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Summary

C++ is a general purpose language that supports object-oriented programming as well as 
procedural and generic programming, but unfortunately not functional programming. We 
have developed a parser-translator program that translates simply typed A-term to equiva­
lent C++ statements so as to integrate functional programming. The program parses A-terms 
and translate them into full language of C++. Our intention is to upgrade this to an exten­
sion of the language of C++ by A-types and -terms together with a parser program which 
translates this extended language into native C++. For this purpose we introduce a syntax 
for representing A-types and -terms in C++. We use functional style notation rather than 
overloading existing C++ notation, since we believe that this will improve readability and 
acceptability of our approach among functional programmers.

The translated code generated by the parser-translator program uses the object-oriented ap­
proach of programming that involves the creation of classes for the A-term. By using inher­
itance, we achieve that the translation of a A-abstraction is an element of a function type.

The most important advantage of our thesis is that we give a mathematical proof of the 
correctness of the translation, and to our knowledge the verification of the implementation 
of A-calculus in C++ using a logical relation is new. We introduce a suitable fragment of 
C++ with a precise denotational semantics. We give a formal translation of A-terms into 
this fragment and show that it preserves this semantics. We show as well completeness, i.e. 
essentially all programs in this fragment of C++ can be obtained by translating terms of the 
A-calculus. We develop a mathematical model for the evaluation of programs in this model, 
and show that this evaluation is correct with respect to the denotational semantics.

We hope that our model of a fragment of C++ which includes a formal model of the heap, 
will have applications which go beyond the translation of the typed A-calculus. We expect 
that extensions of this model can be used to verify formally the correctness of more complex 
C++ programs, including programs with side effects. We believe that if our approach is 
extended to cover full C++, we obtain a language in which the worlds of functional and 
object-oriented programming are merged, and that we will see many examples where the 
combination of both language concepts (such as the use of A-terms with side effects), will 
result in interesting new programming techniques.
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Chapter 1

Introduction

Ever since their inception in the 1950’s [BG96], high-level programming languages have 
been a fascinating and productive area of study. Programmers endlessly debate the relative 
merits of their favourite programming languages, and researchers are looking for ways to 
design languages that combine expressive power with simplicity and efficiency. Looking 
at the history of programming languages we can clearly see a divergence of programming 
paradigms (for example, object-oriented, logic, and functional) despite the fact that a ’’uni­
versal” high-level programming language integrating all these paradigms would be highly 
desirable. Therefore, great efforts are being made to fight this divergence by creating such 
an integrated programming language. This thesis is not an exception, in the sense that it in­
tegrates functional programming concepts into the C++ language, with the longterm goal of 
completely merging the functional and object-oriented programming paradigms. Undoubt­
edly, this will result in a wealth of interesting new programming techniques such as lazy 
evaluation in C++ (see Chapter 4, section 4.6).

While the integration of functional and object-oriented programming concepts had been suc­
cessfully attempted before ([SSOO], [FAOO], [Kis98], [Lau95], [MSOO], [Vel95], [JPOO], our 
thesis goes an important step further by giving a mathematical stringent proof of the correct­
ness of the integration, based on mathematical model of a fragment of C++. Our research 
has produced four articles (jointly written by my supervisors and myself) which were pub­
lished in the CIE 2006 ( informal proceedings and postproceedings) [Ab06], [ABS08] and 
in the TFP 2006 ( informal proceedings and postproceedings)[ABS06a], [ABS06b].

Before explaining more details of the results of our thesis, let us discuss some fundamen­
tal aspects of programming languages as well as the historical development of low- and 
high-level programming languages. According to Herbert G. Mayer [May87], the primary 
function of programming languages is to let the user communicate with the computer via a 
common interface, where programming languages, together with their compilers bridge the 
gap between low level, binary instructions that machines understand, and the higher level 
in which people express their thoughts. We can say that programming languages are the 
medium through which users communicate with a computer. Programming languages have 
a wide spectrum of levels spanning from the low-level machine and assembly languages to 
the high-level machine independent languages.

1



1.1 A Brief History o f Programming Languages 2

A low-level programming language is a machine dependent language. This dependency 
makes the program written not portable from one machine to another. A low-level program­
ming language requires an additional transformation from the conceptual idea to the actual 
data structures and instructions. It takes a longer time to write a program in a low-level 
language than writing it in a high-level language. Although there are setbacks in coding a 
program in a low-level language, the good thing about it is that program written in a low- 
level language runs faster than a program in high-level language. This is because high-level 
language programs need to be translated by means of a compiler into machine language 
[May 8 7].

A high-level programming language allows the programmer to express complex instruc­
tion sequences directly in the language used, and also allows the programmer to ignore the 
machine-specific details. The more the actual computer can be ignored, the higher is the 
language level, and the more convenient it becomes to code programs. Although we lose 
some control over resource utilization, such as data and code space, most of the time high- 
level language is preferable because memory space and a few seconds of machine time are 
less precious than a programmer’s time.

In the following we will discuss the different levels of programming languages in greater 
detail and describe their development through the history of programming. We hope that 
this will give the reader a better understanding and appreciation of the achievements of this 
thesis.

1.1 A Brief History of Programming Languages

There are many kinds of programming languages on the market, which sometimes make 
people wonder why this is the case. Is it because of the ever evolving machine that is 
becoming more and more sophisticated or is it because of the demand of humans that needs 
everything to be automated? To understand more of why these programming languages 
spring out rapidly, we reconsider the development of programming languages, starting with 
low-level languages and moving on to high-level languages.

1.1.1 Development of Low-Level Languages

There are five generations of programming languages ranging from low-level to high-level. 
The five generations of programming languages start at the lowest level with the first gen­
eration which is the machine language. They then range up through the second genera­
tion - assembly language, third generation - high-level languages (procedural language), 
and the fourth generation - very high-level language (problem-oriented language). At the 
highest level are the fifth generation languages which are the languages close to natural lan­
guage. Beginning in 1945, the five generations have evolved over the years, as programmers 
adopted the later generations. The birth of the generations are as follows [WS03]:

• First generation, 1945

• Second generation, early 1950’s
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• Third generation, mid 1950’s

• Fourth generation, early 1970’s

• Fifth generation, early 1980’s

1.1.1.1 First Generation

The first-generation languages are machine languages. They are primitive languages where 
the program consists of sequences of instructions called machine code . This machine code 
is addressed to the hardware of the computer and is written in binary notation which consists 
of binary digits i.e. 0 and 1. The instructions are made of strings of binary digits which rep­
resents operations such as add, subtract and compare. A later improvement of the language 
is allowing the use of octal, decimal or hexadecimal representation of binary strings. Writ­
ing the machine language programs is tedious and error prone. Due to these impracticalities 
of the language, a second generation language is introduced in the early 1950’s.

1.1.1.2 Second Generation

Second generation languages are called assembly or symbolic languages. These languages 
use mnemonics to represent operations such as ADD for add or SUB for subtract. The 
assembly language program when compiled is translated to machine language by an assem­
bler. All computers operate using a machine language. If programs are written in other than 
machine language, they have to be translated to a machine language by a compiler or an 
interpreter that is specific to that language.

One setback to this low-level language is that it is machine dependent, which means that 
each one only work on one specific type of computer.

1.1.2 Evolution of High Level Languages

Programs developed in the low-level language is too specific in following the low-level de­
tails of computer’s hardware and they lack portability between different computers. These 
disadvantages of low-level languages lead to the development of high-level languages. High- 
level languages allow programmers to ignore low-level details of computer hardware and the 
nearer the language resembling the ’natural language’ the less likely errors could be made 
by the programmer.

1.1.2.1 Third Generation

In the mid 1950’s, the third generation of languages were in use. They are algorithmic or 
procedural languages that are used to solve a particular type of problem. There are many 
different kinds of high-level languages produced due to the different attitude in solving the 
problems involved [Hig73].
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The first high-level language is Fortran (FORmula TRANslation). It was developed in 1956 
by John Backus at the IBM Corp., for scientific and engineering applications. The For­
tran compiler was not only the first compiler, but was also the best optimizing compiler in 
years to come. Over the years, Fortan was developed into Fortran-II, Fortran-IV, Fortran-66, 
and Fortran-77 [May87]. In the early 1950’s, John McCarthy at the Masachusetts Institute 
of Technology developed LISP (LISt Processing) and it was implemented in 1959. LISP 
handled recursive algorithms better and become the standard language for the artificial in­
telligence community. It began as a purely functional language but soon acquired some 
important imperative features that increased its execution efficiency. But, it is still the most 
used functional languages. But, ML and Haskell have widespread use. More on history 
of functional programming in Chapter 3. However, LISP is gradually being replaced or 
challenged by Prolog in the artificial intelligence applications.

COBOL (COmmon Business Oriented Language) is the first language designed for com­
mercial application and it is still widely used now. It was developed in 1959 by a navy 
programmer Captain Grace Mary Hopper and her committee of computer manufacturers 
and users. It is used for a certain type of applications such as applications that involved 
processing of dollars and cents. It is advanced in the use of file processing and handling of 
character string data.

In Europe at about 1958, ALGOL (ALGOrithmic Language) was developed as an improve­
ment over Fortran. It was redesigned and improved further until it was completed and pub­
lished in 1960 as ALGOL-60. Even though it was said to be the most ingenious language 
effort in the early days of programming languages, it never gained widespread acceptance 
[May87]. It is used primarily in mathematics and science as is APL. APL (A Program­
ming Language) is published in the United States in 1962 by Kenneth Iverson at Harvard 
University.

In 1966, PL/1 (Programming Language 1) is introduced by IBM Corp. It was intended as 
a replacement for all previous programming languages and has features from all other pro­
gramming languages. Another important language is ADA. Its name was taken to honour 
Ada Augusta, the countess of Lovelace. She was the biographer of Charles Babbage and 
considered as the first computer programmer, since she wrote programs for Babbage’s ma­
chine. Ada was developed in 1981 by the U.S. Deptarment Of Defence. It was designed as 
a language for military applications, in order to have one uniform language in which most 
software for US military applications should be written in future.

BASIC (Beginner’s All-purpose Symbolic Instruction Code) was designed by two profes­
sors from Dartmouth College , John Kemeny and Thomas Kurtz in 1966 as an easy to leam 
interactive programming language. It became the primary language used in microcomputers 
for a while, but has lost its importance. In 1971, a more structured language for teaching 
that was named Pascal after Blaise Pascal, a French mathematician, was developed. It was 
designed by Nicholas Wirth, a Swiss professor. It is one of the few very well designed lan­
guages which is widely used. Then in 1982, Wirth introduced Modula-2. It is a Pascal-like 
language for commercial and mathematical applications. Modula-2 is a general purpose 
programming language which is also designed for systems programming.

Around 1972, Dennis Ritchie of Bell Laboratories produced a language called C to imple­
ment the UNIX operating system. It is a general purpose language that is mainly suited for
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operating system implementations. Systems written in C are more portable than the ones 
written in assembly language. C++ is an extension of C is developed by Bjame Stroustrup 
of Bell Laboratories. C++ has become the most widely used general purpose language be­
cause of its speed and its capabilities to deal with object-oriented programming. Java is an 
object-oriented language which was developed specifically as a network-oriented language 
where writing programs can be safely downloaded from the internet and can be executed 
immediately without fear of any threat from computer viruses.

1.1.2.2 Fourth Generation

Very high-level or problem-oriented languages, also called fourth generation language (4GLs), 
are much more user-oriented and allow users to develop programs with fewer commands 
compared with procedural language, although they require more computing power. These 
languages are called problem-oriented because they are designed to solve specific problems, 
whereas procedural languages are more general purpose languages.

There are three types of problem-oriented languages. They are report generators, query 
languages and application generators. A report generator which is also called as report writer 
is a language to produce a report, where the report can be a printout or a screen display in 
a certain format specified by the user. A query language is an easy-to-use language for 
retrieving data from a database management system. The query may be expressed in the 
form of a sentence or near-English command. An application generator is the programmer’s 
tool consisting of modules that have been programmed to accomplish various tasks. The 
benefit of this generator is that the programmer can generate application programs from 
descriptions of the problem rather than by traditional programming, in which the processing 
of the data have to be specified. Programmers use application generators to help them create 
parts of other programs such as to construct onscreen menus or types of input and output 
screen formats.

FORTH is the first fourth generation language developed in 1970 by the American As­
tronomer Charles Moore. FORTH is used in scientific and industrial control applications. 
Besides FORTH, NOMAD and FOCUS are database management systems which include 
application generators. Other examples of application generators are Mathematica, MAT- 
LAB, Progress 4GL, Maple SPSS (which are data manipulation, analysis and reporting lan­
guages) , APE, AVS ( are data-stream languages) and Coldfusion ( a web development 
language). RPGIII, Quest, Report Builder, GEMBase, Oracle Reports, PostScript are ex­
amples of report generators, and SQL, Informix-4GL, SB+/SystemBuilder, and Genero are 
examples of query languages.

High-level, domain-specific programming languages were earlier often mentioned as fourth- 
generation languages, while expert systems were called fifth-generation programming lan­
guages. In later years this distinction has blurred, as many very high-level general purpose 
programming languages like Python, Haskell and Common Lisp have emerged.

Domain-specific languages are languages tailored to a specific application domain. For a 
specific domain, they offer substantial gains in expressiveness and ease of use compared 
to general-purpose languages. They sacrifices generality and provides notations and con-
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structs tailored to a particular application domain. (E)BNF and Excel are representatives of 
domain-specific language which are for syntax specification and spreadsheet application re­
spectively [HM07]. The term domain-specific language has become popular in recent years 
in software development to indicate a programming language or specification language ded­
icated to a particular problem representation technique, and/or a particular palestine tech­
nique. The concept isn’t new - special-purpose programming language and all kinds of 
modelling/specification languages have always existed, but the term has become popular 
due to the rise of domain-specific modelling. The opposite is a general-purpose program­
ming language, such as C or Java, or a general-purpose modelling language such as the 
UML. Creating a domain-specific language (with software to support it) can be worthwhile 
if the language allows a particular type of problems or solutions to them to be expressed 
more clearly than pre-existing languages would allow, and the type of problem in ques­
tion reappears sufficiently often. In comparison with the domain specific language with our 
project we can clearly say that the main goal of our project is to develop a general purpose 
language extension of C++ not a domain specific extensions. Thus we did not consider in 
integrating the functional programming into C++ as creating a domain specific language.

1.1.2.3 Fifth Generation

Fifth generation language is an outgrowth of artificial intelligence research. Artificial in­
telligence (AI) is a group of related technologies used for developing machines to emulate 
human qualities, such as learning, reasoning, communicating, seeing and hearing. In the 
early 1970s, PROLOG (PROgramming LOGic) was designed by French computer scien­
tist Alain Colmeraur and logician Philippe Roussel. PROLOG is useful for programming 
logical processes and allows to automatically deduce programs from declarations. Prolog 
received a major boost in 1981, when the Japanese for New Generation Computing Technol­
ogy selected logic programming as its enabling software technology, and launched a ten year 
project to provide complementary hardware technology in the shape of fast logical inference 
machine [Wat90],

Today, the main areas of artificial intelligence are virtual reality, robotics, natural language 
processing, fuzzy logic, expert systems, neural networks, genetic algorithms and cyborgs. 
Virtual reality, a computer generated virtual reality projects a person into a sensation of three 
dimensional space. Other than using virtual reality in arcade-type games, its more important 
uses are in simulators for training. Robotics is the development and study of machines that 
can perform work normally done by people and natural language processing is the study 
of ways for computers to recognize and understand human language. LUNAR, developed 
to help analyze moon rocks, answers questions about geology on the basis of an extensive 
database is an example of natural language processing. Fuzzy logic is a method of dealing 
with imprecise data and uncertainty, with problems that have many answers rather than one. 
Unlike classical logic, fuzzy logic is more like human reasoning: it deals with probability 
and credibility. Expert system is an interactive computer program used in solving problems 
that would otherwise require assistance of a human expert. Such program simulates reason­
ing process of experts in certain well-defined areas and incorporates not only the expert’s 
surface knowledge (’’textbook knowledge”) but also deep knowledge (’’tricks of the trade”). 
Artificial intelligence and fuzzy logic principles are being applied to the development of
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neural networks. Neural networks use physical electronic devices or software to mimic the 
neurological structure of the human brain where they learn from example and don’t require 
detailed instructions. A genetic algorithms is a program that uses Darwinian principles of 
random mutation to improve itself. As in Darwin’s rules of evolution, many chunks of code 
compete to see which can best fulfil the goal of the program where some chunks will be­
come extinct and the survived ones will combine with other survivors to produce offspring 
programs.

Artificial intelligence research has led to many advances of programming languages includ­
ing LISP and its dialects , Planner, Actor, the Scientific Community Metaphor, production 
systems and rule-based languages. According to Hewitt [Hew06], Planner was the first 
language to feature procedural plans that were called by pattern-directed innovation using 
goals and assertions. A subset called Micro Planner [Bau72] was implemented by Gerry 
Sussman, Eugene Chamak, and Terry Winograd [Lig73] and was used in Winograd’s natu­
ral language understanding program SHRDLU and other projects. Several researches then 
introduced other subsets of Planner such as PICO-PLANNER [And72] and Popler [Dav73]. 
Bob Kowalski [Kow88], who had been one of the principal members of the logic paradigm 
community, then adapted, in collaboration with Alain Colmerauer, some theorem proving 
ideas into a form similar to a subset of Micro Planner called Prolog. Using Prolog, Kowalski 
hoped to save the logic paradigm as a suitable approach to artificial intelligence.

There may yet be a spring of a new discipline of programming that can be considered as the 
sixth generation programming language. Trygve Reenskaug, a researcher at the University 
of Oslo, created and explored a possible new discipline of programming in his BabyUML 
project [Ree07] which is still experimental. He regard BabyUML [Ree04] as a sixth gen­
eration programming language because it combines the algorithmic capabilities of the third 
generation with the semantic modelling of the fourth generation language. BabyUML re­
places the idea of a closed application with an open module that is created within a running 
context. Current programming technology involves a four stage process which includes 
modelling, coding, loading and execution. But, BabyUML merges them into one, making 
programming a question of dynamically modifying a running system.

1.2 Languages Evolved from other Programming Languages

There are several programming languages that evolved from other programming languages 
to improve the language in fulfilling the demands of system development where software 
are becoming more and more complex. OCaml (Object Caml) is the implementation of the 
Caml dialect and of ML extended with class based object and powerful module system in 
the style of SML. It is a general purpose programming language which combines functional, 
imperative and object oriented programming. It is suited to medium advanced programmers 
as a tool to boost their productivity through type inference. OCaml does something similar 
to what we aim at, but coming from the functional programming side. It is the extension of 
ML by objects. It lacks the full power of C++ concepts, especially pointers, a rich object- 
oriented structure, explicit memory management. However it is a very clean language. It 
is like a functional programming language, with objects added to it, whereas the language, 
this project was aiming at (we haven’t achieved it in full yet, but some steps towards it) we
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have in mind is an object-oriented (or in fact multi-paradigm language) with features from 
functional programming added to it. So OCaml is intended for functional programmers who 
need some object orientation, whereas the program this project was aiming at is intended 
for imperative or object-oriented programmers, who need some concepts from functional 
programming.

F# is the implementation of the core of the Caml programming language for the .Net frame­
work. Its aim is to work together with C#, Visual Basic SML.Net and other .Net program­
ming languages. C# is derived from C and C++ and developed by Microsoft. It is a Java like 
language for web programming and was specially designed to operate within the .Net frame­
work. Pizza is an extension of Java with important features like parametric polymorphism, 
function pointers and algebraic types. However, its encoding of A-terms is extensive. But 
the generic part of Pizza has been developed further to an extension of Java called Generic 
Java (GJ). Most ideas of GJ have been incorporated into Java 1.5.

Purely imperative programming languages such as C or Pascal do not provide a satisfying 
mechanism such as abstraction and data manipulation. C++ is an extended version of C 
where it supports object-oriented programming and templates (see Chapter 2). Purely object 
oriented languages like SmallTalk are excellent with dynamic application but do not provide 
static guarantees. Typed class based programming languages such as C# and Java contain a 
very large number of constructs and it is sometimes difficult for programmers to choose how 
to model their program and sometimes one obtains a large program for a simple problem.

1.3 Outline of Thesis

Since the beginning of evolution in software development, programmers or more precisely 
computer scientists are trying to find ways or techniques in improving how programs are 
designed or structured. There are several approaches in designing programs. They are 
known as programming paradigms. The most prominent ones are imperative, procedural, 
module-based, generic, declarative, functional and object-oriented programming. These 
programming paradigms are discussed in Chapters 2 and 3.

By combining the advantages of functional programming and object-oriented programming, 
it is hoped that a general purpose object-oriented language like C++ can enhance the effi­
ciency of developing a program. Since functional programming is based on the A-calculus, 
it is appropriate to embed the typed A-calculus into C++. This extension of C++ is devel­
oped by creating a parser that can parse a C++ program and translate any typed A-terms in 
it to equivalent C++ statements. This integration of functional programing into C++ is to 
simplify the coding of the typed A-terms so as making it a simple task to define A-terms in 
C++. The syntax of defining these typed A-terms was decided based upon simplification and 
ease of use for programmers or users.

A discussion on the approach that we use in integrating functional programming into C++ 
and the design, specification and development of the program that parses and translates A- 
terms into equivalent C++ code can be seen in Chapter 4. The implementation of the parser- 
translator program is discussed in greater detail in Chapter 5. In this chapter, the parsing 
and translation of the simply typed A-terms are discussed. The simply typed A-terms are
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translated by using the object-oriented approach of programming that involves the creation 
of classes for the A-term. The translation of a A-abstraction is an element of a function type, 
where the concept of inheritance plays the main role. The execution of the translated code 
in C++ is discussed by showing how the classes and variables are allocated on the heap in 
the memory. The evaluation strategy of the translated code is call-by-value.

One thing that is new in our approach is that we have correctness proof of our C++ imple­
mentation of the A-calculus. We proof the correctness of our implementation with respect to 
the usual (set-theoretic) denotational semantics of the simply typed A-calculus and a mathe­
matical model of sufficiently large fragment of C++ using the Kripke-style logical relation. 
Complete proofs are given in Chapter 6. Related work in integrating functional program­
ming into C++ is discussed in Chapter 7. Summary of the thesis is discussed in Chapter 8 
and future work is recommended. It becomes our believe that if our approach is extended 
to cover full C++, we can obtain a language in which the worlds of functional and object- 
oriented programming are merged.

As mentioned earlier, we have produced papers from our research which are both refereed 
at usual journal standards and are quite different from the thesis. Papers in the Theory Of 
Computing System (Appendix C) and Trends in Functional Programming 2006 ( Appendix 
D) use monadic concepts to define the model, and the latter paper (TFP) added the lazy data 
structures.



Chapter 2

From Imperative Programming to 
Object-oriented and Generic 
Programming

A programming paradigm is defined as a paradigmatic style of programming. This can be 
compared with the notion of programming methodology, which is a paradigmatic style of 
carrying out software engineering. A programming paradigm provides a view of how the 
program is being represented. It determines the style and the design method the programmer 
would use in developing software.

Programming languages are tools for writing software. They are the tools we use to commu­
nicate not only with computers but with people. They have been an active field of computer 
science throughout the decades. As discussed earlier, there are many programming lan­
guages , beginning with the lowest to the higher hierarchy of programming languages (refer 
to Chapter 1, section 1.1). Computer programmers or researchers/computer scientists are

still trying to find a better programming language that can be used with ease in

writing software efficiently. The pros of different languages are sometimes combined to 
create a new language or an extension of an existing language.

Just as different groups of software engineering, support different methodologies, differ­
ent programming languages support different programing paradigms. There need not be 
a one-to-one relationship between programming languages and their paradigms. Some 
languages are designed to support one particular paradigm. Such languages are called 
paradigm-oriented, for example Java and Smalltalk support object-oriented programming 
while Haskell and Scheme support functional programming. Other programming languages 
support multiple paradigms and are therefore paradigm-neutral like C++, which is designed 
to support elements of procedural programming, object-oriented programming and generic 
programming. The design abstractions can easily be directed to program components if the 
design method and the language paradigm are the same or the language is paradigm-neutral 
[GJ98].

10
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Many programming paradigms are well known for what techniques they forbid or enable. 
For example, pure functional programming disallows the use of side effects and structured 
programming disallows the use of goto’s. Object-oriented paradigm is the most common 
style of programming nowadays. It is certainly the key programming methodology for the 
next decade [DD01].

Before going further into the object-oriented paradigm of programming, we think that it 
is important first to go through some of the paradigms in programming that is relevant to 
this research. We discuss imperative programming first because it is the basis of most pro­
gramming not including functional programming. The project in this thesis applied object- 
oriented programming in developing the program and in the translation of the A-expression. 
Structured programming is also discussed because the objects in the object oriented pro­
gramming have internal structures which is usually built using structured programming 
techniques and also the manipulation of the objects is best expressed with this technique. 
The concept of generic programming make possible the existence of Standard Template Li- 
brary(STL) [STLOO]. Especially containers make use of this concept. We will use generic 
programming when creating the translation of the function type of a A-term. (see Chapters 
4, 5, 6)

2.1 Imperative Programming

The imperative programming paradigm is an abstraction of the principles for executing pro­
grams in real computers which in turn are based on the Turing machine and the von Neuman 
machine. A diagram of the von Neuman machine is given in Figure 2.1 [GJ98]. This archi­
tecture consists of a memory, that contains data and instructions, a CPU and an I/O unit.

^  Memory CPU

/fe tc h  
I Execute 

atore

Bus

Figure 2.1: A von Neumann computer architecture

The CPU is responsible for fetching instructions one at a time. Since machine instructions 
are very low-level, they require the data to be taken out of memory and manipulated through 
arithmetic and logic operations with the result being copied back to the memory. Execution 
of instructions result in the change of the state of the machine which is reflected by the 
contents of the memory.

An abstraction is a model that highlights the relevant aspects of a phenomenon and ignores 
its irrelevant details [GJ98]. In other words, conventional programming languages adopt 
the underlying von Neumann architecture as their computational model but abstract away
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from the details of each sequential step of execution. This model consists of a sequential, 
step by step execution of instructions which change the state of computation by modifying 
the repository of values. Sequential execution of language reflects the sequential fetch and 
execution of machine instruction performed by the hardware. A variable of the language 
which can be modified by the assignment statements, reflects the behaviour of the memory 
cells of the computer architecture. Higher levels of abstractions such as procedures and 
functions, data types, exception handlers and classes have been developed from time to time 
until now by language designers to overcome the ever increasing needs of programmers. 
Even though higher level languages have been designed to make programming much easier, 
the concept of the languages are still based on the von Neumann architecture.

The state in an imperative language is the logical model of storage which is an association 
between memory locations and values. It consists of collection of names and the associated 
values and the location of control in the program. In imperative programming, a name may 
be assigned to a value which in turn can be reassigned to another value. The execution of a 
program generates a sequence of states abbreviated as S. The transition from one state to the 
next is determined by assignment operations and sequencing commands that is abbreviated 
as O in the expression below:

O  O o. O  v C  O n — 1  ri
<̂ 0 ^  ....... '  *^n—1 ^

Imperative programs are characterized by sequences of bindings i.e. state changes. So, a 
name has two bindings which is a binding to a location and to a value. The location is called 
the l-value and the value is called the r-value. For example, the statement:

y  := y  + 1

indicates that the y  on the left {l-value) denotes the location while the y  on the right(r-va/we) 
denotes the value. Assignment changes the value at a location. A variable and value are 
bound by an assignment. The assignment statement typically has the form :

V := E
Varieties of notations are used in a programming language to indicate the binding of a vari­
able V and the value of an expression E. Examples are shown as follows :

Pascal V := E
C++ V = E
APL V <- E
Scheme (setq V E)
The assignment is not the same as a constant definition because it permits redefinition. For 
example,

y  := 2 ;
y := y + l;
reads as: assign y  to 2 and then reassign y  to the value of the expression y  + 1 which is 3. 

Several kinds of assignments are possible. A multiple assignments
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VO := VI Vn := E
causes several names/variables to be assigned to the same value. A simultaneous assignment 
of the form:

VO, VI, ..., Vn := EO, El, ..., En
causes several assignments of names to values to occur simultaneously. This allows the 
swapping of values without explicit use of an auxiliary variable.

For the point of view of denotational semantics, the assignment is a function from states to 
states and for the point of view of operational semantics, the assignment changes the state 
of an abstract machine.

When imperative programming is combined with subprograms, it is called procedural pro­
gramming. An imperative programming can only be understood in terms of its execution 
behaviour. This is because during the execution of the code, any variable maybe referenced, 
control may be transfered to any arbitrary point and any variable binding may changed. 
Hence, the whole program need to be examined in order to understand even a small portion 
of the program. In view of this, sequence control are very important in an imperative pro­
gramming. Considerable efforts have been given to find an appropriate control structures. 
Figure 2.2 gives a minimal set of basic control structures.

command ::= identifier := expression 
| command; command 
| label : command 
j GOTO label
| IF boolean_expression THEN GOTO label

Figure 2.2: A set of unstructured commands

The unstructured commands include the assignment command, sequential composition of 
commands, a provision to identify a command with a label, and an unconditional and con­
ditional GOTO commands. The programs are flat without hierarchical structure thus making 
the code difficult to read and understand. The set of unstructured commands contain one 
of the most powerful and highly criticized command GOTO, when used in abundance in a 
program will result in a ’spaghetti’ like code which is difficult to understand and read. Due 
to this, structured programming (known as programming without GOTO) comes into pic­
ture where structured programming provides control structures that make it easier to reason 
about imperative programs.

2.1.1 Structured Programming

Structured programming is a term that describe a style of programming that emphasizes 
hierarchical program structures in which each has one entry point and a few clearly marked 
exit points. Its goal is to produce a program that is easy to read and understand hence easy 
to maintain. A minimal set of structured commands are as in Figure 2.3
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command ::=  SKIP
| i d e n t i f i e r  := e x p r e s s io n
| IF guarded_command [ [ ] guarded_command ]* FI 

| DO guarded_command [ [ ] guarded_command ] * DO 
| command ; command 

guarded_command ::= guard --> command 
guard ::= boolean expression

Figure 2.3: A set of structured commands

At a low-level , structured programs are composed of simple, hierarchical program flow 
structures. These structure can be regarded as single statements or combination of simpler 
statements that can be of primitive statements such as the assignment statement or procedure 
calls. Djikstra identified three types of structures i.e concatenation, selection and repetition. 
Concatenation refers to a sequence of statements executed in order whereas selection is 
alternatives or choices given in order to execute an operation which is usually expressed with 
keywords such as i f  . .  th e n  [ e l s e }  . .  e n d i f ,  s w i t c h  or c a s e .  Repetition 
is execution of a statement depending on the state of the program where the statement can 
be executed 0 or several times depending on the condition given.

The general structure of selection and repetition is shown in the Figure 2.3 as I F . .  FI and 
DO. . OD respectively. The IF and DO commands defined in the Figure 2.3 are in terms of 
guarded commands.

IF gu ard  -> command FI is equivalent to i f  c o n d it io n  th e n  command and

DO gu ard  —>• command is equivalent to w h ile  c o n d it io n  do command.

A command preceded by a guard can only be executed if the guard is true. Generally, the 
semantics of IF - FI and DO - OD commands require that only one command corre­
sponding to the guard is true be selected for execution. The DO command can be represented 
with keywords such as whi l e , r e p e a t  or fo r .

At a high level structure, programmers should break larger piece of code into shorter sub­
routine (functions, procedures, blocks or others) that are small enough to be understood and 
maintained easily. In general, global variables should be used sparingly and local variables 
should be used instead by subroutines where the arguments can be passed by value or ref­
erence. This is to make subroutines or small pieces of code easier to understand without 
having to go through the whole program.

Structured program is usually designed using the ’’top down” approach where large scale 
structure of a program are mapped out into smaller operations. This smaller operation are 
implemented and tested and then tied together to form a whole program.

Imperative programming languages have a rich assortment of control structures, which rep­
resent Djikstra’s control structures.
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2.1.2 Sequential Composition

Sequential composition specifies a linear ordering of command execution. Usually it is in­
dicated by placing textual sequence separated by a line or a symbol ( most commonly a 
semicolon). This symbol usually used as a termination point for the commands or a com­
mand separator(for example in C++). At an abstract level, composition of commands is 
indicated by using composition operator such as semicolon (Cq;Ci ).

2.1.3 Selection or Alternation

Selection permits the specification of a sequence of commands by cases. The selection of a 
particular sequence is based on the value of an expression. The most common representative 
of alternation are the commands If and Case. For If command the condition is a boolean 
expression, while Case command permits any scalar expression. The Case statement is 
best used when the selection is from many statements.

2.1.4 Iteration

Iteration specifies that a sequence of commands may be executed zero or more times (repeat­
edly). Most programming languages provide different loop constructs. This loop constmcts 
define an iteration of certain action which is called the loop body. It also has an expression 
which determines when the execution will ceased. Often, one distinguishes between loop 
based on whether the number of repetitions are known at the start of the loop or the repeti­
tions continue until a certain condition is met. The former kind of loop is usually called a 
’for’ loop and the latter is often called the ’while’ loop.

The ’for’ loop define the control variable which takes on all values of a given predefined 
sequence. For every value the loop body is executed. The general appearance of a for loop 
is shown as follows :

for loop_ctr_var := lower_bound to upper_bound do statement
The ’while’ loop describe any number of iterations of the loop body, including zero. The 
semantics of this loop require the testing of the condition or expression before the body is 
executed. They have the following general form :

while condition do statement
Some languages provide a similar kind of loop as ’while’, where the condition is checked 
at the end of the body (i.e. the loop body is executed at least once). In Pascal, the construct 
has the following general form:

repeat statement until condition
In the ’repeat’ loop, the body is executed as long as the condition is false. It will terminate 
when the condition becomes true. C++ provides the ’do-while’ statement that behaves in a 
similar way which has the following general form :

do statement while expression
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The body of the ’do-while’ statement is executed repeatedly until the value of the expression 
becomes zero (i.e. the condition is false).

2.1.5 Side Effects

Side effects are a feature of imperative programming languages that make the reasoning 
of the program difficult. Side effects are used to provide communication among program 
units, but when undisciplined access to global variables are permitted, the program becomes 
difficult to understand. The whole program needs to be scanned to determine which program 
unit that access and modify the global variables since a call command doesn’t really reveal 
which variables are affected by the call. The change to a global variable is called side effect.

For example:

integer f(a:integer)
{

b := b +1 
f : = b + a

}

This function computes a value as well as changing the global variable b. This causes side 
effects. In addition of it changing the global variable, the function is difficult to reason with 
itself. For example, if at some point in the program it is known that b = y = 0, then the call 
f  (y) will return a value 1. But, should the following expression:

1 + f (y) = f (y) + f (y)
occurs at that point in the program, then the expression will be false.

2.1.6 Aliasing

Aliasing is another feature that makes programs harder to understand and difficult to reason 
about. Two names are aliases if they denote the same data object during a unit activation. 
One way aliases occurs is when two or more arguments to a subprogram are the same. When 
a data object is passed by reference, it is referenced both by its name in the calling environ­
ment and its parameter’s name in the called environment. In the following subprogram, the 
parameters are in-out parameters (which are parameters that acts as inputs and outputs for 
the subprogram):

Aliasing(x, y : in out integer)
{

y := 1 
y := x + y

}

For the call Aliasing (i, i) , the two parameters are used as different names for the 
same object giving i the value 2. But, in the call Aliasing (a [i] , a [ j ] ), the result 
will depend on the values of i and j with aliasing occurring when they are equal. This later
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call illustrates that aliasing can occur at run time, so the detection of aliasing may be delayed 
until run time, thus compilers cannot be relied on to detect aliasing.

Aliasing interferes with the optimizing phase of a compiler. Optimization sometimes re­
quires the reordering of steps or the deletion of unnecessary steps. The following assign­
ments which appear to be independent of each other illustrate an order of dependency.

x : = a + b 
y : = c + d
If x  and c are aliases for the same object, the assignments are interdependent and the order 
of evaluation is very important.

Other ways that aliasing can occur:

• A data object may be a component of several data objects (referenced through pointer 
linkages)

• Formal and actual parameters share the same data object

• Procedure calls have overlapping actual parameters

• A formal parameter and a global variable denote the same data object

Pointers are intrinsically generators of aliasing. When a programming language requires 
programmers to manage memory for dynamically allocated objects and the language permits 
aliasing, an object returned to memory may still be accessible through an alias and the value 
may be changed if the memory manager allocates the same storage area to another object. 
For example, in the following code, the pointer r  is left pointing to a non-existent value.

type pointer = *Integer 
var r : pointer;

procedure FreePointer: 
var s : Pointer; 
begin; 
new(s);
S* := 10; 
r : = S ; 
dispose(s) 
end;

begin 
new(r);
FreePointer(r)
Many times optimizers have to make conservative assumptions about variables in the pres­
ence of pointers. For example, a constant propagation process which knows the value of 
y is 1 will not be able to keep this information after an assignment e.g. *x = 2 because 
maybe that*x is an alias of y (in the case after an assignment such as x  = &y). The value 
of y will be changed as well after the effect of the assignment to *x. Thus, propagating the 
information that y is 1 to the statements following *x = 2 would be wrong if *x is indeed
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an alias of y. However, if we have information about pointers, the constant propagation 
process could make a query like: Is y  an alias of *x?. Then if the answer is no, then y  = 1 
can be propagated safely.

Another optimization that is as an effect of aliasing is code reordering. If the compiler 
decides that y  is not an alias of *x, then the code that uses and changes the value of y  can 
be moved before the assignment *x = 2, if this improves scheduling or enable more loop 
optimizations to be carried out. In order to enable such optimizations to be carried out in 
a predictable manner, the ISO standard for the C language specifies that it is illegal (with 
some exceptions) for pointers of different types to reference the same memory location. This 
rule is known as strict aliasing. It allows impressive increases in performance but has been 
known to break some valid code.

The problem of aliasing arises as soon as language supports variables and assignments. If 
more than one assignment is allowed on the same variable, the fact that x  = y  cannot be 
used at any other point in the program to infer a property of x  from a property of y. The use 
of aliasing and global variables magnifies the issue more.

Imperative constructs jeopardize many of the fundamental techniques for reasoning about 
mathematical concepts. For example, the assignments axiom of axiomatic semantics is valid 
only for languages without aliasing and side effects. Much work has been tempted to ex­
plain the ’’referential opaque’” features of programming languages in terms of well defined 
mathematical constructs. By providing descriptions of programming language features in 
terms of standard mathematical concepts, programming language theory makes it possible 
to manipulate programs and reason with them using rigorous and precise techniques. But 
the resulting descriptions are complex and the notational machinery is difficult to use. One 
strong motivation for functional and logic programming is that it avoids this complexity of 
imperative programming.

2.2 Procedural Programming

In the history of computer programming, most programs were written sequentially where 
programs consist of series of steps that take place one after the other where these steps are 
executed based on the condition determined by the programmer. The major setback in the 
sequentially written program that does not involve any procedures, is that some part of the 
program had to be rewritten in more that one place if the same task has to be done in a 
different part of the program. This involves duplication of statements. To overcome this, 
programming languages allow methods to be used making writing programs becomes easier 
because statements that are used frequently in the program such as the task of printing are 
grouped together in a method. This method can be called whenever needed. Method in 
programming languages are known as functions, procedures, methods, subprograms, sub­
routines or simply routines.

For example the task of printing a message. In C++, this task can be done by the statement: 

c o u t < < m e s s a g e ;
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where this message can be printed out depending on the content of the variable message. 
This statement can be a part of a function p r t m e s s a g e  shown below :

void prtmessage(string message){
cout<<"The message is "<<message<<endl;

}

So in the main program, the use of this function p r tm e ssa g e  can be seen as follows : 

m ain () {

string messg; 
messg = "good evening"; 
prtmessage(messg); 
prtmessage("goodbye");
}
The output of the above segment program is

The message is good evening 
The message is goodbye
As mentioned the use of functions in a program contribute in structuring a program provided 
the coding of the function follows the structuring techniques.

Procedural programming is a conventional programming style that is based upon the concept 
of modularity and scope of program code. Programs are decomposed into computation steps 
that perform complex operations. Routines are used as modularization units to define the 
computation steps. These modules are either coded by the same programmer or precoded 
by someone else and provided in the code library.

Each module consists of one or more subprograms whereby these subprograms can be com­
posed of procedures, functions, subroutines or methods depending on the programming lan­
guage used. Most languages distinguish between two kinds of routines i.e procedures and 
functions. A procedure is an abstract command that is called to alter some desired state 
and it does not return a value, while functions are the mathematical counterparts which will 
return a value when activated depending on the arguments or parameters passed.

An example of a function (AVERAGE) that averages three numbers and a procedure (CAL­
CULATE) that calculates the total of three numbers and squaring it written in Fortran are as 
follows:

REAL FUNCTION AVERAGE (X, Y, Z)
REAL X, Y, Z
AVERAGE = ( X + Y + Z )  / 3.0
RETURN
END

SUBROUTINE CALCULATE(A, B, C, TOTAL, TOTSQUARE)
REAL A, B, C, SUM, TOTSQUARE
TOTAL = A + B + C
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TOTSQUARE = TOTAL * * 2
RETURN
END
The function and subroutine defined above can be invoked as shown below:

REAL A, B, C, TOTAL, TOTSQUARE, AVG 
CALL CALCULATE(A, B, C, TOTAL, TOTSQUARE)
AVG = AVERAGE(A, B, C)
We can say that the function and procedure provides a service or they can be called a service 
provider and the one that uses them is a client. If the service is provided as a function, 
then the client has to use it in an expression. On the other hand, if the service is provided 
as a procedure, the client are forced to use an imperative style. It is also possible for a 
procedural program to have multiple levels or scope, with subprogram defined inside other 
subprograms. Each scope can contain name that cannot be seen in outer scopes.

Procedural programming offers more benefit over a simple sequential programming because 
procedural code is easier to read hence more maintainable, it is more flexible and facilitates 
the practice of good program design. The canonical example of a procedural programming 
language is ALGOL. Others are Fortran, PL/1, Modula-2 and Ada.

2.3 Generic Programming

Generics in computer science is defined as a construct that allows one value to take different 
data types as long as certain contracts such as subtypes and signature are kept. Generic 
programming is a programming style that emphasizes the use of this technique. Generic 
modules may be instantiated either during compile-time or run-time to create the entities 
such as data structures, functions and procedures that is needed to build a program. This 
programming approach encourages the development of high-level of generic abstractions as 
units of modularity.

A simple example of using generic technique in creating a list is by declaration the list 
as List<T>, where T represents the type of the list. When instantiated, one can create 
List<Integer> or List<String>. The list is then treated as whichever type speci­
fied.

Polymorphism is the fundamental mechanism for generic programming. Generic program­
ming is best suited to parametric polymorphism where the example on list given earlier is 
an example of parametric polymorphism. More about polymorphism will be discussed in 
the section 2.4.2.

The generic programming paradigm does not exist in isolation. It exists jointly with other 
programming paradigm. For example it exists with object oriented paradigm as in Eiffel 
and later versions of Java, with functional programming as in ML and also with languages 
which provide more than one paradigm such as C++ and Ada.

However, it was , templates of C++ that popularized the concept of generics.
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2.3.1 Templates

As mentioned above, the concept of generics is popularized by the templates of C++. Tem­
plates allow code to be written without concerning much of the data type that eventually will 
be used in the program. Template in C++ is of great utility to programmers especially when 
it is combined with multiple inheritance and operator overloading. The C++ Standard Tem­
plate Library provides many useful functions within the framework of connected templates. 
For example , the C++ STL contains the function template max (x , y) which will return x 
or y whichever is larger. This template could be defined as :

template <class T>
T max(T x, T y)
{ if(y > x)

return y;
else

return x;
};

It can be called just like a function such as :

cout«max (24 , 80) ; //outputs 80
The call to max (2 4 , 80) makes the compiler examine the arguments to determine that 
this call is a call to max (int, int) and instantiate a version of the function where the 
type T is int. The function max () works for all types of arguments as long as the type 
is applicable to the condition y  > x. In the example function template max accepts two 
arguments of the same type but one can use a user defined data type. If a user defined data 
type is used, one can use the operator overloading to define the meaning of ' > ' so as the 
max ( ) function can be used. Even though the use of operator overloading seems to be 
a minor benefit for this example, but in the context of a comprehensive library like STL, it 
allows the programmer to get extensive functionality for a new data type just by defining a 
few operators for it.

