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THESIS SUMMARY
Full title of thesis: Building a Software Tool for Simulating the Multi- 

Physics of Thermal Protection Systems

Candidate's Surname: Fields

Candidate's Forenames: Shaun

Candidate for the Degree of: PhD

The motivation for this research is to overcome the costs o f using the current 
wind tunnels which replicate the high speed, temperatures and Reynolds 
numbers of new concept vehicles such as Hyper-Sonic passenger jets. The idea is 
that by employing accurate computational methods, costs can be reduced and 
more scenarios can be investigated. It will be argued that the characteristic based 
split scheme is a modified central difference temporal scheme, and can be utilized 
to capture the flow regimes of interest to the European Space Agency (ESA). The 
hypothesis o f this thesis is that it is possible to model Hyper-Sonic applications
with shock capturing reliably in a collocated, unstructured polyhedral, Finite
Volume (FV) software framework. The reason for this hypothesis is a desire to 
develop an alternative approach for accurate, non-oscillatory solutions to the 
conservation laws for high speed flows that does away with calculating the upwind 
flow direction, donor nodes, Riemann solvers and can avoid Jacobian evaluations.

The finite volume method is generally preferred for industrial Computational Fluid 
Dynamics (CFD) because it is relatively inexpensive and lends itself well to the 
solution of large sets of equations associated with complex flows according to 
Greenshields et al. [1]. Usually physical variables such as velocity, temperature, 
density and pressure are co-located, which means that the values at the centroid o f 
a control volume are chosen to represent these physical variables in the enclosed 
control volume. Co-location is popular in industrial CFD, because it allows greater 
freedom in mesh structure for complex 3D geometries and for refinement of 
boundary layers as mentioned in Greenshields et al. [1]. It is no coincidence that 
collocated, polyhedral, FV numerical methods are adopted by several o f  the best 
known industrial CFD software packages, including FLUENT, STAR CCM+ and 
CFD-ACE+. There is a current preference for unstructured meshes o f polyhedral 
cells with six faces (hexahedra) or more, rather than tetrahedral cells that are prone 
to numerical inaccuracy and other problems. For example, Ferguson and Peric [2] 
mention that they are unsuitable for features such as boundary layers. 
Discontinuities, such as shocks, in Hyper-Sonic compressible computations 
require numerical schemes that can accurately capture these features while 
avoiding spurious numerical oscillations. Current methods that are effective in 
producing accurate non-oscillating solutions are first o f all monotone upstream- 
centred schemes for conservation laws- by Van Leer [3]; secondly the non- 
oscillatory (ENO) schemes by Harten A, Engquist B, Osher S [4], and lastly the 
weighted ENO schemes known as WENO schemes by Liu, X. D., Osher, and 
Chan [5]. Unfortunately these methods typically involve Riemann solvers and 
Jacobian evaluation, making them complex and difficult to implement in a 
collocated, 3D unstructured framework. This work seeks to find a method which 
overcomes these disadvantages.
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1. INTRODUCTION TO THE THESIS 
MOTIVATION AND INITIAL 
CONSIDERATIONS

The European Space Agency (ESA) has performed feasibility and parametric studies on initial 
configurations o f prospective Hypersonic cruise air-breathing vehicles (CAVS), and within the same 
agency the Computational Fluid Dynamics (CFD) programs have indicated poor lift/drag 
performance and high heat loads at the intended operating velocity range. The result o f these tests is 
that ESA has seen a need to pursue simulations involving complex physical thermo-viscous 
interactions — an area in which the Multi-physics Research Group at Swansea University has 
considerable experience [1 ]—[3]. As a consequence ESA, has co-sponsored this PhD programme at 
Swansea University to tackle the problem described below.

1.1 Introduction to the Research Problem
The Research Problem to be addressed in this PhD programme m aybe summarised as: to simulate 
thermo-viscous interactions that will enable the analysis o f thermal protection systems o f cruise air- 
breathing vehicles (CAVS) subject to the Hypersonic flow regime. The CFD solver will require input 
data on the geometrical configuration and the operating velocity o f the CAVs, and it will then capture 
the characteristics o f Hypersonic flow such as the oblique shock layer, viscous boundary layer, for 
field viscous-inviscid interactions and transpiration cooled thermal protection systems so as to make 
inferences on the aerodynamic and heating performance o f CAVs.

To identify the most appropriate method for an integrated approach to the Research Problem 
mentioned above, this literature review focuses on the vast number o f computational methods and 
strategies used by the aerospace and scientific community. After identifying the numerical scheme 
most suited to the problem in question, careful implementation o f this candidate scheme into the 
existing computational framework at Swansea University for CFD will then be described.

The literature review focuses on computational strategies in engineering because an informed 
decision is needed to successfully identify a strategy that best models the thermal protection systems 
for CAVs. This literature review has been broken up in such a way as to highlight the decision 
making process so when choosing the final strategy it becomes straightforward for the reader to 
understand the rationale.

The case for CFD
Few wind tunnels exist that can simultaneously simulate the high Mach speeds, Reynolds numbers 

and high flow field temperatures that would be encountered by Hypersonic trans-atmospheric 
vehicles. Those available are located in the USA and Europe but are extremely expensive to use. 
Anderson [4] has speculated that widespread access to these wind tunnels at a low economic cost is 
unlikely, and that when the development o f CFD has reached the point where the complete three 
dimensional flow field over the external surface and the engines can be computed in an accurate and 
efficient manner, CFD will propel the optimized geometries o f Hypersonic trans-atmospheric 
vehicles to become a reality.
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There are three methodologies for studying systems that are effected by fluid flow; experiments, pure 
theory and CFD. It has to be argued that finding closed form theoretical solutions for the system of 
partial differential equations o f mixed mathematical nature becomes fruitless, as no general 
mathematical theorem exists to guarantee existence and uniqueness1. Experiments are difficult, 
dangerous and expensive, and certain analyses become impossible in a laboratory. CFD however, 
represents an attractive alternative to experiments and theory. This is due to the advent of high speed 
digital computers combined with algorithmic development from the 1950s. Arguably, this 
revolutionized the way fluids are being studied today Hirschel and Weiland [5].

By the late 1970s, the use o f supercomputers to solve aerodynamic problems was beginning to pay 
off. A relatively early success story was the NASA built experimental aircraft, the Highly 
Manoeuvrable Aircraft Technology (HiMAT). The wind tunnel tests o f the preliminary design 
showed that, if built, it would possess unacceptable drag at transonic speeds, and the financial cost of 
redesigning it in further wind tunnel tests would have been around the $150,000 mark, which would 
have caused lengthy delays. Instead of wind tunnel tests, the wing was redesigned by CFD simulation 
at a cost o f $6,000 as stated by Ceruzzi [6], 4% o f the projected wind tunnel costs. In addition CFD 
simulation, as Lyra [7] states, has already made a large impact in design o f many areas such as 
meteorology, the nuclear industry and petroleum exploration.

Despite the relative maturity reached by CFD, in which the basic methodologies that underpin its 
application areas remain well established, computer simulation still does not have quite the same 
status as physical experiments inside industry. The dearth o f numerical results concerning complex 
practical applications and the remaining doubt about the accuracy o f the available techniques for 
various problems still persist according to Lyra [7]. For example according to Hirschel and Weiland 
[5], to make computer simulations widely accepted and reliable, intricate flow phenomena such as 
transition to turbulence and re-laminarisation must be addressed.

According to Hirschel and Weiland [5] the next century will witness the emergence o f CFD 
simulation as the critical software tool for designing new aerodynamic concepts and vehicles. This 
will contribute to a dramatic shortening of the design process, which will enhance and enable 
concurrent engineering. However, this will demand significant advances in algorithm research and 
CFD code development, o f the kind which drives this research.

I  1.2 Properties of a CFD Code
The exact prediction o f a physical system cannot be obtained even with the adoption o f the most 
refined mathematical modeL Therefore, the key step in scientific analysis is the choice of a suitable 
mathematical model, the knowledge of its limitations and the physical approximations in its 
derivation. The continuously expanding application o f numerical methods in dealing with engineering 
and scientific flows o f interest means it is important to utilize novel algorithmic developments to 
improve the quality o f the present solutions and to enable the solution o f  previously intractable 
problems. The success o f designing a computational procedure requires, as Lyra [7] states, at the 
very minimum that the computer code should have a combination o f the following properties:

• Efficiency

The required response must provide sufficient accuracy, at least cost and within reasonable time, to 
allow an impact on design. This implies the utilisation o f appropriate data structures, the exploitation 
of the currently available high performance computer configurations, the use o f  techniques for

1 Uniqueness is the mathematical property o f obta ini ng only one solution to the initial and boundary conditions of the
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enhancement o f  stability and the convergence rate. Foremost efficiency endeavours to have an impact 
on design.

• Reliability

The adopted methods and models must rest on a solid mathematical basis and reasonable physical 
approximations in such a way that the predicted response is known to be within a selected level of 
accuracy. The success o f designing a computational method requires methodologies to assess the 
solution’s accuracy, such as, benchmarks with known analytical or experimental solutions.

• Robustness

The adopted method should exhibit stability for comprehensive classes o f applications with few user 
defined parameters.

• Versatility

The final computational code must be able to deal with complex geometries and boundary conditions, 
different types o f loads, and domain discretisation.

Lyra [7] states that the effort involved in accomplishing the requirements for finding a solution to 
practical fluid dynamic and heat transfer problems is enormous, as many difficulties arise in the 
process. The importance o f improvements in these related areas drives most o f the present research in 
CFD.

The different physical phenomena intrinsic in the system o f the partial differential equations, such as 
coupled convection and diffusion problem leads in general to Elliptic-Parabolic-Hyperbolic mixed 
nature types o f mathematical models. The development o f multi-purpose CFD codes is perceived as 
very difficult, or even impossible, as the success either in terms o f accuracy, robustness or efficiency 
is directly connected to the exploitation o f  the particular characteristics o f each class o f mathematical 
model.
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1.3 Gas Modelling Methods for Hypersonic Air 
Flow

* (boundary

iMsste

At present numerically modelling the physics o f Hypersonic flight o f cruise air-breathing vehicles 
(CAVs) cannot currently be overcome by a single effort The main challenges as the scientific 
community understands them are illustrated in Figure 1-1. The next stage o f this literature review 
focuses on the different continuum gas models used in studies carried out on Hypersonic CAV 
applications.

Figure 1-1 Complexities o f the coupled physics at Hypersonic air flow [8].

Numerically modelling Hypersonic flows is fraught with challenges to infer adequate information on 
the aerodynamic and heat transfer performance o f the vehicle. As the flow regime changes from 
Subsonic to Hypersonic, compressibility effects dominate.2 Oblique shock waves form at the leading 
edges o f the body, where large velocity and temperature gradients arise, and this makes it difficult to 
accurately predict energy dissipation and boundary layer shapes. Anderson [4] states that a highly 
curved shock wave and flow with a low Reynolds number in certain situations means the shock wave 
merges with the boundary layer, producing a viscous shock layer that drastically changes the heating 
properties o f the fluid. This will have serious implications on the coefficient o f  friction and

In contrastto modelling Sub-Sonic speed flows which statistically can be assumed to be incompressible thereby 
simplifying the problem enough to  infer adequate information on the aerodynamic and heat transfer performance of the 
vehide
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coefficient o f  heat, These parameters will ultimately define the fuel economy and safety o f such 
vehicles.

In high speed Supersonic and Hypersonic- applications, velocity, as Anderson [9] states, is measured 
as a Mach number which is a measure o f the vehicle’s kinetic energy relative to the kinetic energy of 
the surrounding air molecules. At high enough speeds the energy absorbed by the surrounding air is 
enough to chemically change the state o f the air3. Appropriate chemical models are needed to capture 
the physics at work, and approximate the thermal and chemical properties o f  the gases involved. 
There are four basic physical models o f a gas that are used by aeronautical engineers who design heat 
shields, where each model used is dependent on the state o f the gas under review and each level of 
refinement in the model requires higher computational cost [5].

1. Perfect gas model
2. Frozen Gas Model
3. Equilibrium
4. Non Equilibrium

The perfect gas model is used in this research and the reason is three fold. Firstly for the engineering 
benchmarks and final application pursued, the perfect gas model is sufficient at approximating the 
actual physics, when temperatures will be below 2000K. Secondly the perfect gas model still poses a 
substantial and focused effort when trying to capture the flow using CFD, and thirdly as the 
temperatures for all the benchmarks in this study are below 2000K the perfect gas model in the CFD 
solver will be used throughout this work. A more detailed discussion o f Equilibrium and Non 
Equilibrium models can be found in the appendices.

The perfect gas theory is both basic and useful for designing aircraft, but its limitations are that it 
takes the gas to be chemically inert. The perfect gas theory begins to break down at 800 K and is not 
usable at temperatures greater than 2000 K. For temperatures greater than 2000 K, a heat shield 
designer must use a real gas model.

For the perfect gas model the fluid is treated as a perfect gas and hence no chemistry is taken into 
account. From a physical standpoint, the simulations are typical o f cold gas flows which are usually 
achieved in experimental facilities such as gun tunnels [10]. This is certainly not representative of 
actual flight conditions in which dissociation and vibrational relaxation are important phenomena 
especially for the higher Mach number cases4. However, it is necessary to construct a robust code to 
deal with the complete environment encountered in actual flight.

1.3.1 Continuum Mechanics: The Knudsen Number
The majority o f the phenomena encountered in fluid mechanics falls well within the realm o f the 
continuum postulate, and the physical description o f our world can neglect the phenomena occurring 
at a microscopic level [4].

The continuum assumption requires that the mean free path o f individual elements must be very small 
when compared with the physical-length o f the system under consideration, i.e. the density of 
elements is high enough so that the mutual interaction dominates over the individual behaviour.

3 Assumptions about the properties of air used in standard mathematical models are no longer valid because 
the physical properties of the fluid change.
4 Mach 12-16
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Where the microscopic-length scale approaches macroscopic dimension, such as when a rocket 
passes through the edge o f the atmosphere, where rarefied gas exists, the interaction between particles 
becomes significant and the particles behave essentially as individual elements. These limited 
situations are outside the field o f this research.

The Knudsen number is useful for determining whether the statistical mechanics model or the 
continuum mechanics model o f fluid dynamics should be used:

>.-mean free path 
L-Length scale of the body

When the dimensionless Knudsen number >0.1, the mean free path o f a molecule is comparable to a 
length scale of the problem, and the continuum assumption o f fluid mechanics is no longer an 
adequate approximation. In this case statistical methods must be used, such as the Lattice Boltzmann 
equations. Statistical mechanics strategies such as the Lattice Boltzmann equations are employed in 
the research carried out by Succi [11] and more recently by Schaefer and Yuan [12].

However, the benchmarks pursued in this research are all in the continuum regime, because the 
associated Knudsen numbers are for smaller than 0.1. For the case studied in Chapter 8, the 
Supersonic viscous flow over a plate length of 10 micron-meters (10"5m) has a Knudsen number of 
6.lxl O'3 and a mean free path o f 6.1xl0'8m. This case possesses the greatest Knudsen number in this 
thesis, but it can be remarked that it still behaves as a continuum. More information on the continuum 
model can be found in [4], [13], [14].

1.4 CFD Discretisation of Conservation Laws
This section will look at the basic aspects of discretisation and how to replace the spatial partial 
differential i.e. the integrals in the governing equations o f motion with discrete numbers. 
Discretisation of the partial differential equations is called finite differences, and discretisation o f the 
integral form of the partial differential equations is called finite volumes. Anderson [15] states that:

”[essentially] discretisation is the process by which a closed-form mathematical expression, such as a 
differential or an integral equation involving functions, all of which are viewed as having an infinite 
continuum o f values throughout some domain, is approximated by analogous expressions which prescribe 
values at only a finite number of discrete points in the domain ”

In fluid mechanics the basic conservation laws can be derived in a Eulerian framework by 
considering the fluid which passes at a time through an arbitrary fixed control volume, V, with 
surface, S, in relation to a fixed Cartesian system see reference [16], [17].The governing equations are 
then approximated at discrete locations on either structured or unstructured meshes.

1.4.1 Fundamental Definitions: Consistency, Stability,
Convergence

The objective here is to give a short review of some important concepts required for numerical 
schemes used to spatially discretise and solve partial differential equations. More detailed and formal 
discussions can be found in the research o f [17]—[20].
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Consistency

It is necessary to define the truncation error ex of a given discrete equation, which represents the 
difference between the partial differential equation, and the corresponding discrete equations as built 
up by the algebraic difference quotients. This allows the definition o f consistency, which states that 
the discrete equation should tend to the corresponding exact solution under refinement o f the spatial 
and time lengths.

lim  s T = 0  n  n
A x ,A t-> 0  K '

The utilization o f the Taylor series allows the verification o f consistency for a given scheme and the 
determination o f the order o f  accuracy, or the rate at which the discrete equation tends to the 
differential equation as Ax, Attend to zero.
The truncation error is generically expressed in the form-

Sj,

With r, s being the order o f  spatial and temporal accuracy respectively, and for the finite difference 
expression to follow inequation (1.6), it can be seen that r=  1.

Stability
A second requirement o f a numerical technique, concerns the stability o f the scheme and establishes a 
relationship between the computed and the exact solutions o f the discretised equation. As introduced 
by Lax and Richtmyer, [21] the stability criterion states that any component o f  the initial solution 
should not be amplified without bound. Following the procedure given by Hirsch , consider a 
marching solution in which at a certain time level n the variable un is known.

U n+l =  9 h l "  (1.3)

Where SR is a discrete operator when applied to un returns a value for the unknown un+1 at the time 
level n+1. The stability condition for the scheme represented by operator can be achieved if a 
constant K exists.

<  v  0 <  A t  < t

for 0 < n A t< T  O-4)
91”

For fixed values o f x, T and for all n, with ||*|| denoting an appropriate norm

The analysis o f  stability can be accomplished by various methods, such as the von-Neumann method, 
the equivalent differential equation and the matrix method as seen in the book by Hirsch [18]. Each 
method has its own merits, but all result from linear theory and represents only a rational support and 
guideline for non-linear problems, for which the last word will be given to numerical experiments.

Convergence
The primary requirement o f  a scheme is that the numerical solution must approach the exact solution 
of the differential equation at any point and at any time when Ax, At tend to zero. This condition is 
called convergence and despite being very difficult to establish directly, it is automatically achieved 
once consistency and stability are verified as a result o f the fundamental Lax’s equivalence theorem 
It is argued by Richtmyer and Morton [22] that “For a well-posed linear initial value problem and a 
consistent discretisation, stability is necessary and sufficient condition for convergence”
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A solver will partition a flow domain with a mesh otherwise known as a grid before applying the 
numerical algorithms: Meshes divide the solution domain utilizing a number o f discrete points, 
control volumes or elements. Meshes employed can be constructed o f a variety o f elements; triangles 
and quadrilaterals in two-dimensional domains, tetrahedrals, wedges and hexahedrals in three 
dimensions. A description o f the three main approaches a solver can employ to discretise spatially the 
governing equations now follows.

1.4.2 The Finite Difference Method
The discretisation is accomplished by employing discrete points in the domain to the solution o f the 
partial differential equations under investigation. It was originally developed for structured 
orthogonal 1 & 2 dimensional problems and ultimately is not suitable for unstructured non-orthogonal 
multidimensional grids. Richardson [23] presented a paper on the first finite difference method 
(FDM). Many papers on FDM in CFD have followed, such as Lewy, Courant, and Friedrichs [24]; 
Evans and Harlow [26]; Godunov [27]; Lax and Wendroff [28]; MacCormack [29]; van Leer [30], 
amongst many others. Historically, FDMs dominated the earliest CFD codes because o f their 
simplicity in formulation and their computational procedure. As mentioned they are not suitable for 
multidimensional problems with complex geometries that require unstructured grids and so can be 
omitted for this research.

Imagine a two-dimensional flow field which is governed by the Navier-Stokes equations, or as the 
case may be by the Euler equations. The analytical solutions o f these partial differential equations 
would provide in principle a closed form expression o f u,v,p,p as functions o f x and y. Which would 
theoretically state values o f the flow-field variables at any o f the infinite points in the flow domain. If 
the partial derivatives in the governing equations are replaced by approximate algebraic difference 
quotients, where these quotients are expressed in terms o f  the flow field variables at two or more of 
the discrete points shown in fig 4.1, then the partial differential equations are totally replaced by a 
system o f algebraic equations, which can only be solved by the values o f the flow field variables at 
the discrete points. In this sense the partial differential equations have been discretized with this, the 
method o f finite differences.

Most common finite difference representations o f derivatives are based on the Taylor Series 
expansions. For example if uy denotes the x component o f velocity at point (i ,j) then the velocity 
Ui+ij can be expressed in terms o f a Taylor series expanded about point (i,j) as follows-

K+i j = u i ,j +
\ d x / ,

+ '
Ax2 r d2u^ Ax

\ dx2 ,
V ' U J

+  ■
3 W

dx3
+ 0 (  Ax4) (1.5)

ij

Equation (1.5) is mathematically an exact expression for u i+i j and the series converges if-
(1) the number o f  terms is infinite.
(2) Ax—>0.

Re-arranging equation (1.5)
f du^ _ u i + \ j ~ u i j  Ax Ax2 ( \  o u
Kdx) /./ . Ax  ̂ 2 6

i j
Kdx3,

Finite-
Difference
representation

i,J (1.6)
Truncation
errror

The first term on the right hand side is a finite difference representation o f  the partial derivative. The 
remaining terms on the right hand side constitute the truncation error. If  we wish to approximate the 
partial derivative with the following algebraic finite difference quotient-
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f  du^

u  A*ydXji
Then the truncation error in equation (1.6) tells us what is being neglected in this approximation. In 
equation (1.6) the lowest ordered term in the truncation error involves Ax to the first power; hence 
this finite difference expression is called first order accurate.

du
dx

_ U M . J  ~ U i ,J

A
+ 0(Ax) (1.8)

L jl/v

In (1.8), the symbol O(Ax) is a formal mathematical notation which represents “ the numerical order 
for Ax”.

1.4.3 The Finite Volume Method
The Finite Volume Method (FVM) was originally developed as a special class o f the finite difference 
formulation, but has since become the most common and preferred approach in CFD analysis. The 
FVM was first introduced by McDonald in 1971 [31], for the solution o f the two dimensional time 
dependent Euler equations, and was subsequently extended to three-dimensional flows by Spalding 
and Patankar [32].

In the finite volume method the solution domain is divided into a number o f contiguous control 
volumes. The conservation equations are integrated in physical space over these control volumes and 
a solution sought which makes each o f these integrals equal to zero. The resulting expression 
maintains exact conservation o f the relevant properties at each cell volume. The finite volume method 
can be applied to cell centres, cell vertex or vertex-centred control volumes. According to McBride, 
[33] because o f their simple data structure, and the fact that the governing fluid flow equations, are 
actually applied to structures akin to control volumes, means that the finite volume method, has 
become the most popular o f  the three approaches stated. The finite volume method is central to five 
of the main computational fluid dynamic tools such as FLUENT, CFX , FLOW3D, CFD-ACE+ and 
STAR-CD and the host CFD tool used in this research, PHYSIC A.

Using simple finite difference type approximations to discretise the various terms in the governing 
equations, combined with comparatively low storage requirements, have made this approach favoured 
by the commercial codes referred to above. The earliest finite volume approach to incompressible 
problems used fully orthogonal Cartesian meshes and employed a staggered grid for the velocity 
components. When Spalding and Patankar [32] applied staggered grid arrangements it was introduced 
as a means o f  overcoming spurious oscillations in the pressure and velocity fields that can be 
encountered when employing equal order co-located methods. Difficulties were encountered as a 
consequence o f  the fact that only gradients o f  pressure appear in the momentum equations. Instead of 
evaluating primitive variables, i.e. pressure, temperature, on the ordinary Cartesian mesh, the idea is 
to evaluate the momentum components on the control volume feces. By the 1970s the FVM was 
being successfully applied to complex flow phenomena, but was limited to fully orthogonal 
structured meshes [34]—[37]. Although these methods were fast and efficient, but lacked the ability to 
model physically realistic domains.

The CFD community then began researching methods to cope with realistic flows and small degrees 
of non-orthogonality in a structured mesh environment. For a more comprehensive study o f  the ideas 
and strategies needed to cope with non-orthogonality for the finite volume approach, review Croft 
[38]. More background information for finite volume methods on unstructured grids in CFD can be 
found in the literature [39]—[41 ].
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1.4.4 The Finite Element Method
Both the Finite Element Method (FEM) and Finite Volume Method (FVM) can be viewed as sub-sets 
of the method o f weighted residuals, and the main differences between these methods are the finite 
space over which the equations are integrated and the weighting functions used in the FVM. For 
FVMs the weighting functions can be regarded as equal to 1 [42].

In FEM’s a variety o f weighted residual methods have been studied, and the optimal method is 
generally accepted as being the Bubnov-Galerkin weighted residual approach. In this method the 
governing equations are multiplied by a set o f weighting functions, integrated and residuals 
minimised. The issue is the choice o f element type and associated basis function best suited for 
minimizing the integrated errors. The solution domain is meshed using any type o f element for which 
a shape function exits. This gives the advantages o f allowing complex geometries to be meshed using 
fully unstructured grids. FEM, however, is known to be more complicated in its formulation and 
more time consuming in computations than FVM for flows according to [43].

The first FEM work was published in the Aeronautical Science Journal in 1956, and dealt with 
applications to aircraft stress analysis. This research was a result o f a collaboration between Turner, 
Clough, Martin, and Topp. Since then, FEM have been developed extensively in fluid dynamics, solid 
mechanics, and related areas [44]. Research papers on the FEM in CFD includes; Generalized Petrov- 
Galerkin Methods [45]; Taylor Galerkin methods [46]; Characteristic Galerkin methods [47]; 
Discontinuous Galerkin methods [48] and Incompressible flows [49]

For the finite element method simple piecewise shape functions valid on local elements are used to 
describe the local behaviour o f a variable within an element. The shape functions approximating cp 
are then substituted into the governing equations. These approximate functions to the governing 
equations will not hold exactly and a residual is defined to measure the errors. The residuals are only 
required to be zero in some weighted sense, which means that the conservation principle is not 
enforced locally.

The advantage of the finite element approach is a high degree o f accuracy for arbitrary meshes, 
allowing complex geometries to be modelled. This advantage o f handling distorted meshes, when 
compared to structured meshes, comes at a cost as it requires extensive storage o f  topological 
information [33].

1.5 Mesh Type
The accuracy o f computational fluid dynamics (CFD) analysis not only depends upon a CFD code 
that accurately models the physical process, but also the ability to solve on a mesh that matches the 
true geometry o f the physical domain. Significant advances have been made in the development o f 
numerical methods designed to yield accurate solutions on structured and unstructured meshes.

Meshes govern the amount o f detail in the solution, and an example is the complex geometrical 
features with significant localized physics, especially with regard to the boundary layer and 
stagnation region for viscous applications. A decision on the grid type used to discretize each 
application needs to be made on the grounds o f efficiency, versatility and reliability. This part o f  the 
literature review will focus on the pros and cons o f the two choices for constructing a grid.

I■
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1.5.1 Structured Grids
The extensive development o f structured grid algorithms to a large class o f non-linear problems using 
a large stencil o f  grid points means enhanced accuracy and stability behaviour when compared with 
unstructured grid algorithms [50]. An attempt to fit structured meshes to real life geometries has been 
practised by a number o f researchers. A wide range o f strategies have been employed; cell blocking, 
curvilinear grids, multi-block techniques and mesh embedding amongst others.

• Cell blocking: To sculpt structured meshes to the physical geometry, elements can be fully or 
partially blocked. An example o f  a partially blocked solution strategy can be found in [51]. 
This however can only handle a relatively small amount o f curvature o f the physical 
geometry.

• Curvilinear grids: The use o f body fitted co-ordinates otherwise known as curvilinear grids, 
can enable solutions when a strict Cartesian mesh is unsuitable as seen in Gordon & Hall [52] 
and Shyy and Vu [53]. The solution grid and associated transport equations are mapped onto 
their topologically equivalent Cartesian mesh. As stated by Demirdzic & Peric [54] this 
approach considerably increases the storage requirements and adds to the complexity o f the 
discretisation process. Errors accumulate during the mapping process and become 
increasingly significant if the physical domain is substantially different from the body fitted 
mesh.

• Multi-block techniques. Solving realistic geometries on a Cartesian mesh can be further 
improved by the use o f multi-block techniques. An example o f multi-blocks can be found in 
the references [55] and [56]. The solution domain is divided into a number o f  blocks, each 
block being mapped onto its equivalent Cartesian mesh. Multi-block techniques allow quite 
complex geometries to be modelled, external surfaces can be represented accurately but 
internal complexity still presents problems due to the lack o f flexibility when using different 
element types. Another major problem, as stated by Anderson [15] in page 209, encountered 
in the use o f multi block grids is the proper interfacing across regions where two blocks are 
joined together. Here large differences between the aspect ratios o f neighbouring elements can 
occur causing numerical errors which can lead to divergence.

As referred to previously, structured mesh methodologies have been developed since the early days of 
CFD and still persist to the present day [57]. The main reason for this arises from the fact that the 
CFD practitioner can chose an appropriate solution method from among the large number of 
algorithms which are available. These algorithms can be implemented in a fairly straightforward 
manner to produce computer codes for multidimensional analysis (Lyra [7]). The straightforward 
concept o f  upwind directionality, the small bandwidth o f the geometrical Jacobian matrix and the 
possibility to use implicit methods based on sparse matrix technology make structured grids effective 
at solving problems with structured geometrical domains. However the large elapsed time necessary 
to produce structured grids for extremely complex domains, the difficult control on the quality of 
elements and the unstructured type overhead which arises when strategies such as curvilinear and 
multi-block are implemented represent the main disadvantage when using the structured approach.
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Figure 1-2 Graphical representation of an unstructured co-located grid.

1.5.2 Unstructured Grids
For complicated geometries, attention has shifted to unstructured grids that can be easier to generate 
than structured grids as argued by Powell and Coirier [59] because unstructured techniques permit 
jany mixed element types to be employed allowing complex internal and external domains to be 
represented accurately. The solution o f the Euler equations on arbitrary unstructured grids generated 
)y Jameson and Mavripilis [60], lead to impressive results using cell-centred approximations.

Since the finite volume and finite element methods do not demand a uniform, rectangular grid for 
computations, as opposed to finite difference, then such calculations can be made directly to the 
)hysical plane. No transformation between a physical and a computational plane is necessary as seen 

[54, 55] the case of finite differences to curvilinear grids. Finite volume methods (FVM) in the 
iarly 1980s were extended to unstructured meshes for the solution o f the Navier-Stokes equations, 
where cell-centered FVM were employed by Pan, Lu, and Cheng [39] to solve laminar flow 
problems using an unstructured mesh o f triangular elements. Thomadakis [61] and Chow [40] 
employed polygonal elements, including triangles, squares, and octagons to solve simple flow and 
heat transfer problems. More complex swirling, turbulent, reacting flows have been solved by Croft 
[38],

"he research community focused on non-staggered techniques as staggered grid arrangements do not 
jasily extend to unstructured meshes because staggering also requires a large increase in storage o f 
geometry information. Many ideas have been developed for structured mesh solvers and are can now 
idopted within the unstructured context. After modifications they imply more complexity and less 
jfficiency, yet, a lot work has to be done to remove any scepticism that still remains in the industrial 
community.

for unstructured grids, the grid generation is fairly straightforward and automatic as it was originally 
leveloped for finite element methods. Ultimately unstructured grids allows for maximum flexibility 

matching mesh cells with the boundary surfaces and placing cells where the modeller wants them. 
Thereby constructing unstructured grids, around complex geometrical features, does not require large
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time overheads as is the case with curvilinear grids (Shyy and Vu, [53]) and block structured grids 
(Powell and Coirier [59]). These grid generators are now widely available for finite volume methods. 
Unstructured grids are now the norm in commercial CFD software ie  FLUENT, CFX and CFD- 
ACE+.

Unfortunately the unstructured approach is accompanied by some well known drawbacks. The main 
concern at present centre upon the accuracy o f  the results computed, the efficiency in terms o f CPU 
time and storage requirements. Another drawback o f unstructured grids according to Croft [38] is that 
numerical errors in the quantities due to distorted meshes, non-conjunctionality and non­
orthogonality can arise. Substantial progress has been made on the development o f unstructured mesh 
methodologies with significant achievements in areas such as mesh generation, and the efficiency of 
unstructured mesh solution algorithms, see for example the following references [60], [62]-[64].

Refinement procedures for unstructured meshes at localized regions is less time consuming to 
implement than structured multi-block procedures, and since the final modelling application will 
involve, components which with a high degree o f curvature. Therefore because o f  this reason, the 
computational strategy will choose unstructured grids to discretize the domain.

In addition to the considerations above, advances in CFD, ie. scaling up problems o f increasing 
complexity to vector and parallel processors, are coupled to the state o f  the art in computer hardware. 
The following section provides a brief back ground to this active research area.

1.6 Parallelisation
. CFD solvers repeatedly manipulate millions o f  numbers, a task which is tedious without the aid of 
super-computers, particularly in regard to storage and execution speed. One o f the strongest drivers 
for developing new supercomputers is coming from the CFD community. This has been manifested in 
the development o f  large mainframe computers.

1.6.1 From 1970s - 1990s
In the 1970s high speed digital computers were serial machines, capable o f one computational 
operation at a time, which meant that all computations had to get in line before execution. The speed 
of electrons, limited the speed o f such serial computers Simon and Kowalik, [65]. To bypass this 
physical limit, two new configurations o f computer architecture were being investigated;

1. Vector Processors, a configuration that allowed a string o f  identical operations on an array 
of numbers simultaneously, thus saving time and memory.

2. Parallel processors, a configuration that has two or more fully functioning central 
processing units (CPUs). Each o f which can handle different instruction and data streams; 
executing separate parts o f  the program simultaneously.

However in the 1990’s CFD reached a critical juncture, since it became more and more apparent that 
future growth in computational speed would result from parallel processing technology. A wide 
variety o f parallel machines became available for exploring the issues o f  using parallelism in 
scientific computing in general and CFD in particular. Most o f  the early parallel machines were 
experimental in nature and served mainly as research investigations in areas such as algorithmic 
development, languages and operating systems. Then several members o f a first generation o f parallel 
supercomputers became available. Unfortunately limitations arose as it became clear that these 
machines were deficient in their systems aspects, such as their ability to handle a large number of
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sers. In 1991, the second generation o f parallel supercomputers arrived, which offered an order of 
lagnitude improvement in computational power over the previous generation as well as an improved 

software and user environment as noted by Simon and Kowalik, [65]. Therefore researchers who 
wanted to advance the state o f the art in CFD had to consider parallel processing.

1.6.2 From 2000 to the Present Day
An important innovation in high-performance parallel computing is the recent use o f hardware known 
as graphic processing units (GPUs), which was originally designed for graphics and game consoles to 
solve general purpose computing problems. From the web Nvidia-Coe [66] state that the GPUs have 
enormous peak performance for arithmetically intensive computations, and at relatively low cost 
when compared to their counterparts with similar performance levels. The multi-core processors or 
GPUs are no longer the future o f computing, they now host present applications. As stated by Simon 
and Kowalik, [651, a typical mass-produced CPU will have several processor cores, whereas a GPU 
may have hundreds or even thousands o f  cores meaning techno fogy trends are driving all 
microprocessors towards multiple core designs. To summarize the motivation and initial 
considerations o f the thesis;

1. The use o f structured discretisation techniques represents an advantage in terms o f the 
efficient implementation o f all classes o f schemes and techniques to enhance convergence. On 
the other hand, algorithms for unstructured grids suited to parallel computations, which 
represent the possibility to perform certain numerical analysis within an affordable time, have 
a foster and hence bigger impact on industrial design. For example parallelization strategies 
based on forced and natural domain partitioning techniques require the use o f overlapping 
mesh partitions to keep the parallelization work simple. Fortunately, many o f  the tools 
needed to create overlapping partitions give good results [3] and [67].

2. Algorithms that perform well in parallel include the explicit and implicit FVM employed by 
the CFD group at Swansea in the in house code PHYSICA [68]-[70]. Due to the efforts of 
these researchers unstructured mesh FV discretisation framework, topological solvers, and 
partitioning tools for parallel operation are already embedded in the host code PHYSICA. 
They are therefore ready to be accessed, when modelling the 3-D non-linear geometry, the 
final industrial goal.

1.7 Structure of Thesis
This PhD thesis documents the challenges and novel strategies employed when simulating 
Hypersonic flows on vehicles containing porous materials specifically the new generation of CAVs. 
The thesis details many sub-categories that were needed and built on to enable a strategy to 
accomplish the final goaL These chapters include:

Chapter 1. The first part o f the literature review. The Chapter opens with the Research Problem 
lentioned in Section 1.1, this is the primary reason for conducting this thesis. In addition, Chapter 1 

ilso lists and detail the many essential properties o f numerical techniques required for a stable and 
iccurate solution, and, covers the three main approaches for spatially discretising the solution 
lomain.

"hapter 2. The second Chapter is the Mathematical Basis listing the governing equations that will be 
solved and detailing the mathematical character of the equations for different speed regimes and the 
iifficulties associated with their solution.
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Chapter 3 The second part o f  the literature review, will list and detail the many numerical techniques 
that have gained popularity in CFD. The reason for breaking the literature review into two chapters is 
due to the importance o f establishing a red line going from the various numerical techniques to the 
choice o f the final candidate technique for the research problem.

Chapter 4 The fourth chapter contains the results for inviscid 1-D Supersonic flow through a De 
Laval nozzle modelled with the judicious use o f artificial viscosity.

Chapter 5 The fifth chapter contains the Numerical Implementation for the CBS algorithm in Multi 
dimensions.

Chapter 6 The sixth chapter contains the results for inviscid 2-D Supersonic flow over a wedge and a 
mesh sensitivity study for the NACA aerofoil.

Chapter 7 Incompressible flows are detailed and solved in Chapter 7.

Chapter 8 Compressible viscous flows are modelled for the Flat plate example in [15].

Chapter 9 Modelling compressible and incompressible flow through a porous structure using an 
appropriate source term is tackled.

Chapter 10 Modelling the real world application - the winged Hypersonic vehicle employing 
transpiration cooled components.

Chapter 11 Conlusion and Discussion, evaluates the performance o f the CBS algorithm to scientific 
benchmarks. Discusses the pertinent issues raised during the calculations and reccommends future 
work.

The code was implemented and compared against several benchmarks where the physical complexity 
of each problem increases for every new problem. The following table details these benchmarks, 
culminating in the scheme being finally applied to the target application.

Table 1-1- Table of cases computed and now displayed in this Thesis
1-D Invisicd 
Benchmark:

Speed Shock
Capturing

Comments

De Laval 
Nozzle

Transition from 
Subsonic to 
Super Sonic 
flow

No Speed Ranges from Mach 
0.1 at the inlet to Mach 3 
at the exit

De Laval 
Nozzle

Choked Nozzle: 
Subsonic to 
Supersonic 
Values

Yes Shock was captured with 
the JST A VT

2-D Invisicd 
Benchmark

Mach Speed Shock
Capturing

2-D Wedge Mach2 Yes Mesh sensitivity
2-D Wedge Mach 3 Yes Comparison with analytical 

solution and FLUENT CFD 
solver
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ACA
erofoil

Mach 1.2 Yes

B
D Viscous 
enchmark

Speed/ 
Regime

Length Thermal
Boundary

Flat Plate 
Case 1

lOm/s
(M=0.01)
Incompressible

lm Cold Wall Investigating whether the 
modified AC CBS 
algorithm is reliable at 
capturing the Blasius 
boundary layer

C
at Plate
ase 2

694m/s (M=2), 
Compressible

Cold Wall

at Plate
ase 3

1300m/s(M=4),
Compressible

Cold Wall

FI
C

at Plate 
ase 4

1300m/s(M=4)
Compressible

Adiabatic

Porous
Media

Speed/ 
Regime

Length Isothermal

Case 1 :1-D 
Plug Flow

8m/s-90m/s
Incompressible

Yes Ergun source term

5ase 2 : 1-D 
ugFlow

90m/s,
Compressible

No Ergun Source term

djase 3 :2-D 
Flat Plate 
with porous 
jllembrane

M=2.06,
Compressible

No Utilized Langener [71 ] 
Boundary condition 
approach

Novel
Application

Mach Speed Length Isothermal

Si

cc
w
tn
cc

iper sonic 
ow over 
>rous
►mponents
ith
inspiration 
»o ling

M=2.06,
Compressible

No Utilized Langener [71 ] 
Boundary condition 
approach

Where Red signifies a compressible Supersonic problem.
Green signifies incompressible Subsonic problem.
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2 M a t h e m a t ic a l  B a sis

2.1 Initial Considerations and Preliminaries
The conservation laws for compressible applications are expressed in terms o f  Hyperbolic partial 
differential equations. Hyperbolic partial differential equations possess mathematical properties that 
need to be understood before developing a CFD numerical method for their solution. For example the 
physical nature of, Hyperbolic equations are more complicated than Parabolic equation, because the 
Hyperbolic equations exhibit discontinuities [16]. CFD solvers for compressible applications need to 
permit the possible existence o f  these discontinuities. Elements o f the theory o f Hyperbolic equations 
are, in some way, incorporated into many numerical schemes. For instance the propagation of 
information, is finite and equal to the wave speed. The propagation o f information is otherwise 
known as Characteristics. A detailed presentation o f  the basic theory o f Hyperbolic partial differential 
equations can be found in the literature [18], [72]-[74].

As discussed byPatankar [36] total conservation o f a generic flow variable <f> ie. the density or x- 
momentum component, within a finite control volume can be expressed as a balance between, various 
processes tending to increase or decrease the density or x-momentum.

Rate o f  change Net Rate o f Net Rate o f Net Rate o f

o f t increase o f <j) increase o f  (j) creation
in the due to due to o f  <j>

= + +
control volume convection diffusion inside the

with respect to into the into the control volume

time control volume control volume from sources

Equation (2.1) is taken from [36] and expresses the conservation o f  a generic flow variable, (f> , for a 
coupled convection-diffusion problem in one dimension:

d(</>) _  d(uj>) j d (  d<f>

dt dx dx dx
+ SA (2.2)

Where u -velocity component (m/s)
<f>- general flow variable
T- Coefficient o f  diffusion (kg/(ms))

The central differencing finite volume approach to diffusion only problems has been scrutinized in 
detail by Spalding & Patankar [32] and Patankar [36] who showed the central differencing to be both 
accurate and robust. It would seem obvious then to extend the central differencing practice to the 
more challenging coupled convection-diffusion problems. Unfortunately it is well known in the CFD 
community that central schemes become unstable when solving highly convective flows with an ill- 
conceived grid as, confirmed by Courant, Isaacon & Rees [75]. This manifests itself in a stringent 
upper limit on the grid size for stable calculations. This can be inferred from the technical detail that 
follows.
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Ax . 
CFL = c —  <1 

At
(2.3)

s a consequence, the time step is less than a certain value for explicit time-marching computer 
imulations, otherwise the calculations will become unstable. For a second order wave equation there 
s a connection between the characteristic lines associated with the stability condition, a connection 
hich helps to elucidate the physical significance o f the CFL condition. Let us pursue this connection 
ecause the final result is informative for, the governing equations that have to be numerically solved:

—  = c2 —  (2.4)
dt2 dx2

The characteristic lines for equation are given by: 
ct

(2.5)
- c t

The characteristic lines are given by the full black lines sketched in Figure 2-1 and Figure 2-2.

x =

Atc=l

C<1
Stable■

C< 1

hi
1+1

Ax:

Figure 2-1-Illustration of a stable case. The numerical domain includes all the analytical domain.

"he shaded triangle is the analytical domain. The analytical domain is defined by the characteristics 
>assing through point d. These characteristics are parallel to those that pass through point b. The 
lumerical domain is a,d,c, the broken line triangle. Note that the numerical domain o f  point d, the 
)roken lines, includes the analytical domain ie. the shaded triangle. In contrast, consider the case 
shown in Figure 2-2.
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Afc >  1

0 1
Unstable■

m

c = 1

i - s  1 i + 1

Ax

x
Figure 2-2- Illustration of an unstable case. The numerical domain does not include all the analytical 
domain.

Point d lies on node i and is at a time level o f t+Atoi- Since properties at point d are calculated 
numerically from the partial difference equation (PDE) using information from point i+1 and i-1 then 
the numerical domain is a,d, c shown in Figure 2-2. The shaded triangle is the analytical domain points 
e,d,f Point b, is determined by the intersection o f the characteristic line through grid point i-1 and 
i+1. Note that the numerical domain does not contain the analytical domain, e,d,f,. This has a 
theoretical and practical significance -which states that, the Courant number should be CFL<1, 
otherwise the numerical solution to the PDE will be unstable. Therefore, the following physical 
interpretation o f the CFL condition is proposed:

“For stability the numerical domain must include the all the analytical domains

The above constraint essentially deals with stability. The question o f accuracy, which is something 
quite different as Anderson states, can also be examined from the point o f view o f  Figure 2-1. The 
physical properties at point d depend only on those points within the shaded triangle. However notice 
that the numerical points i+1 and i-1 are outside the triangle-the domain o f dependence for point d- 
and hence theoretically should not influence the properties at point d. The numerical calculation of 
properties for the PDE seen in equation (2.6) at point d however takes information from grid points i- 
1 and i+1. This is exacerbated when t+Atc<i is chosen to be very small. In this case even if the 
calculations are stable, the results may, according to Anderson, be inaccurate due to the mismatch of 
the domain o f dependence o f point d and the location o f the actual numerical data used to calculate 
properties at point d. In light o f  the above discussion, Anderson [15] concludes that the Courant 
number must be less than unity for the stability and have C as close to unity as possible for accuracy.

An issue that has a close comparison to the CFL number for viscous fluid flows is the Peclet number 
and is discussed in the following section. For the one-dimensional steady state convection-diffusion 
problem without a source where the grid is given in Figure 2-3 we have:

± ( p u A j )  = ± [ T A ^ )  (2.7)
dx d x \  dx J

34



igure 2-3 Schematic illustration o f 1-D grid in which the conservation equation are applied. Circle 
indicates grid point.

Using central differencing for example gives the following template after re-arrangement.

^ ($ + /+ $ )  ^  ( $ w + A ) _ r »  (A a \ n  (A a \
i + l / 2  r> i - 1 /2  r* — D i+ i / 2 \ (/>i+i (j>i) D i_1 / 2 y</>i (fr i . j )2 M/2 2

For central differencing, the scalar or coefficient o f diffusion at the lace i+l/2 is evaluated as an 
verage o f the two nodal values straddling i+l/2. For this case the nodes are equidistant.

(2.9)

I  (  F  ^i + l / 2  r) 
n  i+ l /2

\  Z /
fa+1 +

Where
^i-1/2 = (^Pu \_

/  zr F  ̂ f
i + l / 2  , r» i -1 /2  , r \

— ----- +  i + l / 2  Z +  V i - l / 2
V Z Z y V

F
i -1 /2 0 i-i =  0 (2 .10)

1/2 ^+1,2 = (P “ )

£ )  =  - M /2
i—l / 2

Sx,-v

=  O i-A -X  +
where

* '+ 1/2

r) _ -1- f+1/2
i+ l /2  ~  r.

<*Vn

(2 .11)

«*•-! <3i+l ai

p r*—i/2M -,/2  +  2
p r

F> i+l/2J~^i+\/2 ^ a i+1 +  ^*-1 +  (^/+l/2 1/2 )

Re-writing (2.11) so the updated value for the conserved variable is 4>n+ and the previous values for 
ie conserved variables are c()n.

N = i + 1

> =  X  a / "  (2 1 2 )
J'=i- 1

(or a converged solution cj)n+1= cj)n everywhere therefore (2.12) becomes.



7V  = / - f - I

ai =  22  \aj I (213>
j —i —1

For a bounded solution the left hand side must be greater than the right hand side o f (2.13).
N=i- i - l

=^> a t >  2 ^  | a j  | (2-14)
J —i —1

Dividing both sides by ( a ,  ) diagonal dominance states that in the absence o f sources the internal 
nodal values o f the property (f> should be bounded by its boundary values. For diagonal dominance, 
we need large values o f  net coefficient ( a i ).

N = J - i-l
C l

(2.15)1 = /—l

Equation (2.15) is also known as the Scarborough condition which was presented by Scarborough in 
[76].

In general central schemes become unstable when solving highly convective flows. This manifests 
itself in a stringent upper limit on the grid size for stable calculations. This is known as the 
transportiveness property o f a numerical scheme. For the unidirectional flow case seen in Figure 2-3, 
ai+l = D i+y2 —Fi+1/2 / 2 , given that F t_1/2 >  O and Fi+V2 > 0. Now for a i+1 to be positive: then

F i+y2 /  D i+l/2 <  2  has to be satisfied.
The second 1-D example in Versteeg & Malalasekera [17] with Pe = 5 shows incorrect and 

unbounded results, for a simple convection diffusion problem, while cases 1 and 3, where Pe<2, both 
gave bounded and accurate answers. Therefore Roache [77] stated for the simplest case o f central 
differencing, the cell Peclet number should be less than 2 .

Pe =  _£}!_< 2  (2.16)r / dx
The non-dimensional cell Peclet number is a measure o f the strength o f convection relative to 
diffusion, where dx is the cell width. This is an essential requirement for boundedness, all coefficients 
of the discretised equations should be positive. Physically this implies that an increase in the 
variable (f> at one node should result in an increase in ^ at neighbouring nodes.

From this generic convection-diffusion equation, we have seen that the numerical difficulties when 
solving the equation iteratively are far from straightforward. Now we have to keep this in mind when 
solving physically realistic problems in the field o f fluid dynamics.

2.2 Fluid Mechanics
The purpose o f this chapter is not to cover the whole area o f fluid mechanics but to develop 
computational methods that solve the equations o f fluid motion for the benchmark cases presented 
later in this thesis.
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n obtaining the basic equations of fluid motion, the following philosophy is always followed:

1. Choosing the appropriate fundamental physical principles from the law o f physics, for example.
i. Mass Conservation, for more detail on step 1 review Currie, [78].
ii. Momentum Conservation.
iii. Energy Conservation.

2. Apply the physical principle from above to a suitable model o f the flow either:
a. Eulerian description- a finite control volume fixed in space with fluid moving through it
b. Lagrangian description- a control volume moving with the fluid such that the same fluid

3. From this application extract the mathematical equations which embody the physical principles.

The Eulerian description in continuum regime was chosen in 2 for this research. Alternatively for 
more detail on methods for the Lagrangian method review the literature. The following section deals 
with step 3 above, namely the extraction o f the mathematical equations.

3 basic Conservation Laws in Fluid Mechanics can be derived in the Eulerian framework by 
isidering the fluid which passes at time, t, through an infinitesimal fixed control volume with 
face, S, in relation to a fixed Cartesian system o f a reference. From this, equations in differential 
m are obtained. For more information on how these equations are extracted from the physical 
nciples review [14], [79], [80]. The equations presented in this section are derived assuming a 
gle-phase, homogenous fluid in which no chemical reactions take place. An indicial notation is 
)pted ,i,j, with the indices i=x,y,z and j=x,y,z the Einstein summation convention is used [81].

particles are always surrounded by the control volume review Gurtin, [14].

3 Conservation Laws

here p - density (kg/m )

2.3.1 Mass Conservation
Mass is conserved within the control volume resulting in the following partial differential equation 
i.e. Continuity Equation:

2.3.2 Momentum Conservation
Within the control volume momentum is conserved and Newton’s Second Law results in the 
following partial differential equation.

here p - dynamic viscosity (kg/(m s))
P - Pressure (N/m2)
iij - is the viscous stress tensor (N/m2)

Uj - velocity component (m/s) 
d/dt - temporal derivative
d/dx - spatial derivative
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2.3.3 Energy Conservation
Energy is conserved (First Law o f Thermodynamics) within the control volume resulting in the 
following partial differential equatioa i.e. the energy equation

d (p s )  d , , d {P u ) d ( .  8 T )  diu.Tij)
+ ̂ { p u,s ) + k—  ' - ^ -  = 0 (2.19)

d x . J d x ;dt dx, dx, dx, .I I I \  i /  /
where k - Coefficient o f  thermal conductivity (W/(m ° K) )

Cv- specific heat and constant volume ( J/(Kg °K))
T - Temperature (°K) 

and the total specific energy, £, is defined as:

s  = e + ̂ u juj (2.20)

where pe is the internal energy per unit volume (J/(m3) ) 
and e is the internal energy per unit mass 

pe _ J n f3 _ J  Nm kgms~2me =
p  kgm 3 kg kg kg

.2m

1 2
— pu juj is the kinetic energy per unit volume (kg/(m s ))

To close the system o f  equations, consider an ideal gas, where no real gas effects or chemical 
reactions occur, the fundamental gas relationship, derived from kinetic theory [82], relates pressure 
with density and temperature according to.
JP =  /o> R T  (2.21)

where R is called the universal gas constant ( J/(Kg °K) )

The pressure is calculated from the ideal gas law and the temperature is calculated from equation 
(2.20) and a constitutive relationship relating temperature to the internal heat per unit mass. Further 
axioms must be stated to fully define a constitutive equation for a specific material or class of 
materials.

2.3.4 Constitutive Equations
The conservation laws, the Navier-Stokes equations, described previously, represent a mathematical 
formulation o f the physical principles o f  conservation and therefore apply to all fluids. To complete 
the specifications o f the mechanical properties o f a fluid some additional equations, which are 
denoted the constitutive equations, are required. It is thereby unlikely that any real fluid will conform 
exactly to any mathematical model, however they are models which form an excellent approximation 
to the behaviour o f  the real fluid. The constitutive equations must satisfy fundamental principles, such 
as the principle o f  material-frame independence, the principle o f determinism, the principle o f local 
action and also be dimensionally consistent. For more information on these principles review [14], 
[79], [83].

In fluid mechanics, axioms which allow us to determine the relations between stress and rate of 
strain, heat flux and temperature are required. The first constitutive relation relating the stress tensor 
Gy and the rate o f strain tensor cy can be deduced with the assumption o f the following four postulates 
[79], [80]:
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1) The stress tensor is linearly dependent on the deformation-rate tensor Gki. This behaviour is 
characteristic o f  a Newtonian viscous fluid and is mathematically expressed by

j  =  av + (2.22)
Where a, b represent second and fourth-ordered tensors and are independent o f the rate o f strain 
omponents

2) In a fluid at rest, the stress is hydrostatic and the pressure exerted by the fluid is the static 
pressure. This condition requires that the stress tensor defined in equation (2.22) must have the form

(2.23)
where the shear stress tensor xy depends on the motion o f the fluid;

3) The shear stresses Ty will not be effected by rigid body motion o f the fluid

4) The fluid is isotropic, i.e. there are no preferred directions for the fluids motion
After all possible simplifications using these assumptions, the constitutive equations for the stress 
ensor reduces to

TU = ~PSU + (2-24)
here p,A and p. are independent of cy. The rate of strain tensor is described in terms o f velocity

ariations according to
du;

(2.25)s.. = — -
,J dx..

+
duj

dx..
"he parameters X and p must be determined experimentally and represent the dynamic viscosity and 
second viscosity coefficients, respectively. These two viscosity coefficients are related through the 
)ulk viscosity % [19], [80], and for mo no tonic gases, %is negligible ( ; j r«0) ,  leading to the
requirement that
; 2 A =  U

3
(2.26)

lich represents the so-called Stokes relation. In practice, according to Lyra [7] it is found that the 
lodel given by equations (2.24) to (2.26), despite the fact that it can be regarded as describing an 

ideal material, simulates extremely well the mechanical behaviour o f many fluids, including air. From 
equation (2.23) the shear stress tensor becomes.

du du \
+  ■

dx, dx
2 duk

— A—3 dx.
(2.27)

"he second constitutive relation involves a relation between the conductive heat-flux , q7 , and the
temperature gradients. A simple, but accurate, constitutive equation is given by Fourier’s law for heat 
ransfer by conduction, which can be expressed as 

. dT
|q ,= - * —  (2.28)

iere k  = k(T) is referred to as the thermal conductivity o f the medium, and T is the temperature, 
for heat conduction to a solid wall the following expression is employed.

—k dT
dn

at r„ (2.29)

'here rij = [nx,ny,ny] denotes the direction normal to the wall and where Tw denotes the wall 

>oundary location.
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2.4 The Gas Equations

V^CO J

T _i_ C
00 0 (2.34)

Ti+ S0
where |ii has the units (kg/(m s)) and the subscript oo denotes the free-stream values and So is a 
constant for a given gas [18]. The coefficient o f  thermal conductivity can be related to the coefficient 
of viscosity through the dimensionless quantity

pr = (2.35)
/

This is known as the Prandtl number, which is assumed constant for ideal gases at moderate 
temperature [82]. For an isentropic process, i.e. adiabatic reversible process in a perfect gas , the 
speed o f sound c is given by [82].

c 1 =
r d P ^  

dP .
= R T y  (2.36)

When the application o f the governing laws involves flow speeds comparable or in excess o f the 
speed o f sound, this is generally accompanied by large pressure gradients leading to substantial 
changes in density. This is what is meant by compressibility effects [84]. These effects are of 
practical importance for aerodynamics application. Let us consider the governing laws for fluid flow 
without body forces and without external or internal heat sources as described by equation (2.17) to 
equation (2.21) . In order to close the system o f equations it is necessary to set up the relations 
between the thermodynamic variables through the state equations and to relate the coefficients of 
viscosity and the thermal conductivity k to the thermodynamics variables.

It is convenient to introduce the thermodynamic variable called the enthalpy h, which is defined as

h  =  e  - 1- —  (2.30)
/=»

Where e is the specific internal energy.

Assuming further that the gas is calorifically perfect, where the specific internal energy e and the 
enthalpy h are functions o f temperature alone and the specific heats are constant, then, 
e? =
A  =  C p T

y ~ Cr l Cv (2.32)
Cv = R /( y - Y )

where Cp and Cv are the specific heats o f  the fluid at constant pressure and at constant volume 
respectively.

