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Summary
The focus of the present work has been on viscoelastic flows through 4:1:4 
hyperbolic contraction/expansion geometries, filament stretching and rheological 
properties of polymer melts. In this study, a time-dependent hybrid finite 
element/finite volume (fe/fv) parent-subcell scheme has been employed to solve the 
governing equations (mass and momentum conservation and constitutive model). 
Here, the fe/fv algorithm utilizes a time-stepping method to advance to temporal 
solutions or steady-state conditions.
In the study of complex flow through hyperbolic 4:1:4 contraction/expansion 
configurations, two types of rheological models have been used to investigate the 
rheological behaviour of wormlike micellar solutions. Here, the time-dependent 
thixotropic MBM and network-based time-independent EPTT models have been 
compared. At low-levels of elasticity (We—>0), the MBM model inconsistently 
predicted epd-values, as opposed to the network-based EPTT. This has lead to the 
examination of new models (NM_xp and NM_T) for this purpose, which introduce 
elastic effects into the structure (destruction) equation. As a complimentary 
contribution, the influence of the shape of the contraction/expansion configuration 
and its effects on epd prediction has also been demonstrated, by comparing 
complimentary findings for rounded-comer abrupt 4:1:4 geometry flows.
In the study of rheological measurements for polymer melts, it has been found that 
viscoelastic properties cannot be effectively investigated by a single frequency- 
sweep, since the substance is changing dramatically during the measurement. Hence, 
the method of taking data in a few intervals of frequency (discrete frequency-sweep) 
has been proposed and adopted to avoid such issues, with either long exposure time 
at high temperature, or whilst taking data in a time shorter than the thermal stability 
time. This approach has allowed for a small improvement in precision under the data 
acquisition. This has satisfied one goal to improve the measurement techniques and 
address some possible errors in experiments; whilst also allowing these experimental 
data to be used as characteristic material input-data to the simulation software under 
polymer processing conditions.
Also experimental and computational studies of Capillary Break-up Extensional 
Rheometry (CaBER) have been considered to predict extensional rheological 
response of biofluid sputum, and correlate this to the degree of infection in patients 
suffering from Chronic Obstructive Pulmonary Disease (COPD). Hence, a measure 
of extensional rheology through /?m.d-evolution of sputum (experimental), has been
compared against that derived from numerical prediction for two models - SXPP and 
MBM. The aim here has been to link numerical data with that emerging from 
experimental/clinical trials to provide a diagnostic tool (biomarker), revealing insight 
on state of disorder and impact upon its resultant treatment. The broad distribution of 
experimental results across three patient-samples suggests the necessity of adopting 
specific criteria, to derive consistent correlations between infected versus uninfected 
data. In this manner, three different criteria have been investigated, the most 
appropriate of which has been found to be that, with the longest-time to break-up 
amongst the infected data, as well as the larger extensional viscosities (r|e)- For the 
uninfected data, the closest Rmid starting-value to the infected state has been chosen 
(equivalencing their step-strain Hencky-strain). The sensitivity of simulation results 
to the choice of aspect ratio (L/D=1.6, 1.8 and 2) has also been investigated to 
predict suitable windows for experimental operation sets. The outcome suggests that 
the results commencing from a Hencky-strain two is the superior choice to adopt.



To me there has never been a higher source of 
earthly honour or distinction than that connected

with advances in science.

Sir Isaac Newton

Chapter 1 

Introduction

Fluid mechanics deals with fluids (gases or liquids), either in rest or in motion, 

and the forces that act upon them. In physical science, fluid dynamics is the study of 

the effect of forces on fluid motion. Historically, the study and practice of fluid 

dynamics concerned the use of pure theory or pure experiments. However, 

introducing the advanced computer as a tool for analysis, combined with the progress 

of accurate numerical techniques for solving model problems from the physical 

world, has transformed the approach of study and practice in fluid dynamics today. 

Computational Fluid Dynamics (CFD) approach has emerged and acts as an equal 

co-partner with theory and experimental techniques in the analysis and solution of
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fluid dynamics problems. Hence, today CFD is playing a leading role in the 

understanding and interpretation attached to the results of theory and experimental 

measurements, and vice versa. Computational rheology is a sub-discipline of CFD 

which deals with complex non-Newtonian fluids. The main challenge to the 

computational rheologist is to be able to apply numerical techniques to efficiently 

predict the rheological characteristics of complex fluids in practical complex flow 

scenarios.

Personal care products, paints, inks, moulded plastics, food products, blood and 

mucus are some examples of Theologically complex fluids. Understanding the 

performance of these complex fluids under flowing conditions is of high importance 

in many industrial processes, such as coating, extrusion and injection moulding or 

natural processes within the human body. Three fundamental laws of conservation of 

mass, linear momentum and energy, along with a set of constitutive equations, can be 

applied to the analysis of any viscoelastic fluid flow problem. Here, the constitutive 

equations link the dynamic description of the state of stress to the material 

deformation in the flow. In order to evaluate the quality of the appropriate 

constitutive equations to the particular fluid properties involved, one can combine 

numerical-experimental and laboratory-experimental approaches together.

An appropriate choice of viscoelastic constitutive equation remains an open and 

challenging issue. For solving some flow problems, enhancement in both constitutive 

modelling and numerical techniques is crucial. Many constitutive equations have 

been introduced throughout the last decade, but none have been established as 

absolutely universal in application [1.1,1.2]. Hence, new and more realistic 

constitutive models are continuously being developed to represent more complex 

systems; or, to improve on those whose satisfactory description has been lacking or 

ambiguous [1.2]. These developments would include kinetic-theory pom-pom, 

network-theory non-thixotropic Phan-Thien Tanner (PTT) and thixotropic Bautista- 

Manero (BM) models. Industrial applications that involve polymer melts and 

solutions, such as plastics, paint and ink, makes their computer simulation and 

prediction a subject of high importance in todays modem society.

The PTT model, based on network-theory, is held to be most effective in 

representing the properties of polymer melts and solutions. Additionally, the
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relatively new pom-pom models, based on kinetic tube-theory, have improved the 

performance representation of branched polymeric systems, in both extensional and 

shear flow situations. In contrast, the thixotropic BM models are proposed to 

represent the unique rheological phenomena typically demonstrated by viscoelastic 

surfactant (worm-like micellar) systems, so common in biofluids.

Surfactant solutions, capable of aggregating to form giant worm-like micelles, 

can behave in a manner comparable to that displayed by polymeric systems. These 

wormlike micellar solutions are self-assembled and exhibit rapid evolution in 

structure, and therefore, in rheological behaviour [1.3]. The remarkable rheological 

properties of these solutions have led to their expansive use as rheological modifiers 

in many consumer/personal care products, such as paints, detergents and shampoos. 

Moreover, viscoelastic surfactant solutions are currently being used in a wide range 

of industrial applications including examples within oil fields as fracturing-fluids 

(enhanced-oil-recovery), and in hydrodynamic engineering as drag-reducing agents

[1.4,1.5]. The modelling of these types of solutions requires appropriate rheological 

models capable of predicting structural change (construction and destruction). Of this 

variety, the BM models have been introduced recently to deal in particular with the 

modelling of wormlike micellar solutions. These BM models are based on the 

Oldroyd-B model, coupled with a dynamic accompanying equation for fluidity 

(viscosity inverse), comprising of thixotropic parameters that govern structural 

change.

The flow through a contraction/expansion configuration has more recently 

become established as a standard benchmark problem in experimental and 

computational rheology [1.6]. This also closely represents the typical shape of a 

bottle-neck of industrial interest for holding or distributing personal care products, 

such as shampoos. The first point of which is to focus on the accurate prediction of 

excess pressure-drop {epd). This in itself stands as a ‘grand-challenge’ to the field of 

computational rheology [1.6,1.7], more particularly for constant viscosity strain- 

hardening types of fluids. Such an extra pressure loss is observed in axisymmetric 

contraction/expansion flows, for constant-viscosity Boger fluids and shear-thinning 

elastic liquids, over that presented by an equivalent Newtonian fluid of similar
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viscosity. As argued in chapter 4, the modelling of such phenomena requires robust 

and reliable rheological models.

The research conveyed in this thesis aims to investigate the flow performance of 

Theologically complex fluids (computational rheology) in two areas: flows in 

axisymmetric hyperbolic 4:1:4 contraction/expansion configurations, and filament 

stretching apparatus (Capillary Break-up Extensional Rheometer_CaBER). In 

addition, rheological characterization (experimental rheology) of three polymer melts 

has been carried out. The simulation work has been conducted using a Taylor- 

Galerkin Pressure-Correction [1.8], time-dependent hybrid finite element/finite 

volume (fe/fv) parent-subcell software suite for solving viscoelastic flow problems, 

developed in-house by the Swansea computational rheology group. This software, 

and its associated algorithms, has proven itself well capable of solving the range of 

flow-settings and configurations of current interest [1.9-1.19].

After this general introduction on computational rheology and the flow of 

thixotropic material in complex geometry, the presentation of the work proceeds in 

chapter 2 to provide a general background to the governing equations, rheometrical 

flows (pure shear and pure extensional flows) and various relevant and related 

viscoelastic constitutive equations. In particular, the MBM model and its material 

functions have been highlighted, providing some of the adjustments proposed for this 

type of model. Additional and supportive rheological plots are included in later 

chapters, as and where necessary; see for instance, discussion on the new micellar 

models covered in chapter 4. Moreover, different types of rheometers, with their 

functionality and practical use, are also described.

Chapter 3 outlines the details on the numerical procedures employed in this 

thesis (hybrid finite element/finite volume subcell (fe/fv) method). This covers the 

basis and derivation of such a scheme, as it is deployed in solving the current 

isothermal incompressible viscoelastic flow problems of immediate interest.

Modelling of flow through a rounded-comer hyperbolic 4:1:4 contraction- 

expansion geometry, of axisymmetric configuration, is considered in chapter 4, 

whilst appealing to three types of constitutive models - the MBM model (for base 

thixotropic properties), the new micellar models (NM_xp & NM_T; for advanced
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thixotropic modelling), and the EPPT model (for non-thixotropic properties). Focus 

is given to interpret the flow behaviour of these constitutive models, employed in this 

configuration, against their response in simple rheometrical flows (characterization 

of their material functional response). For this purpose, this study reports on the 

relationship between the pressure-drop, the first normal stress difference, the strain 

rate across the geometry and the material functions involved. Here, the flow is 

considered under laminar, isothermal, and incompressible flow conditions. To 

determine the factors that contribute to epd-prediction, a supplementary study has 

been prepared by comparing current findings against those reported earlier in abrupt 

axisymmetric, rounded-comer, 4:1:4 contraction-expansion flows of Lopez-Aguilar 

et al. [1.20].

Chapter 5 presents the experimental work and characterisation results for three 

polymer-melts. This section focuses on the determination of the dynamic viscoelastic 

properties of High-Density Polyethylene (HDPE), Nylon 11 (Polyamide-PAl 1) and 

Poly-Vinylidene Fluoride (PVDF) melt, which were measured using a controlled- 

strain rheometer (TA Instruments ARES-G2), for the temperature range of 220-240 

°C. Using the Cox-Merz rule, dynamic oscillatory data (in terms ofG ,G  ) were 

fitted to predictions according to the Cross model. The experimental data collected in 

this part of the study was used by others as characteristic material input-data to the 

same simulation software suite as used here (see [1.21]). A quantitative practical 

comparison is described in chapter 6 between experimental data for a bio-fluid 

(sputum), derived from a FiSER-CaBER apparatus, against corresponding numerical 

simulations, using the techniques explored above. Here, a full description is provided 

of the dynamic free-surface problem specification and variations required to the 

numerical algorithm. The selection of constitutive models used in this section of 

work included the Pom-Pom and the MBM models. Finally, in chapter 7 conclusions 

are presented, along with some general remarks and recommendations for future 

work.
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All the mathematical sciences are founded on relations 
between physical laws and laws o f numbers, so that the 
aim o f exact science is to reduce the problems of nature 

to the determination o f quantities by operations with
numbers.