A class template extends the same concept to classes. Class templates are often used to cre­
ate generic containers such as vectors, lists, deques, stacks and queues, sets and many more. 
These containers have a set of standard functions associated with it, which works well with 
whatever matter that you put in between the brackets. For example in C++, has a container 
class List which contains functions such as ad d  ( ) , d e t a c h  () and g e t  I  te rm s  ().

Previously, some uses of templates like max ( ) function were filled by the fimction- 
like preprocessor macros. Macros and templates are expanded during compile-time where 
macros are always expanded inline while templates can also be expanded as inline function 
when the compiler deems it appropriate. Therefore, both function templates and fimction- 
like macros have no runtime overhead.

However templates are considered far more better than macros because of the following 
reasons :

• Templates are type safe
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• Templates avoid some of the errors that occur for the code that uses many function­
like macros

• Templates were designed to be applicable to much larger problems than macros.

But, templates also have their disadvantages. There are three drawbacks to the use of tem­
plates which are:

• Historically, many compilers have very poor support for templates making the code 
using them less portable. However, most modem compilers now have fairly robust 
and standard template support and the new C++ standard , C++0x, is expected to 
further address the issue of portability.

• Almost all compilers produce confusing, unhelpful error messages when errors are 
detected in a template code, thus making the templates difficult to develop.

• A C++ compiler uses the code specialization approach in translating its templates. 
Every use of the template may cause the compiler to generate extra code for the in­
stantiation of the template leading to code bloat when they are indiscriminately used, 
thus resulting an excessively large executables. Also the extra instantiation generated 
by the templates can cause debuggers to have difficulty working with templates. For 
example, when setting a debug breakpoint within a template from a source file where 
this setting may be missed set in the actual instantiation desired or may set a break­
point in every place the template is instantiated. Note that code bloat is not inevitable 
in C++ and can generally be avoided by an experienced programmer.

The term concept has emerged to denote specifically the interface description for templates 
that are at the heart of C generic programming frameworks [Aus99]. Back then, although 
concepts play an obviously critical role in generic programming, they are typically used 
implicitly since there is no language supporting it.

2.3.2 C++ Concepts

In C++, template classes and functions necessarily impose restrictions on the types that they 
take. In the case of the function, the requirement an argument must meet is clear, but in 
the case of a template the interface an object must meet is implicit in the implementation 
of that template. Concepts provide a mechanism for codifying the interface that a template 
parameter must meet. The primary motivation of the introduction of concepts is to improve 
the quality of compiler error messages. If a programmer attempts to use a type that does not 
provide the interface a template requires, the compiler will generate an error. However such 
errors are often difficult to understand, especially for novices. The two main reasons for 
this are that error messages are often displayed with template parameters spelled out in full 
which leads to extremely large error messages and that the compiler does not immediately 
refer to the actual location of the error. In an attempt to resolve this issue, C++0x adds the 
language feature of concepts [RS06]. Similar to how object-oriented programming use a 
base-class to define restrictions on what a type can do, a concept is a named construct that 
sepecifies what a type must provide. Unlike object-oriented programming, however, the
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concept definition itself is not always associated explicitly with the type being passed into 
the template, but with the template definition itself.

One example of the idea of concept is to avoid the problem that we saw lots of times when for 
instance Spirit (object-oriented parser generator, see Section 4.2) gives an unreadable error 
messages. What actually happens is that somewhere in the code a template was wrongly 
used, but the compiler doesn’t see this wrong use of a template, and instead starts to unfold 
the templates until an error in the unfolded code is found. With Concepts one can specify 
the template parameter which has these properties. If this template is now applied to a 
parameter which does not have these properties, an error message should be displayed at 
this point. This will make the template mechanism of C++ more type safe. In Java these 
problems have been avoided by demanding that for template parameters one has to specify 
which interface they need to implement.

In some sense C++ Concepts make a similar step to what was done in Java. This makes C++ 
superior to Java, because Concepts are more flexible, since one can demand arbitrary logical 
combinations of guards whereas the mechanisms in Java and other templates mechanism 
in object-oriented languages only demand that a certain interface is implemented by the 
template parameter.

The first version of the concept checking system was developed by Jeremy Siek while work­
ing at SGI STL in their C++ Compiler and library group which is now part of the SGI STL 
distribution [SLOO]. The definition of concept checking classes in the system originally in­
troduced in the Boost concept checking library was greatly simplified at the price of less 
helpful error messages. This differs from the concept checking in SGI STL. At the moment, 
concepts are planned to be added as a language construct to C++. More details on this can 
be found in the articles [RS06] and [Str03].

2.3.3 Generic Programming Features in Other Languages

Some C++ based languages such as Java and C# left out templates due to the problems with 
templates. These languages have adopted other methods in dealing with these problems. C# 
is currently adopting generic programming features comparable to templates. Java supports 
generic as of J2SE 1.5.0. Generics in Java supports template programming as advanced as 
C++ but less powerful. In Java, generics are checked at compile time for type correctness, 
and the generic type information is then removed through a process called type erasure 
which is unavailable at runtime. Ada’s generics predate templates. Ada has had generics 
since it was designed in 1977-1980. The standard library uses generics to provide many 
services.

In Haskell, some language extensions have been developed for generic programming and in 
the language itself contains some generic aspects. In Haskell [Hut06] itself, for example, a 
user-defined data type of binary trees with labels of type a  attached to the nodes and leaves 
as follows :

data BinTree a = Leaf a | Node (BinTree a) a (Bintree a) 
deriving (Eq, Show)
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The keyword d e r i v i n g  followed by the two type classes Eq and Show, will make it possi­
ble for the programmer to automatically have an equality function defined B in T re e  (= =) 
as well as a way to transform them into printable output. The Haskell compiler can in a 
generic fashion generate instances of particular functions for any given data type. Other 
instances that can be generated are O rd and Read.

PolyP was the first generic programming extension for Haskell where the generic functions 
are called polytypic. This extension introduces a special construct in which such polytypic 
function can be defined through structural induction over the structure of the pattern functor 
of a regular datatype. Generic Haskell is another extension to Haskell which is developed 
at the Utrecht University. It provides type-indexed value which are values indexed over 
the various Haskell type constructors such as unit, primitive types, sums, products and user 
defined type constructors. The resulting type-indexed, can be specialized to any type like the 
kind-indexed types, generic application, generic abstractions and type-indexed types. The 
Scrap your boilerplate approach is a lightweight generic programming approach for Haskell. 
In this approach programmers can write generic functions such as traversal scheme as well 
as generic read (g read ), generic show (gshow) and generic equality (geq). This approach 
is based on just a few primitives for type-safe cast and processing constructor applications.

2.4 Object-oriented Programming

Quotes from Samuel P. Harbison ”The surest way to improve programming productivity is 
so obvious that many programmers miss it. Simply write less code” [HS02]. One way 
of achieving this is by implementing the object-oriented paradigm of programming where 
emphasis is on generality and reusability. In object-oriented programming, reusability is 
supported by inheritance and polymorphism. Object-oriented programming is characterized 
by programming with objects, messages, and hierarchies of objects [Cox8 6 ]. This section 
will start off by giving a glimpse of the history of object-oriented programming and what is 
meant by object-orientation in programming before discussing further on its concepts and 
usage.

2.4.1 History of Object-oriented Programming

The first two object-oriented languages are SIMULA I and Simula 67 which were intro­
duced in the 1960s. The Simula languages were developed at the Norwegian Computing 
Center in Oslo, Norway, by Ole-Johan Dahl and Kristen Nygaard. Simula 67 introduced 
most of the key concepts of object-oriented programming such as objects and classes, sub­
classes and virtual procedures, combined with safe referencing and mechanisms for bringing 
into a program-collections of program structures described under a common class heading 
(prefixed blocks). SIMULA I got a reputation as a simulation language but it turned out to 
be a general programming language due to it possessing interesting properties of a general 
programming language.

Starting in the early 1970s, Simula concepts have been important in the discussion of ab­
stract data types and of models for concurrent program execution. Simula was used as a
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platform for the development of Smalltalk extending object-oriented programming by the 
integration of graphical user interfaces and interactive program execution. In 1980, ”C with 
Classes” was released as an enhanced version of C which included classes for data abstrac­
tion. It was designed so that a preprocessor could make direct conversion from classes to 
struct. In 1982, Bjame Stroustrup began working on a better version of ”C with Classes” 
which would be a more true object-oriented superset of C. In 1983, the first version of 
C++ was released and more advanced object-oriented features were rapidly introduced until 
1985, when the first commercial version was released. More features including templates 
were continually added until 1982, at which time C++ obtained some level of stability and 
an ISO version of C++ was finalised in 1998. In the late 1990s, object-oriented program­
ming became the dominant style for implementing complex programs with large number 
of interacting components. A large variety of object-oriented programming languages have 
been developed, among them are Eiffel, CLOS (object-oriented enhanced version of LISP), 
Object Pascal, Ada 95 (Ada2005 still in the process of enhancement) and particularly the 
internet-related Java which has in particular gained popularity now.

Due to the initiative of programmers in searching better ways for people working with com­
puters, object-oriented programming techniques have evolved from procedural program­
ming techniques.

In procedural languages, object-oriented programming appears as a form where data types 
are extended to behave like a type of an object, similar to an abstract data type with an ex­
tension such as inheritance in object-oriented programming, and each method is actually a 
subprogram which is syntactically bound to a class. Object-oriented programming is an ab­
straction and generalization of imperative programming. Imperative programming involves 
a state and a set of operations that changes the state whereas object-oriented programming 
involves collections of objects where each object has a state and a set of operations to trans­
form the state. Thus, we can say that object-oriented programming focuses on data rather 
than on control. In an object-oriented language, programming requires the programmer to 
think in terms of a hierarchy of objects and the properties possessed by the objects where 
emphasis is on generality and reusability. Object-oriented programming uses the metaphor 
of message passing to capture the interaction of objects [Laf94]. Before going further, we 
will first discuss concepts that are emphasized in object-oriented programming.

2.4.2 Concepts in Object-oriented Programming

An object models the entity of concern in an application. It encapsulates its structure and 
behaviour through its data structure and functions. In conventional programming, an object 
is referred to as a variable which is an instance of a type. This is similar to an object as 
an instance of a class. A class describes a group of similar objects. It names and types 
the components of data structure of each object in the class and declares the function that 
can be applied to them [EckOO]. The structure of an object is described by member fields 
and the behaviour is described by member functions. The member function and member 
fields are not the description of an individual object but for a group of similar objects or 
class. James Rumbaugh(1991) define a class as a group of objects with similar proper- 
ties(attributes), common behaviour (operations), common relationships to other objects and
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common semantics(meaning). A class is depicted in a diagram in Figure 2.4.

C la s s

member fields

member functions

< >
< >

Figure 2.4: Class Diagram

We can depict an object as a box which denotes the boundaries between the inside and out­
side of the object. Inside the box are the local variables i.e. the member fields and functions. 
Everything that is completely inside the box is hidden from the outside meaning they are 
encapsulated. Encapsulation is one of the major features of object-oriented methods. By 
hiding both the data and method within an object, a level of encapsulation that no earlier 
methods can approach is achieved, resulting in stability and portability [Cox8 6 ] Stability 
here means that future changes to the system designed using the object techniques will only 
involve in reusing the classes that have been defined and maybe few changes to the reusable 
objects. Portability is increased from the ability to reuse a class in a new project or a new 
platform. New fields or new methods are added to the objects at each reuse making it more 
and more reusable.

Fields and functions that extend outside the box make up the object interface and are acces­
sible. Interface makes possible any access to the object’s member features. All the variables 
(functions and fields) that are declared under the keyword p u b l i c  in C++ are accessible. 
An object is depicted in the Figure 2.5.

An example of a class is the Ob j S h ap es  class. It is a class of shapes that can consist 
of circles, rectangles and etc. It contain shape and colour of the objects and has member 
functions p r i n t  for printing the attributes of the shape objects and s e t f i e l d s f o r  setting 
the attributes of the objects. The coding of the class in C++ is shown below :

c l a s s  O b jS h ap es  { 
p u b l i c :

s t r i n g  s h a p e ;  
s t r i n g  c o l o u r ;  
v o id  s e t f i e l d s ( s t r i n g  s , c ) ;  
v o id  p r i n t ( ) ;
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Obj S h a p es

shape

colour

setfields

print

Figure 2.5: Object Diagram

}
An object is referenced by a variable or a data field. There are several ways in referencing 
an object i.e. by :

• a variable that contain an object ,eg. Obj S h ap es  o b j 1 where o b j 1 is an object 
of a class Obj S hapes .

• a variable that is a pointer to an object, eg.Ob j S h ap es  *ob j _ p t r

• a variable that is a reference to an object, eg. Obj S h ap es  & o b j_ re f  where we 
can say it is a second name of the object. A complete declaration of this reference 
variable example is

O b jS h ap es  o b j l ;
O b jS h ap es  & o b j_ re f  = o b j l ;

Inside object, computation is achieved by sending messages to other objects which is called 
’’message passing”. An object executes one of its methods as a result of receiving a message. 
A message states what should be done by the object whereas a method expresses how it will 
be done. Message passing is similar to a function call in conventional programming. In 
order to print the attributes of the object Obj S h ap es , the message p r i n t  must be passed 
to the object identifier or variable. If the object variable is a complete object (ob j 1 ), the 
message passing is executed by the statement

o b j 1 . p r i n t ( ) ;

Message passing for a variable that is a pointer(ob j _ p t  r )  to an object can only be executed 
after the object is created which is shown below:

o b j _ p t r  = new O b jS h a p e s ;

The message p r i n t  is sent by the code:
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obj_ptr->print();
where the object react by executing the method print(). If the message sent is coded in 
the main program, so the main program is the sender of the message. In responding to a 
message sent, an object has to lookup the appropriate method. The binding of the method 
name to it’s body is done routinely by a compiler in conventional programming languages. 
There are two types of binding i.e.' static and dynamic binding where the former is done 
during compile time whereas the latter is done during runtime [AU01], If the method exist 
during compile- and run-time, the result will be the same. The difference can be seen when 
the method does not exist, where static binding will report a compile error, whereas dynamic 
binding will result in a run-time error. C++ is a strongly typed programming language, so 
if an object is of a certain class it will always be of that type. For example, o b j 1  will 
always refer to Obj S h ap es. Therefore, o b j 1 will not change its class between compile- 
and run-time.

Dynamic binding plays an important part in the context of class hierarchies where a class 
inherits member functions from its superclass. Eventhough dynamic binding incurs a per­
formance penalty due to an extra lookup at run-time, it is negligible due to optimisations 
carried out by the current object-oriented compiler technology and also because of the rapid 
increase in hardware performance.

Object-oriented programming languages use classes to categorize entities that occur in an 
application. Related categories form hierarchies that has ”is a” relationship. This idea of 
relationship is used in relating classes in an object-oriented programming languages. For ex­
ample a class Obj Shapes can be a circle or rectangle. In other words, class Circle and 
Rectangle are derived classes or subclasses of Obj Shapes making Obj Shapes a su­
perclass or base class. Circle and Rectangle inherits all the features of Obj Shapes. 
This concept is called inheritance which plays an important role in defining object-oriented 
programming languages. The class Obj Shapes and its descendants are coded in C++ as 
shown below:

class ObjShapes { //Class definition for ObjShapes 
public:

string shape; 
string colour;
//consructor
ObjShapes(){shape = " ";colour = " ";};
//constructor
ObjShapes(string s,string c){shape = s; colour = c;}; 
//member function 
void print();

};

void ObjShapes::print(){
cout<<"Shape is "<<shape<<endl; 
cout<<"and the colour is "<<colour<<endl;
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\\Class definition for the descendants Circle and Rectangle 
class Circle::public ObjShapes{ 
public:

real radius;
\\constructor
Circle(string shape, colour):ObjShapes(shape,colour){}; 
void setradius(float); 
void print();

};

void Circle::setradius(float r) { 
radius = r;

};
void Circle::print(){

Obj Shapes::print() ;
cout<<"It's radius is "<<radius<<endl;

}
class Rectangle:rpublic ObjShapes{\\class definition for Rectangle 
public:

float length, breadth, area;
\\construetor
Rectangle(string shape, colour):ObjShapes(shape,colour){}; 
void calcarea(float, float); 
void print();

}

void Rectangle::calcarea(float 1, float b){ 
length = 1; 
breadth = b;
area = length * breadth;

}

void Rectangle::print(){
Obj Shapes::print() ;
cout<<"It/s sides are "<<length<<" and "<<breadth<<endl; 
cout«"It's area is "<<area<<endl;

};

In the example above, class Circle and Rectangle inherits the field shape and color, 
and the method print. In order to show how the message passing between objects of the 
classes above, consider the following program segment:
int main(){

Circle cl ( "circle","blue"); 
cl.setradius(4.5) ;
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Rectangle rl("rectangle","green"); 
rl.calcarea(5.1,6.2); 
cl.print(); 
rl.print();

}

The Figure 2.6 shows the message passing and method lookup for the above code segment.

ObjShapes

Shape

clour

shape | rectangle

lookup
colour | green 

length

lookup
breadth

calcarea

| ObjShapesI

Circle Rectangle print

length
radius lookup

breadth
setradius

calcarea

print
print

shape circle

colour | blue

radius

lookup print

Figure 2.6: Message Passing and Method Lookup

The program declares two objects, c l  and r l , set the radius for c l  and calculate the area of 
r l .  The first invocation of p r i n t  refers to the p r i n t  member function of C i r c l e  and 
the second invocation of p r i n t  refers to the p r i n t  member function of R e c ta n g le .  
The output of this program segment is the same whether with static or dynamic binding. If 
one wants to express a member function to be bind dynamically, the member function has to 
be designated as v i r t u a l .  The keyword v i r t u a l  signals the intention to use dynamic 
binding for designated member function. For example to enable dynamic binding for the 
member function p r i n t  in class Obj S h ap es , the declaration of the member function 
p r i n t  is coded as follows:

v i r t u a l  v o id  p r i n t ( ) ;

Dynamic binding must be a major criterion in calling a language an object-oriented program­
ming language. C++ supports dynamic binding making it a truly object-oriented program­
ming language. Another kind of inheritance is multiple inheritance. Multiple inheritance
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is when a child class or subclass is derived from more than one base class. Details of it will 
not be discussed here.

Suppose a set of shape classes such as Circle, Triangle, Square and etc are de­
rived from base class Shape . Let say we need each shape classes to be treated generically 
as objects of base class Shape so that to draw a shape we could simply call function draw 
in each of base class Shape and let the program determine dynamically which derived class 
draw function to use. Thus we should declare draw in the base class as virtual function 
and we override draw in each of the derived classes to draw the appropriate shape. For 
example,

virtual void draw() const;
may appear in base class S hape which declares that function d raw  is a constant function 
that takes no argument, returns nothing and is a virtual function.

A class that has direct instances are called a concrete class meaning that it has instances of 
its class not of its subclasses. A class that does not have direct instances is called an abstract 
class. An abstract class serves as a common base but will not have any instances. A class is 
made abstract by declaring one or more of its virtual functions to be ’’pure”. A pure virtual 
function is one with an initializer of = 0  in its declaration as shown below:

virtual void draw() const = 0; //pure virtual
The sole purpose of an abstract class is to provide an appropriate base class from which 
classes may inherit interface and/or implementation. They are too generic to define real 
objects.

A hierarchy does not need to contain any abstract class but there are many good object- 
oriented systems that have class hierarchies headed by an abstract class. An example is a 
shape hierarchy where it is headed by abstract class S hape and the next level down the hier­
archy, there are two or more abstract base class TwoDimenShape and T h reed im S hape . 
The next level concrete classes are defined such as for two dimensional shapes will be circles 
and squares and for three dimensional shapes will be spheres and cubes. The usage of the 
concept of abstract classes and virtual function can be seen in the translation of the function 
types in C++ (see Chapter 4).

Polymorphism is another key concept in object-oriented programming. According to Web­
ster’s dictionary, the word polymorphism means ’’occuring in various forms”. But in the 
context of object-oriented programming, polymorphism refers to behaviours that have the 
same name and meaning but actually are different depending on the class concerned. Poly­
morphism is the ability to write several versions of method( function, subroutine) in different 
classes of a subclass hierarchy with the same name and rely on the object-oriented environ­
ment to establish which version should be executed depending on the class of the target 
object when the method is invoked [DD01]

Polymorphism means a behaviour may be inherited either unchanged, or totally different 
between the superclass and the subclass, or it is specialized for a particular subclass. Poly­
morphism is implemented through virtual functions. When a request is made through a base 
class pointer (or reference) to use a virtual function. C++ chooses the correct overridden 
function in the appropriate derived class associated with the object. Sometimes a non virtual
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function is defined in a base class and overridden in a derived class. If such a member func­
tion is called through a base class pointer to the derived class object, the base class version is 
used. If the member function is called through a derived class pointer, the derived class ver­
sion is used. As we can see from the example given, the method print is coded specially 
for certain subclasses which are Circle and Rectangle. The method print in Rectangle 
and Circle class overrides the method print in the superclass Obj Shapes. Generally 
we can say that the subclass version of an attribute or operation/method is said to override 
the version from the superclass because it is executed in preference to the superclass version.

Through the use of virtual functions and polymorphism, one member function call can cause 
different action to occur depending on the type of the object receiving the call which gives 
programmer tremendous expressive capability [DD01]. With virtual functions and poly­
morphism, it is possible to design and implement systems that are more easily extensible. 
Programs can be written to genetically processed objects of existing classes in a hierarchy 
that derived from a base class objects. Classes that do not exist during program development 
can be added with little or no modifications to the generic part of the program as along as 
those classes are part of the hierarchy that is being processed generically .

There are two fundamentally different kinds of polymorphism which was originally de­
scribed informally by Christopher Strachey in 1967. They are ad-hoc and parametric poly­
morphism. Ad-hoc polymorphism is when the range of actual types that can be used is 
finite and the combinations must be specified individually prior to use, while parametric 
polymorhism is when all code is written without mention of any specific type and thus can 
be used transparently with any number of new types. Ad-hoc polymorhism is generally 
supported in object-oriented programming through object inheritance which was described 
earlier. Parametric polymorhism is widely supported in statically typed functional program­
ming languages and in the object-oriented community, programming using parametric poly­
morphism is often called generic programming (see section 2.3).

2.5 C++ as an Object Oriented Programming Language

In the previous sections we have discussed thoroughly what are the concepts that are needed 
in writing an object-oriented program. We also have gone through the history of object- 
oriented programming where we now know how it started. However, we have not yet men­
tioned the definition of object oriented programming. Traditionally, we can say a language 
or technique is object-oriented if and only if it directly supports abstraction (providing some 
form of classes and objects), inheritance (providing the ability to build new abstractions out 
of existing ones) and run-time polymorphism (providing some form of run-time binding). 
This definition includes all major languages which are referred to as object-oriented such as 
Ada95, Beta, CLOS, Eiffel, Simula, Smalltalk, Java and C++ [Laf94]. As mentioned, C++ 
is a paradigm-neutral language meaning that it was designed to support a range of styles 
that are considered fundamentally good and useful. By sharing a common type system, a 
common toolset and etc., significant benefits can arise from it such as enabling groups with 
moderately differing needs to share a language rather than having to apply a number of 
specialized languages.
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The range of facilities or properties that C++ supports whether they were object-oriented or 
otherwise, can be listed below:

i) Abstraction is the ability to represent concepts directly in a program and hide incidental 
details behind well defined interfaces. This ability is the key to every flexible and 
comprehensible system of any significant size.

ii) Encapsulation is the ability to provide guarantees that an abstraction is used only ac­
cording to its specification which is crucial in defending abstractions against corruption.

iii) Polymorphism is the ability to provide the same interface to object with differing im­
plementations. Polymorphism is crucial in simplifying code using abstractions.

iv) Inheritance is the ability to compose new abstractions from existing ones. It is one of 
the most powerful ways of constructing useful abstractions.

v) Genericity is the ability to parameterize types and functions by types and values. It is 
essential for expressing type-safe containers and a powerful tool for expressing general 
algorithms.

vi) Coexistense with other languages and systems and this feature is essential for function­
ing in real world execution environments.

vii) Runtime compactness and speed which is essential for classical systems programming
viii) Static type safety is an integral property of languages of the family to which C++ be­

longs to and it is valuable both for guaranteeing properties of a design and for providing 
run-time and space efficiency.

The list of properties and facilities listed are taken from [Str95]. These facilities and general 
properties can be supported in several alternative ways such as supporting them in the core 
language or in a library.

C++ supports all the facilities and properties that defines an object-oriented programming 
language such as abstraction, encapsulation, polymorphism and inheritance, thus we can say 
that C++ is truly an object-oriented programming language, even though it is also a general 
purpose language due to its design which supports multiple styles of programming.



Chapter 3

A-Calculus and Functional 
Programming

Generally speaking, functional programming is a style of programming in which the basic 
method of computation is the application of functions to arguments [BW8 8 ]. The defini­
tion of a function in functional programming is an expression rather than a sequence of 
commands and execution of a functional program means the evaluation of the expression. 
Expressions in a functional language can be constructed, manipulated and reasoned about, 
like any other kind of mathematical expression using more or less familiar algebraic laws 
for the operators.

It has been said that functional programs do not use variables but this is not exactly true be­
cause there are variables as arguments of functions and also in the let expressions. However, 
variables get their value only once, so the value never changes. This avoids the aliasing prob­
lem. Furthermore, this applies only to pure functional programming languages like Haskell. 
In ML and Lisp, side effects do occur. The idea of executing commands sequentially (like in 
an imperative program) in functional programs is meaningless since the sequence of com­
mands does not make any difference because there is no state to mediate between them. 
Functions in a functional program can be used in more sophisticated ways such as they can 
be passed to other functions as arguments and returned as results and generally can be calcu­
lated with. Functional languages use recursive functions (functions that are defined in terms 
of themselves) instead of sequencing and looping.

Functional programming is declarative in the sense that we say what we want rather than 
how to get it. A characteristic feature of functional programming is that if an expression pos­
sesses a well-defined value, then the order in which a computer may carry out the evaluation 
does not affect the outcome [CM98]. However, this feature is true only for pure functional 
programming language such as Haskell but not for ML. We can say that the meaning of an 
expression is its value and the task of a computer is simply to obtain it.

Functional programs correspond more directly to mathematical objects making it easier to 
reason about them. Most functional programming languages are based on a simple and ele­
gant mathematical foundation i.e. the A-calculus. Alonzo Church [FH8 8 ] defined a calculus 
that can express the behaviour of function as an effort to capture the computational meaning

34
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of mathematical functions. The history of functional programming will be discussed in the 
next section in which we will discuss the functional languages since the beginning until now. 
Then we will discuss details of A-calculus, since it is, together with combinatory logic, one 
of the roots of functional programming.

3.1 History of Functional Programming

One of the main roots of functional programming are the A-calculus and combinatory logic, 
which were introduced by Alonzo Church, Haskell Curry and Moses Schonfinkel in the 
1920s and 30s. Schonfinkel developed a simple theory of functions in the year 1924 and 
at about ten years after that Church introduced the A-calculus and used it to formalize the 
syntax of Whitehead and Russell’s Principia Mathematica. In the 1940’s, Haskell introduced 
combinatory logic which is a variable free theory of functions. In the late 1950’s Church’s 
A-notation for functions led to the first version of LISP by McCarthy. LISP was extremely 
successful and is still being used. Dialects of LISP include Common Lisp, Scheme and elisp 
for emacs. LISP had many innovations which was influential on both theoretic and practical 
aspects of functional programming which include the use of garbage collection as a method 
of disposing of unused cells, implementing static scoping by using closures, invention of 
conditional expression in writing recursive functions (which involves lazy evaluation) and 
the use of higher order operations on list. In 1978 Backus defined FP in his Turing Award 
lecture. His lecture gave a significant impact on the functional language field [Tan04].

Modem functional languages have more advanced features such as static type systems, poly­
morphism, type inference, algebraic data type, pattern matching and lazy evaluation. These 
features contribute a great deal in making functional programming more practical. Examples 
of modem functional languages are ML, Miranda and Haskell. ML (meta language) was de­
fined by researches Gordon, Miller et al. for the use in describing proof search strategies. 
Later (1978) they found out that ML could also be used as a general programming language. 
ML was the first language to use the Hindley-Milner type system (now known as type in­
ference) which is the basis for the type system for most modem functional language. Now 
there are two important dialects of ML that is Standard ML and CAML. Miranda [MV97] 
was developed by David Turner in 1985. Turner implemented Miranda using the idea of 
combinators (fixed set of basic functions). Miranda is a language with lazy evaluation. A 
committee was formed in 1987 as an effort to define a standard functional language with 
modem features resulting in the development of Haskell named after the logician Haskell 
B. Curry [Hug89]. Haskell has all the modem functional language features such as higher- 
order functions, type inference, lazy evaluation and user defined data types.

3.2 A-Calculus

The A-calculus was developed by mathematicians before the development of computers in 
order to obtain a notation for writing down functions. One way of describing functions 
mathematically is through their extension which can be a list of pairs of input, output values 
or as a graph from one domain to the other. But not all functions are computable even though
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they are describable. A-calculus is an attempt to write down functions that could actually be 
evaluated in the real world. The following is the definition of A-calculus [PauOO]:

Definition: The terms of the A-calculus, known as A-terms, are defined inductively from a 
given set of variables x, y, 2 , . . .  as follows:

x, where x  is a variable
c, where c is a constant
(Ax.r  (abstraction), where r  is a term, and x  is a variable,
(r s) (application), where r  and s are terms

We define Ax, y.r  :=  Xx.Xy.r, similarly for Ax, y, z.r  and similar expressions. The symbol 
A is completely arbitrary bearing no significance meaning to it. The symbol arose by a 
completed process of evolution. Originally, the ’hat’(A) notation t[x\ is used by Principia 
Mathematica for the function of x yielding t[x\. Church modified it to x.t[x\, but it turned 
out as Ax.f [x] due to the fault of the typesetter which could not place the hat on top of the 
x. The symbol then mutated into Ax.t[x] [Har97],

3.2.1 Variable Binding

The A-term A x .r refers to a variable defined by surrounding context. For this term, the 
A-abstraction defines a new function with argument variable x and body r. We call x as 
the bound variable to the abstraction. Any occurrences of x in r is bound by the abstrac­
tion. For example, in the A-abstraction Ax, y.(x y)z, x  and y are bound variables because 
they are bound to the abstraction whereas z  occurs free. A closed term is one which all 
variables/identifiers are bound and we will consider a program in the A-calculus to be any 
closed term.

The concept of free and bound variables can be defined as sets in the A abstraction :

• The set of all bound variables BV(r)) in r  is given by:

BV(x) ■= 0 
BV(Ax.r) =  BV(r)U{®}
B V (rs) -  BV(r) (jB V (s)

• The set of all free variables in r(FV (r)) is given by:

FV(x) =  {x}
FV (A x.r) -  F V ( r ) \ { x }
FV (rs) =  F V (r)U F V (s)

A A-term r  is called closed if it has no free variables, i.e. FV (r) =  0. Closed A-terms are 
also called combinators.
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The application r s defines the application of function r  to the argument s. An example of 
this is shown below:

{Xx,y.y + x)3 4

where A abstraction Xx, y.y  +  x  is first applied to 3 then to 4 i.e x  takes the value 3 and y 
takes 4. The function application is left associative. How the application is evaluated will 
be discussed in Section 3.2.4.

3.2.2 Substitution

The function /  such that f ( x )  = r  is represented by the A-abstraction A x.r  and when 
applied to s yields the result of substituting s for all free occurrences of x  by r. Examples 
are as follows:

(Xx.x) The identity function which returns its argument unchanged and is usually called I. 
(Ax.y) A constant function that returns y when applied to any argument.

Substitution of term t for all free occurrences of y in r, denoted r[t/y], is defined as follows:

r. / i f t if x  — y x[t/y) =  < . .y x  otherwise

( (Ax.r) if x  =  y
(Xx.r)[t/y] = < (Ax.r[t/y]) if x  £  {y} U FV(t)

[ Xx' .r[x'/x] [t/y] otherwise, where x' is ’’fresh”

(rs)[t/y] = (r[t/y\s[t/y\)

A-calculus would be inconsistent if we had defined substitution for A-abstractions (second 
clause) naively, i.e. without replacing x  with x ' in the last case (^-conversion). For instance, 
the term X x,y .x  when applied to an argument s should return the constant function (Ay.s). 
However, in case s = y ;  if we carried out the substitution directly, we obtain (A y.y) instead 
, which is the identity function. The free occurrence of x  turns into a bound occurrence of y 
which is an example of variable capture. The substitution r[s/x] is safe provided the bound 
variables of r are disjoint from the free variables of s :

B V (r )p |F  V(s) =  0

In order to avoid a clash in variables, the bound variables of r  might need to be renamed. 
This renaming is called /3-conversion, and is defined in more detail in the next subsection. 
For example, we could change Xy.x into Xz.x. Then an allowed substitution (Az.x)[y/x\ = 
Xz.y can be carried out. The result obtained is in this case a constant function.
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3.2.3 Conversion

A-calculus is based on three conversions which transform one term into another equivalent 
term. The conversions are a-conversion, /3-conversion and ^-conversion. Each of these con­
versions can be applied as well to any subterm. The formal definition of these conversions 
are as follows:

• a-conversion is the result of replacing a subterm of the form A x.r  by A y.r[y/x], where 
y  might not occur free or bound in r. We write then s — >a s' if s is obtained by 
applying this reduction to s.

For example, Xx.(x z )— >a Xy.(y z).

• A /3-redex of a term is a subterm of the form (Xx.r) s. A /3-redex (A x.r) s reduces to 
r[x/s\. A term t /3-reduces to t', written as t — t', if t' is obtained by replacing a 
/3-redex in t  by its reduct.

For example, (Ax.(a; x))(y z )— >p(y z)(y z).

• An rj- redex of a term is a subterm of the form A x.r x, where x £  FV (r). An 77-redex 
A x.r x  reduces to r. A term 1 77-reduces to t ' , written as t — ^  t', if t' is obtained by 
replacing an 77-redex in t by its reduct. For example,(Ax.((z y )x ))— >v(z y)

Among the three conversions, /^-conversion is the most important since it represents the 
evaluation of a function on an argument, a-conversion is just a technical device to change 
the names of variables, while 77-conversion is a form of extensionality. We do not consider 
the a-conversion in the thesis.

We demonstrate /3-reduction by using the following example:

(Ax, 7/.y  +  x)34 

After the 1st /3-reduction , we will get:

{Xy.y +  3)4

Applying another /3-reduction yields 3 +  4 which gives the result 7.

3.2.4 Reduction

Reduction corresponds to a systematic attempt to evaluate a term by repeatedly evaluating 
combinations /(x )  where /  is a A-abstraction. We say that the term is in normal form when 
no more reduction is possible except for a-conversion. For example, Ax, y.y  and (x y)z  are 
normal form. But many A-terms cannot be reduced to normal form. As an example take 
Q :=  (Ax.x x)(A x.x x). The only reduction of Q is to itself (Q — > O), /3-reduction of 
does not terminate and Q does not have a normal form.

We define what it means for two terms to be a, a/3 and a /377-equivalent. For this we need 
first the following auxiliary definitions:
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• r <— >a s if and only if r  — >a s 
or s — >a r

• similarly for r <— >p s , r <— >v s, r <— >ap s, r <— >a0ri s, where r — >ap s if and 
only if r — >a s or r — >p s, similarly for r  — s

Furthermore, r  — ^  s means that r = tq — >p r\ — >p ■ ■ • — >p rn = s for some 
ro , . . . ,  rn, which means that r reduces to s in 0 or more steps. Notations like r  — s, 
r <— s etc. are to be understood similarly. By r  and s being a  (a/3, czfirj) equivalent, 
written as r = a s, (r =ap s , r  = Q/37? 5 ) ,  we mean that r i— ►* s (r <— >*a/3 s, r <— s). 
We identify r and s, if they are a-equivalent. Therefore we will omit in the following — >a 
steps, and write as a subscript of — >•, <— > /? instead of a/3, (3r) instead of a/3r}.

There are two main reduction strategies for ^-reduction (note that we ignore intermediate 
o;-reduction steps): Normal-order reduction is the strategy, in which the leftmost outer­
most redex, is chosen. In contrast, an applicative-order reduction is a sequential reduction 
in which the leftmost inner-most redex is chosen first [Hug89]. Normal-order reduction 
corresponds to the principle of passing the arguments to a function initially unevaluated, 
whereas applicative-order strategy means that a function’s arguments are evaluated before 
the function is applied.

The Church-Rosser Theorem states that ^-reduction is confluent. The theorem says that 
whenever we reduce a A-terms in two different ways (i.e. r — >* s, r — ►* s'), then the 
two reducts can be joined together (i.e. there exists s" so that s — >* s", s' — >* s"). As a 
consequence we obtain uniqueness of normal forms: If r has normal forms s and s ’ then s 
and s' are equal up to a-equality.

However, not every reduction strategy will find the normal form. As an example of the dif­
ference between the applicative order reduction and the normal-order reduction we consider 
the following example:

• Applicative-order reduction:

(A x .y )((A x.x  x ) { \  x .x  a:)) = »  (A x .y ){{A x.x  x ) { \  x .x  z))

• Normal-order reduction:

(A x.y)((X x .x  x)(A x .x  z)) y

From the example above, we can say that applicative-order reduction is not always adequate 
and the strongest completeness and consistency result can be achieved with normal-order 
reduction.

Let t := y + x. The abstraction (Ay.t) contains x  as free and each x  it stands for a function 
over y. The abstraction Xx, y.t contains no free variables and when applied to the arguments 
r and s, the result is obtained by replacing x  by r  and y by s. In other words we perform 
two ^-reductions which can be shown symbolically as follows:

((Xx, y.t)r)s  — >p (Ay.t[r/x])s — >p t[r/x][s/y]
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This technique is called currying after Haskell B. Curry. An example would be the function 
(Ax ,y .x  + y) which can be applied to 3 to yield the function Xy.3 +  y and then to 4 in order 
to obtain 3 +  4.

As mentioned previously, the order of reduction can be applicative and normal. For a func­
tion application (Xx.f)e,  the normal-order reduction strategy will reduce the redex (Xx. f)e 
first before reducing e (being a subterm of the reduction f[x/e] of ( /  e) to a value. Due 
to this it is called call-by-name parameter passing. The applicative-order reduction strat­
egy will reduce e to a value v before carrying out the reduction (Ax . f )  v — r[x/v\. 
Therefore it is called call-by-value parameter passing.

3.2.5 Lazy evaluation

In the previous subsection call-by-value and call-by-name were introduced in terms of re­
duction strategies. In this section we will investigate call-by-name in more detail. Evaluation 
means reducing a A-term until one obtains a normal form. There are two main ways of eval­
uating A-terms: call-by-name and call-by-value. Call-by-name evaluation corresponds to 
lazy evaluation, where expressions are passed around unevaluated for as long as possible. 
Therefore in lazy evaluation function arguments are not evaluated, until needed in order to 
compute the result of the functions. On the other hand, call-by-value evaluation corresponds 
to eager evaluation where all expressions are evaluated before being passed as function ar­
guments. Hence call-by-value requires that function arguments be reduced to values before 
the function is processed.

In a call-by-value setting functions are strict, which means if the result of one of the argu­
ments is undefined, the result of applying this function to its argument is undefined as well. 
For instance, if c is a constant, Ax.c applied to the undefined argument Q is undefined. In a 
call-by-name setting functions can be non-strict, which means that they can have a defined 
value even if one of its arguments is undefined. In call by name A x.c applied to Q, has the 
defined result c.

The evaluation order can have an effect not only on execution speed but on program cor­
rectness as well. A program that encounters a dynamic semantic error or an infinite loop 
under applicative-order evaluation may terminate successfully under normal-order reduc­
tion. Expressions in a strict language can safely be evaluated in applicative-order but not for 
a non-strict language. A language is said to be strict if it requires all functions to be strict. 
It is a non-strict language, if it allows the definition and use of non-strict functions.

One possible problem of normal-order evaluation is inefficiency, since we obtain duplication 
of computation. But this inefficiency can be overcome without sacrificing its terminating 
property by using pointers to arguments. The idea is when reducing an application (Xx.r)s, 
we can first create a pointer to expression s and then reduce (Ax.r)s  to r', which is r with 
all x  replaced by the pointer to s. If we need to reduce the pointer when reducing r', we 
can reduce the expression s pointed by the pointer. The point here is that every time we 
encounter this pointer in r', s need not to be reduced again since it has already been reduced 
the first time. This strategy can also be called call-by-need since s is evaluated whenever 
needed and it will be evaluated at the most once.
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Lazy evaluation gives the advantage of normal-order evaluation (not evaluating unneeded 
subexpression) while running within a constant factor of the speed of applicative-order eval­
uation for expressions in which everything is needed. The principle problem with lazy 
evaluation is its behaviour in the presence of side effects [SchOO]. When using constants 
with side effects, the order of evaluation matters. For instance if we allow the statement 
x := x  + 1, which has the side effect of incrementing the value of variable x  by 1 , the eval­
uation of another expression t, which refers to x, depends on, whether it is evaluated before 
or after the side-effect took place. When using call-by-value evaluation, it is easy to predict 
the evaluation order -  the arguments of a function are evaluated first, then the function is 
evaluated, whereas with call-by-name and call-by-need, the order is difficult to predict. That 
is the reason why constants with side effects are usually not used in lazy languages.

The advantage of lazy evaluation is that it uses sometimes less reduction steps than applicative- 
order reduction (although with more implementation and runtime cost) and that it guarantees 
to find the normal form of an expression if  there is one, whereas eager evaluation might not 
find the normal form even if it exists.

Lazy evaluation is particularly useful for infinite data structure such as infinite list. It is used 
for all arguments in Miranda and Haskell and also available in Scheme through explicit 
use of d e l a y  and f o r c e .  The problem with side effects in lazy evaluation do no arise 
in Miranda and Haskell because they are pure functional language and Scheme leaves the 
problem up to the programmer to tackle. ML provides no mechanism for lazy evaluation, 
but it can be encoded.

3.2.6 Recursion

Recursion is essential in functional programming. Recursive or self-referential definitions 
are not needed to write recursive functions in the A-calculus, since the function Y gives 
the effect of recursion. Y is known as the paradoxical combinator or as the fixed point 
operator. This Y combinator is realized based on the Fixedpoint Theorem and its simple 
proof. This theorem states that every A-expression e has a fixed point e' such that e' — > 
e e', in particular, e' and e e' are /3-equivalent. In fact we can define e' := eo eo where 
eo := Xx.e (x x) for some x £  FV(e), and one immediately sees that e' — > e e'.

By replacing e with a variable y and A abstracting y we obtain the famous fixed-point com­
binator

Y := Xy.(Xx.y (x x))(Xx.y (x #)) 

which computes for every term e a fixed point Y  e. Indeed,

Y e — > (Xx.e (x x))(Xx.e (x x)) — > e ((Xx.e (x x))(Xx.e (x x))) <—  e (Y e),

so Y e =ap e (Y e).

Any recursive function can be written nonrecursively using Y. How is this done? Consider 
the recursive function F  defined by

F  = F
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which can be rewritten as
F  =  (A/. . . .  /  . . . ) F

The equation above essentially says that F  is a fixed point of the A-expression (A/ . . .  /  . . . ) ,  
but Y  exactly computes that. Hence, the recursive equation can be solved by the following 
nonrecursive definition for F:

F  =  Y ( X f  . . . / . . . )

For example, the factorial function

F  = An. if (n =  0) then 1 else (n * F( n  — 1)) 

can be written nonrecursively as

F  = y ( A / ,n .  if (n =  0) then 1 else (n * f ( n  — 1)))

The ability of the A-calculus to simulate recursion in this way is the key to its power and 
accounts for its persistence as a useful model of computation. This power is best expressed 
in Church’s famous thesis which in its original form states that effectively computable func­
tions from positive integers to positive integers are just those definable in the \-calculus. 
Even though no proof can be given for his thesis but it gained support from Kleene who 
in 1936 showed that A-definability was precisely equivalent to Godel and Herbrand’s no­
tions of recursiveness. In 1937 Turing showed that Turing computability was also precisely 
equivalent to A-definability.

