, Ethics Committee Chair 

From: J Hurlock 

Date: March 12th, 2013 

Re: Request for experiment approval

This memo is a request for approval to perform several experiments involving human 

participants via the crowd sourcing platform crowdflower during the months April this 

year. All the experiments will take place via crowdflower’s crowd sourcing engine 

(http://www.crowdflower.com).

I have read and understood the Swansea CS Ethics Regulations. This application 

includes all relevant information necessary for evaluation against these regulations.

Attached to this memo you will find a Research Participant’s Bill of Rights and a 

Research Consent Form. A copy of the Bill of Rights will be displayed to the 

participant before they engage in the tasks. A copy of the Research Consent Form will 

be also be displayed to the participant before any tasks.

At the beginning of each page instructions at the top of the page will explain these 

documents, with particular reference to the participant’s right to withdraw at any point 

without explanation, the participant will then have a choice to proceed with the study 

or withdraw. The participant is also warned that the content is sourced from a public 

data stream, and that some content may be regarded as offensive, and if they wish to 

with draw from the study at some point they may do so. They are also told that we can 

not be held responsible for any content hosted on external websites found via links in 

the data.

A copy of the participant’s written instructions are also attached to this memo. The 

instructions include an introduction and a brief explanation of the purpose of the 

experiment.

Participants will be asked to solve as many tasks as feel comfortable with. Some tasks 

are included to test the participant’s accuracy, this is to prevent ‘bots’ and ‘random 

clicks’ from gaming the crowdflower engine.
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If you require any further information, I can be found in room 500, or emailed at 

323358@swan.ac.uk

Signed:

Supervisor's signature:

Date: March 2013
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