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ABSTRACT
The impact of acute resistance exercise (RE) on glycaemia in type 1 diabetes (T1DM) 
individuals is poorly understood. Yet, such knowledge would have great use in 
improving our understanding of blood glucose control during and after the 
performance of RE. Increasing research in this area might help minimise 
complications associated with blood glucose vulnerability and potentially maximise 
health benefits related to RE which are known to be obtained by people without 
diabetes. The overarching aim of this thesis was to examine the impact of acute RE on 
glycaemia in T1DM individuals, and promote confidence in people with T1DM to 
partake in this form of exercise and lead a more physically active lifestyle.

Exercise volume, or the total weight lifted during a RE session, is a primary 
component in the design of a RE session. Therefore, Chapter 3 examined the acute 
impact of manipulating RE session volume in T1DM individuals. The results 
demonstrate that exercise volume is an important factor in determining the blood 
glucose responses to RE; specifically, blood glucose concentrations rose above rest 
for one hour after one and two sets of similar intensity RE, but this exercise-induced 
hyperglycaemia was attenuated by increasing the volume of exercise by addition of a 
similar intensity third set of RE. Additionally, performing morning RE after an 
overnight fast and in the absence of rapid-acting insulin, did not induce acute 
hypoglycaemia, ketoacidosis or raise a marker of muscle damage, but caused 
metabolic acidosis in a dose-dependent fashion.

Exercise intensity is a characteristic that is integral to the design of a RE session, and 
this characteristic might play a role in explaining the exercise-induced 
hyperglycaemia caused by the thirty minute (two-set) RE sessions in Chapter 3. The 
aim of Chapter 4 was to examine the impact of manipulating exercise intensity in 
T1DM individuals. The findings from this study demonstrate that performing a low 
intensity RE session evoked a similar magnitude of post-exercise hyperglycaemia and 
metabolic acidosis than a higher intensity RE session, when sessions were matched 
for total weight lifted.

In an attempt to alleviate the consistent exercise-induced hyperglycaemia presented 
by the two-set RE session, the aim of Chapter 5 was to implement a modified 
algorithm that delivers an individualized dose of rapid-acting insulin after morning 
RE, to counter acute post-exercise hyperglycaemia in T1DM individuals. The results 
demonstrate that post-exercise rapid-acting insulin injection delivered by means of an 
algorithm resulted in reductions to post-RE hyperglycaemia without the occurrence of 
hypoglycaemia during two hours after exercise. However, during the subsequent 
twenty hours of freely living conditions, T1DM individuals remained unprotected 
from post-exercise hypoglycaemia as per a control condition. Overall, the findings of 
this thesis underpin some important factors that determine the glycaemic and 
metabolic responses to acute performance of RE, which may facilitate the better 
management of blood glucose around this form of exercise, in T1DM individuals.
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CHAPTER ONE

Introduction

And
Review Of The Literature



1.1 BRIEF INTRODUCTION

Performance of exercise in individuals with type 1 diabetes (T1DM) is complicated 

by the absence of pancreatic P-cell function, which necessitates the pharmacological 

and nutritional management of insulin levels to maintain blood glucose homeostasis. 

Inaccurate management of insulin levels around exercise can expose the individual 

with T1DM to hypo- or hyper-glycaemia, both of which heighten the risk of acute and 

chronic health complications. In an effort to improve exercise safety and performance, 

strategies have been developed which help T1DM individuals to improve 

euglycaemic stability during and after exercise. However, the generation of effective 

strategies is complicated by the diverse relationship between different exercise 

characteristics and glycaemia. Whereas low to moderate intensity aerobic exercise 

increases the risk of hypoglycaemia in individuals with T1DM, this cohort is more 

susceptible to hyperglycaemia during and soon after high-intensity exercise. 

Resistance exercise (RE) is a form of intermittent exercise, recommended to those 

with T1DM for multiple health benefits. Its versatility means that RE can be 

composed of multiple different arrangements of exercise characteristics to suit the 

individual’s goals, yet little is understood about the impact of acute RE characteristics 

on blood glucose in T1DM and, consequently, strategies for the management of blood 

glucose around acute RE are severely lacking. Therefore, the overarching aim of this 

thesis was to examine the impact of acute RE on glycaemia in T1DM individuals. 

Such information could be used to improve the management of blood glucose in 

T1DM during and after exercise, thereby minimising complications associated with 

blood glucose vulnerability and potentially maximising health benefits related to this 

form of exercise.
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1.2 TYPE 1 DIABETES

It is estimated that 8% of the world’s population suffers from diabetes (International 

Diabetes Federation, (1)). Recent statistics demonstrate that although the percentage 

of new cases of type 1 diabetes (T1DM) in the United States is decreasing relative to 

those with type 2 diabetes (T2DM), the number of people diagnosed with T1DM is on 

the rise (2). T1DM usually appears before the age of 40, especially in childhood 

(Diabetes UK, (3)). Within Europe, during the years between 1989 and 2008, the 

incidence rate of childhood T1DM rose by an average of approximately 3-4% per 

annum (4). If present trends continue, a doubling of new cases of T1DM in European 

children younger than 5 years is predicted between 2005 and 2020, and prevalent 

cases younger than 15 years will rise by 70% (5). In 2011, 2.9 million people in the 

UK were diagnosed with diabetes (Quality Outcomes Framework, (6)) and it is 

estimated that 5 million people will have diabetes by 2025 (7), which is equivalent to 

more than 400 people every day. In 2012, the UK diabetes health organisation 

estimated that 10% of adults and 15% of children with diabetes have T1DM (8). Life 

expectancy is shortened in T1DM by more than 20 years (9). The rapidly growing 

scale of T1DM along with the associated patient care (treatment, intervention and 

complications) costs is alarming. The UK National Health Service spending on 

T1DM patient care was approximately £1 billion in 2010/11, and these costs have 

been projected to almost double by 2035 (10). The majority of this spending went into 

managing avoidable complications (10).

1.3. BLOOD GLUCOSE REGULATION IN TYPE 1 DIABETES

Type 1 diabetes is characterised by the autoimmune destruction of pancreatic (3-cells 

within the islets of Langerhans, ultimately resulting in the absolute loss of 

endogenous insulin. The significance of this loss is realised in that insulin plays an 

integral role in regulation of blood glucose levels, and as such the pharmacological 

replacement of insulin is crucial to the treatment of T1DM. Blood glucose 

homeostasis refers to the maintenance of around 4-5 mmol.L'1 of glucose within the 

circulation (11), and this is achieved by the interaction of several hormones which 

ensure a balance between endogenous glucose production and uptake, with insulin 

being a hormone critical in lowering blood glucose. Insulin stimulates a net decrease 

in glycaemia by inhibiting glucose output from the liver and increasing peripheral
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glucose uptake (12). While the liver can modulate glucose production in response to 

changing blood glucose levels independent of hormone and substrate delivery (13), 

the liver responds directly to the concentration of insulin within the portal vein; 

insulin exerts its effects by binding to hepatic insulin receptors and stimulating 

insulin-signaling pathways; hepatic glycogenolysis is inhibited by small increases in 

portal insulin concentration whereas large increases in insulin concentration occurs 

before inhibition of hepatic gluconeogenesis (14). Insulin also indirectly suppresses 

hepatic glucose production, by reducing the availability of FFA, glycerol (through 

inhibition of adipose tissue lipolysis) and amino acids (through inhibition of 

proteolysis), and antagonising hypothalamic innervation of liver nerves (15). Insulin 

augments the peripheral glucose uptake by binding to insulin receptors on extra- 

hepatic insulin sensitive cells (i.e. predominantly skeletal muscle (16)), which 

manifests an influx of glucose into the cell via GLUT4 translocation.
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Figure 1.1: Neuroendocrine responses to a decline in glucose concentrations within the 
bloodstream and potential impairments in the physiological defense to hypoglycaemia in 
people with T1DM. l s‘, 2nd, 3rd refer to order of responses to falling blood glucose. ACh: 
acetylcholine; NE: noradrenaline; PNS: parasympathetic nervous system; SNS: sympathetic 
nervous system. Adapted from Cryer et al. (17).
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In the healthy individual without diabetes, the rate of endogenous insulin secretion is 

dictated by the concentration of blood glucose that passes through pancreatic p-cells 

(18). At rest, a rise in blood glucose concentration triggers an increase in the secretory 

rate of insulin resulting in a net loss of glucose within the blood stream. Conversely, 

insulin secretion is repressed at a blood glucose concentration of ~4.4 mmol.L'1 (19; 

20), which sensitises the liver to glucagon and precedes an increase in pancreatic 

glucagon production (19-21). The primary objective of this response is to invoke a 

disproportionate increase in the rate of endogenous glucose production relative to that 

of glucose uptake. A decrease in the concentration of glucose in the blood of less than 

~3.6 to 3.8 mmol.L'1 results in the secretion of counterregulatory hormones, 

catecholamines, growth hormone and cortisol (19; 20), which all oppose the effects on 

insulin by independently and synergistically stimulating an increase in blood glucose 

concentration (Figure 1,1).

Catecholamines promote an elevation in blood glucose levels by stimulating a 

transient increase in hepatic glucose output (22-27) as well as a reduction in the rate 

of glucose uptake (22), via binding to p-adrenoceptors. This increase in hepatic 

glucose production is initially accounted for by an increase in glycogenolysis, while 

gluconeogenesis seems to have a more progressive contribution (23). Catecholamine- 

induced inhibition of glucose disposal is thought to occur via reductions in insulin- 

mediated glucose extraction (28; 29) and/or through a build-up of gIucose-6- 

phosphate that inhibits hexokinase activity. High physiological levels of 

catecholamines have been shown to inhibit the secretion of insulin (30), while at the 

same time their increased appearance has been shown to augment the release of 

glucagon (31) and growth hormone (32). Glucagon has been shown to amplify the 

potency of catecholamines on glycogenolysis, while cortisol tends to convert 

adrenaline's hepatic action from a transient to a sustained response (22). Notably, 

there is difficulty in inferring from systemic blood sampling the contribution of 

glucagon to alterations in circulatory glucose since prior to its appearance within the 

systemic circulation, glucagon is extracted by the liver following its release into the 

portal vein (33). Cortisol acts synergistically with both glucagon and adrenaline to 

increase blood glucose levels (34), but cortisol has also been shown to independently 

increase blood glucose concentrations within approximately 1 hour (35; 36) to 3 hours 

(37) of infusion, through augmenting glucose production and decreasing glucose
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utilisation. Similarly, elevated growth hormone levels are associated with increased 

rates of hepatic glucose production (38) and attenuated rates of glucose utilisation 

(38-40). Studies demonstrate that growth hormone has insulin-antagonistic effects 

(39; 41; 42), by attenuating the glucoregulatory effects of insulin i.e. to inhibit 

glucose production and to stimulate glucose utilisation. Studies suggest that the cause 

of acute growth hormone related insulin resistance is attributed to downstream 

reductions in glycogen synthase activity (39; 43).

A commonality between these counterregulatory hormones is their lipolytic effects; 

increased rates of lipid oxidation and elevated circulating levels of FFA have been 

observed in response to elevated levels of catecholamines (44-46), cortisol (37) and 

growth hormone (40; 47; 48). The increased availability of these metabolites 

contributes to hepatic glucose production via their conversion to glucose, thereby 

preserving liver glycogen stores (38; 49). With a continued loss of circulatory 

glucose, the intensity of the counterregulatory hormone response (particularly 

sympathoadrenal activity) increases, resulting in inhibition of peripheral glucose 

uptake, shunting of blood flow to central organs (i.e. away from splenic bed and 

muscles), and hepatic glucose production is increased (50).

1.3.1 Hyperglycaemia

The American Diabetes Association (ADA) Standards of Medical Care (51) define a 

random plasma glucose reading of >11.1 mmol.L'1 as hyperglycaemia. 

Hyperglycaemia typically occurs during times of mild insulin deficiency or complete 

absence of portal and systemic insulin, when there is insufficient restraint of both 

hepatic glucose production and stimulation of glucose uptake, which favours a net 

increase in circulating glucose levels. Increased levels of blood glucose coupled with 

hypoinsulinaemia can result in glucosuria and hypovolaemia which can manifest as 

symptoms of increased thirst and polydipsia, polyuria and nocturia, blurred vision and 

drowsiness (52).

The magnitude (or severity) of hypoinsulinaemic-hyperglycaemia is exacerbated by 

an increase in counterregulatory hormones. Insulin deficiency and raised 

counterregulatory hormone levels stimulates the production of ketones bodies (p-
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hydroxybutyrate, acetoacetate and acetone), as a by-product of elevated rates of 

hepatic beta-oxidation (53). An accumulation of ketones above normal physiological 

levels (>1 mmol.L"1) increases blood acidity and lowers residual bicarbonate levels 

with resulting metabolic acidosis and ketonaemia (53), which is clinically deemed as 

ketoacidosis. Ketoacidosis manifests symptoms of nausea, vomiting, hypotension, 

tachycardia, and psychological stress (52). Diabetic ketoacidosis (DKA) is clinically 

identified as ketonaemia of more than or equal to 3 mmol.L1, venous pH < 7.3 and/or 

bicarbonate < 15 mEq.L'1 (54). Hyperglycaemia coupled with DKA reflects a 

catabolic, severe inflammatory state, in the absence of obvious infection or 

cardiovascular pathology (55). It has been shown that DKA is the most common 

cause of death in children and adolescents with T1DM (56). The ADA suggests that 

caution should be taken if glucose levels exceed 16.6 mmol.L"1 without ketonaemia, 

and it is only essential to avoid exercise if fasting glucose levels are > 13.9 mmol.L1 

with ketonaemia (57). The frequent occurrence of hyperglycaemia promotes the 

generation of micro vascular and macrovascular complications (52; 58), which are 

primarily associated with the formation of advanced glycation end-products that 

accumulate in proportion to the magnitude of hyperglycaemia and time of exposure. 

Thus for the purpose of this thesis, hyperglycaemia was defined as a blood glucose 

reading of > 9.9 mmoLL"1 (i.e. a plasma glucose reading of > 11.1 mmol.L'1).

1.3.2 Hypoglycaemia

Hypoglycaemia in diabetes is defined by the ADA as “all episodes of abnormally low 

plasma glucose concentration that expose the individual to potential harm” (59). 

However, a single blood glucose concentration cannot define hypoglycaemia in 

diabetes. This is because glycaemic thresholds for symptoms and neuroendocrine 

responses to hypoglycaemia are lowered after recent antecedent hypoglycaemia (60- 

62) and raised in individuals with poorly control diabetes (63). Additionally, those 

with well controlled diabetes (i.e. frequent hypoglycaemia) often tolerate low blood 

glucose levels in the absence of symptoms (64). With varying degrees of 

hypoglycaemia manifests neurogenic (autonomic) symptoms including tremor, 

palpitations, anxiety/arousal, sweating, hunger and paresthesia, which are also a 

function of the individuals perception of the sympathetic response associated with 

hypoglycaemia (65; 66). Brain glucose deprivation per se evokes neuroglycopenic
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symptoms including cognitive impairments, behavioural changes and psychomotor 

abnormalities (e.g. confusion, blurry vision, weakness, difficult speaking) and 

potentially seizure and coma - these symptoms typically occur at glycaemic 

thresholds of 2.6 to 3.0 mmoLL1. Individuals with T1DM experience an average of 

two symptomatic hypoglycaemic episodes per week, and one severe, at least 

temporarily disabling, hypoglycaemia, often with seizure or coma, per year (67). 

Rabasa-Lhoret et al. (68) investigated the interaction between exogenous insulin dose, 

carbohydrate supplementation and exercise in T1DM individuals and defined 

hypoglycaemia as a blood glucose concentration of < 3.5 mmol.L"1. However, blood 

glucose values of ^  3.9 mmol.L'1 have been shown to trigger a physiological response 

(50). Furthermore, anecdotally T1DM individuals correct blood glucose 

concentrations before this “hypoglycaemic” level is attained. Thus, in this thesis a 

blood glucose concentration of 3.9 mmol.L"1 was defined as hypoglycaemia and a 

value of < 4 mmol.L'1 was defined as low blood glucose.

An episode of hypoglycaemia in T1DM is now considered to be the result of interplay 

between absolute exogenous insulin excess and compromised physiological and 

behavioral defenses against falling plasma glucose concentrations (17; 19; 60; 67). 

Circulatory insulin levels can be considered excessive when they inhibit hepatic 

glucose production to an extent that results in a greater increment in glucose uptake 

than production leading to net decrease in blood glucose. Exogenous insulin cannot be 

endogenously regulated. Thus, people with T1DM are marred by the loss of the first 

and impairment/loss of the second physiological defences to hypoglycaemia, i.e. a 

reduction in insulin secretion and increase in glucagon secretion (17) (Figure 1.1). 

The glucagon response to lowered blood glucose is progressively lost over time (69), 

potentially due to impairments in (3-a cell signalling with a resulting loss of a-cell 

function (70). Failure in these defences necessitates the third response; the 

sympathoadrenal and sympathetic neural response -  resulting in increased 

catecholamine secretion (19). However, for reason stated above, the secretion of 

adrenaline in response to low blood glucose if often attenuated in T1DM (17; 60; 64; 

71) (Figure 1.1).
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That hypoglycaemia blunts the counterregulatory hormone response to a subsequent 

fall in blood glucose below the physiological level (17; 60; 64), the individual’s 

recognition of physiological changes to hypoglycaemia (i.e. the resultant neurogenic 

symptom response) is attenuated (65). With this reduced awareness to hypoglycaemia 

comes a loss of the behavioural defense to hypoglycaemia, i.e. carbohydrate 

consumption (60; 67). Hypoglycaemia unawareness is also apparent following sleep 

or exercise (71). Notably, even when the glucagon and adrenaline responses are 

intact, excessive insulin can blunt hepatic glucose production and increase glucose 

uptake resulting in hypoglycaemia. In fact, hypoglycaemia unawareness is associated 

with a 6-fold increased risk of treatment-induced hypoglycaemia (72), and T1DM 

individuals who experience hypoglycaemia are immediately at risk of recurrent 

episodes (73). For these reasons, the occurrence of hypoglycaemia is unfortunately a 

fact of life for the T1DM individual (74). Nevertheless, it is encouraging that the 

sympathoadrenal response (i.e. the glycaemic threshold at which adrenaline secretion 

is elevated), lack of cognitive function, and hypoglycaemic unawareness, can be 

restored following two to three weeks of avoiding hypoglycaemia (75). Consequently, 

the main defense against hypoglycaemia is early recognition of symptoms in order to 

increase energy consumption and prevent a further decline in blood glucose levels.

1.4 TREATMENT OF TYPE 1 DIABETES

Type 1 diabetes is currently incurable. However, the normalisation of glycaemia 

through the administration of exogenous insulin (also known as insulin therapy; 

section 1.4.1) alongside the frequent monitoring of blood glucose and a healthy diet 

alleviates some of the burdens of this chronic disease. The Diabetes Control and 

Complications Trial (DCCT) evidenced from data collected over a mean of 6.5 years 

that intensive treatment (i.e. with an external insulin pump or by three or more daily 

insulin injections and guided by frequent blood glucose monitoring) with the goal of 

maintaining blood glucose concentrations close to the normal physiological range 

effectively delayed the onset and slowed the progression of diabetic retinopathy, 

nephropathy and neuropathy, in people with T1DM, when compared with 

conventional therapy of one or two daily insulin injections (76-79). The study 

specifically demonstrated that a 1% fall in HbAlc resulted in a statistically significant 

decrease in microvascular complications (77). Intensive treatment of T1DM is not
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without its challenges; the DCCT trial demonstrated that the occurrence of severe 

hypoglycaemia increased from two to six-fold with intensive treatment as compared 

to conventional treatment (80).

Increasing the frequency of monitoring glycaemic levels (involving capillary blood 

sampling from the fingertip, which is analysed using a portable blood glucose meter) 

was associated with improvements in metabolic control in T1DM, with a drop of

0.20% in HbAlc for each additional test per day, levelling off after 5 tests per day 

(81). With the advent of continuous glucose monitoring systems (CGMS), that 

periodically samples interstitial glucose every 5 minutes, the ability to more 

frequently monitor glucose levels may better enable T1DM individuals to anticipate a 

rise or fall in blood glucose outside of the normal physiological range, as opposed to a 

single sample reading. But the benefit of CGMS over single sampling remains 

equivocal (82). The ADA Standards of Medical Care currently recommend that 

diabetes individuals should aim towards HbAIC values of around 7%, and a goal of 

<6.5% is reasonable if this can be achieved without significant hypoglycaemia or 

adverse effects of treatment (51). Relevant to glucose monitoring, ADA also state 

that, “Most patients with type 1 diabetes... should consider self-monitoring of blood 

glucose prior to meals and snacks, occasionally postprandially, at bedtime, prior to 

exercise, when they suspect low blood glucose, and after treating low blood glucose 

until they are normoglycaemic”. In addition to insulin therapy and regular glucose 

monitoring, improvements in HbAlc of T1DM individuals have been associated with a 

diet that is; consistent in the amount and source of carbohydrate intake from day-to- 

day; of low glycaemic index (GI) (83), and rich in vegetable-derived carbohydrates 

relative to starch-based carbohydrates (84). Primary benefits to T1DM individuals 

specifically related to the consumption of a low GI diet include lower daily mean 

blood glucose concentrations (85), reduced incidence of hypoglycaemia and 

reductions in HbAlc (86). Recent research also demonstrates reduced hypo- and 

hyperglycaemic excursions during and after exercise with the replacement of high- 

with low-GI carbohydrates (87; 88). Furthermore, lowering daily carbohydrate intake 

with a compensatory increase in fat and protein intake resulted in a > 1% reduction in 

HbAlc over a 12 month period (89).
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1.4.1 E xogenous Insulin  A dm inistration

The administration of exogenous insulin is an essential component in the treatment of 

T1DM. The primary aim of insulin therapy is to mimic the natural secretory pattern of 

endogenous insulin of healthy individuals without diabetes (as depicted in Figure 1.2), 

with the view of permanently maintaining glycaemia within a normal physiological 

range.
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Figure 1.2: Normal insulin secretion throughout a 24-hour period. There exists background 
insulin secretion upon which is superimposed by secretory bursts in response to meal-time 
feeding. Basal-bolus insulin injections can closely mimic this pattern. From (90).

As such, there are multiple types of exogenous insulin that differ pharmacokinetically 

in absorption rate, duration of action and time of peak action (Table 1.1). Regular 

soluble (short acting) insulin is used as a bolus injection (20-30 minutes before meals) 

alongside intermediate acting insulin in a twice-daily regimen or a basal analogue 

given once daily. Alternatives to short acting insulin are rapid acting insulin 

analogues, which are typically administered before meals (and in some cases, soon 

after) in combination with longer acting insulin. Basal insulin analogues replace 

background residual insulin. This form of insulin is taken once daily in the evening or 

morning, usually in combination with rapid acting insulin. Long acting insulins are 

similar to basal insulin analogues in that they are designed to exert an effect over 24 

hours. However, converse to basal insulin analogues, long acting insulins have a dose 

accumulative effect that can increase the likelihood of hypoglycaemia. The onset, 

peak effect and duration of action vary as a function of many peripheral factors, all of 

which affect the speed and consistency of absorption. For instance, age, fat mass, dose
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of injection, site and depth of injection (subcutaneous vs. intramuscular; abdomen vs. 

thigh), exercise, insulin concentration, and ambient and body temperature, have all 

been shown to affect the time-action profile of exogenous insulin (91).

Table 1.1: Types of insulin preparations available to T1DM and action-profiles.

Pharmacokinetics

Insulin Type Onset of Peak of Period of Reference

action (h) action (h) action (h)

Rapid acting analogue: aspart, 

glulisine, lispro.
0.15-0.35 0.75-1 3-5 (92-94)

Regular/soluble (short acting) 0.5-1 2-5 6-8 (95)

Intermediate acting

NPH 2-4 4-12 12-24 (96)

Basal long-acting analogue

Glargine 1.5 None 20-24
(96)

Detemir 2.5 None 20-24

Degludec - None >24-42 (97)

Long-acting Ultralente type

Humulin U 4-6 8-20 20-24
(96)

Novolin Ultralente 4 8-24 28

h refers to hours. NPH: Neutral Protamine Hagedorn insulin.

1.4.2 Calculation Of Daily Insulin Dosage: Basal-Bolus And Bolus Correction

There is currently no strict approach to calculating the optimal basal-bolus dosage, but 

a common method employed by clinicians is based on the notion that the total daily 

insulin dosage (TDD) varies as a function of the inverse relationship between body 

mass and insulin sensitivity (i.e. TDD = body mass/insulin sensitivity; (98)). Thus, 

with regular glucose monitoring the TDD can be more accurately determined. The 

basal insulin dose typically accounts for 50% of the TDD (99), but the absolute 

dosage can vary depending on factors including HbAlc, age and body mass and the 

clinician’s own interpretation of the patient (90; 99).

As an example, the TDD for newly diagnosed individuals with T1DM is in the region 

of 0.5 IU.kg"I.day"1, but for a pre-pubertal child is approximately 0.9 IU .kg1 body
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weight/day, rising during the pubertal years by anything up to 50-100 % (90). In 

relation to calculation of the bolus dosage, carbohydrate counting is a useful strategy 

prescribed to T1DM individuals that facilitates the adjustment of the rapid-acting 

insulin dose as a function of carbohydrate (CHO) intake (100). This approach has 

been shown to positively effect glycaemic control, reflected in lowered HbAlc after 

one-quarter year (101). The insulin to carbohydrate ratio can be calculated in the 

following manner (90; 99):

Insulin:CHO ratio  (IU .g'1 o f  CH O): 1 IU =  500/TD D . So i f  the TDD  is 5 0  IU, the 

insulin:CHO ratio  is 1 U o f  insulin fo r  every 10 g o f  CH O. I f  the estim ated CH O  

content o f  the m eal is 3 0 g , then 3 U o f  insulin w ill be requ ired .

Nevertheless, this is merely an estimate for the T1DM individual. Refinement of the 

bolus insulin dosage occurs with regular testing of postprandial glucose at ~2-hours 

after the meal against pre-prandial glucose concentrations. In this way, the 

individual/clinician can ascertain how successful the estimation of insulin dose to 

CHO intake has been. It is important that the T1DM individual is aware of the target 

blood glucose i.e. euglycaemia; there is no evidence for strict goals, but ADA 

recommend that pre-meal blood glucose targets generally 7.8 mmol.L'1 with random 

blood glucose 10.0 mmol.L'1 are reasonable (51), provided these targets can be safely 

achieved. The ratio of CHO:insulin units should be considered changeable with 

physical activity and/or unplanned exercise (100), as well as with diurnal changes in 

insulin sensitivity (100).

Inevitably, sometimes T1DM individuals administer insufficient insulin relative to 

their physiological requirement, which is typically due to unfamiliarity of a particular 

event such as exercise or a dietary change, resulting in hyperglycaemia. In this case a 

correctional dose of insulin might be necessary. While correctional doses of insulin 

can be effective at restoring euglycaemia, the timing of injection and dose need to be 

considered carefully. For example, approximately 50% of the previously injected 

bolus insulin analogue can have an affect on glucose metabolism for 2 hours after 

injection, and 20% of the dose remains within the circulation at ~4-hours after 

injection (90). Thus, if a correction dose is taken within 2 to 3 hours after a previous
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dose of rapid acting insulin, the T1DM individual needs to be conscious of an insulin- 

stacking effect whereby additional insulin could culminate within the bloodstream 

leading to hyperinsulinaemic-induced hypoglycaemia.

While there are permutations in calculation of the correctional dose (98; 99), these 

algorithms are fundamentally used to estimate what magnitude of fall in blood 

glucose concentration will occur per unit of insulin. The accurate insulin management 

(AIM) system has evolved from earlier systems as it provides a balance of accuracy 

against opposing benefits of being short, easy to remember, and easy to use, in order 

to minimise dosing errors (99). Unlike other systems which assume that there exists 

no inter-individual variability in glucose metabolism each day, this system is more 

compatible with the physical principle that the magnitude of decline in blood glucose 

per unit of insulin is inversely related to a person’s weight, representing the size of 

their intravascular and interstitial space, and is inversely related to their insulin 

sensitivity, representing the ease with which glucose is transported into insulin- 

sensitive cells (98; 99). For metric users, this system has been referred to as the 100- 

rule; Figure 1.3 demonstrates how the correction dose is calculated.

RA required to reduce BG by 1 mmol.L'1 within 2 hours = TDD/100. For example,
if the TDD is 20 U, then 1 IU will reduce BG by 5 mmol.L"1.

Figure 1.3: Calculation of an insulin correction dose using the 100-rule (99). TDD: Total 
Daily Dose of Insulin. RA: Rapid-acting insulin. BG: Blood glucose.

Ultimately an effective approach to maintaining euglycaemia, is to continually 

evaluate the interaction between the physiological state of the T1DM individual and 

the environment (e.g. diet and lifestyle changes) against the acute impact of insulin 

therapy on glycaemia. For example, a strategy should be aligned to not only the 

anticipated glycaemic response to a task (e.g. exercise) but specifically take into 

account the actual real-time glycaemic response on every given occasion. Thus, the 

derivation of an optimal glucose management strategy is to tailor the adjustment of 

insulin and diet to each individual as a function of the change in blood glucose evoked 

by the environment/situation; in turn, the strategy is validated and individualised.
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1.5 PHYSICAL EXERCISE IN TYPE 1 DIABETES

When considering the benefits of regular physical activity, it is no surprise that there 

exists a role for physical exercise in the management of T1DM.

Table 1.2: Diabetes Health Organisation Physical Activity
Guidelines/Recommendations for individuals with type 1 and type 2 diabetes.______

(PA)

Health
Organisation Exercise Recommendation / Guideline

ESSA

Position

Statement

(102)

ADA and 

ACSM Joint 

Position 

Statement 

(103)

Diabetes UK 

(104)

CDCP (106).

T2DM/Pre-diabetes: 210 min per week of MOD or 125 min per week of VIG 
with no more than two consecutive days without training. RE: > 2 sessions 
per week (2-4 sets of 8-10 repetitions) should be included in the total 210 or 
125 min of MOD or VIG, respectively. Exercise training programs should 
recognise and accommodate comorbidities and complications.

T2DM: at least 150 min per week of MOD to VIG aerobic exercise spread 
out during > 3 days during the week, with no more than two consecutive days 
between bouts of aerobic activity. Aerobic exercise should be at least at 
M OD, corresponding approximately to 40-60%  V 0 2max. Additional benefits 
may be gained from VIG (>60%VO2max ). RE: > twice weekly on noil- 
consecutive days; training should be of moderate (50%1RM) or vigorous 
intensity (75-80% 1RM) for optimal gains in strength and insulin action; each 
RE session should include 5-10 exercises involving major muscle groups (in 
the upper and lower body), progressing over time to heavier weights (or 
resistance) that can be lifted only 8-10 times; 1-4 sets should be completed; 
to avoid injury, progression of intensity and volume should occur slowly by 
firstly increasing repetitions, followed by sets and then by sessions per week. 
Recommendations are in reference to WHO guidelines (105): Adults aged 
18-64 should do at least 150 minutes of MOD or at least 75 min of VIG 
throughout the week or an equivalent combination of MOD and VIG. MOD 
(aerobic) should be performed in bouts of > 10 min duration. For additional 
health benefits, adults should increase their MOD to 300 min per week, or 
engage in 150 min of VIG per week, or an equivalent combination of MOD 
and VIG activity. Muscle-strengthening activities should involve major 
muscle groups on > 2 days a week.
T1DM and T2DM: MOD for > 30 min on > 5 days of the week, e.g. walking 
briskly, mowing the lawn, dancing, swimming, or bicycling. Individuals 
unaccustomed to PA, may want to start with a little exercise, and work your 
way up. With increases in strength, add a few extra minutes to your PA. Do 
some PA every day. It is better to walk 10 or 20 min each day than one hour 
once a week.
T1DM: Exercise 20 to 45 min at an intensity (longer if low intensity) of 4 0 - 
60%VO2max (if no neuropathy), for 5-7days/week or daily at low to 

ACSM (107) moderate intensity. Also, moderate intensity circuit, interval or free weights, 
with progression in number of repetitions in relation to physical ability (i.e. 

_______________ initially starting at 8-10 repetitions building to a maximum of 20 repetitions).

ESSA: Exercise and Sports Science Australia. ADA: American Diabetes Association. 
ACSM: American College of Sports Medicine. CDCP: Centres For Disease Control And 
Prevention. RE: Resistance exercise, MOD: Moderate intensity exercise, VIG: Vigorous 
intensity exercise. V 0 2max: Maximal Aerobic Capacity. 1RM: One repetition maximum.
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1.5.1 Physical Activity Recommendations

Regular physical activity is advocated for the management of type 1 and 2 diabetes on 

a worldwide scale by multiple health organisations (57; 102-104; 106; 107). As such, 

exercise guidelines have been developed with specific reference to exercise modality, 

intensity, duration, volume and frequency of training (Table 1.2). Along with regular 

performance of aerobic oriented activities (or submaximal exercise), it is evident from 

these guidelines (in Table 1.2) that strength training (also known as resistance 

exercise) is identified as an integral component of a physical exercise programme. It 

is also clear that the majority of diabetes health organisation advice for exercise 

relates to type 2 diabetes (T2DM), and by comparison, specific exercise guidelines for 

T1DM individuals are lacking. Relevant to T1DM, the American Diabetes 

Association state that, “All levels of physical activity, including leisure activities, 

recreational sports, and competitive professional performance, can be performed by 

people with T1DM who do not have complications and are in good blood glucose 

control” (57). Diabetes UK, a public health organisation based in the United 

Kingdom, align their exercise guideline for diabetes to that recommended to the 

general population (Table 1.2).

1.5.2 Health Benefits Of Physical Activity

The importance of physical activity is highlighted by the inverse relationship between 

risk of all-cause mortality and level of physical fitness in both men and women 

without diabetes (108). Similarly, in T1DM, a physically active lifestyle is associated 

with reduced risk of diabetes-related complications (109; 110) and cardiovascular 

disease (110), increased life expectancy (110; 111),improved mental well-being (112) 

and overall, better quality of life (113). A staggering finding is that sedentary 

individuals with T1DM are three times as likely to die than those who are physically 

active (111). Interventional studies in individuals with T1DM, demonstrate that 

adherence to a physical exercise programme can improve blood lipid profile (114; 

115), blood pressure (116) and endothelial function (115). While the majority of these 

exercise-related health benefits can be attributed to aerobic-type training and/or a 

combination of aerobic and resistance exercise (RE) training (i.e. chronic exercise), 

very few studies have investigated the impact of only chronic RE training on health of 

people with T1DM (117-119) (Table 1.3).
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Table 1.3: Health benefits of chronic exercise in T1DM

Author Participants Type of 
PA PA Programme Outcome

Sideraviciu 
te et al. 
(120)

Fuchsjager 
-Mayrl et 
al. (115)

19T1DM  
Females 
H b A lc: 8.5±0.4

18 T1DM (11 
males, 7 
females)

MOD 
Swim 
(144-156 
beats .min'1)

MOD
Cycle
(60-70%
HR„,ax)

Swimming (pulse rate 
controlled): 45 min, 2 x 
per week for 14 weeks

Cycling: 3 x 1  hour per 
week for 8 months

~ 0.7% 1 in HbAlc

_____
fitness, 
t  endothelial 
function, [  insulin 
dose, HDL, 
LDL, BP, or body 
mass

Campaigne 
et al. (121) 10T1DM

HIGH 
Run (>160 
beats .min'1)

Running/movement 
activities: 30 min, 3 x 
per week for 12 weeks

-4 .3  % | in HbAlc, 
<-»FBG, TCV 
fitness

Durak et 
al. (119) 8T1D M RE

10 upper and lower 
body exercises: 3 to 7 
sets of 12 reps 
(unknown intensity), 
with 30-s to 2-min . 
between sets. 3 x per 
week, 10 weeks

i  HbAlc from 
6.9% to 5.8%. 
t  strength, j. total 
cholesterol.

Ramalho et 
al. (118)

7 T1DM vs. 6 
T1DM

MOD to 
HIGH 
Run/Walk 
(60-90%

RE

40 min Run/Walk vs. 3 
sets of 8-12 repetitions, 
upper and lower body, 
60-s rest between sets, at 
60% to 80% 1RM (40 
min); 3 x per week, 12 
weeks

MOD t  HbAlc but 
RE J, HbAlc (non- 
statistical) ~8.2% 
to -7.6% . Both 
20%1 NPH insulin 
dosage. Both 
<->HDL, LDL, TG, 
FBG or total 
cholesterol.

Salem et 
al. (116)

196T1DM  
No Exercise: 48 
Exercise 
once/week: 75 
Exercise 
thrice/week: 73

None vs. 
MOD to 
HIGH 
Cycle/Run 
(65-95%
HRmax) +
RE + 
Flexibility

Moderate: 30 min heart 
rate controlled cycle/run 
High: Intervals of 1-2 
min run
RE: 2 exercises (lower 
body), 3 sets of 10 
repetitions at 50 to 75% 
to 100% 10RM

Both exercise 
programmes: 
J,HbAlc, J, lipid 
profile, i  insulin 
dose, f body 
comp. 1 DBP in 
exercise thrice,

D ’Hooge 
et al. (117)

16T1DM

None vs. 
RE + MOD 
Cycle/Run 
(60-70%
Hl̂ Reserve)

2 x 1  hour sessions per 
week, for 20 weeks

Exercise: <-»HbAlc 
or body comp, 
J.insulin dose ( |  in 
no exercise), fCV, 
twell-being.

PA: Physical activity. RE: Resistance exercise. MOD: Moderate-intensity exercise. HIGH: 
High-intensity exercise. HDL: High-density lipoprotein. LDL: Low-density lipoprotein. 
DBP: Diastolic blood pressure. FBG: Fasting blood glucose. TG: Triglyceride. CV: 
Cardiovascular fitness. Body comp: Body composition. BP: Blood pressure.
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T1DM individuals demonstrate reductions in blood lipid profiles and increased 

muscular strength following 10 weeks of RE training (119), and improved 

cardiovascular fitness and well being after 20 weeks (117). Although the utility of RE 

in the prevention and management of diabetes has become more apparent during the 

last decade, the weight of evidence for the benefits of RE resides in studies involving 

individuals with T2DM and without diabetes. The most obvious roles for RE include 

the reversal of muscle loss associated with aging (122) and improvement of functional 

capacity through increases in strength and physical performance (123; 124), but the 

therapeutic potential of RE has recently become more recognised; regular RE can 

have positive effects on blood lipidaemia (125), blood pressure (126), bone mineral 

density (127), and has been shown to reduce major risk factors associated with both 

cardiovascular disease and T2DM (128).

1.5.3 Benefits Of Physical Activity On Glycaemic Control

The effects of regular physical exercise on chronic glycaemic control have been 

heavily debated (129-131). Improvements in HbAlc have been observed in T1DM in 

response to aerobic-based exercise training ((120; 121); Table 1.3). Although one 

study demonstrated that RE training resulted in a statistical ~1.1% fall in HbA]c in 

T1DM individuals (119), others have demonstrated no effect of RE on glycaemic 

control (117; 118); moreover, where no improvement in HbAlc was observed (117; 

118), participants reduced their daily insulin dosage independent of any change in 

dietary intake (Table 1.3). Reduction in daily insulin requirements could be explained 

by an improvement in insulin sensitivity (132); for instance, improvements in insulin 

sensitivity have been demonstrated in response to aerobic exercise training (132-134) 

alongside a reduction in bolus (not basal) insulin dosage (132).

Relevant to RE, improvements in insulin sensitivity (135) and insulin signalling 

mechanisms (136) have been observed in those with T2DM, in response to several 

weeks of (chronic) RE training. However, no studies have investigated the effect on 

chronic RE training on insulin sensitivity in T1DM. From an acute perspective, one 

study assessed insulin sensitivity in T1DM in response to a single session of RE and 

witnessed no improvements in insulin sensitivity within 36 hours of a single exercise 

session (137). In T2DM, improvements in insulin sensitivity or glucose tolerance
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have been observed within 24 hours after an acute RE session (138; 139), with higher 

intensities providing increased benefits. But these results contradict more recent 

findings, in which no improvements in glucose tolerance were observed at 24,48 and 

72-hours post-exercise (140). Conversely, after acute performance of one to three sets 

of 8-10 exercises (upper and lower body) at 65-85% (~10 repetitions per set), 

individuals without diabetes demonstrate increases in insulin sensitivity at 24-hours 

after exercise (141-143). Improvements in insulin sensitivity have also been observed 

in those with impaired fasting glucose at 24-hours after a variety of different volume 

and intensity RE sessions (144), with greater sensitivity observed after higher volume 

or intensity RE sessions. Aside from possible limitations presented by differences in 

the methods used to assess insulin sensitivity between these studies (e.g. clamp vs. 

oral glucose tolerance test), the variability in the effects of RE on insulin sensitivity 

might be attributed to diversity in RE characteristics, such as alterations in exercise 

volume and intensity. The findings of these RE studies i.e. in those with and without 

T2DM offer a framework for investigating the effect of acute and chronic RE in 

T1DM.

Interestingly, in a recent meta-analysis to determine the overall effects of chronic 

exercise on glycaemic control in individuals with T1DM -  comprising, 13 aerobic 

training studies; 2 strength training studies; 4 combined (aerobic and strength) 

training; 6 high-intensity exercise (HIE) training studies -  aerobic training was found 

to be a favourable tool for decreasing chronic glycaemic control, while resistance 

training, mixed and HIE did not improve chronic glycaemic control, in T1DM 

individuals (131). This analysis also revealed a trend for improvements in glycaemic 

control due to chronic RE training, but authors suggested that there were not enough 

studies in T1DM and/or subjects to confirm this statistically (131). It is difficult to 

determine why regular exercise has contrasting effects on glycaemic control, but 

factors such as reductions in insulin dosage or increases in dietary intake could negate 

an improvement in glycaemic control (albeit a reduction in insulin requirements could 

be considered as favourable) (133). Moreover, given the variability in blood glucose 

responses to differing types of exercise modalities (as highlighted later in this review), 

poor management of blood glucose during and after exercise might negate the effects 

of exercise training on HbAIC (130).
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Despite the lack of literature in RE and T1DM, it is plausible that T1DM individuals 

could experience all of the same health benefits from this form of exercise that those 

with and without T2DM experience. Thus, the therapeutic potential of RE holds 

promise in the management of T1DM.

1.5.4 Physical Inactivity In Type 1 Diabetes

Despite the favourable impact of regular exercise on health of T1DM individuals and 

rising healthcare costs associated with physical inactivity (145), levels of physical 

activity in T1DM are often suboptimal (146; 147). In fact, in a study of ~700 

individuals with T1DM, approximately two-thirds of this population did not achieve 

the minimal amount of regular physical activity to maintain good health (146). 

Research has also demonstrated that physical activity levels in T1DM decrease with 

age (148).