James Clerk Maxwell

Chapter 2 

Rheology and Rheometry

This chapter delivers introductory concepts in rheology, the characteristics of 

viscoelastic materials and fluids, the basic equations of fluid mechanics 

(conservation laws), simple (rheometric) flows and constitutive equations. In 

addition, rheological models are considered, which provide physical interpretation of 

viscoelastic behavior. Models such as Maxwell, Oldroyd-B, Phan-Thien/Tanner, are 

addressed briefly. A more recent type of constitutive equation, the MBM model and 

its response in rheometrical flows, is also expressed in some detail. Moreover, two
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characteristically different types of rheometer are introduced, these being those used 

to primarily determine shear properties and those counterparts used for extensional 

properties.

2.1 Introduction

Rheology is part of the physical sciences and is concerned with the description 

of flow and deformation of materials, in a liquid or soft-solid state, under the effects 

of applied force (external and internal forces). Newtonian fluids can be characterized 

by a constant coefficient of viscosity regardless of any prevailing external stress, for 

a particular pressure and temperature. In other words, these fluids have a linear 

relationship between viscosity and shear stress or strain rate. Only a small group of 

fluids demonstrate such a constant viscosity behaviour. This can be contrasted with 

non-Newtonian fluids (covering a large class of fluids), whose viscosity and 

viscoelasticity depends either on the applied shear rate or on the history of the fluid. 

As such, they can become thicker or thinner when exposed to an external stress. 

Additionally, internal variations are also a fundamental factor that contributes to the 

bulk rheological properties of a material. In general, rheologists are interested in the 

flow of non-Newtonian complex fluids.

Viscoelastic materials are a special case of non-Newtonian fluids. To clarify the 

term viscoelastic, it is appropriate to outline a general classification of solids and 

liquids. If a material retains its shape when subject to an external stress, it is referred 

to as a solid; whilst, if the change in shape is continuous and irreversible (flow) with 

the applied stress, the material is characterized as a liquid (see Barnes et al. [2.1]). As 

a result, two limiting elastic and viscous responses can be represented through the 

corresponding two fundamental laws of Hook and Newton. Both are linear laws, 

which adopt linear proportionality relationships, regardless of the degree of applied 

stress: between stress and strain (in the case of a deforming solid), and between stress 

and strain rate (in the case of a flowing fluid). This interdisciplinary field is often 

governed by research on materials with industrial application, whose properties fall
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between those of ideal solids and ideal liquids, which occupy two ends of the 

material description spectrum. Viscoelastic materials exhibit both solid-like 

(elasticity) and liquid-like (viscous) response. Accordingly, the relationship between 

stress and deformation for these types of material proves a combination of a partly- 

viscous contribution and a partly-elastic one. Thus, neither Newton’s law of 

viscosity, nor Hooke’s law of elasticity, prove adequate to completely describe the 

flow behavior of such complex fluids. For a given material and a flow state, after 

termination of applied stress, the time of the fluid to relax can also be determined to 

supply a relaxation time.

All the research carried out in the present study applies the general concept of 

continuum mechanics. Modeling substances at a continuum level essentially absorbs 

those process and interactions that are transmitted at inter-molecular distances, with 

the change in properties due to these lengths, to represent their consequence at this 

larger level of length description. Continuum mechanics is a combination of 

mathematics and fundamental physical laws, such as energy, mass and force 

balances; that approximate the large-scale behaviour of a material that is subjected to 

mechanical stress. Modeling objects in this way, we normally choose an arbitrary 

large number of molecules, a fluid element, to average properties and describe 

motion. To describe the behaviour of a fluid element under deformation, fundamental 

balance laws (conservation laws) are applied via temporal-spatial differential and 

integral operators over appropriately small volumes (large enough to satisfy the 

continuum assumption). A constitutive equation, or stress equation of state (stress- 

strain interaction relation), proves to supply a vital connection between material 

property description from rheology and the laws of flow under continuum 

mechanics. As such and together, these conservation laws and constitutive equations 

(stress-strain laws) may be appealed to adequately represent the flow of realistic 

materials. Thus, determining a suitable equation relating stress and strain for any 

specific material becomes a principal concern. These models must be selected and 

adjusted carefully to suit any particular application and deformation state.
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2.2 Viscoelastic Fluid Flow Equation

Following on from above, the equations governing incompressible laminar 

isothermal fluid motion therefore consist of three sets of equations resulting from the 

conservation of mass and linear momentum, along with a constitutive equation for 

stress. From the condition of incompressibility, mass conservation is converted into a 

continuity equation.

2.2.1 Conservation of Mass

The conservation of mass (a fundamental concept of physics) states that the 

amount of mass in any closed flow system remains constant, mass is neither created 

nor destroyed. This law implies that the rate of increase of mass in an arbitrary 

control volume V equals the net influx of mass crossing its surrounding surface area 

S. This can be expressed mathematically in integral form as:

In this form, p represents the fluid density, u the fluid velocity vector, n the unit 

surface normal vector (defined positively in the outward direction from the surface)

(2 . 1)

and t represents the independent time variable. Applying the divergence theorem1 to

Eq. (2.1), the differential form of the mass conservation is written as:

| y + V ( p u ) = o , (2.2)

The divergence theorem relates the flow (flux) of a vector through a surface to the state of the vector 
field inside the surface.
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For isothermal and incompressible flow, where p is taken as a constant in time 

and spatial distribution, Eq. (2.2) reduces to the continuity equation:

V u  = 0, (2.3)

2.2.2 Conservation o f Linear Momentum

Newton’s second law of the motion (identified as the principle of conservation 

of linear momentum) states that, the change of linear momentum in a system is equal 

to the sum of the external forces acting upon it.

This law implies that the rate of increase of momentum in any arbitrary control 

volume V equates to the net influx of momentum, crossing its surrounding surface 

area S, plus any external forces. The external forces can be classified into two 

distinct groups of forces, body forces (such as gravitational and electromagnetic 

forces) and surface forces. The surface force can be described through the Cauchy 

stress tensor. This can be expressed in differential form as:

where a is the Cauchy stress tensor. This is a combination of the extra-stress tensor 

(T), and isotropic pressure, as:

In this equation, p is the isotropic pressure, I is the identity tensor and T (extra-stress 

tensor) accounts for viscous/viscoelastic phenomena. Using the definition of a total 

convected derivative as,

(2.4)

<7 = —p i  + T (2.5)

(2.6)
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and neglecting body or gravitational forces (g), due to insignificant contributions in 

comparison to other forces such as pressure or stress, the momentum transport 

equation can be expressed as:

P
f  du ^— +u-Vu

dt
= -V p  + V T . (2.7)

2.2.3 Constitutive Equations

As expressed above, the constitutive equation or rheological equation of state, 

deals with supplying a mathematical model to relate applied stress to strain (or 

deformation) experienced by a material. Apart from experimental observations, such 

derived constitutive equations must also satisfy some theoretical and basic 

mathematical principles, considerations to effectively represent fluid response from a 

mathematical point of view [2.2,2.3].

. Stress Determinism: The stress acting on a viscoelastic fluid at a given point in a 

flow is determined by the history of the motion of that point.

. Local action: The stress at any spatial point in the fluid is influenced by the 

history of the deformation in the neighbourhood around that point.

. Frame indifference: The constitutive equations must be independent of the 

coordinate frame of reference. Based on the principle that constitutive equations 

characterize inherent properties of a material, they must be frame invariant’.

. Invariance under superposed rigid body motion: Any rigid body motion 

imposed on the whole fluid must not influence the response of the material.

2.3 Standard Rheometrical Flow

To investigate the behaviour of a fluid in a complex flow setting, it is essential to 

study the behaviour of that fluid in simple well-defined ‘ideal flow s’. The two typical 

sets of flows, simple shear and elongation deformation, are those conventional flows
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used for this purpose and in rheological measurement. A requirement is that these 

two flow types should be sufficiently simple, so that either their corresponding 

velocity field or stress tensor can be easily calculated from the proposed constitutive 

equation, or that the flow should be practically feasible under experimental good 

practice.

2.3.1 Simple Sh ear Flow

For a simple shear flow we consider the situation represented in Figure 2.1. The 

fluid is restricted between two parallel flat-surfaces, separated by a gap h, with the 

upper-plate moving at constant velocity U. To maintain the constant velocity of the 

plate, an applied stress (a) is necessary which is proportional to the velocity gradient 

( y  is the shear rate), i.e.

o=n, {y )y<  (2-g)

u(h) = yk

Figure 2.1. Schematic diagram of simple shear flow under 
constant shear-rate

For a Newtonian fluid, viscosity {ifs) is constant under all shear-rates. In simple 

shear, the velocity field is u = (u,v,w) = f(  y,0,0) and the velocity gradient in this 

case (in Cartesian coordinate) is defined as:
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"0 0 0"
Vu = r 0 0

0 0 0
(2 .9)

The shear rate tensor y  for this flow is then given by:

y  = Vu + Vu7 =
0 7 0

7 0 0
0 0 0

(2.10)

The properties that vary between Newtonian and non-Newtonian fluids are the 

first (N]) and second (N2) normal stress difference. Their magnitudes are zero for the 

case of Newtonian fluids, whilst for non-Newtonian fluids, they are defined as:

w, (r)=<r„-<r>y= r , ( r ) f ,  

n 2 {r)=<7y,-<ra =v'2{ r ) f <

(2 .11)

(2 .12)

where y/i and \f/ 2  are known as primary and secondary normal stress coefficients, 

respectively.

2.3.2 Uniaxial Elongadonal Flow

There are three different types of extensional (shear-free) deformation, namely, 

uniaxial, biaxial and planer; each categorized according to their velocity and 

deformation rate profiles. Here, we consider uniaxial elongational flow (see Figure 

2.2) in which the flow is stretched (exposing a positive constant extensional rate) in 

one particular direction, where the extension is maximum in magnitude. Due to the 

incompressibility2 condition, the flows in the other two directions will tend to

2The flow is incompressible if the divergence of the velocity field is identically zero.
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compress equivalently. In general, pure extensional flow occurs along the centreline 

in a contraction and contraction/expansion flow geometry.

U

s
/  t- --I---

I
J—

g - - r
t r
i i “1—?”
A'

Figure 2.2. Schematic diagram of uniaxial elongational flow

In steady uniaxial extensional flow, the velocity field and velocity gradient are 

expressed as:

u ( x ) = e x

v{y) = ~i£y . 
w( z )  = - { e z

& Vu =
€ 0 0

0 —  —  £2 c 0

0 0 —  —  £2 .

(2.13)

where e  is the strain or extensional rate. The resistance, or extensional viscosity, is 

then defined through the relationship:

TtM )  = (2 .14 )

For a Newtonian fluid, viscosity ( 7je) is a constant under all shear-rates, and the 

subsequent relation is satisfied:

CNewtonian) (2.15)

At all deformation rates, it is expected that all fluids, including those with 

viscoelastic properties, fulfil (2.15), that is,

rje (e  -> 0) = 3tjs ( y  -> 0) (Viscoelastic) (2 .16)
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The ratio of extensional to shear viscosity is defined as the Trouton ratio (Tr).  

The Trouton ratio, proposed by Jones et al. [2.4], for uniaxial elongational flow can 

be defined as:

Tr =  ̂ (217)
r i , ( r = J 3 e )

This ratio, for all values of e , for inelastic fluids assumes the constant value of 

three. Additionally, for viscoelastic fluids this Trouton ratio is anticipated to satisfy,

7 r ( f -> 0 )  = 3 (2.18)

2.4 Constitutive Models

Constitutive equations (or their derived and associated models) establish a 

relationship between stress, rate-of-change of stress and deformation rate. They can 

be expressed in either differential or integral form: in the present work, only the 

differential form is considered. Such constitutive equations can be classified into 

those derived from simply phenomenological observation, and those models derived 

from underlying theory (first principles). Classical cases of phenomenological 

models are Maxwell model, Oldroyd-B model. The PTT model, based on network 

theory, and the pom-pom model, based on tube-kinetic theory, are just some 

examples of typical constitutive models of relevance to this work and derived from 

background theory.