In parallel with the development of the A-calculus, Schofinkel and Curry developed combi­
natory logic [Hug89]. Schonfinkel discovered that any function could be expressed as the 
composition of only two simple functions, K  and S. Curry proved the consistency of a pure 
combinatory calculus and along with Feys, elaborated the theory considerably [Hug89]. 
Combinatory calculus plays a big role in the implementation of functional languages.

3.2.7 Higher-order Functions

In functional programming, higher-order functions; i.e., functions which take other func­
tions as arguments, are treated as first class values, which can then be stored in data struc­
tures, passed as arguments, and returned as results. Let us consider the term for squaring 
integers which is defined as follows:

i def »t =  Xx.x * x

If we want to compute x 8 then this could be achieved by squaring x three times: x 8 = 
((x2)2)2. In the A-calculus, this can be defined as the ’power-8 ’ function:

Ps d— Xx.t(t(t z))
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So we can see that taking a number to power 8 amounts to applying the squaring function Q 
three times. A A-term which applies any function three times can be defined as follows:

t  *4 (/  (/*)))

So t' f  = Xx . f  ( f  {f  x)),  which is the function which applies f  to x  three times. The term 
P8 can now be written as t’ t, and 58 is t’ 15.

3.2.8 Typed A-calculus

Types are a way of distinguishing different sorts of data such as booleans, natural numbers 
and functions so as to making sure that these distinctions are respected, for example by en­
suring that functions cannot be applied to arguments of the wrong type. There are several 
reasons why types are added to A-calculus. The main reason for introducing the typed A- 
calculus is that the typed A-calculus is strongly normalizing, so every reduction sequence 
terminates. From a logical point of view, one reason for considering type is that we would 
have a clearer picture of what sort of functions A-terms denote if we knew exactly what their 
domains and codomains were, and only applied them to arguments in their domains. These 
considerations inspired Russell originally to introduce types in Principia Mathematica. An­
other reason for types is the fact that a compiler can generate more efficient code, and use 
storage more effectively by knowing more about a variable. As time went by, types also 
began to be appreciated more and more for their value in providing limited static checks on 
programs. Moreover types often serve as a useful documentation in programming and also 
they can be used to achieve better modularization and data hiding by ’artificially’ distin­
guishing some data structure from its internal representation.

The basic idea of a typed A-calculus is that every A-term in the typed A-calculus has a type. 
If A, B are types, then A —> B is a type. A term s can only be applied to a term t, if the type 
of s is a a function type A —» B and the type of t is A. The result s t  has then type B. This is 
strong typing where term t must have exactly the type A; there is no notion of subtyping or 
coercion. We will use t : A to mean t has type A. This is the standard mathematical notation 
where function spaces are concerned, because /  : A —> B means that /  is a function from 
the set A to the set B. One property of types is that a type cannot be the same as any proper 
syntactic subexpression of itself.

There are two approaches in defining typed A-calculus which are Church’s approach (ex­
plicit) and Curry’s approach (implicit). We will show both approaches of defining typed 
A-calculus.

In Church’s approach variables are typed, i.e. they are of the form vA which means a vari­
able is a pair consisting of a symbol v and a type A. In the case of constants, the type is 
preassigned. The generation rules for valid terms t in Church’s style, together with their 
types C, written t : C, are:

vA : A
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Constant c has type A 
c : A

s : A —> B t : A 
s t : B

t : B 
XvA. t : A —>• B

In contrast, in Curry’s approach to typing, the terms are exactly as in untyped case, and a 
term may or may not have a type. But some purists would argue that this isn’t properly 
speaking typed A-calculus but rather untyped A-calculus with a separate notion of type as­
signment. Curry-style of type assignment does not merely define a relation of typability in 
isolation but with respect to a context, i.e. a finite set of typing assumptions about variables. 
We write F b  t : A to mean ’in context F , the term t can be given a type A’. The 
elements of F are of the form v : A, that is they are themselves typing assumptions about 
variables, typically those that are components of the term. We assume T never gives contra­
dictory assignments to the same variable; if preferred we can think of it as a partial function 
from the indexing set of variables into the set of types. We write F b  r  : A for r : A holds 
in context A. The Curry style typability rules are as follows:

v : A e  r  
F \ - v : A

Constant c has type A 
c : A

T b s : A —» B F \~ t : A  
F h s t  :B

r u { i i : A } h f : B  
T I-  Xv. t : A —̂ B

A special context is the empty context 0, which makes no assumptions about the types of 
variables. Note that a context is a set of expressions of the form (v : A).  So in the last rule, 
T might contain v : A.

The rules above are to be regarded as an inductive definition of typability relation, so a term 
only has a type if it can be derived by the above rules. For example the identity function can 
be typed by first looking at the rule for variables, we have

{x : A} h x  : A

and therefore by the last rule we get:
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This example illustrates the need for context, because without it we could not deduce x  : B 
for any B. In the last step we derived Xx.x : A —> A without any context. Note that we 
obtain Xx.x : A —> A for any type A, so a A-term can have many types. This problem does 
not arise in Church typing, since in that either both variables have type A or else the two 
x ’s are actually different variable, since their types differ and the types are a component of 
the term. XxA.xB : A —> B is reasonable for A / B ,  however in this term x B is a variable 
different from x  : A, and x B occurs free. In fact the second term is a-equivalent to XyA.xB.

Type preservation is the property that if a term reduces to another term, its type is preserved. 
In the context of Curry typability it says that if T b t : A and t —> t', then we have 
T h t' : A. The Curry typing system gives a form of polymorphism in that a given term may 
have different types. In polymorphism, all types bear a systematic relationship to each other 
and all types following the pattern are allowed. For example, the identity function has types 
A -» A, B —» B or (A —>• B) —> (A —» B), but all instances have the same structure.

There exists a third style of typing which looks very similar to Curry style typing, because 
it uses contexts, but which is in fact rather a variant of Church style typing: The type of a 
variable is declared in a context, but in the rule for A-abstraction, the type of the abstracted 
variable was given by the context is kept in the A-abstraction. Hence, the rules as in the 
Curry system, except for the abstraction rule which becomes

T U{ v :  A}  \~ t : B  
T I-  Xv i A. t : A —̂ B

It is this variant of the Church-style typing which is actually used in the next chapter.

3.3 Functional Programming as an Implementation of A-calculus

As we mentioned earlier, A-calculus is the basis of functional programming. Through the 
history of functional programming, we can see how from A-calculus evolved to a family of 
modem functional programming languages that all have the characteristics of the calculus 
we discussed. For example, LISP, which is one of the first major programming languages 
was inspired by the A-calculus. Many functional languages such as ML consist of little more 
than the A-calculus with additional syntax. A-calculus is important to functional program­
ming languages and computer science. Through it variable binding and scoping in block 
structured languages can be modelled as well as several functions calling mechanism such 
as call-by-name, call-by-value and call-by-need. As discussed earlier, the A-calculus is Tur­
ing universal, and probably the most natural model of computations and Church’s Thesis 
asserts that the ’computable’ functions are precisely those that can be represented in the 
A-calculus.

The A-calculus notions of confluence (Church Rosser property), termination and normal 
form, can be used as notions in rewriting theory. The A-calculus and its extensions can be 
used to develop better type system, such as polymorphism, and to investigate theoretical 
issue such as program synthesis. The two main implementation methods , the SECD ma­
chines (for strict evaluation) and combinator reduction (lazy evaluation) exploit properties of
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A-calculus. SECD machine was invented by Landin as an interpreter (byte code interpreter) 
for the A-calculus in order to execute ISWIM (If you See What I Mean) programs. ISWIM 
was the model for ML and it was designed to be extended with application-specific data and 
operations. It consisted of the A-calculus plus a few more additional constructs and could be 
translated back into pure A-calculus. Denotational semantics, which is an important method 
for formally specifying programming languages, employs the A-calculus for its notation.

3.4 Denotational Semantics

Semantics is the assignment of meaning to the sentences of a programming language. Se­
mantic definition methods are valuable to implementors and programmers for they provide a 
precise standard for a computer implementation, a useful user documentation and a tool for 
design and analysis. The standard guarantees that the language is implemented exactly the 
same on all machines. A formal semantic definitions can be read by a trained programmer 
and use it as a reference to answer subtle questions about the language. The semantics of 
programming languages is not as well developed as their syntax. This is because semantical 
features are much more difficult to define and describe and a standard method for writing 
semantics is still evolving. The first versions of programming language semantics used ma­
chines and their actions as their foundation. There are three main methods for semantics 
specification: operational, denotational and axiomatic semantics. In this thesis we will work 
with denotational semantics. Before giving a detailed definition of denotational semantics, 
we briefly give an overview of the other forms of semantics.

Operational semantics method uses an interpreter to define a language where the meaning of 
a program is the evaluation history (a sequence of internal interpreter configurations) that the 
interpreter produces. One of the disadvantage of this semantic is that there is no machine- 
independent definition exists because the language can only be understood in terms of in­
terpreter configurations. Furthermore, if the interpreter’s algorithm is simple and written in 
an elegant notation, the interpreter can give an insight of the language, but unfortunately, 
interpreters for nontrivial languages are large and complex, and the notation used to write 
them is often as complex as the language being defined.

In axiomatics semantics, the properties of a language are expressed with axioms and rules 
to construct a formal proof of the property. The character of an axiomatic definition is de­
termined by the kind of properties that can be proved. The meaning of the program is not 
explicitly given at all with the axiomatic semantics method. For example, a very simple sys­
tem may only allow proofs that one program is equal to another and a more complex system 
allows proofs about a program’s input and output properties. Axiomatic definitions are more 
abstract than denotational and operational semantics method. The properties proved about 
a program may not be enough to completely determine the program’s meaning [A1187]. 
The format in axiomatic semantics is best used to provide preliminary specifications for a 
language or to give documentation about properties that are of interest to the users of the 
language.

Denotational semantics is an approach to formalizing the semantics of computer systems 
by constructing a mathematical object which expresses the semantics of these systems. The
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mathematical objects are called denotations or meanings. Further elaboration of the denota­
tional semantics will be discussed in the next section.

Each of the three methods of formal semantics definition has different areas of application, 
and together they provide a set of tools for language development. Designers of a new pro­
gramming system might first supply a list of properties that they wish the system would 
have. Since a user interacts with the system through an input language, an axiomatic defini­
tion is constructed in defining the input language and how it achieves the desired properties. 
Then a denotational semantics is defined to give the meaning of the language where a for­
mal proof is constructed to show that the semantics contain the properties that the axiomatic 
definition specifies. Finally the denotational definition is implemented using an operational 
semantics.

3.4.1 Definition of Denotational Semantics

Denotational semantics has traditionally been described as the theory of true meanings for 
programs, or as the theory of what programs denote. The denotation is usually a mathemat­
ical value such as a number or a function and a valuation function maps a program directly 
to its meaning. A denotational definition is more abstract than an operational definition, for 
it does not specify computation steps.

Denotational semantics originated in the work of Christopher Strachey and Dana Scott in 
the 1960s. Denotational semantics originally developed by Strachey and Scott interpreted 
the denotation (meaning) of a computer program as a function that mapped input to output. 
But for programs that included elements such as recursively defined functions and data 
structures, the definition of denotation is limited. To overcome this, Scott introduced a 
generalized approach to denotational semantics based on domains [SS71].

An effort to address difficulties with the semantics of concurrent system, researches later on 
introduced approaches based on power domains. An alternative view point for denotational 
semantics is that it is seen as a translation from one formal system to another. However, the 
pragmatics of denotational semantics is essentially unaffected by the foundational stance 
one takes. The aims, hopes, and concrete uses of denotational semantics are the same. We 
can say that the purpose of denotational semantics are to bring out subtle issues in language 
design, to derive new reasoning principles, and to develop an intuitive abstract model of the 
programming language under consideration so as to aid program development.

3.4.2 Semantic Algebra

Before studying the semantics of programming languages, we must establish a suitable col­
lection of meanings for programs. For this we need the notion of a semantic algebra. A 
semantic algebra is given by a semantic domain and a set of operations defined on elements 
of the domain. Semantic domains are the sets that are used as value spaces in programming 
language semantics. In practice not all of the set and set building operations are needed for 
building domains. The set of operations are functions that map elements from the domain 
to other elements of the domain. Operations are defined in two parts: first the functionality



3.4 Denotational Semantics 48

of the operations is defined, then the description of the operation’s mapping is given. The 
functionality of an operation is given by the operation’s domain and codomain. For an op­
eration / ,  its functionality f  : D \ x D 2 x . . .  x  Dn A  says that /  needs argument from 
domain D\,D<i until D n to produce an answer in domain A. The description of the opera­
tion’s mapping is usually an equational definition but a set graph, table or diagram may be 
used as well.

A primitive domain is a set that is fundamental to the application being studied and its 
elements are atomic and are used as answers or semantic outputs. For example the natural 
numbers:

• Domain Nat =  N

• Operations

zero Nat
one Nat
two Nat

add Nat x Nat —> Nat
subtract Nat x Nat —> Nat
multiply Nat x Nat —> Nat
div Nat x Nat —» Nat

Note that constants (here zero, one, tw o,. . . )  are treated as functions with zero arguments, 
and zero, one, tw o ,. . .  return the usual natural numbers. The operations add, subtract and 
multiply are addition, subtraction and multiplication of natural numbers, respectively and 
they are written in infix format. Natural number subtraction needs to be clarified further: if 
the second argument is larger than the first, the result is zero, otherwise normal subtraction 
is applied, add, multiply are defined as usual. By using the algebra, we can construct 
expression that represent members of Nat. An example is as follows:

(two multiply five) subtract (one add three)

This expression computes as follows:

(two multiply five) subtract (one add three)
=  (two multiply five) subtract four 
=  ten subtract four 
=  six

Other examples of primitive domains are truth values (Boolean -B), character strings (C) and 
etc. Compound domains are domain building constructions for creating new domains from 
existing ones. The four basic constructions of forming compound domains from semantic 
domains A and B are :

• The product domain A x B has as members ordered pairs of the form (a, b), for (a G A 
and b G B).



3.4 Denotational Semantics 49

• Sum domains A +  B has as members elements from A and B, labeled to mark their 
origins. The classic representation of this labeling is the ordered pair (zero, a) for an 
a € A and (one, b) for a b £ B.

• The members of the function domain A —> B is the collection of functions from 
domain A to domain B.

d@f• The lifted domains A_l, has members Aj_ =  A U { 1 } . ’JL* denotes an undefined 
element (often standing for nontermination) or ’no value at all’. If one wants to intro­
duce a function / ,  which applied to an argument a G A may yield an element in B 
or no answer at all, then we can introduce /  as having functionality A —> Bjl. Then 
f(a )  = _L means that f(a )  is undefined.

Including JL as a value is an alternative to using a theory of partial functions. A partial 
function is a function that may not have a value associated with each argument in its domain.

3.4.3 Denotational Definition

A denotational definition of a language consists of three parts i.e the abstract syntax defini­
tion of the language, the semantic algebra and the valuation function. The valuation function 
is actually a collection of functions, one for each syntax domain. A valuation function D for 
a syntax domain D is listed as a set of equations, one per option in the corresponding BNF 
rule for D. For example, the denotational definition of binary numerals are shown in Figure 
3.1.

In the algebra only multiply and add are listed because the others are not used in the valua­
tion functions. From the denotational definition in Figure 3.1, we can determine the meaning 
of the binary numeral [1 0 1 ] as follows:

B(101) =  (B(10) multiply two) add D (l)
=  (((B(l)multiply two) add D(0)) multiply two)add D(l)
=  (((D(l) multiply two) add D(0)) multiply two) add D(l)
=  (((one multiply two) add zero) multiply two) add one 
=  five

Thus we can see that the meaning of the binary numeral 101 from the derivation tree is five.

We make use of denotational semantics in the proof shown in Chapter 6  where we give the 
denotational semantics for the functional programs and for the object-oriented programs. 
Then we show that the semantics of the functional programs and of the programs obtained 
from translating them into object-oriented program coincide. The denotational semantics 
of the functional program is constructed based on the abstract syntax of the simply typed 
A-calculus shown in the section 6.2.4.
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• Abstract syntax:
B £ Binary-numeral
D £ Binary-digit
B ::= BD | D
D ::= 0 | 1

The notation D := 0 | 1 means D := {0,1} and the elements of B are either elements 
of D or an element b £ B followed by an element d £ D written as bd. Thus, 
for instance 101 £ B which is obtained by having: 1 £ D, so 1 £ B, 0 £ D, so 
10 £ B, 1 £ D so 101 £ B. One then writes in the following B for elements of B 
and D for elements of D, so B(BD) stands for an element of B applied to the result 
concatenating an element b of B to an element d of D.

• Semantic Algebra
I. Natural numbers 

Domain Nat =  N 
Operations
zero, one, tw o,. . .  : Nat
add, multiply : Nat x Nat —»■ Nat

• Valuation Functions :
B : Binary-numeral —► Nat

B(BD) =  (B(B) multiply two) add D(D)
B(D) =  D(D)

D : Binary-digit —► Nat 
D(0) =  zero 
D (l) =  one

The operation multiply and add are written in infix format.

Figure 3.1: Denotational definition of binary numeral



Chapter 4

Integrating Functional Programming 
into C++

C++ is a general purpose programming language which supports object oriented program­
ming as well as procedural and generic programming. It is a paradigm-neutral language 
[GJ98]. Unfortunately, C++ does not support functional programming which can give great 
benefits in developing a program especially in order to create mathematical functions. As 
discussed in the previous chapter, functional programming have several features that made 
it practical such as first class values, high-order functions, lazy evaluation and other features 
that are usually absent from imperative languages. By integrating functional programming 
into C++, the advantages of object oriented programming and functional programming can 
combine making C++ a more powerful language.

We are using C++ code itself in order to integrate functional programming into C++. More 
precisely we have written a C++ program, which parses A-terms, which are given in a spe­
cific syntax, and translates them into their equivalent C++ statements. This is an important 
step towards embedding functional programming into C++, since the A-calculus is the basis 
of functional programming.

In this chapter we will discuss the approach that we use in integrating functional program­
ming into C++ and the design, specification and development of the program that parses and 
translates A-terms into equivalent C++ code.

4.1 Integration of Functional Programming into C++

Even though there are several approaches to integrate functional programming into C++ 
such as creating a special library for functional programming(FC++) [MSOO], our approach 
has the advantage that it is simple and allows for a correctness proof. We also believe that 
it is more flexible, since it allows for example A-terms with side effects. Other approaches 
will be discussed further in Chapter 7.

The translated code is produced based on the related idea discovered by Kiselyov [Kis98]

51
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and Laufer [Lau95] that can be used for functional programming by representing higher 
order functions using classes. The C++ code that is generated for simply typed A-terms uses 
the object-oriented concepts of classes and inheritance. Abstract classes are used in defining 
the function type of a A-term with a virtual operator that is overloaded in the definition of the 
A-term. The type itself is the type of pointers to an object of this abstract class. The concept 
of inheritance is involved in the definition of a A-term where the function type abstract class 
will be the base class for the A-term. More details will be discussed in the next chapter.

In its most pure form, functional programs contain no side effect at all [Hug89], (Note 
that many functional programming languages such as ML allow side effects). Programs 
with no side effect will lessen the burden of debugging and maintaining the program and 
also hinder any accidental side effects that might occur during development. Our translated 
A-term follow this: the translated code has no assignment statement. The evaluation of 
the translated A-term corresponds to call-by-value evaluation. Call-by-value evaluation has 
been discussed earlier in the Chapter 3.

In C++ there are two ways of passing arguments in a function i.e. through call-by-value 
and call-by-reference [Eti94]. An argument passed to function using call-by-value will not 
be changed by the function (eventhough changes to the argument are made in the function) 
because a copy of the value is made and passed to it. Any change to the copy does not 
affect the value of the original argument. In case of call-by-reference arguments, the caller 
gives the called function the ability to access the caller’s data directly, and if any changes 
or modification to the data will affect it directly. Arguments or parameters that are passed 
by reference in C++ make use of the symbol ’&’ as a flag for reference. For example, the 
declaration of the function header f  with reference parameters: f  ( i n t  &x) where x  is a 
reference to an i n t .  A reference argument must be an lvalue, not a constant or expression 
that returns an rvalue. For example, the call f  (t ) is only allowed if t  is a variable and 
x  is a reference to t .  Whatever happens to t  happens to x  as well. Evaluation for call- 
by-reference is not a problem because a variable is already evaluated (a variable contains a 
value).

Generally, for reasons of clarity and performance, many C++ programmers prefer that mod­
ifiable arguments be passed to functions by using pointers, small nonmodifiable arguments 
be passed call-by-value and large nonmodifiable arguments be passed to functions by using 
references to constants. The reference parameters can be used with a c o n s t  to prevent 
their values being modified. The c o n s t  keyword can be used in several ways to prevent 
values of arguments being changed. For example, the previous example is changed using 
the c o n s t  as follows:

v o id  f ( c o n s t  i n t  & x){ 
x  = 1 ;
}

This code will not compile since we cannot change a c o n s t  variable. The use of c o n s t  
with reference parameters will cause the parameters be passed without copying (in case of 
large data will waste too much memory or take too long) but stop it from being altered 
or changed. Passing large objects such as structures using pointers to constant data, or 
references to constant data will obtain the performance benefits of call-by-reference and the 
security of call-by-value.
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In call-by-name evaluation, the arguments to a function are not evaluated at all, but are sub­
stituted directly into the function body using capture-avoiding substitution. If the argument 
is not used in the evaluation of the function, it is never evaluated but if it is used several 
times, it is reevaluated each time. For example, a function :

i n t  f ( i n t  x ) { 
r e t u r n  x  + x ;
}

and a call f  ( t )  will have the effect of computing t  to a value n l  and computing t  to 
a value n 2 , then n l  + n 2  is computed. This involves in computing t  twice since its 
value is needed twice. Note that C++ has no call-by-name evaluation, and the example 
given is a code in C++ syntax but for a language which has a call-by-name evaluation. 
Call-by-name evaluation is rarely implemented directly, but frequently used in considering 
theoretical properties of programs and programming languages. Thus, real-world languages 
with call-by-name semantics tend to be implemented using call-by-need.

Call-by-need is a memoized version of call-by-name where, if the function argument is eval­
uated, that value is stored for subsequent uses. For example, the function given previously ( 
for call by name), if the call f  (t ) is call-by-need, t  is evaluated once since the evaluated 
version is used for the second use of t .  In a ’’pure” (effect-free) setting, this produces the 
same result as call-by-name. But when the function argument is used two or more times, 
call-by-need is always faster. Sometimes evaluation of expressions may happen arbitrarily 
far into computation and due to this languages using call-by-need generally do not support 
computational effects (such as mutation) except through the use of monads. This eliminates 
any unexpected behaviour from variables whose values change prior to their delayed eval­
uation. Lazy evaluation or delayed evaluation is the technique of delaying a computation 
until such time as the result of the computation is known to be needed. Lazy evaluation also 
means evaluation is done only once. Most realistic lazy languages such as Haskell use call 
by need for performance reason.

By embedding A-calculus into C++, the task of creating a function especially, a mathemat­
ical function, will be simpler. As we know in C++, in order to create a function, we must 
name the function, declare and define it before using it (calling it). But by using the syntax 
that has been determined to embed A-calculus, we can have a nameless function and we can 
omit the extra work of declaring and defining it. Thus, we can have an option of creating a 
function on the fly even though a named function is encouraged for documentation purposes. 
We use the variant of the Church style typed A-calculus discussed at the end of the previous 
chapter, except that we have constants for arithmetic functions, rather than constants for ob­
ject of arbitrary types. The A-calculus was introduced at page 35 and the typing rules for a 
A-term is listed in the Chapter 6 .

A A-term A x mt.t where t is of the type i n t  will be written in our syntax as \  i n t  x . i n t  t  
where the function type is int—)• int. The reason why we type i n t  to t will be explained in 
the Section 4.4.1. More details on how the function type is determined are discussed in 
Chapter 5. We have said previously that, creating a function using the concept of A calculus 
will rid the task of defining and declaring the function. For example, for creating a function 
that squares any integer number in C++ , we need to give the function a name, declare and 
define it as follows:
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\\declare the square function by giving its prototype 
int square(int);

\\define the function 
int square(int no){ 

return no*no;}

\\calling the function 
int n = 50;
int square_number = square(n);
But by implementing the A-calculus, we can create the function above and apply it to the 
variable n  in one expression which is shown as follows:

int n;
int square_number =(\int no.int no*no)AAn;
We introduce the symbol " ~ ~" for the term application. In the expression above, the A- 
abstraction is applied to variable n. In this expression the A-abstraction is reduced to n*n 
and if n  = 2 , the variable s q u a re _ n u m b e r will have the value 4. This is called 13- 
reduction. The A-calculus has only functions with one argument. Functions with more than 
one arguments can be expressed with a function whose result is another function and this 
kind of function is known as a curried function. Curried functions are functions that are 
represented using nested lambdas. This technique has its name from Haskell B. Curry. An 
example of curried function written in our syntax is as follows :

\int x.\int y.\int z .int x+y+z;
When the A-abstraction above is applied to 3, 4, and 5, it will perform three ^-reductions 
resulting in the value 12. The result is obtained by replacing x  with 3, y with 4 and z  with
5. The application mentioned can be written as follows:

( ( (\int x.\int y.\int z . int x+y+z) ~/'3) ~~4)
This term which is written in our syntax, will then be translated into its equivalent C++ code. 
In the following sections we will discuss the design, specification and the development of 
the Parser-Translator program. We will also show some examples of A-terms that we have 
tested using our program.

4.2 Overview of the Parser-Translator Program

The Parser-Translator program or PTP was written in C++ using Spirit to generate a parser 
that parses A-term based on the grammar that has been determined. The PTP was compiled 
and executed using the C++ compiler with Boost libraries. The Boost libraries work only 
with modem C++ compilers which support modem C++ features such as templates and the 
C++ Standard Library.

Spirit is part of the C++ Boost libraries [Bo02]. It is an object-oriented recursive-descent 
parser generator framework which was implemented using template meta-programming
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techniques where expression templates enable us to approximate the syntax of Extended 
Backus-Normal Form (EBNF) completely in C++. It enables a target grammar to be written 
exclusively in C++ where it can mix freely with other C++ code and the grammar is imme­
diately executable i.e. the inline EBNF grammar specifications do not need to undergo the 
step of translation from the source EBNF code to C++ code making Spirit the best choice to 
be used for developing the PTP.

There are several files that are involved in the PTP. The overview of the files and the flow of 
data is shown in the Figure 4.1.

GRAMMARLAMBAPP

TRANSLAMBDAEXP

LIST3VAR
Interactions in parsing the 

lambda expression
Interactions 

in managing the free 
and bound variables

Main

translated code

Lambdaexp
Input
string 1st node translated code

pointer object to 
the LTerm c l a s s /Translambdaexp

node LAMBTYPE SETCONT'Translated 
function type

Translated 
lambda term 'Class defin itios  

to the specified  
lambda term Interactions in 

accessing and manipulating 
the lambda type objects 
ill a container

Trans-
lambtype

Trans- 
lambterm pointer objects 

to the Ltype class

Class defin ition to the 
specified lambda type

Figure 4.1: Overview of the the files involved in the PTP

The files in the PTP can be divided into two parts i.e, the parsing and the translating part. 
These files contain modules that execute certain tasks. Translammbdaexp is the main 
file which contains the main module for the PTP where control of the program is executed. 
The input string of the A-expression is entered to the main module where the input will 
undergo the parsing phase which involves the grammar lambdaexp file. If the parsing 
succeeds, the input will pass the translation part/phase. In this part, the modules in the files 
listvar, Setcont, Lambtype, and Lambterm will go into action and the translated 
A-term will be the output.

The grammar rules and the constructor of the classes in the PTP is based on the concept of
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typed and untyped A-term as explained in the previous chapter. This concept is depicted in
the Figure 4.2 by giving an example of a A expression.

t y p e d  t y p e d
k - t e r m  ^ - t e r m

A i q t z . ( i n t  (  A  i n t  x . i n t  x ) 3  +  (  X ,  i n t  x . i n t  ^ ) z )

t y p e  r 4 e d \
untyped

. ,  u n t y p e d  t y p e d  A , - t e r m  A - t e r m
w  t y p e d  A -  t e r m  A,-t e r m

typed A-termt y p e a A - t e r m

typed A-term

t y p e d  A - t e r m

Figure 4.2: Depiction of the concept of the typed and untyped A-term

4.3 Description of the Modules in the Parsing Phase

The input string of A-expression is entered through the main module in the T ra n s la m b d a e x p  
file, where the string is parsed based on the grammar rules in the file Grammar lam bdaexp .
The parsing is done here to ensure that the input is written according to the syntax that has 
been determined. If the parsing succeeds i.e. the input matches with the A-term grammar 
rules, an abstract syntax tree (ast) is generated. We will not discuss the parsing process here 
because details of it are discussed in the next chapter. Here we will discuss the formation of 
the grammar rules of the A-term.

EBNF for the production rules in Figure 4.3, and Figure 4.4:

< lam b stm t>  ->  (< la m b ty p e > |< n a t iv e ty p e > )  ' ' < i d e n t i f i e r >
• ' '=' <lambexp> ;

<lam bexp>  ->  (< la m b d a te rm > |< u n ty p e d la m te rm > )
< lam b d a te rm >  ->  (< la m b a b s tra c t> |< la m b a p p > )
< la m b a b s t r a c t>  ->  \  (<la m b ty p e > |< n a t i v e t y p e >) ' ' < i d e n t i f i e r >

7 . '  < l a m b a b s t r a c t> |< la m b ty p e > |< n a t iv e ty p e > )
' ' < u n ty p e d la m te rm >

<lam bapp> ->  ' ( '  < la m b a b s t r a c t>  ' ) '
( < l a m b a p p > |< d i g i t > |c i d e n t i f i e r > )  

< u n ty p e d la m te rm >  ->  ( < d i g i t > |c i d e n t i f i e r > |< l a m b d a t e r m > )
* { ( < i n f i x o p e r a t o r > | ' ~ ~ )
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(<untypedlamterm>|<lambdaterm>)}
| cidentifier> ' ('

(<untypedlamterm>|<lambdaterm>)
*{ ',' (<untypedlamterm>|<lambdaterm>) }

cinfixoperator> -> ' = /
<digit>
<btype>

<nativetype>

<nondigit>

<lambtype> 
cidentifier>

-> +{{0|l|2|3|4|5|6|7|8|9}}
-> (nativetype|lambtype 

| ' (' cbtype> ' ) ' )
-> ('int'|'char'|'string'|'double'

|'float' |'long'|'short'
|'bool' |'signed'|'unsigned')

-> ('-'|'a'|'b '|'c '|'d'|'e ' |..|'z' 
|'A'|'B'|'C'|'D'|'E'|'F'..|'Z')

-> *{cbtype> '->' } cbtype>
-> cnondigit> * { (cnondigit>|cdigit>)}

lam bstm t- ia m b ty p c —  

—  n a tive type .

-identifier ■ lam bexp •

lam bexp- -lam bdaterm .

-u n ty p e d la m te m t_

lam bdatenn - ■ lam babstrac t-

— lam bapp-

lambabstract - lambtype-

—  nativetype

—  identifier «

-  lambtype- 

-nativetype

-(a)

(a h - untypedlamterm-

lambapp—V  — " ( " -lambabstract— - ) "  — - ^ "

—  digit -

—  identifier—

Figure 4.3: Syntax diagram of the A-term grammar
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From the syntax diagram shown in Figure 4.3, we can see that the A-expression can be a 
typed A term or an untyped one. The grammar for the A-term is divided into A-abstraction 
and A-application. The grammar rule for the lam bda te rm  is for the building of A-abstraction 
and application while the rule for u n ty p e d la m t erm  (Figure 4.4) is for the body of the A- 
term or a standalone untyped A-term. Other variables that made up the grammar of a A-term 
are shown in the Figure 4.4. Note that in the syntax diagram, the symbol and ‘+’ is the 
indication that whatever is associated with them will be repeated zero or many times (***) 
and one or more times (*+’). To assist in understanding the grammar given in the syntax 
diagram, we give the Extended Backus Naur Form (EBNF) for the grammar. We will not go 
through the precise syntax of the A-term because we can see it clearly from the syntax dia­
gram. The complete grammar of the A-term written in Spirit are enclosed in the appendix. 
We only would like to mention some of the directives and predefined parser in Spirit that we 
used in the grammar rules such as le a f_ n o d e _ d , ro o t_ n o d e _ d , d ig i t_ jp ,  a lp h a _ p  
and etc. In the Figure 4.4, the directives d i g i t _ p  and a lp h a _ b  is used instead in the pro­
duction rule for d i g i t  and n o n d ig i t .  d ig i t_ j?  recognizes the digits from 1 to 0  and 
a lp h a _ b  recognizes all the characters in the alphabet whether in lower or upper case. Since 
we are building an abstract syntax tree, directives like le a f_ n o d e _ d , ro o t_ n o d e _ d , 
n o _ n o d e_ d  and in n e r_ n o d e _ d  are beneficial in simplifying the structure of the tree 
thus making the traversing and processing of the abstract syntax tree formed more easier. 
Usually every character in a string will be taken as a node in a tree, but le a f_ n o d e _ d  will 
take all the characters it is formed from as one node -  this construct will for instance be used 
for identifiers. Other directives will be discussed and examples for their usage in building 
the abstract syntax tree will be given in the next chapter. Every token in the grammar rule is 
given an identification (id) which is an integer value. This id is used to identify each node 
in the abstract syntax tree.

4.4 Description of Modules in the Translation Phase

The abstract syntax tree generated will be passed to the module lambdaexp where this 
module will pass the beginning node of the tree to the module translambaterm to be 
processed. Here every node including the children node will be processed until the end node 
of the tree. The tree will be traversed from the beginning node to the end node using the 
tree iterator which is a special facility from Spirit. Every node and its children are tested for 
their token id in the grammar rule. When the node is identified, specific module in the file 
Translambdaexp is called which in turn will call the module in the file Lambterm or 
Lambtype to translate it to its equivalent C++ code.

The file Lambtype consists of lambda type class (LType) with constructors for function 
type and native type, and methods for generating the C++ code for the function type and 
native type. For example if the node is a lam btype or a n a t iv e t y p e ,  the module 
tr a n s la m b d a ty p e  is called which in turn will instantiate the constructor for the function 
type or native type in the file Lambtype and execute the appropriate method to translate it 
to its equivalent C++ code.

The file S e tc o n t  is associated with files Lambtype, L is t v a r  and Lambterm. The 
involvement of these files are discussed in the coming sections.
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4.4.1 Description of the Lambterm File and its Associated Files

The file Lambterm contains the declaration and the definition of the typed (LTerm) and 
untyped A-term (UntypedLTerm) objects along with the definition of their methods. As 
mentioned PTP is developed using the object-oriented approach that involves inheritance 
where the typed A-term form a subclass of the untyped A-term. Constmctors are built based 
on all possible terms that can occur for the class and subclass and a method is defined to 
create a pointer to each constructor. There is a special constructor in LTerm class that 
gives a type to an untyped A-term where a method called Lift creates a pointer to this 
constructor. Thus any untyped A-term will become typed using this method.

The Listvar file manages the bound and free variables of the A-term. It consists of a class 
Listvariable with constmctors for empty list of variables and adding list of variables. 
The class Listvariable has methods that are responsible in displaying arguments for 
the A-term and also a method that will not allow the same variable name to be listed as 
arguments for the A-term which indirectly minimizes or disallow aliasing.

The methods of the class of typed A-term are for the purpose of translating the typed A-term 
to its equivalent C++ code. The same thing applies to the methods of the class of untyped 
A-term. The translated code produced uses the object-oriented programming technology. A 
class is created for each A-term and the translated A-term is by inheritance an element of the 
translated function type. Here the function type is an abstract class which is the base class 
for the class of A-terms of this type.

The type checking in the translated code is done by the type system of C++. The type 
system of C++ has decidable type checking not type inference like in Haskell. In C++ we 
check whether a term t has a certain type but not type inferencing because a term t can have 
multiple types. For example a term Axmt. 3.14 can be of type int—afloat or int—►double and 
by inheritance a term can be an element of many types. In the translation we added the type 
to the body of the term because we need to know the type of the body of the A-term. But if 
we apply a A-term t to s{s t) and we know the type of s; t  : a —> r  then s : cr, we do not 
demand to assign a type to t and in some examples we can even omit the type.

Why do we need to use inheritance in the translation? To explain this, consider the terms 
given as follows:

g := Xx.x : int —> int 

g' := Xx.x +  x  : int —► int 

h : (int —► int) —> int 

h( f )  = } ( 5)

Given the expression: h(g) +  h{g'), without using inheritance, the left h needs to use the 
class defining g and the right h needs to use the class defining g '. Assuming g is defined by 
class lambdal and g' is defined by class lambda2 and h has methods as follows:

int operator() (lambdal g){ 
return g (5);
}
int operator() (lambda2 g) {



4.4 Description o f Modules in the Translation Phase 60

return g (5);
}

In general, it is not possible to predict all possible applications of h since arguments might 
be defined dynamically. One might suggest that h should have templated method of the 
form:

template operator() <A> (A g){ 
return g (5);
}

But this can only work if we know at compile time the g’s to which h is applied. Thus the 
use of inheritance seems to be the only type method which works in general.

The translation of a A-term will create various classes. The general form of the translated 
code is as follows:

[ Classes of the function types are defined here 

]
{Classes of the lambda-term are defined here 

}

[Lambda expression is written here ]
If the A-term is a simple A-abstraction, the class defined is just a single class that has a 
function type as the base class. As an example we give the class definitions for the A-term 
\ x mt.x +  5. The function type is int—>int which is translated as follows:

class Cint_intD_aux
{ public : virtual int operator() (int x) = 0;}; 
typedef Cint_intD_aux* Cint_intD;
The class definition for the A-term is as follows:

class lambdaO : public Cint_intD_aux{ 
public: 
lambdaO() {} ;
virtual int operator () {int x}
{ return x + 5;};

};

The A-term itself is translated into new lambdaO (). We are aware that the use of new is 
expensive. In many simple examples, one could avoid the use of new by replacing pointers 
to objects by objects. For instance, we could replace a pointer to an object of the class 
representing a A-term by the object of this class itself, and then would not need to generate 
the object dynamically. However we do not know how to deal with the general situation. 
In general, it seems that we need inheritance. For instance, the C++ class representing
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(\(int->int) f.int f)~~0 could without inheritance only applied to a A-term of 
type (int—>int) which is translated into one particular object, and therefore not be applied to 
an arbitrary element of type (int—>• int). One could create several instances of this method to 
cater for different objects representing different A-terms which are all of type (int—>int), but 
only if those objects are known at compile time. If we generate those A-terms dynamically 
at run time, then this is no longer possible. So, in the general situation we require the use of 
inheritance, although many special cases would be optimized.

If the term is a curried function or a nested A-term, a series of class definition and function 
type will be generated. The name of the class is automatically generated: it starts with 
lam bda followed by an integer that corresponds to the sequence of classes generated. If 
a curried function or a nested A-abstraction that involves three arguments like the example 
given previously is translated, three classes will be created and the name of the class will 
be lambdaO, la m b d a l and lam b d a 2 . Details of the translation is discussed in the next 
chapter. Here we only give some examples.

The statements declaring A-terms that will be accepted by our parser have the following 
form:

(nativetype|lambdatype) identifier "=" (lambdaterm
| untyped lambdaterm);

n a t i v e t y p e  refers to tha native or basic type in C++ such as i n t ,  c h a r  and d o u b le , 
while la m b d a ty p e  refers to the function type A-+B where A is the input type and B is 
the result type of the function. The general processing of the abstract syntax tree is shown 
in the pseudocode below:

1. Begin with the 1st node
2. Execute the module for translation of the type whether it's

a native type or a lambda type to the children of the node
3. stringl = Translation of type
4. Next node (identifier)
5. string2 = identifier
6. Skip node (for '=')
7. Test the next node

a. if = lambda term
Execute the module for translation of the lambda 

term to the children of the node
string3 = class definition of the lambda term and its 
function type
string4 = expression of the lambda term
b . if = untyped lambda term

Execute the module for translation of the untyped 
lambda term to the children of the node 
string3 = translation of the untyped lambda term 
string4 = expression of the untyped lambda term

8. Output string3 + stringl + string2 + '=' + string4
9. End
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In step 2, the children of the node is passed to get the object of the type pointer which points 
to the appropriate constructor of the class A-type (LType). This object pointer then invoke 
the method that creates the classes of the function type. The class LType and its methods 
are in the file Lambtype. An associative container is applied to manage the sequence of 
A-type objects. We make use of it because we can order the A-type objects in a container 
following a sorting criterion that is predefined in the program and also due to its iterator that 
offer a common interface for any arbitrary container type. The iterator makes it possible 
for us to avoid any duplication of the A-type objects. The container mentioned is defined 
in the file Setcont. Once the object pointer of LType is determined, it is checked in the 
container using the iterator whether it exists or not. If it exists it will be discarded, otherwise 
it will be added to the container. Then the class definition of the function type will be 
created where the sequence of class definition of A-types are based on the A-type objects in 
the container.

In step 7, the children of the node is passed to the end to get the object of type pointer 
that points to the constructor of the class LTerm where this object pointer will invoke the 
appropriate methods to generate the class definitions and expression of the A-term. Similarly 
for the untyped A-term, the same process will be executed to get the class definition and 
expression for the untyped A-term. The modules responsible for these tasks reside in the file 
Lambterm and these modules will invoke the modules in the file Listvar to manage the 
bound and free variables of the A-term. The modules in the file Lambtype are also invoked 
to get the class definition of the function type. The string of class definition of function type 
and class definition of a term as well as the expression of the A-term are each assigned to a 
string variable which are concatenated to produce the whole completed translation.

4.5 Examples of the translation of A-term expressions

The Parser-Translator program was tested with several forms of A-term and the translated 
code was compiled and run. The result then was compared with the result that we got 
manually. Here we will give some examples of A-terms that were tested and their translated 
code.

1) input:
int->int f =\int y.int (\int x.int x*x) /'~3 

+ (\int x.int x*x)~~3 +y; 
and the translated code is: 
class Cint_intD_aux
{
public : virtual int operator() (int x) =0; };

typedef Cint_intD_aux* Cint_intD;

class lambdal : public Cint_intD_aux{ 
public : 
lambdal( ) { } ;
virtual int operator () (int x)
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{ return x*x; };
};

class lambdaO : public Cint_intD_aux{ 
public : 
lambdaO( ) { };
virtual int operator () (int y)
{ return (*( new lambdal( )))(3) +

(*( new lambdal( )))(3)+y; };
};
Cint_intD f = new lambdaO( );
We can apply this term to an integer value which is shown as follows : 
int g = (*f) (4) ; 
and the result is the value 2 2 .