It is for fear of hypoglycaemia that the majority of T1DM individuals avoid physical 

exercise (149), but other factors including, loss of glycaemic control, low fitness 

level, insufficient knowledge about both insulin pharmacokinetics and strategies to 

minimise the exercise-induced glycaemic imbalances were also perceived as barriers 

to physical activity (149). In mind of these findings, and that ADA Standards of 

Medical Care suggest that exercising individuals with T1DM should aim to keep their 

blood glucose levels before, during and after exercise above 5.5 mmol.L'1 and below 

13.8-16.7 mmol.L'1 (51), it is astounding that only one-half of 103 T1DM individuals 

were found to be knowledgeable of strategies to minimise exercise-related glycaemic 

imbalances (149). Furthermore, out of a group of 91 T1DM individuals, only fifty 

percent of individuals reported monitoring their blood glucose levels during exercise, 

and the minority (i.e. 32%) adjusted their insulin dose according to blood glucose 

levels (150). Thus, strategies intended to increase adherence to exercise in T1DM 

should primarily aim to improve exercise-induced glycaemic imbalances, but also be 

simple in application to promote practice and allow for inter-individual variations in 

physical fitness.
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1.6 CONSIDERATIONS FOR EXERCISE PRESCRIPTION IN TYPE 1 

DIABETES: ALTERATIONS IN METABOLISM RELEVANT TO EXERCISE 

PERFORMANCE

An awareness of factors that could limit exercise performance is crucial to the design 

and prescription of exercise guidelines that maximise health benefits but ensure the 

safety of the participant. Considering the metabolic challenges which individuals with 

T1DM face, it is understandable that studies have reported impaired exercise 

performance and reduced tolerance to exercise in T1DM. For example, in male 

adolescents with and without diabetes, matched by age, weight, height, body mass 

index, and lean and fat mass, T1DM individuals expressed a 20% lower aerobic 

capacity (151). Moreover, reductions in endurance exercise capacity were evident in 

female adolescents with T1DM (152). In T1DM adults, however, reports of exercise 

performance are more mixed; Nugent et al. (153) reported no difference in maximal 

oxygen consumption in adults with long-standing diabetes, whereas Veves et al. (154) 

reported that impaired aerobic capacity was limited to inactive T1DM adults with 

underlying neuropathic complications. Yet, in T1DM and non-diabetes adults 

matched for V 0 2max, endurance capacity is reduced in T1DM (155). Several studies 

have reported lower strength in T1DM individuals, when compared to those without 

diabetes (156-158). It is difficult to explain the exact source of functional impairment 

in T1DM, but the methods used to assess performance and experimental design both 

differ greatly across these aforementioned studies. Interestingly, where impairments 

in maximal V 0 2 and exercise capacity in T1DM have been recognised, T1DM 

individuals expressed marked reductions in stroke volume, cardiac output, muscle 

blood flow (159) and muscle blood volume (159; 160), when compared to those 

without diabetes. Furthermore, where reductions in cardiac function during exercise in 

T1DM individuals have been demonstrated (in female adolescents), this was 

associated with impaired stroke volume (161).

From a different perspective, acute glycaemic instability could be a factor in 

attenuated exercise performance. For example, (i) hypoglycaemia severely impaired 

T1DM individual's ability to successfully carry out basic sports skills, when 

compared with euglycaemic and hyperglycaemic conditions (162), (ii) Ramires et al. 

(155) observed a correlation (j'=-0.5&,p<0.05, n=21) between endurance capacity (in
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minutes) and the decline in glucose levels (i.e. concentrations at exhaustion minus 

resting levels, in mmol.L'1) in T1DM, (iii) isometric muscle strength, but not maximal 

isokinetic performance, was reduced during hyperglycaemia but not during 

euglycaemia individuals with T1DM (163).

It is unclear how glycaemia can affect performance in T1DM, but the metabolic 

consequences of hypo- and hyper-glycaemia provide clues. For instance, an increased 

reliance on muscle glycogen has been demonstrated while exercising under

hyperglycaemia when compared to exercising while euglycaemic (164), and both 

hyper- and hypo-glycaemia may alter the body’s ability to utilise orally ingested 

carbohydrates (165; 166). Furthermore, in spite of relatively higher blood glucose and 

insulin concentrations compared to non-diabetes, the respective contributions of 

plasma glucose and liver glycogen to total energy yield were 50% lower in T1DM, 

whereas muscle glycoge'n use was 250% higher than those without T1DM (167). Thus 

glycaemic imbalances during exercise may restrict energy provision to the muscles.

Considering that peripheral glucose uptake was impaired in a group of T1DM

individuals during long-duration, low-intensity exercise under hyperinsulinaemia, 

when compared to individuals without diabetes (168), an impairment in glucose 

uptake could help explain the increased reliance on muscle glycogen during exercise. 

The finding that fasting liver glycogen levels were 25-45% lower in T1DM than non­

diabetes individuals (where groups were matched for age, height, weight and body 

composition) (169), indicates that some T1DM individuals have reduced capacity to 

store energy. Metabolic alterations in a single group of T1DM compared to

individuals without diabetes have been observed across different exercise intensities; 

the contribution of hepatic glycogenolysis to glucose production at rest, and during 

moderate (35% V 0 2max) or high (70% V 0 2 max) intensity exercise was 60% lower 

in those with T1DM compared to those without diabetes (170). Furthermore, during 

moderate intensity exercise, where glucose was infused to maintain hyperglycaemic 

levels (8 mmol.L1) under hyperinsulinaemia (using clamping technique), a 

disproportionate increase in utilisation of exogenous glucose relative to the increase in 

carbohydrate oxidation was observed in T1DM (171). Interestingly, it was later found 

by the same group that these responses were not related to an insulin-mediated 

inhibition on hepatic glucose production (172).
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Encouragingly, with the correct manipulation of insulin therapy and diet it seems that 

exercise metabolism and/or performance can be restored in those with T1DM. When 

insulin levels in T1DM are representative of non-diabetics, the overall ratio of 

carbohydrate to lipid utilisation during exercise performed in the postprandial state 

can be normalised (173; 174). Conversely, fuel utilisation in T1DM during exercise 

has been shown to be reflective of individuals without diabetes when insulin levels 

were three-fold greater in T1DM, but only in the absence of carbohydrate intake 

(175). Yet, elsewhere it was shown that plasma glucose uptake was restored to normal 

only when insulin concentrations were around four-fold higher in T1DM compared 

with individuals without diabetes (176). Interestingly, glucose administration 

alongside pre-exercise prandial insulin leading to increased resting blood glucose 

increased endurance exercise capacity in T1DM individuals whose blood glucose 

decreased during exercise (155), suggesting that increases in pre-exercise blood 

glucose improves exercise performance in T1DM. Furthermore, when compared to 

euglycaemia, exercising under hyperglycaemia was without effect on peak power 

output or other physiological endpoints such as lactate, heart rate, or respiratory 

exchange ratio (177), and reductions in insulin dose to reduce the likelihood of 

hypoglycaemia did not influence aerobic capacity during cycling compared to the 

usual insulin dose (178). Notably, hyperglycaemia per se may increase the 

susceptibility to dehydration and acidosis, which could reduce exercise tolerance. 

Thus, it is possible that impairments in exercise performance can vary acutely 

depending on metabolic function, and different'states of metabolism can affect T1 DM 

individuals in differing ways.

While these aforementioned metabolic findings relate to T1DM individuals without 

any apparent diabetes-related health complications, underlying factors might inhibit 

and/or explain variability in exercise performance within the T1DM population. For 

example, muscle activation was attenuated during exercise in T1DM relative to non­

diabetes individuals, and this was associated with HbAlc (179). In this study, it was 

unclear why there was an association between HbAlc and exercise performance, but as 

discussed previously, individuals with poor glycaemic control might be more 

susceptible to diabetes-related complications. Interestingly, research has demonstrated 

a decrease in strength with increasing duration of diabetes in T1DM independent of
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diabetes-related complications (158). This loss of strength was paralleled by a loss of 

muscle mass, and although there was a slower rate of decline in muscle mass in 

T1DM individuals without neuropathy relative to those with neuropathy, muscle mass 

declined at a far greater rate in neuropathy-free individuals than individuals without 

diabetes (158). Conversely, where reductions in ankle extension and flexion 

functionality have been observed in T1DM compared to individuals without diabetes, 

the T1DM group demonstrate increased knee functionality compared to those without 

diabetes, and exercise performance was not related to severity of neuropathy or 

glycaemic control (156).

Together these findings demonstrate the potential for alterations in metabolism and 

attenuated performance both within the T1DM population and relative to healthy 

individuals without diabetes. It is clear that further research is needed to determine 

whether such metabolic alterations associated with T1DM could negatively impact 

exercise performance. Screening for complications and/or reductions in functional 

capacity is important to the safe and effective prescription of exercise (where health 

benefits are maximised), given that attenuated physical capacity could cause 

additional stress and ultimately reduce exercise tolerance and/or adherence. Certainly, 

exercise guidelines should acknowledge the variability in exercise tolerance between 

different T1DM individuals. Exercise sessions should be tailored to individual 

specific fitness levels.

1.7 MANAGEMENT OF THE GLYCAEMIC RESPONSES TO EXERCISE IN 

TYPE 1 DIABETES

The general classification of physical activity is an important consideration in the safe 

prescription of exercise, optimising adherence to an exercise program and maximising 

the potential benefits to health. However, the management of blood glucose during 

and after physical activity for the individual with T1DM is complicated by the diverse 

characteristics of exercise, such as exercise intensity and duration. As such, a 

fundamental aspect of developing a strategy to improve exercise-induced glycaemic 

fluctuations is knowledge of glycaemic imbalances caused not only by different 

exercise modalities but also of the relationship between subtle adjustments in exercise 

characteristics and blood glucose. Advice on how to appropriately adjust insulin
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therapy and diet so that exercise can be performed safely is important to optimal 

management of blood glucose (i.e. euglycaemic stability) during and after exercise.

1.7.1 Steady State (Continuous) Exercise

During Exercise

Steady state continuous exercise, which is generally performed at a low to moderate 

intensity within the aerobic threshold (i.e. continuous running, cycling and 

swimming), is well recognised to expose individuals with T1DM to hypoglycaemia 

(68; 180). The primary reason why T1DM individuals are predisposed to 

hypoglycaemia during this type of exercise is because they cannot endogenously 

suppress exogenously administered insulin, which means that hepatic glucose 

production cannot fully compensate for the increased utilisation of blood glucose 

demanded by working muscles during exercise (176). Mechanistically, elevated levels 

of portal and systemic insulin concentrations desensitises the liver to glucagon 

thereby impairing hepatic glucose production and promoting insulin-induced 

peripheral glucose uptake. This relative hyperinsulinaemic induced hypoglycaemia is 

exacerbated by several factors including, (i) circulating insulin levels can be upheld 

by a previously administered bolus insulin injection, due to the insulin species’ 

pharmacokinetics (68; 181) (Table 1.1), (ii) exercise per se can augment the 

absorption of insulin from the site of injection through increases in blood flow and 

temperature (182) (especially when insulin is injected into the exercising limb, (183)), 

and (iii) glucose disposal and utilisation are enhanced when hyperinsulinaemia is 

coupled with muscle contraction (172; 184). Even where no bolus insulin has been 

administered in the hours prior to exercise, those with T1DM still remain unprotected 

from hypoglycaemia because of elevated circulating basal insulin levels compared to 

exercise individuals without diabetes (181).

Other factors that may heighten risk of hypoglycaemia in exercising T1DM 

individuals may be an absence of glucagon secretion (albeit, glucagon responsiveness 

can vary between individuals) (69) and/or adrenal hormone secretion (185) in 

response to exercising hypoglycaemia. Moreover, exposure to hypoglycaemia prior to 

exercise (17), and a diminishment in the stimulatory effect of glucagon on hepatic 

glucose production (186) associated with T1DM may heighten the risk of exercise-
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induced hypoglycaemia. This is an important aspect in understanding the exercise- 

induced hypoglycaemic response in T1DM, as glucagon is the chief regulator for 

increments in hepatic glucose output during steady state exercise (187). Lastly, it has 

been shown that some individuals with T1DM exhibit lower levels of hepatic 

glycogen independent of diet (170), which might limit capacity to compensate for the 

decline in glucose during exercise.

The counterregulatory hormone (CRH) responses to continuous and endurance 

exercise (i.e. low to moderate intensity of long duration) in T1DM are well 

characterised. Studies demonstrate ~2-3 fold increases in adrenaline (180; 188-190), 

^5-fold increases in noradrenaline (180; 188-190), ~20-fold increases in growth 

hormone (188; 189), increased (189) or unchanged (188) levels of glucagon, and 

variable cortisol (180; 188-190) concentrations (where subtle increases are only 

observed late after exercise), in response to endurance exercise. Notably, the 

measurement of glucagon within the circulation is not necessarily reflective of its 

contribution to hepatic glucose metabolism due to pancreatic venous drainage, 

particularly during exercise, where hepatic blood flow is reduced relative to rest (33).

Differences in exercise intensity and duration between studies offers the most obvious 

reason as to why such variability exists in the CRH response to exercise, but research 

findings also suggest a number of other factors can affect the CRH responses to 

exercise. Firstly, in those without diabetes, whereas prior feeding has a suppressive 

effect on CRH responses to exercise, which consequently reduces endogenous 

glucose production (191), fasting increases the catecholamine hormone response to 

exercise (192). Relevant to T1DM, both hyperglycaemia (155; 193) and 

hyperinsulinaemia (171) during exercise might suppress the CRH responses in those 

with T1DM. Secondly, in T1DM, previous day exposure to hypoglycaemia has been 

observed to abolish the glucagon response to subsequent exercise, with participants 

observed to have experienced 40-80% reductions in both CRH responses and 

endogenous glucose production (194). Such an impairment in the CRH response to 

exercise resulting from prior hypoglycaemia was induced in a dose-dependent fashion 

by differing depths of hypoglycaemia starting at 3.9 mmol.L'1 (195). Thirdly, morning 

exercise might stimulate an attenuated CRH response relative to evening exercise; this
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was attributed to diurnal variations in the secretion of hormones (196); in particular, 

the cortisol response to exercises is diminished in response to morning but not 

evening exercise (196; 197). Finally, performance of morning exercise has been 

shown to alter the CRH responses and impair the individual’s ability to maintain 

euglycaemia during subsequent same-day afternoon exercise (198). Aside from this 

variability in CRH responses, it seems there is some intra-individual reliability in 

T1DM glycaemic responses to exercise when insulin regimen, diet and the 

mechanical aspects of exercise remain constant (199).

After Exercise

Type 1 diabetes individuals risk post-exercise hypoglycaemia in a biphasic manner,

i.e. early and late after aerobic exercise (200). During recovery from a single bout of 

endurance exercise, the decline in blood glucose is facilitated by both an inability to 

decrease circulating insulin levels, and a withdrawal of CRH secretion. Other 

confounding factors in the risk of acute post-exercise hypoglycaemia include 

exercise-related reductions is sensitivity to symptoms of hypoglycaemia (17) and the 

continued non-insulin mediated uptake of blood glucose (201). For example, a study 

by Campaigne et al. (202) demonstrated that 6 out of 9 T1DM individuals 

experienced hypoglycaemia within 5 hours after 45 minutes of cycling at 60% 

V 02peak independent of prior insulin dosage or post-exercise feeding. Furthermore, 

T1DM individuals are more susceptible to nocturnal hypoglycaemia following prior 

low intensity walking exercise (four 15 minute periods of walking at ~140 beats .min' 

!), when compared to nights when daily exercise was not performed (203). The 

development of late-onset hypoglycaemia and/or nocturnal hypoglycaemia extends 

for 31 hours after exercise, as a result of increased insulin sensitivity and continued 

withdrawal of blood glucose to facilitate the replenishment of muscle and liver 

glycogen stores (204). Moreover, prior exercise has been observed to blunt both the 

appearance of adrenaline and elevation in endogenous glucose production in response 

to subsequent same-day and next-day hypoglycaemia in T1DM (205; 206), meaning 

exercise per se has lasting effects on post-exercise glycaemic regulatory mechanisms 

that in-turn increases vulnerability to hypoglycaemia.
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1.7.1.1 Strategies To Avoid Hypoglycaemia Associated With Steady-State 

Exercise

Given the wealth of research pertaining to continuous exercise, various strategies have 

been developed to prevent or minimise the occurrence of hypoglycaemia during and 

after continuous exercise (Figure 1.4). The most popular approach in research has 

been to alter the exogenous insulin dose around exercise while several studies have 

investigated the effect of carbohydrate supplementation (Figure 1.4; Table 1.4).
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Figure 1.4: A suggested blood glucose management strategy around continuous aerobic 
exercise for people with T1DM , to minimise their risks of glycaemic imbalances. Most 
insulin and carbohydrate adjustments can be made prior to exercise and offer protection for 
up to one hour of activity. Thereafter, further carbohydrate consumption will be required. 
Blood glucose should be monitored before, during and after activity. Adapted from (207).
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Basal Insulin Adjustments

Perhaps the least practical approach to improving blood glucose stability in response 

to exercise is altering the basal insulin dose, as this involves planning an exercise 

session well in advanced and could complicate subsequent bolus insulin management. 

Nonetheless, it was recently demonstrated in T1DM individuals (n=51) on a basal- 

bolus insulin routine that the risk of hypoglycaemia during and for 150 minutes after 

post-prandial exercise (30 minutes of treadmill running at heart rates of > 120 

beats.min-1) was less with the use of evening detemir than NPH, and less with NPH 

than glargine insulin (208). These different responses between insulins are likely due 

to the effect of exercise on the time-action profile of the basal insulin. Interestingly, it 

has been shown that cycling for 30 minutes at 65% V 0 2max did not influence the 

absorption rate of insulin glargine and similar declines in blood glucose and insulin 

were demonstrated compared to a resting control trial (209).

Bolus Insulin Adjustments

Since the inability of the T1DM individual to endogenously suppress circulating 

insulin levels during exercise is a primary cause of hypoglycaemia during exercise, a 

logical approach to countering exercise-induced hypoglycaemia has been to reduce 

the prandial insulin dose prior to exercise (Figure 1.4). The interaction between 

exercise mode and its impact on glycaemia in T1DM was acknowledged by Rabasa- 

Lhoret et al. (68) when they investigated the glycaemic responses to different 

reductions in rapid acting insulin (relative to the usual carbohydrate to insulin units 

ratio) across different intensities and durations of cycling (Table 1.4). The results 

from this study showed that a 75% reduction in rapid acting insulin was most 

effective at preserving blood glucose during and after exercise, and preventing 

hypoglycaemia when exercising at 50% V 0 2max for an hour and 75% V 0 2max for 30 

minutes. The effectiveness of this strategy has been investigated during running. West 

et al. (180) demonstrated that a 75% reduction of prandial insulin taken with a meal at 

2-hours before treadmill running at ~70% V 0 2peak for 45 minutes better preserved 

blood glucose during and after exercise, when compared to a full, 75% and 50% dose 

of prandial insulin (Table 1.4). In this study, however, T1DM participants were 

exposed to a greater magnitude of hyperglycaemia before, during and after exercise, 

and hypoglycaemia was encountered during the 24 hours after exercise, under all
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insulin reduction strategies. This strategy was strengthened by a subsequent project in 

which it was found that the consumption of a low GI carbohydrate meal with a 75% 

reduction in prandial insulin reduced the magnitude of hyperglycaemia experienced 

before and after exercise, and prevented hypoglycaemia during exercise, when 

compared to an isocalorific high GI carbohydrate supplement (87). Furthermore, it 

was shown that this aforementioned strategy was more effective at attenuating the 

decline in blood glucose during exercise and reducing the occurrence of post-exercise 

hypoglycaemia when the low GI carbohydrate and rapid acting insulin reduction are 

prescribed 30 minutes prior to exercise as opposed to 60,90 and 120 minutes prior to 

exercise. Together these findings evidence improved euglycaemic stability for 

exercising T1DM individuals with a reduction in pre-exercise prandial insulin dose 

taken alongside a bolus of 60 to 75g of carbohydrate, for up to one hour of steady 

state continuous exercise (Figure 1.4).

The finding that T1DM individuals are susceptible to nocturnal hypoglycaemia 

following aerobic endurance exercise (68; 180; 202; 210; 211) has necessitated 

further refinement of exercise-related glucose management strategies. Recent findings 

demonstrated that large post-exercise bolus insulin dose reductions of ~50% may 

reduce early (<8 hours post-exercise) -  but not late -  post-exercise hypoglycaemia 

following performance of morning steady state continuous exercise (45 minutes 

running at ~75%V02peak (210). However, an implication of reducing post-exercising 

insulin was that participants experienced a higher frequency of hyperglycaemic 

occurrences, albeit this strategy did not augment ketonaemia, raise potentially 

inflammatory cytokines TNF-a and IL-6 above fasting levels, or cause other adverse 

metabolic or hormonal disturbances (212). Interestingly, the consumption of a low GI 

meal taken with a 50% prandial insulin reduction at 60-minutes after evening steady 

state exercise (1700 h) followed by a low GI bedtime snack prevented the occurrence 

of hypoglycaemia during the initial hours of sleep (~8 hours post-exercise); however, 

this strategy did not mitigate the occurrence of nocturnal hypoglycaemia (88).

Non-Pharmacological Approach To Prevent Exercise-Induced Hypoglycaemia 

The manipulation of exercise intensity has great utility in reducing the threat of 

hypoglycaemia that is imposed by exercise. For example, the performance of a single
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10-s maximal sprint before or after 20 minutes of continuous moderate intensity 

cycling at 40% V 0 2peak has been shown to attenuate the magnitude of decline in 

blood glucose following exercise in individuals with T1DM (213-215) (Table 1.5). In 

these studies, the short duration sprint resulted in greater increases in 

counterregulatory hormone levels and circulating lactate, but it is unclear why there 

was a lesser decline in glucose during the early post-exercise recovery period after the 

addition of the sprint, since no differences in glucose infusion rate or glucose uptake 

were detected relative to a control trial in which only moderate intensity exercise was 

performed (215). It was also demonstrated that the performance of this 10 second 

maximal sprint after moderate intensity exercise might not offer protection against the 

late-onset of post-exercise hypoglycaemia (215). This conclusion was drawn from the 

finding that the addition of the sprint to 20 minutes of steady state exercise neither 

increased nor decreased the amount of glucose required to maintain euglycaemia 

throughout 8 hours of recovery from exercise, and the sprint had no effect on 

endogenous glucose production or uptake during this time.

1.7.2 High-Intensity Exercise

Oxygen demand is increased with high-intensity (also known as vigorous-intensity or 

hard effort) exercise beyond that required of moderate intensities, but the demand for 

energy can exceed the rate at which oxygen delivery and utilisation can support 

oxidative energy production. Consequently, energy production during high intensity 

exercise is derived largely from non-oxidative metabolism. This type of exercise is 

not limited to running, swimming and cycling, but exercise cannot be maintained for a 

long duration and is therefore generally identified as sprint activities.

Contrary to low to moderate intensity continuous exercise, T1DM individuals have 

been observed to experience a rise in blood glucose in response to both a 10 second 

maximal sprint (Table 1.5) and sustained high-intensity exercise (~15 minutes at 

>80% V 0 2max) (216-218), and this response to sustained high-intensity is similar to 

those without diabetes (216; 217). Interestingly, the cause of this exercise-induced 

hyperglycaemia appears to differ between different durations of high-intensity 

exercise. The primary reason for the exercise-induced rise in blood glucose in 

response to sustained high-intensity exercise, was that exercise elicited a lesser
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increment in glucose uptake (~4-fold) than the ^7-fold increase in hepatic glucose 

production (216; 217). The 10 second sprint increased blood glucose levels by 1.2 ± 

0.2 mmol.L'1 within a 30 minute recovery period (219), but this exercise-induced 

hyperglycaemia was attributed to a transient decline in glucose uptake rather than 

from a disproportionate rise in glucose production relative to glucose clearance.

The growth hormone, catecholamine and glucagon responses to high-intensity 

exercise are comparable between those with T1DM and without diabetes (220). In 

response to high-intensity exercise, more concentrated levels of growth hormone and 

catecholamines appear within the circulation (10 to 14 fold increase in adrenaline and 

a 10 to 18 fold increase in noradrenaline) when compared to low and moderate 

intensity exercise, but a slight increase or no change in glucagon concentrations has 

been demonstrated (216; 217; 221). Thus, it has been proposed that the major 

contributor to exercise-induced hyperglycaemia in response to high intensity exercise 

is stimulation of the sympathoadrenal system, as opposed to the release of endocrine 

pancreas hormones, in both those with and without T1DM diabetes. In fact, research 

suggests strong increments in glucose production during high intensity exercise 

occurs irrespective of circulating insulin levels (222; 223), and catecholamines have 

an inhibitory effect on insulin-mediated glucose uptake (220). In contrast with low 

and moderate intensity exercise, insulin levels in those without diabetes might slightly 

decline (224), but generally remain unchanged during high-intensity exercise (191), 

irrespective of an exercise-induced increase in blood glucose. Furthermore, the rapid 

combustion of muscle glycogen induced by high-intensity exercise can cause a build­

up of glucose-6-phosphate which inhibits hexokinase activity, thereby reducing 

glucose utilisation (225).

During recovery from high-intensity exercise, in those with and without T1DM 

diabetes, exercise-induced alterations in glucose production and uptake are sustained 

for the first few minutes of recovery (216), after which the balance between glucose 

production and uptake equalises with a slower rate of decline in glucose uptake. It is 

during the initial hour recovery from high intensity exercise that catecholamines 

(216), blood lactate (216; 217; 221; 226) and FFA (216) return to concentrations 

corresponding with those prior to exercise. However, in T1DM, post-exercise
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hyperglycaemia is sustained as circulating insulin levels fail to rise in response to 

increases in blood glucose (216). Thus, although high-intensity exercise carries less 

risk of exercise-induced hypoglycaemia, T1DM individuals are at greater risk of post­

exercise hyperglycaemia.

Scant research has aimed to develop strategies to help T1DM individuals effectively 

manage the exercise-induced hyperglycaemia associated with performance of high- 

intensity exercise. Interestingly, a doubling of the insulin infusion rate necessary to 

maintain euglycaemia prior to high-intensity exercise, has been shown to counter 

post-exercise hyperglycaemia in T1DM individuals (216). This study certainly 

outlines the necessity for exogenous insulin to help manage the occurrence of 

exercise-induced hyperglycaemia in T1DM, but limitations exist in that insulin was 

not administered subcutaneously, and as such the findings lack ecological validity. 

Interestingly, Harmer et al. (226) showed that seven weeks of interval training 

attenuated the magnitude of hyperglycaemia experienced by T1DM participants after 

continuous high-intensity exercise. Unfortunately, however, no practical guidelines or 

systematic methods for T1DM individuals to correct the acute occurrence of exercise- 

induced hyperglycaemia currently exist.
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I.7.3 Intermittent High-intensity Exercise

Intermittent exercise, also known as interval exercise, refers to the incorporation of 

different exercise intensities into a single exercise session. This format is typically 

seen in games activities where athletes are continually moving at a low to moderate 

intensity but exercise is interspersed with bursts of high-intensity movements.

Research has demonstrated that the incorporation of eleven high intensity four-second 

sprints (every 2 minutes) into a 20 minute bout of moderate intensity cycling exercise 

does not increase the risk of hypoglycaemia in T1DM during and for 60 minutes after 

exercise, when compared to a resting control trial (229) (Table 1.5). Furthermore, 

post-exercise blood glucose is better preserved, and the occurrence of early, but not 

late, post-exercise hypoglycaemia is reduced (but not prevented) by substituting 

intermittent exercise for a session of moderate intensity continuous exercise (227; 

230). The lesser decline in glycaemia during this intermittent exercise session was 

attributed to a greater increment in the appearance of glucose but an attenuation of 

glucose uptake during exercise and recovery, and authors suggested that this was 

related to elevated appearance of counterregulatory hormones, when compared to the 

moderate intensity exercise session (231). Perhaps in mind of exposing T1DM 

individuals to post-exercise hyperglycaemia and/or a lack of information pertaining to 

glycaemic control in the presence of intermittent exercise, neither of these 

aforementioned studies altered macronutrient intake or insulin dose prior to 

performance of exercise. More recently, after a preparatory 50% reduction in prandial 

insulin for exercise, compared with 45 minutes of continuous moderate-intensity 

exercise alone, an exercise session of equal duration involving continuous moderate- 

intensity exercise plus bouts of intermittent high-intensity exercise was associated 

with less post-exercise hypoglycaemia (5.2% vs. 1.5% of the time spent with glucose 

< 4.0 mmol.LT1) and more post-exercise hyperglycaemia (33.8% vs. 20.4% of time >

II.0  mmol.L *) (232).

Although these aforementioned findings are valuable to the exercising T1DM 

individual in terms of understanding the mechanical factors which underpin exercise- 

induced alterations in glycaemia, they lack ecological validity; cycling is a 

predominantly concentric form of exercise, i.e., the muscle shortens as it contracts.
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Contrastingly, in many daily activity patterns including non-body-weight-supported 

exercises, such as walking, jogging, or running, there is a substantial proportion of 

eccentric muscle action, where the muscle lengthens in the performance of the 

movement. Eccentric muscle actions have been demonstrated to hinder insulin action 

and glucose uptake for many hours following exercise (233; 234). Such data suggest 

an additional layer of complexity to the understanding of post-exercise glycaemia in 

response to different patterns of exercise in the T1DM individual.

More recently, a study by Campbell et al. (228) examined the glycaemic responses of 

T1DM individuals to a 50% reduction in rapid-acting insulin administered in 

conjunction with a meal prior to an intermittent running exercise which closely 

simulated real-life team and games-play activity, and on another occasion participants 

completed an equivalent intensity steady-state run (Table 1.5). The results from this 

study demonstrated a lesser decline in blood glucose during exercise, and fewer 

incidences of early post-exercise hypoglycaemia following a games-like exercise 

session. However, T1DM individuals were more susceptible to hyperglycaemia 

during games-like exercise than continuous exercise, and participants still experienced 

late-onset post-exercise hypoglycaemia. These findings help emphasise the 

complexity of developing glucose management strategies for exercising T1DM 

individuals, considering that in this instance contrasting glycaemic responses were 

observed between different modes of exercise despite similar pre-exercise 

adjustments in insulin therapy and diet. Clearly much more research is needed to 

explore the glycaemic responses to exercise sessions that are commonly employed by 

exercising T1DM individuals, as this is crucial to improving exercise safety, 

glycaemic control, and adherence to a physically active lifestyle. Unfortunately, scant 

research has focused on developing glucose management guidelines for exercises of 

an intermittent nature.

Factors That Influence The Glucoregulatory Hormone And Glycaemic Response To 

High-intensity Exercise

Various factors could influence the glucoregulatory hormone and glycaemic 

responses to sprint and intermittent/games-oriented exercise in T1DM. Firstly, 

training has been found to reduce the magnitude of hyperglycaemia, acid-base
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disturbance and noradrenaline responses to high-intensity exercise in T1DM (218), 

suggesting that training status could influence glucose metabolism during high- 

intensity exercise. Energy balance or feeding status could be crucial to determining 

the glycaemic responses to intense exercise; individuals without diabetes elicit an 

attenuated rise in glycaemia in response to postprandial compared to postabsorptive 

exercise (191), and restriction of dietary carbohydrate for 3-days prior to sprint 

exercise enhances catecholamine and glycaemic responses (235), but no such effect is 

apparent when diet is manipulated 24 hours prior to exercise (236). Thus, it is 

important that measures are taken to reduce the potential for inter-individual 

variability when examining the glycaemic and glucoregulatory hormone responses to 

high intensity exercise.

1.7.4 Resistance Exercise

Resistance exercise (RE) can be viewed as a form of interval/intermittent exercise. 

Within a typical RE session, exercising individuals engage in a bout of exercise 

lasting usually ~30 to 60-s and this is immediately followed by a period of passive 

recovery before completing another effort. There are multiple ways in which each 

bout of RE can be designed/performed within an acute RE session; these are 

described in detail below (Section 1.9.4.1).

1.7.4.1 Acute Resistance Exercise Session Design

There exist multiple types of RE (e.g. free-weighs, resistance machines, elastic band, 

body weight, etc.) that each compliment the performance of specific exercises, 

although RE machines (e.g. Smith machine) appear to pose lower risk of injury (237) 

and therefore have greater suitability for novice individuals. While the fundamental 

aspects of designing RE sessions have been thoroughly and extensively reviewed 

elsewhere (238), it is important for exercising T1DM individuals and health care 

professionals to recognise the large potential of versatility in a RE session. 

Fundamentally, it is the specific training outcome (i.e. muscular endurance, 

hypertrophy, maximal strength, or power) from which the acute programme variables 

are derived; these include (i) muscle action, (ii) intensity and volume, (iii) exercise 

selection and order, (iv) rest interval, (v) repetition velocity and (vi) frequency. In
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reference to these RE characteristics, the following definitions are relevant to the 

design of the RE sessions within this thesis.

In relation to muscle action, RE sessions traditionally integrate repetitions of an 

isotonic nature, i.e. the involvement of eccentric and concentric contractions as 

opposed to an isometric contraction. A repetition can be performed at multiple 

velocities to control the length of time that the muscle is under eccentric and 

concentric tension (e.g. 2 seconds of eccentric and concentric contraction). Thus, a 

‘repetition’ was defined as completion of single exercise movement, which involved 

an eccentric and concentric muscle contraction under resistance as per the prescribed 

exercise. For example, one repetition of the squat exercise comprised first starting in a 

stationary position with feet slightly wider than should width apart, legs straightened 

(i.e. standing tall with a slight bend in the knee joint), and the weighted bar resting 

across the upper back, then eccentrically lowering through the knees and hips until the 

femur was at a 90 degree angle to the tibia, followed by returning to the stationary 

position. A series of repetitions (e.g. 10 repetitions of squats) was defined as a ‘sub­

set’. A ‘set’ of exercises was completed in a circuit-based fashion.

A ‘set’ was defined as completion of one entire circuit of subsets, e.g. a circuit of 8 

successive exercises, each consisting of 10 repetitions (see Figure 2.2). Intensity 

refers to the absolute mass or resistance assigned to an exercise set relative to a 

possible maximum (237); thus, exercise intensity was defined as the weight lifted per 

repetition relative to the maximum weight a participant could lift once (determined 

using a 3RM protocol), and was therefore expressed as a percentage of 1RM (exercise 

intensity: %1RM). Exercise volume describes the total weight lifted in kg during a RE 

session, and was calculated by multiplying the weight lifted during each repetition, by 

the number of repetitions completed over the duration of the exercise session (see

2.11.2 for example and calculations). RE session volume can be manipulated by 

altering the intensity and/or the number of repetitions performed within a session. The 

rest interval is the period of time provided to passively recover between sets and 

subsets. In this thesis, a passive rest interval separated sets and subsets.
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Exercise selection refers to the specific exercises prescribed to / chosen by the 

participant and is relevant to exercising a particular body segment (i.e. lower-body) or 

muscle group (i.e. quadriceps); the employment of single-joint exercises (e.g. bicep 

curl) isolate a particular muscle group requiring less skill and technique, and are 

therefore less likely to provoke injury when compared to multi-joint exercises (e.g. 

bench press). Exercise order refers to the sequence of exercises performed within a 

session, and is a significant factor in the successful completion of all repetitions in a 

session. Frequency refers to the number of training sessions performed per week, 

though guidelines for T1DM individuals lack clarity of the possible contribution RE 

training has to physical activity recommendations.

It is crucial to achieving the specific training outcome and remaining injury-free that 

the acute programme variables are appropriate to the T1DM participant. For example, 

prescription guidelines for RE are tailored to individual physical ability and/or fitness 

goals (239); heavy loads (i.e. high-intensity; 70 to >80% 1RM) paired with 

moderate/high repetitions (8 to 15 repetitions) and multiple sets (2 to 4 sets) are often 

used for improving muscular hypertrophy. Light to moderate loads (i.e. low-intensity; 

<50% 1RM) coupled with multiple high-repetition (15 to 20 repetitions) sets (<2 sets) 

are aimed towards training muscular endurance, and this latter design might be best 

suited to novice and/or previously sedentary individuals (239). It is noteworthy that 

these RE guidelines were established for individuals without diabetes, but they are 

somewhat similar to those for T2DM (Table 1.2). Although healthy individuals with 

T1DM are recommended to partake in all forms of exercise (Section 1.7.1), it seems 

prudent that exercise is prescribed to an individual with T1DM with knowledge of its 

impact on glycaemic control. With this in mind, RE guidelines for T1DM, while in no 

way satisfactory relative to guidelines for T2DM, let alone relative to guidelines for 

individuals without diabetes, are inadequately validated against the potential for 

glycaemic imbalances (as described below), and clearly fail to acknowledge the 

complexities of a RE session. One must question, how could maximum health 

benefits be gleaned from regular performance of RE when there is a lack of 

information pertaining to the safe performance of an acute bout of RE? Strikingly 

very little research has explored the implications of manipulating acute RE 

programme variables on blood glucose and metabolism of T1DM individuals.
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1.7.4.2 Resistance Exercise And Glycaemia

The glycaemic and glucoregulatory hormone responses to acute RE in T1DM are far 

less understood than those of moderate and high-intensity exercises (described 

previously). This might be partly due to the fact that a single RE session can 

encompass multiple different arrangements of acute programme variables, but 

guidelines as to their safe arrangement for T1DM individuals and their impact on 

glucose metabolism is lacking.

Exercise session design is a key factor in determining the degree of change in the 

hormonal and metabolic responses to acute RE in those without diabetes (242; 243), 

such that increases in exercise volume and intensity, and reductions in the rest interval 

between exercises and sets, have all been shown to augment the sympathoadrenal and 

pituitary hormone and metabolic responses to RE (242-244). In individuals without 

diabetes, performance of RE has been shown to evoke ~2-4-fold increases in resting 

adrenaline and noradrenaline concentrations (244; 245), ~15-20-fold increases in 

resting growth hormone (243; 244), 40-50% increases (243) or no change (243; 244) 

in resting cortisol levels, and >10-fold increases in blood lactate (243 ; 244), but 

insulin concentrations remain unaltered from rest after RE (246) and glucagon 

responses to RE have not been reported. Relevant to glycaemia, a single RE session 

comprising 6 sets of 10 repetitions of back squats at 80%1RM has been found to 

induce a ~1.8 mmol.L'1 increase in blood glucose in non-diabetes individuals (247), 

and this exercise-induced rise in glycaemia was strongly correlated to increases in 

both adrenaline (r=0.57, p<0.05, n=10) and noradrenaline (r=0,85, p<0,05, n=10). 

Other studies in individuals without diabetes have observed marked increases in blood 

glucose concentrations above baseline in response to 5 sets of lower body RE, with 

each set performed until voluntary exhaustion (248), and, similarly, also in response 

to 6 sets of low- (35% 1RM) and high-intensity (70% 1RM) RE (249). Furthermore, 

subtle adjustments in the ratio of time spent performing the eccentric and concentric 

component of a repetition (250) and independent adjustments in RE session volume 

(by number of sets) and intensity (242; 243) have been shown to alter the resultant 

rise in blood glucose and lactate (250) and appearance of counterregulatory hormones 

(242; 243; 250) in those without diabetes.
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In the context of T1DM, two studies conducted by Yardley et al. (211; 240) (Table 

1.6) resulted in conflicting results. In both studies, T1DM participants (on MDI and 

CSII) performed three-sets of eight-repetitions-maximum with ninety-seconds rest 

after each exercise (in the evening) and plasma glucose either remained stable 

throughout the 45 minutes of exercise (240) or fell from 8.4 ± 2.7 to 6.8 ± 2.3 

mmol.L' 1 (211). In the latter study, RE preceded a recovery period in which blood 

glucose remained similar to concentrations at 0-minutes post-exercise (211). The 

reasons for the different glycaemic findings between studies is unclear, but inter-study 

differences pertaining to adjustments in exogenous insulin and dietary intake prior to 

and during exercise may explain divergent results; specifically, T1DM participants 

were a combination of insulin pump users and multiple daily insulin injection users 

(i.e. basal-bolus regimen). Consequently, insulin routines prior to exercise were not 

homogenous between participants or studies. Furthermore, the lack of control over 

exercise characteristics such as contraction pacing and intensity relative to 1RM, 

which have been shown to alter the counterregulatory hormone responses to RE (242; 

243), might have contributed to divergent findings between studies. Interestingly, in 

the study where blood glucose fell during RE (211), none of the participants on a 

basal-bolus routine required carbohydrate to maintain blood glucose concentrations 

above ~5 mmol.L'1 during and for one hour exercise. Yet, when performing a 45 

minute treadmill run at 60% V 0 2max instead of RE, carbohydrates were required by 4 

out of 5 participants during a one-hour recovery period after exercise, to prevent 

hypoglycaemia. Indeed, it is somewhat arbitrary to compare two different forms of 

exercise (i.e. RE to aerobic) but further research is required to elucidate the impact of 

acute RE on glycaemia in T1DM.

A single study in T1DM has somewhat examined the relationship between the design 

of a RE session and glycaemia in T1DM. This investigation demonstrated a decrease 

in resting blood glucose levels during a 30 minute recovery period after three different 

intensity RE sessions that were performed on separate occasions (Table 1.6) (241). 

The authors did not, however, report the insulin and dietary intake prior to, during or 

after RE. It is difficult from this research to determine if intensity of RE per se has an 

impact on the glycaemic responses to RE in T1DM, since altering exercise intensity 

without fixing the total repetitions within the RE session would inevitably alter the
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volume of a RE session. Furthermore, the lack of a non-exercise control trial in this 

instance means that the changes in blood glucose within each exercise session might 

not be directly attributed to the exercise session per se.

Clearly the acute blood glucose, metabolic and hormonal responses to RE in T1DM is 

inadequately researched with equivocal findings. Given that the design of a RE 

session is a key factor in determining the degree of change in hormonal and metabolic 

responses to RE in those without diabetes (described above), and the varying effects 

of different exercise intensities/durations/modalities on glycaemia in T1DM, it is 

likely that different types of RE sessions will have differing effects on blood glucose 

of T1DM individuals. Indeed, a lack of understanding of the interaction between 

glucoregulatory hormones, glycaemia and RE programme variables further 

complicates the ability to safely prescribe RE to T1DM individuals. The attainment of 

such information therefore has implications in the prescription of RE and might help 

explain the diversity in acute glycaemic responses to RE between different studies in 

T1DM. Refinement of participant control before trials, standardisation of participant 

insulin/carbohydrate routines, and the prescription of well-controlled exercise 

sessions, could enable a valid examination of the interaction between mechanical 

characteristics of RE session design and acute glycaemia in T1DM.

1.7.4.3 Strategies To Improve Acute Glycaemic Control During And After 

Resistance Exercise

No validated strategies have been established to help T1DM individuals manage their 

blood glucose around the performance of a RE session. This deficiency in information 

is of clinical concern because it means that many exercising T1DM individuals will 

have to adopt a trial and error approach to maintain glycaemic control around RE, 

which unnecessarily heightens the risk of individuals experiencing hypo- or 

hyperglycaemic episodes during and after exercise. The development of a strategy 

that reduces exercise-induced glycaemic disturbances is certainly complicated by the 

lack of understanding between the multiple possible arrangements of exercise 

characteristics within a RE session and their potential impact on glycaemia in T1DM 

(as previously described). For instance, increasing the average intensity of cycling 

exercise lessens the risk of hypoglycaemia, but high-intensity exercise can expose the
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T1DM individual to hyperglycaemia; however, it is unknown what effect an 

adjustment in the intensity of a RE session has on glycaemia in T1DM. Albeit, 

considering the strong relationship between the appearance of hormones that help 

regulate glucose metabolism and acute RE session characteristics (242; 243 ; 247; 

250), it is highly possible that adjustments in RE session variables could 

worsen/improve the acute glycaemic response to exercise. Such knowledge would 

offer scope to manipulate characteristics within a RE session to improve glycaemic 

stability around performance of RE. Thus, an understanding of relationships between 

the design of a RE session and the consequent impact on glycaemia in T1DM is a 

prudent first phase of developing an effective glucose management strategy for RE.

The correct management of insulin and diet is critical to optimising glycaemic control 

around performance of RE. Indeed, the development of a guideline to manage diet 

and insulin around performance of RE, is fundamentally reliant on the effect of 

exercise per se on blood glucose levels. Interestingly, T1 DM individuals (anecdotally) 

struggle to effectively manage hyperglycaemia following performance of RE. On the 

one hand, unlike the strategies that are recommended for steady state continuous 

exercise, it would seem inappropriate to consume carbohydrate or reduce rapid-acting 

insulin prior to RE, since such a strategy might exacerbate the magnitude of 

hyperglycaemia that is possibly evoked by RE. In this instance it would seem prudent 

to develop a strategy absent of carbohydrate supplementation, which attenuates post­

exercise hyperglycaemia, such as to determine what magnitude of effect exogenous 

insulin has on blood glucose after RE.