For an incompressible Newtonian fluid, the purely viscos stress is given by,

T = 2 //D , (2.19)

3 Phenomenological models try to model a system based on observations of phenomena occurring.
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where D is the rate-of-deformation tensor, expressed as:

D = {(V u + Vut ), (2.20)

As discussed above, p is the constant shear viscosity. Also, the extensional 

viscosity for a Newtonian fluid is constant in extension. Note that more complex 

fluids under small deformation also manifest Newtonian-like behaviour. With a 

generalized Newtonian fluid, the shear viscosity is not constant, but a function of the 

shear-rate, expressed by,

The elastic-viscous stress-splitting (EVSS) concept, which introduces a derived 

extra-stress tensor variable, was first introduced by Perera and Walters [2.5],

This technique applies splitting of extra-stress into its viscous and elastic 

(polymeric) terms, and modifies variable reference in the momentum and constitutive 

equations, producing a set of equations involving the velocity u, the pressure p, and 

new additional elastic-stress t.

2.4.1 Maxwell Model

The Maxwell model [2.6] is considered as the simplest constitutive equation to 

model viscoelastic fluids. The general form for this model in tensor form is,

where A represent the characteristic (relaxation) time of the material. Replacing the 

original time derivative in (2.23) by a convective derivative alternative, this equation

(2.23) can be re-written as the upper-convected Maxwell (UCM) model,

T = 2 p ( r ) D , (2 .21)

T = Ts + T , (2.22)

T + A T  = 2juD. (2.23)
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V
T + A T  = 2jliD  . (2.24)

or the lower-convected Maxwell (LCM) model,

A

T + A T  = 2 //D . (2.25)

v A

where the upper- ( T ) and lower- ( T ) convected derivative of the extra-stress tensor 

are expressed, respectively, as:

The both UCM and LCM models include memory effects and first normal stress 

differences.

2.4.2 Oldroyd-B Model

The Maxwell model does not include a term to express solvent presence. To 

overcome this deficiency, a characteristic retardation time, A j , is introduced into the 

equation for the UCM model (2.24);

Equation (2.28) is known as the upper-convected Jeffreys or Oldroyd-B model

[2.7]. Referring to equation (2.22), under an EVSS construction, the model is split 

into two different equations, one for the solvent (viscous) contribution and the other 

for polymeric (elastic) component, i.e.

(2.26)

(2.27)

(2.28)

(2.29)
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V
t  +  A t  = 2//pD , (2.30)

in which,

M = Ms+MP and (2.31)

In equations (2.29)-(2.31) t and fip represent the polymeric stress and zero 

shear-rate viscosity contributions, respectively; likewise, t s and jus are the 

contributions to the solvent component. This model does not support shear-thinning 

behaviour; yet, it does predict a non-zero response in under shear. Both, Maxwell 

and Oldroyd-B, models predict the same unbounded response in extensional 

viscosity, tending to infinity as the strain-rate approaches to l/(2A ). In addition, both

model forms and for all shear-rates, predict a constant shear viscosity and a 

vanishing N 2 in shear (with the exception of lower convected model alternatives that

would predict a non-zero N 2).

2.4.3 Phan-Thien/Tanner (PTT) Model

This model was introduced by Phan-Thien and Tanner (PTT) based on the 

network theory (for polymer network and solutions) [2.8,2.9], considering the rate of 

creation and destruction of network junctions. The single relaxation time PTT 

constitutive equation may be expressed as,

□

/ ( t ) t + At = 2//pD , (2.32)
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Here, t is the Gordon-Scholwalter convected derivative4 and the general form of the 

extra function / (  t )  is expressed as,

(  \  
f ( T )  = exp — 7V(t) . (2.33)

The s and § constants are two variable non-dimensional material parameters 

which contribute in controlling the extensional and shear response of the model. 

Through Taylor series expansion of the exponential term, the linear alternative form 

may be extracted and identified as,

This class of models support Shear-thinning behaviour. Additionally, both model 

forms predict extension-hardening response in extensional viscosity, although strain- 

softening is expected for the exponential form, whilst the linear form displays 

sustained hardening except for some extreme values ( ePTT —»1) moderate softening 

is also detected.

2.4.4 Pom-Pom Model (SXPP)

The original pom-pom model was proposed by McLeish and Larson [2.10] to 

represent the behaviour of idealized polymer chains. This model is based on the tube- 

theory and takes into account the simplified topological structure of the polymer 

branched chains, see Figure 2.3. The polymer chains appear as a backbone segment

/ ( t)=  V "
'  A- , s

tr(  t  ) exponential,

(2.34)

l + £prr— tr(y) linear.
p

□ v
Defined as: T = T+ ̂ ( t.D + D.t ) .
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with the same number of dangling-arms (q) attached at both limits of the backbone 

section. The drag that the melt exerts on these arms causes the backbone to stretch.

9
9

Figure 2.3. Schematic structure of pom-pom molecules

The existence o f  branching points slows down the backbone-reptation^

development. The process o f  arm-retraction assists the molecule to free the polymer 

chain from the tube shaped by its environments. When the molecule reaches its 

m aximum  stretched condition the arm-retraction is activated and the arms slowly free 

from the tube by diffusion. The backbone stretch is represented by the parameter, 

which is the extension of the polymer chain scaled by its equilibrium length

A key feature of this type o f  model is the separation o f  stretch and orientation 

relaxation times. The model comprises of  two decoupled equations, one for each 

relaxation process. An extended version of  the original pom -pom  model, Single- 

eXtended Pom-Pom (SXPP), introduced by Verbeeten et al. [2.11,2.12] to overcome

backbone backbone

5 Chain relaxation in tube theory a long  their co nf in ing  tube.
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three drawbacks encountered with the original formulation of the model, which is 

unbounded response at high strain-rates for the backbone orientation equation; 

discontinuities due to the finite extensibility (maximum backbone stretch) condition; 

and a zero second normal stress difference in shear. The evolution for the polymeric 

extra-stress in the (SXPP) model in differential form is,

Here, \ b > \ s are the orientation and backbone stretch relaxation times, 

respectively; a  is an isotropy parameter andG0is the linear relaxation modulus. The 

backbone stretch is directly coupled to the extra-stress tensor,

2.4.5 Bautista-Manero Model; Modified BM Model (MBM) Model

To investigate the rheological behaviour of wormlike micelle systems, Manero 

et al. [2.13] introduced a new model, Bautista-Manero (BM) model, akin in structure 

to the Oldroyd-B model for the stress, coupled with the kinetic equation. Such a 

model accounted for construction and destruction of the structure of micelles in fluid, 

which derived a constitutive system capable of producing shear-thinning and strain- 

hardening/softening response. This BM-model may be expressed through the 

following system of equations:

Extra-stress evolution for ( t ),

4 » *  + / ( f )T + -^ -T -T  + G0[ / ( T ) - l ] l  = 2^0i,G0D, (2.35)

where,

(2.36)

(2.37)
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Kinetic equation for ( I/77),

d_
dt (2.39)

construction destruction

where Xs is the structural relaxation time (micellar network construction), k the 

kinetic constant for structural breakdown (network destruction), G0 the elastic 

modulus, Xj the retardation time (associated to the solvent viscosity), 7j0 and rj  ̂are 

the zero and high shear-rate viscosity, respectively.

However, the BM-model predicts the unbounded response in extensional 

viscosity, even at finite deformation rates, presenting unphysical behaviour. In order 

to address this problem, Boek et al. [2.14], suggested a modified version of BM 

(MBM) model, in which the solvent ( tjs ) and polymeric ( rjp) viscosity contributions

are split. This MBM model, based on the EVSS concept (T  = ts + t ), consists of 

Newtonian-type solvent contribution ( t 5= 2 //sD) and the polymeric terms (in 

dimensional form) represented through the following equations:

(2.40)

structure equation,

(2.41)
d t V l p )  'H 'V  % )  U J

Here, the coefficient k/rj^ is treated as a single parameter. This reformulation 

delivers continues extensional viscosity response.



• Non-dimensional form: In order to include this model within the local finite 

element/volume software library, expressing the system of equations in non- 

dimensional form is essential.

The governing equations in non-dimensional forms are expressed via length 

scale L (unit length), velocity scale U , time scale L/U  , and pressure and extra-stress 

scale ofjuU/L.  The parameter fi = jUs +jUp is the total viscosity. The non- 

dimensional parameters are defined as:

* 11 * U  tv* T tv * P  *  ̂ D s r \  au = - ,  t = - t ,  D = - D ,  p =  rp =   77• (2-42)
(nPo + V s ) j

For an incompressible and isothermal flow conditions, the relevant mass 

(Equation 2.2) and momentum (Equation 2.7) conservation equations may be 

expressed in dimensionless form (the * notation on dimensionless variable is 

omitted) as:

V u  = 0, (2.43)

flu
Re—  = V T - / ? g u V u - V p .  (2.44)

d t

Introducing the group numbers and dimensionless parameters Reynolds number 

( R e ), Weissenberg number (We )6 and solvent fraction ( J3) are given by,

Re = p  UL = P =  (2.45)
\nPo+ns) L K o + % )

6 We notation is used here; note: this is frequently replaced by Wi to avoid confusion in wider 

CFD context with Weber Number.

25



Where the reference viscosity is taken as the zero shear-rate viscosity, so

JJpo +  Ui
o+n.) {n„o+ns)

that t ^ + ----- -— x = l- Here, ijs and rj Q are the solvent and zero-rate

polymeric viscosity, respectively; and We governing elasticity is a function of the 

characteristic material relaxation time ( \ ).

A differential constitutive equation in general form (in dimensionless-form) may 

be expressed as [2.1],

3t
W e -^£- = 2 ( l - J 3 ) D - f r p - We( u .VTp - V u 7.rp - t^ .V u )  . (2.46)

Using the zero-rate polymeric viscosity as a scaling factor, the parameter /  can 

be defined as f  =  { Tj po/ rl p )  * then Equation (2.41) can be reorganize into that to 

determine /  , as follows:

J =  f ( 1- / )  + f ^ k ° T, : D - (2-47)

Once again, applying non-dimensionalisation, Equation (2.40) takes the general 

form of Equation (2.46) and Equation (2.47) now becomes,

From Equation (2.48), the dimensionless parameters of structural construction 

(m = AsU /L )  and destruction (4qr0=(k/r}„)ijp0(tip0+i}s)U/L)  in this micellar 

model appear in the equivalent terms for theses mechanism.

Material functions: The base set of parameters for the MBM model fluid used in this 

study are ^  o =0.1125 and settings, corresponding to shear thinning properties

with moderate hardening (co = 4.0) and strong hardening (ft; = 0.28) followed by
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softening, using the reference value of (3=1/9. In order to study the impact of the 

various model parameter in viscometric flows, apart from the base case, some 

variation in the construction parameter (co) and destruction (£n o) are also

considered and presented in Figures 2.4 and 2.5, respectively.

The influence of variation in co can be gathered from Figure 2.4. For shear viscosity, 

an increase in cols reflected in a decrease of the shear-rate, affecting where the 

thinning starts. The levels of asymptotic plateaux are independent of this parameter. 

From c o -0.1 to 4.0, the final limiting value of the first normal stress difference 

(stress saturation) decreases by more than two decades and is attained at lower shear- 

rates. A similar increment in co lowers the degree of strain-hardening, so that for the 

fluid with co = 4.0, rje decreases rapidly, softening at much lower deformation rates.

Referring to Figure 2.5, the response of the model to a change in ^  o somewhat

replicates that dealt with under co. It can be appreciated that the shear viscosity enters 

the thinning regime at lower deformations rates, and Nl is decreased by about three

decades when gn o varies from 0.001 to 0.1. An increase in ^  q produces a

considerable decrease in the degree of strain-hardening. Lower values of £n o are

observed to generate larger peaks in extensional viscosity and steeper softening 

regimes.
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2.5 Rheometery

Rheometry is the science of the measurement of typical viscoelastic parameters 

(rheological properties) of materials of interest. Employing different types of 

rheometers, we are able to measure viscoelastic properties of a material as a function 

of either the applied stress or the applied strain (shear rate). Rheometers can be 

divided into two broad categories, according to their practical use: shear (rotational 

or oscillatory) rheometers, that conduct measurement under applied shear stress or 

strain; and extensional rheometers, that apply measurement under extensional stress 

or strain.The choice of a suitable rheometer depends on the particular rheological 

property to be determined.