To obtain the temperature from the Enthalpy equation by employing (2.31) we re-arrange (2.20) and 
get.

1 (  1 ^T = — y Ps - p - u iui J (2.33)

Sutherland’s experimental law relates the dynamic coefficient o f viscosity p, to the temperature 
accordingly

/  ^  \ 3/2
Mi = M«
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where s is the entropy and c represents the speed at which the small disturbances (waves) are 
iropagated through a compressible fluid. The effects o f  compressibility in a moving fluid can then be 
malysed, by the value o f the dimensionless parameter.

M =
I \1/2( w (2.37)

which is called the Mach number, and its variation significantly alters the characteristic o f the flow, 
finally, another important dimensionless relation is given by the Reynolds number.

(2.38)Re =
P

where L is the characteristic length o f the problem, such as the length o f an aerofoil, and |u| is the
nodulus o f the velocity. The Reynolds number represents the ratio o f the inertial terms and the 
viscous terms, with the flow remaining laminar up to a certain critical value o f the Reynolds number 
md above this value the flow becomes turbulent.

applications associated with Hypersonic flows, where temperatures can be extremely high, the 
erfect gas assumption o f a gas, meaning no chemical reactions and the calorically perfect 
ssumption, no longer applies. Furthermore the assumption o f constant Prandtl number and 
utherland’s law do not hold either. In this regime, more complex state equations and relations with 

the transport coefficients have to be adopted [85], [86].

2.5 The Navier-Stokes Equations
The Navier-Stokes equations describe combined viscous-convection flow problems which are non­
inear, multidimensional and at larger Reynolds numbers solutions contain turbulent flow structures. 
To model them numerically requires a considerable amount o f effort to capture the localised physics 
and alleviate the numerical instabilities. The last two decades have seen a marked progress in creating 
Navier-Stokes numerical solvers’ ’ but three dimensional complex geometry flows currently remains 

11 challenge The Navier-Stokes equations are obtained by simultaneously taking the Euler equations
nd augment with the 2 order diffusion terms. The 2n order diffusion terms have the effect of 
istributing the physical properties, velocity and temperature, along gradients in all directions. The 
avier-Stokes equations maybe summarised as follows as presented in [17], [18], [80]:

d G y
fori=l,...Nd (2.39)

;dU dFy
■ “I------

dt dx.. dXj
'here Nd indicates the number o f spatial dimensions to be considered in each problem, U represents 
ie vector o f conservative variables and F and G are the relevant inviscid flux and the viscous flux 

terms, respectively. Taking the two dimensional counterpart o f equation (2.39) these vectors can be 
ritten as:

p  " puj 0
pw.

Fy =
pu.Uj +PSlJ

Gy = Ti j
pu2 pu2Uj + P S2J T2 J

_p£ _ _ (p s  + P)Uj _

U =

'here p - density(kg/ m )
P - Static pressure(N/m2) 
ui - velocity component in x direction (m/ s) 
U2 - velocity component in y direction (m/ s)

(2.40)



£- Specific total energy per unit mass (J/ (Kg)) 
and the Kronecker delta term is determined by.

f 0 i&j
Su=  (2.41)

I 1 i = J
and finally rjt and q. are defined by the two constitutive equations (2.27) and (2.28).

These equations are valid for any Newtonian compressible fluid and can also be used to deduce the 
particular equations for different dynamic levels o f  approximation analysed in this thesis.

2.6 The Euler Equations

dU dFJ „
—- + — -  = 0 for 1=1,...N d 
dt ox.

U =

" p  " puj

pux F y =
puxuj +P8Xj

pu 2 pu2Uj + PS2j

-P S . _ (pe  + P)Uj_

(2.42)

(2.43)

where the physical quantities are the same for the Navier-Stokes formulation (2.40). Additional 
information is required for well posed problems before the numerical code can be run for the 
catalogue o f benchmarks. This additional information includes physical constants such as the gas 
constants as well initial conditions and the boundary values. These are dealt with in detail in the next 
section.

The Euler equations describe flows where diffusion o f any kind whether viscosity or thermal 
conduction are ignored. These flows are non-linear and multidimensional. Since the dissipation terms 
in the momentum and enthalpy equations are neglected the Euler equations are an approximation of 
the physical reality. However interest in solving the Euler equations from the 1960s onwards in the 
aerospace sector began for applications where viscous interactions can be assumed to be negligible, 
meaning the inviscid assumption leads to good approximations for the pressure field for non­
separated flows [84], [87]. Because according to Prandtl’s boundary layer analysis, flow at high 
Reynolds numbers with no separation, confines the viscous effects to very narrow regions close to the 
walls [86]. Outside these layers the flow behaves as inviscid. The inviscid approach is motivated by 
the advantages with regards to the reduced requirements for the computational task at hand when 
compared to those for the viscous model. Examples include the large regions o f  flow over wings and 
bodies outside the thin boundary layer, flow through rocket engine nozzles and the flow over 
compressor and turbine blades for jet engines. Surface pressure distributions, as well as aerodynamic 
lift and moments on some bodies can be accurately predicted by means o f the assumptions o f inviscid 
flow. These examples include flow over a 2D wedge [84] and the transonic flow over a NACA 
aerofoil [88]. The Euler equations maybe summarised as seen in the work [17], [18], [80], [84].

2.7 Initial and Boundary Conditions
The progress o f  a solution to all categories o f  PDEs depends on the initial and boundary conditions. 
The initial conditions are specified throughout the computational domain. For external flow 
applications in aerodynamic applications these values are taken as the free-stream values. In practical 
CFD calculations there are two important criteria for the selection o f initial conditions: Firstly 
efficiency in generating results, the closer the initial conditions are to the final answer, the faster the
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time marching procedure will converge and secondly and most importantly, enhancing the stability o f 
the calculations. If the initial conditions are too far from the analytical results, the initial time wise 
gradients will be very large potentially causing instability.

Once we have the initial conditions and governing flow equations as described in section 3.4 and 3.5, 
then the driver for any particular solution are the physical boundary conditions. This has a particular 
importance in CFD as stated by Anderson [15] any numerical solution o f the governing flow 
equations must be structured so as to see a strong numerical representation o f the physical 
boundaries.

As mentioned by Lyra [7] the Navier-Stokes equations, represents a hybrid system, being Parabolic- 
Hyperbolic in time and space, but becoming Elliptic-Hyperbolic in space for steady state problems. 
No general mathematical theorems concerning the proper boundary conditions are available that 
ensures existence and uniqueness o f the solution, [89], [90]. In this way the approach normally 
adopted consists o f the physical analysis o f  the problems to provide a guideline for the choice o f 
number and type ofboundary conditions, followed by a posterior numerical validation.

In practical applications, the solution o f a system of PDEs is realized in an enclosed limited domain 
where physical and artificial boundary conditions must be imposed to produce a realistic solution. In 
general, the boundaries can be grouped into two, either solid body surfaces, or free surfaces, such as 
for-fie Id boundaries in external flows. First let us review the proper physical boundary conditions for 
viscous flow. At a solid body surface experimentally no relative velocity between the fluid and a solid 
boundary at the interface is observed.5 Since the no slip condition is assumed to hold it can be stated 
as:
ux=u2 =u3 =0 at Tw (2.44)

where Tw denotes the wall boundary location. In addition to (2.44), there is an analogous “no-slip” 
condition associated with the temperature at the surface i.e. an isothermal wall. The temperature o f 
the surface material is denoted by Tw, hence the temperature o f the fluid layer immediately in contact 
with the surface is also Tw, hence:
T = Tw atT „  ’ (2.45)

On the other hand, if the wall temperature is not known, or if it is changing as a function o f time due 
to aerodynamic heating to the surface, then the Fourier law o f heat conduction provides the boundary 
condition at the surface. The Fourier law, if we let qM denote the instantaneous wall heat flux is given 
previously in (2.29). For this case, the surface material is responding to the heat transfer to the wall, 
qw, hence changing Tw, which then affects qw resulting in an unsteady coupling between q M and Tw 
• This, unsteady heat transfer problem must be solved by treating the viscous flow and the thermal 
response o f the surface material simultaneously. This type ofboundary condition, as for as the flow is 
concerned, is a temperature gradient at the wall, in contrast to stipulating the wall temperature itself 
as the boundary condition. That is, from (2.29) the temperature conduction at the wall is:
/  \ 

a r
dnij /

= - % -  at r„  (2.46)
k

where k  is the thermal conductivity (W/(mK))
r„  denotes the wall boundary location is the vector normal to the wall

When the wall temperature becomes such that there is approximately zero heat transfer to the wall 
surface, the resulting wall temperature is the adiabatic wall temperature Taw* This condition comes

5 On a microscopic level slippage is possible [78], but this is out of the domain of continuum mechanics.
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from (2.46) with qw = 0. Hence, for an adiabatic wall, equation (2.46) reduces to (d T / d n =0 at

. Then the mathematical challenge is the calculation o f the the adiabatic wall temperature Taw, that 
satisfies q w =  0 .

The most common wall boundary condition is, an isothermal wall, where Tw is constant irrespective 
of the temperature o f the flow. The next most popular is the adiabatic wall, where Taw M s  out o f the 
numerical solution when (dT/dnj) = 0- F°r the more complicated case as seen in equation (2.46),

where the coupled simultaneous relationship between the flow field with the thermal response o f the 
surface material, k, through an additional physical relationship is by far the most difficult to set up 
mathematically.

For inviscid flow there is no viscosity to promote it sticking to the surface. Hence, the flow velocity 
at the wall is a finite value. Moreover, for a non-porous wall, there is no mass flow into or out o f  the 
domain through the wall; this means that the velocity vector immediately adjacent to the wall must be 
at a tangent to the wall. I f  nj is a unit vector on the surface and is perpendicular to the wall, the wall 
boundary condition can be given as.
u . • rij = 0 at Tw (2.47)

Equation (2.47) is a statement that the velocity component perpendicular to the wall is zero; for 
example the flow at the surface is tangent to the wall. This is the only surface boundary condition for 
an inviscid flow. The magnitude o f the velocity as well as the values o f the fluid temperature, 
pressure and density o f the wall, falls out as part o f  the solution.

As stated above the only physical boundary conditions along a wall for a viscous flow problem are 
the no slip condition associated with the temperature and velocity. The pressure and density at the 
wall foil out as part o f the solution according to [15].

It should be noted that the simplified cases represented by the Euler equations or the heat conduction 
equation are mathematically fully determined. These boundary conditions when used to solve the 
Navier-Stokes equations have to be compatible with the simplified cases, otherwise, non-physical 
behaviour may appear in the solution [87]. Furthermore, since the benchmark problems considered in 
the work each have a distinct mathematical nature, the adopted boundary conditions for each specific 
case will be presented in detail when dealing with each problem.

When defining the free surface boundary conditions, it is also useful to distinguish between internal 
and external flows. For external flow computations, a possible approach provided that the for field 
boundary is placed far from the body, so that viscous effects can be assumed to be negligible. For 
internal flows the approach is to determine the boundary conditions through the analysis o f  the 
incoming and outgoing characteristics [87]. A detailed discussion about this essential subject can be 
found in [87], [89], [91], [92].

The complexity and importance o f the boundary condition theme cannot be underestimated, and one 
has to be aware of the influence of the selected boundary conditions on the final stability, 
convergence rate and accuracy o f the numerical solution. Finally it should be noted in the solution of 
partial differential equations it is sometimes easy to attempt a solution using incorrect boundary and 
initial conditions. Whether the solution is being attempted analytically or numerically, such an “ill 
posed problem” will lead to spurious oscillations at best and no solution at worst [15].
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A well posed problem is defined as follows: if the solution to a partial differential equation exists and 
it is unique and if the solution depends continuously on the initial and boundary conditions then the 
problem is “well-posed” . It is important to establish that a CFD problem is well posed before 
carrying out a solution.

2.8 Further Considerations
A summary o f the issues concerning the difficulties faced, when designing a computational procedure 
in CFD are now discussed.

A lack o f mathematical foundations establishing consistency, stability and convergence for non-linear 
problems according to Lyra [7], leaves only the well based linear theory to give necessary, but not 
completely sufficient conditions on the behavior of the chosen numerical scheme. It is also for from 
an easy task to establish the degree to which the boundary conditions are "well-posed", especially for 
systems o f partial differential equations o f mixed nature, where there is no general mathematical 
theorem to guarantee existence o f a solution [7]. In general, an under-prescription o f boundary 
conditions leads to non-unique ness and an over prescription leads to unphysical solutions in the 
proximity o f the boundary layer according to Fletcher [93]. There are also some occasions where 
multiple physically meaningful solutions may be possible and the V eil posed" concept foils. An 
example o f this, according to Fletcher [93], is when flow undergoes transition from laminar to 
turbulent motion.

When solutions to a Hyperbolic equations are considered another mathematical difficulty arises from 
the appearance o f discontinuities. The foct that the CFD solutions to the Euler system o f equations 
allow spurious solutions is in general a result o f  ignoring some physical effects in the determination 
of the model6. Although viscous effects may be negligible throughout most o f  the flow, near 
discontinuities the effect is always strong, and the apparent discontinuities are in reality thin regions 
with very steep gradients. Some conditions must be imposed in order to pick up the correct physical 
solution and to guarantee uniqueness [18], [73]. In fluid dynamics the second law of thermodynamics, 
which states that the entropy should increase, is invoked, and turns out to be a sufficient condition to 
determine a physically correct and unique solution. This consideration is normally referred as the 
entropy condition [18].

6 the viscous effects have been neglected
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3. LITERATURE REVIEW FOR CFD 
TECHNIQUES

3.1 Introduction
This chapter is the second part o f the literature review. It is intended to be an overview for the 
numerical techniques currently available in Computational Fluid Dynamics (CFD). The reason for j 
breaking the literature review into two chapters, is that it was deemed important for presentation 
purposes to establish a line o f reasoning that is inferred going from the numerous numerical 
techniques employed to the final candidate scheme, in this thesis. That scheme finally attempts to 
tackle the research problem referred to in Chapter 1 Section 1.1.

Partial differential equations (PDE) are at the heart o f  many simulations o f physical systems of 
engineering interest, such as fluid dynamics, heat conduction and, solid mechanics. As a result, a 
broad class o f  methods has been developed to solve PDE, such as separation o f variables, integral 
transforms and numerical methods. All o f  these have their own importance and achievements in the 
solution of PDE, but none o f them is as flexible and general as numerical methods, which allow 
complex geometry configurations, non-linearities and a number o f coupled systems o f partial 
differential equations to be tackled [7].

Modern CFD is awash with different numerical methods -  some old, some new, some quite simple 
and straight forward, and some very sophisticated and elaborate [15]. They all possess strengths and 
weaknesses. A particular numerical method will not be appropriate for all problems, because the 
diverse mathematical nature o f PDE means that some schemes will be effective for elliptic equations 
while the same scheme may not be suited to Hyperbolic problems [16].

3.2 Continuity Solvers
Numerical CFD methods pre 1980 were initially divided into two major classes; “pressure-based” 
methods originally devised for solving incompress foie flows with primitive variables such as 
SIMPLE scheme by Spalding & Patankar, [32] and “density-based” methods as developed by Chorin 
[94], which was formulated to solve the compressible flow equations for gas dynamic applications. 
This part o f  the literature review will briefly review both approaches.

3.2.1 Pressure Based Schemes
The origins o f most pressure based CFD methods lie in the Semi-Implicit Method for Pressure Linked 
Equations (SIMPLE) scheme by Spalding & Patankar, [32]. A thorough description o f SIMPLE is 
given in Versteeg & Malalasekera, [16], and a discussion can also be found in the appendices o f this 
thesis. In its basic form for solving pressure and velocity this algorithm is applicable to 
incompressible constant density flows. The coupling between pressure and velocity is done by 
interpreting the mass conservation equation as a constraint equation for the pressure, leading to a 
guess and correct algorithm for establishing the pressure field. For this reason these schemes are often 
denoted as pressure-correction methods [16].

It must be noted that the pressure based schemes make theoretical assumptions that allow a solution 
to a flow problem to be attempted. When the free-stream speed becomes compressible (Mach>0.3)
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these assumptions need to be re-assessed, i.e. such as dp/dp being assumed to be negligible. Which 
has consequences for applying the pressure based schemes.

3.2.2 Density Based Schemes
The density based formulation is more suited to compressible flows than the pressure based schemes, 
because it solves the conservation variables (pu, pE or pv) at the cell centres and then closes the 
system o f equations, with the perfect gas law. For compressible flow problems this has resulted in a 
robust, accurate and versatile procedure as described in [15], [35], [95]. However, density based 
schemes (DBS) for incompressible problems are problematic, as density will be constant throughout 
the flow domain. A fix or relationship is needed to couple the pressure and velocity, and this can be 
done in a number o f ways. The main route for this is the standard scheme.

The industrial sponsor wants a solver applicable to all flow regimes from incompressible Subsonic 
flow through to Hypersonic highly compressible flow, and this caused the author to look at strategies 
to capture incompressible flows when using the density based schemes. It was concluded that the 
DBS provided the best scheme o f the two because it can be easily extendable to compressible flows 
later on in the research program Malan, Lewis, and Nithiarasu [96].

3.3 Methods for Resolving the Convection Term
The co-located discretisation o f the governing equations assumes that the density, velocity and 
enthalpy field has been resolved at control volume centres. Then the transported property, whether it 
be pu, pE or pv for shorthand, one replaces with These transported properties are all estimated on 
the control volume feces. Methods employed to do this are discussed in the following section. The 
relative strength and weaknesses o f each o f the following methods such as- central differencing, 
simple 1st order upwind, 2nd order upwind and hybrid differencing o f the convection terms will be 
outlined. As will be discussed in the following sections the type o f differencing used will often be 
more suited to solving a certain types o f problem over others.

3.3.1 Central Differencing Schemes
The cell-centred central differencing approach is a two point scheme which employs a linear fit o f 
values in the elements on either side o f the face under inspection. In discretising the convection terms 
(j) over a control volume, only surrounding nodal values o f </> appear in the system matrix, because the
contributions at control volume i, will cancel out. The system matrix will possess diagonal 
coefficients o f  zero, meaning, therefore no steady state solution is established for convection only 
problems with no diffusion, using iterative solution methods. However since diffusion always occurs 
alongside convection in nature, the problem o f zero leading coefficients is overcome by coupling 
convection with diffusion terms, providing diffusion is o f the same order as the convection term. This 
method produces stable and accurate solutions when the strength o f convection relative to diffusion is 
low. However for cases when convection dominates the neighbouring coefficients can become 
negative. For example Patankar, [36], noted that in this instance the boundedness criteria is violated 
and the solution fails to converge, producing physically unrealistic oscillating results.
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Figure 3-1-Depication of central differencing for a scalar field (f> .

Central differencing schemes, such as, Hughes's, [97], Sub Grid Scale methods (SGS) and 
MacCormack’s predictor-corrector scheme, [29], are easy to understand, however, they will not 
always track the proper flow o f  information throughout the flow field. The numerical scheme can 
draw information from outside the node’s domain o f  dependence, as discussed in Versteeg & 
Malalasekera [16]. This compromises the accuracy o f the final solution. Flow fields that involve low 
convection speeds, otherwise known as low Peclet number, do not appear to cause solution 
instability. Because o f this, central difference schemes work suitably well for solving elliptic and 
Parabolic equations. Parabolic problems include the Coeutte flow between non-porous boundaries or 
shock free compressible solutions through a de Laval nozzle as seen, for example, in Anderson [15]. 
Courant, Isaacon, and Rees, [75], noted that central difference schemes become unstable when 
solving highly convective flows. This manifests itself in a stringent upper limit (CFL limit) on the 
grid size and time step for stability when solving certain partial differential 
equations (usually Hyperbolic PDEs) numerically by central differencing. The main challenge occurs 
when discontinuities exist in the flow for Hyperbolic problems, meaning a central differencing 
schemes will not effectively capture the shock or discontinuity. For example, it is possible to see in 
the research o f Kuruvila, [98], the undesirable severe oscillations around the shock wave when a 
central differencing finite differencing scheme has been used. Even with the addition o f artificial 
viscosity the results shown in Kuruvila, [98], exhibit oscillations albeit much smaller than those 
results garnered with no artificial viscosity.

3.3.2 Upwind Differencing Schemes
Upwind differencing schemes in contrast to central differencing methods are designed to factor the 
directionality o f the flow into the calculations. Using an upwind formulation the direction o f  flow is 
ascertained on each cell face. This means the value on the face is taken as the upstream control 
volume value. Upwind methods a system o f equations containing non-zero leading coefficients, 
giving stable and converging solutions for both convection-diffusion problems, and, convection only 
problems. Unfortunately the upwind discretisation however, as stated by Raithby, [99], is only first 
order accurate which makes it prone to numerical diffusion. The diffusive nature o f first order 
schemes means that they cannot be used to produce accurate results with affordable mesh spacing for 
real scientific problems. As seen in Versteeg & Malalasekera, [16], is that first ordered upwind 
methods, are also highly diffusive when the flow is not aligned with the grid lines.
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For discontinuous solutions, the central differencing schemes, which have second order accuracy, 
lead to spurious oscillations, as seen in the work o f Spalding & Patankar, [32]. The use o f upwinding, 
however, ensures that the schemes are very stable, yet, the first order accuracy o f these schemes 
makes them prone to numerical diffusion errors. This can be remedied at a penalty o f complexity by 
either employing hybrid differencing or higher order upwind schemes.

3.3.3 Hybrid Differencing
Spalding [100] developed the hybrid-differencing scheme for finite-difference formulations, which is 
)ased on a combination o f central and upwind differencing schemes. It is applied here using a 

Icombinationof linear shape function interpolation and upwind formulations. The hybrid formulation 
(exploits the beneficial aspects ofboth upwind and central differencing methods.

"he hybrid scheme has become the default differencing scheme in many CFD codes due to its 
(stability and robustness. It gives good approximations to exact solutions when the flow aligns closely 

dth the grid lines and the sources are small. Numerical accuracy is degraded due to the introduction 
>f numerical diffusion whenever flow stream lines are at an angle to grid lines. Solutions can also

suffer from a jump at points where the local Peclet number, \Pe\ = 2 which is due to the suppression 
)fphysical diffusion.

3.3.4 Classical Higher Order Upwind Schemes
jClassical higher order upwind (HOU) schemes involve more neighbour points and reduce the 
[discretisation errors by bringing in a wider stencil with more information. One o f the oldest higher 
>rder schemes is Leonard’s, [101], Quadratic Upwind differencing scheme (QUICK). The drawbacks 

|of QUICK is that it is not suited for unstructured grids as presented by Cross et al, [3], and is 
lerefore not bounded by the boundary values and requires more bandwidth than CDM when solving 

parallel. Versteeg and Malalasekera, [17], argues that in addition to these problems QUICK 
(schemes are plagued by undershoots and overshoots around discontinuities. Advanced second 
>rdered accurate spatial upwind methods have been designed to eliminate this undesirable property
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while at the same time retaining the inherent advantages o f an upwind scheme. These methods are 
termed Total Variation Diminishing (TVD) schemes.

3.4 2nd Ordered Upwind TVD schemes
The feet that central differencing and hybrid schemes, even with artificial viscosity can give 
undershoots and overshoots, has led to the development o f second order upwind schemes that avoid 
these numerical problems [20]. The idea for any higher order upwind scheme, classical or advanced, 
is to produce high resolution methods by modifying upwind methods to cure their deficiencies, \ 
Initially von-Neumann & Richtmyer, [102], introduced the concept o f  artificial viscosity. This was 
also suggested by Lax & Wendroff, [28], who further developed this concept. The idea of 
introducing the artificial viscosity which resembles the physical viscosity, represents a conceptual 
breakthrough towards the development o f high resolution schemes.

Another class o f schemes has been specially formulated to achieve oscillation-free solutions 
otherwise known as Total Variation Diminishing (TVD) schemes. TVD is a property used in the 
discretisation o f the time-dependent fluid dynamic governing equations.

The tendency towards oscillations is counteracted by adding an artificial diffusion fragment. In the 
literature see [103] early schemes based on these ideas were called flux corrected transport schemes. 
However concerns persisted on the computational efficiency and the complexity in implementing 
these schemes, which can be crucial when dealing with a large set o f  equations, such as modelling 
turbulent or non-equilibrium flows. Thus, there still remains a need for maximising accuracy, 
efficiency and robustness for a wide variety o f  problems. The search for the most functional and 
accurate numerical scheme continues to be the research o f Quirk [104].

3.4.1 Classical Shock-Capturing Schemes
The diffusive nature o f the 1st order upwind schemes means that they cannot be used to produce 
accurate results, with affordable mesh spacing, for all problems, and the use o f higher-order schemes 
leads to spurious oscillations in the results when solving shocks. The idea for classical shock 
capturing is to produce high-resolution methods without the deficiencies, i.e. spurious oscillations 
around shocks. To achieve this, von-Neumann & Richtmyer, [102], introduced the concept of 
artificial viscosity, which was further developed by Lax & Wendroff [28]. This idea o f  introducing an 
artificial dissipation, which resembles the physical viscosity, represented a conceptual breakthrough 
in the development o f high resolution schemes. In classical schemes, such numerical dissipation 
terms are linear so that the same amount o f diffusion is applied to all grid points, or contain 
empirically adjustable parameters [86]. As a consequence, classical shock capturing schemes can 
only address problems with smooth or weak shock solutions. This is an important point and needs to 
be kept at the forefront o f  the readers mind. As mentioned by Lyra, [7], most numerical schemes and 
the limiters employed are frequently problem dependent, which makes their use difficult for 
applications for which the analyst has no previous knowledge.

3.4.2 Advanced Shock-Capturing schemes
Advanced shock capturing schemes utilize more elaborate non-linear devices, than classical shock 
capturing. Whether this is artificial viscosity or limiters, it allows an adaptive control o f  the numerical 
dissipation which is added to stabilize the solution. These advanced shock capturing methods can be 
generically classified as advanced artificial viscosity, algebraic or geometric schemes. Methods o f  the 
first type rely on the explicit addition o f an artificial dissipation consisting o f  a blend o f fourth and 
second - order terms, which are activated non-linearly by the use o f a switch that is normally based
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u p o n  pressure [105]. Such schemes have been extensively applied, with significant success, to Trans- 
Sonic flow simulations. Importantly for this research, with certain modifications, initially suggested 
by Turkel [106], success for Supersonic and Hypersonic applications has been reported [107], [108]. 
The division into algebraic and geometrical approaches was originally suggested by Goodman and 
Le-Veque, [110], and refers to the method used to compute the interlace fluxes. In both approaches, 
the incorporation o f concepts from the theory o f characteristics plays a major role. For a theory o f 
characteristics review Hirsch, [18] . When comparing the classical and advanced shock capturing 
approach, the main difference is the implicit inclusion o f the numerical diffusion in the discrete 
equation, resulting in the elimination, or the reduction, in the number o f free parameters needed to be 
tuned. These algebraic schemes foil into a number o f sub categories including flux vector splitting, 
flux difference splitting and a hybrid of the two called flux splitting. The strategy behind these higher 
order upwind schemes i.e. flux vector splitting and flux difference splitting, is splitting the convection 
terms into two parts.

Flux vector splitting has a positive and a negative part to the convective flux depending on the local 
Mach speed. The local Mach speed determines the weighting o f these two parts to the final 
convection flux, which can be seen in van Leer, [111]. Flux difference splitting such as the splitting, 
seen in [95], has been shown to be one o f the most accurate explicit techniques available today. 
However, Liou and Steffen, [112], noted this accuracy, comes at a huge setup cost where 
differentiation o f the Jacobian matrix is required to linearise the implicit scheme to yield a tractable

-  9explicit scheme. The setup cost o f this method, as Quirk [104], describes, requires the order o f n 
operations per grid point for each iteration - where n is the number o f equations - 4 for 2D Euler 
equations. Quirk also adds a catalogue o f situations where the Flux Vector Splitting (FVS) Riemann 
solvers are deficient, serving to increase the awareness o f the CFD community to their limitations. 
Ensuring the positivity property for scalars, which is critical for calculating chemical species or 
rarefaction flows, is not necessarily guaranteed by these upwind schemes. These situations as stated 
by Quirk [104], include the inaccurate viscous layer solutions by the FVS and the so called 
‘‘carbuncle shock” by the Flux Difference Solvers (FDS). Both the Flux Vector Splitting (FVS) and 
Flux Difference Solvers (FDS) schemes address the convection and pressure fluxes but do not treat 
the viscous and thermal conduction terms in an upwind manner [113]. The comprehensive work o f 
Yee, [86], is highly recommended. This presents a large class o f high resolution explicit and implicit 
shock capturing methods with applications to steady state and transient, perfect gases, equilibrium 
real gases and non-equilibrium flows.

These TVD upwind schemes have undoubtedly become the main spatial discretization technique 
idopted in codes targeted at Hypersonic flows [10], [114]—[116]. Yet, dissatisfaction with existing 
schemes exists in many situations, as they may lack robustness, accuracy, or efficiency. Since 
difficulties appear in the simplest of problems, their implications should deserve some serious 
attention insofar as devetoping better alternative methods. TVD upwind methods have been tested, 
developed and validated in ID and then implemented for structured 2D grids. This has allowed the 
progress o f the TVD schemes to go relatively unchecked because they have not been widely applied 
to Hypersonic vehicles with curved surfaces where unstructured grids are for easier to apply.

3.4.3 Characteristics of Hyperbolic Solutions
Before detailing the broad number o f Hypersonic research papers where construction o f high-order 
shock capturing methods is needed, some very useful and required concepts must be introduced. 
These concepts are indeed properties o f the true solution to scalar conservation laws which means 
hat it is reasonable to impose them on the numerical solution as welL Phenomena which are 

'Hyperbolic in character or are governed by systems o f Hyperbolic partial differential equations (such 
as the Euler equations), have limited or no physical dissipation. In such cases the solution is
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characterized by the propagation o f waves with little or no loss in amplitude. Recently the 
construction o f effective numerical schemes for such problems relies on concepts such as 
monotonicity, mo no tonicity preserving methods, Total variation diminishing (TVD), local extremum 
diminishing (LED), total variation bounded (TVB) and essentially non-oscillatory (ENO) methods.

These concepts are based upon no n-oscillatory properties o f the true solution to a scalar conservation i 
law, and it is reasonable that they may be imposed upon the numerical solution to a full system of \ 
equations. Comprehensive definitions o f these concepts maybe found in the research by Hirsch [87]. I 
A converged numerical solution obtained with a conservative high-resolution scheme is expected to 
be physically correct, provided that the first order scheme as mentioned by Sweby [117] is employed 
in its construction and satisfies the entropy condition. It must be noted that none o f these properties 
alone, with the exception of monotonicity, ensures that the entropy condition is satisfied. In addition, 
a general trend which is encountered when the scheme moves from monotone towards no n-oscillatory 
is that higher-order accuracy is achieved at the expense o f introducing a larger stencil o f  points, more i 
complexity, less versatility and less flexibility in the computational implementation. These features, 
connected with memory and CPU requirements, should be carefully considered if a fair comparison is 
to be made between the different classes o f methods [50].

3.5 Recent Hypersonic Research (2004-2010)
Several advanced shock capturing studies have been reviewed including central differencing methods 
with switched artificial viscosity, flux vector splitting and flux difference splitting methods. The order 
of the Hypersonic research papers are in chronological order to give a flavour o f where the research 
community are now focusing their attention:

3.5.1 Zoby and Thompson [118]
In 2004, Zoby and Thompson, conducted a two pronged approach to modelling a Hypersonic CAVs 
configuration, otherwise known as a Waverider. The Euler equations were solved over the CAVs 
configuration using an solver known as Langley Aero thermodynamic Upwind Relaxation Algorithm 
(LAURA) devised by Olynick et al [119]. This was then followed with a boundary layer solver where 
the thermal field was computed using the results o f  LAURA. One o f the purposes o f this PhD project 
is to compute the thermal and flow field in a coupled fashion, rather than employing two separate 
solvers, circumnavigating much complexity in code writing.

3.5.2 Greenshields et al, [120]
Greenshields et al, [120], develops and discusses the implementation o f  a CFD tool for the simulation 
of high speed flows. It comprised a finite volume (FV) discretisation, using a non-staggered central 
scheme for co-located variables prescribed on a mesh o f  polyhedral cells that can possess an arbitrary 
number o f feces. Greenshields et al, [120], describes the scheme in detail, and in particular 
explaining the choice o f variables whose fece interpolation was limited. The solution o f the
momentum and the energy transport equations - in the Navier Stokes equations - used an operator
splitting approach; first o f  all an explicit predictor equation for the convection o f conserved variables 
is solved, and then an implicit corrector equation is utilized for the diffusion o f primitive variables. 
The solver was validated against four sets o f  data; (1) an analytical solution o f  the one dimensional 
shock tube case; (2) a numerical solution o f two dimensional, transient, Supersonic flow over a 
forward feeing step; (3) interferogram density measurements o f a Supersonic jet from a circular 
nozzle; (4) pressure and heat transfer measurements in a Hypersonic flow over a 25-55 biconic. The 
results indicated that the employed central-upwind scheme developed by Kurganov et al, [121], is 
competitive with the best methods published such as piecewise Parabolic methods coined by Collella
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& Woodward , [122], and the Roe solver with van Leer limiting methods [30], and that it is inherently 
simple and well suited to a co-located, polyhedral FV framework.

The KNP method offers clear improvements in accuracy over its predecessor the Kurganov and 
Tadmor method [123]. Greenshields recommended as best practice to interpolate only p, u and T in 
the f+ and f- directions using the van Leer limiter, and derive other face interpolated scalars from 
these 3 primitive variable fields. For more details review Greenshields et al, [120].

3.5.3 Cheuret and Steelant [124]
For this study the Supersonic combustion experimental facility (ITLR) in ESTEC was used to 
investigate the transpiration cooling efficiency o f carbon/carbide (C/C) porous materials. The tested 
sample had a porosity o f 16.1% i.e. s=16.1% and was exposed to Supersonic M=2.1 flow conditions 
at moderate total temperature levels o f 450K for the main flow. The surface temperatures o f the C/C 
material were measured with thermocouples and infrared thermography.

This experimental data was used to validate the user- subroutines within ESA modified commercial 
CFD code CFD-ACE+ for accurately computing the scientific phenomena o f transpiration cooling 
mechanisms within porous materials. These modified sub-routines were based on the work by 
Cheuret et al. [116]. The method followed a strongly coupled approach and accounts also for the 
mass and momentum transport in the porous medium. The discretisation scheme in the user- 
subroutines were adapted locally in order to account for the discontinuities occuring at the interlace. 
For this study Cheuret and Steelant, [124], utilized a Spalarat-Allmaras turbulence model [125] 
applied within the pressure based solver along with a second ordered upwind discretisation technique 
in combination with a min-mod limiter within CFD-ACE+. This commercial code CFD-ACE+ is 
based on the research by [126]. The transport through the porous medium was accepted to account for 
the reduced passage and volume by introducing the porosity value into the mass, momentum and 
energy equation by including customized flux corrections at the inter free handling the discontinuity 
in the flow variables in the interface between the porous and main flow zone.

For this research the CFD results were compared to the ITLR experimental results from the 
isimulating transpiration cooling applied to porous medium composite materials. It was observed 

when analysing the results that when computing the wall temperature o f the porous sample, 
Ideviations are still observed. The deviation appeared due to the insufficient modelling o f the walls 
JpD-thermal boundary conditions in the 2D computations. A full discussion and conclusion o f the 
Jresults can be found in Cheuret and Steelant, [124].

3.5.4 Azevedo and Korzenowski, [10]
The Azevedo and Korzenowski, [10], work compared five different spatial discretisation algorithm’s 

J jp r  cold gas Hypersonic flow simulations. The application of interest is the cold gas flow through a 
typical Hypersonic inlet. The algorithm’s presented were applied to the solution o f Supersonic and 
Hypersonic inlet flows. The inlet entrance conditions were varied from Moo=4 up to Moo=16. Results 
for different entrance Mach numbers and Mesh topologies were discussed in order to assess the 
comparative performance o f the various spatial discretisation schemes. An inviscid formulation was 
used and the fluid was treated as a perfect gas. Although Azevedo and Korzenowski, [10], noted that 

|(hat for actual flight condition simulations, real gas effects would have to be taken into account, flow- 
|fields were simulated using the 2-D Euler equations, discretised in a cell-centered FV procedure on 
/unstructured triangular meshes. The algorithm’s studied included a central difference-type scheme 

i l l 27], and 1st- van Leer [128] and 2nd- order Liou and Shuen [85] flux vector splitting schemes. The 
^methods were then implemented in an edge-based, unstructured grid procedure which allows for 

Jpdaptive mesh refinement based on flow property gradients. This adaptive mesh refinement strategy
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in [10] and seeks to refine the mesh in parallel with the flow field computations. The consideration of 
very high Mach number flows has the objective o f testing the behaviour of the different algorithm’s 
in the presence o f strong shocks.

Details o f  the unstructured grid implementation o f  the algorithm’s were presented together with a 
discussion o f the data structure and o f the adaptive refinement strategy are presented in [10].

3.5.5 Haoui [129]
The aim o f the research work by Haoui [129] was to analyse high temperature flows around an 
axisymmetric blunt body, and taking into account chemical and vibrational non-equilibrium state for 
air mixture species. For this purpose, a FV methodology was employed to determine the Supersonic 
flow parameters around the axi-symmetric blunt body. This allowed the capture o f a shock wave 
before a blunt body which was placed in a Supersonic free stream. The numerical technique uses the 
flux vector splitting o f Van Leer, [111]. Here, adequate time stepping parameters, along with the 
Lewy et al, [24], coefficient and mesh size level were selected to ensure numerical convergence, 
sought with an order o f  1 O'8.

The numerical simulation o f Haoui, around blunt bodies at high temperatures provided satisfactory 
results from a numerical and a physical point of view. With high degree o f accuracy requirements, 
computational convergence was achieved and the physical phenomena considered were visible after 
the detached shock wave and around the blunt body. The choice o f  the kinetic model was interesting. 
The model with 17 reactions proved to be more realistic since it considered all the possible collisions 
between molecules and atoms o f the mixture o f  air. However, it is more complex in computations and 
implementation than the perfect gas modelling.

3.6 Computational Challenge and Strategy
The default pressure correction algorithm in the host code PHYSICA becomes unstable at Hypersonic 
speeds when there are strong non-linearities in the pressure and the velocity fields such as localized 
regions around shocks. The aim o f the project is to embed a flow solver that can capture the 
Hyperbolic character and the strong non-linearities for velocity and pressure, the strong coupling 
between the enthalpy, density and velocity in the boundary layer, and the complex geometries 
involved for aerodynamic Hypersonic vehicles and finally the high storage and CPU time involved in 
practical simulations. A 1% error was sought in the initial benchmarks, therefore there is a 
requirement for the scheme to be both 2nd order accurate and robust enough to handle shocks. The 
dearth o f results concerning Hypersonic flow simulations using unstructured meshes as mentioned in 
research by Lyra & Morgan [130] and Greenshields et al, [120] has stimulated this present work.

3.6.1 The Characteristic Based Split Algorithm
For the reasons stated above it will be somewhat o f a challenge to develop and implement a 2nd 
ordered upwind scheme with unstructured grids. Obviously, applying 2nd ordered upwind schemes to 
unstructured multidimensional problems will incur an overhead in computing the upwind direction 
and the 2nd upwind neighbour or the donor cell. However, it is necessary to utilize unstructured grids 
instead o f structured grids because o f their relative flexibility, potentially using an unlimited number 
of distorted elements detail around the air-skin surface inter fee e that can model the pertinent physics - 
the viscous and thermal interaction - over Hypersonic vehicles.

The Characteristic Based Split (CBS) scheme is a potentially attractive candidate scheme that is 
viewed as utilitarian enough to allow the solution o f  a number o f  flow regimes as seen in the research
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[131]—[134]. The scheme is utilitarian enough to be applied to those flow regimes in this research - 
Hypersonic, Trans-Sonic and Subsonic speeds. The application o f shock capturing viscosities to the 
CBS algorithm has already proven to be a success when solving Supersonic flows, in the research by 
Nithiarasu et al. [134], in the finite element context.

It will prove informative to detail the origins o f the CBS algorithm. As already referred to in section 
2.3 over the last three decades various types o f upwind algorithm’s for fluid dynamics have been 
developed. As Greenshields et al, [120], states that some o f these are implicit methods and are not 
capable o f computations without Riemann solvers, Jacobian evaluation and characteristic 
decomposition. This means that in practice they are more complex than CD methods when applied to 
a polyhedral framework, and computationally more expensive per time step. These 2nd order accurate 
upwind methods are also difficult to employ as a unified approach to both compressible and 
incompressible flow problems. As a fix to the problems, Zienkiewicz and Codina, [47], developed a 
finite element version o f the Lax Wendroff family followed by the original CBS method which was 
introduced as a fully explicit solution procedure by Nithiarasu et al. [134], later extended to a semi 
implicit form for incompressible problems [135]. Research on the applied need for shock capturing 
viscosities for Supersonic flows [134] showed that the scheme is utilitarian enough to be applied to 
the different flow regimes at Hypersonic, Trans-Sonic and Subsonic speeds . The CBS scheme was 
also extended to solve problems in other fields such as porous media flow as seen in Massarotti, 
Nithiarasu, & Zienkiewicz, [136]. This extension to porous media flow is another potential benefit for 
this research considering the novel application is to model porous - transpiration cooled - components 
in a Hypersonic environment.

For the reasons discussed above the decision was made to use the 2nd order spatially accurate CBS 
method, and transform it from a finite element context to a finite volume algorithm. This decision 
was made because it was concluded that the CBS algorithm provided the appropriate versatility and 
spatial accuracy for the final novel application - solving thermo-viscous interactions over 
unstructured grids. The drawback, however, is that central differencing methods tend to be dispersive 
in the proximity o f discontinuities and prone to instability at high convective speeds. Therefore, a 
more robust artificial viscosity term was developed by Jameson et al, [105], and was used in this 
work to replace the previous artificial viscosity terms used in the original Finite Element work o f  
Nithiarasu and Codina, [131], which was deemed wanting in terms o f stability.

3.7 Concluding Remarks
j

The route finally chosen by the author for the target application was a 2 ordered central difference 
method (CDM) with a non-linear artificial viscous term over an unstructured grid for the reasons 
stated in Section 3.6 . In conclusion the CBS method was chosen on the basis o f  the following 
considerations:

1. Relative ease in understanding the numerical method, and does not have to evaluate 
the Jacobian, the local Riemann solution and the upwind direction, as is the case for 
flux vector splitting and flux difference splitting [120].

2. Utilitarian enough to be applied to the different flow regimes Hypersonic, Trans-Sonic
and Subsonic speeds [131].

3. As opposed to the 2nd ordered upwind scheme that often needs 3 grid points to 
determine face values, this is problematic when flow is not aligned with grid lines.

4. Central differencing alternatively only requires 2 grid points, upstream and 
downstream o f the face, meaning that they are easily extendable to utilize unstructured
finite volumes.
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5. The CBS algorithm has already been applied to porous media flows with success, 
[136], an important requirement for this research - see novel problem in Section 1.1.

6. Keeping the same interpolation methods for the convection and diffusion terms was 
thought to be more physically rigorous than using upwind methods on only the 
convection terms.

7. As mentioned by Liou, [137], CDM are superior to upwind methods when applied to 
additional physical models such as turbulence and chemical reactions.

- * fl
A further caveat is the requirement for the code to accurately capture Subsonic incompressible flows
i.e. the Blasius benchmark, see Chapter 7. Incompressible flows are modelled because the industrial 
sponsors were concerned to ensure the solver can work through the flow regimes from Subsonic to 
Trans-Sonic and then to Hypersonic speeds. As mentioned previously using density based schemes 
(DBS) for incompressible problems are problematic, as in this instance the density will be constant 
throughout the flow domain. A fix or relationship is needed to re-write the continuity equation in 
terms of pressure, and this is done according to the standard scheme as seen in Chapter 7. This fix 
with the CBS algorithm has already been applied to incompressible flows with success [47], [96], 
[138]; hence, an important issue for this research is already addressed. Another consideration for the 
solver is the accurate handling ofporous flows, see novelproblem in section 1.1. Fortunately the CBS 
algorithm has also already been applied to porous media flows with success [136].
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4. INVISCID 1-D FLOW SIMULATIONS

4.1 Introduction
The purpose o f this chapter will be to illustrate two key capabilities o f  the CBS algorithm:- first in 
accurately capturing purely Supersonic compressible flow within an enclosed domain, and secondly 
capturing a normal shock wave within the enclosed domain. These capabilities will enable the final 
goal o f  this research which is to create a Hypersonic simulation tooL To demonstrate the above 
capabilities two different flow problems with known analytical solutions have been chosen.

Many problems in engineering and science are governed by conservation laws expressed in terms o f 
Hyperbolic partial differential equations, such as the system o f Euler equations Hirsch [18]. This 
particular class o f partial differential equations presents some properties which must be well 
understood before attempting to develop numerical techniques. The reliability o f  a solution computed 
using a numerical technique is directly related to the capacity of the mathematical model representing 
the physical behaviour o f the problem as mentioned by Hirsch [18]. Assuming that an appropriate 
numerical technique is in hand, there are two requirements which must be fulfilled in order to obtain 
reliable results. The first requirement is to adequately represent the geometry o f the computational 
domain with a discrete grid. This task requires the development o f a suitable mesh generator, as well 
as connecting the discretisation with the steady state solution. This must be done in order to capture 
the changes in parts o f the domain where the physical quantities are changing rapidly, because as 
suggested by Versteeg and Malalasekera, [17] it is inefficient to construct a fine mesh everywhere. 
The second requirement is the design o f a technique that will allow an assessment o f the error in the 
solution for various computational grids. This is known as a grid independent assessment. This grid 
independent assessment is achieved through careful investigation o f benchmarks with known 
analytical data and is carried out on the FV Characteristic Based Split (CBS) algorithm in this 
chapter.

In the following sections, a detailed description is given o f the numerical formulations employed, and 
with special attention to the finite difference approach. From section 4.4 to the end o f section 4.7 the 
1-D inviscid benchmark examples o f this thesis will be introduced. In section 4.5 the CBS algorithm 
is coupled with artificial viscosity terms (AVT) developed by MacCormack [29]. In a CFD solution 
for Supersonic flows, to obtain shock features free from odd even order decoupling, it is essential to 
use some form o f artificial dissipation, an approach favored by [29], [60], [105], [134]. The following 
chapter will also introduce some suggested AVT refinements by Jameson, Schmidt & Turkel’s [105]. 
In section 4.7.2 and section 4.9.1 the performance o f the resulting algorithm, the CBS algorithm 
coupled with Jameson, Schmidt & Turkel’s AVT, is assessed by comparing the numerical solution 
with the analytical results for the de Laval nozzle. It is important to keep in mind throughout this 
chapter that the industrial sponsors considered a CFD solution to be sufficiently accurate if it is 
within 1 % o f the analytical solution. A full review of this analytical solution will also be given in this 
chapter.

4.2 Isentropic Quasi-ID Nozzle Flow
Subsonic air flow within the convergent section o f a nozzle accelerates to purely Supersonic flow 
within the divergent section of the nozzle, and is the first benchmark case presented in this chapter. 
This nozzle is popularly known as the de Laval nozzle and its premise is to accelerate Subsonic gas
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flow at the nozzle inlet to Supersonic speeds at the outlet. This is possible through the asymmetrical 
physical phenomenon which has been highlighted by Anderson, [15], page 285.

When the [de Laval] nozzle’s area decreases in the nozzle’s principal direction the flow speed 
increases, the maximum speed is limited by the minimum throat area. If the speed at the throat attains 
Trans-Sonic speeds the dependent relationship between the nozzle area and flow speed is reversed. 
Hence, at the divergent section [after the throat], as the nozzle area increases again, the flow 
accelerates to Supersonic speeds.

According to Flack, [13], de Laval nozzle’s have been developed, used and optimised in rocket 
engines such as the space shuttle afterburners and speeds o f up to Mach 13 have been recorded at sea 
level The optimal operating mode for de Laval afterburners is when the jet pressure at the outlet 
equals the ambient pressure o f the atmosphere. During shuttle takeoff as the rocket ascends, the 
ambient pressure changes with flight altitude. If the pressure o f the air leaving the jet nozzle is 
approximately 2.5 times lower than the ambient pressure, flow separation occurs and the air leaving 
the jet can mechanically damage the nozzle [13]. If  this flow separation occurs it could cause 
catastrophic results.

Optimisation o f  rocket design is therefore required for safety and efficiency which has resulted in 
extensive numerical work on the subject o f  the de Laval nozzle. If  the air flow is assumed to be 
isentropic (fully reversible), and the flow is assumed to occur along a straight line from the inlet to 
the exit i.e. a quasi 1-dimensional (ID) flow, then the de Laval nozzle is approximated by a closed 
form analytical solution. Although the de Laval nozzle is assumed to be a 1D nozzle in Anderson [15] 
and in this chapter, it is in reality a multidimensional problem. Conversely the 3D flow assumption 
has been made and developed in the research o f Vandromme & Saouab [139], instead o f the ID 
assumption. However this research is trying to construct a simplified engineering model o f the flow 
which will make it easier to solve.

The numerical results from the computed experiment o f the highly compressible air flow within the 
de Laval nozzle generated in this work and reported here, have been compared against the analytical 
results described by Anderson, [15]. This has been done in order to demonstrate that the 
Characteristics Based Split algorithm formulation has the basic capability to handle flows across a 
wide range o f Mach numbers, which is one o f  the key tasks this research has to address. A novel 
comparison between MacCormack’s Predictor-Corrector algorithm and the CBS procedure is also 
presented to show that the CBS algorithm is indeed competitive in terms o f accuracy and efficiency 
when compared to other CFD algorithm’s. The conservation laws for the quasi ID  nozzle are 
presented below. For the full derivation consult Anderson, [15], page 288. This is followed by the 
derivation and application o f the Characteristic Based Split time marching procedure for the quasi-ID 
de Laval nozzle.

4.3 Theoretical Background
The three dimensional Euler equations can be applied to scientific problems where viscous effects 
can be assumed to be negligible. The equations and variables are documented in Section 2.6.The 
assumption made for this benchmark is that flow variables across the nozzle’s cross section are 
uniform. This assumption means that integral forms for the Euler equations are applied to 
infinitesimal slices along the nozzle length, and such problems are called Quasi-1-Dimensional. 
Obviously, in reality, the real flow in the nozzle is three dimensional, but the main purpose o f this 
phase o f  the work is to formulate and then compare geometrically simplified models using the CBS 
approach with analytical solutions to assess the formers’ numerical performance. The following
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equations as presented below are extracted from Anderson's, [15], work on the de Laval nozzle, and 
are suitable for the unsteady quasi-1-Dimensional flows.

Continuity equation:
8(pA) + a(pAV) _ Q ( 4 j)

dt dx
Momentum equation:

dV T/dV 
—  + pV  —  
dt dx

Energy equation:

pCy—  + pVCy —  = ~pR T  
dt dx

p ^ p V ^  = . R L dZ + T d- f \  (4.2)
 ̂ dx dx j

8V „ d (
—  + K —------
dx dx

(4.3)

Where p - density A - Area
Cy- coefficient o f thermal expansion T - Temperature
y - ratio o f coefficient o f expansion R - universal gas constant
V - velocity in principal direction

Anderson, [15], states that for nozzle flow studies, the flow field variables are frequently expressed 
in terms o f non-dimensional variables, where the flow variables are relative to reference values. The 
non-dimensional variables p  / p !  and 7V7L vary between 0 and 1 in the analytical solution to
the de Laval nozzle, which is an aesthetic advantage when presenting the results, allowing the 
modeller to easily display all flow variables on a single plot.

For the sake o f comparison purposes this chapter will follow Anderson's, [15], work on the de Laval 
nozzle and use non-dimensional variables. Where L is the full length o f the nozzle and oo denotes the 
reference values.

T t
T' = ~  x '  = -  t' = —7—

L  L

P ^y, = L
P '  =  ~

P '  =

P C or  oo 0

P

V' non-dimensional velocity in the principal direction in this case the principal direction is the x 
direction. Finally the local area is divided by the throat area A* defining a reference dimensional 
area.

A' = ~  (4.4)
A*

Anderson re-wrote the equations (4.1)-(4.3) in non-dimensionalised form to get a better 
understanding o f the coupling between the changing nozzle area and the primitive variables.

r , £ ( l n A ) _ y , W  ( 4 . 5 )

dx’H dx' dx'
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8 V  Tr,dV ' 1 (dT ' T 'dp '')
 - - V ' --------------------  + ---------- !—
d t ' dx ' y y dx ' p ' dx'd t[

d r
dt'

dT'
- V —  -

dx
rdV  [ v ,8(\nA')
v dx' dx'

(4.6)

(4.7)

Where p ' -Non-dimensional density P ' - Non-dimensional pressure
T '- Non-dimensional temperature V ' - Non-dimensional velocity
t ' -  Non-dimensional time x  ’ - Non-dimensional distance

4.4 Benchmark Examples
In the following section a full review o f the computational procedure aimed at solving the Subsonic 
to Supersonic de Laval nozzle is made, involving the geometrical profile of the nozzle, the nozzle’s 
boundary conditions, the initial conditions required for the computational procedure and finally the 
analytical solution; for a more comprehensive review o f these issues review Anderson [9] and [15].

Due to the practical inpossibility to test the Characteristic Based Split algorithm for every scientific 
benchmark and physical problem, only the most important issues are addressed in this chapter. It 
must be stated that some o f the results which will be presented here were obtained during the early 
stages o f this research and performed before some improvements were introduced later on. In this 
way, they do not represent the best possible results, but rather a typical performance that can be 
expected from this algorithm.
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4.4.1 Transition Subsonic to Supersonic Nozzle: Study

To obtain a base knowledge of Supersonic problems the available literature o f  CFD for aerospace 
applications were reviewed, such as [15], [17], [20], [84]. The Supersonic de Laval nozzle case was 
taken from Anderson’s , [15], study on computational fluid dynamics with applicationsT For this 
research the motivation to study this problem was because the Supersonic case has a closed analytical 
solution that can be used to evaluate the accuracy and stability o f CBS algorithm’s, as well as being 
able to identify the limitations o f the CBS algorithm when used to model Supersonic compressible 
flows. MacCormack's predictor-corrector algorithm which is used to compute the flow field in this 
Supersonic de Laval nozzle case in Anderson [15], uses 31 equally spaced grid points along the 
length o f the nozzle to capture the flow successfully. To compare closely with [15], the CBS 
calculations are also run over 31 equally spaced grid points.

4.4.2 Subsonic to Supersonic Nozzle: Boundary Conditions

The boundary conditions also taken from Anderson [15], and have been set out in Table 4-1, note 
that they are non-dimensional values.

Table 4-1 Boundary conditions Inlet & Outlet.
Inlet Conditions Outlet Conditions

Supersonic 
de Laval 
Nozzle

p ' = l 
T' = 1

( V \ = 2 ( V \ - ( V \

^  “  2 (^  )j\U-l ~{P  )vmax-2

Nmax= total number o f nodes in 
domain

4.4.3 Subsonic to Supersonic Nozzle: Initial Conditions

To start the iterative calculations, we must stipulate initial conditions for p '  , T' and V' for time=0 
as a function x. In theory these can be arbitrary according to Anderson, [15], however, in practice 
there are two reasons why one would want to choose the initial conditions intelligently. Firstly 
efficiency in generating results, the closer the initial conditions are to the final answer, the faster the 
time marching procedure will converge and secondly and most importantly, enhancing the stability o f  
the calculations. If  the initial conditions are too for from the analytical results, the initial psuedo time 
wise gradients will be very large causing instability. From solving the two benchmarks in this chapter 
it has been the author’s experience that the biggest gradients occur at early parts of the pseudo time 
stepping procedure. This can cause the procedure to become unstable and diverge. Therefore, in 
choosing the initial conditions the user is required to use any information or knowledge about the 
flow problem. For this present problem Anderson, [15], asserts that p and T decrease and V increases 
as the flow expands through the divergent section o f the nozzle (after the throat). Hence Anderson, 
[15], chooses initial conditions that behave in the same feshion. For simplicity he assumes linear 
variations o f  these flow variables, as a function o f nozzle length, x. This research will use exactly the 
same functions as seen in [15], because a close comparison between MacCormack [29] Predictor-

61



Corrector algorithm and the CBS procedure is required. This comparison is needed to assess the 
performance the CBS procedure relative to another compressible CFD algorithm 
p '  = 1 - 0 .3 1 4 6 *  (4.8)
T ' =  1 - 0 .2 3 1 4 *  (4.9)
F ' = (0 .1 -1 .09x)7 ’1/2 (4.10)

Where 0 < x  <  3

4.4.4 Subsonic to Supersonic Nozzle: Analytical Solution

P/Po
T /T 0 5.95m

Figure 4:1- Longitudinal view through de Laval nozzle.

The first nozzle modelled has a convergent divergent geometry as seen in Figure 4:1.
y+l

(4.11)A(x) 1 1 + —
r2

A* M  \_ \-y
A* - At - the throat area which induces a sonic speed, 1 m .
A(x) - the area o f the nozzle is a function o f x, the length along the nozzle.

The relationship between area and length along the nozzle, x is given by this relationship.

A(x) = \ + 2 . 2 ( x - l . 5 f  (4.12)
where x- is the distance in meters from the inlet along the length o f  the nozzle.

Equation (4.11) is an important relationship; it is called the area- Mach number relation, and it 
contains a striking result. Turned “inside out”, equation (4.11) gives M=f(A/A*); which means 
mathematically that the Mach value, M, at any location in the duct is a function o f the ratio o f the 
local duct area over the throat area. Anderson [9] mentions that an important feature o f de Laval 
nozzle’s is that, A, must be greater than A*, and the case where A< A* is not possible in an isentropic 
flow. Also, (4.11) interestingly yields two solutions for M at a given A/A*, a Subsonic M value and a 
Supersonic M value. The value o f  M at each location depends on the pressure at the inlet and the exit 
of the nozzle. For the following de Laval nozzle case, Subsonic M values are associated with points 
in the convergent section and Supersonic M are associated with points in the divergent section.
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To determine the Mach number at each discrete grid point, i, this research re-arranged equation (4.11) 
by subtracting both sides by A/A* and solves for M using an implicit iterative approach.

