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SUMMARY

The overarching aim of this thesis was to examine factors that affect post-exercise glycaemia 

and contribute to minimising the risk of hypoglycaemia after exercise. An inability to 

regulate circulating insulin concentrations is considered the primary gluco-regulatory defect 

within T1DM. Therefore, the aim of chapter 3 was to examine the effects of pre-exercise 

rapid-acting insulin reductions on blood glucose responses before and after running in T1DM 

individuals, to test the hypothesis that reducing pre-exercise insulin dose may help preserve 

post-exercise glycaemia. The results demonstrate that a 75% reduction to pre-exercise rapid- 

acing insulin dose best preserved blood glucose before and after exercise, without increasing 

the risk of ketoacidosis, and reduced the risk of hypoglycaemia in free living conditions for 

24 hours following running.

An important factor determining blood glucose concentrations and subsequent patterns of 

fuel oxidation is the rate of appearance of carbohydrate into the circulation. Potentially, low 

GI carbohydrates may raise blood glucose less and increase the percentage contribution of 

lipids as a fuel because of a slower digestion. Therefore, the aim of chapter 4 was to examine 

the metabolic and blood glucose responses to ingestion of a high or low GI carbohydrate, 

combined with a 75% reduced insulin dose, before, during and for 24 hours after running. 

The results demonstrate that compared to a high GI carbohydrate, the low GI carbohydrate 

increased blood glucose concentrations less before exercise and maintained blood glucose 

better for 24 hours after running, via lower carbohydrate and higher lipid oxidation rates 

during the latter stages of running.

After manipulating both the insulin dose and the pre-exercise carbohydrate GI, to improve 

post-exercise blood glucose concentrations, the timing of the ingestion of carbohydrate



(alongside a reduced insulin dose) before exercise is an important factor which may further 

refine these strategies. Therefore, chapter 5 examined the metabolic and blood glucose 

responses to alterations in the timing of carbohydrate feeding and insulin administration prior 

to running. Our results demonstrated that administration of both a reduced rapid-acting 

insulin dose and low GI carbohydrate 30 minutes before exercise improved glycaemia for 24 

hours after running, by reductions in carbohydrate oxidation, leading to increased 

carbohydrate availability post-exercise.
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Chapter One 

Review of literature
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1.1 Introduction

Type 1 diabetes (T1DM) is characterised by an absolute or relative lack of insulin, due to 

autoimmune destruction of the insulin secreting (3-cells within the pancreas. Ultimately, the 

loss of function of these cells results in the individual with T1DM being dependent upon 

exogenous insulin therapy. Within the UK, roughly 10% of all diabetes patients have T1DM, 

equalling roughly 230,000 people, at a cost to the National Health Service of approximately 

£lbn a year (Diabetes in the UK, 2008).

At present, the American College of Sports Medicine (ACSM; 2006) advocate T1DM 

individuals perform aerobic type exercise for various health benefits such as reduced 

glycosylated haemoglobin (HbAic; Mosher et al., 1998; Ramahlo et al., 2006; Salvatoni et al., 

2005; Sideraviciute et al., 2006), delayed micro- (The Diabetes Control and Complications 

Trial Research Group, 1993) and macro-vascular (UKPD Study Research Group, 1998) 

complications, increased insulin sensitivity (Lehmann et al., 1997), improved glucose 

clearance (Borghouts and Keizer, 2000) and ultimately, decreased mortality (Moy et al.,

1993).

However, despite these benefits of exercise, inadequate glucose regulation means that 

engaging in exercise results in a heightened risk of developing hypoglycaemia, i.e. blood 

glucose concentrations falling below the normal physiological range of 3.5 -  7 mmol.l'1, 

during and as long as 24 hours after exercise (MacDonald, 1987; Steppel and Horton, 2003; 

Tsalikian et al., 2005). Therefore, comprehensive strategies to help combat the increased risk 

of hypoglycaemia associated with exercise are required.

2



1.2 Blood glucose regulation in T1DM

At rest, exogenous insulin treatment reduces blood glucose concentrations, preventing 

hyperglycaemia and risk of ketosis (Cryer, 2001). However, circulating insulin 

concentrations are unregulated, and are the result of the passive absorption from the injection 

site of the previously administered insulin dose, and the particular insulin species’ 

pharmacokinetics (Cryer, 2001). Therefore, during exercise, contracting skeletal tissue 

(Hayashi et al., 1997), increased insulin sensitivity (Rose et al., 2001) and an inability to 

regulate circulating insulin concentrations, (Grimm, 2005) results in an augmented rate of 

glucose uptake from circulation and reductions to blood glucose concentrations. Moreover, 

exercise may exacerbate the increase in appearance of exogenous insulin (Dandona et al., 

1980), due to increased temperature (Koivisto et al., 1981) and blood flow (Lauritzen et al., 

1980). Thus, unaltered and/or increasing insulin concentrations means that hepatic glucose 

output remains inhibited (Zinrnan et al., 1977), as does adipocyte lipolysis. Therefore, the 

primary mechanism involved in maintaining blood glucose concentrations during exercise is 

lost within T1DM (Figure 1.1, part A).

Glucagon, the secondary counter-regulatory response is also effected within T1DM (Figure 

1.1, part A). Beta-cell death results in a progressive loss of a-cell function over time, 

potentially due to the loss of P-a cell signalling (Banarer et al., 2002), which results in the 

glucagon response to falling blood glucose becoming impaired or completely absent (Bolli et 

al., 1985; Gerich et al., 1973; Mokan et al., 1994). Consequently, the first (decreased insulin 

secretion) and second (increased glucagon secretion) defences against developing 

hypoglycaemia during exercise are defective in T1DM individuals. Failure of these defences 

results in individuals becoming reliant on the third counter-regulatory mechanism, adrenaline 

(Figure 1.1, part B). However, the adrenaline response to falling blood glucose concentrations



is typically attenuated (Amiel et al., 1988; Dagogo-Jack et al., 1993). Due to antecedent 

hypoglycaemia, and a decreased sympathetic neural system response (Steppel and Horton, 

2003; Figure 1.1, part C), the adrenaline response to falling blood glucose concentrations is 

predominantly shifted to a lower threshold (Dagogo-Jack et al., 1993). A loss o f  the primary 

and secondary mechanisms and a defective tertiary mechanism (Figure 1.1, part A, B and C) 

means that blood glucose concentrations will fall and hypoglycaemia becomes a frequent and 

dangerous occurrence during exercise. The increased risk o f developing hypoglycaemia 

during exercise is a major concern for T1DM individuals (Brazeau et al., 2008); as a result, 

the fear o f experiencing a hypoglycaemic incident is a major barrier for T1DM individuals 

wishing to exercise (Brazeau et al., 2008).

Decreased
glucose

<PNS> Increased sympathoadrenal outflow

(SNS)

'  increased NE 
► (palpitation, 

tremor arousal)

Increased ACh
(sweating, hunger)

Increased 
neurogenic symptoms

(Los: in TtDM) (Often > •: nu8,f*(l in TtDM> (Often .••• "Xi •••• • In TtDM)

Muscle Kidney

'  Decreased 
glucose clearance

IncreasedIncreased -« 
glucose production

I Increased
glucose

J
Figure 1.1: Blood glucose regulation in non-T lD M  and T1DM individuals (adapted from Cryer, 

2006).
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1.3 Hypoglycaemia: variations in its form and time of onse t

1.3.1 Iatrogenic hypoglycaemia

Unfortunately, due to intensive exogenous insulin therapy, hypoglycaemia is a fact of life for 

people with T1DM (Cryer, 2002). The primary aim of treating T1DM is to maintain blood 

glucose concentrations at or as close to euglycaemia as possible, however, with achieving this 

goal comes iatrogenic hypoglycaemia (Cryer et al., 2003), or treatment-induced 

hypoglycaemia. If too much insulin is administered in relation to dietary intake, the insulin 

mediated uptake of glucose, in addition to an inhibition of hepatic glucose production and 

compromised glucose-regulation (Cryer, 1994; 1997; 2001; Figure 1.1), causes falls in blood 

glucose below the normal physiological concentrations. These falls in blood glucose induce 

two forms of symptoms, neuroglycopaenic and neurogenic symptoms (Chiarelli et al., 1999). 

Neuroglycopaenic symptoms (e.g. confusion, unconsciousness, brain damage, death) are the 

result of a minimal glucose requirement by the brain (Becker and Ryan, 2000; Cryer et al., 

2003). Neurogenic symptoms include physiological changes such as pallor, sweating, 

tachycardia and hunger (Chiarelli et al., 1999; Cryer et al., 2003). Type 1 diabetes individuals 

may experience 2 episodes of symptomatic hypoglycaemia per week, with thousands of 

incidences over a lifetime, and at least 1 severe or temporarily disabling hypoglycaemic 

incident per year (Macleod et al., 1993; Reichard et al., 1991; The Diabetes Control and 

Complications Research Group, 1993).
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1.3.2 Exercise-induced hypoglycaem ia

During Exercise

Insulin facilitates muscle glycogen synthesis through its action on both glucose transport and 

glycogen synthase activity (Wojtaszewski et al., 2002). Specifically, insulin stimulates 

translocation of glucose transporter proteins (GLUT-4) to the plasma membrane, thereby 

enhancing the glucose transport capacity (Simpson et al., 2001) of the cell. Moreover, insulin 

enhances the activity of glycogen synthase by decreasing phosphorylation of the enzyme 

(Cohen, 1993), contributing to the increased uptake of glucose and subsequent storage within 

the myocyte.

Keeping these mechanisms in mind, it has been demonstrated that muscle glucose uptake 

during exercise is increased and occurs by an insulin-independent mechanism (Nesher et al., 

2001; Plough et al., 1984) and that insulin and contracting skeletal tissue have additive effects 

on glucose transport (Nesher et al., 1985; Plough et al., 1984). Moreover, during exercise the 

perfusion of the muscle is increased compared with rest, this increases the delivery of insulin 

to the active tissue (Wojtaszewski et al., 2002). Therefore, within the T1DM individual, 

contracting muscle and an inability to regulate circulating insulin concentrations, as these are 

the result of the passive absorption of the previously administered insulin dose, results in a 

synergistic uptake of blood glucose (DeFronzo et al., 1981). These factors, in combination 

with the suppressive effect of insulin on hepatic glucose output, and defective glucagon and 

adrenaline responses, results in a mismatch between glucose uptake and production and blood 

glucose concentrations will fall.
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Post-exercise

The threat of developing hypoglycaemia is not only isolated to during exercise, it can also 

occur up to 24 hours after the cessation of exercise (MacDonald, 1987; Steppel and Horton, 

2003; Tsalikian et al., 2005). In a study by MacDonald (1987), 300 regularly exercising 

individuals with T1DM were followed prospectively over 2 years. Sixteen percent of those 

participants regularly developed late-onset (6-15 hours after vigorous exercise) 

hypoglycaemia, with over 50% of the hypoglycaemic incidences resulting in a loss of 

consciousness (severe hypoglycaemia). Additionally, Tsalikian et al. (2005) found that 

hypoglycaemia developed overnight more frequently in T1DM children after performance of 

continuous exercise that day (four 15 min periods of walking at a heart rate of 140 bpm) 

compared to nights when daily exercise was not performed. Plasma glucose concentrations 

fell in almost all of the 50 subjects and 11 developed clinical hypoglycaemia.

During exercise, human skeletal muscle relies heavily on intra-muscular glycogen stores as a 

source of energy for contractile activity (Wojtaszewski et al., 2002) and in the post-exercise 

period resynthesis of glycogen is important and has a high metabolic priority (Wojtaszewski 

et al., 2002). To compensate for the glycogen depleted state, the activity of glycogen synthase 

has been demonstrated to increase after exercise (Nielsen et al., 2001), independent from 

activation by insulin (Bogardus et al., 1983; Munger et al., 1993; Zachwieja et al., 1991). In 

addition, cellular changes in the prior exercised muscle primes glucose transport and 

glycogen synthase activation when subsequently stimulated by insulin (Wojtaszewski et al., 

2002). Therefore, enhanced insulin-stimulated recruitment of GLUT-4 transporters (Hansen 

et al., 1998), depleted muscle glycogen stores (Bogardus et al., 1983; Munger et al., 1993; 

Zachwieja et al., 1991), and an increased activity of glycogen synthase are mechanisms

contributing to the increase insulin sensitivity after exercise (Wojtaszewski et al., 2002).
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When considering these changes in insulin sensitivity, T1DM individuals are unable to 

compensate for the heightened sensitivity with a decrease in insulin concentrations, this 

results in and an augmented uptake of blood glucose from circulation (Bogardus et al., 1983). 

In addition, unaltered insulin concentrations means insulins suppressive effect at the 

hepatocyte and adipocyte remains. Moreover, glucagon is defective or absent (Mokan et al.,

1994) and does not rise after exercise (Gallen, 2003); combining this with an attenuated 

adrenaline response means hepatic glucose production is unable to match the peripheral 

uptake of glucose by muscle, which is elevated to replenish glycogen stores, and 

concentrations will fall and individuals will develop hypoglycaemia.

1.3.3 Variation in the severity of hypoglycaemia

The severity of the hypoglycaemic incident can vary within an individual (Cryer, 2006). For 

example, a drop in blood glucose below the normal physiological range of ~3.5 - 4 mmol.f1 

may induce symptomatic hypoglycaemia where the patient may become fatigued, develop 

parasthesia, pallor and have difficulty focusing (Cryer, 1997). However, defects in glucose 

sensing, primarily due to sympathoadrenal failure (Cryer, 2006), can result in typical 

symptoms of hypoglycaemia not materialising, and the individual becomes unaware of falling 

blood glucose (termed hypoglycaemia unawareness; Cryer 1999). Blood glucose 

concentrations may fall below 2.5 mmol.f1 and the individual is at risk of experiencing a 

severe hypoglycaemic incident that may result in a loss of consciousness, convulsions or even 

death (The Diabetes Control and Complications Research Group, 1993).
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1.3.4 Defining hypoglycaem ia

Based on a prior study examining exercise within T1DM individuals, a blood glucose 

concentration of <3.5 mmol.f1 will be defined as ‘hypoglycaemia’ (Rabasa-Lhoret et al., 

2001). Furthermore, as a drop in blood glucose below the normal physiological threshold of 4 

-  7 mmol.f1 (Saltiel and Kahn, 2001) can trigger symptoms of hypoglycaemia (Cryer, 1997), 

T1DM individuals are likely to correct their blood glucose concentrations before 

concentrations reach those that can be defined ‘hypoglycaemic’, therefore a blood glucose 

concentration of <4.0 mmol.f1 will be defined as ‘low blood glucose’.
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1.4 Treating T1DM: exogenous insulin therapy

Under normal physiological conditions, insulin is stored in the p-cell in its hexamer form (6 

monomers) due to a high tendency to self-associate, this is important as it facilitates 

proinsulin transportation as well as the conversion and intracellular storage o f  insulin 

microcrystals (Emdin et al., 1980). However, insulin is most readily absorbed through the 

capillary wall, and elicits its actions (binding to insulin receptors), in the monomeric form 

(Figure 1.2). This becomes a major obstacle for the administration o f regular human insulin 

(e.g. Actrapid, Table 1.1) and animal preparations, such as bovine or porcine insulins, as 

these insulins self-associate (Bolli et al., 1999).

Hexamers

‘A
^^apillary

Dimers and 
Monomers

DISSOCIATION DIFFUSION

Figure 1.2: The dissociation o f insulin hexam ers (from injection site or pancreas) into dimers and 

monomers for diffusion across the capillary wall (adapted from Gin and Hanaire-Broutin, 2005).

The dissociation rate o f these insulins into monomeric molecules is slow at the subcutaneous 

site o f injection and consequently its absorption is slow (Figure 1.2). Therefore, the pre- 

prandial treatment with short-acting (Table 1.1) insulin preparations results in a less than 

optimal increase in insulin concentrations in the early phase o f glucose absorption from the 

intestine. Consequently, blood glucose increases excessively 1-2 hours after meal ingestion 

(Dimitriadis and Gerich, 1983). Nonetheless, 4-5 hours after the subcutaneous insulin

10



injection, the continuing absorption from the injection site results in inappropriate 

hyperinsulinemia which increases the risk of hypoglycaemia as by that time meal absorption 

is nearly complete (Dimitriadis and Gerich, 1983). Using insulins with these absorption 

kinetics means tight glycaemic control is a difficult task for T1DM individuals. These reasons 

are the basis for the development of the modem insulin analogues.

According to Bolli et al. (1999) the combination of a prandial insulin peak with a flat, square- 

wave interprandial plasma insulin profile (Figure 1.3), would closely mimic the 24 hour 

plasma insulin pattern of non-TlDM individuals who exhibit very small blood glucose 

variations regardless of being in a fasted or fed state.

50

— 0— Insulin 
- -■ -G lu c o s e

=)
E -  6
c

m 25 - 
c
(0
Einto
a.

-  4

20 240 12 164 8
Time (Hours)

Figure 1.3: Twenty-four hour plasma insulin and glucose concentrations within a non-TlDM 

individual (adapted from Kruszynska, 2003).

Note: Descending arrows indicate feeding.
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1.4.1 The development of the insulin analogues

Biotechnology research has shown that one amino acid modification can lead to changes in 

the tridimensional structure o f the insulin molecule and to major alterations in its biological 

properties (Drejer et al., 1991). Dimarchi et al. (1994) studied the synthesis o f Insulin-like 

growth factor-I (IGF-1), and identified that this horm one is highly homologous with insulin, 

particularly at the C-terminal o f the B chain; however, this honnone does not self-associate 

into dimmers and hexamers. The normally occurring Pro-Lys sequence o f insulin at positions 

B28 and B29 is reversed in IGF-1 (Brems et al., 1992). This gave premise for the hypothesis 

that the Lys-Pro sequence renders IGF-1 incapable o f  self-association and the reversal o f this 

sequence in insulin (Figure 1.4) would lead to an insulin analogue incapable o f self­

association (Di Marchi et al., 1994), this theory was the basis for the development o f  the fast 

acting insulin analogue, lispro (Figure 1.4).

A-Ctttin

B-Chain
tarol

IB

Figure 1.4: The amino acid structure o f insulin lispro (Lys-Pro).

The reversal o f the amino acids Pro B28 and Lys B29 resulted in the development o f the 

widely used insulin lispro (Humalog®; Table 1.1); this modified analogue elicits an 

extremely fast rate o f absorption from the site o f  injection as well as a rapid onset time (5-20 

minutes) and a highly intense effect, this m aking insulin lispro very effective for prandial use 

(Howey et al., 1994). M anipulating amino acid sequences within the A and B chains o f
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insulin has led to the development o f multiple forms o f insulin, all o f  varying action times 

(Figure 1.5 and Table 1.1) e.g. insulin aspart and glargine.

a-chan

C14-FA

Long-acting analogues

Insulin glargine Detemir nsulm

Fast-acting analogues

Insukr' lispro Insu&n aspart

Figure 1.5: Alterations in the amino acid configuration o f  the A and B chain o f  insulin and the 

developm ent o f insulin analogues with varying action-tim e profiles (adapated from Owens, 2002).

0-ctiam

The modification o f the insulin structure allowed for T1DM individuals to be treated with a 

combination o f slow and fasting acting insulins, providing a 24 hour insulin profile, similar to 

a non-T lD M  individual, described by Bolli et al. (1999; Figure 1.3). This form o f therapy is 

termed ‘basal-bolus’, where individuals administer once/bi-daily doses o f  a slow-acting 

insulin (e.g. insulin detemir or glargine) which provides a peak less low level o f insulin for 24 

hours, restraining hepatic glucose output and ketogenesis and maintains low rates o f  glucose 

uptake into insulin sensitive tissues. The fast/rapid acting insulins are administered at meal 

times and provide rapid-increases in insulin concentrations, which coincide with the digestion 

o f the meal. Moreover, individuals may administer additional bolus insulin units in between 

meals to correct for high blood glucose concentrations.
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Table 1.1: The types of insulin currently available to T1DM individuals.

Action Insulin Insulin Manufacturer
Action Time (hours)

ReferenceType Name O nset Peak Duration

Humalog
(Lispro) Lilly 5 - 20 Min 4 5 - 6 0

mins
3 - 5
hours

Howey e t al. 
(1994)

R
A

PID

Insulin
Analogue

Apidra
(Glulisine)

Sanofi
Aventis 10 mins 4 5 - 6 0

mins
3-5

hours
Danne et al. 

(2005)

NovoRapid
(Aspart) Novo Nordisk 10 mins 4 5 - 6 0

mins
3-5

hours Plank et al. (2002)

SH
O

R
T

Regular

Humulin R Lilly 0 .5 -1
hour

2 - 4
hours

6 - 8
hours Woodworth et al.

Actrapid Novo Nordisk 0.5 hours 2 .5 - 5
hours 8 hours

(1994)

NPH

Humulin N Lilly 1-2 hours 6-12
hours 18-24

Leopore e t al.
z
—\
m
73
s

Novolin
NPH Novo Nordisk 1.5 04-12

hours 24
(2000)

m
o

5
m Lente

Humulin L Lilly 1-3 hours 6-12
hours

18-24
hours

Novolin
Lente Novo Nordisk 2.5 hours 7-15

hours 22

S
Xm
o
*0

Humalog 
Mix (25% 
lispro and 

75% 
protamine 

suspension

Lilly 3 0 - 4 5
mins 0.75-2.5 18-24

D iabetes C are 
Program m e of 

Nova Scotia 
(2002)

AJ
m

Humulin
20/80

Humulin
30/70

Lilly 30 mins 2-12
hours 18-24

Ultralente

Humulin U Lilly 4-6 hours 8-20
hours

24-28
hours Leopore e t al.

r~

Novolin
Ultralente Novo Nordisk 4 hours 8-24

hours
28

hours

(2000)

O
z
o Insulin

Analogue
Lantus

(Glargine) Lantus 1.5 hours none 20-24
hours

Leopore e t al. 
(2000)

Insulin
Analogue

Levemir
(Detemir) Novo Nordisk 2.5 hours none 20-24

hours
Porcellati e t al. 

(2007)
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1.4.2 Calculating insulin dose: carbohydrate counting and rapid-acting insulin 

dose

Carbohydrate counting allows T1DM individuals to adjust their rapid-acting insulin units to 

meals with varying carbohydrate content (Kulkami, 2005) allowing greater flexibility in their 

diets (Dias et al., 2010). Moreover, it has been shown to be important for glycaemic control, 

with reductions in HbAic of ~0.9% after just 3 months of carbohydrate counting (Dias et al., 

2010). Within those individuals treated with the basal-bolus regimen it is important that they 

understand what their target blood glucose is, i.e. euglycaemia, how the different insulins 

they are treated with act (i.e. onset of action and duration), and it is vital that individuals 

record their blood glucose responses to different meals. Through trial and error the patient is 

able to calculate their insulin : carbohydrate ratio through blood glucose concentrations being 

higher or lower than the target concentration, post-meal (Kulkami, 2003).

Individuals new to the basal-bolus regimen may start with a ratio of 0.5 - 1 insulin unit per 10 

or 15 g of carbohydrates, and through carefully recording their blood glucose responses they 

are able to self-adjust this ratio until optimal. For example, a T1DM individual elicited 

euglycaemic blood glucose concentrations after administering 5 insulin units with a meal 

containing 75 g of carbohydrates. For this individual, the insulin : carbohydrate ratio would 

be 1 IU per 15 g, or 1:15 (Kulkami, 2005). This ratio may change over the course of the day 

and individuals may need to alter this ratio to account for physical activity and/or planned or 

unplanned exercise (Kulkami, 2005).
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1.4.3 Calculating basal insulin dose

In contrast to rapid-acting insulin, there is no method to calculate basal dose other than trial 

and error. The clinician or diabetes specialist nurse may choose to increase or decrease the 

basal dose depending on HbAic, daily mean blood glucose concentrations, fasted blood 

glucose concentrations, between meal glucose excursions and the incidence of 

hypoglycaemia. Due to the importance of identifying an optimal basal dose for glycaemic 

control and restraining both hepatic glucose output and ketogenesis, it is doubtful that the 

individual will alter this dose in anticipation of exercise. Moreover, altering basal insulin 

units will have an influence on metabolism for as long as 24 hours after administration. 

Conversely, rapid-acting insulin alterations have a far more short-term effect, and it is for this 

reason that rapid-acting insulin is adjusted to changes in diet and exercise.
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1.5 The benefits of exercise  for T1DM individuals

Regular exercise can reduce the risk of chronic disease and premature death within both 

T1DM (Moy et al., 1993) and non-TlDM individuals (Warburton et al., 2006). Regular 

exercise within T1DM and non-TlDM has been shown to improve body composition, i.e. 

reduce abdominal adipocity and improved weight control (Lehmann et al., 1997; Seidell et 

al., 1991; Slattery et al., 1992; Warburton et al., 2001), enhance lipid lipoprotein profiles, i.e. 

increase high density lipoproteins and reduce low density lipoproteins (Berg et al., 1997; 

Durant et al., 1993; Lehmann et al., 1997; Tell and Vellar, 1988), improve glucose 

homeostasis and insulin sensitivity (Kelley and Goodpaster, 1999; Lehmann et al., 1997; 

Wallberg-Henriksson et al., 1998; Warburton et al., 2001; Young, 1995), reduce blood 

pressure (Lehmann et al., 1997; Whelton et al., 2002), improve autonomic tone (Tiukinhoy et 

al., 2003), reduce systemic inflammation (Adamopoulos et al., 2001), decrease blood 

coagulation (Physical Activity and Cardiovascular Health, 1996), improve coronary blood 

flow (Hambrecht et al., 2000), augment cardiac function (Gokce et al., 2002; Warburton et 

al., 1999) and enhance endothelial function (Fuchsjager-Mayrl et al., 2002; Gokce et al., 

2002; Kobayashi et al., 2003). There are additional benefits of exercise which are specific to 

T1DM individuals, exercise training has been demonstrated to reduce daily insulin dose 

(Ramalho et al., 2006) and improve long-term glycaemic control, through reductions in 

HbAic (Campaigne et al., 1984; Mosher et al., 1998; Salvatoni et al., 2005; Sideraviciute et 

al., 2006), and reduce the incidences of hypoglycaemia (Lehmann et al., 1997). However, the 

improvements in glycaemic control demonstrated within the existing literature have been 

induced by different exercise regimens (e.g. Mosher et al., 1998; Ramalho et al., 2006; 

Sideraviciute et al., 2006; Table 1.2). Moreover, research has demonstrated beneficial 

changes in the T1DM individual’s condition independent of changes in HbAic (Fuchsjager-

Lehmann et al., 1997; Mayrl et al., 2002; Table 1.3).
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1.6 Exercise modality, intensity  and  duration

At present the American College of Sports Medicine (2006) suggest T1DM individuals 

perform aerobic type exercise, for 20 -  60 minutes, 3 - 4  times per week at an intensity of 50 

-  80% of HR reserve or VO2 reserve. However, in terms of avoiding hypoglycaemia during 

and after the exercise bout, the most appropriate exercise modality, i.e. intermittent or 

continuous exercise, remains questionable. According to Guelfi et al. (2005b) continuous 

exercise is associated with a greater risk of hypoglycaemia than intermittent type exercise.

Research has demonstrated that the performance of intermittent high-intensity sprints ( 1 1 x 4  

s cycle sprints, every 2 mins for 20 minutes) does not increase the risk of developing 

hypoglycaemia during and for 60 minutes post-exercise, when compared to a resting control 

trial (Guelfi et al., 2005a). Moreover, intermittent (INT) exercise has been shown to preserve 

blood glucose concentrations more so than continuous (CON) exercise, and reduce the risk of 

hypoglycaemia during and after exercise (Guelfi et al., 2005b; Maran et al., 2010). In a study 

by Guelfi et al. (2005b), blood glucose responses to both continuous and intermittent exercise 

were compared. Participants performed 30 minutes of cycling at 40% V02peak (CON) or 30 

minutes of cycling at 40% V02peak, interspersed with 4 s maximal sprints every 2 minutes 

(INT). Blood glucose responses revealed a lesser decline during exercise under INT, despite 

performing more work. Moreover, concentrations remained stable for 60 minutes post­

exercise, whereas they continued to decline under CON. The preserved blood glucose 

concentrations were suggested to be related to large increases in catecholamines and growth 

hormone. According to Bussau et al. (2006) the drop in blood glucose that occurs post­

exercise after continuous exercise, as within the research of Guelfi et al. (2005b), can be 

prevented by the addition of a 10 s maximal sprint at the end o f the exercise bout (20 minutes

of cycling at 40% V02peak)- However, it is important to note that none of the aforementioned
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research employed pre-exercise insulin reductions. If pre-exercise insulin reductions were 

employed, such large differences in blood glucose between continuous and intermittent 

exercise may not occur.

Research has demonstrated no difference in blood glucose responses to continuous or 

intermittent exercise within 9 T1DM individuals (Bracken et al., 2008). Participants 

performed 45 minutes of continuous running and 45 minutes of intermittent running 

(designed to simulate intermittent team game play). Participants reduced their rapid-acting 

insulin dose by 50% with the meal prior to exercise and blood glucose responses were 

monitored during and for 24 hours after exercise using a continuous glucose monitoring 

system. Blood glucose responses revealed both conditions to induce a decline in blood 

glucose, however there were no between condition-differences in blood glucose responses. 

Comparing the research of Bracken and colleagues with Guelfi et al. (2005b), the heavy 

reduction to pre-exercise insulin may be a contributing factor to the lack of difference 

between conditions. Moreover, there is potential that if insulin reductions were employed 

before high-intensity interval exercise, the exercise induced increases in counter-regulatory 

hormones could create a milieu that promotes post-exercise hyperglycaemia.

From a practical application point of view, the work of Guelfi et al. (2005b) was designed to

simulate team game demands, however, only lasted 30 minutes and was performed on a cycle

ergometer. Potentially, performing maximal sprints on a cycle ergometer may be more simple

than during other types of exercise, e.g. treadmill running. Moreover, within the research of

Guelfi et al. (2005b) and Bussau et al. (2006) participant mean age was just 22 and 21 years

old, respectively. Potentially, it is unlikely that more elderly T1DM individuals will be

inclined to perform high-intensity intermittent exercise as a method to preserve blood glucose

21



during after exercise, as the risk of injury may be higher (Wenger and Bell, 1986). 

Additionally, although high-intensity (90-100% V02max) exercise will increase cardiovascular 

fitness more so than lower intensity exercise (Tabata et al., 1996; Wenger and Bell, 1986), 

research suggests that when lower intensity exercise exceeds 35 minutes, there are similar 

gains in cardiovascular fitness, when compared with short-duration high-intensity training 

(Wenger and Bell, 1986). In light of this, methods to help preserve blood glucose 

concentrations during sub-maximal continuous exercise should be investigated.

At present, current literature examining different factors (e.g. exercise mode, insulin and 

carbohydrate administration before exercise) affecting blood glucose responses within T1DM 

individuals has been predominantly during and after cycling (Bussau et al., 2006; Campaigne 

et al., 1987; Chokkalingham et al., 2007; Dandona et al., 1980; Dube et al., 2005; Guelfi et 

al., 2005a; 2005b; Hernandez et al., 2000; Jenni et al., 2008; Mauvais-Jarvis et al., 2003 

Perrone et al., 2005; Peter et al., 2005; Rabasa-Lhoret et al., 2001; Touminen et al., 1995), 

with little research examining blood glucose responses to running (Bracken et al., 2008). 

Cycling is a primarily concentric form of exercise i.e. the muscle shortens as it contracts. 

However, in many daily activity patterns including body weight supporting exercises, such as 

jogging or running, there is a significant proportion of eccentric muscle action, where the 

muscle lengthens in the performance of the movement. Moreover, eccentric muscle actions 

have been demonstrated to hinder insulin action and glucose uptake for many hours following 

exercise (Asp et al., 1995; Asp et al., 1996). Additionally, running which supports body mass, 

would also act as a greater metabolic stress than cycling, which could have the potential to 

influence blood glucose responses not just during exercise, but also potentially in the hours 

after.
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1.7 S trategies for preventing and/or minimising post-exercise hypoglycaem ia

In light of the aforementioned defects in glucose regulation and the high risk of 

hypoglycaemia associated with exercise, strategies that help combat hypoglycaemia have 

received considerable attention within the literature (Campaigne et al., 1987; De Feo et al., 

2006; Dube et al., 2005; Grimm, 2005; Guelfi et al., 2005b; Hernandez et al., 2000; Iafusco et 

a;., 2006; Muvais-Jarvis et al., 2003; Rabasa-Lhoret et al., 2001). An important aspect of the 

research focuses on reducing the pre-exercise insulin dose (Campaigne et al., 1987; Muvais- 

Jarvis et al., 2003; Rabasa-Lhoret et al., 2001).

1.7.1 The importance of insulin dose on post-exercise glycaemia

Reducing the dose of insulin administered with a carbohydrate meal would result in a

reduction in the insulin to carbohydrate ratio, resulting in a reduced clearance of blood

glucose after digestion of the carbohydrate meal. This would result in a preservation of blood

glucose above normal concentrations before exercise (Rabasa-Lhoret et al., 2001). During

exercise the reduced insulin concentrations would aid in promoting a pattern of substrate

oxidation and glucose regulation similar to a non-TlDM individual (Chokkalingam et al.,

2007), i.e. reduced uptake of glucose and a subsequent reduction in carbohydrate oxidation

with a concomitant increased contribution to energy turnover from NEFA’s (Chokkalingam

et al., 2007; Figure 1.6). The lower circulating insulin concentrations would have a lesser

restraining influence over hepatic glucose production, and the provision of NEFA, from the

adipose tissue, for the active musculature (Figure 1.6). Moreover, a reduction in insulin

mediated glucose uptake, in combination with elevations in the catecholamines would reduce

the uptake and subsequent combustion of blood glucose and preserve blood glucose

concentrations (Cryer, 2003). In the post-exercise period, the greater blood glucose

concentrations would help compensate for the heightened uptake of glucose by the exercised
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tissue (Steppel and Horton, 2003), which is increased to replenish muscle glycogen stores. 

Moreover, the lower insulin concentrations would provide a milieu where the actions o f the 

gluco-regulatory hormones are not inhibited and insulin’s suppressive effect at the hepatocyte 

and adipocyte is lessened, such that substrates can be provided for both hepatic glucose 

production and replenishment o f muscle glycogen stores (Steppel and Horton, 2003). 

Therefore, the greater pre-exercise blood glucose concentrations and an improved hormonal 

milieu, i.e. lower circulating insulin concentrations, during exercise would aid in preserving 

blood glucose concentrations during exercise such that post-exercise concentrations can be 

better maintained and ultimately lessen the risk o f hypoglycaemia.