2) Input:
int g = (\int->int f .int (*(f))((*(f))(2)))

(\int x.int 2+x);
The translated code is as follows: 
class Cint_intD_aux 
{
public : virtual int operator() (int x) =0; };

typedef Cint_intD_aux* Cint_intD;

//Definition of type : ((int->int)->int)
class CCint_intD_intD_aux 
{
public : virtual int operator() (Cint_intD x) =0; };

typedef CCint_intD_intD_aux* CCint_intD_intD;

class lambdaO : public CCint_intD_intD_aux{ 
public : 
lambdaO( ) { };
virtual int operator () (Cint_intD f)
{ return (*(f)) ((* (f)) (2)); };

};

class lambdal : public Cint_intD_aux{ 
public : 
lambdal( ) { };
virtual int operator () (int x)
{ return 2 + x; };

};
int y = (*( new lambdaO( )))( new lambdal( ));
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The A-expression in the second example can be written in A-notation as :

A / . / ( /  2)(Xx.2 +  x)

and it can be evaluated as:

(Ax.2 +  x){{Xx.2 +  x)2) = (Ax.2 +  x)4

resulting in the value 6.
3) Input:

int k =(((\((int->int)->(int->int)) g.\int->int f. 
int->int g~~g~ ~f)

~~(\int->int f.\int x.int fAAfAAx))
/'~(\int x.int 2+x))~~3; 

and the translated code is: 
class Cint_intD_aux 
{
public : virtual int operator() (int x) =0; };

typedef Cint_intD_aux* Cint_intD;

//Definition of type : ((int->int)->(int->int))
class CCint_intD_Cint_intDD_aux
{
public : virtual Cint_intD operator() (Cint_intD x) =0; }

typedef CCint_intD_Cint_intDD_aux* CCint_intD_Cint_intDD;

//Definition of type : (((int->int)->(int->int))
// ->((int->int)->(int->int)))
class CCCint_intD_Cint_intDD_CCint_intD_Cint_intDDD_aux
{
public : virtual CCint_intD_Cint_intDD operator() 

(CCint_intD_Cint_intDD x) =0; };

typedef CCCint_intD_Cint_intDD_CCint_intD_Cint_intDDD_aux* 
CCCint_intD_Cint_intDD_CCint_intD_Cint_intDDD;

class lambdal : public CCint_intD_Cint_intDD_aux{ 
public :CCint_intD_Cint_intDD g;
lambdal( CCint_intD_Cint_intDD g) { this-> g = g;}; 
virtual Cint_intD operator () (Cint_intD f)
{ return (* (g) ) ( (* (g) ) (f) ) ; }.;

};

class lambdaO : public
CCCint intD Cint intDD CCint intD
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_C in t_ in tD D D _au x{
p u b l ic  : 
lam bdaO( ) { } ;
v i r t u a l  C C in t_ in tB _C in t_ in tD D  o p e r a to r  ()

(C C in t_ in tD _C in t_ in tD D  g)
{ r e tu r n  new la m b d a l( g ) ; }

};

c l a s s  lambda3 : p u b l ic  C in t_ in tD _ a u x {  
p u b l ic  :C in t_ in tD  f ;
lam b d a3( C in t_ in tD  f )  { t h i s - >  f  = f  
v i r t u a l  i n t  o p e r a to r  () ( in t  x)
{ r e tu r n  ( * ( f ) ) ( ( * ( f ) ) ( x ) ) ;  };

};

c l a s s  lambda2 : p u b l ic  C C in t_ in tD _C in t_ in tD D _au x{  
p u b l ic  : 
lam b d a2( ) { } ;
v i r t u a l  C in t_ in tD  o p e r a to r  () (C in t_ in tD  f)
{ r e tu r n  new lam bda3( f ) ; }

} »

c l a s s  lambda4 : p u b l ic  C in t_ in tD _ a u x {  
p u b l ic  : 
lambda4 ( ) { };
v i r t u a l  i n t  o p e r a to r  () ( in t  x)
{ r e tu r n  2 + x ; };

} »
i n t  k = ( * ( ( * ( ( * (  new lambdaO( ) ) ) (  new lam b d a2( ) ) ) )

( new lam bda4( ) ) ) )  ( 3) ;

In the above example, the function type for A-abstraction represented by lambdaO is 
(((int-»int)—»(int-+int))—K(int-*int)—Kint—»int)) where the class definition for this func­
tion type is built from series of function types. The function type will not be duplicated even 
though we have other A-abstractions in the expression of the same function type in the series 
of function types. This is the advantage of using a container for A-type objects. We have 
tested this program with many more A-expressions. Only a few of them are shown here. The 
implementation of the Parser-Translator Program in integrating functional programming is 
discussed in greater detail in the next chapter.

We have mentioned previously that lazy evaluation is one of the characteristics of a func­
tional program. After introducing the extended syntax in defining a A-term in C++, we 
can represent lazy evaluation in C++ by using the extended syntax. Further details will be 
discussed in the next section.
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4.6 Lazy Evaluation in C++

We represent lazy evaluation in C++ by translating Haskell code using infinite list such 
as for computing Fibonaci numbers. This example [ABS06a], [ABS06b] requires that we 
have infinite streams of natural numbers and rely heavily on lazy evaluation. The standard 
technique for replacing call-by-value by call-by-name is to delay evaluation. The code in 
Haskell that will be translated into efficient C++ code is shown as follows:

fib = l:l:(zipWith (+) fib (tail fib))
In order to delay evaluation, we replace types A  by () —> A  where () is the empty type (i.e. 
v o id ) . Lazy evaluation not only delay evaluation, but it evaluates a term only once. So, to 
obtain this, we define a new type Lazy (A) which delays evaluation of an element of type 
A  in such a way that evaluation will be carried out when needed, and it is done only once. 
Once the value is computed, the result is stored in a variable for later reuse. The definition 
for the class lazy is a general definition which is not restricted to lazy streams. We use the 
extended C++ syntax for A-terms, A-types and especially r~  ~ t  for application, \  for A and 
- > for —>• which has been discussed in Chapter 5 in the translated code. The definition of 
the class lazy is as follows:

tempiatectypename X> class lazy{ 
bool is_evaluated; 
union {X result;

() -> compute_function;};
public:

lazy(() -> X compute_function){ 
is_evaluated = false;
this->compute_function = compute_function;};

X eval() {
if (not is_evaluated){

result = comput_function 0; 
is_evaluated = true;}; 
return result;};};

#define Lazy(X) lazy<X>*
The definition given would be much longer and considerably complicated without support 
from the extended syntax. Using the class l a z y  we can easily define lazy streams of natural 
numbers. Possibly terminating streams such as lazy list can be defined similarly but require 
the usual technique based on the composite design pattern for formalising algebraic data 
types as classes by introducing a main class for the main type which has subclasses for each 
constructor, each of which stores the arguments of the constructor.

templatectypename X> class lazy_stream{ 
public: Lazy(X) head;

Lazy(lazy_stream<X>*) tail;
... Constructor as usual... }

#define Lazy_Stream(X) lazy_stream<X>*
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An operation which takes a function of type () —> X and returns the corresponding element 
of type Lazy (X) is defined as :

templatectypename X> Lazy(X)
create_lazy(()-> X compute_function)

{ return new lazy<X>(compute_function);};
We need to define operators that will be used in the above definition of f  i b  which is listed 
as follows:

• la z y _ co n s_ la zy < X >  computes the cons-operation on streams and returns lazily 
a lazy stream:

templatectypename X>Lazy (Lazy_Stream(X) ) 
lazy_cons_lazy(Lazy(X) head,

Lazy(Lazy_Stream(X)) tail){ 
return create_Lazy 

(\ () X.new lazy_stream<X>(head,tail))}/}
• la z y _ ta i l< X >  computes tail of a stream lazily where only its type is defined here:

Lazy(Lazy_Stream(X)) lazy_tail<X>(
Lazy(Lazy(Lazy_Stream(X)) s)

• la z y _ z ip _ w ith < X >  computes the usual z ip _ w i th  function (i.e. z ip _ w i th ( / ,  
[a, 6 ,...], [c, d , ...]) =  [/ a c, /  b d , . . .  ]; we define only its type:

Lazy(Lazy_Stream(X) ) lazy_zip_with<X>
(X -> X -> X f,
Lazy(Lazy_Stream(X)) sO,
Lazy(Lazy_Stream(X)) si)

The definition of lazy_tail and lazy_zip_with is straightforward, once one has 
introduced a few combinators which deals with Lazy (X). After introducing the operators 
that are involved in defining Fibonacci numbers, the stream of Fibonacci numbers is defined 
as follows:

()-><Lazy_Stream(int)> fib_aux =
\() x.Lazy_Stream(int) 

eval (
lazy_cons_lazy( 
one_lazy, 
lazy_c°ns_lazy( 
one_lazy, 
lazy_zip_with( 
plus, 
create_lazy(this), 
lazy_tail(create_lazy(this))))));
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Lazy_Stream(int) fib = eval(create_lazy(fib_aux));

plus is Xx, y.x+y,  one_lazy is the numeral 1 converted into an element of Lazy (int), 
create_lazy transforms element of type () -> A into Lazy (A), and eval evaluates 
an element of type Lazy (A) to an element of type A. The keyword t h i s  is used in the 
definition of f  ib _ a u x . If we use f  ib _ a u x , C++ will first instantiate f  ib _ a u x  as an 
empty class and use this value when evaluating the right hand side. We can only obtained 
a truely recursive definition using t h i s .  When evaluated, one sees that the nth element of 
f  i b  computes to fib(n)  and this computation is the efficient one in which previous calls of 
f ib (k ) are memoized. Replacing Lazy (X) by () ->  X, results in an implementation of 
the fibonacci numbers which is still correct, but requires exponential space since memoiza- 
tion is lost.

Lazy evaluation in C++ has been studied extensively in the literature (eg. [SchOO], [MSOO], 
[Kel97]) where all implementations are restricted to lazy lists. We introduce a general type 
of lazy elements of an arbitrary type, which not only corresponds to call-by-name (usually 
achieved by replacing a type A  by () —> A), but also guarantees that elements are evaluated 
once, as required by true lazy evaluation. There is no need to a new delay construct to C++ 
since our implementation of laziness makes use of the existing language of C++ only.
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Figure 4.4: Continuation of syntax diagram of the A-term grammar



Chapter 5

Implementation of The 
Parser-Translator Program

In the previous chapter, we have discussed the design of the Parser-Translator program. 
Now we describe the implementation. We write in the following PTP as reference to our 
Parser-Translator program. The PTP does two jobs which are parsing and translating. When 
an expression representing a simply typed A-term is input to the PTP, it parses the input 
and translates it to a sequence of C++ statements. An overview of how the PTP works are 
shown in the Figure 5.1. More details of the parsing and translation done by the PTP will 
be discussed in the coming sections. We will also give an example of a simply typed A-term 
input to the PTP, and discuss the translation and execution of the translated code along with 
the representation of the memory allocation. This information is important in proving the 
correctness of the translated code because we build the mathematical model from the formal 
semantics.

P a r s e r - T r a n s l a t o r  P r o g r a m  

(Parting  a n d  t r a n s l a t i n g ) T r a n s l a t e d  code 
w r i t t e n  I n  a  C++ 
source t i l e

I n p u t o u t p u t
X -  term —
e x p r e s s i o n
(string)

c o m p i l e d

This section i s  n o t  p a r t - - -- - - -- - -
o t  t h e  I m p l e m e n t a t i o n  o f  
t h e  P T P . J u s t  t o  s h o w  t h a t  
t h e  t r a n s l a t e d  c o d e  w i t h  o t h e r  
C++ s t a t e m e n t s  c a n  h e  c o m p i l e d  
t o  p r o d u c e  a n  o u t p u t  f

M a c h in e  L a n g u a g e

Figure 5.1: Overview of the Implementation of the PTP
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5.1 Parsing Phase

PTP creates a parser that parse an input of A-expression following a specific syntax. The 
parser calls the scanner to obtain the tokens of the input string and assembles the tokens 
into a parse tree. The tree is then passed to the translation phase where a sequence of C++ 
statements, equivalent to the input A-expression, will be generated. Before explaining in 
detail the parsing phase, it is important to introduce some of the concepts needed in the 
discussion of this section. A precise definition of what it means for a sequence of C++ 
statements to be equivalent to a A-term as well as a rigorous proof that equivalence holds for 
the code generated by the PTP will be given in the next chapter.

5.1.1 General Concepts in Scanning and Parsing

The purpose of scanning and parsing is to recognize the structure of the code disregarding 
the meaning of it. Scanning which is also known as lexical analysis simplifies the task 
of the parser by reducing the size of the input. It reads the input as single characters and 
groups them into tokens ( the smallest meaningful units in a program). Tokens are the basic 
building blocks of a program such as identifiers, digits, keywords and other symbols. We 
use the notation of regular expression to specify tokens. A regular expression generates a 
regular set where regular sets are sets of strings that can be defined using three operations: 
concatenation, alternation and Kleene star. Concatenation is used when a regular expression 
generates two regular expressions next to each other where one string is followed by (con­
catenate with) another string. Alternation provides choice from a finite set of alternatives for 
the regular expression usually using the symbol (|). Kleene star is used for arbitrary (pos­
sibly zero) many repetitions of a regular expression. For example in C++, a digit .sequence 
can be generated by the following regular expression:

d i g i t  - - >  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  
d ig i t_ s e q u e n c e  - - >  d i g i t  d i g i t *

Notice that in the above regular expression, the three rules are applied, d i g i t  is defined as 
being a digit, and the d ig i t_ s e q u e n c e  makes use of concatenation and Kleene star to 
generate integers like 11,12,19 and so on. To generate a valid string, the regular expression 
is scanned from left to right choosing alternatives and repetitions.

Regular expressions are suitable for defining tokens but are not able to specify nested con­
structs which is important in programming languages. Tokens are translated by the parser 
into a parse tree. This parse tree represents higher-level constructs in terms of their con­
stituents which are combined based on a set of potentially recursive rules known as a 
context-free grammar. Every rule in a context free grammar is known as a production. 
The symbol on the left hand side of a production is known as a variable or non terminal. 
Terminals are the symbol that make up a string derived from a grammar and they cannot 
appear on the left hand side of a production. The Start symbol names the construct defined 
by the overall grammar and it is usually the non terminal on the first production.

Context free grammars use notation called Backus-Naur Form or BNF in honour of John 
Backus and Peter Naur . BNF when augmented with extra operators such as concatenation
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(|), Kleene star(*), Kleene plus (+) and meta-level parenthesis of regular expressions is 
called extended BNF (EBNF) [IS096]. For example, a C++ identifier can be generated by 
the following production rules:

i d e n t i f i e r  - ->  n o n d i g i t  | i d e n t i f i e r  n o n d i g i t  | i d e n t i f i e r  d ig  
n o n d i g i t  - - > _ | a | b | c | d |  . . .  | z

| A | B | C | D | ...| Z
d i g i t  - - > 0 | l | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Using the production rules above, we can generate identifiers such as name, f  i r s t_ n a m e , 
ro o m l and so on. The non terminal identifier is the start symbol. The production rule 
for identifier make use of the recursive construct and alternation to define it. The parser 
will organize the tokens such as identifier, digit and nondigit into a parse tree based on the 
grammar above. For example the parse tree for identifier rooml is shown below:

i d e n t i f i e r

i d e n t i f i e r

n o n d i g i t

i d e n t i f i e r n o n d i g i t

n o n d i g i t n o n )

Figure 5.2: Parse tree for identifier rooml

The grammar is parsed using the LL parsing technique. LL parser parses input from Left 
to right and constructs a Lefmost derivation of the expression. An LL parser is called an 
LL(k) parser if it uses k tokens of look-ahead when parsing a statement. Among the LL(k) 
grammars, LL(1) grammar is very popular because the corresponding parser need only to 
look at the next token to make their parsing decision. As mentioned in the previous chapter, 
PTP is developed using the Spirit. The Spirit parser framework is an object oriented re­
cursive descent parser generator framework where the parser objects are composed through 
operator overloading and the result is a backtracking LL(oo) that is capable of parsing rather 
ambiguous grammars’
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5.1.2 Parsing a statement

Spirit allows us to approximate the syntax of EBNF completely in C++. So, the grammar 
given above can be written as:

i d e n t i f i e r  = n o n d i g i t  >> * ( n o n d ig i t  | d i g i t ) ;  
n o n d i g i t  = c h _ p ( '_ ' )  | a lp h a _ p ;  

d i g i t  = + d i g i t _ p ;

Notice that from the grammar written above, left recursion is avoided in the rule for identi­
fiers by making use of the sequence operator (>>) and the Kleene star instead. Grammars 
using Spirit should eliminate direct and indirect left recursion to avoid the parser entering an 
infinite loop. To simplify the digit and nondigit rule we make use of the predefined parser in 
Spirit such as d i g i t _ p ,  a lp h a _ p  and ch_p. d ig i t_ j?  parses digit, a lpha_ j?  parses 
alphabetical characters and ch_p  parses any single character. The Kleene plus(+) in the 
digit rule means that the digit can appear one or more times. An overview of how a state­
ment is parsed is shown in the Figure 5.3

END

Linear Input Stream 
(int->int) k =\int x .in t x*x;

Translated
code

TREE MATCHPARSER

ABSTRACT
SYNTAXTREE

SCANNER

TRANSLATION
MODULE

Figure 5.3: Overview of how parsing is executed

In the Figure 5.3, the linear input stream of data is read sequentially by the scanner from 
the start to the end. The parser does the work of recognizing the input read by the scan­
ner by attempting to match the input with the grammar rules. The parser reports the suc­
cess or failure of the match through a tree_match object, which we use in order to gen­
erate a parse tree. More precisely, in the PTP, we generate an abstract syntax tree (ast)
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[Bo02], which is similar to a parse tree. The only difference is that it has the advantage 
of having more directives which can reduce your code in processing the abstract syntax 
tree. When the match is successful, an abstract syntax tree is generated where the trans­
lation module will traverse or parses the tree to get the translated code. The input stream 
( i n t - > i n t )  k = \ i n t  x . i n t  x * x ; when parsed will generate the abstract syntax tree 

shown in Figure 5.4.

lambst

lambtype

nativetype
lambabstract

nativf infixoperator
nativetype

H I

nondigit nondigit

x

Figure 5.4: An abstract syntax tree for the input statement in fig 5.3

Notice that in the Figure 5.4, the arrow (—>•) symbol in the la m b ty p e  and the i n f  i x o p e r a t o r  
is considered the root. The arrow symbol is the root for la m b ty p e  (int—nnt) and the 
i n f  i x o p e r a t  or(*) is the root for its operands. This is due to the directive ro o t_ n o d e _ d  
used to enforce the symbols mentioned as the root node. Also in the abstract syntax tree in 
Figure 5.4, brackets for the function type (int—>int) are not considered as a node in the tree.
This is because the directive in n e r_ n o d e _ d  directs the parser to just take the expression 
in the brackets as the node in the tree. The ro o t_ n o d e _ d  and in n e r_ n o d e _ d  directives 
are directives that only effect the abstract syntax tree. If we do not use the ro o t_ n o d e _ d  
and in n e r_ n o d e _ d  directives in the grammar, the structure of the abstract syntax tree will 
be different where brackets in (int—>int) will be taken as nodes in the tree and the la m b ty p e  
will have three children of the same level. Similarly, the expression (x*x) would have as 
syntax tree the variables and the symbol * at the same level. The structure of the the abstract 
syntax tree without using directives in n e r_ n o d e _ d  and ro o t_ n o d e _ d  can be seen in 
Figure 5.5.
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ivetype nativetype
ibabstract

nativetype infixopera
nondigit

nondigit

x

Figure 5.5: An abstract syntax tree without the directives inner _node and root .node

These directives are useful in simplifying the structure of the tree so as to ease the process 
of traversing and transforming the tree to get the translated code. The complete grammar 
for the A-term coded in Spirit is shown in Appendix A.

The tree_match class has an operator b o o l  () that we can test for a successful match. 
When a full match meaning the parser has successfully parsed all the input, the translation 
module for processing the tree is executed to get the translated code. This phase is called 
translation phase.

5.2 Translation phase

The translation follows the object-oriented method of programming where classes and the 
concept of inheritance are involved in producing the translated code. We also use pointers 
and dynamic allocation of the classes in the memory.

Translation is executed by the PTP in three stages :

1. Translation of the function type.

2. Translation of the A-term.

3. Translation of the expression.
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When the expression representing a A-term is input to the PTP following the syntax dis­
cussed earlier, it undergoes several stages of translation to produce the translated code. First, 
the function type is determined and the abstract class for the function type is defined. The 
A-term is then defined as a derived class for the function type abstract class where the vir­
tual operator() is overloaded in the A-term class. Finally, the A-expression is translated as an 
expression that involves instantiating the A-term class.

As mentioned in the previous chapter, there are two categories of A-terms i.e. the typed 
and untyped A-term. There are two tasks that need to be done for the translation i.e. class 
definition and A-expression generation. Thus there are two kinds of method for the typed 
and untyped A-term that correspond to the two tasks. We call these modules class _def() and 
term_exp(), which correspond to class definition and A-expression respectively. Shown in 
Figure 5.6 and Figure 5.7 is the general idea of how several forms of the typed and untyped 
A-term are translated.

Typed A-term class definition term expression
abstraction (XxA • r) 
application (r s)

application^ u)

r.class_def()
r.class_def()
+s.class_def()
r.class_def()
+u.class_def()

r.term_exp()
’(’ + + ’(’ + r. term_exp() + ’)’ + ’)’
+ ’(’ + s.term_exp() + ’) ’
’(’ + + ’(’ + r.term_exp() + ’)’ ’+’ ’)’ 
+ ’(’ + u.term_exp() + ’) ’

Figure 5.6: Translation of the typed A-term

Untyped A-term class definition term expression
number — number
identifier — identifier
r infixoperator s r.class_def() r.term_exp() +  infixoperator

-1- s.class_def() + s.term_exp()
r  infixoperator u r.class_def() r.term_exp() +  infixoperator

+  u.class_def() +  u.term_exp()
t infixoperator u lclass_def() lterm_exp() +  infixoperator

+  ii.class_def() +  u.term_exp()
t infixoperator s £.class_def() tterm_exp() +  infixoperator

+  s.class_def() +  s.term_exp()
fiinctionsymbol(f i , £2 ? • • •»tn) ti.class_def() +£2 -dass_def() functionsymbol + ’(’ +

+ . . .  +  £n.class_def() 11 ,term_exp()-|-t2 term_exp() 
. . .  +  fn .term_exp() + ’)’

Figure 5.7: Translation of the untyped A-term

The method term_exp() and class _def() is not the actual method used in the PTP to execute 
the translation. They are just as representatives of the methods that are involved in the men­
tioned tasks. In the Figure 5.6 and Figure 5.7, variables r, s, t  and u  represents typed and 
untyped A-terms. Typed A-terms are represented by variables r  and s, whereas t and u rep­
resent untyped A-terms. The symbol ’+ ’ means concatenation. r.class_def() +  u.class_def 
means the string of class definitions for r produced by the mentioned method is concatenated
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with the string of class definitions for u. Characters that are enclosed in a single quotation 
are just strings such as and ’(’•

5.2.1 Translation of the Function Type

For each A-term input to the PTP, the type is defined first. In PTP there are two kinds of 
type that is basic C++ type (eg. i n t , c h a r )  and the arrow type or function type (eg. 
(int-+int)). The type of the term or function is determined based on the left type and the 
right type of the term. How the type of the term is determined in the PTP can be shown in 
the Figure 5.8.

Subterm type = (int->int)

Right type = intLeft type = int

int

=  in
Right type = Subterm type

Term type = (Left type ->  Right type)
= (int->(int->int))

Figure 5.8: How the type of a two argument term are determined by the PTP

In the figure 5.8 we have a two argument A-abstraction Xxm\  y int.r where the term r is of 
the type int. The type int for the variable x  is the left type for the term and the type for 
the subterm Aymt r is the right type for the term. The left type is the input type for the 
term and the right type (subterm type) is the output type for the term. The type for the 
subterm is determined similarly giving an arrow type (int-+int) where the type int for y is 
the left type and the type int for the term r is the right type. Finally the type of the term is 
determined as (int—>-(int—>int)) where the left type is int and the right type is (int-nnt). For 
each function type an abstract class is defined with a virtual operator that will be overloaded 
in the definition of the A-term and the type itself is the type pointers to an object of this 
abstract class. In general, the abstract class of the function type is defined as follows :

c l a s s  t y p e - d a s s n a m e _ a u x
{ p u b l i c  : v i r t u a l  o u t p u t - t y p e  o p e r a t o r  ()

( i n p u t - t y p e  x )  = 0 ;} ;

\\ =0 means it is a pure virtual function

t y p e d e f  t y p e - d a s s n a m e j a u x *
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t y p e . c l a s s n a m e ;

For the type-dassname we make use of letters C and D to represent open and close brackets 
respectively, and an underscore for an arrow. For example, Cint_Cint_intDD means 
(int—* (int—* int)). The input-type and the output Jype make up the type .class -name of a 
function type which can be a basic type or an arrow type. For example, the type .class .name 
Cint_intD represents the function type where the input Jype is int and the outputJype 
is int. Similarly for Cint_Cint_intDD, the input Jype is int and the ouputJype is 
Cint_intD. The definition of the function type is represented in stages. If the function 
type (int-* (int—*int)) is to be defined, the definition will be as follows :

\\This is the definition of (int->int) 
class Cint_intD_aux
{ public : virtual int operator() (int x} = 0;};

typedef Cint_intD_aux* Cint_intD;

\\This is the definition of (int->(int->int)) 
class Cint_Cint_intDD_aux
{public : virtual Cint_intD operator!) {int x} = 0};

typedef Cint_Cint_intDD_aux* Cint_Cint_intDD;
We could use C++ templates in the definition of the function type so as to make the classes 
generic. It would be easier defining A-type by hand using a general C++ template for the 
class corresponding, to the arrow type. But we are not using them in the generated code 
(translated code) in order to obtain a much faster compilation for the code and also making 
the task of correctness proof less complicated.

5.2.2 Translation of the A-term

The concept of inheritance is involved in the definition of the A-term where the function type 
abstract class will be the base class for the A-term class. A general definition of the A-term 
class is as follows:

class
t e r m -c la s s n a m e :  public t y p e - d a s s n a m e ja .u x {
public : [d e c l a r a t i o n  o f  f r e e  v a r i a b l e  i n  t h e  

t e r m ] ;
c o n s t r u c t o r  w i t h / w i t h o u t  a r g u m e n t s ; 
virtual o u t p u t - t y p e  operator() ( i n p u t _ t y p e

b o u n d _ v a r i a b l e )
{ return b o d y  o f  t e r m ; } ;

};

The members of the class are free variables of the term (if there is any) and the overloaded 
virtual operator. The virtual operator in the function type class is overloaded here with the 
bound variable as argument and the return statement here depends on the body of the term. If
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the body of the term is a subterm, then the return statement is an instantiation of the subterm 
class. Otherwise, the return statement is just returning the application of the body of the 
term. The instantiation of the subterm class is done by using the operator new followed by 
the constructor of the subterm class with bound-variable as argument.

For each A-term or subterm, a class will be defined as an instance of the function type class 
and it will be translated in stages. A A-term can be translated into one or more classes 
depending on the arguments of the term such as for a two argument A-abstraction, two 
classes will be defined, one for the term and one for the subterm. The translation of a two 
argument A-abstraction Axint, yint.x * y can be pictured as in Figure 5.9.

Abstract class of type (int->(int—>int)) Abstract class of type (int—>int)

Clnt IntD
Definition of cl 
Cint Cint IntDD

Figure 5.9: The translation of a two argument A-abstraction

In the Figure 5.9, the A-abstraction is translated by defining two classes that is lambda0 
and lambda 1 where lambda0 is the class for the term and lambda 1 is the class for the 
subterm. Each class for the term has a function type abstract class as a base class and the 
virtual operator is overloaded in the term class. For the term A#int, ymi.x * y, there is no free 
variable and its bound variable is x  which means x  is bound in the entire abstraction. This 
term or function accepts an int type argument and returns a function of the type (int—>int). 
So the definition of the term Aa;int, y mt.x * y  is:

class lambdaO:public Cint_Cint_intDD_aux{ 
public:
lambdaO( ) { };
virtual Cint_intD operator ( ) (int x)
{return new lambdal(x);};

};
The returned function is the internal abstraction or subterm Ay mt.x * y. In the subterm, y is 
bound and x  is free. In the subterm class the virtual operator is overloaded by accepting an 
argument y of type int and return the expression x  * y where it is also of the type int. The 
definition of the subterm class is:
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class lambdal : public Cint_intD_aux{ 
public : int x;
lambdal(int x) { this->x = x;}; 
virtual int operator ( ) (int y)
{return x * y;};

};

5.2.3 Translation of the expression

Finally, at this stage the expression input to the PTP is translated into a C++ expression 
which involves instantiation of A-term classes and pointers. In the case of the A-term as 
an application term, the A-term involved in the application is translated in a similar way as 
described above, and it is instantiated by dynamically allocating the memory for the A-term 
class using operator new (eg. new lambdaO ()). This means that the A-term class is 
allocated an address in memory and to reference it we make use of a pointer. We use the 
dereference operator (*) to the constructor of the A-term class(eg. * (new lambdaO () )) 
to access the function of the class. For example, the A-abstraction above when applied 
to 3 and 2 written in our syntax as ( ( \ i n t  x . \ i n t  y . i n t  x*y) " 3 ) ~~2;, which is 
equivalent to ((Aa:mt, ymt.x * y)3)2 will be translated as :

(*( (*(new lambdaO 0)) (3))) (2)
Here are a few examples of the translation of the A-expression :

1) ( in t - > in t )  k = \ i n t  x . i n t  x*x; 
translated to: Cint_intD k = new lambdaO () ;

2) in t  1 = ( \ i n t  x . i n t  x*x)~ /'3 ;
translated to: in t  1 = (* (new lambdaO () )) (3 ) ;

3) ( in t - > in t )  m = ( \ ( i n t - > i n t )  f . \ i n t  x . i n t  f ~ Ax ) ~ ~ ( \ i n t  y . i n t  y + y ) ; 
translated to: C int_intD  m = (* (new lambdaO () ) ) (new lambda2 () ) ;

5.3 The Execution of the Translated Code

There are several areas of the memory that are used during the evaluation of a A-expression. 
Local variables and function parameters are stored on the stack, while instruction code in 
the code space and global variables are in the global space. Registers are used as internal 
housekeeping functions such as keeping track of the top of the stack and the instruction 
pointer. Almost all of the remaining memory is given to the heap. The heap [GJ98] is a 
dynamic memory area allocated by the command new and freed by d e l e t e .  When using 
new, memory for the data the pointer is pointing to is allocated on the heap, and the pointer 
is assigned the address of the location on the heap. The main property of the heap is that the 
memory that is reserved is still available until it is explicitly freed. In the translated code, 
the instantiation of the A-term class is by dynamically allocating them on the heap.

We use an example in order to explain the execution of the translated code. We choose a 
more complex term as an example so as the discussion covers more aspects in explaining
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the execution of the translated code.

The statement to be executed is written as follows in our syntax:

i n t  k = ( ( \ ( i n t - > i n t )  f . \ i n t  x . i n t  f ( f ~ ~ x ) )
~ ~ ( \ i n t  x . i n t  x+ 2 ) )

This corresponds to the A-term: :

int k =  (A/(i",->i“ ), xint. / ( /  x))(Axint.x +  2)3

The function types determined for the A-terms involved in the expression are defined as 
follows:

c l a s s  C in t_ in tD _ a u x
{ p u b l i c  : v i r t u a l  i n t  o p e r a t o r () ( i n t  x) = 0 ; };

ty p e d e f  C in t_ in tD _ a u x *  C i n t _ i n t D ;

/ / D e f i n i t i o n  o f  ty p e  : ( ( i n t - >  i n t )  ( i n t - >  i n t ) )
c l a s s  C C in t_ in tD _ C in t_ in tD D _ a u x
{ p u b l i c  : v i r t u a l  C i n t _ i n t D  o p e r a t o r () ( C i n t _ i n t D  x) = 0 ;  };

ty p e d e f  C C in t_ in tD _ C in t_ in tD D _ a u x *  C C i n t _ i n t D _ C i n t _ i n t D D ;

The classes defined when translating the A-term :

( \ i n t - > i n t ) f . \ i n t  x . i n t  f ( f ~ ~ x )

in the statement above are as follows:

c l a s s  la m b d a l : p u b l i c  C in t_ in tD _ a u x {  
p u b l i c  : C i n t _ i n t D  f ;
l a m b d a l ( C i n t _ i n t D  f )  { t h i s - >  f  = f ; } ;  
v i r t u a l  i n t  o p e r a t o r  () ( i n t  x)
{ r e t u r n  ( * ( f ) ) ( ( * ( f ) ) ( x ) ) ;  };

};
c l a s s  lambdaO : p u b l i c  C C in t_ in tD _ C in t_ in tD D _ a u x {  

p u b l i c  : 
l a m b d aO ( ) { } ;
v i r t u a l  C i n t _ i n t D  o p e r a t o r  () ( C i n t _ i n t D  f )
{ r e t u r n  new l a m b d a l ( f ) ; }

};

In the translation above the A-term is translated as the definition of the classes lambdaO (for 
the term \  ( i n t - > i n t )  f . \ i n t  x . i n t  f "  ( f " x ) ) and la m b d a l (for the sub­
term \ i n t  x .  i n t  f  ( f  ~~x)). The expression f  ( f  ~~x) in the body of the sub­
term is also translated as (* (f ) ) ( ( * ( f ) )  (x) )  using the dereference operator(*) where 
the function f  is applied twice.

The A-term \ i n t  x . i n t  x + 2  is translated as follows :
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class lambda2 : public Cint_intD_aux{ 
public : 
lambda2( ) { } ;
virtual int operator () (int x)
{ return x + 2; } ;

The A statement above will be finally translated as an expression given below :

int k = (*((*( new lambdaO( ))) ( new lambda2( )))) (3);
The statement int k = ( * ( ( * (  new lambdaO ( ) ) )  ( new lam b d a 2  ( ) ) ) )  (3) 
is equivalent to sequence of statements shown below:

CCint_intD_Cint_intDD kl = new lambdaO();
Cint_intD k2 = new lambda2();
Cint_intD k3 = (*(kl))(k2);

int k4 = (*(k3)) (3) ;
For a better explaination of how the expression k is evaluated, we based our explaination on 
the sequence of statements above so as to show the stages of evaluation. The execution of 
the statement can be pictured in the figure 5.10:

The parts of the memory such as the stack for variables and parameters, code space and the 
heap is pictured separately from each other in Figure 5.10, even though we know they are in 
the same part of the memory. The reason for this is to show a clear view of the execution of 
the translated code.

First, the classes of the A-term are dynamically allocated on the heap by the expression 
k l  and k 2  where the operator method of lambdaO creates an instance of la m b d a l. In 
the expression k3, the application of the two A-terms invokes the operator() method that is 
overloaded in lambdaO with the instance of variable f  set to the instance of lam bda2. 
The result of the application of lambdaO to lam b d a 2  is the instance of la m b d a l with f  
bound to k 2 . Expression 3 is evaluated to 3. Then the evaluation comes to the stage where 
the expression of the body of la m b d a l i.e. ( * ( f ) )  ( (* ( f ) ) (x) )  is evaluated.

This evaluation can be shown clearly if we break down the body expression as:

int yl = ( (* ( f ))  ( x) ;  
int y2 = (* (f)) (yl);

In the expression y l ,  the operator() method of la m b d a l is called. This will make a call 
to the operator() method of f  which is bound to the instance of l  am bda2  and apply it to 
3(where x  takes the value 3). This will evaluate to 5. Then the expression y 2 , will make the 
operator method of f  to be called again, which is still bound to the instance of lam b d a 2  

and apply it to y  1  which evaluates to 5 giving the result 7. The evaluation of the expression 
discussed follows the call-by-value evaluation strategy. This evaluation strategy has been 
discussed in the Chapter 3.

We did not include memory management in the translated code. This is due to the difficulty 
of doing memory management when using nested A-terms because we cannot really predict
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Heap

Code Space

operator(f) { 

return new Xx. f(f x ) }

X x. fl[f x)

operator (x) { yl = f ;  
y2 = f  y l; return y2;}

Stacks for local variables 
and parameters

pplied twice 
once injyl and 
second ,m y2)

X x.x + 2

operator(x) { 

return x + 2;
x in  k3

f In kl

Figure 5.10: Memory representation of the execution of the translated code

when the memory are in use or free. But we did mention in our papers that we wanted to 
rely on a garbage collected version of C++.

5.4 Testing of the Translated Code

How do we know that what has been translated is correct and it follows the functional 
method of programming? We answer this question in two ways: in Chapter 6  we give 
a formal correctness for the translation program. However, this proof is carried out with 
respect to a mathematical model of a fragment of C++ and there is no formal proof that this 
model actually reflects the behaviour of C++ correctly (although it is fairly obvious that it 
does). Therefore there is is still a demand for testing the program correctness. In addition, 
testing allows us to assess the efficiency of the program.

Well, first the PTP that has been developed was tested on several types of A-terms from 
simple to complex ones. This was discussed in the previous chapter and it was found that 
the result given by the program are correct when compared with the manual evaluation of 
the terms. Before discussing further, we need to define Church numerals as they are part of
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the testing samples.

Church numerals are the representations of natural numbers under Church encoding. Church 
numerals 0, 1, 2,.., n, are defined as follows in the A-calculus:

0 =  A /.A x. x
1 =  A /.A x. f  x
2 =  A /.A x. f  ( /  x)
3 =  X f . X x .  f  ( f  [ f  x))

n =  A /.A x. f n x

The natural number n is represented by the church numeral n, which has property that for 
any A-terms F  and x,

n F  x  =p F n x

In the following we describe the testing of the translated code with more advanced and 
harder examples. The testing examples are chosen to test the following correctness and 
performance aspects of the programs:

• Correctness:

-  Bound renaming

All examples require a-conversion, that is renaming of bound variables, when 
computed via term rewriting. Our program doesn’t do a-conversion explicitly, 
but only implicitly through the implementation of classes. The tests show that 
this implicit a-conversion is done correctly.

-  Higher-types

In order to test that higher types are implemented correctly, all examples involve 
higher-types, that is variables of a function type. The highest types occur when 
a Church numeral n  is applied to a Church numeral m: n m.  In that case n =
X f  X x . fn x  where /  is of type (Int—>Int)—)• (Int—»Int) and x  is of type Int—>Int. 
Consequently the term n has type ((Int—̂Int)—̂(Int—>Int))->((Int->Int)—>(Int->Int)). 
Even higher types are needed to type k n m  m  etc..

• Efficiency

-  Large results

Evaluating, for example the term n m  succ 0 (where n m  are Church numerals) 
yields the number m n. In this way one easily obtains results that go to the limit 
of the range of floating point number. More dramatically k n m  succ 0 evaluates 
to m nk.

-  Long computations

If in the example above one replaces the successor function succ by the identity 
function (A x .x ), then the results will always 0, yet the computation takes as long 
as with the successor function. In this way pure performance is tested without 
limitations given by the size of the output.
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These tests are based on the execution time of the translated code of the A-terms shown in 
the Figures 5.11, 5.12, and 5.13. We used t 2 , h , . . . ,  t n to represent the church numeral 2, 3 

n and succ to represent a function successor. The Church numerals 2, 3, 4, 5 and 6  are 
applied to a successor function (A x. x  -1-1) and applied again to 0. The term:

sn := tn(- • • (tn SU C C  . . .) 0 =  7lk> v '
k

If succ function is replaced by the identity function, the term is defined as follows:

tn( . . .  (tn identity. . . )  0  =  0  

k

Other computations of the Church numeral are also tested and the term is defined as follows: 

sn11n22 :=  (• • • (*m succ .. .)(*n2 ( . . .  (i„ 2 succ) . . . )  0 ) =  n * 1 +  n 2k2
'------v— — ' v v '

k\ k2

When a Church numeral (eg. t 2 ) applied to a function square (Xx.x * x) and applied to 2 
will give 24 which is represented in the Figure 5.13 as sq|- If the term sq^ is applied twice 
will give (2 4)4.

Based on the execution time of the A-terms, the computation of the Church numerals is 
limited up to a certain exponent given as follows:

Church numeral Exponent
2 30
3 19
4 15
5 14
6 11

We say this is because the value of the computation for the term s i 1, s f ,  s j6, s i5, and s j2 

’does not make sense’ ( 0  or negative value) and the execution time is quite long (sometimes
oo). This is due to the complexity increasing as the exponent increases. The range of an 
integer value for the compiler can also be the cause of the limitation of the computation of 
the term.

If one looks at the translated code naively, it seems quite inefficient to introduce a new 
element for each A-term arising. But if one looks at what is really going on, one sees that 
not the A-term is stored , but only the free variables. If we look at A x. x  +  y, the code for 
the class A x. x  +  y is stored as part of the source code and what is stored on the heap is the 
information that we are referring to the class referring to A x. x  +  y.

A more reliable way of verifying that the translation code is correct, is by modeling a sim­
plified C++ compiler that executes the translated code. By this modeling we can prove that 
the translation code is correct for all kinds of A-terms. The next chapter will give a proof of 
the correctness of the translation.
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No. A-terms Output Execution time(sec)
1 . s122 4096 0

2 . <?132 8192 0

3. .1 4S2 16384 0

4. ,1 5
s 2 32768 0

5. <?16S2 65536 0

6 . s 17s2 131072 0

7. .1 8
s 2 262144 0

8 . ,1 9
S2 524288 0

9. ‘20
s 2 1048576 0.046

1 0 . •21
2 209152 0.093

1 1 . .2 2S2 4194304 0.187
1 2 . .2 3

s 2 8388608 0.39
13. .2 4

S2 16771216 0.765
14. .2 5S2 33554432 1.531
15. .2 6S2 67108864 3.031
16. s'27s 2 134217728 6.078
17. .2 8

2 268435456 12.14
18. .2 9

s 2 536870912 24.375
19. .3 0

5 2 1073741824 48.562
2 0 . , 3 ls2 -2147483648 97.109
2 1 . .3 2

s 2 0 194.218
2 2 . .8

S3 6561 0

23. .9
3 19683 0

24. .iO
3 59049 0

25. . I t
s 3 177147 0.015

26. .1 2
s 3 531441 0.031

27. s 13s 3 1594323 0.062
28. . u

s 3 4782969 0.156
29. .1 5

s 3 14348907 0.484
30. . i 6

s 3 43046721 1.421
31. s 17s 3 129140163 4.265
32. .is

s 3 387420481 12.812
33. . i 9

s 3 1162261467 38.453
34. .2 0

s 3 -808182895 115.281
35. s 4 1024 0

Figure 5.11: Table of Execution Time for the Samples of A-terms
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No. A-terms Output Execution time(sec)
36. S4 4096 0
37. s 7

s 4 16384 0
38. S4 65536 0
39. o9

s 4 262144 0015
40. s10s 4 1048576 0.031
41. s11 S 4 4194304 0.109
42. q12s 4 16777216 0.453
43. S4 67108864 1.859
44. o l4s 4 268435456 7.422
45. s 15

4 1073741824 29.672
46. s165 4 0 118.687
47. <t17s 4 0 o o

48. O4
s 5 625 0

49. 5 3125 0
50. s65 15625 0
51. s75 78125 0
52. q®

5 390625 0.015
53. q9

s 5 1953125 0.046
54. qiOs5 9765625 0.25
55. q11

s 5 48828125 1.218
56. s 5 244140625 6.14
57. qi3

S5 1220703125 30.671
58. q14

5 1808548329 153.406
59. ql5

s5 0 o o

60. q4s6 1296 0
61. q5s6 7776 0
62. q6s6 46656 0
63. s6 279936 0.015
64. q8s6 1679616 0.031
65. q9s6 10071696 0.234
66. q10s6 60466176 1.437
67. q t ls6 362797056 8.609
68. qi‘2s6 -2118184960 51.609
69. s 3 20195 0
70. q10s3 59561 0

Figure 5.12: Continuation of the Table of Execution Time for the Samples of A-terms
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No. A-terms Output Execution time(sec)
71. S n y

3a 177659 0

72. o!2a
32 531953 0.31

73. o l3 y
32 1594835 0.46

74. „14y
32 4783481 0.171

75. s 15
3 2 ,.

14349419 0.484
76. s 16S32 43047233 1.468
77. S 1?y32 129140675 4.375
78. o l8 y

32 387421001 13.125
79. „19y

32 1162261979 39.359
80. o209

32 0 0 0

81. 0I811
32 1162263515 38.796

82. 0I812
32,u 1162265563 38.812

83. „18liJ
32 1162310619 39.218

84. 0I819
32 1166242779 39.39

85. 46
*5- 4721 0

8 6 . VsL 94509 0.015
87. s ss 5 a 456161 0.015
8 8 . S 9  54 2215269 0.062
89. S101U

54 10814201 0.281
90. s 11115 4 33022429 1.343
91. s 1212

54 260917841 6.609
92. o l3 13 

54 j 1287811989 32.546
93. ,1 4 ld

54 1875657193 155.281
94. sq\ 65536 0

95. (sg4 ) 4 0 0

96. »18 ,-11 
?3 *2 0 38.802

97. ,‘18 ,-12 
*3 2 0 38.913

98. *3 *2 0 39.39
99. •7  -7

*5 *4 0 0.014
1 0 0 . ,'8  ,'8  

*5 *4 0 0.015
1 0 1 . « 5  «4 0 0.0612

Figure 5.13: Continuation of the Table of Execution Time for the Samples of A-terms



Chapter 6

Correctness Proof

In order to prove the correctness of the translation we give a formal semantics of the trans­
lated code by building a mathematical model of it. The mathematical model is based on 
the execution of the translated code. First we give a denotational semantics of the typed A- 
calculus. Then the correctness of the implementation of the typed A-calculus by C++ classes 
is proved with respect to the denotational semantics. The correctness proof of the translated 
code is based on a Kripke-style logical relation between values (the results of evaluating 
expressions) and denotations (elements of the model).