0 =
M : 1 - y

1 — 1/
1 + — - M

y+\ 
r-1 A_

A*
(4.13)

A single root finding method was used to determine the value of M at each station, i , and this root 
finding method was the fzero function taken from the functions section in MATLAB R2008a Inc, 
[140]. The fzero command algorithm, was developed by T. Dekker, and can be found in the work by 
Brent [141]. It uses a combination o f bisection, secant, and inverse quadratic interpolation methods.

The flow properties through the nozzle are a function o f the local area ratio A/A* and are obtained 
using the following sequential steps:

1)

2)

For a specified station location, x, we can calculate the local area, A/A*=f(x) from (4.12). 
From this value we can solve (4.13) using the fzero function in MATLAB R2008a Inc, [140]. 
This will yield two values, a Supersonic Mach value and a Subsonic Mach value. The 
Subsonic Mach corresponds with the convergent section o f the nozzle X<1.5m The 
Supersonic Mach corresponds to the divergent section. The Mach distribution through the 
complete nozzle is thus obtained and is thus sketched in Figure 4:2.
Once the Mach number distribution is known, then the corresponding variation o f pressure, 
density and temperature can be obtained from Anderson, [15]. The distribution o f P/Poo are 
also sketched in Figure 4:2.

\ 1 + 7 1 M 2
p

CO I 2
_p_ = f l  + / _ 1 M 2I 2
L J 1 + r _ 1 M 2l2 J

—r/(r—i)

- y K y - i)

(4.14)

(4.15)

(4.16)



   >  00
A * 4  = l + 2.2(x —1.5)
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At =  A

M M >  1

.x

y — 1 
1 +  -̂ M

/  + 1M

A d
0.528

P  /  pe  /  oo

Figure 42-Diagram ofde Laval nozzle as used in rocket engines to create exhaust gas 
Supersonic velocity from Beychok [142] and the observable relationship between the Mach

speed and non-dimensional pressure.

In Figure 4:2 it is possible to observe that the Mach number monotonically increases from near 0 at 
the inlet to M=1 at the throat and to the Supersonic value Me at the exit. The non-dimensional 
pressure, however, decreases from 1 at the inlet to 0.528Poo at the throat and to the lower value of 
Pe/Poo at the exit. Again we re-emphasize that the distribution o f M and hence, P/Poo through the nozzle 
depends on the local area ratio. This is the key to the analysis o f  isentropic, quasi-one dimensional 
nozzle flows as mentioned by Anderson [9].

Table 4-2 Area for the Supersonic Nozzle cases.
A r e a A n a l y t i c a l  S o lu t io n

S u p e r s o n ic  

d e  L a v a l  

n o z z l e

4 x )  =  l  +  2 . 2 ( x - 1 . 5 ) 2

W h e r e  0  ^  x  <  3

X + 1

\ \  2  ( P - r M A P
A *  M 2 l l - r K  2  J  J  

W h e r e  A *  is  1 m  , th e  a re a  o f  th e  th ro a t

As already mentioned in chapter 2 the major challenge when solving the Euler equations for 
Supersonic compressible speeds is capturing the non-linearities and the Hyperbolic character o f the 
equations. What follows are not the best possible results, but what can be typically expected from the 
algorithm. MacCormack’s artificial viscous term, S, as seen in Anderson [15], was brought into the 
discretised solution to damp out the decoupling, enabling a stable solution for this problem.
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4.5 Non-Conservation Equations: The FD/FV CBS 
[Approach
I The next step in constructing an approximation to the problem is to define the solution domain or the 
length o f the nozzle. Anderson [15], assumed that the ID computational domain as seen in Figure 

14:3 is vertically positioned in the center o f the throat. 13 nodes are used in Figure 4:3 for presentation 
reasons, however, in the actual problem 31 nodes, equidistant apart and spanning the length o f the 
nozzle, are used to discretise the domain. The first point is 1 and the last point is Nmax; in this case 
Nmax=31. The 31 nodes can be broken up into two groups: the internal nodes and the two boundary 

] nodes.

As seen in Figure 4:3 point i is simply an arbitrary grid point, with points i-1 and i+1 denoting its 
adjacent points. The CBS technique used in this thesis is an explicit method.

Reservoir

i+1

Figure 4:3 Grid point distribution along the nozzle.

The sequential computational procedure for the CBS finite difference algorithm can be done in a 
number o f ways but for this research the following general procedure was agreed upon after 
numerical experimentation.

Each step described below is applied to all the interior nodes in a sweep o f the grid. After this sweep 
the boundary conditions as seen in step 6 are computed. Then the sequential computational iterative 
procedure is repeated by going to step 1. The CBS method was imp fomented in MATLAB R2008a 
and the simulations run within a dual core laptop with 2046MB of RAM to solve the non­
conservation system o f equations, where the geometry o f  the nozzle and the boundary conditions are 
given below for the Supersonic nozzle.

problem is usually < 0.5 

At'" =C —

1) Calculate the local time step. Where C is the Courant number and depending on the
r v tv \U 1 ^ ~ _  *   11 ^ r\ r

^ 7 + K ,
Where the superscript n equals the current iterative level

(4.17)
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~2) Compute the intermediate momentum equation sweeping through the interior nodes from
F=2,3,4.”*5 Nmax -1

( dV *\n

A

AC+—L( v Y — (v'Y
2  v )l d x ' v J t { d x '  ) ,

V

J d V ' (4.18)

3) Correct the momentum values using the corrected momentum equation sweeping through 
the interior nodes from i=2,3,4...., N^x -1

( r ) " +l= (F '* )" -A

d T 'Y
+

V 8 x ' ) t p *

f d £ ' m 
\ d x  j .

+•
At d

— L y w J— 
2 dx'

( d r  Y T'Udp 
+  '

( V

{ d x ' l  p ” v & 'y

(4.19)

Where the superscript n+1 equals the next iterative level

4) Calculate the density from the continuity equation using the momentum values from step 
3) sweeping through the interior nodes from i=2,3,4...., Nmx -1

p'”+1 =p'11 ' 
p i

v dx'

\n j r in + l+ P 1 V
J i

dx' ■J, dx' A )
(4.20)

5) C o m p u te  th e  te m p e ra tu re  f ro m  sw eep in g  th ro u g h  i=2,3,4...., Nmax-1

^ i ym ^ Iym
2 * dx' '  1

m
i 

\

( ̂ T\\n

' d V ' Y  | v J d Q n A ' ) \  
d x ) ,  ' {  3x' I

dr
\  f o  J

ZaT/iV
+ ( 1 - 7 ) 7 -

dV_
V d x ' j  ,

+ V'
aQni1)

J i

(4.21)

6) Calculate the non-dimensional pressure and speed of sound at the interior nodes from 
i=2,3,4....,Nmax-l

{ c f - h f

7) Compute the outlet values using linear extrapolation.

( p ' t  = 2  ( p')7-,-(p' )iVmax iVmax

( V ' t  = 2 ( n : '- ,- ( nyvmax iVmax

f r r  = 2 (t ');+i
iVmax max 1 ----

Extrapolate the velocity at the inlet and fix density and temperature.
p' = 1
T '  =  1

8) Check convergence to steady state values by sensing whether the relative error is less 
than the agreed tolerance of 10'5 or the number of iteration/sweeps is below the maximum

.n+ 1 n+1

AU-2
n+1

N  -2Jvmax ^

n+1

2
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iteration/sweeps, IMax, stipulated by the user, this value was set initially to 95,000 
iterations.

{ p r - p " )

At" x (c2)”

N1Y max . _  ._______ __
-  V  v 1 >Perror ( / 7 \n\ (4.22)i=l

9) If convergence has been achieved exit the procedure and display results otherwise begin 
computational sweep by going back to step 1.

Quotients

Linear interpolation in terms of the neighbouring nodal values is adopted for the lace 
fluxes. For (4.18),(4.21) and (4.20) the derivative terms can be calculated by substitution 
of the following discrete terms.
Let

d V  K n - K n  1 r  _ K + K )  . r  _ W + K )—  =     where vM/2 -  “ and kM/2 -   ------
ox i Ax 2 2

Meaning

. s v n v Z j - m (4.23)
dx i 2Ax

The higher order derivatives in (4.18)-(4.21) are calculated in a similar manner where 
Let

a f a v r  ( d v / a x ' ^ - d v / a x , ^
dx \  dx ) j L Ax

And

w y  ( y M - r , r
/ + 1/2dx J 

Meaning
Ax

and d V X ( V  - Vy i y /-I
dx )j_y2 K Ax-

d ' d V ' n
f  VM — 2Vj + vt_x T

dx V dx J I Ax2 J

Calculation of Local Time Step
The use o f implicit approaches to represent the time discretisation might be attractive, but due to the 
scale o f problems normally faced in CFD, iterative approaches are preferred. These iterative 
approaches will be o f particular importance when the extension o f these methods to the solution o f 
large scale 3D problems is envisaged.

The governing system o f equations (4.1)- (4.3) are Hyperbolic with time, and the magnitude o f At 
that can be used in the above equations can be obtained from the simple stability analysis for linear 
problems. The simple stability analysis o f a linear Hyperbolic equation carried out by Lewy, Courant, 
& Friedrichs (1928) for an explicit numerical solution gives the result that C<1. Yet, the present 
compressible Supersonic flow is governed by nonlinear partial differential equations. In this case the 
exact stability criterion for a linear equation can only be viewed as general guidance for the present



nonlinear problem, but as indicated by Anderson [15], it turns out to be a reasonable guide to 
nonlinear problems.

G eneral Remarks

1) Contrary to the advice o f researchers Nithiarasu and Codina, [131] splitting the momentum 
equation into two parts is not required and the CBS algorithm appears to derive its stability 
from both the higher order temporal terms and the local time stepping for the following 
benchmarks in this chapter.

2) For stable pressure at the nozzle exit the mass flow, m ' , at each node should remain constant 
throughout the domain. For the following benchmarks the m' is plotted along the length o f the 
nozzle and compared to the analytical result, the m' at the throat.

(m')"=(p'V' A ')” (4.24)
3) MacCormack’s 2nd ordered artificial viscous term (AVT) was also coupled with the CBS 

algorithm where it was used as an explicit stabilizing source term. The stabilization o f the 
CBS algorithm by the addition o f this numerical source term is necessary to extend the 
stability region o f the scheme. Unreasonable results with respect to the analytical solution and 
even divergence is encountered when the CBS algorithm is not coupled with any artificial 
viscosity terms.

4.5.1 MacCormack and Jameson, Schmidt and Turkel

The following section displays the numerical results for the nozzle referred to in Table 4-2. The 
stabilization o f  the central differencing CBS scheme is enhanced by the adoption o f artificial 
viscosity terms (AVT). One o f the AVT is taken from MacCormack [29] scheme and the other one is 
taken from Jameson, Schmidt & Turkel’s [105]. A comparison is made relative to the analytical 
solution in order to assess the most accurate and stable AVT term for coupling with CBS algorithm 
The experience proved to be useful when extending the algorithm to the multidimensional 
benchmarks that will follow in the next chapters, and which will also give an indication that the CBS 
algorithm can capture the final novel application - modelling transpiration cooling through porous 
media in Hypersonic flows.

4.5.2 MacCormack’s Artificial Viscosity Term

The following technical discussion on MacCormack’s artificial viscosity term (AVT) should not be 
confused with MacCormack [29] Predictor-Corrector iterative algorithm which is not used in this 
research. By augmenting the CBS steps with MacCormack’s AVT this research is trying to suppress 
decoupling which can lead to divergence. Hence, the explicit CBS continuity equation (4.20) 
becomes.

p ' f = p " - A t ' P '"
ev_
dx'

*Yl !«+1

Ji

a ( ln ^ ’)

dx'
+ V'r:i«+i

Ji

dp_
dx'

• V

//
- ( 5 , ) ’ (4.25)

This form o f artificial viscosity is taken from Anderson [15], and is equivalent to adding a 4th 
ordered differential term. Here,

( u : = ( P % - 2 ( P ' X +( P ' t
(4.26)
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where Cx is the user defined weighting parameter. The greater this Cx value the more dissipation is 
applied to areas o f the domain that contain numerical gradients. This Cx term appears in the three

expressions for j ,(^2) and (S3) . The intermediate momentum equation just like the continuity

equation above has an artificial viscous term added, with the same rationale in mind to stabilize the 
quantities solved.

dV_
dx'

i\"

Ji

+< (fTa L t
2 '  d x '{K

n\

J i

~ (S 2)" (4.27)

where (Nj) ^  calculated in a similar fashion to (4.26) where the p terms in the {} brackets are 

changed to V terms:

(*r-
C , ( p ' ) : , - 2 ( p ’) ; + ( p t , { (v 'Y  ? ( v 'Y  + ( v 'Y  \

(p ’);+1+ 2 (p ’) ;+ ( p ') i ,
)i+1 )> + ( /  ),_)} (4.28)

where the explicit CBS energy equation is re-written from (4.21) to

^ T +(1_r)r« V :M
d x ) ,  ' { d x ) ,  - I  dx' ),

2 1 dx'\  1 I dx

\V
+a- m

'dV'X 
—  + V '  
dx' I

a(liM’)
dx'

(4.29)

where the artificial term is calculated in a similar fashion to (4.26) and (4.28)

( * r -
c. ( P ’l ,  - 2 ( F ) ; + ( p T J

(4.30)

Cx is the user defined weighting parameter. A recommended value by Anderson [15], for this 
parameter is 0.2 although a certain level o f experimentation is needed on a case by case basis, for 
optimizing the accuracy o f and the speed o f generating a numerical solution.

4.6 Benchmark Example 1: Subsonic to Supersonic 
Nozzle Results
The CBS method was implemented into the MATLAB R2008a program and the simulations run
within a dual core laptop with 2046MB of RAM to solve the non-conservation variables, p ' , T ' and
y \  The CBS finite difference code solves the primitive variables along the grid points as seen in 
Figure 4:1. The relative error for density, equation (4.22), is an indication o f how the numerical 
solution progresses through time and is the summation o f the errors at every node. Similar equations
have been used to obtain the relative error for F'and T \  where p '  in (4.22) is replaced by V' or 
T' respectively. These three errors V\  T' and p '  have been plotted in Figure 4:4 against the 
number o f iterations. The solution has not dropped to the prescribed tolerance, which is most likely 
due to how the artificial viscosity introduces numerical dissipation (errors) that damp out numerical 
oscillations in the solution.
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Convergence History

 Density
-T e m p e ra tu re  
 Veiocity

o 10

o>

Number of iterations .4x 10
Figure 4:4-Convergence History for density, temperature and velocity for the Characteristic Based 

Split scheme applied to the non-conservation equations.

The number o f  iterations needed for a relative error o f 10' is approximately 95,000. At this point the 
steady state solution has been achieved for all practical purposes and the calculation can be stopped. 
This termination o f the calculation can be done automatically in the code by a test calculation, 
sensing when the changes in the primitive variables between each iteration becomes smaller than the 
prescribed tolerance. As recommended by Lyra, [7], the 2nd order numerical viscosity term damps 2nd 
ordered modes, helping the stability behaviour o f the algorithm, but it is not enough to damp the non­
linear effects which introduce errors. Ultimately the residual cannot always drop beyond a certain 
level as seen in Figure 4:4. It must be mentioned that as well as the AVT the convergence behaviour 
was also found to depend strongly on the value o f Courant number, C.

During comparative calculations o f the simulations, it became apparent that the CBS calculation is 
highly dependent on the extra temporal terms in the intermediate momentum and enthalpy equations. 
Appropriate time relaxation was employed to minimize the time derivatives in the early stages o f the 
computations by employing the Courant number C o f 0.095 and a AVT dissipation weighting as seen 
in (4.26), (4.28) and (4.30) o fC x=0.1.

As mentioned the relative errors o f  density, velocity and temperature o f the order o f 10'3 as calculated 
by equation (4.22), is an adequate relative error for CFD, and because the relative errors prove to be a 
valued indicator o f whether a CFD solution has fallen to the steady state solution, it is possible to say 
that the solution has converged to a steady state.
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CBS Solution to the Isentropic Sub-Super Sonic De Laval Nozzle
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Figure 4:5 - Physical properties o f air in a sub to Supersonic de Laval nozzle, comparing the 
CBS numerical results solving the non-conservation equations (full line-) with the analytical

solution (0).

As mentioned earlier, CFD solutions should display two properties o f a discretisation technique; 
efficiency in generating a solution and accuracy o f the solution in relation to the analytical solution. 
The theoretical results for p ' , T ' and P'  as calculated by (4.14)-(4.16) are shown in Figure 4:5 and
are shown by the diamond shaped markers. The CBS solution being the full lines, the p, P and T are 
normalized so they can be displayed on the same plot. The vertical axis is labeled with “non- 
dimensional scalar” and the horizontal axis label with the “x(m)” length along the nozzle from the 
inlet in meters. Figure 4:5 shows that the p ' , T ' and P'  solution as calculated by the CBS algorithm,
and is not in agreement with the analytical solution even though the algorithm has converged to 
relative density errors o f the order o f 10'5. Particularly inadequate along the divergent section 
(X>1.5m) and at the outlet (X=3m) o f the nozzle are the profiles for p \  T'  and P'  are they all over­
estimated.

71



CBS Solution to the Isentropic Sub-Super Sonic De Laval Nozzle
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Figure 4:6- Physical properties o f  air in a sub to Supersonic de Laval nozzle, comparing the CBS 
numerical results solving the non-conservation equations (full line-) with the analytical solution (0).

The Mach speed, normalized velocity and normalized mass flow as calculated by the CBS algorithm 
(4.25)-(4.22) are displayed in Figure 4:6. As presented throughout this chapter the theoretical results 
are given by the diamond shapes and the full lines are the CBS steady state solution. Like Figure 4:5 
shows that the solution as calculated by the CBS algorithm, is not in agreement with the analytical 
solution even though the solution has converged to relative errors o f the order o f  10'5. Particularly 
inadequate are the estimates o f the velocity and Mach number after the throat where they are both 
underestimated.

4.6.1 Accuracy with Respect to the Analytical Solution
As mentioned previously CFD solutions should display accuracy with respect to the analytical 
solution. An important parameter used to gauge the accuracy o f  the final converged solution with 
respect to the analytical solution is the absolute error. The industrial sponsors typically require a 
numerical solution to be within 1% o f the analytical solution at each grid point. As calculated below:

V;
I t rS tea d y ,s t _  y  
\ i  i, analytical

V,
xlOO (4.31)

i .analytical

„analytical is the analytical value o f velocity at node i and V.Steady,St js the velocity at node i for 

a converged, numerical steady state CBS solution.

i,abserror

Where ^
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Vel % error with respect to the analytical solution for varying mesh densities
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Figure 4:7 -  Percentage error between the analytical solution and the CBS solution when 
solving the non-conservation equations coupled with MacCormack’s AVT with Cx of 0.1

Figure 4:7 shows that the CBS solution along with a Cx value o f 0.1 is not accurate enough at 
capturing the property fields. The percentage error depicted in Figure 4:7 shows that the absolute error 
is some way above the specified 1%. The percentage error at the inlet is above 5%, an unreasonable 
error, reducing to approx 1% at the throat (X=1.5m) and then increasing again to approx 5 % at the 
nozzle outlet.

To decide on the amount o f artificial viscosity that should be used to remedy this problem with 
accuracy, four more computational runs were conducted with varying amounts o f artificial viscosity. 
For four different values o f Cx specifically Cx = {0.1, 0.2, 0.3, 0.4} the percentage error between the 
analytical solution and the converged CBS numerical solution was analysed.
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Percentage Error between Analytical solution and the CBS approach

C =0.1X
—e—C =0.2X

e C =0.3X
o C =0.4X

Figure 4 :8 -  Percentage error between the analytical solution and the Characteristic Based 
Split scheme applied to the non-conservation equations where Cx of 0.1.

To gauge the accuracy o f  the CBS approach with respect to the analytical solution o f the velocity 
field at each o f  the Cx values the following average absolute error was calculated and compared for each of 
the converged solutions.

v
l N.

abserror ' i,abserrorIX (4.32)
max i

Where N max=total number o f nodes
Vi,abserr=error between the analytical velocity and the CBS solution’s velocity

Table 4-3 below summarizes the effect o f  increasing the value o f Cx inequations (4.26), (4.28) and 
(4.30). Stated in words the value o f Cx=0.4 gives the lowest average percentage error and when 
Cx=0.1 the final solution gives the highest average percentage error o f  the four scenarios investigated.

Table 4-3-Table showing the effect o fC x in (4.26), (4.28) and (4.30) on the average absolute error in 
(4.32).

Number o f 
Sweeps

c x Average absolute error 
In equation (4.32)

95600 0.1 9.340%
95600 0.2 3.586%
95600 0.3 2.651%
95600 0.4 1.876%
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To summarize the average percentage error decreases as the value o f Cx is increased for this nozzle 
benchmark. This trend is because increasing Cx damps out those numerical errors that make the CBS 
algorithm differ from the analytical solution.

I n l e t  Boundary Condition Error
Anderson, [15], argues that there is a built in error at the inlet that the modeller has to acquiesce to 
when numerically modelling this problem. As seen in Table 4-4, the first grid point where x=0 and 
the A=5.95m , the primary assumption is density, pressure and temperature are at reference values o£ 
p/ poo=\,  T /T^=\ and P / =1. This is only mathematically possible if M=0 and V=0 at this
inlet node, a counter-intuitive situation since in reality, to allow a finite mass flow through the nozzle 
a finite Mach number must exist at x=0. Thus the steady state CBS numerical value for v/Vx at the
inlet node gives a percentage error o f 1.54%, as can be seen in Table 4-4. This error has been ignored 
by Anderson [15], and for comparison purposes will be ignored in this research.

Table 4-4—Density ratio and velocity ratio distribution through the nozzle for a Cx value o f 0.4.

x/L A/A*
CBS

p/p»
Analytical

P / P X
% e r r

p ip 00
CBS
V!VX

Analytical
V/Vm

%  e r r

VIVCO
0.000 5 .9 5 0 1.000 0 .9 9 5 0 .5 0 3 0 .0 9 8 0 .0 9 6 1 .5 4 6

0 .1 0 0 5 .3 1 2 1 .0 0 6 0 .9 9 4 1 .2 4 5 0 .1 1 0 0 .1 1 6 5 .2 3 3

0 .2 0 0 4 .7 1 8 1 .0 0 3 0 .9 9 2 1 .1 4 5 0 .1 2 4 0 .1 3 5 8 .9 1 0

0 .3 0 0 4 .1 6 8 0 .9 9 3 0 .9 9 0 0 .2 7 7 0 .1 4 0 0 .1 4 4 3 .2 9 9

0 .4 0 0 3 .6 6 2 0 .9 8 1 0 .9 8 7 0 .6 0 1 0 .1 6 0 0 .1 5 3 4 .0 2 1

0 .5 0 0 3 .2 0 0 0 .9 8 1 0 .9 8 3 0 .1 7 6 0 .1 8 4 0 .1 8 3 0 .9 3 3

0 .6 0 0 2 .7 8 2 0 .9 9 1 0 .9 7 8 1 .3 7 8 0 .2 1 3 0 .2 2 8 6 .8 8 7

0 .7 0 0 2 .4 0 8 0 .9 8 6 0 .9 7 0 1 .6 7 2 0 .2 4 7 0 .2 6 7 8 .0 5 3

0 .8 0 0 2 .0 7 8 0 .9 5 8 0 .9 5 8 0 .0 2 7 0 .2 9 1 0 .2 9 4 1 .0 2 9

0 .9 0 0 1 .7 9 2 0 .9 3 0 0 .9 4 2 1 .2 3 9 0 .3 4 3 0 .3 3 4 2 .6 9 4

1.000 1 .5 5 0 0 .9 1 9 0 .9 2 0 0 .1 1 0 0 .4 0 6 0 .4 0 8 0 .4 9 9

1 .100 1 .3 5 2 0 .9 0 2 0 .8 8 8 1 .5 4 4 0 .4 8 2 0 .5 0 1 3 .8 0 0

1 .200 1 .1 9 8 0 .8 5 6 0 .8 4 4 1 .4 1 1 0 .5 7 2 0 .5 8 9 3 .0 0 2

1 .3 0 0 1 .0 8 8 0 .7 8 6 0 .7 8 7 0 .1 4 9 0 .6 7 6 0 .6 7 8 0 .3 8 9

1 .400 1 .0 2 2 0 .7 1 0 0 .7 1 6 0 .8 5 1 0 .7 9 0 0 .7 8 6 0 .6 1 7

1 .500 1.000 0 .6 3 3 0 .6 3 4 0 .1 6 4 0 .9 1 3 0 .9 1 3 0 .0 0 1

1 .600 1 .0 2 2 0 .5 5 0 0 .5 4 7 0 .6 0 1 1 .0 3 6 1 .0 4 4 0 .7 7 6

1 .700 1 .0 8 8 0 .4 6 5 0 .4 6 1 0 .8 3 5 1 .1 5 4 1 .1 6 1 0 .5 9 3

1 .800 1 .1 9 8 0 .3 8 5 0 .3 8 2 0 .8 4 2 1 .2 6 3 1 .2 6 4 0 .0 2 2

1 .900 1 .3 5 2 0 .3 1 7 0 .3 1 5 0 .7 0 0 1 .3 6 1 1 .3 5 5 0 .4 2 4

2 .0 0 0 1 .5 5 0 0 .2 6 2 0 .2 5 8 1 .5 1 6 1 .4 4 6 1 .4 3 8 0 .5 6 1

2 .1 0 0 1 .7 9 2 0 .2 1 8 0 .2 1 3 2 .1 4 7 1 .5 1 9 1 .5 1 2 0 .4 9 5

2 .2 0 0 2 .0 7 8 0 .1 8 2 0 .1 7 6 3 .2 6 5 1 .5 8 3 1 .5 7 5 0 .4 5 0

2 .3 0 0 2 .4 0 8 0 .1 5 3 0 .1 4 7 3 .8 0 2 1 .6 3 7 1 .6 2 9 0 .4 6 4

2 .4 0 0 2 .7 8 2 0 .1 2 9 0 .1 2 4 3 .8 9 8 1 .6 8 3 1 .6 7 4 0 .5 3 1

2 .5 0 0 3 .2 0 0 0 .1 1 0 0 .1 0 5 4 .4 4 6 1 .7 2 4 1 .7 1 4 0 .5 7 0

2 .6 0 0 3 .6 6 2 0 .0 9 4 0 .0 9 0 4 .5 5 6 1 .7 5 9 1 .7 4 9 0 .5 6 4

2 .7 0 0 4 .1 6 8 0 .0 8 2 0 .0 7 8 4 .7 1 7 1 .7 8 9 1 .7 8 0 0 .4 9 8

2 .8 0 0 4 .7 1 8 0 .0 7 1 0 .0 6 8 4 .4 5 2 1 .8 1 6 1 .8 0 8 0 .4 5 4

2 .9 0 0 5 .3 1 2 0 .0 6 3 0 .0 5 9 6 .6 4 4 1 .8 4 0 1 .8 3 1 0 .4 8 4

3 .0 0 0 5 .9 5 0 0 .0 5 5 0 .0 5 2 5 .4 1 0 1 .8 6 1 1 .8 5 4 0 .3 7 3
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4.6.2 MacCormack’s AVT: Results - Cx=0.4
The following results were run using a Courant number o f  0.095 and a Cx value o f 0.4. To decide on 
the amount o f  artificial viscosity that should be used to remedy this problem with accuracy. Four 
different values o f Cx specifically Cx = {0.1, 0.2, 0.3, 0.4} were run where the percentage error 
between the analytical solution and the converged CBS numerical solution was analysed, leading to 
the conclusion that the closest approximation to the analytical solution occured when C x=0.4. The 
resultant figures are displayed below.

Convergence History

—  Density
— Temperature
^ —Velocity

LU 10 o>

Number of iterations 4
x 10

Figure 4:9-Convergence History for density, temperature and velocity for the CBS scheme 
when solving the non-conservation equations for Cx=0.4.

The number o f  sweeps needed to obtain relative error o f  density 10"2 is approximately 5,000. After 
another 90,000 sweeps the relative error has not increased or decreased in magnitude. At this point 
the steady state solution has been achieved and the calculation can be stopped. Increasing the value of 
Cxfrom 0.1 to 0.4 means that the final relative errors for Cx=0.4 cannot reduce to those relative values 
forC x=0.1, which is 10'3.
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CBS Solution to the Isentropic Sub-Super Sonic De Laval Nozzle
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F igure 4:10 -  T \  P' and p' of air in a sub to Supersonic de Laval nozzle, comparing the CBS 
numerical results when solving the non-conservation equations (full line-) with the analytical solution

(0) for Cx=0.4.

The numerical profile for T \  P' and p' using Cx=0.4, is superior in terms o f accuracy with respect 
to the analytical solution when compared with the case o f Cx =0.1 as seen in Figure 4:5. Oscillations 
at the inlet are present in the Cx =0.4 case but have been greatly reduced. The major result though is 
that after approximately lm  from the inlet the numerical solution shows excellent agreement with the 
analytical solution.



CBS Solution to the Isentropic Sub-Super Sonic De Laval Nozzle
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Figure 4:11 -  V 1, M and m ' of air in a sub to Supersonic de Laval nozzle, comparing the CBS 
numerical results when solving the non-conservation equations (full line-) with the analytical solution

(0).

When compared with the case o f Cx =0.1 seen in Figure 4:6 the converged numerical profile for V \  
M and m' for Cx=0.4 as seen Figure 4:11, is superior in terms o f accuracy. As seen in Figure 4:11 
oscillations for m' at the inlet are present in this case of Cx =0.4, but have been greatly reduced when 
compared to the Cx =0.1 case - Figure 4:6. The major result though is that after approximately lmto 
the nozzle exit the numerical solution shows excellent agreement with the analytical solution.



Normalized Mass Flow Rate for Cx=0.4 against the anlytical solution
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Figure 4:12 -  m' of air in a sub to Supersonic de Laval nozzle, comparing the CBS numerical results 
when solving the non-conservation equations (full line-) with the analytical solution (0).

The m' flow as computed from the CBS non-conservation form o f the Euler equations is observed as 
the black line in Figure 4:12. The analytical solution is represented by the red line. It seems that 
MacCormack’s artificial viscous term reacts to small scale oscillations and thus introduces dissipation 
that leads to source terms for mass flow. MacCormack’s 2nd order numerical viscosity damps 4th 
order modes helping the stability o f the algorithm, but it is not always enough to damp the higher 
order modes introduced by the limiting procedure.

4.7 Jameson, Schmidt & Turkel’s AVT:
Background
The next step in this case study is to employ Jameson, Schmidt & Turkel’s artificial viscosity term 
(AVT) in the place o f MacCormack’s AVT in an attempt to drive down the absolute error as seen in 
Figure 4:8 to less than 1%. This is done because MacCormack’s AVT is Ax2 ordered even when no 
changes o f the flow variables occur. However according to Jameson and Mavriplis [60], the Jameson, 
Schmidt and Turkel’s AVT is of the order Ax4 in smooth regions o f the flow, preserving the second 
order accuracy o f the numerical scheme employed i.e. the CBS algorithm

4.7.1 Numerical Derivation

The energy equation, the intermediate momentum equation and the continuity equation are all 
coupled with an artificial viscous term (AVT) for the continuity equation.



P T ' = P " - A t Pi P i  idx' Ji dx' )
+ V i«+i ' d p 1̂  

dx'
■(D)" (4.33)

The 2nd ordered artificial dissipation term is activated in local regions where gradients are changing 
rapidly such as shock waves and the 4th ordered term is activated where flow possesses relatively 
smooth property fields. This term, Dj , above is calculated by splitting the 2nd and 4th ordered 
derivatives into two 1st order and 3rd ordered derivatives, on each o f the cell feces, ie. the i+1/2 fece 
and the i-1/2 fece, respectively.
D n = D n -  D nM M+l/2 i—V 2

Let

A+l/2 -  (e/+i72 (P!+1 Pi ) ~  SM/2 (p"+2 ~ 3p"+1 + ̂ p ” -  p ”_2 ) j
, ( 2 )where €j+,/2 is called the 2n order weighting value. This is defined by 

s)H2 = k m max(viyvM )

(4.34)

(4.35)

where Vf is the pressure sensor “switch” and is always positive providing the domain is not in a 
vacuum. These are defined by

V; =

And

P' - I P '  + P'1 i+i 46r  i ^ r  z-i

P \i+i + 2 P' + r\->
(4.36)

(4.37)£m /2 ~ max(0, (k(4) -  £%y2))

If Sf+i/2 is greater than k<4> then the s)J/2 value is zero. In inviscid regions o f the flow, the term, , 
should damps out higher order oscillations. The weighting parameters recommended by Jameson, 
Schmidt & Turkel’s [105] for Supersonic applications are:

k [ 1 )  =0 . 2 5 ,  k(A) =0 . 0 0 4

However a parametric study should be carried out, to empirically test, the values that best capture the 
case investigated, relative to the analytical solution. The full form o f the artificial viscosity at node i

may then be expressed as [105]. So for the CBS continuity equation D" becomes.

- J l ( p 7 - p 7 - l) + e ! - l ( p " - 3 p ' ! + 3 p l l- p l 2 )

The dissipative terms for the remaining equations are obtained by replacing p '  by F ’ and T  

respectively. For example D” for the intermediate momentum equation becomes:

's }X  ( n . -  V 7 ) - e X  (v '” 2-3(V ')”+1 +3(V')" -  V*,)

(V7 -  V’"_,) + s X  (V"4,- 3 (V')" + 3 -  V'"2)

Note: The equation above has been slightly adjusted to allow 3rd ordered derivative to be calculated 
on node 30 i.e. using the following equation for node 30.

Dn = (4.38)

Dn = (4.39)
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d: =
'e%n(v '"« -VT ) ~ £m ,2(V7+1-3 (V )"  +3(V ')”_, - V ”_2) ' 

-*$,2  (v 7 -  V " ,) + (V"+1 -  3 (V')” + 3 (V);., -  V ;.2)
s. ' ' y

(4.40)

4.7.2 Jameson, Schmidt & Turkel’s AVT: Results

Simulations were run using a safety factor o f 0.095 and k(2) values and k(4) values o f 0.25, 0.004 
respectively. To suppress the tendency for odd and even point decoupling, and to prevent the 
appearance o f wiggles in regions containing severe pressure gradients a second form o f artificial 
viscosity augments the CBS algorithm. This is taken from Jameson, Schmidt & Turkel [105], and is 
equivalent to adding a combination o f 2nd and 4th order terms.

Convergence History
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Figure 4:13-Convergence History for density, temperature and velocity for the Characteristic 
Based Split scheme.

Even with 31 discrete solution points the number o f  sweeps needed for convergence to a relative error 
of 10'6 is approximately 1,500. At this point the steady state solution has been achieved and the 
calculation can be stopped. Figure 4:13 shows that the numerical solution has converged rapidly when 
compared to Figure 4:4, and nearly dropping to machine zero which is due to Jameson, Schmidt & 
Turkel’s AVT introducing a switch between 2nd and 4th ordered terms depending on the property 
fields. The 4th ordered term leads to information being spread more rapidly which leads to less solver 
iteration required for steady state convergence, yet this occurs at a cost of increased computational 
time per iteration because o f  the subsequent lines o f code.



CBS Solution to the Isentropic Sub-Super Sonic De Laval Nozzle
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Figure 4:14 - Physical properties o f air in a sub to Supersonic de Laval nozzle, comparing 
numerical results (full line-) with the analytical solution (0).
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The T \  P' and p '  as calculated by the CBS formulation, are presented in Figure 4:14. The 
theoretical results are given by the diamonds and the full lines are the CBS solution. These values are 
also normalized with the reference values for aesthetic reasons when plotting the results. The CBS 
finite difference code coupled with Jameson, Schmidt & Turkel’s AVT solves the primitive variables. 
The CBS algorithm is successful in accurately identifying the monotonically decreasing property 
fields throughout the enclosed domain. In summary, Figure 4:14 shows that the CBS solution is in 
excellent agreement with the analytical solution, another promising indication o f the capability o f  the 
CBS approach for the final application.
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CBS Solution to the Isentropic Sub-Super Sonic De Laval Nozzle
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Figure 4:15 - Physical properties o f  air in a sub to Supersonic de Laval nozzle, comparing the CBS 
numerical results ( full line- -) with the analytical solution (0).

The V \  M and m' as calculated by the CBS formulation to the non-conservation governing 
equations, presented in Figure 4:15. The theoretical results are given by the diamonds and the full 
lines the CBS solution. These values are normalized with the reference values so they can be 
displayed on the same plot. The CBS finite difference code coupled with Jameson, Schmidt & 
Turkel’s AVT, solves the primitive variables Figure 4:15 shows that the CBS solution is in excellent 
agreement with the analytical solution, a promising indication of the capability o f the CBS approach 
for the final application; solving 2D Hypersonic compressible flow over transpiration cooled 
components.
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Normalized Mass Flow Rate for Jamesons & MacCormacks AVT
0.61

^-MacCormacks Scheme
FD CBS Scheme & Jamesons AVT k2=0.25 k4=0.004 

**■ Analytical Solution__________________ _________
0.605

0.6

. 0.595
<

a  0.59

0.585

0.58

0 1.50.5 1 2 2.5 3
X (m)

Figure 4:16 Mass flow Variations (magnified) for the CBS and MacCormack’s scheme where the 
analytical solution is the green trend-line.

The m' as computed from the CBS non-conservation form o f the Euler equations is observed as the 
full green line in Figure 4:16, whereas the red line is the MacCormack’s predictor corrector solution. 
The analytical solution is represented by the blue line along the length o f the nozzle. Both the CBS 
and MacCormack’s profiles have a sizeable variation from the constant analytical non-dimensional 
value o f 0.579, with some spurious oscillations observed at both the inlet and outlet. On a practical 
basis when the m ' profile is plotted on the same scale as seen in Figure 4:14 these variations are not 
apparent and the mass flow appears constant. It seems that Jameson, Schmidt & Turkel’s [105] 
artificial viscous terms react to small scale oscillations and thus introduces too much dissipation that 
leads to source terms for mass flow.
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Analytical Vel % error with respect to velocity for various mesh densities

max

max

max

X (m )

Figure 4:17 -  Percentage error between the analytical normalized velocity value the CBS scheme 
and the MacCormack’s predictor corrector scheme.

Figure 4:17 shows that the CBS algorithm after 1524 iterations with a k(2̂ = 0.25 and k(4) =0.004 
succeeds as being accurate enough at capturing the simplified flow through most o f the nozzle. The 
percentage error depicted in Figure 4:17 shows that the absolute error is below 1% after lm  o f the 
nozzle inlet. The percentage error at the inlet shows that it is approx 1.1%, reducing to approx 1 % by 
(X=lm). As mentioned earlier CFD solutions should display two ingredients o f a discretisation 
technique; efficiency in generating a solution and accuracy o f the solution with respect to the 
analytical solution. A consistency study was conducted to see if the numerical solution can converge 
onto the analytical solution further. Therefore to decide on the number o f  grid points or elements that 
should be applied to this problem, five more computational runs were conducted with incremental 
increases in the number o f grid points in the solution domain. The percentage error with respect to the 
analytical solution was tracked and compared with five different grids.

4.7.3 Grid Independence

The matter o f  grid independence is a serious consideration in CFD and this section will seek to 
address, grid independence for this benchmark case. According to Anderson [15], if a first CFD grid 
is too coarse then the solution will not be an accurate enough approximation to the analytical solution. 
Therefore finer grids need to be employed in order to resolve the property fields with respect to the 
analytical solution and also to check that the numerical solution is not a function of the number o f 
grid points - an untenable result. Various runs using different grid density will be done to establish 
grid independence.

The numbers o f  nodes were approximately doubled from 16 to 31 to 61 to 91 to 121. After 
convergence the percentage error with respect to the analytical velocity field at the same 31 stations
re. 0m- 0.1m- 0.2m- 0.3m- 0.4m.......3.1m was tracked. The response for a CFD technique after each
increase in the grid density should be a reduction in the absolute error until grid independence where 
n° reduction in the absolute error is practically observed.
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Analytical Vel % error with respect to velocity for various mesh densities
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Figure 4:18 -  Grid independence plot: Each line represents a steady state solution to the flow field 
when varying the number o f grid points (legend).

Figure 4:18 shows the absolute errors for steady state solutions for various mesh densities. The steady 
state solution were obtained with a k̂ 2)= 0.25 and =0.004 and a C number o f 0.095. The finer 
grids o f  61 nodes and above are accurate enough at capturing the flow through the nozzle. The 
percentage error for 61 nodes shows that the absolute error is below 1 % (the green line) for the entire 
domain. As the grid density increases to 91 and 121 nodes the percentage error decreases, proof that 
the CBS procedure is grid independent.
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Table 4-5 - The table displays t ie convergence behaviour to steady state for each grid.

Nodes Ax ( m )

Time for 
convergence 

(sec)
Number o f 
Sweeps

Average 
absolute 

error (%)

Percentage 
decrease in 

absolute error

Memory 
used MB

1 6 0 . 2 2 2 . 9 2 6 7 1 2 2 . 5 0 N / A 4 5 2 . 3 1

3 1 0 . 1 1 1 . 6 9 1 5 5 5 0 . 5 6 1 . 9 5 4 5 2 . 5 7

6 1 0 . 0 5 2 2 . 2 0 3 1 7 1 0 . 1 5 0 . 3 9 4 5 4 . 6 3

9 1 0 . 0 3 2 5 8 5 . 0 6 4 8 0 8 0 . 1 2 0 . 0 3 4 5 6 . 7 7

1 2 1 0 . 0 2 5 1 1 6 . 4 2 6 4 8 8 0 . 1 0 0 . 0 0 4 6 1 . 2 3

1 5 1 0 . 0 2 1 9 5 . 5 7 8 7 6 9 0 . 1 0 0 . 0 0 4 6 9 . 1 5

2 4 1 0 . 0 1 2 5 7 2 0 . 1 4 1 4 2 6 7 0 . 1 0 0 . 0 0 5 6 5 . 2 3

4 8 1 0 . 0 0 6 1 3 5 7 4 9 . 9 2 2 9 0 3 2 0 . 1 0 0 . 0 0 5 8 4 . 2 3

The major trend from Table 4-5, is as Ax, the grid spacing decreases the subsequent error as 
calculated from equation (4.32) with respect to the analytical velocity decreases. Figure 4:19 verifies 
that the CBS scheme is consistent, which means that as the grid spacing is reduced between grid 
points, the numerical solution approaches the analytical solution.

Analytical % error wrt Velocity Vs Ax the grid spacing
2.5

Grid Independence trend line for 
CBS scheme coupled with AVT

i 1.5

<0 o

£  1 
C 
<

0.5

0.02 0.04 0.06 0.08 0.1
Ax

0.12 0.14 0.16 0.18 0.2

Figure 4:19- Grid independence study showing the relationslnp between the grid spacing and 
the average % analytical error.

4.8 Benchmark Example 2: Choked Nozzle
The second benchmark illustrates the application o f shock capturing for the CBS algorithm. To 
evaluate this capability a flow problem with a known analytical solution is solved. Understanding 
shock capturing for 1-D Hyperbolic problems is the main attraction for tackling this case. It is 
essential that a working methodology is established for shock capturing so that multidimensional 
Hyperbolic problems are solved, such as the final application - modelling transpiration cooling 
through porous media in Hypersonic flows.
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For Choked flow in a nozzle, a stationary normal shock wave is present in the divergent section o f the 
nozzle. This will occur, for instance, in a convergent-divergent channel when the pressure differences 
between the inlet and the outlet o f the nozzle are significantly large. The flow is accelerated to sonic 
speed in the throat and further accelerated in the divergent section to Supersonic velocities. The 
Supersonic region is terminated by a strong shock which brings the flow down to Subsonic velocities 
before the nozzle’s outlet.

Anderson, [15], argues that the non conservation form o f the governing equations are inadequate at 
modeling normal shocks. Therefore the conservation variables - (p, pV, pE) - are used in place o f the 
primitive variables - (p, V, T). To solve these variables, (p, pV, pE) at the nodal points, this section 
will examine the conservation form o f the equations. The conservation form o f the governing 
equations has been written in MATLAB R2008a, where the geometry of the nozzle is that shown in 
Figure 4:1 and the area and boundary conditions are given in the following Section.

4.8.1 Theoretical Background: The Conservation Equations

As mentioned a shock wave is present within the solution domain for Choked nozzle flows, which 
make, the non-conservation quasi-ID Euler equations (4.18)-(4.21) inappropriate when capturing 
shock fronts. Anderson [15], also observes that “the conservation form simply does a better job  of 
conserving mass”, which means that the conservation form yields a better mass flow distribution 
throughout the solution domain. It is important to stress that this chapter is comparing the 
performance o f  the CBS method in conservative form for the Choked nozzle problem with 
Anderson's [15] solver, and therefore the conservation form o f the equations are now solved in place 
of the primitive variables.

4.8.2 The Finite Difference Conservation Approach

From the conservation equations - the 3D Euler system o f  equations - can be manipulated into the 
following form for quasi 1-D nozzle flows. The governing equations are taken from the work of 
Anderson ([15], page 336) on Choked nozzle flows and is repeated below.

The 1-D nozzle continuity equation in conservation form is:

g (£ jQ t j ( g £ n =0 (4.4I)
dt' dx'

The 1-D nozzle momentum equation in conservation form is:
d (p 'A 'V ' )  | d { p 'A 'V a +{\ l r )Y K )  1 p dA'

d t ' dx' y dx'

The 1-D nozzle energy equation in conservation form is:

> ; r ( r / ( r - i ) + y / 2 ( r ' 2))]

dt'
+

s \ p '  a ' v \ t '/ ( y - i ) + Y  m y ^ + p '  a 'V '
(4.43)

d x '
= 0
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Re-writing the above equations in terms of the conservation vectors Ui, U2 and U3 and the flux 
vectors Fi,F2 and F3 as demonstrated by Anderson [15], yields.

Equation (4.41) can be written as.
d U ,  _  d F x 

d t '  d x '

Equation (4.42) can be written as.
d U 2 , r
d t '  d x '

Where

J = i P m
y dx '

And finally equation (4.43) becomes
d U 3 _  _  d F 3 
d t '  ~  d x '

Where 
U x =  p '  A '

U 2 =  p ' A ' V '

(
U3 = p 'A r- 1 2

F l =  p ' A ' V '

A' P 'i ait/i2 a  r
F2 =  p ' A ' V ' z +

F2 = p ' A ' V

r

+ — V '2 + P 'A 'V '

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)
(4.49)

(4.50)

(4.51)

(4.52)

(4.53)
j - \  2

4.8.3 Computational Procedure for the Conservation Equations

By re-writing the governing conservation equations above for quasi 1-D flow they can be 
implemented into the framework o f the CBS algorithm, where the non-dimensional notation ’ is now 
dropped for writing the equations. For every step described below each step is applied to all the 
interior nodes in a sweep o f the grid or otherwise known as an iteration. After this the boundary 
conditions as seen in step 6  are computed. Then the sequential computational procedure is repeated 
by going to step 1). This CBS method to solve the conservation system o f  equations was implemented 
in MATLAB R2008a and the simulations run within dual core laptop with 2046MB o f RAM:

1) Calculate the local time step from (4.17) Where C is the Courant number and 
depending on the problem is usually C< 0.5

2) Calculate the derivatives for all flux variables (dFx / <3x)., (dF2/dx). and (dF^/dx). 
and J at all the interior nodes from i=2 to i=30 and

j"  = !(/>)" *n (^)/+i
y y }i 2 Ax

(4.54)

$
3) The intermediate momentum variable U2 is computed from f=2,3,4 Nlim-1
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f dF1 Y

V &  A
+  ■

Ar,./

v a * 2 /
4) The corrected momentum variable, U2 is computed from i=2,3,4. N -1• • -t  ̂max A

r dJ_
\  d x

5) The inviscid flux variable, Fi is evaluated at the next iterative level (n+1)

( \«+l  /  \/7+l

F> \  = ( ^ ) ,

(4.55)

(4.56)

(4.57)

6 ) The inviscid flux variable, ^ " +1 is differenced to evaluate the conservation variable Lb

a m
v dx

\ «+l
(4.58)

7) The conservation variable U3 , is solved from i=2,3,4 Nrnax-1
to completing the system of equations

/  \«+l / \n 8F, ) " A t 2 n d2K )<1

£>II 3
+  ' V 3

v J \  J / , dx
\  u x  J 2  '

i
dx2 

\  u x  J

(4.59)

8 ) Decouple the primitive variables -including the pressure- from the conservation variables 
and calculate the flux variables from conservation variables

( \W4-1 /  \«+l

p \  = (^1  ' 4
( v f ^ i u x ' / p r ' A ,

( r r = ( r - 1) 1

vn+l

W - w  

, r  N rT
( 2 ( w , r  ^

n+1

/  \»+l

w - ( f ) ( M

( p X

n+l \

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

9) Check convergence using (4.22) by sensing whether the relative error is below the agreed 
tolerance of 10' 6 or the number of sweeps is below the maximum sweep number 
stipulated by the user IMax. Sum the relative density error from i=l ,2,3,4......... N1IHX.

10) If convergence has been achieved exit the procedure and display results otherwise begin 
computational sweep as described by going back to step 1)
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General R em arks

1) Artificial viscous terms were deemed to be necessary to extend the stability region o f the CBS 
algorithm

2) Jameson, Schmidt & Turkel’s 2nd and 4th ordered artificial viscous term (AVT) was also 
coupled with the CBS algorithm where it was used as an explicit stabilizing source term. 
Unreasonable results with respect to the analytical solution and even divergence is 
encountered when the CBS algorithm is not coupled with any artificial viscosity terms.

3) The main difference from the non-conservation sequential procedure seen in section 4.3.1 to 
this sequential procedure seen in section 4.7.3 is that the conservation variables Ui, U2 and U3 

and the flux vectors Fi, F2 and F3 are approximated on cell frees, and finally decoupled at the 
nodes after an iterative step.

4.8.4 Choked de Laval Nozzle: Analytical Solution
Consider how the mass flow through the convergent divergent nozzle seen in Figure 4:1 changes as 
the exit pressure, Pe, decreases, initially the flow velocity in the throat increases, meaning the mass 
flow increases. The mass flow m , is experimentally measured at the throat by m = p,VtA  > but as 
Anderson [9] states that as the exit pressure, Pe, decreases, Vt will increase and p t decrease. But the 

percentage increase in Vt is much greater than the percentage decrease in p t . As a result, m  
increases, as sketched in Figure 4:20. When P=Pe,3 sonic flow is achieved at the throat meaning that 
the mass flow is calculated using sonic values for V and p  ie. m = p tVtAt = p * v *  A* ■ Anderson
[9] states that if Pe is further reduced below Pe,3 then interestingly the conditions at the throat remain 
unchanged. The mass flow rate, remains constant as Pe reduces below Pe,3 . Thus the isentropic flow 
assumption, mans the Mach number at the throat cannot exceed 1. In words as Pe is reduced below 
Pe,3, M will remain equal to 1 at the throat. This relationship has been illustrated in Figure 4:20.

m

Choked Flow

0 jps u p 0 .678/^

Exit Pressure

P
0 0

Figure 4 :20 Variation of mass flow, r h  , against exit pressure: illustration of Choked flow taken 
from Anderson [9].

91



In a sense the flow at the throat as well as the flow up stream of the throat becomes “frozen”. Once the 
flow becomes sonic at the throat, the characteristics cannot work their way upstream o f the throat. 
Hence the flow in the convergent section o f the nozzle no longer communicates with the exit pressure 
and has no way o f  knowing that the exit pressure continues to decrease to below Psub- As a result this 
situation is denoted Choked flow.

The analytical solution to this Choked de Laval nozzle is illustrated in Figure 4:21, this analytical 
solution will be further described now. The gas velocity in the divergent section o f the nozzle in 
Figure 24 is purely Supersonic and isentropic from the throat to slightly upstream o f the shock. 
Through the normal shock wave the flow goes from Supersonic to Subsonic velocities and 
furthermore the flow’s entropy has increased. Therefore the assumption of isentropic flow in this 
small region o f  the nozzle has been violated. Downstream o f the shock, Subsonic gas flow is 
maintained to the exit and isentropic flow is recovered in this nozzle section x>2.1m. Anderson [15], 
states that an exit pressure ratio between the free-stream pressure and the outlet is 0.6784, to occasion 
a shock wave, at a location o f 2.1m from the nozzle’s entrance. Where the Mach numbers pre/post­
shock and the pressure ratio’s are taken from page 266 [15], as follows:

M, = 2.07 

M 2 =0.566

p
—  = 4.83

Here the subscript 1 indicates pre shock values and the subscript 2 indicates post shock values.
To determine the upstream Mach number at the shock location 2.1m, equation (4.66) was solved to 
determine the value o f M at each station, i: for M, using a simple root finding method. This root 
finding method was the fzero function taken from the functions section in MATLAB R2008a Inc, 
[140]. The fzero command algorithm, was introduced by Dekker and it utilizes a combination of 
bisection, secant, and inverse quadratic interpolation methods.

0 =
1

M l 1 - y

_r+!
Y- 1

J

A_
A*

(4.66)

Down stream o f the shock, x>2.1, A* =1 in equation (4.66) is replaced by A2 > A*. The same root 
finding method, with a different denominator value for the second term on the right hand side o f the 
equation, is applied to calculate M at each station, i

0 -  \
2

f l + ’ r
M 2 _1 - y I  2  JJ

r+1 
y- 1

(4.67)

After evaluating M then it is then possible to calculate the p ' P ' , and T ' profile along the nozzle 
from (4.14), (4.15) and (4.16):
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Normal Shock wave

M  < 1

M <  1 M  > 1
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Super-sonic  isentropic 
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Figure 4:21-Supersonic nozzle flow with a normal shock inside the nozzle taken from Anderson [9].

As seen in Figure 4: 2 1  above the shock introduces a discontinuous jump in the p ' , V \ P '  and 7 ' 
fields flow variables Such a discontinuous change always has the potential to introduce oscillations 
into the numerical solution, oscillations which according to Jameson et al.[l 05] are virtually 
eliminated by introducing some explicit form o f artificial viscosity. It is the experience o f the author 
that the addition o f Jameson, Schmidt & Turkel’s [105] Artificial Viscosity Terms (AVT) to the 
scheme stabilizes Supersonic problems containing shocks. Moreover in smooth regions o f the flow, 
the scheme is not sufficiently dissipative unless the fourth differences are included, with the result 
that calculations will generally not converge to a completely steady state. It is mentioned in Jameson, 
Schmidt & Turkel’s [105] that after they have reached an almost steady state, oscillations o f very low 
amplitude continue indefinitely. These appear to be induced by reflections from the boundaries o f the 
computational domain.
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4.9 Choked Nozzle Results
The CFL safety factor, C, has been kept from the previous Subsonic to Supersonic study from section
4.5.2 at C=0.095. Jameson, Schmidt & Turkel’s [105] 2nd and 4th ordered artificial viscous term 
(AVT) was coupled with the CBS algorithm where it was used as an explicit stabilizing source term, 
and will be used here.

C o m p a r i s o n  o f  a n a ly t i c a l  a n d  CBS s o lu t io n  fo r  t h e  C hoked  D e Laval Nozzle

N on - 
D im e n sio n a l  
S c a la r

A n aly tica l
Mach

A n alytica l

A n aly tica l
Density

A n aly tica l

**' A n a ly tica l

CBS MACH
CBS Pressure MOD O
CBS D ensity

N

x( metres)

Figure 4:22-The Mach, P, p, T and V profiles of air in a Choked de Laval nozzle, comparing the 
CBS techniques numerical results (solid line -) with the analytical solution (o) Artificial viscosity 
has not been tuned.

The red, blue, green and light blue lines in Figure 422 show the first attempted converged solution 
using the CBS algorithm for the conservation equations given in (4.54)-(4.65). The CBS algorithm 
successfully captures the physical behavior at a distance before the shock location is reached
(x<1 .7 m). However as exhibited in Figure 4:22 the T \  p' and P' profiles display undershoots pre
shock and overshoots post shock. Conversely in Figure 422, the Mach number and V' displays 
overshoots pre shock and undershoots post shock, which means failure to identify the actual 
analytical values in proximity o f the shock.

The solution o f  this problem should display two requirements o f  a discretisation technique; firstly 
efficiency o f generating the solution and secondly accuracy o f the converged CBS solution with 
respect to the analytical solution. This will require a solution where the tuned Jameson, Schmidt & 
Turkel’s [105] AVT supplies enough dissipation to damp out those undershoots and overshoots as 
seen in Figure 4:22, but not enough to irrevocably change the nature o f the physical flow. Thus it was 
decided that a parametric study should be carried out. A parametric study intended to discern the
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capability o f the Jameson, Schmidt & Turkel’s [105] AVT at capturing shocks when using different
values ofk<2)k(4).

4.9.1 Choked De Laval Nozzle: Boundary Conditions

According to Anderson [15] the boundary conditions maybe prescribed as

(£/,)* = 2 ( t / . j ,  _2 (4.68)
v '  iVmax i¥max 1 i¥max ^

(4-69)

(y 3 ) ^ = J T XA' ^ ) ^ V' ^  (4-20)

where Nmax is the total number of the nodes in the computational domain

For the nozzle seen in Figure 4:1, shows an arbitrary pressure value at the nozzle outlet o f between 
P'= 0 . 0 2  and P' = 0.92. Anderson ([15], page 358) uses a pressure value o f 0.6784. Anderson ([15], 
page 358) manipulated the algebra so that this exit pressure ratio o f 0.6784 is couched into the 
conservation variables, U3, as seen above in the boundary conditions (4.68), (4.69) and (4.70). To 
compare with his results the same is done here.