4* Dose

4  hepatocyte 4insulin  mediated
suppression glucose uptake

-  t  output -----> Blood G lucose   T uptake

gluconeogenesis
&

glycogenolysis

Glycerol NEFA

adipocyte
suppression

4
glucose 

oxidation 
& 
t

Upid 
oxidation

Figure 1.6: The theoretical effects o f  reductions in insulin dose on blood glucose regulation and fuel 

m etabolism during exercise.
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Within the existing literature examining pre-exercise insulin reductions, recommendations 

have varied from >50% (Campaigne et al., 1987), 10-40% (De Feo et al., 2006), 10-50% 

(Grimm, 2005), 50-90% (Mauvais-Jarvis et al., 2003) and 50-75% (Rabasa-Lhoret et a l, 

2001; Table 1.4). Some of the variation in the recommended reduction can be accounted for 

by differences in the insulin species used by participants and the exercise model employed 

within the respective studies (Table 1.4).
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An early study by Campaigne et al. (1987; Table 1.3) was one of the first to research pre­

exercise insulin reductions, examining blood glucose responses during and after 45 minutes 

of cycling, within 9 T1DM males who were treated with a bi-daily, intermediate/short acting 

insulin mix. The authors demonstrated that despite 50% reductions in the intermediate or the 

soluble insulin prior to exercise, hypoglycaemia still occurred in 6 of the 9 subjects at some 

point during or after exercise, predominantly the night (self-reported) of the trial day. 

Additionally, Mauvais-Jarvis et al. (2003; Table 1.3) examined pre-exercise insulin 

reductions during and for 2 hours after exercise, within 12 T1DM individuals. Six of the 

participants were treated with regular insulin in the morning and at noon and NPH before 

bed, while the other 6 participants were treated with bi-daily mixed insulin regimen of 30% 

regular insulin combined with 70% NPH insulin. Participants performed 60 minutes of 

cycling at 70% VC>2max, 90 minutes after a set meal where participants administered an 

unaltered insulin dose or a 90% insulin reduction (participants on 3 daily injections) / 50% 

insulin reduction (bi-daily mixed regimen). The plasma glucose responses within the study of 

Mauvais-Jarvis et al. (2003) are presented in Figure 1.7.

5 18 .
©
S 15 -
Bw
at 12 ^(ft
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.3ft- 0 -
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-30
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30 90 150 210
—\ 
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Figure 1.7: Changes in plasma glucose levels during exercise and recovery performed with (H) and 

without (CH) an insulin reduction. Adapted from Mauvais-Jarvis et al. (2003).
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Eight participants had to receive an oral glucose solution during the condition without an 

insulin reduction due to rapidly falling plasma glucose concentrations. Plasma glucose levels 

were consistently higher during and for 2 hours after exercise within the insulin reduction 

trial (Figure 1.7). It was concluded that a 50-90% reduction in insulin dose, depending on 

their insulin regimen, can allow T1DM individuals to engage in intensive exercise without 

causing hypoglycaemia and worsening glycaemic control (Mauvais-Jarvis et al., 2003)

The research of Campaigne et al. (1987) and Mauvais-Jarvis et al. (2003) lacked specific 

guidelines for pre-exercise insulin reductions, i.e. dose adjustments relating to exercise 

intensity and duration. Moreover, with the increased prescription of the basal-bolus regimen 

to treat T1DM individuals, dose adjustments specific to this kind of treatment, as opposed to 

the mixed insulins of Campaigne et al. (1987) and Mauvais-Jarvis et al. (2003), needed 

investigating. In addition, the time post-exercise where the potential for monitoring blood 

glucose was just 2-12 hours (Campaigne et al., 1987; Mauvais-Jarvis et al., 2003), and as 

previously demonstrated hypoglycaemia may develop up to 24 hours after exercise 

(MacDonald, 1987; Tsalikian et al., 2005), so this window of examination needs to be greater 

to determine the effectiveness of the insulin reduction.

Research by Rabasa-Lhoret et al. (2001; Table 1.4) furthered the area, addressing the issues

of exercise intensity and duration within individuals treated with the more preferentially

prescribed, basal-bolus regimen (Ultralente with prandial insulin lispro). Participants

performed 60 minutes at 25% V02max, 30 and 60 minutes at 50% VC>2max, and 30 minutes at

75% V02max, with blood glucose concentrations monitored throughout exercise and for an

hour post-exercise. All trials were performed after administration of a full insulin dose (Full),

a 50% reduction (50%) and after a 75% reduction (25%). Rabasa-Lhoret and colleagues
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demonstrated that the drop in blood glucose that occurs with exercise at 25% V02max for 60 

minutes did not differ between Full and 50%, however, greater pre-exercise concentrations 

result in a safer glycaemic profile after exercise, i.e. a greater preservation of blood glucose. 

Plasma glucose at the end of exercise was A-2.9 ±1.1 mmol.l'1 below baseline after Full, 

compared with A-0.6 ± 0.9 mmol.l-1 after 50%. This trend followed during exercise at 50% 

V02max for 30 minutes; the decrease in plasma glucose, relative to rest, at the end of exercise 

was less under 50% (A-0.4 ± 1.3 mmol.l-1) compared with Full (A-2.1 ± 0.7 mmol.l'1) and 

resulted in greater plasma glucose concentrations during and for 1 hour after exercise. Plasma 

glucose responses revealed that the greatest preservation of post-exercise glycaemia occurred 

after a 75% reduction, when exercising at 50% VC>2max for an hour and 75% VC>2max for 30 

minutes. The 75% reduction trial resulted in a better maintenance of glycaemia during and 

after exercise (~7 -  10 mmol.l'1), with less chance of developing hypoglycaemia, compared 

to just a 50% reduced dose, which elicited post-exercise concentrations of ~4.5 -  7 mmol.l'1. 

Based on plasma glucose responses during exercise, the optimal pre-exercise insulin 

reductions recommended by Rabsa-Lhoret et al. (2001) are presented in Table 1.5.

Table 1.5: Guidelines for the reduction in pre-exercise bolus insulin dose recommended by Rabasa- 

Lhoret et al. (2001).

% Dose Reduction

Exercise Intensity 
(% V02max)

30 min of 
exercise

60 min of 
exercise

25 25 50

50 50 75

75 75 -
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When comparing blood glucose responses across studies it is evident that the choice of 

insulin species is an important factor. Currently, T1DM individuals are predominantly treated 

with the modem insulin analogues (Table 1.1) in a basal-bolus regimen; these rDNA insulins 

(e.g. insulin glargine/detemir and aspart/lispro) offer very different, more favourable, action­

time profiles and less variability than longer established insulins, such as regular human 

insulin and NPH insulin (Brange and Volund, 1999; Leopore et al., 2000; Tuominen et al.,

1995). Moreover, research has demonstrated that the uptake kinetics of modem basal 

analogues are not affected by exercise (Peter et al., 2005), however, the bolus analogues are 

(Touminen et al., 1995). With this in mind, there is no literature that has examined pre­

exercise insulin reductions using these kinds of insulins. Moreover, with the potential for 

these insulins to affect metabolism and blood glucose concentrations from 5-24 hours after 

administration (Leopore et al., 2000; Plank et al., 2002), and the potential for developing 

hypoglycaemia increased for a similar time frame after exercise (MacDonald, 1987; Tsalikian 

et al., 2005), as well as current literature only investigating blood glucose responses for just 

1 - 1 2  hours post-exercise (Campaigne et al., 1987; Mauvais-Jarvis et al., 2003; Rabasa- 

Lhoret et al., 2001), a more detailed examination of the effects of pre-exercise insulin 

reductions after exercise is required.

1.7.2 The safety of using pre-exercise insulin reductions

Exogenous insulin treatment reduces blood glucose, which prevents hyperglycaemia and risk

of ketosis (Cryer, 2001). Under normal physiological conditions ketones (acetoacetate, p-

hydroxybutyrate and acetone) are produced through hepatic fatty acid metabolism during

periods of low carbohydrate conditions. Ketogenesis allows fat-derived energy to be

generated in the liver and used by other organs, such as the brain, heart, kidney cortex and

skeletal muscle (Laffel, 1999). However, reduction or omission in insulin dose is a significant
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factor in the development of diabetic ketoacidosis accounting for 13-45% of reported DKA 

cases (Wallace and Matthews, 2004). The formation of ketone bodies above non- 

physiological levels (>1 mmol.l'1) has been proven to increase oxygen radical formation and 

cause lipid peroxidation (Jain et al., 1998; Jain et al., 1999a; 1999b) as well as induce 

metabolic acidosis (Laffel, 1999). Diabetic ketoacidosis is characterised by an absolute or 

relative deficiency of circulating insulin and combined increases in counter-regulatory 

hormones (catecholamines, glucagon, cortisol, growth hormone), particularly glucagon and 

adrenaline, hyperglycaemia and metabolic acidosis (Wallace and Matthews, 2004). 

Moreover, physical exercise also increases ketone body formation (Koeslag et al., 1980; 

Horowitz et al., 2000), alters acid-base balance and increases counter-regulatory hormones 

(Figure 1.8). Therefore, the potential for a combined effect of a pre-exercise insulin reduction 

strategy and performance of exercise might exacerbate ketogenesis and result in 

hyperketonaemia (>1.0 mmol.l1) or development of ketoacidosis (>3.0 mmol.l'1) (Laffel et 

al., 1999; Figure 1.8). However, there is limited data available to refute this hypothesis.
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Figure 1.8: Theoretical effects o f  exercising under a reduced insulin dose on ketogenesis.
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1.8 Current recom m endations for carbohydrate intake and exercise in T1DM

The literature concerning the amount of carbohydrate to consume before, during and after 

exercise to prevent hypoglycaemia within T1DM individuals has produced diverse findings. 

For example, Hernandez et al. (2000; Table 1.6) suggested that 60 - 120 g of carbohydrates 

should be consumed, in equal bolus’, before, during and immediately after exercise to prevent 

late-onset hypoglycaemia. The range in recommended carbohydrate intake is likely due to 

differences in glycogen depletion across participants (Perry and Gallen, 2009). Whereas 

Iafusco (2006) recommends consumption of 15 g of simple carbohydrates immediately 

before exercise and consumption of a hypotonic sports drink (e.g. Gatorade®, 4%  sucrose, 

2% fructose) during exercise. Conversely, Dube et al. (2005; Table 1.6) suggests just a 35 g 

bolus of dextrose is needed, immediately before exercise, to combat hypoglycaemia. Dube 

and colleagues investigated pre-exercise glucose requirements in order to preserve blood 

glucose concentrations during exercise. Three hours after consuming a standardised 

breakfast, with their usual insulin dose, participants consumed a 0, 15 or 30 g of bolus of 

glucose 15 minutes prior to 60 minutes of cycling at 50% V02max- The drop in blood glucose 

during exercise was similar across trials, however, the addition of 15 or 30 g of glucose 

prolonged the delay before glucose infusion was required (0 g ~32; 15 g ~51; 30 g ~56 min). 

During the exercise bout, 7 of 9 individuals required glucose infusion under the 0 g trial, 4 of 

9 required glucose infusion under the 15 g trial, and just 3 under the 30 g condition. Based on 

the glucose infusion requirements, the authors estimated that a beverage containing 35 g of 

glucose should be consumed immediately before exercise to maintain blood glucose during 

60 minutes of moderate intensity exercise.

In addition to the recommendations of Iafusco (2006) and the research of Dube et al. (2005),

Perrone et al. (2005; Table 1.6) addressed the concentration of the carbohydrate beverage
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consumed immediately before and throughout the exercise bout. Participants cycled at 55- 

60% VC>2max for 60 minutes, consuming either an 8% or a 10% carbohydrate solution before 

and during exercise. Throughout the duration of the trial, blood glucose concentrations were 

lower under the 8% solution; moreover, 4 individuals experienced hypoglycaemia under this 

condition. Furthermore, blood glucose concentrations dropped ~1.8 mmol.l'1 in the hour post­

exercise, whereas concentrations remained stable under the 10% condition. Based on the 

blood glucose responses and hypoglycaemic incidences the authors recommended T1DM 

individuals consume a 10% carbohydrate solution before and during exercise to maintain 

glycaemia. Additionally, to quickly correct falling blood glucose during exercise, Gallen 

(2005) recommends consumption of a 15% carbohydrate solution.

This is interesting, as carbohydrate concentration is an important factor in post-ingestion

blood glucose responses, with research demonstrating reduced gastric emptying rates with

concentrations ranging from 6-20% (Davis et al., 1990; Jeukendrup et al., 2007; Maughan

and Leiper, 1999; Murray et al., 1997). However, this research was carried out within non-

T1DM individuals. Low blood glucose concentrations have been demonstrated to increase

gastric emptying rates within non-TlDM individuals (Schvarcz et al., 1993), thus potentially

explaining the greater concentrations, recommended by Peronne et al. (2005) and Gallen

(2005). Moreover, it should be noted that gastric emptying rates are also affected by elevated

blood glucose (Schvarcz et al., 1997). Schvarcz and colleagues demonstrated a slowing of

gastric emptying when blood glucose concentrations were clamped at just 8 mmol.l'1, in

comparison with 4 mmol.l'1, within T1DM individuals. In addition, gastric emptying rates are

also influenced by long term glycaemic control (Jing et al., 2009). Therefore, blood glucose

concentrations and long term glycaemic control may be important factors that contribute to

the optimal concentration of carbohydrates to be administered, moreover may be contributing
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factors to inter-individual variability in blood glucose responses that may exist after 

administration of carbohydrate.

Based on the current literature it seems 15 -  35 g of simple carbohydrates should be 

consumed immediately prior to exercise. Moreover, a carbohydrate solution of 10% should 

be consumed during the exercise bout. However, the existing literature did not examine the 

influence of carbohydrate feeding on blood glucose responses in the more long term period 

after exercise. Moreover, it is important to note that none of the aforementioned research 

employed a pre-exercise insulin reduction. Potentially, employing an insulin reduction 

strategy could have resulted in very different carbohydrate requirements. Moreover, an 

optimal reduction to the insulin dose administered with the meal before exercise may even 

negate the need to consume any additional carbohydrates before, during and immediately 

after the exercise bout.
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1.8.1 Carbohydrate type: the glycaem ic index

The glycaemic index (GI; Figure 1.9) is a method of clinically classifying foods/meals 

containing carbohydrates according to glycaemic responses after ingestion (Wolever et al., 

1991). For example, carbohydrates with a high GI, such as white bread, will induce a rapid 

increase in blood glucose concentrations after ingestion (Foster-Powell et al., 2002). 

Conversely, carbohydrates with a low GI, such as peaches, will induce more gradual 

increases, and lesser peaks, in blood glucose (Foster-Powell et al., 2002).

From a diabetes management perspective, this classification of foodstuffs is useful as both 

clinicians and patients can adjust their diets to include low GI carbohydrates due to benefits 

such as a greater feeling of satiety (Foster-Powell et al., 2002), improved insulin sensitivity 

and blood lipid profiles (Jenkins et al., 1985), lower daily mean blood glucose concentrations 

(Nansel et al., 2008), reduced incidence of hypoglycaemia and reductions in HbAic (Brand et 

al., 1991; Gilbertson et al., 2001; Thomas et al., 2007). Within the study o f Nansel et al. 

(2008), consumption of low GI foodstuffs, such as peaches, kidney beans or brown rice, 

resulted in glucose concentrations (assessed using a continuous glucose monitor) being 

within a target range of 3.9 -  9.9 mmol.l'1 significantly more o f the time than under the HGI 

trial (67 vs. 47 %). Moreover, the participants elicited a lower mean blood glucose 

concentration (LGI 7.6 ± 2.0 vs. HGI 10.1 ± 2.6 mmol.l'1) and required less bolus insulin per 

lOgofCHO.

0 50 100 

I 1-------------------------1----------------- — i------------- 1------------- 1------------- 1
Water Cherry Isomaltulose Porridge Brown Rice White Rice Ice Cream Glucose

Figure 1.9: The glycaemic index.
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With regards exercise, research in non-TlDM demonstrates less change in blood glucose 

concentration during exercise after low GI carbohydrates (Demarco et al., 1999; Achten et 

al., 2007; Table 1.7). Demarco et al. (1999; Table 1.6) examined 10 trained cyclists during 2 

hours of cycling at 70% V02max, followed immediately by a time trial to exhaustion at 100% 

V02max, having consumed either a high or low GI meal before exercise. Blood glucose 

responses revealed a more gradual rise and fall in concentrations over the 120 minute 

exercise period under LGI, with concentrations at 120 minutes not different to immediate pre­

exercise values. However, concentrations under HGI had significantly dropped over the 2 

hour period. During the 120 minutes of cycling there was a greater lipid oxidation rate under 

LGI, in comparison with HGI. Moreover, despite a 60% increase in time to exhaustion, blood 

glucose concentrations were greater at the cessation of exercise under LGI. Achten et al. 

(2007) investigated plasma glucose responses to 150 minutes of cycling at ~ 60 % V02max 

after ingesting isomaltulose or sucrose with results demonstrating little change in plasma 

glucose over the duration of the protocol after consumption of isomaltulose (GI 32), 

compared to a ~1.2 mmol.l’1 greater plasma glucose concentration 15 min after sucrose 

consumption. Moreover, consumption of low GI carbohydrates alters exercising fuel 

metabolism (Achten et al., 2007; Demarco et al., 1999; Stevenson et al., 2006). Lipid 

utilisation increases and carbohydrate oxidation rates decrease during a bout of isocaloric 

exercise, in non-TlDM individuals, following consumption of a low GI meal (Achten et al., 

2007; Demarco et al., 1999; Stevenson et al., 2006). Stevenson et al. (2006) demonstrated a 

56 % greater lipid oxidation rate and 31 % lower carbohydrate oxidation during a one hour 

treadmill run at 65 % V02max 3 hours following consumption of a low (139 g CHO; GI 44) or 

high GI (139 g CHO; GI 78) meal in eight female participants. Similarly, ingestion of a 50 g 

bolus of isomaltulose (GI 32) increased lipid oxidation rate more than sucrose and reduced
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carbohydrate oxidation rate -0.2 g.min'1 during 150 minutes of cycling at 60 % V 0 2max 

(Achten et al., 2007).

39



Ta
bl

e 
1.7

: 
Su

m
m

ar
y 

of 
cu

rr
en

t 
lit

er
at

ur
e 

in
ve

sti
ga

tin
g 

the
 

m
et

ab
ol

ic 
and

 
gl

yc
ae

m
ic 

ef
fe

ct
s 

of 
alt

er
in

g 
the

 
GI

 o
f 

the
 

pr
e-

ex
er

cis
e 

m
ea

l.

bflG
3
.£

oX
W

c
cd c  
o .  o  
o £
ti ’5b S3 pOh cC

§
CL

10-

oOil

O
.£ ®  
— c
£  £ 
T3 O G <N cd
<uc/5 cd
'E ^  
-a o7 hJ T3 ^
&|
S> 3
O

<h e
P  cd

I a
o  ̂

.G  <u^  U-.
. r o
o  e
•J .
t-4 t-H
© o
G  K

bfi o
.£ S
G

T3
Go
13T3
3O
-a
'E

a
CQ .

8 o
a  SC
o  £  
X •CO  £

1/5 -T3 
O  P

T3
§

cdCL
U o-
■S £M O

S G § •S .tS JO

P

P  J h  
6

o a J3
ib
cd 
£ a

’E h "E

53 5
£ G o {2

j  .s

bfl
r—1 \
O  bD
^  Os
c/5 ,—i 
>  .

i"- > w  00 hJ 
0 ^ 0  
*  I . - 1
<-> =  S3h I, G
§J o  G
|  13 3

h  h  u
. OD c/5

13 G St  £ ti G  cd G

O
DQ
G

i f
O-i <D*-■ a*
> »- 
£  p  O £ ^ o 

7- >J

O  O  
C/5 ”2
a § J o o’ scoo U
~  6 <U o <G £
G  ^

31/3 Jr»C o 
T3

>
ro

U
DCO
JC

£
0
cfc
GO
3G>
' £
G
O
O
4—
cd
T3
G
cd/H-NVC/5

3
*n ’E
(N CG

~o
173 £ 
. s i
73 t2 
o  *

£ .£
o<N

G  fc O «
G  O 
.£ >  
Eo °
O  £

.£̂
 o 

>> o
-O  — <

o  cd

O
VO

bfl
G

O  c/5

• a  |  
*•2 .£
o £

/—V O  
VO m  ro _
t—i cd

a s
O o
£ ~  O o

I !Cdf-i cx
*r :§
3  + i© i

CL

O
3
£
o

Os
Os
Os

O
o
cd
£
o
Q

G 
' p  +< 

bO P
OS CL
2  bO 

 ̂o

m  bO

o
S S i  .
K U O O

bO
Osr<d

C
o
O
E
bO
m<N
EcLh
bO

O s
^ t J-

O ii
U O

S  g  
Q §1—1 Oh
A ;S
| l

CL

VOOO<N

GOC/5
G
o>
o-4-»CO

£ .£
ovr>

G
W)_G
>%
O  x C/5 §
G  <N 
O  p  
3  >
— S?© 2: o o
O VO

oCO

3 U— 3
I sO A)vs 5;
« g

s  g  
Q §
H -g
G  O
£ 1

O h

O
3
£
o

t"~oo<N

o
Go■M

hGo
<

O



Based on the existing literature, it seems consumption of low GI carbohydrates has the 

potential to induce less change in blood glucose before and during exercise. Moreover, low 

GI carbohydrates may suppress fat oxidation less during exercise, which may subsequently 

spare both endogenous and exogenous carbohydrate use, resulting in better preservation of 

blood glucose during and in the post-exercise period. However, there is scant research that 

has examined blood glucose and metabolic responses to exercise after different GI 

carbohydrates within T1DM. Moreover, none of the existing literature examining 

carbohydrate requirements within T1DM implemented a pre-exercise insulin reduction, 

which raises the possibility that if insulin dose is sufficiently reduced before exercise, 

additional carbohydrates may not be required before and during exercise.

1.8.2 Exogenous carbohydrate oxidation and glycaemia

As demonstrated, carbohydrate consumption prior to or during exercise is important for the 

exercising T1DM individual (Dube et al., 2005; Hernandez et al., 2000; Iafusco, 2006). 

However, it has been suggested that a greater contribution to energy turnover from exogenous 

carbohydrate sources would spare endogenous carbohydrate reserves (liver and possibly 

muscle glycogen; Jeukendrup, 2004). Keeping in mind an increased glucose uptake to 

replenish muscle glycogen stores after exercise (Wojtaszewski et al., 2002), a sparing of 

endogenous carbohydrate stores would have implications for post-exercise blood glucose 

concentrations, and potentially the development of hypoglycaemia.

According to Jeukendrup (2004) exogenous carbohydrate oxidation is influenced by the type

and amount of carbohydrate ingested and the exercise intensity, however is seemingly

unaffected by the timing of consumption, gastric emptying (Rehrer et al., 1992; Saris et al.,

1993) or solution osmalality (Shi et al., 1995). Shi and colleagues suggested that different
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forms of carbohydrate in solution (glucose, fructose, sucrose) increased carbohydrate 

absorption despite an increase in osmalality. The authors attributed the increased uptake to 

different transporters used in the uptake process, i.e. glucose is transported across the luminal 

membrane by a sodium-glucose transporter (SGLT1) and fructose is transported by GLUT-5, 

therefore there was a reduced competition for transporters and an increase in total 

carbohydrate absorption. This was confirmed by Jentjens et al. (2003) where glucose 

ingestion alone resulted in maximal exogenous carbohydrate oxidation rates, during exercise, 

of 0.83 g/min, whereas a glucose and fructose mix increased oxidation rates by -56%  (-1.26 

g/min). These factors may be important for the exercising T1DM individual; blood glucose 

concentrations are the primary concern for avoiding hypoglycaemia during exercise, 

however, if exogenous carbohydrate oxidation rates can be increased, through ingestion of 

different forms of carbohydrates, in addition to a greater contribution from lipids, a 

preservation of endogenous carbohydrate reserves may take place which may subsequently 

maintain blood glucose concentrations post-exercise. However, there is limited data to refute 

this hypothesis.
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1.9 Pre-exercise timing of carbohydrate consumption and insulin 

administration

The timing of pre-exercise carbohydrate consumption and insulin administration is largely 

dependent upon the insulin species (Table 1.1) and the altered uptake kinetics that are 

associated with exercise (Dandona et al., 1980; Femqvist et al., 1986; Touminen et al., 

1995). Research has demonstrated that exercise can result in greater peaks in insulin as well 

as increasing absorption rates and ultimately increasing the risk of hypoglycaemia (Dandona 

et al., 1980; Touminen et al., 1995). The altered rates of absorption are likely due to a 

combination of increases in blood flow (Lauritzen et al., 1980; Linde and Gunnarsson, 1985; 

Vora et al., 1993) and temperature (Koivisto et al., 1980; 1981) that are associated with 

exercise.

Animal preparations and regular human insulin interact differently with exercise (Femqvist

et al., 1986; Table 1.8). Femqvist and colleagues demonstrated that the exercise induced

peak in insulin concentrations was less with regular human insulin as apposed to porcine

insulin. Moreover, Touminen et al. (1995) demonstrated that the rDNA insulins, human

insulin and the analogue insulin lispro, also interact differently with exercise, moreover the

pre-exercise timing is particularly important in subsequent insulin and blood glucose

responses (Table 1.8). Touminen and colleagues identified that when exercise was performed

40 minutes after administration, insulin lispro induced an earlier and 56% greater peak in

insulin concentrations, consequently resulting in a greater drop in blood glucose with

exercise, when compared to regular human insulin. Moreover, when exercising this close to

administration, the exercise bout was associated with a 2.2 fold greater risk of

hypoglycaemia. However, when exercising 180 minutes post-administration, the drop in

blood glucose was less under insulin lispro, and the risk of hypoglycaemia was reduced by
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46%, when compared to regular human insulin. This research highlights pre-exercise timing 

as an important factor to consider, as the intense rise and peak in insullin that is elicited soon 

after administration of rapid-acting insulin, results in marked increases in the risk of 

hypoglycaemia during exercise.
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The lower variability and more favourable action-time profiles of the rapid-acting insulins 

(Brange and Volund , 1999; Tuominen et al., 1995) make these analogues of insulin ideal for 

prandial use, and have been shown to significantly improve glycaemic control within T1DM 

individuals, without increasing the risk of hypoglycaemia (Tamas et al., 2001). However, the 

intense and rapid rise in insulin concentrations (peaking 45 -  60 minutes after administration, 

Plank et al., 2002) means that it is currently recommended to avoid administration of rapid- 

acting insulin within 90-120 minutes of exercise due to the risk of over-insulinisation of the 

active musculature during exercise (De Feo et al., 2006; Perry and Gallen, 2009), as 

demonstrated by the early work of Touminen et al. (1995).

At present it is currently recommended that insulin dose should be reduced before performing 

exercise, regardless of the insulin species or time before exercise (Campaigne et al., 1987; 

Muvais-Jarvis et al., 2003; Rabasa-Lhoret et al., 2001). However, to date there is no literature 

that examined pre-exercise timing as a factor to consider in subsequent blood glucose 

responses. Specifically, there is limited data available on the absorption kinetics of the insulin 

analogues when administered in reduced doses with the carbohydrate meal at different times 

prior to exercise. Within the study of Touminen et al. (1995) participants administered ~6.3 

RJ of insulin, however, if employing a heavy insulin reduction, as recommended by Rabsa- 

Lhoret et al. (2001), pre-exercise insulin dose could be as little as ~3 RJ. Therefore, there is 

potential that administering such small doses of insulin closer to the exercise bout may in fact 

not increase the risk of hypoglycaemia. However, there is limited literature available to 

confirm or refute this hypothesis.
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1.10 Hormonal factors contributing to inter-individual differences in blood 

glucose responses to exercise

When examining blood glucose responses to exercise, an important factor to consider is the 

duration of T1DM. As the disease progresses with time, T1DM individuals endure a gradual 

decline in key gluco-regulatory hormone responses to falling blood glucose (Amiel et al., 

1988; Banarer et al., 2002; Dagogo-Jack et al., 1993; Mokan et al., 1994). Therefore, the 

duration of the disease could be a contributing factor to large inter-individual differences in 

blood glucose responses when exposed to identical stimuli (e.g. exercise, diet, and insulin 

dose).

1.10.1 Glucagon responsiveness

Glucagon is a key hormone in glucose regulation during exercise however there may be large 

inter-individual variability in the glucagon response to both exercise and falling blood 

glucose. The glucagon response can be normal, impaired or totally absent (Taborsky et al., 

1998). Early research by Bolli et al. (1983) suggested that the variance in glucagon 

responsiveness between individuals could be due to the duration of the disease; newly 

diagnosed patients were found to have a normal a-cell function and those of 1 -5 years clearly 

having a blunted response. Furthermore, Gerich et al. (1973) demonstrated that the glucagon 

response was absent in patients who had T1DM for over a decade. The mechanism behind the 

loss of a-cell function with time is due to progressive loss of residual p-cell function (Fukuda 

et al., 1988) and a reduced autonomic input through progressive denervation of the a-cell 

(Tominaga et al., 1987). Therefore, residual a-cell function may be a potential explanatory 

mechanism behind between-individual differences in the blood glucose response to exercise.
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1.10.2 The sympathoadrenal influence on blood glucose

With progressive loss of the primary mechanism against falling blood glucose, glucagon, the 

adrenaline response also becomes attenuated with time (Cryer, 2002). A single 

hypoglycaemic episode can result in a reduced sympatho-adrenal input, with individuals not 

experiencing symptoms of hypoglycaemia and are unaware of dangerously low blood glucose 

concentrations. Moreover, the reduced autonomic input results in an attenuated adrenaline 

secretion (Cryer, 2002) to falling blood glucose. Antecedent hypoglycaemia has been shown 

to shift the glycaemic threshold for stimulating adrenaline release, symptomatic and cognitive 

dysfunction responses, to lower blood glucose concentrations (Dagogo-Jack et al., 1993; 

Fanelli et al., 1998). Moreover, reduced adrenomedullary stores of adrenaline have been 

demonstrated within T1DM individuals with defective adrenal responses to falling blood 

glucose (De Galan et al., 2004). Therefore, keeping in mind the importance of adrenaline on 

maintaining blood glucose concentatrations during exercise, i.e. reducing glucose clearance 

(Howlett et al., 1999), increasing breakdown of intramuscular triglycerides (Howlett et al., 

2000) and glycogen (Watt et al., 2001), and stimulating hepatic glucose output (Howlett et 

al., 1999), a reduced adrenaline secretion would have large metabolic consequences, in 

particular for the development of hypoglycaemia. Based on these data, the oxidation of blood 

glucose as a fuel would not decrease, and the promotion of intramuscular fuel sources would 

be lessened, as well as a reduced stimulation of hepatic glucose production; combining these 

factors promotes a fall in blood glucose, ultimately leading to hypoglycaemia. Therefore, 

inter-individual differences in the adrenaline response to falling blood glucose may be a 

contributing factor in the preservation/lack of preservation of blood glucose between 

individuals when exposed to the same protocol.
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1.11 Summary of thesis and experimental chapter aims

The main aim of this thesis is to examine factors that affect post-exercise glycaemia within 

T1DM individuals. This thesis will specifically examine the influence of pre-exercise insulin 

dose, the glycaemic index of the carbohydrates ingested before exercise, and the timing of the 

administration of both insulin and carbohydrate prior to exercise, on post-exercise glycaemia. 

Moreover, this thesis will examine if altering these factors is a safe strategy for the exercising 

T1DM individual to engage in.

The experimental chapters will examine:

1: The metabolic and glycaemic effects of pre-exercise reductions in rapid-acting insulin,

before, during and for 24 hours after a single bout of running exercise.

2: The metabolic and glycaemic effects of alterations to the glycaemic index of the pre­

exercise carbohydrate, before, during and for 24 hours after a single bout of running exercise.

3: The metabolic and glycaemic effects of alterations in the timing of pre-exercise 

carbohydrate consumption and insulin administration, before, during and for 24 hours after a 

single bout of running exercise.
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Chapter 2 

Methodology
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2.1 Ethics

Ethical approval for carrying out these studies was attained from the Local Research Ethics 

Committee (LREC) of the Abertawe Bro Morgannwg NHS trust (Appendix Al).

2.2 Type 1 Diabetes participants

2.2.1 Recruitment of participants

Type 1 diabetes volunteers were sought from advertisements placed on the Swansea 

university home page and local and national newspapers. Potential participants were also 

recruited from within the Diabetes clinics in the Swansea area (Morriston and Singleton 

Hospital Diabetes Clinics, Abertawe Bro Morgannwg NHS trust). A database was created of 

all those patients interested in taking part in the research. Initial contact was made via 

telephone or through email, following which volunteers were sent a study information pack 

(Appendix A2 - A4), which included a reply form (Appendix B). Those who were willing to 

take part were screened against an inclusion/exclusion criteria (Table 2.1) and were invited to 

visit the exercise physiology laboratories.

Table 2.1: Inclusion/exclusion criteria for participants across all experimental chapters.

Aged 18 to 55 years 

HbAlc< 10%

Using a Basal-Bolus Regimen of 
modem insulin analogues

- excluding insulin glulisine (Apidra®)

No diabetic complications other than retinopathy

No medication other than insulin

Regularly exercising and able to continuously run for 45 minutes 

No muscular-skeletal problems____________________________
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2.2.2 Insulin regim en of participants

Those volunteers selected to partake in these studies were using a basal-bolus regimen and 

were taking a set number of basal units for a period of at least 3 months. Participants selected 

were being treated with once daily insulin glargine (Lantus®, Sanofi Aventis, France) or bi­

daily insulin detemir (Levemir®, NovoNordisk, Denmark) as the basal component of their 

insulin regimen. These two basal insulin analogues are promoted as equivalent, in terms of a 

peak less 24 hour insulin profile (Gulve, 2008). Furthermore, participants were using a 

prandial rapid-acting insulin of either insulin lispro (Humalog®, Lilly, USA) or aspart 

(Novorapid®, NovoNordisk, Denmark). Research has demonstrated no differences in the 

pharmacokinetic or pharmacodynamic profiles (Plank et al., 2002), or metabolic effects 

(Homko et al., 2003) of these insulin analogues. The injection site and the timing of 

administration of the basal insulin were not homogenous within the subject group; however, 

this remained unaltered between the experimental trials. Bolus insulin dose was calculated 

via the carbohydrate counting method, i.e. number of rapid-acting insulin units per 10 g of 

carbohydrate consumed (Tables 2.2 to 2.4).
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Table 2.2: Chapter 3 participant insulin regimen details.

Participant ID
Insulin 1 2 3 4 5 6 7 8 Mean ± SEM

Basal 28g 22g 44g 42g 27g 6 6 ° 30g 22g 35 ± 2
Bolus (per 10 g 
CHO) 1A 1L 2a 1.5a 1.5l 1A 1A 1A 1.3 ±0.1

Note: G = glargine, D = detemir, A = aspart, L = lispro

Table 2.3: Chapter 4 participant insulin regimen details.

Participant ID
Insulin 1 2 3 4 5 6 7 8 Mean ± SEM

Basal 28g 22g 39° 46g 29d 53g 30° 32g 35 ± 2
Bolus (per 10 g 
CHO) 1A 1A 1.5a 1L 1L 1A 0.5a 2a 1.1 ±0.1

Note: G = glargine, D = detemir, A = aspart, L = lispro

Table 2.4: Chapter 5 participant insulin regimen details.