2.5.1 Shear (Rotational/Oscillatory) Rheometers

Rotational Rheometry is one of the most widely used techniques for the 

measurement of complex shear rheological behaviour across wide range of materials 

from dilute polymer solutions to high modulus polymer melts. Several rheological 

properties of the sample can be characterised either by controlling motor torque 

(controlled shear stress) or position change (controlled shear deformation). 

Rotational instruments are most suited to low shear rates/low-frequency for 

investigating structural and compositional changes of materials via low stress/strain 

amplitude and associated tests such as yield stress analysis, stress relaxation, 

thixotropy, creep and creep recovery. This type of rheometer may be operationally 

functional under two different modes: the steady (constant angular velocity) mode to 

measure shear viscosity; and the unsteady (oscillatory) mode to determine dynamic 

material properties, such as viscoelastic modulus and phase angle.

Here, the emphasis is on oscillatory Controlled Shear Stress (CSS) type of 

rheometers. These devices investigate the structure or structural changes in materials 

by way of applying a harmonically time-varying sinusoidal oscillation. In order to
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accurately determine the inherent rheological properties of a material, it is essential 

to ensure that the measurements are conducted in the Linear Viscoelastic (LVE) 

range, where the structural character of the sample is retained unaltered. Under 

dynamic testing, the evolution from linear to non-linear viscoelastic behaviour is 

dependent on strain amplitude. Thus, Small Amplitude Oscillatory Shear (SAOS) 

flow is one of  the most comm on types of tests to determine the linear range for a 

specific material. At amplitudes higher than the material’s critical strain, the structure 

o f  the sample has either already been changed irreversibly, or is even completely 

destroyed [2.15].

When using this type o f  rheometer, the sample is being sheared in a narrow gap 

o f  a measuring system (geometry), such as a cone-and-plate, parallel-plates or 

concentric cylinders; which are specifically designed to impose simple shear flow 

under rotation. There are advantages and disadvantages associated with each 

geometry. Figure 2.6 represents a schematic diagram of some typical flow 

geometries, such as cone-plate and parallel-plates shear rheometers. Here, the 

waveforms of the applied sinusoidal oscillating stress and resulting strain 

(input/output waves) are also presented, along with the phase lag between them (5).

Rotation rate, co

Fluid
sample

Cone

Plate

do
-  tot

Couple Shear stress, y 

Shear strain,a

Figure 2.6. Schematic diagram of the typical flow geometry in shear rheometers and 
sinusoidal wave forms o f  stress and strain for viscoelastic material.
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The subsequent deformation from a given stress will be determined by the 

properties of the material. The deformation may be reversible (recoverable) for 

purely elastic (Hookean solid) materials; or conversely irreversible (permanent) 

deformation for purely viscous (Newtonian fluid) materials; or, it may contain both a 

recoverable and a permanent part (viscoelastic material).

The geometry is attached to a spindle which is driven by a non-contact ultra-low 

inertia motor. The drive system is supported by a high quality air bearing which 

results in practically frictionless movement of the measuring system, coupled to an 

ultra-high precision position encoder. Both, the sample and measuring system are 

temperature controlled. A typical shear rheometer is capable of producing two 

principal outputs, the torque and normal force, detected by its sensor on the torsion 

bar and the non-oscillating geometry, respectively. From these two outputs, a great 

number of material properties can be determined.

The viscoelastic moduli for a SAOS flow are: the storage modulus ( G ), 

representing the elastic component, that is, the amount of energy stored in the 

material; and the loss modulus (G  ), representing the viscous component, that is, the 

amount of energy dissipated in the deformation, defined as [2.16]:

G (co) = — cos S  , 
To

G (co) = —  sin 8  , 
To

(2.49)

(2.50)

Where T0 is the maximum stress amplitude (Pa), yQ is the maximum strain

amplitude, and co is the angular frequency (rad/s). Here, 8  (phase angle) gives the 

phase difference between the imposed shear stress wave and a corresponding strain 

wave response. For a Hookean solid, this phase angle is 0° (8=0°); in counter 

position, a Newtonian fluid has a phase angle of 90° (8=90°). For a viscoelastic 

substance, the viscoelasticity displays itself as a phase lag between 0 and 90 degrees
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(0° < 5 < 90°) (see Figure 2.6). By definition the loss factor, the relation between the 

both viscoelastic moduli, is given by:

* G tan d = —r
G

(2.51)

In principle, the loss and storage moduli provide a degree of the in- and out-of 

phase portions of the response to the imposed wave. The moduli and frequency 

relationship may be expressed in terms of the dynamic complex viscosity ( rf*), 

which is a function of the frequency and consists of the viscous and elastic parts:

G*
= J ( 7 + 7 ] = K0);

+
CO

(2.52)

In general, SAOS tests provide highly useful rheological characterization of 

complex fluids. Data of most significance resulting from these SAOS tests are 

complex viscosity (77*), phase angle (6), storage and loss modulus (G’ & G"), as a 

function of frequency (co), (Figure 2.7). Some typical isothermal frequency sweep 

test results are provided in Figure 2.7; (extend - very short/long time scale). In the 

derived results, the limiting (plateau) value of viscosity at low frequency is 

representative of a zero shear viscosity of a material. Moreover, these results convey 

information about the molecular weight distribution MWD (cross-over modulus, 

G'=G") besides average molecular weight AWM (cross-over frequency), Figure 2.8. 

Here, the notation of positive/negative MWD are assigned to broad and narrow 

MWD, and positive/negative AMW are allocated to high and low AMW polymers. 

When measurements are made as a function of temperature, the phase angle (6) can 

be a good indicator of phase transitions.
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The resulting characterisations of material structure is ideal for observing 

individual changes in material structure and can be used for particular batch-to-batch 

inconsistency in pre-process quality control testing of bought-in materials.

Simple steady shear testing is the most common type of test for the majority of 

industrial applications. These types of tests are performed by subjecting a material to 

a constant shear stress or shear-rate and measuring the resistance to flow, resulting in 

the determination of a viscosity measure. The cone-and-plate is more desirable than 

other geometries for characterising a viscous fluid, due to its capacity to produce a 

viscometric flow, where the shear stress and shear rate are radially constant and 

uniform throughout the sample during the test.

2.5.2 Extensional (FiSER/CaBER) Rheometers

For some particular fluids and specific aspects of fluid behaviour under 

designated applications, it is often valuable to study a material under extensional 

flow. It is well known that, by adding of a slight amount of high molecular-weight 

polymer to a solution, the extensional flow resistance of the fluid can be significantly 

enlarged. Thus, the response of a viscoelastic fluid to an extensional flow can be 

considerably different from its shear response [2.17]. There are some typical 

industrially processes in which this is the case and for which the polymeric materials 

undergo a strong extensional/elongational mode of deformation, such as under film 

blowing and extrusion; and in applications, for instance in coating and enhanced oil 

recovery. For this reason, extensional rheology is a prime subject of interest and has 

advanced considerably in its achievements within the complex fluids community. 

There are a number of approaches of constructing an extensional flow, such as 

opposed jet device and certain contraction-expansion flows. Unfortunately, most of 

these devices have drawbacks due to the challenges associated with generating a 

homogeneous flow, transient measurements, and unknown strain history. Presently, 

the filament-stretching technique has been recognized as an accurate and 

reproducible method for imposing a homogeneous and uniaxial extensional flow

[2.18]. Under filament-stretching considerations, the filament stretching rheometer
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[2.19-2.25] has emerged as a favourable apparatus for measuring the extensional 

properties of highly-mobile low-medium viscosity fluids. A schematic diagram of a 

fluid within a filament stretching rheometer is shown in Figure 2.9. Here, typical 

filament samples may vary in length (nano, micro, macro) and loading 

(length/breath).

Figure 2.9. Schematic diagram of a filament-stretching 
instrument (Reproduced from [2.18]).

In a typical filament-stretching device, a cylindrical liquid bridge is initially 

placed between two flat circular end-plates. Then, one or both plates are retracted 

under a controlled synchronous motion to a specific time/length. Subsequent necking 

leads to significant thinning and reduction in the central region of the liquid bridge, 

whilst end-effects result in considerable shearing within the near end-plate zone 

(filament-foot). A comprehensive overview of filament stretching technology is
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provided by McKinley and Sridhar [2.19], covering the flow dynamics within 

filament-stretching rheometers for non-Newtonian fluids. Typically, the dynamic 

development of the mid-filament diameter is monitored during the process of 

necking and failure, from which the appropriate rheological calculations are 

performed (dynamic extensional viscosity, relaxation time). There are two main 

modes used in commercially available filament-stretching instruments: Filament 

Stretching Extensional Rheometer (FiSER mode), and Capillary Break-up 

Extensional Rheometer (CaBER mode). Under continuous stretching (FiSER-mode), 

common practice is to impose a predetermined velocity upon the fluid formed 

between the end-plates, either at a fixed exponential rate (providing constant 

extension rate) or under uniform contact velocity (giving variable extension rate). 

Under the constant extension rate scenario, the resulting deformation is expected to 

approach ideal uniaxial elongation at the filament center. In this mode, the time-scale 

is inversely proportional to the initial constant stretch-rate imposed on the moving- 

plates.

In step-strain mode {CaBER-mode), the filament stretching rheometer may be 

employed under capillary-breakup conditions (short initial stretch) [2.20, 2.21, 2.25]. 

CaBER trials impose a rapid axial step-strain of prescribed magnitude, and then 

allow the sample to relax and breakup under the action of capillary forces (fluid self- 

selecting time-scale). Commonly, this implies short initial stretched samples (user- 

controlled), and much shorter than under FiSER-mode (continuous stretching, 

imposed rate/time scale). The relaxation and decay of the necked sample is governed 

by the viscous, elastic, gravitational and capillary forces [2.26], and as with FiSER- 

procedures, the evolution of the mid-filament diameter is again monitored. Although 

the flows in these two types of filament-stretching rheometer differ, both devices 

generate, a priori a uniaxial extensional deformation -  hence, accessing dynamic 

extensional viscosity.

Background theory that links evolution of filament mid-plane radius (Rmid)(t) to 

rheometric functions, such as apparent extensional viscosity (papp), and principal
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relaxation time (/I), requires the satisfaction of certain base assumptions. Here, in 

pure uniaxial extensional deformation, one seeks the formation of a cylindrical 

filament shape, persistent in symmetry about the mid-plane, on which constant state 

of stress/deformation-rate applies at any particular time. Then, during the thinning- 

down stress-growth process under CaBER trials, evolution of the filament mid-plane 

radius, RmidX), can be measured and related to extensional viscosity. Hence, both 

such quantities are governed by a force balance on the filament, determined through 

viscous, elastic and capillary forces. The extensional viscosity may be expressed 

dimensionally as [2.27],

(2-53)
2(dRmid/d0

where centre-plane extension-rate for a slender filament may be interpreted through 

the evolution of filament radius, Rmid(t), as [2.21].

m  = -  p2 dR"»( t) , (2.54)
^mid dt

The force balance on the filament and related equations used with these types of 

rheometers shall be reported in chapter 6.
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All exact science is dominated by the idea of
approximation.

Bertrand Russell

Chapter 3 

Numerical Algorithms

The present study has benefited from a hybrid numerical procedure comprising 

of a finite element (FE) method for both the momentum and continuity equations, 

along with the finite volume (FV) method for the constitutive law. These methods 

have been employed separately and with success for a range of different 

computational fluid dynamics (CFD) problems. The implementation of this hybrid 

method takes advantages of many features of both algorithms, and results in a stable 

high-order finite element/finite volume (fe/fv) scheme.
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3.1 Introduction

Modern developments in computer programming has played a vital role in 

bringing about a significant improvement in the capability of numerical modelling. 

Now, and due to this devolvement, only a relatively short time is needed to find a 

solution to a physical system which consists of several sets of governing equations. 