On the other hand, the high rates of glycolytic activity demanded by RE might rapidly 

deplete muscle glycogen stores (as seen in those without diabetes (248; 249; 251)), 

resulting in an increased uptake of glucose from the circulation, which could favour a 

resultant net decrease in blood glucose. In this instance, exercising individuals might 

benefit from strategies devised for the management of diet and insulin around steady- 

state continuous exercise (see Figure 1.4). However, it should be considered that the 

large eccentric component of a RE session favouring muscle damage might impair 

insulin-mediated up-regulation of skeletal muscle GLUT4 translocation and therefore 

hinder glucose uptake (233; 234), thereby complicating acute glycaemic control.
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Indeed, large increases in creatine kinase reflecting marked muscle damage have been 

observed following different types of RE sessions (252),

It is an important consideration that, although there exists some intra-individual 

repeatability with the glycaemic responses to exercise of T1DM individuals under 

insulin therapy (199), it has been shown that the glycaemic responses to exercise vary 

across different days independent of differences in insulin therapy and diet (253). 

Thus, an optimal and more ecologically valid approach to optimise blood glucose 

during and after exercise would be an individualised strategy; a strategy that can be 

adapted as a function of the individual glycaemic responses to exercise on any given 

occasion. Indeed, greater knowledge about insulin pharmacokinetics during exercise 

and approaches to minimise exercise-induced glycaemic perturbations is likely to 

increase exercise confidence and participation in T1DM (149).
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1.8 THESIS AIMS

The overarching aim of this thesis was to examine the impact of acute resistance 

exercise on glycaemia in T1DM individuals, to improve euglycaemic stability during 

and after resistance exercise, and promote confidence in people with T1DM to partake 

in this form of exercise and lead a more physically active lifestyle.

The aim within each experimental chapter was to:

■ Examine the impact of manipulating exercise volume in determining the 

glycaemic, metabolic and glucoregulatory hormone responses to acute 

resistance exercise in individuals with type 1 diabetes.

■ Examine the impact of manipulating exercise intensity in determining the 

glycaemic, metabolic and glucoregulatory hormone responses to acute 

resistance exercise in individuals with type 1 diabetes.

■ Implement a modified algorithm that delivers an individualised dose of rapid- 

acting insulin after morning resistance exercise, to counter acute post-exercise 

hyperglycaemia in type 1 diabetes individuals.
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CHAPTER TWO

Methodology



2.1 ETHICS

The Local Research Ethics Committee of the Dyfed Powys National Health Service 

Trust approved the research conducted for this thesis (Appendix A).

2.2 TYPE 1 DIABETES PARTICIPANTS

2.2.1 Participant Recruitment

Individuals with type 1 diabetes (T1DM) (both male and female) volunteered to 

participate in the research described in this thesis. Potential participants were sought 

through web-based and newspaper advertisements. Volunteers were also recruited 

through the local diabetes clinics (Singleton and Morriston Hospital, Abertawe Bro 

Morgannwg NHS trust). Following initial contact with a potential participant, they 

were provided with a study information pack (Appendix A). Of those who were 

willing to partake, their medical history and status was obtained by the ABMU-Health 

Board, and in conjunction with an NHS diabetes consultant, this information was 

screened against the inclusion/exclusion criteria to determine the volunteer’s overall 

suitability for the study. In addition, information relevant to daily insulin dosage, 

blood glucose monitoring and diet was obtained from each participant (Appendix D). 

All procedures relevant to the experimental sessions were clarified with the volunteer 

and they then provided informed consent (Appendix B). An overview of recruitment 

processes and participant retention in each study is presented in the CONSORT flow 

diagram in Appendix B. The selection criteria for inclusion of participants in these 

studies were as follows:

■ Male or female, aged between 18 and 65 years of age,

■ Regularly physically active (i.e. partake in physical activities 3+ times per 

week),

■ Free from any diabetes complications other than mild background diabetic 

retinopathy

■ Taking slow acting insulins (e.g. glargine) and rapid-acting insulin analogues 

for at least 3 months before the study.

■ No medication other than insulin

■ No musculoskeletal problems
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■ Every effort was made to include only volunteers with reasonable glycaemic 

control (HbAlc< 10%).

2.2.2 Justification Of Selection Criteria

To improve the ecological validity of this research both males and females were 

included in the study. Although gender might influence glucose metabolism in T1DM 

(189), the pattern of glucoregulatory responses to exercise is similar between males 

and females. Hence why data was not analysed for gender differences, albeit the 

minority of participants were females across all chapters and there was an inadequate 

sample size to make a gender comparison. Furthermore, since the phase of menstrual 

cycle might affect glucose metabolism during exercise (254), all females that 

participated were on oral contraception, as the pharmacological effects of this drug 

apparently reduces the hormone profile of women with regard to circulating oestrogen 

and progesterone (254).

Age was a factor in the inclusion of participants as children and adolescents can 

exhibit more varying levels of insulin resistance during different stages of puberty 

(255). Thus, participants were all above 18 years.

To prevent any possible influence of glycaemic control on blood glucose responses to 

exercise, a primary aim was to include only participants with good glycaemic control.

Excluding participants on any medication other than insulin negated the potential for 

pharmacological substances to influence blood glucose or glucoregulatory responses.

Since exercise could possibly increase risk of health complications in individuals with 

underlying clinical evidence of microvascular, macrovascular and neurological 

complications related to diabetes (57; 103), only individuals free from diabetes- 

related complications were included.

Participants were accustomed to physical exercise to ensure they were likely to be 

able to tolerate the exercise sessions and comfortable with the possibility of muscle 

soreness and the potential for consequent alterations in glycaemic management.
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The requirement of participants to be on a basal-bolus regimen that was unchanged 

for 3 months prior to testing was necessary to (i) avoid potential metabolic disruptions 

associated with changes in insulin dosage, (ii) ensure insulin dosage remained similar 

throughout trials, and (iii) to improve the homogeneity of treatment between 

participants prior to a trial.

Table 2.1: Chapter 3 participant characteristics and basal-bolus insulin dosage
P artic ip an t ID

1 2 3 4 5 6 7 8 M ean ±SEM

H bA lc (% ) 7.6 8.7 4.6 9.9 9.8 7.7 7.1 14.0 8.7 ± 1 .0

Basal (IU) 20 36 14 32 20 30 40 28 27.5 ±3.1

Bolus
(IU .lO g1 1.0 1.5 0.5 1.0 1.0 1.0 2.0 1.5 1.2 ± 0 .4
CHO)
Age
(years)

60 20 25 23 46 22 53 51 38 ± 6

D iabetes
D uration 35 12 2 7 23 9 30 2 15 ± 4.5
(y)
H eight
(cm) 170.0 178.5 189.4 187.6 169.1 169 185.8 183.3 179.1 ±3.1

Body M ass 
(kg)

74.1 95.0 86.5 69.6 74.5 91.8 108.6 88.9 86.1 ± 4 .6

BM I
(kg.in'2)

25.6 29.8 24.1 19.8 26.1 32.1 31.5 26.5 26.9 ± 1.5

H ip (cm) 89 99 94 96 87 100 99 97 95.1 ± 1.7

W aist
(cm) 85 88 83 81 87 80 106 97 88.4 ±3.1

Body F a t
% 24.4 18.0 16.5 13.1 24.5 39.7 32.0 25.7 24.2 ±3.1

CHO: Carbohydrates. Note: all participants were using bolus insulin aspart and basal insulin 
glargine.

2.2.3 Participant Insulin regimen

All participants included in this study were using a basal-bolus insulin regimen. 

Participants in study one were all using basal insulin glargine once daily (Lantus®, 

Sanofi Aventis, France), and all participants took this in the evening (see Table 2.1). 

Participants in study two and three were either using basal insulin glargine or insulin 

detemir (Levemir®, NovoNordisk, Denmark) once daily, and this was administered in
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the evening (see Table 2.2). Basal insulin analogues glargine and detemir both exhibit 

a, similar, peak-less 24-hour insulin profile following subcutaneous injection (256). 

All participants in all studies were using insulin aspart (Novorapid®, NovoNordisk, 

Denmark) for the bolus component of their insulin regimen. The prandial rapid-acting 

insulin is typically absorbed within 5 to 15 minutes and its peak profile in the 

circulation is typically obtained between 30 and 90 minutes after subcutaneous 

administration, subsiding after 4 to 6 hours (257). In all studies, although the injection 

site of insulin was not homogenous between participants, it was standardised between 

experimental sessions.

Table 2.2: Chapter 4 and 5 participant characteristics and basal-bolus insulin dosage
Participant ID

1 2 3 4 5 6 7 S Mean ±SEM

H bAlc (%) 7.9 15.9 9.1 6.1 8.0 7.1 7.6 8.1 8.73
Basal (IU) 20 42 48 26* 18 40 28 28 31.25
Bolus
(IU .lO g1 1.0 1.0 1.0 0.5 2.0 2.0 1.0 1.0 1.2 ±0.4
CHO)
Age
(years) 61 18 20 18 55 53 23 23 34 ±7

Diabetes
Duration 36 7 11 1.5 40 31 10 5.5 17.8 + 5.4
(y)
Height
(cm) 168.7 185.5 178.0 171.2 174 186.9 169.0 172.0 175.7 + 2.5

Body 
Mass (kg) 78.9 64.9 83.3 75.2 85.3 107.8 83.0 78.5 82.1 ±4.3

BMI
(kg.m‘2) 27.7 18.9 26.3 25.7 28.2 30.9 29.1 26.5 26.7 ± 1.3

Hip (cm) 89.0 95.0 87.0 108.0 91.0 99.0 100.0 101.0 96.3 ±2.5
Waist
(cm) 83.0 80.0 98.0 76.0 93.0 100.0 76.0 84.0 86.3 ± 3.4

Body Fat
% 23.9 11.5 17.6 26.1 27.7 28.8 33.1 14.9 23.0 ±2.7

CHO: Carbohydrates. * Note: Except participant number 4 who was taking basal insulin 
detemir, all participants were using basal insulin glargine.

2,3 EXPERIMENTAL DESIGN CHAPTERS 3-5

Three studies were conducted for this thesis and results from these studies, i.e. studies 

one, two and three, are presented and discussed in Chapters 3, 4 and 5, respectively. 

Study one consisted of four main experimental sessions, which were completed in a
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repeated measures design by a single group of eight participants. A separate single 

group of eight participants was recruited to complete both studies two and three in 

tandem. This meant that participants for Chapters 4 and 5 each completed three 

experimental sessions (LOW, MOD, INSULIN), and data from the MOD 

experimental session (within Chapter 4) formed part of the experimental arm for 

Chapter 5 (i.e. NO-INSULIN). The layout of this design is shown in Figure 2.1.

Figure 2.1: Schematic of general experimental design for Chapters 3 ,4  and 5.

Chapter 3

Arrive Morning
> Fasted
> Evening Basal
> No m orning RA

Chapter 4

Chapter 5

\ < ) I \ s t  I i \

l \ s i  l l \

Monitoring Key

M  Perform ance 

K Venous Bloods 

|  Capillary Bloods 

sttMMK Heart Rate

60m in

65min

24h

125m in 24h

Dietary Intake, Insulin D osage, Physical Activity 

Post-laboratory Phase 

In-laboratory Phase

Black text boxes indicate resistance exercise sessions within their respective experimental 
sessions. Notably, the experimental session MOD (Chapter 4) formed part of the experimental 
session for NO-INSULIN (Chapter 5). Coloured blocks indicate monitoring (in reference to 
the key) over the depicted period. RA: Rapid acting insulin. Basal: Basal insulin
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2.3.1 General Participant Care

Upon each visit to the research facility, participants completed a physical activity and 

readiness questionnaire (PAR-Q; ACSM, USA, Appendix C), and all procedures for 

the experimental session were clarified with every participant. A trained medical 

practitioner was present during all experimental sessions, across studies 1, 2 and 3. 

Following completion of a study, participants received a comprehensive report of 

their own responses to the experimental sessions and an interpretation of their results 

(Appendix A).

2.3.2 General Study Protocol

Across studies one to three, participants initially attended a familiarisation session at 

least 3 days prior to commencing the main experimental sessions (see section 2.3.3). 

For the main experimental sessions participants arrived at the Clinical Research 

Facility, Institute of Life Sciences 2, Swansea University, between 6 and 8 am for 

study 1 and between 6 and 9 am for studies 2 and 3; arriving after an overnight fast, 

and having taken their basal insulin the night before but omitted morning rapid-acting 

insulin. Participant height and mass were then measured (see section 2.3.3.1). 

Participants were then seated and cannulised (see section 2.4,1) before completing a 

brief non-weight bearing flexibility warm-up and then proceeded to perform the 

prescribed exercise session (see section 2.3.4).

Baseline (Rest) venous blood samples were taken prior to exercise (and warm-up) 

across all chapters. In Chapter 3 venous bloods were obtained following completion 

of each set of exercise and for 60 minutes after exercise during the recovery phase and 

at 24 hours after cessation of exercise (see Figure 3.1). Venous bloods were collected 

periodically for 65 minutes of recovery after exercise in Chapter 4 (see Figure 4.1) 

and for 125 minutes after exercise in Chapter 5 (see Figure 5.1). During the post­

exercise recovery period within experimental sessions, across chapters participants 

remained in a supine position, drinking water ad libitum. Heart rate was measured 

between pre-exercise and the end of the recovery period (see section 2.5); resting 

heart rate was obtained during the pre-exercise period, during which participants also 

completed information sheets reflecting dietary intake, blood glucose levels, insulin
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dosage (Appendix E) and physically activity (Appendix F) during the 24 hours prior 

to an experimental session.

2.3.3 Preliminary Sessions

2.3.3.1 Anthropometric Measurements

Participant anthropometries are presented in Tables 2.1 and 2.2. Apart from body 

mass and height, which were measured during the preliminary session and on each 

experimental session, the following anthropometric measures were obtained during 

the preliminary session:

Height and Body Mass

Body mass and stature (Seca 763 Digital Column Scale with Stadiometer, Seca, 

Germany) were measured to the nearest 0.1 kg and 0.1 cm, respectively.

Waist girth

The participant stood in the anatomical position; erect with arms by the sides, palms 

facing forward, feet together and abdomen relaxed. A tape measure (Seca 201 Body 

Circumference Measuring Tape, Seca, Germany) was then placed in a horizontal 

plane at the level of the narrowest part of the torso as seen from the anterior aspect. If 

a subject’s waist was not apparent, a mid-point was located between the costal border 

and the iliac crest, and a waist measurement was made at this level. The measurement 

was taken after a normal expiration and on the skin.

Hip (Gluteal) girth

In the anatomical position and without any voluntary contraction of the gluteal 

muscles the tape measure was placed in the horizontal plane at the level of the 

greatest posterior protuberance of the buttocks, approximately at the level of the pubic 

symphysis (anteriorly). The measurement was obtained not against the skin but on a 

light garment of clothing.

Percentage Body Fat: Bioelectrical impedance analysis (B1A)

Prior to starting the procedure, the BIA (Bodystat Quadscan 4000, Bodystat Ltd, 

USA) unit was tested for accuracy by running a test against a metal of a fixed
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resistance (500 Ohms). After quantification of height and mass participants were 

required to remain supine for 15 minutes. Participants were positioned so both legs 

and arms were adducted at 35 -  45 degree angle from the trunk. Alcohol wipes (70 % 

Alcotip Swabs, Uhs, UK) were used to clean electrode sites on the hands and feet 

before two injector electrodes (red) were attached to the dorsal surface of the right 

hand and the right foot and detector electrodes (black) were placed on the ankle of the 

right foot and just below the radio-ulnar joint on the right hand. After 15 minutes of 

laying supine had elapsed, and participant details were entered into the BIA device, 

the procedure was started. The black electrodes were attached to the wrist/ankle and 

the red electrode was attached to the fingers/toes as per manufacturer’s instructions

(258). The BIA unit was considered reliable at estimating % body fat (BF), fat free 

mass (FFM) and total body water, as the coefficient of variation over 5 tests within a 

one hour period were all < 3%.

2.3.3.2 Assessment Of Maximal Strength

Following medical screening, maximal strength was assessed on a multi-gym Smith 

machine (Bodymax CF380 Total Smith System; BodyMax Powerhouse Fitness; UK) 

using a 3-repetition-maximum (3RM) test (i.e. the maximum possible weight lifted 

per repetition over three lifts), from which 1-repetition-maximum (1RM; i.e. the 

maximum possible weight lifted in a single repetition) can be accurately determined

(259). Generally, individuals who are untrained or inexperienced in RE may not be 

appropriate participants for a 1RM test because maximal exertion of strength 

associated with 1RM testing places significant stress on the involved muscles, 

connective tissues and joints and therefore requires an adequate training status and 

weight lifting experience. Although participants recruited for this thesis were 

physically active, they were not experienced weight lifters. A 3RM was determined 

for the respective exercises within each Chapter. In this session also, participants were 

familiarised with the format of each resistance exercise (RE) session including 

discipline in correctly timing repetitions to a metronome (DM70; Seiko UK Ltd, UK), 

exercise order, rest periods and correct exercise technique.

A detailed example of the 3RM protocol is presented in Appendix G. In short, after a 

low-intensity warm-up, participants performed up to 3 sets of 3 repetitions of a
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selected weight (e.g. bench press). The objective was for the participant to have 

attained the heaviest weight they can possibly lift for 3 repetitions on the third set. A 

3RM was considered valid when three repetitions were performed with correct form 

in a controlled manner without assistance. During the 3RM test, capillary blood 

glucose was monitored prior to commencing the test, and after every two exercises, 

using a portable glucose meter (Freestyle Lite, Freestyle Freedom Lite, Abbott 

Diabetes Care, UK). In this preliminary test, and this test alone, prior to and/or during 

exercise, participants expressing a blood glucose reading below 5.5 mmol.I'1 were 

administered a 500ml water solution containing 6% carbohydrates to provide 25g of 

carbohydrates. In this instance exercise was post-posted and blood glucose was 

reassessed after 15 minutes; exercise continued if at this time blood glucose was >5.5 

mmol.r1. The session was rescheduled for another day if blood glucose rose above 17 

mmol .11 at any point. Participant 3RM and 1RM scores for Chapters 3 to 5 are 

presented in Tables 2.3 and 2.4.

Table 2.3 Chapter 3 participant 1RM scores.
Participant ID

1 2 3 4 5 6 7 8

Exercise 1RM (kg) Mean ± 
SEM

Bench
Press 37.50 86.00 64.50 23.33 32.22 21.11 45.78 32.22 42.83 ±7.85

Leg
Extension 32.50 75.50 112.50 65.00 50.00 48.00 67.78 60.00 63.91 ±8.41

Shoulder
Press 32.50 75.50 48.00 17.77 23.33 21.11 32.22 26.60 34.63 ± 6.71

Pec Deck 52.50 107.75 96.60 23.33 37.50 32.22 65.00 53.33 58.53 ±0.65

Squat 50.00 86.00 62.50 32.50 48.00 43.00 75.50 37.78 54.41 ± 6.62
Lateral
Pulldown 40.00 75.50 64.50 33.33 46.00 37.78 60.00 37.50 49.33 ±5.44

Seated
Row 60.00 96.60 75.50 53.33 65.00 53.33 70.00 53.33 65.89 ±5.28

Split-Leg
Squat 65.00 53.30 59.00 27.77 75.50 32.22 48.00 30.00 48.85 ±6.23
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Table 2.4 Chapters 4 and 5 participant 1RM scores

Participant ID
1 2 3 4 5 6 7 8

Exercise IRM (kg) Mean ± 
SEM

Lateral
Pulldown 52.50 32.20 74.29 29.00 44.29 60.00 50.00 90.00 54.04 ±7.27

Squat 83.00 45.50 96.66 29.00 43.00 86.00 37.80 161.10 72.76 ±15.48
Bench
Press 37.77 23.89 45.50 21.11 37.80 43.00 26.70 118.00 44.22 ±11.01

Leg
Extension 44.25 32.20 70.00 32.20 32.22 75.55 48.00 53.33 48.47 ± 6.02

Shoulder
Press 35.00 18.00 43.00 13.50 26.66 37.77 21.11 81.00 34.51 ±7.56

Split-leg
Squat 64.44 32.20 43,00 35.00 43.00 64.44 64.40 118.00 58.06 ± 9.79

2.3.4 Resistance Exercise Protocols

The resistance exercise (RE) session that was implemented in Chapter 3 set the 

foundation from which the RE sessions prescribed in Chapters 4 and 5 were derived. 

Since RE session guidelines for people with T1DM lacked specificity and detail at the 

time of this thesis, the RE session design was in agreement with exercise guidelines 

for those with T1DM (57; 107) but adapted from RE session guidelines for those with 

type 2 diabetes (T2DM) (103) (see section 1.5.1). The guidelines for those with 

T2DM individuals acknowledge the intricacies of RE session design and were 

therefore relevant to a participant’s experience of RE and also tailored to specific 

training goals (see section 1.7.4.1). In this thesis, the terms exercise set, repetition, 

volume and intensity refers to the definitions outlined previously in section 1.10.4.1, 

and calculation of exercise volume and intensity is described in section 2.11.2.
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120s rest 
per circuit

Bench 60s rest
Press per exercise

Leg 
Extension

Seated
R ow

One Circuit = One Set

Lateral
Pulldown Shoulder Press

Figure 2.2: Example illustration of resistance exercise protocol adopted in Chapter 3. Ten 
repetitions of an exercise represented completion of a subset. Subsets were performed in 
succession and separated by 60 seconds of passive rest. Completion of 8 subsets marked one 
full circuit, defined as one set. Two sets referred to completion of two full circuits. A passive 
rest interval of 120 seconds separated each set.

Across Chapters 3 to 5, RE sessions comprised a selection of the following upper and 

lower body exercises and engaged the corresponding primary groups of muscles (e.g. 

Figure 2.2): bench press (pectoralis-major), leg-extension (quadriceps), shoulder press 

(deltoids), pec-deck (pectoralis-major), squat (quadriceps, biceps-femoris, gluteus- 

maximus), lateral pull-down (latissimus-dorsi), seated row (latissimus-dorsi, 

rhomboids, trapezius), split-leg squat (quadriceps, biceps-femoris, gluteus-maximus). 

The exercise order was designed specifically so that the participant would alternate 

between upper and lower body exercises or opposing (agonist-antagonist 

relationship) exercises, with the objective to allow some muscles to rest while the 

opposite muscle groups were trained. This sequencing design (i.e. performance of 

successive exercises/subsets in a circuit to complete one set as opposed performing 

one exercise per set) was considered optimal for enabling performance of a whole 

body circuit-based exercise session of moderate to high training intensities. 

Furthermore, the following RE session characteristics were kept consistent across 

chapters: (i) after a standardised 10-minute flexibility warm-up of main muscle 

groups -  ten single arm swings forward and back; ten butterfly swings forward and 

back; neck and shoulder rolling; fifteen body weight squats -  participants undertook
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the prescribed RE session, which they were blinded to up until arrival at the research 

facility, (ii) RE sessions were performed on the multi-gym Smith machine, (iii) 

exercise repetitions were performed to a metronome at a pace of 2-seconds 

concentric-phase and 2-seconds eccentric-phase, (iv) where a participant was unable 

to complete the required repetitions, the weight (kg) for the subset was immediately 

reduced by 10 -  25% and the remaining repetitions were completed. Any reduction in 

the number of repetitions and or intensity due to fatigue was replicated across 

different sessions. The RE sessions for Chapters 3, 4 and 5 are described in detail 

below.

The Smith machine is a multi-station resistance-training platform that is typically 

available in all commercial gyms. The Smith machine was chosen specifically for this 

thesis as it restricts the exercise movement by comprising a closed circuit in which the 

weight moves freely, but allows for maximal exertion (see Figure 2.3). As such, it 

was easier for the participants to quickly learn and adopt the correct technique for 

each exercise, and this in-turn improved performance, but minimised the chance of 

injury, when compared to free weights resistance training. In this way, this method of 

resistance training was considered more suitable for the purpose of standardising the 

technique used between participants and across different exercise sessions.
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Figure 23: Smith machine used for resistance exercise protocols.

2.3.4.1 Chapter 3 Resistance Exercise Protocol

Chapter 3 comprised three different volume RE sessions involving one (1SET) 

(duration: 14 minutes), two (2SET) (28 minutes) and three (3SET) (42 minutes) sets 

of eight exercises at a relativised intensity of 60 to 70% 1RM for ten-repetitions, 

ascending in volume. Exercises included bench press, leg-extension, shoulder press, 

pec-deck, squat, lateral pull-down, seated row, split-leg squat, performed in this order. 

Participants rested for 60 seconds between each exercise (subset) and 120 seconds 

between each subsequent set. These rest periods provided necessary recovery time for 

the participant to acquire the correct positioning for each exercise. Participants
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undertook a 60-minute period of passive recovery after cessation of exercise. In this 

Chapter, a resting experimental session (CON) was included, which replicated the 

1SET trial in that a period of 14 minutes of rest preceded the 60-minute period of 

passive recovery.

2.3.4.2 Chapter 4 Resistance Exercise Protocol

Chapter 4 comprised two RE sessions of equal volume but different in intensity; 

specifically, both RE sessions involved 6 exercises, performed at either a moderate- 

intensity [two sets of 10 repetitions at 60%1RM] (MOD) or a low-intensity session 

[two sets of 20 repetitions at 30%1RM] (LOW). Exercises included lateral pull-down, 

squat, bench press, leg extension, shoulder press and split-leg squat, performed in that 

order. The passive rest interval between subsets and sets was 120 seconds. The total 

session duration was 30 and 38 minutes for the MOD and LOW sessions, 

respectively. Participants undertook a 120-minute period of passive recovery after 

cessation of exercise.

2.3.4.3 Chapter 5 Resistance Exercise Protocol

The RE sessions comprised within Chapter 5 (NO-INSULIN and INSULIN) were 

identical to the MOD RE session prescribed in Chapter 4. Exercise session volume 

and intensity was identical between NO-INSULIN and INSULIN.

2.3.5 Experimental Testing Restrictions

Participants adhered to the following restrictions prior to (and after, where stated) 

experimental sessions, for the following reasons:

■ Participants fasted for 8-10 hours prior to each experimental session; this 

design was chosen because, (i) the glycaemic impact of resistance exercise in 

people with T1DM was unclear, (ii) it was hypothesised that resistance 

exercise would increase blood glucose, (iii) there are inter-individual effects of 

carbohydrate consumption on blood glucose, thus carbohydrate consumption 

was considered as a factor that could alter the glycaemic response to exercise 

and increase variability between participants, thus hindering the ability to 

detect a relationship between RE session characteristics and blood glucose.
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■ Participants administered their usual basal insulin dose the night before each 

experimental session, and abstained from bolus insulin on the morning of each 

experimental session. Basal insulin is essential to the maintenance of 

glycaemia control in T1DM. There are currently no guidelines for insulin 

administration in preparation for RE, and without the consumption of pre- 

exercise carbohydrates a dose of prandial insulin was considered unnecessary.

■ Since antecedent hypoglycemia can impair the counterregulatory hormone 

responses to subsequent exercise, testing was rescheduled if a participant 

experienced a hypoglycemic episode during the 24h prior to an experimental 

session.

■ Participants abstained from physical activity (except light walking) for 24 

hours prior to testing, because antecedent exercise can alter the 

counterregulatory hormone responses to subsequent next-day exercise.

■ Participants were required to consume a similar diet during the 24 hours prior 

to testing, as confirmed by dietary records (Appendix E).

■ Participants were instructed to maintain a similar insulin dosage and pattern of 

injection the day before testing (Appendix E).

■ Participants abstained from caffeine and alcohol during the 24 hours prior to 

testing, since both substances can interfere with regular glucose metabolism. 

Caffeine can decrease insulin sensitivity through activation of lipolytic 

pathways (260). Ingestion of alcohol can reduce the availability of blood 

glucose, thereby increasing the risk of hypoglycemia (261).

2,3.6 Characterisation And Treatment Of Hypoglycaemia And Hyper glycaemia

Hypoglycaemia was defined as a blood glucose reading of <3.9 mmol .L'1 (see section 

1.3.2). Throughout each experimental session participants were closely monitored for 

signs and symptoms of hypoglycaemia including confusion, pallor, irresponsiveness
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to vocal cues, loss of focus, paraesthesia etc. While an experimental session would 

have been terminated and rescheduled in the event of hypoglycaemia, and 

carbohydrate feeding would have been used to treat the participant, there were no 

incidences of hypoglycaemia during any experimental sessions. Hyperglycaemia was 

defined as a blood glucose reading of > 9.8 mmol.L1. Participants were closely 

monitored and questioned for hyperglycaemic symptoms including increased thirst 

and polydipsia, polyuria and nocturia, blurred vision and drowsiness (see section 

1.3.1).

2.4 EXPERIMENTAL PROCEDURES

2.4.1 Intravenous Cannulation

In an identical manner across studies, participants were seated while a 20-gauge 

cannula (Venflon, Becton Dickinson, Helsingborg, Sweden) was inserted into the 

antecubital vein of the non-dominant arm, and this secured with a Veca-C dressing 

(Venflon, Becton Dickinson, Helsingborg, Sweden) and micropore tape (3M™ 

Micropore Surgical Tape, 3M, UK). A 10 cm extension with three-way stop cock was 

used to allow easy access for venous sampling (Connect, Becton Dickinson, 

Helsingborg, Sweden) (Figure 2.4). Two to 3 mL of saline (Sodium Chloride BP, 

0.9% w/v, Braun, UK) was infused after each sample to keep the cannula patent.

Figure 2.4: Withdrawal of whole blood using a 1 mL lithium heparin syringe (left) and a 10 
mL syringe (right).
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2.4.2 Blood Sampling

At each sample collection point, 11 mL of whole blood was withdrawn into a 1 mL 

LH (lithium heparin) syringe (RAPIDlyte, Siemens AG; Germany) and a 10 mL 

sterile plastic syringe (BD Luer-Lok tip®, BD; UK). Within each study, on the first 

experimental session, 10 uL of blood obtained from the resting blood sample that was 

withdrawn into the lm L syringe, was apportioned into 2 mL of sample diluent and 

subsequently used to determine was HbAIC (BioRad D-10 Haemoglobin Analyser, 

Biorad Ltd, UK) by principles of high performance liquid chromatography (Appendix 

H). Blood that was withdrawn into the 1 mL syringe was immediately analysed for 

blood glucose, pH, lactate, extra-cellular fluid base-excess (Becf), K+ and Hct on a 

metabolic analyser (GEM Premier 3000; Instrumentation Laboratories, UK). Notably, 

the results from this analysis were stored on the GEM 3000 internal hardrive and also 

recorded onto paper data sheets (Appendices I and J). This sample was then placed on 

ice in case a repeat sample was necessitated by a mechanical error. The 10 mL blood 

sample was immediately decanted equally into two 6 mL LH plasma vacutainer blood 

collection tubes (BD Vacutainer®, BD; UK). To one blood-filled vacutainer, 0.1 

mol-L'1 of both ethylene glycol bis-((3-aminoethyl etheD -N '^N 'jN '- tetraacetic acid 

(EGTA) as anticoagulant and glutathione as antioxidant were added for preservation 

an subsequent analysis of catecholamines (Appendix K). Both 6 mL vacutainers were 

then centrifuged at 2.4 RCF for 5 minutes (BOECO Centrifuge S-8, Boeckel + Co; 

GmbH + Co, Germany). Next, plasma aliquots were pipetted into 1.5 mL 

microcentrifuge tubes and stored at -80°C for later analyses. In studies 2 and 3, 20 uL 

from each 1 mL blood sample was used to determine blood haemoglobin (Hemocue 

AB, Sweden), which, when coupled with haematocrit measurements, allowed for pre 

and post-exercise quantification of plasma volume shifts via the method of Dill and 

Costill. (262) (Appendix L).
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2.4.3 Quantification Of Blood And Plasma Analytes

Table 2.5 Blood and non-blood based measurements for each experimental theme across 
chapters three to five._________________________________________________________________

Theme Measurement Chapter 3 Chapter 4 Chapter 5

Glycaemia Blood Glucose / / /

HbAlc / / /

Acid-Base Lactate, pH, Bccf / / /

Glucoregulation Insulin / /

Growth Hormone / /

Adrenaline / /

Noradrenaline

IL-6 / /

Cortisol / /

Ketonaemia [3-hydroxy buty rate ...........7 ...........

Kalaemia Potassium / / /

Lipidaemia NEFA /

Plasma Volume Hb and Hct / /

Cardiovascular Blood Pressure /

Heart Rate / / /

Perceptual Muscle Soreness ............ 7 ...........

RPE / /

2.4.3.1 Blood Glucose, Lactate And Acid-Base Measurements

Blood concentrations of glucose, lactate, potassium and extra-cellular fluid base- 

excess (Becf) were determined using the GEM Premier 3000 blood-gas analyser (GEM 

Premier 300 Blood Gas Instrument, Instrumentation Laboratory, UK). Principles of 

operation for this device are described in Appendix M (Figures 2.5, 2.6 and 2.7). The 

reportable range for analytes measured by the GEM 3000, across Chapters 3 to 5, are 

presented in Table 2,6.
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Table 2 .6 : Reportable range for relevant blood analytes measured by the GEM 3000.

Measured/Derived Analytes Reportable Ranges

pH 6.80 to 7.80

K+ 1.0 to 20.0 mmol.L'1

Glucose ...................Y ^ f ^ ^ j 'm m o i l ;1........

Lactate 0.3 to 15 mmol.L'1

Hematocrit 15 to 65%

Base-excess (extra-cellular fluid)* -30.0 to +30.0 mmol.L1

* Parameter derived from NCCLS guidelines (263) (see Appendix M).

2.4.3.2 Surrogate Blood Lactate Measurement

Blood samples that exceeded the lactate reportable range (>15 mmol.L'1; Table 2.6) 

on the GEM 3000 were immediately analysed on a hand-held blood lactate analyser 

(Lactate Pro LT-1710). The system was calibrated each morning prior to testing using 

the lactate pro calibration strip and the meter’s accuracy was tested using a test strip 

with a known concentration of lactate. For sampling, the lactate pro analyser was used 

in conjunction with the Lactate Pro blood collection strips, which require a 5 uL 

sample of blood. The Lactate Pro was considered reliable with a coefficient of 

variation of < 4%. The measurement range for this device was from 0.8 to 23.3 

mmol.L'1. A series of 15 blood samples (low to high concentrations) was measured 

on both the GEM 3000 and the Lactate Pro; the Lactate Pro readings significantly 

correlated with the GEM 3000 (r=0,962,p<0.05).

2.4.3.3 Plasma Analytes And Assay Principles

Prior to all assays, plasma samples were left to thaw at room temperature and then 

centrifuged for 5 minutes at 3500 rpm (IKA Vortex, Thermo Fisher Scientific, UK). 

A description of the assay characteristics and procedures is described below and 

presented in Table 2.7. Wash phases were performed using a microplate washer 

(WW004 Wellwash 4 Mk 2, Thermo Fisher Scientific, UK). Where applicable, a 

microtiter plate shaker was employed (Microplate Orbital Shaker 115 Vac - 60 Hz, 

Cole-Parmer, UK).
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2.4.3.3.1 Growth Hormone

The assay employs a quantitative sandwich enzyme immunoassay technique. A 

monoclonal antibody specific for GH was pre-coated onto a microplate. Standards and 

samples were pipetted into the wells and the immobilised antibody binds any GH 

present. After washing away any unbound substances, an enzyme-linked polyclonal 

antibody specific for GH was added to the wells. Following a further wash to remove 

any unbound antibody-enzyme reagent, a substrate solution was added to the wells 

and until colour developed in proportion to the amount of GH bound in the initial 

step. The color development was then stopped and the intensity of the color was 

measured.

2.4.3.3.2 Cortisol

The assay is based on a competitive binding technique in which cortisol present in the 

sample competes with a fixed amount of horseradish peroxidase (HRP)-labeled 

cortisol for sites on a mouse monoclonal antibody. During a period of incubation, the 

monoclonal antibody becomes bound to the goat anti-mouse antibody coated onto the 

microplate. Excess conjugate and unbound sample was then removed in a wash, and a 

substrate solution was added to the wells to determine the bound enzyme activity. 

Colour develops, which is stopped, and the absorbance was read at 450 nm. The 

intensity of color that developed was inversely proportional to the concentration of 

cortisol in the sample.

2.4.3.3.3 Interleukin-6

The assay employs a quantitative sandwich enzyme immunoassay technique, with a 

monoclonal antibody specific for human IL-6 that is pre-coated onto a microplate. 

Standards and samples were pipetted into the wells and the immobilized antibody 

bound any IL-6 present. After washing away any unbound substances, an enzyme- 

linked polyclonal antibody specific for human IL-6 was added to the wells. Following 

a wash to remove any unbound antibody-enzyme reagent, a substrate solution was 

added to the wells and colour developed in proportion to the amount of IL-6 bound in 

the initial step. The colour development was stopped and the intensity of the colour 

was measured.
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2.4.3.3.4 Insulin

The Invitron insulin assay is a two-site immunoassay, employing an insulin-specific 

solid phase antibody immobilised on microtitre wells, and a soluble antibody labelled 

with a chemiluminescent acridinium ester. The plasma sample was incubated 

simultaneously with the labelled antibody solution in the microtitre well, and this was 

followed by a wash step to remove unbound labelled antibody before measurement. 

The bound luminescence was quantified by a microtitre plate luminometer capable of 

in situ reagent addition. The luminescent reaction is a rapid flash type (>95% 

complete in 1 second), which allowed the entire plate to be read in approximately 5 

minutes.

The assay is 100% cross reactive with human insulin, but because T1DM individuals 

were examined, the influence of residual (3-cell function was considered negligible. 

The assay is also 100% cross reactive with insulins aspart, lispro and glargine. Insulin 

glargine demonstrates a peak less, steady, insulin concentration for 24 hours (96) and 

it absorption and clearance is unaffected by exercise (209). Thus, any changes in 

insulin concentrations detected by this assay were considered to be due to changes in 

the appearance/disappearance of insulin lispro, aspart or glargine. In addition, the 

assay is ~300% cross reactive with insulin detemir, therefore, within Chapters 4 and 

5, only participants using glargine could be incorporated into analysis.

2.4.3.3.5 Catecholamines (Adrenaline and Noradrenaline)

Noradrenaline and adrenaline were first extracted using a cis-diol-specific affinity gel 

and acylated to N-acylnoradrenaline and N-acyladrenaline, and were then converted 

enzymatically into N-acylnormetanephrine and N-acylmetanephrine.

The competitive BI-CAT ® Adrenaline & Noradrenaline ELISA Kit used a microtiter 

plate format. Adrenaline and noradrenaline, respectively, bind to the solid phase of 

the microtiter plate. Acylated catecholamine from the sample and solid phase bound 

catecholamine compete for a fixed number of antiserum binding sites. When the 

system is in equilibrium, free antigen and free antigen-antiserum complexes are 

removed by washing. The antibody bound to the solid phase catecholamine is 

detected by anti-rabbit IgG / peroxidase. The substrate TMB / peroxidase reaction was
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monitored at 450 nm. The amount of antibody that bound to the solid phase 

catecholamine was inversely proportional to the catecholamine concentration of the 

sample.

2.4.3.3.6 p-hydroxybutyrate

The assay is based on the production of acetoacetate and H+ after P-hydroxybutyrate 

has been oxidised by hydroxybutyrate dehydrogenase:

P-hydroxybutyrate + NAD+ — 3-hydroxybutyrate dehydrogenase — 

Acetoacetate + H+ NADH.

The change in absorbance at 340 nm was directly correlated with the p- 

hydroxybutyrate concentration.

2.4.3.3.7 Non-esterified Fatty Acid (NEFA)

The Randox NEFA assay provided a measurement of plasma NEFA, run on the 

Randox Daytona Plus analyser. Samples were assayed in batches. The method was 

calibrated using saline and calibration serum (Level 3, Randox Laboratories Ltd, UK). 

Quality control samples (Multisera Levels 2 and 3) were also assayed prior to 

analysis. The instrument uses direct photometry to measure a coloured endpoint, from 

the following reactions:

Acyl CoA Synthetase

 ►
(i) NEFA + ATP + CoA Acyl CoA + AMP + PPi

Acyl CoA Oxidase

 ►
(ii) Acyl CoA + 0 2 2,3,-trans-Enoyl-CoA + H ,02

Peroxidase 
 ►

(iii) 2 H ,0 ,T 0 0 S  + 4-AAP Purple adduct + 4H ,0
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2.433.8  Creatine Kinase

The enzymatic, colorimetric methodology used, is based on the ability of creatine 

kinase (CK) to convert ADP to ATP. The ATP is then used to produce glucose-6 

phosphate, which in the presence of glucose-6-phosphate dehydrogenase, produces 

NADH from NAD+. The enzyme activity was measured by the rate of increase 

(AA.min ') of NADH, detected colourimetrically at 340 nm. No calibration was 

required. The enzyme activity was measured by the rate of increase (AA.min ') of 

NADH. Quality control samples (SeraChem® Levels 1 and 2, Instrumentation 

Laboratory Ltd, UK) were assayed prior to analysis.

2 3  HEART RATE MONITORING

In Chapters 3 and 4, heart rate was recorded using the Zephyr BioHarness™ system 

(BioHarness™ BT, Zephyr Technology Corporation, USA) (Figure 2.8). The 

BioHarness™ module was attached to the participant via a side-strap garment, upon 

arrival at the laboratory. Electrodes on the garment were lubricated with ECG gel 

(Spectra®360 Electrode Gel, Parker Laboratories Inc., USA). Once the BioHarness™ 

was connected to the garment and turned on, the passive sensors within the strap 

detect heart ECG signals through conductive pads. Data was downloaded from the 

BioHarness™ following completion of the experimental session, using manufacturer 

software, and subsequently exported to excel for retrospective analysis. The 

BioHarness™ module records heart rate within a range of 25 to 240 beats.min'1 (±1 

beats.min ').

Heart Rate (ECG) Sensors Side-strap Garm ent

BioHamejs'

BioHarness™  M odule

Figure 2.8: Zephyr BioHarness™ system utilised for heart rate monitoring.
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2.6 BLOOD PRESSURE MONITORING

In Chapter 4, systolic and diastolic blood pressure were measured over the brachial 

artery of the non-cannulised arm using a cuff link blood pressure monitor (Welch 

Allyn 300 Series, Welch Allyn Protocol Inc.; OR, USA), at rest, immediately after 

exercise and at 1-hour of passive recovery.

2.7 MEASUREMENT OF PERCEIVED EFFORT AND MUSCLE SORENESS.

In Chapter 3, muscle soreness was measured at 24 hours after completion of exercise 

using a visual analogue scale (VAS) (19) (Appendix N). The VAS has been utilised as 

an indicator of pain (264) as it has correlated with other indices of muscle damage 

including maximal voluntary muscle contraction and CK (264), and has obtained 

reported reliability scores as high as r=0.97 for assessing subjective soreness (265). 

The OMNI-RES scale (19) (Appendix N) was used to determine ratings of perceived 

exertion during RE, across Chapters 3 to 5; participants reported perceptual feelings 

of exertion on a scale of 1-10 (extremely easy -  extremely hard) upon completion of 

each exercise set. The OMNI_RES scale was developed for the purpose of 

investigating ratings of perceived exertion during resistance exercise, since other 

models use to rate exertional perceptions such as the Borg 15 category scale have 

been developed for aerobic exercise modalities, and there functional utility is 

estimated primarily by the relationship between perceptions of exertion and 

physiological responses such as heart rate and pulmonary ventilation. Correlations 

between ratings of perceived effort and weight lifted during a RE session range from 

0.79 to 0.91, thereby providing concurrent validation of the OMNI-RES scale for 

measuring perceptual effort for active muscle and overall body, in upper and lower 

body RE (19).