Jameson, Schmidt & TurkeVs Artificial Viscosity Terms

There is a need to prevent the appearance o f for odd and even point deco up ling in regions containing 
severe pressure gradients for instance in the neighbourhood o f shock waves, by using a second form 
of artificial viscosity terms (AVT) to augment the CBS algorithm. Jameson, Schmidt & Turkel’s 
[105] AVT is equivalent to adding a 2nd and 4th order term The energy equation, the intermediate 
momentum equation and finally the continuity equation are all augmented with an artificial viscous 
term:

M+l

dx
- D n (4.71)

J i
Let

D" = u  - n rI M+l/ 2 M-l/ 2

For the continuity equation becomes

a ;,,. = ( « &  ( r c .  -  UJj ) -  ̂ 2  ( ^ 2  -  3U,’m + 3 U J  -  U ,'M  )) (4.72)

where 2 is called the 2nd order weighting value. This is defined by 

£ilm = max(vf, vj+1)
where v, is the pressure sensor “switch” and is always positive providing the domain is not in a 
vacuum.



And

The weighting parameters for Supersonic applications as recommended by Jameson, Schmidt & 
Turkel’s [105] are,

A:(2) = 0 .2 5 ,A : (4) = 0 . 0 0 4

However a parametric study should be carried out, to empirically test, the values that best capture the 
case investigated, relative to the analytical solution. The full form o f the artificial viscosity at node i 
may then be expressed as [105]:

' C i  ( to  L  - t o ),”) -  C(to. L  -  3 t o  yM  + 3 ( t / ,) ; -  (i/ , ) : , ) N
D" = (4.73)

~Cn((U, X ~{Ut I,) + ( (U ,  L-3 (U,)", + 3 (C/,- (U, £2)
Ui in equation (4.72) is replaced by U2 and U3 in equation (4.74) and equation (4.75) respectively.

A t2
W r N " r At‘

f 8 F ^  

dx
+ • ■Vn< 3 %  V

n := n :-a<

-D "
7/

a* 2

NW
- d :

(4.74)

(4.75)

It has been found that in smooth regions o f the flow, the scheme is not sufficiently dissipative unless 
the fourth differences are included, with the results that calculations will generally not converge to a 
completely steady state. After they have generally reached an almost steady state, oscillations o f very 
low amplitude continue indefinitely. In near shock waves it has been found that the fourth differences 
tend to induce overshoots, and therefore they are switched off by sensing when the term (s(2)-k(4)) is 
less than zero in equation (4.37).
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4.9.2 Parametric Study: Jameson, Schmidt & Turkel’s AVT
C o n v e rg e n c e  History

1E+2

1E-0

Error
IE-2

IE-4

IE -6
50000

N u m b e r  o f  I te ra t ions

Figure 4:23 The convergence histories between various artificial viscosities for the CBS scheme.

Convergence is verified using the relative density error calculation seen in equation and plotted in 
Figure 4:23 against number o f iterations. All simulations have been terminated after 9000 sweeps 
because it was deemed enough sweeps for gauging steady state conditions or displaying divergence 

; of the 7 different solutions in Figure 4:23, only one o f the seven simulations did not reach a relative 
density o f 10'3. This curve has k(2) =0.000035 and k(4)=0.004. This was because the small values o f

k(2) and thus are not enough to damp those non-linearities in the numerical solution.

i Table 4-6 states k(2) and k(4) values for each simulation with the line color relating to the CBS 
solutions in Figure 4:24 and Figure 4:23. To discern the trends when changing k(2) and k(4) the 

! following values were decided upon. For the first series o f runs the k(4) value was decreased to 
ascertain the effect this had on the accuracy o f solution against the analytical solution.



Table 4-6 -Pis playing the k (2) andk(4) values
Color k(i) k,4) "
Black 0.035 0.04

Dark Blue 0.035 0.004
Orange 0.000035 0.004

Light Blue 0.0035 0.004
Purple 0.035 0.004

Red 0.035 0.0004
Green 0.035 0.00004

C o m p a r i s o n  o f  M a c h  s p e e d s  d i f fe re n t  w ie g h t in g s  artif ic ia l  v i s c o s i ty

Mach
Speed

O 1 2 3  

Nozzle L eng th  ( m e t r e s )

Figure 4:24-Comparison between the analytical Mach profile (o) and several results using Jameson, Schmidt 
& Turkel’s artificial viscosities (solid line-) the key can be found in Table 4-6.

As can be seen in Figure 4:24 the Mach speed along the length o f the nozzle is plotted for each o f the 
seven different k(4) values. The seven different curves are plotted together with the analytical solution 
so their accuracy can be inferred. The green curve has a k(2) of 0.035 and k(4) of 0.00004 and 
possesses the greatest semblance to the analytical solution. Thus smaller values fo rk(4) produce more 
comparable results with respect to the analytical solutioa Using large values o fk (4) leads to smearing 
and large undershoots meaning failure o f the scheme when capturing the location o f the shock, and a 
failure at identifying the Mach number post shock. As stated by Anderson ([15], page 363) this is 
analogous to the effect that an actual increase in physical viscosity p would have on the Mach profile.

In order to show that Jameson, Schmidt & Turkel’s [105] AVT with further investigation can 
accurately capture the analytical solution, shock location and stabilize the solution at the same time, 
more solutions with different values o f k(2) were collected where the k(4) fixed term to 0.004.
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Table 4-7- Displaying the k(2) anc k(4) values
Color kw kw

Dark Blue 0 .0 0 2 0.004

Orange 0.004 0.004

Red 0 .0 1 2 0.004

Green 0.016 0.004

Black 0.0014 0.004

Light Blue 0.00095 0.004

Purple 0.00075 0.004

Comparison of Mach Profile for different artificial viscosity weightings

2.5

2
Mach
Speed

1.5

1

0.5

o L  __________________
0  1 2  3

Nozzle Length (m)

Figure 4:25- Second comparison between the analytical Mach profile (o) and different 
artificial viscosities for the CBS scheme (solid line-).

Figure 4:25 is encouraging and demonstrates the importance o f a low k(2) term for a good 
representation o f the discontinuity and a post shock flow free from large undershoots/overshoots. The 
tight blue curve where k2=0.00095 k4=0.004 gives the most accurate result o f all the solutions seen in 
Figure 4:25. For the shock seen in Figure 4:25, the light blue curve is not as smeared as those other 
curves seen in Figure 4:25.Therefore a small value for k(2) is required to capture the large gradients in 
the flux variables o f the shock.

a Analytical
Q Solution
O

k2=2E-3 Si k4=4E-3

k2=4E-3 St k4=4E-3
k2=1.2E-3 St k4=4E-3

k2=1.6E-3 & k4=4E-3
k2=1.4E- St k4=4E-3
k2=9.5E-4 St k4=4E-3
k2=7E-4 St k4=4E-3

99



Analytical Solution to the Isentropic Sub-Super Sonic De Laval Nozzle
2.5

u.TOrooco
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Figure 4:26- Mach profile o f air in a Choked de Laval nozzle, comparing the numerical results 
obtained with the optimised artificial viscosity (solid line -) and the analytical solution (o) where k(2) 
=0.016 and k(4)=0.004.

The use o f Jameson, Schmidt & Turkel’s 2nd and 4th ordered AV terms with the values o f  k(2) =0.016 
and k(4̂ =0.004 respectively helped to stabilize the case seen in Figure 4:26. This demonstrates that 
through experimenting with the values o fk (2) and k(4), the CBS algorithm can be remedied, to handle 
discontinuities in the flow field. A major drain on time in the solution process is manually tuning 
these constants as it is not an exact science. A CBS solver that can automatically apply the effective 
amount o f viscosity and time relaxation depending on the flow problem represents the ultimate shock 
capturing method in CFD. However, Figure 4:26 shows the combination o f the 2nd ordered accurate 
explicit CBS algorithm and the artificial viscosity presented by Jameson, Schmidt & Turkel’s [105] 
yields a flexible and robust code for the solution of the Choked nozzle as presented in Figure 4:25.

4.10 Concluding Remarks
This chapter on 1-D inviscid flow simulations has demonstrated the development o f a 2 nd ordered 
explicit algorithm for simplified Supersonic compressible inviscid flows using a ID finite difference 
formulation. In the above work a simple explicit, one stage time integration was adopted. Because 
this chapter seeks to compare the CBS results with MacCormack’s Predictor-Corrector scheme in 
(Anderson, [15] page 283) which also uses the simple explicit time integration.

4.10.1 CBS Algorithm Achievements
The Characteristic Based Split algorithm utilizes the finite difference framework instead o f the 
original finite element integral approach as described by Nithiarasu and Codina, [131], for the 
Characteristic Based Split (CBS) algorithm. This demonstrates the versatility o f the CBS approach to 
the finite difference formulation and, more importantly for this research the finite volume framework. 
Simply stated for multi dimensions the finite volume formulation is an extension o f  the finite 
difference approach. During these simulations it became apparent that the Characteristic Based Split
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(CBS) calculations are highly dependent on the extra temporal terms and by extension the CFL 
number in the momentum and enthalpy equations. It has been argued by Nithiarasu and Codina, 
[131], that either too small or too large values for the CFL number can cause instability and 
divergence, requiring careful experimentation on an individual case basis. This can be demonstrated 
by the unacceptable errors o f  the purely Supersonic flow in a divergent nozzle as seen in Figure 4:15 
and Figure 4:14. The substitution o f Jameson, Schmidt & Turkel’s [105] AVT, was required to obtain 
an acceptable solution in terms of absolute error. The grid independence study showed, as the grid is 
refined the numerical solution approaches the analytical solution satisfying the essential consistency 
property of a numerical technique.

4.10.2 Capturing the Sub to Supersonic De Laval Nozzle
The algorithm captures air flow from the inlet at approximately 34 m/s (Mach= 0.098) at a density of
1.2 kg/m3, to the outlet where the air possess a velocity o f 647m/s (Mach= 3.36) at a density of
0.0630 kg/m3. This means a 95% compressibility ratio is handled when using the CBS algorithm with 
Jameson, Schmidt & Turkel’s [105] AVT. This is a promising indication that the CBS algorithm can 
deal with the Supersonic compressible flows for the final novel application- transpiration cooling 
through porous media at Hypersonic speeds. The major results o f this benchmark are that first o f all 
the decreasing grid spacing occasions a closer approximation to the analytical solution and secondly 
that Jameson, Schmidt & Turkel’s [105] AVT facilitates the stability o f the algorithm for the 
Supersonic de Laval nozzle calculations.

4.10.3 Capturing the Choked De Laval Nozzle
I
I The use o f the conservation variables for the flux terms instead o f the primitive variables is 
? recommended by Anderson, [15] for shock capturing in the chocked nozzle case and was also 

followed in this chapter for comparison purposes. To suppress the tendency for odd and even point 
decoupling, and to prevent the appearance o f wiggles in regions containing severe pressure gradients 
in the neighbourhood o f shock, waves a second form of artificial viscosity which augments the CBS 
algorithm was introduced. The substitution o f Jameson, Schmidt & Turkel’s 2nd and 4th ordered blend 
into the discrete approach yielded an acceptable solution in terms o f absolute error with respect to the 
analytical solution. Although numerical experimentation is required to optimize the shock capturing 
approach, Jameson, Schmidt & Turkel’s [105] AVT performed robustly for this benchmark. 
Furthermore the experience gained here in using the artificial viscous term will prove invaluable 
when extending the algorithm to the 2 -dimensional benchmarks that will follow in the next chapters.

Given the success reported here, the CBS algorithm coupled with Jameson, Schmidt & Turkel’s AVT 
to 2 -dimensions, using the finite volume integral framework, will be implemented in the following 
chapters o f this thesis.



5. 2-DIMENSIONAL NUMERICAL 
IMPLEMENTATION

5.1 Introduction
As seen in Chapter 4, the 1-D analysis is insightful and helpful to understand many properties o f the 
CBS algorithm and the shock capturing scheme as well as to give an insight into the behaviour and 
performance o f  this scheme for more elaborate problems. However, careful investigation of 2- 
dimensional performance is unavoidable for any scientific conclusion on behalf o f the solver, either 
in terms o f accuracy, robustness or computational efficiency. Therefore, this chapter will look at the 
extension o f the 1-D computational implementation to 2-dimensions. It has to be kept in mind that the 
dearth o f results concerning Hypersonic flow simulations involving unstructured meshes has 
stimulated the present research. Some o f the major difficulties which have to be overcome when 
attempting the numerical solution o f the Hypersonic 2-dimensional Hyperbolic PDEs are: the non­
linear nature o f  the flow; the complex geometries involved in industrial applications; and the high 
storage and CPU time involved in practical solutions as stated by Lyra, [7].

A 2-dimensional fluid solver targeted at Hypersonic compressible flows will be integrated into the 
host software platform, PHYSICA for this research project. Current partitioning tools for parallel 
computing and meshing routines have previously been encoded as spelled out in PHYSICA beginners 
guide and have previously been tested on a number o f industrial problems as seen in the literature [1], 
[38], [6 8 ]. A brief discussion o f the current solver within PHYSICA and its drawbacks, sets out the 
reasons to eliminate this current solver for this research problem.

5.2PHYSICA - Multi Physics Software
The software toolkit PHYSICA solver strategy utilises three dimensional unstructured finite volume 
meshes o f any arbitrary mix o f element shapes from tetrahedral to hexahedral elements [143]. 
PHYSICA simulates fluid flow, coupled with heat transfer, solid stress and electro- magnetic fields in 
a parallel fashion. The software design which has a coherent structure is applied to the full range of 
continuum physics operating scalably on high performance clusters [1 ].

The default algorithm in PHYSICA is a derivative o f  the Semi-Implicit Momentum-Pres sure coupled 
with the corrected momentum equation (SIMPLEC), which is a pressure based algorithm developed 
in 1972 by Spalding & Patankar, [32]. The algorithm in PHYSICA has been extended to unstructured 
meshes and is essentially a cell centered co-located version o f the SIMPLEC scheme [41]. The logic 
is to update the pressure from a residual calculated in the continuity equation. After testing and 
validating the SIMPLEC algorithm it was reasoned that for optimal performance the solution should 
be heavily weighted to the pressure correction step and the momentum equation, and should be 
comparatively damped [38]. The flow diagram o f the SIMPLE algorithm is given in the Appendices.

In previous research, PHYSICA has been applied to simulate metal casting in [2], [144], metal 
forging in [69], mineral deposition applications in [145] and bio medical applications in Carswell et 
al, [146] . As a consequence o f the mentioned research, partitioning and meshing tools are already 
embedded in PHYSICA. All that is required for the current project is to develop a fluid flow solver to



simulate highly compressible air flows for Hypersonic applications. As stated previously SIMPLEC 
' is pressure based, and modifications have been made to accommodate large levels o f compression 

[38]. Although the simplifying assumptions that are applied to pressure based schemes become 
I insufficient for the highly compressible flows to be modelled. Mainly, because the assumption for the 
1 artificial relationship as seen in Chapter 2 cannot be used. Also, solving the conservation quantities, 

the mass flux, enthalpy and density across a shock front will hopefully be continuous instead o f 
| solving the alternative primitive variables across a shock front which can be proved to be 

discontinuous (Anderson, [15], page 283).

Going forward with the algorithm integration, a property compromise between the accuracy, stability 
and flexibility o f the CFD technique needs to be struck. Therefore, the density based schemes as 

1 developed by Chorin were employed and it was deemed sensible to employ a density based method 
< for compressible flows with a standard scheme option for incompressible flows. The density based 
1 method was chosen over a pressure based method, however considerable foresight and science is still 

necessary to complete a successful computation.

1. Grid selection - the choice o f grid, whether it be a structured grid or an unstructured grid, is crucial 
to the performance o f a numerical method. Plain square meshes are only appropriate for certain cases.

; Grids should be finer in regions in high gradients in the solution variables. Poor quality grids can 
result in instability or failure to converge [15].

5 2. In unsteady flows, the gradients can move; hence the grids need ideally to be changeable or 
; adaptive. See the references [7], [43].

3. Leonard [147], sates that when the free stream Reynolds number reaches turbulent values the 
i computational approach requires a turbulence model such as [148] and [149].

: The solution o f Hyperbolic problems varies considerably in space and time, exhibiting for instance, 
initial transients where highly oscillatory components of the solution are rapidly decaying. Therefore,

: efficient computational methods, for this class o f problems require the use of mesh spacing and time- 
■ steps which are variable, ideally in space and time.



5.3 CBS Algorithm -  A Family of Finite Element 
Compressible Schemes

As a remedy to the numerical challenges encountered by the upwind algorithm’s Zienkiewicz and 
Codina [47], developed a finite element version o f the Lax Wendroff family. These methods were 
formulated to explicitly solve the Navier-Stokes equations. Unfortunately, in spite o f this the 
instability which occurred due to the pressure term in the momentum equation, otherwise known as 
the LBB condition, persisted.

Pressure stabilization can be achieved by utilizing different interpolation functions for pressure and 
velocity. To maintain equal order interpolation, which is attractive for mixed convection-diffusion 
problems, a fix was sought that would reduce the pressure instability. This fix was achieved by 
splitting the momentum equation, into two stages: an intermediate momentum step, and a corrected 
momentum step, at every pseudo time level, as well as utilizing a second ordered pressure derivative 
which acts to smooth the pressure field. This was originally coined as the operator split method by 
Chorin (1967). For transient problems the classical fractional step methods are known to introduce a 
first ordered time error in pressure, which can be eliminated by suitable pressure stabilization Malan, 
Lewis, & Nithiarasu, [150]. For a steady state problem, however, a fractional step method is viewed 
to be the best compromise between speed o f convergence and accuracy [131]. The stability o f the 
CBS scheme stems from employing higher ordered terms akin to those terms seen in the classical 
Taylor series expansion and secondly splitting the momentum equation into two equations using the 
Chorin type split. Owing to the reasons cited above, the CBS method was stated to be stable in 
Nithiarasu and Codina, [131], for the Trans-Sonic flow past an aerofoil [8 8 ] and the Hypersonic 
viscous flow past a double ellipsoid.

Figure 5-1 CBS velocity contour plot at Mach 4 Figure 5-2 CBS velocity contour plot at 
Mach 20.
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As can be seen in Figure 5-1 and Figure 5-2 the finite element CBS algorithm is stable for inviscid 
flowsranging from Mach 4 and Mach 20 [151]. An important requirement for modelling-Hypersonic 
flows affecting the operation Cruise Air-breathing Vehicles (CAVs).

5.3.1 Higher Order Truncation Term
The following technical notes illustrate the Characteristic Based Split (CBS) algorithm’s format and 
stability. The supposed stability is derived from the introduction o f a Taylor series expansion o f the 
convection terms in the Navier Stokes equations. In order to better understand the CBS, Figure 5-3 
below illustrates how in one dimension the characteristics propagate in the x-t plane if a constant 
characteristic speed and zero diffusion is considered.

Characteristic
Streamlines

Inlet Exit</>(x)

X y

Linear convection problem Characteristics.
Figure 5-3

For different particles on a common characteristic streamline Zienkiewicz & Codina, [47] that the 
particles share the same scalar properties or in notation:

i % r ‘ = </>(x)n (5-76)
Where is downstream o f  0(xy  but share the same domain o f  dependence given by the
characteristic black line in Figure 5-3. This statement illustrates the well-known feet that the scalar 
variable </> along a characteristic irrespective o f the time level are the same [18]. This is the
fundamental feature o f the characteristic approach to computing flows and is taken forward by 
Nithiarasu, Zienkiewicz, Codina, Vazquez, & Ortiz, [152] and Zienkiewicz & Codina, [47] to 
develop the CBS scheme.

Taking the discretised form o f the convection equation (5.76) it is possible to state that:

jfC y)-iK * ) (5.77)
At

When using the local Taylor series expansion for the scalar variable </>(x) one gets:
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^{x)" = if, (y)" *>
dx 2 ox

(5.78)

By replacing (y-x) in (5.78), in terms o f the time step At and the average velocity u o f the 
characteristic, one gets:
(y - x )  = uAt (5.79)

Substituting (5.79) into equation (5.78) we obtain.

r n m= * { y ) m + + 0 ( A / 3) (5.80)
v '  K ’ dx 2 dx

Using the relationship seen in (5.76) and re-arranging the above equation (5.80), we state

^ (y ,o = > 1 M l z M .  = - u d- M  +0(A ^ )  (5.8D
dt At dx 2 dx2

Equation (5.76) to equation (5.81) assumes a constant characteristic speed u throughout the 
computational domain. Importantly for the CBS approach, equation (5.81) is the non-conservation 
form o f the convection equation for the scalar variable <j> and is suitable for flow with a divergence- 
free approximation i.e. incompressible flows. For compressible divergent flows a modified derivation 
for the convection equation, is required with additional assumptions for the characteristic speed u. 
This should be kept in mind when reading on. Figure 5-4 below, illustrates that the characteristic 
propagation for non-linear convection.

Characteristic
Streamline

t

( i(x)

Inlet Exit

y

Figure 5-4 :Non-linear convection problem. One characteristic and a scalar variable at different 
levels.

For compressible flows the characteristic speed and the convection terms in the Navier-Stokes 
equations, are non-linear in space. To apply an equation with the same format as equation (5.81) to
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non-linear speeds, compressible Navier Stokes equations. Where (f> in equation (5.81) is replaced by 
An approximation for u<f>{x) using the Taylor series expansion is stated below as:

y (5 , 2 ,

Where
( y - x )  = uAt
Substituting equation (5.83) into (5.82) and one garners:

(KW  - H y ) ’ .
At At2

dx dx M {y)) + 0(A/3)

(5.83)

(5.84)

Equation (5.84) is the scalar convection equation that will be the template for the CBS approach. 
Before we apply this method to the Navier-Stokes equations, the following points need to be 
considered.

Point 1
Although equation (5.84) is third order time accurate, it is seldom possible to achieve this accuracy 
using unstructured grids as establishing third order derivatives becomes difficult. After removing the 
3rd ordered temporal terms from (5.84) one can obtain the following discrete equation that ultimately 
relates the next temporal value with 1 st and 2 nd ordered spatial derivatives.

At dx n  dxK dx 2 dx [dx ” dx dx
(5.85)

Point 2
The convected variable whether it be p, pu, pv or pE becomes the characteristic variable and the 
speed at which it is convected becomes the characteristic speed.

Point 3
When the time step A t = Othe LHS o f equation (5.84) the next time level is approximately equal to 
the 1st ordered term on the RHS. As the time step A/>0 the 2nd and 3rd ordered terms in equation 
(5.84) have a greater role in calculating the next iterative level on the LHS, as long as the average 
velocity, U  is sufficiently large. Therefore a dichotomy exists between large enough At values for 
spatial accuracy to be realized but not large enough to cause instability as the CFL condition dictates.

Point 4
Equation (5.84) ignores the effect o f  the pressure term, seen in the momentum equation.

5.3.2 Fully Explicit Pseudo Time Integration
The use o f implicit approaches for time discretisation might be attractive, but due to the scale o f 
Problems normally faced in CFD, explicit iterative approaches are preferred because they are much 
easier to implement for large scale 3D complex problems [131]. The Navier Stokes equations, eq 
(2.39)-(2.40), are Hyperbolic with time, and the magnitude o f At that can be used in the above 
equations can be obtained from the simple stability analysis for linear problems. The simple stability 
analysis of a linear Hyperbolic equation carried out by Lewy, Courant, & Friedrichs [24], for an 
explicit numerical solution gives the result that C<1. Yet, the present compressible Supersonic flow is 
governed by nonlinear partial differential equations. In this case the exact stability criterion for a
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linear equation can only be viewed as general guidance for the present nonlinear problem, but as 
mentioned by [18], it turns out to be a good guide to nonlinear problems.

The sequential computational iterative procedure is repeated. Because o f their easy and efficient 
parallelization the fully explicit schemes have been employed as the default method [132].

5.4The CBS Algorithm -  Original Finite Element 
Scheme

As seen in Nithiarasu and Codina, [131], the sequential relationships in the CBS finite element 
algorithm are set out to solve the system o f partial differential equations governing fluid mechanics. 
Each equation is applied to every node in a sweep o f the grid before the code enters the next equation. 
After the final equation the boundary conditions are applied.

The sequential computational procedure for the CBS finite element algorithm can be done in a 
number o f ways but the following general procedure was taken from the work o f Nithiarasu and 
Codina, [131]. The following equations introduce 2nd order accurate convection stabilizing terms, 
which are weighted by the coefficient mainly in the intermediate momentum, corrected momentum 
and enthalpy equation. However the finite element formulation for the CBS method was not 
implemented in this thesis to solve the system of equations. Instead the CBS method is formulated 
within the favored finite volume framework. A novel development for the finite element CBS 
approach. For a comprehensive review o f the finite element CBS scheme see [47], [131], [152], 
[153]. The finite element (FE) CBS formulation is presented here, because it is the best guide, there 
is, to construct a novel finite volume method.

The FE CBS scheme incorporates local pseudo time stepping, and in a local time stepping approach 
different time steps are used at different nodes. Then the physical fields are accelerated to a steady 
state solution. According to Nithiarasu and Codina, [131], using globally minimum time steps, the 
calculations to steady state takes a much longer time than the local time stepping procedure. The 
local time step is given by the following equation: where C is the Courant number and depending on 
the problem is usually C < 0.5.

V
(5.86)K e = C K , e

V C +  V '  r

where the superscript n equals the current iterative level 
the subscript ele denotes an element 
h-characteristic element length (m) 
u-velocity (m/s)
At- local time step value (s) 
c-speed of sound (m/s)

Pseudo local time stepping is adopted for both compressible and incompressible flow calculations. It 
acts like a iterative scheme advancing but only advances the solution to convergence i.e. at the final 
pseudo time level steady state has been achieved. Local pseudo time stepping slows down 
computations in problematic areas and accelerates the calculations elsewhere in the domain. It is 
necessary to use an appropriate characteristic element length, he, in (5.86) the following relationship 
for three dimensional cases recommended by Nithiarasu and Codina, [131]:
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/  \
^  . I 3AK

A =  I  m m  X T  (5.87)
f=\,TOTF!C ^  M /  ) dt

Similarly for two dimensions the element size according to [131] is calculated from:

(5.88)h, = X min
/=\,TOTFIC

r 2AA
ALf .V 7 /e/e

Where A A is the total area o f the 2D element

The second step in the FE CBS method, is the removal the pressure term from the momentum 
equation, and augment with higher order temporal term to calculate an intermediate velocity:

pu* = pu" -  At p u u )  -  +
ax,.v ax, ax

f  * w n
d / \

r W J -\ uxj dx.J J J
(5.89)

where u*-intermediate velocity (m/s)
Ui-velocity component (m/s)
At-local time step value(s) 
p-density (kg/m3)
Tij-is the deviatoric stress component (N/m ) given by eq (2.27) 
i,j,k-[x,y,z]

The FE CBS Continuity equation is the next step: To compute the pressure field using the mass fluxes 
calculated from the intermediate equation (5.89).

f
i7 ( r ' - r ) = - a /  i4 ax, - 0 - 4 ) ax,.

H----
( 8P

(c”)
where the superscript n+ 1  denotes the next iterative level 

P-static pressure (N/m2)
0 1-Stabilisation weighting parameter 0.5 < <9, <1 

For this research the best choice was found to be 0i =1

dx,,
(5.90)

The third step is to correct the momentum equation by adding the pressure terms omitted in (5.89).

(pu)"*' = pu'
r dP n̂  At

d
 u,

dx,.

d r

d x i D

(5.91)

Where 02-imp licit/exp licit weighting parameter o < 02 < 1 ( 0 2=O for fully explicit scheme and 02>0 

for semi implicit scheme)

As a fourth step the semi-discrete energy equation is stated as:

(p E )" * ' = ( P E ) "  +  A t

d(pEU j)+j _ k

dx dx,

At
H Ui

dx,V J J

8 (Puj) , d iuJTJ’)
V

dx, dx,

dx.
g( p F ), a ,r

dx, dx,
P P  8 (Pu, ) + d

k8xu
dx, dx,

(5.92)
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where E-specific energy (kg m2/s2).
k-coefficient o f thermal diffusion (W/(m K ) ).
T- absolute temperature (K).

and the total specific energy, E, is defined as: eq (2.33) from this relationship the temperature can be 
inferred. To close the equation set, calculate the density, by using the ideal gas law.
(p )""  = P n+x l ( T n" R )  (5.93)

where R is the universal gas constant (287 J/(kg K) for air).

Additional scalar variables from appropriate governing equations are calculated such as the wave 
speed as seen in (2.36).

Finally the solver should check convergence to steady state values by sensing whether the relative 
error is less than the agreed tolerance o f 1 0 ' 5 or the number o f iteration is below the maximum 
iteration, Im3x, stipulated by the user.

G eneral R em arks
To obtain stable solutions at all Mach numbers three additional strategies are required:

1. The addition o f artificial viscosity for inviscid and viscous problems at Supersonic and 
Hypersonic speeds. MacCormack’s 2nd ordered artificial viscous term (AVT) was coupled 
(Chapter 4) with the CBS algorithm where it was used as an explicit stabilizing source 
term. Unreasonable results with respect to the analytical solution and even divergence is 
encountered when the CBS algorithm is not coupled with any artificial viscosity terms.

2. An empirical relationship between the viscosity and temperature is needed for 
compressible problems: Sutherlands law, eq (2.34) is used in this research.

3. A set o f  well posed boundary conditions that can distinguish the different fluid 
applications.

5.5 The CBS algorithm - In a Novel Finite Volume 
Context

The aim was to embed a candidate algorithm in a finite volume framework to tackle the research 
problem seen in section 1.1. The finite volume approach was utilize because it is relatively easier to 
extend from 2D to 3D geometries, whereas finite difference cannot and finite element needs basis 
functions for face values which can be computationally expensive [7]. The second reason is that the 
finite volume method, when mathematically integrated can be thought o f locally to conserve mass, 
momentum and enthalpy at each control volume. Whereas the finite element approach as already 
stated in Chapter 1, does not guarantee local conservation o f mass, momentum and enthalpy. In 
addition the existing host code PHYSICA has been a finite volume code since its inception [1] where 
geometric and parallel decomposition subroutines are ready to be used straight away.

The design o f  finite volume approaches in multidimensions, is accomplished for an arbitrary 
discretisation, and by considering the propagation o f  information locally in the direction normal to the 
cell frees. The key step for the finite volume method is the integration o f the governing equations 
over a three dimensional control volume (CV) using Gauss’s divergence principle [16]:
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* n

P»l =PUi

|  div (pujui j dV  -  J
c v c v

r dr..^ j±
dx.

j

dV

+ ■
At

uk J div^grad(pUjUj ))dV
c v

(5.94)

Where the subscript CV- control volume 
AV- volume o f cell (m3)
A f is the area o f the volumes face (m2)

Gauss’s divergence principle for a vector field Uj acting on a volume states that:
J  div (u,) civ =  J «, - UjdA (5 95)

c v  A r e a

Here
nj=[nt ,ny,n t ] (5.96)

where nx denotes the component, in direction x, o f the unit outward normal vector to surface dA. The 

physical interpretation o f nj %uj is the component o f a vector, u} , in the direction normal n} , to the 
surface element dA.

Applying Gauss’s divergence theorem, (5.95) to the intermediate momentum equation (5.94).
(  r  * \  \ n

pU\ = put ~
At
AV

Z_ nJA) r  I
f=\,TO T FIC

(  d r ;i

f= \ ,T O T F IC  \

+ ■
At

ut Z  (div(pu

(5.97)

f=\,TO TFIC

Where the summation J] is done over the total number o f frees belonging to the control volume. By 
applying (5.95), Gauss’s divergence theorem to the corrected momentum equation, the continuity 
equation and the enthalpy equation in a similar fashion to the intermediate momentum equation one 
obtains the sequential finite volume CBS scheme is obtained in Section 5.5.1.

5.5.1 The Sequential Finite Volume CBS Scheme
Each step described below is applied to all the interior nodes in a sweep of the computational grid. 
After this sweep the boundary conditions are computed. Then the sequential computational procedure 
is repeated by going back to step 1. The CBS method was implemented in the computing language 
FORTRAN and the simulations run within Swansea University’s cluster to solve the Navier Stokes 
system of equations.

1. The CBS scheme incorporates local pseudo time stepping. The pseudo time step is given by the 
following equation: where C is the Courant number and depending on the problem is usually <0.5.

4  t " r „ = C fy.r (5.98)
cni; + Ju  u,C,V Q y

it is necessary to use an appropriate control volume length, he, for the local time computation (5.98) 
where Nithiarasu and Codina, [131 ], recommend the following relations for three dimension cases:
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And in the two dimensional
TOTFIC 

hCV = X  m i n
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(5.100)

Where Lf is the length o f the face

2. Finite Volume (FV) Intermediate Momentum Step
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3. FV corrected momentum Step
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4. The Continuity step is solved using the momentum values from (5.102) at the n+1 "time" level
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Temperature is inferred from Enthalpy equation by using the following identity:
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(5.105)

6 . To close the equation set the Ideal Gas Law, Sutherlands Law and the Prandtl Law are used as seen 
below.

Jr —  

KCV “

PcyCf

Pr
(5.106)

The Prandtl number in [82], which is assumed constant for ideal gases at moderate temperature 
where Pr is 0.74.

Thereby for air at standard conditions the thermal conductivity parameter is.
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1.789 xlO~5x 1005 
0.74k c y

kcy = 0.024297W / m°K  

General R em arks
To obtain smooth solutions at all Mach numbers some additional techniques are required:

1. The above steps introduce 2nd order convection stabilizing terms mainly in the 
intermediate momentum equation (5.101) and the enthalpy equation (5.104).

2. These higher order temporal terms are a function o f the local time step. The time step is 
part of the stabilization process. These temporal terms should lie as close as possible to 
the stability limit.

3. The addition o f artificial viscosity is required for inviscid and viscous problems at 
Supersonic and Hypersonic speeds.

4. Typically a CFD solver needs to have a “kick” out mechanism.

5.5.2 Convergence Criteria for Compressible Problems
This kick out mechanism usually tracks the residual between successive iterations and compares it 
with a pre-defined tolerance. The steady state requirement for compressible problems is calculated as
follows:

f =
Re/
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(5.107)

Where L is the characteristic length o f the case investigated, i.e. an aerofoil length or the length o f a 
de Laval nozzle, Uoo is the free-stream velocity. The above equation is non-dimensionalized using a 
characteristic time scale o f  (L/uoo). The tolerance is reduced to 10"5, which in short means a steady 
state solution. For all intent and purposes is achieved when the velocity residual is less than 10'5.

For the CBS solutions to the compressible benchmark cases investigated, the results are validated 
with the associated analytical solutions, [84], [154], [155] where a tolerance o f 1% between these 
analytical values and the computed CBS result are deemed accurate enough for CFD solvers applied

toCAVs Hypersonic vehicles ie. £nabs <1% .

'abs =  100
1

NUMCV

NUMCV

C V=1

a n a ly tic a l
Pcv Pcv

a n a ly tic a l
Pcv

(5.108)

This comparison is carried out here because the industrial sponsor, requested that the final CFD 
scheme should be tested against a number o f compressible and incompressible benchmarks with 
theoretical results.

The explicit compressible CBS solution o f the fully incompressible fluid dynamics equations is not 
Possible [131]. Thus in order to compute incompressible flows where only the pressure and velocity 
change within the flow field, the CBS algorithm needed to be re-cast in the same fashion as the 
standard scheme to solve the pressure. This standard scheme is summarized by below and can be 
seen in [156], [157].
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5.6 Solving Incompressible Flows using the AC 
CBS algorithm

From the research carried out by Nithiarasu and Codina, [131], it is noted that tackling the My 
incompressible fluid dynamics equations using the copressible CBS scheme is not possible, unless an 
artificial compressibility method is employed. This is accomplished by utilizing a relationship 
between the changes in pressure relative to the change in density, and by assuming constant entropy 
for an ideal gas we obtain. 
dP 2 yP
—  = c = —  (5.109)

dp p
The compressible CBS procedure calculates the local pseudo time step (5.98). However, for 
incompressible flows the compressible wave speed c, and compared to uj is extremely large. This 
means that the pressure and velocity field end up numerically stiff, which imposes severe time step 
restrictions on the computations. To remedy this problem one can introduce the local artificial 
parameter p that depends on the local speed and local Reynolds number at each control volume. Then 
using relationship (5.109) and the continuity equation yields.
dp d (pu t) dp d p d P  1 dP 1 dP
——  — — -— —  z=> -  -  =  ——--------- z z > -------------- = ----------------  ( 5  1 1 0 1

dt dxi dt dP dt c2 dt p 2 dt
Where p is the artificial wave speed. According to Malan et al. [150] for incompressible flows this 
parameter is calculated as:

Pipy = max
f  o h

r~~ 2p&p s j' (5.111)
PJ^cv J

As stated by Nithiarasu and Codina, [131], sp is set to 0.5 for incompressible benchmarks which 
enforces an even weighting between adjacent control volumes.

/Stncv = mm A t”v )£wjv, (A t"v j (5.112)

where the convection pseudo time step for incompressible flow is analogous to the compressible time 
step

(A^ L = «  T T T  (5-113)
P c v  V 'U i U '

And the diffusion time step as presented by Malan et al. [150] is given by:

The pressure is computed for incompressible applications, the continuity equation (5.103) is replaced 
with the equation below (5.115) for the (AC CBS) procedure.

/ \«+i

P c v  - P c v - { P c v )  —  Z  (5 -115)
A F  y f = l jO T F I C

Finally the enthalpy equation (5.104) is dropped completely from the computational loop because 
incompressible flows benchmarks are assumed to be isothermal.

5.6.1 The Sequential Artificial Compressibility CBS Scheme
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The precedent artificial compressible characteristic based split (AC CBS) procedure described 
performed well for incompressible flow over a flat plate, Subsonic flow through porous media and 
pipe flow. Other variants o f this procedure were evaluated for these benchmarks but not to the same 
degree of success as this precedent method. Each step described below is applied to all the interior 
nodes in a sweep o f the grid. After this sweep the boundary conditions are computed. Then the 
sequential computational iterative procedure is repeated by going to step 1. The AC CBS method was 
implemented in the computing language FORTRAN and the simulations run within the cluster to 
solve the Navier Stokes system of equations.

1 . According to Malan et aL [150], for incompressible flows the artificial wave speed is 
calculated as seen in (5.111).

2. The CBS scheme incorporates local pseudo time stepping. The pseudo time step is given by 
the following equation: where C is the Courant number and depending on the problem is 
usually < 0.5 The convection time step is analogous to the compressible time step and the 
diffusion time step as calculated by Malan et al [150]:
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4. Corrected Momentum

1 * ^  pu, =pui - - - - -
' AV

(

(5.119)n a  ^  ^  dP A
Z  pf ,n A ~ Y u* E  " A

\  f= \,TO T F !C  L  f= \,TO T FIC  UAj

5. The Continuity Equation is solved using the momentum values from (5.119) at the n+1 "time" 
level as seen in (5.115)

P"+l _  p n  (  o n  \ 2 &
cv - Pc v - { P c v )  — Z  (p u, , n ,A),

n+1

(5.120)V- . . / J
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6 Check convergence to steady state values by sensing whether the relative error is less than the 
agreed tolerance o f 1 0 ‘5 or the number of iteration/sweeps is below the maximum 
iteration/sweeps, IMax, stipulated by the user. This value was set initially to 95,000 iterations.

7- If convergence has been achieved exit the procedure and display results otherwise begin 
c°mputational sweep by going back to step 1 .

5.6.2 Convergence Criterion for Incompressible Flows
As argued in section 5.4.2 the CFD solver needs to have a “kick” out mechanism when the algorithm 
has converged to a stable solution. The steady state requirement for incompressible problems is
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calculated in a similar fashion to the compressible problems. Where is the velocity relative error 
and is calculated by:
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(5.121)

The tolerance is set to 10'5. In the following benchmark cases the CBS solution is compared with 
their associated analytical solutions in [84], [154], [155] where a tolerance o f 1% between the 
analytical values and the computed CBS result are deemed accurate enough for CFD solvers applied 
to CAVs Hypersonic vehicles.
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5.7 Transient Flow
When transient effects are so substantial that the steady state CBS procedure seen in Section 5.5.1 
will not converge, this situation requires the mathematical consideration o f real time intervals. One 
example is the unsteady eddy flows behind a circular cylinder as seen in Sampaio, Lyra, Morgan, & 
Wetherill [158].

Only steady state benchmarks were modelled in this research because o f the availability o f analytical 
solutions for comparison and hardened validation. No transient benchmarks were tackled in this 
research, therefore the reader is directed to the available literature. For further details on the dual time 
step procedure the interested reader should refer to the available literature [159]—[161 ].

5.8 Concluding Remarks
This chapter describes the numerical implementation o f a 2nd ordered exp licit algorithm to 2- 
dimensions on general unstructured meshes. As already mentioned, some o f the major difficulties 
which have to be overcome when attempting the numerical solution o f the 2-dimensional Hyperbolic 
PDEs are: the non-linear nature o f the flow; the complex geometries involved in industrial 
applications; and the high storage and CPU time involved in practical solutions [7]. The fact that 
non-linear Hyperbolic equations such as the Euler system o f equations admit spurious solutions, is in 
general a result o f ignoring some physical effects in the determination o f  the model, such as the 
viscous effects. Although viscous effects may be negligible throughout most o f the flow, near 
discontinuities the effect is always strong, and the apparent discontinuities are in reality thin regions 
with very steep gradients [7]. Some conditions as stated by Hirsch [18], and Le-Veque, [73], must be 
imposed in order to pick up the correct physical solution and to guarantee uniqueness. For fluid 
dynamic problems the second law o f thermodynamics, which states that the entropy should increase, 
is invoked and turns out to be a sufficient condition to determine a physically correct and unique 
solution Hirsch, [18]. This condition is normally referred to as the entropy condition.

In addition to this entropy condition other important requirements o f the proposed CFD algorithm 
adopted in this thesis include:
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1. The use o f the finite volume method as the basis for spatial discretisation. Simply stated for 
multi dimensions, the finite volume formulation is an extension o f the finite difference 
approach.

2. A central differencing technique that does not rely on the determination o f the upwind 
direction or Jacobian evaluation removing much complexity in understanding and code 
writing.

3. The adaptation o f an explicit local time stepping approach for steady state problems.
4. The chosen algorithm can handle unstructured elements, an important features for non-linear 

configurations, such as the geometry o f Hypersonic CAVs.
5. The use o f techniques to capture shocks by using artificial viscous terms that guarantee an 

increase in entropy for CFD solutions.
6. 2nd order spatial accuracy that improves the likelihood that the scheme will satisfy the 

specification from industrial sponsors that the CFD algorithm should be as accurate, relative 
to the analytical solution as possible.

Improvements in accuracy, efficiency and robustness o f a CFD technique represents an important 
challenge that has to be overcome before present algorithm’s for unstructured grids can be applied to 
industrial applications. Another important and challenging issue refers to the exploitation o f the 
available parallel computer configuratioa

It is well known that the treatment o f the boundary conditions is an important step with associated 
costs on the performance in terms o f accuracy, stability and convergence o f the algorithm. Further 
study centered upon this subject must be undertaken with the hope to improve some characteristics o f 
the present formulations. The benchmark studies and results presented in chapter 6,7,8,9 and 10 were 
performed in 2D, and although the systemic implementation of the CBS algorithm has been carried 
out in 3D a careful study o f popular CFD 3D benchmarks needs to be carried out. This represents an 
important task to be pursed in the future.
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6 C o m p r e s s ib le  I n v is c id  2D F lo w  
A n a ly s i s

6.1 Introduction
The development o f numerical techniques for the simulation o f Hypersonic viscous flows is an area 
of current practical importance, due to the interest being shown by the aerospace industry in the 
development o f aerodynamic ally efficient Supersonic and Hypersonic vehicles. As stated by Hirschel 
and Weiland [5], the simulation o f the Hypersonic regimes o f  interest represents a formidable 
challenge to any flow solver due to the highly non-linear nature o f the interactions. Although our 
ultimate goal is to simulate numerically the full system o f Navier-Stokes equations, the importance of 
accurately modeling the inviscid flow cannot be overstated. The success o f viscous computations at 
high speed is dependent on how well the scheme succeeds in dealing with the inviscid convection 
dominated character o f  the flow.

Some major difficulties which have to be overcome when attempting the numerical solution o f the 2- 
dimensional compressible Euler equations are: the non-linear nature and hyperbolic character of the 
equations; the complex geometries involved for Hypersonic vehicles which tend to be curved for heat 
dissipation reasons; and the high storage and CPU time involved in practical simulations. The one 
dimensional problem in Chapter 4 is o f limited use, as it does not provide a strong enough test for 
evaluating the solvers ability at controlling oscillations propagating in 2-dimensions. Therefore two 
dimension Supersonic problems generally provide a better test o f shock capturing capability than one 
dimensional problems, where propagation o f disturbances can freely travel in the transverse direction 
transporting spurious oscillations in the process according to Greenshields et al [120]. We therefore 
devote much attention to develop strategies to damp out these undesirable oscillations by using 
artificial viscosity.

The large elapsed time necessary to produce structured grids for extremely complex configurations 
and the difficult control on the quality o f the elements represents major disadvantages when 
employing the structured grid approach. Therefore CFD practitioners have devoted much effort to the 
development and use o f unstructured mesh based finite volume or finite element procedures for 
compressible Euler equations. These efforts have been driven by the promise o f generating rapidly a 
sufficiently high quality mesh for complex geometries [7]. Unfortunately, the unstructured approach 
is accompanied by some well-known drawbacks. The major concerns are the accuracy and efficiency 
of generating steady results in terms o f CPU time and storage requirements. These will be of 
particular importance when the extension to the solver o f large 3-D problems is envisaged.

In the following sections, a detailed description is given o f the numerical formulations employed, 
with special attention focused on the finite volume approach to the Characteristic Based Split 
algorithm with artificial viscosity terms presented by MacCormack [29] with improvements 
suggested by Jameson’s 2nd and 4th ordered blend. The performance o f the resulting algorithm is 
assessed by comparing the discrete solution with the inviscid flow over a Supersonic 2D wedge. It 
must be emphasized that the generic use o f the term n-order scheme refers to the order o f  the scheme 
in the smooth region o f the solution.

As mentioned previously, the additional operational count involved in the computation using higher- 
resolution upwind procedures, including the promise o f  extra difficulties and complexities which
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need be faced extending upwind schemes for implementation on multidimensional unstructured grids, 
make it less attractive in the present research than central differencing procedures. Therefore high 
resolution, central differencing, shock capturing will be employed as the candidate numerical scheme 
in the remainder o f this research work.

6.2 The Euler Equations
The Euler equations as described in Chapter 2 describe flows where viscosity, thermal conduction 
and diffusion are ignored and are called inviscid flows. These flows are non-linear, multidimensional 
and are assumed to be laminar for all flow speeds. As mentioned previously, interest in solving the 
Euler equations in the aerospace sector began for applications where viscous effects are deemed to be 
negligible.

The three dimensional Euler equations apply to scientific problems where viscous effects can be 
- assumed to be negligible The set o f  the Euler equations is closed with the addition o f the perfect gas 
I model, this equation and the various variables are detailed in Chapter 2: Mathematical Basis.

While we adopt the Euler equations in the knowledge that they are not an accurate representation o f 
the physical reality, it will allow us to compare the candidate scheme with some closed form 
analytical solutions.

6.2.1 The FV Approach for the Euler Equations
The candidate density based scheme used here is based on the Characteristic Based Split (CBS) 
algorithm which has been originally developed by Nithiarasu P, Codina R, [131], in a finite element 
context. Other research focused on extending the CBS scheme for a variety o f fluid applications such 
as visco-elastic problems and incompressible flow problems [136], [138]. In Nithiarasu P, Codina R, 
[131], the finite element CBS algorithm was shown to be stable for a number o f regimes, ranging 
from incompressible to Hypersonic flows.

The Characteristic Based Split algorithm enhances the stability o f a central differencing approach for 
the convection flux terms by adding extra temporal terms to the governing equations. For a more 
comprehensive study o f the numerical stability, the dual time stepping methodology and the 
limitations o f  the algorithm for finite elements the reader is referred to Nithiarasu P, Codina R, [131].

The CBS algorithm as previously mentioned can be applied as either an explicit or an implicit 
procedure; see Massarotti, Arpino, Lewis, & Nithiarasu, [132], for a comparison on accuracy and 
efficiency o f these approaches. So far in this research the CBS scheme has been applied as an explicit 
technique that, ultimately, for extension to unstructured grids has the advantage o f negating the need 
for matrix solvers. Whereby for larger 3D problems we can circumvent solving large matrices, which 
will hopefully avoid the large overheads in CPU time and memory storage.

Application o f the Finite Volume (FV) method begins by expressing the differential equations we 
wish to solve as an integral within a generic cell volume V, which is assumed fixed in space in this 
research. Divergence and gradient terms are then converted to integrals over the cell surface A, using 
a generalized form o f Gauss’s theorem The integration requires fluxes at cell feces. For unstructured 
Polyhedral with an arbitrary number o f faces, the intended meshing technique for this project, it is 
desirable that the interpolation to a given fece is between owner and neighbor cells only, otherwise it 
becomes excessively complex according to Greenshields et al [120]. The second ordered CBS 
algorithm can permit this and is described as a central differencing procedure rather than the higher

119



order up-winding processes o f “reconstruction” , “evolution” or “projection” . There is, therefore, no 
need for any polynomial functions.

For unstructured grids in general there is no alignment o f the mesh with the co-ordinate system and 
the number o f  neighboring cells can vary from cell to cell [120]. The only statement that can be made 
about the cell connectivity is that a cell feee is either internal and intersects two cells only or 
comprises part o f an external boundary and belongs to a single cell only. In presenting the numerical 
scheme, we must dispense with notations based on nodal values ‘j ’ and ‘k’ or points o f  a compass 
[120].

6.2.2 The FV Approach on Unstructured Grids
The inviscid CBS method in ID as seen in Chapter 3 has a convective and a diffusive like term. The 
convective and the diffusive terms are first and second ordered respectively. From hand calculations 
of initial computations, the second ordered terms are used as a correction to decrease the magnitude 
of the first ordered terms. These second order terms were originally computed by linear interpolation 
of centroid values o f the 2nd ordered Laplacian differential; ultimately, this implies a large stencil. 
This original method was thought to become problematic around the shock fronts as it does not 
adequately capture the large gradients that are needed to clip the convective terms.

Therefore we propose in this research to obtain a more accurate local approximation for these 2nd 
ordered diffusion-like terms:

1. I propose that the same method is used to determine the diffusion contribution for a non­
ortho gonal face.

2. I propose the calculation o f a more concise local value for the Cartesian derivatives on the 
cell faces.

However the use o f these two strategies demands the stipulation o f the primitive variables on control 
volume corners alternatively known as the cell vertices. This was done through linear interpolation 
from the 4 adjacent centroid values because o f ease o f computation. These early simulations 
confirmed that such a small stenciled approximation, instead o f large stencils for the second ordered 
terms, is important for accurately resolving the shock however the CBS scheme still seems to be 
susceptible to instability around the stagnation point at the leading edge.

6.2.2.1 Cross Diffusion Terms
When using unstructured grids it becomes possible to accurately fit a mesh to any solution region 
without the use o f cell blockages [17]. In addition, attractive features can be placed in the mesh to aid 
the solution procedure, for example a polar region can be positioned near an inflow as surmised in 
Versteeg & Malalasekera, [17] where there is a rotational component to the fluid velocity. However 
there is an associated cost as fitting meshes to complex boundaries can frequently lead to mesh 
skewness. There are two major types o f mesh skewness firstly non-orthogonality, the definition of 
which will be given in the following section, and secondly elements which are not convex. Whereby 
neighbouring elements possess bounding feces which intersect each other.

The process o f  generating a mesh should not in general allow elements, possessing intersecting faces 
which are not convex. A good mesh tool will reduce the level o f mesh skewness but for highly 
complex geometries there will always be some degree o f  skewness in the generated mesh [143]. To 
accurately model the transfer o f conserved quantities through a region where there is mesh skewness 
requires corrections to be made to the numerical discretisation o f the conservation equations. To 
simplify these corrections the skewness o f a mesh is split into a number o f  contributing components.
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These two types o f skewness will from now on be denoted as non-orthogonality, which affects the 
diffusion terms only, and non-conjunctionality which affects the interpolated convection face values 
only.

6.2.2.2 Non-Orthogonality
What follows is a detailed examination o f the form the diffusion flux should take for unstructured 
grids. The following technical notes could apply to 2D elements such as triangles and quadrilatrals or 
3D elements such as tetrahedral through to hexahedral elements.

In unstructured grids the lines connecting two centroids P and A are not necessarily parallel to the 
fece unit normal nj, as shown in Figure 6-1 this is widely known as non-orthogonality Versteeg & 
Malalasekera, [17].

a y
d r y

d(f>

mmm s a w mmm m m m  m m m
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A #
n
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d x x h — X .
d r /  A r y

Figure 6-1 Unstructured grid with terms that will aid in the computation o f  the non- 
orthogonal diffusion term.

For the CBS algorithm procedure will need to compute a number o f diffusion terms around each cell 
fece, these scalars are conventionally represented by (/), which takes many values.
<!> = (puu, puv, yow, P, puE , pvE, uP, vP) 1)
From Figure 6-1 the computed variables d < f > l d %  and d ^ / d r /  in terms o f x and y are to be re­
cast to compute the Cartesian derivative using the product rule as summarized in [17]: 

d<f> __ d < f>  d x  d < />  d y  (6-2)
d x  d < ^  d y  d g

d<t> _  d<f> dx  d<f> dy  (6.3)
dry dx dr/ dy  dr/

Rearranging (6.3) and (6.2) an expression for the Cartesian derivative in the principal directions x,y is 
obtained which represent the diffusion terms:
£0 __ J_ r d<j) dx  d<f> dx  ̂  
dy J  K d% d r/ dry d g  J
££ = 2_f dy d</> d y |̂ 
d x  J  Q g  Q r j  d r /  d g  J 

where
j  =  ̂dx dy dx dy

Kd% dry dry d ^  J

(6.4)

(6.5)

(6 .6)
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Using the quantities in Figure 6-1 we have everything needed to calculate (6.4), (6.5) and (6.6). This 
procedure was used to represent the artificial viscosity terms as seen in (6.20) later in this chapter. 
Here a small stenciled approximation is preferable especially around non-linear regions o f pressure 
such as shocks and stagnation points.

The derivation o f the Cartesian derivatives above in (6.4) and (6.5) were in two dimensions only 
because we are primarily concerned with the development of robust algorithms for 2D benchmarks, 
however it is worth asking the question - what happens in three dimensions? Within the appendices 
we set out the procedure to calculate these Cartesian derivatives in three dimensions. As mentioned 
when employing unstructured grids the calculation o f the Cartesian gradients is needed in the 
governing equations. Scalars and vector values need to be computed on the vertices o f  the control 
volume. These vertex values are calculated using linear interpolation from the neighboring cells much 
like lace interpolation, i.e. for quadrilateral elements the vertex values will have a contribution from 
all the control volumes containing the vertex point. These small stenciled gradients are required in the 
artificial viscosity terms that follow further on this chapter.

6.2.23 Non-Conju n cti onal i ty
For central differencing methods it becomes essential to calculate values for the convection fluxes 
and pressure, on the laces. This quantity should be an average value for the whole o f  the face and 
should be found at the face centroid. The estimation o f the face value is achieved through 
interpolation, in most cases using distance weighting, along the lines connecting the centroids of the 
elements either side o f the lace as discussed by Croft, [143]. The key axiom o f central differencing 
schemes is that the variables change linearly between two cells7.

Q

Figure 6-2 Shows a case where the lace intersection point,I, o f the line connecting adjacent 
cells does not coincide with the centre o f the face.

Figure 6-2 displays the information for non-conjunctional skewness which occurs when the line 
connecting the centroids P and Q either side o f a face, does not pass through the midpoint o f the face, 
point f  The non-conjunctionality correction terms employ an interpolated value at the intersection 
point, point I, and use additional gradients o f the scalar quantity, <p, at the face to obtain a more 
accurate estimate for the lace centre.

~  4*1 +  <Lif
d</>
d x

(6.7)
/

7 A lthough th e  CBS a lg o rith m  is a central d iffe renc in g  schem e it  uses h igher o rd er term s to corre c t th e  

m ag n itu d e  of th e  face  values so they a re  n o t exactly  like o th er centra l d iffe renc in g  m ethods
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where d If is the distance vector from the intersection point, I, to the face centre, f  Problems arise in
the evaluation o f the gradients of p  at the lace, as seen in (6.7) as the calculation o f the gradients 
require prior knowledge o f the face values for p

dx V  f
dp
d x , { d v ) j (6.8)

[d (|) /dx]f was previously calculated by the subroutines in PHYSICA by linear interpolation o f the 
two adjacent element values either side o f the face as documented by Croft, [143]. This dependence 
can be resolved by transforming (6.8) and the similar equations for the y and z gradients into a 3 by 3 
matrix equation lor the unknown element gradients. Unfortunately, the solution o f this equation 
would require the inversion of a matrix which would be computationally expensive for very large 
meshes. Therefore, an improved alternative method is employed in which the previous iteration’s 
gradients are stored and these values are used on the right hand side o f (6.8). Moreover this correction 
is not applied to any o f the gradient terms as the most commonly used assumptions in [143] is that 
quantities vary linearly between points so gradients o f gradients would be zero leading to no 
correction.

The following benchmarks will initially utilize orthogonal quadrilateral meshes before extension to 
unstructured triangular non-orthogonal meshes. As a consequence the numerical discretization on 
non-orthogonal triangular meshes described above, will be employed to compute the compressible 
flow over a 2D wedge, proving the versatility o f the FV CBS algorithm

6.3 Inviscid 2D Supersonic Wedge Benchmark
To obtain a base knowledge of multidimensional Supersonic problems, the Supersonic wedge was 
recommended by the industrial sponsors at ESA, because this is an application with practical 
importance to the design o f Hypersonic vehicles as it represents sufficiently well the leading edge o f 
a fuselage. The accurate capture o f an oblique shock/discontinuity at an angle to the mesh makes this 
problem challenging in terms o f stability. Three wedge geometries were tackled where close 
agreement was sought with the analytical results. Investigation into inviscid flows was done to enable 
an understanding o f the effects that the extended form o f artificial viscosity and mesh resolution has 
on obtaining stable solutions. For example the errors involved should reduce with the increase of the 
order of the scheme and the refinement o f the mesh.