Participant ID
Insulin 1 2 3 4 5 6 7 8 Mean ± SEM

Basal 30g 26g 64g 44g 30° 52° 40g _ 41 ± 2
Bolus (per 10 g 
CHO) © > 1L 2l 1A 1A 1A 1A 1.1 ±0.1

Note: G = glargine, D = detemir, A = aspart, L = lispro
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2.3.1 Health screening

Upon each visit to the laboratory, participants completed informed consent (Appendix D - G) 

and a physical activity and readiness questionnaire (PAR-Q; ACSM, 2006; Appendix C). 

Moreover, all procedures for the trial were clarified with every participant.

2.3.2 General study protocol

After initially attending the laboratory for prelimary testing for the quantification of V02peak 

and HRpeak, participants arrived at the exercise physiology laboratory between 6 and 8 am 

after an overnight fast, and having consumed similar evening meals between trials. 

After the collection and processing of resting blood samples, participants were given a 

carbohydrate-based meal and instructed to administer their rapid-acting (pre-determined dose 

dependent on trial) insulin (insulin lispro or aspart) into the abdomen, once fully 

administered, a stop-clock was started.

Blood samples were taken every thirty minutes, for 120 minutes post meal (in chapters 3 and 

4; the time between carbohydrate administration and exercise ranged between 30-120 

minutes within chapter 5). After the carbohydrate meal was administered, participants 

anthropometric measures, height (Holtain Stadiometer, Holtain Ltd, UK) and mass (Seca 

Digital Scales, Seca Ltd, UK), were recorded. Fifteen minutes prior to exercise the metamax - 

3b (Metamax 3b, Cortex Biophysik, Germany) was placed on the participants, along with a 

heart rate monitor (RS-400, Polar, Finland), and activity monitor (Sensewear Pro; 

Bodymedia, PA, USA) for the collection of a 15 minute resting cardio-respiratory sample. 

After the final pre-exercise blood sample was taken (Figure 2.2), participants subsequently 

performed 45 min of steady state treadmill (Woodyway, Germany) exercise at -70 %
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VC^peak- Throughout exercise respiratory parameters were collected and participants were 

closely monitored during exercise for any symptoms o f  hypoglycaemia.

At 45 minutes an immediate post-exercise sample was taken (Figure 2.3), the stop clock was 

then started for the 3 hour post-exercise period. Additional samples were taken at 5, 15, 30, 

60, 120 and 180 min post exercise. Participants remained at rest for the entire post-exercise 

period, drinking water ad libitum.

M e t a m a x - 3 b

Activity M onitor

C atheter

Figure 2.2: A T1DM individual wearing the m etamax-3b at rest and during 45 minutes o f running

-7 0 %  V 0 2peaW.

Figure 2.3: Immediate post-exercise blood sample.
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2.3.3 Preliminary Testing

2.3.3.1 Anthropometric measurements

Bioelectrical impedance analysis (BIA)

Prior to starting the procedure, the BIA (Bodystat Quadscan 4000, Bodystat Ltd, USA) unit 

was tested for accuracy by running a test against a metal of a fixed resistance (500 Ohms). 

After quantification of height (Holtain Stadiometer, Holtain Ltd, UK) and mass (Seca Digital 

Scales, Seca Ltd, UK) participants were required to remain supine for 15 minutes. 

Participants were positioned so both legs and arms were adducted at 35 - 45° angle from the 

trunk. Alcohol wipes (70 % Alcotip Swabs, Uhs, UK) were used to clean electrode sites on 

the hands and feet before two injector electrodes (red) were attached to the dorsal surface of 

the right hand and the right foot and detector electrodes (black) were placed on the ankle of 

the right foot and just below the radioulnar joint on the right hand. After 15 minutes of laying 

supine had elapsed, and participant details were entered into the BIA device, the procedure 

was started. Coefficient of variation, over 4 trials, for % body fat (BF), fat free mass (FFM) 

and total body water was 2.0 ± 0.2, 3.1 ± 0.9 and 0.7 ±0.1 %, respectively. Coefficient of 

variation for measurements of mass between trials within chapter 3 was 0.5 ± 0.03 %, chapter 

4 was 0.7 ±0.1 %, and chapter 5 was 0.6 ±0.1 %,

Table 2.5: Participant anthropometric characteristics across chapters 3 to 5.

Chapter 3 Chapter 4 Chapter 5
Height (m) 1.76 ±0.01 1.80 ±0.01 1.80 ±0.01
Mass (kg) 84.1 ±2.0 84.0 ± 1.9 84.3 ±1.3

BMI (kg/m2) 27.0 ± 0.4 26.1 ±0.3 26.3 ± 0.3
% BF 22.1 ±0.6 21.4 ±0.5 --

% FFM 78.0 ±0.6 78.2 ±0.5 -
Note: Data presented as mean ± SEM.
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2.3.3.2 Quantification of peak cardio-respiratory characteristics

Participants performed a continuous maximal incremental treadmill protocol where heart rate 

and breath-by-breath respiratory data were collected for the determination of peak rate of 

oxygen uptake (V02peak) with subsequent peak heart rate (HRpeak)-

Equipment Calibration

Respiratory parameters were collected via a portable gas analyser system (Metamax 3b, 

Cortex Biophysik, Liepzig); the Metamax 3b main principles of operation are through the 

generation of an electrical current, via an oxygen cell, which is directly proportional to the 

partial pressure of oxygen (PO2), and the quantification of PCO2 through absorption of 

infrared radiation by the carbon dioxide present in the expired air (McFarlane, 2001). 

Prior to use a two point gas calibration was performed. Ambient air was used to give a 

maximal O2 value, and a baseline CO2 value. A gas of known concentration (16 % O2, 5 % 

CO2, Brin’s Oxygen Company Ltd) was used to set a baseline O2 value and maximal CO2 

value. The volume transducer was calibrated with a 3 -  litre syringe (Hans Rudolf) and the 

pressure against the ambient barometric pressure (230 series, NovaLynx, USA).

Maximal incremental treadmill assessment

Participants arrived at the laboratory in a fed and hydrated state, with at least 2 hours after 

administering a bolus insulin dose. After self-checking blood glucose, anthropometric 

measures (height and mass) were taken, a heart rate monitor (RS-400, Polar, Finland) was 

then placed across the chest. Participants did not start the protocol if blood glucose was less 

than 6.5 mmol.I'1 (De Feo et al., 2006). Those subjects with a blood glucose concentration < 

6.5 mmol.l'1 were given 117 ml of an hypertonic drink (20 g CHO; Lucozade®, 

GlaxoSmithKline, UK) immediately prior to exercise (De Feo et al., 2006). After a 2-point
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gas calibration, the metamax-3b was placed on each participant (Figure 2.4), and breath-by- 

breath data was subsequently collected and transferred wirelessly to the laboratory computer 

(Figure 2.6).

Figure 2.4: A T1DM  individual wearing the M etamax-3b.

Participants then completed a standardised warm-up (3 minutes at 6 k m .h r ')  immediately 

before performing a graded treadmill exercise test; this protocol involved participants running 

in 3 minute blocks o f steady state exercise at a treadmill velocity o f 8 k m .h r1, a velocity 

which was increased by 1 km.hr 1 every 3 minutes (Jones and Doust, 1996; Figure 2.5). 

Participants were instructed to continue exercising until volitional exhaustion. The peak rate 

o f O 2 consumption (V02peak) was reached when RER was greater than 1.15, heart rate (HR) 

o f 220-age (bpm), RPE o f  18 and/or a distinct plateau in oxygen consumption, the velocity at 

which this point occurred was defined as Vmax. V02peak was calculated as the average VO 2 

over the final minute o f  the protocol. Throughout the protocol participants were closely 

monitored for signs o f  hypoglycaemia, through frequent questioning o f how they were 

feeling, and observing for any symptoms such as confusion and pallor. All participants were 

given lots o f verbal encouragement during exercise.
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Figure 2.6: A typical screen shot of breath-by-breath data from the metamax-3b.

Table 2.6: Peak cardio-respiratory characteristics of participants across chapters 3 to 5.

Chapter 3 Chapter 4 Chapter 5
V 0 2peak (l.m in') 3.5 ±0.1 3.7 ±0.1 4.3 ±0.1
V 0 2peak (ml.kg.min1) 43.8 ± 1.0 44.9 ±0.7 50.9 ± 0.5
HRpcak (bpm) 190 ± 2 190 ± 1 192 ±2
Vniax (km.hr1) 12.0 ±0.2 11.9 ±0.2 12.5 ± 0.1

Note: Data presented as mean ± SEM.
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Using Vmax and V02peak> the velocity that elicits 70% V02peak could be calculated, as well as 

the corresponding VO2:

i.e. V max*0 .7  = trial velocity (km.hr'1), VC>2peak*0.7 =  70%  VC>2peak (l.min'1)

This intensity and duration was chosen because it falls within the current ACSM (2 0 0 6 )  

exercise guidelines for T1DM individuals. In all chapters, exercise was performed below 

ventilatory threshold (VT) velocity (Table 2 .7 ) .

Table 2.7: Summary of the velocities at which participants reached ventilatory threshold, during the 

maximal incremental treadmill assessment, and experimental trials’ treadmill velocity.

Chapter VT
(km.hr1) Trial Velocity (km.hr1)

3 10.1 ± 0.2 8.5 ±0.1

4 10.3 ±0.1 8.3 ±0.1

5 10.4 ±0.1 8.5 ±0.1
Note: Data presented as mean ± SEM

2.3.4 Experimental procedures

2.3.4.1 Catheterisation

Within each study, participants attended the exercise physiology laboratory at the same time 

(between 6 and 8 am) and 7 days apart. Prior to arrival at the laboratory all participants were 

instructed to consume 1 pint (568 ml) of water. Upon arrival to the laboratory, participants 

were seated while a 20-gauge catheter (Venflon, Becton Dickinson, Helsingborg, Sweden) 

was inserted into the ante-cubital vein, of the non-dominant arm, and secured with a Veca-C 

dressing (Venflon, Becton Dickinson, Helsingborg, Sweden). A 10 cm extension with 3-way 

stop cock was used to allow easy access for samples (Connect, Becton Dickinson, 

Helsingborg, Sweden; Figure 2.8). Saline (Sodium Chloride BP, 0.9% w/v, Braun, UK) was 

infused periodically to keep the catheter patent.
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2.3.4.2 Blood sampling

On the resting sample for each participant’s first trial, 15 ml o f blood was collected. Two 10 

ml syringes (BD 10 ml syringe, Luer-LokIM Tip, BD USA) and a 1 ml Ca2+-heparinised 

syringe (23 IU heparin, Rapidlyte, Bayer, USA) were filled with whole blood (Figure 2.7). 

One o f  the 10 ml syringes was filled with 4 ml o f blood only. Thereafter, on each sample 11 

ml o f blood was collected (one x 10 ml and one x 1 ml syringe). On the resting sample the 

syringe containing 4 ml o f whole blood was dispensed into an K7-EDTA tube (Vacuette, 

Greiner Bio-One, GmBH, Austria) which was sent to M orriston Hospital Biochemistry 

Laboratories for the analysis o f glycosylated Haemoglobin (H bA ic) by HPLC with cation 

exchange (G7, Tosoh, UK; Table 2.7). The 10 ml syringe was dispensed evenly into a serum 

separation tube (SST; Vacuette, Greiner Bio-One, GmBG, Austria) and Lithium-Heparin tube 

(Vacuette, Greiner Bio-One, GmBH, Austria).

jpT n‘f - ' 'y

■ *r’-

1 1 * ® ' '  i - ” - v :: E  *  ‘3 g |

f u r  i
'  . ' i  " ! '1 ,  T  .

w  ■■ T
' . .  V -  ; f ' T . ’ H r

Figure 2.7: Withdrawal of whole blood using a 1 ml Ca2 -heparinised syringe (left) and a 10 ml 

syringe (right).

Two hundred pi o f 0.1 mol-1'1 o f both ethylene glycol bis-(|3-aminoethyl ether)-N’,N ’,N ’,N '- 

tetraacetic acid (EGTA; SIGMA, USA), as anticoagulant and glutathione (SIGMA, USA) as 

antioxidant (Appendix H), were added to the Lithium-Heparin tube before being immediately
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placed in the centrifuge (Heraeus Labofuge 400R, Kendro Laboratory Products, Germany) 

for 10 minutes at 3000 revmin"1. The sample in the SST was left to clot, on an orbital shaker 

(VSR 23, Grant, UK), for 30 minutes before also being centrifuged for 10 min at 3000 

rev-min'1; the resultant serum and plasma were extracted and placed into 5 ml aliquot tubes 

(Sarstedt, Germany) and then immediately stored at -80 °C (Innova U101, New Brunswick 

Scientific, UK; Figure 2.8).

The 1 ml Ca2+-heparinised syringe was immediately analysed for blood pH, Hct, glucose and 

lactate (GEM 3000, Instrumentation Laboratories, Warrington, UK; Appendix I) and 

haemoglobin (Hemocue AB, Sweden; Figure 2.7) and then placed on ice, in case a repeat 

sample was required. Pre and post-exercise quantification of Hb and Hct allowed plasma 

volume shifts to be calculated via the method of Dill and Costill (1974; Appendix J).

Table 2.8: Glycosylated haemoglobin values (HbA]c %) across chapters 3 to 5.

Chapter

Participant 3 4 5
1 8.4 9.8 8.5
2 8.9 - -
3 7.5 7.3 -
4 8.4 - -
5 8.2 - -
6 8.3 9.9 7.6
7 7.7 8.0 9.8
8 9.2 9.3 -
9 - 7.8 oo bo

10 - 6.1 -
11 - 5.9 -
12 - - 8.9
13 - - 8.1
14 - - 6.7

Mean ± SEM 8.3 ±0.01 8.0 ± 0.2 8.3 ±0.1
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GEM 3000 Reliability

The GEM 3000 was tested for reliability on whole blood, which was placed on ice between 

samples, ranging from very low (<3 mmolT1) to very high (>20 mmol.I'1) concentrations 

(Table 2.9). The GEM system was considered reliable with a coefficient of variation of < 10 

% at all blood glucose concentrations.

Table 2.9: GEM 3000 coefficient of variation for 3 consecutive blood glucose samples at 

concentrations ranging from hypoglycaemic to hyperglycaemic.

Blood Glucose Sample (mmol.11)
1 2 3 Mean BG (mmol.l1) SD COV (%)

2.6 2.4 2.4 2.5 0.1 4.7
3.3 3.3 3.2 3.3 0.1 1.8
4.9 4.7 4.6 4.7 0.2 3.2
7.2 7.1 7 7.1 0.1 1.4
9.3 8.3 8 8.5 0.7 8.0
11.4 11.2 10.9 11.2 0.3 2.3
15.2 14.5 14.1 14.6 0.6 3.8
16.1 16.2 15.8 16.0 0.2 1.3
23.1 22.9 22.6 22.9 0.3 1.1
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Figure 2.8: Step by step processing of venous blood samples.
65



2.3.5 Quantification of blood, serum and plasma analytes

Table 2.10 provides a summary of the analysis of blood across chapters 3 to 5.

Table 2.10: Summary of blood analysis across chapters 3 to 5.

Blood Analytes

Variable Chapter 3 Chapter 4 Chapter 5

Glucose Glucose Glucose
Glycaemic

HbAic HbA]c HbAic

Lactate Lactate Lactate
Acid-Base

pH pH pH
Hct Hct Hct

Plasma Volume
Hb Hb Hb

Insulin - Insulin
Glucagon Glucagon -

Gluco-regulatory Adrenaline Adrenaline Adrenaline
Noradrenaline Noradrenaline Noradrenaline

Cortisol Cortisol Cortisol

- NEFA NEFA

Lipids - Glycerol -

- Triglyceride Triglyceride

Ketoacid P-hydroxybutyrate p-hydroxybutyrate P-hydroxybutyrate

2.3.5.1 Blood glucose and lactate

Blood glucose and lactate were analysed using the GEM 3000. The glucose and lactate

sensors are amperometric electrodes consisting of a platinum electrode poised at a positive

potential with respect to the card reference electrode. Glucose or lactate determination is

accomplished by enzymatic reaction of glucose or lactate with oxygen in the presence of

glucose oxidase or lactate oxidase and the detection of the resulting hydrogen peroxide with
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the platinum electrode. The current flow between the platinum electrode and the ground 

electrode is proportional to the rate at which hydrogen peroxide molecules diffuse to the 

platinum and are oxidised, which in turn is directly proportional to the metabolic (glucose or 

lactate) concentration:

I = (S x  metabolite) + IZ

Where I is the electrode current, S is the sensitivity, and IZ is the zero current. The value S 

and IZ can be calculated from the calibration data for the sensor. The equation can be solved 

for the metabolite concentration, where I becomes the electrode current produced by the 

blood sample. Figure 2.9 illustrates the configuration o f the glucose/lactate sensor. The 

sensor is constructed o f a 3 layer composite m embrane consisting o f an inner layer for 

screening out the interferences, the enzyme for oxidation reaction, and the outer layer for 

controlling the metabolite diffusion in the enzyme layer.

Counter electrode Enzyme electrode

Diffusion controllingEnzyme layer_______________
(G lucose or Lactate oxidase) 

Interference

layer

Sam ple pathrejection layer

Pt wireSensor well

Sensor card

S ilve r p rin t

3-electrode
potentiostat

Card reference electrode

Figure 2.9: Internal components o f the glucose and lactate sensor within the GEM 3000.
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2.3.5.2 Serum  and plasm a analytes

Samples were left to thaw to room temperature and were placed on a vortex (IKA Vortex, 

Fisher Scientific, UK) before analysis. Detailed descriptions of the methods performed for 

each analyte are presented in Table 2.11 and described below.
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2.3.5.2.1 Insulin

The assay is a two-site sandwich immunoassay, with a solid phase antibody specific to 

insulin immobilised onto microtitre wells and a soluble antibody labelled with an acridinium 

ester. The serum samples are incubated at 37 °C along with standards, quality control 

samples and the labelled antibody in the antibody coated wells. This causes the insulin to 

become ‘sandwiched’ between the 2 types of antibody molecules. The excess labelled 

antibody is then removed in a wash step before reading in a plate reader with in situ reagent 

addition capability to quantify the bound luminesence. The acridinium ester is a stable 

compound, which when oxidised under alkaline conditions, will generate light, the brightness 

of which is linked to the amount of label, and hence insulin, present.

Summary o f Procedures

Labelled insulin antibody was pipetted into all wells followed by standard, quality control 

(Lyphocheck, Biorad, UK) or serum samples. The plate was then covered with an adhesive 

plate sealer and incubated for 2 hours at 37 °C. Once incubation was complete, the plate was 

washed 3 times with an automatic plate washer (Wellwash 4, Denley Ltd, Sussex, UK.), 

before being read in a plate luminometer (Microplate luminometer LB 96P, EG&G Berthold, 

Germany). From the resultant counts, a calibration curve was set up to calculate the 

concentration of the unknown samples (Multicalc, Pharmacia Wallac, Milton Keynes, UK).

Cross-reactivity — Influence o f the insulin analogues

The Invitron assay is 100 % cross reactive with human insulin, however as T1DM individuals 

were examined, the influence of any residual P-cell function was considered negligible. 

Additionally, this assay is 100 % cross reactive with insulins lispro, aspart and glargine. 

Therefore, as insulin glargine has been demonstrated to elicit a peak less, steady 24 hour
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insulin concentration (Gulve, 2008) and is not effected by exercise (Peter et al., 2005), any 

changes in insulin concentrations detected by this assay were considered to be due to changes 

in the appearance/disappearance of insulin lispro or aspart. The Invitron assay is 300 % cross­

reactive with insulin detemir. Therefore, within chapters 3 and 5, only T1DM individuals 

using insulin glargine could be examined/recruited.

2.3.5.2.2 Glucagon

The glucagon ELA for the determination of plasma pancreatic glucagon within plasma is 

based on competitive enzyme immunoassay. The 96 well plate is coated with rabbit anti­

glucagon antibodies. Glucagon standards, samples and labelled antigen are added to the wells 

for a competitive immunoreaction. After incubation and plate washing, Horse radish 

peroxidase (HRP) labelled streptavidin (SA) is added to form HRP labelled SA-biotinylated 

pancreatic glucagon antibody complexes on the wells surface. The HRP activity is 

determined by the addition of O’phenylenediamine dihydrochloride (OPD), imitating a 

colour reaction, and pancreatic glucagon can subsequently be determined.

General Procedure

Glucagon standards or plasma samples were pippetted into the wells and incubated at 4 °C 

for 24 hours. After incubation, the wells were manually washed 3 times and the SA-HRP 

solution was added to the wells before being incubated for 1 hour at room temperature on a 

microtiter plate shaker (Microplate Orbital Shaker 115 Vac - 60 Hz, Cole-Parmer, UK). After 

incubation the wells were washed a further three times before adding OPD to the 96 wells. 

The plate was left at room temperature for 20 minutes for colour reaction, before the addition 

of stop solution. The plate was immediately read at an optical absorbance of 490 nm (Fluostar 

- Omega Plate Reader, BMG Labtech; UK) with a calibration curve created to calculate the 

concentrations of the unknown samples.

71



2.3.5.2.3 Catecholamines (Adrenaline and Noradrenaline)

The CatCombi, a sandwich ELISA, was used for the determination of plasma concentrations 

of adrenaline and noradrenaline. The plate wells are coated with goat anti-rabbit antibody. 

The addition of the control and plasma samples results in the epitope of adrenaline or 

noradrenaline, within the sample, binding to the plate wells during the incubation period. The 

addition of a second antibody, which binds to a different region of the adrenaline or 

noradrenaline molecule, and substrate solution induces a colour reaction; the density of which 

is directly proportional to the amount of adrenaline or noradrenaline within the sample.

General Procedure

Phase 1- Extraction

Note: Incubation includes the plate being placed on an orbital shaker at room temperature. 

The methods describe the process for three separate plates (extraction plate, and plates for the 

separate quantification of adrenaline and noradrenaline).

Standards, controls and plasma samples were pippetted into the wells along with extraction 

buffer and incubated for 30 minutes. After removal of residual fluid, bi-distilled water was 

added to each well and the plate was incubated for 5 minutes. After removing all fluid from 

the plate wells, extraction buffer and acylation reagent was added before a 20 minute 

incubation period. After this, release buffer was added to all wells before being incubated for 

a further 30 minutes.
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Phase 2

Freshly prepared catechol-O-methyl transferase solution was added to each well along with 

the extracted standard, control and plasma samples. Next adrenaline and noradrenaline 

antiserum was added to each plate, respectively, before being incubated for 2 hours.

Phase 3 -ELISA

After incubation, the plate was washed 3 times before enzyme conjugate was added to each 

well. The plates were incubated for a further 60 minutes. Following this, the plates were 

manually washed a further three times before substrate solution was added to each well and 

the plates were incubated for 40 minutes. After incubation para-Nitrophenylphosphate stop 

solution was added to each well the plate was subsequently measured at an optical density of 

405 nm. From this, a calibration curve was created to calculate the concentrations of the 

unknown samples.

2.3.5.2.3 Cortisol

Serum cortisol was measured by routine hospital procedures using a competitive 

electrochemiluminescence immunoassay (Cortisol, Cobas-Roche, UK) on an automated 

system (Roche/Hitachi Modular P800 analyser, Roche Diagnostics, Germany).

Assay Principle

This assay makes use of the competition test principle using a polyclonal antibody which is 

specifically directed against cortisol. Endogenous cortisol in the sample which has been 

liberated from binding protein, with danazol, competes with exogenous cortisol derivative, 

which has been labelled with ruthenium complex, for the binding sites on the biotinylated 

antibody.
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2.3.5.2.4 Non-esterified fatty acids (NEFA)

Serum non-esterifled fatty acids were analysed by routine hospital procedures using an 

enzymatic colourimetric assay (NEFA-HR(2), Wako Chemicals, Germany) on an automated 

system (Roche/Hitachi Modular P800 analyser, Roche Diagnostics, Germany).

Assay Principle

NEFA within the serum sample is converted to Acyl-CoA, AMP and pyrophosphoric acid 

(PPi) by the action of Acyl-CoA synthetase (ACS), under coexistence with coenzyme A 

(CoA) and adenosine 5-triphosphate disodium salt (ATP). Obtained Acyl-CoA is oxidised 

and yields 2,3-trans-Enoyl-CoA and hydrogen peroxide by the action of Acyl-CoA oxidase 

(ACOD). In the presence of peroxidase (POD), the hydrogen peroxide formed yields a blue 

purple pigment by quantitative oxidation condensation with 3-Methyl-N-Ethyl-N-(P- 

Hydroxyethyl)-Aniline (MEHA) and 4-amino-antipyrine (4-AA). NEFA concentration is 

obtained by measuring absorbance of the blue purple pigment.

2.3.5.2.5 Triglycerides

Serum triglycerides were analysed by routine hospital procedures using an enzymatic 

colourimetric assay (Triglycerides GPO-PAP, Cobas-Roche, UK) on an automated system 

(Roche/Hitachi Modular P800 analyser, Roche Diagnostics, Germany).

Assay Principle

This assay uses a lipoprotein lipase from micro-organisms for the rapid and complete 

hydrolysis of triglycerides to glycerol followed by oxidation to dihydroxyacetone phosphate 

and hydrogen peroxide. The hydrogen peroxide produced then reacts with 4-aminophenazone 

and 4-chlorophenol under the catalytic action of peroxidase to form a red dyestuff (Trinder
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endpoint reaction). The colour intensity of the red dyestuff formed is directly proportional to 

the triglyceride concentration and can be measured photometrically.

2.3.5.2.6 Glycerol

Glycerol was analysed using an enzymatic colourimetric assay (Caymans Glycerol Assay, 

Cayman Chemical, USA).

Assay Principle

Glycerol is phosphorylated by glycerol kinase to produce glycerol-3-phophate and adenosine- 

5’-diphophate. The glycerol-3-phosphate is oxidised by glycerol phosphate oxidase 

producing dihydroxyacetone phosphate and hydrogen peroxide. Peroxidase catalyses the 

redox-coupled reaction of H2O2 with 4-aminoantipyrine (4-AAP) and N-ethyl-N-(3- 

sulfopropyl)-m-anisidine (ESPA), producing a purple product, with an absorbance maximum 

at 540 nm. The intensity of the purple colouring is proportional to the concentration of 

glycerol.

2.3.5.2.7 P-Hydroxybutyrate

Assay Principle

p-hydroxybutyrate was analysed using an ELISA assay (Ranbut, Randox Laboratories, UK). 

The assay principle relies on the production of acetoacetate and H+ after P-hydroxybutyrate 

has been oxidised by hydroxybutyrate dehydrogenase.

P-hydroxybutyrate + NAD+ — 3-hydroxybutyrate dehydrogenase — Acetoacetate + H+ 

NADH.
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The change in absorbance at 340 nm can be directly correlated with the P-hydroxybutyrate 

concentration. This assay is sensitive to 0.1 m m ol.l1 and has an intra assay reliability of 

3.7%.

2.4 Hypoglycaemia

Throughout the post-exercise period participants were constantly monitored for signs of 

hypoglycaemia. While in a rested position, research staff constantly engaged the participants 

in conversation, while looking for signs of hypoglycaemia such as confusion and pallor, 

moreover the participants were frequently asked how they were feeling and if they were 

experiencing any typical symptoms of hypoglycaemia (e.g. paraesthesia and difficulty 

focusing). If at any point in the post-exercise period blood glucose dropped below 3.5 

mmolT1 (Rabasa-Lhoret et al., 2001), 117 ml of a sports drink (20g CHO; Lucozade®, 

GlaxoSmithKline, UK) was administered.
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2.5 Pre-exercise meal

Chapter 3

Prior to testing, local and national T1DM individuals were sent questionnaires, about their 

insulin regimen and exercising habits, by email, mail and over the phone (e.g. Appendix K). 

From this information (n = 20) it seemed a typical pre-exercise meal consisted of largely fruit 

and wheat based cereals with around 60 - 80 g of CHO. In light of this, and multiple pilot 

‘tasting’ sessions, a meal of peaches and wheat was the most palatable and easy to store 

combination and caused no GI discomfort. Participants consumed a 1.12 MJ carbohydrate 

based meal (60 g CHO, 2 g Protein, 2 g Fat) of a medium glycaemic index (GI 46 - 50; 40 g 

peaches, 20 g wheat) which was blended and mixed with 50 ml of distilled water.

Chapter 4

Participants consumed 75 g of either a high GI (dextrose; My Protein, UK; GI 96) or low GI 

(Isomaltulose; Beneo Group, Germany; GI 32) carbohydrate, mixed with 750 ml of water in a 

10% solution (Peronne et al., 2005). Seventy-five g of carbohydrates were administered 

based on resting carbohydrate oxidation rates of -0.25 g.min'1 and maximal rates of 

exogenous carbohydrate oxidation during exercise o f -1 g.min'1 (Jeukendrup, 2004), i.e. rest 

period: 0.25 g x 120 = 30 g, exercise: 1 x 45 = 45 g. Dextrose and isomaltulose were chosen 

as these two carbohydrate forms represent the highest and lowest GI carbohydrates currently 

available in powdered supplement form. This made the formulation of two carbohydrate only 

solutions, at extremes of the GI scale, possible.

Chapter 5

Based on the recommended strategy of chapter 4, participants consumed 75 g of isomaltulose 

as the pre-exercise meal.
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2.6 Data collection following the laboratory testing

On each occasion, heart rate (60 s sample rate; RS-400, Polar, Finland) and the number of 

steps taken (60 s sample rate; Sensewear Pro Armband™; Bodymedia, PA, USA) were 

recorded for 21 hours after leaving the laboratory to quantify post-exercise activity. 

Participants were given blank diary sheets to record blood glucose from their own glucose 

meters, food intake and the number of units of insulin administered over the 21 hour post­

laboratory period (e.g. Appendix L). These variables allowed for calculation of glucose area 

under the curve (calculated using the method of Wolever and Jenkins (1986) and time 

averaged for the 21 hour post-exercise period), energy and carbohydrate intake (Compeat 

Pro, Nutrition Systems, UK), insulin administration and the frequency of hypoglycaemic (< 

3.5 mmol.l'1) and low blood glucose (< 4 mmol.I'1) incidents encountered.

2.6.1 Self-recorded blood glucose

Within in chapters 3 and 4, the participants’ own glucose meters were used to measure post­

laboratory blood glucose responses. Each monitor was tested for reliability, using 5 samples, 

against a 6.3 (CV 0.6 -  2.4 %) and 12.5 (CV 0.8 -  2.6 %) mmol.l’1 glucose standard, all 

monitors demonstrated adequate limits of reliability. Within chapter 5, participants were 

provided with a glucose monitor (Freestyle Lite, Abbott, UK) which was tested for reliability 

against whole blood, using 3 consecutive samples, at concentrations ranging from 

hypoglycaemic to hyperglycaemic (Table 2.12). Moreover, the device was in agreement with 

the GEM 3000 (Figure 2.10). Throughout the post-laboratory period blood glucose was self­

recorded every 2 hours until going to sleep and immediately upon awaking. Blood glucose 

was recorded 6 times on each occasion; two hour intervals were based upon data provided by 

20 T1DM individuals who were questioned as to how often they record their blood glucose 

after performing their typical activity session.
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Within the laboratory, participants received carbohydrate supplementation if blood glucose 

fell below 3.5 mmol.l'1. Therefore, hypoglycaemia was defined as a blood glucose 

concentration <3.5 mmol.l'1 within and post-laboratory (Rabasa-Lhoret et al., 2001). Due to 

inter-individual differences in blood glucose sensing, and participants regularly checking 

their blood glucose concentrations, falling blood glucose may have been corrected before 

leading to hypoglycaemia. Therefore, a blood glucose threshold of <4 mmol.l'1 was defined 

as ‘low blood glucose’.

Table 2.12: Freestyle lite® coefficient of variation for 3 consecutive blood glucose samples at 

concentrations ranging from hypoglycaemic to hyperglycaemic.

Blood Glucose Sample (mmol.l1)
1 2 3 Mean BG (mmol.l1) SD CV (%)

3.1 3.2 3.0 3.1 0.1 3.2
3.8 3.8 3.4 3.7 0.2 6.3
4.6 4.6 4.6 4.6 0 0
5.4 5.4 5.5 5.4 0.1 1.1
6.8 7.6 7.7 7.4 0.5 6.7
9.4 9.4 10.1 9.6 0.4 4.2
11.4 11.5 10.9 11.3 0.3 2.9
12.3 11.2 12.6 12.0 0.7 6.1
15.7 15.9 15.9 15.8 0.1 0.7
17.4 17.7 15.8 17.0 1.0 6.0
21.4 22.2 21.4 21.7 0.5 2.1
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Figure 2.10: Bland and Altman (1986) plot comparing the agreement between the GEM 3000 and

Freetyle lite. Note: R = 0.994.

2.6.2 Post-laboratory activity

Post-laboratory activity was assessed through 60 s sampling of heart rate and steps taken 

(Sensewear Pro Armband™; Bodymedia, PA, USA). The Sensewear Pro Armband™ (Figure 

2.11) is a two dimensional accelerometer, taking into account vertical and horizontal 

acceleration, worn on the right, upper arm. During a bout of exercise the device is highly 

reliable with coefficients of variation for steps taken of <10%. Moreover, the Sensewear Pro 

Armband™ recording of step count in free living has been shown to be in agreement with 

other valid activity monitors (Hanby et al., 2005).
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Figure 2.11: The Sensewear Pro ArmbandIM.

2.6.3 Self-recorded dietary intake and insulin administration

Before the trials began participants were provided with detailed instructions o f how to 

complete dietary assessments in the most detail possible. For example participants were given 

a demonstration o f how to obtain the dietary information from food stuffs (i.e. the nutritional 

content section on the food item). Moreover, participants were provided with example dietary 

assessment sheets (Appendix M). After completion o f each experimental trial participants 

returned the dietary sheets to the research team, all sheets were immediately checked for 

detail and if  any issues arose they could be explored further.

Participants were also instructed to record the number o f rapid-acting insulin units 

administered with each meal. Moreover, participants were required to indicate if  additional 

units had been added to correct for high blood glucose, or conversely units had been omitted 

to correct for low blood glucose.



2.7 Data analysis

2.7.1 Calculation of blood glucose area under the curve

The calculation o f  blood glucose area under the curve (BG auc) was calculated via the method 

o f W olever and Jenkins (1986) and was subsequently time averaged. Total BGAuc was 

averaged to m m ol.l" '.hour1.

17.0 n

5.0

REST 60 120

Figure 2.12: Exam ple calculation o f blood glucose area under the curve.