2.8 PRE-EXERCISE DIETARY INTAKE, INSULIN DOSAGE AND 

PHYSICAL ACTIVITY

Under Chapters 3, 4 and 5, and across all experimental sessions, participants were 

strictly instructed to avoid alcohol and caffeine for 48 hours prior to testing. Similarly, 

participant dietary intake and pattern for 24 hours prior to testing was replicated 

across experimental sessions within each Chapter, whereby participants adopted their 

usual basal-bolus insulin regime, and fasted from 10/11 pm until arrival at the
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research facility. Under all chapters, participants administered their usual basal insulin 

on the evening prior to testing; the time and dose of the insulin injection was 

standardised across experimental sessions. The structure of this pre-exercise diet and 

insulin routine was discussed with each participant during the preliminary session 

(Appendix D). Participants were provided with a one-day diary to record their dietary 

intake, insulin dosage, and blood glucose using their own glucose monitors, during 

the 24 hours prior to each experimental session (Appendix E). Under Chapters 3 to 5, 

for 24 hours prior to each experimental session participants were not permitted to 

partake in any sport/exercises or strenuous physical activity (i.e. activity demanding 

exertion beyond a conversational level). For this time period, participants completed a 

physical activity questionnaire comprising hourly recordings of physical activity 

levels (Appendix F).

2.9 POST-EXERCISE DIET AND INSULIN

2.9.1 Chapter 3

Following completion of each exercise session, participants remained fasted without 

bolus insulin for 1 hour, under all experimental sessions. At this point the final 

laboratory blood sample of the day was taken, and participants were provided with 

breakfast before leaving the research facility. During the subsequent 24 hours 

participants were asked to adopt their usual diet and insulin routine, and replicated 

this across experimental sessions. Fasting was not necessary for the 24-hour post­

exercise visit to the research facility.

2.9.2 Chapter 4

Following completion of the exercise session under the LOW experimental arm, 

participants remained fasted without bolus insulin for 65 minutes. At this point the 

final laboratory blood sample of the day was taken, and participants were provided 

with breakfast before leaving the research facility. This marked the end of the 

experimental session and therefore the end of any commitments pertinent to the study 

design. Under the MOD session, participants remained fasted without bolus insulin 

for 65 minutes after cessation of exercise (identical to the LOW protocol), but since a 

portion of the MOD session data was used as an experimental arm in Chapter 5, the
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subsequent diet and insulin protocol is described below as per the NO-INSULIN 

experimental session.

2.9.3 Chapter 5

Under both the INSULIN and NO-INSULIN experimental sessions, participants 

remained fasted for 125 minutes after cessation of exercise. During this time, 

participants abstained from insulin administration under NO-INSULIN, but under 

INSULIN participants administered a bolus of rapid acting insulin immediately after 

exercise (see section 2.9.3.1). Under both experimental sessions within Chapter 5, at 

125 minutes post-exercise participants adopted a dietary intake routine that was 

standardised between experimental sessions until the subsequent morning (i.e. ~20 

hours after leaving the research facility). This standardised diet was provided to the 

participant on completion of the 125 minute post-exercise phase and comprised three 

main meals; breakfast in the research facility, followed by lunch and dinner at home, 

which aimed to replicate the participants usual eating habits, taking into consideration 

any allergies and/or dietary restrictions, but was also reflective of current diabetes 

health organisation guidelines (266). An individualised diet-plan for the 20-hour post­

laboratory phase was chosen because subtle differences in dietary composition (e.g. 

glycaemic index and load, and micronutrient composition) could have altered 

glycaemia independent of changes in calorific intake, and patient diet recall lacks 

sensitivity of a controlled diet. Carbohydrate tablets (Glucotabs®; HYPOSITE, BBI 

Healthcare Ltd., UK) were provided for similar reasons, but also to ensure that 

patients had available carbohydrates should hypoglycaemia have been an issue during 

unsupervised conditions. Participants freely administered exogenous insulin in line 

with their usual routine, and adjusted their insulin dosage with respect to their blood 

glucose levels. Participants abstained from consumption of caffeinated and alcoholic 

beverages during the post-laboratory phase.

2.9.3.1 Post-Exercise Insulin Delivery By Means Of An Algorithm

Within the study design of Chapter 5, an injection of rapid acting insulin was 

administered within 5 minutes after completion of the exercise session. The dose of 

insulin administered was calculated using an algorithm, which was adapted from the 

“ 100-rule” (98; 99) (see section 1.4.2). The algorithm for derivation of post-exercise
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rapid acting insulin is illustrated in Figure 2.9. The objective of this algorithm was to 

determine the number of insulin units necessary to return blood glucose to a target of 

7 mmoLL"1 within the 2-hour post-exercise recovery period, as a function of the 

participant’s total daily insulin dosage and real time blood glucose concentration. At 

the time of developing the algorithm, it was unknown to what magnitude of effect a 

subcutaneously injected dose of rapid-acting insulin could have on glycaemia early 

after resistance exercise. However, any alteration in insulin sensitivity resulting from 

exercise would invalidate the method by which the ‘ 100-rule’ determines an insulin 

correction dose, because this algorithm is based on an estimation of general insulin 

sensitivity not specific to exercise. Little is understood about the effects of RE on 

insulin sensitivity in T1DM; the single study in T1DM demonstrated no effect of RE 

on insulin sensitivity at 12 and 36 hours after exercise (137), but this does not 

preclude that insulin sensitivity could be altered at times soon after the cessation of 

exercise. Factors including increased limb blood flow (267) and improved insulin 

sensitivity associated with the initial hours after exercise (268) could augment both 

the absorption of injected insulin into the blood stream (183) and action of circulating 

insulin on glucose clearance (184). Conversely, it has been demonstrated in those 

without diabetes that unaccustomed eccentric exercise can impair insulin action in the 

early hours after exercise cessation (233). Thus, in mind of these aforementioned 

findings and based on the magnitude of hyperglycaemia experienced after the RE 

sessions in Chapter 1, it was considered prudent to reduce the insulin dose calculated 

by the 100-rule (FullDose) by 50%, in an effort to attenuate post-exercise 

hyperglycaemia but avoid exposing the exercising participant to low blood glucose or 

hypoglycaemia.

As a working example of the algorithm, participant ‘X’ with a total daily dose (TDD) 

of 40IU and a blood glucose concentration of 9.5 mmol.L'1 at 0-minutes post-exercise, 

was determined to require 1U of insulin aspait (i.e. 0.5IU rounded-up) to theoretically 

reduce blood glucose by 2.5 mmoLL'1. The anatomical site of insulin injection chosen 

by each participant (i.e. abdomen or thigh) was replicated in the remaining 

experimental session. Insulin aspart was administered using Novopen3® 

(NovoNordisk, UK).
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Figure 2.9: Step-by-step guide of algorithm used to determine patient post-resistance exercise 
rapid-acting insulin dose.

2.10 POST-LABORATORY PROCEDURES

The following procedures were implemented to assess changes in glycaemia, insulin 

dosage, dietary patterns and physical activity levels during post-laboratory changes in. 

Notably, during a preliminary session, which was included under all studies, 

participants were provided with details of how to accurately complete dietary 

assessment sheets/diaries; specifically, instructions were provided as to how to obtain 

macronutrient composition from foodstuffs (i.e. on the nutritional content label). They 

were also instructed on how to accurately record their own physical activity levels and 

taught the correct procedure to obtain a fingertip blood glucose reading.

2.10.1 Blood Glucose Monitoring

In Chapter 5, participants were provided with a glucose monitor and manufacturer test 

strips (Freestyle Lite, Abbott, UK). Blood glucose was self-monitored prior to each 

meal, prior to sleeping, and immediately upon awaking using a log sheet (Appendix 

O). A further three test strips were provided to the participant should they have 

wished to obtain any further readings. The frequency of blood glucose monitoring 

was in agreement with ADA standards of medical care guidelines (51). 

Hypoglycaemia within the post-exercise laboratory period was defined as a blood 

glucose reading of <3.9 mrnol.L1, but in an effort to prevent an episode of severe
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hypoglycaemia, the consumption of carbohydrate was recommended upon obtaining a 

low blood glucose reading of <4 mrnol.L'1.

2.10.2 Physical Activity Patterns

During both the 24-hour post-exercise phase under within Chapter 3 and the 20-hour 

post-laboratory phase within Chapter 5, participants adopted their usual free-living 

routine, but they were not permitted to partake in any further sport/exercises or 

strenuous physical activity (i.e. activity demanding exertion beyond a conversational 

level). Under Chapters 3 and 5, participants completed a physical activity 

questionnaire comprising hourly recordings of level of physical activity (Appendix F), 

which reflected their activity patterns for 24 hours after the experimental exercise 

sessions. Under Chapter 5 only, physical activity patterns were assessed through 

estimated energy expenditure as a function of measurements including heart rate and 

steps taken (Sensewear Pro Armband™; Bodymedia, PA, USA) (269). The 

Sensewear Pro Armband™ (Figure 2,10) is a lightweight device that is worn over the 

right triceps, which records vertical and horizontal acceleration from a 2-axis micro­

electromechanical accelerometer. The device was allowed to equilibrate to body 

temperature for 20 minutes prior to monitoring. Data is stored within the device and 

was retrospectively downloaded to a dedicated software package (InnerView 

Research Software v.2.2, BodyMedia Inc.), which uses a multiple non-linear 

regression equation to predict minute-by-minute energy expenditure from the 

accelerometry data, physiologic sensors and demographic information. The device has 

been shown to accurately measure energy expenditure during low-intensity physical 

activity, correlating significantly (r=0.93,/?<0.05) with indirect calorimetry, with high 

test-retest reproducibility (average 0.85 intra-class correlation compared to 0.90 for 

indirect calorimetry) (270). The Sensewear Pro Armband™ monitoring of step count 

in free-living has been shown to be in agreement with other valid activity monitors 

(271).
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Figure 2.10: Outside and inside surface of SenseWear Pro Armband™

2.103 Self-Recorded Diet Intake And Insulin Administration

Participants recorded their post-laboratory dietary intake and insulin dosage in a diary 

provided to them during the preliminary session (Appendix O). A copy of this 

information was provided to each participant to facilitate replication of dietary intake 

and timing across experimental sessions. This method also helped the participant to 

highlight to a member of the research team any adjustments in his/her insulin regimen 

due to alterations in blood glucose levels.

2.11 DATA ANALYSIS

2.11.1 Blood Glucose Area Under Curve Calculation

The calculation of blood glucose (BG) area under the curve (AUC) was performed 

using the net incremental area under curve method (BGIAUC) (272). This method 

includes all incremental area below the curve, including the area below the (unless 

otherwise stated) 0-minute post-exercise concentration. It was calculated by applying 

the trapezoidal rule to both positive and negative blood glucose increments. To this 

effect, the area beneath the 0-minute post-exercise level was subtracted from that 

above. This method was chosen since it can be used to represent the change in post­

exercise blood glucose during the acute recovery phase in response to exercise, and as 

such the post-exercise changes in blood glucose during a time-frame can be 

represented as a single value (i.e. mmol.min.L1) and therefore these values can be 

used for comparisons between different experimental sessions. An example of this 

calculation is described below and shown in Figure 2.11. In Chapter 6, for the purpose
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of comparing ‘exercise-induced hyperglycaemia’ across chapters 3 to 5, BGIAUC 

values represent changes from pre-exercise, fasting concentrations (see Figure 6.2).

I A] |B]

4 .5

S 4°
o  3 .5  

|  3 .0  

£ 2.5 
g 2.0

■O 0 .5  

0.0
15 3 00

16 .0

14 .0
_9
■5 12.0 
E£ 10.0 
I  8.0

6.0

4 .0

0.0
R E S T 0 15 3 0

Tim e (M inutes) Tim e (M inutes Post-Exercise)

Figure 2.11: Example blood glucose area under curve. Blood glucose responses at Rest 
(pre-exercise) and at 0, 15 and 30 minutes of recovery after a hypothetical exercise session 
(i.e. exercise performed between REST and 0 minutes), where |A | represents the absolute 
change in blood glucose concentration over the sample points and |B | represents the delta 
blood glucose responses (i.e. 0-minute post-exercise concentration subtracted from absolute 
concentration) over the accumulative time for the session.

Calculations

In reference to Figure 2.1 IB;

Area (i) = ((BG 0 + B G 15)/2 )|* (T im ePost-T im ePre)

= l((0  + 4)/2) |*( 15-0)

= 30 mmol.min.L1

Area (ii) = l(B G 15 + B G 30)/2)]*(Tim epost-T im ePre)

= |((4  + 2 )/2 )|* (30 -15)

= 45 mmol.min.L1

So,

Total (post-exercise) BG1AUC = 15 + (-15)

= 75 mmol.min.L1

2.11.2. Calculation Of Exercise Volume And Intensity

As described in section 1.10.4.1, exercise ‘volume’ represented the total weight lifted 

in a session; calculated by multiplying the weight lifted during each repetition, by the 

number of repetitions completed over the duration of the exercise session. Exercise 

‘intensity’ was defined as the weight lifted per repetition relative to the maximum 

weight a participant could lift (determined using the 3RM protocol), and was
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therefore expressed as a percentage of 1RM (exercise intensity: %1RM). For 

example, in Chapter 3 participants exercised at an intensity of ~70%1RM. Thus, a 

participant with a 1RM of 100kg for squat, would performed each repetition under a 

load of 70kg. This method of calculating exercise intensity enabled the RE session to 

be standardised between participants and across sessions. The exercise intensity 

prescribed was adjusted within the session to accommodate for the actual weight 

lifted in the session. The actual exercise intensity was then retrospectively calculated 

in relation to the participant’s actual performance.

Session volume calculation, working example:

Participant ‘X’ was prescribed a resistance exercise session: 2 sets, 6 exercises, 10 

repetitions at 60%1RM:

Where,

1RM (kg): Lateral Pulldown (53), Squat (83), Bench Press (38), Leg 

Extension (44), Shoulder Press (35), Split-leg Squat (64).

Considering the smallest increment in weight on the Smith machine was 1.25 kg, an 

assuming the participant managed to complete all repetitions at the prescribed 

intensity, in this instance:

Effective Session Volume = 2* [6 * [10*(60%lRM(n=6))]]

Actual Session Volume = 3700 kg at an intensity of 58.1 %1RM.

2.11.3 M ean A rterial Pressure

Mean arterial pressure was calculated using the following equation:

~ Mean Arterial Pressure = 1/3 * SBP + 2/3 * DBP (mmHg)

Where,

SBP and DBP refer to systolic and diastolic blood pressure.

85



2.11.4 Maximal Heart Rate

Maximal heart rate (HRmax) was calculated using the following equation:

HRmax = 208 -  0,7 * age (beats.min'1)

This equation was generation through a regression equation using 18,712 subjects and 

HRmax was cross-validated in laboratory-based studies in which actual HRmax was 

measured in 514 subjects. The regression line was not different between males and 

females, nor was it influenced by wide variations in physical activity levels (273).

2.11.5 Sample Size Calculation And Retrospective Power

Factors including feasibility, inclusion criteria, geographical location of testing, and 

the time commitment required of participants for completion of the experimental 

sessions within this thesis, were unfortunately found to heavily restrict the available 

pool of T1DM individuals. Following the preliminary session, three participants self­

terminated their involvement in the study corresponding with Chapter 3, while two 

participants self terminated their involvement in Chapters 3 and 4. Additionally, one 

individual was excluded from studies 2 and 3 after having completed a preliminary 

session and main experimental session, due to difficulties in venous blood sampling. 

Despite the small sample size across chapters (n=8), the statistical power for Chapters 

3 and 5 (where statistically significant differences were found in glycaemic responses) 

was 66.9% to 83.6% for primary outcome markers. The similarity in the glycaemic 

responses within Chapter 4 was reflected in a statistical power of 16.9%. Statistical 

power analysis was determined via an online power calculator (274).

2.12 STATISTICAL ANALYSIS

Statistical analysis was performed using PASW Statistics software (IBM PASW 

version 19; IBM., NY, USA). A p-value of < 0.05 determined statistical significance 

for all analysis. In Chapters 3 to 5, data were initially analysed using repeated- 

measures analysis of variance (ANOVA) on two factors (experimental session and 

time), with Fishers LSD pairwise comparisons used to examine a time-effect (i.e. 

within-session changes from baseline). Within Chapter 3, a one-way ANOVA with 

Fishers LSD was used to determine any effects of experimental session within a
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single time point. Within Chapters 4 and 5, where a statistically significant main 

effect was found, paired samples t~tests were used to perform pairwise post hoc 

comparison between experimental sessions for each time point. Individualised values 

were analysed using paired samples t-tests within Chapters 4 and 5, while a one-way 

ANOYA with Fishers LSD was utilised within Chapter 3. P-values and effect size 

(partial-eta2) were reported accordingly. All data (including graphs), unless stated 

otherwise, are reported as mean ± standard error (SEM). The strength of correlation 

between an independent and dependent variable was determined by the Pearson 

product-moment correlation coefficient (Pearson’s r). Given the variability in resting 

blood glucose levels, values in Figure 3.2 and 4.2 are presented as absolute and delta 

(relative to rest) concentrations. Delta values (A) were calculated by subtracting pre­

exercise (resting) values away from all subsequent sample time-points. Within Figure

5.2, blood glucose values are presented as absolute concentrations and relative to 0- 

minutes post-exercise (by subtracting subsequent sample points from 0-minutes post­

exercise concentrations) to delineate further the effect of insulin administration.
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CHAPTER THREE

The Impact Of Manipulating Resistance 

Exercise Session Volume In Type 1 Diabetes



3.1 INTRODUCTION

The American College of Sports Medicine (ACSM) (107) and American Diabetes 

Association (ADA) (57), along with multiple public health organisations (104; 106), 

identify strength training, or resistance exercise, as a component of a physical exercise 

programme for individuals with type 1 diabetes (T1DM), based upon its potential to 

benefit the health of the diabetes population (103; 118; 119; 129).

The glycaemic benefits of regular exercise in T1DM are not fully known (131). 

However, it is recognised that endurance exercise can predispose to hypoglycaemia

(210). In contrast, exercise types that demand high rates of glycolytic activity evoke a 

strong counterregulatory hormone response in T1DM individuals (219; 275), leading 

to a greater appearance of blood glucose than uptake (275). Interestingly, the addition 

of a single (213) or multiple acute sprints (227) to endurance exercise can reduce the 

risk of experiencing hypoglycaemia. Investigation of the glycaemic and metabolic 

responses to other common forms of exercise containing a large non-oxidative 

metabolic component is, however, limited.

Resistance exercise (RE), ‘weights’ or ‘strength training’, is a form of exercise 

associated with energy production through mainly non-oxidative pathways (248). A 

single session is comprised of repeated muscular contractions (i.e. repetitions) of 

different exercises performed in sets, interspersed with recovery periods. With 

reference to these RE session characteristics are guidelines specific to exercise 

intensity and volume (57; 107), for those with well-controlled T1DM (see section 

1.5.1). It is however surprising that scant research has validated these RE guidelines 

with a thorough understanding of the acute glycaemic responses of RE in T1DM 

individuals, as highlighted in a recent review (276). For example, Jimenez et al. (137) 

reported that insulin sensitivity was unaltered in well-controlled T1DM participants 

following a high-intensity, high-volume RE session comprising five-sets of six- 

repetitions at 80% of 1-repetition maximum (1RM) with 4-minute rest periods 

between sets. Although blood glucose was stable during euglycaemic- 

hyperinsulinaemic clamping at 12-hours and 36-hours after cessation of exercise, the 

immediate glycaemic responses to RE were not measured. The acute blood glucose 

response to this form of exercise is inadequately researched with equivocal findings.
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Two studies conducted by Yardley et al. (211; 240) resulted in conflicting results. In 

both studies, T1DM participants performed three-sets of eight-repetitions-maximum 

with ninety-seconds rest after each exercise and plasma glucose either remained stable 

throughout the 45 minutes of exercise (240) or fell from 8.4±2.7 to 6,8±2.3 mmol.L1

(211). The reasons for the different glycaemic findings across studies are unclear, but 

inter-individual differences pertaining to adjustments in exogenous insulin and dietary 

intake prior to and during exercise may explain divergent results. This variability 

could be minimised by refining participant control before trials and standardising 

insulin/carbohydrate routines during tightly controlled exercise sessions.

Thus, there is a limited understanding of the acute glycaemic and glucoregulatory 

impact of RE in T1DM. Guidelines promote circuit-based RE of moderate-intensity 

(57), and also highlight the importance of progression in number of repetitions in 

relation to physical ability (107). However, there is no information on the impact that 

different durations of RE session has on metabolic and glycaemic responses. Clearly, 

energy expenditure during this form of exercise is greater the longer the session 

persists, but the net impact on recovery metabolism may be different and potentially 

expose individuals to different degrees of glycaemic and metabolic disturbances.

Therefore, the aim of this study was to examine the impact of manipulating exercise 

volume in determining the acute glycaemic, metabolic and glucoregulatory hormone 

responses to well-controlled resistance exercise sessions performed at a fixed intensity 

in individuals with type 1 diabetes.
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3.2 RESEARCH DESIGN AND METHODS

3.2.1 Participants

Eight physically active male (n=7) and female (n=l) individuals with T1DM (age 38 

± 6 years, HbAlc 8.7 ± 1.0 %, duration of diabetes 15 ± 4.5 years) volunteered and 

provided written informed consent for the study. Participants anthropometric, 

glycaemic control and insulin regimen characteristics are presented in Table 2.1 (Page 

54). All participants were treated with an insulin regimen composed of bolus insulin 

glargine and prandial rapid-acting insulin aspart.

3.2.2 Experimental Design

A counterbalanced and randomised, repeated-measures design was selected to 

compare glycaemic and glucoregulatory responses within-subject and between- 

experimental sessions (Figure 3.1). Following a single preliminary session, three RE 

sessions of equal intensity but different volume of work [one, two and three sets] were 

scheduled in addition to a resting control session. Exercise sessions were separated by 

3-9 days; control sessions were separated from exercise sessions by 2-9 days.

ResU

lArrive

JL
15 30 24hr

Figure 3.1: Schematic of experimental sessions. Red downwards arrows indicate blood 
sample points.

3.23 Experimental Sessions and Analysis

Participants arrived at the clinical research facility between 0600-0800 h. Participants 

confirmed they had fasted for 8-10 hours, having taken their usual basal insulin dose 

(Glargine 27.5±3.1 IU) the night before but omitted rapid-acting insulin on the 

morning of testing. Upon arrival, a cannula was inserted into the antecubital vein and 

resting blood samples was withdrawn. Thereafter, a standardised ten-minute warm-up 

of main muscle groups was performed before undertaking a 1SET (duration: 14 

minutes), 2SET (28 minutes) or 3SET (42 minutes) RE session (8-exercises x 10- 

repetitions) at 70% 1-repetition-maximum (1RM) followed by 60 minutes of passive 

recovery (Section 2.3.4.1; Figure 3.1), or a resting session (CON). Blood samples
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were taken for the subsequent hour after exercise (Figure 3.1). All samples were 

processed and analysed for glucose, pH, lactate, extra-cellular fluid base-excess (Becf) 

and K+, insulin, [3-hydroxybutyrate, catecholamines, growth hormone, interleukin-6 

and cortisol (Section 2.4.3). Participants then left the research facility and returned for 

a follow-up session 24 hours after cessation of exercise, in which only plasma creatine 

kinase levels were determined from a single resting venous blood sample. Heart rate 

was recorded prior, during and after exercise (Section 2.5). Data (mean ± SEM) were 

analysed using ANOVA (p<0.05) (Section 2.12).
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3.3 RESULTS

3.3.1 Exercise Volume and Intensity

The total weight lifted during RE was significantly different across all sessions (1SET 

2901 ± 350, 2SET 5713 ± 712, 3SET 8286 ± 1096 kg, p<0.001). There was a 

significant effect of experimental session on overall exercise intensity (p=0.00J, 

partial-eta2 = 0.681; Table 3.1). The 2,ld subset was of significantly lower intensity 

than the 1st subset (p=0.033) but of significantly higher intensity than the 3rd subset 

(p=0.049). The 3rd subset was of significantly lower intensity than the 1st subset 

(p=0.007) (see Table 3.1 for values).

Table 3.1: Exercise intensity across different volume experimental sessions, relative to 1RM.
Intensity
%1RM

1st Subset 2nd Subset 3rd Subset
Overall
Session

1SET 69,4 ±0.6 - - 69.4 ± 0.6
2SET 69.4 ± 0.6 66.9 ±1.3 _ 68.1 ±0.9*#
3SET 69.4 ±0.6 66.9 ±1.3 63.8 ±1.6 66.7 ± 1,0*t

Data are presented as means ± SEM. * indicates statistically significant difference to 1SET 
(p<0.05). f indicates statistically significant difference to 2SET (p<0.05). # indicates 
statistically significant difference to 3SET {p<0.05).

3.3.2 H eart Rate

Heart rate responses to experimental sessions are present in Table 3.1. Mean 

estimated HRmax was 182 ± 4 beats .min'1. Average heart rates as a percentage of HRmax 

were similar across experimental sessions (1SET 57 ± 2, 2SET 66 ± 4, 3SET 63 ± 3 

%HRmax, p= 0J65 ), respectively. Peak heart rates were similar between different 

exercise sessions (1SET 149 ± 7 ,2SET 162 ± 9 ,3SET 153 ± 7 beats.min'1,p=0J42).

Table 3.2: Mean heart rates during each set of exercise and recovery under 1SET, 2SET,
3SET and CON.

Heart Rate
beats.min1

Rest Exercise Recovery
Pre­

exercise
l stSet 

(Or sedentary) 2nd Set 3rd Set 0 -6 0  min

1SET 62 ±3 104 ±4* - - 84 ±10*f
2SET 70 ±6 109 ±8* 131±9*f - 102 ± 5*f
3SET 58+7 100 ±5* 117±7*f 126±7* 90 ± 4*f
CON 66 ±3 68 ± 4 - - 66 ±3

Data are presented as means ± SEM. * indicates statistically significant difference (p<0.05) 
from rest within session and also from CON at equivalent sample point (p<0.05). f indicates 
statistically significant difference from the 1st set within session (j?<0.05). beats.min'1: beats 
per minute.
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3.3.3 Blood Glucose

The blood glucose (BG) responses to exercise are presented in Figure 3.2. Baseline 

BG concentrations were similar between trials (1SET 11.7 ± 1.1, 2SET 11.8 ± 2.0, 

3SET 12.2 ± 1.6, CON 11.2 ± 1.5 mmol'L~\p-0,977). There was a significant effect 

of time (p=0.011, partial-eta2 = 0.469), exercise volume (p=0.040, partial-eta2 = 

0.321) and an interaction between exercise volume and time (p=0.001, partial-eta2 = 

0.285) for ABG responses. RE session volume had a significant effect on post­

exercise glycaemia, as reflected in post-exercise BGIAUC (p=0X)22\ Figure 3.2). 

During recovery, post-exercise BG]AUC was greater under 1SET (42.1 ± 13.9 

mmol'60min'L!, p=0.024) and 2SET (41.8 ± 20.4 mmol‘60min‘L‘!, p=0.033) versus 

CON (-23.9 ± 14.9 mmol'GOmiirL"1) but BGIAUCwas similar between 3SET and CON 

(3SET 8.4 ± 13.0 mmol^OminL"1 vs. CON, p -0 2 2 6 ), Individual peak BG 

concentrations were similar between exercise sessions (1SET 14.0 ± 1.5,2SET 14.9 ± 

2.1, 3SET 13.9 ± 1.9 mmol'L'1, p=0515)\ moreover, peak BG values were 

significantly higher than rest under 1SET (p^O.020) and 2SET (p=0.001) but were 

comparable to resting values under 3SET (/?=0.068). Interestingly, after one hour of 

recovery from exercise, exercise-induced hyperglycaemia (of >2 mmol'L'1 rise in BG 

from pre-exercise) was more frequent in participants under 1SET (n=5) and 2SET 

(n=6) compared to 3SET (n=2). A greater number of participants experienced 

exercise-induced increases in BG of >4 mmol'L"1 during 1SET (n=2) and 2SET (n=3) 

sessions than 3SET (n=l).
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Figure 3.2: [A] Absolute and [B] delta blood glucose responses and [C] net incremental post­
exercise BG1AUC (integrated area under curve) during 60 minutes of recovery under exercise 
and CON experimental sessions. Transparent sample points indicate significant changes from 
rest within each experimental session (p<0.05). t  indicates a statistically significant difference 
(p<0.05) between 1SET and CON. * indicates a statistically significant difference (p<0.05) 
between 2SET and CON. Delta blood glucose responses were calculated as a change from 
rest through the subtraction of baseline concentrations from further glucose values within 
each condition.
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3.3.4 Glucoregulatory Hormones and IL-6

Plasma catecholamines, growth hormone, cortisol and insulin responses across 

experimental sessions are presented in Table 3.2. Resting concentrations of all 

glucoregulatory hormones were similar between experimental sessions (p>0.05; 

Table 3.2).

3.3.4.1 Adrenaline and Noradrenaline

For plasma adrenaline (AD) responses (Table 3.2), there was a significant effect of 

time (p=0.005, partial-eta2 = 0.452), exercise volume (p=0.020, partial-eta2 = 0.367) 

and a session*time interaction (p=0.034, partial-eta2 = 0.239), with similar peak 

concentrations irrespective of exercise volume (1SET 0.42 ± 0.12, 2SET 0.47 ±0.11, 

3SET 0.58 ± 0.17 nmol L'1, p=0708), For plasma noradrenaline (NA) responses 

(Table 3.2), there was a significant effect of time (p=0.002, partial-eta2 = 0.758), 

exercise volume (p<0.001, partial-eta2 = 0.631) and an interaction between session 

and time (p<0.001, partial-eta2 = 0.651), with similar peak concentrations between 

exercise sessions (1SET 6.42 ± 1.37, 2SET 8.28 ± 1.56, 3SET 9.67 ± 2,03 nmol'L"1, 

p=0.405).

3.3.4.2 Growth Hormone

For plasma growth hormone (GH) responses (Figure 3.3; Table 3.2), there was a 

significant effect of time (p<0.001, partial-eta2 = 0.662), experimental session 

(p=0.001, partial-eta2 = 0.556) and a session*time interaction (p=0.005, partial-eta2 = 

0.464). Peak GH concentrations occurred between 0-15 minutes post-exercise under 

all exercise sessions. Exercise volume affected {p<0.001) peak GH concentrations; 

with peaks greatest under 3SET (3SET 5,1 ±0.7 ng.mL1 vs. 1SET 1.9 ± 0.9 2SET 3.3 

± 0.7 CON 0.6 ± 0.3 ng.m L1,p<0.05).
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Figure 3.3: Plasma growth hormone responses under exercise and CON experimental 
sessions. Transparent sample points indicate significant changes from rest within each 
experimental session (p<0,05). f  indicates a statistically significant difference (p<0.05) 
between 1SET and CON. * indicates a statistically significant difference (p<0.05) between 
2SET and CON. $ indicates a statistically significant difference (p<0.05) between 3SET and 
CON. ft indicates a statistically significant difference (p<0.05) between 3SET and 1SET. A 
indicates a statistically significant difference (p<0.05) between 3SET and 2SET.

3,3.4.3 Cortisol

For plasma cortisol responses (Table 3.2), there was no effect of time (p=0.129, 

partial-eta2 = 0.268) or experimental session (p=0J18, partial-eta2 = 0.239). Peaks 

(1SET 84.3 ± 21.3 2SET 105,7 ± 24.0 3SET 121.8 ± 51.3 CON 49.0 ± 10.7 ng.mL/1, 

p=0,387) and minimum (1SET 36.9 ± 9.1 2SET 50.1 ± 11,7 3SET 48.2 ± 18.7 CON

24.0 ±6.3 ng.mL'\p=0.433) cortisol concentrations were similar across experimental 

sessions.
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Table 3.3: Plasma adrenaline (AD), noradrenaline (NA), cortisol, growth hormone and 
insulin responses to exercise and CON sessions.

Rest 0 5 15 30 60

Plasma
AD
(nniol.L1)

1SET

2SET

3SET

CON

0.13+0.03 0.42±0.12*f 0.20±0.04 - - 0.06+0.03 

0.27±0.14 0.47±0.11t 0.18±0.04 - - 0.09±0.03 

0.16±0.05 0.48±0.16t 0.39±0.14f - - 0.17±0.08 

0.16+0.05 0.03±0.01* 0.12±0.08 - - 0.04+0.02

Plasma
NA
(nmol.L'!)

1SET

2SET

3SET

CON

1.42±0.12 6.42±1.37*f 3.10±0.43* - - 1.02±0.12 

1.62±0.21 8.24±1.59*t 3.24±0.47*t - - 1.12±0.20* 

1.75±0.28 9 .6 7 + 2 .0 3 4 .4 2 + 0 .96*t - - 1.40±0.29* 

1.71 ±0.29 1.37±0.25* 1.47±0.27 - - 1.19±0.18*

Plasma
Cortisol
(ng.ml'1)

1SET

2SET

3SET

CON

67.0±17.7 65.5±14.7 - 76.4±21.6 45.2+10.7 50.1 ±13.3 

83.7+17.7 80.7±21.6 - 99.6±22.5 74.0±16.6 54.1±12.6 

76.8±20.1 103,4±49.8 - 87.6±36.3 87.9±35.9 62.6±26.0 

61.5±20.6 46.9±11.6 - 39.9±10.6 28.8±6.9 28.1±6.4

Plasma
Growth
Hormone
(ng.ml1)

1SET

2SET

3SET

CON

0.4±0.2 1.8 ±0.9 - 1.6±0.7 0.7±0.3 0.5±0.3 

0.6±0.4 2.8±0.7*f - 2.9±0.6*t 1.9±0.4 1.0±0.3 

0.2±0.1 4.9±0.6*t$§ - 4.1±0.8*tf 3 .4± l.l* tt 1.9±0.8 

0.2±0.1 0.2±0.1 - 0.2±0.1 0.3±0.1 0.5±0.3

Plasma
Insulin
(pmolX,1)

1SET

2SET

3SET

CON

82.9± 10.5 - 75.1±12.3 77.9±15.1 72.7±12.8* 72.0±11.2 

87.2±11.2 - 66.4±10.1 70.9±13.2 68.0±7.7* 73.3±10.4 

135.7±44.7 , 85.0±19.6 89.1±18.3 84.1±15.2 84.3±13.6 

119.1±19.6 - 93.4±11.3 114.4±19.4 106.1±15.9 97.9±12.1

Data presented are means ± SEM. Time points represent minutes post-exercise. * indicates a 
statistical significant difference (p<0.05) to rest, f  indicates a statistical significant difference 
(p<0.05) to CON. $ indicates a statistical significant difference (p<0.05) to 1SET. § indicates a 
statistical significant difference (p<0,05) to 2SET.

3.3.4.4 Insulin

For plasma insulin (Figure 3.4; Table 3.2), there was no session effect {p-0.126, 

partial-eta2 = 0.256) or session*time interaction (p=0.501, partial-eta2 = 0.120), but 

there was a significant time effect (p=0.034, partial-eta2 = 0.394) relating to a minor 

reduction in resting plasma insulin levels under 1SET and 2SET at 30-minutes post­

exercise (p<0.05). Average post-exercise insulin concentrations were comparable
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between trials (1SET 74.5 ± 12.5, 2SET 69.6 ± 9.1, 3SET 85.6 ± 16.2, CON 103.0 ± 

12,6 pmolL'1,p=0.2S4).

200  -

180 -

160

’k  140 •
’©
| l 2 0  • 

a  100 ■3
JZJ

« 80s
M 60 

40 

20 

0
Rest 5 15 30 60

Time (Minutes)

Figure 3,4: Plasma insulin responses at rest and during 60 minutes of recovery under exercise 
and CON sessions. Sample points reflect pre-exercise (Rest) and at 5, 15, 30 and 60 minutes 
post-exercise. Transparent sample points indicate significant changes from rest within each 
experimental session (p<0.05).

3.3.4,5 Interleukin-6

Plasma IL-6 responses are presented in Figure 3.5. For plasma IL-6, there was an 

effect of time (p=0,010, partial-eta2 = 0.482) and a tendency for an effect of exercise 

volume (p -0.094, partial-eta2 = 0.288), but no interaction effect between session and 

time (p=0.463, partial-eta2 = 0.117). Resting IL-6 (mean across experimental sessions) 

correlated with duration of T1DM (r=0.759, p=0.015) and participant age (r=0.773, 

p=0.012). Whereas under the 1SET resistance exercise session where IL-6 remained 

similar to baseline (pre-exercise) concentrations (baseline: 2.32 ± 1.14 pg.mL'1) at 30- 

minutes (2.48 ± 1.14 pg.mL"1, p=0.287) and 60-minutes (3.03 ± 1.29 pg.mL'1, 

p=0.318) post-exercise, IL-6 was statistically greater than baseline at 60-minutes 

post-exercise under the 2SET session (2.94 ± 0.94 pg.mL'1, p=0,002) and doubled at 

both 30 (4.01 ± 1.00 pg.mL'1, p=0.048) and 60 (4.28 ± 1.25 pg.mL'1, p=0,084) 

minutes post-exercise under the 3SET session. The absolute rise from baseline IL-6 to 

peak concentrations was greatest under 3SET (3SET +1.99 ± 0.82 vs. CON +0.38 ±

'2SET

’3SET

'CON
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0.38 pg.mL'1, p:=0.05O; 2SET +1.05 ± 0.27 [p=0.350] and 1SET +0.82 ± 0.65 pg.mL'1 

vs. CON [p=0.298]), and correlated with the magnitude of acid-base disturbance 

(peak IL-6 & nadir pHr=-0.92, p=0.008; Beof n=-0.87, p=0,007). Under 3SET, post­

exercise BGiauc significantly correlated with IL-6 concentrations at 30 (r=0.920, 

p=0.001), 60 (r-0,816, p=0.013) minutes post-exercise and also with peak post­

exercise IL-6 concentrations (r=0.855, p=0.007). The difference in post-exercise 

BGiauc between 3SET and 2SET sessions significantly correlated with IL-6 

concentrations at 30 (r=0.794, p=0.019) and 60 minutes (r=0.825, p=0.012) post­

exercise.
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Figure 3.5: Plasma IL-6 at rest and during 60 minutes of recovery under exercise and CON 
sessions. IL-6 sample points reflect pre-exercise (Rest) and 30 and 60 minutes post-exercise. 
Transparent sample points indicate significant changes from rest within each experimental 
session (p<0.05); note, under 2SET: 60min, p-0 .084 . t  indicates a statistically significant 
difference (p<0.05) between 1SET and CON. * indicates a statistically significant difference 
(p<0.05) between 2SET and CON.

3.3.5 Blood Acid-Base Balance

For blood lactate responses (Figure 3.6), there was a significant effect of time 

(p<0.001, partial-eta2 = 0.840), session (p<0.001, partial-eta2 = 0.888) and a 

session*time interaction (p<0.001, partial-eta2 = 0.813), with peak concentrations 

greater under 3SET (14.0 ±1.3 mmol'L'1) than 1SET (10.6 ± 1 .2  mmol'L"1; p=0.049)
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but comparable with 2SET (13.1 ± 1.5 mmol’L'1, p=0.568). Peak blood lactate 

significantly correlated positively with total exercise volume (r=0.51, p=0.005). For 

blood pH responses to exercise (Figure 3.6), there was a significant effect of time 

(p<0.001, partial-eta2 = 0.823), session (p=0.0J3, partial-eta2 = 0.509) and a 

session*time interaction (p<0.001, partial-eta2 = 0.659). There was an effect of 

experimental session on nadir pH (pcO.OOl), since values were significantly lower 

under exercise compared with CON (CON 7.38 ± 0.01 vs. 1SET 7.20 ± 0.03, 2SET 

7.16 ± 0.03, 3SET 7.15 ± 0.03, p>0.05), but concentrations were similar across 

exercise sessions (p>0.05). Extra-cellular fluid base-excess (Becf) responses (Figure 

3.6) were affected by time (p<0.001, partial-eta2 = 0.863) and session (p<0.001, 

partial-eta2 = 0.768) with a session*time interaction (p<0.001, partial-eta2 = 0.789). 

Nadir was lower under 3SET (-12.5 ± 2.5 m E qL1) than 2SET (-9.9 ± 2.4 m E qL 1, 

p=0.023) and 1SET (-6.9 ± 1.8 m E qL 1, p= 0W 5) and CON (5.6 ± 1.6 m E qL 1,

p<0.001).
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Figure 3.6: [A] Blood lactate [B] blood pH and [C] base-excess (extra-cellular fluid) 
responses under exercise and CON sessions. Transparent sample points indicate significant 
changes from rest within each experimental session (p<0.05). t  indicates a statistically 
significant difference (p<0.05) between 1SET and CON. * indicates a statistically significant 
difference (p<0.05) between 2SET and CON. $ indicates a statistically significant difference 
(p<0.05) between 3SET and CON. # indicates a statistically significant difference (p<0.05) 
between 3SET and 1SET.
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3.3.6 Blood Potassium and Plasma (5-Hy dr oxy buty rate

For blood potassium (K+) responses to exercise (Figure 3.7), there was a significant 

time effect (p<0.001, partial-eta2 = 0.494) and session*time interaction (p=0.005, 

partial-eta2 = 0.255), but no effect of experimental session (p=0.101, partial-eta2 = 

0.305). Peak K+ concentrations, occurring at ~60-minutes post-exercise, were similar 

between exercise sessions (1SET 4.3 ± 0.1 vs. 2SET 4.4 ± 0.1 vs. 3SET 4.7 ± 0.1 

mmol'L'1, p>0.05), but 3SET was greater than CON (4.0 ± 0.2 mmol'L"1, p=0.019). 

Plasma p-hydroxy buty rate (p-OHB) responses (Figure 3.7) were not affected by time 

(p=0.141, partial-eta2 = 0.252) or experimental session (p=0.818, partial-eta2= 0.042). 

There was no effect of experimental session on peak concentrations (1SET 0.1 ±0 .0  

vs. 2SET 0.1 ± 0.0 vs. 3SET 0.1 ± 0.1 vs. CON 0.1 ± 0.0 mmol'L'1, p=0.850).
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Figure 3.7: [A] Blood potassium (K+) and [B] plasma (3-hydroxybutyrate responses under 
exercise and CON sessions. Transparent sample points indicate significant changes from rest 
within each experimental session (p<0.05). * indicates a statistically significant difference 
(p<0.05) between 2SET and CON.
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3.3.7 Muscle Damage and Ratings Of Perceived Exertion And Soreness

Resting plasma creatine kinase (CK) levels were similar between sessions (1SET 113 

± 18, 2SET 220 ± 85, 3SET 219 ± 101, CON 104 ± 20 U L 1, p=0A53). Post­

exercise CK levels were recorded at a similar time after cessation of exercise (1SET

24.6 ± 0.3, 2SET 24.7 ± 0.2, 3SET 24.3 ± 0.2, CON 24.5 ± 0.3 hours, p=0.686). CK 

levels at ~24-hours after cessation of exercise (1SET 107 ± 9 ,2SET 292 ±117, 3SET 

222 ± 47, CON 83 ± 12 U L 1) were similar to rest (p>0.05) under all experimental 

sessions. During exercise, under all trials ratings of perceived exertion corresponding 

to subjective intensity of “somewhat easy” and “hard!” (1SET 5 ± 1, 2SET 7 ± 1, 

3SET 7 ± 1). At 60-minutes and 24-hours post-exercise, perception of muscle 

soreness corresponded with feelings of “no pain (0) to mild pain (2)” .
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3.4 DISCUSSION

This study characterised the acute glycaemic, metabolic and glucoregulatory hormone 

responses to well-controlled RE of different volumes in T1DM individuals. The novel 

finding from this study was that blood glucose climbed above rest for one-hour after 

one and two sets of RE, but the inclusion of a third-set attenuated this exercise- 

induced hyperglycaemia and returned blood glucose values to those of a control 

session. This is the first study to recognise the importance of exercise volume in 

determining the blood glucose responses to RE in T1DM.