The approach of using denotational semantics and logical relation in proving program cor­
rectness has been used before by researchers such as Plotkin [Plo77], and many others. The 
method of logical relation can be traced back at least to Tait [Tai67] and has been used 
for a large variety of purposes (eg. Jung and Tiuryn [JT93], Statman [Sta85], and Plotkin 
[PI0 8 O]).

Before we start building a mathematical model of the translated code, we list some of the 
mathematical preliminaries that will be frequently used in this chapter. The presentation of 
the proof follows the style of Winskel [Win93].

6.1 Mathematical preliminaries

Mappings

i) If X , Y  are sets, then a list m  = (a?i : y i ) , . . . ,  (x n : yn) E list(X x Y )  is considered as 
a finite map m  from X  to Y  which is defined as follows: If x  G X ,  x  = X{ and x  /  Xj 
for j  > i, thenm(x) := yi. If x  ^  X{ for allz =  1 , . . . , n, thenm(x)  is undefined.

ii) We define dom(m) as the domain of m  which is, if m  is as above, {a;i,. . . ,  xn}.
iii) If x  6  X ,  y G Y ,  then m[x 1—> y] := m , (x,y),  i.e.the extension of the list m  by 

(a;, y). Since in the way we have defined lists to denote finite functions, m, (a;, y) will 
denote the function which maps x  to y and all other variables to what they are mapped

89
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to by m.  Note that dom(m[a; i—> y]) =  dom(ra) U {x} and

m[x ^  y\(x') =  {  ^ e™ise

6.2 Definition of the Typed A-calculus

We briefly recall the syntax of the simply typed A-calculus which was discussed in detail in 
Chapter 3. The syntax is similar to the one given in Section 3.2.8 (church style), but differs 
slightly because we have a single base type of integers, and terms include the construct of 
applying function names to argument terms.

6.2.1 Types

The set Typ of types is inductively given by :

i) Int G T yp.

ii) if A, B  G T yp, then A  -» B  G Typ.

An alternative way of defining the set T yp  is by means of a recursive domain equation :

Typ={Int}+TypxTyp

Remark: Note that in the clause ii) of the set Typ of types, the ►” is a syntactic symbol of 
the object language in the domain equation given above. The ”+ ” and ”x ” are symbols of 
the metalanguage denoting the set theoretic operations of disjoint sum and cartesian product 
respectively. The definition of types above is essentially the same as that given in Section 
3.2.8. There the A-calculus was based on base types, of which we use in this chapter only 
the type Int of integers.

6.2.2 Terms

The Terms of the A-calculus are defined as follows:

i) n  is a term (n G N).

ii) # is a term (x G Var, where Var = String).

iii) r s  is a term, if r, s are terms. (Term r  is applied to term s).

iv) Xx : A.r  is a term, if x  G Var, A  G T yp, r  is a term. (A-abstraction).

v) rn] is a term (abbreviated as f[r\), if /  G T  and r* are terms. Here T  is a set
of names for computable functions on N). The function denoted by /  is written as 
[/]■
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The above can be written as a domain equation as follows:

Term =N+Var+Term x Term+Var x Typ x Term +  T x  List(Term)

This definition of terms corresponds to the definition of terms given in the page 36. In 
addition is the fifth term which is a function applied to a list of terms.

6.2.3 Taping

A Context T is a map from variables to types i.e. a list of variables and their type : 

Context=list(Var x Typ)

Contexts will be denoted as T =  x i  : A \ , . . . ,  x n : A n

The typing rules below correspond to the third style of typing described in Section 3.2.8. 
The Typing rules of the simply typed A-calculus are :

i)

T, x  : A  h x  : A

ii)

T h n : Int

iii)
F,x  : A h  r : B  

T h Xx : A.r  : A  -> B

iv)
F h r :  A - > B  T h  s : A  

T h rs : B

v)
/  : Int x . . .  x Int —)■ Int T h r\  : Int. . .  F h rn : Int 

T h / [ n , . . . , r n] : Int

The first rule says that in the context A, the variable x  can be given a type A, provided it is 
assigned this type in the context. The constant n  has preassigned type Int. The third rule is 
for an abstraction where we follow the variant of church-style typing discussed on the page 
45. If in context T, extended by x  : A  we have r  : B,  then Xx : A.r  has type A  —> B  (in 
context T). For an application term r s  we have the following rule: if r  in context T is of 
type A  -» B  and s in the same context is of the type A , then the term r s has type B  in the 
context. The fifth rule is an additional rule to the typability rules on the page 44. The rule
involves a function with a list of arguments or terms, where we assume the list o f  arguments
or terms is of type Int. Then the type of the resulting term is Int.
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6.2.4 Denotational Semantics 

•

The sets of functionals of type A  denoted as D(A) are defined as follows :

i) D(Int) =  N

ii) D(A -> B) =  { / | /  : D(j4) -» D(B)}

iii) D := i+J^exyp D(A) where (+J denotes disjoint union.

A Functional Environment is a finite mapping

£ : Var -+ D

We define FEnv := Var —>fin D to be the set of all functional environment. If V is a 
context, then £ : T means Vx G dom(r).£(x) G D(T(x)).

For every typed A-term T h r : A  and every functional environment £ : T the denotational 
value [r]£ G D(A) is defined as follows:

(0 H £  = n
(ii) [a;]£ =  £(®)
(iii) [r sj£ =  [r]£ (H £ )
(iv) [Ax : A r]£ (a ) =  [r]£[x* a]
(v) lf[r\J = [ / K H O

An Implementation of the typed A-calculus is an (implementation of an) algorithm com­
puting for every closed term r  : I n t  the value [r] G N.

6.3 Implementation by C++ Classes

As mentioned in the previous chapter, the A-term that was input to the parser, will be trans­
lated to C++ statements which involves the creation of C++ classes for the A-term. The 
created classes depend on the A-term. The more complex the term is the more classes will 
be created. When the class is instantiated, an address of the class will be stored on the heap. 
Further instantiations of other classes will create further objects on the heap. Variables will 
be assigned addresses of the objects created on the heap.

Every class is instantiated by calling the constructor of the object i.e. the name of the class 
with or without any arguments. The body of the A-term is associated with the application 
in the syntactic sets of this translated code. Based on the syntax of this translated code we 
distinguish each entity of the syntax by grouping them into syntactic sets.

The list of syntactic sets associated with C++ classes is as follows:

• Addr = Int
These are addresses (Addr) of classes or variables on the heap.

• Constr = String
An element of (Constr) is a constructor or name of a class.



6.3 Implementation by C++ Classes 93

• Val = Int + Addr
A value (Val) is either an integer or an address on the heap.

• App = Int + Var + T x  list(App) + App x App + Constr x list(App)
This is the same as the definition of Term above.
An application (App) can be any of the following:

-  Int

-  Var

-  T  x list(App) e.g. f ( x ,  y, z)

-  App x App e.g. r s.

-  Constr x list(App) e.g. new lambdal(x) or new lambdaO()

• A bst =  V arxT yp  x C ontext x App
An abstraction (Abst) corresponds to the body of a class. Classes occurring in this 
setting consist of instance variables and one method o p e r a  t o r  () (A x) { . . .  }. 
They are therefore given by the variable bound by the operator method, the type of 
that variable, an application term which is the body of the operator method, and a 
context which describes the instance variables of the class.
Types such as Int —> Int, which is an arrow type, will be represented in C++ as strings 
such as C i n t _ i n t D .

• Env = list(Var x Val)
An environment (Env) is a list of variables and their values, or a finite map from 
variables to values.

• Heap = list(Addr x Constr x Iist(Val))
Heap consists of a list of addresses of class names (constructors) and a list of values 
of the instance variables of that class. It is therefore a finite map from addresses to 
pairs consisting of constructors and a list of values of the instance variables.

• Class = list(Constr x Abst)
The set Class of classes consists of list of names of classes (constructors) and the
abstraction term describing the body of that class. It is therefore a finite map from
constructors to Abst.

We assume that every /  € T  is given by a side effect free C++ function.

6.3.1 The E valuation  o f the A-terms in  C++

When a A-term r is evaluated in an environment Env, then for all A-terms s which are A- 
abstractions involved in the evaluation of r, elements on the heap (Heap) will be created. 
They will contain the constructor of the class representing the translated A-term, and values 
for all the free variables of s. Therefore the evaluation will take an element of Env, and an 
application term (element of App), and compute a value (element of Val) and an extended 
heap.
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If a value is an address, the meaning of that address will be looked up in the given class 
environment C:Class.

Thus the functionality of the evaluation function (eval) is as follows:

eval: Class ->Heap-)>Env-»App->ValxHeap

In case of function application, where one value is applied to another, again, during the 
computation, the heap will be extended. So the application function takes a heap, two values, 
and returns a value and an extended heap. Thus the functionality of the application function 
(apply) is as follows:

apply: Class ->Heap-»Val-»Val-»ValxHeap

Note that the function eval and apply depend on the class environment, but they do not 
change it. Moreover in the recursive definition of eval and apply, the argument C:Class is 
not changed in the recursive calls. Therefore we drop the class argument in order to simplify 
the notation. We write

evalpa  instead of evalC p a

and

apply H  pa  instead of apply C H v w

The reason why the class environment C  does not change is that classes are built during the 
parsing phase only (see Section 6.3.3). In the evaluation phase they are only looked up but 
not modified.

In presenting the evaluation rules we will follow the convention that

• n range over numbers N

• x range over variables Var

• a ,b  range over application App

• v , w range over values Val

• k  range over address Addr

• H  ranges over Heap

• c range over constructor Constr

• C  range over Class

• A, B  range over Type

• p range over Env
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The meta variables we use to range over the syntactic categories can be primed or sub­
scripted. For example, H, H \  H", stand for heaps, C, C \  C", C\ stand for classes and 

v' stand for values.

The recursive rules for the evaluation of A-terms are as follows:

Evaluation of an applicative term which is a number

eval i f  77 n =  (n , H ) (6.1)

Thus any number is evaluated to itself without any change to the heap.

Evaluation of an applicative term which is a variable

eval H  77 x  =  (77(a), H)  (6.2)

Thus a variable evaluates to its content in an environment 77 without any change to the heap. 

Evaluation of an applicative term which is a function with a list of arguments

evalff»j/[3 | =  ([/](« ) , H') (6.3)

where
(n, H')  =  eval* Hr} a 

The auxiliary function eval* is defined by

eval* H  77 ( o i , a 2 , . . . O j f c )  := ((ni ,n2, . . .  , n k) , H r)

where
eval #7701 =  ( n i ,Hi )  

eval Hi  77 a2 =  (ti2, H 2)

eval 77 a* =  {nk,H')

A  function /  with a list of arguments evaluates to [ / ]  applied to the result of evaluating the
arguments. The arguments need to evaluate to numbers, and the evaluation will result in an
extended heap H '. H'  is unchanged because /  G T  has no side effect.

Evaluation of an applicative term which is the application of one term to the other

eval H  rj (a b) = apply H " v w — (t/, H m) (6.4)



6.3 Implementation by C++ Classes 96

where
eval i f  77 a = (v,H')  

eval H'  77 b = ( w , H " )

Thus an application of one term a to another term b is evaluated by first evaluating the 
application term a giving a value v on the extended heap H 1. Then the second application 
term b is evaluated with the value on the heap H ’ giving a value w on the extended heap H " . 
Then the function apply is used which computes the result of applying v to w.

The definition of apply in detail is shown as follows :

apply H  k v = eval H  77 a (6.5)

where H(k)  =  (c,w),

C(c) =  (x : A;y  : B;a)  (assuming c € dom(C))

dom77 a =  {x, y} 

r}(x) =  v 

viVi) =

So apply is only defined if the first value is an address k on the heap. Assume it is, and 
its class is c, and the values of the instance variables are w. Assume the class name c is in 
the domain of the class environment C, and the corresponding class denotes the abstraction 
(x : A \ y  : B;a).  Then the operator () method of this class is to be applied to the 
second value v (argument of apply). This is done by evaluating a in the environment where 
the variable x  is mapped to v, and the instance variables are mapped to the values given on 
the heap for address k. This will result in an extension of the heap.

Evaluation of A-term where the applicative term is a constructor with a list of argu­
ments

eval f f  77c[a] = (k, H'[k >-»■ c[v\) (k € Addr, v G Val) (6.6)

where eval* H  77 a = (t/, H 1)

and k = new(H1) (new(H1) is an address not in dom(Jf'))

Thus the evaluation of a constructor c with its arguments will result in first evaluating the 
arguments of the constructor in sequence. Then a new element is created on the heap with 
constructor name set to c and the instance variables set to the evaluated arguments of the 
constructor. The value returned is the new address created on the heap.

In all other cases for the application, it is termed invalid and an error will be returned.
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Lemma 1:

i) eval Hr] a  =  {v,H')  = >  i f  C if '
ii) apply i f  v w =  (v', if') = *  i f  C if '

iii) eval* i f  77 a =  (ft, if') = >  i f  C if'

Proof of i) ii) iii) by simultaneous induction on the definition of eval and apply.

i) Proof by induction on the definition of eval:

Cases :

1) a =  n (when the applicative term is a number):
eval i f  rj n =  (n, i f )

2) a =  x (when the applicative term is a variable):
eval H t) x =  (r}(x),H)

3) a =  f[a\  (when the applicative term is a function with a list of arguments):
eval Hrf f[a\ =  ([/](n ), ff') 

where
eval* H  7] a =  (f i , H')

By induction hypothesis (iii), H  C H r.
4) a =  oi, 02 (when one applicative term is applied to another applicative term):

eval H  7] (ai <22) =  (v', H ’") 
where

eval Hrj a \  =  ( v , H’), 
eval H* r)a,2 =  (w, if"), 
apply H" rjvvu =  (v1, H m)

By induction hypothesis (i), H  C H ' C H" and by induction hypothesis (ii), 
H" C H"r

5) a =  c[a\ (when the applicative term is a constructor with a list of arguments):
eval i f  77 c[a] =  (k,H'[k  c[n]])

where
eval* H  77 a =  (ft, H')  
k =  new (if')

By induction hypothesis (iii), i f  C. H* C H'[k *-+ c[n]]

ii) Proof of apply by giving the detailed definition of apply :

apply H k v  =  (7/, if') 

where k G dom(if),

eval i f  (z, y 1—> v , w)a =  (t/, if')

We know : i f  (k) =  (c, w)  and

C(c) =  (x : A; y : B; a)

By induction hypothesis (i), i f  C i f '

iii) Proof by induction on the definition of eval*.

Cases :
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1) ® — D (when the list of arguments is an empty set, i.e, no arguments):
eval* Hr}\\ =  ([],#),  therefore# =  # '  C # '

2 ) a = a : b :
eval* H  r) [a : b] = ([n : n], H")  

where
eval* Hr)a  =  (n, # ')  
eval* H ’r )b = (n ,H " )

By induction hypothesis (i), #  C # ' and by induction hypothesis (iii, # '  C H " .

Thus we conclude Lemma 1.

Recall that the true signatures of eval and apply are as follows :

eval: Class —»Heap—»Env-»App—>Val x Heap 

apply : Class —>Heap—»Val—> Val—> Val x Heap

We write evalc Hrj a and apply ̂  H v w  if the argument C: Class is to be made explicit.

6.3.2 M odelling the Parser-Translator Program

The parser-translator program (PTP) described in Chapter 5 takes as input a string repre­
senting a typed A-term and outputs corresponding C++ class definitions. In order to simplify 
things and to concentrate on the most important aspects of the problem we assume that the 
input is given as an abstract term rather than a string. The parsing from a string to a term is 
a traditional parsing problem which is of no interest here. What is interesting is the process 
of creating a system of C++ classes that represents a A-term.

In order to give a recursive description of this process, we must assume that the term in 
question is not the first term being parsed, but other terms (or subterms) have been parsed 
before having created a system of classes. Furthermore, if the term has free variables, then 
the types of these variables must be fixed by an appropriate context. Therefore, the parser P 
(corresponding to the parser-translator program) has the following functionality:

P : Class—>Context—>Term -* App x Class

In the recursion definition of Pc T £ above, we do a case analysis on the possible forms of 
the term t:

Parsing when the term is a number:

? c T n  = {n,C)  (6.7)

Thus the parsing of a number will give the value of the number and an unchanged class C. 

Parsing when the term is a variable
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Pc r  x  = (x,C)  (6 .8 )

Thus the parsing of a variable will give the variable and unchanged class C.

Parsing when the term is a function with a list of arguments:

P c r / R  =  (/[o |,C") (6.9)

where
P*c r  r = {a,C')

Thus the parsing of a term that has a function with a list of arguments will result in the 
extended class of the function with the list of applications where the list of applications will 
be parsed recursively first.

The recursive definition of P* is:

P*C T (ri,r2, . . . ,rfc) =  ([ai, o2, . . . ,  a*], C')

where
Pc r  r\ = (ai, Ci)

Pci r r2 = (̂ 2, C2 )

Pcfc_! r  rk =  (ak, C ')

Parsing of an application:

Pc r  (r s) = (a 6, C") (6.10)

where
P c r r - l a , ^ )  

p'c r  s = (b,c")

Thus in the case of parsing a A-term which is an application, the first term will be parsed first 
giving a resulting term a and an extended class C'. Then the second term with extended class 
C' (from the parsing of the former) will be parsed giving a resulting term b with extended 
class C ". The resulting term will be a 6  and the class will be C " .

Parsing of a A-abstraction:

Pc  T (Xx : A.r) = (<c[y\, C'[c {x : A; T; a)]) (6 .11)

where y =  dom(T), Pc T [sp>§ A] r = (a, C '), and c =  new C'  meaning that c is a name 
of a class that is ’’new” i.e. has not been used before.
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Remark : we only generate c[x] G App with x  G list(Var) and not c[a] with arbitrary 
a G list(App)

Lemma 2:

i) Pc  r  r =  (a, C') = >  C Q C1
ii) P*c r r =  (a,C') = > C C C '

Proof of Lemma 2 by induction on r  respectively f.

i) Proof by induction on A-term r.

Cases on the term r:

1) r =  n  (when the term is a number):
Pc r  n =  (n, C)

2) r =  x  ( when the term is a variable):
Pc  r  r =  (a?, C)

3) r =  f[r\  (when the term is a function with a list of arguments):
pcr m  = ( m , c )

where
P*c r  r  =  (a, C')

By induction hypothesis (ii), C C C'
4) r =  r \ , r 2 (when the term is an application):

Pc r  (n  r2) =  (a 6, C') 
where

P c r r 1 =  (o)C')
P a T r 2 = (b,C")

By induction hypothesis (i) applied twice, C  C C 1 and C'  C C"
5) r =  \ x  : A.r  (when the term is an abstraction):

Pc r  (Aa; : A.r) =  (c[y], C’[c t-> (x : A,  T; a)]) 
where
y =  dom(r), Pc (r [a?>i A\) r = (a, C') and c =  new C'
By induction hypothesis (i), C C C 1 and because c £  domfr^C" C C'[c 4  (x :
A,r;a)]

ii) Proof by structural induction on r 

Cases on r  :

1) f  =  Q (when r is an empty list:)
P * c r o  =  (0, c )

2 ) r : r :  
P*C T / [ r  : f] =  ([a : a\,C") 

where
Pc r  r =  (a, C') 
p*c r  [r] =  ([3], C")

Thus by induction hypothesis (i), C  C C  C C'  and by induction hypothesis (ii), 
C  C C"

Therefore Lemma 2 is proven.
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6.3.3 The Correctness of The Translated Code

The correctness proof of the translated code is based on a Kripke-style logical relation be­
tween the C++ representation of the term (£ Val x Heap) and its denotational value (E 
D(A)). The relation is indexed by the class environment C  and the type A  of the term. 
Since in the case of an arrow type, A B,  extensions of H  and C  have to be taken into 
account, this definition has some similarity with Kripke models. The relation

(Val x Heap) x D(A) where A  E Typ , C  E Class

is defined by recursion on A  as follows:

(v, H) n  : •<=>• v = n
(v, H)  / : <=> VC C C H V(tu, d) E Val x D(A) :

(w,H') d =$■ applyc ,H ’vw f(d)

We also set (77, H)  £ :=  \/x E dom r^z), H)  £(x ) e  D(r(®))

Lemma 3:
(v,H) ~ CA d ,C  C C ’, H  C H ’ = >  {v,H') d

Proof of Lemma 3 by induction on A.

Cases:

1) A = Int:
By definition

(*>, H)  ~ £ t n  : = >  v = n

= >  n

2) A - * B  
Assume

(v,H) ~%_+B f ,  (6.12)

C'  C C /;, H 1 C H tl,

and let
(tu, d) E Val x D(A) : (w , H n) d

We have to show : applyc „Hnvw f(d)

Since C C C ' C  C" and H  C H f C H",  this holds by the assumption (6.12).

Therefore the Lemma 3 is proven.

Our main theorem, which corresponds to the usual ’’Fundamental Lemma” or ’’Adequacy 
Theorem” for logical relations, reads as follows:

Adequacy Theorem: If 77 : Env,£ : FEnv,T h r : A, (  : r ,P c F r  = (a, C ') ,C ' C 
C", (77,H)  ~ p 7/ £ ,and H  C H ' , then eval^ 'iT ^a [r]^

^ £ , R .  517y

LIBRARY
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Proof: Let us assume :

77 : Env, £ : FEnv, V h r  : A, £ : T, PcE r =  (a, C'), 

C ’ C C", (r , ,H)

We have to show :
evalC// H l 77 a

We prove this by induction on the typing judgement r  h r : A  

Cases :

1) r , #  : A h x : A  
Since, by definition,

Pc ( T , x : A ) x  = (x , C ),

we know a = x  and C' = C
Furthermore, by the definition of (77, H) x.A  ̂ £,
we know :

{ri{x),H) £(z)

Since evalc" H'  rjx = (r}(x),H') and [#]£ =  £(#)> 
we have to show :

(r)(x),H') ~g" f(z)

But this follows from (6.13) using Lemma 3 and the fact that C — C'  
H  C H '

2) r  h 7 i: Int
Since by the definition of the parser,

P c  T n  =  (n ,C ),

we know a = n  and C = C'
Since, evalc" H 1 rjn = (n, H 1) 
and, by definition [n]£ =  n
we have to show : (n, H ’) n
This hold by definition of ~ int

3)
T ,x  : A  \~ r : B  

r  h Xx : A.r : A  -+ B
Since, by definition,

Pc T (Aar: A.r ) =  (c[dom(r)], C[c (x : A\ T; a')])

where Pc T [x \ - ^ A \ r  = (a', C), and 
c =  new C

We know a = c[dom(r)] and C  C C'  C C"

(6.13)

C C" and
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where C' = C[c t-+ (x : A; T; a')]
We have to show :

evalc// H 'r ja  ~ a ^ b

Assume

evalc" H 1 rj a = {v,H)
= (k ,H "[k^ c[v \ ] )

Hence,

v = k
H  = H"[k^+c[v\\

where

eval*c" H ' t) dom(r) =  (v, H") 
k = new H"

Assume C" C C, H  C H  and (w, H) d 
We have to show tha t: _

apply -  H  v w  f { d )

We know
/  =  [Aa7.r]£ and d G D(A) 

f{d) = [Xx : A .r jf  (d) =  [r}£[x* d]

Since H(k) = H(k)  =  c[v\

and C(c) = C"(c) = (x : A\ T; a1)
We have: _  _

apply- H  k w  = eval- H{x\  dom(F| w\ v) a'c c
We have to prove tha t:

eval- H(x\  dom(r) i—> w',v) a! f (d)  c

Using the induction hypothesis for T, x : A  h  r : B,  H ,

7 /  =  7)[x 1—> w],
£' =  £[x i-» d],

=  T[a; 1—> A], ( where dom(r/) — dom(r) U {a;})
P c T ' r  =  (o#, C).

C C C  holds because C C C '  C C "  C C  

We have to show : _
~p, £'

(6.14)
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i) Let y G dom(r), we have to show :

{ri(y),H) ~ p (y) £(y)

This follows from assumption :

(77, if )  £

and Lemma 3 provided we can show i f  C i f  (since C" C C  holds by assumption)

Proof of i f  C if :
We have i f  C i f ',  by assumption.
Since evalc"' H ' y a = (v, if) ,
we have i f ' C H  by Lemma 1.

Furthermore i f  C i f  by assumption. Hence i f  C H.

ii) (w , f f )  J  d holds by assumption.

All conditions for applying the induction hypothesis are satisfied and we conclude 
(6.14).

4 )
r  h r : A  B  T h s r A  

T h r s : B
By definition,

Pc r(r s) = (e bt C)

where
Pc I > = ( e , C )  

p5 r s =  (6 ,§ )

we know that a = eb  and C1 = C  
Hence, C C C C C "
Assume

(V,h) e
We have to show

evalc" H' r]{eb) [ r j f ( [ s ]0  (6.15)

Since, by definition,

evalc" i f r y(eb) = applyc „ i f  v w

where _
evalc" H' r) e = (v, i f )

evalc" H  rjb = (w , H )

and
[r aK =  [rK ([s ] 0
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Hence we have to show :

applyc » H v w  H £ ( I SK ) (616)

We use the induction hypothesis for T h r  : A  -+ B  and PcIV =  (e, C )

C C C", (holds because C  C C  C C" by Lemma 2) 
fa, if )  ~C" t , H C H '  

thus, evalC" H 'r j e  W £
We g o t :

(v,h) we
We use the definition of we,
we know /  =  [r]£,

C'  C C" , H  C H  hold by Lemma 1, and (w, H)  [s]£ is proved by induction
hypothesis for F h s : A
Hence, we conclude that (6.16) holds.

5)
/ :  Int x . . .  x Int —► Int T h r\ : Int,. . . ,  T h rn : Int 

r  h f [ n  . . . r„ ]  : Int
By definition

P c r / [ f ]  =  ( / H , C )  (6.17)

where
P*c r r  = (e,C)

The detail definition of P*c r f =  (e ,C) are :

P c T n  =  (61,(71)

Pci T r 2 = {e2,C2)

Pcfe_i r  rk = (ek,Ck)

We know that Ck = C , hence Ci C C  C C" _
We know from (6.17), a = /[e], C'  =  C  , hence C  C C  C C"
Assume

fa . fr)  e
we have to show:

evalc// H 1 r]f[e\ [ / ] ( [ r ] f )  (6.18)

Since, by definition
evalc" H' r)f[e\ = d f } {n ) ,H " )

where
eval*c" H 1 rje = (ft, H")

H "  unchanged because /  E T  has no side effect.
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The definition
eval*C" H' r)e = (n ,i7")

is elaborated as follows :
evalc» H'  rjei = (ni,H[)  

evalC// H[ 7/e2 =  (n2, H ’2)

evalC// ^ - 1  r]ek = (n k, H 'k)

where H'k = H"
Hence H C H ' C H ;  C H ^ C . . .  CH'fc 
Therefore, by induction hypothesis ,

evalC" H[ rja [ r j f

that is
( n i , H i )  Ir*K

=>rii =

We have to show :
evalc »H'ri f[e\  [ /] ( |[ r ]0

Since, by definition of,
([/](«),H " )  [/](»)

and
[/](«) = [/](«)

Therefore (6.18) holds.

This completes the proof of the Adequacy Theorem.

Corollary (Correctness of the implementation):

If b r  : Int,Pc r  =  (a, C"), C' C C”, then for any heap H,  evalc” Hr)a = ([r], H ') for 
some H ' D H

Proof: This is a special case of the Adequacy Theorem with T =  0 . Note that (77 , H)  £ 
holds trivially.



Chapter 7

Related Work

It has been discovered by several researches[Kis98], [Lau95] that C++ can be used as func­
tional programming by representing higher-order functions using classes. Our representa­
tion in the translated code is based on similar ideas. There are other approaches that have 
made C++ a language that can be used for functional programming such as the FC++ library 
[MSOO], FACT! [SSOO], [FAOO], Lambda Library [JPOO], Funk library [Hal02] and creating 
macros that allow creation of single-macro closure [Kis98]. We will discussed briefly these 
approaches below.

There are other fragments of object-oriented languages in the literature which are used to 
prove the correctness of programs such as the well known Featherweight Java [AIW99]. 
The model of this language avoids the use of a heap, since methods do not modify instance 
variables. However our model of C++ does make use of a heap which is closer to the actual 
implementation of C++.

7.1 FC++ Library

FC++ is a library for doing functional programing in C++. The library comprises of a gen­
eral framework or functoids and about 100 common/useful functions. FC++ is claimed to 
be different from other libraries which provide either syntax support (such as ’’lambda” op­
erator for anonymous functions) or a framework for expressing higher-order function-type 
[MS03] due to its powerful type system. FC++ offers complete support for manipulating 
polymorphic functions where passing them as arguments to other functions and returning 
them as results. For example FC++ supports higher order polymorphic operators such as 
com pose () which is a function that takes two arguments(possibly polymorphic) and re­
turns a possibly polymorphic result.

FC++ also can be used to embed a lot of the capabilities of modem functional programming 
languages (such as Haskell or ML) in C++. It also comes with a lot of useful predefined 
function which is a large part of the Haskell Standard Prelude and supports lazy evaluation. 
It has lazy list data structure and several functions that operate on this lazy list. It has a 
number of support functions for transforming FC++ data structure into data structures of the

107
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# i n c l u d e < a s s e r t . h >
# i n c l u d e < s t r i n g >
# i n c l u d e  "p r e l u d e . h "

i n t  m a i n (){
i n t  x = l ,  y = 2 , z = 3 ;
s t d : s t r i n g  s = " f o o " ,  t=  " b a r " ,  u = " q u x " ;

L i s t < i n t >  l i  = c o n s ( x ,  c o n s ( y , c o n s ( z , N I L ) ) ) ;
L i s t < s t d : s t r i n g >  I s  = c o n s ( s , c o n s ( t , c o n s ( u , N I L ) ) ) ;

a s s e r t ( h e a d ( l i )  == 1 ) ;
/ / l i s t _ w i t h  m akes s h o r t _ l i s t  
a s s e r t ( t a i l ( l i )  == l i s t _ w i t h ( 2 , 3 ) ) ;

I s  = c o m p o s e ( t a i l , t a i l )  ( I s )  ; 
a s s e r t ( h e a d ( I s )  == " q u x " ) ;  
a s s e r t ( t a i l  ( I s )  == N IL ) ;
}

Figure 7.1: List and compose

C++ Standard Template Library and vise versa. Also, it has operators for promoting normal 
functions into FC++ functoids and supplies indirect functoids i.e. runtime variables that can 
refer to any functoid with a given monomorphic type signature.

FC++ implementation relies heavily on C++ templates and the C++ type system. It does not 
focus on improving the syntax using either the preprocessor (eg., # d e f  in e )  or overloading 
techniques (eg., expression templates). Its value lies on its type system for polymorphic 
function providing a nicer syntactic front-end for defining functions.

An example [MS01] of manipulations of list written in C++ using the FC++ library is shown 
in Figure 7.1

The example given in Figure 7.1 demonstrates the capabilities of FC++ manipulating poly­
morphic functions. The List is parametrized by the type of its elements where in the Figure 
7.1, we see both the list of integers and strings. The t a i l  () function takes a ’’list of T” and 
returns a ’’list of T” where T can be of any type, com pose (f , g) yields a new function 
h such that h  (x) is the same as f  (g ( x ) ). The com pose operator composes two unary 
functions where it can take polymorphic functions as parameters and return a polymorphic 
function as a result. As a result, com pose ( t a i l , t a i l )  is a polymorphic function with 
the same signature as t a i l .  FC++ lists are lazy: elements of a list is evaluated only when 
they are requested. Operations can be performed lazily on the list such as using the function 
f  i l t e r  () defined in the library. For example:

L i s t < i n t >  e v e n s  = f i l t e r ( e v e n ,  i n t e g e r s ) ;

creates a list of even integers, ev en  is another function defined in FC++.
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FC++ functoids supports currying. For example p l u s  is curryable i.e. p l u s  (2) yields 
a new function f  ( x ) , where f  (x) = 2 + x. Currying is supported by the FC++ op­
erators that are themselves (higher-order polymorphic) functoids. Using the operator (eg. 
p t r _ t o _ f u n  () ) can transform regular C++ functions or methods into functoids so that 
they can be used with the predefined functionality, including higher-order operators like 
currying and com pose.

The functoids that we have seen are direct functoids because call to them are statically 
bound. FC++ also supports indirect functoids through the FunN classes. These functoids 
are dynamically bound and thus can change their ’’function values” by assignmnent. Indirect 
functoids are described by their monomorphic type signature and variables of type FunN can 
be bound to any function with the right signature. For example, Funic int , b o o l >  de­
scribes a one argument function that takes an int and returns a b o o l,  whereas Fun2 < int, 
int, string> describes a two-argument function which takes two ints and return a 
string. The function make FunN () converts a direct functoid into an indirect one. More 
examples of the use of FC++ library in [MS01] and [MS00].

FC++ allows higher-order polymorphic function types to be expressed and used; type sig­
nature are explicitly declared unlike Haskell and ML where types can be inferred. The type 
language (building blocks for S ig  template classes) is awkward eventhough it will not be 
a problem in learning to use it. There is a bound in the number of arguments that the func­
toids can support but it can be remedied by adding templates with more parameters in the 
framework. The naming of the base classes in FC++ like F u n l and F u n lm p l, as well as 
operators make F u n l and F u n l l m p l  encode in their names the number of arguments of 
the functions they manipulate.

Compiler error messages can be verbose when a user of FC++ makes a type error where 
the compiler typically reports the full template instantiation stack, resulting in many lines 
of error messages. Another limitations to FC++ is that it cannot fully prevent side effects in 
user code. Nevertheless, by declaring a method to be c o n s t  can prevent it from modifying 
the state of the enclosing object. This is what FC++ try to enforce in order to have ”side- 
effect freedom”. Even though the indirect functoids are side effect free because any class 
inheriting from FunNIm pl classes have to have a c o n s t  o p e r a t o r  () ,  but users could 
decide to add methods which is not side effect free to the subclass of FunNIm pl.

7.2 FACT!

FACT! (Functional Addition to C++ through Templates and Classes) is a C++ library that 
offers several aspects of functional programming to C++ programmers. It provides methods 
to get curried representations of C++ functions/class member functions, functional compo­
sition, A-expression, and has basic support for lazy evaluation. Through currying FACT! 
allows for partial application of C++ functions making it possible to pass less than n argu­
ments to a n-ary function giving a valid result.

The currying approach of FACT! offers a more consistent and flexible way to bind argu­
ments of a function to some specific values. Template libraries such as STL contain several 
generic algorithms that expect functions as arguments (higher-order functions), resulting in
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a frequent use of function objects. User-defined functions are awkward because they need to 
be declared as a class in namespace scope before being used. The point of use and the point 
of definition may get more and more dispersed making code harder to read and understand. 
Using FACT! A-notation point of use and point of definition can be kept clgse together. Thus 
functions can be define on the fly which is common in functional programming languages.

The lam bda function takes a list of variables which is called the A-list, an expression 
(called A-expression) that can contain any of this list of variables and returns a function 
which usually has the same number of arguments as the elements in the A list. For example:

l a m b d a ( x ,  y ,  x  + y)

where x, y  formed the A list, and x  + y  is the A-expression. A binary function is re­
turned from the lam bda function since the A list has two members. Functions returned by 
lam b d a are polymorphic, thus x  and y  may be bound to values of type i n t ,  com plex, 
s t r i n g  or any other type that is compatible with the A-expression. A-expressions may 
contain calls to other functions, for example:

l a m b d a ( x ,  y ,  z ,  s q r t ( s q r ( x )  + s q r ( y )  + s q r ( z ) ) )  
l a m b d a ( x ,  y ,  s i n ( x ) / c o s ( y ) )

A-variables may be bound to functions and lam bda functions may return a function, which 
in turn will return a function as well, which are shown as follows:

l a m b d a ( f ,  x ,  y ,  f  (x,  y ) ) / /  f  i s  a  p l a c e h o l d e r  f o r  a  f u n c t i o n  
l a m b d a ( x ,  l a m b d a ( y ,  x  + y) )

Functions returned by lam bda are presented in curried form, making them capable of tak­
ing arguments one at a time and thereby offers the opportunity of partial application. Expres­
sion templates [Vel95] are a way to handle A-expression. Expression templates are nested 
template structures, used to represent the parse tree of an expression. They are built during 
compile time through overloaded arithmetic operators which instead of immediately apply­
ing an operation, it returns objects that incrementally build up the parse tree. The parse tree 
is represented as a type tree (expression template tree) and as a tree of objects (the expression 
object which is an instance of expression template tree).

A-variables become part of the the expression template tree by using the expression template 
technique. The expression template tree emphasizes types, so different A-variables must be 
of different types enabling template meta programs to do the substitution during compile 
time. Thus A-variables need to be of unlimited types where ARG is a suitable representation 
because it can be used to form n u m e r i c _ l i m i t s < i n t > : :max()  of different types. 
The structure of ARG is as follows:

t e m p l a t e  < i n t >  
s t r u c t  ARG {};

FACT! has a large number of predefined A-variables which are defined in the scope of
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n am esp a ce  LAMBDA. A user just writes u s i n g  LAMBDA: :x  to make the A-variable 
x  visible in the current scope. Expressions templates can be formed out of expressions con­
taining instances of ARG by using PETE (Portable Expression Templates Engine). PETE al­
lows for the easy integration of expression template functionality to user defined classes. By 
building A-expressions on top of PETE, the user can use his expression template functional­
ity aware classes within a A-expression by still taking benefit of all the related optimization. 
More on building A-expression with PETE can be seen in [SSOO]. Even though the Curry 
function is claimed to be powerful as its functional counterpart, there are still limitations 
with A-expression and lazy evaluation.

7.3 Lambda Library (LL)

The Lambda Library (LL) is a C++ template library implementing a form of A-abstraction 
for C++. It is designed to work with the Standard Template Library(STL) which is now 
a part of the C++ Standard Library. Therefore the library does no language extensions or 
preprocessing. The LL consists of rich set of tools for defining unnamed functions which 
works with the STL algorithms. It offers significant improvements in terms of generality 
and ease of use compared to the binders and functors in the C++ standard library. We will 
show some examples of the use of LL taken from [JPOO].

• Initialize the elements of a container to the value 1:

list<int> v (10);
for_each(v.begin() , v.endO, __1 = 1) ;

The example above _1 = 1 creates a A-function which assigns the value 1 to every 
element in v. The variable _1 is a placeholder with an empty slot which will be filled 
with a value at each iteration. We call _1 = 1 a A-expression and a function object 
created by a A-expression is a A-functor.

• Create a container of pointers and make them point to the elements in the container v.

list<int*> vp(10);
transform(v.begin() , v.endO , v.beginO , &_1) ;

The address of each element in v(with &_1) are assigned to the corresponding element 
in vp.

• For each element in v, a function f  oo is called, passing the original value of each 
element as an argument to f  oo.

int foo(int);
for_each(v.begin) , v.endO ; _1 = bind(foo, _1) ) ;

• The elements of vp  are sorted and output:

sort (vp.begin() , vp.endO, *_1 > *_2) ;
f or_each (vp .begin () , vp.endO, cout<< *_1 <<endl) ;
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The call to s o r t ,  sorts the elements by their contents in descending order. The A- 
expression *_1 > *_2 contains two different placeholder _1 and _2 creating bi­
nary A-functor. When this functor is called the first argument is substituted for _1 
and the second argument for _2. Finally the sorted content of vp  is output.

In A-calculus and in functional programming languages, the formal parameters are com­
monly named within the A-expression such as:

A x ,y .x  + y

But the LL counterpart of the above expression is written as _1 + _2 where the place­
holder variables have predefined names. The use of a placeholder variable in an expression 
implicitly turns the exppression into A-expression. There is no explicit syntactic construct 
for A-expression. The LL supports the placeholders _ 1 , _2 and _3 which means A-functors 
can take not more than three arguments passed in by STL algorithm and zero parameter is 
possible too. The third placeholder is a necessity in order to implement all the features of 
the current library.

The LL provides typedefs for the placeholder types, making it easy to define the placeholder 
names to your liking. A placeholder leaves the argument totally open, including the type, 
meaning that the lambda functor can be called with arguments with any type for which the 
underlying function makes sense. Since the type of the placeholder remains open, the return 
type of the A-functor is not known either. The LL has a type deduction system that figures 
out the return type when the A-functor is called where it covers operators of built-in types 
and operators of user-defined types.

For an ordinary function call, an explicit syntactic construct is needed. In this case the 
b i n d  function template serves the purpose. The syntax of A-expression created with the 
b i n d  function is :

bind(target-function, bind-argument-list)
In abind expression, the b i n d - a r g u m e n t - l i s t  must be a valid argument list for t a r g e t - 
f  u n c  t  io n , except that any argument can be replaced with a placeholder, or, generally, with 
a A-expression. When a placeholder is used in place of an actual argument, the argument 
is said to be unbound. The t a r g e t - f u n c t i o n  can be a pointer to function, a reference 
to a function or a function object. Examples of bind expression [JPOO] is shown as follows. 
Suppose A, B, C and X are some types:

X fO O (A, B, C); A a; B b; C C ;

bind(foo, _ 1 , _ 2 , c); 
bind(&foo, _ 1, _ 2 , c); 
bind(foo, _ 1 , _ 1 , _ 1 ); 
bind( 1 , a, b, c);
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The first and second bind expression returns a binary A-functor but the second bind ex­
pression uses a function pointer instead of a references. For the third bind expression, the 
argument will be duplicated in each place the placeholder is used, and for the expression to 
make sense and to compile, the argument to the resulting unary A-functor must be implic­
itly convertible to A, B and C. The fourth bind expression shows the case where the target 
function is left unbound where the resulting A-functor takes one parameter, the function to 
be called with arguments a ,  b  and c. More examples of bind expression with member 
functions as targets and other uses of the overloaded operators in LL are shown in [JPOO].

Even though LL overloaded almost every operator for A-expressions based on the basic rule 
that any operand of any operator can be replaced with a placeholder or with a A-expression, 
there are some special case and restrictions; the return types cannot be chosen freely while 
overloading operators-> ,  new, delete, new [] and delete [] ,  thus these cannot 
be overloaded directly for A-expressions; it is not possible to overload the . , *, and ? : 
operators in C++; the assignment and subscript operators must be defined as member func­
tions which creates some asymmetry to A-expressions (eg. i n t  i ; _1 = i ; is valid 
A-expression but not i  = _1); the return type deduction system may not handle all user- 
defined operators.

The Lambda Library (LL) allows generic function objects to be defined on the fly. This 
library does not focus on functional programming style, rather it emphasizes on imperative 
programming allowing multiple assignments, while loops, and several imperative constructs 
within an expression that defines a function object. The LL does not have support for n-arity 
functions, because it is meant to be used with STL algorithms which do not accept ternary 
functions. It only supports for the generation of nullary, unary, binary and ternary function 
objects. However the LL provides good means to define even very complex function objects 
through expressions.

7.4 Kiselyov’s Functional Style in C++

The definition of a local class, within a function, method or block is permitted in C++ where 
this feature makes nested functions and closures possible. Nested functions and nested 
methods are actually compiled inline unless they are virtual. A local class follows regular 
lexical scoping rules. For example, a variable of an outer block can be declared visible or 
modifiable within the inner scope. Also, to some extent, a local scope can be captured and 
a closure is return as the value of a function. Returning an object as the result of a function 
involves deep copying of the object to and from temporaries which can be costly for big 
objects such as matrices and images. Therefore an alternative to this is the lazy constmction 
where objects themselves are never returned from functions instead yield a ’’recipe” on how 
to make an object. The constmction of the object will occur later when it is needed. For 
example [Kis98]:

M a t r i x  h a a r  = h a a r _ m a t r i x ( 5 ) ;

h a r r _ m a t r i x  is a class not a simple function. It constructs an object L a z y _ m a t r ix .  A 
special constructor M a t r i x  ( c o n s t  L a z y m a t r ix &  r e c i p e )  follows the recipe and
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makes the matrix h a a r  right in place without any intermediary temporaries.