So far, modelling physical problems with CFD, has evolved through three principal 

numerical methods, and which have been employed successfully on a range of fluid 

flow problems. The physical domains to which these numerical methods have been 

applied involve both simple and complex fluid flow. Typically, these methods are: 

finite difference, finite element and finite volume schemes, respectively. For more 

information on viscoelastic flows the reader is referred to [3.1-3.3]. In addition, these 

methods had been used to analyse a variety of constitutive laws for stress.

The finite difference method is one of the most widely used numerical 

techniques for solving differential equations. It is a relatively simple technique to use 

for simple rectangular-type domains. Complications arise when dealing with 

complex geometries and boundary conditions, which are generally to be avoided. 

This is because this technique could lead to inaccurate results and produce 

complicated discretisation schemes. In such instances, this technique necessitates the 

need for conformal mapping. The use of FE and the FV methods are commonly 

suggested for non-uniform grids. This in turn will allow simulating non-simple flow 

geometries comprising a reduced number of equations in comparison to standard 

finite difference schemes.

The FE and FV method are known to result in the same type of algorithm. Both 

methods dictate that the physical problem domain be divided into a non-overlapping 

finite number of sub-domains. The equations to be modelled are then used over each 

finite element or finite volume cell. Thereafter variable solution unknowns are 

approximated by interpolation (‘shape’ or ‘trial’) functions that are themselves 

dependent on nodal values over these physical sub-domains. For this purpose, in FE
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and FV methods, low order polynomials are customary to use. A system of algebraic 

equations, in which the nodal solution of unknowns is sought, emerges once these 

equations are integrated over the known physical domain, whereupon weighting 

(‘test’) functions are introduced within the integrand.

A combination of FE and FV methods are involved in forming the 

computational procedures of the hybrid scheme used for the present study. To solve 

the momentum equation a finite element approach is used. The approach was based 

on a time discretisation via a semi-implicit formulation on a Taylor-Galerkin 

procedure. A three-staged algorithm results when incompressibility is enforced 

through a fractional-staged procedure commonly termed pressure-correction. For 

spatial discretisation of the constitutive equation a subcell cell-vertex FV technique is 

used, however. The finite volume grid is formed via a partition of each finite element 

triangle by connecting the mid-side nodes of that element. Accuracy is achieved 

through a consistent treatment of the flux and source terms of the constitutive 

equation. Flux and source residuals are distributed to the vertices of each finite 

volume control cell through the use of fluctuation distribution (FD) schemes. 

Stability in terms of high Weissenberg number attainment is improved by the use of 

a median-dual-cell (MDC) approach for evaluation of flux and source terms.

The basis of the finite element implementation used in this thesis is the Taylor- 

Galerkin/pressure-correction (TGPC) algorithm, first proposed by Townsend and 

Webster [3.4] to simulate the flow of viscous and viscoelastic fluids. The main idea 

is to solve the hyperbolic-type constitutive equation with an algorithm suitable for 

the task. Since the FV method has often been found superior to the FE method for 

this purpose, due to its particular inherent properties, the present hybrid finite 

element/finite volume algorithm has appeared. Donea [3.5] was the first to work on 

Taylor-Galerkin schemes for convection-diffusion problems, with implementations 

based upon Euler, leapfrog and Crank-Nicolson time-stepping procedures. Temam

[3.6] and Chorin [3.7] proposed the earliest forms of pressure-correction schemes 

(projection methods) for viscous incompressible flows. Second-order pressure-
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correction versions were introduced by van Kan [3.8], through a finite difference 

discretisation and Crank-Nicolson time-splitting. The combination of these ideas 

under FE discretisation is the basis of the numerical algorithm proposed by 

Townsend and Webster [3.4]. Hawken et al. [3.9] improved the proposed initial 

explicit time-discretisation, advancing to a semi-implicit form for viscous flows, 

overcoming viscous stability restrictions. Subsequently, Carew et al. [3.10] and 

Baloch et al. [3.11] advanced such a semi-implicit implementation to address 

viscoelastic flow problems.

The main features of the Galerkin finite element (see 3.12-3.14), are discussed 

below. In addition to this, an outline of the finite volume [3.15, 3.16] technique is 

considered.

3.1.1 The Galerkin Finite Element Method

The application of the finite element method involves dividing the spatial 

geometry (physical domain) into a set of finite elements, known as mesh 

(tessellation), where the solution of the problem is sought. For practical flow 

problems, the geometric domain under consideration may be either a simple or a 

complex one. For instance, consider the following time independent Poisson 

equation, 1

Here, a polynomial, usually of first or second order, is used to interpolate the 

unknown variables by appropriate functions. The resulting residuals are weighted 

and then integrated over the individual elements, the sum of which contribute to the 

complete problem discrete representation.

(3.1)

nt

(3.2)
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In equation (3.2), nt stands for the total number of nodes in a given element, $  (jc) 

is the trial functions andw(. , the unknown solution nodal values. With w. (jt) 

weighting functions, substitution of (3.2) in (3.1) yields:

J ttI~Mx)ui"\wj { x)AQ-e= (3-3>
a. d x

As far as the Galerkin method is concerned, weighting (test) functions are selected 

from the same space of functions as the trial functions, which is denoted 

by W j  ( j c )  = ( j t ) . Upon integrating by parts (using the Green-Gauss Theorem),

a

The system over the domainQ = is made up of all such elemental£

contributions and/or meshes. The boundary contribution term, evaluated over the 

boundary ( T ,) of the element, generally cancels out over interior elements, assuming

sufficient smoothness of representation. When solution values are known (Dirichet 

conditions) at the outer domain boundary, this is imposed on the ‘trial solution’ and 

then ‘test functions’ vanish there. In the present study, this strategy is largely 

followed for the velocity which is imposed on most boundaries.

The full system of equations, in matrix notation, emerging from equation (3.4) 

can be expressed as:

Ku = b, (3.5)

the column-matrix u contains the nodal values, where K and b are defined as,

n

j .̂ ( x ) y * ) d a  b  J / W ( ! > W d n (  ( 3 6 )
J ox ox  J
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which can be evaluated either analytically or numerically. Analytical evaluation is 

available for many standard integrand and domain types, such as polynomial on 

simplex domains. The summation of all individual elements into a complete system 

must introduce the specified boundary conditions. For instance, as known values of 

the solution (Dirichlet conditions) are imposed in this example, nodal values on the 

sides of the domain (boundary T) are then specified. These can be substituted 

directly into the corresponding equation positions (within rhs terms b), and hence, 

eliminated from u. Matrix algebra is used to solve equations such as (3.5). Algebraic 

procedures used here may be either of a direct and/or iterative nature; the decision 

between which, highly depends on the conditioning of the system, the number of 

elements/nodes and the complexity of the shape functions.

3.1.2 The Finite Volume Method

The Finite Volume technique again uses an integral representation of the system 

of equations to seek a solution to the differential equations describing any particular 

physical problem behaviour. A similar treatment to that above is used for the 

differential constitutive model, and which is integrated over the /v-subdomain. This 

is typically a subclass of the finite element procedure with weighting functions set to 

unity, vv( jc) = 1. A general conservation law for quantity gis considered here:

where g is a conservative quantity such as mass, momentum or energy, f is the flux 

of this quantity (which can be determined separately in convective and diffusive 

parts), n is an outward unit vector normal to the surface T which encompass the

(3.7)
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volume Q , and q , comprises the source terms and/or body forces. Considering the 

classical cell-centred FV-approximation1, mean values in a/v-cell are defined as:

(3.8)

Upon applying (3.7) on a single finite volume, having mean values g. andg., one 

may extract the following relation:

where k is the number of ‘faces’ of the /v-subcell and Tk is the area of those faces.

One of the advantages of the FV method, as compared to other methods, is the fact 

that the variables in integral form are intrinsically conserved over the entire domain 

and also on the individual fv-cell. On applying numerical integration, the mean 

values can be approximated,

where <pt > 0  are weights, and nc is the number of nodes of the numerical 

integration. Surface integrals are calculated as:

(3.9)

(3.10)

(3.11)
k

One must note that here, cell-vertex FV approximation is used on triangular cells
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In relation (3.11), Fk is an approximation of f n k and as already mentioned, k is 

the number of faces of the /v-cell.

The discretised form of equation (3.7) is made up of the summation of all such 

approximations over each finite volume cell in representing the total domain. 

Consequently, a system of algebraic equations can be generated for which the 

solution is sought, in a manner similar to that above. One notes that a distinct 

advantage of the FV discretisation is the efficient and direct solution available 

(equivalent to an explicit FE time-discretisation).

3.2 Problem Specification

A physical model for the isothermal incompressible flow of a viscoelastic 

fluid, having no volumetric forces, is defined by the following governing system of 

equations,

In addition to this system of governing equations, a constitutive equation must be 

introduced in order to incorporate the stress-behaviour of a particular fluid. The non- 

dimensional form of the Oldroyd-B model is,

where (/?) is equivalent to the solvent viscosity, (l -  J3) is a polymeric viscosity 

contribution and D is the rate of deformation tensor. Also, the non-dimensional

fi i

respectively (refer to Chapter 2). If other models are specified, then {3.12} is 

replaced by the selected model equations.

R e  hu-Vu =-V/? + V - t  + /?V2u.

v
(3.12)

quantities Re = ^  Reynolds number and Weissenberg number,
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In order to correctly specify the flow problem in question, one must apply 

appropriate boundary and initial conditions. Generally, the boundary conditions may 

be of mixed forms,

uFi=g, ,  ( a -n)r = g 2, Tr j = g 3, (3.13)

where Fk=i23 are non-overlapping subsections of the boundary T encompassing the

domain Q , a is the Cauchy stress and n is the outward unit normal vector to the 

boundary. In the present study, a two-dimensional flow is used for the analysis. 

Moreover, no-slip conditions applied at the boundary-walls. To satisfy fully- 

developed flow conditions, imposing velocity profiles of the Oldfoyd-B model, 

sufficiently large inlet/outlet channel section must be established. Additionally, inlet 

stress conditions must be imposed as well.

Simulation at low elasticity levels (usuallyVfe = 0.1) begins from some initial 

state in all the variables, usually assumed as at rest. Subsequently, an increase in 

We number is introduced to advance to higher levels of elasticity. Upon using the 

solution at the previous level as the initial condition for the next Ife-step. These 

initial conditions can be expressed as:

= u °(x)> V  • u° =  0, T(XjIo) = T ° (x), (3.14)

Here, the superscript “0” specifies estimation at timer = t0.

3.3 Time Discretisation

Taylor series expansion is the basis of the time-stepping procedure. Through a 

two-step Lax-Wendroff approach, accuracy may be improved. 'This may be 

elucidated by considering a one-dimensional problem,

| ^  + ̂ - / ( « )  = 0. (3.15)
a t ax
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Here, x and t are independent spatial/temporal variables, and u (x ,t) is a scalar

field dependent solution variable. un+] and un are function of the u at time levels 

tn+1 and tn, respectively.

The two-step Lax-Wendroff procedure, over time-step te  

is given by:

and t e [ t n, tn+] ] ,

w"+2 = w" + j A t T - / ( “ )
OX

(3.16)

wn+1
dx

(3.17)

In these equations, and in the remainder of this chapter, the terms with « indicate 

evaluation at a specific time step.