The Supersonic inviscid wedge case was then reviewed and followed from Anderson, [84]. The 
motivation to study this problem here was because this Supersonic case has a simplified closed 
analytical solution that can be used to evaluate the accuracy of the candidate CBS algorithm, it is also 
able to identify the limitations o f the CBS algorithm when used to model multidimensional flows.

Due to the practical impossibility o f testing the algorithm for every scientific benchmark and physical 
Problem, only the most important benchmarks are addressed in this study. Moreover it must be stated 
that some o f the results which will be presented here were obtained during the early stages o f this 
research before some improvements were introduced later. In this way, they do not represent the best 
Possible results, but rather a typical performance that can be expected from this algorithm
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6.3.1 Boundary Conditions
This study into inviscid flows also enabled an understanding o f the effects that the 2D boundary 
conditions have on obtaining stable solutions. The boundary conditions can be put into 4 categories 
for the 2D Supersonic wedge; Free-stream boundaries, Solid wall boundaries, Symmetric boundaries 
and Outlet boundaries, and these are represented in Figure 6-3 below.

Free-Sta

Free-Stream

viscid Slip Wall
Symmetric

O
ut
let

Figure 6-3 Boundary Conditions for 2D Supersonic wedge.

6.3.1.1 Free-Stream
The free-stream boundaries as seen on the inlet and top o f the domain represented in Figure 6-3 are 
otherwise known as a Dirichlet boundary condition, where the velocity and scalar values are fixed to 
the respective free-stream values. For example the first wedge problem uses the following 
parameters.

2

„  - i  i* 2
Poo 3m
7;  = 3 0 0 ^
and Prx> = p x RTx

63.1.2 Outlet
After preliminary simulations with a Neumann boundary condition it was found for the wedge, that

the 2nd ordered extrapolation o f the solved variables is required and, this extrapolation is preferable 
fo r rap id co nvergence: 
d2(p») 

dn2
= 0
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( 0 ) /+ 1 - ( H J  _ ( ( H ,  - 0 * 0 ,- ,)
AW/+1/2 ^7-1/2

where Aw/+1/2 = A/ii+1/2 = A/r implies that the distance connecting adjacent cells is approximately 
equal. Then it can be shown after re-arrangement that:

( H +1= 2 ( H - ( H - 1

6.3.1.3 Symm etric Plane
The default approach for symmetric planes are a Neumann condition i.e. the first ordered 
extrapolation for the scalar variables and normal velocity at the boundary are assumed to be zero, 
however, since the tangential velocity on the boundary is zero, this is analogous to a slip wall parallel 
to the flow. It is worth mentioning that this strategy is only used to model problems where 
symmetrical profiles are predicted, scientifically, such as slow laminar flow, through symmetric pipes 
or ducts.

81 = 0
d n

where (/> = (T, P, p , u) and \ f  = 0
T = TJcv

Pf ~ Pc.v
p  =  pr cv

Uf = UqV

'Pzn=2P,-,-r,-2Free-stream conditions

Interior
nodes R T

= p\ CT +  —!*• I y'\  1 " 2

# Analytical

Figure 6-4 Boundary Conditions for 2D Supersonic wedge.

63.1.4Inviscid Slip Walls
Firstly it is worth mentioning that the problem of slip walls is limited to inviscid flows and is replaced 
by non-slip walls for viscous problems. Initially we developed and tested the slip wall using the 
Frandtl Meyer function used in Anderson, [84], and presented in the appendices. However during
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the initial simulations, disruptive numerical oscillations at the leading edge oceurred resulting in 
divergence o f  the solution. Therefore a remedy was sought using the popular ghost cell approach as 
covered in [73], [162], [163].

G host Cell Approach
For the following runs, the Prandtl Meyer Wave was replaced with the Ghost cell approach. For the 
first benchmark o f a Mach 2 inviscid Wedge the solution converged to the analytical solution, an 
encouraging indication that the coupling o f the ghost cell approach and the FV CBS approach is 
compatible with the inviscid slip walls. The Ghost cell approach can be reviewed in [73], [162], [163] 
and is summarized below.

C V

wall

wall

Figure 6-5: Ghost cell approach.

where U0 is the velocity parallel to the wedge surface and V0 is the velocity normal to the wedge 
surface. Moreover for this approach (u0)G = ( u 0 )  and (v*) = — { y f, ) c:v finally the scalar variables 
at the ghost cell should be equal to the adjacent cell ( ^ )  = {4>0 )cv where the scalars are given by 

0 = ( ' T , p , p ) -

(6.9)

(6 .10)

(6 .11)

(6.12)

where Fu is the velocity on the face o f the control volume that straddles the slip wall.

UQG =Ux G C0S ^  +  Yy,G

V  =  _M*,Gs i n ( ? + V c o s '9

Ux G=U0GCOS@~W0G

v j  g = u0g s in  # + v dtG co s  6

Uf,wall ~  ® ^ ( Ux,G +W,;Cv) 

Wf,wall = 0-5(V;y,G + V v )

(6.13)

(6.14)
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6.3.2 Initial Conditions
As stated in Chapter 4 to start the iterative calculations, we must stipulate initial conditions for p  ,
T  and V  for time=0. As previously stated if the initial conditions are too for from the analytical 
results, the initial pseudo time gradients will be very large causing instability. The user is therefore 
required to use any information or knowledge about the flow problem. For this present problem T and 
P increase and p and V decrease across the shock front. However for simplicity we assume a constant 
value of the flow variables, T, P, p and V, throughout the solution domain.

6.3.3 Procedure for Analytical Solution
The analytical solution was taken from relationships found on page 135 o f Anderson, [84], which 
were initially derived by Rankine, [164], and applied to the wedge seen in Figure 6-4. The main 
assumption is o f a perfect gas with no chemical reactions. To determine the shock angle the equation 
below is solved implicitly.

sin6 p , -  

' 2M l+ \

M l+ 2
M l

+ sin2 sin4 /?„ +

M
+

(r+  i)2 | ( r + i )2

m :

\
sin2 0

2 _ cos2# _ 
■ °  ' = 0

(6.15)

sin p w +
Ml

where 0 is the wedge’s half angle, p w is the shock angle as measured against the horizontal line and 
Moo is the free-stream Mach number. A secant root finding method was used to determine the value o f 
Pw- This root finding method, is the simple subroutine program oblshk written by [165] from the 
publically accessible NASA website [166]. The program oblshk, uses a, secant root finding method 
with the initial guess coming from approximate relations. It then evaluates a theta-beta-Mach relation 
from the wedge half angle, 0 , and the parameters such as the Mach number, T, p and P after the 
shock wave.

6.3.4 MacCormack’s AVT

The following technical discussion on MacCormack’s artificial viscosity term (AVT) should not be 
confused with the predictor-corrector explicit 2D finite difference scheme derived by MacCormack 
[29]. By augmenting the CBS steps with MacCormack’s AVT we try to suppress decoupling which 
can lead to divergence. The stabilization o f the CBS algorithm by the addition o f this numerical 
source term is necessary if the stability region o f the scheme is to be extended [131]. This is initially 
implemented because the alternative AVT developed by [105], needs a larger stencil and is overly 
complex when applying it to unstructured non-orthogonal grids. The explicit CBS continuity equation 
is as follows:

/̂?+i

+ (S])ck (6 -16)
nn+1 _ n At
Pcv Pcv X  (Pu,* niA)f

\f= ] ,T O T F IC  JAV

where TOTFIC is total number o f feces in cell
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\(? u + H p )[, + (A u -,| ’

(6.17)

This form o f artificial viscosity is in the original finite difference formulation taken from Anderson, 
[84], and is equivalent to adding a 4th ordered differential term where Cx and Cy is the user defined 
weighting parameter. A recommended value by Anderson for Cx and Cy is 0.2 although a certain level 
of experimentation is needed on a case by case basis, for optimizing the accuracy o f and the speed of 
generating a numerical solution. The greater this ( s  y  value the more dissipation is applied to

V 1 ) c v

areas o f the domain that contain large numerical gradients. The intermediate momentum equation, 
just like the continuity equation above, has an artificial viscous term added, with the same rationale in 
mind to stabilize the velocity field. Thus, Cx and Cy appears in the three terms ($  V' , ( s  y  and

V 1 ) C .V  V 2 / c v

( s  y  • However for unstructured un-ortho go nal grids the artificial viscous term in (6.17) is
\  3 ' c v

modified in this research to deal with mesh skewness:

c. Z
f=\,TOTFIC

dP
H x  ~ =d x f

I
f= \JO T F lC

y  n ? £
n x | (  P adj +  P CV )  \f= \JO T F IC  f

+
CV

C. I
f=l,TOTFIC

dP
ny r

Z  K|
f= \JO T F lC

dp
ny ~ r

to tfic  oy SJcv

(6.18)

where X/ is the non-dimensional area (unity) which implies that the geometric values such as the 

free area and control volume do not directly affect the magnitude o f the S term. Hence, the ) and

) terms are calculated in a similar fashion to (6.18) where the p terms in the brackets, {}, are 

changed to pu and pE terms .
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6.4 Sequential FV Inviscid CBS procedure

The sequential computational procedure for the CBS finite volume inviscid algorithm can be done in 
a number o f ways but for this research the following general procedure was pursued after numerical 
experimentation. Each step described below is applied to all the interior nodes in a sweep o f the grid. 
After this sweep the boundary conditions as seen in step 6 are computed. Then the sequential 
computational procedure otherwise known as an iteration is repeated by going to step 1. The CBS 
method was implemented in the scientific/engineering computer language FORTRAN 95 and the 
simulations run within the high performance cluster in Swansea University to solve the system of 
equations, where the mesh o f the geometry o f each of the domains is given.

1. The CBS schem e incorpora tes  local p se u d o  time stepping. The pseudo  tim e  s te p  is given 
by th e  following eq ua tion :  w h e re  C is the  Courant n u m b e r  and depend ing  on  th e  
p rob lem  is usually <0 .5 .

A t"cv=C hcv

c '‘v+.•Jiw Tcv

2. The numerical dissipation is calculated from  (6.20)

(6.19)

=

Cx
^  8P  > , nx -

f=\,TOTFIC 8X f
y  \nx\[Padj +

d{p )

f=\,TOTFIC

c . 8P
2L, ny~ Tf=\,TOTFIC Cy

X  h i  ( f L e + P c v )f=\,TOTFlC.
3. Intermediate Momentum step

> , ny —
f=\,TOTFIC '  d y f  J c v

(6.20)

/

pu . =  pu'l -
A t
AV

V

f=\,TO TFIC

+ 7 "* £  [div{p
+ (6.21)

f=\,TO T F!C

where Ui - intermediate velocity component in the i direction (m/s) 

y  denotes a summation over cell faces
f=\,TOTFIC

4. Finite volume Corrected Momentum Step

pu, = p u - - - - -
' AV

dP
\

Z  p/ * nj Af-I  z r
f= \,TO T F IC  U A jf= \,T O T F IC

(6.22)

5. The Continuity Equation is solved using the momentum values from (6.22) at the n+1 
"time" level. ____________________________
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n n+1 — n nPcv ~ Pcv
At
AV Z  {fmi * niA)>

\  f= \,T O T F IC

\ w+1

+ (6.23)

6. Enthalpy Equation

_ X  {{pEuiV niA) -  X . ((Pu,),niA)f +
A t
AV

v
f=\,TOTFIC 

(
At +—w.
2 I

f=\,TOTF!C

f=\,TOTFIC 

\
8{p£u>) ,—=----- -•n J

dx.. J
' f

+ I
f=l,TOTF!C

• n,A 
dx. J

(S"J (6.24)

fJJ
To close the equation set the Ideal Gas Law, Sutherlands Law and the Prandtl Law are used. The 
Prandtl number, which is assumed constant for ideal gases at moderate temperature [82] where Pr 
is 0.74.

7. Compute the outlet values using linear extrapolation.

n+1
N^-2,1 

n+1
^ mav-  2,J 

n+1
m̂ax-2,J

w+1

(6.25)

(6.26)

(6.27)
(6.28)

and at the inlet and fix the velocity, density and temperature. 

={2,3,9}

P .=  1 - 2 ^/ oo 3m
71 =300A:

(6.29)

8. Check convergence to steady state values by sensing whether the relative error is less 
than the agreed tolerance of 10'5 or the number of iteration/sweeps is below the maximum 
iteration/sweeps, IMax, stipulated by the user, this value was set initially to IMax =95,000 
iterations.

9. If convergence has been achieved exit the procedure and display results otherwise re-start 
the computational sweep by going back to step 1.

Quotients

Linear interpolation in terms of the neighbouring nodal values is adopted for the face fluxes. For 
the two momentum equations, intermediate and corrected momentum the derivative terms can be 
calculated by careful substitution of the following discrete terms.

Let U = pu and V — pv
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General Remarks
The CBS scheme has been derived as either fully explicit or semi implicit scheme. The imp licit time 

I integration does not require severe time limitations as with fully explicit schemes. However this 
comes at a cost with a direct or indirect matrix solver being employed. The CBS algorithm in this 
chapter was employed as a fully explicit time integration because o f this reason. However this results 
in a severe restriction in the time step which is remedied when using the local finite wave speed and

o
the Courant number stopping the pressure field from diverging from the true pressure field.

In the present study we are principally concerned with the spatial accuracy o f the schemes under 
investigation. Therefore, the time derivatives in the equations are discretized by a simple Euler 
explicit scheme rather than more elaborate methods, such as higher order Runge-Kutta time 
integration. There is however, no difficulty in incorporating such methods for time integration into 
specific further research.

6.5 Mach 2 Inviscid Wedge Study
; As stated previously the motivation to study this problem was because the Supersonic 2D wedge case 

has a closed form analytical solution that can be used to evaluate the accuracy and stability o f CBS 
algorithms. It is also able to identify the limitations of the CBS algorithm when modelling Supersonic 
compressible flows. When large Mach numbers (Mach>5) applications are modelled, numerical 
oscillations in proximity o f the shock propagating in the transverse direction are strongly damped by 
the flow, resulting in errors being pushed out from the solution domain. However at transonic or low 
Supersonic speeds (Mach<2) the oscillations are more likely to build up causing instability [120]. 
Therefore this benchmark at Mach 2 represents an important challenge for the CFD solver chosen. 
Moreover, the main challenge for the numerical procedure in this case is the resolution o f the 
discontinuity at the leading edge. Prediction o f the discontinuity is extremely sensitive to dissipation 
of the numerical scheme; the more dissipation, the thicker the shock meaning an un-physical solution. 
However too little dissipation leads to spurious oscillations in the solution causing instability or 
divergence.

6.5.1 Analytical Solution

The analytical solution for this benchmark is obtained using an iterative approach in the subroutine 
taken from Slater, [165], where the input is the free-stream conditions and the 2D wedge’s 
geometrical parameters, where L is the length of the wedge P is the shock half angle, 9 is the wedges 
half angle and oo denotes the reference values.

8 Using the local pseudo time stepping scheme does not capture the transient nature o f the flow.
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pw=1.18frg/w3

Figure 6-6 Schematic o f the Supersonic Mach 2 150 Wedge with primitive variables post
shock.

The oblique shock wave evolves from its leading edge as shown in Figure 6-6. The computational 
domain should be high enough so that the shock does not exit the domain at the top and instead exits 
the domain at the right outlet boundary. Meaning that the flow variables as seen in Section 6.3.1.2 can 
be extrapolated at the right hand boundary and a free-stream boundary will be applied to the top 
boundary.

Table 6-1- Grid and flow parameters for Mac 1 2 Wedge.
Mach 2 
Wedge

M4-] pofkg/nT] ToofK] OH Nx Ny Nt

2 1.18 300 15° 76 62 4712

6.5.2 Solver Results
During hand calculations o f  the following simulations it became apparent that the CBS calculation is 
highly dependent on the higher order terms in the intermediate momentum and enthalpy equations. 
Divergence is encountered for the numerical formulation when the Courant number >0.1, therefore a 
value o f  0.05 was employed for all the cases in this chapter. When the steady state solution is reached 
the termination o f the calculation can be done automatically in the code by a test calculation, sensing 
when the changes in the flow variables between each iteration becomes smaller than a prescribed 
tolerance.

As mentioned the relative errors o f density, velocity and temperature o f the order o f  10'5, is an 
adequate relative error for CFD, and because the relative errors prove to be a useful indicator of 
whether a CFD solution has fallen to the steady state solution. The following fixed mesh was 
employed with a fixed mesh spacing so that the effect o f  increasing the artificial viscosity can be 
ascertained. This is done by increasing the artificial viscosity term by substituting different values of 
Cx & Cy of 0.1,0.2,0.4 and 0.6.

Shock w ave

r  M2 = 1.445 
T2 =365K

P2 = 222373 N  / m2 
p2-  2,0k ^ n f

-
— -— — L - 1.00/;?
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FEMGU 7 .0 -0 4  : PHYSICA+ E va lu ation  13 MAR 2014 1 2 :2 7 :2 0  MESH_4712

Model: UEDGE_15DEG_4712 
A n alys is : PHYSICA

Figure 6-7- Meshl, Containing 4712 quadrilateral elements that was used to capture Figure
6- 6 .

6.5.2.1 Artificial Viscosity Parametric Study
As Lyra, [7], states the 2nd order numerical viscosity term damps 2nd ordered modes, helping the 
stability behaviour o f the algorithm, but it is not enough to damp the numerical errors introduced by  
the limiting procedure. Ultimately the residual cannot always drop below a certain level. The 
convergence behaviour was also found to depend strongly on the value o f Courant number, C. The 
initial results were obtained using MacCormack’s AV term, where Cx and Cy in equation (6.20) was
tuned for the investigated benchmark. Where C x = C y = [ 0 . 1 , 0 . 2 , 0 . 4 , 0 . 8 ]  .This form o f artificial
viscosity is taken from Anderson, [84], and is equivalent to adding a 4 ordered differential term. 
The stabilization o f the CBS algorithm by the addition o f this numerical source term is necessary to 
extend the stability region o f the scheme for this problem.

The Mach speed is plotted for each of the Cx and Cy values seen above for all control volumes 
adjacent to the bottom boundary. Starting at the inlet (X=0m) and running through to the trailing edge 
(X=l .5m). For comparison purposes the Mach components are plotted against the analytical results.
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Mach along the surface of the 15 deg Wedge at M=2 ( 4172 Elements) 
2.1

2.0

1.9
Mach
Speed 1.8 

1.7 

1.6 

1.5

1.4
.5

Figure 6-8- Quantifying the effect that the value for Cx & Cy has on the converged Mach 
profile for the Supersonic wedge depicted in Figure 6-6.

The purpose o f  this plot is to evaluate how increasing the value o f Cx effects the CBS’s ability to 
resolve the discontinuity. The vertical axis is labelled with “Mach number” and the horizontal axis 
label with “x(m)”, the length along the wedge from the inlet in metres. The main trend displayed in 
Figure 6-8 is that as Cx and Cy is increased, oscillations are damped, however, the shock becomes 
smeared causing a converged un-physical solution; something o f a drawback. The Mach speed as 
calculated in the CBS solver using Cx and Cy values as seen in the key ie. 0.1, 0.2, 0.4 and 0.8 are 
shown in Figure 6-8. This is compared against the analytical solution as seen as the full back line.

 Analytical
—  Cx = 0.1
—  Cx = 0.2 

Cx = 0.4
' Cx = 0,E

0 0.5 1.0 1
X Dlst (m)
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Mach Speed along surface of the 15 deg Wedge at M=2 (4172 Ele)
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Figure 6-9- Quantifying the effect that the value for Cx & Cy has on the converged Mach 
profile for the Supersonic wedge depicted in Figure 6-6 magnified for the post shock profile.

Figure 6-9 is a magnified plot of Figure 6-8. This shows conclusively that the Mach number solution 
as calculated by the CBS algorithm, is not in perfect agreement with the analytical solution even 
though the algorithm has converged to relative density errors of the order o f 10‘ with the 4 different 
Cx and Cy parameter values. Particularly inadequate are the large undershoots after the shock at 
(X = lm ), because the Mach numbers are all under-estimated. A CFD solution should display accuracy 
of the solution in relation to analytical/experimental results. Even with large values o f Cx and Cy the 
solution seen in Figure 6-9 seems to be lacking in accuracy in relation to the analytical solution. 
Therefore the challenge as the next set o f results will show, is to determine the adequate type o f 
artificial viscosity which should be large enough to damp instabilities and, at the same time, be small 
enough to avoid the destruction o f flow features such as the discontinuity.

6.6 Jameson, Schmidt & Turkel’s AVT
Just like the collaboration between the Finite Volume CBS algorithm and JST AVT in the 1 -D results 
in Chapter 4, MacCormacks AVT in this chapter was replaced with the JST AVT that importantly has 
a fourth ordered term that is activated in the inviscid region of the flow.

The mono-artificial viscosity term (AVT) devised by MacCormack [29] and displayed in Figure 6-8 
and Figure 6-9 is easier to implement for non-orthogonal unstructured grids notably because this is a
d2 (£/) ordered term whereas Jameson, Schmidt & TurkeTs artificial viscosity term (JST AVT) has an 

additional, d4(C/)term.
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According Jameson & Mavriplis in [60], the JST AVT in smooth regions o f the flow the d4 (£/) term

is activated and the d2(f/)  is turned off, which ensures the second order accuracy o f the CBS
scheme. Therefore the next step in this case study, just like the approach taken in the De-Laval study, 
was to employ a modified form o f JST AVT in place o f MacCormack’s AVT in an attempt to drive 
down the absolute error to less than 1% from the analytical solution, increasing the confidence o f  the 
accuracy o f the CFD results.

6.6.1 Numerical Implementation of Jameson, Schmit & TurkePs AVT
Now the energy equation, the intermediate momentum equation and the continuity equation will all 
be coupled with an JST AVT.

A / v +1
^  / -------- ^ + (Dj )ncv (6.30)Pcv ~ Pcv AV I ( />", •  « A

\ f = \ ,T O T F lC  y

The term, D y & Dev, are interchangeable. This term, Dev, in (6.30) is calculated by splitting the 2nd 
and 4th ordered derivatives into two 1st order and 3rd ordered derivatives, on each o f the cell faces.
The 2nd ordered artificial dissipation term is activated in regions where gradients are changing rapidly
such as shock waves and the 4th ordered term is activated where flow regions have relatively smooth 
property fields.

DrI J = k f}d 2{ u ) +k ' - y { u )  (6.3i)

Dp = Dsp-Dyp
r\ n   ryj ryi

U x P l  ~  U I+1/2,.I “  U 1-\I2,J 

Hence
D  nn — D ” — / T 7 
U y P l  ~ I ,J+l/2 UI,J-l/2

Let

D " « ,2„, = (*£!„,., ( p " M J  -  p " u) -  eZi,,{ P l v  ~3P ’M J  + 3 p U j  )) (6-32)

where £,^/2 is called the 2nd order weighting value.

£ ® 2 = £ l2)max(i (6.33)

where Vx is the pressure sensor "switch” and is always positive providing the domain is not in a 
vacuum Jameson, Schmidt & Turkel’s [105].

v =
f P" _I+\ 2 p; +p nt  ri~\

rI+l + 2 P," + p nri~ i )j

(6.34)

£•£1/2 = max(0,(A:l4) (6-35)

If is greater than &(4) then the s)%2 value is zero meaning in inviscid regions o f  the flow the 

term s \\}/2 damps out higher order oscillations. The weighting parameters that are recommended by 
Jameson, Schmidt & Turkel’s [105] for Supersonic applications are:

k (2) = 0 . 2 5 , £ (4) = 0 . 0 0 4
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So for the CBS continuity equation D" becomes.

D , ( P ) 1  = (6.36)
eS/2 [pi, - P i ) - ( p l 2  ~3 p i ,  + 3 -  )

—*7 -1/2 {P i — P i-\) + e /-i/ 2 ( Pm  — 3 p i  + 3̂ J'_ — p1_2 j 
The dissipative terms for the remaining equations are obtained by replacing p  with p u  , pvand 
p E  respectively.

The above strategy for constructing 2nd and 4th ordered terms for the x-direction is repeated for the y 

direction, ie. Dy for the continuity equation will be:
,(2) 
'I ,J + \I2 {Pij+i P u )*/,7 + 1 /2  ( P r j +2 )  

—£ / J - U 2  ( P l , J  — P l , J - \ )  +  * / ,7 - l /2  ) P l , J + \  — 3 p / , J  +  3 P u - \  — P l , J - 2 )

(6.37)

where Vyis the pressure sensor “switch” in the y-direction and is always positive Jameson, Schmidt
& TurkePs [105].

p " _
r I ,J +1 2 Pn + P”T i,j-\

\pn 
\ I ,J+ \ + 2 Pnz ‘r u + pn 

I ,J - 1

sfjm = max(v, , vIJ+l)

su+vi = m ax(0 ,(i(4) -  e $ +1/J))
The above procedure is sufficient for orthogonal and structured grids. To extend this method to 
unstructured grids the following method is employed.

6.6.2 Extension to Unstructured grid
For an unstructured non-orthogonal grids there are artificial viscous terms in (6.32) which are 
modified in this research to deal with mesh skewness (6.31). As discussed earlier this term, Dj,j , 
above is calculated by splitting the 2nd and 4th ordered derivatives into two 1st order and 3rd ordered 
derivatives, on each o f the cell faces like so.
D ( p ) l= D xp - D yp  (6.38)

So for the contribution from the gradients in the x-direction the equation becomes:

f=\,TO TFIC
’A (6.39)

where wotfic denotes a summation over the total number of feces in a cell.

I  = (* ?  A ) ,  {Pm  - P i ) -  4 4> (« .) / -  A m  + A  ~ Pm  )),
( 2 )  , • 

where ef  is called the 2nd order weighting value, and is calculated using.

(* ,)" '= * ™ m a x ( ( v , ) > ,U ,  (6-40)

where * is the pressure sensor "switch".
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M l  =

d P
2~i nx —

f=l,TO TFIC d x  f

Z  K K ^ .+ 'P ,)
f=\,TOTFIC

Where x  is unity and nx is the, x component o f the normal vector. 

(sx)<4) = max(0, (kw~ (sx )<2))) (6.41)

. ( 4 )

For orthogonal meshes, if the ^ 2> is greater than k(4) then f  is zero. This means in inviscid
.(4)

regions o f the flow the term £i+il2 damps out higher order oscillations. The weighting parameters 
recommended by Jameson, Schmidt & Turkel’s [105] are:

k {2) =  0 . 2 5 ,  k {4) = 0 . 0 0 4

An equivalent procedure is adopted for the y-contributions to the above numerical formulation for the 
artificial viscosity term is implemented into the PHYSIC A source codes for unstructured grids.

After initial runs were done on a coarse 4712 mesh, it was realized that unless a non-zero value for 
k(4) is used, the CBS calculations are unstable and soon diverge. An improvement to the solution 
quality was sought by conducting a parametric study for the JST AVT, instead o f the mono second 
ordered artificial viscosity. Four different values for k(2) were employed.

/fc(2) =[0.1,0.15,0.25,0.35] 

k(4) = 0.004

6.6.3 Jameson, Schmit & Turkel’s AVT Results
The following runs were conducted for the wedge depicted in Figure 6-6 where the Courant number 
equals 0.05 and where k(4) equals 0.004 for all the four differing values o f k(2̂ . These results for the 
Mach number and pressure were taken over the surface o f  the wedge when the density error was less 
than the stipulated tolerance o f 10'5.
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Table 6-2-Legend for Figure 6-10.
Color k (4>

Green 0.1 0.004
Dark Blue 0.15 0.004
Light Blue 0.25 0.004

Red 0.35 0.004
Black Analytical Analytical

Mach Speed along the surface of the 15 deg Wedge at M = 2

2.0

Mach
Speed

1.8
1■

1.6

1.4
0 0.5 1.0 1.5

X Dist (m )

Figure 6-10 - Quantifying the effect that the value for k(2) has on the converged profile for 
the Supersonic wedge depicted in Figure 6-6.

The Mach number as calculated by the CBS formulation to the conservation governing equations, as 
presented in equations (6.21)-(6.24) is given by the coloured lines and the analytical profile for the 
Mach speed over the surface of the wedge as calculated by the subroutine presented by [165] is 
shown in Figure 6-10 as the full back line. The vertical axis is labelled with “Mach number” and the 
horizontal axis is labelled with “x(m)” and the length from the inlet is measured in metres. The 
legend identifies the values o f k ^  used in this JST AVT parametric study.
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Mach Speed along the surface of the 15 deg Wedge at M=2
1.55

1 .5

M a c h

S p e e d

1 .4 5

1 .4

Figure 6-11 - Quantifying the effect that the value for k(2) has on the converged profile for the 
Supersonic wedge depicted in Figure 6-6, magnified for the post shock profile.

Figure 6-11 above is a magnified plot o f  Figure 6-10. This shows conclusively that the Mach number 
solution as calculated by the CBS algorithm, is not in perfect agreement with the analytical solution 
even though the algorithm has converged to relative density errors o f the order o f 10'5. The analytical 
solution as calculated by (6.15) is displayed as the full black line. The differing CBS solutions are 
given by the legend.

The CBS results are compared against the associated analytical solution, taken from [165]. As 
highlighted earlier, according to industrial sponsors a tolerance o f 1% between these analytical values 
and the computed CBS result are deemed accurate enough for CFD solvers applied to Hypersonic 
vehicles.

E\ = 1 0 0 — !—abs NUMELE
NUMELE

e ! e - \

\M  a n a ly tic a l In +1
e le

Tkyf a n a ly tic a l  
1V1 e le  '

(6.42)

0.5 1.0 1.5
X Dist (m )
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Figure 6-12-Quantifying the effect that the value for k(2) has on the percentage error for the 
Supersonic wedge depicted in Figure 6-6.

Figure 6-12 shows the absolute errors for the Mach number as calculated by (6.42) for the mesh seen 
in Figure 6-7. The steady state solutions for all runs were obtained with a fixed value for k(4) o f0.004, 
a Courant number of 0.05 and with differing k ^  values seen in Table 6-2 (0.1,0.15,0.25,0.35). Apart 
from the leading edge region the CBS scheme is accurate enough at capturing the Mach number 
along the surface o f the wedge. The percentage error shows that the average absolute error is between 
the ±1% tolerance.

An important quantity used throughout the analysis o f  aerodynamic shapes is the coefficient o f 
pressure, where the coefficient of pressure is defined as.

P  - PC  _  1 ele C o  
P 20.5 A X

(6.43)

where P is the pressure and the subscript 0 0  is the free-stream conditions and ele is the element.
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Cp along the surface of the 15 deg Wedge at Mach 2 {51660 Elements (252X))

0.5

0.4
— A naly tical
 k 2=0,1
—  k2=0.15 
_»k2=0.25 
.—-k2=0.35

0.3
Cp

t

0.1

0 0.5 1 1.5
XDist

Figure 6-13- The effect that the value for k(2) has on the converged profile for the Supersonic 
wedge depicted in Figure 6-6.

The CBS solution for the coefficient o f pressure as calculated by the computational procedure is 
shown in Section 6.4. The analytical solution is plotted as the fullback line. The purpose o f this plot 
is to show how the different values o f k(2) effect the final solution. From observing Figure 6-13 above 
it can be seen that a small k(2) value leads to large overshoots post shock (X>0.5m).
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Figure 6-14- Quantify the effect that the value for k(2) has on the converged profile for the 
Supersonic wedge depicted in Figure 6-6.

Figure 6-14 shows the absolute errors for the steady state Cp solution along the XX plane as seen in 
Figure 6-7. The steady state solutions were obtained with k^}=(0.1,0.15,0.25,0.35) and all runs were 
done using a fixed value for k(4) =0.004 and a Courant number o f 0.05. Apart from the leading edge 
region, the CBS scheme is accurate enough at capturing the flow along the surface o f the wedge 
because the percentage error is within the ±1% tolerance.

This shows that the CBS solution is in excellent agreement with the analytical solution, a promising 
indication o f the capability of the CBS approach for the final application; solving 2D Hypersonic 
compressible flow over transpiration cooled components.



1.5
Analytic Cp errors on the surface,  ( %

s=o'"0
1
I 0-5TO

S o8cn

$ \.S
iLO

-1

■1.5

A! j j j! 
I I  i H  l !

\ A A l/l! i  \ ! V u i in/u
II 1 i , . I„

UkHm^m

ffipd
i! i ij

K2 = 0.10 K4 = 0.00 
K2 = 0.15 K4 = 0.00 
K2 = 0.25 K4 = 0.00 
K2 = 0.35 K4 = 0.00 
Tol Limit 
Tol Limit
K2 = 0.25 K4 = 0.004

i I

0.5 1 1.5
XDist

Figure 6-15 - Quantifying the effect that the value for k(2) has on the converged profile for the 
Supersonic wedge depicted in Figure 6-6.

Figure 6-15 shows the absolute percentage error at each control volume along the surface of the 
wedge. The black straight lines indicate a tolerance o f 1%. For the coefficient o f pressure the errors 
are well within these limits for all five o f the k(2) values used- excluding the leading edge. For the 
collaboration o f the CBS and Jameson’s AV scheme, the one feature that is o f importance is the large 
under shoot at the leading edge.

6.7 Mach 3 Inviscid Wedge Study
As stated earlier motivation to study this problem was because the Supersonic inviscid wedge case 
has a closed analytical solution. This can be used to evaluate the accuracy and stability of the CBS 
algorithm, as well as being able to identify the limitations o f the CBS algorithm when used to m o d el 
Supersonic compressible flows. Here the CBS algorithm and the analytical solution is also compared 
to the FLUENT study (which is available on the web) by Cornell, [167]. This novel comparison 
between FLUENT and the CBS procedure is done to highlight that the CBS algorithm is indeed 
competitive in terms o f accuracy and efficiency when compared to other CFD procedures.

6.7.1 Mach 3 Wedge Analytical Solution
For the sake o f  comparison purposes the boundary conditions will follow the Cornell, [167], work on 
the 2D Supersonic wedge. As described in Section 6.3.3 the analytical solution for this research is 
obtained using an iterative approach from the subroutine taken from Slater, [165].°
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Figure 6-16: Schematic of the Mach 3 Wedge with the plane XX and YY.

Where the input is the free-stream values and the wedge geometrical parameters, where 
length of the wedge and oo denotes the reference values.

Wedge 
9900 Elements

' * ■*5
U f  i  '■;

■ ■  '

I E  I
:

Figure 6-17: Structured grid for the wedge depicted in Figure 6-16.

As stated earlier the motivation to study this problem was because the Supersonic inviscid wedge 
case has a closed analytical solution, which is used to evaluate the accuracy o f the CBS algorithm, as 
Well as being able to identify the limitations of the CBS algorithm. Here the CBS algorithm and the 
analytical solution is also compared to the FLUENT study (which is available on the web) by Cornell, 
067]. This novel comparison between FLUENT and the CBS procedure is done to highlight that the
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CBS algorithm is indeed competitive in terms o f accuracy and efficiency when compared to other 
CFD procedures.

6.7.2 Mach 3 Wedge Solver Results
The third wedge was modelled to gain a better insight into the effect the artificial viscosity has on the 
solution o f a more challenging discontinuity and free-stream velocity, moreover the values o f Cx and 
Cy in equation (6.20) were varied to gain an insight into the effect that the artificial viscosity has on 
stabilizing the algorithm and its effect on the accuracy o f  the final solution.

Table 6-3- Grid and flow parameters for the FLUENT com
Mach 3 
Wedge

M„[-] poo[kg/nT] TJK] 0[-] Nx Ny Nt

3 1.18 300 15° 100 99 9900

3arsion Study.

Where Nx is number cells in the x direction.
Ny is number the cells in the y direction. 
Nt is total number the cells.

6.7.2.1 FL UENT Comparison
3  QOe+OO 
2 9 7 e + 0 0  
2 9 4 e + 0 0  
2 9 2 p +QQ 
2 9 0 e + 0 0  
2  87e+OQ  285e+00 
2 .6 2 e + 0 0  
2 .8 0  e +00  
2 78e+OQ  
2 7 5 e +00  
2 7 3 e + 0 0  
2 71 e+ 0 0  
2,68 e +00 
2 66e+00 
2  6 3 e+ 0 0  
2  61 e+ 0 0  
2  5 9 e +00  
2 56e+ Q 0  
2 .5 4  e + 0 0  
2 5 1 e+00 
2 4 9 e + 0 0  
2 4 7 e + 0 0  
2 .4 4 e + 0 0  
2 4 2 e + 0 0  
2 3 9 e + 0 0  
2 3 7 e + 0 0  
2 3 5 e + 0 0  
2 3 2 e + 0 0  
2 3 0 e + 0 0  
2 .2 7 e + 0 0  
2 2 5 e + 0 0  
2 .2 3 e+ 0 Q  
2 .2 0 e + 0 0

Figure 6-18: Mach contours for FLUENT Solver (15000 elements) at modelling the Mach number 
for a 15 wedge at Mach 3.

Figure 6-18 shows the Mach contours as calculated by FLUENT and taken from Cornell, [167], for

the solution domain for the Mach 3 wedge, as seen in Figure 6-16. As can be seen, the discontinuity 
occurs across a few elements - which is an important feature o f an accurate and robust CFD 
procedure. In addition the Mach speed is below 3 throughout the flow domain and does not display 
oscillations within the solution domain, another important feature o f a reliable and robust code.
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Figure 6-19: Mach contours for the CBS solver (15000 elements) at modelling the Mach 
number for a 15 wedge at Mach 3.

Figure 6-19 shows the Mach contours as calculated by the CBS algorithm for the solution domain for 
a Mach 3 wedge as seen in Figure 6-16. As can be seen in Figure 6-19 the discontinuity occurs across 
a few elements just like Figure 6-18. The CBS solution, like that o f the FLUENT solution, shows 
features o f a robust solver. The Mach speed is below 3.02 throughout most o f the flow domain - in 
this case the boundedness criteria is satisfied. This boundedness is an indication that the CBS solution 
is a reliable solver.

6.7.2.2 Mesh Sensitivity Study
The matter o f grid independence is a serious consideration in CFD and this Section will seek to 
address, grid independence for this benchmark case. Finer grids need to be employed in order to 
resolve the property fields and to check that the numerical solution is not a function o f the number o f 
grid points - an untenable result. The steady state solutions were obtained with a Cx=0.2 and a 
Courant number o f 0.05. Runs were stopped after a tolerance of 10'5 were reached or alternatively, 
after 30,000 iterations.
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Figure 6-20: Mesh sensitivity for the CBS solvers at modelling the Mach number for a 15° 
wedge at Mach 3.

The analytical solution as calculated by Slater’s [165], Fortran subroutine is displayed as the M  
black line and the Mach speed as calculated by the CBS formulation for different mesh densities is 
displayed in the key. The x axis "X distance" is in meters.

Figure 6-20 shows as the grid density increases from 1178, 4712, 10602, 51660 and 104,400 elements 
the shock starts to become resolved. However numerical oscillations build up after successive 
refinements, for example, the profile for 104,400 elements displays spurious oscillations building up 
after the discontinuity. This means one o f these issues arises when solving this 2-D problem.

1. The artificial viscosity (Cx =0.2) is not large enough to damp the numerical oscillations,
2. The 2D CBS scheme is a function o f the grid density <
3. The boundary conditions are ill posed and the oscillations only shows up on refined meshes.

To ascertain that the oscillations are in fact not a function o f the number o f elements, more 
simulations were carried out on the 516,600 mesh to test whether the Cx values are large enough to 
damp out the numerical oscillations.

6.7.23 Artificial Viscosity Parametric study
As stated by Azevedo & Korzenowski, [10], schemes based on central differencing possess sy m m etry  
with respect to a change in sign, for the Jacobian matrix eigenvalues, meaning the discretization does 
not distinguish between upstream or downstream influences. In such cases these schemes do not 
consider physical properties o f the flow equations in the discretized formulation and this gen erates  
oscillations in the proximity o f the discontinuity which have to be damped by the addition o f artificial 
dissipation terms Azevedo & Korzenowski, [10]. The challenge, as this parametric study will show, is 
to determine the adequate amount o f artificial viscosity which should be large enough to damp 
instabilities and at the same time, small enough to avoid the destruction o f flow features such as the 
discontinuity.
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Table 6-4-Legend for Figure 6-21.
Color c x Cy
Green 0.2 0.2

Light Blue 0.6 0.6
Red 1.5 1.5

Black Analytical Analytical

Mach along th e surface of the 15 deg w edge at M = 3 (51660 Ele (252X))
3.1

2.9

M ach
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2.7
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2.3

1.51.00.50
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Figure 6-21-Mach Speed along the XX plane as represented in Figure 6-16 for different 
values o f the artificial viscosity tuning factor Cx (legend) against the analytical solution 
(black).

Figure 6-21 shows that the CBS approach with large values of Cx >0.2 produces impressive solutions 
that are generally accurate without the appearance o f noise. Meaning at large values o f Cx 
oscillations pre shock are successfully damped however the accuracy is degraded post shock. On the 
flip side, if the value for Cx is too small then accuracy of the solution is assured post shock but 
oscillations are encountered in the proximity o f the shock. Therefore to resolve the shock accurately a 
judicious amount o f artificial viscosity should be introduced. In Figure 6-21 the best fit between the 
analytical and the CBS results occurred when Cx 0.2.

From Figure 6-21, the CBS algorithm is shown to be sufficient at modelling the Supersonic Mach 3 
inviscid wedge. The profiles above were obtained after coupling the MacCormack’s 2 nd ordered 
differential artificial viscosity with CBS algorithm By altering the value for Cx as seen in equation 
(6.20), we are aiming to obtain a final Mach profile within a defined absolute tolerance o f 1% o f the 
analytical solution. Solutions for the Mach 3 case at a mesh density of 100,000 elements show 
Perturbations along the surfoce o f the wedge. For the case of the 50,000 mesh, we can see that an 
increase in the value ofC x alters the Mach speed post shock.
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6.8 Mach 9 Wedge Study
The following higher speed benchmark was investigated because the targeted speed fo r  the 
Hypersonic CAVs is intended to be Mach 9. Therefore the algorithm should be tested against this 
velocity regime along with the shock and associated temperature increase. As discussed previously to 
suppress the tendency for odd and even point decoupling, and to prevent the appearance o f wiggles in 
regions containing severe pressure gradients a form of artificial viscosity augments the CBS 
algorithm.

6.8.1 Mach 9 Wedge Analytical Solution

As described the analytical solution for this research is obtained using an iterative approach from the 
subroutine taken from [165], where the input is the free-stream values and the wedge geometrical 
parameters. For the case of a 15° wedge with a free-stream Mach number o f 9 then the post Mach 
number and shock angle is.
M a0 = 9 M 2 =5.036
J3 = 15° a  = 20°

p o0= \.2 k g /m 3 p2 -  4.162kg / m3
Tco= 3W K  T2 = S4S.94K

Here the subscript go indicates pre shock values and the subscript 2 indicates post shock values. 
Where a=shock angle.

6.8.2 Mach 9 Wedge Solver Results

The following results were generated with a Courant number o f 0.05 and a k ^  value o f 0.25 and ak(4) 
value o f 0.004 as well as the following grid parameters. All the cases as seen in Table 6-3 converged 
to a steady solution for a tolerance o f 10' where the final Mach profile is compared against the 
analytical solution.

Table 6-5- Grid and flow parameters.___________________________________
Moot-] poo[kg/mJ] Too[K] er-1 Nx Ny Nt
5 1.18 300 15° 100 99 9900
7 1.18 300 15° 100 99 9900
9 1.18 300 15° 100 99 9900
Where Nx is the number o f elements in the x direction 

Ny is the number o f  elements in the y direction 
Nt is the total number o f elements
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Figure 6-22 - Different Mach speeds (legend) for the 15° wedge depicted in Figure 6-6 
against the analytical solution (black).

The Mach 9 simulations converge impressively to within the specified relative error tolerance. A very 
promising indication that the CBS algorithm can deal sufficiently with the shocks appearing at 
Hypersonic compressible flows o f the final novel application- transpiration cooling through porous 
media at Hypersonic speeds. Increasing the free-stream velocity produces larger numerical 
oscillations that propagate and travel upstream These oscillations can be damped down by mcreasing 
the value ofk^4\  Overshoots and undershoots, post and pre shock, can be damped down by increasing 
the value o f k ^  . Six nodes are required in proximity o f the discontinuity to yield stable results for 
the Supersonic inviscid wedge.

In the next Section we examine and develop the solver further through tests on unstructured non­
ortho gonal grids by adopting triangle elements - an important extension for the final objective as seen 
in the research objective, Chapter 1.1.

6.9 Unstructured Mesh Benchmark Study
This case gives an insight into the versatility o f the CBS algorithm .i.e. these results will provide 
information on how the CBS scheme performs on non-orthogonal unstructured grids. The face values 
and Cartesian derivatives were re-cast as seen in Section 6 .2 .2 .1  to accommodate mesh skewness.

Unstructured triangular elements were used to model the Supersonic Wedge. Empowering the code to 
handle unstructured grids was the next endeavor to establish a CFD strategy that can successfully 
capture compressible flow affecting single stage to orbit vehicles. This required evaluation o f the 
non-orthogonal and non-conjunctional terms in Section 6.2.2.1.
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6.9.1 Analytical Solution

The analytical solution for the 153 can be obtained using the procedure seen in Section 6.3.3. The 
values for p, P and M can be seen in Section 6.5.1 and is repeated here.

^ o o = 2 M 2 =1.445
/} = 15° a  = 54°

p aa = 1.2kg / rn p2 -  2.05kg / m3
Tx =300K T2 =365K

FEHGV 7.B-B4 : PHYSICR+ Evaluation

\ \ \

Figure 6-23- Unstructured grid for the wedge depicted in Figure 6-16.

6.9.2 Solver Results

Figure 6-24 - Pressure for the wedge depicted in Figure 6-23 using unstructured elements.
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Figure 6-24 shows the inviscid flow over an unstructured grid is sufficiently modelled using the CBS 
algorithm. The CBS will be required to employ unstructured meshes for those applications at ESA 
where the applications have non-linear geometries.

6.10 NACA Aerofoil
Inviscid flow over a NACA aerofoil is the next multidimensional benchmark tackled in this Chapter. 
The problem is covered extensively in the literature for example in AGARD 13 [88] and has also 
been solved using the finite element version o f the CBS algorithm by Nithiarasu P, Codina R, [131]. 
Along with the extensive experimental data for this Supersonic problem the technical appeal for this 
research is the non-linear geometry o f this case when compared to the 2-D wedge.

In addition to these reasons, a mesh sensitivity study is now conducted with the objective o f 
determining a realistic solution to the problem. By refining the mesh and modelling the NACA 
aerofoil we can show that the algorithm displays mesh independence after progressive increments o f 
mesh refinement an essential requirement - for a reliable CFD solver.

6.10.1Boundary Conditions
The Supersonic NACA0012 aerofoil tackled had a chord length o f lm  and its geometrical coordinates 
can be taken from the web resource AIAA, [168]. The far-fie Id boundaries, ie. the top and inlet 
according to Nithiarasu P, Codina R, [131] should be 25 chord lengths (25m) away from the leading
edge.

Unfortunately for this research this was not practical as the number o f elements and hence 
geometrical information superseded the memory allocation limit for serial runs. Therefore new grids 
were constructed where the inlet was placed 4m before the leading edge and the top boundary was 
situated 10.5m above the centre line and likewise the bottom boundary was placed 10.5 m below the 
centre line.

FENGW 7.B-B4 : PHYSIC#* Evaluation “ ~ 19 JUN 2014 16:31:27 HACftC0flHSE_7013BB
"odBl; NACACOATALL Analysis: PHYSICA

L

21m

Figure 6-25- Structured grid for the NACA0012 aerofoil using 70,132 quadrilateral e
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Figure 6-26- Magnified image o f the structured grid for the NACA0012 aerofoil at the leading edge 
for 70,132 elements.
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Figure 6-27- A finer grid for theNACA0012 aerofoil using 109,620 elements.

Table 6-6- Grid for the NACA aerofoil mesh sensitivity study.
Mach
Number

Number Of 
Elements

Nx Ny Ax at leading 
edge (m)

Ay at leading 
edge(m)

1.2 40,582 394 103 7.7E-03 7.94E-03
1.2 70,132 178 394 7.18E-03 1.59E-02
1.2 141,120 252 560 4.53E-03 8.76E-03
1.2 156,150 347 450 1.85E-03 4.72E-03
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6.10.2 Solver Results for NACA0012

Computations were run using the FV CBS algorithm coupled withMacCormack’s AVT. The Courant 
number was set to 0.01 and a Cx and Cy value were both set to 0.2 for the AVT tuning parameter. The 
free-stream Mach number is set to 1.2 and the angle of attack set to Of. The aim of this study is two­
fold; firstly the stability o f the algorithm over non-linear geometry and secondly to show mesh 
independence for this challenging 2D inviscid problem.

The contour plot above displays the Mach distribution for the case seen in row 1 of Table 6-6. The 
Mach distribution exhibits no decoupling. This is another promising indication that the CBS 
algorithm coupled with MacCormacks AVT is an adequate strategy for modelling Supersonic 
problems, especially when considering that the 40,582 element mesh is the coarsest grid used to 
model the problem as seen in Table 6-6.

12 JUL 201*1 10:39:20 70132E_4080ON_MA2

Model: RIG
CflSEl: PHYSICfi Results 
Step: 1 TIME: 0 
Invarian t Mfl 
Max ;  1.51 
Min z .307

*1.46  
l l . 4  

1.35  
S i . 3

1.25  
1.19  
1.14  
1.09 
1.04 
.986 

i  .933 
1.801 

.829 
1.777 
1.725 
1.673 
1.62 

.568 
1.516 
1.464 
1.412 
1.359

Figure 6-28- Mach contours for the NACA0012 aerofoil at a Mach number of 1.2 using 70,132 
elements.
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FEMGV 7.0-G4 : PHYSICA+ Evaluation 12 JUL 2014 10:41:36 7O132E_40000N_«A3

Model: RIG
CASE1: PHYSICA Results 
Step: 1 TIME: 0 
Inva riant MA 
Max :  1.51 
Min :  .307

Figure 6-29- Mach contours for the NACA0012 aerofoil magnified at the leading edge for 70,132 
elements.

FEMGV 7.0-04 : PHYSICA+ Evaluation 14 JUL 2014 22:21:36 JC3_141000E3

Model: JC3
CASE1: PHYSICA Results 
Step: 1 TIME: 0 
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Max :  1.46 
Min :  .326

Figure 6-30- Mach contours for the NACA0012 aerofoil magnified at the leading edge for 141,000 
elements.

Figure 6-29- Mach contours for the NACA0012 aerofoil magnified at the leading edge for 70,132 
elements. Likewise

Figure 6-30- Mach contours for the NACA0012 aerofoil magnified at the leading edge for 141,000 
elements.
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Figure 6-31- Pressure along the top surface of the NACA0012 aerofoil

The non-dimensional pressure P IP ^  along the top surface ofNACA0012 aerofoil for the meshes 
seen in Table 6-6 and the different mesh densities is displayed in the key. The x axis "X distance" is 
in meters. The y axis “Y distance” is the non-dimensional pressure which is relative to the free-stream 
pressure.

Since there is no analytical result for this case, the analytical error cannot be ascertained. Figure 6-31 
shows as the grid density increases from 40,582 elements 70,132 elements, to 141,120 elements, the 
numerical profile starts to become resolved.



Table 6-7- Memory and Run time parameters for each of the grids seen in Table 6-6.
Number
Of
Elements

Iterations p err Run Time 
hh:mm:ss

Run Time per 
solution point

Memory
Requirements

Memory Req per 
solution point

40 ,582 40000 5.88E-007 12:22:48 1.08 sec per node 663512kb 1.1 Okb per node

70,132 40000 1.916E-006 22:33:30 1.15 sec per node 722660kb 10.30 kb per node

141,000 40000 1.22E-006 35:28:37 0.90 sec per node 1294920kb 9.18 kb per node

156,150 40000 4.785E-6 44:32:37 1.027 sec per node 1591944kb 10.2047 kb per node

213,000 Failed Out 
o f M emoiy

Failed Out 
o f M emoiy

Failed Out o f 
M emoiy

Table 6-7 dispays important parameters for the run time and memory requirements for each of the 
grids. Notice that the run time and memory requirement per solution point is approximately the same 
for each o f the grids employed. Exactly what you would expect to observe.

6.11 Concluding Remarks
This chapter on inviscid flow simulations has demonstrated the development o f a 2nd order explicit 
algorithm for Supersonic compressible flows using a 2D Finite Volume formulation. In the present 
chapter a validation o f  4 different benchmarks is carried out: the Mach 2, the Mach 3 and the Mach 9 
wedges were modelled using structured grids. And further validation on the Mach 2 wedge using an 
unstructured grid with triangular elements over the wedge. The final benchmark was N A C A 0 0 1 2  
aerofoil using 3 further structured grids.

The CBS scheme was implemented in a finite volume formulation as opposed to the finite difference 
framework seen in Chapter 4 or the initial finite element approach as published by Nithiarasu P, 
Codina R, [131], for the Characteristic Based Split (CBS) algorithm. The solution o f flow over 2D 
wedges was carried out where the inlet speed was varied from Mach 2 to Mach 9. An inviscid 
formulation was used and the fluid was treated as a perfect gas. Clearly, as opposed to the inviscid 
assumptions for actual flight conditions, viscous interactions coupled with thermal conduction 
interactions and real gas effects would have to be taken into account. In this chapter however the 
consideration o f  Supersonic flows simply has the objective o f testing the behavior o f the candidate 
scheme in the presence o f strong 2D shocks. The analytical solution as given by the implicit 
procedure in [165] was used to evaluate the accuracy ofthe CBS solution.

6.11.1 Summary of CBS Algorithm for 2D Structured Grids
At large Mach numbers in multidimensions the CBS algorithm requires artificial viscosity. Two 
forms are available in the software tool depending on the CFD programmer’s requirements. The first 
being, MacCormack's, [29], mono 2nd ordered term and the second being Jameson, Schmidt & 
Turkel’s [105] AVT. MacCormack's artificial viscosity is designed to control the calculations bya 
magnitude equivalent to a fourth order term in the truncation error and the effect is to increase the
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viscosity, smoothing out the discontinuities for Supersonic flow. Although MacCormack’s AVT is 
easier to implement for non-orthogonal grids, the substitution o f Jameson, Schmidt & Turkel’s [105] 
AVT, was required to obtain an acceptable solution in terms o f absolute error for the Mach 2 case. 
Hence by using the JST AVT the solution converged to the analytical solution as given by the 
analytical procedure in [165].The inclusion o f k ^  produces more accurate results with respect to the 
analytical solution than those with no k ^  values. However the inclusion o f too much artificial 
viscosity, for example, high values o f k'4), in an attempt to improve stability, can denegrate the 
numerical solution with respect to smeared shocks. From this researcher’s perspective the stabilty o f a 
numerical solution is preferable to unstable solutions.

The candidate solution was applied to another challenging case. The solution for the Mach 3 case; 
firstly the contours in Figure 6-19 show that the shock is resolved over a few elements, a feature o f a 
reliable CFD solver. Secondly the Mach speed is below 3, the free-stream value, throughout the flow 
domain, showing that in this case the boundedness criteria is satisfied. Boundedness is another 
important indication that the CBS algorithm is a reliable solver.

The CBS algorithm was then also applied to enable solutions on the more pertinent problem for its 
final use, involving Mach speeds o f 9 successfully. This speed is envisaged as the operating velocity 
for the Hypersonic cruise air-breathing vehicles (CAVs). However further validation is required to 
reduce the overshoots pre-shock as seen in Figure 6-22.

6.11.2 Extension to 2D Unstructured Grids
To enhance the versatility and flexibility o f the CBS algorithm, the finite volume formulation for 2D 
orthogonal quadrilateral grids used in Section 6.5, was extended to handle polyhedral 2D triangular 
elements as seen in Section 6.2.2. This extension in theory can in general be applied to any 2D 
elements with any number o f feces.

Figure 6-24 indicate that it is possible to obtain stable converged solutions with the CBS algorithm, 
for the Supersonic flows. However, these solutions will most certainly have small numerical 
oscillations.

6.11.3 Extension to NACA aerofoil
The FV CBS algorithm was extended to solve Supersonic flow over a NACA0012 aerofoil and test 
stability and mesh independence. Since there is no analytical result for this case, the absolute error 
cannot be ascertained and hence grid independence investigated. Figure 6-31 shows as the grid 
density increases from 40,582 elements to 70,132 elements, to 141,120 elements, and to 156,150 
elements the numerical shock starts to become resolved ie. the pressure profile does not change 
substantially.
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7 INCOMPRESSIBLE FLOW 
SIMULATIONS

7.1 Introduction
The objective o f this chapter is to apply the proposed algorithm to the 2-D Subsonic scientific 
benchmark o f  external incompressible laminar flow over a flat plate. The reason for tackling this 
Subsonic benchmark is as follows. Firstly, according to recent research into Hypersonic flow solvers 
by Azevedo & Korzenowski, [10], when building a CFD solver to model air-borne vehicles-

"It [modelling incompressible flows] is a necessary step in order to construct a robust code to 
deal with the complete environment encountered in actual flight”

Secondly, research into transpiration cooling applications by ESTEC researcher Steelant, [169], 
points out that the CFD code should allow the possibility o f keeping laminar Subsonic flow in the 
porous media and having compressible Supersonic turbulent flow in the main flow. In this chapter, 
the assessment o f incompressible flow benchmark in terms o f accuracy and efficiency is carried out. 
Accuracy and efficiency are viewed as important features o f a robust CFD solver. Therefore the 
assessment o f  the quality o f results is based on the errors with respect to the theoretical solution 
throughout the computational domain.