1) Calculations

A = (((BG6o -  B G REsT )/2)+B G REsT)*Tim e (m in )

•  (14 -  6 .2)/2 =  3.9

• 3.9 + 6.2 = 10.1

• 10.1 * 60 = 606 mmol.I"1.min"1

B = (((BG 120 -  BG6o)/2)+BG60)*Time (min)

• (14.8 -  14)/2 = 0.4

• 0 . 4 + 1 4 - 1 4 . 4

• 14.4 * 60 = 864 mmol.I"1.min"1 

Total B G au c = A + B = 1470 mmol.I"1.min"1
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2) Time Average

Total BGauc (mmol.l'1.min'1) / (total hours * 60) 

•  1470 / (2*60) = 12.3 ininol.l‘.hour11

2.7.2 Calculation of substrate oxidation rates and energy expenditure

The metasoft software (Cortex Biophysik, Liepzig) uses an automated calculation of inspired 

volume (Vi), using the Haldane Transformation method (below), to calculate inspired and 

expired VO2 and VCO2.

Haldane Transformation method:

V i=  f en 2%
_________  x VE

F iN 2%

F iN 2%  (mass N2 Inspired, constant) = 100% - 20.93 -  0.03 = 79.04 

F e N 2%  (mass N2 Expired) = 100 -  FE02 -  FECC>2 

Calculating VO2 and VCO2:

VO2 inspired = Vj x F1O2
100

VO2 expired = VE x FEC>2
100

VCO2 inspired = Vix F1CO2
100

VCO2 expired = VE x FECC>2
100
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Indirect Calorimetry

Non-protein respiratory exchange ratios were used to calculate the rates of carbohydrate and 

lipid oxidation, using the equations described by Frayn (1983).

Carbohydrate oxidation (g.min'1) = 4.55 VCO2 -  3.21 VO2

Fat oxidation (g.min'1) = 1.67 VO2 -  1.67 VCO2

Although ketone body formation can influence RER (Frayn, 1983), all individuals that took 

part in the experimental trials were being treated with a basal-bolus regimen, and only bolus 

insulin was manipulated, therefore, elevated ketone body formation was not considered an 

issue. Breath-by-breath respiratory data were time averaged to 1 minute.

Calculation o f fuel oxidation and energy expenditure

Average carbohydrate and lipid oxidation rates were obtained through an average of either 

the 15 minute resting collection or the 45 minutes of running. Time course changes in 

carbohydrate and lipid oxidation were calculated in 10 minute blocks, not including the initial 

5 minutes of the exercise bout.

Total energy expenditure was calculated through the sum of energy expended, within each 

minute, over the 45 minutes of running. For example:

• Total oxidation over 45 minutes: CHO = 110 g, lipids = 22.5 g

• (110*4) + (22.5*9) = 643 kcal

• 643*0.0042 = 2.69 MJ
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2.7.3 Sam ple size calculation

Based on the data of Rabasa-Lhoret et al. (2001) for a statistical power of 80%, 33 subjects 

were required. However, due to the strict inclusion criteria and the time commitment required 

for completion of these trials, a sample size of 33 was outside of the pool of available T1DM 

individuals. Therefore, a sample of sufficient size to perform parametric statistics was 

attained. Statistical power across chapters 3 to 5 ranged from 45 to 59%.

2.7.4 Fasting blood glucose variability

For an inference into the variability that exists in fasted blood glucose concentrations within 

T1DM individuals, participants within chapter 3 completed a 3 week diary prior to 

participation in the trials.

Table 2.13: Twenty-one day morning fasted blood glucose concentrations of participants within

chapter 3.

Participant ID Mean Blood Glucose (mmol.l1) SD Range (mmol.l1) COV (%)
1 7.9 4.6 2.2-19.8 59
2 4.8 1.9 2.7 - 8.6 39
3 7.6 3.0 2.8-13.4 40
4 6.9 2.3 4.4 - 10.8 32
5 7.1 2.9 2.5-11.7 40
6 7.0 3.5 3.4-13.3 51
7 4.6 1.4 2 .9-8 .2 29
8 7.7 4.6 2.3 - 16.3 59
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2.7.5 Statistical analysis

Statistical analysis was performed using SPSS software (version 16; SPSS Inc., Chicago, IL), 

with significance set at P<0.05. Data were tested for normal distribution (Shapiro-Wilk test) 

and subsequently analysed using repeated-measures ANOVA on two (chapter 4) or four 

(chapter 3 and 5) factors (treatment x time) with Bonferroni adjustment and dependent t-tests 

carried out where relevant. Where there were significant time and/or time*condition effects, 

P values and effect size (partial-eta2) were reported. All results were reported as the mean ± 

SEM.

Data described as the change from rest (A) were calculated by subtracting resting values 

away from all subsequent sample time-points.
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Chapter Three

The metabolic and glycaemic effects of 

reductions to pre-exercise rapid-acting insulin

dose.
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3.1 Introduction

Hypoglycaemia is a frequent occurrence in individuals with type 1 diabetes (T1DM; Cryer et 

al., 2003) and a major factor for the avoidance of exercise (Brazaeu et al., 2008). In an effort 

to better preserve blood glucose concentrations and combat the heightened risk of 

hypoglycaemia during and after exercise, individuals with T1DM are recommended to reduce 

their pre-exercise insulin dose (De Feo et al., 2006; Grimm, 2005; Mauvais-Jarvis et al., 

2003; Rabasa-Lhoret et al., 2001).

Within the research examining pre-exercise insulin reductions, recommendations have varied 

from 10-40% (De Feo et al., 2006), 10-50% (Grimm, 2005), 50-90% (Mauvais-Jarvis et al., 

2003) and 50-75% (Rabasa-Lhoret et al., 2001). Much of the variation in these findings can 

be attributed to differences in the insulin regimen used by the participants, e.g. 

regular/Neutral Protamine Hagedom insulin (Mauvais-Jarvis et al., 2003) or Ultralente with 

prandial lispro (Rabasa-Lhoret et al., 2001), and differences in the intensity and duration of 

the exercise model. Another limitation, within the existing literature, is the examination of 

T1DM individuals performing cycling exercise only. Cycling is a primarily concentric form 

of exercise i.e. the muscle shortens as it contracts. However, in many daily activity patterns 

including body weight supporting exercises such as jogging or running there is a significant 

proportion of eccentric muscle actions, where the muscle lengthens in the performance of the 

movement. Eccentric muscle actions have been demonstrated to hinder insulin action and 

glucose uptake for as long as 48 hours following exercise (Asp et al., 1995; Asp et al., 1996). 

However to date, the impact of combined concentric and eccentric movement patterns, such 

as running, on post-exercise glucose responses has been neglected. Furthermore, an important 

point of the previous research has been the limited time window of examination of the 

potential for the development of hypoglycaemia after exercise with some studies monitoring
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participants for just 1-2 hours after exercise (Mauvais-Jarvis et al., 2003; Rabasa-Lhoret et 

al., 2001). Low blood glucose, leading to hypoglycaemia may occur several hours after 

exercise (MacDonald, 1987; Tsalikian et al., 2005), so studies that increase the observation 

window following the cessation of exercise are required to characterise the impact of exercise 

on post-exercise glycaemia. Moreover, as pre-exercise insulin dose has proven implications 

for post-exercise glycaemia, and glycaemia is associated with hunger and satiety (Russell et 

al., 2001) an examination of how reductions to pre-exercise insulin dose affects the voluntary 

diet intake of T1DM individuals is also required. In addition, reduction or omission in insulin 

dose is a significant factor in the development of diabetic ketoacidosis (Wallace and 

Matthews, 2004); keeping this in mind, exercise stimulates increases in ketogenic hormones. 

Therefore, lower circulating insulin concentrations and exercise induced increases in counter- 

regulatory hormones could create a milieu for increased production of ketone bodies; 

however, there is limited data to refute this.

Therefore, this study examined the metabolic and glycaemic responses to reductions in pre­

exercise rapid-acting insulin dose for 24 hours after running in T1DM individuals.
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3.2 M ethodology

Eight T1DM individuals (7 males, 1 female, 34 ± 2 years, B M I27 ± 1 kg/m2) with a duration 

of diabetes of 16 ± 1 years and HbAic of 8.3 ±0.1%  were recruited for this study. Participant 

anthropometric (Table 2.5), glycaemic control (Table 2.8), and insulin regimen (Table 2.2) 

characteristics are presented within chapter 2.

After preliminary testing (Table 2.6) participants attended the laboratory on four occasions 

after an overnight fast and having consumed similar evening meals prior to each trial. Upon 

arrival participants received catheterisation in their non-dominant arm and resting blood 

samples were processed for glucose, lactate, pH, insulin, glucagon, adrenaline, noradrenaline, 

cortisol and p-hydroxybutyrate (section 2.3.5). Participants were then instructed to ingest a 

1.12 MJ meal (60 g carbohydrates, 2 g protein, 2 g fat; wheat and peaches) and administer 

either Full (7.3 ± 0.2 IU), 75% (5.4 ± 0.1 IU), 50% (3.7 ± 0.1 IU), or 25% (1.8 ± 0.1 IU) of 

their rapid-acting insulin dose into the abdomen (subcutaneously). Subsequent blood samples 

were taken for 2 hours before performing 45 minutes of running at 70 ± 1% V02peak and for 

three hours post-exercise (Figure 3.1). Cardio-respiratory parameters were collected at rest 

and during exercise.

Participant activity and heart rate were recorded for 24 hours after exercise; moreover, for 21 

hours after leaving the laboratory participants self-recorded blood glucose, dietary intake, 

insulin administration and hypoglycaemic incidences.
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Figure 3.1: Schematic diagram of the experimental protocol of chapter 3.

3.2.1 Statistical Analysis

Statistical analysis was performed using SPSS software (version 16; SPSS Inc., Chicago, IL), 

with significance set at P<0.05. Data were tested for normal distribution (Shapiro-W ilk test) 

and subsequently analysed using repeated-measures ANOVA on four factors (treatment x 

time) with Bonferroni adjustments and dependent t-tests carried out where relevant. Data are 

presented as mean ± SEM.
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3.3 Results

Due to insulin assay cross-reactivity with insulin detemir, only individuals treated with 

insulin glargine could be included in the analysis. Therefore, participant 6 was removed from 

analysis and n = 7.

3.3.1 Physiological responses to exercise

There were no effects of condition on the percentages of peak rate of O2 consumption (Full 

71 ± 0.6, 75% 69 ± 0.8, 50% 71 ± 0.5, 25% 70 ± 0.5 %, P = 0.48) or %HRpeak (Full 83 ± 1, 

75% 82 ± 1, 50% 83 ± 1, 25% 83 ± 1 %, P = 0.43; Table 3.1) during exercise.

Exercise intensity fell within the current ACSM guidelines for diabetes with participants on 

average exercising at 67 ± 4% of VO2 reserve and 58 ± 6% of HR reserve, during the 45 

minute treadmill run.
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3.3.2 Blood glucose responses

Absolute and delta blood glucose responses are illustrated in Figures 3.2 A-C. There were no 

differences in fasting blood glucose concentrations (Full 9.4 ± 0.5, 75% 7.5 ± 0.4, 50% 9.2 ± 

0.7, 25% 7.5 ± 0.6 mmol.l’1, P = 0.58). There were interactions between insulin dose and 

both absolute (.P = 0.014, partial-eta2 = 0.399) and delta blood glucose responses (P = 0.012, 

partial-eta2 = 0.401) (Figure 3.2).

On average, pre-exercise peak blood glucose concentrations occurred 60 minutes after meal 

ingestion and insulin administration under Full, 75% and 50%, however, occurred at 90 

minutes under 25%. Peak blood glucose concentrations under the reduction trials were 

greater than under Full (Table 3.2). At 120 min post-meal ingestion, blood glucose 

concentrations elicited under Full (+3.9 ± 0.4 mmol.l’1), were lower than 75% (P = 0.02) and 

25% (P = 0.02), but similar to 50% (P = 0.11, Table 3.2). The reduced dose trials were 

statistically similar (P>0.05, Table 3). Exercise resulted in a decrease in blood glucose 

concentrations under all conditions (P<0.01) with the decline under Full (6.1 ± 0.4 mmol.l'1) 

tending to be greater than 75% (4.3 ± 0.5 mmol.l’1, P = 0.08), and 25% (3.2 ± 0.4 mmol.l’1, P 

= 0.04) but similar to 50% (5.5 ± 0.5 mmol.l'1, P = 0.21). The insulin reduction trials were 

not different (Figure 3.2 B and C).

The change from 0 to 180 minutes was similar across conditions (Full A+0.3 ± 0.5; 75% A- 

0.3 ± 0.5; 50% A-2.2 ± 0.3; 25% A-1.4 ± 0.7 mmol.l’1, P>0.05) with blood glucose 

concentrations at 180 minutes similar to 0 minutes under all conditions (Figure 3.2 B and C). 

Post-exercise blood glucose area under the curve ( B G a u c )  was lowest under Full in 

comparison with the reduction trials (Full 7.3 ± 0.4 vs. 75% 9.2 ± 0.5; 50% 8.5 ± 0.4; 25%

11.2 ± 0.7 mmol.l'1.hour'1, P<0.05), with B G a u c  greater under 25% in comparison with all 

other trials (P<0.05).
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Hypoglycaemia and low blood glucose

During the trial period, under Full, there were 3 occasions where blood glucose reached 

hypoglycaemic concentrations (two at 0 minutes and one at 180 minutes post-exercise). 

There was a single case of low blood glucose under 75% (180 minutes post-exercise) and 

50% (180 minutes post-exercise), and one case of blood glucose reaching hypoglycaemic 

concentrations under 25% (180 minutes post-exercise).

3.3.3 Serum insulin responses

Serum insulin responses are reported in Figure 1A. There were no significant differences in 

fasting serum insulin (Full 115 ± 15, 75% 125 ± 15, 50% 127 ± 19, 25% 126 ± 13 pmol.l'1, 

P = 0.63). There was a significant time effect (P = 0.003 partial-eta2 — 0.611) and a 

significant time*condition interaction (P = 0.012, partial-eta2 = 0.321) within the serum 

insulin responses (Figure 3.2A). The peak insulin concentrations occurred 60 minutes after 

administration, regardless o f dose (Table 3, Figure 3.2A). Insulin concentrations elicited at 

this time point under Full were similar to 75% (P = 0.18) and 50% (P = 0.14), but tended to 

be greater than 25% (P = 0.06). The reduced dose trials were not statistically different 

(P>0.05, Table 3.2). Pre-exercise serum insulin concentrations were greatest under Full, 

however, these differences did not reach statistical significance (Full 112 ± 15; 75% 86 ± 10, 

50% 56 ± 7 ,25% 55 ± 5 pm ol.l1,P>0.05).

The change in serum insulin concentrations with exercise was greater under 50% and 25% 

(50% A+31 ± 5; 25% A+48 ± 9 pmol.l'1) when compared to Full and 75% (Full A+19 ± 8; 

A+15 ± 7 pmol.l'1, P<0.05). Immediate post-exercise circulating insulin was similar to pre­

exercise concentrations under Full and 75%, but tended to increase under 50% (P = 0.07)
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and 25% (P = 0.07) (Table 3.2 and Figure 3.2A). The decline in insulin in the 3 hour 

recovery period under Full (A-142 ± 13 pmol.l'1) was greater under 25% (A-92 ± 7 pmol.l'1, 

P = 0.03) and tended to be greater than 75% (A-115 ± 7 pmol.l'1, P = 0.08) but similar to 

50% (A-138 ± 15 pmol.l'1, P = 0.31); there were no statistical differences between the 

reduced dose trials. Insulin concentrations were not statistically different, between conditions, 

after 180 minutes of rest (P>0.05; Table 3.2 and Figure 3.2A).

Table 3.2: ASerum insulin and Ablood glucose responses to reductions in pre-exercise rapid-acting 

insulin dose.

Condition
Variable Full 75% 50% 25%

Peak

Insulin (pmol.l1) 125 ± 11 114 ± 8 82 ± 12* 67 ± 9*t

BG (mmol.l1) 6.0 ± 0.4 7.4 ± 0.3* 7.0 ±0.5* 9.0 ±0.6*

Pre-Exercise

Insulin (pmol.l1) 112± 15 86 ± 10 56 ± 7 55 ± 5

BG (mmol.l1) 3.5 ± 0.4* 6.2 ± 0.3* 5.6 ±0.4 7.7 ± 0.7*

0 min

Insulin (pmol.l1) 111 ± 15 87 ± 7 101 ±19 80 ± 11*

BG (mmol.l1) -2.6 ± 0.7 1.9 ±0.5* 0.1 ±0.7 4.5 ± 0.9*

180 min

Insulin (pmol.l1) 15 ± 11 8 ±  12 7 ± 12 26 ± 11

BG (mmol.l1) -2.4 ± 0.8 1.1 ±0.8 -2.1 ±0.9 4.1 ±0.6*

Data presented as means ± SEM (n = 7). * indicates difference when compared with Full (P<0.05). f indicates 

difference when compared with 75% (P<0.05). BG indicates blood glucose.
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Figure 3.2: Time-course changes in serum insulin (A) and consequent blood glucose responses in absolute 

concentrations (B) and changes from baseline (C), after reductions in pre-exercise rapid-acting insulin dose. 

Data presented as mean ± SEM. Transparent sample point within a trial indicates significant difference when 

compared to rest (P<0.05).* indicates significant difference when compared with Full at the respective time 

point (P<0.05). # indicates significant difference when compared to 0 min post-exercise under all conditions 

(P<0.05). Thatched area indicates exercise. Note: Test meal and insulin were administered immediately 

following the resting sample.
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3.3.4 C ounter-regulatory horm onal re sp o n ses

Fasting concentrations of all counter-regulatory hormones were similar across conditions 

(P>0.05; Table 3.3).

There was no time effect (P = 0.12) or effect of condition (P = 0.13) on the plasma glucagon 

response. Plasma glucagon did not differ from rest at 180 minute post-exercise, with similar 

changes with time between conditions (Full A+20 ± 4; 75% A-46 ±11; 50% A-37 ± 6; 25% 

A+10± 5 pmol.l'1; P>0.05; Table 3.3).

There was a time effect (P = 0.001, Partial-eta = 0.769), but no conditional influence (P = 

0.215) on the plasma adrenaline response. Adrenaline significantly increased with exercise 

under all trials, with the change from rest to 0 minutes similar across conditions (Full A+1.2 

± 0.1; 75% A+0.7 ± 0.1; 50% A+1.0 ± 0.1; 25% A+1.0 ± 0.1 nmol.l'1; P>0.05). Adrenaline 

concentrations decreased from 0 to 180 min under all conditions, with similar changes across 

conditions (Full A-1.0 ±0.1; 75% A-0.7 ± 0.04; 50% A-0.6 ± 0.1; 25% A-0.8 ± 0.1 nmol.l'1; 

P>0.05). At 180 minutes adrenaline concentrations were different to rest under Full only 

(P<0.05, Table 3.3).

There was a time effect (P = 0.001, Partial-eta2 = 0.816), but no conditional influence (P = 

0.14) on the plasma noradrenaline response. Noradrenaline significantly increased with 

exercise under all conditions, with the change from rest to 0 minutes similar across Full, 

75% and 25% (Full A+19.8 ± 1.5; 75% A+17.8 ± 1.7; 50% A+10.8 ± 0.9; 25% A+20.1 ± 

1.8 nmol.l'1; P>0.05); changes under 50% were less than all other trials (50% A+10.8 ± 0.9 

nmol.l'1; P<0.05). Noradrenaline concentrations decreased to resting concentrations from 0 to 

180 minutes post-exercise under all conditions (Table 3.3), with the change over this period
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less under 50% (A-8.4 ± 1.0 nmol.l'1) in comparison with all other trials (Full A-17.7 ± 1.5; 

75% A-17.6 ± 1.8; 25% A-17.7 ± 2.1 nmol.l'1; P<0.05).

There was a time effect (P = 0.001, Partial-eta2 = 0.759), but no conditional influence (P = 

0.62) on the serum cortisol response. Cortisol did not change with exercise under any 

condition (Table 3.3). However, cortisol significantly increased from 0 to 15 minutes post­

exercise under all conditions (Table 3.3). The change from 0 to peak was similar across 

conditions (Full A+54 ± 13; 75% A+48 ± 15; 50% A+86 ± 10; 25% A+84 ± 14 nmol.l'1; 

P>0.05). Cortisol concentrations declined to concentrations less than rest from 15 to 180 

minutes (Table 3.4), with the change over this period similar between conditions (Full A-400 

± 24; 75% A-342 ± 27; 50% A-338 ± 30; 25% A-397 ± 26 nmol.l'1; P>0.05).

Table 3.3: Counter-regulatory hormonal responses to reductions in pre-exercise rapid-acting insulin 

dose.

Sample Point
Hormone Rest 0 min 15 min 180 min

Full 184 ±29 - - 205 ± 32

Glucagon (pmol.l1) 75% 176 ± 29 _ 130 ±20
50% 226 ± 36 - - 189 ±34
25% 175 ±30 - - 166 ±28
Full 0.56 ±0.01 1.75 ±0.10* - 0.73 ± 0.02*

Adrenaline (nmol.l1) 75% 0.60 ± 0.02 1.26 ±0.04* 0.54 ±0.01
50% 0.84 ±0.01 1.83 ±0.07* - 1.27 ±0.08
25% 0.57 ± 0.03 1.57 ± 0.11* - 0.80 ± 0.08
Full 3.43 ±0.18 23.22 ± 1.25* - 5.54 ±0.18

Noradrenaline (nmol.l'1) 75% 3.91 ±0.38 21.75 ± 1.96* - 4.17 ± 0.15
50% 3.64 ±0.37 14.44 ±0.90* - 6.03 ±0.31
25% 2.51 ±0.18 22.59 ± 1.89* - 5.41 ±0.65
Full 610 ± 20 585 ± 18 657 ± 20*f 265 ± 19*f

Cortisol (nmol.l1)
75% 637 ± 24 574 ± 14 632 ± 19*t 298 ± 29 *t
50% 596 ±19 486 ± 19 591 ± 22*f 261± 19*t
25% 650 ± 20 592 ± 14 685 ± 22*t 295 ± 21*f

Data presented as means ± SEM (n = 7). * indicates significant difference when compared with rest (P<0.05). f 

indicates difference when compared to 0 min post-exercise (P<0.05).
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3.3.5 Serum  p-hydroxybutyrate re sp o n ses

There was a significant time effect (P = 0.003, partial-eta2 = 0.630) within the serum p- 

hydroxybutyrate responses to alterations in rapid-acting insulin dose (Figure 3.3), however, 

there were no conditional differences (P = 0.58; Figure 3.3). There were small declines from 

rest to 120 minutes post-ingestion under all conditions (Full A-0.15 ± 0.03; 75% A-0.07 ± 

0.01; 50% A-0.03 ± 0.01; 25% A-0.03 ± 0.01 mmol.l'1; P>0.05). Concentrations did not 

change with exercise under any condition (Full A+0.06 ± 0.01; 75% A+0.04 ± 0.01; 50% 

A+0.04 ± 0.01; 25% A+0.03 ± 0.01 mmol.l'1; P>0.05; Figure 3.3), however, there was a 

transient increase in concentrations over the three hour recovery period, with concentrations 

at 120 and 180 minutes significantly greater than both rest and 0 minutes post-exercise under 

all conditions (P<0.05; Figure 3.3). The change from 0 to 180 minutes post-exercise was 

similar across conditions (Full A+0.31 ± 0.04; 75% A+0.24 ± 0.02; 50% A+0.27 ± 0.03; 

25% A+0.39 ± 0.05 mmol.l'1; P>0.05).
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Figure 3.3: Time-course changes in serum (3-hydroxybutyrate after reductions in pre-exercise rapid- 

acting insulin dose. Data presented as mean ± SEM. Transparent sample point within a trial indicates 

a significant difference when compared to rest (P<0.05), # indicates significant difference from 0 min 

post-exercise under all conditions (P<0.05). Thatched area indicates exercise. Note: Test meal and 

insulin were administered immediately following the resting sample.



3.3.6 Blood pH and lactate re sp o n ses

Time course-changes in blood pH and lactate are presented in Figure 3.4 A and B. There was 

a significant time effect (P = 0.002, partial-eta2 = 0.674) and a significant time*treatment 

interaction (P = 0.002, partial-eta = 0.251) within the blood pH responses. There were no 

conditional differences in blood pH responses during the pre-exercise period (Figure 3.3 A). 

Blood pH increased significantly from the pre-exercise sample to 0 minutes post-exercise 

under all conditions (P<0.05). However, the change in pH with exercise was less under 25% 

when compared to the other trials (Full A+0.07 ± 0.01; 75% A+0.06 ± 0.01; 50% A+0.06 ± 

0.01; 25% A+0.02 ± 0.01), but was only statistically different to Full (P = 0.03). Blood pH 

under 25% at 0 and 5 minutes post-exercise was significantly lower than both Full and 75% 

(Figure 3.4A). Moreover, after the 5 minute post-exercise sample, blood pH was not different 

between conditions for the remainder of the 180 minute recovery period (Figure 3.4A). Blood 

pH decreased from 0 to 180 minutes under Full, 75% and 50%, but not under 25%. 

Moreover, the change in blood pH from 0 to 180 min was greatest under Full (Full A-0.07 ± 

0.01; 75% A-0.05 ± 0.01; 50% A-0.05 ± 0.01; 25% A-0.03 ± 0.01), however, only Full and 

25% were statistically different (P = 0.04).

There was a significant time effect within the blood lactate response to the protocol (P =
r\

0.024, partial-eta = 0.532). However, there were no effects of insulin dose on the blood 

lactate responses (P = 0.27). There were no conditional differences in blood lactate 

concentrations within the pre-exercise period, with concentrations just before exercise similar 

across conditions (Full 1.1 ± 0.03; 75% 1.0 ± 0.03; 50% 1.0 ± 0.4; 25% 1.1 ± 0.03 mmol.l'1, 

P>0.05). The change in blood lactate concentrations, with exercise, was greatest under 25%; 

however, there were no statistical differences between the conditions (Full A+3.1 ± 0.4; 75% 

A+3.3 ± 0.5; 50% A+3.1 ± 0.04; 25% A+4.3 ± 0.4 m m ol.l1; P>0.05). Blood lactate
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concentrations decreased with time after 0 minutes under all conditions and the change from 

0 to 180 minutes was similar across trials (Full A-3.5 ± 0.4; 75% A-3.5 ± 0.5; 50% A-3.3 ± 

0.0.4; 25% A-4.5 ± 0.5 mmol.l'1; P>0.05; Figure 3.4 B).

103



7.44 n

7.42 •

7.40 -

~  7.38 ■

7.36 ■

7.34 •
Full

75%
7.32

50%

25%

0.5

REST 30 60 90 120 0 30 60 120 1805 15
Sample Point

Figure 3.4: Time-course changes in blood pH (A) and lactate (B), in absolute values, after reductions 

in pre-exercise rapid-acting insulin dose. Data presented as mean ± SEM. Transparent sample point 

within a trial indicates a significant difference when compared to rest (P<0.05). * indicates 

significantly different to Full and 75% (P<0.05). # indicates significantly different to 0 min post- 

exercise under all conditions (P<0.05). Thatched area indicates exercise. Note: Test meal and insulin 

were administered immediately following the resting sample.

104



3.3.7 P atterns of carbohydrate and lipid oxidation

There was no significant effect of insulin dose on resting or exercising fuel metabolism with 

similar rates of carbohydrate and lipid oxidation between conditions (P = 0.21; Table 3.4). 

Moreover, when expressing substrate oxidation rates as a change from rest to exercise, no 

conditional differences were evident (P = 0.13; Table 3.4).

Table 3.4: Substrate oxidation responses to reductions in pre-exercise rapid-acting insulin dose at rest 

and during exercise.

Rest Exercise

Full 75% 50% 25% Full 75% 50% 25%

LHO (g.min'1) 

Lipids (g.min"1)

[ACHO (g .m in '1)

ALipids (g .m in '1)

0.25 ±0.01 0.23 ±0.06 0.25 ±0.1 0.23 ±0.01 2.67 ±0.08* 2.35 ±0.05* 2.50 ±0.09* 2.56 ±0.07*

0.05 ±0.02 0.08 ±0.01 0.07 ±0.01 0.07 ±0.01 0.15 ±0.01* 0.30 ±0.07* 0.27 ±0.03* 0.21 ± 0.02*

2.41 ±0.07* 2.15 ±0.08* 2.24 ±0.09* 2.32 ±0.07*

0.10 ±0.01* 0.24 ±0.01* 0.20 ±0.02* 0.06 ±0.03*

Data presented as means ± SEM (n = 7). * indicates a significant increase when compared with rest CP<0.05).

Energy expended during exercise was similar across trials (Full 2.26 ± 0.04; 75% 2.29 ± 

0.05; 50% 2.34 ± 0.04; 25% 2.29 ± 0.04 MJ, P = 0.51). The contribution to energy demand 

from carbohydrates (Full 87.8 ±1.1;  75% 76.9 ± 1.5; 50% 80.0 ± 2.2; 25% 83.4 ± 1.4 %, P 

= 0.61) and lipids (Full 12.2 ± 1.1; 75% 23.1 ± 1.5; 50% 20.0 ± 2.2; 25% 16.6 ± 1.4 %, P = 

0.61) were similar across conditions.
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3.3.8 Post-laboratory activity and self-recorded glycaem ia and dietary intake

During the 21 hours after leaving the laboratory, low blood glucose and hypoglycaemia were 

encountered under all trials (Low blood glucose: Full 9 hours; 75% 7 and 19 hours; 25% 5 

and 22 hours post-laboratory: Hypoglycaemia: Full 1, 2, 8 and 9 hours; 75% 18 hours; 50% 

1, 6, and 12 hours; Table 3.5). Furthermore, participants consumed more energy under Full 

and 75% compared with 25%. Participants consumed lower amounts of carbohydrate under 

25% when compared to Full (P = 0.02), with similar trends under 75% (P = 0.09) and 50% 

(P = 0.08). There were no conditional differences in the percentage contribution to total 

energy from carbohydrate (Full 49 ± 1.4; 75% 50 ± 1.8; 50% 49 ± 1.4; 25% 50 ± 0.9 %; 

P>0.05), protein (Full 17 ± 0.7; 75% 19 ± 0.3; 50% 16 ± 0.7; 25% 19 ± 0.4 %; P>0.05) or 

fats (Full 35 ± 1.1; 75% 31 ± 1.9; 50% 34 ± 1.4; 25% 28 ± 1.0 %; P>0.05). There were no 

differences in the number of rapid-acting insulin units administered or activity patterns 

between trials, as average heart rate and steps taken were similar (P>0.05; Table 3.5).

Table 3.5: Twenty-one hour post-laboratory blood glucose, dietary intake and activity patterns.

Condition
Variable Full 75% 50% 25%
BGauc (mmol.l1.hour'1) 7.0 ± 0.3 6.8 ± 0.2 7.5 ± 0.3 8.0 ± 0.3f
CHO intake (g) 180 ± 7 169 ± 7 148 ±7* 124 ±7*
Protein intake (g) 64 ± 3 63 ± 4 48 ± 3 48 ± 3
Fat intake (g) 60 ± 4 49 ± 5 50 ± 4 31 ±2*
Energy intake (MJ) 6.3 ± 0.3 5.6 ±0.3 5.2 ± 0.2* 4.1 ±0.2*t
Rapid-acting insulin (U) 20 ± 1 22 ± 1 24 ± 1 23 ± 1
Frequency BG < 4.0 mmol.l'1 1 2 - 2

Frequency BG <3.5 mmol.l'1 4 1 3 2

Average heart rate (bpm) 74 ± 1 82 ± 1 74 ± 1 76 ± 1

Average steps taken 4017 ±267 6382 ± 682 5223 ± 382 6473 ± 420
Data presented as means ± SEM (n = 7). * indicates significantly different from 100% (P<0.05), f indicates 

significantly different from 75% (P<0.05). BGAUC indicates blood glucose area under the curve.
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3.4 D iscussion

The aim of this study was not to examine hypoglycaemia per se, but to examine the effects of 

the currently recommended pre-exercise insulin reductions on metabolic and glycaemic 

responses for 24 hours after running in T1DM individuals. The results demonstrate the most 

severe reduction to pre-exercise rapid-acing insulin dose (75%) best preserved blood glucose 

responses for 24 hours following running, without increasing the risk of developing 

ketoacidosis. Furthermore, less energy and carbohydrates were consumed under this trial over 

the same time period.

Rapid-acting insulin concentrations peaked 60 minutes after injection across all trials with the 

lowest peak values occurring under the most severe insulin reduction condition (Figure 1 A). 

Our results are similar to other researchers’ findings (Homko et al., 2003; Plank et al., 2002) 

and demonstrate the relationship between injected dose and resultant serum concentration as 

well as the consistency of modem rapid-acting analogues to reach peak effect in spite of 

differences in anthropometric (body fat percentage, body mass index), or physiological 

(subcutaneous blood flow) parameters (Kolendorf et al., 1983). Similar to other researchers 

(Mauvais-Jarvis et al., 2003; Rabsa-Lhoret et al., 2001), the effect of the reduction in insulin 

dose was to increase blood glucose concentrations such that, in our study, blood glucose was 

highest immediately prior to running under the 25% condition. (15.2 ± 0.6 mmol.l'1) (Figures

3.2 B and C, Table 3.2).

Running pace was predominantly aerobic being performed at 70% of maximal oxygen

uptake, which corresponded to -67% and -58%  of participants’ VO2 and HR reserves,

respectively. This resulted in completion of an isocaloric 2.6 MJ bout of exercise across

trials, comprised of carbohydrate and lipid oxidation rates of approximately 2.5 and 0.23

g.min'1, respectively. The total carbohydrate breakdown o f -113 g would have necessitated a
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significant contribution from liver and muscle glycogen stores whereas the relatively low 

contribution of lipids oxidised (~10 g) during running suggest minimal contribution from 

adipose tissue and/or intramuscular depots. Respiratory data revealed there were no 

differences in carbohydrate or lipid oxidation rates during running between any of the trials. 

It has been demonstrated that decreases in circulating insulin concentrations provide a milieu 

for increased rates of lipid oxidation (Chokkalingam et al., 2007), but this was not evident 

from our data. The high pre-exercise blood glucose concentrations (13-15 mmol.l'1), 

irrespective of condition, may have caused an equal but elevated carbohydrate oxidation rate 

(Jenni et al., 2008) suppressing any shifts in the pattern of lipid oxidation.

There were no treatment effects on the gluco-regulatory hormones. Within the 

pathophysiology of T1DM is a progressive loss of a-cell function over time, potentially due a 

loss of p -  a cell signalling (Banarer et al., 2002), such that after 5 years of diagnosis falling 

blood glucose will fail to stimulate the release of this key hormone (Mokan et al., 1994). 

Although glucagon was only measured at two time points across trials, it is unlikely that any 

conditional changes would occur. Furthermore, the glycaemic threshold for the initiation of a 

counter-regulatory hormonal response is typically shifted to lower concentrations, compared 

to non-diabetics, in T1DM individuals (Cryer et al., 2001). Within this study, out of 28 trials, 

there were only 4 occasions where blood glucose fell below 3.5 mmol.l'1, therefore 

concentrations were simply not low enough to augment the counter-regulatory hormonal 

response, thus explaining the lack of conditional differences in these hormones.