The following code segment [Kis98] is the representation of A-expression which is C++ 
standard-compliant.

main (void) {
MakeTestFunction("cos(x) - x",

Lambda((const double x), double, 
return cos(x)-x)) fcos;

//function is instantiated
fcos.run(2 .0 ,3.0 ); //run the function with two values

MakeTestFunction("HUMPS function zerodemo.m",
Lambda((const double x), double, 
return l/(sqr(x - 0.3) + .01)

+ l/(sqr(x - 0.9) + .04)
-6))().run(0.4,1.6,1.299954968); 

//function is instantiated and run.
}

MakeTestFunction is a subclass of ATestFunction which has a method runfor 
running a test and making sure the result is correct. Both these functions and Lambda are 
defined in the LinAlg: a Numerical Math Class Library [LA96]. MakeTestFunction 
has arguments that consists of:

i) the title of the test case
ii) the test’s body itself specified as anonymous function Lambda (genuine A-abstraction)

Lambda consists of three arguments: input argument, return type and the body of the func­
tion/abstraction. In the code segment above, examples are given in testing two computations 
titled " c o s (x )  -x " ' and "HUMPS f u n c t io n  zerodemo.m" and these computa­
tions are defined by Lambda. The whole M ak eT estF u n ction  clause is subsequently 
instantiated and run.

Kiselyov introduces the features of closures, late binding and A-abstraction in incorporating 
the functional style in C++.

7.5 Funk: A Framework for Functional Style in C++

All Funk code is based around evaluating or aggregating other expression templates (ET). 
ETs are template instantiations that represent recursively constructed expressions. All ETs 
are formed around atomic ET variables or ETs that contain C++ function pointers. ET 
variables are defined by instantiations of struct template E T var which needs two parameters 
for instantiation: name variables and type variable. Name variables are just a character 
template parameter which are limited to a single character only. The definition of E T var is 
as follows:
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t e m p l a t e c c h a r  n ,  c l a s s T >  
s t r u c t  E T v a r{ };

Variables can be define using the definition of ETvar. For example defining variable a of 
type i n t  is:

E T v a r < ' a ' , i n t >  a ;

ET can also define algebraic expressions, for example an ET p l u s  can be define by com­
bining two other ETs:

t e m p l a t e c c l a s s  LHT, c l a s s  RHT> 
s t r u c t  p l u s {};

where LHT and RHT are expression templates.

An algebraic expression (a +  b) x (c +  d) are defined as:

t i m e s < p l u s < E T v a r , c '  a '  , i n t > ,
E T v a r< , b , , i n t > > , 

p l u s < E T v a r < ' c ' , i n t > , E T var< ' d ' , i n t > > >

where t im e s  is an ET that is defined similar as p lu s .

Funk implements partial application of functions using the types lam bda and a p p l y  and 
several utility metaprograms, a p p l y  is used to hold the values of arguments to which 
functions have been applied, whereas lam bda is used to specify the need for and type of a 
function’s parameter. The definition of lam bda and a p p l y  is:

t e m p l a t e c c l a s s  V, c l a s s  ET> lam bda{ }; 
t e m p l a t e c c l a s s  V, c l a s s  ET> a p p l y {  };

Any Funk A-expression that has type lambdacA,ET> corresponds to the A-expression 
Aa.et where a has type A and et has type ET. Expression template can be turned into A- 
expressions by embedding them into a series of instantiations of lam bda template. Thus 
the following structure represents the A-expression Xa.(Xb.(a +  6)):

l a m b d a c E T v a r c ' a ' , i n t  >'
l a m b d a c E T v a r c ' b ' , i n t > ,  

p l u s c E T v a r c ' a ' , i n t > ,
E T v a r c ' b ' , i n t > > > >

la m b d a ’s first template parameter holds information about the variable it manages and the 
body of the A-expression is represented by the second template parameter. When a Funk 
A-expression is partially applied to an arguments, the resultant type of the application is 
a p p l y  instantiated with the same argument as the former lam b d a is instantiated with. 
Thus if a A-expression given above is applied to an argument, its type would become:

a p p l y c E T v a r c ' a ' , i n t > ,  / / n o t e  t h e  a p p l y  i n s t e a d  o f  t h e  lam bda
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la m b d a < E T v a r< ' b '  , i n t > ,
p l u s < E T v a r < ' a ' , i n t > ,

E T v a r < ' b '  , i n t> > > >

and after application to another argument, its type becomes:

a p p l y c E T v a r c ' a ' , i n t  >, 
a p p l y < E T v a r < ' b ' , i n t  >,

p l u s < E T v a r <' a '  , i n t > ,
E T v a r < ' b ' , i n t> > > >

Since the type of this A-expression is fully applied, it must be reduced to the A expression’s 
ET’s final type i.e. i n t  in order to be usable for computation. There are mechanisms 
that perform type translations of Funk A-expressions into their applied state [Hal02]. An 
example of a A-expression applied to two values 3 and 4:

(Aa, b.a +  6)34

is represented using expression templates is given as follows:

a p p l y _ l a m b d a _ t o _ a r g ( 
a p p l y _ l a m b d a _ t o _ a r g ( 

l a m b d a < E T v a r< ' a ' , i n t > ,
la m b d a< E T v ar< ' b ' , i n t > , 

p l u s < E T v a r < ' a ' , i n t > ,
E T v a r< ' b , ' ,  i n t  > , 3 ) , 4 )

How the application of the A-expression is evaluated is shown in [Hal02].

Funk has a type resurrection system which is set up by making the superclass actually a 
structure template with one template parameter. All expression templates inherit from this 
superclass instantiated with the type of the expression template. When the type of an expres­
sion template is sliced1 upon being passed as an argument to a restrictive function template, 
it’s original type can be resurrected from the template parameter of the sliced object. Thus 
the necessary parts of the system is redefined to allow type resurrection.The base structure 
is defined as :

t e m p l a t e < c l a s s >  
s t r u c t  ET{ };

E T var and p l u s  are redefined so they derive themselves from ET<T> [Hal02]. To pre­
serve data information and type information, but still have the class match as a superclass, 
an argument type of ET<T>& must be used for the parameters of function and operator tem­
plates that will resurrect type. When an argument is a reference, slicing only affects the 
object’s type and not its data allowing casting the argument back to its original type and still 
retain its data integrity. The definition of operator +:

t e m p l a t e c c l a s s  E l ,  c l a s s  E2>

1 slicing occurs when data members exclusive to a subclass get truncated as an object instance is cast as its 
superclass
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plus<El,E2> operator + (ET<E1>& lhs, ET<E2>& rhs){ 
return plus<El,E2(static_cast<El&>(lhs),

static_cast<E2&>(rhs));
Thus by the definitions above things like a +  b can be written and the result will be an 
expression template. A-expressions are created by making comma separated lists of param­
eters followed by the - - and > operators followed by the expression template representing 
the body of the Funk A-expression. The following code is legal C++ code once the Funk 
libraries are loaded.

x —  > (x*x) ;
(a, b, c)-->((a+b)/c);

Functions are partially applied arguments through the use of operator <<.

For example:

((x,y)-->((x+y)/ (x*y))) <<3 <<4;
Funk currently does not offer support for polymorphic types in expression templates. Even- 
though Funk does provide some nice feature to the C++ programmer, it has its limitations. 
Naming an expression template is not possible without stating its entire type in the decla­
ration. It is possible to state an expression’s template type, but it’s not worthwhile because 
typenames for ETs get very complicated very fast.

7.6 Comparisons

What have been discussed above are approaches that are related to our project where advan­
tages and limitations of these approaches are also given. These works are too extensive in 
comparison with our project since our project is still new and ’’young”. Many things have 
not been covered such as polymorphic higher-order functions that have polymorphic argu­
ments (in FC++ library) and type inference. But one thing we can say is that the novelty of 
our project is that it provides a correctness proof that is lacking in all of the approaches. Our 
project provides a simple way of creating a function on the fly (A-expression) with a syntax 
that is easily read and understand which is similar to the usual A-notation. This A-expression 
is translated into C++ statements that can be compiled with any C++ compiler. We uses the 
usual C++ statements without overloading any operator to define an anonymous functions.

To compare other approaches discussed above with our approach in defining a A-term, we 
will compare them based on an example. The example is a simple A-term:

(((A x.X y.A z.x  + y *  2)3)2)5

• FC++Library:

#include "prelude.h"
#define FCPP_ENABLE_LAMBDA
//to get the lambda portion of the library
LambdaVar<l>x; //declare variable x
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LambdaVar<2>y; //declare variable y 
LambdaVar<3>z; //declare variable z 
coutcclambda(x,y,z) [multiplies[plus[x,y],z] (3,2,5);

LambdaVar is for declaring variables used in the A-expression. 

lambda (LambdaVar) [lambdaExp] creates a lambda on the fly.
• Lambda Library:

int x = 3; 
int y = 2 ; 
int z =5;
_ 1  =  X ;

_2 = y;
_3 = Z  ;

_ 1  + _ 2  * _ 3 ;

It makes use of a placeholder for a variable and the Lambda Library only supports 3 
placeholders, meaning that A-functors cannot take n-arity arguments which is quite 
difficult if we want to have nested A-terms. We can see here Lambda Library makes 
use of the imperative way in defining the A-terms where assignments are used and it 
is not side effect free proof.

• FACT!:

lambda(x, y, z, x+y*z) (3,2,5);
The A-expression is handled by expression templates which are used to represent the 
parse tree of the expression. As mentioned previously (section 7.2), PETE is used 
to form expression templates from expression containing instances of ARG and the 
evaluation of the application is also done by PETE. Users of FACT! are not required 
to know about PETE.

• Funk

( (x,y,z)-->(x+y*z)) <<3 <<2 <<5;
One of Funk’s goal is to become a self contained sublanguage of C++. Operator > 
converts the list created by the comma operator and an expression template into an 
actual Funk A-expression.

Using our syntax in writing the A-expression above is given as follows:

(\int x.\int y . \ i n t  z . int x+y*z) ''~3~~2~~5 ;
FACT! and Funk make use of template meta programming for their A-expression, and the 
difference between the two; Funk has its own syntax for A-expression where the operators 
involved in the expression are overloaded in the Funk library using expression templates. 
FC++ and Lambda Library make use of C++ templates in their implementation. Comparing 
other approaches with our approach in writing the A-term, we can say that our way is much 
simpler is much closer to the original A-term. Even though the type of the function is
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explicitly declared, the type checking is done by the C++ type system. The translation of 
the A-term uses classes and inheritance in an essential way which is simpler and easier to 
understand.

The other approaches deal only with simple A-terms, but are they much more efficient, 
since they don’t use inheritance, so the A-terms are not dynamically generated. All these 
approaches have been optimised for performance rather than for generality. The other ad­
vantage of those approaches is that they don’t require an extension of C++ but are just a 
library used in addition to C++. In general it is always desirable to add new feature by using 
libraries rather than by extending a language, since each new language extension makes the 
language more complicated, and the language of C++ is already a rather complex language.



Chapter 8

Summary and Outlook

In this chapter we will summarize our project and give some considerations for future work 
in extending and improving our project.

8.1 Summary

The objective of this project was to extend C++ language in order to enhance its existing sup­
port for different paradigm such as object-oriented, procedural and generic programming. 
The additional support that we implemented is functional programming. We developed a 
parser-translator program that translates typed A-terms into C++ classes so as to integrate 
functional concepts into C++.

We introduced a syntax for representing A-types and -terms in C++. In that extended lan­
guage, we write A - > B for the function type A  —> B,  r~  ~s for the application of r to s, 
and \A x . B s for Ax A.s if s : B.  We use functional style notation rather than overloading 
existing C++ notation, since we believe that this will improve readability and acceptabil­
ity by functional programmers. The A-abstraction is interpreted as a function of its free 
variables in the form (new T (a?i,. . .  x n)). Hence, the evaluation of a A-abstraction in an 
environment for free variables is similar to a ’’closure” in implementations of functional 
programming languages.

The translated code uses the object-oriented approach of programming that involves the 
creation of classes for the A-term. By using inheritance, we achieved that the translation 
of a A-abstraction is an element of a function type. A A-abstraction is represented as a 
new instance of its corresponding class. Even if the classes for two occurrences of the 
same A-abstraction coincide, for each occurrence a new instance is created. Therefore, if 
a variable occurs as the same name, but with different referential meaning in two identical 
A-expression, it will not be a problem.These features have been tested on several A-terms.

The correctness of our implementation is proved with respect to the usual (set-theoretic) 
denotational semantics of the simply typed A-calculus and a mathematical model of a suffi­
ciently large fragment of C++. The proof is based on a Kripke-style logical relation between 
C++ values and denotational values.

120
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We model only the fragment of C++ that is involved in the translation of the simply typed 
A-calculus. We assume that classes translated for the A-term have instance variables, one 
constructor, and one method which corresponds to the o p e r a t o r  () method. The method 
has one argument, and the body consist of an applicative term. Therefore, a class is given 
by a context representing its instance variables, the abstracted variable of the method and 
its type, and an applicative term. Applicative terms are numbers, variables, function terms 
applied to applicative term, the application of one applicative term to another, or a con­
structor applied to the applicative terms. When a constructor call of a class is evaluated, its 
arguments are first evaluated. Then the memory is allocated on the heap for the instance 
variables, where they are set to the evaluated arguments. The address to this memory loca­
tion is the result returned by evaluating the constructor call. The only possible result of the 
evaluation of the applicative term is a number, so values are addresses or numbers.

The syntactic sets are groups of each entity of the syntax in the translated code. The 
syntactic sets described above are defined in the section 6.3. Applicative term which we 
write as n , # , / [ a i , . •. , an], (a b) and c [o i , . .. , a n], corresponds to the C++ constructs 
n , x ,  f  ( a l , . . . , an)  , (* (a) ) (b) and new c ( a l a 2 ) The class written
in the form (T; x : A; b) with T =  x\  : A i , . . . ,  x n : A n, corresponds to the C++ translated 
code discussed in Chapter 5.

During the execution of a A-term, a class address of the application (App) of the A-term is 
created on the heap (Heap) and with respect to the environment (Env), a A-term is evaluated 
to the value (Val) and extended heap (which contains the address of the value that has been 
evaluated for the A-term). For a function application, the heap which contains the class 
address of the two terms with the values evaluated from each term is evaluated to a value 
and an extended heap.

The recursive description of the process in creating a system of C++ classes that represents 
a A-term is based on the assumption that the A-term is not the first term being parsed, but 
other terms (subterm) have been parsed before creating a system of classes, and if the term 
has free variables, the types of these variables are fixed an appropriate context.

After going through the definitions of the evaluation function eval, the implementation of 
the C++ classes do coincide with the denotational semantics of the simply typed A-calculus. 
An integer n  is evaluated by itself and a variable is evaluated by returning its value in the cur­
rent environment rj. The application of a native C++ functions to arguments a i, 0 2 , • • •, an 
is carried out by evaluating the arguments in sequence first, and then apply the function /  
to those evaluated arguments. The application (a b) corresponds to the construct (*(a))(b) 
where a and b is evaluated first and due to the type correctness, a must be an element of the 
type of pointers to a class. Therefore the value of a will be an address on the heap. The 
information about the class used and the values of the instance variables are stored on the 
heap. (* (a)) (b) is then computed by evaluating the body of the method of the class in the en­
vironment where the instance variables have values as stored on the heap, and the abstracted 
variables has the result of evaluating b. This is what is computed by eval which makes use 
of the auxiliary function apply. The expression c[a\, which stands for the C++ expression 
new c(ao, . . . ,  an), is evaluated by first computing ao, . . .  ,an in sequence. What the func­
tion eval carried out is the intended behaviour of C++ which is the information about the 
class used and the result of evaluating ao, . . .  ,an is stored on the heap. Therefore, we can
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say that our implementation is proven correct.

8.2 Conclusion

Through the discussion of related works (Chapter 7) we could see that there are researchers 
who were very keen in merging the functional programming paradigm to C++ language 
with their pros and cons in doing so. The advantages of our approach/solution is that it 
is simple and it uses classes and inheritance in an essential way . Another advantage that 
is quite significant is that our approach is really integrated into C++, which avoids having 
strange error message like the unnecessary error messages of a user making a type error in 
using FC++. Furthermore in applying functional programming into C++, one does not have 
to learn and use new constructs (like in FC++ and FACT!). Most importantly, we have a 
formal correctness proof and to our knowledge the verification of the implementation of the 
A-calculus in C++ ( and related object-oriented languages) using logical relations is new. A 
correctness proof of other implementations (such as Lambda Library and FC++) would have 
been difficult, since the libraries are very big, and make use of the C++ template mechanism. 
In our case we had complete control over the code generated, which made it much easier to 
carry out the proof.

The idea behind my thesis is to make established modelling and proof technology from 
mathematics and logic available for the analysis of stateful programs. We address the fol­
lowing technology; Denotational semantics for higher types which is first set theoretic then 
domain-theoretic (the latter is not worked out in the thesis due to lack of time), logical 
relations which provides powerful means to prove properties of higher type programs and 
Kripke semantics to deal with states.

The fact that it is possible to have a denotational semantics at a description level where 
pointers are manipulated explicitly entails that the well known benefits of denotational se­
mantics, extensionality and compositionality, are still available at that level. This has been 
proven where we were able to give a short and concise proof of our C++ fragments using the 
denotational semantics instead of a complicated operational argument. More benefits are to 
be expected when it comes to verifying programs written in this C++ fragment.

Our original goal was to extend at reasonable fragment of C++ by A-terms. Unfortunately 
this turned out to be too long, especially because using the Spirit parsing library turned out 
to be complicated. Spirit is difficult to use since it is a recursive descendent parser, which 
would have required to substantially modify the grammar of C++, whereas, using Lex or 
Yacc would have been much easier. Apart from this, Spirit was difficult to use because of the 
expansion of templates. But the advantage of using Spirit is that the grammar is directly part 
of the code instead of (when using Lex and Yacc) generating C++ code from the grammar. 
If we would start the project again, it would be advisable to start with Lex/Yacc, we realised 
the difficulty unfortunately too late.

We believe that if our approach is extended to cover full C++, we will obtain a language that 
merges the worlds of functional and object-oriented programming, and we will see many 
examples, where the combination of both language concepts (eg. the use of A-terms with 
side effect) will result in interesting new program techniques. We have introduced a general
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technique for introducing lazy evaluation into C++ [ABS06b]. It is illustrated by computing 
the Fibonacci numbers efficiently in C++ (with the extended C++ syntax) using infinite 
streams and lazy evaluation.

The ideal system for our approach would be an extensions of the full language C++ with 
A-terms in addition of other constructs from functional programming such as data types.

8.3 Future Work

We have shown how the functional concepts are introduced into C++ in a provable correct 
way. This work has lent itself to a number of extensions, such as the integration of recursive 
higher-order functions, polymorphic and dependent type systems, as well as the combination 
of larger parts of of C++ with the A-calculus. The accurate description of these extensions 
would require more sophisticated, eg. domain theoretic constructions and a more systematic 
modelling of C++.

The proofs of theorems and how the functions P, eval, and apply are defined is rather low 
level since it mentions and manipulate the class environment and the heap explicitly. It 
would be desirable to lift the proofs and definitions to the abstract monadic level. A frame­
work for carrying this out might be provided by suitable versions of Moggi’s Computational 
A-calculus [Mog91], Pitt’s evaluation logic [Pit91] and special logical relations for monads 
[JGLN02].

We intend to upgrade this to an extension of the language by A-types and A-terms together 
with a parser program which translates this extended language into native C++. We would 
like to extend our implementation to support polymorphism using C++ templates since our 
implementation does not support polymorphism specifically parametric polymorphism. Our 
implementation deduces the function type of a A-term based on the function type of its 
subterms and it depends on the C++ type system for type checking. Thus, to give great 
value to our implementation, we would extend it to support type inference. It would be 
interesting to expand our fragment of C++ to deal with side effects. This would allow for 
instance in proving that our lazy construct shown in the section 4.6 actually gives rise to an 
efficient implementation of the Fibonacci function.

We would like to include memory management in our implementation to eliminate runtime 
crashes and memory leaks. We intend to use garbage collector in C++ i.e. using the l i b g c  
library. Using l i b g c  automatically protects your program against memory leaks, allows 
writing program without calling d e l e t e  of f r e e ,  allows fixing premature frees in the 
code and provides a fast non-fragmenting memory allocator.



Appendix A

Grammar of A-terms Coded in Spirit

lambstmt (lambtype | nativetype) 
>> no_node_d[ch_p(' ') ] 
>> identifier
>> no_node_d[ch_p(' ' ) ]

>> no_node_d[ch_p(' =') ] 
>> lambexp

>> ch_p ( ' ; ' ) ;

lambexp lambdaterm | untypedlamterm;

lambdaterm lambabstract | lambapp;

lambabstract = chlito ( ' \ \ ' )

»  (lambtype | Nativetype) 
>> ch_p(' ' )
»  identifier 
>> ch_p('.')
>> (lambabstract

| (lambtype | Nativetype)
>> ch_jp ( '  ' )
>>untypedlamterm);

lambapp = no_node_d[ch_p ( '  (')]
>> lambabstract 

>> no_node_d[ch_p(')')]
>> (root_node_d [str__p ( " ̂ ̂ ") ]

>> (lambapp |digit | identifier);

untypedlamterm = longest_d[(digit | identifier | lambdaterm) 
>> * (root_node_d [ (inf ixoperator |
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>> (untypedlamterm | lambdaterm)] 
| identifier >> ch_p ( 7 (')

>> (untypedlamterm | lambdaterm)
>> * (ch_p(',')
>> (untypedlamterm | lambdaterm)

infixoperator = ch_p('+')
| ch_p ( 7 - 7 )

| ch_p( * ' )

| ch_p ( 7 /') ;

digit = leaf_node_d [lexeme_d [+digit_p] ] ;

lambtype = * (btype >> root_node_d [str_j? ( " ->"
>> btype;

btype = longest_d[Nativetype
| inner_node_d [ch_jp ( 7 ( 7 ) >>lambtype >> ')
|inner_node_d[ 7 ( 7 >>btype > > 7 ) 7 ] ] ;

nativetype = str_p("int")
1 str_p( "char")
1 str_p( "string")
| str_p("double")
| str_p("float")
| str_j? ("long")
| str_p("short11)
| str_p("bool")
| str_p("signed")
| str_p( "unsigned");

identifier = leaf_node_d[nondigit
>>*(nondigit|digit)];

nondigit = ch_p(7_ 7)
| alpha_p;
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Integrating Functional Programming Into 
C++:Implementation and Verification

Rose Hafsah Ab. Rauf *

A b stract

We describe a parser-translator program that translates typed A-terms 
to C ++ classes so as to integrate functional programming. We prove the 
correctness of the translation with respect to a denotational semantics 
using Kripke-style logical relations.

1 Introduction
C++ is a general purpose language that supports object oriented programming 
as well as procedural and generic programming, but unfortunately not functional 
programming. We have developed a parser-translator program that translates 
typed A-term to C++ statements so as to integrate functional progamming. 
This translated code uses the object oriented approach of programming that 
involves creation of classes for the A-term where for a complex term the concept 
of inheritance is applied. We build a mathematical model from the formal 
semantics of the translated code to prove its correctness. First, we give the 
denotational semantics of the typed A-calculus. Then the correctness of the 
implementation of the typed A-calculus by C++ classes is proved with respect 
to the denotational semantics. The correctness proof of the translated code 
is based on a Kripke-style of logical relation between the C++ class and the 
denotational model.

The parser-translator program that has been developed will parse a string 
represention of typed A-term and translate it to a sequence of C++ statements. 
The translation of this A-term will be discussed in the next section. How the 
translated code is executed will also be discussed along with the representation 
of the memory allocation. The mathematical model was based on the execution 
of the translated code. In building up this mathematical model, we will first give 
the denotational semantics of the typed A-calculus. Then we will implement the 
C++ classes with the denotational semantics. These will be discussed in section 
3. Some related works on integrating functional programing into C++ will be 
discussed at the end of this paper.

The approach of using denotational semantics and logical relation in prov­
ing the correctness of programs has been used before by researchers such as 
Plotkin[6], and many others. The method of logical relation can be traced back 
at least to Tait[13] and has been used for a large variety of purposes (eg. Jung

*This paper is part of my Phd project and I would like to thank my supervisors Dr. Ulrich 
Berger and Dr. Anton Setzer for their knowledge and guidance making it possible for me to 
complete it.
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and Tiuryn[l], Statman[9] and Plotkin[5]). To our knowledge the verification of 
the implementation of A-calculus in C++ using logical relation is new.

2 Translation
For the purpose of explaining how the A-term is translated to its equivalent 
C++ statements and execution of the translated code, we will not go through 
the details of the parser-translator program in action. A A-term A xa . t is witten 
in our syntax as \A.x.fi.t where t : j3 . We will give an example of a A-term input 
to the parser-translator program and how it is executed. The statement shown 
below is the string that was entered to the program:

int k = ((\int - t i n t  f - \ i n t  x-int f AAf AAx)AA(\int x-in t  x + 2))AA3 (1) 

and it is equivalent to k = (A/ • Xx - f{fx))(Xx - x + 2)3

The A-term \ int -+ int f  - \int x - int f AAf AAx in the statement above is 
translated as objects which is defined as follows ;

class lambdal : public Cint_intD_aux{ 
public :Cint_intD f;
lambdal( Cint_intD f) { this-> f = f;}; 
virtual int operator () (int x)
{ return (*(f))((*(f))(x)); >;

>;
class lambdaO : public CCint_intD_Cint_intDD_aux{ 
public : 
lambdaOC ) { };
virtual Cint_intD operator () (Cint_intD f)
{ return new lambdal( f); }

>;

and the A-term \in t x - int 2 + x is translated as follows :

class lambda2 : public Cint_intD_aux{ 
public : 
lambda2( ) { };
virtual int operator () (int x)
{ return x + 2; };

>;

The statement (1) will be finally translated as the expression :

int k = (*((*(neiu lambdaO()))(new Zambda2())))(3);

The classes for the A-terms are instantiated by statements new lambdaO() 
and new lambda2() where pointers will be created that point to the addresses 
of the classes on the heap. The heap which is also known as free store is a 
dynamic store in the memory. Classes are created for each A-term objects and 
each classes have pointers to its addresses on the heap. The local variables and 
function parameters are stacked for every execution and these storage allocated 
for the variables will be deleted after each execution terminates.
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3 P roof of correctness
Before we start building a mathematical model of the translated code, we list 
some of the mathematical preliminaries that will be frequently used in this 
section. The presentation of the proof follows the style of Winskel[14].

3.1 M athematical preliminaries 
M a p p in g s

1. If X, Y are sets, then a list m = (xi : y\) , . . . ,  (xn : yn) G list(X x Y) is 
considered as a finite map from X to Y which is defined as follows : If x 6 
X, y € Y, then m(x) := y where x = Xi,y = yi and x ^  Xj for j  > i.

2. We usually define dom(m) = the domain of m = Xi,. . . ,  xn.
If x E X ,y E Y, then m[x h* y] := m, (x,y), the extension of the list m 
by (x,y). Note that dom(m[a; (->■ y]) = dom(m) U{x} and

3.2 Implementation of the typed A-calculus
a) Types

The set Typ of types is inductively given by :

i) Int E Typ

ii) if A, B  E Typ, then A -¥ B  E Typ

b) Terms
The Term s for the A-calculus can be any of the following shown below.

i) n E N (any number)

ii) x  E Var (where Var = String)

iii) r s (term r is applied to term s)

iv) Xx : A.r (term is an abstraction)

v) f [ r i .. . rn] = f\ f\  ( /  G T  is a set of names for computable functions on 
N).The function denoted by f  is written as [/]

c) Typing
A C ontext T is a map from variables to types i.e. a list of variables and their 
type : C ontext= list(V arx Typ)
Context will be denoted as T = Xi : A \ , . . . ,  xn : An 
The Typing rules of the simply typed A-calculus are :

m[x y](x') = | y if x' = x
m(x') if x' G dom(m)\{x} (x1 G X)

T, x : A  h x : A

T h n : Int
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iii)
r ,x  : A h r : B 

T h Axr : A -+ B
iv)

T Y - r - . A ^ B  r h  s : A  
T I- r s : B

v)
/  : Int x ...  x Int —> Int T h n  : In t. ..  T h rn : Int

T h / [ r i , . . . , r n] : Int
d) D enotational semantics
The sets of functionals of type A denoted as D(A) are defined as follows :

i) D(Int)= N

ii) D (^ -> £ ) = { / | /  : D(A) -> D(£)}

iii) D := 1+J^gXyp D(^) where 1+) denotes disjoint union

A Functional Environm ent is a mapping of £ : Var -+ D. We let FEnv := 
Var -+ D be the set of all functional environments. If T is a context, then £ : T 
means Va; € dom(r).£(a:) € D(r(x)).

For every typed A-term T b r : A and every functional environment £ : T the 
denotational value [rj£ G D(A) is defined as follows :

i) [n]£ = n

ii) [*]£ = £(«)

iii) [r s]£ = [r]£([a]£)

iv) [Ax : A.r]£(o) = [r]£[x t-> a]

v) i m i  = [/]([rl£)
By an im plem entation of the typed A-calculus we mean an (implementation 
of an) algorithm computing for every closed term r : Int the value [r] e N.

3.3 Implementation by C + +  classes
The classes that will be created depend on the A-term that is being parsed, 
the more complex the term is the more level of classes will be created and this 
involves inheritance. When the class is instantiated, an address of the class will 
be stored on the heap, and further instantiation of other classes will create a 
stack of addresses on the heap with addresses of any variables which is bound 
to the classes (or A-term).

Every class is instantiated by calling the constructor of the object i.e. the 
name of the class with or without any arguments.The body of the A-term is 
associated with the application in the syntactic sets of this translated code. 
The list of syntactic sets associated with the C++ classes are as follows:

• A ddr =  In t
These are addresses (Addr) of classes or variables on the Heap.
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•  C o n s tr  =  S tr in g
Constructor (C o n str )  is the name of the class

•  V a l =  In t  +  A d d r
A value (V al) is either an integer or an address of a class or variables

• A p p  =  In t  +  V ar +  F x  l i s t ( A p p )  +  A p p  x A p p  +  C o n s tr  x 
l i s t ( A p p )

• A b s t  =  V a r x T y p  x C o n te x t  x A p p
Abstraction(Abst) consist of the variables and the type bound to the 
abstraction, and the context which is the list of variables and their types 
and the application. Types like InW lnt will be represented in C++ as 
strings.

• E n v  =  l is t  (V ar  x V a l)
Environment (E n v ) is the list of variables and their values

• H e a p  =  l is t  (A d d r  x C o n s tr  x l is t  (V a l))
H e a p  consists of list of addreses of constructors and their list of values of 
the variables

• C la s s  =  l is t  (C o n s tr  x A b s t )
C la s s  consists of list of constructor and their abstraction

We assume that every /  e T  is given by a side effect free C++ function

a) T h e  e v a lu a t io n  o f  t h e  A -term s in  C + +
When a A-term is executed, a class address of the application of the A-term is 

created on the heap and with respect to the environment, a A-term is evaluated 
to the value and an extended heap. This extended heap contains the address 
of the value that has been evaluated for the A-terms. Thus the functionality of 
the evaluation function (ev a l)  is :

e v a l : H e a p  -» E n v  -+ A p p  -+ V a l x H e a p

For a function application, where a lambda term is applied to another lambda 
term, the heap which contain the classes address of the two terms with the two 
values evaluated from the two terms will evaluate to a value and an extended 
heap. Thus the functionality of the application function (a p p ly )  is :

a p p ly  : H e a p  —> V a l —> V a l —> V a l x H e a p

In the definition of the function e v a l and a p p ly  we fix some C:Class.
In presenting the evaluation rules we will follow the convention that :

• n ranges over numbers N

• x ranges over variables V ar

• a , b ranges over application A p p

• v , w ranges over values V a l
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• k ranges over address A ddr

• H  ranges over Heap

• c ranges over constructor Constr

• C ranges over Class

• A, B  ranges over Typ

• rj ranges over Env

The metavariables we use to range over the syntactic categories can be 
primed or subscripted. For example, H ,H ',H ",Hk  stand for heaps, C,C',C" 
stand for classes and vi,v' stand for values.

The rules for the evaluation of the A-terms are as follows:

i) Evaluation of a A-term where application is a num ber

eval Hrjn = (n,H)

ii) Evaluation of a A-term where application is a variable

eval Hr)x = (r){x), H)

iii) Evaluation of a A-term where application is a function w ith  a list 
of argum ents

eval H T) f[a\ = (lf}(n),Hk)

where a = o i , . . .  ,ak,n  = n i , . . .  ,nk and eval*H 77a = (n ,H k).
Here we define eval* H 77a = (n,Hk) if eval Hr}a\ = (ni, iii) , • • •, eval 
Hk-irjcik = (Tik,Hk). Hk is not changed by /  because /  € T  has no side 
effect.

iv) Evaluation of a A-term where the  application is the  application 
of one te rm  to the  other

eval Hr] (a b) = apply H"v w = (v ', H"')

where eval H  77 a = (v, H'), eval H' rj b = (w , H")
The definition of apply in detail is shown as follows :

apply H k v = eval H  [x, y i-» v , w]a

where H(k) = (c,w), (7(c) = (x : A\y  : B\a){ assuming c G dom((7))

v) Evaluation of a A-term where the  application is a constructor 
w ith  a list of argum ents

eval H  r) c[a\ = (k , H'[k ■-» c[u]]) (k G Addr, v G Val)

where eval* Hr)a = {v,H') and k =  new H' (new H' is an address not 
in d o m ^ '))
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In all other cases for the application, it is termed invalid and an error will be 
returned.

L e m m a  1

1. eval Hr}a = (v,H ') => H  C H 1

2. apply H v w  = => H  C H ’

3. eval* Hi}a = (n, H 1) => H  C H'

The proof for Lemma 1 is by induction on the definition of e v a l and a p p ly .

Note that, since e v a l and a p p ly  depend on C:Class, the true signatures of eval 
and apply are as follows :

e v a l : C la s s —>H e a p —>E n v —>A p p —>V a l x H e a p
a p p ly  : C la s s —> H e a p —»V al-*  V a l—> V a l x H e a p  

We write e v a lc  Hr} a and a p p ly  ̂  H v w  if the argument CiClass is to be made 
explicit.

b) T h e  P a r s in g  o f  t h e  A T e r m
Traditionally, the A-term that is input is parsed as a long string which will 

undergo several steps of parsing to get the translated code. The parsing will 
create classes for the A-term where in the case of a complex A-term it will 
create several levels of classes where the class of an upper level is an extension 
of the lower level class. In order to simplify things and to concentrate on the 
most important aspects of the problem we assume that the input is given as 
an abstract term rather than a string. The parsing from a string to a term is 
a traditional parsing problem which is of no interest here. What is interesting 
here is the process of creating a system of C+-I- classes that represents a A-term.

In order to give a recursive description of this process, we must assume that 
the term in question is not the first term being parsed, but other terms (or sub­
terms) have been parsed before having created a system of classes. Furthermore, 
if the term has free variables, then the types of these variables must be fixed by 
an appropriate context. Therefore, the parser P  has the following functionality

P  : C la s s - » C o n t e x t -»T e r m A p p  x C la ss  

The rules for the parsing are as follows :

i) P a r s in g  w h e n  t h e  t e r m  is  a  n u m b e r: PcTri = (n, C)

ii) P a r s in g  w h e n  t h e  t e r m  is  a  v a r ia b le : PcTa; = (x,C)

iii) P a r s in g  w h e n  t h e  t e r m  is  a  fu n c t io n  w it h  a  l is t  o f  a r g u m e n ts  :

PcI7[r] = (/[«],£ ')

where P*<?rr = (a, C') and P* is defined in a smilar way as eval*.

iv) P a r s in g  o f  a n  a p p lic a t io n :  PcP(p s )  = (a 6, C") 
where Pc r r  = (a,C '), Pc T s  = (&,C")

133



v) P a r s in g  o f  a  A a b s tr a c t io n  : PcI^Aa; : A.r) = (c[y\,C'[c h* (a; :
A;r;a)])
where y = dom(r), Pcr[® •-> A]r = (a, C1), and c = new C'
meaning that c is a name of a class that is ’’new” i.e. has not been used 
before.

Remark: We only generate c[x\ € App with x £ list (Var) and not c[a\ with 
arbitary a £ list (App)

L e m m a  2 i) P c T r  = (a, C') => C C C 1
ii) P*c r r  = (a,C’) = +  C C C"

The proof for Lemma 2 is by induction on r respectively r.

3.4 The correctness of the translated code
The correctness proof of the translated code is based on a Kripke-style relation 
between the C++ representation of the term (£ Val x Heap) and its denota­
tional value (£ D(A)). The relation is indexed by the class environment C and 
the type A of the term. Since in the case of an arrow type, A —► H, extensions 
of H  and C have to be taken into account, this definition has some similarity 
with Kripke models. The relation

~S^= (Val x Heap) x D(A)where A £ Typ ,C  £ Class

is defined by recursion on A as follows:

(v, H) n : +=> v = n
(v,H) ~S-+b /  : VC C C ',VH C H ',V(w ,d) 6 V a lxD (A )  :

(w,H') d = >  app\yCiH'vw - g '  f{d)

We also set (i},H) —p £ := Va; £ dom T(rj(x),H) ~r(x) £(x) e L>(I7(a:))
L e m m a  3:

(v,H) ~% d,C C  C',H  C H '= >  (v,H') -S ' d 

The proof for Lemma 3 is by induction on A.

Our main theorem, which corresponds to the usual ’’Fundamental Lemma” or 
’’Adequacy Theorem” for logical relations, reads as follows:
T h e o r e m : If 77 : Env,£ : FEnv,T h r : A ,£ : r ,P c T r = (a,C'),C' C 
C",(i),H) — p” £,and H  C H ', then evalc"H'r]a — S” [rK

The theorem can be proved by an induction on the typing judgement T \- r : A 
using the Lemma 1-3 above. Due to limited space we omit details.

For a closed term r , we define Pr = P®0r.

C o r o lla r y  (C o r r e c tn e s s  o f  t h e  im p le m e n ta t io n ) :
If h r : Int,Pr = (a, C),C  C C", then for any heap H, evalc' H rja=  ([[rj,#') 
for some H' D H
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4 Conclusion
The aim of this paper was to introduce a new approach of integrating functional 
programming into C++ and to show a method of proving the correctness of the 
translation code produced by denotational semantics and logical relation. In the 
past, several researches [2],[3] discovered that C++ can be used for functional 
programming by representing first class functions and higher order functions 
using classes, and by this technique we produced the translated code. There 
are other approaches that have made C++ a language that can be used for 
functional programming such as FC++ library [4] (a very elaborate approach), 
FACT! [12] (extensive use of templates and overloading) and [2] (creating macros 
that allow creation of single macro-closure in C++).The advantages of our so­
lution are that it is very simple, it uses classes and inheritance in an essential 
way and, most importantly, we have a formal correctness proof.

In addition to the mathematical proof given in this paper, the correctness of 
the translated code produced by the parser-translator program has been verified 
by testing it with several types of A-term from simple to complex ones.
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A Provably Correct Translation of the A-Calculus 
into a Mathematical Model of C + +

Rose H. Abdul Rauf? Ulrich Berger, Anton Setzer*

A b stract

We introduce a translation of the simply typed A-calculus into C++, 
and give a mathematical proof of the correctness of this translation. For 
this purpose we develop a suitable fragment of C ++ together with a de­
notational semantics. We introduce a formal translation of the A-calculus 
into this fragment, and show that this translation is correct with respect 
to the denotational semantics. We show as well a completeness result, 
namely that by translating A-terms we obtain essentially all C ++ terms 
in this fragment. We introduce a mathematical model for the evaluation 
of programs of this fragment, and show that the evaluation computes the 
correct result with respect to this semantics.

1 Introduction
C++ is a general purpose language that supports object-oriented programming 
as well as procedural and generic programming, but unfortunately not directly 
functional programming. We have developed a parser-translator program that 
translates typed A-terms into C++ statements so as to integrate functional con­
cepts. The translated code uses the object-oriented approach of programming 
that involves the creation of classes for the A-term. By using inheritance, we 
achieve that the translation of a A-abstraction is an element of a function type. 
As example we show how the A-term

t = (A/int-+intAxint. /  {f  x)) (Axint. x + 2) 3

is translated into native C++ code. We begin with the translation of the types 
involved. Those are int, int -+ int and (int -+ int) -+ (int -+ int), the latter being 
the type of the subterm A/'nt-HntAxmt. /  ( /  x). The type int is translated into 
the native C++ type in t. The type int -+ int translates to

class Cint_intD_aux
{ public : virtual int operator() (int x) =0; };

typedef Cint_intD_aux* Cint_intD;
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i.e. the type of pointers to elements of the class Cint_intD_aux containing one 
virtual method. The translation of (int -+ int) -+ (int -+ int) is similar:

class CCint_intD_Cint_intDD_aux 
{ public : virtual Cint.intD operatorO

(Cint_intD x) =0; };

typedef CCint_intD_Cint_intDD_aux*
CCint_intD_Cint_intDD;

As for types, the translation of the term t proceeds in stages. The class definition 
for the subterm t\ := Ax'nt. f  ( f  x ) is

class tl : public Cint_intD_aux{ 
public :Cint.intD f ; 
tl( Cint.intD f) { this-> f = f;>; 
virtual int operator () (int x)
{ return (*(f))((*(f))(x)); >;

>;

and for to := A/int-*intAxmt./(/&), ti := Ax'nt.2 -f x (using identifiers tO, t2)

class tO : public CCint_intD_Cint_intDD_aux{ 
public : 
t0( ) { >;
virtual Cint_intD operator () (Cint_intD f)
{ return new tl( f) ; }

>;

class t2 : public Cint_intD_aux{ 
public : 
t2( ) { >;
virtual int operator () (int x)
{ return x + 2;

>;

Finally, the whole term t translates into the C++ expression

(*((*( new t0( )))( new t2( ))))(3);

In this article, we do not only present this translation, but give as well a 
mathematical proof that it is correct. For this purpose we introduce a suitable 
fragment of C++ with a precise denotational semantics. We give a formal trans­
lation of A-terms into this fragment and show that it preserves this semantics. 
We will show as well completeness, i.e. essentially all programs in this fragment 
of C++ can be obtained by translating terms of the A-calculus. We develop a 
mathematical model for the evaluation of programs in this model, and show that 
this evaluation is correct with respect to the denotational semantics. This shows 
that our translation results in C++ programs which axe evaluated correctly in 
our mathematical model of C++.

We hope that our model of a fragment of C++ which includes a formal 
model of the heap, will have applications which go beyond the translation of 
the typed A-calculus. We expect that extensions of this model can be used 
to verify formally the correctness of more complex C++ programs, including 
programs with side effects.
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O rganisation of the paper. In Sect. 2 we introduce the typed A-calculus 
together with a standard denotational semantics. In Sect. 3, we present our 
parser-translator program, which translates A-terms into the full language of 
C++. We discuss how the translated code is executed including a description 
of the memory allocation. Since it is not feasible (at least for our group) to prove 
the correctness of our translation with respect to the full operational semantics 
of the very complex language C++, we develop in Sect. 4 a small fragment 
of C++ into which we can translate the typed A-calculus. We introduce as 
well the evaluation of applicative terms in this language. In Sect. 5 we give a 
formal translation of the typed A-calculus into this fragment. We introduce a 
denotational semantics of the fragment of C++ and show that formal translation 
respects the denotational semantics (correctness). Furthermore we show that, if 
one imposes a slight restriction on the applicative terms, then up to renaming of 
class names all applicative terms can be obtained by translating suitable typed 
A-terms (completeness). In Sect. 6 we show that the evaluation of A-terms is 
correct with respect to the denotational semantics. This proof makes use of a 
Kripke-style logical relation. We conclude with an overall result, namely that if 
we translate a A-term into the fragment of C++ and evaluate it, we obtain the 
correct result with respect to the denotational semantics.

R elated work. Several researchers [Kis98], [Lau95] have discovered that C++ 
can be used for functional programming by representing higher order functions 
using classes. Our representation is based on similar ideas. There are other 
approaches that have made C++ a language that can be used for functional 
programming such as the FC++ library [MSOO] (a very elaborate approach) as 
well as FACT! [Str] (extensive use of templates and overloading) and [Kis98] 
(creating macros that allow creation of single macro-closure in C++). What is 
different in our paper is that we develop a mathematical model of a fragment 
of C++, and that we formally prove the correctness of our translation.

The approach of using denotational semantics and logical relations for prov­
ing program correctness has been used before by Plotkin [Plo77], Reynolds [Rey83] 
and many others. The method of logical relations can be traced back at least 
to Tait [Tai67] and has been used for various purposes (e.g. Jung and Tiuryn 
[JT93], Statman [Sta85] and Plotkin [Plo80]). To our knowledge the verifica­
tion of the implementation of the A-calculus in C++ (and related object-oriented 
languages) using logical relations is new.