Following van Kan’s ideas [3.17], an approximation of 0(A r2)may be derived

by applying these predictor-corrector-equations to the momentum equation in non- 

dimensional form, see equation (2.44)*. This will provide,

Step 1: _ u « = ^  j~v-(t + 2J3D)~Reu-V u -V p J \ (3.18)

Step 2: u ”+1- u n At
Re

[ V - ( T  + 2/?D )-/teu- V u -  V pJ (3.19)

The pressure term ( V //+2) in equation (3.19) may be approximated by,

Equation (2.44) can also be expressed as Re —  + u • Vu = -Vp + V ( t  + 2/?D).
{d t J
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p n̂  = e P n+x+ ( \ - o ) p nf (3.20)

where (p n+] -  p n) represents the pressure difference on a single time-step 

(tn+]- t n) = A t . For the explicit scheme, the weighting parameter is set to 0 = \  

(Crank-Nicolson) the temporal discretisation error isO(Af2); otherwise, the error 

is O (At). Equation (3.19) can be re-written in the form,

u"+1 -u "  = At
Re

( V ■ [ t  + 2/?D]- R e u Vu)"+i - 6 Vpn+l - ( l - 0 ) V p n (3.21)

In order to implement the incompressibility constraint of equation (2.43), a 

supplementary variable u* may be introduced, which is non-divergence free velocity 

(non-solenoidal), satisfying relation (3.22):

u = u + At
Re

( V • [t  + 2/7D] - R e  u • Vu)"+" -  Vp" (3.22)

Subtracting (3.21) from (3.22), the velocity at the proceeding time-step becomes:

UB+1=U + 0 — v ( p n+l- p n), 
Re v }

(3.23)

Taking the divergence of u"+I and applying continuity, the pressure increment on the 

time-step may be obtained through the divergence of,

Re
V2 (p n+] V-u*,

v 1 QAt
(3.24)

Therefore, this pressure-correction scheme embodies a multiple-time fractional- 

staged method, where stage 1 {Equation 3.22} introduces a non-divergence free 

velocity term u*for velocity, and pressure at stage 2 {Equation 3.24} solves directly
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for pressure difference (p n+] -  p n), whilst stage 3 {Equation 3.23} corrects the 

velocity u"+!, to a divergence-free end of time-step velocity.

The Taylor-Galerkin pressure-correction algorithm embraces velocity, pressure and 

stress equations in the governing system of equations through the following 

fractional stages:

. Stage la :

] = ((V-T-fou-Vu)”+ v ) , (3.25)

  T  2 -  T
At L

| / r  + We|u-Vt - t -Vu - t. (Vu )TJ - 2 [ 1 - / ? ] d |  , (3.26)

. Stage lb:

Re
At

(u* - u ”) = ((V-T-/teu-Vu)n+i-Vp"), (3.27)

~ “ [ T "+I - t ” J =  | / r  +  W e|u-V t - t - V u  — t . ( V u ) T J —2 [1 -/? ]d J  2, (3.28)

. Stage 2:

V2(p"+l-p") = -^-V-u*.
t  /3  A f02 At

(3.29)

. Stage 3:

£ ( u - - u * ) = v ( y + ' - P"). (3.30)
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Stage 1 in this three-stage structure solves the velocity and stress components of

the momentum and constitutive equations at half time step from data
V 2 y

obtained at time step(«). Note, the retention of a velocity gradient component here, 

introduces temporal differences in pressure across the stages and gives the scheme its 

second-order characteristics. Stage 2 uses the u* on its right-hand side, via a Poisson 

equation over a full time step (n,n +1) to solve the pressure difference(p"+1 - p " ) .

Then, stage 3 corrects for the non-divergence free velocity field to gather un+1, using 

u*and (p n+l -  p n) data, applied through a Jacobi iteration method. These three-

stages must be solved over each time-step, |V ,r”+1] until temporal convergence is 

obtained in deriving a limiting steady-state solution.

3.4 Spatial Discretisation

In the present study, the numerical scheme employed is that from a class of 

hybrid methods. The spatial domain of the problem is discretised into a finite number 

of triangular elements. The velocity and extra-stress are computed at the vertex and 

mid-side nodes, and pressure at vertex nodes. In particular, spatial discretisation for 

velocity and pressure is performed through a Galerkin finite element method, whilst 

for the stress equation (3.26) and (3.28), a cell-vertex finite volume scheme is 

implemented.

3.4.1 Finite Element Scheme

In the finite element scheme, scalar velocity components and pressure fields are 

approximated by:

u(x,t) = </>j(x) Uj ( t ) ,  p (x ,t)  = i//j(x) Pj (t),  (3.31)
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whereUj ( t ) ,  Pj{t) are nodal values of velocity and pressure; the set of shape 

functions is that of piecewise quadratic basis functions for velocity, and

y/j (x) are linear basis functions for pressure. Triangular parent elements are used in

the fe-implementation, with velocity calculated at vertex and mid-side nodes (6- 

nodes), and pressure only at vertex nodes (3-nodes). The exterior parent triangle in 

Figure 3.1a represents a typical finite element, indicating the information calculated 

at each node. The problem statement in fully-discrete matrix-vector form may be 

expressed as:

. Stage la

. Stage lb

—M + ̂ s ] [ u ‘-U”] = (-[>3S + « eN (U )]U -B T )"+i+LrP". (3.33)

K (P"+I- P ”) = — — LU*. 
v 1 e2At

(3.34)

. Stage 3

(3.35)
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A fe

Figure 3.1. Spatial discretisation; a)/^-parent triangle with fv -  
subcells, b)/v-control volme for node /, with median-dual-cell

configuration.

In equations (3.32) and (3.33) the weighting parameter 6X has been set to zero. U ,

T , and P  are solution nodal vectors for velocity, stress and pressure. The weighting 

shape functions may be manipulated to give the matrix-vector terms,

= do. Kv = f ^ . ^ - d  Q, Sfj = | 3 #  d(f>, 

3 x  3 x
dQ,

A d x  v 'v  ^  o  X k
(3.36)

r (  3 0  3 0  3 0  ^N, (U) = F I  A Ut + A vt +A W, ^ dQ,
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3.4.2 Finite Volume Scheme

In order to represent flow problems with the FV method, an appropriate split of

triangle. With cell-vertex methods, nodal variables are located at the vertices of the 

fv-cell. Values at any other position must be obtained by interpolation. In contrast, 

rates-of-changes (or fluctuation) of flow variables are integrated over each fv -cell 

(surface flux or volume integrals). This implies that fluctuation must be adequately 

distributed to the/v-cell vertices. The hybrid fe/fv algorithm employed in this study, 

utilizes fluctuation distribution (FD) procedures to achieve this.

The FV method mesh is generated by partitioning, at the midside nodes of each 

finite element (parent) triangle, into four triangular /v-subcells (see Figure 3.1a for 

clarification). The type of /v-algorithm employed is a cell-vertex scheme , which is 

employed to obtain values for stress at each node, similar to the treatment for 

velocity in the /e-scheme.

The constitutive model can be rewritten under the FV method implementation in 

terms of flux and source terms as,

the flux (R ) and source (Q ) residuals must be made to the vertices of each fv-

^ - t = - R + Q ,
dt

(3.37)

with expressions for the flux ( R ) and source (Q ) term, defined as,

R = u- V x, (3.38)

(3.39)

With its inherently superior accuracy of piecewise linear interpolation, over that of piecewise 

constant interpolation for cell-centred approximations, see [3.21-3.23].
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Integration of equations (3.37)-(3.39) for each scalar component of the stress r , 

yields the associated residuals. These must be evaluated over each full /v-cell and/or 

over its derived median-dual-cell (MDC), associated (Figure 3.1b) with each given 

node /. The MDC for any node is formed by taking the area constituting all nearest- 

neighbour points to that node, making up one third of each triangular cell containing 

that node,

~s
J-— r d Q  = -  J/?d£2 + J f id Q .  (3.40)

Ci, n T Ci,

Time discretisation is shown in equations (3.26) and (3.28), stages la  and lb , 

respectively. The proportion of contribution to the cell-vertex / for each fv-cell ( T ) 

from the evaluation of source and flux integrals is controlled by fluctuation 

distribution coefficients ( a j , see Chandio [3.15] and Chandio et al. [3.18]). The 

update for node I is constructed by summing contributions from its control 

v o lu m e^ ,, formed by all/v-triangles sharing that node. For this purpose, Aboubacar

et al. [3.19, 3.20] proposed a generalised area-weighting stencil for such schemes, of 

the form,

_ V7) \/MDC,
= X  (1 S T) b r c (3.41)

V7) MMDC,

where bT =( - RT+QT), b,MDC = (~RMDC +QMDC)1 • Here, QT is the area of the fv-

triangle T , whilst Q, is the area contribution of the same triangle to the median- 

dual-cell. In equation (3.41), the parameter ST directs the balance taken between the 

contributions from the median-dual-cell and the triangle T . This completes the 

necessary detail for the/e- and/v-discretisations used.
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Science is beautiful when it makes simple 
explanations o f phenomena or connections 

between different observations.

Stephen Hawking

Chapter 4
Modified Bautista-Manero (MBM) 
Modelling for Hyperbolic Contraction- 
Expansion Flows (Squeezed Flows)

In this study, modelling of network-structured material flow is considered 

through a rounded-comer, hyperbolic 4:1:4 contraction-expansion geometry, under 

an axisymmetric configuration. Three representative constitutive models are adopted 

to represent networked behaviour and to investigate the flow of wormlike micellar 

fluids. This includes the MBM model (for base thixotropic properties), some newly 

proposed micellar models (NM_tp & NM_T\ for advanced thixotropic modelling), 

and the EPPT model (for contrast against non-thixotropic properties). In this
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configuration, emphasis is paid to interpret the flow behaviour of these constitutive 

models, against their response in simple rheometrical flows (through characterization 

of their material function response). Here, the flow is considered under laminar, 

isothermal, and incompressible flow conditions. To determine the factors that 

contribute to e/?<i-prediction, a supplementary study has also been constructed, 

contrasting current findings against those reported earlier in Lopez-Aguilar et al.

[4.1], for abrupt axisymmetric, rounded-comer, 4:1:4 contraction-expansion flow.

4.1 Introduction

The viscoelastic surfactant (wormlike micellar) solutions are currently used in a 

wide range of industrial applications including examples within oil fields as 

fracturing-fluids (enhanced-oil-recovery), and in hydrodynamic engineering as drag- 

reducing agents [4.2, 4.3]. Moreover, the flow through a contraction-expansion 

configuration has more recently become established as a standard benchmark 

problem in experimental and computational rheology [4.4].

This work is devoted to solve numerically the hyperboilc 4:1:4 rounded-comer 

contraction-expansion flow of worm-like micellar systems using the MBM model 

approach [4.5-4.7]. The specific geometry selected closely represents the typical 

shape of a bottle-neck of industrial interest, which may be filled or emptied of 

personal care products, such as shampoos. The unique rheological properties of these 

types of non-Newtonian complex viscoelastic fluids have led to their varied 

application such as rheological modifiers (as in cosmetics, health care products). 

They also prove important in a wide range of industrial applications, namely inkjet 

printing and enhanced oil recovery (EOR).

In the linear viscoelastic region, these fluids behave as ideal Maxwell fluids and 

demonstrate shear-banding response in steady shear measurements. However, any 

variation in geometry throughout the processing of a non-Newtonian fluid (wormlike 

micelle solutions) introduces an extensional component to the flow, making the 

extensional measurements an important factor in demonstrating complex flow 

behaviour such as through a contraction-expansion configuration. Wormlike micelles 

are self-assembling materials, capable of changing their morphological internal 

structure, through breakdown and formation of their polymer chains, under large
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elastic stress. Therefore, they may self-select their rheological properties to suitably 

fit to change in alternative deformation settings [4.8]. The rheology and applications 

for wormlike micelle solutions is the subject of several excellent review articles [4.9- 

4.13]. Many approaches have been pursued to model the behaviour of wormlike 

micellar flow; such as MBM [4.5-4.7 and 4.14] and VCM model [4.15-4.17]. The 

contraction-expansion flow is a complex flow, yet standard benchmark in 

experimental and computational rheology [4.4], containing regions of strong shear 

near the walls, alongside inhomogeneous extension along the centreline [4.18], and 

mixed shear-extension elsewhere.

The first point on which to focus is the precise prediction of excess pressure- 

drop (epd). Such an extra pressure loss is observed in axisymmetric contraction- 

expansion flows, for constant-viscosity Boger fluids (and some shear-thinning) 

elastic liquids, over that presented by an equivalent Newtonian fluid of similar 

viscosity. Results from a recent numerical simulation, Nystrom et. al. [4.19], reveal 

how reasonably constant and maximum extensional viscosity can be extracted from 

particular geometry choices by avoiding the creation of vortices. These authors 

showed that the hyperbolic contraction is that best-suited to generate constant 

uniaxial extension in the measuring system, and in minimizing the impact of shear at 

the flow centre-line. There, flows of Newtonian and constant-viscosity viscoelastic 

Boger fluids (FENE-CR model) were investigated, through several different 

axisymmetric contraction configurations, offering comparative analysis of strain and 

shear-rate profiles, pressure drops and N\ profiles.