There was a large decline in insulin concentrations in the immediate post-exercise period 

across all trials (Figure 3.2A) which may have been due to an increased insulin clearance rate 

(Tuominen et al., 1997). This rapid reduction in insulin concentration may have lessened its 

inhibitory effects on the circulating counter-regulatory hormones; glucagon, adrenaline,
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noradrenaline and cortisol. Despite similar concentrations of insulin in the 3 hour post­

exercise period, the preservation of blood glucose was greatest under 25% over the same 

time period.

There were no conditional differences in blood lactate or serum p-hydroxybutyrate responses 

to the trials. As the exercise stimulus was the same across trials it was unlikely that a 

conditional difference in blood lactate appearance would be evident. With regards to p- 

hydroxybutyrate; although ketone formation is associated with reduced insulin concentrations 

and hyperglycaemia, the participants’ basal insulin dose remained unaltered across 

conditions. One of the primary roles of the basal dose is to restrain ketogenic enzymes 

(Barnett, 2003), moreover, as there were no differences in important ketone stimulating 

hormones, such as glucagon and adrenaline (Laffel, 1999); it was unlikely that differences in 

p-hydroxybutyrate would be present. The conditional differences in pH demonstrated under 

25% may be related to an increased glycoltyic flux due to elevated blood glucose 

concentrations (Coyle et al., 1997; Jenni et al., 2008). Coyle et al. (1997) identified that an 

increased glucose availability, such as under hyperglycaemic conditions, results in an 

increased glycolytic flux. Moreover, multiple stages of the glycolytic pathway results in the 

generation of H+ (Robergs et al., 2004); of which some may leave the cell in exchange with 

Na+ (Peronnet and Aguilaniu, 2006). Potentially, the hyperglycaemic conditions under 25% 

resulted in an increased glycolytic flux and release of H+, resulting in a lesser rise in pH 

during the exercise bout. An increased glycoltyic flux may be a potential explanation for the 

slightly, but non-significant, elevated peak lactate concentrations under this condition 

immediately after exercise.

The greatest incidence of post-exercise low blood glucose following exercise occurred in the 

full rapid-acting insulin dose condition, a finding similar to that of Rabasa-lhoret et al.
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(2001). Furthermore, the most severe insulin reduction condition, the 25% trial, resulted in 

the greatest preservation of blood glucose. Despite this, one participant, who experienced 

hypoglycaemia on three of four trials within the laboratory, still experienced hypoglycaemia 

after a 75% reduction to pre-exercise insulin (180 minutes post-exercise), suggesting 

individuals differ in their sensitivity to exercise with an additional large rate of glucose 

uptake for a small increase in circulating insulin. This is an important factor to consider in 

future research as a source of variability in T1DM individuals. Participants consumed fewest 

carbohydrates under 25%, yet still administered a similar number of rapid-acting insulin 

units. As blood glucose was elevated leaving the laboratory (11.0 ± 0.7 m m ol.l1), the insulin 

units administered, as a corrective measure for high blood glucose, combined with an 

increased sensitivity to insulin following exercise (Wojtaszewski et al., 2001), may explain 

the low blood glucose encountered in the post-laboratory period by some individuals under 

this trial.

Similar to the 3 hours following exercise, the self-reported data in the post-laboratory period 

revealed the 75% reduction in pre-exercise insulin resulted in the greatest post-exercise blood 

glucose area under the curve. Furthermore, over the remaining 21 hour of the trial 

participants consumed ~2.2 MJ less energy, notably as a result of 54 g less carbohydrate and 

30 g less fat intake, however, there were no differences in the percentage composition of 

energy intake as there were no differences between the total energy intake from 

carbohydrates (49-50%), fats (29-35%) and proteins (16-19%), across any of the trials. 

T1DM individuals have been suggested to over-consume food in order to avoid 

hypoglycaemia (Jacob et al., 2006), but the reduced food intake within the 25% trial may be 

evidence of a reduced need to consume additional foodstuffs as a compensatory approach to 

maintain blood glucose and avoid hypoglycaemia following exercise. In addition, the greater
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blood glucose concentrations may have contributed to a greater feeling of satiety and reduced 

participants’ hunger over the course of the day (Russell et al., 2001).

A potential limitation to this study was that participants monitored their blood glucose more 

frequently than they would typically perform on a daily basis which is likely a contributing 

factor to why there was only ~1.2 mmol.l'1.hour'1 range between the highest and lowest blood 

glucose area under the curve over the 21 hour post-laboratory periods. Although it is 

established that frequent monitoring of blood glucose can improve glycaemic control (Evans 

et al., 1999) through normalising blood glucose concentrations, it is important to recognise 

that this data is based upon T1DM individuals in everyday situations. We questioned T1DM 

individuals who were physically active, and it was evident that after exercise there is a 

tendency to increase the frequency of monitoring; moreover, the number and frequency of 

blood glucose measurements was consistent across trials. Furthermore, although there were 

small differences in blood glucose area under the curve between conditions, the frequent 

monitoring of blood glucose allowed participants to adapt their insulin administration and 

dietary intake, which was detectable in their diaries and ultimately in this chapters findings. 

Participants were provided with sufficient information and examples of how to complete the 

dietary diaries accurately. Moreover, it should be noted that this method of monitoring the 

patients’ diet is currently employed across diabetes clinics in the UK.

A limitation to this study is its lack of statistical power. Based on the data of Rabasa-Lhoret 

et al. (2001), for 80% power we would have needed a sample size of ~33 subjects. Due to our 

strict inclusion criteria (Table 2.1), the large time commitment required for the trials and we 

were limited to individuals using glargine as their basal insulin, due to assay cross reactivity 

with insulin detemir, we could only examine 7 participants. As a result this study had a 

statistical power of 57%. Future research in this area should be done so with a larger sample
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size. However, despite this, the data is of clinical importance, in that there is a clear and 

consistent preservation of blood glucose when a severe pre-exercise rapid-acting insulin 

reduction is employed. Employing this strategy may allow T1DM individuals the ability to 

regularly exercise without experiencing a hypoglycaemic incident during and after exercise. 

Furthermore, with a greater preservation of blood glucose and a lesser risk of hypoglycaemia, 

T1DM individuals may not feel the need to over consume carbohydrates in the post-exercise 

period.

In conclusion, this study examined the effects of reductions in pre-exercise rapid-acting 

insulin dose on metabolic and glycaemic responses for 24 hours after running in T1DM 

individuals. These data demonstrate that reducing pre-exercise, rapid-acting insulin dose by 

75% improved blood glucose responses for 24 hours following running, without increasing 

the risk of developing diabetic ketoacidosis.

112



Chapter Four

The metabolic and glycaemic effects of 

alterations in the glycaemic index of the 

carbohydrate ingested before exercise.
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4.1 Introduction

Exercise causes large reductions in blood glucose concentrations in type 1 diabetes 

individuals (T1DM). Reductions to the pre-exercise insulin dose help preserve blood glucose 

during and after exercise (De Feo et al., 2006; Mauvais-Jarvis et al., 2003; Rabasa-Lhoret et 

al., 2001). Furthermore, current research advocates the consumption of carbohydrates before 

exercise to prevent falls in blood glucose during and after a bout of exercise (De Feo et al., 

2006; Hibbert-Jones and Regan, 2005; Maahs et al., 2009). However, specific factors related 

to the physical and chemical composition of carbohydrates, such as the glycaemic index, 

have been under researched.

The effects of changes in the type of carbohydrate consumed by T1DM, before performing 

exercise, on blood glucose responses following exercise has been under researched. 

Carbohydrates with a low glycaemic index (LGI) digest at slower rates than high glycaemic 

index (HGI) carbohydrates and are unable to cross the mucosal cell membrane within the 

small intestine and enter the bloodstream unless hydrolysed into monosaccharides (Thomas et 

al., 2007). Research has established the importance of including LGI carbohydrates into the 

daily diets of T1DM, with observed benefits such as lower daily mean blood glucose (Nansel 

et al., 2008) and reduced incidence of hypoglycaemia and reductions in HbA]c (Gilbertson et 

al., 2001; Thomas et al., 2007). Within the study of Nansel et al. (2008), consumption of LGI 

foodstuffs, such as peaches, kidney beans or brown rice, resulted in glucose concentrations 

(assessed using a continuous glucose monitor) being within a target range of 3.9 -  9.9 

mmol.l’1 significantly more of the time than under the HGI trial (67 vs. 47 %). Moreover, the 

participants elicited a lower mean blood glucose concentration (LGI 7.6 ± 2.0 vs. HGI 10.1 ± 

2.6 mmol.l'1) and required less bolus insulin per 10 g of carbohydrate. There is limited data
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examining the post-exercise metabolic and glycaemic responses of T1DM following 

ingestion of differing glycaemic index carbohydrates.

In addition to the potential to improve glycaemia, research has demonstrated that LGI 

carbohydrates alter exercising fuel metabolism. Following consumption of a LGI meal, 

carbohydrate oxidation rates have been shown to increase less, with a concomitant lesser 

suppression of lipid utilisation, during a bout of isoenergetic exercise in non-TlDM 

individuals (Achten et al., 2007; Stevenson et al., 2006). Stevenson et al. (2006) 

demonstrated a 31 % lower carbohydrate oxidation rate and 56 % greater lipid oxidation rate 

during a one hour treadmill run at 65 % V02max 3 hours following consumption of a LGI or 

HGI meal in eight female participants. Similarly, ingestion of a 50 g bolus of isomaltulose 

reduced carbohydrate oxidation rate by ~0.2 g.min'1 and increased lipid oxidation more than 

sucrose during 150 minutes of cycling at 60 % V02max (Achten et al., 2007). This raises the 

possibility that consumption of an LGI carbohydrate source may spare both endogenous and 

exogenous carbohydrate reserves and increase fat oxidation in T1DM during exercise, 

resulting in better preservation of blood glucose during the post-exercise period.

With the potential for LGI carbohydrates to offer improved glycaemia and fuel oxidation in 

T1DM; it would also be prudent to examine the role of the glycaemic index of the pre­

exercise carbohydrate on the incidence of hypoglycaemia after exercise, when a heavily 

reduced insulin dose is implemented (findings of chapter 3). Potentially, in the avoidance of 

hypoglycaemia after exercise the glycaemic index of the pre-exercise carbohydrate may be 

secondary in importance to a heavy reduction in pre-exercise insulin dose. Therefore, the aim 

of this study was to examine the effects of ingesting a high and low glycaemic index 

carbohydrate, in combination with a heavily reduced insulin dose, on metabolic and 

glycaemic responses before, during, and for 24 hours after running in T1DM individuals.
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4.2 M ethodology

Eight participants with T1DM (7 males, 1 female, 35 ± 2 years, BMI 26 ± 0.3 kg/m2) with 

duration of diabetes of 14 ± 1 years and HbAjc of 8.0 ± 0.2 % volunteered to participate in 

this study. Participant anthropometric (Table 2.5), glycaemic control (Table 2.8), and insulin 

regimen (Table 2.3) characteristics are presented chapter 2.

After preliminary testing (Table 2.6) participants attended the laboratory on two occasions 

after an overnight fast and having consumed similar evening meals prior to each trial. Upon 

arrival participants received catheterisation in their non-dominant arm and blood samples 

were processed for glucose, lactate, pH, glucagon, adrenaline, noradrenaline, cortisol, p- 

hydroxybutyrate, triglycerides, non-esterified fatty acids and glycerol (section 2.3.5). 

Participants were then required to consume, in a randomised and counterbalanced fashion, 75 

g of either a high GI (HGI; Dextrose; GI 96) or low GI (LGI; Isomaltulose; GI 32) 

carbohydrate, mixed with 750 ml of water (10 % solution, Perrone et al., 2005). Immediately 

before ingestion, participants were instructed to administer their rapid-acting insulin, which 

had been reduced by 75 % (2.1 ± 0.2 IU) into the abdomen (findings from chapter 3; Rabasa- 

Lhoret et al., 2001). Subsequent blood samples were taken for 2 hours before performing 45 

minutes of running at 80 ± 1% VC>2peak and for three hours post-exercise (Figure 4.1). Cardio­

respiratory parameters were collected at rest and during exercise.

Participant activity and heart rate were recorded for 24 hours after exercise; moreover, for 21 

hours after leaving the laboratory participants self-recorded blood glucose, dietary intake, 

insulin administration and hypoglycaemic incidences.
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Figure 4.1: Schematic diagram of the experimental protocol of chapter 4.

4.2.1 Statistical Analysis

Statistical analysis was performed using SPSS software (version 16; SPSS Inc., Chicago, IL), 

with significance set at P<0.05. Data were tested for nonnal distribution (Shapiro-W ilk test) 

and subsequently analysed using repeated-measures ANOVA on two factors (treatment x 

time) with Bonferroni adjustments and dependent t-tests carried out where relevant. Data are 

presented as mean ± SEM.
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4.3 R esults

4.3.1 Physiological re sp o n ses  to exercise

The physiological responses to LGI and HGI are reported in Table 4.1. There were no 

differences in the resting rates of oxygen consumption or carbon dioxide production between 

LGI and HGI (P>0.05). Participants exercised at a similar exercise intensity under both 

conditions with similar %V02peak (LGI 80.8 ± 0.9% vs. HGI 78.2 ± 0.9 % V02peak, P = 0.12) 

and HRpeak (LGI 85 ± 1% vs. HGI 83 ± 1 % VCbpeak, P = 0.12) elicited during the 45 minutes 

of running. However, there was a tendency for a greater rate of oxygen use during exercise 

under LGI (P = 0.05; Table 1). Resting and exercising heart rates were similar between 

conditions (Table 4.1).

Table 4.1: Cardio-respiratory responses, at rest and during exercise, following pre-exercise ingestion 

of LGI or HGI.

Rest Exercise

HGI LGI HGI LGI P  (Ex)

HR (bpm) 65 ± 1 68 ± 1 159 ±2* 163 ±2* 0.12

VE (l.min'1) 10.8 ±0.2 10.5 ±0.5 73.8 ± 1.5* 75.5 ± 1.1* 0.28

VO2 (ml.kg'1.min'1) 5.2 ±0.1 5.3 ±0.1 34.6 ±0.5* 35.8 ±0.6* 0.05

VCO2 (ml.kg. '.min1) 4.7 ±0.1 4.9 ±0.1 33.6 ±0.6* 34.0 ±0.6* 0.32

RER 0.91 ±0.01 0.93 ±0.01 0.97 ±0.01* 0.95 ±0.01* 0.14

Data are presented as mean ± SEM (n = 8). P  (Ex) demonstrates paired-samples t-test on exercising data only.* 

indicates significant differences from rest (P<0.01).
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4.3.2 Blood g lucose resp o n ses

Fasted blood glucose concentrations were not different between conditions (LGI 7.6 ± 0.2 vs. 

HGI 6.2 ± 0.3 mmol.l'1, P = 0.11). The absolute and relative blood glucose responses to LGI 

or HGI ingestion are reported in Figure 4.2. There were no conditional differences when 

blood glucose was examined in absolute concentrations (Figure 4.2A); however, when 

expressed as change from baseline, significant conditional differences in blood glucose 

responses were evident (Figure 4.2B).

Peak blood glucose under LGI (A+4.5 ± 0.4 mmol.l'1), occurred 120 minutes post-ingestion 

and was less than HGI (A+9.1 ± 0.6 mmol.l'1, P<0.01) which peaked at 90 minutes. The drop 

in blood glucose with exercise was similar between conditions (LGI 4.4 ± 0.4 vs. HGI 5.8 ± 

0.3 mmol.l'1, P = 0.11). The drop in blood glucose under LGI was not as great as HGI in 6 of 

8 participants. Immediately after exercise, blood glucose concentrations under LGI were 

significantly lower than HGI and were not different from resting concentrations (Figure 

4.2B).

In the 3 hour post-exercise period, blood glucose concentrations under LGI were lower than 

those under HGI at all time points (Figure 4.2B). Blood glucose concentrations did not 

change from 0 to 180 minutes under either condition (LGI A+0.1 ± 0.3: HGI A+1.3 ± 0.3 

mm ol.l1, P = 0.46). The post-exercise blood glucose area under the curve (B G a u c ;  LGI 7.9 ± 

0.5: HGI 10.0 ± 0.5 mmol.l1.hour'1, P = 0.03) and mean blood glucose (LGI +3.4 ± 0.3: 

HGI +0.5 ± 0.5 mmol.l'1, P = 0.03) concentration, over the 180 minute recovery period, was 

21 ± 3 % and 3.0 ± 0.4 mmol.l'1, lower, respectively, under LGI in comparison to HGI 

(P<0.05).
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Figure 4.2: (A) Time-course changes in blood glucose following pre-exercise ingestion of LGI or HGI. There 

was a significant time effect (P = 0.001 partial-eta2 = 0.601), there was a tendency for a treatment effect (P = 

0.054, partial-eta2 = 0.432), but no time*treatment interaction (P>0.05). (B) Time-course changes in blood 

glucose, relative to rest, following ingestion of LGI or HGI. There was a significant time (P = 0.001, Partial- 

eta2 = 0.617) and treatment effect (P = 0.006, Partial-eta2 = 0.686) and a significant time*treatment interaction 

(P = 0.04, Partial-eta2 = 0.225). Data presented as mean ± SEM (n = 8). Transparent sample points indicate 

significant difference from rest (P<0.05). * indicates significant difference when compared to LGI (P<0.05). f 

indicates a trend when compared to LGI (P<0.1). Thatched area indicates exercise. Note: Insulin and 

carbohydrate solution was administered immediately following resting sample.
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Hypoglycaemia

There were no incidences of hypoglycaemia during the 2 hour rest period or during treadmill 

running. In the post-exercise period, there were two occasions where blood glucose fell 

below 3.5 mmol.r1 under both HGI (5 and 120 minutes post-exercise) and LGI trials (30 and 

180 minutes post-exercise). One participant experienced a hypoglycaemic encounter on both 

occasions (LGI 120 minutes; HGI 180 minutes post-exercise).

4.3.3 Counter-regulatory hormonal responses

There were no conditional effects on any of the counter-regulatory hormonal responses to the 

trials (Table 4.2).

Plasma glucagon was not affected by time (P = 0.32) or condition (P = 0.46). Plasma 

glucagon remained similar to resting concentrations after exercise (Table 4.2), with similar 

changes from rest to 0 min post-exercise between conditions (LGI A+4 ± 6; HGI A-16 ± 4 

pmol.f1; P = 0.44). Moreover, after 180 minutes post-exercise glucagon concentrations did 

not differ from rest or 0 minutes post exercise under either condition (Table 4.2); the change 

from 0 to 180 minutes was similar between conditions (LGI A+5 ± 1; HGI A-5 ± 1 pmol.f1; 

P = 0.72).

There was a significant time effect (P = 0.02, Partial-eta2 = 0.77) but no effect of condition (P 

= 0.77) on the plasma adrenaline response. Plasma adrenaline peaked at 0 minutes post­

exercise (Table 4.2), with the no conditional differences in peak concentrations. Moreover, 

the change in concentrations from rest to 0 minutes post-exercise was similar between 

conditions (LGI A+1.47 ± 0.12; HGI A+1.72 ± 0.26 nmol.f1; P = 0.81). Plasma adrenaline 

concentrations were similar at 180 minutes post-exercise, and not different to rest under both
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conditions (Table 4.2). Moreover, the change over the 180 minute post-exercise period was 

similar between conditions (LGI A-l .27 ± 0.12; HGI A-1.88 ± 0.28 nmol.l"1; P = 0.58).

There was a significant time effect (P = 0.01, Partial-eta2 = 0.76) but no effect of condition (P 

= 0.28) on the plasma noradrenaline response. Plasma noradrenaline peaked at 0 minutes 

post-exercise (Table 4.2), with the no conditional differences in peak concentrations. 

Moreover, the change in concentrations from rest to 0 minutes post-exercise was similar 

between conditions (LGI A+14.82 ± 0.93; HGI A+13.32 ± 1.19 nmol.l'1; P = 0.49). Plasma 

noradrenaline concentrations were similar at 180 minutes post-exercise, and not different to 

rest under both conditions (Table 4.2). Moreover, the change over the 180 minute post­

exercise period was similar between conditions (LGI A-14.46 ± 1.02; HGI A-l 1.23 ± 1.08 

nm ol.l1; P = 0.22).

There was a significant time effect (P = 0.02, Partial-eta = 0.71) but no effect of condition (P 

= 0.44) on the serum cortisol response. Cortisol did not rise with exercise; however, 

concentrations began to increase immediately following exercise, peaking at 15 minutes post­

exercise. Peak cortisol concentrations at 15 minutes (LGI 590 ± 16; HGI 595 ± 22 nmol.l'1; 

P = 0.46) were not different from rest or 0 minutes post-exercise under either condition. At 

180 minutes post-exercise serum cortisol concentrations were significantly lower than rest 

(LGI 276 ± 18; HGI 197 ± 6 nmol.l'1; P = 0.20) under both conditions (P< 0.05; Table 4.2). 

Moreover, the change in concentrations from peak to 180 minutes were similar between 

conditions (LGI A-315 ± 29; HGI A-399 ± 25 nmol.l'1; P = 0.20).
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Table 4.2: Counter-regulatory hormonal responses following pre-exercise ingestion of LGI or HGI.

Sample Point
Hormone Rest 0 min 15 min 180 min

HGI 93 ± 9 75 ± 10 78 ± 10
Glucagon (pmol.l )

LGI 97 ± 9 87 ± 12 - 94 ± 10
HGI 0.28 ± 0.03 2.00 ± 0.28* 0.73 ± 0.02

Adrenaline (nmol.l )
LGI 0.20 ± 0.03 1.67 ±0.12* - 0.40 ± 0.05
HGI 2.64 ±0.13 23.22 ± 1.25* 4.73 ± 0.35

Noradrenaline (nmol.l )
LGI 3.66 ±0.29 18.48 ±0.10* - 4.02 ±0.13
HGI 532 ± 7 516 ±22 595 ± 22* 197 ± 6*t

Cortisol (nmol.l )
LGI 553 ± 6 523 ±21 590± 16* 276 ±18*f

Data presented as mean ± SEM (n = 8).* indicates significant difference when compared with rest (P<0.05). f 

indicates difference when compared to 0 min post-exercise (P<0.05).
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4.3.4 Serum  p-hydroxybutyrate re sp o n ses

The serum P-hydroxybutyrate responses to alterations in the GI of the pre-exercise 

carbohydrate are presented in Figure 4.3. Following carbohydrate ingestion and insulin 

administration there were small declines from rest to 120 minutes post-ingestion under both 

conditions (LGI A-0.09 ± 0.011 vs. HGI A-0.02 ± 0.005 mmol.l'1, P>0.05). Concentrations 

did not change with exercise under either condition (LGI A+0.03 ± 0.004 vs. HGI +0.03 ± 

0.004 mmol.r1, P>0.05), however, there was a transient rise in concentrations over the three 

hour recovery period, with concentrations at 180 minutes significantly greater than both rest 

and 0 minutes post-exercise under both conditions (Figure 4.3). The change from 0 to 180 

minutes post-exercise was similar between conditions (LGI A+0.28 ± 0.033 vs. HGI A+0.38 

±0.041 mmol.l'1, P = 0.52).
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Figure 4.3: Time-course changes in serum P-hydroxybutyrate following pre-exercise ingestion of LGI 

or HGI. There was a significant time effect (P = 0.005, partial-eta2 = 0.601) but no effect of condition 

(P = 0.414). Data presented as mean ± SEM. Transparent sample point within a trial indicates a 

significant difference when compared to rest (P<0.05). # indicates significantly different from 0 min 

post-exercise under both conditions (P<0.05). Thatched area indicates exercise. Note: Test meal and 

insulin were administered immediately following the resting sample.
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4.3.5 Blood lactate and pH

The blood lactate responses are presented in Figure 4.4. After carbohydrate and insulin 

administration blood lactate increased from resting concentrations up to the pre-exercise 

sample under LGI (Figure 4.4). However, blood lactate under HGI remained similar to rest 

for the entire pre-exercise period (Figure 4.4). Two hours after consumption of the test meal 

the blood lactate concentration under LGI was 0.5 ± 0.1 mmol.l'1 greater than HGI (LGI 1.4 

± 0.1 vs. HGI 0.9 ± 0.03 mmol.l'1, P = 0.02; Figure 4.4). These differences disappeared with 

exercise as similar peak lactate concentrations were observed immediately after exercise 

(LGI 4.5 ± 0.4 vs. HGI 4.4 ± 0.3 mmol.l'1, P = 0.31). After exercise blood lactate 

concentrations decreased transiently, with similar declines in concentrations from 0 to 180 

minutes post-exercise between conditions (LGI A-3.7 ± 0.4 vs. HGI A-3.6 ± 0.3 mmol.l'1, P 

= 0.66). There were no differences in blood lactate concentrations between conditions over 

the post-exercise period (Figure 4.4).
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Figure 4.4: Time-course changes in blood lactate following pre-exercise ingestion of LGI or HGI. 

There was a significant time (P = 0.01, Partial-eta2 = 0.623) and treatment effect (P = 0.04, Partial-eta2 

= 0.366) and a significant time*treatment interaction (P = 0.04, Partial-eta2 = 0.221). Data are 

presented as mean ± SEM (n = 8). Transparent sample points indicate significant difference from rest 

(P<0.05). * indicates significant conditional difference (P<0.05). # indicates significantly different 

from 0 min post-exercise under both conditions (P<0.05). Thatched area indicates exercise. Note: 

Insulin and carbohydrate solution was administered immediately following resting sample.
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The blood pH responses are presented in Figure 4.5. After carbohydrate and insulin 

administration blood pH concentrations did not change from rest over the pre-exercise period 

(Figure 4.5). Exercise resulted in an increase in blood pH, however, the change with exercise 

was similar between conditions (LGI A+0.05 ± 0.01 vs. HGI A+0.06 ± 0.01, P = 0.68). 

Blood pH remained greater than rest for 30 minutes post-exercise under both conditions 

(Figure 4.5), before reaching resting levels at 60 minutes. The change in pH from 0 to 180 

min post-exercise was similar between conditions (LGI A-0.05 ± 0.01 vs. HGI A-0.03 ± 

0.01, P = 0.39).
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Figure 4.5: Time-course changes in blood pH following pre-exercise ingestion of LGI or HGI. There 

was a significant time (P = 0.01, Partial-eta2 = 0.981) but no effects of condition (P = 0.805). Data are 

presented as mean ± SEM (n = 8). Transparent sample points indicate significant difference from rest 

(P< 0.05). * indicates significant conditional difference (P<0.05). # indicates significantly different to 

0 min post-exercise under both conditions (P<0.05). Thatched area indicates exercise. Note: Insulin 

and carbohydrate solution was administered immediately following resting sample.
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4.3.6 Serum triglyceride and NEFA resp o n ses

The serum triglyceride (TG) responses to alterations in the GI of the pre-exercise 

carbohydrate are reported in Figure 4.6A. Resting TG were not statistically different between 

the conditions (LGI 1.20 ± 0.10 vs. HGI 1.03 ± 0.06 mmol.l'1). After carbohydrate 

consumption and insulin administration there were significant reductions in TG under LGI 

from rest up to 120 minutes (LGI A-0.30 ± 0.03 mmol.l'1; P = 0.01), however, TG did not 

change under HGI (LGI A-0.03 ±0.03 mmol.l'1; P = 0.78). Serum TG significantly increased 

with exercise under both conditions, with the change between conditions similar (LGI A0.24 

± 0.01 vs. HGI A0.19 ± 0.02 mmol.l'1, P = 0.47). After exercise serum TG declined over the 

three hour post-exercise period, with the change from 0 to 180 minutes similar between 

conditions (LGI A-0.16 ± 0.03 vs. HGI A0.24 ± 0.03 mmol.l'1, P = 0.49; Figure 4.6A). There 

were no conditional differences in serum TG concentrations.

The serum NEFA responses to alterations in the GI of the pre-exercise carbohydrate are 

reported in Figure 4.6B. Resting NEFA concentrations were similar (LGI 0.39 ± 0.03 vs. 

HGI 0.36 ± 0.02 mmol.l"1, P = 0.71); after carbohydrate consumption and insulin 

administration there was no change in circulating NEFA concentrations up to 120 minutes 

(LGI A-0.10 ± 0.03 vs. HGI A-0.01 ± 0.02 mmol.l'1, P>0.05). Moreover, serum NEFA 

concentrations did not increase when measured immediately after exercise (P = 0.60; Figure 

4.6B), however, 5 minutes after the cessation of exercise there was a 2-fold increase in NEFA 

concentrations under both conditions (P<0.05; Figure 4.6B), with a similar increase in 

concentrations between conditions (LGI A+0.30 ± 0.02 vs. HGI A+0.37 ± 0.02 mmol.l'1, P = 

0.36). NEFA concentrations peaked at 3 hours post-exercise (LGI 0.86 ± 0.04 vs. HGI 0.92 

±0.04 mmol.l'1, P = 0.22).
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Figure 4.6: Time-course changes in serum triglyceride (TG; A) and non-esterified fatty acids (NEFA; 

B) following pre-exercise ingestion of LGI or HGI. There was a significant time effect on both TG 

(P<0.01, Partial-eta2 = 0.45) and NEFA (P<0.01, Partial-eta2 = 0.72), however, there were no effects 

of condition (P>0.05). Data are presented as mean ± SEM (n = 8). Transparent sample points indicate 

significant difference from rest (P<0.05). # indicates significantly different from 0 min post-exercise 

under both conditions (P<0.05). Thatched area indicates exercise. Note: Insulin and carbohydrate 

solution was administered immediately following resting sample.
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4.3.7 Serum  glycerol re sp o n ses

Serum glycerol responses to alterations in the GI of the pre-exercise carbohydrate are 

presented in Figure 4.7. Resting serum glycerol concentrations were similar (LGI 12.2 ± 0.7 

vs. HGI 12.2 ± 0.4 mg.l'1, P = 0.68). After carbohydrate consumption and insulin 

administration glycerol concentrations declined up to 60 minutes under both conditions, 

however, concentrations remained similar for the remainder of the pre-exercise period under 

HGI, but continued to decline under LGI (Figure 4.7). Despite slight differences in pre­

exercise time-course changes, pre-exercise concentrations were similar between conditions (P 

= 0.09; Figure 4.7). Glycerol concentrations increased with exercise under both conditions 

(LGI A+12.5 ± 0.6 vs. HGI A+10.7 ± 0.7 mg.l'1, P = 0.46), before transiently declining over 

the post-exercise period under both conditions (Figure 4.7). The decline in glycerol 

concentrations from 0 to 180 minutes post-exercise was similar between conditions (LGI A- 

9.6 ± 0.6 vs. HGI A-8.7 ± 0.8 mg.l'1, P = 0.68).
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Figure 4.7: Time-course changes in serum glycerol following pre-exercise ingestion of LGI or HGI. 

There was a significant time effect (P<0.01; Partial-eta2 = 0.79), however, there were no treatment or 

treatment*time interactions (P>0.05). Data are presented as mean ± SEM (n = 8). Transparent sample 

points indicate significant difference from rest (P<0.05). # indicates significantly different from 0 min 

post-exercise under both conditions (P<0.05). Thatched area indicates exercise. Note: Insulin and 

carbohydrate solution was administered immediately following resting sample.
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4.3.8 Patterns of carbohydrate and lipid oxidation

The carbohydrate and lipid oxidation rates during rest are presented in Table 4.3 and 

oxidation rates during exercise are presented in Table 4.3 and Figure 4.8A. There were no 

conditional differences in resting rates of carbohydrate (P = 0.36) or lipid oxidation (P = 0.34; 

Table 4.3). When expressing oxidation rates as changes from rest, there was a tendency for a 

lower carbohydrate oxidation rate under LGI (P = 0.08) with a concomitant greater rate of 

lipid oxidation (P = 0.03; Table 4.3) when compared with HGI. As exercise progressed, there 

was a lower CHO and greater lipid oxidation rate, such that by the last 10 minutes 

carbohydrate and lipid oxidation rates were significantly different under LGI compared to 

HGI, respectively (Figure 4.8B).

Table 4.3: Substrate oxidation responses, at rest and during exercise, following pre-exercise ingestion 

o f  LG I or HGI.

Rest Exercise

LGI HGI LGI HGI

CHO (g .m in 1) 0.38 ±  0.02 0.34 ± 0 .01 2.90 ± 0.06* 3.08 ± 0 .0 6 *

Lipids (g.min'1) 0.06 ±0.01 0.08 ± 0 .01 0.22 ± 0 .03* 0.16 ± 0 .0 3 *

ACHO (g.min'1) - - 2.52 ±  0.04* 2.74 ±  0.05*

ALipids (g.min"1) - - 0.23 ±  0.03*f 0.09 ±  0.02*
Data presented as means ± SEM (n = 8). * indicates a significant increase when compared with rest (P<0.05). f 

indicates difference to HGI (P<0.05).
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Figure 4.8: (A) Carbohydrate and lipid oxidation rates during 45 minutes of exercise after pre-exercise ingestion 

of LGI or HGI. (B) Carbohydrate and lipid oxidation rates over the final 10 minutes of exercise. Data are 

presented as mean ± SEM (n = 8). * indicates significant differences between LGI and HGI (P<0.05).

The energy expended in both trials was similar (LGI 2.67 ± 0.04 vs. HGI 2.63 ± 0.04 MJ, P 

= 0.41) with energy from carbohydrates similar between the conditions (LGI 2.18 ± 0.04 vs. 

HGI 2.32 ± 0.05 MJ, P = 0.13) and energy from lipids tending to be greater under LGI (LGI 

0.49 ± 0.05 vs. HGI 0.31 ± 0.04 MJ, P = 0.06). There was a tendency for a lower percentage 

contribution to total energy expenditure from carbohydrate (LGI 83 ± 2 vs. HGI 89 ± 2 %, P 

= 0.07) and greater contribution from lipids (LGI 17 ± 2 vs. HGI 11 ± 2 %, P = 0.07) under 

LGI.
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4.3.9 Post-laboratory activity and self-recorded glycaem ia and dietary intake

There were no differences between conditions in any of the variables collected over the 21 

hour post-laboratory period (Table 4.4). There were no conditional differences in the 

percentage contribution to total energy from carbohydrate (LGI 52 ± 1.5; HGI 49 ± 1.7 %; 

P>0.05), protein (LGI 19 ± 0.6; HGI 20 ± 0.6 %; P>0.05) or fats (LGI 37 ± 4.2; HGI 33 ± 

1.8 %; P>0.05). There were 2 incidents of both low blood glucose (both 6 hours post 

laboratory) and hypoglycaemia (19 and 14 hours post-exercise) under HGI and 1 low blood 

glucose (19 hours post-laboratory) and 3 hypoglycaemic incidents under LGI (5, 16 and 19 

hours post-laboratory).

Table 4.4: Twenty-one hour post-laboratory blood glucose, dietary intake and activity patterns.