During recovery from one to three sets of RE, blood glucose was largely stable 

between 12.3 and 14mmol.L‘1, with no evidence of exercise-induced hypoglycaemia 

or requirement for exogenous carbohydrates. These findings are very different to 

those of aerobic exercise (210) during which blood glucose is typically reduced. A 

direct comparison between glycaemic responses to evening aerobic and RE in T1DM 

has been reported by Yardley et al. (211), but in this study plasma glucose declined 

during a three-set RE session (albeit not as much as in the aerobic exercise trial). The 

clinical measures taken in this study for morning RE sessions i.e. overnight fasting, 

omission of morning rapid-acting insulin but continuation of usual basal dose (taken 

the night before) differed to the strategies adopted by Yardley et al. (211) and this 

provides potential clues for contrasting glycaemic responses.

After performance of one and two sets of RE, peak blood glucose concentrations were 

21% and 29% greater than those during the resting control session, respectively. The 

hormonal and metabolic responses to the RE sessions within this study were a likely 

driver for the exercise-induced hyperglycaemia. For example, the 4-5-fold increases 

in plasma adrenaline and noradrenaline concentrations, respectively, were likely to 

have stimulated a net gain in circulatory glucose by (3-adrenoceptor mediated hepatic 

glycogenolysis (223) and inhibition of peripheral glucose uptake (277). It is 

interesting to note that 3SET offered the most potent stimulus for the release of 

catecholamine hormones; combined peak NA and AD values were 28% greater under 

2SET than 1SET, and 17% greater under 3SET than 2SET trials, yet blood glucose 

concentrations during recovery were similar to a resting experimental session.
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GH responses to RE evidenced a 1.5-fold greater increase under 3SET than 2SET, 

and a ~2-fold further rise after 2SET than 1SET. GH antagonises the metabolic action 

of insulin (278); particularly, intravenous GH infusion can directly inhibit glucose 

uptake in a dose/time dependent manner (42); thereby manifesting a physiological 

milieu sufficient to augment blood glucose concentrations. Furthermore, GH 

stimulates fatty-acid mobilisation via |3-adrenergic receptors (278; 279), as do 

catecholamines (223; 279). Essentially, increased availability of non-carbohydrate 

derived fuels might have offset the utilisation of circulatory glucose. It should 

however be considered that the effects of GH on glucoregulation might have affected 

glycaemia at a time after the recovery period within the present study (42). However, 

it is unknown whether blood glucose concentrations would have continued to rise 

after one-hour of recovery from performing one to two sets of RE.

It is unlikely that cortisol was related to the glycaemic changes induced by the RE 

sessions, given that resting circulatory levels of this hormone remained comparable 

with the control session, irrespective of exercise volume.

The metabolic consequences of non-oxidative glycolytic activity were likely to have 

contributed to exercise-induced hyperglycaemia. The rapid combustion of muscle 

glycogen induced by high-intensity exercise causes a build-up of glucose-6-phosphate 

which inhibits hexokinase activity, thereby reducing glucose utilisation (225). During 

this time, a surplus of pyruvate accumulates outside of the mitochondria; this is then 

converted to lactate acid before disassociating to lactate and H+ in blood. The results 

in this Chapter demonstrate 10 to 14-fold increases in blood lactate that are indicative 

of high rates of non-oxidative glycolysis. Recent research has demonstrated a 

progressive increase in blood lactate with performance of each set of RE in those 

without diabetes (280), which is in line with the responses to RE in this thesis. 

Interestingly, results from this study (280) also demonstrate further increases in blood 

lactate during the rest interval between sets of RE, and a net loss in blood lactate 

during performance of each set of repetitions in the second and third sets of RE. The 

authors suggested that the lactate generated by the exercising muscles during each set 

of RE was removed into the blood stream during each rest interval and consequently 

utilised by tissue during exercise. Blood lactate is likely to have been converted into
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glucose by the liver and/or within the skeletal muscle (281; 282), indicating an 

increase in aerobic metabolism with increasing volume RE. From a clinical 

viewpoint, if the large amounts of lactate produced during RE replenished liver and 

muscle glycogen stores, via gluconeogenic pathways, then this recycling could have 

offered protection against the onset of post-exercise hypoglycaemia.

These described mechanisms lend support to a volume-dependent effect of RE on 

glucose production in T1DM. It therefore seems paradoxical to observe that the 

addition of a third-set diminished the magnitude of exercise-induced hyperglycaemia 

so that blood glucose concentrations after exercise remained similar to those of the 

control session. Circulating insulin concentrations were similar between experimental 

sessions before starting RE and throughout recovery across different exercise sessions 

(Figure 3.4; Table 3.2). The statistical power of the differences in post-RE glycaemia 

was moderate (75%) and it is accepted that a portion of the findings may be accounted 

for by the small sample size (i.e. a type II error) in this preliminary study. Health care 

professionals should be conscious of potential variability in glycaemic responses to 

different volumes of RE across different T1DM individuals. Nevertheless, participant 

basal insulin dose (glargine, n=8) and macronutrient intake taken the night prior to 

each experimental session was consistent across sessions; moreover, under CON 

where insulin concentrations were observed to be higher (albeit not significantly) than 

exercise sessions, blood glucose concentrations declined by a mere 0.6±0.5mM over 

75 minutes. The time-course changes in plasma insulin support recent research by 

Peter et al (209), in which it was evidenced that the absorption rate of subcutaneously 

injected basal insulin glargine was unaffected by 30 minutes of aerobic exercise.

Interestingly, in impaired fasting glucose individuals, insulin sensitivity is better 

improved following four-sets in comparison to a single-set of RE (144). Authors 

reflected that the greater energy expenditure incurred by increasing exercise volume 

demanded more blood glucose. BGIAUC data revealed that a net loss of 80% in 

circulatory glucose during 60 minutes of recovery was incurred as a result of the 

additional 2573±394kg of weight lifted during the third-set of RE, that was performed 

during an extra 14 minutes. This circulatory glucose was most likely extracted by 

tissue employed for exercise to replenish glycogen stores via GLUT4 translocation
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(283), during exercise and recovery. Whether the exercise-induced hyperglycaemia 

after one and two-sets of RE was attenuated by an enhanced rate of glucose uptake in 

response to performing more work during a third-set, remains to be elucidated. 

Conceivably, performance of a third-set was likely to have relied more heavily on 

energy derived from oxidative than non-oxidative glycolytic sources, compared with 

prior sets. The potential for subtle differences in fuel-metabolism between different 

volume sessions could be involved in explaining volume-mediated differences in 

post-exercise glycaemia.

An improvement in indices of insulin sensitivity after RE has been related to the 

increased appearance of post-exercise IL-6, in those without diabetes; specifically, 

greater increments in IL-6 were observed after higher volume RE sessions, which 

coincided with larger improvements in insulin sensitivity (141). In the present study, a 

single-set of resistance exercise evoked a two-fold greater rise in IL-6 concentrations 

than those observed when participants remained sedentary (one-set: +0.8 ± 0 .7  vs. 

control: +0.4 ± 0.4 pg.mL'1 from baseline). Two sets of RE evoked a further rise in 

IL-6 concentrations (+1.1 ± 0.3 pg.mL1 from baseline), and inclusion of a third-set 

induced a five-fold rise in IL-6 concentrations (+2.0 ± 0.8 pg.mL'1 from baseline) 

above control. These findings demonstrate a dose-dependent response in the post­

exercise appearance of circulatory IL-6, given the 2-ton increment in total weight 

lifted with completion of each set. No previous research has explored IL-6 responses 

to resistance exercise in T1DM, but the present IL-6 responses are in line with those 

without diabetes: post-exercise IL-6 values of 5.2 to 7.4 pg.mL'1 after performance of 

greater volume resistance exercise sessions (13,160-17,729kg) at intensities of 65 to 

85% 1RM (141). However, it is unknown from these findings whether IL-6 was a 

factor in the volume-dependent differences in glycaemic responses to RE, i.e. as a 

function of possible direct/indirect alterations in glucose metabolism.

In agreement with the present findings that a relationship exists between RE session 

volume and increased appearance of IL-6, it has been established that IL-6 production 

within skeletal muscle of those without diabetes is sensitive to the duration and 

intensity of exercise (284), and rises in intramuscular IL-6 can be reflected in 

circulating concentrations (285). Interestingly, metabolic and hormonal stress and
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stimulation of calcium-pump activity are factors that augment the transcription rate of 

skeletal muscle-derived IL-6 (for mechanistic review; (284; 286)). Acid-base 

disturbance, indicative of metabolic stress (287), was correlated with increased IL-6 

appearance under the three-set RE session, but not under the two-set and one-set 

sessions. Thus, sustained metabolic stress resulting from greater amount of muscular 

activity with the three-set RE session was a possible trigger for increasing the 

appearance of IL-6 following exercise. Alternatively, with prolonged exercise 

reductions in muscle glycogen becomes a factor involved in the generation of skeletal 

muscle IL-6, potentially via activation of p38 MAPK and AMPK (284; 288), Further 

research is required to determine the precise stimulus for exercise volume-mediated 

increases in IL-6 after RE in T1DM, and whether transient increases in plasma IL-6 

existed during or immediately after resistance exercise, given its short half-life 

(approx. 5 minutes; (285)).

The present data found statistically significant correlations between IL-6 and post­

exercise hyperglycaemia, suggesting a potential role for IL-6 in glucose regulation in 

T1DM, which was potentially elicited by including a third-set of RE. It has been 

shown that IL-6 infusion stimulates insulin-dependent glucose uptake via enhancing 

GLUT4 expression and activation of AMPK in skeletal muscle (289). Thus, whether 

the upstream pathways that potentially led to muscle contraction-induced production 

of IL-6 and/or the downstream effects of IL-6 appearance indirectly or directly played 

a role in glucose metabolism after RE, respectively, the exercise-induced increases in 

IL-6 might have facilitated the clearance of circulatory glucose following 

performance of a third-set of RE. Indeed, these conclusions cannot be drawn from this 

clinical study. But these findings highlight that further work in this area is necessary 

to determine whether improvements in post-exercise glycaemia are causal to the 

degree of rise in circulating IL-6 with RE session volume.

To consider that RE session volume can alter the balance between glucose uptake and 

production may help to reconcile disparate glycaemic responses to other RE sessions 

(211; 240). However, acute counterregulatory hormone responses to RE are sensitive 

to even small modifications in a RE protocol (242) and consequently blood glucose 

might also be receptive to different RE sessions differing in subtle ways. The
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opportunity for variability in the RE protocols was minimised by a number of 

controlling factors. Firstly, exercise intensity was relativised to a percentage of 

individual maximal-strength scores and total weight-lifted within a session was 

‘relatively’ equal between participants. Secondly, exercises to a metronome added to 

control by enabling consistency in duration of each muscle contraction. Collectively, 

these manipulations enabled the reliable performance of a fixed ratio of work to rest 

comprising eight intermittent bouts of 40 seconds of continuous isotonic muscle 

contractions equating to 5 minutes and 20 seconds of mechanical work per set. This 

clarity has not been established by previous work in T1DM (211; 240); rather, in 

these studies, more emphasis was placed on exploring 24-hour changes in post­

resistance exercise glycaemia using continuous glucose monitoring devices. 

Overcoming factors that limit reliability is crucial to the development of efficacious 

RE-oriented glycaemic management strategies for T1DM individuals. Nevertheless, 

the present study findings are limited to the acute changes in post-RE glycaemia, yet 

it is unknown to what effect altering RE volume could have on later post-exercise 

glycaemia in T1DM.

Various measurements are useful to convey the potential application of the RE 

sessions within this Chapter as part of a physical exercise programme. The finding 

that HR during exercise was on average 57±2% to 66±4% of age-predicted-HRmax, 

over 15-45 minutes, which corresponded with an average exercise-intensity of 

68±0%1RM, indicates that RE is a useful stimulus for the cardiovascular system. 

Additionally, the performance of eccentric exercise, a component of the RE protocols, 

can subsequently impair post-exercise insulin action and thus disturb glucoregulation 

in those without diabetes (233), which is paralleled by demonstrable increases in 

muscle damage markers including creatine kinase. Nevertheless, perceptual muscle 

soreness and physiological inflammation assessed in creatine kinase levels at 24-h 

after exercise were negligible, and considerably less than other RE protocols (233; 

252).

Prolonged fasting, elevated levels of counterregulatory hormones, metabolic acidosis 

and hypoinsulinaemia are factors which can augment ketoacidosis (53). In this light, a 

window of opportunity for greater ketone body production during these experimental

111



sessions may have been possible. Ketonaemia was negligible on arrival to the 

research facility (average 0.08±0.01mmol.L!) and was not exacerbated by exercise 

(Figure 3,7).

From a clinical viewpoint, the findings showed evidence that K+ concentrations were 

elevated after 60 minutes of recovery, but not under CON, reaching peak levels of 

4.4±0.7 mmol.L"1. This finding is in agreement with previous research, in which it 

was shown that overnight fasted, and relatively hypoinsulinaemic T1DM individuals 

displayed a rise in plasma K+ concentrations that were reflective of hyperkalaemia 

(>5.0 mmol.L'1), during recovery from high-intensity exercise (218). 

Hypoinsulinaemic-hyperglycaemia in T1DM has been shown to raise plasma 

potassium concentrations at rest (290; 291). This is probably because insulin 

augments the affinity of the Na+-K+ pump for intracellular Na+, and enhances 

intracellular Na+ uptake, with a resulting increase in the intracellular K+/Na+ ratio 

(292); as such, relative insulin deficiency promotes both a net movement of K+ out of 

the cells and/or a failure of K+ uptake, with resulting systemic hyperkalaemia (293). 

Thus, the post-exercise rises in K+ in the present study, are reflective of an 

extracellular shift in K+, and appear not to be related to hyperglycaemia per se, rather 

to a culminating effect of exercise-induced hyperglycaemia paralleled by participants 

being in a transient recovery state of relative hypoinsulinaemia (given the lack of 

morning insulin). The administration of a post-exercise dose of exogenous insulin 

might have offset this response, since insulin increases intramuscular K+ uptake (294).

Conclusion

Performing a morning RE session after an overnight fast and omission of pre-exercise 

rapid-acting insulin does not induce acute post-exercise hypoglycaemia or raise a 

marker of muscle damage. One or two sets of RE induces hyperglycaemia for at least 

an hour after exercise, but this response could be negated by performing a third-set of 

RE. The attenuation of exercise-induced hyperglycaemia by inclusion of a third-set 

may result in greater utilisation of circulatory glucose generated from 

counterregulatory responses to prior sets and an increased appearance of IL-6. 

Increasing exercise volume could be a useful non-pharmacological strategy forTlD M  

individuals to ameliorate the magnitude of acute exercise-induced hyperglycaemia
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associated with one and two sets of RE. Further research is required to determine the 

extent to which manipulating RE characteristics such as volume could impact later 

post-exercise glycaemia of T1DM individuals.
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CHAPTER FOUR

The Impact Of Manipulating Resistance 

Exercise Session Intensity In Type 1 Diabetes



4.1 INTRODUCTION

Regular performance of resistance exercise (RE), or weights training, is advocated to 

individuals with diabetes (103; 295; 296) and research suggests that this could have a 

beneficial effect on health in people with both type 2 (103; 297) and type 1 diabetes 

(T1DM) (118; 119). Prescription guidelines for RE are tailored to individual physical 

ability and/or fitness goals (239). For example, heavy loads (i.e. high-intensity; 70 to 

>80%1RM) paired with a moderate/high number of repetitions (8 to 15 lifts) and 

multiple sets (2 to 4 sets) are undertaken when the aim is to elicit muscular 

hypertrophy. In contrast, light to moderate loads (i.e. low-intensity; <50%1RM) 

coupled with multiple high-repetition (15 to 20 lifts) sets (<2 sets) is aimed towards 

training muscular endurance. Such an exercise session is best suited to novice and/or 

previously sedentary individuals or those with certain diabetic related complications 

or weight-bearing abilities (239; 295).

The effects of RE on blood glucose in T1DM are scant and responses vary between 

studies; earlier research demonstrates a net increase (298) or decrease (211), or no 

change in blood glucose (240; 298) in response to a single session of RE. It is unclear 

how specific RE session characteristics such as the load, volume, work to rest 

interval, contraction velocity (or pacing) etc., might affect glycaemia in T1DM. Yet, 

such knowledge is likely to facilitate the development of better glucose management 

routines for exercising T1DM individuals and ultimately favour the preclusion of 

exercise-induced glycaemic disturbances -  a primary cause of low exercise 

participation and adherence rates in T1DM (149).

In a recent study, Turner et al. (298) demonstrated that the total weight lifted during a 

RE session (i.e. exercise volume) had a strong bearing on post-exercise blood glucose, 

with one and two sets of RE increasing blood glucose but with the addition of a third 

set post-exercise blood glucose was returned to values similar to that of a resting 

control trial. So, thirty-minutes of RE performed at ~70% one-repetition maximum 

consistently elicits a hyperglycaemic excursion for up to one-hour after exercise 

(298). However, despite clinical recommendations for people with T1DM to conduct 

RE, the occurrence of post-exercise hyperglycaemia could detract from the host of 

possible health benefits gained through regular RE training, since hyperglycaemic per
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se could contribute to a worsening of glycaemic control. Somewhat anecdotally, the 

administration of a small bolus of insulin can resolve the occurrence of exercise- 

induced hyperglycaemia, although in clinical practice this strategy often increases the 

likelihood of hypoglycaemia. Another approach is to examine the influence of 

manipulating exercise characteristics. While it has been consistently shown that 

performance of moderate intensity aerobic exercise lowers blood glucose (68), high- 

intensity or sprint exercise results in a strong counterregulatory hormone response that 

attenuates the decline in glycaemia during aerobic exercise (214; 227), and can in fact 

increase blood glucose concentrations (218-220). Thus, the intensity of RE (i.e. the 

amount of weight lifted per repetition relative to maximal exertion) might play a role 

in explaining the magnitude of post-RE hyperglycaemia in T1DM. Such knowledge is 

important to both developing strategies to improve glycaemic stability during and 

after RE and accurately prescribing RE in this clinical cohort.

Therefore, the aim of this study was to examine the impact of manipulating 

resistance exercise session intensity by comparing the acute glycaemic, metabolic and 

glucoregulatory hormone responses to tightly controlled moderate and low intensity 

RE sessions matched for total weight lifted in T1DM individuals.
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4.2 RESEARCH DESIGN AND METHODS

4.2.1 Participants

Eight physically active male (n=6) and female (n=2) individuals with type 1 diabetes 

(age 34 ± 7 years, HbAlc 8.7 ± 1.1 %, duration of diabetes 18 ± 5 years) volunteered 

and provided written informed consent for the study. Participants anthropometric, 

glycaemic control and insulin regimen characteristics are presented in Table 2.2 (Page 

55). All participants were treated with an insulin regimen composed of bolus insulin 

glargine or detemir and prandial rapid-acting insulin aspart.

4.2.2 Experimental Design

A randomised and counterbalanced, repeated-measures design was conducted to 

compare glycaemic and glucoregulatory responses within-subjects and between- 

treatments (Figure 4.1). Following a single preliminary session to determine the 

maximal weight a participant could lift once over a range of exercises (Section 

2.3.3.2), a further two RE sessions of different intensity but similar in the total weight 

lifted, were scheduled. For the low intensity RE session (LOW), the weight lifted per 

repetition was 30% of the maximum amount a participant could lift for one repetition 

(LOW), whereas moderate intensity RE (MOD) was set at 60% of maximal repetition 

(Section 2.3.4.2). Experimental sessions were separated by at least 3 days.

Arrive

Figure 4.1: Schematic representation of study design, with two repeated measures 
experimental arms (LOW and MOD). Red arrows indicate venous sample points during the 
laboratory phase.

4.2.3 Experimental Sessions and Analysis

Participants arrived at the clinical research facility between 0630 -  0900 h. 

Participants were fasted for 8-10 hours, having taken their usual basal insulin dose 

(31.3 ± 3.8 IU) the night before but omitted rapid-acting insulin on the morning of 

testing (Section 2.8). Retrospective analysis revealed that dietary intake (MOD 

2358±150 vs. LOW 2368±139 calories, p=0.488) and insulin dosage (basal-insulin:
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MOD 31±4 vs. LOW 31±4 IU; bolus-insulin: MOD 29±3 vs. LOW 29±3 IU ,p>0.05) 

during the 24 hours prior to exercise were replicated between the two experimental 

sessions. After a standardised 10 minute warm-up of the main muscle groups, 

participants undertook one of two RE sessions followed by a 65 minute period of 

passive recovery; 6 exercises performed at either a moderate-intensity [two sets of 10 

repetitions at 60%1RM] (MOD) or a low-intensity session [two sets of 20 repetitions 

at 30%1RM] (LOW). Venous blood glucose (BG) concentrations were measured for 

65 minutes after resistance exercise (Figure 4.1). Heart rate and blood pressure was 

recorded at prior to RE and during recovery. Mean arterial pressure was determined as 

per section 2.11.3. All blood samples were processed and analysed for glucose, pH, 

lactate, extra-cellular fluid base-excess (Becf) and K+, catecholamines, growth 

hormone, IL-6 and cortisol (Section 2.4.3). Percentage of heart rate maximum 

(%HRmax) was determined using a maximal heart rate equation based on age (Section 

2.11.4). Data (mean ± SEM) were analysed using ANOVA (pzzO.05) (Section 2.12).
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4.3 RESULTS

4.3.1 Exercise Volume And Intensity

Total weight lifted during RE was similar between sessions (Volume: MOD 3675 ± 

651 vs. LOW 3725 ± 674 kg,p=0.124). Intensity was 2-fold greater under MOD than 

LOW (59 ± 1 vs. 29 ± 0 %1RM,p<0.001), meaning that weight lifted per minute was 

significantly greater under MOD than LOW (MOD 459 ± 81 vs. LOW 232 ± 42 

kg.min1 ,p=0.027).

4.3.2 Blood Glucose

The blood glucose (BG) responses to exercise are presented in Figure 4.2. Pre­

exercise fasting BG concentrations were similar between sessions (MOD 11.2 ± 1.3 

vs. LOW 11.2 ± 1.2 mmol'L"1, p=0.995). There was a significant effect of time 

(p=0.041, partial-eta2= 0.448), but no effect of session (p=0.768, partial-eta2= 0.013) 

and no interaction between exercise intensity and time (p=0.393, partial-eta2 = 0.133), 

for absolute BG responses. BG rose by similar concentrations immediately after 

exercise (MOD +1.5 ± 0.8 vs. LOW +2.2 ± 0.9 mmol'L"1, p=0.382). Individualised 

peak BG concentrations occurred at 35-minutes post-exercise under both sessions, 

and these values were similar (MOD 13.2 ± 1 . 6  vs. LOW 14.3 ± 2.1 mmol'L"1, 

p=0.701). During recovery, BGIAUCwas similar between experimental sessions (MOD

9.8 ± 10.9 vs. LOW 28.0 ± 14.5 m m o l.m in .L p=0,222). From an observational 

perspective, after 65 minutes of recovery from exercise, a similar number of 

participants were observed to experience a >2 mmol'L"1 rise from pre-exercise BG 

concentrations under LOW (n=5) and MOD (n=6), and two (LOW) or one (MOD) 

participants experienced exercise-induced BG excursions of >4 mmol'L"1 from pre­

exercise. There were no occasions of hypoglycaemia (BG <3.9 mmol'L'1) experienced 

by any participant under either experimental session.
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Figure 4,2: [A] Absolute and [B] delta blood glucose responses and [C] post-exercise BGIAUC, 
to MOD and LOW sessions. Transparent sample points indicate significant changes from 
baseline within each session (p<0.05).
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4.3.3 Blood Acid-base Balance

The blood lactate, pH and Becf responses to exercise are presented in Figure 4.3. The 

blood lactate responses to exercise are presented in Figure 4.3A. There was a 

significant effect of time (/?=0.000, partial-eta2 = 0.729), but no effect of session 

(/?=0.303, partial-eta2= 0.150) and no session*time interaction (p=0.669, partial-eta2 = 

0.084), for blood lactate responses. Baseline blood lactate concentrations were similar 

between sessions (MOD 1.1 ± 0.2 vs. LOW 1.1 ± 0.2 mmol'L'1, p=L000). 

Individualised peak concentrations (MOD 9.8 ± 2.4 vs. LOW 10.6 ±1 .9  mmol'L'1, 

p=0.38l) were similar between sessions.

Baseline blood pH was slightly higher under LOW resulting in a statistically 

significant difference between sessions (MOD 7.35 ± 0.01 vs. LOW 7.38 ± 0.01, 

p=0.016). As such, blood pH values were expressed relative to baseline levels and 

analysed in this way. There was a significant effect of time (p=0,002, partial-eta2 = 

0.714), but no effect of session (p>=0.566, partial-eta2 = 0.049) and no session*time 

interaction (p=0.344, partial-eta2 = 0.139), for blood pH responses. In response to 

exercise, individualised nadir blood pH occurred immediately after exercise under 

both sessions, with no difference in values between sessions (MOD -0.08 ± 0.02 vs. 

LOW -0.10 ± 0.03, p=0.946). The time-course changes in blood pH were similar 

between sessions throughout recovery (p>0.05; Figure 4.3B); meaning blood pH had 

returned to resting levels by 20 minutes post-exercise under both MOD and LOW.

There was a significant effect of time (p=0.000, partial-eta2 = 0.603), but no effect of 

session (p=0.185, partial-eta2 = 0.236) and no interaction between exercise intensity 

and time (p=0.996, partial-eta2 = 0.010), for Becf responses. Resting Becf concentrations 

were similar between sessions (MOD 4.9 ±1.1 vs. LOW 9.2 ± 2.6 m EqL'1, p=0.206). 

In response to exercise, Becf declined to similar values between sessions (MOD -5.7 ±

1.9 vs. LOW -2.4 ± 2.3 mEqL'1, p=0.295) and nadir Becf was similar between 

sessions (MOD -6.3 ± 1 . 9  vs. LOW -7.14 ± 2.13 mEqL'1, p=0.614). Under both 

sessions, Becf had returned to resting values (p>0,05) following 65 minutes of 

recovery (Figure 4.3C).
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Figure 4.3: [A] Blood lactate [B] blood pH (expressed relative to Rest) and [C] extra-cellular 
fluid base-excess responses to MOD and LOW sessions. Transparent sample points indicate 
significant changes from rest within each session (p<0.05). * indicates a statistically 
significant difference (p<0.05) between MOD and LOW.
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4.3.4 Blood Potassium

Blood potassium (K+) responses to exercise are presented in Figure 4.4. There was a 

significant effect of time (p=0.015, partial-eta2 = 0.480) and session (p=0.004, partial- 

eta3= 0.712), but no session^'time interaction (p=0.589, partial-eta2 = 0.078) for K+ 

responses. Resting K+ concentrations were similar between sessions (MOD 4.0 ± 0.1 

vs. LOW 3.9 ± 0.1 mmol'L'1, p=0.065). During exercise K+rose to similar values 

across sessions (MOD 4.5 ± 0.1 vs. LOW 4.3 ± 0.1 mmol'L'1, p-0.447), but values at 

5-minutes post-exercise were higher K+ under MOD than LOW (4.2 ±0.1 vs. LOW

3.9 ± 0.1 mmol'L'1, p-0.012). Under both sessions, K+ concentrations were markedly 

greater than rest at 0 and 20-65 minutes post-exercise (p<0.05). K+values under MOD 

were greater than LOW from 5-65 minutes of recovery (p<0.05). Individualised peak 

K+concentrations were greater under MOD than LOW (4.8 ± 0.2 vs. 4.35 ±0 .1  

mmol'L'1, p=0.036).
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Time (Minutes)

Figure 4.4: Blood potassium (K+) responses to MOD and LOW sessions. Transparent sample 
points indicate significant changes from baseline within each session (p<0.05). * indicates a 
statistically significant difference (p<0.05) between MOD and LOW .
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4.3.5 Glucoregulatory Hormones and IL-6

The plasma adrenaline (AD) and noradrenaline (NA), growth hormone (GH), 

interleukin-6 (IL-6) and cortisol responses to the experimental sessions are presented 

in Table 4.1. Baseline concentrations for all glucoregulatory hormones and IL-6 were 

similar between experimental sessions (p>0.05; Table 4.1).

4.3.5.1 Catecholamines

There was a tendency for a significant effect of time (p=0.079, partial-eta2 = 0.360) 

but no effect of experimental session (p=0.140, partial-eta2 = 0.283) on plasma 

adrenaline (AD) responses. For plasma noradrenaline (NA) responses, there was an 

effect of time (p=0.000, partial-eta2 = 0.615) but no effect of session (p=0.J45, partial- 

eta2 = 0.278) or interaction between experimental session and time (p=0.118, partial- 

eta2= 0.295). Individualised peak concentrations of AD (MOD 0.55 ± 0,13 vs. LOW

1.04 ± 0.37 nmol.L"1,/?=0.755), NA (MOD 4.59 ± 0.86 vs. LOW 7.11 ± 1.82 nmol.L 

\  p-0.082 ) tended to be greatest under LOW. There were significant correlations 

between catecholamines and blood glucose, lactate and K+ responses to LOW and 

MOD sessions (Table 4.4 & 4.5).

4.3.5.2 Growth Hormone

There was a significant effect of time (p=0.001, partial-eta2 = 0.420), but no effect of 

session (p=0.110, partial-eta2 = 0.323) and no session*time interaction (p=0.656, 

partial-eta2 = 0.086), for plasma growth hormone (GH) responses. Individualised peak 

GH concentrations were similar between sessions (MOD 3.52 ± 0.80 vs. LOW 3.66 ± 

0.93 ng.m L1, p=0.644). Whereas GH concentrations remained above baseline 

(p<0.05) from 0-20 minutes post-exercise under LOW, concentrations were 

comparable with baseline (p>0.05) from 5-65 minutes post-exercise under MOD, this 

meant that the GHIAUC (absolute values, including exercise and recovery) was greatest 

under LOW (MOD 209.16 ± 57.86 vs. LOW 238.45 ± 68.89 ng.mL-\p=0.043).
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Table 4.1: Plasma adrenaline, noradrenaline, cortisol, growth hormone and interleukin-6 
responses to MOD and LOW sessions.

Rest 0 5 20 35 65

Plasma
AD

LOW 0.35±0.07 0.99±0.38 0.59±0.20 - - 0.47±0.12

(nmol.L1) MOD 0.24±0.05 0,52±0,14* 0.36±0.07* - - 0.27±0.06

Plasma
NA

LOW 1.91 ±0.32 6.89±1 .88* 5.03±1.44iIi - - 1.64±0.18

(nmoLL'1) MOD 1.58±0.31 4.59±0.86* 2.93±0.66* - - 1.71 ±0.32

Plasma
Cortisol

LOW 70.77±15.40 90.92±18.49 90.62±17.77 80.81±19.88 78.50±18.28 61.39±13.51

(ng.mL1) MOD 84.68±18.97 58.80±10.71 62.38±11.39 67.89±13.61 54.11±10.77 34.88±8.46*

Plasma
Growth

LOW 1.27±0.47 2.77±0.73* 2.77±0.73 3.32±1.00 2.23±0.71 1.81 ±0.66

Hormone
(ng.mL'1)

MOD 1.52±0.65 3.15±0.82* 2.43±0.91* 2.64±0.82* 1.99±0.67 1.50±0.46

Plasma
IL-6

LOW 2.64±1.21 2,54±1.04 - 2.60±1.02 2.73±0.95 2.70±1.08

(pg-mL1) MOD 1.76±0.50 2.02±0.67 “ 1.83±0.61 1.99±0.55 1.96±0.50

Data presented as mean ± SEM. * indicates a statistical significant difference (p<0.05) to rest. 
Time-points indicate minutes post-exercise.

4.3.5.3 Cortisol

There was a significant effect of time (p=0.031, partial-eta2 = 0.286) and session*time 

interaction (p=0,016, partial-eta2 = 0.318), but no effect of session (p -0.191, partial- 

eta2 = 0.230), for plasma cortisol responses, with lower cortisol concentration 

observed under MOD at the end of recovery (p<0.05). Individualised nadir (MOD 

34.88 ± 8.46 vs. LOW 57.73 ± 13.89 ng.m L1, p=0.141) and peak (MOD 74.89 ± 

13.46 vs. LOW 101.54 ± 19.42 ng.mL'1, p=0J75) cortisol concentrations were 

similar between sessions.

4.3.5.3 IL-6

For plasma interleukin-6 (IL-6), there were no significant effects of time (p=0.750, 

partial-eta2 = 0.064) or session (p=0.217, partial-eta2 = 0.208), with similar 

individualised peak concentrations between sessions (MOD 2,3 ± 0.6 vs. LOW 3.0 ±

1.0 pg.m L1 ,p-0.195).
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4.3.6 Cardiovascular Responses

4.3.6.1 Heart Rate

The heart rate (HR) responses to exercise are presented in Table 4.2. Resting HR was 

similar between sessions (p=0.568). Average HR during exercise relative to estimated 

%HRmax, was significantly greater under LOW than MOD (p=0.039; Table XX). 

Average recovery HR was similar between sessions (p=0J12), and greater than rest 

under both sessions (p<0.05). The average heart rate during exercise as a %HRmax 

(Mean HRmax 184 ± 5 beats .min'1) was significantly less under MOD (67±6%) than 

LOW (80±7%) (p-0.039). There was a greater frequency of heartbeats during 

exercise under LOW than MOD (LOW 5881±525 vs. MOD 3830±344 beats, 

p= 0W 5). A greater percentage of time during the exercise session under LOW was 

spent at heart rates of > 50%HRmax (92 ± 2 beats.min'1) (LOW 93± 3 vs. MOD 78 ± 

7 %,p=0.038) and 60%HRmax (111 ± 3  beats.min1) (LOW 72 ± 9 vs. MOD 50 ± 11 

%,p=0,039), but not at heart rates of > 70%HRmax (129 ± 3 beats.min'1) (LOW 51 ± 

13 vs. MOD 30 ± 12 %,p=0.113). Heart rates during recovery correlated positively 

with adrenaline and noradrenaline responses to RE under both LOW and MOD (see 

Tables 4.4 & 4.5).

Table 4.2: Heart rate (HR) responses to LOW and MOD experimental sessions.

Rest Exercise Recovery Ex-Peak Ex-Min
LOW

beats.min1 61±2 147±13f* 88±3* 195±13* 70±11
%HRmax - 80±7f 48±2 106±6 38±6

MOD
beats m in1 61 ±2 124±11* 83±3* 167±16* 76*5*
%HRmax - 67 ±6 45+2 91+9 41+3

* indicates a statistical significant difference (p<0.05) from rest, f indicates a statistical 
significant difference to LOW (p<0.05). b e a t s . m i n 1', beats per minute. Ex-Peak; Peak HR 
during exercise. %HRMax; values relative to estimated HR maximum. Ex-Min; minimum HR 
during exercise. Exercise: average HR during exercise. Recovery; average HR during 60 
minutes post-exercise.

4.3.6.2 Blood Pressure

There was no significant effect of time (p>0.05) or session (p>0.05) on any 

cardiovascular marker (Table 4.3). There was tendency for a reduction from rest to 

60-minutes post-exercise in MAP under LOW (p=0.065) but not MOD (p=7.00).
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Nadir MAP was similar between sessions (MOD 87 ± 3  vs. LOW 82 ± 3 mmHg, 

p=0.315).

Table 4.3: Markers of blood pressure under MOD and LOW sessions.

Rest (mmHg) 0 min (mmHg) 60 min (mmHg)
MOD

SBP 128 ±4 125 ±3 124 ±4
DBP 76 ±4 73 ±4 70 ±4
MAP 93 ±4 90 ±3 88 ± 3

LOW
SBP 129 ± 5 126 ± 4 116 ± 8
DBP 76 ± 3 69 + 3 72 + 3
MAP 94 ± 3 88 ± 2 86 ±3

Data (mean ± SEM). SBP: Systolic blood pressure, DBP: Diastolic blood pressure, MAP: 
Mean arterial pressure. No statistical differences between or within sessions (p>0.05). 0 and 
60 min represent post-exercise samples.

Table 4.4: Correlations (Pearson’s r) between catecholamines and blood glucose, lactate and 
K+, and heart rate (HR), under LOW.

Glucose Lactate HR K+
AD 0 60 Peak 0 65 Peak Rec 5
0 0.580* 0.600* 0.594* 0.901 0.972 0.882 0.694 -0.692
5 0.616* 0.634 0.639 0.739 0.855 0.708 0.741 -0.509
65 0.696 0.714 0.720 0.636 0.781 0.618 0.743 -0.398
Peak 0.598* 0.620* 0.614* 0.891 0.958 0.869 0.698 -0.655

Glucose Lactate HR J£+

NA 0 60 Peak 0 65 Peak Rec 5
0 0.560* 0.583* 0.572* 0.942 0.951 0.905 0.578* -0.697
5 0.590* 0.604* 0.606 0.852 0.945 0.809 0.734 -0.759
65 0.158 0.189 0.175 0.820 0.710 0.778 0.453* -0.441
Peak 0.555* 0.575* 0.567* 0.940 0.967 0.900 0.609* 0.765

0, 5 and 60 represent sample time in minutes after exercise. Rec refers to mean HR 
(beats.min'1) during the 65-minute post-exercise recovery period. Peak refers to 
individualised peak concentration. Bold: p<0.05. * indicates trend (p<0.07). Plain text: no 
statistical correlation (p>0.05).
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Table 4.5: Correlations (Pearson’s r) between catecholamines and blood glucose, lactate and 
K+, and heart rate (HR), under MOD.

Glucose Lactate HR K+
AD 0 60 Peak 0 65 Peak Rec 5
0 0.294 0.356 0.306 0.982 0.918 0.962 0.954 -0.401
5 0.316 0.344 0.298 0.792 0.709 0.749 0.788 -0.278
65 0.551* 0.595 0.433

•SfH00VOo

0.749 0.608 0.638 -0.081
Peak 0.306 0.366 0.316 0.970 0.901 0.947 0.956 -0.375

Glucose Lactate HR K+
NA 0 60 Peak 0 65 Peak Rec 5
0 0.121 0.257 0.097 0.907 0.837 0.867 0.887 -0.585*
5 0.384 0.144 0.349 0.869 0.899 0.789 0.812 -0.488
65 0.079 0.392 0.047 0.318 0.276 0.259 0.330 -0.080
Peak 0.121 0.115 0.097 0.907 0.837 0.867 0.887 -0.585*

0, 5 and 60 represent sample time in minutes after exercise. Rec refers to mean HR 
(beats.min1) during the 65-minute post-exercise recovery period. Peak refers to 
individualised peak concentration. Bold: p<0.05. * indicates trend (p<0.07). Plain text: no 
statistical correlation {p>0.05).

4.3.7 Ratings Of Perceived Exertion

Ratings of perceived exertion (OMNI-RE Scale) were similar between sessions after 

the first set of exercise (MOD 6 ± 1 vs. LOW 6 ± 0 ,p=0.492), corresponding with 

feelings of “somewhat hard” . Following completion of the second set, perceptual 

ratings significantly increased from the initial set (p<0.05) to similar values under 

both sessions (MOD 7 ± 1 vs. LOW 8 ± 1 ,p=0269), corresponding with feelings of 

“somewhat hard” to “hard” .
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4.4 DISCUSSION

The aim of this study was to examine the impact of manipulating resistance exercise 

session intensity by comparing the acute glycaemic, metabolic and glucoregulatory 

hormone responses to tightly controlled moderate and low intensity RE sessions of 

equal volume in T1DM individuals. The results from this study are the first to 

demonstrate that despite a tendency for different counterregulatory hormone 

responses, performing a low-intensity RE session results in a similar magnitude of 

post-exercise hyperglycaemia compared to that of moderate-intensity RE session 

matched for total weight lifted.

Participants commenced both exercise sessions in a mildly hyperglycaemic state (~11 

mmol'L'1). They avoided hypoglycaemia during and throughout recovery, with blood 

glucose rising to similar concentrations of 13.4 ± 1.8 and 12.7 ±1.5 mmol.L'1 during 

low and moderate intensity RE, respectively. During one-hour of recovery from the 

low and moderate intensity RE sessions blood glucose concentrations rose by 3.1 ±

1.1 and 2.0 ± 0.9 mmol.L'1 greater than baseline (pre-exercise), respectively, noting 

that participants replicated the same pre-exercise diet and insulin adjustments across 

the experimental sessions. The binding of catecholamines to /2-adrenoceptors 

augments hepatic glycogenolysis and inhibits glucose uptake (223; 277). The resultant 

greater increment in glucose production over uptake is a major factor in the 

development of post-exercise hyperglycaemia in T1DM individuals (275). The low 

intensity RE session elicited a ~3-fold and ~4-fold increase in adrenaline and 

noradrenaline concentrations, respectively, whereas the moderate intensity RE session 

produced a ^2-fold increase in adrenaline and ~3-fold increase in noradrenaline. 

These increases in catecholamines reflect increased sympathoadrenal medullary 

activity, which was likely a component in the occurrence of exercise-induced 

hyperglycaemia (218; 275). In further support of this mechanism, positive correlations 

were observed between post-exercise catecholamine and blood glucose concentrations 

(Tables 4.4 & 4.5). The tendency for greater sympathetic activity in response to low 

over moderate intensity RE without differences in the magnitude of post-exercise 

hyperglycaemia highlights the complex relationship between RE characteristics and 

exercise-induced changes glycaemic regulation.
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The magnitude of the growth hormone response was similar between different 

intensity RE sessions, with 2 to 3-fold rise in baseline concentrations appearing after 

exercise. Considering that GH might stimulate hepatic glucose production and impair 

glucose uptake through multiple mechanisms (278), the marked exercise-induced 

appearance of GH could have contributed to a rise in blood glucose in response to 

exercise. Considering that the exercise-induced peak rise in GH was similar between 

RE sessions but there was a tendency for greater catecholamine responses to low than 

moderate intensity RE, it is unexpected that the magnitude of post-exercise glycaemia 

was unaffected by adjusting the intensity of exercise. Interestingly, intravenous 

adrenaline infusion in adrenalectomised humans during exercise has been shown to 

both suppress the appearance of GH and increase hepatic glucose production (223), 

but it cannot be determined from this study what interactions might have occurred 

between these counterregulatory hormones in response to exercise.