Taking the knowledge gained in our previous work on modelling of wormlike 

micellar solutions through abrupt contraction-expansion configurations [4.1], this 

chapter demonstrates the influence of geometric shape-choice and its effect on epd 

prediction. The capability of new models is examined in their prediction of enhanced 

epd. Fuller detail covering the various rheological model parameters used in this 

study are presented below.
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4.2 Constitutive models

For an incompressible and isothermal flow, the governing equations in their non- 

dimensional forms may be written as follows (Equations 2.43 and 2.44),

V • u = 0, Continuity equation (4.1)

0 URe—  = V T - Re U'  V u -  V p. Momentum equation (4.2)
dt

Hereafter, three types of constitutive equations are utilised - these include the 

MBM model, some newly proposed micellar models (NM_xp & NM_T) and an EPPT 

model. A generalised constitutive equation may then be defined, covering all three 

such possibilities and in dimensionless differential form [4.20], viz.

Ot
W e-^E- = 2 ( l - J 3 ) D - f v p -W^u.VTj, -V u r .xp - x p.Vu) (4.3)

By identifying the functional/, for each model considered here (tabulated in Table 

4.1), the constitutive equations may be enforced into this general framework. The/- 

function for the EPTT specified as,

( £  \f  ( t )  = exp ^ - W e T r ( x) . (EPTT) (4.4)
)

In the case of the MBM model, and upon appealing to a scale-factor/  = (jlpol Tlp')*

the kinetic structure equation can be reorganize into the following form, hence 

determining the relevant /-functional,

f  = + (MBM) (4.5)

Upon introducing elastic effects, through the destruction term (second term on 

rhs) in the construction-destruction kinetics equation for the original MBM, can be 

considered either only by polymeric energy-dissipation (NM_xp model), or from both 

contributions of polymeric and solvent energy-dissipation (NM_T model). Thus, the

1 ( ^  o =  ( k  I Tjoo) TJp0 (j1pQ +  t js ) U I L )  is the destruction dimensionless parameter for MBM.
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structure equation for these new micellar models [4.1], which are driven by 

phenomenological observation, can be defined as,

(NM_rp) (4.6)

(NM_T) (4.7)

where ( 0) = AsU / L ) is the structural-construction dimensionless parameter and

dimensionless parameter, with 77 0 = G04 .

Finally, to accomplish high elasticity predictions for micellar fluids, a new 

convoluted approach has been designed and introduced in [4.1] -  this draws upon 

combinations of /-functionals from EPTT and micellar models. The corresponding/- 

functional (with other alternatives are also tabulated in Table 4.1) for the convoluted 

(EPTT/MBM) model is then given by:

Rheometrical functions predicted by the above mentioned non-convoluted 

models are plotted in Figure 4.1. For comparison purposes, the rheological model 

parameters and the solvent ratio |3={ l/9,0.9], representing highly-polymeric and 

solvent dominated-fluid, respectively, are chosen to match those of Lopez-Aguilar et 

al. [4.1] (see Table 4.2). The EPTT model parameters selected for study are 

£PTt ={0.25, 0.02], to cover Moderate Hardening (MH) and Severe Hardening (SH)

scenarios. These correspond to predicted flow behaviour of many common polymer 

melts and dilute polymer solutions, respectively [4.21]. Material functions for the 

micellar models, that match peaks in extensional viscosity for EPTT configurations, 

realise structure-construction co-parameter values of co=4.0 for MH, and co=0.28 for 

SH fluids. In contrast, the structure-destruction ^-parameter undertakes different 

values for each micellar model option. The rheometrical functions for the convoluted 

models are plotted in Figure 4.2 for /£=l/9 and MH  response. Here, Figure 4.2a,

the new and replaced structural-destruction

(EPTT/MBM) (4.8)
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demonstrates that the extensional and shear viscosity curves, under these specific 

parameter choices, lie closer to those for EPTT.

The numerical simulations reported in this chapter are obtained with the time- 

marching hybrid finite element/finite volume (fe/fv) scheme as outlined in chapter 3 

(also, see [4.1]).

4.3 Numerical procedures and problem specification

Hybrid finite element/finite volume scheme

The numerical simulations reported in this study are obtained with the time- 

marching semi-implicit incremental pressure-correction hybrid finite element/finite 

volume (fe/fv) scheme, as employed elsewhere in partner studies (see [4.1, 4.22, 

4.23]). Hence, a brief summary only is provided here. The scheme base is that of 

two-step Lax-Wendroff form within a Taylor series approximated up to 0(At ). The 

pressure is incremented through a Pressure-Correction strategy (TGPC) [4.22], 

rendering a three-stage scheme structure. A spatial Galerkin fe discretisation is 

applied for the momentum equation in stage 1, the pressure-correction in stage 2, and 

the incompressibility constraint in stage 3. The constitutive equation for stress in 

stage 1 is solved through a cell-vertex finite volume scheme (see below). At stage 2, 

a Poisson equation is solved for the pressure difference. Stage 3 uses the pressure- 

difference to compute a solenoidal velocity field completing the time-step cycle for 

velocity components. Under fe discretisation, the momentum diffusive term is treated 

in a semi-implicit manner to improve stability; an element-by-element Jacobi 

iteration method is used to solve for the velocity at steps 1 and 3; and a direct 

Choleski-decomposition method is employed for the pressure solution stage at step 2.

Finite volume cell-vertex scheme for stress

Cell-vertex fv-schemes applied to stress are based upon an upwinding fluctuation 

distribution technique, which distributes triangular control volume residuals to 

construct nodal solution updates [4.22]. The objective is to evaluate the flux 

( R  = u.Vt, ) and source (Q) variations of the stress equation over each fv-triangle (a 

sub-triangle within the parent fe-triangle). Here, the choice of fluctuation distribution 

scheme is that of Low Diffusion B (LDB): linearity preserving (necessary for high
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accuracy at steady-state), but non-positive (so as to avoid imposing this property 

upon source terms, that deteriorates accuracy). The fundamentals of such a finite 

volume cell-vertex scheme may be explained as follows: The nodal stress update is 

obtained by summing all contributions from its control volume Q/, composed of all 

/v-triangles surrounding node (/). The flux and source residuals may be evaluated

over two separate control volumes, £lT the area of fv-triangle T and the area of

its median-dual-cell (MDC), both associated with a given node (/) within the fv-cell 

T. This generates a fluctuation distribution contribution governed over the fv- triangle 

T, (Rt, Qt), and that subtended over the median-dual-cell zone, (Rmda Qmdc)• Such a 

procedure requires appropriate area-weighting to maintain consistency and temporal 

accuracy, furnishing a generalized /v-nodal solution update equation per stress 

component of the form,

a _ n + l

2 > r«,rO r + 1  - r - = z ^ v +  x  o - w oc (4.9)
_ V7) VMDC, J At V7) VMDC,

where b T = (-R T+QT) ,  b™DC =  ( - R MDc + Q m d c ) 1 » ^ t  a r e a  the/v-triangle

T , and Qf is the area of its median-dual-cell (MDC). The weighting parameter, 

0 < ST < 1, governs the balance between contributions from the median-dual-cell and 

the /v-triangle T . This discrete stencil identifies fluctuation distribution and median 

dual cell contributions, area weighting and upwinding factors ( a j  -scheme

dependent). Such a scheme and parametric specification is provided in full detail in 

Webster et al. [4.24, 4.25], covering the interconnectivity of the/v-triangular cells 

(Ti ) surrounding the sample node (I), the zone of mdc, the parent triangular /e-cell,

and the fluctuation distribution (/v-upwinding) parameters ( « f ), for i = /, j, k on 

each/v-cell.

Problem specification

The geometrical configuration used in the present study, that of the 

axisymmetric rounded-corner hyperbolic 4:1:4 contraction-expansion, is presented in 

Figure 4.3 (symmetry assumed, half-domain representation). Here, the standard finite 

element mesh used has 1776 elements and 3791 nodes with 23754 degrees of
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freedom. No-slip boundary conditions are imposed at the wall. Symmetry conditions 

apply along the centreline (no shear), and due to axial symmetry, solution is 

conducted only over half of the flow domain (steady flow assumed). Then, a 

pressure-driven Poiseuille deformation flow is applied at entry and exit; specifying 

entry stress level boundary conditions. In this study, flow response is studied through 

solutions at continuously elevating elasticity, in terms of Weissenberg number (We). 

Simulations commence from a relatively low-level of We=0.1, in which internal - 

domain initial conditions for stress and velocity are from rest; then, solutions are 

generated subsequently in incremental continuation steps of We, until a critical level 

of We (Wecrit) is reached (Table 4.3). All solutions are described under steady-state 

conditions, where the relative maximum difference between solution approximations 

over sequential time steps falls below a set threshold (10-6 in this study) to ensure 

convergence.steps falls below a set threshold (10-6 in this study) to ensure 

convergence.

Pressure-drop calibration

Under contraction-expansion flow, the total pressure drop (Ap = p inle, -  p exi, ) is 

the sum of the fully-developed (fd) Poiseuille flow contribution ( Apfd) plus an extra

loss caused by the presence of the contraction-expansion, referred to as ‘entry 

correction’ (Apen). Excess Pressure Drop (epd), for a Boger fluid with constant

shear-viscosity and strain-hardening property, is defined in terms of normalised entry 

correction by Binding et al. [4.26], as,

Here, Apis the total pressure difference between the inlet and outlet, sampled

along the geometry centerline, Apu and Apd represent the fully developed pressure

gradient in the upstream and downstream region respectively, and, Lu,Ld are the

distances from an inlet point to mid-plane constriction and from that mid-plane to the 

exit, respectively. The pressure at the exit of the geometry is fixed to be zero.
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4.4 Results and discussions

Firstly under rising We, the relationship is explored between pressure-drop and 

the material functions involved. This exercise is then systematically treated in turn 

for other variables of interest, such as: first normal stress difference (Nj), along the 

symmetry line (in pure extension, variable); Nj along the boundary wall (in pure 

shear, variable); and strain rate across the geometry.

4.4.1 Excess pressure-drop (epd), /?= {1/9, 0.9}

As mentioned above and displayed in Figure 4.4, at low-levels of elasticity 

(We—>0), the MBM (micellar model) is found to inconsistently predict epd-values; 

as opposed to consistent findings for the network-based EPTT alternative. Here, the 

MBM data-curve underpredicts the epd values within the Stokesian limit by {40%, 

10%} for both {MH, SH} highly-polymeric fluids (high-solute content, (3=1/9). To 

overcome such an epd shortfall at low deformation rates (equivalent to low We), a 

correction to the MBM formulation has been proposed that introduces elastic effects 

into the structure equation (via the destruction contribution) [4.1]. In this context, 

two variants have been proposed; namely: (i) a model which uses the energy 

dissipated by the polymer to break down the structure of the material (NM_xp 

model); and (ii) an option that considers the polymeric plus solvent dissipation in its 

structure dynamics (NM_T model).