Condition
Variable HGI LGI P
BGauc (mmol. I'1. hour"1) 7.7 ±0.3 7.0 ±0.3 0.31
CHO intake (g) 164 ± 10 193 ± 9 0.47
Protein intake (g) 62 ± 3 71 ± 3 0.48
Fat intake (g) 52 ± 5 46 ± 4 0.63
Energy intake (MJ) 5.7 ±0.3 6.1 ±0.3 0.70
Rapid-acting insulin (U) 19.8 ± 1.4 21.1 ± 1.4 0.23
Frequency BG < 4.0 mmol.l'1 2 1 -
Frequency BG <3.5 mmol.l'1 2 3 -
Average heart rate (bpm) 76 ± 1 78 ± 1 0.73
Average steps taken 6197 ±578 6295 ± 427 0.94

Data presented as mean ± SEM (n = 8).
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4.4 D iscussion

We compared the metabolic and glycaemic responses to ingestion of either a high GI or low 

GI carbohydrate before, during and after running in T1DM. The results demonstrate that 

compared to HGI, LGI increased blood glucose concentrations less before exercise and 

maintained blood glucose better for 24 hours after running. Furthermore, carbohydrate 

oxidation was reduced and lipid oxidation increased following LGI ingestion, during the 

latter stages of running.

There was a smaller increase in blood glucose under LGI compared to HGI in the pre­

exercise period. Blood glucose concentrations increased above resting values by A+8.7 ± 0.5 

mmol.l'1 under HGI, whereas blood glucose increased to just half of this under LGI (A+4.5 ± 

0.4 mmol.l'1). The hydrolysation rate of LGI (isomaltulose) is very slow and only 20-25% of 

that of sucrose (Gunther and Heymann, 1998). Thus, the slow hydrolysation of LGI, into 

glucose and fructose, and subsequent absorption at the brush border membrane within the 

gastro-intestinal passage explains the later and lower peak in blood glucose in comparison 

with HGI (Lina et al., 2002). HGI can quickly cross via SGLT1 (sodium-glucose transporter 

1), and can rapidly increase blood glucose concentrations (Figure 4.2). The reduced post­

prandial glucose excursions under LGI prevented blood glucose reaching hyperglycaemic 

concentrations, as opposed to HGI. This is an important finding as maintaining glycaemia 

close to euglycaemic concentrations is the fundamental component in the management of 

T1DM (Cryer et al., 2003), especially when incorporating physical exercise into the lives of 

T1DM individuals.

There were greater lactate concentrations under LGI in the pre-exercise period (Figure 4.4). 

LGI (isomaltulose) is digested via the same sucrase/isomaltase complex, within the gastro­

intestinal passage, as sucrose (Goda and Hosoya, 1983). During this process, within the
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cytosol of the small intestine, some fructose derived from LGI is converted to lactate, 

however; most is metabolised within the liver (Ahlborg and Bjorkman, 1990). As fructose 

bypasses the phosphofructokinase regulatory point in glycolysis, there is an increased flux 

through the glycolytic pathway which results in an increased formation and subsequent 

release of lactate (Kaye et al., 1958; Sahebjami and Scalettar, 1971).

As exercise progressed there was a significantly lower carbohydrate oxidation rate evident 

under LGI, compared to HGI. This reduced carbohydrate oxidation rate under LGI, may, in 

part, be due to differences in blood glucose concentrations before and during exercise. Two 

hours following ingestion, blood glucose concentrations under LGI were near 

hyperglycaemic (12.2 ± 0.5 mm ol.l1), whereas those under HGI were ~ 3 mmol.l'1 greater at 

the beginning of exercise. This may have limited substrate oxidation to predominantly 

carbohydrates (Jenni et al., 2008). Jenni et al. (2008) demonstrated that when T1DM 

individuals perform prolonged exercise under blood glucose concentrations clamped at 11 

mmol.l'1 fuel metabolism was dominated by carbohydrate oxidation with concomitantly 

lower rates of lipid oxidation, compared with a euglycaemia condition; an effect due to the 

mass action of elevated blood glucose concentrations (Coyle et al., 1997). As blood glucose 

dropped A-4.4 ± 0.4 mmol.l1 with exercise under LGI, the blood glucose concentrations in 

the later stages of running returned to euglycaemic conditions sooner when compared to 

HGI, suggesting a lesser effect of high blood glucose concentrations in promoting 

carbohydrate combustion, and increasing the likelihood of observing differences in substrate 

oxidation in the latter stages of exercise.

As exercise progressed there was a greater lipid oxidation during exercise under LGI, in 

comparison with HGI, which became significantly greater during the final 10 minutes of 

exercise. Similar findings have been reported previously by Trenell et al. (2008) who found
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low GI, pre-exercise, carbohydrate-based meals increased lipid oxidation by 10 % during 90 

minutes of cycling at 70%VC>2max, in comparison to isoenergetic, high GI carbohydrate 

meals. Within our study, the increase in the combustion of lipids, with time, is possibly due to 

an increased mobilisation of intramuscular triglyceride stores, as NEFA concentrations did 

not differ between conditions. A potential mechanism behind the differences in lipid 

oxidation demonstrated in the latter stages of exercise may be related to differences in blood 

glucose concentrations between the conditions (Coyle et al., 1997). Coyle et al. (1997) 

investigated lipid oxidation, during 40 minutes of cycling at 50% V02peak in non-TlDM 

individuals, in a fasted state or having consumed 1.4 g/kg body mass of glucose. An 

examination of substrate oxidation revealed that an increased glucose availability and an 

increased glycolytic flux, and ultimately carbohydrate oxidation, directly suppresses lipid 

metabolism. Relating the findings of Coyle and colleagues to our study, the bolus of HGI 

ingested prior to exercise may have caused a similar suppression of lipid oxidation during 

exercise. Moreover, combining an increase in skeletal muscle hormone sensitive lipase 

activity (Watt et al., 2003) and lower glucose availability under LGI may have provided a 

milieu where the oxidation of intramuscular NEFAs was not as suppressed, compared to 

HGI, during exercise. Serum non-esterified fatty acid concentrations did not change with 

exercise; an effect likely the result of a reduction in adipose tissue blood flow, with exercise 

intensities >70% VC>2max, reducing the removal of NEFA (Jones et al., 1980; Romjin et al., 

1995). A redistribution of blood flow to adipose tissue is also the likely mechanism behind 

the rapid rise in NEFA concentrations after the cessation of exercise (Romijn et al., 1995).

Post-exercise glycaemia was lower under LGI, compared with HGI, with B G auc  and mean 

blood glucose being 21 ± 3 % and 3.0 ± 0.4 mmol.l"1 lower, respectively, over the three hour 

recovery period. There were similar changes in blood glucose within each condition. The
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preservation of blood glucose might potentially be due to exercise-induced increases in 

skeletal lipoprotein lipase activity (Kiens et al., 1989), increasing triglyceride breakdown and 

NEFA availability. Furthermore, the similar concentrations of counter-regulatory hormones 

may help explain the similar preservation of blood glucose with time, across conditions. 

From a T1DM individuals perspective this is important, as avoiding high blood glucose 

concentrations following exercise is not only beneficial for improved glycaemic control, but 

may also help avoid the occurrence of hypoglycaemia, as individuals are less likely to have to 

administer corrective insulin units, which in a post-exercise insulin-sensitised state could 

cause unexpected falls in blood glucose. Both types of carbohydrate were equally effective at 

preventing hypoglycaemia over the 3 hour recovery period, with two episodes under each 

condition. Despite the increased appearance of lactate under LGI during the pre-exercise 

period, the conditional differences in this metabolite were not evident after running was 

completed. Potentially, greater lactate concentrations under LGI resulted in lactate being 

channelled into oxidative pathways within the heart (Gertz et al., 1988) and the active 

musculature (Mazzeo et al., 1986), and/or hepatic gluconeogenesis (Ahlborg and Felig, 

1982).

When leaving the laboratory blood glucose was near euglycaemic under LGI (~8 mmol.f1) 

and still elevated under HGI (~11 mmol.l'1). However, despite this there were no statistical 

differences in 21 hour post-laboratory period B G a u c , carbohydrate intake or insulin 

administration. Moreover, there were similar incidences of low blood glucose and 

hypoglycaemia under both conditions. Potentially, there was an elevated blood glucose 

uptake under HGI in comparison with LGI, due to lower post-exercise glycogen stores under 

HGI. Jenni et al. (2008) demonstrated that T1DM individuals elicit an increased 

intramuscular glycogen breakdown rate when exercising under hyperglycaemic conditions.
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Potentially, as the exercise bout under HGI was under hyperglycaemic concentrations and 

was fuelled predominantly by carbohydrate oxidation (Coyle et al., 1991), blood glucose 

uptake to restore muscle glycogen stores may have been elevated under HGI; consequently 

resulting in a gradual reduction in blood glucose concentrations over the post-laboratory 

period. Additionally/conversely, participants were administering ~1 IU of insulin per 10 g of 

carbohydrates; however, ~20 IU were administered with ~164 g of carbohydrates under HGI. 

Potentially some participants applied corrective insulin units under the HGI condition to 

return glycaemia to normal.

In conclusion, this study examined the effects of consuming a low GI and high GI 

carbohydrate on metabolic and glycaemic responses before, during and for 24 hours after 

running in T1DM individuals. These data demonstrate that consuming a low GI carbohydrate 

improves blood glucose responses during and after exercise through reduced carbohydrate 

and increased lipid oxidation during exercise. Regularly employing this strategy could be 

beneficial for long-term glycaemic control within exercising T1DM individuals.
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Chapter Five

The metabolic and glycaemic effects of 

alterations in the pre-exercise timing of 

carbohydrate and insulin administration.
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5.1 Introduction

Individuals with type 1 diabetes (T1DM) are encouraged to engage in aerobic exercise due to 

the potential to improve long-term glycaemic control, i.e. reduce their HbAjc percentage 

(Sideraviciute et al., 2006), however, impaired gluco-regulatory responses results in an 

increased risk of hypoglycaemia during and after exercise. Hypoglycaemia, during or after 

exercise, is a major concern for individuals with T1DM (Brazeau et al., 2008). Current 

strategies to help combat the heightened risk of hypoglycaemia, associated with exercise, 

focus on reductions in insulin dose (De Feo et al., 2006; Rabasa-Lhoret et al., 2001;) as well 

as pre-exercise carbohydrate consumption (De Feo et al., 2006; Hibbert-Jones and Regan, 

2005).

The type of carbohydrate consumed before performing exercise may be an important factor in 

blood glucose responses to exercise, within T1DM. Carbohydrates with a low glycaemic 

index (LGI) digest at slower rates than high glycaemic index (HGI) carbohydrates and are 

unable to cross the mucosal cell membrane within the small intestine and enter the 

bloodstream unless hydrolysed into monosaccharides (Southgate, 1995). Research has 

established the importance of including LGI carbohydrates into the daily diets of T1DM, with 

observed benefits such as lower daily mean blood glucose (Nansel et al., 2008) and reduced 

incidence of hypoglycemia and reductions in HbAic (Gilbertson et al., 2001; Thomas et al., 

2007). As demonstrated within chapter 4, peak blood glucose responses were twice as great 

after consumption of a HGI carbohydrate in comparison with a LGI carbohydrate (Figure 4.2; 

moreover, blood glucose area under the curve was 21 % lower after a LGI carbohydrate for 3 

hours post-exercise. Therefore, a low GI carbohydrate source may be beneficial for 

maintaining blood glucose within normal ranges after exercise.
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Another important factor in preserving post-exercise blood glucose concentrations is reducing 

insulin dose prior to exercise. Within the research examining pre-exercise insulin reductions 

on blood glucose concentrations following exercise, results have demonstrated improved 

glucose concentrations following reductions of 10-40% (De Feo et al., 2006), 10-50% 

(Grimm, 2005), 50-90% (Mauvais-Jarvis et al., 2003) and 50-75% (Rabasa-Lhoret et al., 

2001; findings of chapter 3). Much of the variation in these findings can be attributed to 

differences in the insulin regimen used by participants, e.g. regular/Neutral Protamine 

Hagedom insulin (Mauvais-Jarvis et al., 2003) or Ultralente with prandial insulin lispro 

(Rabasa-Lhoret et al., 2001). The choice of insulin species is important when examining 

blood glucose responses to reductions in insulin. The rDNA insulins currently available (e.g. 

insulin aspart/lispro) offer very different, more favourable, action-time profiles and less 

variability than longer established insulins, such as regular human insulin (Brange and 

Volund, 1999; Tuominen et al., 1995). These insulin analogues are structured such that they 

remain in the monomeric form (i.e. the form that diffuses across the capillary wall into 

circulation) at the subcutaneous injection site, and have a lesser tendency to convert into 

dimmers and hexamers (Brange and Volund, 1999). As a result these insulins elicit intense 

and rapid increases in insulin concentrations, taking peak effect just 45 -  60 minutes after 

administration (Plank et al., 2002). It is for these reasons that it is currently recommended to 

avoid administration of rapid-acting insulin within 90-120 minutes of exercise due to the risk 

of over-insulinisation of the active musculature during exercise (De Feo et al., 2006; Perry 

and Gallen, 2009). However, with current research demonstrating improved blood glucose 

concentrations with reductions in rapid-acting insulin dose by 75% (Rabasa-Lhoret et al., 

2001; findings of chapter 3), there is potential that low doses of insulin administered within 

90-120 minutes of exercise may not increase the risk of developing hypoglycaemia during or 

after exercise.
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At present, to our knowledge, there is no literature that has examined the metabolic effects of 

alterations in the timing of a combined LGI carbohydrate and reduced rapid-acting insulin 

strategy before exercise. In light of this, the aim of this study was to examine metabolic and 

glycaemic responses to alterations in the timing of a combined LGI carbohydrate and insulin 

reduction strategy before, during and for 24 hours following running in individuals with 

T1DM.

145



5.2 M ethods

Seven participants with T1DM (7 males, 31 ± 2 years, BM1 26 ± 0.3 kg/m ) with a duration 

of diabetes of 19 ± 2 years and HbAic of 8.3 ± 0.1 % volunteered to participate in this study. 

Individual participant anthropometric (Table 2.5), glycaemic control (Table 2.8), and insulin 

regimen characteristics (Table 2.4) are presented in chapter 2.

After preliminary testing (Table 2.6) participants attended the laboratory on four occasions 

after an overnight fast and having consumed similar evening meals prior to each trial. Upon 

arrival participants received catheterisation in their non-dominant arm and blood samples 

were processed for glucose, lactate, pH, adrenaline, noradrenaline, cortisol, p- 

hydroxybutyrate, triglycerides and non-esterified fatty acids (section 2.3.5). Participants were 

then required to consume 75 g of a low GI carbohydrate (Isomaltulose; GI 32; findings from 

chapter 4), mixed with 750 ml of water (10 % solution, Perrone et al., 2005). Immediately 

before ingestion, participants were instructed to administer their rapid-acting insulin, which 

had been reduced by 75 % (2.1 ± 0.1 IU) into the abdomen (Rabasa-Lhoret et al., 2001; 

findings from chapter 3). After carbohydrate and insulin administration participants remained 

at rest for 120 (120min), 90 (90min), 60 (60min) or 30 minutes (30min) before completing 

45 minutes of running at 71 ± 1% VĈ peak- Blood samples were taken every 30 minutes in the 

pre-exercise period and for three hours post-exercise (Figure 5.1). Cardio-respiratory 

parameters were collected at rest and during exercise.

Participant activity and heart rate were recorded for 24 hours after exercise; moreover, for 21 

hours after leaving the laboratory participants self-recorded blood glucose, dietary intake, 

insulin administration and hypoglycaemic incidences.
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45 MIN @ 70% V 02PEAK

t  T T t  t  t  t  t  t  T f  f x  t
BLOODS Rest 30 60 90 120 0 5 15 30 60 120 180 24 hr

RESPIRATION__________________________ „______________________________►

HEART RATE „_________________________________________________________________________________ *

ACTIVITY * _________________________________________________________________________________ *

DIET---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- <,-----------------►

INSULIN-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------«-----------------►

Figure 5 .1 : Schematic diagram of the experimental protocol of chapter 5 . N o te :  Double line indicates 

changes in pre-exercise sample point.

5.2.1 Data Analysis

Statistical analysis was performed using SPSS software (version 16; SPSS Inc., Chicago, IL), 

with significance set at P<0.05. Data were tested for normal distribution (Shapiro-Wilk test) 

and subsequently analysed using repeated-measures ANOVA on two factors (treatment x 

time) with Bonferroni adjustment and dependent t-tests carried out where relevant. Blood 

glucose area under the curve ( B G a u c )  was calculated using the method of Wolever and 

Jenkins (1988) and subsequently time averaged. Data are presented as mean ± SEM.
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5.3 R esults

5.3.1 Physiological re sp o n ses  to  exercise

The physiological responses to the trials are presented in Table 5.1. Resting rates of oxygen 

consumption and CO2 production were significantly greater under 30min, when compared to 

all other trials (Table 5.1). There were no differences in the resting rates of oxygen 

consumption or carbon dioxide production across 120min, 90min and 60min (P>0.05; Table 

5.1).

Participants exercised at a similar exercise intensity with similar %V02peak (120min 72 ± 3; 

90min 70 ± 5; 60min 71 ± 7; 30min 71 ± 8 %V02peak; P = 0.62) and HRpcak (120min 81 ± 4; 

90min 82 ± 4; 60min 82 ± 4; 30min 83 ± 4 %HRpeak; P = 0.59) elicited across trials.
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5.3.2 Blood g lucose resp o n ses

The absolute and relative blood glucose responses are presented in Table 5.2 and Figure 5.2. 

Pre-exercise responses are reported in Table 5.2. Fasted blood glucose concentrations were 

similar between conditions (P = 0.23; Table 5.2). After consumption of the LGI carbohydrate 

there were increases in blood glucose under all conditions, with immediate pre-exercise 

values lowest under 30min (30min A+2.8 ± 0.2; 60min A+3.9 ± 0.2; 90min A+4.3 ± 0.2; 

120min A+4.1 ± 0.6 mmol.T1; Figure 5.2; Table 5.2); concentrations under 30min were only 

statistically different to 120min and 90min (P<0.05; Figure 5.2B).

On average, the drop in blood glucose with exercise was least under 30min (30min 3.7 ± 0.4 

vs. 60min 5.0 ± 0.7; 90min 5.4 ± 0.5; 120min 6.4 ± 0.3 mmol.T1), however, only 30min and 

120min were statistically different (P = 0.02). When looking at the participants blood glucose 

responses to exercise individually, five of seven elicited the lowest drop in BG under 30min.

In the 3 hour post-exercise period blood glucose concentrations were greater under 30min

and 60min, when compared to 120min (Figure 5.2B). However, these differences were only

significant for 60 minutes post-exercise (Figure 5.2B). Blood glucose concentrations

significantly increased from 0 to 60 minutes under both 30min and 60min (Figure 5.2), with

the change under 30min greater (30min A+3.1 ± 0.2 vs. 60min A+1.7 ± 0.3 mmol.T1, P =

0.02). Blood glucose concentrations under both 90min and 60min remained similar to 0

minutes under both conditions (Figure 5.2). Mean post-exercise blood glucose was lowest

under 120min, in comparison all other trials (120min 5.9 ± 0.5 vs. 90min 7.6 ± 0.3; 60min

10.1 ± 0.6; 30min 9.0 ± 0.5 mmolT'1; P<0.05). Blood glucose area under the curve (BGAuc)

for the 3 hour post-exercise period under 120min and 90min were lower than 60min and

30min (120min 6.0 ± 0.5; 90min 7.0 ± 0.3 vs. 60min 9.4 ± 0.6; 30min 7.8 ± 0.5 mmol.T

’.hour1; P<0.05); B G a u c  under 60min and 30min were not different (P = 0.32).
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Figure 5.2: Time-course changes in blood glucose after alterations in the pre-exercise timing of carbohydrate 

and insulin administration, presented as absolute concentrations (A) and relative to rest (B). Under both absolute 

and relative concentrations there was a significant time effect (P = 0.001, partial-eta2 = 0.794) and a significant 

time*condition interaction (P = 0.002, partial-eta2 = 0.307). Data presented as mean ± SEM. * indicates 

significantly different from 60min and 30min at the respective time point (P<0.05). f  indicates different to 

120min and 90min at the respective time point (P<0.05). Transparent sample points indicate significant change 

from 0 min post exercise (P<0.05). Thatched area indicates exercise.
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Hypoglycaemia

There were no hypoglycaemic occurrences under 30min, however, there was 1 under 60min 

(60 minutes post-exercise), 2 under 90min (1 at 30 and 1 at 120 minutes post-exercise) and 5 

under 120min (1 at 5, 1 at 30 and 3 at 60 minutes post-exercise).
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5.3.3 Serum  insulin resp o n ses

The serum insulin responses are presented in Table 5.2 and Figure 5.3. There were no 

differences in fasting serum insulin concentrations across conditions (Table 5.2). There were 

significant increases in serum insulin concentrations after administration of the rapid-acting 

dose with the change from rest to pre-exercise similar across conditions (120min A+25 ± 3; 

90min A+18 ± 3; 60min A+27 ± 6; 30min A+20 ± 5 pmol.l"1; P>0.05; Table 5.2). Moreover, 

there were no significant changes in serum insulin concentrations between 30 minutes post­

administration and the pre-exercise sample under 120min, 90min and 60min (120min A+5 ± 

2; 90min A+6 ± 3; 60min A+13 ± 7 pmol.l'1; P>0.05).

Serum insulin concentrations significantly increased with exercise under all conditions, with 

the change under 120min and 90min significantly greater than the changes under 60min and 

30min (120min A+83 ± 7; 90min A+81 ± 12 vs. 60min A+49 ± 9; 30min A+48 ± 3 pmol.l'1, 

P<0.05); changes within 120min and 90min were similar (P = 0.52), moreover, the changes 

within 60min and 30min were also similar (P = 0.62).

In the three hour post-exercise period serum insulin concentrations followed similar time- 

course changes under each condition (Figure 5.3). However, the change in concentrations 

from 0 to 180 minutes was greater under 120min and 90min, in comparison with 30min 

(120min A-101 ± 9; 90min A-107 ± 9 vs. 30min A-69 ± 6 pmol.l'1, P<0.05); changes under 

60min were not statistically different to all other trials (60min A-78 ± 16, P>0.05).

153



Table 5.2: Pre-exercise blood glucose and serum insulin responses, in absolute concentrations and 

changes (A) from rest, to alterations in the pre-exercise timing of carbohydrate and insulin 

administration.

Sample Point
Trial Variable Rest 30 60 90 120
120min BG (mmol.l1) 7.9 ± 0.4 10.7 ±0.5* 11.9 ±0.7* 12.4 ±0.7* 12.0 ±0.8*

ABG - 2.8 ± 0.2* 4.1 ±0.4* 4.5 ±0.5* 4.1 ± 0.6*
Serum insulin (pmol.l1) 114 ± 6 134 ±7* 128 ±8* 129 ±5* 139 ±7*
ASerum insulin - 20 ±3* 14 ±3* 15 ±2* 25 ±3*

90min BG (mmol.l1) 8.9 ± 0.4 11.4 ±0.4* 12.9 ±0.4* 13.2 ±0.4*
ABG - 2.5 ± 0.2* 4.1 ±0.2* 4.3 ± 0.2*
Serum insulin (pmol.l1) 123 ± 7 135 ±5* 133 ±4* 141 ±6*
ASerum insulin - 12 ±4* 10 ±5* 18 ± 3*

60min BG (mmol.l1) 10.3 ±0.7 12.7 ±0.8* 14.2 ±0.9*
ABG - 2.3 ±0.1* 3.9 ±0.2*
Serum insulin (pmol.l1) I l l  ± 8 126± 14* 139 ±9*
ASerum insulin - 14 ± 10* 27 ±6*

30min BG (mmol.l1)
ABG
Serum insulin (pmol.l1) 
ASerum insulin

9.4 ± 0.6 

107 ± 8

12.2 ± 0.6* 
2.8 ±0.2* 
127 ±11* 
20 ±5*

Data presented as mean ± SEM (N = 7). * indicates difference when compared to rest (P<0.05).
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Figure 5.3: Time-course changes in serum insulin, relative to rest, after alterations in the pre-exercise 

timing of carbohydrate and insulin administration. There was a significant time effect (P = 0.009, 

partial-eta2 = 0.627) however, there were no significant time*condition interactions (P = 0.354). Data 

presented as mean ± SEM. Transparent sample points indicate significant change from 0 min post 

exercise (P<0.05). Thatched area indicates exercise.
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5.3.4 Counter-regulatory hormonal re sp o n ses

There were no conditional effects on any of the counter-regulatory hormonal responses to the 

trials (Table 5.3). Moreover, there were no differences in fasting concentrations of all 

measured counter-regulatory hormones (Table 5.3).

There were changes with time (P = 0.001, partial-eta2 = 0.778), however no effects of 

condition (P = 0.62) on the plasma adrenaline response. Plasma adrenaline peaked at 0 

minutes post-exercise (Table 5.3), with no differences in peak concentrations across 

conditions (P = 0.47). Moreover, the change in concentrations from rest to 0 minutes post­

exercise was greatest under 120min, however, there were no significant differences across 

conditions (120min A+1.15 ± 0.16; 90min A+1.07 ± 0.23; 60min A+0.90 ± 0.16; 30min 

A+0.64 ±0.11 nmol.T1, P = 0.13). Plasma adrenaline concentrations were greatest under 

120min at 60 and 180 minutes post-exercise under all conditions, however were not 

significantly different to the other conditions; moreover at 180 minutes, concentrations were 

not different to rest under 90min, 60min, and 30min, but remained elevated under 120min 

(Table 5.3). The change over the 3 hour post-exercise period was similar across conditions 

(120min A-1.47 ± 0.17; 90min A-1.76 ± 0.22; 60min A-2.48 ± 0.13; 30min A-1.24 ± 0.15 

nmol.l'1, P>0.05).

There was a significant time effect (P = 0.01, Partial-eta2 = 0.781) but no effect of condition

(P = 0.28) on the plasma noradrenaline response. Plasma noradrenaline peaked at 0 minutes

post-exercise (Table 5.3), with peak concentrations similar across conditions (P = 0.22).

Moreover, the change in concentrations from rest to 0 minutes post-exercise was similar

between conditions (120min A+2.79 ± 0.07; 90min A+2.28 ± 0.19; 60min A+2.09 ± 0.18;

30min A+2.35 ± 0.46 nmol.l'1, P>0.05). Plasma noradrenaline concentrations were similar at

60 and 180 minutes post-exercise under all conditions; moreover at 180 minutes,
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concentrations were not different to rest under 90min, 60min, and 30min, but remained 

elevated under 120min (Table 5.3). The change over the 3 hour post-exercise period was 

similar between conditions (120min A-1.39 ± 0.10; 90min A-1.57 ± 0.18; 60min A-1.16 ± 

0.18; 30min A-1.53 ± 0.47 nmol.l'1, P>0.05).

There was a significant time effect (P = 0.002, Partial-eta = 0.784) but no effect of condition 

(P = 0.44) on the serum cortisol response. Cortisol did not rise with exercise; however, 

concentrations began to increase significantly immediately following exercise, peaking at 15 

minutes post-exercise. Peak cortisol concentrations at 15 minutes (Table 5.3) were not 

different from rest but were greater than 0 minutes post-exercise, under all conditions. 

Concentrations decreased with time under all conditions with similar concentrations at 60 

minutes post-exercise (Table 5.3). At 180 minutes post-exercise serum cortisol concentrations 

were significantly lower than rest (Table 5.3) under all conditions (P<0.05; Table 5.3). 

Moreover, the change in concentrations from peak to 180 minutes were similar between 

conditions (120min A-281 ± 21; 90min A-277 ± 21 ; 60min A-332 ± 23; 30min A330 ± 27 

nmol.l'1, P>0.05).
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Table 5.3: Counter-regulatory hormonal responses to alterations in the pre-exercise timing of

carbohydrate and insulin administration.

Sample Point
Trial Rest 0 15 60 180
120min 1.33 ±0.11 2.47 ±0.15* - 1.17 ± 0.10 1.00 ±0.09*

Adrenaline (nmol.l1) 90min 1.22 ±0.14 2.29 ±0.19* - 0.93 ±0.07 0.61 ±0.05
60min 1.96 ±0.14 2.86 ±0.14* - 0.84 ± 0.03 0.38 ±0.03
30min 1.17 ± 0.10 1.81 ±0.11* - 0.65 ± 0.05 0.38 ± 0.07
120min 0.90 ± 0.09 3.79 ±0.09* - 1.64 ±0.14 2.30 ±0.15*

Noradrenaline (nmol.l'1) 90min
60min

1.15 ± 0.10 
0.51 ±0.06

3.48 ±0.21* 
2.61 ±0.17*

- 1.81 ±0.14 
0.98 ± 0.06

1.86 ±0.12 
1.45 ±0.17

30m in 0.89 ± 0.09 3.77 ± 0.48* - 1.21 ±0.14 1.71 ±0.12
120min 560 ± 10 496 ± 18 579 ±16f 378± 12* 215 ±128f

Cortisol (nmol.l1)
90min 540 ± 20 533 ±29 598 ± 35f 419 ±24* 275 ±12*t
60 m in 497 ±21 532 ± 23 590±21f 395 ±14* 200 ± 7*t
30min 580 ± 17 592 ± 19 617 ±17f 414 ± 8* 263 ±16*t

Data presented as mean ± SEM (N = 7). * indicates significantly different from rest (P<0.05). f indicates
significantly different from 0 min post-exercise (P<0.05).
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5.3.5 Serum  p-hydroxybutyrate re sp o n ses

The serum p-hydroxybutyrate responses are presented in Table 5.4 and Figure 5.4. There 

were small declines from rest to pre-exercise under all conditions (120min A-0.05 ± 0.01; 

90min A-0.08 ± 0.01; 60min A-0.06 ± 0.01; 30min A-0.02 ± 0.01 mmol.l'1), however, only 

under 120min, 90min and 60min was the decline significant (P<0.05; Table 5.4). p~ 

hydroxybutyrate concentrations did not change with exercise under any condition (P>0.05; 

Figure 5.4), however, there was a transient increase in concentrations over the three hour 

recovery period, with concentrations at 120 minutes only greater than rest and 0 post-exercise 

under 120min (Figure 5.4). At 180 minutes, concentrations were significantly greater than 

both rest and 0 minutes post-exercise under all conditions (P<0.05; Figure 3). The change 

from 0 to 180 minutes post-exercise was similar across conditions (120min A+0.07 ± 0.013; 

90min A+0.13 ±0.015; 60min A+0.09 ± 0.019; 30min A+0.07 ±0.015 mmol.l'1; P>0.05).

Table 5.4: Pre-exercise serum P-hydroxybutyrate (P-OHB) responses to alterations in the pre-exercise 

timing of carbohydrate and insulin administration.

Sample Point

Trial Variable Rest 30 60 90 120

120min p-OHB (mmol.l1) 0.09 ± 0.006 0.10 ±0.009 0.06 ±0.003* 0.06 ±0.03* 0.04 ±0.002*

90min P-OHB (mmol.l*1) 0.13 ±0.013 0.07 ± 0.006* 0.05 ± 0.004* 0.04 ±0.003*

60min p-OHB (mmol.l*1) 0.13 ±0.009 0.11 ±0.007* 0.08 ±0.005*

30min p-OHB (mmol.l*1) 0.15 ±0.012 0.13 ±0.014
Data presented as mean ± SEM (N = 7). * indicates significantly different from rest (P<0.05).

159



0.25 I

0.20  ■

0.15 -

0.10  -

"♦“ 120mm 
* •“ 90min 
*♦“ 60min 

30min

sc.

0.05 ■

0.00
1800 30 60 120PRE 5 15

Sample Point

Figure 5.4: Time-course changes in serum P-hydroxybutyrate after alterations in the pre-exercise 

timing of carbohydrate and insulin administration. There was a significant time effect (P = 0.002, 

Partial-eta2 = 0.646) but no effect of condition (P = 0.569). Data are presented as mean ± SEM (n = 

7). Transparent sample points indicate significant difference from 0 min post-exercise (P<0.05). 

Thatched area indicates exercise.
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5.3.6 Blood lactate and pH re sp o n ses

The blood lactate responses are presented in Table 5.5 and Figure 5.5. There were no 

differences in fasting blood lactate and pH across conditions (Table 5.4). After carbohydrate 

and insulin administration blood lactate increased from resting concentrations at 90 minutes 

post-ingestion under both 90min and 120min (Table 5.5). However, remained unchanged 

under 60min and 30min (Table 5.5). Pre-exercise concentrations were lowest under 30min, 

however, were not statistically different to the other trials (P>0.05; Figure 5.5). Blood lactate 

increased with exercise under all conditions, peaking at 0 minutes post-exercise (120min 3.0 

± 0.3; 90min 3.9 ± 0.7; 60min 3.2 ± 0.3; 30min 2.9 ± 0.3 mmol.l'1; P>0.05), the change with 

exercise was similar between conditions (120min A+1.6 ± 0.3; 90min A+2.7 ± 0.7; 60min 

A+1.8 ± 0.4; 30min A+2.1 ± 0.3 mmol.l'1; P>0.05). After exercise blood lactate 

concentrations decreased transiently, with similar declines in concentrations from 0 to 180 

minutes post-exercise between conditions (120min A-2.2 ± 0.3; 90min A-3.1 ± 0.7; 60min A- 

2.5 ± 0.4; 30min A-2.2 ± 0.3 mm ol.l1; P = 0.57; Figure 5.5).
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Figure 5.5: Time-course changes in blood lactate after alterations in the pre-exercise timing of 

carbohydrate and insulin administration. There was a significant time effect (P = 0.01, Partial-eta2 = 

0.420) but no effect of condition (P = 0.79). Data are presented as mean ± SEM (n = 7). Transparent 

sample points indicate significant difference from 0 min post-exercise (P< 0.05). Thatched area 

indicates exercise.
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The blood pH responses are presented in Table 5.5 and Figure 5.6. After carbohydrate and 

insulin administration blood pH concentrations did not change from rest over the pre-exercise 

period under all conditions (Table 5.5). Exercise resulted in an increase in blood pH, 

however, the change with exercise was similar across conditions (120min A+0.07 ± 0.01; 

90min A+0.01 ± 0.02; 60min A+0.04 ±0.01; 30min A+0.04 ±0.01; P>0.05). Over the post­

exercise period, there were no differences in blood pH responses between conditions; at 180 

minutes post-exercise blood pH was similar across conditions (Figure 5.6). The change from 

0 to 180 minutes post-exercise was similar across conditions (120min A-0.06 ± 0.01; 90min 

A+0.01 ± 0.02; 60min A-0.04 ± 0.01; 30min A-0.03 ± 0.01; P = 0.51).
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Figure 5.6: Time-course changes in blood pH after alterations in the pre-exercise timing of carbohydrate and 

insulin administration. There was a significant time effect (P = 0.002, Partial-eta2 = 0.397) but no effect of 

condition (P = 0.518). Data are presented as mean ± SEM (n = 7). Transparent sample points indicate significant 

difference from 0 min post-exercise (P<0.05). Thatched area indicates exercise.