Although speculative, perhaps a possible interaction between adrenaline and GH 

explains why the time-course changes in GH during recovery were different between 

LOW and MOD sessions (i.e. prolonged increase in GH values under MOD, yet later 

peak concentrations during recovery under LOW; Table 4.1). Alternatively, temporal 

changes in GH after exercise has been shown to indicate differences in oxygen 

utilisation during exercise (299). Interestingly, (in those without diabetes) twelve- 

times as much energy (kcal) is required to perform one repetition at 80%1RM when 

compared to one repetition at 20%1RM, despite a four-fold increase in mechanical 

work (300). Furthermore, rates of muscle glycogenolysis are raised by increasing the 

intensity of RE relative to repetition-maximum, but an equal decline in muscle 

glycogen content during exercise has been observed when different intensity RE 

sessions are matched for total weight lifted (249). Muscular force generated during 

LOW was probably served predominantly by type I (fatigue-resistant) fibres, which 

would have contrasted the majority of type II and IIx fibres utilised for contraction 

under heavier external loads-lifted during MOD. It is also logical to assume that 

contraction under higher loads demanded activation of additional stabilising muscles, 

thereby adding to total energy costs of exercise. Together these findings suggest that 

altering the intensity of RE could affect fuel utilisation and/or energy expenditure 

during and after RE.
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IL-6 has a significant role in the balance between glucose uptake and production 

(284); in those without diabetes IL-6 infusion stimulates insulin-independent glucose 

uptake via enhancing GLUT4 expression and activation of AMP-activated kinase in 

skeletal muscle (289) and has also been evidenced to increase endogenous glucose 

production (301). Nevertheless the findings from this Chapter demonstrate that 

neither of the RE sessions increased the appearance of this myokine (Table 4.1), 

which is perplexing since previous findings from the previous Chapter demonstrate 

increased appearance of IL-6 in T1DM following RE (302). Hyperglycaemia has been 

shown to attenuate the IL-6 response in T1DM to cycling exercise (303). Yet, results 

from the previous Chapter demonstrated statistically significant increases in plasma 

IL-6 in fasted, moderately hyperglycaemic (~ llm m ol.L 1), and well-controlled, 

T1DM participants at 60-minutes after greater volume (>5713 to >8286kg) and higher 

intensity sessions of RE (70%1RM) than the present study (302). Weight lifted and 

intensity of exercise could provide a clue as to why no change was observed in IL-6 

appearance in the present study, since a dose-dependent relationship between total 

weight lifted during a RE session and IL-6 appearance has been demonstrated 

elsewhere (141; 284), with post-exercise IL-6 values of 5.2 to 7.4 pg.mL'1 observed 

after participants lifted more than 4-fold greater weight (i.e. 13,160-17,729kg) than 

the present study at intensities of 65% to 85%1RM (141). Interestingly, with increase 

IL-6 concentrations, improvements in insulin sensitivity were also observed under 

higher volume RE sessions (141). Thus, it is possible that pre-exercise 

hyperglycaemia suppressed the IL-6 response to RE, but more likely that the exercise 

volume in this study was insufficient to stimulate IL-6 production. The findings from 

this study suggest that IL-6 did not contribute to any exercise-induced change in 

blood glucose or alteration in glucocorticoid activity (304).

The decline in resting cortisol concentrations following RE, irrespective of exercise 

intensity, reduces the possibility that exercise-induced changes in BG were related to 

this glucoregulatory hormone. These findings are in line with the previous Chapter in 

which cortisol concentrations remained similar to baseline values during one-hour 

after performance of one, two and three sets of RE at ~70%1RM (298). Resting 

hyperglycaemia (305) and/or usual diurnal patterns in circadian rhythm (197) offer
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plausible reasons as to why cortisol might not have increased in response to morning 

RE in this cohort. It is a limitation that cortisol concentrations were not measured 

outside of exercising days. It is speculated that the differences in the magnitude of 

decline in plasma cortisol during recovery between the present RE sessions was likely 

attributed to daily changes in circadian decline (197) as, although sessions were all 

performed in the morning, session days were not standardised.

It is difficult to explain why catecholamine hormone response to RE were greater 

(although not statistical in this sample size, n=8) under LOW than MOD. A possible 

reason for this response was a subtle difference in exercise session design. For 

instance, it is important to recognise that the following RE characteristics were fixed 

across all sessions: (i) rest intervals between exercises (subsets) and sets (120 

seconds) (ii) the duration of each repetition (4 seconds) and (iii) the total weight lifted 

(~3600 to 3700kg). This meant that a further 8 minutes of accumulative exercise time 

was performed during LOW than MOD. Therefore participants had half the amount of 

rest to time spent exercising during the LOW RE session (i.e. MOD: 3 seconds rest 

for every 1 second of exercise vs. LOW: 1.5 seconds rest for every 1 second of 

exercise) despite that participants lifted double the amount of weight per minute 

during MOD when compared with LOW.

It was somewhat counterintuitive to observe a tendency for a greater catecholamine 

hormone response to low over moderate intensity RE since these adrenal hormones 

share a strong relationship with glucose regulation and post-exercise blood glucose 

concentrations remained similar between different RE sessions. One theory for the 

slightly greater increased catecholamine concentrations under LOW is that the 

appearance of circulatory catecholamines trends linearly with fixed intensity and 

increasing duration exercise (306), and free plasma catecholamines diminish within 2- 

3 minutes of secretion (307). Considering these findings, there was most likely a 

slower rate but protraction of catecholamine production during LOW over MOD, 

which could be attributed to the longer accumulative exercise time, coupled with short 

(2-minute) but similar rest intervals to MOD. Further research is required to 

determine the impact of altering the exercise to rest interval during RE on glycaemia
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in T1DM, since it could be possible that increasing the rest interval might help 

prevent exercise-induced hyperglycaemia.

Interestingly, under both exercise sessions, there were succinct reductions in blood pH 

(nadir pH 7.28) and extracellular fluid base-excess (nadir Becf <-6.0 m E qL 1), which 

reflect the 10-fold increase in post-exercise blood lactate concentrations, and is 

indicative of the significant non-oxidative metabolic component (287) to RE. From 

these results it is shown that a reduction in the absolute weight lifted per repetition by 

~50% did not alleviate exercise-induced metabolic stress when matching total weight 

lifted. This finding helps reconcile similarities in ratings of perceptual difficulty (i.e. 

“somewhat hard to hard”) between moderate- and “low-intensity” RE. However, the 

similarity in blood lactate accumulation between different RE session is paradoxical 

when considering that catecholamines tended to be further raised under LOW than 

MOD; adrenaline has powerful effects on muscle glycogenolysis by binding to fi- 

adrenergic receptors on the skeletal muscle membrane initiating a cascade of events 

that augment glycogen breakdown (via activation of phosphorylase a) and resulting in 

increased lactate appearance (308). Indeed, under both LOW and MOD, there were 

strong relationships between exercise-induced increases in catecholamines (both 

adrenaline and noradrenaline) and the increased appearance of blood lactate (Table

4.4 & 4.5), which is possible reflective of the impact that catecholamines have on 

glycolytic turnover within skeletal muscle. However, it cannot be determined from 

this study design whether the contribution of lactate to endogenous glucose 

production by hepatic gluconeogenesis differed between low and moderate intensity 

RE -  albeit the sparing effect that lactate could have on muscle glycogen utilisation 

could be of benefit to the T1DM individual in preventing the onset of post-exercise 

hypoglycaemia. Furthermore, the presence of adrenaline is not essential to glycolytic 

activity since muscle glycolytic turnover has been shown to occur independent of the 

conversion of phosphorylase b to a (309). Thus, there are complex relationships 

between counterregulatory hormones and manipulations of RE session characteristics 

warranting further work to improve understanding of the glycaemic impact and 

metabolic stress caused by RE in T1DM individuals.
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It is acknowledged that differences in circulating insulin could have affected the time- 

course changes in glycaemia under the experimental sessions. It is therefore a 

limitation that plasma insulin was not measured. However, in the previous Chapter, in 

which T1DM participants implemented the same pre-exercise glucose management 

routine as in the present study, demonstrated that plasma insulin levels remained 

stable and comparable during and for one-hour after 15 to 45 minutes of RE at an 

intensity of ~70%1RM (298). Moreover, basal and bolus insulin dosage were similar 

between experimental sessions. Another limitation in this study was the brief (albeit 

intensive) window of monitoring participant glycaemia. Previous research by Yardley 

et al (211) has shown that a three-set session of RE could put T1DM individuals at 

greater risk of later post-exercise and nocturnal hypoglycaemia, and T1DM 

individuals have been observed to experience late-onset hypoglycemia following 

performance of high-intensity intermittent exercise (228).

Between 5 and 65 minutes of recovery, K+ concentrations were consistently, 

significantly (p<0.05) greater under MOD than LOW (Figure 4.4), with K+ values 

under MOD observed to drift towards what is clinically deemed as hyperkalaemia (>5 

mmol/L'1) by 65-minutes post-exercise (LOW 4.1 ± 0.1 vs. MOD 4.5 ± 0.2 mmoLL"1), 

which of course is of clinical concern, considering the potential health complications 

associated with hyperkalaemia (310). It is difficult to explain the difference in K+ 

responses between the different intensity RE sessions, but a recent study observed a 

similar response in T1DM individuals during the hour after performance of brief 

high-intensity cycling exercise and attributed this to hypoinsulinaemic-hyperglycemia 

(218). Indeed, in line with this previous finding, the progressive rise in blood K+ 

concentrations under both LOW and MOD could be explained by the omission of 

morning raid-acting insulin combined with post-exercise hyperglycaemia, but given 

the similarities in both insulin dosage and post-exercise glycaemic status between 

LOW and MOD, this finding does not explain different K+ responses between the 

different intensity sessions.

Interestingly, through activation of protein kinase A, rises in catecholamines induce 

conformational changes in Na+/K+-ATPase activity, pumping K+ back into 

intracellular compartments (predominantly adrenaline; (292) to maintain intracellular
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K+concentrations; in isolated rat soleus muscle Na+/K+pump activity can be elevated 

about two-fold with physiological increases extracellular adrenaline and noradrenaline 

(311). In support of this mechanism, negative relationships were observed between 

post-exercise concentration of catecholamines and blood K+ concentrations (Tables

4.4 & 4.5). Thus, comparatively greater elevations in catecholamine concentrations 

evoked by the LOW session might have accelerated the movement of K+ from extra- 

to intra-cellular space, explaining lower circulating levels of K+. Although, plasma K+ 

levels were not determined, it is of clinical relevance that the exercise-induced rise in 

catecholamines could have offered protection against the possibility of 

hyperkalaemic-associated disturbances in myocardial excitability during and in the 

early minutes after exercise by increasing the calcium conductance of the 

sarcolemma, resulting in increases in calcium influx that would have helped stabilised 

the electrophysiological activity of cardiac cells in the presence of perturbing 

concentrations of K+ and/or helped restore intracellular K+ concentrations (312). 

However, the rapid tapering of post-exercise catecholamines levels during initial 

recovery coupled with hyperglycaemia and climbing K+ concentrations warrants the 

administration of exogenous insulin. Alternatively, it would be interesting to explore 

whether acute exercise-induced hyperglycaemia and hyperkalaemia that follows RE 

could be alleviated by training, as it has been demonstrated that post-exercise 

hyperglycaemia and K+ levels in T1DM are reduced following seven weeks of 

intermittent cycling training (218).

From a cardiovascular perspective, these are the first observations of heart rate and 

blood pressure in response to RE in T1DM. These findings are important to the 

clinical prescription of RE, since (anecdotally) many clinicians avoid prescription of 

RE to T1DM, which is partly due to a lack of awareness of different forms of RE; for 

instance, although the acute rises in heart rate and blood pressure associated with 

high-intensity isometric RE has been thought to provoke ischemia, stroke or retinal 

haemorrhage in susceptible cohorts, a census by the American Heart Association 

showed that there is little cardiovascular risk associated with isotonic RE, which may 

actually have an acute hypotensive effect in both healthy individuals and patients with 

coronary problems (313); in fact, the myocardial demands of high-intensity RE are no 

greater than those occasionally required for activities of daily living (314) or
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moderate-intensity aerobic exercise (315). It is important to emphasise that there were 

no valsalva manoeuvres during the isotonic RE sessions involved in this study.

In this study, cardiovascular parameters (SBP, DBP, MAP; Figure 4.3) remained 

similar to baseline when measured immediately and at 60-minutes post-exercise, 

irrespective of exercise intensity. After one hour of recovery MAP had decreased by 

5% and 10% (from a resting level of ~94mmHg) under MOD and LOW sessions, 

respectively. Indeed, each bout of exercise could have temporarily raised SBP and 

DBP depending on the type of muscle contraction (314); early work by Benn et al. 

(314) demonstrated that peak SBP, DBP and MAP during exercise varied depending 

on whether upper or lower body and/or single or double limb RE was performed. 

Peak SBP and DBP were in response to a single set of single-ann military press and 

leg press of 10-12 repetitions at 70-80% 1RM and values were approximately 2-fold 

greater than those observed in the present study. However, the cardiovascular 

responses to each subset of exercise were not investigated in this study, rather the net 

impact of an entire RE session. In those without diabetes, it has been shown that the 

degree of post-exercise hypotension is amplified by increasing RE session intensity 

from 30% to 60% to 90% 6RM (316). The low sample frequency may have precluded 

detection of exercise intensity-related differences in cardiovascular markers. 

Nonetheless, it could be proposed that the rest interval of 2 minutes between exercises 

and sets in the LOW and MOD RE sessions was sufficient to preclude any potential 

additive effect of consecutive exercises on blood pressure, since no change in blood 

pressure markers was measured immediately after completion of the final 10/20 

repetitions.

It was unexpected that the heart rate demands associated with low intensity RE were 

greater than those of moderate intensity exercise, considering that previous research 

has demonstrated a positive linear relationship between mechanical intensity of 

exercise, oxygen uptake and heart rate (317). It seems that this response was not 

attributed to the longer exercise duration of LOW over MOD because a greater 

percentage of the total exercise session time (~22%) was spent with heart rates above 

60%HRmax (Table 4.2; Section 4.3.5.1). Notably, this finding explains the greater 

total frequency of heart-beats during the LOW RE session (see section 5.3.5.1). A
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factor that could help explain elevated heart rates during LOW over MOD is the 

tendency for a greater increase in catecholamines; adrenaline and noradrenaline 

increase myocardial contractility and force and hastening of relaxation that augments 

heart rate through P-adrenoceptors, i.e. catecholamines instigate the G-protein- 

adenylyl cyclase-cAMP-protein kinase pathway resulting in phosphorylation of target 

enzymes by protein kinase A-catalysed phosphorylation (318). The positive 

correlations between heart rate and catecholamines adrenaline and noradrenaline 

(Tables 4.4 & 4.5) are in support of this mechanism.

The findings from this study are important to T1DM individuals and practitioners 

because current exercise guidelines for this cohort lack information pertaining to the 

acute metabolic stress and glycaemic impact resulting from performance of different 

RE sessions, and this lack of awareness could compromise exercise safety. From the 

scant amount of research in this area it is difficult to identify the optimal balance 

between acute exercise safety and chronic impact, but these findings taken together 

with results from Chapter 3 (298) suggest that individuals should be judicious of 

possible hyperglycaemia soon after low to high volume and intensity RE sessions, and 

that low to moderate intensity RE sessions can result in substantial metabolic stress.

Conclusion

In conclusion, the magnitude of post-exercise hyperglycaemia, acid-base disturbance 

and perceptual difficulty were similar in response to moderate and low intensity RE 

sessions where total weight lifted was matched between sessions. Despite different 

exercise intensities, the longer exercise duration of the low-intensity RE session may 

be responsible for comparable if not greater glucoregulatory hormone responses, 

leading to similar post-exercise changes in blood glucose. The lighter weights lifted 

with low-intensity RE (i.e. low-resistance coupled with high-repetitions) is likely to 

be more suited to less physically active T1DM individuals, and it might be prudent to 

prescribe longer rest intervals between sets of exercises when performing this form of 

RE.
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CHAPTER FIVE

Glycaemic And Metabolic Impact Of An 
Algorithm That Delivers An Individualised 

Rapid-Acting Insulin Dose After Morning 

Resistance Exercise To Counter Post-Exercise 
Hyperglycaemia In Type 1 Diabetes



5.1 INTRODUCTION

Physical activity that involves high rates of lion-oxidative glycolytic activity (e.g. 

high-intensity continuous and intermittent exercise) can pose less threat of 

hypoglycaemia than moderate-intensity aerobic exercise (e.g. endurance running and 

cycling) in individuals with type 1 diabetes (T1DM) (211; 214; 220; 227; 228; 232). 

Resistance exercise (RE) involves predominantly energy utilisation through non- 

oxidative metabolic pathways (248) that, as demonstrated in Chapters 3 and 4, evokes 

a strong counterregulatory hormone response. This form of exercise is recommended 

to T1DM individuals (295) and offers a multitude of benefits to health and well-being 

(319).

In Chapters 3 and 4 a glycaemic management routine for morning RE in individuals 

with T1DM was tested (298). After an overnight fast, individuals omitted morning 

rapid-acting insulin prior to performing three different volume RE sessions in line 

with ACSM guidelines (295), and neither session resulted in hypoglycaemia or 

requirement for carbohydrate supplementation. Considering that the fear of exercise- 

induced hypoglycaemia is a major cause of low exercise participation and adherence 

in T1DM (149), the avoidance of hypoglycaemia during and for one hour after RE 

with this routine is encouraging. Nevertheless, this study also demonstrated that 

individuals experienced hyperglycaemia following both a 15 and 30 minute RE, with 

blood glucose values increasing by up to ~3 mmol.L1 above a resting control trial 

during a one-hour recovery period (298). Indeed, sustained hyperglycaemia could 

ultimately lead to severe health complications (320). Importantly, since a lower 

volume, shorter duration, RE session did not diminish post-exercise hyperglycaemia 

(Chapter 3; (298)), the effects of reducing the intensity of the 30 minute RE session 

was investigated in Chapter 4 (321). Unfortunately, adjusting the intensity of the RE 

session had little influence on the magnitude of post-exercise hyperglycaemia (321).

In an effort to counter the anticipated rise in blood glucose caused by this format of 

morning RE (298; 321) it seems intuitive for a T1DM individual to administer a dose 

. of rapid-acting insulin immediately after exercise, since this strategy would not 

unnecessarily increase susceptibility to hypoglycaemia during RE. However, there is 

currently no systematic and/or validated method of correcting hyperglycaemia
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following RE. From a clinical standpoint, insufficient guidance to help T1DM 

individuals appropriately manage post-RE glycaemic fluctuations certainly increases 

vulnerability to continued hyperglycaemia or exposure to hypoglycaemia, with a 

resulting loss of glycaemic control. Understandably, such an approach is further 

complicated by the fact that it is currently unknown to what magnitude of effect a 

subcutaneously injected dose of rapid-acting insulin could have on glycaemia early 

after RE. For instance, while Jimenez et al. (137) reported unaltered insulin sensitivity 

in T1DM individuals at 12 and 36 hours after a session of RE, when compared with 

non-exercise control session, factors including increased limb blood flow (267) and 

insulin sensitivity associated with the initial hours after exercise (268) could augment 

both the absorption of injected insulin into the blood stream (183) and action of 

circulating insulin on glucose metabolism (184). Conversely, it has been demonstrated 

in those without diabetes that unaccustomed eccentric exercise can impair insulin 

action in the early hours after exercise cessation (233). Additionally, the 

recommendation to consume macronutrients soon after exercise in an effort to 

replenish muscle glycogen and reduce the likelihood of exposing the T1DM 

individual to late-onset hypoglycaemia (322), adds complexity to managing 

glycaemia after RE, since consumption of carbohydrate would favour an increase in 

blood glucose levels, thereby exacerbating the magnitude of post-exercise 

hyperglycaemia.

The development of a post-RE insulin adjustment guideline to help the individual 

effectively manage exercise-induced hyperglycaemia would facilitate the safe 

prescription of RE. But considering the lack of research in this area and the multiple 

factors that could influence post-exercise insulin action, a prudent approach to 

creating an effective glucose management strategy is to first understand the effect that 

an injection of exogenous insulin immediately after RE has on post-exercise 

glycaemia. The 100-rule is an algorithm that has been derived for correcting 

individual-specific hyperglycaemic excursions with bolus insulin in a non-exercise 

environment (99), and this tool offers a logical starting-point from which to develop a 

protocol for understanding how to restore euglycaemia following morning RE. This 

individualised approach would allow for potential inter-individual variability in 

glycaemic responses to exercise (199) but this algorithm could also be adapted to

140



provide an insulin dose based on the individuals’ real-time glycaemic response to the 

exercise session.

Therefore, the aim of this study was to implement a modified algorithm that delivers 

an individualised dose of rapid-acting insulin after morning RE, to counter acute post­

exercise hyperglycaemia in T1DM individuals.
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5.2 RESEARCH DESIGN AND METHODS

5.2.1 Participants

Eight physically active male (n=6) and female (n=2) individuals with T1DM (age 34 

± 7 years, HbAlc 8.7 ± 1.1 %, duration of diabetes 18 ± 5 years) volunteered and 

provided written informed consent for the study. Participants anthropometric, 

glycemic control and insulin regimen characteristics are presented in Table 2.2 (Page 

55). All participants were treated with an insulin regimen composed of bolus insulin 

glargine or detemir and prandial rapid-acting insulin aspart.

5.2.2 Experimental Design

Following a single preliminary session (Section 2.3.3), participants completed two 

experimental sessions, which were prescribed in a randomised and counterbalanced 

order using a repeated-measures design. Both experimental sessions involved 

performance of a single RE session followed by a 125-minute recovery period, which 

was spent in the research facility, and a subsequent 20-hour period of monitoring that 

was spent outside of the research facility. Experimental sessions were separated by at 

least 3 days.
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Figure 5.1: Schematic representation of study design, with two repeated measures 
experimental arms (INSULIN and NO-INSULIN). Red arrows indicate venous sample points 
during the laboratory phase. Blue arrows indicate capillary blood samples during the post­
laboratory phase.

5.23 Experimental Sessions and Analysis

Participants arrived at the clinical research facility between 0630 -  0900 h. 

Participants were fasted for 8-10 hours, having taken their usual basal insulin dose 

(31.3 ± 3.8 IU) the night before but omitted rapid-acting insulin on the morning of 

testing (Section 2.8). After a standardised 10-minute flexibility warm-up of main 

muscle groups, participants undertook a RE session (two sets of six exercises
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performed at a moderate-intensity (60%1RM; Section 2.3.4.3), and then remained 

sedentary in the laboratory for a further two hours during which participants either 

administered an interventional rapid-acting insulin dose (INSULIN) immediately after 

exercise or abstained from exogenous insulin (NO-INSULIN) (Section 2.9.3). 

Participants remained fasted during this time. The post-exercise subcutaneously 

injected insulin bolus was administered in the form of rapid acting insulin aspart; the 

dose was determined by means of an algorithm (Section 2.9.3.1, Page 81) and was 

administered within 5 minutes of completing the RE session. The objective of the 

algorithm-derived dose was to return blood glucose to a target of 7 mmol.L"1 during 

the 2-hour recovery after RE. Dietary intake and physical activity patterns for 20 

hours following the laboratory session was standardised between experimental 

sessions (Section 2.10). Participants continued with their usual daily-living routine 

during this time, and were free to administer exogenous insulin in line with their usual 

routine, but they abstained from vigorous physical exercise of an intensity that was 

beyond a conversational level; note, vigorous activity related to manual work was 

replicated across sessions. Capillary blood glucose measurements were taken prior to 

lunch, dinner, and sleep and upon waking on the following morning (Section 2.9.3). 

Venous blood glucose (BG) concentrations were measured for 125 minutes after RE 

and participant-reported capillary BG was recorded for 20 hours after leaving the 

laboratory (Figure 5.1). All venous blood samples were processed and analysed for 

glucose, pH, lactate and potassium (K+), NEFA and insulin (Section 2.4.3). Data 

(mean ± SEM) were analysed using ANOVA (p<0.05) (Section 2.12).
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5.3 RESULTS

5.3.1 Laboratory Phase

5.3.1.1 Exercise Volume and Intensity

There were no session differences in total weight lifted (Volume: INSULIN 3675 ± 

651 vs. NO-INSULIN 3675 ± 651 kg) or intensity (Load: INSULIN 59 ± 1 vs. NO­

INSULIN 59 ± 1 %1RM) during RE (p>0.05).

5.3.1.2 Acid-base Balance

Blood lactate and pH responses are presented in Table 5.1. There was a significant 

time effect (p<0.001, partial-eta2 =0.709) but no effect of session (p=0.843, partial- 

eta2 =0.006) or session*time interaction (p=0.444, partial-eta2 =0.100) for blood 

lactate responses, with similar individualised peak blood lactate concentrations 

(INSULIN 10.2 ± 1.2 vs. NO-INSULIN 9.8 ± 2.4 mmol .U1, £>=0.970). For blood pH 

responses, there was a significant time effect (p<0.001, partial-eta2 =0.686) but no 

effect of session (p=0.081, partial-eta2 =0.373) or session*time interaction (p~0J85, 

partial-eta2 =0.046), with similar nadir pH values (INSULIN 7.28 ± 0.02 vs. NO­

INSULIN 7.28 ± 0.02,/?=0.9(50) between trials. Blood lactate concentrations and pH 

had returned to values similar to rest (p>0.05) by 65 minutes post-exercise.
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Table 5.1: Blood pH, lactate and potassium and plasma NEFA and insulin responses 
to INSULIN and NO-INSULIN sessions.

Rest 0 5 35 65 95 125

INSULIN
7.37 7.28t 7.30t 7.39t 7.40t 7.39t 7.40t
0.01 0.02 0.02 0.01 0.01 0.01 0.01

Blood pH
NO ­ 7.35 7.28| 7.29t 7.38 7.38t 7.38t 7.39t

INSULIN 0.01 0.02 0.02 0.01 0.01 0.01 0.01

Blood INSULIN
0.8
0.1

10.lt
1.8

9.3t
2.0

3.6t
0.8

1.9
0.3

1.3
0.2

1.0
0.1

Lactate
(mmol.L"1) NO­ 1.1 9.It 9.5t 3.5t 1.8 1.3 1.0

INSULIN 0.2 2.1 2.4 0.9 0.4 0.2 0.1

Plasma INSULIN
0.6
0.1 - - 0.5t

0.1
0.3t*

0.1
0.4t*
0.1

0.4t*
0.1

NEFA
(m m ol.L1) NO ­ 0.7 0.6t 0.7 0.6 0.7

INSULIN 0.1 0.1 0.2 0.1 0.2

Blood INSULIN
4.1
0.1

4.7
0.3

4.8
0.7

4.2
0.2

4.1*
0.2

4.1
0.1

4.0
0.1

Potassium
(mmoLL1) NO­ 4.0 4.5t 4.2t 4.4t 4.5t 4.2 4.1

INSULIN 0.1 0.1 0.1 0.2 0.2 0.2 0,2

Plasma INSULIN
72.1
14.0 - - 113.8t*

13.4
124.9*
20.1

111.1*
16.3

107.6
14.6

Insulin
(pm ol.L1) NO­ 83.5 75.1 81.6 90.8 98.1

INSULIN 19.7 14.2 15.9 18.4 17.6

Data presented as mean ± SEM. * indicates a statistical significant difference (p<0.05) to NO­
IN SUL1N. f indicates a statistical significant difference (p<0.05) to rest. Time-points in 
column headers indicate minutes post-exercise.

5.3.1.3 Blood Glucose and Plasma Insulin

Blood glucose responses to INSULIN and NON-INSULIN are presented in Figure

5.2. Resting blood glucose (BG) concentrations were similar between sessions 

(INSULIN 11.3 ± 1.5 vs. NO-INSULIN 11.2 ± 1.3 mmol.L"1, p=0.900). For acute 

(baseline to 125-minute post-exercise) blood glucose responses, there was a 

significant time effect (p=0.026, partial-eta2=0438) and an interaction between
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experimental session and time (p=0.011, partial-eta2=0.495), but no session effect 

(p=0.655).

BG rose to similar concentrations during RE (i.e. prior to insulin administration) 

(INSULIN 13.0 ± 1.6 vs. NO-INSULIN 12.7 ± 1.5 mmol.L1, p=0.834). For 

INSULIN, participants then administered 2±1 U of rapid-acting insulin within 5 

minutes of finishing exercise (see Table 5.2 for participant specific values). The 

adjustment in stage [4] (depicted in Figure 2.9) to convert FDoseto ADose corresponded 

with a 53±10% reduction in experimental sessions (see Table 5.2 for algorithm- 

predicted doses of insulin administered). For plasma insulin (n=7; Table 5.1; Figure 

5.2), there was an interaction between time and experimental session (p=0.015, 

partial-eta2=0.475), with a tendency for higher individualised peak concentrations 

under INSULIN (INSULIN 135.1 ± 18.8 vs. NO-INSULIN 99.5 ± 18.0 pmol.L1, 

p =0.059).
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Figure 5.2: [A] Absolute blood glucose and [B] delta blood glucose (as a change from 0- 
minutes post-exercise) responses to INSULIN and NO-INSULIN experimental sessions. 
Transparent sample points indicate significant changes from rest (Figure 5.2A) or 0-post- 
exercise (Figure 5.2B) within each respective experimental session (p<0.05). * indicates a 
statistically significant difference (p<0.05) between INSULIN and NO-INSULIN.

147



Peak BG occurred at 20 minutes post-exercise under both experimental sessions, and 

concentrations were comparable between sessions (INSULIN 13.4 ±1 .5  vs. NO­

INSULIN 13.4 ±1 .6  mmol.L \ p - 0 . 992). Between the time of peak plasma insulin 

concentrations (i.e. 65-minutes post-exercise) and 125-minutes post-exercise, there 

was a greater decline in BG under INSULIN (INSULIN 1.9±0.6 vs. NO-INSULIN 

0.7±0.3 mmol.L'1, p=0.006). Moreover, the magnitude of decline from peak BG 

concentrations to 125-minutes post-exercise was statistically greater under INSULIN 

(INSULIN 3.3 ± 1.0 vs. NO-INSULIN 1.3 ± 0.4 m m ol.L \ p=0.015). Individualised 

nadir BG concentrations were statistically less under INSULIN (INSULIN 9.9 ±1.1 

vs. NO-INSULIN 12.4 ±1 .5  mmol.L'1, p=0.035), There was a tendency for lower 

BG]AUC values under INSULIN (INSULIN -176.8 ± 76.6 vs. NO-INSULIN -25.3 ±

37.7 mmol. 125m in .L ^p=0.069). There were no hypoglycaemic occurrences during 

the laboratory phase under either experimental session.

Table 5.2: Factors used in derivation of the post-exercise rapid-acting insulin dose, 
and number of rapid acting insulin units administered, under INSULIN.

Participant
ID 1 2 3 4 5 6 7 8 Mean±

SEM

TDD IU 40 60 63 35 55 70 60 53 55±4

Basal IU 20 42 48 26 18 40 28 28 31±4

CF 0.40 0.60 0.63 0.35 0.55 0.70 0.60 0.53 0.55±0,04

BG mmol.L1 9.5 16.1 9.8 7.5 12.6 10.5 19 19 13.0±1.5

Post-exercise 1 0 1 4
Dose IU 1 3 2 3 2±1

TDD: total daily insulin dose, Basal: basal insulin dose, CF: Correction factor, BG: refers to 
0-minutes post-exercise BG concentration, Post-exercise Bolus: interventional dose of rapid- 
acting insulin.
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5.3.1.4 Plasma NEFA and Blood Potassium .

Blood plasma non-esterified fatty acid (NEFA) and blood K+ responses are presented 

in Table 5.1 and Figures 5.3 and 5.4, respectively. A significant interaction between 

time and experimental session was observed for plasma NEFA (p=0.003, partial- 

eta2=0.419) indicating that NEFA concentrations were suppressed under INSULIN, 

but no effect of time (p=0280). Although peak NEFA concentrations were similar 

between conditions (INSULIN 0.6 ± 0.1 vs. NO-INSULIN 0.8 ± 0.2 mmol.L1, 

p= 0J98 ), nadir concentrations were significantly less under INSULIN (INSULIN 0.3 

± 0.1 vs. NO-INSULIN 0.5 ± 0.1 mmol.L'1,p=0.018).
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Figure 5.3: Delta plasma [A] insulin and [B] NEFA (as a change from baseline) responses to 
INSULIN and NO-INSULIN experimental sessions. Transparent sample points indicate 
significant changes from rest within each respective experimental session (/x0.05). * 
indicates a statistically significant difference (p<0.05) between INSULIN and NO-INSULIN.
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For blood K+ responses, there was a significant effect of time (p-0.036, partial- 

eta2 =0.237) but no effect of session (p=0.605) or session^time interaction (p=0,266), 

with similar individualised peak concentrations (INSULIN 4.8 ± 0,3 vs. NO­

INSULIN 4.8 ± 0.2 ,p=0.501).

'INSULIN

■NO-INSULIN

3.0
1250 20 35 50 110Rest 65 955

Time (Minutes)

Figure 5.4: Blood potassium (K+) responses to INSULIN and NO-INSULIN experimental 
sessions. Transparent sample points indicate significant changes from rest or 0-post-exercise 
within each respective experimental session (p<0.05), * indicates a statistically significant 
difference (p<0.05) between INSULIN and NO-INSULIN.

5.3.2 Post-laboratory Phase

5.3.2.1 Self-Reported Blood Glucose and Insulin Administration

At 125-minutes of recovery from RE, BG concentrations were similar between 

sessions (Figure 5.2), albeit concentrations were less under INSULIN (INSULIN 10.1 

±1 . 2  vs. NO-INSULIN 12.1 ± 1.7, p=0.091). Breakfast was then consumed where 

participants chose to administer a similar quantity of insulin units irrespective of 

session (INSULIN 8.3 ± 1.9 vs. NO-INSULIN 9.5 ± 2.0 IU, p=0.659). For post­

laboratory BG responses (expressed in Figure 5.5), there was a statistically significant 

effect of time (p-O.OU , partial-eta2=0.365), but no effect of experimental session 

(p=0.941) and no difference in individual peak BG concentrations between sessions
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(INSULIN 11.1 ± 0.9 vs. NO-INSULIN 10.8 ± 0.9 mmol.U1, p=0.750). Mean BG 

during 20 hours following exercise was similar between sessions (INSULIN 7.5±0.8 

vs. NO-INSULIN 8.1±0.8 mmol.L'1, p=0,552), During the 20-hour post-laboratory 

phase, there were five recorded hypoglycaemic occurrences in four participants (all 

prior to sleep) (BG < 3 . 5  mmoLL'1) under INSULIN compared to seven (six 

occurrences prior to sleep and one upon wakening) in four participants under NO­

INSULIN. In addition, there were ten recorded episodes of hyperglycaemia in five 

participants under NO-INSULIN), compared with seven occurrences in four 

participants recorded under INSULIN. There was a trend for a larger total dosage of 

exogenous insulin to be taken under NO-INSULIN (INSULIN 58 ± 5 vs. NO­

INSULIN 60 ± 5 IU, p=0.063), which was accounted for by the rapid-acting insulin 

dosage (INSULIN 27 ± 3 vs. NO-INSULIN 29 ± 3 IU, p=0,063), since basal-insulin 

dose was identical across experimental sessions (31 ± 4 IU).
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Figure 5,5: Participant self-reported capillary blood glucose responses during the 20-hour 
post-laboratory period. No statistical differences between INSULIN and NO-INSULIN.
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5 3 . 2 . 2 .  Twenty-Hour Accelerometry and Dietary Intake

During the post-laboratory phase, estimated energy expenditure and accelerometry 

profiles were comparable between sessions (p>0.05)\ specifically, participants 

performed a similar number of steps between conditions (INSULIN 7038 ± 926 vs. 

NO-INSULIN 6569 ± 889 steps, p-0.264). Participants spent 47.8±3.5% and 

45.3±2.4% of this time being sedentary (<3 MET) under INSULIN and NO-INSULIN 

(p=0.540), respectively. Participants were physically active for a similar number of 

hours between conditions (INSULIN 2.2 ± 0.4 vs. NO-INSULIN 2.2 ± 0.5 hours, 

p=0.961). Of which, a similar proportion of time was spent performing activity that 

equated to moderate metabolic rates of 3-6 MET (INSULIN 95 ± 1.0 vs. NO­

INSULIN 97.0 ± 1.5 %, p-0.138)\ vigorous activity (non-exercise) (6-9MET) 

(INSULIN 3.8 ± 0.8 vs. NO-INSULIN 2.6 ± 1.1 %,p=0.103) and very vigorous (non­

exercise) (MET >9) (INSULIN 0.4 ± 0.3 vs. NO-INSULIN 0.4 ± 0.4 %, p=0.857), 

and estimated energy expenditure was comparable (INSULIN 10.0 ± 0.5 vs. NO­

INSULIN 9.8 ± 0.6 MJ,p=0.462), between experimental sessions.

Dietary intake and insulin dosage data are presented in Table 5.3. As meals were 

provided and meal composition and eating patterns were standardised between 

experimental sessions, total calorific intake comprised of 51±2 % CHO, 17±1 % 

protein and 33±2 % fat. The additional carbohydrate consumed in the form of 

carbohydrate tablets (if blood glucose was recorded as low) was similar between 

sessions (INSULIN 292.9 ± 101.2 vs. NO-INSULIN 284.5 ± 95.3 KJ,p=0.685), and 

therefore there was no effect of experimental session on total energy intake 

(INSULIN 10.0 ± 0.7 vs. NO-INSULIN 10.0 ± 0.7 MJ, p=0.688). Notably, energy 

intake (INSULIN 9.8 ± 0.6 vs. NO-INSULIN 9.9 ± 0,6 MJiP=0.488) and total insulin 

dosage ip-0.723) during the 24 hours prior to exercise were similar between 

experimental sessions.
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Table 5.3: Post-laboratory fixed dietary composition for each participant and self-prescribed 
exogenous insulin and carbohydrate tablets under INSULIN and NO-INSULIN experimental 
sessions.

Study-prescribed 
Dietary Composition g Self-prescribed

ID CHO FAT PRO INSULIN U CHO TABS No.

INSULIN & NO-INS INSULIN NO­
INS

INSULIN NO­
INS

1 259 89 74 41 48 8 9
2 343 84 96 60 60 0 0
3 392 96 111 85 86 11 9
4 211 76 78 42 41 0 0
5 279 81 82 53 53 8 8
6 250 49 83 71 74 4 4
7 382 110 128 57 60 4 4
8 246 96 114 56 59 0 0

Mean±
SEM 295±24 85+6 96+7 58±5 60+5 4+2 4±1

CHO TABS: number of self-prescribed carbohydrate tablets. INSULIN: dosage of self­
prescribed exogenous basal and bolus insulin.
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5.4 DISCUSSION

The aim of this study was to implement a modified algorithm that delivers 

an individualised dose of rapid-acting insulin after morning resistance exercise (RE) 

to counter post-exercise hyperglycaemia in T1DM participants. These findings report 

for the first time that a small dose of insulin administered after exercise by means of 

an algorithm reduces the magnitude of post-RE hyperglycaemia without the 

occurrence of hypoglycaemia during the early hours (<2 hours) after exercise. 

Consequent dietary energy intake, carbohydrate consumption and insulin dosage for 

24 hours after exercise in a free-living environment were similar between 

experimental sessions.

Following an overnight fast and the omission of morning food and rapid-acting 

insulin, participants started RE with a blood glucose of ~11 mmol.L'1 on both 

experimental days. Although these baseline glycaemic levels fell within the 

acceptable parameters for exercise (323; 324), the results from this study demonstrate 

that RE increased resting blood glucose by ^m m ol.L '1, and without post-exercise 

exogenous insulin blood glucose levels remained elevated above 12mmol.L_1 

throughout the 2 hour recovery period. Abstention from feeding following exercise is 

somewhat controversial because it had been 12 to 14 hours since participants had 

consumed any macronutrients, and carbohydrate supplementation following exercise 

is considered necessary to replenish muscle glycogen stores in an effort to reduce the 

likelihood of late-onset hypoglycaemia in T1DM participants (322). Nevertheless, the 

results from this study confirm previous findings that this routine protects T1DM 

participants from exercise-induced hypoglycaemia during and soon after exercise 

(Chapters 3 and 4; (298; 321)), in which it was demonstrated that a two set session of 

RE raised post-exercise blood glucose levels above that of a resting control trial (298). 

It is likely that carbohydrate consumption during and/or immediately after RE would 

have exacerbated the exercise-induced occurrence of post-exercise hyperglycaemia. 

Thus, the findings from this present study highlights that it might be unnecessary for 

participants to supplement carbohydrates through drinks or snacks prior to or during 

morning RE when participants administer their usual basal insulin the .night prior to 

exercise.
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Our findings show that the present algorithm (Section 2.9.3.1, Page 81), which was 

developed to conservatively estimate the dose of post-exercise rapid-acting insulin, 

was successful at countering the sustained exercise-induced rise in blood glucose 

shortly after RE, but it was not successful in returning post-exercise glycaemia to our 

target of 7 mmol.L'1. For instance, the administration of 2±1 U of rapid-acting insulin 

immediately after RE was favourable; blood glucose had dropped to concentrations 

below rest under INSULIN (10.1±1.2 mmol.L1) but not under NO-INSULIN 

(12.1±1.7 mmol.L'1), meaning that administration of the small post-exercise rapid 

acting insulin dose evoked a 2.3±0.8 mmol.L'1 greater fall in blood glucose than 

without insulin.

Indeed, a limiting factor in the design of this study was that little is known as to what 

effect the current RE session has on insulin action during the early hours after 

exercise. Early findings report that a doubling of the insulin infusion rate necessary to 

maintain pre-exercise euglycaemia is required to restore glucose homeostasis after 

performance of high intensity exercise (216). Unfortunately, however, these methods 

have little ecological application, as insulin infusion does not accurately reflect the 

pharmacokinetic profile of subcutaneously injected insulin. As such, it was difficult to 

predict what magnitude of effect a bolus of insulin could have on blood glucose after 

RE, and it was therefore considered that a bolus of insulin taken by means of this 

algorithm might serve as a useful tool to restore euglycaemia after RE.

Interestingly, in the present study, this simple dose calculation seems sensitive to 

individual glycaemic responses to RE, and as such no participants were exposed to 

early (<~2 hours) post-exercise hypoglycaemia. For example, participant number 4 

(Table 5.2) finished RE with the lowest post-exercise blood glucose concentration 

(7.5 mmol.L'1), and where the algorithm was applied with their data (i.e. based on the 

immediate post-exercise blood glucose reading) the result was administration of no 

rapid-acting insulin. Thus, pragmatically, health care professionals should be aware 

that in the absence of carbohydrate consumption some T1DM individuals might not 

require exogenous insulin to maintain euglycaemia soon after morning RE. 

Conversely, it would seem that this algorithm could be less conservative by lessening 

the reduction of FDose (i.e. which in this study was 53±10%). Overall, these findings
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help bridge a gap between knowledge of post-exercise insulin action on glycaemia 

and the development of a useful tool for individuals with T1DM to safely and 

effectively manage the glycaemic disturbances associated with acute RE. Although 

the findings from this preliminary data reflect a reasonable statistical power (blood 

glucose at 125 minutes post-exercise, 83.6%; decline in blood glucose from 0 to 125 

minutes post-exercise, 66.9%), the ecological validity of these findings could be 

improved with a larger sample size.

Under INSULIN the results demonstrate that insulin concentrations peaked in plasma 

at 65-minutes post-injection, and concentrations at this time-point were ~1.5-fold 

greater than those under NO-INSULIN (Table 5.1). At one-hour after insulin injection 

and throughout the subsequent hour of recovery under INSULIN, NEFA 

concentrations were 50% less than those under NO-INSULIN. Insulin has anti­

lipolytic effects; suppressing hormone-sensitive lipase activity and lipolytic rate and 

also stimulating re-esterification of circulating NEFA (325). Furthermore, it is 

following the initial 60 minutes of recovery from RE where catecholamines and 

growth hormone, which stimulate the release of NEFA from adipose tissue (279), 

returned to resting levels (as previously shown in Chapter 3 (298) and 4). The lack of 

increase in plasma NEFA in response to RE is somewhat counterintuitive when 

considering this association between elevated counterregulatory hormone 

concentrations and the increased appearance of plasma NEFAs and increased rates of 

fat oxidation (279). Research in individuals without diabetes demonstrated a 

progressive increases in rates of lipolysis and reduction in intramuscular triglyceride 

concentrations during RE (251; 326-328), suggesting that a portion of energy 

expenditure during RE in individuals without diabetes is related to an increase in fat 

oxidation. Although fuel oxidation was not measure in this study, the finding that 

NEFA levels were suppressed by the administration of bolus insulin could have 

implications for weight management in T1DM individuals, i.e. bolus insulin could 

negate the contribution of adipose tissue to exercising energy expenditure. Similarly, 

as could the effect of hyperglycaemia, since high levels of glucose can inhibit fatty- 

acid oxidation (329). However, this response does not completely mitigate the 

possibility of an increase in the utilisation of fat during RE in T1DM, since glycerol 

could contribute to the aerobic energy yield during RE (327) and/or the utilisation of
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intramuscular triglycerides would not be reflected in circulating NEFA 

concentrations. The lack of increase in circulating fatty acids response to RE under 

NO-INSULIN could be attributed to an adrenaline related reduction in adipose tissue 

blood flow during exercise (330) and/or the anti-lipolytic effects of insulin, since 

basal levels of circulating insulin were three-fold greater than typical concentrations 

in those without diabetes.