There are other fragments of object-oriented languages in the literature 
which are used to prove the correctness of programs. A well-known example 
is Featherweight Java ([IPW99]). The model for this language avoids the use 
of a heap, since methods do not modify instance variables. In contrast, our 
model of C++ does make use of a heap and is therefore closer to the actual 
implementation of C++. Although our fragment of C++ does not allow for 
methods with side effects, it could easily be extended this way and then used 
to verify programs in C++ with side effects.

Acknowledgements: We would like to thank the referees of earlier versions 
of this paper for valuable comments.
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1.1 General Notations
N otation  1.1 (Finite maps) By X  -»fjn Y  we denote the set of finite maps 
from the set X  to the set Y , that is, the set of functions /:dom (/) -> Y  where 
dom(/) is a finite subset of X . If f  E X  -*fjn Y  and (x,y) E X  x Y, then 
f[x i—»■ y] denotes the finite function with domain dom(/) U x that sends x to y 
and any other x' E dom/  to f{x'). A list xi : y i , . . .  ,xn : yn, where the Xi are 
distinct elements of X  and the yi are in Y, denotes an element of X  —>fjn Y  in 
the obvious way. Furthermore, f , x  : y := f[x »->• y].

In this article we observe a strict naming convention: Once a group of letters 
has been used to range over a certain entity (e.g. A, B  (but not C) range over 
types), letters in that group (possibly with sub- or superscripts) will always 
denote instances of that entity. There will be only two exceptions: x , y, z may 
denote elements of unspecified sets X, Y, Z  as well as variables (Definition 2.2), 
and /  ranges over unspecified functions as well as basic C+-1- functions (As­
sumption 2.1).

List of notations. For the reader’s convenience there is a complete table of 
notations in Sect. 8 at the end of this article

2 The Typed A-Calculus
We introduce a version of the typed A-calculus based on base types, which are 
native C++-types, and basic functions, which are native C++-functions.

A ssum ption 2.1 (a) We fix a set basetype of base types p,a , —  One specific
base type is the type of integers int.

(b) We fix a set F of names for basic functions /  : (p i,. . . ,  pk) -+ a.

(c) We view functions of arity 0 as constants and denote them by the letter 
n.

(d) Let [p] denote the set of elements of base type p. In case of int, [int] is 
the set of integers.

(e) Let If] : [pi] x . ..  x [p*] -»• [a] be the function denoted by f  E F. 
Especially we assume that a constant (Q-ary function) n, which stands for 
the integer n, is interpreted by itself (i.e. by n).

Any native C++ type can be used as a base type, and any native C++ functions 
without side effects (including constants) can be used as basic functions 1.

Definition 2.2 (Simply typed A-calculus w ith  basic functions)

(a) We fix a set Var of variables x ,y ,z ,  —

(b) The sets of types, contexts and X-terms are defined as follows:

1The translation given below makes sense as well for functions with side effects, including 
those which affect instance variables of the classes used. However, in this case we would go 
beyond the simply typed A-calculus, and could not use the simple denotational semantics of 
the A-calculus in order to express the correctness of the translation.
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Types: Type 3 A ,B ,E ,F  ::= p\ A -3 B
Contexts: Context 3 T, A Var -+fj„ Type
X-terms: Term 3 r ,s , t  := x \ f [ r i , . ..  ,r*] | r s \ XxA.r

(c) The relation T h r : A is inductively defined by the following standard 
typing rules;

Note that we do not have product types and that native C++-functions are 
not necessarily stand-alone C++ terms and hence not A-terms either. Therefore 
the rule for / [ r i , . . . , r*] is not subsumed by the rule for r s.

The simply type A-calculus has a well-known operational semantics defined 
by /^-reduction, (AxAr)s r[s/x], and function reduction, /[ni,...,n,fc] -+/ 

. . .  ,nfc). But there is also an equivalent denotational semantics which, 
for our purposes, will be more convenient to work with. Since our calculus does 
not allow for recursive definitions, it is possible to interpret types and terms 
in a naive set-theoretic hierarchy D of functionals of finite types over the base 
types:

Definition 2.3 For A G Type we define the set D(A) of functionals of finite 
types over A by induction on A:

Semantic values (elements ofD(A)) are denoted by d.

D efinition 2.4 (a) A functional environment is a mapping £ : Var -+ D.
FEnv denotes the set of all functional environments.

(b) I fT  is a context, then £ : T means Vx G dom(r).£(x) G D(T(x)).

Definition 2.5 (D enotational semantics of the  simply typed A-calculus)
For every typed X-term T h r : A and every functional environment £ : T the 
denotational value [r]£ G D(A) is defined by

T, x : A  b x : A
T \ - r : A ^ B  T \-s : A 

T h r s : BT h XxA .r : A -+ B

r h n  : (71... r  h r jfc : CTfc 
r b f [ n , . . . , r k\ : p

D(p)
D (A -3 B) 

D
the set of functions from D(A) to D(f?)

U DM
-AeType

IxK = ffa)
[ /[ri,...,r* ]]^  = [ /] ( [ r iK ,...,[ r* ]0

[r = [r]^([s]0
[Ax^.r]^ = Xd G D(A).[r]]£[x h-> d\
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3 Translation of Typed A-Terms into C + +
In this section we describe how to translate simply typed A-terms into C++ 
using the object-oriented concepts of classes and inheritance.

The translation generates new identifiers, which we need to disambiguate; in 
order for this to work, we restrict ourselves to the translation of finitely many 
A-terms and types at a time. We first define an identifier name(A) : String for 
finitely many A : Type. Here String is the set of strings.

• If p is a native C++-type, name(p) is a C++ identifier obtained from p. 
This is p, if p is already an identifier, and the result of removing blanks 
and modifying symbols not allowed in identifiers (e.g. replacing * by x), 
in case p is a compound type like long in t or * p. 2

• name(yl -+ B) := “C”*name(+*“_”*name(.B)*“D”, where * means con­
catenation. Here C stands for an open bracket, D for a closing bracket, 
and _ for the arrow in this identifier. By using these symbols we obtain 
valid C++-identifiers.3

For instance name(int —» int) = “Cint.intD”, name((int -+ int) —)■ int) = 
“CCint_intD_intD”. In the following, we write CA_BD instead of name(j4 -+ B) 
and CAJBD.aux instead of name(+ -+ £)*”_aux” (that type will be introduced 
below), similarly for other types.

For every A G Type we introduce a series of class definitions, after which
name(+ is a valid C++ type (assuming class definitions for any native C++
type used):

• For native C++-types the sequence of class definitions is empty.

• The sequence of class definitions for A -+ B  consists of the class definitions 
of A, the class definitions of B  not contained in the class definitions of A 
and additionally

class CA_BD_aux{
public: virtual B operator () (A x)=0;};

typedef CA_BD_aux * CA_BD;

So, CA_BD_aux is a class with one virtual method used as application,4 
which maps an element of type A to an element of type B. CA_BD is the type 
of pointers to elements of this class. The body of this method will then 
be the body of the function to be invoked when applied to its arguments.

2This modification might result in name clashes, in which case one adds some string like _n 
for some integer n in order to disambiguate the names. Since we are translating only finitely 
many A-types at any time, this way of avoiding name clashes is always possible.

3Again, we might need to disambiguate the identifiers as it was done for native C + +  types.
4In C + + , if an object o has a method with signature B operator () (Ax), invocation of 

this method is written like application, i.e. as o(s). Note however that Java objects correspond 
in C + +  to pointers to C++-objects. A pointer o ’ to an object o has first to be dereferenced, 
written as (* o ’), and therefore o ’ applied to s is written as (* o ’)(s). Note that, when 
creating an object using new, we obtain a pointer to an object.
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Now we define for every A-term r a sequence of C++-class definitions and a 
C++-term rc++, such that if r : A, then rc++ is of type name(A). 5

• If x is a variable, then the class definitions for introducing x axe empty 
and xc++ := x.

• Let t = AxA.r be of type A -+ B. Assume the free variables of t are of type 
x\ : A i,. . . ,  Xk ' Ak and that t  is a new identifier. Assume name(Aj) = Ai, 
xi is the C++-representation for Xi, name(A) = A, name(B) = B, and 
rc++ = r. The class definition for t consists of the class definition for r 
together with

class t : CA_BD_aux{ 
public:
Al xl;

An xk;
t(Al xl,A2 x2, ... , Ak xk){ 

this->xl = xl;

this->xk = xk;} 
virtual B operator () (A x){ 

return r;};};
tc++ := new t(xl, ...,xk).
Therefore the class definition of t  has instance variables xi of type Ai. The 
constructors has one argument for each variable xi and sets the instance 
variable xi to the value of that argument. The class has one method 
operator () with one argument x of type A. When invoked, the body of this 
method r, which is the translation of the body of the A-term, is evaluated 
in the environment mapping x to the value of the argument of the method, 
and xi to the value of this instance variable. Note that no other variables 
are visible in the body of this method, since this environment might differ 
between when an object of this class was created and when it is used. 
That is the reason why one needs to copy first, when creating an object 
of such a class, the environment into some instance variables.6
When applying an object of this class to an element, the body of the A- 
term is invoked. The A-term is translated into the statement which creates 
a new object with the instance variables set to the value they have in the 
current environment.

• Assume t = r s. Then the class definitions of t consist of the class def­
initions for r, and the class definitions for s (where the class definitions

5Strictly speaking, r c + +  depends on the choice of identifiers for A-types and C++-classes 
representing A-terms. When defining the parse function P in Sect. 6, this will be made explicit 
by having the dependency of this function on the context T and the class environment C. Since 
in our abstract setting A-types are represented by themselves, P does not depend on the choice 
of identifiers for those types.

6In C + +  there are no inner classes like in Java, which allow references to the current 
environment.
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corresponding to A-abstractions occurring in both r and s need only to be 
introduced once).7 Furthermore tc++ := (*(rc,++))(sc,++).
So t is interpreted as the result of applying the translation of r to the 
translation of s.

• Assume t = f[ r i , . . . ,  r**]. Then the class definitions for t are the class def­
initions for ri (again class definitions for A-terms occurring more than once 
need only to be introduced once). Furthermore, tc++ f  ( r f++, ...,r£7++).
So t is interpreted as the result of applying the native C+-1- function f  to 
the translations of r*.

Note that a A-abstraction is interpreted as a function of its free variables in 
the form (new t (x i , . . . ,  xk)). Hence, the evaluation of a A-abstraction in an 
environment for the free variables is similar to a “closure” in implementations 
of functional programming languages.

So far, we have developed a program which parses A-terms and translates 
them into the full language of C++. Our intention is to upgrade this to an 
extension of the language of C++ by A-types and -terms together with a parser 
program which translates this extended language into native C++. For this pur­
pose we introduce a syntax for representing A-types and -terms in C++. We use 
functional style notation rather than overloading existing C++-notation, since 
we believe that this will improve readability and acceptability of our approach 
by functional programmers. In our extended language, we write A -> B for the 
function type A —> B, r ~s for the application of r to s8, and \A x.B s for Aar .̂s 
if s : B. (If s is a term starting with A, B will be omitted). For instance, the 
term t = (A/mt-HntAa;,nt. /  ( /  x )) (Axmt.x + 2) 3 of the Introduction is written 
in our extended C++ syntax as

(\ in t-> in t f .  \  in t  x. in t  f ( f  ~“x)) “~ ( \ in t x. in t x+2)',~3

We now discuss informally how the translation of this example term t is eval­
uated. For the reader’s convenience we repeat the generated C++ code in a 
reformatted form (the code shown in the introduction was the automatically 
generated output of our translation program):

class Cint_intD_aux { public : virtual int operator() (int x) =0; }; 

typedef Cint_intD_aux* Cint_intD; 

class CCint_intD_Cint_intDD_aux
{ public : virtual Cint.intD operator() (Cint_intD x) =0;

typedef CCint_intD_Cint_intDD_aux* CCint_intD_Cint_intDD;

class tl : public Cint_intD_aux{ 
public :Cint_intD f;

7 A A-abstraction is represented as a new instance of its corresponding class. Even if the 
classes for two occurrences of the same A-abstraction coincide, for each occurrence a new 
instance is created. Therefore there is no problem, if a variable occurs as the same name, but 
with different referential meaning in two identical A-expressions.

8Note that we cannot write r(s) here, since this notation will not translate into application, 
but into (* r)(s).
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tl( Cint_intD f) { this-> f = f;>;
virtual int operator () (int x) { return (*(f))((*(f))(x)); >;>;

class tO : public CCint_intD_Cint_intDD_aux{ 
public :tO( ) { >;

virtual Cint.intD operator () (Cint.intD f) { 
return new tl( f);

class t2 : public Cint_intD_aux{ 
public : t2( ) { >;

virtual int operator () (int x) { return x + 2; };};

When evaluating the expression tc++ = (*((* ( new t0( )))( new t2( ))))(3); 
first the application of tO to t2 is evaluated. To this end, instances 10, 12 
of the classes tO and t2 axe created, and then the operator() method of 10 is 
called. This call creates an instance 11 of t l ,  with the instance variable f set 
to 12. The result of applying t0tot2isll.

The next step in the evaluation of tc++ is to evaluate 3, and then to call the 
operator() method of 11. This will first make a call to the operator method of 
f , which is bound to 12, and apply it to 3. This will evaluate to 5. Then it will 
call the operator method of f  again, which is still bound to 12, and apply it to 
the result 5. The result returned is 7.

We see that the evaluation of the expression above follows the call-by-value 
evaluation strategy.9 Note that 10, 11, 12 were created on the heap, but have 
not been deleted afterwards. The deletion of 10, 11 and 12 relies on the use of 
a garbage collected version of C++, alternatively we could use smart pointers 
in order to enforce their deletion.

4 M odelling a Fragment of CH—|-
In this section we construct a mathematical model of a fragment of C++ that 
contains the code created by the translation of A-terms described in the previous 
section. We model the execution of C++ code by functions eval and apply, 
similar to the modelling of the A-calculus in [ASS85]. However, in order to 
model the C++ implementation as truthfully as possible, we differ from [ASS85] 
by making the pointer structures for the classes and objects explicit and letting 
the functions eval and apply modify these pointer structures via side effects.

When we investigate what was needed from C++ in order to translate simply 
typed A-terms, we see that the classes obtained have instance variables, one 
constructor, and one method corresponding to the operator() method. The 
constructor has one argument for each instance variable and sets the instance 
variables to these arguments. No other code is performed. The method has 
one argument, and the body consists of a simplified C++ expression. Here 
simplified C++ expressions are the C++ expressions occurring in the translation 
process, which were all translations of A-terms. Simplified C++-expressions 
are variables, native C++ functions applied to simplified C++ expressions,

9Note that this computation causes some overhead, since for every subterm of the form 
Ax .r  a new object is created, which is in many cases used only once, and can be thrown away 
afterwards. One could optimise this, however at the price of having a much more complicated 
translation, and therefore a much more complex correctness proof of the translation.

146



the application of one simplified C++ expression to another simplified C++ 
expression (which corresponds to the method call in case the first applicative 
term is an object), and the construct new applied to a constructor and simplified 
C++ expressions.

We develop a language which formulates this fragment of C++. In this 
language, a class is given by a context representing its instance variables, the 
abstracted variable of the method and its type, and an applicative term. Ap­
plicative terms (which correspond to the simplified C++ expressions above) are 
variables, native C++ functions applied to applicative terms (where C++ func­
tions with no arguments are constants), the application of one applicative term 
to another applicative term (which corresponds to the method call in case the 
first applicative term is an object), or a constructor applied to applicative terms 
(which corresponds to the new-construct).

This fragment could easily be extended in order to cover modification of 
instance variables and method calls in the body of a method, the possibility of 
having several methods, and other C++ constructs.

D e f in it io n  4 .1  ( A p p l ic a t iv e  t e r m s , c la s s e s ,  c la s s  e n v ir o n m e n ts )

Let Constr be an infinite set of constructors (i.e. class names), denoted by c. 
Applicative terms: App 9 a, b ::= x \ f[a \ , . . . ,  ak] \ a b \ c(o i,. . . , a*,)
Classes: Class (T;x : A;b)
Class environments: CEnv 9 C ::= Constr -+fjn Class

Applicative terms (€ App) correspond to the C++ constructs x, f  [a i,..., ak], 
(* (a ))(b ) and new c(a i,. . . ,  ak). A class (T;a; : A]b) € Class, where T = xi : 
A i , . . . ,  xn : An, corresponds to a C++ class definition of the form

class c : CA_BD_aux{ 
public: AI xl;

An xk;
c(Al xl,A2 x2, . . .  , Ak xk){

th is-> x l -  xl;

this->xk = xk;} 
v irtual B operator () (A x){ 

return b;};};

Note that the type B is omitted in (T; x : A; b) since it can be derived, and the 
class name c is associated with the class through the class environment CEnv.

Definition 4 .2  We define the free variables FV(o) of an applicative term a € 
App as follows: FV(x) = {a;}, FV (/[ai,. . . , a*]) := FV(ai) U • • • U FV(a*), 
FV(a b) := FV(a)UFV(6), FV(c(ai,. . .  ,afc)) := FV(ai) U • • • U FV(afc).

When a constructor call of a class is evaluated, its arguments are first eval­
uated. Then, memory for the instance variables of this class is allocated on 
the heap, and these instance variables axe set to the evaluated arguments. The 
address to this memory location is the result returned by evaluating this con­
structor call. The only other possible result of the evaluation of an applicative 
term is a number, so values are addresses or numbers.
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Note as well that on the heap we store elements of the form c(v), which can be 
represented as elements of Constr x Val* (here Val is the set of values). Therefore 
we can model the heap as a finite function from addresses to Constr x Val*.
Definition 4.3 (Values, closures, heaps, and value environments)

Let Addr be an infinite set of addresses denoted by h.
Let n range over C++ constants, that is, elements of basic C++ types;
Values: \ td \3 v ,w
Closures: Constr x Val*
Heaps: Heap 3 H
Value environments VEnv 3 rj

Note that n denotes both constants and elements of basic C++-types. Since 
constants are to be interpreted by themselves, this doesn’t cause confusion.

The functions eval and apply defined below have side effects on the heap. This 
fact can be conveniently expressed using monads.
Definition 4.4 (State monad)

The partial state monad for a given sets X  (of states) is the functor M^: Set -+
Set (the object part of which is)

M*(y) : = X ^ Y x X

where X  x X  is the set of partial functions from X  to Y  x X .

Elements of Mx(V) are called actions and can be viewed as elements of Y  that 
may depend on a current state x € X  and also may change the current state.
So, an element of Mx(V) is a partial function which, depending on the current 
state, returns a result and a new state (or fails). Monads are a category-theoretic 
concept whose computational significance was discovered by Moggi [Mog91].

We need to work with partial instead of total functions because the opera­
tions eval and apply defined below do not yield defined results in general. We 
will however prove that for inputs that can be typed the results will always be 
defined.

Notation 4.5 (do, return, mapM, read, add) We use the following standard monadic 
notation (roughly following Haskell syntax): Suppose e\ : M*(>i), . . . ,  e^+i : 
Mx(Vfc+i) are actions where e, may depend ony± :Yi,  . . . ,  2/*_i : Vi-i. Then

do{2/i «- ei ; . . .  ; yk <- ek ; ek+i}  : Mx(Tfc+i)

is the action that maps any state yo :Y  to (yk+ i , xk+i) where (yi,Xi) ~  e* Xi-i,  
for i =  1, . . . ,  k -f 1 denotes the usual “partial equality”). The intuitive idea is 
that the do-expression is computed by evaluating eo,. . . ,  e*_|_i in sequence, where 
d  can make use of the result yj returned by ej (j < i). The result returned is
that of ek+i,  and the computation of each e* might change the state.

We also allow let-expressions with pattern matching within a do-construct 
(with the obvious meaning). We adopt the convention that computations are 
“strict”, i.e. the result of a computation is undefined if one of its parts is. 
Furthermore, we use the standard monadic notations

return : Y  -+ Mx(V) return y x =  (y , x )
mapM : (Z -+  Mx(Y))  -+ Z* -+  Mx(V*) mapM /  z  =  do{yi +- f  z \ ; . ..

• • • ; Vk+- f  Zk] return (y)}

n | h
(c, V i , . . . , V k )
Addr —>fin (Constr x Val*) 
Var —►fin Val
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as well as

read : X  —>• Mx-+finy(^), read x m ~  (m x,m)
add : Y  -+ Mx-4 finy(X), add y m ~  (x,m[x i+ y]) where x = fresh(m)

Here, fresh is a function with the property that i f m : X  -+«„ Y , then fresh (m) 6 
X  \  dom(m) 10.

D e f in it io n  4 .6  We define functions

eval : CEnv -+ VEnv -+ App -+ MHeap(Val)
apply : CEnv -+ Val -> Val MHeap(Val)

by mutual recursion as follows (in Sect. 6 we will omit the argument C, since it 
will be a global parameter):

eval C 7} x =  return (rj x)
eval C 7) f[a\ = do{n +- mapM (eval C r/) a ; return [/](n)}

eval C 7] (a b) = do{(u,io) +- mapM(eval C rf) (a, b) ; apply C v w}
eval C 7) c(a) = do{v <- mapM (eval C rf) a ; add (c, v)}

apply C h v = do{(c,tiT) i -  read h ; let (y : B;x : A;a) =  C c
in eval C [y, x ^  w , v] a}

apply C n v = 0

where 0 is the undefined action, i.e. the partial function with empty domain11.

L e m m a  4 .7  (1) 7/eval C 7} a H = (v,Hl), then H  C H '.

(2) If apply C v w H =  (v H ' ) ,  then H  C H '.

Proof. Straightforward simultaneous induction on the definitions of eval and 
apply, i.e. by “fixed point induction” [Win93]. q.e.d.

Due to the complexity of C++ it would be a major task, which would require 
much more man power than was available in our research group, to formally 
prove that our mathematical model, given by eval and apply, coincides with 
the operational semantics of C++.12 (Note that other models of fragments 
of object-oriented languages in the literature face the same problem and their 
correctness w.r.t. real languages is therefore usually not shown.) However, when 
going through the definitions we observe that the evaluation function eval is 
indeed defined in accordance with the expected behaviour of C++:

• A variable is evaluated by returning its value in the current environment 
V-

10In our applications X  will be a space of addresses which we assume to be infinite, i.e. we 
assume that the allocation of a new address is always possible.

u It would be more appropriate to let apply C  n v  result in a finite error, but, for simplicity, 
we identify errors with non-termination.

12The formalisation of the semantics of Java in [SSB01] was a major project, and still this 
book excludes some features of Java like inner classes. Note that C + +  is much more complex 
than Java.
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• The application of a native C++ function to arguments a i , . ..  , a*, is car­
ried out by first evaluating a i , . . . ,  a*, in sequence, and then applying the 
function /  to those arguments.

• Note that constants are special cases of functions with arity 0, and there­
fore constants are evaluated by themselves.

• (o b) corresponds in C++ to the construct (* (a))(6). First a and b are 
evaluated. Because of type correctness, a must be an element of the type 
of pointers to a class, and the value of a will therefore be an address 
on the heap. On the heap the information about the class used and the 
values of the instance variables of that class are stored. Then (* (a))(b) 
is computed by evaluating the body of the method of the class in the 
environment where the instance variables have the values as stored on the 
heap, and the abstracted variable has the result of evaluating b. This 
is what is computed by eval 77 (a b) (which makes use of the auxiliary 
function apply).

• The expression c(o), which stands for the C++ expression new c(a i,. . . ,  ak), 
is evaluated by first computing a i, . . . ,  ak in sequence. Then new storage 
on the heap is allocated. Note that in our simplified setting, the construc­
tor of c simply assigns to the instance variables the values of a i , . . . ,  ak. 
Consequently, the intended behaviour of C++ is that it stores on the 
heap the information about the class used and the result of evaluating 
a i , . . . ,  ak, which is what is carried out by eval.

5 Formal Translation of Typed A-Terms and its 
Correctness

Despite of the fact that we could describe only informally the connection of our 
mathematical model with the actual implementation of C++, we will be able 
to prove formally that the model as well as the translation of A-terms described 
in Section 3 are correct in the following sense: As we did for A-terms, we will 
define for C++ terms, a E App, a typing relation, T h a : A, and a denotational 
semantics, E D(A). Similarly, we will define for values, v E Val, a relation
H  h v : A and a semantics E D(A) (all these definitions will depend on
a class environment C E CEnv). Our main results will be the correctness of 
the translation function, P (see below), and the evaluation function, eval, with 
respect to these typing relations and denotational semantics (Theorems 5.6 and 
6.9).

In this section we carry out the first step, namely the introduction of the 
parsing relation and a proof that it is correct and complete. In the next section 
we will show that the evaluation of applicative terms is correct as well and 
obtain the correctness of our implementation.

Definition of the Parse Function P
We are going to define a formal analogue to the translation of A-terms described 
in Section 3. We use the monadic notation from Section 4.
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Definition 5.1 (Definition of the Parse Function P) We define a function

P : Context —> Term -> McEnv(App)

by recursion on terms as follows:

P T x = return x, if x is a variable
P T / [ f ]  = do{a 4 -  mapM (P T) f ;  return f[a\}

P T (r s) = do{(o, b) 4 -  mapM (P T) (r, s) ; return (a 6 )}

P T (AxA.r) = do{a 4 -  P (T,x  : A) r ; c 4- add(r;x : A]a) ; return c(dom(r))}

Hence, the translation has a side effect on the class environment.

Lemma 5.2 P T r  is total and if P T r C =  (a, C'), then C C C '.

Proof. Induction on the term r. q.e.d.

Typing and denotational semantics of applicative terms
Definition 5.3 (Typing of Applicative Terms) We define inductively a typ­
ing relation C;T h a : A :

C] r ,  x : A h x : A

f  € F, /  : (pi , . . . , pk) -» °
C-,T\-ai'.pi (* = l,...,fc)

C]T h /[a i,...,a * ]  : a 

C ]T \~ a :A -+ B  C',Y\~b: A
C\Y\- ab : B

C(c) = (A;x : A; a) A = xi : Au ...  , x k : A k 
C \ A ,x : A \ r a : B  

C,T  h Oi : Ai (i = 1 ,... ,k)
C\ T b c(ai, . . . ,  a*;) : A -* B

Definition 5.4 (D enotational semantics of applicative term s) I fC ;T  h 
a : A, then for every functional environment £ € FEnv such that £ : T we define 
[ a |  £ e D(A) (we write ([a]£ i fC  is a fixed global parameter):

M c£ ;= C(*)
[ / [ a i , . . . ,a * ]J c f  :=

[ a b f (  := [ o ] ° « [ 6 ] ° 0
[c (a i , . . . ,a * ) ]C? := A d6D (A ).[a]c { '[x ^ d ]

where in the last clause it is assumed that we have C(c) = (A;x  : A; a) with 
C \ A , x : A \ ~ a : B ,  A  = Xi : A i , . . . ,  Xk : A k and C,T  b a* : A{ (i = 1 ,.. .,  k), 
and £' is defined by £'(xi) := [a* ]c £ for i = 1 ,..., k.

Lemma 5.5 (a) If C C C', T C P ,  C,T h a : A, then C'^T1 h a :  A.
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(b) If C]T \- a : A, C]T b a : A! , then A = A '.

(c) If C C C', r  C r ,  £ C C\T b a : A, and £ : T, ?  : V , then
l a f Z  = l a f t ' .

Proof: Straightforward.

Correctness of the Parse Function P
Theorem  5.6 If r is a \-term, T b r : A, then P T r C ~  (a,C') for some
C',a such that C";T h a :  A, and for all f : T we have [r]]£ = [a ]  £.

Proof: Induction on the derivation of T b r : A. The only interesting case 
is r =  AxB.r', where we have r ,  x : B  b r' : A. Assume r  = x\ : A i , . . . ,  Xk : Ak 
and let x := x i , . . . , Xk- By induction hypothesis P (r, x : B) r' C = (o', C\) for 
some C i,a ' s.t. Ci;T,x  : B  h of : A, and for d € D(A) we have [r'J£[£ d\ = 

i-> d\. Then P T r C = (c(x),C2 ), where C2 := Ci[c (T-,x : B ,a ')], 
for some fresh c. C2 ;T h x* : A*, and by monotonicity C2 ; T, x : B b o' : A, 
therefore C2 ;T b c(x) : B  A. Furthermore, [a?i]]C2£ = therefore

C  ̂ for the as in the definition of [c(x)]Ca£. Therefore, ^(x)]]0,2̂  = 
Ac?.[[o ']]072[x i-> d\ = A d .lo 'J^ ^ x  1-t d\ = A d-lr'J^x 1 d\ = Jr]^ . q.e.d.

Completeness of the Parse Function P
In addition to the correctness of the translation function P we now show the 
opposite direction, namely completeness: The translated versions of typed A- 
terms are already essentially all typed elements of App. The only restriction 
is that constructors are only applied to variables, and that they are applied to 
all variables in the context, independently of whether the variables occur in the 
body of the class or not.

Definition 5.7 Let C;T b' a : A be defined by the same rules as for C;T b 
a : A, except for the rule of deriving C,T b c(ai,...,afc) : A B, which is 
replaced by the following:

C(c) = {T-,x : A;a) T = xx : A u  . . . ,  xk : Ak 
C ;r ,x :  A b 'o :B  

C; T b' c(xi, . . . ,  Xfc) : A -> B

Rem ark 5.8 In Theorem 5.6 we have as well C';T b' a : A.

We have no control over the choice of class names (constructors) introduced 
by the parse function. So a class term will in general only be reached by the 
parse function up to renaming of class names. Furthermore, if in a A-term there 
exist the same A-term twice as a subterm, the parse function will assign different 
class names to each occurrence of it. (One could improve the parse function so 
that this doesn’t take place.) Therefore, if we want to obtain an element o of 
App by parsing a A-term r, it might be that in the parsed A-term o' there are 
two different constructors which correspond to the same constructor in a. So we 
obtain an element of App by parsing a A-term only up to renaming and possibly 
identification of class names. The following definition of a class homomorphism 
makes this explicit:
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Definition 5.9 (a) Let 9 : Constr -»fjn Constr. Then 9(a) is defined if each
constructor occurring in a is an element o/dom(0). If 9(a) is defined, then 
9(a) is the result of replacing each occurrence of c G Constr in a by 9(c). 
Furthermore, for (T-,x : B; a) G Class we define 9(T\x : B; a) (r;x  : 
B',9(a)).

(b) Let C,C' G CEnv. 9 : dom(C') -* dom(C) is a CEnv-homomorphism, if 
Vc G dom(C').9(C'(c)) = C(9(c)).

Theorem  5.10 (Completeness of the Parse Function P) Assume C,T  h' 
a : A, and C' G CEnv. Then there exists a \-term r, a CEnv-homomorphism 
9 : C" -+ C such that dom(C") fl dom(C') = 0, and an a1 G App, such that the 
following holds:

T h r : A  ,
PT r C ' = (a', C' U C") ,

C 'U C ^ r  h ' a ' : A ,
9(a') = a .

Proof: Induction on CjT h' o : A. Case T = x\ : A i , ...  ,Xk : Ak, a = 
c (x i , . . . , xk), A = A1 -¥ B', C(c) = ( r ;a? : A'\a'), C,T,x  : A! H a! : B'. 
Let C' G CEnv. By induction hypothesis, we find a CEnv-homomorphism 9' : 
Co —> C, a A-term r' and a" G App such that r ,x  : A' h r '  : B ' , P (r,ar : 
A') r' C  = (a",C' U Co), C' U C0;r ,x  : A! h' a" : B', and 9'(a") =  a'. Then 
P T (AxA'.r') C' = (co(a;i,. . . , Xk),C'  U Co[co •-> (T;x : A'-,a")]) for some fresh 
Co- Let a! := Co(x\,...  ,Xk), C" := Co[co (r;x  : Bja")], 9 := 9'[co i-> c], 
r := \ x A .r'.

The other cases are straightforward. q.e.d.

6 Correctness of the Evaluation of Applicative 
Terms

In this Section, except for the main theorem 6.10 at the end, the class environ­
ment C will not change. We will therefore omit this parameter in all notations 
(including apply, eval).

Typing, Semantics, and Semantic Typing of Values
Definition 6.1 (Typing of Values) The typing relation H  h v : A is defined 
inductively by the following rules:

If p is a native C++ type and n G [p]], then 

H \- n : p

If h e  Addr, H(h) = (c,Vi,. ..  ,Vk), C(c) = (A;x : A\a)
A = xi : A i , . . .  ,Xk : Ak then

A ,x  : A I- a : B  
H  b vi: A( (i = 1, — , fc)

H \ - h : A - > B
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Definition 6.2 (D enotational Semantics of Values) (a) Assuming H  h
v : A we define the denotational semantics ofv,  E D(A), by recur­
sion on the derivation of H  b v : A:

{n]H := n
l h } H := Ad E D(j4).[a]£[x t-> d\

where H{h) = (c,vi , . ..  7vk), C{c) = (A;x : A; a), A = xi : A i , . . .  ,x k :
Ak> A ,x  : A\~ a : B, H  \~ Vi : Ai and £(xi) := [[^i]]^ (i = 1 ,.. . ,  k).
If C needs to be mentioned we write instead o f \ v ^ H-

(b) Ifr} E FEnv, r) :T, we define lr)}H E VEnv by {rj}11 := \ x  E dom(77).|[7?(x) .

Lemma 6.3 (a) If H  h v : A and H  C H', then H' b v : A and =
M H'-

(b) If H  b v : A and H  h v : A', then A = A '.
The next definition is motivated by the following consideration: We want 

to show that eval 77 o H  is defined, whenever we have T h a : A, and if the 
result is (v,H')7 then [[aJ = |u]] (more precisely we have a dependency 
on an environment rj). The problem is that [a  b} = [a ] ( [6 |) ,  whereas 
eval rj (a b) H  apply v w H" where v , w axe obtained by applying eval 
to a and b, and H" is the heap obtained when evaluating a and b. Even so in 
the proof of the correctness of eval we might know by induction hypothesis (for 
some suitable heap H "') that [a]] = [t>]] and [6] = [iy | ,we will not be

z j t l t

able to conclude that |aj([[b]|) = I* /]  , if apply v w H" ~  (v ' , H unless
we know for a already that it respects apply. If a = c (a i,. . .  ,a*), this is no
problem, but a might be a variable or an application term a' b'.

So, when proving the correctness for an applicative term of type A B, we 
need to show that it respects apply as well. We can achieve this if we know that 
apply is only applied to terms which respect apply themselves. We also need to 
assume that all variables have this property as well. The correct condition is 
expressed by the following Kripke-style logical relation H v ~  d : A between 
a C++ value v E Val and a denotational value (d E D(A)). This relation, which 
depends on a class environment C, a heap H , and the type A, can be viewed as 
a semantic analogue of the (proof-theoretic) typing relation.
Definition 6.4 (a) We define a relation H \= v ~  d : A by recursion on the

type A.
For the sake of readability we will write \= apply v w H ~  d : A as a 
shorthand for

3v',H' (apply v w H  ~  (v', H') A H' |= v' -  d : A).
(Note that |= apply v w H ~  d: A implies apply v w H is defined):

H \= v ~  n : p :<=+• v = n E |/)J
H \= v ~  f  : A —> B  :•<=+► H  h v : A B  A |u  = /

AVJET D H,V(w,d) E Val x D(A).
H ' \ = w ~ d :  A

apply v w H '  ~  f{d) : B
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(b) We also define

H  (= r) ~  £ : T :<t=> dom(r) C dom(77) D dom(£)A
Vx € 6om(T)H 1== rj(x) ~  £(&) : r(ar)

Rem ark. Strictly speaking, in the notation H  |= v ~  d : A, the parameter 
d is superfluous, since we have H \ = v ~ d : A = > d  = So we could
have written instead H  (= v : A. The reason for using the slightly redundant 
notation is that it facilitates the (frequent) references to d.

Lemma 6.5 If H \= v ~  d : A and H  C H 1 then H' \= v ~  d : A.

Proof. Easy by the definition and Lemma 6.3 (a). q.e.d.

Lemma 6.6 If H  (= v ~  d : A, then H h v : A. Hence, if H \= rj ~  £ :T, then 
H \~ rj :T.

Proof. Clear, by definition. q.e.d.

Proof of Correctness of eval
The main result below corresponds to the usual “Fundamental Lemma” or “Ad­
equacy Theorem” for logical relations.

Similarly to the notation f= apply v w H ~ d : A we write |= eval 77 a H  ~ 
d: A as a shorthand for

3v', H' (eval rj a H  ~  (v1, H') A H' \= v' ~  d : A).

Lemma 6.7 Assume T h a : A. Then for all rj, £ we have

H  |= rj ~  £ : T =>\= eval 77 a if  ~  [a]£ : A .

Proof. The proof is by induction on the typing judgement T I- a : A. In 
the proof we will refer to Lemma 6.5 as “monotonicity”. We consider the four 
possible cases of how T h a : A can be derived.

T,x : A I- x : A. Assume £ : (T,x  : A) and H \= 77 ~  £ : (T,x : A). We need 
to show f= eval rj x H  ~  [a;J]£ : A. We have eval rj x H  = (rj(x),H) and |[:c]£ = 
£(x) E D(A). Furthermore, H  [= rj ~ £ : (T,x : A) entails H  |= r]{x) ~  £(x) : A, 
and therefore the assertion follows.

T h c(a) : A B, derived from C(c) = (A;a; : A; a), where A = y : A, 
r h a : A, and r, x : A h a : B. Assume £ : T and H  \= rj ~ £ : T.

We need to show |= eval rj c(o) H  ~  [c(o)|£ : A B. By induction 
hypothesis for r  h a* : A* and monotonicity we get that mapM (eval 77) a H = 
(v,Hi) for some Hi, v s.t. Hi \= Vi ~  [«,]£ : A* Therefore eval rj c{a) H  = 
(h,H  ), where H' = H\[h (c,u)]) with h = fresh(R’i) . We need to show 
H' |= h ~  |c(5) ]£ : A —> B, which is a conjunction of three statements (i), (ii),
(iii):

(i) We need to show H 1 h h : A ->• B, which follows, since H'(h) = (c,v), 
C(c) = (A;x : A;o), T,x : A h a : JB and H' h Vi : A*, where the last 
statement follows by Hi |= Vi ~  [a*]£ : A*.
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(ii) We need to show = [c(d)]£:

lh } H = Ad e D(,4).[a]][ 770!^  [x ■-> d] ,
II c(a)]£ = Ad e D(A).[a]]£o[:c ^  d]

where 770 := [y ^  v\, [ 770]^  := %  € domfao).[ 770(7/) ]^  , and
£0 = \y H. [«]£]• By JSTi )= rs*/ [ai]£  : Ai and monotonicity we have

H lH 1 \= r/o ~  £0 : A. Therefore [ 770(7/i)] = £0 (Vi) and we are done.

(iii) Assume if"  D if ' and if"  |= w ~  d : A. We need to show 

f= apply h w H "  ~  ([c(a) ]£)(d) : B  .

First,
apply h w H" ~  eval 77o[x i-> 77;] a i f"  ,
([c(d)]£)(d) = [aKo[«*->d] •

By H' \= 770 ~  £0 : A, if"  77; ~  d : A, and monotonicity we obtain 
if"  |= 770[x i-> w] ~  £o[x •-> d] : (A,x : A). Using the induction hypothesis 
we obtain |= eval 770[x 1 w] a if"  ~  [a]£o[z d] : B.

T  b  a b : B ,  d e r iv e d  f r o m  T  b  a : A  - »  B  a n d  T b  b : A.  A s s u m e  £  : T a n d  

B  (=  77 ~  £  : T . W e  n e e d  t o  s h o w  |=  eval 77 ( a  6) i f  ~  [ a  &]£ : A .  B y  in d u c t io n  

h y p o t h e s i s  a n d  L e m m a  4.7 (1), eval 77 o  i f  =  (7;, i f  1) f o r  s o m e  Hi D H  w i t h  

H i  f= |[&]j £  • A  B  a n d ,  u s in g  m o n o t o n ic i t y ,  eval 77 b H i  =  (w,  i f 2 ) fo r  

s o m e  H2 I> H i  w i t h  i f 2  f= w  ~  [&]£ : A . B y  t h e  d e f in i t io n  o f  i f  1 |=  v ~  [ a ] £  : 

A  - »  B w e  o b t a i n  |=  apply 7; w H2 ~  [ o ]£ ( [& l£ )  : B  a n d  w e  a r e  d o n e ,  s in c e  

eval 77 ( a  6) i f  ~  apply v w H2 a n d  [ o  &]£ =  [o ]£ ( [& ]£ ) .

F b /[ai,...,afc] : B, derived from T b a* : Ai? i = 1 ,...,& , where /  : 
(Ai,...,Afc) —> B. Assume £ : T and if  |= 77 ~ £ : T. We need to show 
|= eval 77 f[a\ i f  ~  [/[d]]£ : B. By induction hypothesis and Lemma 4.7 (1), 
eval 77 01  i f  = (ni,H i) for some ni € [ Ai ] and Hi D H  with Hi (= ni ~  [ai]£ : 
Ai, especially ni = [ai]£. Similarly, using monotonicity and Lemma 4.7 (1), 
for i = 1 ,.. . ,  k — 1 we have eval 77 a*+i Hi = (71*+1 , Hi+1) for some 7i*+i € [[ A, ] 
and ifj+i D Hi with rii+i = [aj+i]£. It follows eval 77 f[a\ i f  =  ([/](n),ifjfc) = 
([/[a]R,-£ffc). Q-e.d.

L em m a  6 .8  I f  H  \- v : A then i f  |= i> ~  [ u ] ff : A.

Proof. Induction on i f  b 7; : A.
The case A € basetype is trivial.
Case i f  b h : A —̂ B, derived from H(h) = (c,v), C(c) = (x : A;x : B ,a ),

x : A ,x  : A \- a : B, H  \- v : A. We need to show that for i f ' D H, w,d
s.t. i f ' |= 77; ~  d : A we have \= apply h w if ' ~ [ h l^ d )  : B. So assume
i f ' , 77;, d as stated.

Let 77 := [x i-> u], £ := [77]^. Then {h}H(d) = { h }11 (d) = |o ]£ [x  •-> d]. 
By induction hypothesis i f  (= u* ~  [t;,] : A*, and by i f ' |= 77; ~  d : A we
therefore get i f '  |= 77[x i-> 777] ~  £[x d] : T. Furthermore, apply h w i f ' ~  
eval (?7[x 77;]) a i f '.  By Lemma 6.7 |= eval (77[x i-> 77;]) a i f ' ~  [o]£[x d] : B,
which proves the assertion.
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T heorem  6.9 (C orrectness o f  eval) If T b a : A and H  h 77 : T, then there 
exist H ',v such t/mteval 77 a H  ~  H' \- v : A and ■

Proof: Immediate by Lemmas 6.7 and 6.8.

Main Theorem
T heorem  6.10 (O verall C orrectness) Assume h r : A and let C € CEnv.
Then P 0 r C = (a, C') for some C' D C. Furthermore, for any heap H, any 
environment 77 and any C" D C' we have

eval C" rj a H = (v,H')

for some H f, v s.t. [ r  J0 = \ .
Especially, in case A = int we have that r n for some n, and therefore 

|r ] 0  = n and
eval C" 77 a H = (n,H') .

P roof. By Theorem 5.6 and 6.9.

R e m a r k . In the correctness proof for our implementation we had to explicitely 
manipulate the class environment and the heap, which made the proof rather 
“low level”. It would be desirable, in particular with regard to a formalisation 
in a proof assistant, to lift the proof to the same abstract monadic level at which 
the functions P, eval and apply are defined. A framework for carrying this out 
might be provided by suitable versions of Moggi’s Computational A-Calculus, 
Pitts’ Evaluation Logic [Pit91] and special logical relations for monads [GLN02].

7 Conclusion
In this paper we showed how to introduce functional concepts into C++ in a 
provably correct way. The modelling and the correctness proof used monadic 
concepts as well as denotational semantics and logical relations.

This work lends itself to a number of extensions, for example, the integration 
of recursive higher-order functions, polymorphic and dependent type systems, 
the integration lazy evaluation and infinite structures as well as the combination 
of larger parts of C++ with the A-calculus. The accurate description of these ex­
tensions would require more sophisticated, e.g. domain-theoretic constructions. 
We believe that if our approach is extended to cover full C++, we obtain a 
language in which the worlds of functional and object-oriented programming 
are merged, and that we will see many examples, where the combination of 
both language concepts (e.g. the use of A-terms with side-effects) will result in 
interesting new programming techniques.