Table 5.5: Pre-exercise blood lactate and pH responses to alterations in the pre-exercise timing of 
carbohydrate and insulin administration.

Sample Point
Trial Variable Rest 30 60 90 120
120min Lactate (mmol.l'1) 0.7 ± 0.02 1.0 ±0.05 1.3 ±0.07 1.4 ±0.04* 1.3 ±0.03*

PH 7.36 ± 0.004 7.38 ± 0.004 7.37 ± 0.004 7.36 ± 0.004 7.35 ± 0.002
90min Lactate (mmol.l'1) 0.7 ± 0.05 1.1 ±0.08 1.4 ± 0.12 1.3 ±0.07*

pH 7.38 ± 0.004 7.38 ± 0.003 7.38 ± 0.003 7.35 ±0.002
60min Lactate (mmol.l'1) 0.7 ± 0.05 1.0 ±0.04 1.4 ±0.08

pH 7.38 ±0.004 7.37 ± 0.003 7.37 ± 0.003
30min Lactate (mmol.l'1) 0.6 ± 0.02 0.8 ± 0.02

pH 7.36 ± 0.002 7.36 ±0.003
Data presented as mean ± SEM (N = 7). * indicates significantly different from rest (P<0.05).

"♦"120min 
90min 

■A- 60min 
30min
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5.3.7 Serum  triglyceride and NEFA re sp o n ses

The serum triglyceride (TG) responses are presented in Table 5.6 and Figure 5.7. After 

consumption of the LGI carbohydrate and insulin administration there were no changes in TG 

concentrations from rest to pre-exercise under all conditions (Table 5.6). However, serum TG 

concentrations increased with exercise under all conditions (Figure 5.7, P<0.05), with the 

change in serum TG similar across conditions (120min A+0.2 ± 0.01; 90min A+0.2 ± 0.01; 

60min A+0.2 ± 0.01; 30min A+0.2 ± 0.01 mmol.l'1; P = 0.91). After exercise, serum TG 

concentrations decreased over the 180 minute post-exercise period under all conditions 

(Figure 5.7); the change from 0 to 180 minutes was similar across conditions (120min A-0.0 

± 0.03; 90min A-0.1 ± 0.02; 60min A-0.2 ± 0.03; 30min A-0.2 ± 0.02 mmol.l'1; P = 0.66).

The serum NEFA responses are presented in Table 5.6 and Figure 5.8. After carbohydrate 

consumption and insulin administration there was no change in NEFA concentrations from 

rest to pre-exercise under 30min (A-0.06 ± 0.01 mmol.l'1, P = 0.32), however, concentrations 

declined under 120min, 90min and 60min (120min A-0.18 ± 0.03; 90min A-0.17 ± 0.03; 

60min A-0.19 ± 0.02 mmol.l'1; P<0.05; Table 5.6). The change from rest to pre-exercise was 

less under 30min when compared to the other trials (P<0.05). There were no changes in 

NEFA concentrations with exercise; however, there were large increases in concentrations 

from 0 to 5 minutes post-exercise (Figure 5.8). After 5 minutes post-exercise, NEFA 

concentrations increased transiently over the remainder of the post-exercise period (Figure 

5.8).
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Table 5.6: Pre-exercise serum triglyceride and NEFA responses to alterations in the pre-exercise 

timing of carbohydrate and insulin administration.

Sample Point
Trial Variable Rest 30 60 90 120
120min Triglyceride (mmol.l1) 

NEFA (mmol.l1)
0.8 ± 0.05 
0.39 ± 0.5

0.9 ± 0.06 
0.36 ± 0.04

0.8 ± 0.04 
0.23 ± 0.02*

0.7 ± 0.05 
0.20 ± 0.02*

0.7 ± 0.04 
0.22 ±0.03*

90min Triglyceride (mmol.l'1) 
NEFA (mmol.l1)

1.0 ±0.07 
0.47 ± 0.02

1.0 ±0.06 
0.37 ± 0.02*

0.9 ± 0.07 
0.24 ±0.01*

0.9 ± 0.06 
0.30 ± 0.02*

60min Triglyceride (mmol.l1) 
NEFA (mmol.l1)

0.9 ± 0.06 
0.46 ±0.02

0.8 ± 0.05 
0.35 ± 0.02

0.8 ± 0.05 
0.20 ±0.02*

30min Triglyceride (mmol.l'1) 
NEFA (mmol.l1)

1.0 ±0.05 
0.46 ±0.04

0.8 ± 0.05 
0.40 ± 0.04

Data presented as mean ± SEM (N = 7). * indicates significantly different from rest (P<0.05).
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Figure 5.7: Time-course changes in serum triglycerides (TG) after alterations in the pre-exercise 

timing of carbohydrate and insulin administration. There was a significant time effect (P = 0.001, 

partial-eta2 = 0.900) however, there were no significant time*condition interactions (P = 0.635). Data 

presented as mean ± SEM. Transparent sample points indicate significant change from 0 min post 

exercise (P<0.05). Thatched area indicates exercise.
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Figure 5.8: Time-course changes in serum NEFA’s after alterations in the pre-exercise timing of 

carbohydrate and insulin administration. There was a significant time effect (P = 0.001, partial-eta2 = 

0.808) however, there were no significant time*condition interactions (P = 0.334). Data presented as 

mean ± SEM. Transparent sample points indicate significant change from 0 min post exercise 

(P<0.05). Thatched area indicates exercise.
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5.3.8 P atterns of carbohydrate and lipid oxidation

Resting lipid and carbohydrate oxidation rates were greater and lower, respectively, under 

30min, when compared to all other trials (Table 5.7). During exercise lipid oxidation was 

greater and carbohydrate oxidation was lower under 30min, when compared with 120min 

(Table 5.7). When expressed as the change from rest, lipid oxidation was greater under 

60min and 90min, in comparison with 120min (Table 5.7). Moreover, carbohydrate 

oxidation was greater under 120min, in comparison with all other trials (Table 5.7).

The energy expended across trials was similar (120min 3.56 ± 0.09; 90min 3.21 ± 0.03; 

60min 3.24 ± 0.05; 30min 3.14 ± 0.04 MJ, P = 0.32), however, there was a greater 

contribution to energy expenditure from lipids under 30min, when compared with 120min 

(30min 5.9 ± 0.7 vs. 120min 2.0 ± 0.4 %, P = 0.02). This was also the case for carbohydrate 

contribution to energy demand (30min 94.1 ± 0.7 vs. 120min 98 ± 0.4 %, P = 0.02). There 

were no between trial statistical differences in percentage contribution to energy demand 

from lipids and carbohydrates under 90min and 60min (lipids: 90min 7.9 ± 1.1 60min 4.9 ± 

1.3 %; carbohydrates: 90min 92.1 ± 1.1 60min 95.1 ± 1.3 %; P>0.05).
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5.3.9 Post-laboratory activity and self-recorded glycaem ia and dietary intake

Over the 2 1 -hour post-laboratory period B G auc  under 120min and 90min was lower than 

60min and 30min (P<0.05; Table 5.8). With regards diet, participants consumed less 

carbohydrates under 60min and 30min, in comparison with 120min, moreover, participants 

consumed less fat under 30min, in comparison with 120min (Table 5.8). As a result, total 

energy intake was lower under 60min and 30min in comparison with 120min (Table 5.8). 

There were no conditional differences in the percentage contribution to total energy from 

carbohydrates (120min 52 ± 1.3; 90min 51 ± 1.5; 60min 49 ± 1.5; 30min 53 ± 1.1 %; P = 

0.62) and protein (120min 22 ± 0.7; 90min 21 ± 0.8; 60min 21 ± 0.9; 30min 23 ± 0.8 %; P = 

0.59), however, the contribution from fats under 30min was lower than 90min and 60min 

(30min 23 ± 0.9 vs. 90min 27 ± 1.2; 60min 29 ± 1.1 %; P<0.05), but not 120min (120min 

25 ± 0.9 %, P = 0.22).

There were 3 incidents of hypoglycaemia (8, 15 and 17 hours post-laboratory) and 1 low 

blood glucose (6 hours post-laboratory) under 120min. There were 2 incidents’ of 

hypoglycaemia under 90min (5 and 11 hours post-laboratory) and 1 incident of both 

hypoglycaemia (4 hours post-laboratory) and low blood glucose (20 hours post-laboratory) 

under 60min. Under 30min there were 2 incidents of hypoglycaemia (both at 4 hours post­

laboratory). One participant experienced hypoglycaemia, in the post-exercise period, twice 

under 90min and 30min. There were no differences in rapid-acting insulin administration or 

participant activity, with similar average heart rate and steps taken over the 21 hour post­

laboratory period (Table 5.8).
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Table 5.8: Twenty-one hour post-laboratory blood glucose, dietary intake and activity patterns.

Condition

Variable 120min 90min 60min 30min

BGauc (mmol.I"1.hour'1) 8.0 ±0.1 6.9 ±0.2 8.9 ±0.3# 9.0 ± 0.2#
CHO intake (g) 160 ±4 144 ±4 131 ± 5* 137 ±4*
Protein intake (g) 66 ±3 59 ±3 55 ±3 60 ±3
Fat intake (g) 34 ±2 33 ±2 35 ±2 2 7 ± 2 |
Energy intake (MJ) 5.1 ±0.8 4.6 ± 0.9 4.4 ±0.1* 4.3 ±0.1*

Rapid-acting insulin (U) 16 ± 1 15 ± 1 16 ± 1 16 ± 1

Frequency BG < 4.0 mmol.I'1 1 0 1 0

Frequency BG <3.5 mmol.l'1 3 2 1 2

Average heart rate (bpm) 79 ± 1 78 ± 1 78 ± 1 80 ± 1

Average steps taken 4826 ± 293 3153 ±394 7469 ± 560 5525 ± 402
Data presented as means ± SEM (n = 7). * indicates significantly different from 120min (P<0.05). # indicates 

different from 120min and 90min. f  indicates significantly different from all other trials (P<0.05). BGAuc 

indicates blood glucose area under the curve.
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5.4 D iscussion

This study examined the metabolic and glycaemic effects of alterations in the timing of 

carbohydrate feeding and insulin administration prior to running in individuals with T1DM. 

Results demonstrate that administration of both a LG I carbohydrate and a 75% reduction in 

rapid-acting insulin dose 30 minutes before exercise results in reduced carbohydrate and 

increased lipid oxidation during exercise and improved blood glucose responses after 

exercise.

Pre-Exercise

Resting carbohydrate oxidation was lower and lipid oxidation higher under 30min, in 

comparison with 120min. The slow digestion of the LGI carbohydrate, and a delayed gastric 

emptying (Achten et al., 2007), evident with lower pre-exercise blood glucose concentrations 

under 30min, results in a slow absorption rate of glucose. With this in mind, after just 15-30 

minutes, the slow digestion, and ultimately slow delivery of carbohydrate, resulted in a need 

for a greater contribution from lipids to meet energy demand. Conversely, after 105-120 

minutes greater carbohydrate availability would have directly suppressed lipid oxidation 

(Coyle et al., 1997). Prior to exercise, blood glucose was lowest under 30min in comparison 

with 120min. As demonstrated in Chapter 4, blood glucose peaked 120 minutes after 

ingestion of an LGI carbohydrate (isomaltulose). Based on these data, just before starting 

running the LGI carbohydrate would not have been fully digested under 30min. There were 

no significant differences in pre-exercise insulin concentrations, despite the manipulation of 

time prior to exercise. An investigation in to time-course changes in rapid-acting insulin has 

demonstrated these insulin analogues peak at 45 to 60 minutes after subcutaneous
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administration, and decrease to 50% of peak concentrations at 120 minutes post 

administration (Plank et al., 2002). Within our study, peak insulin concentrations varied 

between 30 -  120 minutes after administration, across trials. Moreover, within 120min, 

90min and 60min, concentrations did not significantly change within the pre-exercise period 

after the 30 minute sample (Table 5.2). Within the research of Plank et al. (2002), participants 

received a bolus of 7.1 ± 1.3 IU of insulin aspart or lispro, whereas participants within this 

study administered just 2.1 ± 0.1 IU. To our knowledge there is no literature that has 

examined the pharmacokinetics of insulin aspart and lispro when administered at such low 

doses. Potentially, smaller doses may result in altered uptake kinetics and/or increased inter 

and intra individual variability in its appearance in circulation.

During Exercise

During exercise, oxidation rates of carbohydrate and lipids were lower and greater,

respectively, under 30min in comparison with 120min. The differences in lipid oxidation

were likely due to increased combustion of intramuscular derived lipids as serum NEFA

responses were not different across trials (Figure 5.8). Two hours after ingestion would have

been sufficient time for complete digestion of the LGI carbohydrate, resulting in a greater

availability of carbohydrate to the active tissue, which may have resulted in a promotion of

carbohydrate oxidation (Coyle et al., 1997); potentially lipid metabolism was directly

suppressed by greater glucose availability (Coyle et al., 1997). Therefore, under 30min the

delayed absorption, similar to a fasted state, may have promoted lipid combustion. The drop

in blood glucose with exercise was less under 30min than 120min. A lesser increase in serum

insulin and a reduced carbohydrate oxidation rate and a greater contribution to energy

demand from lipids would have aided in preserving blood glucose concentrations under
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30min Running resulted in an increase in serum insulin concentrations under all conditions. 

This is in accordance with previous research which has demonstrated exercise to increase the 

appearance of exogenous insulin (Dandona et al., 1980). Within our study concentrations 

increased 1.5-fold with exercise across conditions, with the increase with exercise under 

30min less than 120min. According to Gallen (2003), after administration, exogenous insulin 

can lie trapped as a subcutaneous depot, which may take time to absorb and dissipate. 

Potentially, the bolus of insulin under 30min would have had less time to dissipate and be 

absorbed into circulation at rest; this may potentially explain the tiered insulin concentrations 

after exercise, i.e. concentrations were greatest (but not significantly) under 120min and 

lowest under 30min. Serum non-esterified fatty acid concentrations did not change with 

exercise; an effect likely the result of a reduction in adipose tissue blood flow, with exercise 

intensities at and above 70% V02max, reducing the removal of NEFA (Jones et al., 1980; 

Romijn et al., 1995).

Post-Exercise

After exercise, blood glucose concentrations under 30min were greater than 120min and also

significantly increased for 60 minutes post-exercise. The rise in glucose availability may be

important in preventing post-exercise hypoglycaemia, as an increased glucose availability

would aid in replenishing both muscle and liver glycogen stores. It has been suggested that

preferential repletion of muscle glycogen over liver glycogen stores, resulting in hepatic

glucose production being unable to meet glucose demand by the exercised tissue, is a

contributing factor in the development of post-exercise hypoglycaemia (Steppel and Horton,

2003). Although the blood glucose responses under 30min and 60min are similar, the

prevention of hypoglycaemia under 30min is important in establishing the optimal pre-
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exercise strategy. Over the post-exercise period, there were no differences in serum insulin 

responses with a similar and transient decline over the 3 hour post-exercise period. This is 

likely related to an increased insulin clearance that occurs in both T1DM and non-TlDM 

individuals after exercise (Tuominen et al., 1997); post-exercise insulin clearance is 

important for removing the inhibitory effects of insulin on the actions of counter-regulatory 

hormones (e.g. adrenaline, noradrenaline and cortisol). The sharp rise in NEFA 

concentrations from 0 to 5 minutes, under all conditions, is likely due to a redistribution of 

blood flow back to the adipose tissue at the cessation of exercise (Romijn et al., 1995).

Upon leaving the laboratory blood glucose concentrations were lowest under 120min in 

comparison with 60min and 30min (120min 6.3 ± 0.6; 60min 9.6 ± 0.6; 30min 8.1 ± 0.5 

mmol.r1). Over the 2 1  hour post-laboratory period B G a u c  was greater under 60min and 

30min in comparison with 120min, moreover, despite the greater blood glucose 

concentrations participants consumed less carbohydrates and overall less energy under both 

60min and 30min, when compared to 120min (Table 5.8). Participants were familiar with 

carbohydrate counting, administering ~ 1 IU of insulin per 10 g of carbohydrates; this 

reflected in the -160 g of carbohydrate consumed under 120min, with -16 IU of insulin. 

However, under 60min and 30min, 131 and 137 g of carbohydrates, respectively, were 

consumed with -  16 IU of insulin. The two participants who experienced hypoglycaemia 

under 30min left the laboratory with elevated blood glucose concentrations of 10.4 and 12.5 

mmol.r1, and both experienced hypoglycaemia within 4 hours of leaving the laboratory, 

suggesting a rapid fall in blood glucose occurred, potentially due to administration of 

corrective insulin units. The contrasting post-laboratory blood glucose responses under 

120min and 30min are both indicative of a lack of knowledge of increased post-exercise 

insulin sensitivity (Table 5.8). As blood glucose concentrations were lower after 120min,
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participants may have benefited from lowering their insulin to carbohydrate ratio in the hours 

after exercise, as recommended by De Feo et al. (2006). Conversely, under 30min, applying 

corrective insulin units in a post-exercise insulin sensitised state may have caused unexpected 

falls in blood glucose.

This study has modified the existing strategies available to T1DM individuals that help 

combat hypoglycaemia during and after exercise. For the greatest protection against 

hypoglycaemia, our data suggest that a 75% reduced dose of rapid-acting insulin (Chapter 3; 

Rabasa-Lhoret et al., 2001), combined with a low GI carbohydrate (Chapter 4), should be 

administered 30 minutes before exercise. Moreover, despite administering a rapid-acting 

insulin dose so close to an intense, full body exercise bout, there were no incidences o f 

hypoglycaemia under 30min. These findings are of clinical importance as current 

recommendations do not advocate the administration of rapid-acting insulin less than 2 hours 

before exercise (De Feo et al., 2006). Moreover, current research demonstrates heavy pre­

exercise insulin reductions are effective at avoiding exercise induced hypoglycaemia, 

however, may increase blood glucose concentrations such that individuals are exposed to pre 

and post-exercise hyperglycaemia (Rabsa-Lhoret et al., 2001); this could be detrimental to 

long-term glycaemic control if employed on a regular basis. Based on this study’s findings, 

consumption of a LGI carbohydrate source and administration of a 75% reduced insulin dose 

30 minutes before exercise reduces exposure to high blood glucose before exercise, promotes 

lipid combustion and reduces carbohydrate usage during exercise, preserving blood glucose 

concentrations such that both hyper- and hypoglycaemia are avoided after exercise.

In conclusion, this study examined blood glucose and serum insulin responses to alterations 

in the timing of carbohydrate feeding and insulin administration prior to running in 

individuals with T1DM. These data demonstrate that the T1DM individual may expect
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improved glycaemic control after exercise and higher lipid oxidation rates during exercise if 

the pre-exercise rest period is restricted to 30 minutes following administration of a low 

glycaemic index carbohydrate and reduced insulin dose.
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Chapter Six 

General Discussion
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6.1 Sum m ary of aim s and findings

The overarching aim of this thesis was to examine factors that affect post-exercise glycaemia 

and contribute to minimising the risk of hypoglycaemia after exercise. An inability to 

regulate circulating insulin concentrations is considered the primary gluco-regulatory defect 

within T1DM. Therefore, the aim of chapter 3 was to examine the effects of pre-exercise 

rapid-acting insulin reductions on blood glucose responses before and after running in T1DM 

individuals, to test the hypothesis that reducing pre-exercise insulin dose may help preserve 

post-exercise glycaemia. The results demonstrate that a 75% reduction to pre-exercise rapid- 

acing insulin dose best preserved blood glucose before and after exercise, without increasing 

the risk of ketoacidosis, and reduced the risk of hypoglycaemia in free living conditions for 

24 hours following running.

An important factor determining blood glucose concentrations and subsequent patterns of 

fuel oxidation is the rate of appearance of carbohydrate into the circulation. Potentially, low 

GI carbohydrates may raise blood glucose less and increase the percentage contribution of 

lipids as a fuel because of a slower digestion. Therefore, the aim of chapter 4 was to examine 

the metabolic and blood glucose responses to ingestion of a high or low GI carbohydrate, 

combined with a 75% reduced insulin dose, before, during and for 24 hours after running. 

The results demonstrate that compared to a high GI carbohydrate, the low GI carbohydrate 

increased blood glucose concentrations less before exercise and maintained blood glucose 

better for 24 hours after running, via lower carbohydrate and higher lipid oxidation rates 

during the latter stages of running.

After manipulating both the insulin dose and the pre-exercise carbohydrate GI, to improve

post-exercise blood glucose concentrations, the timing of the ingestion of carbohydrate

(alongside a reduced insulin dose) before exercise is an important factor which may further
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refine these strategies. Therefore, chapter 5 examined the metabolic and blood glucose 

responses to alterations in the timing of carbohydrate feeding and insulin administration prior 

to running. Our results demonstrated that administration of both a reduced rapid-acting 

insulin dose and low GI carbohydrate 30 minutes before exercise improved glycaemia for 24 

hours after running, by reductions in carbohydrate oxidation, leading to increased 

carbohydrate availability post-exercise.
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6.2 Impact of insulin reductions, carbohydrate administration and timing on 

glycaemia before and after running

Within T1DM, the primary defect in blood glucose regulation during exercise is the inability 

to regulate circulating insulin concentrations (Steppel and Horton, 2003). In chapter 3 pre­

exercise insulin dose was reduced such that blood glucose concentrations were elevated 

above rest to a greater extent under the largest insulin reduction trial. Reducing pre-exercise 

insulin dose by 75% resulted in reductions in peak (and pre-exercise) insulin concentrations 

(25% 55 vs. Full 112 pmol.l'1), and elevated blood glucose by ~4 mmol.r1 before exercise 

(25% A+7.7 vs. Full A+3.5 mmol.I’1). Manipulating the available insulin before exercise 

resulted in a reduced clearance of glucose into insulin sensitive tissues after ingestion of the 

meal and elevated blood glucose prior to exercise (Figure 6.1).

This difference in pre-exercise insulin concentrations is of importance, as with the same 

exercise bout the drop in blood glucose with exercise was less under 25% due to the 

synergistic effect of insulin and contracting muscle (Nesher et al., 1985; Plough et al., 1984) 

being less under this condition. This would have reduced peripheral uptake of blood glucose 

and subsequent use by the exercising musculature (Chokkalingam et al., 2007), increasing 

hepatic glucose output through reduced inhibition at the adipocyte and hepatocyte allowing 

greater mobilisation of gluconeogenic substrate and less inhibition of hepatic enzymes 

involved in glycogenolysis (Cherrington et al., 2007). Keeping this in mind, higher pre­

exercise blood glucose concentrations and a lesser drop in blood glucose during exercise 

under 25% meant a preservation of blood glucose above resting concentrations was elicited, 

similar to the findings of Rabasa-Lhoret et al. (2001) (Figure 6.1; 6.2; 6.3).
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Chapter 4 aimed to manipulate the glycaemic index of the administered carbohydrate given in 

conjunction with a reduced bolus insulin dose. The consumption of HGI resulted in a rapid 

rise in blood glucose, with peak concentrations double that of LGI occurring at 90 min post­

ingestion, compared to 120 min under LGI. In contrast to chapter 3, where pre-exercise 

insulin concentrations were important in subsequent blood glucose responses during and after 

exercise, within chapter 4 gross differences in pre-exercise blood glucose concentrations had 

implications for subsequent glycaemic responses. Six of eight participants experienced a 

smaller drop in blood glucose under LGI. A potential mechanism behind this may be related 

to the hyperglycaemic blood glucose concentrations elicited under HGI at the onset of 

exercise. Research has demonstrated that when T1DM individuals exercise under 

hyperglycaemic conditions they elicit an increased disposal of blood glucose (Coyle et al., 

1991; Jenni et al., 2008). The research of Jenni et al. (2008) demonstrated that when 

hyperglycaemic (11 mmol.r1), as under HGI (~15 mmol.r1), T1DM individuals elicit greater 

rates of glucose disposal and lower rates of endogenous glucose production. The mechanisms 

behind the greater drop in blood glucose under HGI may be due to blood glucose becoming 

the primary fuel source for the exercising muscles (Coyle et al., 1991). Other contributing 

factors to the lower drop in blood glucose during exercise under LGI may include a reduced 

oxidation of blood glucose by the active musculature due to a greater oxidation of lipids, and 

potentially fructose (Adopo et al., 1994). A further contributing mechanism could be greater 

rates of hepatic glucose output under LGI, due to the metabolism of fructose into glucose 

(Wahren et al., 1975; Ahlborg and Bjorkman, 1990) and the use of lactate as a gluconeogenic 

substrate (Ahlborg and Felig, 1982). Therefore, under LGI lower pre-exercise blood glucose 

concentrations and a lesser drop in blood glucose during exercise resulted in blood glucose 

concentrations being closer to euglycaemia, when compared to HGI, post-exercise (Figure 

6.2; Figure 6.3).
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Both types of carbohydrate were equally effective at preventing hypoglycaemia over the 3 

hour recovery period, with two incidences under each condition. Based on this, for the 

prevention of hypoglycaemia it seems the glycaemic index of the carbohydrate consumed 

prior to exercise is secondary in importance to the 75% reduction in pre-exercise insulin dose. 

However, comparing the post-exercise glycaemia of chapter 3 and chapter 4 (Figure 6.2), it is 

apparent that the 75% reduction in insulin dose is important for the preservation of post­

exercise blood glucose, regardless of carbohydrate type, however, less change in blood 

glucose under LGI with more euglycaemic concentrations post-exercise may be a more 

efficacious strategy for the T1DM individual, without an increased risk if hypoglycaemia.

As demonstrated within chapter 4, after consumption of the LGI carbohydrate blood glucose 

peaked at 120 minutes post-ingestion. Therefore, manipulation of pre-exercise timing would, 

as expected, result in a graded effect on pre-exercise blood glucose concentrations, i.e. lowest 

under 30min and greatest under 120min. Similar to the progression from chapter 3 to 4, 

where the exposure to high pre-exercise blood glucose concentrations was lessened; 

employing the 30min strategy reduced blood glucose excursions further (pre-exercise blood 

glucose: chapter 3 25% A+9.0; chapter 4 LGI A+4.5; chapter 5 30min A+2.8 mmol.r1). 

Moreover, it is reasonable to suggest a similar tiered effect on serum insulin responses would 

be present; however, this was not the case. Pre-exercise insulin concentrations were similar 

across conditions, suggesting timing of administration of a heavily reduced insulin dose is 

secondary in importance to timing of carbohydrate consumption on pre-exercise blood 

glucose responses.

The incomplete digestion of the low GI carbohydrate at the onset of exercise under 30min 

has important implications for blood glucose regulation during exercise. Two hours after
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ingestion would have been sufficient time for complete digestion of the LGI carbohydrate 

under 120min, resulting in a greater availability of carbohydrate to the active tissue, which 

may have resulted in a promotion of carbohydrate oxidation and a direct suppression of lipid 

metabolism (Coyle et al., 1997; Spriet, 2002). Therefore, under 30min the delayed 

absorption, similar to a fasted state, may have allowed continued lipid combustion. The drop 

in blood glucose with exercise was less under 30min than 120min, with 5 of 7 participants 

experiencing a lesser drop under 30min. A lesser increase in serum insulin concentrations, 

resulting in a lower rate of insulin mediated glucose uptake (Figure 6.1), lower rates of 

carbohydrate oxidation and a greater contribution to energy demand from lipids would have 

aided in preserving blood glucose concentrations under 30min.

The drop in blood glucose with exercise is seemingly not just dependent upon a reduction in 

circulating insulin. When employing a 2 hour rest period between insulin and carbohydrate 

feeding and exercise (i.e. chapters 4 and 5), Full resulted in a blood glucose decline of ~6.1 

mmol.f1, however, a 75% (25%) insulin reduction resulted in a drop in blood glucose of ~3.2 

mmol.r1, with slightly greater declines thereafter under LGI and HGI (LGI -4.4; HGI -5.8 

mmol.l"1). However, the manipulation of pre-exercise timing also resulted in a range in drops 

in blood glucose (30min -3.7; 60min -5.0; 90min -5.4; 120min -6.4 mmol.l1). Potentially, 

factors such as pre-exercise blood glucose concentrations, substrate oxidation and appearance 

of both insulin and carbohydrate in circulation may play a role in the drop in blood glucose 

with exercise. Moreover, based on the differences in the drop in blood glucose and the 

incidence of hypoglycaemia between LGI and 120min, the duration of T1DM may be an 

important factor.
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120min, being exactly the same protocol as the LGI trial of chapter 4, resulted in 5 of 7 

participants experiencing hypoglycaemia within the laboratory, whereas just 2 of 8 

experienced hypoglycaemia within the laboratory under LGI. Participants had similar 

anthropometric characteristics (chapter 4; body mass 84 ± 2; chapter 5; body mass 84 ± 1 kg) 

and were in similar glycaemic control (chapter 4; HbAic 8.0 ± 0.2; chapter 5; HbAic 8.3 ± 0.2 

%), however, the duration of T1DM was different between studies (chapter 4; 14 ± 2; chapter 

5; 19 ± 2 years), with duration of T1DM ranging from 1 - 34 years within chapter 4 and 6 - 

35 years within chapter 5. Specifically, within chapter 4 half of participants had a duration of 

T1DM of less than 7 years, whereas there was just 1 individual under chapter 5. Therefore, 

there is potential that the longer duration of T1DM within chapter 5 meant participants within 

this study had a greater impairment of gluco-regulatory responses. Within the 

pathophysiology of T1DM is a progressive loss of a-cell function over time, and the glucagon 

response, potentially due a loss of p -  a cell signalling (Banarer et al., 2002), such that after 5 

years of diagnosis falling blood glucose will fail to stimulate the release of this key hormone 

(Mokan et al., 1994). Based on this research and the glucagon responses within chapters 3 

and 4, differences in the release o f this key hormone are unlikely to explain the different 

glycaemic responses and incidences of hypoglycaemia between the trials.

The differences in the glycaemic responses between 120min and LGI may be related to 

adrenaline secretion. In addition to a-cell failure, T1DM experience progressive attenuation 

of autonomic, sympathetic neural and adrenomedullary responses (Cryer, 2002), with the 

adrenaline response becoming attenuated (Amiel et al., 1988; Bolli et al., 1983; Dagogo-Jack 

et al., 1993) (the attenuation of these responses is the likely explanation behind the lack of 

conditional differences in gluco-regulatory hormonal responses across conditions, despite 

gross differences in blood glucose responses). Moreover, there is potential that longer
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duration T1DM individuals have lower adrenomedullary stores of adrenaline (De Galan et al., 

2004). Although different participants, when examining the adrenaline response to exercise 

there was -30%  lesser rise in adrenaline, to the same exercise model, under chapter 5 when 

compared to chapter 4 (chapter 4 A+l.l ±0.16 vs. chapter 5 A±1.5 ± 0.02 nmol.f1). When 

considering the role of adrenaline in reducing blood glucose uptake (Howlett et al., 1999), 

increasing breakdown of intramuscular triglycerides and glycogen (Watt et al., 2001), and 

stimulating hepatic glucose output (Howlett et al., 1999), there may have been more reliance 

on blood glucose as a fuel during the 120min condition, evident with a greater drop in blood 

glucose concentrations during exercise under 120min in comparison with LGI (120min -6.4 

vs. LGI -4 .4  mmol.l'1).

After exercise, blood glucose concentrations under 30min were greater than 120min and also 

significantly increased for 60 minutes post-exercise. As there were similar concentrations of 

gluco-regulatory hormones (e.g. insulin, catecholamines and cortisol) and blood lactate 

across conditions post-exercise, it is reasonable to suggest that the time-course changes in 

blood glucose concentrations under 30min and 60min are due to the appearance of ingested 

glucose, as opposed to changes in endogenous glucose production (Figure 6.1). At the 

cessation of exercise, a redistribution of blood flow back to the digestive system may have 

resulted in a flux of glucose into circulation, which raised blood glucose concentrations for 

60 minutes. When comparing the conditions where a 25% insulin dose was employed (i.e. 

25%, chapter 4 and chapter 5) despite mean delta post-exercise blood glucose concentrations 

of just —0.4 mmol.l'1, 30min elicited the lowest incidences of hypoglycaemia, completely 

preventing hypoglycaemia. Moreover, 60min elicited mean post-exercise blood glucose o f—

0.2 mmol.l'1, yet only elicited 1 hypoglycaemic incident (Figure 6.2). Potentially, the rise in 

blood glucose after exercise is important in preventing post-exercise hypoglycaemia, as
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increased glucose availability would aid in replenishing both muscle and liver glycogen 

stores, which may reduce the susceptibility to post-exercise hypoglycaemia (Steppel and 

Horton, 2003).

The maintenance of blood glucose (i.e. blood glucose concentrations did not decline below 

concentrations elicited at 0 minutes over the 3 hour post-exercise period) elicited in the post­

exercise period under all conditions and chapters is potentially primarily regulated by 

decreasing insulin concentrations with time (Figure 6.1). Glucagon, the primary counter- 

regulatory hormone did not change with time or condition across chapters 3 and 4; moreover, 

the catecholamines and cortisol, also not different across conditions and chapters, decreased 

with time (Figure 6.1). Therefore, the decrease in insulin concentrations, likely due to an 

increased insulin clearance (Tuominen et al., 1997), resulted in the suppressive effect of 

insulin at the adipocyte and hepatocyte being lessened with time (Zinman et al., 1977; Figure

6.1) and concomitantly reducing insulin-stimulated blood glucose uptake (Figure 6.1). As 

glucose uptake would have been elevated to replenish glycogen stores within the exercised 

musculature (Wojtaszewski et al., 2002; Steppel and Horton, 2003), declining insulin 

concentrations would compensate for increased post-exercise insulin sensitivity 

(Wojtaszewski et al., 2002) and reduce the synergistic promotion of glucose uptake. 

Although NEFA concentrations were not measured within chapter 3, concentrations are 

assumed to follow similar time course changes as within studies 4 and 5. Moreover, p- 

hydroxybutyrate, which is the result of NEFA metabolism within the hepatocyte (Laffel, 

1999) increased with time (Figure 6.1). The increase in NEFA concentrations, likely due to 

increased triglyceride breakdown and potentially lipolysis (Figure 6.1), and p- 

hydroxybutyrate concentrations may be important in providing an alternative energy substrate
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for the exercised tissue (Laffel, 1999; Tuominen et al., 1997), and reducing the reliance on 

blood glucose as a fuel.