During the final 75 minutes of recovery, it is also possible (albeit speculative) that the 

greater fall in glycaemia observed under INSULIN (INSULIN -1.9±0.6 vs. NO­

INSULIN -0.7±0.3 mmol.L'1) could be primarily attributed to rapid-acting insulin- 

induced inhibition of hepatic glucose production (331). Although it is recognised that 

the observation window in this study may be insufficient to completely profile the 

time-course changes in circulating insulin aspart (332), the findings in this Chapter 

provide clues towards optimising the timing of feeding and prandial insulin following 

RE with the omission of pre-exercise bolus insulin and carbohydrates. For instance, 

while a 50% reduction in prandial insulin dose administered at 60-minutes post­

exercise can improve glycaemic stability in T1DM participants following aerobic 

exercise (210), the present results show that it is following 50 minutes of recovery 

from RE where blood glucose concentrations began to fall slightly irrespective of 

whether rapid-acting insulin was administered immediately after RE. Thus, 

participants should be wary of the ratio of prandial insulin to carbohydrate intake 

during early hours following RE. Further research is required to determine an optimal 

glycaemic management strategy after morning RE; for instance, should participants 

increase the ratio of prandial insulin to carbohydrate intake soon after morning RE?

Blood pH levels fell below 7.3 and lactate concentrations increased above 9 mmoLL*1 

reflecting the contribution of non-oxidative metabolism to energy turnover during this 

two-set RE session, and yet all participants comfortably completed the prescribed 

exercise volume, reflecting the utility of this exercise session in exercising T1DM that 

are unaccustomed to RE.

From a clinical standpoint, it is important that blood K+concentrations fell short of 

hyperkalaemia (>5.0mmol.L_1) during both experimental sessions, but the
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administration of post-exercise rapid-acting insulin negated the substantial elevation 

in blood K+(observed under NO-INSULIN, thereafter 20 minutes of recovery; Figure

5.4). Interestingly, it is possible that exogenous insulin might offset the rise in 

potassium concentration elicited by carbohydrate induced hyperglycaemia, in those 

with T1DM (290; 291; 294). Considering that hyperkalemia can heighten 

vulnerability to cardiac arrhythmias (310), the findings from the present study 

demonstrate the protection that post-exercise exogenous insulin offers over the 

possibility of hyperkalaemic-related complications. On the other hand, the restoration 

of potassium concentrations to normal levels that occurred during the initial 20 

minutes post-exercise period (under both INSULIN and NO-INSULIN) is of clinical 

importance. Soon after intense exercise individuals may be at a greater risk of cardiac 

arrhythmias and grand-mal seizures, in which hypokalaemia (2.5-3.0 mmol.l1) can 

delay ventricular repolarisation thereby provoking cardiac arrhythmias (333; 334). 

Although K+ concentrations remained greater than that deemed hypokalaemic 

(<3^mmol.L'1; (335), one must be circumspect when extrapolating these to a larger 

number of participants; notably, HbAIC, hypertension, distal symmetrical 

polyneuropathy, retinopathy and exposure to hyperglycaemia have all been shown to 

be risk factors for developing abnormalities in cardiac function (336). Thus, clinicians 

should be aware that some T1DM individuals might experience a greater exchange of 

potassium, independent of dietary intake and insulin levels, of whom might be more 

susceptible to cardiac dysrhythmia soon after exercise.

There were no reported hypoglycaemic occurrences during the initial 5 hours 

following RE under INS, but two of the eight participants experienced hypoglycaemia 

during this same time frame under NO-INS. Furthermore, there were no clear 

differences in glycaemic stability during the 20 hours post-exercise; four participants 

experienced hypoglycaemia under both sessions; five and four participants had a 

hyperglycaemic episode under NO-INS and INS, respectively. Admittedly, the 

measurement of diurnal changes in blood glucose without continuous glucose 

monitoring could mean that only symptomatic (not asymptomatic) 

hypoglycaemia/hyperglycaemia was reported unless detected at the designated sample 

times. Although each participants’ daily sample frequency for glucose monitoring 

during the experimental days was in line with American Diabetes Association
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recommendations (51), this is not the gold standard of tracking glycaemia in T1DM. 

In a study by Yardley et al. (211), continuous glucose monitor data showed multiple 

episodes of hypoglycaemic in T1DM participants during the initial 6 hours following 

evening RE, and this study also demonstrated that evening RE increased the 

occurrence of nocturnal hypoglycaemia compared to a day without exercise, despite 

that participants completed exercise postprandially, and in comparison to the present 

study, participants were not restricted to fasting (i.e. participants consumed foods and 

administered insulin freely) during the early hours after exercise. Together these 

findings demonstrate that the current practice by some T1DM individuals is 

inadequate to prevent glycaemic disturbances late after (>2 hours) RE. Guidelines 

recommend that T1DM individuals consume between 60 to 120 grams of 

carbohydrates early after aerobic exercise, with the view to replenished muscle 

glycogen stores and decrease the susceptibility to late-onset hypoglycaemia (322). 

Recent research from our group suggests that a reduction in prandial insulin alongside 

the consumption of low glycaemic-index carbohydrates soon after exercise is a useful 

approach to preserving euglycaemia after moderate-intensity running exercise (88). 

However, guidelines are lacking with regard to dietary and insulin 

requirements/adjustments to help T1DM individuals improve glycaemic control after 

RE.

We chose to prescribe to participants an individualised meal-plan for the 20 hours 

post-laboratory phase because subtle differences in dietary composition (e.g. 

glycaemic index and load, and micronutrient composition) could have altered 

glycaemia independent of changes in calorific intake, and participant diet recall lacks 

sensitivity of a controlled diet. Carbohydrate tablets were provided for similar 

reasons, but also to ensure that participants had available carbohydrates should 

hypoglycaemia have been an issue during unsupervised conditions. Participant total 

energy intake (i.e. carbohydrate, fat and protein) was similar between experimental 

sessions, but participants chose to administer an additional 2±1 U of rapid-acting 

insulin under NO-INS during this phase of the experimental session. Thus, since our 

participants experienced hypoglycaemia following exercise, it is clear that energy 

intake was inadequate to account for the energy expended for exercise and/or insulin 

dosage was overestimated during the 20 hours following RE in the minority of our
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participants. Alternatively, it should a consider that factors including elevated levels 

of circulating insulin prior to exercise coupled with less time awake to manage blood 

glucose after exercise, and the calmative effect of sleep on counterregulatory hormone 

production (337), could possibly complicate post-exercise glycaemic management for 

exercising T1DM individuals. Therefore, as shown previously using aerobic exercise 

modalities (338), it may be favorable for T1DM individuals to perform RE before 

breakfast to decrease the likelihood of post-exercise hypoglycaemic episodes. Further 

research is required to determine the optimal balance of carbohydrate to insulin 

around RE, as such an approach is complicated by the hyperglycaemia caused by RE 

vs. the risk of late-onset post-exercise hypoglycaemia.

Conclusion

In conclusion, the results from this study demonstrate for the first time that the 

administration of an individualised algorithm to T1DM participants performing 

morning RE reduced acute post-exercise hyperglycaemia without causing early 

hypoglycaemia. These findings serve as a foundation to improve glycaemic stability 

of T1DM participants performing RE.

161



CHAPTER SIX

General Discussion



6.1 SUMMARY OF AIMS AND MAJOR FINDINGS

The overarching aim of this thesis was to examine the impact of acute resistance 

exercise (RE) on glycaemia in type 1 diabetes (T1DM) individuals, to improve 

euglycaemic stability during and after RE, and promote confidence in people with 

T1DM to partake in this form of exercise and lead a more physically active lifestyle. 

Thus, Chapter 3 examined the impact of manipulating exercise volume in determining 

the acute glycaemic, metabolic and glucoregulatory hormone responses to acute RE in 

individuals with T1DM. The results demonstrate that exercise volume is an important 

factor in determining the blood glucose responses to RE; specifically, blood glucose 

climbs considerably above rest for one hour after one and two sets of similar intensity 

RE, but this exercise-induced hyperglycaemia can be attenuated by increasing the 

volume of exercise by addition of a similar intensity third set. Additionally, 

performing one to three sets of morning RE after an overnight fast and in the absence 

of rapid-acting insulin, does not induce acute hypoglycaemia, ketoacidosis, or raise a 

marker of muscle damage, but causes metabolic acidosis in a dose-dependent fashion. 

The aim of Chapter 4 was to examine the impact of manipulating exercise intensity in 

determining the acute glycaemic, metabolic and glucoregulatory hormone responses 

to acute RE in individuals with T1DM. The findings from this study demonstrate that 

performing a low intensity RE session evokes a similar magnitude of post-exercise 

hyperglycaemia and metabolic acidosis than a higher intensity RE session when 

sessions are matched for total weight lifted. It was encouraging that these exercise 

sessions were performed with no risk of hypoglycaemia, but the occurrence of 

exercise-induced hyperglycaemia is of clinical concern. The aim of Chapter 5 was to 

implement a modified algorithm that delivers an individualised dose of rapid-acting 

insulin after morning RE, to counter acute post-exercise hyperglycaemia. The findings 

from this study demonstrate that post-exercise rapid-acting insulin injection delivered 

by means of an algorithm results in reductions to post-RE hyperglycaemia without the 

occurrence of hypoglycaemia during the initial two hours after exercise.
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6.2 IMPACT OF RESISTANCE EXERCISE ON BLOOD GLUCOSE

Across all chapters, a pre-exercise routine involving overnight fasting and omission of 

pre-exercise rapid acting insulin was adopted prior to every experimental session. 

This routine was primarily implemented to improve validity in examining the 

glycaemic, metabolic and glucoregulatory hormone responses to adjustments in the 

volume and intensity of a RE session. Interestingly, in all chapters, there were no 

incidences of hypoglycaemia during or within at least one hour after performance of 

RE, and this was in spite of varying RE characteristics (Table 6.1). Conversely, the 

findings from this thesis demonstrated that pre-breakfast RE evoked a net increase in 

blood glucose levels (Figure 6.1), independent of session design, which was defined 

as exercise-induced hyperglycaemia, given the stability in blood glucose during the 

resting control session in Chapter 3.

Table 6.1: Resistance exercise session characteristics in Chapters 3 to 5,

1SET 2SET 3SET LOW MOD
No. of Exercises 8 8 8 6 6

Sets, Repetitions 1 Set, 10 
Reps

2 Sets, 10 
Reps

3 Sets, 10 
Reps

2 Sets, 20 
Reps

2 Sets, 10 
Reps

Volume (kg) 2901±989 5712+2013 8286+1096 3725+674 3675±651
Intensity (% 1RM) 69+1 68±1 67±1 30±0 59±1

Rest Intervals Subsets 60s Subsets 60s Subsets 60s Subsets and Subsets and
Sets 120s Sets 120s Sets 120s Sets 120s Sets 120s

Session Duration 
(min) 14 28 42 38 30

Exercise Duration 5min 20s lOmin 40s 16min 16min 8min

All sessions paced at 2:2 seconds eccentric:concentric contraction. Note, INSULIN and NO­
INSULIN sessions in Chapter 5 replicated MOD Session. Exercise Duration: Total time 
spent exercising, excluding rest intervals.

6.2.1 Factors Involved In Resistance Exercise Induced Hyperglycaemia

Catecholamines

Exercise-induced hyperglycaemia results from a mismatch between endogenous 

glucose production and glucose uptake. For instance, the rise in blood glucose levels 

of T1DM individuals in response to a 10-second bout of high-intensity exercise has 

been attributed to a transient decline in glucose clearance rather than from a 

disproportionate rise in glucose production relative to glucose uptake (219). This 

response may have resulted from catecholamine mediated inhibition of glucose uptake 

(223) and/or a rapid glycolytic flux associated with high-intensity exercise,
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Figure 6.1: Glycaemic impact of acute RE in T1DM individuals. In Figure A hepatic glucose 
production exceeds glucose uptake due to high levels of counterregulatory hormones, thereby resulting 
in exercise-induced hyperglycaemia. In Figure B hepatic glucose production is almost balanced with 
skeletal muscle glucose uptake, despite elevated appearance of counterregulatory hormones, with a 
resulting lesser net increase in blood glucose than one and two sets of RE and restoration of baseline 
blood glucose levels. With the administration of insulin by means of the algorithm, glucose uptake 
exceeds production thereby attenuating the exercise-induced hyperglycaemia shown in Figure A. 
Figure C presents the net change in blood glucose (between baseline and -1 hour post-exercise for 
each RE session within Chapters 3 and 4, and baseline and -2  hours post-exercise under Chapter 5).
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which supresses glucose utilisation due to G-6-P inhibition of hexokinase activity 

(339; 340). In contrast to an extremely short bout of exercise, in the post-absorptive 

state, 12 minutes of continuous high-intensity exercise is accompanied by a 7-fold 

increase in glucose production and 4-fold increase in glucose uptake resulting in 

hyperglycaemia in T1DM individuals (217). Furthermore, in response to ~14 minutes 

of continuous high-intensity exercise a 16-fold exercise-induced increase in 

adrenaline and noradrenaline corresponded with a 7-8-fold increase in endogenous 

glucose production (275), and both adrenaline and noradrenaline strongly correlated 

(r=0.84 and 1-0.79, respectively, p<0.05) with rates of endogenous glucose 

production during exercise, where an increment in the rate of endogenous glucose 

production exceeded glucose uptake resulting in exercise-induced hyperglycaemia 

(275). Considering that catecholamines have been shown to increase both hepatic 

glucose production (341) and glucose uptake (24; 25), via activation of 132- 

adrenoceptors by adrenaline (223) and/or sympathetic activation of liver nerves by 

noradrenaline (27; 223), it seems reasonable to agree with these aforementioned 

studies (217; 275) that the marked appearance of catecholamines (Table 6.2) was a 

primary factor in the development of RE-induced hyperglycaemia in T1DM (Figure 

6.1). These responses might reflect a continuous rise in sympathoadrenal medullary 

secretion, to ultimately increase fuel production to meet the demands of the prescribed 

exercise session.

Table 6.2: Counterregulatory hormone, IL-6 and lactate responses in Chapters 3 and 4.

AD NA GH C IL-6 LAC
1SET |3x |5x f5x <—> <—»• |14x
2SET T2x t5x f5x <—> |16x
3SET |4x f6x |25x <-» |2x fl8x
LOW f3x f4x f2x <—» |9x
MOD |2x f3x T2x 1 <-» |8x

Values represent change in analyte concentration from baseline, e.g. f3x refers to 3-fold mean 
increase from baseline to individual peak concentrations. AD: Adrenaline. NA: 
Noradrenaline. GH: Growth hormone. C: Cortisol. LAC: Lactate.

Although hyperglycaemic-hyperinsulinaemia has been shown to suppress endogenous 

glucose production during aerobic exercise in those without diabetes (342), levels of 

circulating insulin observed in Chapters 3 and 5 (with reference to NO-INSULIN) at 

baseline and after RE were approximately one-third less than concentrations required
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to completely suppress hepatic glucose production at rest in individuals without 

diabetes (12). Moreover, the large catecholamine response to exercise has been shown 

to override the potential suppressive effect insulin 011 glucose production (222). Thus, 

it is possible that the occurrences of exercise-induced hyperglycaemia in response to 

the different format RE sessions within the thesis (Table 6.1) might be partly 

attributed to the large appearance of catecholamines, via a gross increment in glucose 

production that exceeded glucose uptake (Figure 6.1).

Growth Hormone and Cortisol

Statistically significant increases in growth hormone were observed during all RE 

sessions within Chapters 3 and 4 (Table 6.2), with post-exercise values increasing by 

2- to 25-fold above baseline and the largest gains in concentration were observed in 

response to the highest volume, 3SET RE session. It is likely that growth hormone 

facilitated the rise in blood glucose in response to the RE sessions within this thesis, 

since it has been demonstrated that growth hormone can indirectly stimulate hepatic 

glycogenolysis and gluconeogenesis (38; 42) and can also transiently impair glucose 

uptake in a dose-dependent manner, that is, within a time frame relevant to all 

experimental sessions (40). The dose-response relationship between exercise volume 

and growth hormone that was observed in Chapter 3 was corroborated in Chapter 4, 

because the magnitude of increase in post-exercise growth hormone concentrations 

was similar between the two different intensity RE sessions that were matched for 

exercise volume.

Unlike growth hormone, the lack of increase in cortisol concentrations within 

Chapters 3 and 4 (Table 6.2) suggest that this hormone had little bearing on the acute 

hyperglycaemic effect of RE. In Chapter 3 cortisol concentrations in response to one, 

two and three sets of RE remained comparable with both baseline and control session 

levels. In Chapter 4 cortisol concentrations slightly declined from baseline in response 

to MOD but did not change under LOW. These cortisol responses the within Chapters 

3 and 4 are in agreement with the usual diurnal shift in cortisol concentrations during 

a non-exercising day in individuals without T1DM (197). They are also in line with 

those of similar aged T1DM individuals in response to morning continuous moderate- 

intensity exercise (180), in which cortisol concentrations were statistically
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significantly lower than pre-exercise levels at three-hours after exercise. However, 

these findings conflict with those of pubertal T1DM individuals responses to morning 

endurance and interval exercise, in which cortisol concentrations were observed to 

rise above pre-exercise levels at 30-minutes post-exercise, and also conflict with those 

individuals without diabetes in response to RE (243), in which cortisol concentrations 

were increased by exercise. These inter-study variations in cortisol responses to 

exercise could be attributed to factors including time of day when exercise took place 

(197) and/or the age of the cohort under investigation (i.e. cortisol responses to RE 

have been shown to vary with age and gender in those without diabetes (244)). 

Furthermore, variations in exercise-induced changes in cortisol could be attributed to 

RE session volume (243), where increases in plasma cortisol levels has only been 

observed after high volume RE sessions in those without diabetes (albeit the results 

from Chapters 3 and 4 suggest that exercise volume has little impact on cortisol 

regulation in T1DM), and/or it should be considered that the hyperglycaemic state of 

the T1DM individuals within this thesis could have suppressed cortisol secretion 

(305). Indeed, it is difficult to explain the lack of cortisol response to the RE sessions 

within this thesis, but it is likely that the combination of morning exercise coupled 

with hyperglycaemia had suppressive effects on cortisol secretion.

6.2.2 Effects Of Resistance Exercise Volume And Intensity On Blood Glucose

There existed a close relationship between RE session design and the magnitude of 

exercise-induced hyperglycaemia (depicted in Figures 6.1 & 6.2). With reference to 

Table 6.1 (see for specific RE session characteristics), results from Chapter 3 show 

that doubling the volume of the single set RE session (1SET) by including a 

subsequent, similar intensity second set (2SET) further increased the net gain in blood 

glucose during exercise from 1.0 ± 0.5 to 1.5 ± 0.3 mmol.L'1. Thereafter, during the 

subsequent one-hour recovery period, blood glucose increased further to 

concentrations that were 2.1 ± 0.8 and 2.5 ± 0.8 mmol.L'1 greater than baseline, in 

response to 1SET and 2SET, respectively. Conversely, the net increase in blood 

glucose at one-hour after the 3SET RE session was 0.4 ± 1 .2  mmol.L"1, despite that 

the total weight lifted during this session was approximately triple that of the 1SET 

RE session. In Chapter 4, performance of low intensity RE resulted in a similar 

pattern and magnitude of rise in blood glucose during 65 minutes of recovery (i.e. ~2
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mmol.L'1 rise in blood glucose above baseline) when compared to the equal volume, 

higher intensity RE session. The findings from Chapter 4 strengthen the findings from 

Chapter 3, that exercise volume was a major factor in determining the glycaemic 

responses to RE in T1DM, secondary to other possible RE characteristics such as 

exercise intensity and the rest interval. Little is known about the interaction between 

the design of a RE session and acute glycaemia in T1DM,
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Figure 6.2: Net incremental exercise-induced BGIAUC(area under curve) across Chapters 3 to 
5. Exercise-induced BG]AUC represents the area between the pre-exercise fasting value and 
subsequent delta blood glucose values (relative to pre-exercise concentrations) for the blood 
glucose curve up to 60 to 65 minutes post-exercise (but not including during exercise, that is, 
in an effort to compare changes in resting, pre-exercise, glycaemia resulting from exercise 
and to account for differences in exercise duration between sessions). Note the inverted ‘U’ 
relationship between exercise volume and the magnitude of exercise-induced hyperglycaemia 
[dotted line]. R2 value is exclusive of the INSULIN session. See Table 6.1 for specific 
resistance exercise session characteristics.

The effects of different intensity RE sessions were recently investigated in T1DM, 

with exercise sessions resulting in a marked fall in blood glucose levels (241) (Table 

1.6). But in this study there was no report of RE characteristics including sets, 

repetitions (nor volume) or pacing of exercises. Furthermore, there were no reports of 

dietary and insulin routines around exercise. In mind of the findings from this thesis, 

the validity of the findings from this study (241) is questionable, that is, given the lack 

of control over RE session characteristics and participant diet and insulin routines. 

Yardley et al. demonstrated on two separate occasions that a group of T1DM

169



individuals on MDI or CSSII, presented stable (240) or a fall in plasma glucose 

concentrations (from 8.4 ± 2.7 to 6.8 ± 2.3 mmol.L'1) (211), during a three set RE 

session (Table 1.6). In the latter study, glucose concentrations remained stable 

throughout a one-hour post-exercise recovery period (211). The lack of control over 

pre and post-exercise insulin therapy and dietary intake between participants and/or 

insufficient standardisation of exercise protocols with respect to exercise intensity, 

volume and pacing might help explain the disparity in glycaemic responses to the 

same RE sessions within these two studies by Yardley et al (211; 240). Unfortunately, 

differences in study design and a lack of characterisation of the counterregulatory 

hormone and metabolic responses within these previously described studies (211; 

240; 241), makes it difficult to compare these results to the findings within this thesis, 

to better understand the relationship between RE session design and glycaemia in 

T1DM. To add support to this statement, subtle adjustments in the ratio of time spent 

performing the eccentric and concentric component of a RE repetition (250) and 

independent adjustments in RE session volume (by number of sets) and intensity 

(242; 243) have been shown to alter the resultant rise in blood glucose and lactate 

(250) and appearance of counterregulatory hormones (242; 243; 250) in those without 

diabetes. Interestingly, increases in blood glucose have been observed in response to 

low- (249) and high-intensity RE in those without diabetes (248; 249).

It is difficult to explain why the net increase in blood glucose levels within one hour 

after performance of the highest volume, three-set RE session was substantially less 

than all other two set and the one set RE sessions within this thesis (Figure 6.1); this 

is highlighted in that the magnitude of hyperglycaemia during the one-hour recovery 

period was substantially less after three-sets of RE (3SET) when compared to the 

lower volume one and two set RE sessions within Chapters 3 ,4  and 5 (as reflected in 

BG1AUC; Figure 6.2). This was a perplexing finding when considering the 3SET RE 

session evoked the greatest overall increase in the appearance of counterregulatory 

hormones (Table 6.2), noting the previously described relationships between 

counterregulatory hormones and increased appearance of circulating glucose. A 

multiple linear regression was run to determine the proportion of variance in the 

magnitude of hyperglycaemia related to exercise, as reflected in the exercise-induced 

BGiauc (see Figure 6.2). Under 1SET and 2SET, 78.3% and 97.2% of the variance can
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be explained by the change during RE in adrenaline, noradrenaline, growth hormone, 

insulin and cortisol concentrations and exercise volume. Contrastingly, under 3SET 

only 28.7% of the variance in exercise-induced BGIAUC could be explained by these 

same independent variables. These findings indicate, firstly, that the rise in blood 

glucose in response to one and two sets of RE was likely to be have been due to the 

counterregulatory hormone stimulus on glucose production and uptake. These 

hormones however, less explain the change in glycaemia in response to the three-set 

RE session. As such, others factors might outweigh or augment the possible effect 

that the exercise-induced counterregulatory hormone response had on the balance 

between glucose production and utilisation.

In mind of the synergistic interaction between exercise and insulin to increase muscle 

glucose uptake (184), an important finding of this thesis was that plasma insulin 

levels remained similar between different volume sessions (Section 3.3.4.4), and the 

pre-exercise insulin regimen was fixed across Chapters 3-5. This is indicative that 

circulating insulin per se was probably not a factor in explaining the differences in 

post-exercise glycaemia between the different volume RE sessions. Though the 

presence of circulating insulin throughout exercise and recovery might have 

facilitated the transport of glucose into the skeletal muscle.

According to previous research, exercise-induced increases in the appearance of 

circulating lactate and catecholamines are indicative of heightened rates of 

metabolism of muscle glycogen and increased rates of carbohydrate oxidation (308; 

343; 344). For instance, individuals without diabetes demonstrate a progressive loss 

of muscle glycogen content during high-intensity intermittent exercise, which was 

paralleled by a two-fold increase in noradrenaline after completion of the first sprint, 

and upon completing the tenth sprint noradrenaline and adrenaline concentrations 

were 15-fold and 6-fold greater than resting concentrations, respectively (344). The 

findings also demonstrated that while non-oxidative metabolism of muscle glycogen 

and phosphocreatine were the major contributors to energy production during the 

initial exercise interval, ATP synthesis during the tenth exercise interval was mainly 

derived from increased rates of oxidative metabolism (344). In this way, the relative 

diminishment in rates of blood lactate accumulation during the two and three set RE
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sessions given the initial 14-fold increase in blood lactate concentrations after one set 

of RE (Table 6,2) might reflect an increased contribution of muscle derived lactate to 

hepatic glucose output and/or reductions in release of lactate from the working 

muscles during exercise as described previously (280; 282); such a response might be 

indicative of a greater reliance on oxidative metabolism and/or circulating substrates 

by the muscle during two and three sets of RE than during the single set of RE (282). 

Furthermore, the sustained elevated appearance of plasma catecholamines (Table 6.2) 

under the three-set RE session might reflect a continued utilisation of muscle 

glycogen, meaning a lower muscle glycogen content after the three set RE session 

relative to the lower volume RE sessions. Skeletal muscle sarcolemma GLUT4 

content is inversely associated with muscle glycogen content (345), and rates of 

muscle glucose uptake and glycogen resynthesis are stimulated relative to GLUT4 

appearance (346) and the loss of muscle glycogen (346-348). It is unknown whether 

alterations in energy metabolism and/or post-exercise muscle glycogen content might 

account for the variability in the magnitude of exercise-induced hyperglycaemia 

between the different volume RE sessions (Figure 6,2). Interestingly, muscle 

glycogen contributes to energy production during RE in those without diabetes, with 

progressive reductions in muscle glycogen content observed alongside increasing 

exercise volume (249). In this way, the lesser magnitude of hyperglycaemia observed 

after the three set RE session relative to the lower volume RE sessions, might be 

explained by an larger gross and/or accelerated rates of blood-borne glucose 

utilisation to satisfy the greater energy demands and/or replenish muscle glycogen 

after exercise.

In Chapter 3 a statistically significant elevation in plasma IL-6 concentrations was 

observed in response to the three-set RE session but not after the two and one set RE 

sessions (Table 6.2). In fact, under 3SET, the exercise-induced rise in IL-6 to peak 

concentrations significantly inversely correlated (1--0.65, p=0.041) with exercise- 

induced BGiauc (presented in Figure 6.2), and the difference in the magnitude of 

exercise-induced BGIAUC between 3SET and 2SET sessions significantly correlated 

with the difference in the absolute rise in IL-6 from baseline to 60-minutes post­

exercise (r=-0.640, p =0.044). These findings imply that the greater the exercise- 

induced increase in IL-6 the larger the reduction in exercise-induced hyperglycaemia
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under 3SET. In Chapter 4, however, it was found that a reduction in the intensity of 

the two-set RE session did not alter the IL-6 response to exercise (albeit IL-6 

remained unchanged from baseline concentrations; Table 6.2). The finding from this 

thesis that the appearance of IL-6 in the bloodstream is primarily mediated by RE 

session volume is in agreement with previous research in which greater increases in 

IL-6 are observed after higher volume RE sessions (141). The finding that exercise- 

induced IL-6 production is increased by a decline in muscle glycogen content (288) is 

in support of a greater decline in muscle glycogen after the three set RE session, when 

compared to lower volume sessions. The exercise-induced increase in circulating IL-6 

might have increased GLUT4 mediated glucose transport via activation of AMP- 

activated protein kinase (AMPK) (289); the energy sensor AMPK acts upstream from 

GLUT4 in a feed-forward mechanism facilitating glucose uptake (349; 350); similar 

to IL-6 (286), AMPK activity is stimulated by altered energy status such as a 

reduction in muscle glycogen content (351) and increased intramuscular metabolic 

rate (352). Interestingly, greater improvements in glucose tolerance have coincided 

with larger increases in IL-6 concentrations after high volume RE sessions in those 

without diabetes (141). These findings coupled with those from this thesis highlight 

that RE session volume has implications for improving post-RE euglycaemic stability 

in T1DM.

The concomitant decline of catecholamine concentrations across all RE sessions 

(across Chapters 3 to 5; irrespective of volume and intensity) probably reflects a 

waning of catecholamine driven hepatic glucose production via inhibition of 

phosphorylase activity. For example, in T1DM exercising rates of glucose production 

are returned to resting values within 30 minutes of recovery from performance of ~14 

minutes of high-intensity exercise, which evoked a ~16-fold increase in circulating 

catecholamines (275). Alternatively, as a consequence to sustained exposure of 

adrenoceptors to elevated catecholamine concentrations, (3-adrenoceptors at the 

surface of the cell can transiently reduce in number (i.e. reduced receptor density) 

and/or ability to interact with catecholamines (353; 354): a process known as 

adrenoceptor desensitisation. The affinity of (3-adrenoceptors for agonists is lower at 

pH 6.69 than at pH 7.65 (355), and reductions in lymphocyte (3-adrenoceptor 

responsiveness (as reflected in reduced cyclic AMP production) has been observed
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soon after only 15 minutes of exercise at 90% maximal heart rate (356). Thus, the 

progressive increases in acidosis with performance of each set (with the greatest 

decline in pH and base-excess under 3SET, Section 3.3.5) and/or the sustained 

elevation in counterregulatory hormones during one to three sets of RE might have 

contributed to an attenuation of adrenoceptor sensitivity. In this way repressed rates of 

glucose production might have contributed to the lesser net increase in blood glucose 

during the higher volume, three-set RE session.

6.3 EFFICACY OF THE TREATMENT OF RESISTANCE EXERCISE 

INDUCED HYPERGLYCAEMIA WITH THE INSULIN ALGORITHM

Continued exposure to hyperglycaemia can detract from the potential health benefits 

reaped by regular physical exercise by restricting improvements in glycaemic control, 

and might also increase susceptibility to severe health complications (320) (as 

described in Section 1.3.1). Up until Chapter 5 was conducted it was unclear whether 

the magnitude of sustained hyperglycaemia that participants experienced during the 

60 minutes after performance of the different volume and intensity RE sessions 

examined in Chapters 3 and 4 would diminish or increase with time. Previous 

research in T1DM demonstrated that an episode of exercise-induced hyperglycaemia 

is sustained for at least 2 hours after continuous high-intensity exercise, which was 

only diminished by increasing circulating insulin levels via intravenous insulin 

infusion (216). However, at the time of this thesis it was unknown what effect (if any) 

an exogenous insulin injection might have on glycaemia following RE, given the lack 

of research in this area and the multiple factors associated with exercise that might 

influence insulin action (described in Section 5.1). With these findings in mind, it was 

decided that the most prudent and ecologically valid approach to assess the efficacy of 

post-RE insulin administration (i.e. to determine what magnitude of effect exogenous 

insulin might have on blood glucose) in T1DM individuals was through the delivery 

of exogenous insulin injection by means of an individualised insulin algorithm 

(Figure 2.9, Page 81). As such, an objective of the insulin algorithm (used to 

determine the insulin dose) was to account for the potential inter-individual variability 

in the severity of exercise-induced hyperglycaemia experienced by each exercising 

participant. This user-friendly algorithm is the first clinical strategy developed to
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assist exercising T1DM individuals with the pharmacological management of 

exercise-induced hyperglycaemia resulting from RE.

Interestingly, the magnitude of post-exercise hyperglycaemia during the initial 60 

minutes of recovery was comparable between INSULIN (90 ± 24 mmol.min.L'1) and 

MOD (110 ± 56 mmol.min.L"1), but was > 2-times greater under INSULIN than 3SET 

(41 ± 59 mmol.min.L1). This finding is indicative that the rapid acting insulin had 

little effect on post-RE blood glucose levels during the initial 60 minutes of recovery, 

and within this time frame this blood glucose management strategy was less effective 

at reducing the magnitude of exercise-induced hyperglycaemia than increasing 

exercise volume (by addition of a third set of RE) (see Figure 6.2). In an earlier study, 

the effect of post-exercise hyperinsulinaemia by intravenous insulin infusion on blood 

glucose regulation was assessed in T1DM individuals (216). In this study it was 

demonstrated that a doubling of the insulin infusion rate necessary to maintain 

euglycaemia was required to return post-exercise blood glucose concentrations to 

euglycaemia during 2 hours after performance of ~14 minutes of high-intensity 

continuous exercise that resulted in a ~3 mmol.L1 rise in blood glucose during 

exercise. The restoration of post-exercise euglycaemia was attributed to an insulin- 

mediated enhanced rate of blood glucose clearance, which occurred within 5 minutes 

of a rise in plasma insulin concentrations i.e. within 5 minutes of exercise cessation 

(216). Furthermore, insulin concentrations peaked within the bloodstream at a 

concentration of 110 pmol.L'1 at ~30 minutes post-exercise, and findings demonstrate 

a progressive decline in plasma glucose concentrations onwards of 5-minutes post­

exercise, which reached a plateau at ~4.5 mmol.L'1 at 120-mintues post-exercise 

(216). Under the INSULIN experimental session in Chapter 5, the group peak insulin 

concentration occurred at 95-minutes post-exercise (notably, at ~90 minutes following 

insulin injection), at concentrations of 111 ± 16 pmol.L'1; moreover, the increased rate 

of fall in blood glucose (compared to the NON-INSULIN session) occurred onwards 

of 50 to 65 minutes post-injection and resulted in a 3.0 ± 1.0 mmolJL'1 fall in blood 

glucose within 2 hours of exercise cessation (Figure 5.2).

The comparison of findings between Chapter 5 and those of Sigal et al. (216) are 

interesting, when considering that similar levels of post-exercise insulinaemia resulted
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in a comparable 3 mmol.L'1 decline in blood glucose within a similar time-frame (i.e. 

2 hours post-exercise), despite differing rates of exogenous insulin appearance within 

the circulation and contrasting forms of exercise. The fact that the method by which 

insulin was administered differed between these studies (i.e. subcutaneously injected 

insulin vs. intravenous insulin infusion) makes it difficult to speculate about the effect 

of different exercise modalities on the time-action profile on exogenous insulin in the 

post-exercise period. But, it is likely that the insulin-mediated post-exercise decline in 

blood glucose was elicited by a combination of an increase in glucose uptake (as 

described by Sigal et al. (216)) and suppression of endogenous glucose production 

(331).

In mind of these findings, together with the finding that the algorithm developed in 

Chapter 5 was not successful in returning post-exercise glycaemia to the target of 7 

mmol.L'1, it could be concluded that the 53+10% reduction in the algorithm- 

determined insulin dose (FullDose; Figure 2.9) was too conservative to restore post­

exercise euglycaemia. It is therefore questionable whether this ~53% reduction in 

bolus insulin was necessary. Nevertheless, the algorithm-derived insulin dose of 2±1 

IU along with its timing was effective at restoring baseline blood glucose 

concentrations within 2 hours following RE, but without the ingestion of 

carbohydrates. In other words, the algorithm was effective at countering the 

occurrence of exercise-induced hyperglycaemia. The algorithm was sensitive to the 

participant’s glycaemic status after RE; this was reflected in a positive correlation 

between the magnitude of post-exercise hyperglycaemia at 0-minutes and the number 

of insulin units administered after exercise (r = 0.941, p<0,001)\ moreover, the 

algorithm-calculated insulin dose was zero units for the participant with a moderate 

total daily dose and a 0-minute post-exercise blood glucose concentration of within 

0.5 mmol.L'1 of the target value (Table 5.2). Furthermore, considering the relatively 

small sample size (n=8) (albeit, despite reasonable statistical power; see Section 

2.11.5), one should be mindful that this strategy might have a more severe impact on 

post-exercise glycaemia when measured in a larger population. As such, a less 

conservative approach might translate to a greater and/or more rapid fall in post­

exercise glycaemia in some T1DM individuals, thereby increasing vulnerability to 

subsequent glycaemic instability. Thus, it could be suggested that the algorithm
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developed in this study promotes euglycaemic stability and also offers an 

individualised solution to counter the rise in blood glucose caused by a single session 

of RE, when the exercising T1DM individual’s pre-exercise blood glucose levels are 

euglycaemic. Notably, as discussed in Chapter 5, the abstention of carbohydrates 

following the RE session could explain why participants were exposed to 

hypoglycaemia during the 20 hours following exercise, and/or it should be considered 

that the requirement for exogenous insulin is lessened during the remaining part of the 

day following a morning RE session.

6.4 IMPACT OF RESISTANCE EXERCISE ON KETONAEMIA

During times of fasting, a resultant elevation in the production of ketones can 

suppress glucose utilisation (357), but this adaptation is negated by the restraining 

effect of insulin on ketone enzyme activity (53). However, low insulin levels coupled 

with concomitant rises in counterregulatory hormone concentrations can lead to the 

release of free fatty acids into the circulation from adipose tissue and to unrestrained 

hepatic oxidation of this metabolite in the liver resulting in ketone body formation, 

with resulting metabolic acidosis (358). With these findings in mind, there was a 

potential opportunity for ketogenesis, or even ketoacidosis, during the experimental 

sessions within Chapters 3 to 5; i.e., due to the omission of morning rapid-acting 

insulin combined with overnight fasting, raised counterregulatory hormones, and/or 

alterations in blood acid-base balance, associated with performance of RE. Yet, 

results from Chapter 3 demonstrate that this pre-exercise routine did not elevate 

baseline p-hydroxybutyrate concentrations, with concentrations remaining well below 

what is clinically deemed as hyperketonaemia (>1 mmol.L"1) (53) for the duration of 

the non-exercise control session. Furthermore, baseline p-hydroxybutyrate 

concentrations were unaffected by different volume RE sessions remaining similar to 

control levels throughout recovery.

A possible explanation for this response is that participants maintained their usual 

basal insulin dosage. One of the primary traits of the basal insulin dose is to restrict 

excessive hepatic glucose production and in this way prevent the formation of excess 

ketones (359). Glargine could be particularly useful in this respect, given that its 

absorption is unaffected by exercise (209), and this finding is corroborated by the
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maintenance of baseline plasma insulin levels throughout the experimental sessions in 

Chapters 3 (Section 3.3.4.4) and 5 (Section 5.3.1.3). It was encouraging that the 

acidosis generated by RE only temporarily compromised blood acid-base balance, 

since under all experimental sessions, blood pH and extra cellular fluid base-excess 

had returned to baseline concentrations within one hour after cessation of exercise, 

with these values falling within clinically acceptable ranges (51).

6.5 INTERACTION BETWEEN RESISTANCE EXERCISE INDUCED 

CHANGES IN GLYCAEMIA AND POTASSIUM (K+) REGULATION

The fluctuations in blood K+ concentrations observed within this thesis are clinically 

important to T1DM individuals. Both hyper- (310) and hypokalaemia (334; 360) have 

been associated with prolonged cardiac repolarisation, potentially resulting in serious 

arrhythmias. The exercise-induced marked and progressive rise in potassium 

concentrations observed during the recovery period from RE (Sections 3.3.6 and

4.3.4) was somewhat paradoxical, given that there is typically a sustained restoration 

of (or decline below) pre-exercise (resting) K+ concentrations within 5 minutes of 

exercise cessation in individuals without diabetes, as a result of inhibition of muscular 

K+ release and a high rate of K+ uptake (310). Typically during hyperglycaemia there 

exists an increase in osmolarity associated with the elevation in plasma glucose levels, 

which drives water from within the cells into the interstitium and the blood. In this 

way, hyperglycaemia would have effectively diluted K+concentrations in the blood. 

Thus, the elevation in post-exercise K+concentrations cannot be explained by changes 

in fluid balance.

Across Chapters 3, 4 and 5, resting potassium concentrations were somewhat 

recovered during the initial 5 minutes of recovery, thus, the rise in blood K+ 

concentrations during remaining recovery period might be explained by a 

disproportionate increase in intracellular potassium release over uptake. 

Catecholamines and insulin have a stimulatory effect on the Na+-K+ pump and 

therefore play an important part in K+ regulation (290; 291; 294; 361); thus, this 

increase in circulating K+ was potentially related to a withdrawal of morning insulin 

therapy resulting in under activation of the Na+-K+pump and excessive K+leakage. 

Furthermore, the net release of K+from the liver that has been observed in response to
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exercise (362) could be a factor that contributed to the post-exercise elevations in 

blood K+concentrations.

In Chapter 5, the injection of insulin had somewhat of a transient suppressive effect 

on blood K+concentrations. DeFronzo et al (363) demonstrated that the fall in plasma 

K+ concentrations at rest under constant insulin infusion to maintain 

hyperinsulinaemia was the result of a rapid uptake of K+into the splanchnic bed 

during the first hour of hyperinsulinaemia and the consequent decline in plasma K+ 

concentrations is maintained during a subsequent hour of insulin infusion by an 

increase in peripheral K+uptake. The effect of insulin administration on K+ regulation 

during the post-exercise recovery period is poorly researched. But these 

aforementioned findings together with those from Chapter 5 indicate that a small dose 

of insulin counters the post-exercise rise in blood K+concentrations (observed without 

insulin) within ~20 minutes of insulin administration (i.e. 20 minutes after exercise 

cessation and 75 minutes prior to peak plasma insulin concentrations). This response 

might be attributed to a combination of central and peripheral K+ uptake.

It is difficult to explain the restoration of K+ concentrations during the latter 60 

minutes of recovery under the NO-INSULIN experimental session; for instance, 

whereas the clearance of blood K+ is likely to be augmented by an increase in 

endogenous insulin secretion in healthy individuals without diabetes (292), such a 

mechanism is probably diminished, if not abolished in T1DM. However, given the 

maintenance of baseline insulin levels throughout the recovery period (which were at 

least two to three-fold greater than levels expected in those without diabetes (267)) 

and in mind of the findings by DeFronzo et al (363), this late post-exercise clearance 

of blood K+ could be explained by a net increase in peripheral K+uptake. Indeed, 

further research is needed to examine the interaction between post-exercise K+ 

regulation and glycaemia in T1DM. Importantly, it has been demonstrated that 

prolongation of ventricular repolarisation that occurs during hyperinsulinaemic- 

euglycaemia is primarily related to the effects of insulin on plasma K+concentrations 

as opposed to its effects on glucose (360). In mind of the aforementioned alterations 

in K+ regulation associated with RE, particularly during the early minutes and hours 

after exercise, clinicians should be cautious of the potentially insidious effects that a
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post-exercise insulin injection could have on cardiac function via alterations in blood 

K+balance per se\ some T1DM individuals might experience a greater exchange of K+ 

and/or have less capacity to regulate intra- and extra-cellular K+ balance due to 

diabetes-related impairments in Na+-K+ pump activity (292), and might be more 

susceptible to cardiac dysrhythmia soon after exercise.