The theoretical, Blasius solution, for the Subsonic boundary layer over a flat plate has been shown to 
be very close to experimental data collected by Liepmann and Roshko in [82]. Hence, according to 
industrial supervisors at ESTEC the Blasius solution represents a substantial and fundamental viscous 
benchmark for any CFD code

Before presenting the solution o f  incompressible flow over a flat plate, an overview o f laminar and 
turbulent flow is provided. For the flow solver these two flow characters have differing stability 
issues that the reader needs to be aware o f

6
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7.2 Laminar, Transition and Turbulent Flow
In experiments on fluid systems by Reynolds, [170], it is observed that at values below the so called 
critical Reynolds number, Recrjt, the flow is smooth and adjacent layers of fluid slide past each other 
in an orderly fashion. This regime is called laminar flow. As measured by Okamura, Wazzan, & 
Smith, [171], experimental studies show that the laminar boundary layer has a Re < 9.1xl05 with 
transition  occurring at this Recrit value 9.1xl05. At Reynolds numbers above Recrjt a complicated 
series of events takes place which eventually leads to a radical changes in the flow character. In this 
state the flow behavior becomes random and chaotic. Even with constant steady imposed boundary 
conditions the motion becomes intrinsically unsteady and is called turbulent flow. This regime is 
illustrated in the diagram below.

Transition Turbulent boundary 
layer

Boundary layer thickness, 8

Turbulent
layer

O verlap layer 
B uffer layer 
Viscous sublayer

Figure 7-1 Evolution of a viscous boundary layer from laminar to turbulent flow.

As seen in Figure 7-1 above, the fully turbulent boundary layer on the right as measured by 
experimental studies [154] is shown to occur at Re>3xl06. Prediction o f turbulence is one o f the 
fundamental problems o f computational fluid dynamics [33]. In contrast to laminar flow, turbulence 
develops as an instability which is irregular, sporadic and intermittent. Because o f the random and 
chaotic nature o f the turbulence phenomena it is customary to work with time averaged forms o f the 
governing equations. Turbulence models provide additional turbulent forces that are a result o f 
random eddy fluctuations. The most popular being the Reynolds averaged model which provides 
information about the overall mean flow properties as used by the researchers Vandromme & Saouab, 
[139]. This does not simulate the detail o f the turbulent motion, only the effect o f turbulence on the 
mean flow behavior. According to [17] The random nature of turbulent flow precludes an economical 
description o f the motion o f fluid particles because o f the associated small time and length scales 
[17]. Even in flows where the mean velocities and pressures vary in one or two space dimensions, 
turbulent flow always possesses a three dimensional spatial character [17]. The main reason for 
modelling laminar flow in this chapter is its relative simplicity when constructing a numerical scheme 
und the theoretical comparison when compared to turbulent flow.
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7.3 The Navier-Stokes Equations for 
Incompressible Flows

As we have seen in Chapter 2 the Navier-Stokes equations describe combined viscous-convection 
flow problems which are non-linear and multidimensional and, at larger Reynolds numbers solutions 
contain turbulent flow structures [17], [18], [80]. As mentioned previously to model them 
numerically requires a considerable amount o f effort to capture the localised physics and alleviate the 
numerical instabilities.

The Navier-Stokes equations are obtained by simultaneously taking the Euler equations as solved in 
Chapter 6 and adding a 2nd order diffusion term. The 2nd order diffusion term has the effect of 
distributing the physical properties, velocity and temperature, along gradients in all directions. The 
Navier-Stokes equations maybe repeated from Chapter 2 as follows:

dGj
for i=l,...Nd (7.1)

d u  a r
dt dx. dxj

where Nd indicates the number o f spatial dimensions to be considered in each problem, U represents 
the vector o f  conservative variables and F and G are the relevant inviscid flux and the viscous flux 
terms, respectively. The two dimensional isothermal counterpart o f equation (7.1) can be simplified 
to:

(7.2)
" p  " Puj "  0 “

u  = pux FJ = puxuj + PSXJ G J = Tiy
pu2 _pu1uj +PS2j y  2 j

where the variables and units are seen in Chapter 2. 
Importantly for viscous flows though.

(
= P

duj
dx.

du.
+

dx
2 duk

—  A — -3 dx. iJ
(7.3)

where p - dynamic viscosity (kg/(m s)) 
the Kronecker delta term as we have seen is determined by.

(7.4)

Equations (7.1)-(7.2) are valid for any Newtonian incompressible fluid. A flow is incompressible for 
low speeds, for air, that is, Mach<0.3 although the effect o f compressibility may appear at Mach 
numbers, as low as 0.1, in localized regions, depending on pressure and density changes. As such the 
flow is conventionally assumed to be incompressible on the macroscopic scale [20].

If flow is compressible the continuity equation may be used as a transport equation for density and 
the enthalpy equation as a transport equation for temperature. The pressure may then be obtained 
from the perfect gas law P = f ( p ,T )  . I f  flow is incompressible, a challenge arises in how then to
resolve the pressure. Although pressure gradients appear in each o f  the momentum equations, there 
are no pressure terms in the continuity equation meaning there are more unknowns than equations. 
Therefore to tackle this challenge, pressure is linked to the velocity through an artificial relationship
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in the continuity equation, because if the correct pressure field is applied to the momentum equations 
the resulting velocity field will satisfy the continuity equation.

To employ the pressure based method, AC CBS scheme, the modifications from [150] will be 
discussed now. The pressure based methods solve the primitive variables (P,u,T) at the solution 
points [20]. For future reference primitive variables as can be shown by Anderson [15], are not suited 
to compressible problems with discontinuities present, computing the compressible flow through a 
choked nozzle. Therefore the pressure based AC CBS algorithm is only applied to these 
incompressible flows.

7.3.1 Pressure Based Formulation for Continuity equation

In Massarotti, Zienkiewicz, & Nithiarasu, [138], the solution o f incompressible flow problems was 
initially obtained by using the semi-implicit version o f the AC CBS scheme, with the necessity o f 
solving a set o f  simultaneous algebraic equations. However interest is gathering momentum in fully 
explicit techniques as stated by Monti & Pezella, [172], because o f easy and efficient parallelization 
for viscous 3D problems in the aerospace and aeronautical community. The following numerical 
detail outlines how the CBS formulation is modified for incompressible flows, which couples 
pressure and velocity in the continuity equation. Malan, Lewis, & Nithiarasu, [173], it should be 
noted:

1. Fully explicit schemes applied to convective flows need to possess sufficient stability producing 
a diagonally dominant system of equations. This is usually achieved by using small time steps or 
by refining the mesh small length scales [131].

2. When equal order interpolation functions are used for both the velocity and pressure terms for 
incompressible flow solvers, this can cause "checker-boarding" in the pressure field according to 
research in Harlow and Welch, [26], compromising the accuracy o f the solution.

These two instabilities are not to be confused with the instability caused by turbulence present at 
large Reynolds Numbers as stated by [174]. As mentioned above, at incompressible speeds the 
pressure based schemes make theoretical assumptions that allow a solution to a flow problem to be 
attempted. However when the free-stream speed becomes compressible (Mach>0.3) these 
assumptions, such as dp I dp — 0 , need to be re-assessed.

7*3.2 Modify utilizing a Pressure Based Formulation

The density based (DB) formulation for the CBS technique is in general applicable to compressible 
flow. Generally these schemes solve the conservation variables (p, pu, pE) instead of those quantities 
solved by pressure correction methods (P,u,T) at the solution points [17]. The down side for density 
based schemes are they cannot be easily applied to solve incompressible flows as the density remains 
constant [150]. Therefore a derived link between the continuity equation and pressure needs to be 
established such as the one developed in [150]. For incompressible problems these modified 
algorithms, such as the FV AC CBS scheme developed in this chapter, hinge on this artificial relation 
between pressure and density through a pressure-density derivative in the continuity equation.

3 P  _  Q pu D pv  ( 7  5 )
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y o { m i n ( A x , A y ) }
sp is set to 0.5 for incompressible benchmarks which enforces an even weighting between adjacent 
control volumes. The differential equation, above is substituted for the density continuity equation as 
seen in (7.2) in the following formulation.

7.3.3 The Sequential Artificial Compressibility CBS Scheme

The Finite Element Artificial Compressible Characteristic Based Split (AC CBS) procedure 
performed well for the incompressible problem, flow within a lid driven cavity, seen in Malan et al 
[96]. Now the Finite Volume AC CBS is implemented and applied to flow over a flat plate. Other 
variants o f this procedure were evaluated for this benchmark but did not have the same success as this 
method. Each step described below is applied to all the interior nodes in a sweep o f the grid. After 
this sweep the boundary conditions are computed. Then the sequential computational iterative 
procedure is repeated by going back to step 1. The AC CBS method was implemented in FORTRAN 
within the PHYSICA code framework and simulations were then run on the cluster to solve the 
Navier-Stokes system o f equations.

1. According to Malan et al [173] for incompressible flows the artificial wave speed is 
calculated as from (7.7) where £p is set to 0.5 for incompressible benchmarks.

2. The CBS scheme incorporates local pseudo time stepping. The pseudo time step is given 
by the following equation: where C is the courant number and depending on the problem is 
usually <0.5 The convection time step is analogous to the compressible time step and the 
diffusion time step as calculated by Malan et al, [150]:

A t ” v  =  m i n  ( ( A t nc v  ) comv , ( A t nc v  j

{ K v )  = c\  I com

kCV

P c v

(At"v )
V ,d'ff 2/2x

3. Intermediate Momentum
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(7.9)
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7. The Continuity Equation is solved using the momentum values from (7.12) at the n+1 
"time" level.

P c v = pc v - ( f i c v )
2 A?

\  n+1

AF X  0 3“, , 'V 4),
\f= l,T O T F IC

(7.13)

8. Check convergence to steady state values by sensing whether the relative error is less than 
the agreed tolerance of 10'5 or the number of iteration/sweeps is below the maximum 
iteration/sweeps, IMax, stipulated by the user. This value was set initially to 95,000 
iterations. The steady state error for incompressible problems is calculated as:

1
NUMELE

NUMELE

CV=1

/ n+l n \
ucv ucv

 ̂A tcv  ̂Uoo>J
NUMELE

I  {<
C V=1

(7.14)

9. If convergence has been achieved exit the procedure and display results otherwise begin 
computational sweep by going back to step 1.

Remarks:
The artificial wave speed calculation utilized by Massarotti et al, [132], equation (7.17), is given 
below. This value was not dimensionally consistent.

2 ^
/? = m ax |S p tju M ,

At = m m (Atconv,Atdiff)

\+ _ hCv Rex

hcv R©* j
(7.15)

(7.16)

(7.17)

Re _ P«MCyAXcy (7.18)

Therefore this procedure (7.14)—(7.17) was successfully replaced with equations (7.9), (7.7) and 
(7.10) as set out by Nithiarasu P, Codina R in [131].
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7.4 0.01m Flat Plate
Initially for this benchmark a decision was made to model a preliminary 1cm plate, before modelling 
the lm  long benchmark case. This was done to keep the local Pec let number low so that a solution 
can be attained without a need for uneconomically large grids. Once satisfactory results could be 
attained then the lm  plate and hence larger Reynolds numbers were attempted. The local Peclet 
number is denoted as:

(Pex), = (7.19)
/i / AxII+l

where the sub script I indicates a control volume, 1+1 is the adjacent control volume and Axj /+1 is the
distance from I to 1+1.'Where the non-dimensional Peclet number is a measure o f the relative strength 
of convection relative to diffusion. According to Patankar, [36], for central differencing schemes, for 
a stable computation, then the Peclet number should be less than 2. The cell Peclet number can be 
reduced primarily by reducing the grid size Ajc; /+1.

7.4.1 Boundary Conditions

A 1cm flat plate is initially used to test the AC CBS algorithm capability for solving incompressible 
flows. A schematic o f the domain is shown in Figure 7-2. This problem is an external flow problem, 
providing the boundaries are for enough from the region o f the physical interactions. The initial 
domain is 1.2cm long spanning a flat plate o f 1.0cm and it extends 0.2cm upstream o f the leading 
edge. The height o f the domain was initially set as 0.5cm

P i =  P i-1 u, = u. V, =  V;
/ • - I

v = 000
u x  = 10.208m / s  

Poo =  Pi-1

<--------------------------

0.005
m

I Po0=0

j Uj = 2w,._j — uj_ 2 

I vi = 2v;_j — v;._2

\   \  \  \  \
0.002m 

Inviscid Wall

< r

0.01m
Viscous Wall

Figure 7-2- Specification for the 0.01mplate.
\Qs~

As seen in Figure 7-2, the boundary conditions are also labelled as the wall. The left most boundary is 
the inlet and differs from the Supersonic inlet seen in the 2D Supersonic wedge example; here the 
pressure floats and is extrapolated from the cells downstream Thereby the pressure on the inlet 
boundary is calculated as part o f the solution for external Subsonic flow problems.

166



The top boundary is either fixed to the free-stream velocity values with a pressure extrapolated from 
the cells below — note, this should only be applied when the top is tar enough from the flat plate, 
however in our case, u, v and P are extrapolated from within the solution domain. The physical values 
on the outlet were initially extrapolated, using 1st ordered extrapolation values, and this gave rise to 
instability and divergence. Therefore boundary values were extrapolated using the 2nd ordered 
formulation, which gave rise to stable results.

5x S  & 3.5m m
=  0

B ounda ry Layer SL «  0.1mm

T20-15 elements in 1mm ~ r

_•_!__ ±__i__ i_;

0.002
0.01 m

Ax
= \ @ L E

—  < 2 0 0  
A y

Ax < 5x10 in
Figure 7-3- Specification for the 0.01m plate.

To obtain grid resolution in the boundary layer region and reducing the aspect ratio for cells at the 
trailing edge to less than 200. The guidelines for mesh construction can be seen in Figure 7-3. For 
neighbouring elements, we stretched the grid from the leading edge in the x and y direction utilizing a 
growth foctor o f less than 1.05 in the y direction and 1.1 in the x direction. This growth fector was 
enforced using the power law in the FEMGV mesh construction tool as seen in Figure 7-4.
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Figure 7-4—Grid (19800 elements) used to resolve the leading edge element to a length and height of 
2.3xl0'6m.

The first set o f  simulations were done to test the required mesh resolution needed by employing a grid 
independence study. This was done to capture the realistic pressure field over a flat plate. The size of 
the leading edge was found to effect the final pressure profile over the flat plate for steady state 
conditions. A grid independence study was carried out on 6 separate meshes. Each mesh has a 
different leading edge size as seen in Table 7-1.

Table 7-1-Grid parameters for mesh sensitivity study.
Nx Ny Nt LE Dx (10°m) LE Dy (10'°m)

Mesh 1 165 110 24000 30.00 42.00

Mesh 2 210 120 30000 20.00 30.80

Mesh 3 270 100 36000 1.33 1.82

Mesh 4 140 120 26000 9.35 1.63

Mesh 5 200 160 47000 7.9 8.97

Mesh 6 220 90 19800 2.5 2.88

where Nx is the number o f cells in the x direction. 
Ny is the number o f cells in the y direction.
Nt is the total number o f cells.
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7.4.2 Wall Coefficients

The distribution o f the pressure coefficient, heat transfer and skin friction are normally required 
during hardened validation of the CFD solver against theoretical solutions according to Lyra, [7]. 
Where the wall pressure is directly obtained using the flow variables and the ideal gas law. The heat
flux at the wall qw and the wall shear stress tw are obtained respectively, from.

dT
qw = —  (7.20)

f/Il w>
And
rw=tynx - f xny (7.21)

Here, tx and ty denotes the surfece tractions evaluated as- 
t, = T„nx + r n

ty = TyXnx +Tyyny
Where the shear stress tensor components r. is defined in Chapter 2.
For a flat plate which is parallel to the oncoming flow the stress tensor component reduces to.

T = UW (7.22)
dy

To compare the steady state CFD results with the experimental and numerical data the coefficient o f 
pressure, coefficient o f heat transfer and skin friction Cp, Ch and Cf are defined by.

Cp = — (7.23)
0-5 p . t t

CH=-------7 ^ — — f (7.24)

C,  = — T » _  (7.25)
0-5 p j i x

Where the subscripts w and oo refer to the wall and free stream values respectively.

7.4.3 Analytical Solution

The drag on a flat plate is either due to friction created by laminar, transitional, and turbulent 
boundary layers according to White, [154]. When validating the FV AC CBS scheme the comparison 
is made with the coefficient o f friction, Cf, for laminar flow between the theoretical result and the 
numerical solution.

The Blasius approach to solving the boundary layer was to transform the partial differential Navier- 
Stokes equation into ordinary differential equations that yield to series expansion. Thus the 
theoretical result is simply a function of the x distance The resultant drag on a flat plate from laminar 
flow is theoretically approximated by the equation in (White, [154] p.235) and seen below (7.26). 
This result is otherwise known as the Blasius solution. 
r  0.664
c / ,* = — r  (7-26)

Rel

169



Because the Blasius solution to the boundary layer over a flat plate has been shown to be very close 
to experimental data collected in Liepmann & Roshko, [82] this boundary layer flow is therefore a 
cornerstone for this CFD solver.

7.4.4 Simulation Results

When the steady state solution is reached the termination o f the calculation can be done automatically 
in the code by a test calculation, sensing when the changes in the flow variables between each 
iteration becomes smaller than the prescribed tolerance.

As mentioned the relative errors o f density o f the order o f 10"5, is an adequate relative error tolerance 
for compressible flow problems. For incompressible flows the relative errors are done with respect to 
the velocity as seen in (7.14). Appropriate time relaxation was employed to minimize the time 
derivatives in the early stages o f the computations by employing the Courant number, C, o f 0.01. So 
that the effect o f mesh resolution on the final accuracy o f the CBS scheme can be ascertained the 
following meshes in Table 7-1 were employed.

Mesh Sensitivity Study
Problems with convergence were encountered for the incompressible flow over a 1cm flat plate, in

-j
this case the convergence criteria or tolerances was reduced to 10' For solutions reaching this 
tolerance the resultant pressure profiles were compared along the bottom grid line o f Figure 7-3. The 
challenge for this case is to obtain grid independence for the pressure field.

Mesh sensitivity Study for the Pressure relative to atmospheric along the surface of the Flat Plate

CBS 24000E165X110Y dy=4.2e-5 dx=3e-5 
CBS 30000E 210X120Y dy=3.08e-5 dx=2e-5 
CBS 36000E 270X100Y dy=1.82e-5 dx=1.33e-5 
CBS 26000E140X120Y dy=1.63e-5 dx=9.35e-6 
CBS 47000E 200X 160Y dy=8.97e-6 dx=7.9e-6 
CBS 19800E 220X 90Y dy=2.88e-6 dx=2.5e-6
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Figure 7-5- Comparison of pressure along the surface of the plate for different grids that have 
increased resolution at the leading edge.
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The relative pressure along the flat plate is shown in Figure 7-5 for the 6 meshes seen in Table 7-1. 
For external flows, the 2-D flat plate problem, the pressure profile should exhibit positive relative 
pressure along the length o f the plate, with no negative values. This positive pressure profile is an 
indication that the numerical results are physically reliable. Conversely, for mesh 1-4, when the 
relative pressure is negative, it implies a sink for mass9. A mass sink on the surface o f the plate is an 
unrealistic and incoherent situation for this chosen benchmark problem.

Mesh sensitivity Study for the Pressure relative to atmospheric along the surface of the Flat Plate
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Figure 7-6- Comparison o f pressure along the surface o f the plate for different mesh densities. Each
refinement means a decrease of the leading edge size.

Figure 7-6 shows the relative pressure along the leading edge of the flat plate for the 6 meshes 
described in Table 7-1. The successive solutions on finer grids should show grid independent as the 
mesh is refined, as seen in mesh 5 and mesh 6. The plot shows that the 6th mesh in Table 7-1 displays 
purely positive relative pressures. Ensuring the results are physically correct. Therefore for the 
remainder o f this research this 6th mesh the 19800 mesh was employed for the simulations.

For the results above, the CBS code requires a resolution o f 2.3 x 10 m at the leading edge, however 
according to supervisors at ESA competitive CFD codes require a resolution of only 5x10 m. The 
next set o f  results were done to measure the accuracy of the AC CBS relative to the analytical 
solution mentioned in Section 7.4.3. The accuracy was quantified using the equation for the final AC 
CBS Cf values. All the results below were computed with the 6 mesh in Table 7-1 the 19800 mesh.

9 Since velocity goes from relative high to relative low pressure in incompressible problems.
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Table 7-2- Grid and flow parameters for the next set of simulation results.
1cm Flat 
Plate

u4m/s] poo[kg/nT] P°o[kg/(ms)] Re[-] Nx Ny Nt

10.208 1.225 1.789xl05 7 .0xl03 190 220 19800

p —   ------— .........        —  1 9 8 0 0  ELEMENTS
1CM FLAT PLATE

INVARIANT U VELOCITY
MAX = 10 .6  

M IN = 0.0445

INVARIANT V VELOCITY ~  i
M A X =2.07

M IN =0.0

Figure 7-7- Velocity contours from the AC CBS solver for the 19800 element mesh.

UNCB in the left hand corner o f the scalar contours (Top plot) shown in Figure 7-7 denotes the 
velocity in the x direction and VNCB denotes (Bottom plot) the velocity component in the y 
direction. These components are calculated at the solution points, the centroids o f the mesh as seen in 
Figure 7-4. The top contour plot has a large range for these contours (0-10.5 m/s) where the change of 
x velocity occurs predominately through the boundary layer. In contrast, the bottom plot, where the 
localized region o f contours occurs around the leading edge, has a smaller range for the contours (0- 
2.07 m/s).
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Accuracy relative to analytical solution
Norm al V elocity alo n g  th e  leng th  o f th e  1cm p la te

— Slasius Solution
-^ISSOOE dy-2,8SE6dx=2,5E6 . . . .0.20

0.1S

0.10
u velocity
{m/s}

0.1 0 .2  OS 0.4 0.5 0.6 0 .7  0 .8  0 .9  1.0
x Length (cm)

Figure 7-8-Coefficient o f  friction (Cf) values along the surface o f the plate for the 19800 
element grid which resolves the leading edge x-length 2x10"6m. The numerical solution is 
compared with the Blasius solution (red line).

In Figure 7-8, the laminar skin friction curve obtained with the FV AC CBS algorithm and the 19800 
mesh is in reasonably good agreement with the theoretical curve provided in Section 7.4.3. and 
displayed as the red curve. However as previously mentioned industrial sponsors ESTEC require an 
accuracy o f less than 1% error between the C f value predicted by theory and the C f value calculated 
through the CBS scheme. The next plot displays the absolute errors along the flat plate.
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% Error with respect to the Blasius Solution along the 1cm Plate Length
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Figure 7-9-Absolute percentage error for the Cf values along the surface of the plate as solved over 
the mesh seen in Figure 7-4.

Figure 7-9 displays the percentage error between the numerical solution and the theoretical result for 
Cf. The recommended average percentage error should be below 1% as recommended by ESTEC. 
The average percentage error is calculated and is seen below for the 19800 mesh using the AC CBS 
scheme as:

1 C - C  Af ,B la s  f ,C B S

'a b s ,e r r

"a bs , e r r

ELEXX  v_. 

= 8 %
N = l ,  E L E X X \ \ c f , B ias

xlOO (7.27)

Where ELEXX number of elements on the surface of the plate.

7.5 Extension to 1.00m Flat Plate
By building blocks onto the 19800 element mesh seen in Figure 7 - 4  we obtained what would b e a 
satisfactory grid for the 1 meter plate. However initial simulations showed that the AC CBS 
algorithm was unstable at modelling the viscous Subsonic boundary layer; for a free stream Reynolds 
number o f 7x105. A number o f strategies were employed to stabilize the algorithm, however, none 
were as effective as increasing the viscosity, an indication that the instability is due to turbulent 
eddies.
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FEMGV 7 . 0 - 0 4  : PHYSICflt E v a l u a t i o n 20 SEP 2 0 1 1  1 1 : 3 9 : 5 1  MESH.1180O0B

M o d e l : DOOM
f i n a l y s l s :  PHYSICfl

Figure 7-10-Grid (118000 elements) for the lm plate used to resolve the leading edge element to a 
length and height of 2.3x1 O'5m.

The aspect ratio at the inlet and the outlet were tracked because if they are , as anything greater than 
2 0 0 , according to the industrial sponsors, is potentially de-stabilising.

Table 7-3- Grid and flow parameters for the lm flat plate.
lm Flat 
Plate

u^m/s] poctkg/nT] p^kg/fms)] Re[-] Nx Ny Nt

10.208 1.18 1.789xl05 7.0xl0 5 590 2 0 0 118000

In order to clarify that the algorithm’s inability to stabilize the current problem was due to high 
Reynolds number, we created an enlarged copy of the 19800 mesh as seen in Figure 7-4 (xlOO the 
length in the x direction & xlOO the height in the y direction and by utilising an identical Reynolds 
number as the 0.01m case). In order to get identical Reynolds numbers for both the 0.01m and lm  
plate a larger kinematic viscosity was substituted into the 1 m plate in place o f the viscosity for air. 

1.225x10.208x1
= --------------------- = x 10 l kg ( m s>j

Re = ^ i  = 7 x io 3

r̂ new
The above kinematic viscosity is xlOO greater than the 1 cm plate case. The schematic domain is 
analogous to Figure 7-2. However the domain is 1.2m long, here, spanning a flat plate o f 1.0m and it 
extends 0.2m upstream o f the leading edge. The height o f  the domain was initially set as 0.5m instead 
°f0.005m.

To verify that the viscous AC CBS algorithm stability is independent o f the domain size but more 
than likely dependent on the Reynolds number, then we make the following conjecture. "If the AC  
CBS solver has an intrinsic flaw at modelling larger domains then the final velocity profile should be 
different to the 0.01m case." Then the following results must converge to steady state and the results 
must be in close agreement with the Cf values for the 1cm case as seen in Figure 7-8.
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The aspect ratio for the grids employed at the inlet and the outlet needs to be assessed; anything 
greater than 200, according to the industrial sponsors is potentially de-stabilising. Therefore the mesh 
for the 1cm flat plate in Figure 7-4 was re-created but instead with a length o f lm  and a height of
0.5m so that the leading edge element has a height and Iengthof2.3xl0‘4 m.

Table 7-4- Grid and flow parameters for the next set o f simulation results.
lm Flat 
Plate

Uoojm/s] Poo[kg/nT] p«,[kg/(ms)] ReJ-] Nx Ny Nt

10.208 1.225 1.789xl03 7 .0xl0 3 190 2 2 0 19800

Normal Velocity along the length of the lm  plate
12

r B la s iu s  S o iu t io n  
] - * - 1 9 8 0 0 E d y -2 .8 S E -4  d x = 2 .5 E -1 0

u v e io c i t y  
(m /s )

0 .3  0 .4 0 .5  0 .6 0 .7 0.8 0 .9 1.0

X Length (m )

Figure 7-11- Velocity along the surface o f the plate for the 19800 element grid with the leading edge 
element set to a length 2.3x1 O'4 m. The AC CBS results (blue circle) are plotted against the Blasius 
solution (red solid line).
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% Error with respect to the Biasius Solution along the lm  plate length
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Figure 7-12. Illustrates percentage error for the coefficient of friction for the 19800 element grid with the 
leading edge element set to a length 2.3xl0'4m. The CBS results (green circle).

The AC CBS algorithm has shown that it is restricted to stable solutions for problems with a free- 
stream Reynolds numbers (Re)< 7x105. However for Re= 7.0 xlO3 the AC CBS solution converged to 
a steady state solution.

f (  ^  -  A
£ kabs,err

1

ELEXX n = \ , e l e x x  

= 8 %

C - Cf ,B la s  f ,C B S

c
\ \  f  ,B las

xlOO (7.28)

Where ELEXX is the total number o f elements adjacent to the flat plate.

Unsurprisingly the average percentage error (8 %) for the lm  plate as calculated by (7.28) is 
approximately the same as the value seen in the first benchmark study; the 1cm flat plate case. Since 
the average percentage error (8 %) is well above the acceptable value o f 1 % further work was carried 
out on driving down the error to below the 1% tolerance. These efforts included a study into 
enlarging the domain, because this will allow us to quantify the effect that the distance between the 
flow inlet and the leading edge (LE) has on the final solution

Before we can remedy the CBS FV scheme so that it can capture reliable results with respect to the 
analytical solution we first need to understand the reason for the insufficient accuracy that the 
external flow problem is displaying.

7.5.1 Boundary Conditions
To deduce the underlying reasons for the insufficient accuracy, a literature search into the flat plate 
Problem flagged up studies by Hirsch, [175] and Vaughn, [176].
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Back in 1984 Hirsch studied the effect that the proximity o f the far field boundaries has on the flat 
plate solution. Hirsch, [175], concluded that the correct placement ofboundaries was required to gain 
an accurate answer for the numerical scheme favoured in Hirsch, [175]. In addition, if free-stream 
boundary conditions were applied to the top boundary and extrapolation is applied to the exit 
boundary Hirsch’s algorithm converged to the analytical solution. Hirsch showed that the inlet 
should be 49.5 plate lengths away from the leading edge and the top o f the domain should be 50 plate 
lengths above the plate surface. I propose to try the following amedments and investigate the effect it 
has on the final solution.

I. For the 1st set o f  results obtained by the FV AC CBS approach a 1st ordered 
extrapolation was applied to the top boundary, which allowing mass and enthalpy to 
leave the domain.
For the 2nd set o f  simulations, I applied free-stream velocities,Vtop^O, to the top 
boundary akin to the boundary conditions in Hirsch, [175] meaning no mass will 
enter/exit the domain through the top boundary.

II.
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Figure 7-13-Domain for the lm  plate as set out by [176].

The location o f  the domain boundaries to the region o f interest was stipulated in a more recent study 
by Vaughn, [176] as follows. The inlet to the leading edge should be a distance o f 1.5 times the plate 
length and the top domain boundary should be 1 plate length above the region o f interest. Vaughn, 
[176], obtained accurate results for the flat plate problem after conducting numerical experiments 
using different domain sizes. His final agreed domain size is illustrated in Figure 7-13. This 
shortening o f the domain size, when compared to Hirsch’s domain size, was most likely down to the 
more reliable numerical algorithm used by Vaughn, [176], at solving the incompressible flow 
problem.

Thus these two strategies were employed to stabilize the algorithm and to obtain accurate solutions. 
Namely

1. Move the inlet away from the leading edge.
2. Fix the top boundary to the free-stream velocities.
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7.5.2 Simulation Results

To distil the effect that the distance from the inlet to the leading edge has on the accuracy o f the final 
solution, the same grid used over the region o f interest, i.e. the surface o f the plate was repeated from 
Figure 7-4.
Domain Enlargement X  Direction
The “inviscid wall”  as seen in Figure 7-14, was lengthened incrementally. In addition the different 
grids have the inlet element aspect ratio (AR=dx/dy) fixed to those seen in the 1cm mesh meaning 
AR< 200-
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Figure 7-14-Specifications for the lm  plate with varying LE to inlet lengths.

The next strategy as described above is to increase the upstream distance from the leading edge to the 
inlet boundary. The effect o f increasing this distance on final solution was then studied by using 4 
different meshes as noted below. Below is one o f these new grids as seen in Figure 7-15:
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Table 7-5-Grid parameters for inlet sensitivity study

LE Length (m)
Mesh 1 0 . 2

Mesh 2 0.38
Mesh 3 0.56
Mesh 4 0.92

FEMGV 7 . Q - 0 4  : PHYSICA+ E v a l u a t i o n 09  OCT 2 0 1 2  1 4 : 1 8 : 1 5  LE2M03H2

M o d e l :  BLASUXS 
A n a l y s i s :  PHYSICA

1t1118

LE=0.92m
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PRESSURE AT THE INLET FOR THE 1M FLAT PLATE
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Figure 7-16-Pressure at the inlet in the y direction for the different LE lengths.

For meshes harbouring leading edge (LE) lengths of 0.2m up to 0.56m the above Figure , Figure 
7-16, displays a negative pressure gradient in the y direction: green, blue & yellow lines. A positive v 
velocity, with a non-negligible magnitude, is produced from this negative pressure gradient. This is 
not consistent and not coherent with the stipulated inlet condition o f zero v velocity at the inlet. At 
inlet to LE lengths o f 0.92m the pressure profile is relatively straight. This is the inlet profile that is 
consistent with the stipulated boundary condition o f zero v velocity. Going forward, meshes will have 
to contain LE lengths o f 0.92m or more.
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PERCENTAGE ERROR FOR Cf VALUES OVER THE LENGTH OF THE PLATE
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Figure 7-17-Percentage error for the Cf for different grids where the distance from the inlet to
the leading edge is given by the legend.

As the spatial length between the leading edge (LE) and the inlet increases from 0.2m to 1.7m, the 
final velocity field, approaches the analytical Blasius solution as seen in equation (7.26). Where a 
minimum average error o f 1.88% is obtained with the 0.92m LE length. The boundary placement 
plays a fundamental role in obtaining an accurate CFD solution. Futhermore as the length between 
the leading edge and the inlet increases from 1.7m to 2.0m the CBS solution does not improve its 
accuracy.

Since the average percentage error (1.88%) is still above the acceptable level o f 1 % further work w a s  
carried out on driving down the error namely assigning the top boundary, free stream values (zero 
mass transfer across the top boundary).
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In Figure 7-18 below, the top boundary value is fixed to the free stream v velocity (zero mass 
transfer). By fixing the top boundary to the free-stream values we can now infer the effect that this 
has on the v-velocity field at the downstream boundary.

Table 7-6- Grid and low parameters for the next set o f simulation results.
lm Flat 
Plate

Uxfm/s] poo[kg/nf] F°o[kg/(ms)] Re [-] LE[m] H[m] Top Boundary

10.208 1.225 1.789xl03 7.0xl0 3 1.5 0.5 Fixed Free- 
stream

FEMGV 7 . 0 - 0 4  : PHYSICA+ E v a l u a t i o n 2 0  SEP 2 0 1 2  1 0 : 1 7 : 5 5  L E 0 1 5  24 O0O0N FREEUP VELOCITY
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Figure 7-18: Contours for the u & v velocity for free-stream top boundary.

UNCB in the scalar contours shown in Figure 7-18 denotes the velocity in the x direction and VNCB 
denotes the velocity component in the y direction. It can be inferred from the above figures, that the 
top boundary (y=0 .5 m) is not tor enough from the surface o f the plate to successfully apply the zero 
Mass transfer condition across the top boundary.

The v velocity plot shows unrealistic oscillations. Figure 7-18 displays beyond doubt that applying 
the free stream velocity values produces decoupling even though the solution converges to errors o f 
the region o f  10'3. Meaning the top boundary is either too close to the boundary layer or that another 
boundary condition needs to be applied to the top boundary instead.
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Table 7-7- Grid and low parameters for the next set o f simulation results.
lm Flat 
Plate

Uoofm/s] podkg/nf] p4 kg/(ms)] Re [-] LE[m] H[m] Top Boundary

10.208 1.225 1.789xl03 7.0 xlO3 1.5 0.5 2 na
Interpolation

In the figure below the top boundary value is allowed to float with the interior values. This was done 
as a control to demonstrate which is the most appropriate or consistent boundary condition for the top 
boundary to obtain an accurate CFD solution. Simulations were carried out where the top boundary of 
the grid had both 1st ordered interpolation and 2nd ordered interpolations applied. No noticeable 
difference was observed.

FEMGV 7 .0 -0 4  : PHYSICA+ E va lu a tio n 18 SEP 2012 1 5 :0 8 :0 4  TAT 29080E 20080N VELOCITY

MODEL: MAT
CASEl: PHYSICA RESULTS 
STEP: 1 TIME: O 
INVARIANT 
MAX = 1 
MIN = -

MODEL: MAT
CASEl: PHYSICA RESULTS 
STEP: l  TIME: 0 
INVARIANT UNCB 
MAX = 1 0 .4  
MIN = .41  IE-1

Figure 7-19: Contours for the u & v velocity for case 2.

Figure 7-19 shows the result o f  the 2nd ordered interpolation i.e. 7 boundary
condition. From Figure 7-19 it was inferred that the top boundary is still not for enough from the flat 
plate (viscous region) to apply the interpolation condition. Therefore the next simulations will be on 
grids that have been constructed specifically with an enlarged domain in the y direction.
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Domain Enlargement in Ydirection
In a final attempt to reduce the analytical error to below 1% from 1.88% the next strategy was to 
experiment further with the placement o f the domain’s boundary. For the next simulations the height 
of the domain was fixed and the length upstream of the leading edge to the inlet boundary, otherwise 
known as the LE length, was varied.

Table 7-8- Grid and flow parameters for the enlarged domain.
lm Flat 
Plate

U oofm /s] p a o [k g /m J] F°o[kg/(ms)] Re [-] LE[m] H[m] Top Boundary

10.208 1.225 1.789xl03 7.0xl0 3 2 .0 8 .0 Fixed Free- 
stream

M odel: BLASX2X 
A n a ly s i s :  PHYSICA

LE=2.00m

Figure 7-20:Mesh with domain enlarged in the Y direction

FEMGU 7 .0 - 0 4  : PHYSICA+ E v a lu a tio n  09 OCT 2012 1 3 :5 7 :5 9 LE175M6H_GRID2
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FEMGV 7 .0 -0 4  : PHYSICA+ E va lua tion 10 OCT 2012 11:09 :35  ALA_LE1M8H_UEL0
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Figure 7-21: Velocity contours for the mesh as seen in Figure 7-20.

UNCB in the scalar contours shown in Figure 7-21 denotes the velocity in the x direction. Because all 
contours occur or interactions occur well below the top boundary it can argued from the above Figure 
7-21 that the top boundary (Y=8.0m) is now far enough from the surface o f the plate to successfully 
apply the free stream conditions across the top boundary.
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% ERROR FOR Cf VALUES OVER THE LENGTH OF THE PLATE
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Figure 7-22- Percentage error for the coefficient of friction for different grids where the distance from 
the inlet to the leading edge is changing (see legend) & the height is fixed to 8m.

In Figure 7 - 2 2  the two meshes mentioned have their absolute Cf error’s plotted together, red and pink. 
Where the pink line corresponds to the 0.98m leading edge (LE) meshed domain and the red line to 
the 2m LE length meshed domain as seen in Figure 7-20. According to Hirsch, [175], as the length 
between the leading edge and the inlet increases from lm  to 2m the CFD solver should improve its 
accuracy relative to the Blasius solution. Frustratingly the result is that the average error value o f 
2.05%.

This is as far as the boundary placement study was taken because no more gain in accuracy is 
produced when increasing the domain size. Although the 1% tolerance was not satisfied, the Artificial 
Compressibility CBS FV algorithm’s performance needs to put into context. The final planned 
Problem to be modelled is a compressible Supersonic flow problem not an incompressible Subsonic 
problem. Incompressible problems are solved with the AC CBS FV algorithm whereas compressible 
Problems are solved using the CBS FV algorithm, which does not utilize the relationships seen in 
Section 7.3.2. The density based CBS algorithm is primarily a compressible fluid solver designed to 
handle discontinuities with extensions to porous media [136].
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7.6 Concluding Remarks
The candidate CFD code should allow the possibility o f keeping a laminar Subsonic flow in the 
porous media as mentioned by [169], [177] and [178]. Therefore 2D simulations o f viscous Subsonic 
flow over a flat plate have been performed to verify that the CBS scheme can correctly reproduce a 
laminar boundary layer. Only steady state solutions were sought throughout the incompressible study 
because o f the dearth o f theoretical solutions to transient incompressible fluid problems. Target errors 
of 1% between the analytical solution and the AC CBS algorithms results were expected by industrial 
sponsors. Only computational domains which were significantly larger than the domain suggested by 
ESA, gave satisfactory results. As highlighted by Hirsch, [175], and verified above, the flow field 
boundaries' proximity to the region o f interest needs to be investigated prior to solving each viscous 
Subsonic problem.

7.6.1 Summary of the AC CBS algorithm for incompressible flow
Relative to the analytical solution for viscous incompressible Subsonic flow the accuracy with respect 
to the analytical solution is slightly above 1%. The accuracy o f the results were extremely dependent 
on specific features o f the domain such as the resolution at the leading edge and, the aspect ratios of 
elements at the trailing edge and inlet. In addition so that the formation o f the boundary layer can be 
accurately captured, a leading edge element length, Ax, should be o f the oreder o f 2.3 x 1 0  ~6m . And 
all aspect ratios should be less than 2 0 0  when possible.

In addition to these specifications, a check on the dimensions in the original pseudo time step by 
Massarotti et al, [132], and the artificial wave speed calculation showed that it was not dimensionally 
consistent, which was believed to have caused instability for early simulations o f the 1 cm flat plate. 
Therefore equation (7.17) was replaced with equation (7.10) with comparative success.

For a free stream Reynolds number o f 7x105 initial simulations, for a lm  plate, using the CBS 
algorithm, were unstable and diverged. A number o f strategies were employed to stabilize the 
algorithm however none were ultimately effective enough at obtaining stable results for such high 
Reynolds numbers. Hence a turbulence model will be required to compute high Reynolds number 
flows but this is beyond the scope o f the laminar flow simulations analysed here.

In order to clarify that the algorithm’s inability to stabilize the current problem was due to high 
Reynolds number, we created a im  copy o f the 19800 mesh from the 1cm case as seen in Figure 7-4. 
In order to get identical Reynolds numbers for the 0.01m and lm  plate a larger kinematic viscosity 
was substituted in place o f  the viscosity for air. This unsurprisingly resulted in stable solutions 
however not the accuracy that the industrial supervisors permit. Then a number o f strategies were 
employed to enhance the accuracy o f solutions however none were as effective as moving the 
boundaries away from the leading edge. As computed by equation (7.27) the most accurate result was 
seen in Figure 7-17, with a LE length o f  1.7m, where the Blasius and AC CBS differed by 1.88%.

It is the researcher’s view that errors between the AC CBS simulations and Blasius’s solution arise 
because o f limitations, in the founding assumptions used in the Blasius approximation. The Navier- 
Stokes Equations reduce to the following equations for the limiting case o f incompressible Subsonic  
flow at a large distance from the leading edge:
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dy dx dy2
The limitations o f the Blasius Prediction include the feet that there are no pressure terms in equations 
(7.29)-(7.30). The assumptions maybe valid at suitably large x distances from the leading edge but 
the assumption breaks down inproximitry o f the leading edge location.

As we have seen in this chapter the pressure based algorithm, the AC CBS is stable at low Reynolds 
numbers, but it is not permitted by ESTEC because the errors are above the minimum it requires for a 
CFD solution. However the density based CBS scheme employed for the inviscid compressible 
Supersonic flows, for 1-D and 2-D inviscid problems, were reliable enough therefore it will be 
employed with caution for the final application o f computing Supersonic high temperature 
components utilizing transpiration cooling.



8 NAVIER-STOKES SOLUTION FOR 2-D 
COMPRESSIBLE SUPERSONIC FLOW

8.1 Introduction

This chapter evaluates the reliability o f  the resulting solutions for the Navier-Stokes equations when 
using the finite volume (FV) CBS technique for the flow over a Supersonic flat plate. As already 
seen, impressive results with respect to accuracy and reliability, for the Euler equations, involving 1- 
D and 2-D geometries have been made in this thesis. In addition, stable and realistic solutions in 
terms o f  absolute errors to the analytical solution for incompressible boundary layers<1 0 %, even 
when accuracy issues are fed in from ill-posed boundary conditions, have been obtained. In 
particular, the CFD results generated are physically realistic.

Due to the dearth o f credible analytical and experimental results for Hypersonic viscous problems as 
mentioned by Hirschel & Weiland, [5], there is a limited number o f CFD studies targeted at 
Hypersonic benchmarks. The major challenge according to Lyra, [7], for building a Hypersonic 
simulation tool is the development o f a robust Supersonic flow solver, which can be applied to 
unstructured as well as structured grids. This chapter seeks to address the problem o f developing a 
stable and reliable numerical scheme in order to capture the pertinent physics for compressible 
laminar flows only. Therefore studies into grid independence, boundary layer separation and 
compressible turbulence have not been investigated in this chapter.

Viscous flow over a Supersonic flat plate was benchmarked against the crude theoretical 
approximation, the Supersonic Temperature reference solution presented by Driest, [179]. It is crude, 
because it makes the simplifying assumption that pressure remains constant through the Supersonic 
compressible boundary layer [179]. In the sense that only a very thin region close to the solid wall is 
viscous, the benchmark problem in this chapter is assumed to be inviscid dominated, i.e. governed by 
the inviscid character o f  the Navier-Stokes equations. The numerical procedure adopted for the 
compressible Navier-Stokes simulations are built using the scheme developed in the 2D inviscid 
chapter with the inclusion o f  additional viscous terms in the momentum and enthalpy equations. 
Those viscous terms in the Navier-Stokes equations are numerically discretised in the same manner 
as the convection terms, by central differencing.
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8.2 Supersonic Benchmark Case

As the Reynolds number in the next example is < 105 and because the Knudsen number Kn <§C 1 for 
the maximum speed, the Mach 4 case, the continuum model is assumed to valid and is applied with 
success.

In this chapter we extend the impressive Compressible Euler FV CBS solver that captured inviscid 
flow over a wedge in Chapter 6  to the problem of viscous flow over a Supersonic Flat Plate. 
Modelling the hyperbolic character o f Supersonic inviscid flow is made possible by utilizing some 
form o f numerical dissipation that allows the scheme to stabilize the non-linearities. However, the 
inherent numerical dissipation o f viscous flows means that the numerical dissipation for the solution 
of the Supersonic flat plate, could possibly be overestimated, especially in proximity o f the boundary 
layer as mentioned by Lyra, [7].

The following viscous benchmark problems all have the same plate length o f 10 micrometers to 
restrict the Reynolds number but differ in terms o f the free-stream velocity. This was done to test the 
CBS algorithm’s Mach speed range. In addition, to the range of speed investigated, two opposing 
thermal boundary conditions at the flat wall, are also studied. These two cases are.

1. The constant isothermal cold wall case.
2. The adiabatic boundary condition.

The constant cold wall case represents the simplest and most stable boundary condition o f the two. 
The adiabatic wall condition represents the next step for a more computationally involved and 
unstable condition, since the wall has to come into thermal equilibrium with the adjacent fluid layer.

This point is already mentioned but should be repeated to fully bring home the point that, the next 
benchmark problem is a 10 pm flat plate. It was scrutinized because it ensures small free stream 
Reynolds numbers, which ultimately means that the code can compute high speed problems without 
transition to turbulence, which otherwise cause solution instability - a major challenge. In addition 
smaller running times are experienced and hence more efficient data harvesting.

Table 8 -1 - Benchmark cases computed and now displayed in this Chapter: Navier-Stoke solution for 
2-D compressible flow.__________________________________________________
benchmark Mach Speed Length[m] Cold Walk Adiabatic 

Boundary Condition
.Case 1 2 lx l O' 6 Cold Wall
.Case 2 1.5 lxl 0 _i Cold Wall
.Case 3 4 lxl O' 4 Cold Wall
^Case 4 4 lxl O' 4 Adiabatic

8.2.1 Boundary Conditions
The 10  p m  fla t  p la te  w a s  s im u la te d  d u e  to its s ta b ility , a n d  it m a k e s  a g o o d  in tr o d u c to r y  p r o b le m  that 
h igh ligh ts th e  is s u e s  fo r  a  s ta b le  s o lu t io n  to  th e  m o r e  d if f ic u lt  p r o b le m s  that h a v e  m u c h  h ig h e r  

R eyn old s n u m b e rs . T h e s u c c e s s f u l  m o d e lin g  o f  th e  S u p e r so n ic  b o u n d a r y  la y e r  o v e r  a  fla t p la te  is  a
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substantial and fundamental benchmark for any CFD code, considering that the reference temperature 
method is a simple and credible comparison for a compressible flow over a flat plate.
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Figure 8-1: Specifications for the domain to the Supersonic 10pm plate as seen in [15].

A schematic o f the domain is shown in Figure 8-1. This problem represents an external flow problem 
providing the boundaries are for enough from the region o f the physical interactions. The initial 
domain is 1.2 x 10' 5 m long spanning a flat plate o f 1.0 x 10"5 m and it extends 0.2x1 O'5m upstream of 
the leading edge. The height o f  the domain was initially set as 1.0xl0'5m. Free-stream values are 
stipulated for all cells at the west and the top boundary. The inlet boundary are open outflow 
boundaries and were extrapolated using the 2 nd ordered formulation, which importantly gave rise to 
stable results.

8.2.2 Wall Coefficients
According to Lyra, [7] as seen in Section 7.4.2 the distribution o f  the coefficient o f pressure, heat 
transfer and skin friction are required during the stage o f  validation o f the Navier-Stokes solution 
algorithm or during the use o f the algorithm for aerodynamic design. To compare the steady state 
CFD results with the experimental and numerical data the pressure heat transfer and skin friction 
coefficients Cp, C h  and Cf are defined by (7.22), (7.23) and (7.24) :

8.2.3 Analytical Solution
The reference temperature method is taken from Schlichting, [155], and is an approximate 
engineering method for predicting skin friction and heat transfer for laminar compressible flow over a 
flat plate. The idea was first proposed by Rubesin and Johnson [180], and was modified by Eckert, 
[181], to include a reference enthalpy. The reference temperature method is an approximate solution, 
because in most practical cases the assumptions are crude simplifications o f  the actual reality- 
Assumptions, such as the constant pressure through the boundary layer [155], therefore this point 
should be kept in mind when evaluating the accuracy o f the final converged CBS solution. However, 
due to its simplicity, along with reasonable accuracy, it is useful for CFD design purposes, as it gives 
a crude ball park answer for the skin friction and the heat coefficient. It is founded in the idea of 
utilizing formulas akin to the Blasius solution for incompressible boundary layers seen in [154] and 
Chapter 7, but with amended temperature, density and dynamic viscosity values. Futhermore the
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physical properties are numerically approximated at the temperatures inside the compressible 
boundary layer and adjacent to the wall surface. For laminar compressible flow the temperature is:

T*=T„ 0.5 +039 M l  + 0 .5 ^ 2
T j

(1 .1)

Where the subscript AW means adiabatic wall so T a w  is the adiabatic wall temperature 
And Moo is the free-stream Mach number.

* _ 0.664 _ tw

f  ^  1 /2  p * u l  (1-2)
Where p  * is the reference density calculated from-

P * ~  0 3 )

, _  * P*u„L 
And Rev = ------—X p *
And the heat coefficient is calculated from.

C 'H  =  H E ( P r * ) <-2/3> =   2 * .  n  4)
s l H  P * k Cp(Taw- T J

Where the Reference Prandtl number for a compressible boundary layer is- 
u*C

P r*  =  — L  (1 .5 )
k

Where k is the thermal conductivity o f air at a reference value o f Too.
And p is calculated from Sutherlands law at T*.
For the compressible flat plate case from Driest, [179].
s = A-.AA* (I-6)

(1.7)

W h e n P r = l : i e  th e  ratio  o f  th e  g a s e s ’ k in e m a t ic  v is c o s i t y  to  th e r m a l d if f u s iv i t y  is  u n ity  th e re fo r e -

* i r = C / i r ^ + J  0 -8 )

W h e n P r < l th e re fo r e

K w = K + r ^ -  (1-9)

W here r is  th e  r e c o v e r y  fa c to r  g iv e n  b y  r  -  V P r
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FEMGV 7 . 0 - 0 4  : PHYSICA+ E v a l u a t i o n 13 JAN 2 0 1 2  1 3 : 0 4 : 3 9  MICRON_10

M o d e l : MICR0N10 
A n a l y s i s :  PHYSICA

Figure 8-2: 9880 element mesh used to model the 10 micron flat plate Mach 2 case.

The following table contains the flow parameters for the next set o f  simulations. Notice that the 
Reynolds number is well within the laminar regime, and this is because we are primarily concerned 
with the capability o f  the algorithm to compute compressible laminar boundary layers. Where 
stability requirements and accuracy o f the results are investigated. The small grid sizes also means 
convergence is achieved in a relatively small number o f iterations.

Table 8-2- Grid and flow parameters for the next set o f simulation results.
Length
[m]

M o o [ - ] poo [kg/nr5] Moo[kg/(ms)] Re [-] Nx Ny Nt

1 0 ° 2 1.225 1.789xl0-5 4.60x102 1 0 0 98 9800
1 0 ° 1.5 1.225 1.789xl0“5 3.45

xlO2

1 0 0 98 9800

1 0 ° 4 1.225 1.789xl0"5 9.20x10Z 1 0 0 98 9800
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8.4 Sequential FV CBS Procedure
The central differencing CBS technique was embedded within the PHYSICA code framework and 
simulations were then run to solve the Navier-Stokes system o f equations. The PHYSICA 
environment allows the implementation o f the dissipation terms into the enthalpy equation for this 
problem The mesh for the domain is given before each solution. The sequential computational 
procedure for the CBS finite volume algorithm can be done in a number of ways, but for this 
research, the following general procedure was pursued after numerical experimentation. Each step 
described below is applied to all the cells in a sweep of the grid. After this sweep the boundary 
conditions as seen in step 7 are computed. Then the sequential computational procedure, otherwise 
known as an iteration is either exited or repeated after calculating the residual error and comparing to 
the agreed tolerance.__________

1. The CBS scheme incorporates local pseudo time stepping. The pseudo time step is 
given by the following equation: where C is the courant number and depending on 
the problem is usually < 0.5.

hCv
(1 .1 0 )A tnc v =C

c + Ccv ^ ucv

2. The numerical dissipation is calculated from-

C , 2 ,  n x ~ =
f=\,TOTFIC. d x  f

f

z \n x \ ( P a d j + P c v ) \̂ f  -\JO T F IC dx
+

f=l,TO TFIC
s  CV

C,
^  dP

n y ~ == 
f=\,TO TFlC  d y  j

Z  H t e * +pcv)
f = \; r o T F ic

y  „ M
yf=\joTFic oy f  j cv

3. Compute the Intermediate Momentum field

/  Z  {{puiuj ) * niH
/ -\,T O T F lC

At 
2

pUj = pu'j -
At
AV

v

f  -\,T0T F1C
f

+ T “ ‘ Z  { d i ^ p u ^ y n j A )
V / =\,T0TF1C f

+ ( y ) c, ( U 1 )

where ^  denotes a summation over cell feces
f=\,TO TFlC

4. Compute the corrected momentum field-

»+i * Â
P u i ~  P u i ~ ~ T 7}  

A V

n Af dP
Z  P f ^ i Af - - uk Z  —— • ttjAf

\ f = \ J O T F I C  L  f= ]J O T F IC  U A j y

(1 .1 2 )
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5. The Continuity Equation is solved using the momentum values from the n+1 
"time” level-

^n+1   ^n ^
P c v  -  P c .v  ~  T T 7  

A V
Z ( p u , ' n , A )

V f= \,T O T F IC

x  n + l

+

6 . Compute the specific Enthalpy field

-  £  {(pEuj)*nJA)f + £
f=\,TOTFIC 1 f=\,TOTFIC

-  X ((Pu,)"",A) + s(/,£)■;; =(pEy

& ) c v (1.13)

vaC

f=\,TOTFIC 

/
f=i,TOTFIC

d(UJTJ>).
dx.

n,A

At 
+ —  uk 2 I

/ -I.TOIFIC

d (pEi i j )

dx,.
n,A

Jf
+ I/  =\,TOTFlC f ix,

\

+ (* L  d - 14)

Temperature is inferred from Enthalpy: To close the equation set for the Navier Stokes 
equations the Ideal Gas Law, Sutherlands Law and the Prandtl Law. The Prandtl number, 
which is assumed constant for ideal gases at moderate temperature [82] where Pr is 0.74.

Compute the outlet values using linear extrapolation.
A7+1 /-n W+ld p  _  d p

dx Nmm,j dx  wmax- u  

d p u  

dx

dx

n+l +"a£
II

dx N -1iVmax
. n+l dpE n+l
Aniax»J dx Nmx-1

Which for a orthogonal structured grid becomes:

H L = ^ t u - W !'max > 
.(1+1

*11+1

Vm„v— 2.J 
,n+l
LmaS-2,J

( / ? £ ) ' ,+I = 2  ( p E ) n+l - ( p E ) " +lfNmx,3 )Nm- 1,J /Nmx-2,J
Where Nmax is the cell column adjacent to the outlet boundary 
and at the inlet and fix the velocity, density and temperature.

Vo ={1.5,2,4}

„ - 1  o M .
Poo ^  3m
71 = 3 0 0 £

7. Check convergence to steady state values by sensing whether the relative error is 
less than the agreed tolerance o f  1 0 ' 5 or alternatively the number o f 
iteration/sweeps is below the maximum iteration/sweeps, iMax, stipulated by the
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user, this value was set initially to IMax =95,000 iterations.

1
e l NUMELE

N U M E L E

zcv=\
| P c v -P c

\
N U M E L E

C V = 1

(1.15)

8 . Ifconvergence has been achieved exit the procedure and display results otherwise 
re-start the computational sweep by going back to step 1 .______________________

General Remarks 

1. Solid wall boundaiy faces
At the flat plate, all the velocity components are set to zero. In addition, constant cold wall or 
adiabatic wall boundary conditions can be set. For the cold wall temperature plate at the lace 
straddling the wall, the temperature is set to the prescribed value - to the free-stream values. However 
at an adiabatic wall, the condition o f zero temperature gradient is weakly imposed through the 
discretisation o f the energy equation.

2. Initial conditions
The initial conditions for this problem; all quantities were set to their respective free-stream values 
and then computations were conducted with the biggest gradients occurring in the region o f interest.

The 1st case chosen consists of a free-stream Mach speed o f 2, a density o f 1.225 kg/m3 and a 
temperature o f 288.16K. The Reynolds number based on the size o f the plate is 460. The local Prandtl 
number is assumed to be constant and equal to 0.74. The viscosity is a function o f temperature and is 
calculated at the solution points using Sutherland law.
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8.3 Simulation Results
A validation test for any algorithm for Supersonic flow is the comparison o f the compressible laminar 
boundary layer development on a flat plate with the predicted solution from [155]. This comparison 
will hopefully indicate if there is excessive artificial dissipation in the numerical scheme.