When examining the progression in the pre-exercise strategies from chapter 3 to 5 and their 

influence on post-exercise glycaemia (Figure 6.2; 6.3), it is evident that a heavy insulin 

reduction preserves post-exercise glycaemia the most, however, combining a 75% reduced 

insulin dose with a low GI carbohydrate preserves blood glucose less, but results in less 

change in blood glucose before and after exercise, and results in more euglycaemic 

concentrations after exercise, which may be beneficial for glycaemic control. However, this 

strategy was not fully effective at combating hypoglycaemia. Implementing the 

recommendations of chapter’s 3 and 4 30 minutes before exercise results in less change in 

blood glucose before and after exercise, and completely prevented hypoglycaemia (Figure

6.2). Although 60min also reduces the risk of hypoglycaemia and displays similar post­

exercise glycaemic responses, it is the improved fuel oxidation, a lesser drop in blood glucose 

during exercise and the prevention of hypoglycaemia post-exercise which makes 30min the 

recommended strategy. Furthermore, under 30min the average fasting blood glucose of 

participants was ~8.5 mmol.l'1, therefore, a mean decline in post-exercise blood glucose of 

~0.4 mmol.l'1 is negligible considering participants had completed 45 minutes of running and 

a further three hours of recovery, without feeding, yet did not experience hypoglycaemia.
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6.2.1 Post-laboratory  glycaem ia

Determining the long-term effectiveness of our interventions following exercise based on the 

incidence of hypoglycaemia is difficult as participants resumed their normal daily routines. 

Participants were required to indicate if additional insulin units were added/or units were 

omitted to attempt to correct their blood glucose concentrations (e.g. correcting blood glucose 

from low to high, high to low or to maintain concentrations). Self-recorded data indicate that 

some participants administered additional units to correct for high blood glucose, e.g. under 

25% and HGI (evidenced by an insulin to carbohydrate ratio of more than 1 IU to 10 g of 

carbohydrate or administration of insulin units without feeding), moreover, when 

concentrations were within more euglycaemic concentrations, such as under LGI, 120min, 

90min and 30min, participants administered their usual insulin dose with the meal after 

exercise. Therefore, a lack of knowledge of increased post-exercise insulin sensitivity may 

have led to unexpected falls in blood glucose. This factor likely explains the incidences of 

low blood glucose and hypoglycaemia that were experienced by some participants under 

trials with well preserved blood glucose concentrations, e.g. LGI, 60min and 30min. 

Therefore, T1DM individuals need a greater awareness of an increase in insulin sensitivity 

after exercise, i.e. an increased potency of their rapid-acting insulin, and the importance of 

reducing their insulin to carbohydrate ratio after exercise (De Feo et al., 2006).

The effectiveness of our strategies was assessed based on a combination of glycaemic and 

metabolic responses during the laboratory period and post-laboratory period glycaemia and 

dietary intake. As a result, 30min was deemed the most effective pre-exercise strategy for 

T1DM individuals to engage in. Implementing this strategy offers the T1DM individual 

improved resting and exercising fuel oxidation, lesser drops in blood glucose with exercise 

and improved blood glucose concentrations for 24 hours post-exercise.
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6.3 C hanges in the  pattern of su b stra te  oxidation

Making direct across chapter comparisons on the rates of substrate oxidation may be difficult 

due to different participants. However, it is important to recognise the within-chapter 

improvements in substrate oxidation and the preservation of blood glucose post-exercise.

Rest

Within chapter 3, despite alterations to insulin dose, and ultimately glycaemia, respiratory 

data revealed no differences in resting carbohydrate and lipid oxidation rates. This is in 

contrast to other literature that has demonstrated that gross alterations in insulin dose can 

significantly alter resting substrate metabolism within T1DM (Chokkalingham et al., 2007). 

Chokkalingham and colleagues demonstrated that low insulin concentrations, in comparison 

with high, can reduce resting carbohydrate oxidation by -40%  and increase lipid oxidation by 

-80%. Moreover, within chapter 4 alterations to the GI of the ingested carbohydrate did not 

alter resting fuel metabolism. The lack of differences in fuel oxidation rates within chapters 3 

and 4 can be explained by a similar mechanism. According to Jenni et al. (2008) 

hyperglycaemic blood glucose concentrations suppress lipid oxidation (Jenni et al., 2008) 

through a mass action effect of glucose (Coyle et al., 1997). Therefore, within chapter 3 a 

reduction in insulin dose and a concomitant rise in blood glucose, and hyperglycaemic (>11 

mmol.l"1; Jenni et al., 2008) blood glucose concentrations under both conditions within 

chapter 4, may have suppressed any changes in oxidation rates.

The mechanism behind the suppression of lipid oxidation may be related to a suppression of 

P-oxidation through a reduced transport of long chain fatty acids (LCFA) into the 

mitochondria (Coyle et al., 1997; Sidossis et al., 1996; Rasmussen et al., 2002). Figure 6.4 

below describes the transport of LCFA into the matrix of the mitochondria for p-oxidation.
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The carnitine palmitoyltransferase (CPT) complex, consisting of CPT 1, acylcamitine 

transferase and CPT II, has a major regulatory role in the transport of LCFA into the 

mitochondria for subsequent P-oxidation in skeletal muscle (Figure 6.4; McGarry and Brown, 

1997). CPT1, located on the outer surface of the outer mitochondrial membrane, catalyses the 

transfer of a variety of LCFA acyl groups from CoA to carnitine (Figure 6.4). The generated 

acylcamitine can then permeate the inner membrane, via acylcamitine/camitine translocase 

(described as translocase in Figure 6.5). The acyl-CoA is then reformed in the matrix of the 

mitochondria by CPT II. This enzyme is located on the inner mitochondrial membrane and 

catalyses the transfer of the acyl group from carnitine to CoA and the reformed acyl-CoA 

enters the p-oxidation pathway (McGarry and Brown, 1997). CPT1 is considered the rate 

limiting step in the oxidation of LCFA and is reversibly inhibited by malonyl-CoA (Spriet, 

2002). It has been demonstrated that hyperglycaemia and hyperinsulinaemia reduce LCFA 

oxidation through an inhibition of CPT1 (Sidossis et al., 1996). Moreover, hyperglycaemia 

has been demonstrated to increase the concentration of malonyl-CoA, and suppress LCFA 

transport into the mitochondria (Rasmussen et al., 2002). Therefore, an increased glycolytic 

flux, resulting in an increase in malonyl-CoA (Figure 6.5), may result in an inhibition of 

CPT1 and a concomitant suppression of lipid oxidation.
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W ithin chapter 5, resting carbohydrate oxidation was lower and lipid oxidation higher under 

30min, in comparison with 120min. The greater lipid oxidation under 30min is likely related 

to lower blood glucose concentrations (Jenni et al., 2008). The lower blood glucose 

concentrations under 30min are most likely due to the slow digestion o f the LGI 

carbohydrate, which is the result o f  slower rates o f hydrolysis within the gastrointestinal tract
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(Lina, 2002). Therefore, after just 15-30 minutes, the slow digestion, and ultimately slow 

delivery of carbohydrate, resulted in a need for a greater contribution from lipids to meet 

energy demand. Specifically, less delivery of carbohydrate to the musculature would have 

resulted in less glycolytic flux, which would result in less citrate formation within the matrix 

of the mitochondria and subsequently result in a reduction in malonyl-CoA (Figure 6.4) and 

allow LCFA to enter the mitochondria for p-oxidation (Figure 6.4). Conversely, after 105- 

120 minutes greater carbohydrate availability would have directly suppressed lipid oxidation; 

through similar mechanisms involving the inhibition of LCFA transport into the mitochondria 

through increases in malonyl-CoA (Rasmussen et al., 2002). The increase in lipid oxidation 

prior to exercise under 30min, may have contributed to a sparing of both endogenous and 

exogenous carbohydrate sources before exercise, increasing available carbohydrate reserves 

during exercise.

Based on the resting data, it seems that substrate oxidation is mainly influenced by blood 

glucose concentrations, as serum NEFA concentrations were not different across any of the 

studies. The rise in blood glucose associated with a reduced insulin dose suppresses any shift 

in fuel metabolism. Moreover, the digestion and ultimately the delivery of carbohydrate to 

resting musculature effects fuel oxidation more so than gross reductions in insulin dose or 

alterations in the glycaemic index of the ingested carbohydrate.

Exercise

Within chapter 3 the hyperglycaemia associated with reducing insulin dose suppressed any

shifts in exercising fuel oxidation rates. Although prior research has demonstrated the role of

insulin in promoting carbohydrate oxidation and suppressing lipid utilisation during exercise

(Chokkalingham et al., 2007), this research did not address blood glucose concentrations.

Within the research of Chokkalingham et al. (2007) reductions in insulin concentrations
196



provided a milieu for increased rates o f lipid oxidation, however blood glucose was clamped 

at 8 mmol.l'1 (Chokkalingam et al., 2007). Relating these data to that of this thesis, the 

hyperglycaemia associated with reducing insulin dose (13-15 mmol.l'1), irrespective of 

condition, may have caused an equal but elevated carbohydrate oxidation rate (Jenni et al., 

2008; Rasmussen et al., 2002; Figure 6.4) suppressing any shifts in the pattern of lipid 

oxidation, regardless of alterations to insulin concentrations. As previously described, 

hyperglycaemia and an increased glycolytic flux may have directly suppressed lipid oxidation 

through reducing mitochondrial fatty acid transport (Figure 6.4).

The importance of blood glucose concentrations on fuel oxidation was demonstrated further 

within chapter 4 where a low GI carbohydrate increased lipid oxidation and reduced 

carbohydrate oxidation towards the latter stages of exercise. These data are the first to 

demonstrate that a low GI carbohydrate improves fuel oxidation rates within T1DM 

individuals. These findings are similar to research examining the influence of the glycaemic 

index on exercising fuel metabolism within non-TlDM individuals (Demarco et al., 1999; 

Stevenson et al., 2006). The differences in substrate oxidation pattern are likely related to 

blood glucose concentrations during the exercise bout (Jenni et al., 2008). At the beginning of 

exercise blood glucose concentrations were hyperglycaemic under both conditions, however, 

were ~3 mmol.l'1 lower under LGI, in comparison with HGI. The high blood glucose 

concentrations may have limited fuel use to predominantly carbohydrates under HGI (Jenni 

et al., 2008). Moreover, towards the later stages of running blood glucose concentrations 

would have been lower and more euglycaemic under LGI in comparison with HGI, 

removing the mass action effect of glucose, and reducing glycolytic flux and lessening its 

inhibitory effect on lipid metabolism (Coyle et al., 1997; Jenni et al., 2008). Reductions in 

glycolysis would result in a decreased formation of malonyl-CoA (Figure 6.4) and increase

197



LCFA transport into the mitochondria and ultimately reduce carbohydrate oxidation and 

concomitantly increase lipid oxidation towards the latter stages of exercise under LGI. The 

increase in lipid oxidation during exercise would have contributed to a sparing effect on 

carbohydrate reserves (Figure 6.1), potentially reducing the oxidation of blood glucose and 

explaining the lesser drop in concentrations experienced by 75% of participants under LGI.

Similar mechanisms are responsible for the changes in fuel oxidation demonstrated within 

chapter 5. During exercise, oxidation rates of carbohydrate and lipids were lower and greater, 

respectively, under 30min in comparison with 120min. The difference between these two 

trials is likely related to differences in the digestion of the LGI carbohydrate and ultimately 

its delivery to the active tissue. Under 120min, two hours would have been sufficient time for 

complete digestion o f the LGI carbohydrate, resulting in a greater availability of carbohydrate 

to the active tissue, which may have resulted in a promotion o f carbohydrate oxidation and 

suppression of lipid metabolism due to greater glucose availability (Coyle et al., 1997; Spriet, 

2002). Conversely, 30 minutes after ingestion would not have been sufficient time for 

complete digestion of the LGI carbohydrate, as demonstrated within blood glucose responses 

of chapter 4 and the lower pre-exercise concentrations within this study. As such under 

30min the delayed absorption, similar to a fasted state, would have resulted in a lesser 

glycolytic flux (Figure 6.4), and promoted lipid combustion. This improved fuel use may 

have contributed to a sparing effect on carbohydrate reserves, promoting the preservation of 

blood glucose in the post-exercise period.

Ultimately, the progressively lower blood glucose concentrations within chapters 4 and 5 

(pre-exercise concentrations: chapter 3 25% A+9.0; chapter 4 LGI A+4.5; chapter 5 30min 

A+2.8 mmol.l'1) resulted in an increased contribution from lipids to energy expenditure 

during exercise. A reduced reliance on carbohydrate for fuel helped preserve blood glucose
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concentrations, as blood glucose oxidation and potentially disposal (Coyle et al., 1997) would 

have been less, evidenced by lower drops in blood glucose during exercise under LGI and 

30min, such that concentrations were more euglycaemic and similar to rest for 3 hours post­

exercise under both conditions. Based on this thesis’ data, improved fuel oxidation, through 

lower blood glucose concentrations, promotes a preservation of carbohydrate reserves which 

contributes to improving post-exercise glycaemia.
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6.4 The effects of insulin reductions and carbohydrate consumption on 

ketogenesis

Low insulin concentrations with concomitant rises in counter-regulatory hormones create a 

milieu that promotes ketone body formation (Laffel, 1999). In addition, exercise has been 

demonstrated to induce hyperketonaemia (>1 mmol.r1) within non-TlDM individuals 

(Koeslag et al., 1980). Therefore, within the T1DM individual there is potential that 

reductions in insulin dose, exercise and concomitant increases in counter-regulatory 

hormones could create a milieu where ketogenesis could increase after exercise (Figure 1.8). 

However, data from this thesis refutes this hypothesis.

When fasting, ketones play a role in reducing glucose utilisation (Balasse and Fery, 1989); 

however, insulin restrains ketogenic enzyme activity and increases their uptake into extra- 

hepatic tissue (Laffel, 1999). Moreover, after feeding, an increase in glucose availability 

leading to an increased glycolytic flux results in an increased availability of oxaloacetate, 

which condenses with acetyl CoA, ultimately diverting acetyl CoA from ketone forming 

pathways (Laffel, 1999). Therefore, the consumption of a bolus of carbohydrates and 

administration of rapid-acting insulin at rest resulted in a transient reduction in p- 

hydroxybutyrate concentrations. Therefore, exercise took place under elevated blood glucose 

concentrations, and insulin concentrations still elevated above rest, which potentially created 

a restraining effect over ketogenesis.

With regards chapter 3, changes in insulin dose did not result in conditional changes in p-

hydroxybutyrate concentrations. This is an important finding as reductions in insulin dose or

omission of insulin dose is a significant factor in the development o f diabetic ketoacidosis

(Wallace and Matthews, 2004). Moreover, despite reduced insulin concentrations and an

exercise induced increase in ketogenic hormones, such as adrenaline, p-hydroxybutyrate did
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not reach concentrations anywhere near that which could be defined as hyperketonaemia (>1 

mmol.l'1), let alone reach ketoacidosis (>3 mmol.l1; Laffel, 1999), with peak concentrations 

reaching -0.5 mmol.l'1. A potential explanation for this may be related to unaltered basal 

insulin administration. The basal insulin dose has a primary role of restraining excessive 

hepatic glucose output (Barnett, 2003) and a consequence of this is a similar effect on 

ketogenesis. As basal insulin remained unaltered across trials, and studies, and with only 

small alterations in rapid-acting insulin dose, it suggests a milieu that differences in P- 

hydroxybutyrate synthesis could take place was not created.

The transient rise in p-hydroxybutyrate concentrations over the recovery period is likely due 

to a combination of factors. After an overnight fast, participants subsequently utilised -2.6 

MJ of energy during running, having only consumed ~1.1 -  1.3 MJ, across studies, this 

energy deficit created by the active musculature needed to be restored through utilisation of 

endogenous liver, muscle and adipose tissue energy stores. Furthermore, without feeding for 

the 3 hour recovery period the energy deficit would be magnified with time. Moreover, the 

increased insulin clearance after exercise (Tuominen et al., 1997) would have resulted in a 

transient reduction in insulin’s restraint on enzymes involved in both hepatic glucose 

production and ketogenesis (Figure 6.1). p-hydroxybutyrate concentrations peaked 3 hours 

after exercise under all conditions (~0.3 - 0.5 m m ol.l1, across studies). These values, 

alongside acid-base values, were within the normal physiological range.

Additionally, it should be noted that although insulin concentrations were declining, basal 

insulin dose remained unchanged. As previously mentioned, an important role of the basal 

dose is it to prevent unregulated ketogenesis (Barnett, 2003). Keeping this in mind, glucagon, 

a key stimulator of ketogenesis (Laffel, 1999), did not increase after exercise, moreover there 

were no conditional differences in other key hormones in ketogenesis, the catecholamines
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(Laffel, 1999). Thus, a hormonal milieu which may have led to post-exercise 

hyperketonaemia or ketoacidosis was not created.

From a patient safety perspective, a heavy pre-exercise insulin reduction in combination with 

carbohydrate ingestion does not result any in adverse physiological changes. There is no 

increased risk o f developing diabetic ketoacidosis, with ketone body formation and blood pH 

within clinically acceptable ranges for the duration of all trials within all studies. Employing 

our strategy of a 75% reduced rapid-acting insulin dose and a low glycaemic index 

carbohydrate, administered 30 minutes before exercise has the potential to induce post- 

prandial/pre-exercise hyperglycaemia, however this will dissipate with exercise.
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6.5 General conclusions

The results of this thesis have demonstrated that:

1. The factors most likely to contribute to reducing hypoglycaemia after exercise are a 

75% reduction to pre-exercise rapid-acting insulin dose, combined with a low 

glycaemic index carbohydrate, administered 30 minutes prior to exercise.

2. The reduced incidence of hypoglycaemia after exercise is achieved by alterations in 

blood glucose concentrations and substrate metabolism.

3. Results suggest no greater risk of developing ketoacidosis by engaging in these 

protocols. Indeed, by optimising these strategies there was an improvement in post­

exercise glycaemia and a concomitant reduced incidence of hypoglycaemia in 

individuals with type 1 diabetes mellitus.
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6.6 Limitations

A potential limitation is that within chapter 4 participants were exercising at a %VC>2peak that 

was greater than that of chapters 3 and 5. The preliminary testing for study 4 was identical to 

that of chapter 3 and 5, yet exercise intensity was -10% above the intended intensity of 70% 

V02peak- This was surprising as in addition to an identical preliminary testing protocol, trial 

running velocity, average VO2, average HR and average peak blood lactate concentrations 

were similar across conditions and chapters (Table 6.2). The unexpected greater %V02peak 

within chapter 4 may be related to the oxygen cell within the metamax-3b system. Within 

chapter 4, after completion of the preliminary testing, the oxygen cell within the Metamax-3b 

was replaced with a fresh cell. Potentially, the cell in place during the preliminary testing 

period was under estimating VO2, relative to the new cell, which resulted in lower maximal 

values, thus explaining the greater %V0 2 peak elicited during the trials when running at a 

velocity of 70% Vmax-
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Based on previous data collected by Rabasa-Lhoret et al. (2001) (e.g. blood glucose changes 

with exercise, Full A-3.36 ± 6.08 and 50% A-2.26 ± 4.32 mmol.l'1) for a statistical power of 

80% 33 subjects would have been required. Unfortunately, this sample size was beyond the 

pool of T1DM individuals available. As a result, data was underpowered with power ranging 

between 45 and 59 % across chapters 3 to 5. Furthermore, for 80% power sample sizes of 33, 

16, and 34 would have been required across chapters 3 to 5. Although lacking statistical 

power, there was sufficient power to detect condition*time interactions, and a lack of 

statistical power does not detract the clinical meaningfulness of these findings.

The findings of this thesis are applicable to an exercise model that falls within the ACSM 

guidelines for T1DM individuals. However, as shown by Rabasa-Lhoret et al. (2001), the 

required insulin reduction varies with intensity and duration of exercise. Therefore, subtle 

alterations to the exercise intensity and duration could result in altered insulin, carbohydrate 

and timing requirements. Moreover, the modality of the exercise also effects blood glucose 

responses (i.e. continuous vs. intermittent; Guelfi et al., 2005b) with differences in gluco- 

regulatory hormonal responses being responsible. Again, these differences in blood glucose 

responses may result in different insulin, carbohydrate and timing requirements.
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6.7 Directions for future research

Future research should aim to address:

• Pre-exercise insulin dose in combination with the glycaemic index and amount of 

carbohydrate (i.e. the glycaemic load) consumed prior to exercise at various 

intensities and duration.

• With modem basal insulin analogues having peakless 24 hour profiles and exercise 

increasing insulin sensitivity, there is a need to examine the efficacy of reducing 

basal insulin dose. Specifically examining the impact of reducing basal insulin dose 

on glycaemia and ketogenesis before, during and for 24 hours after exercise.

• After exercise there is an increased uptake of blood glucose to replenish depleted 

muscle glycogen stores. Moreover, it has been suggested that hepatic glucose output 

is unable to meet the augmented uptake of glucose by the exercised musculature and 

this mismatch in glucose production and uptake contributes to the development of 

late-onset hypoglycaemia. Therefore, methods to preserve/replenish muscle and liver 

glycogen during and after exercise need to be examined.
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Appendix B

Participant response form

Swansea University 
Prifysgol Abertawe

Subject Contact Form

Thank you for showing an interest in this project. We look forward to meeting and working with 
you. Please fill in the details below so that we may contact you to organise the testing schedule.

PLEASE FILL IN BLOCK CAPITALS 

Your Name:

Date o f Birth:_____________  Age: (years)____ (months)

Contactable Address:

Home Phone_________________________________

Work Phone ______________________________

Mobile Phone________________________________

E-mail ______________________________________

What types o f exercise do you typically perform? _

How long do your exercise sessions typically last? _

How long have you been in regular training? ____

What insulins are you using? ___________________

Are you able to jog for 45 minutes?_____________
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Appendix C

AHA/ACSM Health/Fitness Facility Preparticipation Screening Questionnaire.

Name
Address
Phone number home 
Emergency contact name 
Date of birth

work
phone

History Assess your health needs by marking all true statements.
You have had:
Lia heart attack
□ heart surgery
□ cardiac catheterization I f  you marked any o f the statements
□ coronary angioplasty (PTCA) in this section, consult you a health
□ pacemaker/implantable cardiac provider before engaging in exercise.
defibrillator/rhythm disturbance You may need to use a facility with a
□ heart valve disease medically qualified staff.
□ heart failure
□ heart transplantation
□ congenital heart disease

Symptoms and other health issues:
□ You experience chest discomfort with exertion.
□ You experience unreasonable breathlessness.
□ You experience dizziness, fainting, blackouts.
□ You take heart medications.
□ You take prescription medication(s).
□ You have musculoskeletal problems.
f (You have concerns about the safety of exercise.
□ You are pregnant.
Cardiovascular risk factors
□ You are a man older than 45 years.
□ You are a woman older than 55 years or you have had a
hysterectomy or you are postmenopausal.
□ You smoke. I f  you marked two or more
□ Your blood pressure is greater than 140/90. o f the statements in this
□ You don't know your blood pressure. section, you should consult
□ You take blood pressure medication. your healthcare provider
□ Your blood cholesterol level is >240 mg/dL. before engaging in exercise.
□ You don't know your cholesterol level. You might benefit by using a
□ You have a blood relative who had a heart attack faciltiy with professionally
before age 55 (father or brother) or age 65 (mother or sister). qualified exercise staff to
□ You are diabetic or take medicine to control your blood sugar guide your exercise program.
□ You are physically inactive (i.e., you get less than 30 minutes
of physical activity on at least 3 days per week).
□ You are more than 20 pounds overweight.

f None of the above is true.
You should be able to exercise safely without consulting your healthcare provider in
almost any facility that meets your exercise programme needs.

Declaration:
Please sign below to confirm that you have answered questions honestly and to the best of your ability.

Signature   Date
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Appendix D

Informed Consent for venesection

1. EXPLANATION OF VENESECTION BLOOD SAMPLING
Venesection includes the following venous blood sampling techniques: (i) venepuncture and (ii) 
cannulation. Following location of a suitable vein, the puncture site will be cleaned with an alcohol 
pad and allowed to dry. A tourniquet will be applied then the needle is used to enter the vein. 
During venepuncture the blood will be drawn directly into blood containers for future analysis. 
After blood collections have been completed the needle will be taken out of the vein and a dressing 
will be applied. During cannulation a thin flexible plastic tube will be advanced into the vein and 
this remains in the vein during the entire sampling period. Following each blood sample the cannula 
will be ‘flushed’ with saline. Following the period of blood collection the cannula will be removed 
from the vein and a dressing will be applied. After analysis the remaining blood will be disposed as 
clinical waste.

2. RISKS AND DISCOMFORTS
Even though the volume of blood taken is small (less than 30 ml per sample) there exists the 
possibility that during or immediately following this procedure you may feel light headed or faint. 
There is an extremely small risk that this procedure could result in an air or plastic embolism, but 
good practice minimises this risk. In addition, every effort will be made to minimise the risks of 
contaminating the wound by using sterile disposable equipment and standardised procedures for 
collection and disposal of biohazard wastes.

3. RESPONSIBILITIES OF THE PARTICIPANTS
Please advise a member of staff if you have experienced difficulties when blood has been taken in 
the past. You are responsible to fully disclose appropriate information when requested by those 
undertaking the assessment.

4. INQUIRIES
Any questions about the procedures used during the measurement process are encouraged. If you do 
have any questions, please ask for further explanations.

5. FREEDOM OF CONSENT
Your permission to perform this procedure is voluntary. You are free to deny consent or stop the 
assessment at any point.

I have read this form and I understand the procedures that will be perform. I consent to participate in 
this________________________________procedure.

Questions:

Response:

Signature of subject

Signature of witness Date / /
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Appendix E

Chapter 3 informed consent

Swansea University 
Prifysgol Abertawe

Study Number: Patient Identification Number:

CONSENT FORM

Title of Project: ‘The cardiorespiratory and metabolic effects of reductions in insulin dose prior to 
performing an acute bout of aerobic exercise’

Name of Researcher: Dr. Richard Bracken
Please initial box:

1 I confirm that I have read and understand the information sheet
dated............................. for the above study. I have had the opportunity to consider
the information, ask questions and have had these answered satisfactorily.

□
2 I understand that my participation is voluntary and that I am free to withdraw at

□any time, without giving any reason, without my medical care or legal rights 
being affected.

3 I understand that relevant sections of any of my medical notes and data collected 
during the study may be looked at by responsible individuals from Swansea

□University, from regulatory authorities or from the NHS Trust, where it is relevant 
to my taking part in this research. I give permission for these individuals to have 
access to my records.

4 I agree to take part in the above study u

Name of Patient Date Signature

Name of Person taking consent Date Signature

Researcher Date Signature



Appendix F

Chapter 4 informed consent

Swansea University 
Prifysgol Abertawe

Study Number: Patient Identification Number:

CONSENT FORM

Title of Project: ‘The cardiorespiratory and metabolic responses to aerobic exercise following 
alterations to the type of pre-exercise carbohydrate food’

Name of Researcher: Dr. Richard Bracken
Please initial box:

1 I confirm that I have read and understand the information sheet
dated............................. for the above study. I have had the opportunity to consider
the information, ask questions and have had these answered satisfactorily. i 

I 

□ 
□

i

2 I understand that my participation is voluntary and that I am free to withdraw at 
any time, without giving any reason, without my medical care or legal rights 
being affected.

3 I understand that relevant sections of any of my medical notes and data collected 
during the study may be looked at by responsible individuals from Swansea 
University, from regulatory authorities or from the NHS Trust, where it is relevant 
to my taking part in this research. I give permission for these individuals to have 
access to my records.

□

4 I agree to take part in the above study

Name of Patient Date Signature

Name of Person taking consent Date Signature

Researcher Date Signature

xxxii



Appendix G

Chapter 5 informed consent

Swansea University 
Prifysgol Abertawe

Study Number: Patient Identification Number:

CONSENT FORM

Title of Project: ‘The cardiorespiratory and metabolic responses to alterations in the timing of insulin 
administration and carbohydrate feeding on the post-exercise glucose concentrations in type 1 
diabetes patients'

Name of Researcher: Dr. Richard Bracken
Please initial box:

1 I confirm that I have read and understand the information sheet
dated............................. for the above study. I have had the opportunity to consider
the information, ask questions and have had these answered satisfactorily.

□

2 I understand that my participation is voluntary and that I am free to withdraw at 
any time, without giving any reason, without my medical care or legal rights 
being affected.

□

3 I understand that relevant sections of any of my medical notes and data collected 
during the study may be looked at by responsible individuals from Swansea 
University, from regulatory authorities or from the NHS Trust, where it is relevant 
to my taking part in this research. I give permission for these individuals to have 
access to my records.

□

4 I agree to my GP being informed of my participation in the study. u
5 I agree to take part in the above study u

Name of Patient Date Signature

Name of Person taking consent Date Signature

Researcher Date Signature
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Appendix H 

Anti-Oxidant

For chapters 3 to 5, 30 ml of anti-oxidant was required for the preservation of plasma 

adrenaline and noradrenaline.

1.83 g of glutathione, 2.28 g of EGTA and 20 ml of distilled water were added to a beaker 

and left to mix on an unheated stirrer (FB70806 Fisherbrand unheated stirrer, Fisher 

Scientific, UK). Once fully dissolved a pH meter (InoLab pH 720, WTW, GmbH, Germany) 

was placed within the beaker and either 0.5 - 1 ml of HC1 or NaCl was added at a time until a 

pH of 7.0 was achieved. Once pH was stable at 7.0, the 30 ml volume was attained through 

the addition of distilled water.

e.g. 1.83 g glutathione + 2.28 g EGTA 

20 ml of distilled H2O 

3 ml NaCl 

0.5 ml HC1 

6.5 ml distilled H2O
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Appendix I

GEM 3000: Overview of Operation

The GEM 3000 central component is a sensor card which provides a low volume, gas tight 

chamber in which the blood sample is presented to the sensors. Sensors specific for the 

analysis of pH, Hct, Glucose and Lactate, in addition to a reference electrode, are key parts of 

the chamber, with chemically sensitive membranes permanently attached to the chamber 

body (Figure below). When the cartridge is installed, the chamber is maintained at 37 ± 0.3 in 

a thermal block, and provides the electrical interface to the sensors.

Calibration and Control Checks

Within the cartridge are two solutions, A and B. These solutions purpose is for calibration 

and/or internal process control checks. The A and B solutions provide high and low 

concentrations for all parameters, except Hct, which calibrates at one level using the B 

solution. Prior to calibration, the A and B solutions are read as unknown solutions, and these 

values are recorded in the instruments database. During calibration, these values are adjusted 

for any slope or drift that may occur over time.

The third solution, C, is used to calibrate the low oxygen level. The C solution is also used 

for conditioning the glucose and lactate sensors, removing micro clots and cleaning the 

sample path (below).
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Sam ple
Inlet

Solution  C

Distribution Valve 
(Selects Solution  A, B or C)

W aste
Container

. Check
Peristaltic Valve 
Pump

Sensor  
Card

Reference
/S o lu t io n S o lu t io n  A

/ s o l u t i o n  B/ 
Rinse

Figure: Internal com ponents o f the GEM 3000.

Electrochemical sensors: pH

The pH sensors are all based on the principle o f ion-selective electrodes, where an electrical 

potential can be established across a membrane which is selectively permeable to a specific 

ion. The potential is described by the Nem st equation:

E = E ’ + (S x Log C)

E = Electrode potential, E ’ is the standard potential for the membrane, S is the sensitivity

(slope), and C is the ion activity. E ' and S can be determined by the sensor responses to the

calibration solutions, and the equation can be solved for the activity o f  the ion o f interest. For

pH, Log C is replaced by pH. The pH sensors are polyvinyl chloride (PVC) based on ion

selective electrodes, consisting o f an internal silver chloride (AgCl) reference electrode and

an internal salt layer. Their potentials are measured against the card reference electrode.
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Appendix J

Calculation of Plasma Volume Shifts

Plasma volume shifts were calculated via the method of Dill and Costill (1974), described 

below.

Where BV = blood volume, CV = cell volume, PV = plasma volume. BVpre = 100

1 )  B V pre =  B V p o s t  X ( H b p o s t  /  H b p0s t)

2) CVpre =  BVpre X(Hctpre)

3) PVpre = BV^-CVpre 

Calculations of % changes in B V, CV and PV.

1) ABV% =100*  (BVpost -  BVpre) / BVpre

2) ACV% = 100 * (CVpost -  CVpre) / CVpre

3) APV% = 100 * (PVpost -  PVpre) / PVpre

Table 2.8: Percentage changes in plasma volume, pre to post-exercise, across chapters 3 to 5.

Chapter 3 Chapter 4 Chapter 5
Trial APV% Trial APV% Trial APV%
Full -6.7 ± 0.9 LGI -8.0 ± 1.4 120min 6.5 ± 1.3
75% -3.8 ± 1.4 HGI -7.6 ± 1.2 90min 6.2 ± 2.2
50% -3.5 ± 1.2 60min 4.0 ± 1.3
25% -2.8 ± 1.0 30min 2.1 ±0.7

Data presented as Mean ± SEM
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Appendix K

I n s u l i n  a n d  E x e r c i s e  R e g i m e n  Q u e s t i o n s

Name: |H j|jjH ^ | Date 07/04/08

Age: |

What insulin(s) are you currently taking?
Brand names

Novorapid

Lantus

What typical doses do you usually administer?

Basal and short/rapid
Basal (before bed): 14 units

Rapid: Breakfast: 10 units 

Lunch: 4-6 units 

Dinner: 4-6 units 

What time o f  day do you usually administer them?

Morning, midday, afternoon, prior to bed 

See above!

How do you take them?

Insulin Pen, Type brand names etc 

Novorapid Flexpen 

Lantus Optiset

How long have you been on this regimen? 8 years

What regimen were you previously on?
Reasons fo r  change

N ovo Nordisk Penmix 30/70 for 9 years. Current regime was a little more flexible for my lifestyle.

How often do you exercise a week? 

6 - 7  times a week for 1 -2 hours
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What do you do with regards to insulin & carbohydrate before you exercise?

Food and drink consumed? How much?

I exercise at least 3 hours after last injection o f  rapid insulin (so that circulating insulin levels are 
lower) and prior to a main meal so that I can inject insulin soon after I have finished exercising in 
order to help with muscle glycogen repletion (to hopefully stop later onset hypos).

For prolonged high intensity exercise I usually take about 60g carbs (Lucozade Energy) prior to 
exercise which will last 1 -  1 Vi hours. I sip a sports drink (Lucozade Sport) during exercise giving 
me about another 15g o f  carbs.

For anaerobic exercise (i.e. weight lifting) with only a low intensity aerobic element a sports drink 
(about 30g carbs) will be enough assuming blood sugars are okay to begin with.
For steady state exercise (30-60 min) I usually eat a large portion o f  fruit and some weatabix to give 
me a slower release o f  carbohydrates and so that my sugars don’t get too high,

Have you ever experienced a hypo during or after exercise?

How long after exercise did it occur?
I quite often experience nocturnal hypos which usually occur about 8 hours after high intensity 
exercise.

What did you eat or drink to clear it?

I usually drink lucozade energy -  about 60g carbs.

Do you consume caffeine? E.g. coffee, Red Bull 

How much/often?

I don’t consume caffeine.

How does it affect your blood glucose and insulin regimen? 

vda.

When was the last time your regimen was dramatically upset?

Date, Why?

Last week -  blood sugars very high then very low for 24 hours. Possible over-correction o f  nocturnal 
hypo forcing sugars up in the morning. Extra insulin taken to combat high sugars which, when 
combined with exercise, lowers sugars dramatically etc. Often a weekly occurrence.
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