6.6 EFFICACY OF RESISTANCE EXERCISE RELEVANT TO TYPE 1 

DIABETES PATIENT CARE AND EXERCISE PRESCRIPTION

6.6.1 Impact Of Resistance Exercise On Heart Rate And Blood Pressure

In Chapter 3, average heart rates during exercise ranged from the lowest values under 

1SET (104 ± 4 beats.min'1) to the highest values under 2SET (120 ± 8 beats.min'1) and 

3SET (114 ± 6 beats.min ^  with peaks ranging from 142 ± 7 to 162 ± 9 beats.min'1. 

These values corresponded with an average heart rate of 62 ± 3 %HRmax, i.e. during 

one to thee sets of RE at an average exercise intensity of 68 ± 0 %1RM. In Chapter 4, 

during two sets of RE at 59 ± 1 %1RM (MOD) average heart rates were 124 ± 11 

beats.min'1, which corresponded with values of 67 ± 6 %HRmax, and elicited during 

exercise were peaks of 167 ± 16 beats.min'1. Conversely, heart rates during two sets 

of RE at 30 ± 0 %1RM (LOW) were on average 147 ± 13 beats.min'1, which 

corresponded with 80 ± 7 %HRmax, and peak heart rates during exercise were 195±13 

beats.min1. Interestingly, the majority of time during the two set RE sessions in 

Chapter 4, was spent at heart rates reflecting >60 %HRmax (section 4.3.5.1). Together 

these findings demonstrate that although only approximately one-third of these RE 

sessions comprised actual exercise (Table 6.1), with the remaining time spent in 

passive recovery between sets and subsets, the RE sessions within this thesis offer a 

stimulus, and possibly a training regime, for the cardiovascular system, in physically 

active T1DM individuals of whom are not trained specifically in RE. It is also 

important to recognise that reducing exercise intensity independent of volume does 

not necessarily lessen heart rate demands of RE, and in this case (as reflected in 

Chapter 4) average and peak heart rates were statistically significantly greater during 

low intensity RE, when compared with a shorter duration but higher intensity RE 

session with matched rest intervals. Thus, there is a complex relationship between RE 

session characteristics and the cardiovascular system, and these findings suggest that
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exercise duration is a primary factor in determining the heart rate demands associated 

with acute RE.

In Chapter 4 it was demonstrated that neither low nor moderate intensity RE altered 

systolic or diastolic blood pressures from baseline levels, when these measurements 

were taken at 0- and 60-minutes post-exercise. Consequently, there were no 

statistically significant exercise-induced changes in estimated mean arterial pressure 

(MAP). The timing of these cardiovascular measurements reflects more of an 

accumulative effect of the entire RE sessions as opposed to the possible transient 

changes in blood pressure evoked by each set or subset of RE. For instance, bi-lateral 

leg press (i.e. an exercise similar in technique to squatting) and military press (a kin to 

shoulder press) are associated with marked increases in circulatory stress as reflected 

in systolic and diastolic blood pressures of 224 to 261 mmHg and 128 to 151 mmHg, 

with increases in MAPs to ~ 145 to 158 mmHg, respectively (314). Additionally, 

increases in MAP have been observed within performance of a single set of squats, 

across different intensities in healthy individuals without diabetes (316); this study 

observed increases in MAP as load and repetitions increased, e.g. 122 ± 9 (2 

repetitions) vs. 135 ±11 mmHg (6 repetitions) and 128 ± 13 vs. 143 ± 14 mmHg, at 

30 and 60 %1RM, respectively. Furthermore, increases in MAP were greater during 

RE at an intensity of 90%1RM, when compared to the lower intensity RE sessions. 

Interestingly, this study also demonstrated that higher relative intensities produced 

greater post-exercise hypotension, when cardiovascular measurements were taken 

during 2 minutes after cessation of exercise at a sample frequency of 1kHz (316),

More recently, it has been shown that the changes in blood pressure during RE at 40% 

and 60% 1RM appear to be no greater than those during low to moderate intensity 

(40% and 60% V 02peak) aerobic exercise (364). Thus, it is likely that participants 

experienced marked increases in circulatory stress during performance of the RE 

sessions within this thesis, but the RE sessions as a whole in Chapter 4 could have 

been of insufficient intensity to elicit a post-exercise hypotensive effect, or the 

technique by which blood pressure was assessed might have been insensitive and/or 

of insufficient frequency to detect subtle cardiovascular alterations. Indeed, the 

possibility of underlying micro-and macrovascular complications associated with
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diabetes warrants further research into the acute stress versus tolerability and safety of 

acute RE in individuals with T1DM, but it is encouraging that regular performance of 

moderate intensity RE for 8 weeks results in marked improvements autonomic and 

submaximal exercise cardiovascular regulation in patients with non-alcoholic fatty 

liver disease (365). In this way, RE could quite possibly have a role in the clinical 

management of T1DM.

6.6.2 Interaction Between Interleukin-6 And Exercising Glycaemic Control

Research by Rosa et al (366) has demonstrated in T1DM individuals that resting IL-6 

levels and the IL-6 response to moderate intensity continuous exercise is increased in 

magnitude depending on the frequency of exposure to hyperglycaemia during the 3 

days prior to assessment, with higher post-exercise increases in IL-6 observed in those 

with poorer glycaemic control. Additionally, it was demonstrated in T1DM that in 

response to 45 minute treadmill run at ~73% V 0 2peak, post-exercise IL-6 

concentrations were inversely related to circulating insulin concentrations (1--0.484, 

p=0.017, n=8) (212), where reductions in post-exercise insulin dosage was associated 

with greater IL-6 values relative to a higher insulin dosage, and post-exercise 

increases in IL-6 and TNF-a accompany hyperglycaemia but not euglycaemia (88). 

Hyperglycaemic crisis is associated with a state of severe physiological inflammation 

characterised by a rise in proinflammatory cytokines such as tumor necrosis factor 

alpha (TNF-a), IL-6 and IL-8, possibly alongside increases in c-reactive protein, lipid 

peroxidation, reactive oxygen species, as well as cardiovascular risk factors (e.g. fatty 

acids and plasminogen activator inhibitor-1) in the absence of infection or pathology 

(55); specifically, where chronically elevated systemic IL-6 is associated with both 

excessive levels of glucose in the endothelium and downstream effects of biochemical 

pathways yielding advanced glycation end-products (367) i.e. which triggers 

leukocyte infiltration into the vascular basement membrane and release of IL-6, IL-8, 

IL-10 and TNF-a. Albeit, increases in IL-6 might evoke a mass anti-inflammatory 

effect by stimulating IL-1-receptor antagonist and IL-10, which suppress and/or have 

protective effects over the appearance of TNF-a (368). In mind of these findings, the 

IL-6 concentrations measured within this thesis are relevant to not only acute glucose 

metabolism (as discussed previously; Section 6.2) but also to chronic glycaemic 

control and immune function in TIDM.
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In an effort to mitigate any effect of pre-exercise glycaemic control on the blood 

glucose responses during the experimental sessions in this thesis, all participants in 

this thesis adhered to a standardised diet and insulin routine for 24 hours prior to each 

experimental session, and sessions were rescheduled if a participant experienced a 

hypoglycaemic episode or prolonged hyperglycaemia during this time. But results by 

Rosa et al (366) highlight a limitation of this thesis in that participants were not 

screened more rigorously for exposure to hyperglycaemic during the 72 hours leading 

up to each experimental session. With these findings in mind, nevertheless, it was an 

important observation that resting IL-6 concentrations across studies in this thesis 

were quantitatively no greater than healthy individuals without diabetes (141) and 

considerably lower than those observed in the aforementioned studies by Campbell et 

al (88; 212); moreover, IL-6 concentrations remained comparable to baseline levels 

throughout the non-exercise control session in Chapter 3 (Section 3.3.4.5), despite 

that participants remained mildly hyperglycaemic throughout this session.

In Chapters 3 and 4, basal IL-6 was correlated with duration of diabetes (r=0.759, 

1-0.781, p<0.05, respectively), yet it was not related to glycaemic control or 

adiposity. Indeed, IL-6 may be a useful biomarker in the prognosis of diabetes-related 

health complications attributed to obesity and glycaemic control, of which have been 

incriminated in the preservation and exacerbation of the inflammatory response (369). 

Perhaps the small cohort tested in this thesis explains the lack of relationship between 

glycaemic control and IL-6 levels as described previously (366). Furthermore, that 

post-exercise IL-6 responses were not related to glycaemic control, adiposity or 

duration or diabetes (across Chapters 3 and 4), and any increase in circulating IL-6 

was only observed in the exercise sessions, it seems that an increase in IL-6 was 

related to the physiological changes evoked by exercise and not individual-oriented 

traits.

6.6.3 Muscle Damage And Perceived Exertion

During exercise, under all experimental sessions ratings of perceived exertion 

corresponded with subjective intensities of “somewhat easy” to “hard”. At 60-minutes 

and 24-hours post-exercise, perception of muscle soreness corresponded with feelings
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of “no pain (0) to mild pain (2)” (Chapter 3). These measurements highlight the 

varying levels of effort required of this physically active (but not RE trained) cohort 

to perform RE sessions of differing volumes and intensities. However, despite the 

substantial metabolic, perceived and cardiovascular (as aforementioned) stress that 

was imposed by RE, the findings from Chapter 3 show that plasma creatine kinase 

concentrations remained unaltered from pre-exercise levels at 24 hours after cessation 

of exercise. Muscle membrane permeability is sensitive to exercise intensity. When 

strenuous exercise is performed where the exertion/loading that the muscle can 

withstand is exceeded, the muscle membrane permeability changes and/or muscle 

membrane breakage occurs and creatine kinase leaks into the interstitial fluid, is 

extracted by the lymphatic system, and appears in the bloodstream (370). Thus, 

increases in circulating creatine kinase levels are indicative of damage to the skeletal 

muscle structure at the level of Z-disks and sarcolemma (371; 372), typically with 

ensuing muscle soreness and pain. In this way, the lack of post-exercise increase in 

creatine kinase levels is in line with the lack of perceived post-exercise muscle 

soreness, and is suggestive that these RE sessions did not expose T1DM participants 

to muscle damage (albeit creatine kinase concentrations may peak within plasma at 

48-hours after weight-bearing exercise (370)).

It is encouraging that these RE sessions did not raise creatine kinase concentrations as 

have other forms of RE (233; 252), since increases in post-exercise creatine kinase 

concentrations has been associated with impairments in GLUT4 mediated insulin 

signalling (233), which could ultimately lend support to a loss of glycaemic control 

associated with T1DM. From a practical viewpoint, it is plausible that the extra 

stability offered by the Smith machine might have lessened the muscular stress on the 

exercising individual, when compared with other forms of RE such as ‘free-weights’ 

that offers less external support.

When extrapolating these findings to other T1DM individuals it should be realised 

that the effects of exercise on perception of effort, metabolic and cardiovascular 

stress, and muscle damage, will inevitably vary with individual fitness levels. This 

thesis offers insight into a variety of different RE sessions that challenge the
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cardiovascular and metabolic system of the physically active but untrained T1DM 

individual, in the absence of muscle damage or soreness at 24 hours after exercise.

6.7 PRACTICAL RECOMMENDATIONS FOR THE EXERCISING TYPE 1 

DIABETES INDIVIDUAL: A PATIENT CARE PERSPECTIVE

Firstly, the continuation of evening basal insulin but omission of morning bolus 

insulin in the absence of pre-exercise macronutrient consumption is likely to protect 

T1DM participants from the occurrence of hypoglycaemia during and soon after a 

single session of morning RE. The findings from this thesis also indicate that the 

exercising T1DM is more likely to experience a rise in blood glucose after 

performance of a one or two set morning RE session than after a higher volume three 

set RE session.

A useful tool for the T1DM individual would be an ability to predict whether blood 

glucose would continue to rise during the post-RE recovery period, as demonstrated 

under the one and two set RE experimental sessions, or remain stable as observed 

after the three-set RE session. Interestingly, a positive correlation was observed 

between the magnitude of rise in blood glucose during both one-set (1SET: 1=0.704, 

p-0.026) and three-sets (r=0.141, p=0.0J8) of RE and the magnitude of rise in blood 

glucose during the 60-minute post-exercise recovery period. Furthermore, the mean 

magnitude of rise in blood glucose between the end of 2SET and end of 3SET RE 

sessions positively correlated with the magnitude of rise in blood glucose during the 

60-minute post-exercise recovery period (r=0.891, p=0.002). These observations 

suggest that exercising T1DM individuals whom demonstrate a considerable rise in 

blood glucose during RE are more likely to experience a greater rise in blood glucose 

during the hour after a session of RE. Thus, if the net increase in blood glucose can be 

diminished during the RE session then it seems that participants are at less risk of 

experiencing an episode of hyperglycaemia soon after RE. An approach to better 

manage blood glucose responses to RE could be to sample blood glucose prior to 

exercise, and also following completion of each set or circuit of RE; for example, if 

an elevation in blood glucose is identified after performance of two sets of RE, then 

the T1DM individual could benefit from performing an additional set or circuit of RE 

to reduce the likelihood of post-exercise hyperglycaemia, or the individual might
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choose to administer a correctional dose of exogenous insulin using the algorithm 

developed in Chapter 5.

6.8 LIMITATIONS

Although the studies within this thesis were designed to generate results that have 

useful applications, the following limitations do apply:

■ The findings and recommendations reported within this thesis may be limited 

to the participants tested within each respective study.

■ Considering the multiple different arrangements in resistance exercise session 

characteristics, strict control of these exercise variables alongside insulin and 

diet was necessary to determine the impact exercise volume and intensity on 

blood glucose. As such, the physiological responses reported within this thesis 

are most likely only applicable to the exact nature of each experimental 

session. Thus, alterations to the resistance exercise characteristics and/or 

insulin or dietary routines adopted within this thesis could result in differing 

physiological responses.

■ The findings from this thesis demonstrate that there exists a close relationship 

between the acute design of a resistance exercise session with respect to 

exercise volume and intensity and the post-exercise glycaemic status of T1DM 

individuals (depicted in Figures 6.1 and 6.2). However, it is a limitation that 

there existed subtle differences in resistance exercise session design between 

the two-set resistance exercise sessions within Chapters 3 and 4, i.e. Chapter 4 

comprised two less exercises and an additional 60 seconds of rest between 

subsets (Table 6.1). This was to better accommodate for inter-individual 

fitness levels (albeit the exercise intensity was standardised between 

participants; Table 6.1). In this way, it remains to be determined whether a 

reduction in exercise session volume by a reduction in intensity and not the 

number of repetitions (as conducted in this thesis) might alter the glycaemic 

response to resistance exercise in T1DM individuals. Furthermore, it remains
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unknown what impact an alteration in the rest interval has on the glycaemic 

response to resistance exercise in T1DM individuals.

■ Although there exists some intra-individual repeatability with the glycaemic 

responses to exercise of T1DM individuals under insulin therapy (199), it has 

been shown that the glycaemic responses to exercise may vary across different 

days independent of differences in insulin therapy and diet (253). As such, it is 

a limitation that each participant only completed each experimental arm once. 

Thus, the validity and reliability of the findings within this thesis could be 

improved by within-subject repeated trials.

6.9 GENERAL CONCLUSIONS

The results within this thesis show that:

■ Exercise volume is a primary factor in determining the acute impact of 

resistance exercise on blood glucose in T1DM individuals, where performance 

of one and two sets of resistance exercise evokes a sustained elevation in 

blood glucose for at least one hour after exercise but the addition of a third set 

attenuates the magnitude of hyperglycaemia caused by two sets and returns 

post-exercise blood glucose to concentrations comparable with a non-exercise 

control session.

■ A low intensity resistance exercise session results in a similar magnitude of 

exercise-induced hyperglycaemia following exercise, when compared to a 

higher intensity but overall equal volume resistance exercise session.

■ The administration of an individualised dose of post-exercise insulin by means 

of an algorithm to T1DM individuals performing morning resistance exercise 

reduces the magnitude of acute post-exercise hyperglycaemia without causing 

early (within 2 hours) post-exercise hypoglycaemia, but the exposure to 

hypoglycaemia ensures during later hours after exercise.
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■ The omission of pre-exercise exogenous insulin but continuation of the usual 

basal dosage protects individuals with T1DM from the occurrence of 

hypoglycaemia during and soon after pre-breakfast, morning resistance 

exercise, but this routine does not contribute to the appearance of blood 

ketones.

■ The relationship between the post-exercise appearance of counterregulatory 

hormones and IL-6 and resistance exercise session design is complex, but the 

magnitude of exercise-induced appearance in catecholamines, growth 

hormone and IL-6 appears to be related to the volume and/or duration of 

exercise.

■ One to three sets of resistance exercise results in strong acid-base disturbances 

and increases in heart rate, which return to levels reflective of a rested state 

within one hour of recovery, but resistance exercise is unlikely to acutely alter 

post-exercise blood pressure nor induce 24-hour muscle damage.

6.10 SUGGESTIONS FOR FUTURE RESEARCH

The following are considerations for future investigation;

■ In mind of the improvements in the magnitude of exercise-induced 

hyperglycaemia and hyperkalaemia observed in T1DM individuals after 

several weeks of high-intensity intermittent exercise training by Harmer et al 

(218), it is highly possible that the hyperglycaemic and hyperkalaemic 

responses to resistance exercise could diminish with regular training. Such 

research warrants investigation.

■ Further exploration of different formats of resistance exercise session design 

alongside the examination of metabolic factors such as fuel oxidation and 

muscle metabolism during exercise and recovery would help elucidate the 

relationship between exercise volume and glycaemia.
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■ While interleukin-6 might have a role in glucose regulation during certain 

types of resistance exercise, appearance of this cytokine is also associated with 

alterations in immune function. Thus, further research is required to determine 

the impact of resistance exercise on immune function in T1DM individuals, 

whom may be particularly susceptible to states of poor immunity.

■ The consumption of a carbohydrate could help replenish muscle glycogen 

stores during the early hours after resistance exercise, in an effort to prevent 

the occurrence of late onset post-exercise hypoglycaemia. But in mind of the 

hyperglycaemic response to this form of exercise; it should first be explored 

whether T1 DM individuals could benefit from increasing their prandial insulin 

dose when macronutrients are consumed during the early hours of recovery 

from resistance exercise, since carbohydrates and proteins are likely to 

promote a further rise is post-exercise glycaemia.

■ As popularity increases in the use of insulin pump therapy to treat individuals 

with T1DM, an understanding of the impact of resistance exercise in this 

cohort warrants research.
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(Compact Disc)

■ A 1 -  LREC ETHICS APPROVAL

■ A2 -  CHAPTER 3 PARTICIPANT PRE-STUDY INFORMATION PACK

■ A3 -  CHAPTER 4 & 5 PARTICIPANT PRE-STUDY INFORMATION 

PACK

■ A4 -  EXAMPLE POST-STUDY PARTICIPANT REPORT
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APPENDIX B1
CHAPTER 3 CONSORT FLOW DIAGRAM

C O N S O R T
TRANSPARENT REPORTING of TRIALS

CONSORT 2010  Flow Diagram

E nrollm ent A ssessed for eligibility (n= 109)

Excluded (n= 99)
♦ Not meeting inclusion criteria (n= 50)
♦ Declined to participate (n= 39)
♦ Other reasons (n= 10)

Randomized (n= 10)

A llocation
Allocated to intervention (n= 10)
♦ Received allocated intervention (n= 9)
♦ Did not receive allocated intervention (give

reasons) (n= 1)

Reason: One participant terminated their 
involvement following completion of the 
preliminary familiarisation session, due to 
unknown reasons.

Lost to follow-up (give reasons) (n= 0) 

Discontinued intervention (give reasons) (n= 1)

Reason: One participant discontinued after 
completing one experimental session, because 
they could not find the time to complete the 
remaining sessions.

Analysis

Analysed (n= 8)
♦ Excluded from analysis (give reasons) (n= 0)
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CHAPTER 4 & 5 CONSORT FLOW DIAGRAM

C O N S O R T
TRANSPARENT REPORTING o f TRIALS

CONSORT 2010  Flow Diagram

E nrollm ent A ssessed for eligibility (n= 148)

Allocated to intervention (n= 10)
♦ Received allocated intervention (n= 10)
♦ Did not receive allocated intervention (give

reasons) (n= 0)

Lost to follow-up (give reasons) (n= 0) 

Discontinued intervention (give reasons) (n= 2)

Analysed (n= 8)
♦ Excluded from analysis (give reasons) (n= 0)

Excluded (n= 138)
♦ Not meeting inclusion criteria (n= 89)
♦ Declined to participate (n= 45)
♦ Other reasons (n= 4)

Randomized (n= 10)

A llocation

Follow-Up

Analysis

Reason: One participant discontinued 
after partly completing one experimental 
session, then choosing to terminate their 
involvement due to time commitments. 
One participant was very difficult to 

annulise and therefore failed to provide 
sufficient bloods for venous sampling.T
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APPENDIX B2
INFORMED CONSENT FORM, CHAPTERS 3 TO 5

S w a n sea  University  
P rifysgol A b erta w e

Study Number: 1 /2/3 Patient Identification Number:

CONSENT FORM
Title o f Project:

Name of Researcher: Dan Turner P le a se  in itia l box:

1. I confirm that I have read and understood the information sheet date

the information, ask questions and have had these answered satisfactorily.

2. I understand that my participation is voluntary' and that I am free to withdraw

at any time, without giving any reason, without medical care or legal rights I— I

being affected.

3. I understand that relevant sections o f any of my medical notes and data

collected during this study may be looked at by responsible individuals from .— .

Swansea University, from regulatory' authorities or from the NHS trust, where

it is relevant to my taking part in this research. I give permission for these 

individuals to have access to my records.

4. I agree to my GP being informed of my participation in the study. Y es /  No

for the above study. 1 have had the opportunity to consider

If No, 1 am held liable for any consequences incurred during the study.

5. 1 agree to take part in the above study.

N am e o f  Patient Date Signature

N am e o f  Person taking consent Date Signature

Researcher Date Signature



APPENDIX C
ACSM HEALTH SCREENING QUESTIONNAIRE

AHA/ACSM Henltli/Fitncss Facility Preparticipntion Screening Questionnaire.

Assess your health needs by marking all true statements.

History
You have had:
□  a heart attack
□heart surgery
□  cardiac catheterization If you marked any of the statements
□  coronary angioplasty (PTCA) in this section, consult your healthcare
□pacemaker/implantable cardiac provider before engaging in exercise.
defibrillator/rhythm disturbance You may need to use a facility with a
□heart valve disease medically qualified staff
□heart failure
□heart transplantation
□  congenital heart disease

Symptoms and other health issues:

□  You experience chest discomfort with exertion.
□  You experience unreasonable breathlessness.
□You experience dizziness, fainting, blackouts.
□  You take heart medications.
□You take prescription medication(s).
□  You have musculoskeletal problems.
□  You have concerns about the safety of exercise.
□  You are pregnant.
Cardiovascular risk factors
□  You are a man older than 45 years.
□  You are a woman older than 55 years or you have had a
hysterectomy or you are postmenopausal.
□  You smoke. If you marked two or more of
□  Your blood pressure is greater than 140/90, the statements in this section,
□  You don't know your blood pressure. you should consult your
□  You take blood pressure medication. healthcare provider before
□  Your blood cholesterol level is >240 mg/dL. engaging in exercise. You
□  You don't know your cholesterol level. might benefit by using a
□  You have a close blood relative who had a heart attack facility with professionally
before age 55 (father or brother) or age 65 (mother or sister). qualified exercise staff to
□  You are diabetic or take medicine to control your blood sugar. guide your exercise program.
□  You are physically inactive (i.e., you get less than 30 minutes
of physical activity on at least 3 days per week).
□You are more than 20 pounds overweight.

□None of the above is true.
You should be able to exercise safely without consulting your healthcare provider in almost any facility
that meets your exercise program needs.

Signature: Date:

AHA/ACSM indicates American Heart Association/American College of Sports Medicine.

217



APPENDIX D
PARTICIPANT PRELIMINARY QUESTIONS

Preliminary Questions

Name:

What insulin(s) are you currently taking?
Brand names

What typical insulin doses do you usually administer?
Basal and short/rapid

What time of day do you usually administer them? 
Morning, midday, afternoon, prior to bed

Basal:

Bolus:

How do you take them?
Insulin Pen, Type brand names etc.

How long have you been on this regimen?

What regimen were you previously on?
Reasons for change

What is your typical pre-breakfast blood glucose level?

Date:

How often do you exercise a week (include type and intensity?



What do you do with regards to insulin & carbohydrate before you exercise? 
Food and drink consumed? How much? What type o f Exercise?

Have you ever experienced a hypo/hyper during or after exercise (please specify 
exercise)?

How long after exercise did it occur?

What did you eat or drink to clear it?

Are you aware of when you are hypo/hyperglycaemic?
(refer to Clark hypoglycaemia awareness scale)

Do you consume caffeine? E.g. coffee, Red Bull 

How much?

How does it affect your glucose and insulin regimen?

What is your usual morning blood glucose before breakfast?

Are you on any other prescribed medication?
I f  so, how long have you been taking this particular medication?

Have you experienced any medical complications relating to your diabetes?

Are you involved in any other research outside of this project?
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Dietary Requirements

Do you have any food allergies or diet restrictions?

What do you usually eat for;

Breakfast;
Time? Amount?

Lunch;
Time? Amount?

Dinner:
Time? Amount?

Supper:
Time? Amount?

Snacks:
Fruit / Vegetables?

Would you be willing to replicate a diet plan for one day before and after each 
experimental session, and what would this diet ideally be?

Would you be willing to abstain from caffeine and alcohol for the duration of the 
study, including three days leading up to the study?

Would you be happy to regularly monitor and report you blood glucose for one day 
before and after each experimental session?
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APPENDIX E
PRE EXPERIMENTAL SESSION DIETARY INTAKE, INSULIN DOSAGE AND

BLOOD GLUCOSE DIARY

Participant: Day: Date;

Pre Trial [ ] Glucose Readings

Time Blood
Glucose

Comments

Awakening

lla in

Lunch

3pm

Dinner

Pre-sleep

Pre Trial [ ] Dietary Intake and Insulin Dosage Log Sheet

Time Food/ Drink Insulin Dose 
(Type; Units)

Comments
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APPENDIX F
PHYSICAL ACTIVITY RECORD

ACTIVITY RECORD

Please read these important instructions carefully

• Please record the time you got out of bed in the morning.
• Please record the time you went to bed in the evening.
• Please record any travelling time and the type of transportation

used.
• Please record all the activities (in 15 minute blocks) you

undertake in the day.
* Remember to include all activities (including, housework, child

care, oroarammed exercise, etc.).

DESCRIBING THE INTENSITY OF ACTIVITY

Classify the intensity of activity, using the 0-10 scale listed below, whilst you 
are undertaking the activity or exercise. If the intensity changes during the 
activity choose the 1-10 classification that best describes the overall intensity 
of the activity (use the table provided to help you with the classifications).

1. Lying down (sleeping and resting)
2. Seated
3. Standing; light activity
4. Between 3&4
5. Light manual work
6. Light leisure activities
7. Moderate manual work
8. Moderate leisure activities
9. Intense manual work and sporting activities
10. Strongest intensity

In each box, write the number which corresponds to the activity which you have carried out 
during this 15 minute period. Please consult the activity list provided to establish the proper 
intensity. If an activity is carried out over a long period (e.g. sleeping) you can draw a 
continuous line in the rectangular boxes which follow until such a time when there is a change 
in activity. To understand this further we suggest that you take a look at the example that 
follows.
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Participant: Day: Date:

TRIAL: PRE I POST: 24 HOUR

Minutes 0-15 16-30 31-45 46-60
Hour
12am
1am
2am
3am
4am
5am
6am
7am
8am
9am
10am
11am
12pm
13pm
14pm
15pm
16pm
17pm
18pm
19pm
20pm
21pm
22pm
23pm
24pm

NOTES:
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APPENDIX G
3RM PROTOCOL

3-repetition maximum testing protocol
1. Estim ate a light warm-up w eight that you can lift easily  for 6-8 rep s.
2. Lift the w eight for 6-8  reps.
3. R est for 1 m inute.

4. Estim ate a warm -up w eight with which you can com plete  5-7 reps, by adding 10-20  
pounds (4-9 kg) or 5-10%  to your light warm -up w eight.

5. Lift the w eight for 5-7 reps.
6. R est for 2 m inutes.

7. Estim ate a conservative , near-max weight with which you can com p lete  4 -6  rep s, by 
adding 10 to 20  pounds (4-9 kg) or 5-10%  to your warm -up w eigh t.

8. Lift the w eight for 4-6 reps.
9. R est 2 to 4  m inutes.

10. Increase the w eight by adding 10 to 2 0  pounds (4-9 kg) or 5-10% .
11. Lift the w eight for 3 reps. R est for 2 to 4 m inutes.

13. Lift the w eight for 3 reps. R est for 2 to 4 m inutes. If you w ere  ab le  to com plete  3 reps 
using proper technique, but no m ore, then record this w eight a s  your 3 rep m ax. If not

If you w ere  a b le  to perform 3 rep s  
then in c r e a s e  the w eight by 10-20  
pounds (5-10% ).

If you w ere u n a b le  to perform 3 reps then  
d e c r e a s e  the w eight by 5 to 10 p o u n d s (2-4  
kg) or 2 .5 -5% .

12. Lift the w eight for 3 reps. R est for 2 to 4  m inutes.

If you w ere  a b le  to perform 3 reps  
then in c r e a s e  the w eight by 10-20  
pounds (5-10% ).

If you w ere u n a b le  to perform 3 reps then  
d e c r e a s e  the w eight by 5 to 10 p o u n d s (2-4  
kg) or 2 .5 -5% .

continue:

If you w ere a b le  to perform 3 reps  
then in c r e a s e  the w eight by 10-20  
pounds (5-10% ).

If you w ere u n a b le  to perform 3 reps then  
d e c r e a s e  the w eight by 5 to 10 p o u n d s (2-4  
kg) or 2 .5 -5% .
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3RM testing protocol example:

1. Light warm-up: 100 lb
2. 8 reps -  very easy.
3. Rested for 1 minute.

4. Warm-up weight: 110 lb (added 101b or 10% of light warm-up)
5. 7 reps -  easy.
6. Rested for 2 minutes.

7. Near-max weight: 125 lb (added 151b of warm-up)
8. 5 reps -  fairly easy.
9. Rest 3 minutes.

10. 1st testing weight: 135 lb. (added 10 lb OR 9.6% of near-max)
11. 3 reps - felt good.
12. Rested 3 minutes.

13. 2nd testing weight: 145 lb. (added 10 lb OR 7.4% of 1st testing weight)
14. 2 reps -  couldn't do 3 reps.
15. Rested 3 minutes.

16. 3rd testing weight: 140 lb. (decreased by 5 lb or 3.4% of 2nd testing weight)
17. 3 reps -  barely.

18. Record 3 rep max (3RM) as 140 lb.

Protocol A dapted from E ssen tia ls of Strength Training and Conditioning 3 rd Edition



APPENDIX H

DETERMINATION OF GLYCOSYLATED HAEMOGLOBIN (HBA1C)

Whole blood was analysed for HbAlc on the Bio-Rad D-10 Haemoglobin Analyser 

(Bio-Rad Laboratories Ltd, UK).

Overview and Principles of Operation

The D-10 Haemoglobin Analyser is an automated system that provided integrated an 

method for sample preparation, separation and the determination of the relative 

percentage of specific haemoglobin in whole blood.

The D-10 Haemoglobin Analyser uses principles of high performance liquid 

chromatography (HPLC). The HPLC pump and proportioning valve deliver a buffer 

solution to the analytical cartridge and detector. Whole blood samples underwent a 

two-step dilution process prior to delivery to the analytical flow path. The vial adaptor 

in the sample rack identifies pre-diluted samples and the dilutions steps are omitted. 

The samples were aspirated directly and introduced into the analytical flow path. The 

process required a sample solution of 10 uL of whole blood in 2 mL of diluent. The 

detectable range for this device was an HbAlc 3.8 -  18.5%, with an intra-assay 

precision of 0.48% to 0.81%.
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APPENDIX K

ANTIOXIDANT SOLUTION

For Chapters 3 and 4, 100 uL of antioxidant solution was added to selected 

vacutainers, for the preservation of plasma adrenaline and noradrenaline.

Antioxidant Procedures

Into a beaker containing 15mL of deionised water, 1.22 g of L-glutathione reduced 

and 1.52 g of EGTA were added and left to mix on an unheated stirrer (FB70806 

Fisherbrand unheated stirrer, Fisher Scientific, UK). Once partly dissolved, a pH 

meter (InoLab pH 720, WTW, GmbH, Germany) was placed within the beaker and 

either 0.2 to 1 mL of HC1 or NaCl was added at a time until a pH of 7.0 was achieved. 

Once the solution was stable at 7.0, further deionised water was added to achieve a 

final solution volume of 20 mL. The solution was stored at 4 to 6 degrees Celsius for 

6 weeks maximum.
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APPENDIX L

CALCULATION OF CHANGES IN PLASMA VOLUME

Plasma volume shifts between pre- and post-exercise were calculated via the method 

of Dill and Costill (262):

Where, BV = blood volume, CV = cell volume, PV = plasma volume. BVpre = 100

i . BVpie = BVp0St x (Hbp0St / Hbp0st)

ii. CVpre = BVpre X (Hctpre)

iii. PVpre = BVpre -  Cvpre

Calculations of % changes in BV, CV and PV.

i. ABV% = 100 * (BVpost -  BVpre) > BVpre

ii. ACV% = 100 * (CVp0St -  CVpre) / CVpre

iii. APV% = 100 * (PVpoSt -  PVpre) / PVpre

Table: Percentage changes in plasma volume from pre- to post-exercise, across Chapters 4 
and 5.

M O D /
APV% LOW

NO-INSULIN
INSULIN

Mean -8.9 -10.0 -9.4

SEM 3.3 2.9 1.5

No statistical difference between experimental sessions (p>0.05).
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APPENDIX M

GEM 3000 ANALYSER: DETERMINATION OF BLOOD GLUCOSE, LACTATE

AND ACID-BASE PARAMETERS

Principles Of Operation

Overview

A reagent cartridge forms the central component of the GEM 3000, which contains 

the analytical sensors, flow system, calibrators, process control modules, wash 

solution and waste receptacle. When the cartridge is installed in the instrument, the 

chamber resides in a thermal block that maintains a temperature of 37 ±0.3 degrees 

Celsius and provides the electrical interface to chemically sensitive membrane sensors 

(Figure 2.5).

Calibration and Quality Control

Within the cartridge are two solutions, A and B, which enable calibration and internal 

process control checks. The A and B solutions provide low and high concentrations 

for all parameters determined by the GEM, except haematocrit, which calibrates only 

at a single level using the B solution. Prior to calibration, the "A" and "B" solutions 

are read as unknown solutions, and these values are recorded in the instrument's 

database. During calibration, these values are adjusted for any slope or drift that may 

occur over time.

The C solution is used for calibrating the p02 electrode at a low oxygen level, 

conditioning the glucose and lactate sensors, removing micro clots, and cleaning the 

sample path.
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W aste
Container

Solution C

Sensor
Card

_ . . . Check
Peristaltic Valve 
Pump

Reference _ ,
Solution Solution A

Solution B/  
Rinse

Sample
Inlet

Distribution Valve 
(Selects Solution A, B or C)

Figure 2.5: Illustration of GEM 3000 cartridge. The cartridge also includes a reference 
solution, distribution valve, pump tubing, sampler, and waste bag. Blood samples that have 
been analysed are prevented from flowing back out of the waste bag due to the presence of a 
one-way check valve in the waste line.

Operating procedure

Prior to blood sampling, the GEM disposable cartridge is first installed into the 

analyser (GEM iQM, Intelligent Quality Management). Then the device runs through 

an automated calibration, which precedes the insertion of GEM 3000 validation 

standards (GEM Calibration Validation Products, CVPs); three levels of blood-gas 

controls and 2 levels of hematocrit controls are required. The iQM programme 

automatically analyses a minimum of 2 levels of internal liquid quality controls (QC) 

every 4 hours and a third level every 24 hours; it evaluates QC data and notifies the 

operator when results exceed tolerance limits, it initiates corrective actions when 

tolerance limits are exceeded and disables the affected analyte(s) when self-correction 

is not achieved. It also continuously performs a series of function checks that monitor 

for system failure and adverse environmental conditions, including clots in the blood 

sample. The GEM requires 150uL of heparinised whole blood for analysis.

Determination Of Blood Analyte Levels

The reportable ranges for analytes measured across Chapters 3 to 5 are presented in 

Table 2.6.
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Electrochemical Sensors

The electrochemical sensors used in the GEM Premier 3000 PAK disposable cartridge 

are all formed on a common plastic substrate. The reference electrode on the sensor 

card provides a highly stable reference potential for the system. The individual 

sensors, with the exception of hematocrit and reference, are formed from layers of 

polymer films that are bonded to the substrate. A metallic contact under each sensor is 

brought to the surface of the substrate to form the electrical interface with the 

instrument.

Blood pH  and Potassium (K+)

The pH and electrolyte sensors are all based on the principle of ion-selective 

electrodes; that is, an electrical potential can be established across a membrane which 

is selectively binds to a specific ion. This simplified form of the Nernst equation can 

describe the potential:

E = E' + (S x  Log C)

Where E is the measured electrode potential, E' is the standard potential for that 

membrane, S is the sensitivity (slope), and C is the ion activity or concentration of the 

desired analyte. E' and S can be determined by the sensor response to the calibration 

solutions, and the concentration of the analyte (C) can be calculated for the measured 

electrode potential (E). For pH, "log C" is replaced by "pH" and the equation solved 

accordingly. The pH and electrolyte sensors are polyvinyl chloride (PVC) based ion 

selective electrodes, consisting of an internal Ag/AgCL reference electrode and an 

internal salt layer. Their potentials are measured against the card reference electrode. 

Figure 2.6 demonstrates the flow of a solution through an ion-selective sensor. If pH 

cannot be measured, then PC 02, HC03% base excess, are not reported.
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Sam ple path
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Ion selective membrane
\ _  Silver print /

!ard reference electrode

Figure 2.6: Cutaway view of ion. pH and pC 02 sensors, in the GEM 3000.

Carbon Dioxide (PC 02 mmHg)

Measurement of PC02 is essential to the determination of base-excess (ecf). The 

PCO, sensor is a pH sensor electrode covered by a C 0 2 gas permeable outer 

membrane (Figure 2.6). The sensor has an internal Ag/AgCl reference electrode and 

an internal bicarbonate buffer. The PCOz of the internal solution comes to equilibrium 

with the PC 02 of the blood sample, when the blood is in contact with the outer surface 

membrane. The pH of the internal solution relates to the PC 02 as a function of the 

Henderson-Hasselbalch equation:

where pKa is an equilibrium constant, HC03 is the bicarbonate ion concentration, and 

"a" is the solubility coefficient of C 0 2 in water. The generated potential versus the pH 

sensor is related to the logarithm of PCO, content in the sample.

Using these measurements, bicarbonate and base excess (ecf) were estimated in 

accordance with the manufacturer’s instructions, which are based on NCCLS 

guidelines (263):
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Actual bicarbonate (HC03) = pH + log pC02 -  7.608 

Base Excess (ecf) = cHCOf - 24.8 + 16.2(pH-7.40)

Glucose and Lactate

The glucose and lactate sensors are platinum amperometric electrodes poised at a 

positive potential with respect to the card reference electrode. Glucose or lactate are 

determined by enzymatic reaction with oxygen in the presence of glucose oxidase or 

lactate oxidase to produce hydrogen peroxide, which reacts at the platinum electrode. 

The current flow between the platinum electrode and the ground electrode is 

proportional to the rate at which hydrogen peroxide molecules diffuse to the platinum 

and are oxidised, which in turn is directly proportional to the metabolite (glucose or 

lactate) concentration:

I = (S x metabolite) + IZ

where I is the electrode current, S is the sensitivity, and IZ is the zero current. The 

value of S and IZ can be calculated from the calibration data for the sensor. The 

equation can then be solved for the metabolite concentration, where I becomes the 

electrode current produced by the blood sample. Figure 2.7 shows the configuration of 

this sensor.

Counter electrode Enzyme electrode

Diffusion controllingEnzyme layer_______________
(G lucose or Lactate oxidase)' 

Interference
layer

Sample pathrejection lay ef

wire
welt

Sensor cai

Silver print

3-electrode
potentiostat

Card reference electrode

Figure 2.7: Blood glucose and lactate sensor within the GEM 3000. The sensor is constructed 
of a three- layer composite membrane consisting of an inner layer for screening out the 
interferences, the enzyme for oxidation reaction, and the outer layer for controlling the 
metabolite diffusion in the enzyme layer.
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VISUAL ANALOGUE SCALE

Mmpii uesonpnve ran imensny ocaic

— i— i— t— t— i
No Mild Moderate Severe Very Worst

pah pain pain pain severe possible
pah pah

0-10 Numeric Pah Intensity Seale1

I I I I I I I I I I I
0 1 2 3 4 5 0 7 8 9  10

No Moderate Worst
pah pah possible

pain

Visual Analog Seale (VAS)1

No Pah as bad
pah as it could

possibly be

1lf used as a graphic rating scale, a 10 cm famine is recommended. 
?A 10-cm haaelne is recommended for VAS scates.



MUSCLE SORENESS INDICATOR

Name: Trial: Time:Date:

+ 24 hour post-exercise test exercises to  be scored;

1. Lateral abduction of both arms from hips to  above head and return.
2. Squat m ovem ent

3. Bicep Curl
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APPENDIX O
POST-LABORATORY BLOOD GLUCOSE, INSULIN DOSAGE AND DIETARY

INTAKE LOG SHEETS (DIARY)

Participant: Basal/Bolus: Blood Glucose Site: i-.;;. i m
Day:_____________________ Date:____________________ Trial:

Time Blood Glucose Number of CHO Tabs Additional Notes
+ lh [ IMF ]
1pm

4pm

7pm
Pre-Sleep [ ]

Wake-up (Fasted)

Meal Plan
Time Insulin Dose (Type; Units)

Breakfast End of Trial: [
[Time.......... J

Lunch l p m+ / - l h  f

Dinner ~7pm

Supper? I
[Additional Food]

Notes...
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Participant:
Day:

Insulin Administration Site: 
Date:

Blood Glucose Site: 
Trial:

Time
Blood

Glucose
(Before
Meal)

Insulin
(Type,
Units)

CHO
Tabs

(Quantity,
Time)

Food Consumed (including 
set meal plan and 
additional foods)

/ Additional Notes
Breakfast
Time:

Additional
Food/Snack
Time:
Lunch
Time:

Additional
Food/Snack
Time:
Dinner
Time:

Supper (Optional 
Food)
Time:
(Pre-sleep
B’Glucose)
Wake-up
(Fasted
B'Glucose)
Time:

> Dan's Mobile: E-mail: H H N H H H H H i
> Accelerometer to be worn at all times until the following morning. Not to be worn 
when showering.
> No need to record dietary constituents of meal plan, but please record constituents of 
any additional foods consumed.
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APPENDIX P
PUBLICATIONS ARISING FROM THIS THESIS

(Compact Disc)