Cf for Mach 2 Vs Reference Temperature Method

Temperature Reference Method 
o- 9800E 5500N 

9800E 55000N 
9800E 66037N Converged

0.09

0.08

0.07

dr o.o6

0.05

0.04

0.03

Non Dimensional Length

Figure 8-3- C f values along the surface o f the plate for the 9880 element grid.

The predicted skin friction coefficient from the CBS algorithm at different stages in the computations 
is compared with the approximate solution given by the temperature reference approximation solution 
(red line) in Figure 8-3. The three stages are 5,500 iterations (green circles), 55,000 iterations (light 
blue circles) and convergence at approximately 66,037N iterations (blue circles). Apart from the 
computed Cf value at the leading edge the final steady state shows good agreement with the 
temperature reference method.
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Cf for Mach 2 Vs Reference Temperature Method

° 66370N Converged

Non Dimensional Length

Figure 8-4- Percentage error for the Cf values along the surface o f the plate,

The CBS algorithm calculated the Cf values along the surface o f the plate for the 9880 element grid 
seen in Figure 8-4 which resolves the leading edge length l . l l x l 0 7m. The percentage error between 
the skin friction coefficient and the predicted value from the temperature reference method is 
approximately 6 . 8  %.
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CH for Mach 2 Vs Reference Temperature Method
0.04

Temperature Reference Method 
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Figure 8-5-C*h values along the surface o f the plate for the 9880 element grid which resolves the 
leading edge length 1 . 1 1  xl 0 '7 m.

Because it would be informative to see how the solution progresses relative to the analytical solution, 
Figure 8-5 displays the coefficient o f  heat as computed for the CBS algorithm for 3 different stages of 
the solution. The coefficient o f  heat is compared with the Temperature reference approximation (red 
line).
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Figure 8 -6 -Percentage error for the C*h values along the surface o f the plate for the 9880 element 
grid which resolves the leading edge length 1 . 1 1  x l0 '7m.leading edge length

To mathematically evaluate the CBS algorithm we use the percentage error parameter defined below.

1 ^  C - C  ^H,TRM H,C55
'abs,err ELEXX n = i , e l e x x \ \ C

xlOO
H,TRM J

(1.16)

Eabs,err ~ 2.04%

The CBS results for the 9800 grid, can be summarized for Supersonic compressible flow over a 10 
gm flat plate as; The percentage error for Ch is below 2% as seen in Figure 8 -6 .

Care however needs to be taken in relying too heavily on the temperature reference method, which is 
an approximate solution. Fundamentally, it cannot be assumed to be absolutely accurate, because its 
founding assumptions are not consistent with the full reality of compressible high speed flows [155].

The CBS algorithm was applied to two more free-stream Mach numbers to gauge its versatility and 
stability at modelling the full Supersonic regime. The following plot presents the converged 
temperature field at the trailing edge (X=1.2xl0 m) through the entire height o f  the outlet.
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Table 8-3- Grid and Flow parameters for the higher speed simulation.
Boundary
Condition

Lengt
h[m]

Moot-] poo [kg/
m3]

Poo[kg/(ms)] Nx Ny Nt

Case 2 Cold Wall 1 0 ° 1.5 1.225 1.789x10"5 1 1 0 90 9880

Case 3 Cold Wall 1 0 ° 4 1.225 1.789xl0"5 1 1 0 90 9880

In Figure 8-7 the non-dimensional temperature versus the boundary layer height, 77 , is plotted for the 
three cases where the 77 is employed so the three curves can fit on the same plot. This value is taken 
from [155], and is calculated from (1.7).

Non dimensional Temperature through BL for Mach 1.5 - 4

& Mach 2 Sutherlands 
0 Mach 4 Sutherlands 
°  ~ Mach 1.5 Sutherlans

;« 10

'cr,
M=4

1.2 1.3
T/T

1.51.4 1.6
e

Figure 8-7-Non-dimensional temperature against the (non-dimensional) boundary layer height at the 
trailing edge o f  the flat plate case as seen in Figure 8 - 1 .

The above plot mathematically displays the effect that both the thermal interactions inside the 
boundary layer and the thermal effect that the shock has, on the temperature field at the trailing edge. 
The rise in temperature near the plate surface is due to strong viscous effects and is most pronounced 
in the Mach 4 case and least pronounced in the Mach 1.5 case. In addition to this boundary layer 
heating, another phenomena is dispayed. For example, for the Mach 4 profile, the step rise in 
temperature at 77 w 8 is because o f the gas flow, which is heating up across the shock wave. Similarly
for the Mach 1.5 profile when 77 «17 the heat jumps across the shock. Because the planned final 
problem is concerned with the modelling o f heat performance o f porous components more research is 
needed to ascertain the CBS algorithm’s capability at modelling different thermal boundary condition 
scenrios .
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8.3.1 Study of the Different Thermal boundary conditions
■

Table 8-4-Grid and flow parameters for high speed calculations.

Boundary
Condition

Lengt 
h [m]

Moo[-] poo [kg/
m3]

M<«[kg/(ms)] Nx Ny Nt

Case 4 Cold Wall 10° 4 1.225 1.789xl0~5 110 90 9880

Case 5 Adiabatic 10° 4 1.225 1.789xl0-5 110 90 9880

where Nx is the number o f  cells in the x direction. 
Ny is the number o f cells in the y direction.
Nt is the total number o f cells.

Case 4: Cold wall TW=T
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Figure 8-8: Velocity contours for the Mach 4, cold wall case Twaii-Too.

The four contour plots above, going from top left in a clockwise fashion, are the x- component o f 
velocity, the temperature, the enthalpy and the y-component o f velocity. The steady state solution is 
for boundary case 4 i.e. constant wall temperature at the ffee-stream value. The contours are smooth 
and is an indication, o f a stable algorithm. The shock is also adequately represented as being several 
cells across. The boundary layer is also represented as being three cells above the wall.
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Case 5: Adiabatic Wall (&T/dn)v =0

MODEL: PT6
CASEl: PHYSICA RESULTS
s t e p : i tim e: o
INVARIANT VNCB 
MAX ° 238 MIN = - 4

Figure 8-9: Velocity contours for the Mach 4,the adiabatic case ( —= 0).
d n
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MODEL! PT6
CASEl: PHYSICA RESULTS 
STEP: 1 TIME: G 
INVARIANT EN 
MAX = . 274E7 
MIN = . 444E6

MODEL: PT6
CASEl: PHYSICA RESULTS
s t e p : i tim e: o
INVARIANT UNCB 
MAX -  . 137E4 
MIN = 4 7 .9

The four contour plots above from top left, in a clockwise fashion are the x- component o f velocity, 
the temperature, the enthalpy and the y-component o f  velocity. The steady state solution is for 
boundary case 5 i.e. adiabatic wall condition. The contours are smooth and is an indication o f a stable 
algorithm. The shock is also adequately represented as being several cells across. The boundary layer 
is much larger than case 4 boundary conditions and the shock possesses a larger oblique angle, as you 
would expect.
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8.3.2 Comparison of CBS against MacCormack’s Predictor Corrector 
Algorithm

The following CFD results are a comparison o f the FV CBS algorithm against the profiles copied 
from Anderson, [4, page 469]. These profiles were computed with MacCormack’s Finite Difference 
Predictor Corrector Algorithm [29] which was not implemented in this research. Only the plots 
generated with this technique were used to compare with the resultant profiles from the FV CBS 
algorithm. This comparison was pursued because we need to determine if the CBS algorithm 
performs to the same accuracy o f other CFD codes.

In addition, because the temperature reference method is limited to a small amount o f detail 
specifically at the plate surface, meaning no comparison can be made in proximity o f the shock and in 
particular for the next case where oblique shock exits the domain. The relatively low free stream 
Reynolds numbers means achieving a converged solution for the compressible velocities with the 
Navier-Stokes equations is an essential and encouraging milestone for the scheme when considering 
the final benchmark problem. For the following simulations Cx =0.2.
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Temperature at the trailing edge of the 1 Micron Meter flat plate solved using 5800E
25

A diabatic  a t Mach 2 
Cold P la te  a t Mach 2 
A diabatic  a t  Mach 4 
Cold P la te  a t Mach 420

15

z

0.5 1.5 2 2.5
Non D im ensional T em perature

3.5

Figure 8-10: Temperature profile through the Boundary layer at the trailing edge for the cold wall 
and adiabatic cases at Mach 2 & 4 using the CBS algorithm.
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Figure 8-11: Temperature profile through the Boundary layer for the cold wall and adiabatic cases at 
Mach 2 & 4 using the MacCormack’s algorithm.

The two figures Figure 8-10 and Figure 8-11 above display the non-dimensional temperature profile 
through the outlet at the trailing edge, 0 H -25 H. Figure 8-10 shows the FV CBS results for the Mach 
4 Cold wall case and the Mach 4 Adiabatic case. As seen in Figure 8-11 this is taken from Anderson, 
[4, page 469] and is garnered through MacCormack’s scheme [29]. The close likeness between the 
two figures is a promising indicator that the CBS algorithm is a viable compressible flow solver.
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Figure 8-13: Temperature profile through the Boundary layer at the trailing edge for the cold wall and 
adiabatic cases at Mach 2 & 4 using the MacCormack’s algorithm

Figure 8-12: Temperature profile through the Boundary layer at the trailing edge for the cold wall and 
adiabatic cases at Mach 2 & 4 using the CBS algorithm.
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Temperature at the trailing edge of the 1 Micron Meter flat plate solved using 5800E

A diabatic  a t  Mach 2 
Cold P late  a t  Mach 2 
A diabatic a t  Mach 4 
Cold P late a t  Mach 4

The two figures Figure 8-12 and Figure 8-13 above display the non-dimensional temperature profile 
through the boundary layer at the trailing edge. Figure 8-12 shows theFV CBS results for the Mach 4 
Cold wall case and the Mach 4 Adiabatic case. Both cases employed a 5880 mesh to discretise the 
domain. As seen in Figure 8-13 this is taken from Anderson, [4, page 469] and is garnered through 
MacCormack’s scheme [29]. The close likeness between the two figures is another promising 
indicator that the CBS algorithm is a viable compressible flow solver.
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u-velocity at the trailing edge of the 1 Micron Meter flat plate solved using 5800E

» Adiabatic at Mach 2 
Cold Plate at Mach 2 

— Adiabatic at Mach 4 
*-C old Plate at Mach 4

±  15
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Non dimension Velocity

0.5
dimension

0.6 0.7 0.8 0.9
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Figure 8-14: Velocity profile through the Boundary layer at the trailing edge for the cold wall and 
adiabatic cases at Mach 2 & 4 using the CBS algorithm.

------------------------ io - 5 5 5 1 l E  u ia m c 1
d 25.M M  
0 

S 2B.MM 

[ 15,M M
i
I  ie ,N M :

V e onrtftflfl
J  a B W W I '

*

I B.MM

Figure 8-15: Velocity profile through the Boundary layer at the trailing edge for the cold wall and 
adiabatic cases at Mach 2 & 4 using the Anderson’s MacCormack’s algorithm.

The two figures Figure 8-14 and Figure 8-15 above display the non-dimensional velocity profile 
through the outlet at the trailing edge. Figure 8-14 shows the FV CBS results for the Mach 4 cold 
wall case and the Mach 4 adiabatic case. Both cases employed a 5880 mesh to discretise the domain. 
As seen in Figure 8-15 this is taken from Anderson, [4, page 469] and is garnered through 
MacCormack’s scheme [29].
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Pressure at the trailing edge of the 1 Micron Meter flat plate solved using 5800E

-•-A d ia b a tic  at Mach 4 

-* -C o ld  Plate at Mach 4 

Adiabatic at Mach 2 

Cold Plate at Mach 2

I  15
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Figure 8-16: Pressure profile through the Boundary layer at the trailing edge for the cold wall and 
adiabatic cases ie. for Mach 2 & 4 using the CBS algorithm.
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Figure 8-17: Pressure profile through the Boundary layer at the trailing edge for the cold wall and 
adiabatic cases ie. for Mach 2 & 4 using MacCormack’s algorithm.

The two figures Figure 8-15 and Figure 8-17 above display the non-dimensional pressure profile 
through the outlet at the trailing edge. Figure 8-15 shows the FV CBS results for the Mach 4 Cold 
wall case and the Mach 4 Adiabatic case. Both cases employed a 5880 mesh to discretise the domain.
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As seen in Figure 8-17 and Figure 8-15 this is taken from [15], and is garnered through 
MacCormack’s scheme.

To summarize, the temperature, pressure and velocity field profiles through the trailing edge o f the 
domain compared favourably with the profiles garnered with MacCormack’s predictor corrector 
scheme [29] as seen in Anderson, [4, page 469]. These encouraging results, modelling Supersonic 
compressible viscous flows, cannot be over-emphasized especially considering the instability issues 
exhibited for the Subsonic case over a flat plate.

8.4 Concluding Remarks
This chapter has looked at the methodology to gain a numerical solutions to compressible Supersonic 
viscous flow, where a comparison with the predicted skin friction and coefficient o f heat from the 
temperature reference method and the FV CBS scheme is made. The temperature reference method is 
an approximate prediction as presented in Schlichting, [155]. This prediction makes crude 
simplifying assumptions such as zero pressure gradient, through the boundary layer [155], and 
therefore this point should be kept in mind when evaluating the accuracy o f the converged numerical 
solution.

8.4.1 CBS against the Temperature Reference Method
The explicit FV CBS algorithm was successfully stable and converged to a steady state solution for 
the 1st benchmark, the Mach 2, constant cold wall, 10pm flat plate. The small domain for the 10pm 
flat plate means relatively small grid sizes. Where structured orthogonal grids can be employed (9800 
elements) mitigating the need for careful mesh construction. This also has a (beneficial) effect on the 
simulation CPU time needed and the amount o f time needed to harvest plots from the numerical 
outputs.

Skin friction values for this benchmark were computed using cells adjacent to the no-slip wall. These 
Cf values were compared with the predicted values from the temperature reference method. The Cf 
percentage error was less than 10% and the Ch value was less than 2% therefore considering the 
drawbacks o f the temperature reference method then the CBS algorithm could be argued to produce 
viable results. Upon evaluation the Ch and Cf values from the CBS algorithm were in agreement with 
the predicted solution, and in particular towards the trailing edge where the simplifying assumptions 
are realized.

8.4.2 CBS against MacCormack’s Predictor Corrector algorithm
The next set o f  simulations were carried out at a higher Mach number, Mach 4, for two different 
thermal boundary conditions; i.e. the cold wall case and the adiabatic wall case. The MacCormack 
[29], finite difference predictor corrector algorithm profiles which were copied from Anderson, [4, 
page 469], are used as a comparison. The figures in Anderson show physical quantities through the 
outlet, which unlike the temperature reference method encompasses the shock wave as well as the 
boundary layer. Therefore the various profiles at stations through the outlet edge from Anderson, [4], 
could be argued to be just as informative as the temperature reference method when assessing the 
performance o f  the numerical scheme. Another cogent reason as to why this comparison was 
conducted was the Anderson study contains pressure and density profiles as well as velocity and 
temperature through the outlet.

The FV CBS algorithm again reached steady state convergence for the two boundary condition cases. 
As expected from the discussion into this problem by Anderson, [4, page 470], the solution for the 
cold wall case is realized in fewer iterations that the adiabatic case. The CBS profiles are in excellent
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agreement with the MacCormack finite difference predictor corrector algorithm [29] profiles, which 
are copied from [4]. Close comparison o f the location o f the shock and the maximum temperature 
through the boundary layer is realized as seen in Section 8.3.2. This example demonstrates the 
applicability o f  the FV CBS method for high speed viscous flow which could be argued to be a 
simplification o f the transpiration cooling at Hypersonic speed problem.
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9 POROUS MEDIA FLOW 
SIMULATIONS

9,1 Introduction
The operating speed o f the Hypersonic cruise air-breathing vehicles (CAVs) will mean that the 
external air flow after passing through strong compressible shock waves and losing momentum to the 
no slip surface will heat up the localized air to high temperatures as seen in Chapter 8. Ultimately the 
CAVs o f  interest will certainly employ porous components with transpiration cooling applied to 
where high localized heat fluxes exist according to the scientific literature on Hypersonic applications 
[116], [124], [177], [182], [183].

With the availability o f lightweight ceramic matrix composites (CMC) increasing as state of the art 
manufacturing techniques are refined [184], whereby research is needed for scientific validation, 
before utilizing such components. Promising ceramic matrix composite (CMC) materials include to 
date, carbon/carbon (C/C) or silicon carbide infiltrated carbon/carbon (C/C SiC). Transpiration 
cooling using CMC represents a promising strategy for both combustion-chamber engine cooling and 
external leading edge cooling according to the researchers Kelly [185] and Song, Choi, & Scotti 
[186]. For instance the CAVs leading edges such as the nose will be porous, permitting mass transfer 
from the porous material to the boundary layer. When coolant flows through the porous component, a 
uniform coolant film forms over the surface and thickens the boundary layer, resulting in reduced 
thermal gradients meaning the heat-f\ux,qw= kw(Ti - T w)/A y  strongly decreases with increased 
transpiration coolant blowing [71]. In addition the internal heat transfer within the porous wall plays a 
significant role in the cooling efficiency [187]. Modelling transpiration cooling applications requires 
a software tool that can simulate physical interactions throughout the flow regimes from 
incompressible to compressible as mentioned by Azevedo & Korzenowski [10]. In order to compute 
fluid flow through porous components, relevant papers were surveyed for an appropriate 
mathematical model to capture the effect o f  porous components. One such mathematical model is a 
derivative o f the original Ergun source term as presented in Pantelis & Ritchie, [188] which is based 
on the term derived by Ergun, [189]. The derivative Ergun source term by Pantelis & Ritchie, [188] 
was employed for the incompressible flow problem with some amendments for the convection terms 
that account for the reduced passage suggested by Cheuret & Steelant, [124].

Compressible porous flow problems to date have no known analytical solution so the reliability of the 
CBS FV algorithm cannot be gauged. However Subsonic incompressible flow through a porous 
medium has an analytical solution allowing such an assessment o f  the CBS FV algorithm Therefore 
a comparative study o f  the AC CBS formulation with the incompressible porous flow result is 
performed, where error assessment is achieved, by comparing with the analytical solution. In  addition 
the methodology required for gaining a stable solution for incompressible flow will be both insightful 
and comparable to the methodology needed for stable compressible calculations through porous 
components.

In this chapter, we are addressing only the problem o f flow solver development not a mesh sensitivity 
study and we present procedures for the implementation o f  flow algorithms which can be employed 
successfully for the simulation o f porous flow. The porous media possess macroscopic fibres that 
restrict the free-stream gas filtering across. Where s is the solid volume fraction, a property o f  porous
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media. Where 8=0 for a continuum and 8=1 for an impermeable solid. In addition the pressure head 
decreases as the fluid filters through the porous media. To mathematically capture this physical 
pressure loss a source term is augmented to the Navier-Stokes equations. Modelling Subsonic flow 
through a porous structure can be simplified by assuming incompressible and isothermal flow. For 
this case, the absolute velocity jumps in magnitude instantaneously at the gas-porous structural 
interface. This discontinuous velocity jump is conceptually similar to the changes in velocity across 
an expansion shock. To capture this increase in velocity requires a mathematical model that treats the 
porous media as part o f  the continuum. This means the mathematical model solves the velocity, 
enthalpy, density and pressure throughout the solution domain even for those cells that contain the 
porous media.

In the following sections, a detailed description is given o f the numerical formulations employed, 
with special attention focused on the finite volume approach to flow through a porous media.

9.1.1 Ergun Source Term
Amendments are made to the governing equations, which mathematically model the effect that the 
stationary porous structure has on the pressure and the velocity o f the flow. For example the 
convective flux is treated differently depending on whether the cell straddles the porous bed or the 
free stream. Within the porous media the absolute velocity o f the gas increases to satisfy mass flow 
for an incompressible porous problem.

The transport through the porous medium is therefore adapted to account for the reduced passage by 
introducing the solid volume fraction value, 8, into the momentum, continuity and energy equation. 
When the solid volume fraction, 8 = 0 ,  in the main channel, the effect of the Ergun source term is 
ignored. The first strategy was to multiply the convection terms by the available area for flow due to 
the reduced passage which is multiplied by ( l - £ ) 23. This mathmatically means that the convection 
fluxes will conserve mass and momentum for porous media problems.

Figure 9-1- Spatial grid o f porous medium with the interstitial velocity.

Figure 9-1 shows a schematic o f  the spatial discretization o f a 1-D porous media problem The 
numerical discretization o f  the convection terms needs to be amended for the frees straddling gas 
porous structure the interface. Near the interface o f the porous wall and the main flow, the solid
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volume fraction, s, changes sharply from its porous value to the free stream value. The gas porous 
structure interface for this approach should be located on the inter free between two adjacent cells 
because this interface leads to sharp changes in the local velocity values and the pressure gradients 
[116]. For example the intermediate FV CBS momentum can be written in the following form

put =pui - At
(l-f)A F

( Y
Z  ((/»,«/))•■ njAf { \ -e )m-y (1 -£)“

Kf=\,TOTFlC f=\JOTFIC

(9.17)

Where s- solid volume fraction (1 for impermeable solid material and 0 for fluid continua)

When macroscopic fluid packets filter through a porous structure pressure head is lost due to friction. 
For porous media flow, the pressure drop along the length o f the porous bed has been empirically 
tested and is accounted for by a derivative o f Ergun’s law as seen in Pantelis & Ritchie, [188].

w  _ ( 1 . 7 5 „ > K )

ERG m d p{ \ - s f p „  "
Where dp is the mean diameter o f  porous particles.

Tb is the temperature o f the porous bed.
Un is the real velocity o f gas or fluid through the bed. 
poo is the density o f  the free-stream gas.

(9.18)

Adding this source term to the corrected momentum equation results in:

n + \  *p u t = p u i A t
AV,P a s s

V P '
(l.7 5 (p")2 K K )  „
—   — u.

2 1 3 d ( l - s f p x '
(9.19)

Where A VPass is the volume available for the fluid continuum therefore AVPass = AVcv( l - £ )  where 
AVcv is the total volume o f the control volume porous and continuum structure included and, finally 
APass = Acv(1 -  £t)2/3 , is the area available for fluid continuum.

For incompressible flows the continuity equation for the AC CBS algorithm reduces to-

V '1 a n  \2/3 ^  V 1 a

L  p u ^ n j A f ( \ - s )  + U k —  2 ,  T -

f=\,TOTFIC ^ f=\,TOTFIC 0X

At
AV,Pass J f

(9.20)

Where

2 Mop"v = max £p,Jit~un
k P j \  v j

£p is set to 0.5 for incompress foie benchmarks

(9.21)

Benchmark Problems
This chapter focusses on flows within porous media akin to the transpiration cooling applications of 
interest to industrial sponsors ESA. Where the FV CBS algorithm is applied following an incremental 
increase in the benchmark model complexity.

1. Incompressible Subsonic Laminar flow within a porous medium.
2. Compressible Subsonic Laminar flow within a porous medium.
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Initially the Navier-Stokes equations were then implemented in a sequential Artificial Compressibility 
(AC) CBS procedure and used to solve the preliminary problem. However the strategy described was 
deemed wanting in terms o f stability when applied to the porous benchmark fluid flows. It was deemed 
necessary by myself to introduce an amended AC CBS implicit strategy for incompressible porous 
problems. The following approach is the result o f  my own research and represent a novel approach for 
AC CBS algorithm when modelling incompressible porous flows.

9.2 Subsonic Incompressible Porous Flow
To investigatesubsonic incompressible porous flow, we made a comparative study between the 
analytical solution and the solution obtained using the numerical AC CBS scheme. The problem 
entails Subsonic incompressible gas which flows onto a perpendicular to a porous media otherwise 
known as plug flow. The challenge o f this benchmark lies in capturing the pressure drop across the 
medium and resolving the discontinuous jump o f velocity across the porous gas interlace. Of the 
many mathematical models available the empirically tested Ergun source term as presented by 
Pantelis & Ritchie, [188], is chosen here to capture the effect o f the porous medium. The analytical 
solution is used to allow direct comparison so that the FV AC CBS algorithm can be validated. As 
before a percentage error tolerance o f more than 1% between the AC CBS solution and the analytical 
solution is deemed unacceptable.

9.2.1 Boundary Conditions
To evaluate the numerical performance o f the FV CBS algorithm coupled with the Ergun source 
term, two problems involving Subsonic incompressible flow through a porous medium are 
considered. These examples involve simple geometries, which means that structured quadrilaterals 
can be used. A high free stream viscosity was employed reducing the free stream Reynolds number 
because this study is concerned with developing a successful strategy for laminar gas flow on porous 
media, before extending the strategy for higher Reynolds number, at a later stage. The following table 
summarizes the flow parameters, for the next two sets o f  simulations.

Table 9-1- Grid and flow parameters for the a small porous length o f 0.0001 m and a larger
porous length o f 0.1 m.

Porous
Media
Length
[m]

Uxjm/s] p00[kg/mJ] p^kg/Ons)] Re [-] Nx Ny Nt

0.001m 8 1.225 1.789 0.00547792 56 2 112

0.1m 8 1.225 1.789 0.547792 56 2 112

Where Nx is the number o f control volumes in the x-direction. 
Ny is the number o f control volumes in the y-direction. 
Nt is the total number o f control volumes.

Case 1: P orous Lengthy PL  = 0.001m
The 1st case investigated using a small porous length meaning the maximum pressure, Pjn, will be 
small compared to the reference pressure. The algorithm was successful at modelling relatively small 
pressure rises. The schematic diagram, Figure 9-2, illustrates the incompressible porous benchmark 
problem.
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poo=1.225kg/m3

P out=0 N/nf

L=0.003m PL=0.001m L=0.003m

Figure 9-2 Schematic o f Porous Flow (where green indicates the porous media).

C ase 2: P orou s Length, PL  = 0.1m
For the 2nd case investigated, the above problem is repeated but where all x and y lengths are 
approximately xlOO larger. This means that the maximum pressure, Pin, will be increased by a lac tor 
of 100 compared with case 1.

9.2.2 Analytical Solution
The analytical solutions for the two cases above are attractive because they can be calculated in a 
straight foward manner. By substituting the above values from Table 9-1 into the Ergun source term, 
equation (9.18), and integrating over the porous length, PL, we can work out the pressure drop 
through the porous medium by substituting the values dp=0.003m and Tb=288.16K.

For an isothermal and incompressible flow with a porous length o f  0.001m the analytical solution is 
now presented.

VP = -
( 1 .7 5 /  |u|(l —g)rt )

273d s
u.

r
1.75x1.225 x

VP = - ± 0.7
(0.3)288.16

k 0.7 j273 x 0.003 x0.73x 1.225 

VP = 86165.85W/m3

Where P2 = 0.0N / m2 as seen in Figure 9.3.
Then the pressure at the inlet, Pi, is obtained by substituting P2 and PL : 

P - P
——— = 86165.85 

PL 
=>/} =86165.85x0.001 

ij = 86 .165N /m 2
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Figure 9-3 Velocity & Pressure profile through the porous media.

For the 2nd case, the porous length (PL), is increased to 0.1m. Therefore replacing PL with 0.1m 
instead o f 0.001 m the analytical solution is obtained in a similar fashion,

Case 2 P orous Length, PL  = 0.1m
WP = 86165.85V/m3

P2 = 0.07V7 m2 

=>/> =86165.85x0.1 

Px = 8616.5V/m2

P  =  0

= 11.428m/J00umax

Figure 9-4: Velocity & Pressure profile through the porous medium.

9.2.3 Mesh
To calculate the incompressible, isothermal Subsonic flow through porous media, a preliminary AC 
CBS sequential procedure was applied to the above case without efficiency. The reason for not 
displaying it in the main body o f the thesis was because the author wishes to present only those 
computational procedures which are stable and efficient for a wide class o f problems making the 
thesis as concise as possible.
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9.2.4 Solver Results
To stabilize the computations for the PL=0.001m case the Courant number was set to 0.0005. To put 
this into context a Courant number o f 0.05 is used for incompressible flow over a supersonic flat 
plate. The initial conditions were set to the free-stream conditions seen in table 1. The following 
velocity and pressure profile for the 1st case were plotted after 3000, 6000 and 12000 iterations 
respectively. After 12,000 iterations the relative error as seen in equation (9.19), reached the tolerance 
oflO '5.

Case 1 LP=0.001m
u V elocity  in X d ir fo r  flow  th ro u g h  t h e  p o ro u s  m e d ia  s i tu a te d  a t  3E-3 m  - 4E-3 m
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11.2 
u V elocity  
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5.8
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Figure 9-5 Velocity profile through the porous medium.

As seen in Figure 9-5 the computed velocity profiles for 30,000, 60,000 and 120,000 iterations are 
shown as the blue, red and green lines respectively. The analytical solution is given by the full black 
line. The y axis is the free-stream velocity is 8m/s. The x axis is dimensional length. After 12,000 the 
velocity profile as computed by the FV AC CBS algorithm converges onto the analytical velocity 
profile as seen in Figure 9-3. The above figure demonstrates that the velocity profile through porous 
media (PL=0.001 m) can be accurately captured using the F V AC CBS scheme. However the effect of 
using such small Courant numbers means an uneconomical amount o f  iterations are needed to even 
for the coarse grid.
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Pressure in X dir for flow through porous m edia situated at 3E-3m - 4E-3m
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Figure 9-6: Pressure profile through the porous medium where the porous length, Lp =
0.001m.

As seen in Figure 9-6 the computed pressure profiles for 30,000, 60,000 and 120,000 iterations are 
shown as the blue, red and green lines respectively. The yaxis is dimensional pressure relative to the 
free-stream value. The x axis is dimensional length. The above figure, just like Figure 9-5 
demonstrates that the velocity profile through porous media (PL=0.001m) can be accurately captured 
using the AC CBS scheme as seen in equation (9.17)-(9.21).

To summarize the CBS results for incompressible porous flow through a porous medium o f length
0.001m: The CBS scheme converges to the analytical solution for the PL = 0.001m case. However 
with the small Courant number o f 0.0005, the number o f  iterations needed to obtain the analytical 
solution is 120,000 iterations, an un-economical number. In terms o f u the Ergun source term is a 
quadratic (u2). This term will become significant at small values o f u (< lm/s) however when u>l the 
magnitude o f  the source term increases above lm /s to the power 2.

To Summarize:

• The incompressible CBS scheme is capable o f modelling porous media o f  0.0001 m.

• Convergence and stability are reliant on extremely small Courant numbers.

Case 2  PL=0.1m
As the size o f  the domain seen in Figure 9-2 is increased by a fector o f  100, convergence cannot be 
achieved with the stability criterion used for Case 1. A major problem during the solution o f the
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problem as seen in Figure 9-5 is the size o f the Ergun source term which appears to de-stabilize the 
computations. Therefore remedies were sought which would produce a robust and efficient scheme 
that allows relatively large safety factors, accelerating convergence. The preliminary results for the 
incompressible porous flow were unstable when the Ergun source term was calculated explicitly. Due 
to concerns about the stability o f the Ergun source term, a dimensional check showed that the Ergun 
source term had the correct dimensional units.
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(9.22)

(9.23)

(9.24)

(9.25)

The incompressible CBS scheme is not capable o f modelling porous media lengths o f the order of
0.1m. So the following approach is the result o f  my own research and represent a novel approach for 
AC CBS algorithm when modelling incompressible porous flows.
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9.2.5 Amended Approach for Porous Flow
The Ergun source term is de-stabilizing the AC-CBS scheme because the residual on the right hand 
side o f equation (9.24) becomes excessively large, meaning potentially the value of pun+1 could be 
less than zero an unphysical and unstable result. Various strategies were reviewed that would decrease 
this residual including employing an implicit form o f the FV AC CBS which will demand iterative 
matrix solver routines, however the associated drawback with this iterative matrix solver is the 
additional need for additional computer codes that could potentially introduce human error.

Instead o f utilizing the implicit form of the FV AC CBS scheme for this research I propose a simple 
revision to the AC CBS scheme that promotes stability. The following amendments were made after 
hand calculations o f the AC CBS sequential method;

1. The overall scheme gained stability when the 1st ordered convection term in the intermediate 
momentum was neglected for the following computations.

2. Secondly treating the Ergun contribution on the right hand side o f equation (9.24) as an 
implicit source term rather, meaning no implicit system matrix needs to be solved. The 
corrected equation is now solved with the use o f the generic quadratic root formula. This 
correction when applied, means the final residual value for un+1 - un in equation (9.24) will be 
smaller than for a explicit treatment (9.9).

n+1 *pux = pux-
A t

AV,Pass

71+1
st;

ur'AK,
f=\JOTFlC

Pass (9.9)

If we subtract both sides o f equation (9.9) by the following term.

^ f  7 I >?+i ^ ^
A t Vl '7 5 p  ' l u*u* s l

~ A V ^ Z  2 7 3 </„(l-*)V .
V J

Equation (9.9) after re-arrangement becomes a quadratic equation in terms o f the variable un+1.

u T x A V ,P a ss (9.10)

A
(1.75 p H )

i -* )2,3)j =o (9.1D
273rf ( l-e )  p.

The positive root o f the quadratic formula is now used as seen below. Where b,a and c are obtained 
from equation (9.11).

b = p n

f (i.75P 2r f ; )  )"
a = At{ —  ------------

[2 7 3 ^ (1  - s f p ( (9.12)

c = -
Pass

3. Thirdly because the two major steps outlined above stabilize by reducing the residual, an 
additional step will be required to speed up the computations to convergence. An amplification 
factor was brought into the amended continuity equation motivated by the need to speed up to
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convergence. This amplification factor, AFpres, was optimised with success, for the 
incompressible porous problem, where the AFpres value was set to 100.

Pn+x=Pn-AF,xesP At
Pass

Y  Puj • njAf  (1 - s)m +uk^ -  Y
f= \,T O T F IC

dP
2  f= \,T O T F IC  &X j  f

• n.Af (9.13)

where AFVxes = 100 and /3 £ v  is calculated from (9.21).

9.3 The Sequential AC CBS Scheme for Porous 
Flow

Each step in the boxed area below is applied to all the interior nodes in a sweep o f the grid. After this 
sweep the boundary conditions are computed. Then the sequential computational iterative procedure 
is repeated by going to step 1. The AC CBS method was implemented in FORTRAN within the 
PHYSICA code framework and simulations were then run on the cluster to solve the porous medium 
problem seen in Figure 9-4.

1. According to Malan et al [150] for incompressible flows the artificial wave speed is 
calculated from (9.21).

2. The CBS scheme incorporates local pseudo time stepping. The pseudo time step is given 
by the following equation: where C is the Courant number and depending on the problem is 
usually <0.5 The convection time step is analogous to the compressible time step and the 
diffusion time step as calculated by Malan et al [150]:

A t"v =  m in  At"v )  ^  , ( A tncv j

( a ^ v )  = c — 4 z _
v hom P c v + F V i

(9.14)

(9.15)
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3. Intermediate Momentum step ignoring the convection terms
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4. Corrected Momentum step

( (1 .7 5 A t ; )
273d(\-£fpx (IT )’ + P < '-\pul • »jAf <\-s)m) f = 0AV.

(9.18)

The quadratic formula, in terms of u"+] is now employed where b,a and c are obtained 
from equation (9.18).

5. The Continuity Equation (9.13) is solved using the momentum values from at the n+1 
"time" level from equation (9.18) where AF?xes =100 .

6. Check convergence to steady state values by sensing whether the relative error is less than 
the agreed tolerance of 10‘5 or the number of iteration/sweeps is below the maximum 
iteration/sweeps, IMax, stipulated by the user. This value was set initially to 95,000 
iterations. The steady state requirement for incompressible problems is calculated as:_____
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7. If convergence has been achieved exit the procedure and display results otherwise begin 
computational sweep by going back to step 1.

General Remarks

By employing these novel amendments in the AC CBS FV algorithm for porous medium flows, 
stability and accuracy relative to the analytical solution were regained for this challenging 
benchmark.

Velocity through the Porous Media a t 0.3m-0.4m for u =8m/s
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Figure 9-7- Normal velocity profile through the porous medium.
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Relative Pressure through the Porous Media at 0.3m-0.4m for u =8m/s
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Figure 9-8- Pressure profile through the porous medium.

The range o f free- stream velocities was increased so that the stability o f the amended AC CBS could 
be gauged and verified before going onto compressible problems.

Table 9-2- Flow parameters for the higher speeds applied to incompressible porous flow.
Porous
Media
Length
[m]

Uoofm/s] poo[kg/nT] gocfkg/Cms)] Re [-] Nx Ny Nt

0.1 0.05 1.225 1.789 0.003423 56 2 112 I
0.1 8 1.225 1.789 0.0547792 56 2 112
0.1 20 1.225 1.789 0.136948 56 2 112
0.1 90 1.225 1.789 6.16266 56 2 112

Where Nx is the number o f elements in the x direction. 
Ny is the number o f elements in the y direction. 
Nt is the total number o f  elements in total.

9.3.1 Solver Results
The number o f  control volumes used to mesh the domain was 112. The inlet speed was initially set at 
0.05m/s. After the convergence criterion was satisfied for a speed o f 0.05m/s the inlet speed was 
changed to 8m/s, 20m/s and 90m/s and modelled. The following results show the velocity and 
pressure profile, as well as this, displayed in the legend, are the number o f iterations required for 
convergence.
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Figure 9-9- Normal velocity profile through the porous medium.

As seen in Figure 9-9 the computed velocity profiles for a free stream of 0.05m/s, 8m/s, 20m/s and 
90m/s through a porous medium o f 0.1m is both stable and accurate The y axis is dimensional 
velocity measured in m/s. The x axis is dimensional length. The above figure demonstrates that the 
velocity profile through the porous medium (PL=0.001m) can be accurately captured using AC CBS 
scheme in Section 9.3. Moreover the new sequential AC CBS as seen in Section 9.3 is more 
successful at capturing porous media than the wholly explicit approach equation (9.17) - (9.19).
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Figure 9-10: Pressure profile through the porous medium.

As seen in Figure 9-10 the computed pressure profile for 0.05m/s, 8m/s, 20m/s and 90m/s through a 
porous medium o f 0.1m is stable and accurate. The y axis is dimensional pressure measured in N/m . 
The x axis is dimensional length. The above figure demonstrates that the pressure profile through 
porous media (PL=0.1m) can be accurately captured using AC CBS scheme as seen in equation 
Section 9.3.
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Figure 9-11: Percentage errors for the pressure through the domain.

As seen in Figure 9-11 the computed percentage error relative to the analytical pressure profile for the 
simulations set out in Table 9-2 i.e.Uoo 0.05m/s, 8m/s, 20m/s and 90m/s are presented. The y axis is 
percentage error. The x axis is dimensional length. Most importantly for this revised approach all 
percentage errors in Figure 9-11 are below the 1% expected for a reliable CFD code. To summarize 
the CFD results for this problem;

• The results are encouraging as they prove that the amended AC CBS scheme can compute 
incompressible porous flows.

• The revised AC CBS algorithm works for inlet speeds ranging from 0.5m/s- 90m/s.
• The 1% tolerance has been satisfied for speeds o f 0.5m/s up to 90m/s.
• By increasing the role that the continuity equation plays in the computation i.e. by favourably 

weighting the continuity equation (9.13), the more stable the FV AC CBS algorithm becomes. 
Alternatively if the momentum equation (9.18) becomes favourably weighted, this results in 
solution instability and divergence.

• The number o f iterations required for convergence with 112 elements is approximately 12,000 
iterations. As the intended case studies that will be tackled will have meshes with up to 
100,000 control volumes this method is deemed to be uneconomical however it is still a 
marked improvement in terms o f stability than the fully explicit method.
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9.4 Compressible Subsonic Porous Flow
A compressible porous flow case akin to the incompressible porous flow specified in Figure 9-2 was 
studied where the flow speed was increased to a compressible speed o f Mach=0.567 or Uoo=200m/s. 
Before going on to tackle this benchmark, appropriate studies were reviewed for a stable simulation 
tool including those on compressible porous flows [124], [169], [178], [182]. Within these research 
publications it was evident that the numerics for the pressure source term differs from the empirical 
tested Ergun, [189], source term used by Pantelis & Ritchie, [188].

Even though the different source terms in the mentioned publications are comparable. They all use an 
additional term proportional to the velocity, u. In order to make progress with this case the approach 
used by F Cheuret & Steelant, [124], is utilized as it is the most recent.

Iu I u (9.20)y p _  ( \ - E ? C f P

K y]~K ' '
Where CF is the Forchiemer coefficient
for the carbon/carbon sample in [124] the k is the permeability variable is 3.87E-13 m2.

For this research however only the second ordered term as seen in (9.20) have been utilized, mainly 
because at high speeds (high u and low p) the contribution o f the second ordered term will dominate 
the rhs o f  (9.20). i.e.

( \ - s ) 2CFp \  i (1 -e )ju
 — \u \u » -----------u (9.21)

sJk  k

Therefore for the numerical investigations to follow, the effect o f  this 1st ordered term was ignored 
for the following high speeds (high u and low p) modelled. This means that the pressure loss through 
a porous sample was simplified to:

VP = - ( l~ S)1C’! p \u,\un (9.22)
y j K

Along with the lessons learnt from the previous benchmark, ID incompressible, isothermal porous 
flow, careful study and evaluation o f the approach recommended by the Cheuret & Steelant, [124], 
publication was carried out.

9.4.1 Numerical Formulation for Compressible Porous Flow

The following formulation again treats the porous medium in similar fashion to the frill fluid 
continuum. This is also done by solving the Navier-Stokes equations inside and outside the porous 
medium. The first challenge for this compressible non-isothermal benchmark is trying to capture the 
changing temperature through the porous media. To do this we need to amend the CBS scheme 
utilizing the following numerics. The pressure source term in (9.22) needs to be calculated implicitly 
not explicitly. It is displayed below in semi discrete form. By substituting equation (9.23) in place of 
the explicit Ergun source term seen in equation (9.3) we obtain.
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The next challenge for this case is trying to capture the discontinuity across the porous-gas interface. 
The velocity changes instantaneously for the incompressible porous case, therefore it is assumed that 
the density and temperature change instantaneously for the compressible case also [124]. According 
to Cheuret & Steelant [124], the transient properties pf i uf  and Tf  are mathmatically captured using 
the following numerics.
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. 4

\ \

Figure 9-12: The physical quantities for non-isothermal porous flow need to be handled 
carefully. Where the following terms have been lifted from Cheuret & Steelant, [124].

Next the thermal conductivity term, k, is treated as a lump sum value, by weighting the coolant and 
the solid conductivity values. This is a consequence o f Cheuret & Steelant, [124] the assumption o f  
thermal equilibrium between the coolant and porous structure. Basically the interstitial heat 
conduction value, font, is treated by weighting the gases' and solids' thermal conductivity values as 
seen in Cheuret & Steelant, [124]. Where the thermal conductivity, font is calculated as a weighted 
value from the equation below.

1__________
(9-26)înt — 2kCC/Sic ( I - * ) +

IkcCISic + Kff ^CC7 Sic
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^eff ~  klam + Kurb

k
turb ~

Pturb^f
Prturb

For this research the turbulent effects were neglected for the thermal conductivity i.e. keff = klam 

where klam = 0.025W / mK and k ^ , ^  = 40W / m K .C C/Sic

Where the enthalpy equations in semi-discrete form is given by:
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Where the enthalpy on the porous-gas interface, was given an upwind procedure, switching the value 
depending on the direction o f  the gas flow.

p E f —
PEgas ~

S^por  = « / < °

Where the face f  is seen as the broken black line in Figure 9-12.

9.5 The Sequential CBS Scheme for Porous Flow
The use o f  a compressible sequential CBS scheme was employed that should capture the 
compressibility and non-isothermal effects. The FV CBS method was implemented in the computing 
language FORTRAN and the simulations run within the cluster. Here stability and robustness is of 
paramount importance for this challenging benchmark.

1. The CBS scheme incorporates local pseudo time stepping. The pseudo time step is given 
by the following equation: where C is the Courant number and depending on the problem is 
usually <0.5.

A f”T =C- hcv

c +cv  T
(9.28)
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3. Corrected Momentum
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(9.30)

Where b,a and c are obtained from the equation (9.30).

4. The Continuity Equation is solved using the momentum values at the n+1 "time" level
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5. Enthalpy Equation
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The kint value seen in the conduction term is calculated by using a weighted value as seen in (9.26) 
where For this research the turbulent effects were neglected for the thermal conductivity i.e.
Kff ~  where k,nm = 0.025W / m - K  and knniQ;„ - 4 0 W / m - Klam lam C C/Sic

6. To close the equation set the Ideal Gas Law, Sutherlands Law and the Prandtl Law are 
used. The Prandtl number, Pr, which is assumed constant for ideal gases at moderate 
temperature is 0.74 [82].

7. Check convergence to steady state values by sensing whether the re lative error is less than 
the agreed tolerance of 10'5 using equation (9.19) in terms of density, or the number of 
iteration/sweeps is below the maximum iteration/sweeps, IMax, stipulated by the user, this 
value was set initially to IMax =95,000 iterations.

8. If convergence has been achieved exit the procedure and display results otherwise re-start 
the computational sweep by going back to step 1.

General Remarks
After extensive hand calculations it was found that the equation given by [124] was inconsistent for 
neighbouring element values o f temperature and thermal conductivity. By using euqation (9.33) 
below instead o f (9.26) with an amended equation seen below and derived in the appendices.

k. = k _________ _̂_______rnt CC/Sic ( i _ g )   ̂ e  9̂  3 3 J

kCC/Sic ~  Kff kCC/Sic

Equation (9.33) is now physically consistent with adjacent temperature values. We are concerned 
primarily with getting a stable solution to this challenging problem therefore reliability relative to 
accuracy for this case is a secondary consideration.

9.5.1 Boundary Condition
Since there are no known closed form solutions for pressure and velocity for compressible porous 
flows that we can employ to evaluate the Finite Volume CBS secheme we thereby carry on the theme 
of plug flow as seen in Section 9.2. A comparison between the FV CBS scheme numerical solution 
and a constant mass flow throughout the domain o f =245k g / m 2s ,  is conducted. Whereby
extending the speed from the incompressible problem in Section 9.2 to 200m/s.

231



Poo=1.225kg/m3

Uoo=2 0 0 m/s

p .  = ?  i in •

■-m
■ . ■ .

I
■=0.05 

------------
_____________

(l-S)Vcv ■

fill 
A,

I 
1

■ 

!

Poo-Pm#=0 N/m

0 . 3 / 2 ' ? 0 .3 /2 2

Figure 9-13: Schematic o f compressible porous flow.

Table 9-3-Parameters for Compressible flow through a porous medium where the porous medium is 
treated as part o f  the fluid continuum.
Porous
Media
Length
[m]

Uoofm/s] Poo[kg/m3] p4 kg/(ms)] Re [-] Nx Ny Nt

0 . 1 2 0 0 1.225 1.789 13.6905 56 2 1 1 2

Where Nx is the number o f control volumes in the x-direction.
Ny is the number o f control volumes in the y-direction.
Nt is the total number o f control volumes.

9.5.2 Analytical Solution
A final solution with a constant mass flow, Aowoo = 245kg / m2s f throughout the domain was accepted
as a realistic solution. We are primarily concerned with getting a stable solution to this challenging 
problem therefore reliability relative to the analytical solution for this benchmark case is a secondary 
consideration.

9.5.3 Solver Results
Unfortunately this strategy was unstable and eventually lead to divergence. Although impressive flow 
computations were carried out for incompressible porous flow benchmarks with a similar FV AC 
CBS method, however the FV CBS scheme cannot be said to be stable for compressible porous flow 
problems. Various amendments to the sequential CBS scheme were carried out but with limited 
success.

After hand calculation on the compressible porous medium flow the decision was made to treat the 
porous medium as a boundary condition like the strategy employed in Langener et al, [177]. Using 
this strategy for porous media models was in general more stable but at the expense o f applicability 
for all conceivable application scenarios. The boundary condition approach as seen in Langener et al. 
[177], can only be applied to the case where coolant is forced through the porous medium and
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perpendicular to the main gas flow. Therefore the compressible benchmark seen in Figure 9-4 was 
neglected over the new benchmark discussed in the next chapter.

9.6 Concluding Remarks
This chapter presents a working 2nd ordered explicit algorithm for incompressible, viscous, isothermal 
porous flow that is robust and reliable, essential requirements for CFD software tools. The chapter 
then goes on to present, an as o f  yet unsuccessful algorithm for compressible, non-isothermal porous 
flows. To mitigate the effect that the boundary conditions and domain size has on the algorithm both 
problems were in the Subsonic regime.

9.6.1 Summary of AC CBS Algorithm for Incompressible Porous flow
The explicit AC CBS algorithm which was applied to computing the boundary layer flow over a 
Subsonic plate as seen in Chapter 7 was initially applied with an exp licit Ergun, [189], source term 
without success to the incompressible porous flow benchmark. For incompressible porous media 
flow, the pressure drop along the length o f the porous bed has been tested empirically and is 
accounted by a derivative of Ergun’s law as presented in Pantelis & Ritchie, [188].

A high free stream viscosity was employed in this chapter reducing the free stream Reynolds number 
because this study is mainly concerned with developing a stable strategy for laminar gas flow on 
porous media before extending the strategy for high Reynolds number, turbulent gas flows on porous 
media. The FV CBS scheme was able to handle problems that were up until recently unstable, after 
novel modifications to the FV CBS algorithm, which are 1) computing the Ergun term implicitly 
made to the code as seen in equation (9.11), and 2) neglecting the 1st ordered convection terms in the 
intermediate momentum equation (9.17). This modified procedure could handle speeds from 0.05m/s 
to 90 m/s. Now further research is needed to check the maximum speed that can be modelled. After 
the incompressible isothermal porous flow was modelled then the next milestone was to capture 
compressible, non-adiabatic flow within a porous medium using the modifications from Cheuret et al, 
[116], and the numerics that allowed stable incompressible porous flow computations.

9.6.2 CBS Algorithm Instability for Compressible Porous Flow
After extensive experimentation and amendments it was apparent that for the case seen in Figure 9-13 
the CBS algorithm as seen in (9.28)- (9.32) is unstable and eventually leads to divergence. For all the 
amended variants o f the FV CBS algorithm tested the algorithms did not achieve stability. Therefore 
other more recent publications for transpiration cooling effecting Supersonic applications were 
reviewed for successful strategies such as the boundary condition approach developed by Kays, 
Crawford, & Weigand [71], and favoured by Langener et al, [177]. The approach developed by Kays, 
Crawford, & Weigand [71], in the recent research into transpiration cooling for Hypersonic 
applications was utilized and is presented in Chapter 10.
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10. NOVEL APPLICATION
HYPERSONIC FLOW SIMULATIONS 
WITH POROUS BOUNDARIES

10.1. Introduction
This final chapter will look at Hypersonic wind tunnel experiments published in Langener et al 
[177], and compare their measurements with the computational results using a modified working FV 
CBS based computational model for porous media. The modified CBS method is coupled with the 
Kays et al [71], porous boundary method to allow this comparison. This fully explicit CBS technique 
is embedded within the modular framework o f  PHYSIC A.

The cooling efficiency o f Carbon/Carbon (C/C) material with randomly orientated fibres and 
porosities (£=Vvoid/V) o f 10.7% and 11.0% was experimentally assessed. Using the test facility 
available at the institute o f Aerospace Thermodynamics (ITLR) at the University o f Stuttgart, it is 
possible to model operational modes o f a RAMJET and SCRAMJET combustor at flight Mach 
numbers 2-6, at an altitude o f  32km. In the hot gas experiments with C/C as the transpiration-coo led 
CMC material, total temperatures up to T t)g =1060K at a main flow Mach number o f M=2.1 were set 
at moderate total pressure levels o f  P t,g =0.3Mpa. During the experiments, the steady state surface 
temperature was measured with thermocouples and an infrared camera system.

Kays et al. [71], developed a numerical approach for modelling the thermal performance of 
transpiration cooled boundaries by accounting for the fluid viscosity with respect to the through flow 
pressure and temperature change. Their computational model showed good agreement with the 
experimental data for different thermal loads and coolants within the Langener et al [177], 
investigation and will be used here.

10.1.1 Transpiration Cooling

For design purposes o f  future Hypersonic Cruise air-breathing vehicle (CAVs) geometries, numerical 
tools have to be available to evaluate external layouts o f  such CAVs as well as the transpiration - 
cooled components as discussed by Cheuret & Steelant, [124]. Therefore, available tools have to be 
extended and models capable o f simulating thermal behaviour and momentum loss in porous 
structures have to be developed. The features o f the co-located CBS FV scheme, as discussed by 
Nithiarasu P & Codina R [131], are its reliability at modelling Supersonic inviscid flows and its 
flexibility on unstructured grids. In addition to these fundamental properties, which is an additional 
advantage, the CBS algorithm in its Finite Element version allows porous flow extensions as studied 
by [136].

Although numerous high-ordered upwind schemes have been developed by the CFD community such 
as [85], [8 6 ], [114], [115], [128], [137] the inconvenience involved in their implementation is 
magnified when complex unstructured grids and 3-D extensions are envisaged. These deficiencies 
have motivated the development o f  this research to identify and develop a central differencing like 
scheme for Hypersonic high-temperature flow coupled with porous media flow.
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A derivative o f the Ergun Source term through porous media as seen in Pantelis & Ritchie, [188], 
was implemented into the sequential procedure and has since been successfully benchmarked against 
incompressible iso-thermal flow. When compressible non-iso thermal flow through porous media is 
tackled using the Ergun Source term coupled with careful amendments for compressibility and non- 
isothermal effects at the interface, this results in instability.

Thus a recently studied modified approach was taken from Langener et al, [177], which treats the 
porous component and the coolant injection as a boundary condition. This means that the two sets o f 
equations are used to model the porous flow,. The Navier-Stokes equations are used to capture the 
flow in the main channel and the second set o f  equations captures the coolants flow from its porous 
inlet to the surface of the porous membrane, which is described by Kays et al, [71]. The approach 
follows a 1-D heat balance approach with semi-empirical assumptions, and for the heat transfer 
coefficients it also takes into consideration the changing viscosity and pressure loss characteristics for 
the injected coolant. F ora more in-depth analysis o f this approach review [1], and [2].

10.1.2 Porous Boundary Condition Approach
This chapter documents the comparison o f the FV CBS algorithm coupled with the porous model 
described by Kays et al. [71], against the wind tunnel experiments described in [177]. Hopefully close 
agreement between the FV CBS algorithm results and the experimental data in Langener et al, [177], 
will emerge, and this is the focus o f the final benchmark.

The CFD tool in Langener et al, [177], was the commercial pressure based solver CFD-ACE+ which 
employs a second order upwind discretization in combination with a Min-Mod limiter (see Cheuret & 
Steelant, [124]). For porous computations this CFD tool is coupled with Kays et aL [71], showed 
good agreement with the experimental data in [177] for different thermal loads and varying fluid-type 
coolants.

Before going on to present the numerics o f the Kays et al, [71], porous boundary condition approach 
an overview o f the Hypersonic wind tunnel experiment is presented to familiarize the reader with the 
physics and the salient mathematical modelling issues involved. A basic schematic o f  the wind tunnel 
is presented below.

Porous
De Laval Nozzle A-A

Hot gas flow

Figure 10-1 Longitudinal view of the Experimental setup in Langener et al, [177].
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Figure 10-1 shows a view, specifically in the longitudinal direction o f the high speed wind tunnel. To 
experimentally quantify the cooling efficiency o f the porous components before the gas enters the 
nozzle inlet, heating filaments are used to heat the gas up to a maximum temperature o f 1060K and a 
total pressure level o f  0.3 MPa. The main De-Laval nozzle accelerates hot air to a Mach number of 
Mach=2.1. Embedded within the walls o f  the wind tunnel is a CMC-SiC sample with a porosity of 
11%. Within the porous sample are 4 thermocouples. As a control run the sample's cooling efficiency 
is assessed without coolant blowing using the 4 thermocouples to measure the heat load.

As a back up to the thermocouple data, infrared thermography was used to obtain a 2-D surface 
temperature map o f the porous material. A Mitsubishi IR M700 thermal imager (wavelength range of 
1.2-5.9mm) was used and the data were recorded by the IRBIS 3.0 software by Infratec, Gmbh. The 
resolution o f the camera was 720x480 pixels/mm for this setup. Within the setup, unknown optical 
quantities appear such as the object’s emissivity, reflected radiation, and the temperature o f the 
optical path. Therefore the IR data were calibrated in situ using the thermocouple data for the whole 
set o f  coolant mass mass- flow rates (F=0 to Fmax) to cover the relevant temperature range.
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A 2-D schematic o f the Y cross section o f the sample and the hot gas chamber is shown below in 
Figure 10-2.

Re^ = 2 .8 x l0 5

//  = 1.789x10 - 5
Hoi-gns flow direction

/
Comae! surface 

w ife copper channel

7 ; = 450°A:,750o7:,l 160AK 
= 0

X

Fig. 3 Ski'k'h «f the porous-wall sample geometry with its bore hole 
pattern.

r \ \ w
f

Viscous Wall

Thermocouples 

Q -  .. - D . f — X

Torou^ampTeT " , AP Hi Pi i- 7 -  = — v ,+ — v,v, 
L k d re,.

Tc = 300°K  Pc < 1 -5MPa 

L  = 0.0354m

< 0 . 2 2  m/s air

Figure 10-2: ITLR Supersonic combustion and hot gas flow experimental set up.

Pressure at the coolant inlet (plenum) is varied for the main battery o f tests. By changing the pressure 
at the plenum we can study how the coolant’s velocity effects the cooling efficiency o f the porous 
CMC component. The velocity o f the coolant was measured with a thermal mass controller where a 
maximum velocity at the coolant inlet was restricted to a vjn < 0.22m/s for air. Point temperature 
values are measured using the four thermocouples and the surface temperature distribution is taken 
with an infrared camera system where sapphire windows are embedded within the wind tunnel 
allowing optical access.