The remarkable fact that it is possible to have a denotational semantics at a 
description level where pointers are manipulated explicitely entails that the well- 
known benefits of denotational semantics, extensionality and compositionality, 
are still available at that level. This has already paid off in this paper where we 
were able to give a short and concise correctness proof for our C++ fragment us­
ing the denotational semantics (instead of a complicated operational argument). 
More benefits are to be expected when it comes to verifying programs written 
in this C++ fragment or in one of the future extensions mentioned above.
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8 List of Identifiers and Notations

Finite functions ^  ”+fin Y Def. 1.1
Extension of fin. fns. g[x ■-+ y] or /,  x : y Def. 1.1
Explicitly given fin. fns. ■ yi j ■ • • > ̂ de • Vk Def. 1.1
Base types basetype 9  p, a Ass. 2 .1  (a)
Base type int int Ass. 2 .1  (a)
Basic functions F B f Ass. 2 .1  (b)
Denot. sem. of base type M Ass. 2 .1  (d)
Denot. sem. of basic fn. I f i Ass. 2 .1  (e)
Constants (of any base type) n Ass. 2 .1  (c)
Variables Var 9  x ,y ,z Def. 2.2 (a)
Types Type 9  A ,B Def. 2.2 (b)
Contexts C ontext 9  T, A Def. 2 .2  (b)
Extension of Contexts T,x : A Def. 2 .2  (b)
A-terms Term 9  r ,s ,t Def. 2.2 (b)
Typed A-terms T \~ r : A Def. 2.2 (b)
Functionals of type A D(A) 9  d Def. 2.3
Functional environment FEnv 9  £ Def. 2.4 (a)
Typed contexts Def. 2.4 (b)
Denot. sem. of A-terms Def. 2.5
Name of a type nam e(A ) Sect. 3
Translation of A-terms tc++ Sect. 3
Constructors or classnames Constr 9  c Def. 4.1
Applicative terms App 9  a, b Def. 4.1
Classes Class 9  (r; x : A\ b) Def. 4.1
Class environments CEnv = Constr 9  C Def. 4.1
Free variables of a FV(o) Def. 4.2
Heap addresses Addr 9  h Def. 4.3
C++ constants n Def. 4.3
Values Val 9  v, w Def. 4.3
Closures Constr x  Val* 9  (c,vi , . . . ,  Vk) Def. 4.3
Heaps Heap = Addr 9  H Def. 4.3
Value environments VEnv 9  r) Def. 4.3
State Monad M X (Y) Def. 4.4
Monadic notations do, return, m apM , read, add Not. 4.5
Fresh element fresh (X ) Not. 4.5
Eval and Apply eval, apply Def. 4.6
Parse function P Def. 5.1
Typed applicative terms C\T\- a: A Def. 5.3
Denot. sem. of appl. terms [ a l C£ or [a Def. 5.4
Variant of above C ]T \- 'a :A Def. 5.7
CEnv-homomorphism e Def. 5.9 (b)
Typed values H \~ v : A Def. 6.1
Denot. sem. of values M * ,  1M C’H Def. 6.2 (a)
Denot. sem. of value envs. M H Def. 6.2 (b)
Semantic typing of values H \= v ~  d : A Def. 6.4
Special not. for the above \= apply v w H ~ d : A

\= eval rj a H ~ d : A Def. 6.4

158



References
[ASS85]

[GLN02]

[IPW99]

[JT93]

[Kis98]

[Lau95]

[Mog91]

[MSOO]

[Pit91]

[Plo77]

[PI0 8 O]

[Rey83]

[SSBOl]

H. Abelson, G. J. Sussman, and J. Sussman. Structure and interpre­
tation of computer programs. MIT Press, 1985.

J. Goubault-Larrecq, S. Lasota, and D. Nowak. Logical relations for 
monadic types. In Julian C. Bradfield, editor, Proceedings of the 16th 
International Workshop on Computer Science Logic (CSL’02), vol­
ume 2471 of Lecture Notes in Computer Science, pages 553-568, Ed­
inburgh, Scotland, UK, September 2002. Springer.

Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight 
Java: A minimal core calculus for Java and GJ. In Loren Meissner, 
editor, Proceedings of the 1999 ACM SIGPLAN Conference on Object- 
Oriented Programming, Systems, Languages & Applications (OOP- 
SLA ‘99), volume 34(10), pages 132-146, N. Y., 1999.

A. Jung and J. Tiuryn. A new characterization of lambda definability. 
In M. Bezem and J. F. Groote, editors, Typed Lambda Calculi and 
Applications, volume 664 of Lecture Notes in Computer Science, pages 
245-257. Springer, 1993.

O. Kiselyov. Functional style in C++: Closures, late binding, and 
lambda abstractions. In ICFP ’98: Proceedings of the third ACM 
SIGPLAN International conference on Functional programming, page 
337, New York, NY, USA, 1998. ACM Press.

K. Laufer. A framework for higher-order functions in C++. In 
COOTS, 1995.

E. Moggi. Notions of computation and monads. Information and 
Computation, 93(l):55-92, 1991.

B. McNamara and Y. Smaragdakis. Functional programming in C++. 
In ICFP ’00: Proceedings of the fifth ACM SIGPLAN international 
conference on Functional programming, pages 118-129, New York, 
NY, USA, 2000. ACM Press.

A. M. Pitts. Evaluation logic. In G. Birtwistle, editor, IVth Higher 
Order Workshop, Banff 1990, Workshops in Computing, pages 162— 
189. Springer, 1991.

G. D. Plotkin. LCF considered as a programming language. Theoret­
ical Computer Science, 5:223-255, 1977.

G. D. Plotkin. Lambda definability in the full type hierarchy. In 
R. Hindley and J. Seldin, editors, To H.B. Curry: Essays in Combi­
natory Logic, lambda calculus and Formalisms, pages 363 -  373. Aca­
demic Press, 1980.

J. C. Reynolds. Types, abstraction and parametric polymorphism. In 
IFIP’83, pages 513-523. North-Holland, 1983.

R. Stark, J. Schmid, and E. Borger. Java and the Java Virtual Ma­
chine -  Definition, Verification, Validation. Springer, 2001.

159



[Sta85] R. Statman. Logical relations and the typed lambda-calculus. Infor­
mation and Control, 65:85 -  97, 1985.

[Str] J. Striegnitz. FACT! -  the functional side of C++,
http: /  /  www.fz-juelich.de/zam/FACT.

[Tai67] W. W. Tait. Intensional interpretation of functionals of finite type.
Journal of Symbolic Logic, 32:198 -  212, 1967.

[Win93] G. Winskel. The formal semantics of programming languages: an
introduction. MIT Press, Cambridge, MA, USA, 1993.



Appendix D

Functional Concepts in C++



Functional Concepts in C + +

Rose H. Abdul Rauf, Ulrich Berger, Anton Setzer

A b stract

We describe a parser-translator program that translates typed A-terms 
into C++ classes so as to integrate functional concepts. We prove the 
correctness of the translation of A-terms into C++ with respect to a de­
notational semantics using Kripke-style logical relations. We introduce 
a general technique for introducing lazy evaluation into C++, and illus­
trate it by carrying out in C++ the example of computing the Fibonacci 
numbers efficiently using infinite streams and lazy evaluation. Finally, we 
show how merge higher-order A-terms with imperative C++ code.

1 Introduction
C++ is a general purpose language that supports object oriented programming 
as well as procedural and generic programming, but unfortunately not directly 
functional programming. We have developed a parser-translator program that 
translates typed A-term into C++ statements so as to integrate functional con­
cepts. This translated code uses the object oriented approach of programming 
that involves creation of classes for the A-term. That a translated A-term is an 
element of the translation of a function type is achieved by using inheritance.

The paper is organised as follows: First, we introduce the translation and 
discuss how the translated code is executed including a description of the mem­
ory allocation (Sect. 2). The correctness of our implementation is proved with 
respect to the usual (set-theoretic) denotational semantics of the simply typed 
A-calculus on the one hand, and a mathematical model of a sufficiently large 
fragment of C++ on the other hand. The proof is based on a Kripke-style 
logical relation between the C++ class and the denotational model (Sect. 3). 
In Sect. 4 we introduce a general technique for introducing lazy evaluation into 
C++ by introducing a data type of lazy elements of type A. Finally, in Sect. 5 
we discuss a few general features arising if we allow A-terms in C++ to have 
side-effects.

R elated work. Several researchers [Kis98], [Lau95] have discovered that 
C++ can be used for functional programming by representing higher order 
functions using classes. Our representation is based on similar ideas. There 
are other approaches that have made C++ a language that can be used for 
functional programming such as the FC++ library [MSOO] (a very elaborate ap­
proach) as well as FACT! [Str] (extensive use of templates and overloading) and 
[Kis98] (creating macros that allow creation of single macro-closure in C++). 
The advantages of our solution are that it is very simple, it uses classes and 
inheritance in an essential way, it can be used for implementing A-terms with 
side-effects, and, most importantly, we have a formal correctness proof.

162



The approach of using denotational semantics and logical relations in a proof 
of the correctness of programs has been used before by Plotkin [Plo77] and 
others. The method of logical relations can be traced back at least to Tait 
[Tai67] and has been used for various purposes (e.g. Jung and Tiuryn [JT93], 
Statman [Sta85] and Plotkin [PI0 8 O]). To our knowledge the verification of the 
implementation of the A-calculus in C++ using logical relations is new.

Lazy evaluation in C++ has been studied in the literature (see [SchOO], 
[MSOO], [Kel97]). To our knowledge all implementations are restricted to lazy 
lists, whereas we introduce a general type of lazy elements of an arbitrary type.

2 Translation of typed A-terms into C + +
In this section we describe how to translate simply typed A-terms into C++ 
using the object-oriented concepts of classes and inheritance.

The simply typed X-calculus over the base type of integers with constants for 
arithmetic functions, X-calculus for short, is given as follows: Types are built 
from the base type, Int, and and function types, A -+ B. Terms are of the 
form x (variables), n (numerals € N = {0,1,2,,...}), AxAr (abstraction), r s 
(application), / [ r i , . . . , r „ ]  (function application). In the last case /  is taken 
from a set F of names of number-theoretic C++ functions. A context is a finite 
set of pairs V = xi : A i , . . . ,  xn : An (all Xi distinct) which is, as usual, identified 
with a finite map. We let Type, Var, Term, Context denote the set of types, 
variables, terms and contexts, respectively. The typing rules are as expected:

T, x : A b x : A T h n : Int 

r , x : A\~ r : B  r  h r : A -+ B  T h s : i
r  b AxAr \ A —t B  r  h r s : B

r h n  : In t. . .  r  h ffe : Int . , . . . . .——— ------ ;—z  ( /  a fc-ary arithmetic function)
P r  f[r i,- • •jJ'fcj : Int

Rather than explaining in general how a A-term is translated into its equiv­
alent C++ statements, we describe the translation of the example term

t = (Xflnt~*lntXxlnt. f  ( /  x)) (Xxlnt.x  +  2) 3 .

The concrete ASCII notation for this term (i.e. the input for the parser program) 
is
(\int->int f . \int x. int f““ (f“~x))““(\int x. int x+2)“"3 •

For each function type we first define an abstract class with a virtual operator 
that will be overloaded in the definition of the A-term. The type itself is the 
type of pointers to an object of this class. In the class names the letters C and 
D are used to represent opening and closing brackets and an underscore stands 
for an arrow. Hence Cint_intD means Int -> Int. The type of t, (Int -+ Int) -+ 
(Int -+ Int), is represented in stages:1

1 In order to obtain fast compilation of the translated code, we do not use templates in our 
machine-generated code. This will as well ease the correctness proof to be given in Sect. 3. 
If one defines A-types by hand it is of course easier to define a general C++-tem plate for the 
class corresponding to the type X  —> Y.
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class Cint_intD_aux
{ public : virtual int operatorO (int x) = 0; >;

typedef Cint_intD_aux* Cint_intD;

class CCint_intD_Cint_intDD_aux 
{ public : virtual Cint_intD operatorO

(Cint_intD x) =0;

typedef CCint_intD_Cint_intDD_aux*
CCint_intD_Cint_intDD;

The term t is translated in stages as well. The subterm AxInt. /  ( /  x) is trans­
lated as an instance of the class Cint_intD_aux:

class lambdal : public Cint_intD_aux{ 
public :Cint_intD f;
lambdal( Cint_intD f) { this-> f = f;}; 
virtual int operator () (int x)
{ return (*(f))((*(f))(x)); >;

>;

The subterm X flnt^ lnt\ x Int.f( fx )  is translated as follows:

class lambdaO : public CCint_intD_Cint_intDD_aux{ 
public : 
lambda0( ) { >;
virtual Cint.intD operator () (Cint_intD f)
{ return new lambdal( f); }

>;

The other A-term, AxInt.2 4- x , is translated in a similar way:

class lambda2 : public Cint_intD_aux{ 
public : 
lambda2( ) { };
virtual int operator () (int x)
{ return x + 2;

};

The defining equation for t will be finally translated into the expression

int t = (*((*( new lambda0( )))( new lambda2( ))))(3);

When evaluating the expression t , first the application of lambdaO to lambda2 
is evaluated. For this first instances 10, 12 of the classes lambdaO and lambda2 
are created. Then the operator()-method of 10 is called. That call will create 
an instance 11 of lambdal, with the instance variable f set to 12. The result of 
application of lambdaO to lambda2 is 11.

The next step in the evaluation of t is to evaluate 3, which evaluates to 3, 
and then to call the operator() method of 11. This will first make a call to the 
operator method of f, which is bound to 12, and apply it to 3. This will evaluate 
to 5. Then it will call the operator method of f again, which is still bound to 
12, and apply it to the result 5. The result returned is 7.

We see that the evaluation of the expression above follows the call-by-value 
evaluation strategy. Note that 10, 11, 12 were created on the heap, but have
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not been deleted afterwards. The deletion of 10, 11 and 12 relies on the use of 
a garbage collected version of C++, otherwise we could use smart pointers in 
order to enforce their deletion.

3 P roof of Correctness
We sketch how to prove the correctness of our C++ implementation of the A- 
calculus. By “correctness” we mean that every closed term r of type Int is eval­
uated by our implementation to a numeral which coincides with the value of r. 
The value of a term can be defined either operationally as the normal form w.r.t. 
^-reduction, (AxAr)s -+/? rfs/x], and function reduction, f[n i , . . .  , rife] -+/ n (n 
the value of /  at n i,...,n* j), or, equivalently, denotationally as the natural 
value in a suitable domain of functionals of finite types. Since our calculus 
doesn’t allow for recursive definitions, the details of the operational and de­
notational semantics do not matter: Operationally, any sufficiently complete 
reduction strategy (call-by-value, call-by-name, full normalisation) will do, and 
denotationally, any Cartesian closed category containing the type of integers 
can be used. For our purposes it will be most convenient to work with a de­
notational model. For simplicity we take the naive set-theoretic hierarchy D 
of functionals of finite types over the integers (setting N = {0,1,2,...} and 
X ^ Y = { f \ f : X ^ Y } ) :

D(Int) = N, D(.4 -»B ) =  D(>1) -> D(B), D = ( J  D(A)
-AGType

A functional environment is a mapping £ : Var -+ D. FEnv denotes the set of all 
functional environments. If T is a context, then £ : T means Vx e dom(r).£(x) € 
D(r(aO).

For every typed A-term T h r : A and every functional environment £ : T the 
denotational value [r]£ € D(A) is defined as follows:

i) [n]£ = n

ii) f (*)

iii) h ] £ =  H£([s]£)

iv) [Axj4.r]£(a) = [rj£[x I+ a]

v )  [ / M l  =  [ / ] ( [ f 1 £ )
where in the last clause [/] is the number-theoretic function denoted by / .  Our 
implementation of the A-calculus is modelled in a similar way as e.g. in [ASS85] 
using functions eval and apply. In order to model the C++ implementation as 
truthfully as possible, we will introduce a simplified model of C++, in which 
we will make the pointer structures for the classes and objects explicit. The 
functions eval and apply modify these pointer structures via side effects.

In our model all classes will have instance variables, one constructor, and 
one method corresponding to the operator() method. The constructor has one 
argument for each instance variable, and will set the instance variables to these 
arguments. No other code is performed. The method has one argument, and 
the body consists of an applicative term, where applicative terms are simplified
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C++ expressions in our model. So, a class is given by a context representing 
its instance variables, the abstracted variable of the method and its type, and 
an applicative term.

Applicative terms will be numbers, variables, function terms applied to ap­
plicative terms, the application of one applicative term to another applicative 
term (which corresponds to the method call in case the first applicative term is 
an object), or a constructor applied to applicative terms.

When a constructor call of a class is evaluated, its arguments are first evalu­
ated. Then, memory for the instance variables of this class will be allocated on 
the heap, and these instance variables will be set to the evaluated arguments. 
The address to this memory location is the result returned by evaluating this 
constructor call. The only other possible result of the evaluation of an applica­
tive term is a number, so values are addresses or numbers.

The data sets associated with our model of C++ classes are defined as follows 
(letting X  +  Y  and X  x Y  denote the disjoint sum and Cartesian product of X  
and Y, X* the set of finite lists of elements in X  and X  -»fin Y  the set of finite 
maps from X  to Y):

Addr = a set of numbers denoting addresses of classes on the heap
Constr = a set of strings denoting constructors, i.e. class names
Val = N + Addr
F = a set of names for arithmetic C++ functions
App = N + Var + F x App* + App x App + Constr x App*
Context = Var -+fin Type
Class = Context x Var x Type x App
VEnv = Var ->fin Val
Heap = Addr ->fin Constr x Val*
CEnv = Constr ->fin Class

We write applicative terms (e App) that are neither numbers nor variables as 
/[a], a b and c[a\. Classes (e Class) are written as (r;x  : A;r).

The fact that the parsing function as well as the functions eval and apply 
have side effects on the classes and the heap can be conveniently expressed using 
the familiar state monad

MX (Y) := X  -> Y  x X

Elements of (T) are usually called actions and can be viewed as elements 
of Y  that may depend on a current state x € X  and also may change the 
current state. Monads are a category-theoretic concept whose computational 
significance was discovered by Moggi [Mog91]. The functionalities of the parsing 
function P and the operations eval and apply can now be written as

P : Context -+ Term ->■ McEnv(App)
eval : CEnv -+ VEnv -+ App -+ MHeap(Val)

apply : CEnv -> Val -+ Val -+ M n e a p ( V a l )

Hence, parsing has a side effect on the class environment, while eval and apply 
have side effects on the heap.

Strictly speaking, the definitions above (and below) are not quite accurate 
since, for example, applicative terms (e App) are untyped, but are supposed
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to represent valid (and hence typed) C++ expressions. A corresponding typing 
discipline could easily be introduced, but would probably be more distracting 
than insightful. Similarly, actions as well as the functions P, eval and apply 
should be modelled by partial rather than total functions. For example, in 
order for an expression of the form apply C v w to make sense the value, v, 
must not be a numeral, n, but an address, h, in the heap (pointing to the C++ 
implementation of a A-abstraction). The defining equation for apply reflects 
the assumption that this is the case. Similar soundness assumptions are tacitly 
made elsewhere. In case these assumptions are violated it is assumed that the 
computation results in an error. Again, the error cases could be modelled by a 
suitable monad, and one could show that, if we refer to correctly typed C++ 
expressions, this error never occurs. For the sake of brevity, we refrain from 
carrying this out. There is as well another reason for partiality, namely the fact 
that C++ programs can be recursive and therefore evaluation of C++ programs, 
even if correctly typed, might not terminate. However, it is a consequence of 
Theorem 3.1 that the evaluation of parsed A-terms terminates and does not 
result in an error.

Also note that the use of monads for describing the C++ implementation 
is just a notational convenience. We do not make any assumptions of monadic 
structures to exist in C++.

We use the following standard monadic notation (roughly following Haskell 
syntax): Suppose e\ : M*(Yi), . . . ,  e*+i : Mx(FJk+i) are actions where e* may 
depend on y\ : Yi, . . . ,  yi- 1  : Yi_i. Then

do{yi +- e\ ; . . .  ; yk 4- e* ; efc+i} : M*(Yfc+i)

is the action that maps any state Xo : X  to (yk+i, %k+i) where (yi,Xi) =  e* Xi-1 , 
for * = 1 ,.. . ,  k + 1. If yi does not occur in any ej with j  > i, then we suppress 
“yi *-”• We also allow let-expressions with pattern matching within a do- 
construct. Furthermore, we use

return : Y  -+ M x(F) return y x = (y, x)
mapM : (Z  -+ Mjx(Y')) -+ Z* -+ Mx(y*) mapM /  a = do{yi 4- f  a\ \ . . .

• • • ; 2/fc <- /  a* 5 return (yu ...  ,yfc)} 
g e t: Mjc (X), get x = (x, x)
put : X  -+ Mx({*}) put x x' = (*,z)

With these notations the definitions of P, eval and apply read as follows (we 
use a function fresh with the property that if m : X  — Y, where X  is infinite, 
then fresh(m) € X  \  dom(m)):

P T ti = return u, if it is a numeral or a variable
P T f[r\ = do{a +- mapM (P T) f ; return f[a\}

P T (r s) = do{(o, b) 4- mapM (P T) (r, s) ; return (a b)}
P T (AxA.r) = do{o +- P r[a: A] r ; C 4- get ; let c = fresh(C') ;

put(C[c (T;x : A;a)]) ; return(c[dom(r)])}
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eval C rj n = return n
eval C rj x = return (77 x)

eval C rj f  [a] = do{n +- mapM (eval C rj) a ; return [/](n)}
eval C T) (a b) = do{(u, w) +- mapM(evaI C rj) (a, b) ; apply C v w}
eval C r) c[a] = do{{T +- mapM (eval C 77) a ; H <- g e t; let h = fresh(JT) ;

put(H[h 1-+ (c,u)]) ; return(h)}
apply C h v = do{i/ +- g e t; let (c,w) = H h ; let (y : B; x : A; a) = C c ; 

eval C [y, x »->• u;, v] a)
The correctness proof of the translated code is based on a Kripke-style relation 
between the C++ representation of a term ( 6  Val x Heap) and its denotational 
value (G D(A)). The relation is indexed by the class environment C and the 
type A of the term. Since in the case of an axrow type, A -+ B, extensions of the 
heap and the class environment have to be taken into account, this definition
has some similarity with Kripke models. The relation

C (Val x Heap) x D(A),

where A G Type, C G CEnv, is defined by recursion on A as follows:

H ) ~ £ t  71 :<̂  v  =  n

(v,H )~°_^B f  ;<=» V C C C /,VHr Cif',V(u;,d) G V alxD (^) :
(w ,H ') d =$■ apply C' v w H' f(d)

We also set (r),H) Va: G dom(T)(r](x),H) ^(^)-
The main result below corresponds to the usual ’’Fundamental Lemma” or 

’’Adequacy Theorem” for logical relations:

Theorem  3.1 Assume 7 7 : VEnv, f  : FEnv, T h r : A. Assume £ : T, P T r C = 
(a, C'), C  C C", (77, H) C , and H  C H '. Then eval C" 77 a H' [r]^.

The theorem can be proven by induction on the typing judgement r  h r : A. 
Due to limited space we omit details.

Corollary 3.2 (Correctness of the im plem entation) Assume I- r : Int,
P 0 r 0 = (a, C) and C C C . Then for any heap H and environment 77 we have
eval C' 77 o H  = ([rj, H') for some H' D H.

4 Lazy Evaluation in C + +
Haskell is famous for its programming techniques using infinite lists. A well- 
known example are the Fibonacci numbers, which axe computed efficiently by 
using the following code:

fib = l:l:(zipVith (+) fib (tail fib))

This example requires that we have infinite streams of natural numbers, and 
relies heavily on lazy evaluation. We will show how to translate this code into 
efficient C++ code. This requires that we are able to deal with lazy evaluation.

The standard technique for replacing call-by-value by call-by-name is to 
replace types A by () -+ A where () is the empty type (i.e. void). This delays
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execution, but does not cater for the reuse of evaluated expressions, so that an 
expression is only evaluated once. In order to obtain this, we will define a new 
type Lazy (A). This type delays evaluation of an element of type A in such a 
way that, if needed, the evaluation is carried out -  however, only once. Once 
the value is computed, the result is stored in a variable for later reuse. The 
definition is as follows (we make use of the extended C++ syntax introduced 
in Sect. 2, especially r t for functional application, \  for A, and A -> B for 
the type of functions from A to B):
template<typename X> class lazyf 

bool is.evaluated; 
union {X result;

() -> X compute.function;};
public:

lazy(()-> X compute_function){ 
is.evaluated = false;
this->compute_function = compute.function;};

X eval (){
if (not is.evaluated){

result = compute.function ““ (); 
is.evaluated = true;}; 

return result;};};
#define Lazy(X) lazy<X>*
Using this class we can now easily define lazy streams of natural numbers (lazy 
lists, i.e. possibly terminating streams, can be defined similarly, but require 
the usual technique based on the composite design pattern for formalising alge­
braic data types as classes by introducing a main class for the main type which 
has subclasses for each constructor, each of which stores the arguments of the 
constructor)
template<typename X>class lazy.streamf 
public: Lazy(X) head;

Lazy(lazy_stream<X>*) tail;
... Constructor as usual ... }

#define Lazy_Stream(X) lazy_stream<X>*
In order to deal with the example of the Fibonacci numbers, one needs to define 
the operators used in the above mentioned definition of fib :

• lazy_cons<X> computes the cons-operation on streams:

Lazy(Lazy_Stream(X)) lazy_cons<X>
(Lazy(X) head, Lazy(Lazy_Stream(X)) tail)

• lazy_tail<X> computes the tail of a stream lazily:

Lazy(Lazy_Stream(X)) lazy_tail<X>
(Lazy(Lazy_Stream(X)) s)

• lazy_zip_with<X> computes the usual zip.with function (i.e. 
zip_with(/, [a, 6,..], [c, d ,..]) = [/ a c, /  b d, ...]):

Lazy(Lazy_Stream(X)) lazy_zip_vith<X>
(X -> X -> X f,
Lazy(Lazy_Stream(X)) sO,
Lazy(Lazy_Stream(X)) si)
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The definition of these operation is straightforwards, once one has introduced a 
few combinators for dealing with Lazy(X).

Now we can define the stream of Fibonacci numbers as follows (plus is 
A#, y.x + y, one_lazy is the numeral 1 converted into an element of Lazy ( in t ) , 
create_lazy transforms elements of type ()->A into Lazy (A), and eval eval­
uates an element of type Lazy (A) to an element of type A):

()-><Lazy_Stream(int)> fib.aux =
\() x. Lazy_Strearo(int) 

eval( 
lazy.cons( 

one.lazy, 
lazy_cons( 

one_lazy, 
lazy_zip_with( 

plus,
create.lazy(this),
lazy.tail(create_lazy(this) )))));

Lazy_Stream(int) fib = eval(create_lazy(fib_aux))

Note that here we were using the keyword th is  in the definition of fib_aux. 
This is how a recursive call should be written. If we instead put f  ib_aux here, 
C++ will, when instantiating fib .aux, first instantiate fib_aux as an empty 
class, and then use this value when evaluating the right hand side. Only when 
using th is  we obtain a truely recursive definition.

When evaluated, one sees that the nth element of f ib  obtains fib(n) and 
this computation is the efficient computation in which previous calls of fib(fc) are 
memorized. If one replaces Lazy (X) by () -> X, one obtains an implementation 
of the Fibonacci numbers, which computes the correct results. However, since 
that implementation doesn’t memorize values, it has exponential running time 
and on our laptop we were not able to compute fib(25).

G eneralization. The above technique can easily be generalized to general 
algebraic types, in fact to all class structures avilable in C++. If one replaces in 
a tree structure all types by lazy types, then only a trunk of the tree structure is 
evaluated and kept in memory, namely the trunk which has been used already 
by any function accessing this structure.

5 Combining Functional and Im perative Pro­
gramming

When combining functional and imperative programming we obtain more than 
just the disjoint union of both constructs. The translation can be extended to 
A-terms which execute imperative C++-code with side effects. Assume

class Student!
public: int student.number;

Student(int x){student.number = x;};}

Assume some standard (lazy or non-lazy -  in fact the full range of C++ imple­
mentations of lists is possible) implementation list<X> of lists of type X. Then 
it is easy to define the map functional
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template<class X,class Y> list<Y>*
map (X->Y f, list<X>* 1);

which takes a function and a list and returns the result of applying each element 
to this list.

Now, if we extend the above language by allowing A-terms to have arbitrary 
sequences of expressions, we can define

S->() print_Student.Number
= \(Student s) . () {cout »  Student.student »  endl; 

return ();};

If we map this function to an element of l i s t  < Student*>*, then it will print 
out all the students, without any need for using an explicit loop. Similarly we 
can define functions, which update student numbers in a list of students, etc, 
using functional style programming in C++.

Having A-terms with side effects seems to be an intereresting feature in 
programming and is not covered by usual implementations of A-terms in C++, 
since those implementations require the body of a A-term to be an expression -  
a sequence of statements is not allowed.

6 Conclusion
In this paper we showed how to introduce functional concepts into C++ in a 
provably correct way. The modelling and the correctness proof used monadic 
concepts as well as logical relations. We also showed how to integrate lazy 
evaluation and infinite structures into C++ and gave examples indicating how 
to model higher-order functions with side effects. This work lends itself to a 
number of extensions, for example, the integration of recursive higher-order 
functions, polymorphic and dependent type systems as well as the combination 
of larger parts of C++ with the A-calculus. The accurate description of these 
extensions will require more sophisticated, e.g. domain-theoretic constructions 
and a more systematic mathematical modelling of C++. We believe that if our 
approach is extended to cover full C++, one obtains a language in which the 
worlds of functional and object-oriented programming are merged, and that we 
will see many examples, where the combination of both language concepts will 
result in interesting new programming techniques.

References
[ASS85] H. Abelson, G. J. Sussman, and J. Sussman. Structure and interpre­

tation of computer programs. MIT Press, 1985.

[JT93] A. Jung and J.. Tiuryn. A new characterization of lambda definability. 
In M. Bezem and J. F. Groote, editors, Typed Lambda Calculi and 
Applications, volume 664 of Lecture Notes in Computer Science, pages 
245-257. Springer Verlag, 1993.

[Kel97] R. M. Keller. The Polya C++ Library. Version 2.0. Available via 
http://www.cs.hmc.edu/ keller/Polya/, 1997.

171



[Kis98] 0 . Kiselyov. Functional style in C++: Closures, late binding, and
lambda abstractions. In ICFP ’98: Proceedings of the third ACM SIG- 
PLAN International conference on Functional programming, page 337, 
New York, NY, USA, 1998. ACM Press.

[KL05] 0 . Kiselyov and R. Lammel. Haskell’s overlooked object system. Draft.
Submitted for journal publication. Online since 30 Sep. 2004. Full ver­
sion released 10 September 2005, 2005.

[Lau95] K. Laufer. A framework for higher-order functions in C++. In COOTS,
1995.

[Mog91] E. Moggi. Notions of computation and monads. Information and 
Computation, 93(3):55-2, 1991.

[MS00] B. McNamara and Y. Smaragdakis. Functional programming in C++. 
In ICFP ’00: Proceedings of the fifth ACM SIGPLAN international 
conference on Functional programming, pages 118-129, New York, NY, 
USA, 2000. ACM Press.

[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical 
Computer Science, 5:223-255, 1977.

[Plo80] G. D. Plotkin. Lambda definability in the full type hierarchy. In 
R. Hindley and J. Seldin, editors, To H.B. Curry: Essays in Combina­
tory Logic, lambda calculus and Formalisms, pages 363 -  373. Academic 
Press, 1980.

[Pol81] W. Polak. Program verification baaed on denotation semantics. In 
POPL ’81: Proceedings of the 8th ACM SIGPLAN-SIGACT sympo­
sium on Principles of programming languages, pages 149-158, New 
York, NY, USA, 1981. ACM Press.

[SchOO] S. Schupp. Lazy lists in C++. SIGPLAN Not., 35(6):47-54, 2000.

[Set03] A. Setzer. Java as a functional programming language. In Herman 
Geuvers and Freek Wiedijk, editors, Types for Proofs and Programs: 
International Workshop, TYPES 2002, Berg en Dal, The Netherlands, 
April 24-28, 2002. Selected Papers., pages 279 -  298. LNCS 2646, 2003.

[SS71] D. Scott and C. Strachey. Toward a mathematical semantics for com­
puter languages. Programming Research Group Technical Monograph 
PRG-6 , Oxford Univ. Computing Lab., 1971.

[Sta85] R. Statman. Logical relations and the typed lambda-calculus. Inf. and 
Control, 65:85 -  97, 1985.

[Sto77] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to 
Programming Language Theory. MIT Press, Cambridge, MA, USA, 
1977.

[Str] J. Striegnitz. FACT! -  the functional side of C++, 
http://www .fz-juelich.de/zam/FACT.

172



[Tai67]

[Win93]

W. W. Tait. Intensional interpretation of functionals of finite type. J. 
Symbolic Logic, 32:198 -  212, 1967.

G. Winskel. The formal semantics of programming languages: an in­
troduction. MIT Press, Cambridge, MA, USA, 1993.

173



Bibliography

[Ab06] R. H. Ab.Rauf. Integrating Functional Programming into C++:Implementation 
and Verfication. In Arnold Beckmann, Ulrich Berger, Benedikt Lowe, John V. 
Tucker (Eds):Logical Approaches to Computational Barriers.Second Confer­
ence on Computability in Europe, CIE 2006. Swansea, UK. University of Wales 
Swansea Report Series, Report # CSR 7-2006, 2006

[ABS08] R. H. Ab. Rauf, Ulrich Berger, Anton Setzer. A Provably Correct Translation 
of the Lambda-Calculus into a Mathematical Model of C++. To appear in Jour. 
Theory Computing System, 2008.

[ABS06a] R.H. Ab. Rauf, U. Berger, A. Setzer. Functional Concepts in C++. In.Conference 
Proceedings ofTFP 2006, 2006

[ABS06b] R. H. Ab. Rauf, U. Berger, A. Setzer. Functional Concepts in C++.. In: Henrik 
Nilson (Ed.): Trends in Functional Programming., Volume 7, Series Trends in 
Functional Programming, Intellect, Bristol and Chicago,pg. 163-179, 2007.

[AG05] D. Abraham and A. Gurtovry. C++ Template Metaprogramming: Concepts, 
Tools and Techniques from Boost and Beyond. Addison Wesley, 2005.

[AIW99] B. Pierce A. Igarashi and P. Wadler. Fetherweight Java: A Minimal Core Cal­
culus for Java and GJ. Proceedings o f the 1999 ACM SIGPLAN Conference 
on Object-Oriented Programming System, Languages & Applications (OOPSLA 
’99), 34(10): 132-146, 1999.

[A1187] L. Allison. A Practical Introduction to Denotational Semantics. Cambridge 
Univerity Press, 1987.

[And72] B. Anderson. Documentation for Lib Pico-Planner. School O f AI, Edinburgh 
University, 1972.

[AU01 ] L. Ammeraal and H. V. Utrecht. C++ For Programming 3rd Edition. John Wiley 
& Sons Ltd., 2001.

[Aus99] M. H. Austem. Generic Programming and the STL. Addison Wesley., 1999.

[Bar84] Barendegt, H. Pieter. The Lambda Calculus:2nd Edition, nh, 1984.

[Bau72] B. Baumgart. Micro Planner Alternate Ref. Manual. Stanford AI Lab, 1972.

175



BIBLIOGRAPHY 176

[BG96]

[Bo02]

[Bra04]

[BW8 8 ]

[CM98]

[Cox8 6 ]

[Dav73]

[DD01]

[EckOO]

[Eti94]

[FAOO]

[FH8 8 ]

[GJ98]

[Hal02]

[Har97]

[Hew06]

[Hig73]

[HM07]

[HS02]

[Hud89]

[Hug89]

T. J. Bergin and R.G. Gibson. History O f Programming Languages II. Addison 
Wesley, Reading, MA, 1996.

C++ Boost Community, http://www.boost.org, 2002.

G. Bracha. Generics in Programming Languages. Addison Wesley,2004.

R. Bird and P. Wadler. Introduction To Functional Programming. Prentice Hall 
International, 1988.

G. Cossineau and M. Mauny. The Functional Approach to Programming. Cam­
bridge University Press, 1998.

B. Cox. Object Oriented Programming : An Evolutionary Approach. Addison 
Wesley, Reading, MA, 1986.

J. Davies. Popler 1.6 Ref. Manual. TPUReport, University ofEdiburgh, 1973.

H. M. Dietel and P.J. Dietel. How to Program: Introducing Object-oriented 
Design with UML. Prentice Hall, 2001.

B. Eckel. Thinking in C++ 2nd Edition. Prentice Hall, 2000.

J. Etinger. Programming In C++. McMillian Press Ltd., 1994.

The Fact! Library Home Page. http://www.fz-juelich.de/zam/FACT, 2000.

A. J. Field and P. G. Harrison. Functional Programming. Addison Wesley, 1988.

C. Ghezzi and M. Jazayeri. Programming Language Concepts. John Wiley and 
Sons, 1998.

T. Hallock. Funk: A Framework for Functional Programming Style in C++, 
thomashallock.com/template_metaprogramming.pdf, 2 0 0 2 .

J. Harrison. Introduction to Functional Programming. Cambridge University, 
1997.

C. Hewitt. The Repeated Demise of Logic Programming and Why It Will be 
Reincarnated: What Went Wrong and Why. Lessons from AI Research & Appli­
cations, Technical Report SS-06-08,AAI Press, March 2006.

B. Higman. A Comparative Study O f Programming Languages. MacDon­
ald: London and American Elsevier Inc : New York, 1973.

J. Heering and M. Memik. Domain-Specific Languages in Perspective Report 
SEN-E0702, September 2007.

S. P. Harbison and G. C. Steele. C: A Reference Manual 15th Edition. Paperback, 
2002.

P. Hudak. Conception, Evolution, and Application of Functional Programming 
lamguages. ACM Computing Surveys, 21(3), September 1989.

J. Hughes. Why Functional Programming Language Matters. Comput. 
J.32(2):98-107, 1989.



BIBLIOGRAPHY 177

[Hut06]

[IS096]

[JGLN02]

[JPOO]

[JT93]

[Kis98] •

[Kow8 8 ]

[LA96]

[Laf94]

[Lau95]

[Lig73]

[May 8  7] 

[Mog91]

[MSOO]

[MS01]

[MS03]

[MV97]

[PauOO]

G. Hutton. Programming in Haskell. Cambridge University Press, 2006.

EBNF ISO/IEC. Information Technology-Syntactic Metalanguage - Extended 
BNF. EBNF ISO/IEC 14977:1996(E), 1996.

S. Lasota J. Goubalt-Larrecq and D. Nowak. Logical Relations for Monadic 
Types. Proceedings o f the 16th International Workshop on Computer Science 
Logic(CSL ’02), Lecture Notes in Computer Science, 2471:553-568, 2002.

J. Jarvi and G. Powell. The Lambda Library: Lambda Abstraction in C++. 
Technical Report 378, Turku Centre For Computer Science, November 2000.

A. Jung and J. Tiuryn. A New Characterization of Lambda Definability. Typed 
Lambda Calculi and Applications, Lecture Notes Computer Science, pages 245- 
257, 1993.

O. Kiselyov. Functional Style in C++: Closures, Late Binding and Lambda 
Abstractions. ICFP: Proceedings o f the third ACM SIGPLAN International Con­
ference on Functional Programming, page 337, 1998.

R. Kowalski. The Early Years of Logic Programming. ACM, 1988.

LinAlg: A Numerical Maths Library, http://pobox.com/ oleg/fttp/LinAlg.README.txt,
1996.

M. Beaudon Lafon. Object - Oriented Languages - Basic Principles and Pro­
gramming Techniques. Chapman & Hall, 1994.

K. Laufer. A Framework for Higher Order Functions in C++. COOTS, 1995.

J. Lightwill. Artificial Intelligence: A General Survey of AI. A paper Symposium 
UK Science reserach Council, 1973.

H. G. Mayer. Programming Languages. MacMillian Publishing Company, 1987.

E. Moggi. Notions of Computation and Monads. Information and Computation, 
93(l):55-92, 1991.

B. McNamara and Y. Smaragdakis. Functional Programming in C++. Interna­
tional Conference on Functional Programming (ICFP2000), 2000.

B. McNamara and Y. Smaragdakis. Functional Programming in C++ Using 
FC++ Library. SIGPLAN Notices, April 2001.

B. McNamara and Y. Smaragdakis. Syntax Sugar for FC++: Lambda, Infix, 
Monads and more. DPCOOL ’03, 2003.

S.Miller and T. Vitale The Miranda Programming Language. 
http://www.engin.umd.umich.edu/CIS/course.des/CIS400/miranda/miranda.html,
1997.

L.C. Paulson. Foundations of Functional Programming. Computer Science Tri­
pos Part IB, Easter Term, University of Cambridge, 2000.



BIBLIOGRAPHY 178

[Pit91]

[Plo77]

[PI0 8 O]

[Ree04]

[Ree07]

[RS06]

[SA05]

[SchOO]

[SLOO]

[SL01]

[SS71]

[SSOO]

[Sta85]

[STLOO]

[Str95]

[Str03]

[Tai67]

A. M. Pitts. Evaluation Logic. Workshop In Computing, Springer, pages 162- 
189, 1991.

G. D. Plotkin. LCF Considered as a Programming Language. Theoretical Com­
puter Science, 5:223-255, 1977.

G. D. Plotkin. Lambda Definability in Full Type Hierarchy. To H.B. Curry; 
Essays on Combinatoric Logic, Lambda Calculus and Formalism, pages 363— 
373, 1980.

T. Reenskaug. Empowering People with BabyUML. A Sixth Generation Pro­
gramming Language, ECOOP2004, 2004.

T. Reenskaug. Programming with Roles and Classes:the BabyUML Approach, 
a Chapter in Computer Software Engineering Research. Nova Publishers, Hap- 
pauge NY, 2007.

G. D. Reis and B. Stroustrup. Specifying C++ Concepts. Proceedings o f the 
2006 POPL Conference, ACM SIGPLAN Notices Archive, 41(1): 295 -  308, 
January, 2006.

H. Sutter and A. Alexandrescui. C++ Coding Standards: 101 Rules, Guidelines 
and Best Practices. Addison Wesley, 2005.

S. Schupp. Lazy List in C++. SIGPLAN Not., 35(6):47 -  54, 2000.

J. G. Siek and A. Lumsdaine. C++ Concept Checking. Dr. Dobb’s Journal, June, 
2001 .

J. G. Siek and A. Lumsdaine. Concept Checking: Binding Parametric Poly­
morphism in C++. First Workshop on C++ Template Programming, Germany , 
2000.

D. Scott and C. Strachey. C: Mathematical Semantics for Computer Language. 
Tech. Monograph PRG-6, Programming Research Group, 1971.

J. Striegnitz and S. A. Smith. An Expression Template Aware Lambda Function. 
First Workshop on C++ Template Programming, 2000.

R. Statman. Logical Relation and the Typed Lambda Calculus. Information and 
Control, 65:85-97, 1985.

The SGI Standard Template Library, http://www.sgi.com/tech/stl, 2000.

B. Stroustrup. Why C++ is Not Just an Object-oriented Programming Language. 
OOPSLA ’95, 1995.

B. Stroustrup. Concept Checking -  A More Abstract Complement to Type 
Checking. Committee paper N1510-03-0093 Paper for the C++ Committee, Oc­
tober 22, 2003. http://www.reseaech.att.comm/ bs/nl510-conceptchecking.pdf.

W. Tait. International Intrepretation of Functional of Finite Type I. Journal o f 
Symbolic Logic, 32(2): 198-212, 1967.



BIBLIOGRAPHY 179

[Tan04] G. Tan A Brief History of Functional 
http://www.cs.bc.edu/ gtan/historyOfFP.html, 2004.

Programming

[Vel95] T. L. Veldhuizen. Expression Templates. C++ Report, 1995.

[Wat90] D. A. Watt. Programming Language Concepts and Paradigms. 
International, 1990.

Prentice Hall

[Win93] G. Winskel. The Formal Semantics o f Programming Languages: 
tion. Massachussets Institute of Technology, 1993.

■ an Introduc-

[WS03] B. K. Williams and S.T. Sawyer. Using Information Technology ( A Parctical 
Introduction to Computers and Communications), Fifth Edition. McGraw Hill,
2003.