The second battery o f tests carried out in Langener et al, [177], quantified another relationship, that 
is, the effect that different coolants have on the cooling efficiency. Again measurements are done 
using the four thermocouples and the infrared camera system, where three different coolants were 
employed: gaseous air, argon and helium. The insight that this experiment provides is an important 
and informative example for developing adequate mathematical models to predict heat flux to the 
porous wall. The mathematical models will then be evaluated by applying them to the modelling o f 
Hypersonic CAVS transpiration cooled components.

10.1.3 Numerical Formulation for the Porous Boundary Condition

The approach favored by Langener et al, [177], which was originally developed by Kays et al, [71], 
captures an important relationship. The mass flow is constant through the porous media however the 
coolant’s viscosity, density and temperature change over the porous media sample. The mathematical 
approach and the empirical relationships used are listed below. Firstly an extended Darcy-Forcheimer 
equation is derived assuming thermal equilibrium within the sample for a one dimensional situation. 
The non-dimensional energy equation is given by:
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(10.2)

(10.3)

(10.4)

V in- Velocity in the tangential direction (m/s)
L- sample thickness (m)
kcoi- thermal conductivity (W/m K).
i- is the i location inside the porous sample at height x

At the hot gas side (X=l) o f  the porous wall section, a constant temperature ( i9=l )  is used, which 
can be measured. The coolant side (X=0) is assumed to be a coolant inlet temperature ( i9=l), 
leading to the solution as devised by Kays et al, [71 ].

3 =
- 1

- 1
(10.5)

These investigated experiments and the future applications justify a first hypothesis, where the flow 
velocities and the relevant coolant properties yield a cooling parameter Ccoi which is relatively small 
(0< Ccoi <1.51). This important point means that the temperature distribution within the CMC wall for 
simplicity can be approximated by a linear function. Where;

T - T  ± < T  - T  \ —  — T  j - h -  ^ 1 0 ' 6 ^
c o lj  col,in V w c o l,in )  col,in

Table 10-1-Pro 3erties o f t le investigated samples :rom Langener et al, [177].
L ( m ) s (%) Kd (m2) KF (m) P(kg/m 3) Cp(J/kgK) k (W/m K)

1 ample 1 1 0  x l0 J 11 9.07x10'“' 1.72x10s 1400 1300 14
1 ample 2 5xlOJ 10.7 6.18xl014 3.88x10s 1400 1300 14
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Table 10-2- Parameters for modified Kays et al, [71] model with heat conduction.

Name Symbol Value
Hot-gas Mach number (measured) M 2.06
Hot-gas total temperature (measured) T.,g 1039K
Hot-gas recovery temperature Tr.g 101 IK
Hot-gas static pressure (measured) Ps,g 0.346 bar
Stanton number without blowing 
(estimated)

Stg,0 0.0034

Porous- wall temperature without blowing 
(measured)

Tw,o 644K

Cooper Temperature (measured) Tcu 317K
Specific heat capacity hot-gas c P 1024 J/(kgK)
Specific heat capacity coolant: air Cp,col 1010 J/(kgK)
Specific heat capacity coolant: Ar Cp,col 525 J/(kgK)
Specific heat capacity coolant: He Cp5col 5193 J/(kgK)
Coolant temperature (measured) f(F) Tcol 309 K
Hot-gas bulk velocity U , 979 K
Hot-gas density p g 0 . 2 1 0  kgfrfr*
Reynolds number Red 269737
Prandtl number Pr 0.686

By incorporating the general power law, equation (10.6) is used to locally determine the local coolant 
viscosity for:

Pi,col =  /C
A °'7 r T^col+b ( x / L ) ^ 7' i ,col

Tv  »  y
(10.7)

where b- temperature difference o f coolant between the two sides o f the porous sample 
Tin -temperature o f  coolant at the plenum inlet

p2 _  p 2
in,col out,col __
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Tyr in,col b (  .

D l ( »  + 2)

,n +2

, Pin,col t t 2 
+  V in, col

0 =
_  J  P in .c

K r.
1 H------2TV  /«,co/ y

V , +//7,CO/

1 +

'N

Ty  in,col J

- 1
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2T
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in,col J  

1 + -

(10.8)

N/7+2

T\  iii,coi y
- 1 ^  in,col

P —Pin,col out,col

2  P „ . „ , L
(10.9)

All the parameters in equation (10.9) except one Vin,Coi are obtained from Table 10-2 . The pressure at 
the coolant wall outlet is captured at the boundary node using the computational scheme in the hot
channel. Then Vin,coi is obtained from the quadratic equation, an average value for V i„ ,coi from all cells 
on the porous boundary is the next step.

V  in,col = ------ l-   Y  K c A  (10.10)
V B O U N D  f^ y O o v m
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This average inlet coolant velocity , v in,c o i ,  value for, Vjn , is assumed by the author as a global value 
and is flowing out o f  the plenum into the porous membrane where VBOUND is the number o f control 
volumes, that have a face on the porous boundary. Note that VBOUND varies for different grid 
resolutions.

F  =1 Blow
P c o  in, co I

Po0̂ 00
(10.11)

Except for v in,c o i, all parameters on the right hand side o f equation (10.11) can be obtained from Table 
10-2, To compensate for the lateral heat conduction appearing in the experimental setup the Kays et 
al, [71], model sets up a simplified heat balance, using the following formula:

\ o  — T w )  =  p c o i v inC p  col ( T w — Tc o l )  +  B ( T W — T cu )  

where Tcu is the temperature o f the water cooled cooper pipes (317K)
TW;o is the temperature across the sample without blowing (663.63K) 
he is the heat transfer coefficient.

(10.12)

The 1st, 2nd and 3rd terms denote the convective heat transfer, internal cooling and the heat conduction 
losses respectively. Here the coefficient B accounts for the thermal resistance from the porous surface 
to water cooled cooper parts at steady state. Thus B can be determined from a heat balance o f the 
uncooled case where heat is laterally conducted onto the cooper pipes [177]: From equation (10.12) 
the 1 st term on the right hand side can be ignored leading to the following reduction.

B = r.,o)

(̂ w.O ~^cu)
(10.13)

where h _
Ay

Using (10.12) and (10.13) one can derive an expression for the expected wall temperature Tw in the 
case o f transpiration cooling.

T  =

h T  - Tg w,0a T  + T  + - ^ - T
cu g K  c u T ..,n - T „g w,0

a  + l + ^  Tg- r *°
he ^ , o - T al

(10.14)

Compared with the uncooled case (no blowing), the effect o f the blowing ratio F b i ow  on the cooling 
efficiency is studied in Langener et al, [177].The term a, is an empirical parameter describing the 
change in heat transfer toward the cooled wall according to Kays et al, [71 ].

a = K „x( S * 2 L ) x ( — )

C, \
St

g

B \
H

- 1
xStg$

(10.15)

(10.16)

where Stg,o equals 0.0034 and Cp,ooi equals 1 0 1 0 .

~  ^Blow

f r  V 6
p,col

\  p J

(10.17)
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hg,0=0-0034/?„u„Cp (10.18)

where Pr equals 0.74 and |i is the dynamic viscosity obtained from equation (10.7). Then the gases 
density at each -control volume- lace on the porous boundary is defined with the cell pressure and the 
face temperature from the equation below.

P
f  P1 c v

v, f V

After the local density is calculated the velocity o f the coolant which is blowing out o f the porous 
surface into the main gas chamber is calculated below.

(10.19)
Aw,f

where p coj equals 16.88 kg/m3, vWjf calculated from (10.19) is a local value that depends on the
density o f the gas at the hot side o f the porous wall. From this vw,f value, the convection fluxes and 
the viscous terms are computed for the use in the CBS formulation. For more information on this 
porous media boundary condition review Kays et al, [71].

10.1.4 Boundary Conditions

In this chapter the initial problem was modelled as seen in Figure 10-3. This was chosen because o f its 
similarity to the final novel application and most importantly low Reynolds number. In conjunction 
with the Kays et al. [71] boundary condition, these small Reynolds numbers, ensure laminar flow, an 
appreciably simpler and more stable task to model

241



r = i 0 6 0 ^

- 5
JU =  1.789x10 

M  = 2 .l
—>

= 0.208kg!  m  

0

H  = 10.00xl0"5m

Inviscid Wall \  X \ \ w\ s

u

I  = 2 .0 0 x 10"5/m Viscous 

Z = 8 .0 0 x 1 (Tsw

U '" “ I ”  I* “  *1 H
Torou^sampfi^ " “ q 

* '  - • - I

Z. = 0.01»?

=1.5xl06/ >a r c =309°/s: 

< >
L  =  2.00x1 0‘ 5/h

Figure 10-3: The first case study for transpiration cooling as devised by the author as a low Reynolds
number compressible Supersonic flow benchmark.

The flat plate length is 8x10’ m and the porous sample length is 2x10' m. The number o f iterations 
before the coolant boundary condition was turned on was 7,000 iterations approximately, and after 
convergence for a lx l 0 ' 5 m flat plate the transpiration boundary condition was allowed to reach a 
steady state value for coolant velocity on for a further 7,000 iterations or divergence. Stability was 
sought firstly for the problem above, no requirement was set out for accuracy relative to the 
experimental data. Temperature contours were reviewed to assess that the final steady solution is free 
from decoupling and possesses smooth contours free from numerical noise. The advantage o f this test 
case is the possibility to perform quick calculations that represent an important application: wall 
cooling for Hypersonic CAVs at the leading edge.

Table 10-3- Flow parameters for the main gas flow.
Total
Length
[m]

M00H Too[K] Poo[kg/(m
s)]

poo [kg/(nr*)] Poo [bar] Re [-]

1 .2 x 1 CT5 2 . 1 1060 1.789xl0"5 0.208 0.346 4.60x10Z
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Total
Length
[m]

Total
Height
[mm]

Nx Ny Nt

1.2 xlO -5 2 . 1 1 0 0 58 5880

Table 10-5- Flow parameters for the coolant fluid
Porous
Length
[m]

Porous 
Thicknes 
s [mm]

Tool [K] Pcoi[Pa] Pcoi [kg/ms] Vn,col
(m/s)

pcoi[kg/(mJ)]

0.8 xlO-5 1 0 309 1.5 x 106 1.789xl0"5 1 . 2 12.7

10.2 The Sequential CBS Scheme for 
Compressible Porous Flow

The CBS based model was coupled with the Kays et al, [71], porous boundary condition, within the 
PHYSIC A code framework and simulations were then run. The result o f  this is that the novel 
application is tackled. The sequential computational procedure for the CBS finite volume algorithm 
can be done in a number of ways, but here, the following general procedure after numerical 
experimentation was pursued. Each step described below is either applied to all the cells in a sweep 
of the grid or to the cells straddling the porous wall. After this sweep the boundary conditions as seen 
in step 6  are computed. Then the sequential computational procedure, otherwise known as an iteration 
is either exited or repeated after calculating the residual error and comparing them to the agreed 
tolerance.

1. The CBS scheme incorporates local pseudo time stepping.: Where C is the courant number 
and depending on the problem is usually <0.5.

A t”c v =C-
h'CV

'CV + \ j ( UiUi ) c v

(10.20)

The Kays et al, [71] boundary condition approach is used to calculate the velocity, 
pressure, temperature field on the surface of the flat plate at the start of the computational 
loop. Firstly Vin)COi is calculated at each control volume that possesses a free straddling the 
porous walL

0 =
  J Pin,coI 1 +  -

2 T „

Pin,col

in,col ) V c o /  K n  * ( «  +  2 )

\n + 2

1 +  - - 1
in,col ;

p 2  _  p2
in,col out,col

2  P„  , L
(10.21)

3. After computing vin for all control volumes straddling the porous boundary. Where 
VBOUND equals total number of control volumes on the porous boundary. The average is 
taken.

Vin,col —
1

VBOUND f=.\ybound
[ y  in,col ) , ( 10.22)
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This average inlet coolant velocity value, v,«,«,/, is a global value and is flowing out o f  the 
plenum into the porous membrane.

P c o l^ in , colF -Blow P Ur  oo a

4. The temperature on the porous-gas interface is calculated with blowing ratio.

T =V /

h T - T
aT _ + T _ + -^ -T  g w’°

T - Txv, 0 cw

K  Twfi

(10.23)

And the rest of the variables seen are taken from Table 10-2

5. The density of the coolant-air mixture on the porous wall gridline is defined with the cell 
Pressure and the face temperature from equation (10.23).

PW ,f

f  p  ^r CV

Tw,fR
(10.24)

The velocity o f  the coolant-air mixture that is blowing out o f the porous surface into the 
main gas chamber is then calculated from the updated density.

P c o iF  in,colF =Blow
P  Ur a o  oo

6 . Intermediate Momentum

'  X  X  (Ti
At i=\,TOTFlC i=\,TOTFlC

Atput = p u t -
AV

f

\  -  i=\,TOTFIC

7. C o rrec ted  M o m e n tu m

+ T “* X  d iv(pu luj )*n jAf

K+l  *put — pu{ —
At

AV
D i A t dP  A

y / =\,TOTFIC 2  f = \  TOTFIC d X j  J

(10.25)

(10.26)

8 . The Continuity Equation is solved using the momentum values from (10.26) at the
n+ 1  "time" level.

/  AAt
AV

9 E nthalpy  E quation .

X  Pu) * njA f
\ifa = \,T O T F !C  y

(10.27)
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Temperature is inferred from the enthalpy: To close the equation set the Ideal Gas Law and 
Sutherlands Law are solved. The Prandtl number, which is assumed constant for ideal 
gases at moderate temperature [82] where Pr is 0.74.

10 By sensing whether the relative error is less than the agreed tolerance of 10 5 check 
convergence to steady state values. Or alternatively if the number of iteration/sweeps is 
above the maximum iteration/sweeps, IMax, stipulated by the user, IMax =7,000 iterations.

11 If convergence has been achieved exit the procedure and display results otherwise re-start 
the computational sweep by going back to step 1 .

General Remarks
For system level design o f the transpiration cooled components, the final approach should generate 
reliable predictions to the Hypersonic wind tunnel experiments. Initially, however, we are 
predominately concerned with a stable solution for compressible flow through porous media, which 
has been plagued by instability and divergence; review Chapter 9.

Initial Conditions
To reduce the initial transients for this method, which can cause instability and divergence, the initial 
conditions were set to the converged solution for a solid flat plate o f L=l x l 0‘5m. The number of 
iterations before the coolant boundary condition was turned on was 7,000 approximately when 
convergence for a 1 xlO' 5 m flat plate had been achieved. The boundary condition routines step 2-5, is 
switched on after convergence, for 7,000 more sweeps so that the transpiration boundary condition 
was allowed to reach steady state values. The solutionreaches steady state values specifically when Vjn 
does not differ significantly from successive iterations.

As mentioned the approach presented by Cheuret & Steelant, [124] using a single set o f  equations to 
describe both bulk and porous flow for Compressible porous flow benchmark, resulted in instability 
and divergence as seen in chapter 9. Therefore the porous problem above was run to test the stability 
of the CBS algorithm when coupled with the approach favored by Kays et al, [71].

NUMELE

NUMELENUMELE
(10.29)
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10.3 Simulation Results
The strategy was stable for Courant numbers o f 0.05, an indication that the new boundary condition is 
a marked improvement in terms o f stability from the approach advocated by Cheuret & Steelant, 
[124] as seen in chapter 9. Importantly the computations were stable and successfully converged to 
steady state values after the Kays et al, [71], porous boundary condition was turned on. The number 
of iterations required was 7,000 iterations once the sequential Kays et al, [71], porous boundary 
condition was activated. The resulting temperature contour maps are shown as proof o f the final 
solution.
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Figure 10-4: The scalar contours for the case shown in Figure 10-3 with transpiration cooling .

The four contour plots above, going from top left in a clockwise fashion, represent the density, the 
pressure, the enthalpy error over the flow domain and the temperature. The steady state solution is 
displayed when the porous wall condition is activated. The contours are smooth and this is an 
indication o f  a stable algorithm. The shock is also adequately represented as being several cells 
across. Notice the contour plot is smooth with banded color around the shock wave and the boundary 
layer without any decoupling, an essential ingredient for a reliable Hypersonic CFD tool.
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Figure 10-5 The scalar contours for case study shown in Figure 10-3 with no transpiration cooling.

The Figure above shows the four contour plots, going from top left in a clockwise fashion, the 
density, the pressure, the enthalpy error over the flow domain and the temperature

Tangenential Velocity along the plate with transpiration cooling applied at 0.8x10‘5m
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Figure 10-6 The tangential velocity for the cells straddling the wall over the porous media against the 
non transpiration cooling case.
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Non-dimensional Temperature along the plate with transpiration cooling applied at 0.8x10'5m
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Figure 10-7 The temperature for the cells straddling the wall over the porous media against the non 
transpiration cooling case.

Figure 1 0 - 6  and 10-7 show the v velocity and temperature respectively along the length o f the 
domain, using the values from the cells straddling the most southern gridline. Further research is 
required to verify that the solution is realistic. Since there are no known analytical solutions to the 
case seen in Figure 10-3 the solved results will need to be compared against the experimental data 
from Langener et al, [177].

10.4 Modelling Langener’s High Speed Wind-tunnel 
Experiment Novel Application
The goal o f  this second part is to validate the porous wall method developed by Kays et al, [71], and 
to couple this method to the FV CBS scheme by comparing computations with the experimental 
results seen in Langener et al, [177]. In varying free-stream conditions the cooling o f the porous 
component is quantified. A non-dimensional cooling ratio is employed to describe the cooling 
efficiency o f  the transpiration cooled porous wall by Langener et al, [177]. In such a wind tunnel 
experiment it aims to reduce the influence o f  the lateral heat conduction effects and data 
interpretation by referring to the non-transpiration-cooled case. The efficacy o f a porous component 
is quantified using the cooling efficiency ratio given by: It ranges from zero (no cooling) to unity 
(complete cooling). The wall temperature data was averaged from the four wall thermocouples.

Tw f =q — T  W,Exper

T  - TW ,F =0 1 CU
 ^ r -  (10.30)
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Where ®£W is the cooling efficiency as computed using the thermocouples in Langener et al, [177]. 
With this definition one is able to compare tests with, for example, different coolants and different

sample materials. Here T w,Exper is an average temperature value for the four thermocouples embedded 
into the porous sample as seen in Figure 10-2.

_ I t,
00.31)

4
As a back up to the thermocouple data, infrared thermography was used to obtain a 2-D surface 
temperature map o f the porous material.

10.4.1Boundary Conditions

The next benchmark is similar to the earlier case study investigated in this chapter, which can be seen 
in Figure 10-3. However, the length o f the porous medium and hence the domain is increased, so it 
matches the lengths seen in the wind tunnel experiment in Langener et al, [177].

7 ; =  io607>:

Moo = 0.0716

A / = 2.1
—>
p x = 0.208k g /  m 3 

v = 0

Inviscid Wall 

L  = 20mm

A A A

\  \ ' \ w \ \ N ': 5 : = k ~ :rd| Porous sample

 f  -

p  =1.5x10 7; =309

Viscous
Lwa,,= l0m m

L  = 0.01m

L P, r  =  W m m

Figure 10-8: The second case study for transpiration cooling as devised by the author as a low 
Reynolds number compressible flow benchmark.

Firstly the free-stream viscosity was assumed to be // = 0.0789(&g/ (ms)) which is done to keep the 
free-stream Reynolds number (Re) within the laminar regime because as mentioned before stability 
and hence convergence cannot be achieved with the FV CBS scheme for free-stream Re >105. 
Secondly all physical quantities for air in Table 10-6, except for the free-stream viscosity, are used. 
The flat plate is 1 0 mm and the porous sample is 30mm.
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Table 10-6- Grid and flow parameters for the main hot-gas.
Total
Length
[mm]

Moo[-] Too[K] M oo[kg/(m s)] Poo [bar] poo[kg/nT] Re [-]

60 2 . 1 1060 0.07019 0.346 0.208 4.60x10Z

Table 10-7- Flow parameters for the coolant.
Porous
Length
[mm]

Porous 
Thicknes 
s [mm]

Tcoi[K] Range
for
Pc[Pa]

Mcol
[kg/(ms)
]

Range for 
Vin,col (m/s)

pcoi[kg/nP]

30 1 0 309 l .OxlO5 

1.5 x 106

0.07019 0.0097 to 1.2 16.9

10.4.2Comparative Wind Tunnel Results

The plots below are taken from Langener et al, [177]. Here, the cooling efficiency is plotted versus 
the coolant mass flow rate. The coolant mass flow rate is measured per cooled area.
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Figure 10-9 Numerical and experimental cooling efficiency vs. blowing ratio as taken from Langener, 
[177].

In the west graph in Figure 10-9 plot, the influence o f the different coolants on the cooling efficiency 
is seen using sample 1. The parameters for sample 1 can be seen in Table 10-7. The impact o f  the 
gases’ specific heat capacity is clear. With the same amount o f coolant mass-flow rate, helium cools

=0.0177

2 5 0



the wall segment much better than air, whereas the cooling efficiency o f argon is inferior to air and 
helium, due to its smaller specific heat capacity [177].

In the east plot in Figure 10-9 plot, the cooling efficiency o f sample 2 is investigated at different hot 
gas total temperatures (inlet temperatures). Ranging from 400K up to 1120K, note that the non- 
dimensional temperature ratio, 0, is independent from the hot gas total temperature at the same Mach 
number and coolant mass-flow rate.

10.4.3 Solver Results

The following two plots show the steady state temperature field as color contour plots. The two plots 
display the steady state values at two different blowing ratios where the blowing ratio ranges from 
0.054%, 9xl0'3 m/s, and 0.12%, 2.35x1 O^m/s , o f the main gas flow rate.

10.4.3.1 Com puted Therm al Contour P lots
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Figure 10-10 Surface temperature of porous wall for the blowing ratio of FBiow =0.054 where the 
Tt=450k M=2.1.

When the blowing ratio is 0.054% the steady state profile exhibited is obtained after 1024 iterations. 
The start o f  the red area corresponds to the leading edge o f the plate, whereas the end o f the red area 
and the start o f the blue corresponds to the start o f the porous component. Importantly for this 
research the contour plots are banded and display no deco up ling or numerical oscillations.
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Figure 10-11 Surface temperature of porous wall for the blowing ratio of F BiOw= 0 . 0 1 3  where the 
Tt=450kM=2.1.

For Figure 10-11 the blowing ratio is 1.3% and the steady state profile exhibited is obtained after 
1460 iterations. Again the start o f  the red area corresponds to the leading edge o f the plate, whereas 
the end o f the red area and the start o f  the blue corresponds to the start o f  the porous component. 
Importantly for this research the contour plots are banded and display no decoupling or numerical 
oscillations. Comparing the two plots, one can see that the minimum value for temperature is 353K 
for F=1.3% and 533K for the F=0.054%. The CBS algorithm is showing the relationship between the 
coolant blowing ratio and thermal cooling, specifically as the blowing ratio increases transpiration 
cooling has a greater effect.

10.4.3.2 Cooling efficiency versus coolan t m ass flo w -ra te  p e r  m

The following plot is generated, from the computed average wall temperature values. A total of 
twelve different simulations were done for 2  different blowing ratios and the average temperature 
after convergence was computed as seen below.

^ w'Cm =  v r o i i n d  ^  ( 1 0 3 2 )VDUUJyL) f - \ y b o u n d

where VBOUND is the total number o f  control volumes straddling the porous structure.

= (1033)
IV,F=0 * C U

where ®c0m is the cooling efficiency as computed using the numerical procedure developed in this 
thesis.
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Cooling Efficiency Vs mc / Ac at Tjnfty=1060K, where air is the coolant
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Figure 10-12 Comparing cooling efficiency vs. mass flow per unit area using the numerical and 
experimental procedures.

The comparison between the experimental results in Langener et al, [177], and the numerical solver 
developed during this thesis is shown in Figure 10-12. The physical relationship is in agreement, 
namely as the blowing ratio increases the cooling efficiency, 0  , increases. As 0  tends to 1 then the 
temperature on the porous component hot side approaches Tcoi.

The data points for 0  are plotted against different blowing ratio’s, but are not completely in 
agreement with the IR data. This difference is most likely due to the 3D effects in the experimental 
procedure as covered in Langener et al [177], which cannot be accurately reproduced with Kay’s 
boundary condition method. It could be argued that it might also be due to the artificial dynamic 
viscosity used in the simulations, which is employed for the requirement o f stability.
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10.5 Concluding Remarks
This chapter has demonstrated a 2nd ordered explicit CBS FV algorithm and how it can capture the 
behavior for Supersonic compressible inviscid flows on porous components. The final chapter 
utilized results from the Hypersonic wind tunnel experiments published in Langener et al [177], for 
comparison purposes. The modified CBS method is coupled with Kays et aL [71] porous boundary 
method to allow this comparison. This fully explicit CBS technique is embedded within the modular 
framework o f  PHYSIC A.

10.5.1 Summary of the CBS algorithm for the Novel Application

The CBS algorithm is coupled with Kays et al. [71] porous boundary condition, and the resulting 
method is used to compute flow pertaining to the transpiration cooled experiments presented in [177]. 
The experimental test case was selected on the grounds o f  its close comparison to the final 
engineering application, and cooled components on Hypersonic CAVs.

To validate the numerical method used for designing CAVs, the numerical method has to show close 
agreement with the experimental data. The final numeric approach favored by Kays et al, [71], was 
stable and converged to a steady state solution. Ultimately this approach is more successful than the 
Cheuret & Steelant, [124], approach covered in Chapter 9. Also the implementation o f  the boundary 
condition method allowed us to generate different porous exit speeds by varying the plenum outlet 
pressure.

10.5.2 Comparison with Langener et al [177] Study

Figure 10-12 shows that this approach predicts the trend o f blowing ratio versus cooling efficiency. 
Specifically that at high speeds and high temperature the heat load to the wall decreases with the 
transpiration blowing ratio. However differences in magnitude can be seen in Figure 10-12. This is 
most likely due to the artificial value we took for the dynamic viscosity o f air. This was necessary to 
keep the flow laminar.

All problems were in the laminar regime where high Mach numbers are considered. This point is 
important, because the laminar regime can be modelled without the requirement o f turbulence 
models. Turbulence and Turbulence models in themselves are worthy o f a separate program of 
research. This would be extremely challenging considering the multi-disciplinary nature o f turbulence 
effects, compressibility and transpiration cooling.

The developed method described by Kays et al, [71 ], and presented in this chapter can be used for 
non-adiabatic high temperature porous media set-ups, which are common in combustion chambers for 
aerospace propulsion and external transpiration cooling applications.
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11 CONCLUSION

The development o f numerical techniques for Hypersonic viscous flows is an area o f current practical 
importance, which is due to the interest shown by the aerospace industry in the development of 
Hypersonic cruise air-breathing vehicles (CAVs). The simulation o f the Hypersonic regimes of 
interest represents a formidable challenge to any flow solver, and can be attributed to the highly non­
linear nature o f the interactions which occur. The task o f finding closed form solutions for 
mathematical models, which describe Hypersonic applications, proves to be fruitless in most applied 
engineering situations, and as a result, the computer simulation represents an attractive alternative for 
experiments that are difficult, dangerous or expensive to utilize as stated by Lyra, [7]. Alternatively 
CFD enables the possibility for analysis impossible in the laboratory. Experimentation still remains 
extremely important for engineering Hypersonic CAVs, however, with the advent o f digital 
computers the trend for designing concept CAVs using numerical techniques is increasing. Some 
other difficulties which have to be laced when attempting the solution o f the multidimensional 
Navier-Stokes equations is the complex geometries involved in industrial applications and the high 
CPU time involved in practical simulations. The large elapsed time necessary to produce structured 
grids for extremely complex configurations and the difficult control on the quality o f the elements 
meant that unstructured grids were preferred in this thesis, Unstructured grid techniques are schemes 
that can be readily applied to unstructured, non-orthogonal grids, such as central differencing type 
schemes. And most Supersonic shock capturing techniques are those schemes that are based on 
orthogonal structured grids, such as 2nd ordered upwind techniques. Lyra, [7], argues that through 
modifications and adjustments, many structured grid techniques can now be adopted for unstructured 
grids. Unfortunately they normally imply more complexity and less efficiency. Thus, unstructured 
grids were employed where applicable in this research to show the algorithms versatility when 
extension to modelling non-linear geometries are required.

This research has focused on applying a density based, explicit, collocated, central differencing finite 
volume algorithm to a number o f benchmarks, favored by industrial supervisors, where the 
complexity of the benchmark’s modelled, incrementally increases:

• 1 -D Superso nic inviscid F low
• 2-D Supersonic inviscid Flow
• 2-D Subsonic viscous Flow
• 2-D Supersonic viscous Flow
• Subsonic flow within a Porous Medium

Finally the goal o f the research is modelling the novel engineering application:

• Subsonic flow within porous components coupled to Supersonic flow over these porous 
components

The chosen algorithm was assessed on its accuracy at capturing the pertinent physics o f benchmark 
cases. The industrial sponsors stipulated an absolute error o f less than 1% between the theoretical 
values and the codes results. The lack o f transient (time dependent) benchmarks was a result o f  the 
dearth o f  theoretical solutions for transient fluid benchmarks when compared to those steady state 
theoretical solutions. In the event that transient effects need to be captured, the CBS algorithm, as
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seen in Massarotti, Arpino, Lewis, & Nithiarasu, [132], can be easily extended to capture transient 
fluid applications.

Within each chapter o f  this thesis, relevant concluding remarks as well as recommendations for 
further work have been presented for each specific benchmark case. Therefore this thesis comes to an 
end with a summary o f the achievements o f  this algorithm, the general stability issues when applying 
the algorithm and recommendations for extensions to each o f the presented benchmarks

11.1 Summary of CFD Requirements

The list o f requirements o f  a computational tool targeted at fluid dynamic problems coupled with heat 
transfer for Hypersonic applications as mentioned by Lyra, [7], are in this order o f importance: 
reliability, robustness, efficiency and versatility. Both the effect o f these four requirements on the 
success o f a computational tool to deal with engineering applications and the amount o f  work 
required to improve any o f  these four requirements is enormous and cannot be overstated Lyra, [7]. 
However, the first requirement, reliability, was the major concern for the industrial sponsor, ESA. 
They need to scrutinize high temperatures encountered in the Hypersonic regime. The common 
features o f the chosen numerical formulation applied to each o f the benchmark cases include:

• The use o f the finite volume method as the spatial discretisation in the numerics.
• Studies for each benchmark case that assess the accuracy o f the final numerical solution.
• Improve the versatility o f  the algorithm by formulating the numerics so that it can easily 

handle unstructured, non-orthogonal grids.
• Data structures and code logic that is suitable for a large number o f solution points.
• The adoption o f numerical techniques such as artificial viscosity to extend the stability o f the 

explicit approach for problems with inherent instability such as Oblique Shocks.
• Adopting pseudo local time stepping to control the stability o f simulations especially around 

extrema, such as stagnation regions and discontinuities. .
• For slow convergence, for example in the case o f  incompressible flow through porous media 

as seen in Chapter 9, techniques to improve efficiency o f the computations, such as an 
amplification factor, are employed

• Jamesons, Schmidt and Turkel’s artificial dissipation is made up o f 4th and 2nd ordered 
components. In invisicd regions o f  the flow, the 2nd ordered components are equal to zero, 
meaning the 2nd ordered accuracy o f  the CBS algorithm is recovered.

• The adoption o f  a number o f  tuneable free-parameters, such as the weighing foe tors for the 
artificial viscosity, helps to improve the stability o f  the final algorithm

In Chapter 4 the author emphasized the insight and importance o f the ID  shock capturing Supersonic 
nozzle benchmark, on the development o f the numerical scheme for multidimensions. For instance, 
the 1-D models represent a numerical laboratory, allowing the CFD user to acquaint himself with the 
features and issues o f  numerical computations and, in addition, to test, compare and perform an initial 
validation o f numerical theory in 1-D, as stated by Lyra, [7]. An obvious point, is that a failure o f a 
shock capturing numerical scheme, to model 1-D problems will typically mean further failure when 
modelling multidimensional shock problems. However the success o f a 1-D model although 
promising does not guarantee success with the corresponding multidimensional shock problems. 
Therefore experimentation on the desired number o f dimensions must be pursued for a 
comprehensive validation o f the code. Issues such as well posed boundary conditions, 
multidimensional decoupling, and computational efficiency have limited meaning in 1 -D 
computations. The numerical scheme described here in theory, are capable o f  solving a very wide
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range o f engineering problems and are extendible for the analyses o f 3-D problems. The envisaged 
computer code for 3-D problems has features such as explicit time stepping which also make it easily 
extendible for implementation on parallel architecture.

11.1.1 Supersonic Inviscid Compressible Benchmark with 
Discontinuities

As seen in Chapter 4 the FV CBS algorithm was analysed against the ID inviscid de Laval nozzle 
with excellent performance in terms o f reliability and robustness. Two different cases were modelled; 
Supersonic and Choked nozzle. All computations displayed excellent performance in terms o f  
stability and reliability. Hence the FV CBS algorithm was envisaged as the prime candidate scheme 
for the target benchmark problem, Hypersonic flow over transpiration cooled components.

The reliable and robust FV CBS algorithm for ID inviscid problems was then extended for 2D 
problems; the Supersonic wedge benchmark. In contrast to the ID inviscid study, greater 
experimentation o f the user applied parameters in the artificial viscosity terms is required to meet the 
accuracy for a reliable computational tool. In addition to capture localized areas where physical 
interactions specific to the problem occur, such as the oblique shock over the wedge, the FV CBS 
algorithm, requires a fine grid to match accordingly to the localized areas o f interest. The requirement 
for grids that capture shock waves is between 3-6 control volumes across the shock wave.

11.1.2 Subsonic Viscous Incompressible Benchmark
Further validation on various flow problems was carried out to assess the reliability o f the chosen 
algorithm before applying the FV AC CBS algorithm to the targeted problem. The next benchmark 
test was the computation o f a Subsonic viscous incompressible boundary layer over a flat plate. The 
motivating lac tor for modelling incompressible benchmarks was to show that the chosen numerical 
technique can work through the flow regimes in actual flight, potentially capturing laminar Subsonic 
flow as well as compressible Supersonic flow. Bad performance o f compressible schemes is often 
experienced when they are directly applied to incompressible or very low Mach number problems 
[8 6 ]. Relevant modifications from research o f Malan, Lewis, & Nithiarasu, [96], [150], [173]; and 
Nithiarasu, [160] that re-casts the density based CBS scheme as a pressure based solver were 
employed, they have also been presented in Chapter 7 for brevity.

However after implementing these modifications, the code became susceptible to numerical 
instability and divergence for free-steam Reynolds number (Re) > 6.86x104. It is my view that further 
work on turbulence models is required to allow reliable and robust computations around this Re 
number range. However for free-steam Reynolds number o f < 6.86x104 results were stable, however 
accuracy issues arise due to errors relative to the theoretical prediction. Upon investigation on the 
meshes used to discretize the domain it was found that one factor affecting the accuracy o f  the 
solution, was the location o f the inlet and top boundary to the region o f viscous interactions.

The proximity o f  the free-stream domain boundaries to the region o f interest significantly affected the 
accuracy o f the final solution, ie  moving the inlet further upstream, resulted in greater accuracy in 
predicting, the Cf value over the flat plate. However, the associated gains when moving the 
boundaries did not drive the absolute error in the solution to below the tolerance o f 1 % and a 
minimum average error value o f  1 .8 8 % persisted.

Alternative issues for an accurate prediction o f the drag coefficient are the capturing o f localized 
areas where physical interactions specific to viscous problems occur. For example, the FV CBS 
algorithm requires a fine grid to match accordingly with the flow-solid surface interface, where the
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large velocity gradients play out. For example, the requirement for grids where the leading edge
region o f the flat plate was a dx length o f 2 .3 x l0 '6m or a ratio o f J L  = 7 . 7  .

Ax

11.1.3 Compressible Supersonic Problems
The next benchmark test was the computation o f a Supersonic Compressible boundary layer over a 
flat plate. The motivating lac tor for modelling this benchmark, is that, the solver as already 
mentioned should capture compressible Supersonic and Hypersonic applications by Steelant, [169].

The explicit FV CBS algorithm was successfully stable and converged to a steady state solution for 
the 1st benchmark, the Mach 2, constant cold wall, 10pm flat plate. The small domain for the 10pm 
flat plate means relatively small grid sizes. Structured orthogonal grids can be employed (9800 
elements) removing the need for careful mesh construction. This also has a (beneficial) effect on the 
simulation CPU time needed and the amount o f  time needed to harvest plots from the numerical 
outputs

Skin friction values, Cf, for this benchmark were computed using cells straddling the no-slip wall. 
These Cf values were compared with the predicted values from the temperature reference method. 
The Cf percentage error was less than 10% and the Ch value was less than 2%. Considering the 
drawbacks o f  the temperature reference method then the CBS algorithm could be argued to produce 
viable results. The Ch and Cf values from the CBS algorithm were in agreement in particular towards 
the trailing edge where the simplifying assumptions are realized.

Computations were also carried out on a higher Mach number, Mach 4, for two different wall thermal 
boundary conditions; the constant wall case and the adiabatic wall case. The MacCormack, [29], 
finite difference predictor corrector algorithm profiles which were copied from Anderson, [15], are 
used as a comparison. The figures in Anderson show physical quantities through the outlet, which 
unlike the temperature reference method encompasses the shock wave as well as the boundary layer. 
Therefore the various profiles at stations through the outlet edge from Anderson, [15], could be 
argued to be as informative than the temperature reference method when assessing the performance 
of the numerical scheme.
The CBS profiles are in excellent agreement with MacCormack, [29], finite difference predictor 
corrector algorithm profiles which were copied from Anderson, [15]. The final FV CBS solution for 
temperature and velocity and displayed close agreement with MacCormack’s algorithm, [29], results, 
particularly for the location o f the shock and the maximum temperature through the boundary layer.

11.1.4 Incompressible Subsonic Porous Problem
Due to time constraints the FV CBS scheme was then applied to a benchmark that involves Subsonic 
incompress foie flow within a porous medium. The reason this was done was because it was seen as 
easier to understand issues relating to a successful porous media computation for incompressible 
problems, before more complicated problems, such as compressible flow over porous components 
were tackled. The source term used in Pantelis & Ritchie, [188], was initially employed because of 
how it replicates the effect o f  the porous medium. This term, as seen in Chapter 10, is proportional to 
the (local) velocity quadratic. The numerics o f the FV CBS scheme went through a revision when 
applied to incompressible flow through porous media, as I propose that the source term should be re­
cast from an explicit term as used by Pantelis & Ritchie, [188], to an implicit source term as used 
here. This revision brought about gains in stability and accuracy as the final solution was within the 
1 % absolute tolerance.
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As encouraging as the incompressible results were for a reliable computational tool, for the target 
problem, modelling compressible flow through a porous medium was attempted next The same 
geometry and porous medium parameters were used. However the free-stream velocity was set to a 
compressible speed of200m/s (Mach=0.58).

The subsequent computations were characterized by instability and eventually diverged. 
Modifications to the approach were applied but with no avail. It was obvious that a new 
computational strategy needed to be employed as the continuum strategy produced an unstable 
problem.

11.1.5 Compressible Supersonic Flow over Subsonic Porous 
Components

Modelling Supersonic flow through porous media using the finite volume CBS algorithm was 
characterized by instability even with the implicit source term and the modifications presented by 
Cheuret & Steelant, [124]. The approach presented in Langener et al, [177], when implemented into 
the FV code resulted in stable computations for the non-isothermal, compressible flow within porous 
media. Langener et al., [177], modelled the porous media as a boundary condition and not part o f  the 
flow continuum.

There were many challenges and setbacks in this work but the research has succeeded in providing a 
knowledge base and a cautionary warning for modelling the different flow problems with the explicit 
finite volume CBS scheme.

The encouragement to write about the research work developed during my PhD in a self-contained 
thesis is a result o f the help and advice I have received when working in the computational and civil 
engineering Centre at Swansea University. I hope that this thesis provides sufficient background 
information, and that the reader has sufficient information to implement the formulation. I also hope 
that the thesis will provide enough reasons to pursue the further studies, such as those seen in the 
Future Work section.

The explicit central differencing finite volume method implementation and its performance 
evaluation is best stated as Challenging. Due to the closely coupled nature o f the equations, which 
prevents establishing where the numerical errors originate in the code, it is difficult to reason whether 
the instability are down to the unstable nature o f the Navier-Stokes equations, (ie. turbulence) or as a 
result o f  incompatibility with certain meshes Another reason is that there may have been software 
errors in the code. It becomes a matter o f experience and intuition to find the reasons for solution 
instability.

To summarize, the computational tools represent the initial accomplishment o f this work, and the 
explanation for the reason behind the approach and the remedies for the instability issues represent 
the second and most important contribution o f the present work. The necessity to concentrate a large 
number o f points close to solid walls in order to resolve the boundary layer with sufficient accuracy, 
mainly at high Reynolds number, requires highly stretched elements. Apart from the big reduction on 
the allowable time-step, with severe implications on convergence towards a steady state solution 
using an explicit time integration, the viscous layer meshes very frequently lead to aspect ratios 
bigger than 1/200. Special attention needs to be exercised when constructing meshes for viscous 
problems.
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Ultimately, no scheme in existence today can be seen as both reliable and robust enough for all flow 
scenarios. Definitely not for all speed regimes ranging from Subsonic through to Transonic through to 
Hypersonic speeds [5], In order to make schemes accurate and robust, adjustable user parameters 
have to be tuned or different flux limiters need to be implemented. In scientific and engineering 
modelling this is par for the course according to Lyra, [7].

In the field o f  CFD, as pointed out by Lyra, [7], there are preferences when it comes to the analysis of 
fluid problems, and the performance o f  numerical schemes is not free from favoritism. After 
satisfying the requirement o f  reliability (accuracy relative to the analytical solution for the 1 -D and 2- 
D benchmark problems) the CBS scheme was then utilized because of the motivating factors mooted 
in Chapter 1. Every mathematical model implies a perspective. An example is the search for what is 
an important relationship to capture, and these perspectives by their very nature have limitations, 
meaning they are not true in the absolute sense. A close comparison with rival or a number o f  rival of 
higher order upwind algorithms needs to be performed before we can say conclusively that the FV 
CBS algorithm is a relatively robust, efficient and versatile scheme.

11.2 Future Work
11.2.1 3D Mode Wing
The problems so for have been solved in 2D. The code has been devised in 3D and needs to be 
verified against 3D benchmark cases. Turbulence, as stated by White, [154], is one such 3D 
phenomenon. It must be noted that tackling ambitious simulations, such as complex 3-D viscous 
turbulent flows, coupled with real gas effects, chemical reactions, electro-magnetic effects, still 
represents a tremendous challenge for CFD users. Experiments o f high standard level o f accuracy 
must be provided so validation o f any proposed scheme can commence. Some o f these problems 
require a multi-disciplinary effort to be undertaken.

11.2.2 Turbulence Modelling

As presented by this Research and summarized in the conclusion, the CBS code is prone to instability 
at large Reynold Numbers >6.56x105 , therefore the employment o f  an accurate turbulence model 
such as the k  — £ model or the Baldwin Lomax model [149] is needed.

11.2.3 Implicit Solver

Devise an implicit version o f the CBS method and apply it to the viscous flat plate benchmark to 
ascertain its performance relative to the explicit version. ESA have recommended that the lm  plate 
benchmark is revisited.

11.2.4 Real Gas Effects

Model the chemical and vibrational effects in the hot viscous layer at Hypersonic speeds by using the 
appropriate gas model as classified in the Literature Review Chapter.
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1 1 .2 .5  P o s t  P r o c e s s o r  D e v e lo p m e n ts

More versatile post processors need to be developed that can automatically display 2D plots, Le. 
velocity versus height above surface, instead o f  manually copying values to MATLAB® and Excel® . 
This may make the process o f  evaluating the accuracy o f  the CFD tool easier.
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APPENDIX A
Gas Models and their Differentiation

3. Perfeet ga s mode 1
• According to Anderson [1] this model starts to break down at 800°C = 1073.15 TC = 

2.66Too it is not applicable at temperatures o f  2000K Le 6 Too-7Too
4. Frozen Gas Model

• For a frozen flow the only way that approximately no changes can occur in the internal 
energy modes and the chemical composition, is to have approximately zero reaction 
rates, or infinitely long relaxation times. In reality, neither o f  the preceding flows 
actually exists

3. Equilibrium

• Local equilibrium flow is assumed where the internal energy modes and the chemical 
composition o f  a fluid element moving along a streamline adjust instantly to the 
changing conditions and the flow is said to have infinitely last reaction rates. For ball 
park solutions use Fay-Ridell equation [2] and Mollier diagrams [3]

4. Non Equilibrium
• The extreme viscous dissipation within hypersonic boundary layers may be high 

enough to increase the vibrational energy internally within molecules and to cause 
dissociation within the gas mixture. In addition if  transpiration cooling o f  a 
ciyogenically cooled fluid occurs then chemical mixing will give rise to complex 
heterogenous reactions. In both scenarios this gives rise to chemically reacting 
boundary layers wetting the surface o f  the hypersonic vehicle10. When the gas 
temperatures are increased to high enough values, the gas behaves in a “non-ideal”  
fashion. This renders a model that w ill solve 5 “stiff ” ODEs using the five species 
model and a Schrodinger equation such as the model described in the research by 
Shanker (1994).

A real-gas model assumes that a gas is chemically reactive, but also assumes all chemical reactions 
have had time to complete and all components o f  the gas have the same temperature (this is 
called thermodynamic equilibrium). When air is compressed by a shock wave, it is superheated by 
compression and chemically dissociates. The distance from the shock wave to the stagnation point on 
the re-entry vehicle's leading edge is called shock wave stand-off. An approximate rule o f  thumb for 
shock wave standoff distance is 0.14 times the nose radius. One can estimate the time o f  travel for a 
gas molecule from the shock wave to the stagnation point by assuming a free-stream velocity o f  
7.8 km/s and a nose radius o f  1 meter, Le., time o f  travel is about 18 microseconds [5]. This is 
roughly the time required for shock wave initiated chemical dissociation to approach chemical 
equilibrium thus enabling an equilibrium model to be usable. For this case, most o f  the shock layer 
between the shock wave and stagnation point o f  an entry vehicle is chemically reacting and not in a 
state o f  equilibrium. The Fay-Riddell equations [2], are ordinary differential equations and they are 
employed when modelling the peak heat flux for chemical equilibrium. The time required for the 
shock layer gas to reach equilibrium is strongly dependent upon the shock layer's pressure. For 
example, in the case o f  the Galileo Probe's entry into Jupiter's atmosphere, the shock layer was mostly 
in equilibrium during peak heat flux due to the very high pressures experienced [5]. According to

10 For extreme cases not only can the boundary layer be chemically reacting but the entire shock layer can be dominated by 
chemical interactions, such as re-entry o f the Apollo capsule [6].
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Anderson [6] such high temperature chemically reacting flows can have a considerable influence on 
lift, drag, and moments on a hypersonic vehicle. Such effects have been found to be important for 
estimating the amount o f  body flap deflection necessary to trim the space shuttle during high-speed 
re-entry.

A crude approximation for estimating re-entry temperature is to assume the air temperature 
in degrees-Kelvin to be equal to the entry speed in meters per second Le. a space shuttle entering the 
atmosphere at 7.8 km/s would experience a peak shock layer temperature o f  7800 K. This relationship 
can only occur at re-entry speeds, as the kinetic energy proportionally increases with the square o f  the 
velocity. At typical space shuttle re-entry temperatures, the air in the shock layer is ionized and 
dissociated [5].

1) The vibrational energy increases and this causes and this causes the specific heats Cp and Cv 
to become functions o f  temperature meaning that the ratio, y  = Cv /Cv , also becomes a 
function o f  temperature. For air, this effect becomes important above 800K.

2) As the gas temperature is increased above 800K, chemical reactions occur. For air at latm  
pressure, O2 dissociation (O2 —► 2 0 )  begins at about 2000K, and all the molecular oxygen is 
essentially totally dissociated at 4000K. At this temperature N 2 dissociation (N2 —► 2N) begins 
and is essentially totally dissociated at 9000K. Above a temperature o f  9000K, ions are 
formed (N —> N ++ e‘) and (O —> 0 ++ e'), and the gas becomes a partially ionizied plasma that 
has to be modelled using the Fay and Riddell equations [2].

3) I f  the shock layer temperatures are high enough the thermal radiation emitted by the gas itself 
can becom e important, giving rise to radiative fluxes to the surface called radiative heating. 
Radiative heat fluxes can become the main heating process ie . for Apollo re-entry, radiative 
heat transfer was more than 30% o f  the total heating and for a space probe entering the 
atmosphere o f  Jupiter, the radiative heating will be more than 95% o f  the total heating [6].
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Frozen, Equilibrium Non-Equilibrium Gas models

To differentiate if  a gas flow is in thermodynamic and chemical equilibrium or alternatively whether 
the gas is in non-equilibrium conditions, scientists use equilibrium, non-equilibrium, frozen flow 
definitions. Let xf be the general time for a fluid element to traverse the domain Tf » V^Jl where 1 is
the characteristic length o f  the flow field and xc is the time it takes for the internal energy modes and 
chemical reactions to occur. The comparative length o f  the time between the chemical reactions and 
the transit time o f  each element define the state o f  the gas flow:

1) Local equilibrium flow is assumed where the internal energy modes and the chemical 
composition o f  a fluid element moving along a streamline adjust instantly to the changing 
conditions and the flow is said to have infinitely fast reaction rates.

Tf » T c ( l . i )
2) Alternatively, for a frozen flow the only way that approximately no changes in the internal 

energy modes and the chemical composition can occur is to have approximately zero reaction 
rates, or infinitely long relaxation time. In reality, neither o f  the preceding flows actually 
exists.

* 7 « * c  (1.2)
3) For all other situations, especially for r f  » rc, a non-equilibrium flow exists [6]

T f K T c (1.3)

xc is also referred to as the chemistry time. I f  the chemistry has plenty o f  time to adjust while the fluid 
element moves through the flow field then the flow can be assumed to be in local equilibrium. 
Alternatively when the fluid element traverses through the flow field before any chemical changes 
can take place then the flow can be assumed to be frozen. If the opposite were true, we have non­
equilibrium flow, which is markedly more difficult to analyse.
The extreme viscous dissipation within hypersonic boundary layers maybe high enough to increase 
the vibrational energy internally within molecules and to cause dissociation within the gas mixture. In 
addition if  transpiration cooling o f  a cryogenically cooled fluid occurs then chemical mixing will give 
rise to complex heterogenous reactions. In both scenarios this gives rise to chemically reacting 
boundary layers wetting the surface o f  the hypersonic vehicle11. When the gas temperature values are 
increased to high enough values, the gas behaves in a “non-ideal’ ’ fashion.

11 For extreme cases not only can the boundary layer be chemically reacting but the entire shock layer can be 
dominated by chemical interactions, such as re-entry o f  the Apollo capsule.
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APPENDIX B

SIMPLE
As stated in the literature review, incompressible flows can be modelled using the pressure based 
schemes such as the SIMPLE type algorithms as presented by Patankar and Spalding [7]. The Semi 
implicit momentum pressure linked equation (SIMPLE) is used to stabilize the pressure field in the 
momentum equations by implicitly linking it to the continuity equation. It works by updating a 
pressure correction field in the momentum equation from intermediate velocities calculated in the 
continuity equation. These pressure correction terms are used to update both the pressure and velocity 
fields. Then from the continuity equation an intermediate velocity field is calculated. Then the 
intermediate velocity field is used to calculate the pressure correction field. Finally the pressure 
correction terms are used to update the pressure and velocity field. Hence from the updated pressure 
field, the process starts again, and continues until w e have a converged solution for instance when the 
pressure correction terms approach zero.

Unfortunately, although generally stable the above procedure has difficulty converging on the steady 
state solution if  the initial guess is far away from the true pressure field. Under relaxation is done to 
numerically ‘dampen’ the large pressure correction terms added to the pressure field as the 
divergence o f  the pressure field is the number one reason why the SIMPLE algorithm ‘diverges’. 
When damping the large pressure field we simply multiply the pressure correction term by a value 
between 0 and 1.

The SIMPLE Revised or the SIMPLE Consistent algorithms have been developed to address such 
convergence issues, however a sequential breakdown o f  the SIMPLE algorithm is shown below

1) S e t  th e  g u e sse d  v alues o f  p re ssu re  and velocity .
! *

P =P
u = u (B 1 .4 )

V* =  V
2) Firstly c o m p u te  g u essed  velocity  fields using  a g u e sse d  p re ssu re  field P* an d  an y  sou rce  te rm s:

a uU 'l,J =  X  a nb“ „'b +  V x P *  +  b ,.J
nb

= 2 A b  V n b + V , / + £ / , . /  
nb

(B 1 .5 )

3) C o m p u te  th e  c o rre c te d  velocity  field .

= X C nbP'nb + b U
nb

(B 1 .6 )

4) C a lcu la te  th e  ac tu a l p re ssu re  using th e  c o rre c te d  p re ssu re  fie ld , p '  , a n d  using  th e  guessed

p re ssu re , p '  :

P v  = P \,J+ P u (B 1 .7 )
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5) U p d ate  th e  v e lo a ty  w ith  th e  c o rre c ted  p ressu re  field p '

uu  =  ui ,j  ■*" ^ i j  ( y  xp )

-  *  ^  ( v  9 (BL8>
VI,J  ~  VI,J  +  1,7 \  ^ y P  )

6) The sca la r q u an titie s  a re  th e n  co m p u ted  using th e  fo llo w in g eq u a tio n

a \,J =  X^nb^nb + Kj (B1 9)
nb

7) C heck fo r co n v erg en ce  by calcu lating  th e  residual

General Remarks

Equation (B1.6) leads to a linear equation with weak diagonal dominance. Once this equation has 
been solved and a pressure correction field obtained, the correct pressure field m aybe obtained using 
formula (B1.7). The SIMPLE approximations made tend to lead to an over-estimation o f  the pressure 
correction values, making the pressure-correction equation susceptible to divergence unless some 
under-relaxation is used during the iterative procedure.

The face velocity component and their related coefficients are interpolated from control volume nodal 
values. The control volume pressure gradient, which enters the momentum equations in (B1.5) and 
(B1.8) as a source term is evaluated as a sum o f  surface integrals over each face bounding the control 
volume,

\ v Xjp d V ^ Af { ni)f Pr (1.10)
cv f

Where pf is interpolated from adjacent values.
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APPENDIX C
3D Unstructured Jacobian

For 2D problems the evaluation o f  Jacobian terms necessary for the calculation o f  the viscous and 
thermal conduction terms were simple and easy to formulate. For 3D problems the evaluation o f  the 
Jacobian term will be not be so straight forward. Thereby the following corollary w ill show the 
numerical procedure to obtain these the 3D Jacobian.

%  _ y t -\yp 
B S \  A<f

dz _ zc- zt

Figure 13 Unstructured grid with terms that w ill aid in the computation o f  the non-orthogonal 
diffusion term

_ t AJ r  
d f  A4

_ h - h
dr j  A rj

For the artificial viscous terms </> = ( p u ,p v , p w , pE , p )  seen in chapter 5.

\ ( (  B y  & z B y  B z  ^ B f  c>y S z  B y  Q z  ^ 3 0  C B y  B z Q y B z  / p i  i
— a r ? e i / / ) a g  X^ays a g  a g  a i / / J  a r j  y a r / a g  a g a r j J a y / J  v • )

(C l.11) 

(C l.12)
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dz J
( dx dy _ dx dy X d<p _ ( dx dy _dx dy X d<f> ( dx dy dx dy X d<p 
\di//dr/ dr/ di// J d£ ydi// d% d^d\f/)drj \dr/ dg d^dr/Jdy/ j  (C l.14)

d<p _ J_ j'^ dx dy _  dx dy  ̂d<p _  f' dx dy dx dy  ̂d(f> ( dx dy dx dy  ̂d(f>
dz J\ydi/ /dr/  dr/dy/jdt; {̂ di// dJ; dg diy J dr/ \^dr/ dg dd, dr/) dy/ J (C l.15)

j  f  r)r  (  r)v c>7 rh) r \ 7  X r5r f  rh; r ) 7  rh; r ) v  X r)v f  rh; r>7 rh; rW X^f  d x r  d y  d z  d y  d z  ^ d x r  d y  d z  d y  d z  N d x '  d y  d z  V

[ d y [ d r j d < ^  d g d r i ) d r j K d y  d £  d %  d y / , 8 ^ d r j  d y  d y  d r j (C l.16)

Revisions to the Sequential CBS scheme for porous 
flow
Assuming as a scientific check that both the porous medium and the main gas domain have the same 
thermal conductivity kCCISic = klam = 0.025W / m - K . Where the following values are plugged into 
equation (C1.17) to give the following results

A A A /  / / / / / /

T i e l e = m O K  

kiam = 0.0251V

£  =  0.05
Tiele=2920K

kCC/sic ~0.0251T

f

k T 4 -1c Ts,iele iele gas,iadj iadj

^e,iele ^gas,iadj

\ — \  T  \
Figure 14: Density profile magnified through the porous medium which is situated between 6- 
6.5 m

înt -  2 k CC/sic +
1

( \ - e )  +  e (C l.17)

2 k c C I S i c  ■*" K f f  CC/Sic

£ jnt = 0 . 0 1 8 4 ^ / m - k  x 
Tf = m \ K  X

An amended version o f  equation (C l. 17) was used to calculate the interface thermal conductivity.
1

(1- g )  | s (Cl.18)^ in t ~  ^ C C /S ic

lr   Jr
C C /S ic  e CC/Sic
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kiIlt = 0.025W I  m - k  S

Tf =  2990K • /

Computations were made using (C l. 17) instead o f  (C l. 18). However this strategy lead to instability
and eventually to divergence Even with large amounts o f  damping applied to the time step the
solution was plagued with instability.
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