Firstly, discussion is initiated on pressure-drop findings for the main flow- 

geometry of interest, hyperbolic 4:1:4 contraction-expansion, before proceeding to 

comparison against our earlier results derived for the abrupt rounded-corner 4:1:4 

geometry flow [4.1].

a) epd, /?= {1/9, 0.9}, MH response, non-convoluted models

In Figure 4.5(a-b), normalized epd predictions for the non-convoluted EPTT, 

MBM, NM_xp and NM_T models are contrasted under moderate strain-hardening 

response and /?={ 1/9, 0.9} solvent fraction levels. A significant improvement in epd 

estimation is obtained with the NM_xp and NM_T, in contrast to that with MBM; 

thus confirming the regathering of consistent epd-estimation at low elasticity levels, 

as addressed in [4.1]. Under such consistent trends, NM_xp and NM_T epd data-
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curves now drop from the unity reference line, as demanded in theory. Moreover, an 

initial declining trend in epd data-curves with increasing elasticity is observed for all 

models, irrespective of the polymer concentration level, /?= {1/9, 0.9}. For the 

highly-polymeric fluids (/?= 1/9) and at low levels of We (Figure 4.5a), both 

thixotropic NM_xp and NM_T epd-data. provide an initial rapidly decaying trend, 

similar to that observed with the EPTT model, up to their split and separation around 

W e-1. At this point, a change in slope is observed between the non-thixotropic EPTT 

and the thixotropic new micellar data-curves. The micellar epd-data soften their slope 

earlier as We rises, tending to a slightly larger asymptote (lower limiting plateau) of 

NM-epd~0.2, as opposed to the EPTT-e/?d asymptote of ~0.1. This difference may be 

attributed to the stronger Ay functionality displayed by EPTT in simple shear flow for 

larger limiting deformation rates (Figure 4.1b). Notably as shear rate rises, 

monotonic rise is apparent in EPTT-Ay, whilst MBM and NM_xp forms plateau at 

moderate-to-high rates; with even ultimate decline found with NM_T. Recall the 

competing roles between e/?d-diminishing Ay and pseudoplasticity, and epd- 

enhancing extensional viscosity [4.27]. Here, the lower epd-curve declines under the 

NM_xp model compared with NM_T epd-predictions; this leads to a higher limit in 

Weiim (=195) for NM_xp.

For solvent-dominated fluids (/?=0.9) (see Figure 4.5b), again there is similar 

significant impact detected in initial sharp decay rate, and the limiting level of epd- 

data is now enhanced over (/?= 1/9). The reasoning behind such enhanced epd- 

(/?=0.9)-predictions, is related to the comparative amounts of solvent-to-polymer 

concentration in these materials. The solvent fraction level fixes a second epd 

reference line (lower than unity, first Newtonian reference line) - this corresponds to 

the dimensionless second Newtonian viscosity plateau in simple shear flow, observed 

at high shear rates. In particular, with the highly-polymeric fluids (/?=l/9), this 

reference line is fixed at epd= 1/9 unit, whilst the solvent-dominated materials 

(/?=0.9) have a second reference line at epd=0.9 unit. Associated with these two 

reference levels, different interesting responses can be described at high deformation 

rates. Here, epd-curves for all models and highly-polymeric fluids (/?=l/9; Figure 

4.5a) asymptote to their respective Wenm above the second Newtonian high-rate 

reference line. In contrast, for solvent-dominated fluids (/?=0.9; Figure 4.5b), the 

EPTT data-curve crosses this second Newtonian limit at We-100 (losing its elastic
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properties). Likewise, as already observed in more sudden contraction geometries

[4.1], NM_T provides a minimum in its epd- data-curve around We-50, from which a 

rising trend is observed (consistent with A/-trends). In comparison, the slope for the 

EPTT curve almost disappears, and eventually plateaus out, as elasticity is increased 

(recall Nj effects on epd-prediction; [27]). For NM_T results, one may argue that 

this finding may be related to the maximum and subsequent decline observed in 

simple shear Nj as the rate is increased, whilst EPTT findings provide a monotonic 

rising trend (Figure 4.1b). Interestingly, in the range of 0<Wte<50, and contrasting 

NM_T in comparison to EPTT predictions, the NM_T epd-curve reveals relatively 

lower epd-values with respect to EPTT data. Alternatively, for highly-polymeric 

instances, the NM_T epd-curve lies above that for EPTT; and such observations 

apply uniformly throughout the complete We-range analysed. Finally, the MBM epd- 

curve follows the general micellar plateauing trend as We rises, lying above that of 

NM_xp epd-data, whilst navigating towards its Weum (=53).

b) epd', P={l/9, 0.9}, SH response, non-convoluted models

Next to identify with more severe extensional response, epd-data plots in Figure 

4.5(c-d) are provided for non-convoluted EPTT, MBM, NM_xp and NM_T models 

with strong strain-hardening (SH) properties, again covering the two instances of 

solvent fraction levels of /?={ l/9,0.9}. Data for the highly-polymeric fluids (/?= 1/9) 

are plotted in Figure 4.5c, and reveal analogous trends as reported above for MH 

response (see Figure 4.5a). Notably, at vanishing elasticity levels, corresponding SH- 

results for MBM display a significantly smaller deviation from the unity reference 

line (than M//-results); yet, this is still prominent and around epd-0.9, which 

represent a 10% of deviation from the unity reference. This decrease in drop is due to 

the reduction of the construction parameter from {©=4, MH} to {©=0.28, SH} 

(Figure 4.4 a and b) and can be explained in terms of the steady/-functional for these 

micellar models (see Table 1 in [4.1]). In these expressions, the dissipation function 

is scaled by the product of the construction (co) and destruction {%vpQ or £G0)

parameters (and We for the new micellar models). Hence, the decrement in any of 

these parameters, would weaken the influence of the dissipation function in its 

departure from Oldroyd-B behaviour (/= 1); notably, it is this feature which ultimately 

provokes the display of non-linear features, such as pseudoplaticity and strain-
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hardening/softening. Consistently and once more, both new micellar models (NM_xp 

and NM_T) demonstrate accurate capture for epd-prediction at low-levels of We 

(elasticity/flow-rate). The NM_xp-67?d-curve exhibits a close pattern to that for 

NM_T (Figure 4.5c), up to its limiting Weum (=39.6). In contrast, EPTT SH-results 

follow a smooth declining trend to M//-results, with signs of plateauing at epd-0.2 

prior to attaining its Weum=350. For solvent-dominated fluids 05=0.9; Figure 4.5d), 

the same trends described above for MH-fluids hold (see Figure 4.5b), with the main 

difference being that for ^//-response, the EPTT-epd-curve now does not cross the 

second-lower Newtonian reference line.

c) e p d p =  {1/9, 0.9}, MH response, convoluted models

Attention now switches to the interrogation of convoluted micellar model 

performance. Hence, e/?d-data with increasing We is presented in Figure 4.6 (a,b), 

contrasting the conventional EPTT against its convoluted micellar counterparts 

(EPTT/MBM, EPTT/NM_xp, EPTT/NM_T). Here, for the sake of brevity and to 

avoid repetition, only the moderate hardening scenario is reported for both levels of 

solvent fraction, /?= 1/9 (highly-polymeric) and /?=0.9 (solvent-dominated).

In general and up to We-100, the epd-data recorded for all convoluted models 

and both /-settings, follow closely the pure-EPTT predictions-patterns (Figure 4.6a 

and b). Beyond this stage, for Wfe>100, EPTT e/?d-response provides values slightly 

higher than those for convoluted models. The closeness of trends and values 

evidences the consequence of such convolution: the exponential nature of the EPTT 

/-functional completely dominates over the linear functionality of the micellar 

models {in steady-state). This provokes (i) a conspicuous Weum elevation with respect 

to the non-convoluted micellar models; and (ii) and EPTT-like epd-response for the 

convoluted models. The W£/im-elevation is due to the relatively stronger f-We explicit 

relationship for these models (as true for pure-EPTT also) [4.1].

Comparison of epd-results across solvent fraction level /?={ l/9,0.9}, 

illustrates the differences in the level of e/?d-prediction reached (similar to the non- 

convoluted cases). The initial rate of decline and subsequent marked change in slope 

{We-25) are common features across all model findings, irrespective of polymer 

concentration level. Interestingly, this change in slope occurs at epd-{0.15,0.92} for
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solvent fractions of /?={ l/9,0.9}. For larger elasticity levels (ffe>100), a slight gap 

appears between EPTT and convoluted epd-predictions, being sustained 

subsequently and more prominent with /?=0.9. Then, the high-rate limiting-slopes for 

these curves remain invariant whilst approaching their Weum. As noted above with 

non-convoluted results, the trend in epd for highly-polymeric fluids (/?= 1/9), is to 

asymptote and plateau out to a level slightly above the second Newtonian epd 

reference-level (thus, non-intersecting). In contrast, for solvent-dominated fluids 

(0=0.9), these epd-curves intersect the Newtonian second reference line at We~15.

du4.4.2 Strain-rate ( =  £ ) results along the symmetry line, p={l/9, 0.9}, MH &
o z

SH fluids

Here, the ultimate goal is to establish a relationship between the pressure drop

du
and extensional deformation-rate (£ = — - )  along the symmetry-line. Figures 4.7-

d z

4.8, show the evolution of the strain-rate (£ )  along the geometry centreline, for each 

choice of solvent fraction level /?={ 1/9,0.9} across the various models (EPTT, MBM, 

NM_ Tp and NM_T), for both MH  and SH response, and at both levels of low and 

high limiting We.

a) Highly-polymeric p=l/9 fluids; MH & SH response

In Figure 4.7a (fi= 1/9, MH) and at the low level of We-0.1, the extension rate is

observed to smoothly rise in £ up to its maximum of e -0.12 units (true for all 

models), located at the start of the hyperbolic contraction zone (z=0), that plateaus 

for EPTT and non-convoluted models (NM_xp & NM_T). In contrast, with the
A

MBM model a declining trend is recorded, to the level of £ -0.08 units located, just 

in front of the contraction mid-plane (z=15). Then at z=15, a sudden drop to negative 

values is observed, to approach its minimum (£ —0.12) by the end of the hyperbolic 

contraction zone (z=30). Finally, beyond z>30 entry conditions are reflected, to 

finally recover fully-developed straight-channel flow conditions.

Instructive in highly-polymeric high-level We interrogation is the realisation of 

pending numerical instability and solution breakdown. This data also reveals how far 

one is removed from constant strain-rate plateaus under such setting. Increasing We
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to critical levels (Wenm) (shown in Figure 4.7b) is reflected in a higher level of strain- 

rate before the mid-plane in the contraction region for all micellar models (MBM, 

NM_xp and NM_T). A shift in maxima-location is observed to just before the mid­

plane, associated with the thixotropic MBM model (£ -0.3 units); whilst a minima is 

relocated after the mid-plane, towards the end of the hyperbolic exit-contraction zone 

(z=30) in NM_T/MBM solutions. The MBM results characterize the trends, for 

which the Weum=82 solution provides a shift in location of extension-rate maximum, 

from the region at the start of the hyperbolic contraction zone (z=0, low We), to the 

region adjacent to the mid-plane (z=15, high We). In contrast, solutions for {NM_xp, 

NM_T} at Weum ={195,110}, now display overshoots, with local maxima (larger, 

around z~0) and minima (smaller, around z~15) across the hyperbolic entry- 

contraction zone (0<z<15). A similar position arises across the hyperbolic exit- 

contraction zone (15<z<30), but also where patterns of oscillatory form are now 

detected in all micellar model solutions at Weum\ these persist towards the end of the 

hyperbolic exit-contraction zone (z=30, causing the local minima), and beyond this 

station towards domain exit (disrupting subsequent solution continuation in We). 

Noticeably, such complex behaviour is not observed in EPTT solutions, for which the 

strain-rate profile is relatively much smoother and more symmetrical, with maximum 

and minimum values of £-{0.12,-0.12} across the contraction region. Such smooth 

EPTT-behaviour may be attributed to its superior numerical stability properties, 

gathered through its high level of Wfc//m=1000* attained.

Switching next to consideration of strong hardening (SH) response (Figure 4.7c), 

similar behavioural trends are recorded in all SH-cases at low We-0.1 to that for MH- 

cases, with a constant level of maximum and minimum strain-rate (£-0 .12  units), 

located on both sides of the contraction mid-plane. With the new micellar variants at 

low We, SH-plateau levels are now observed to be flatter here (improved solutions) 

than for M//-response (Figure 4.7c vs Figure 4.7a). When elasticity is increased to 

Weum, once more overall trends for SH-cases repeat those for MH-cases. In {NM_xp, 

NM_T} solutions at Weum={ 39.6,55}, no overshoots are apparent (as above), with 

simple monotonic rise in strain-rate across the hyperbolic entry-contraction zone 

0<z<15. The maxima-peak is located just before the mid-plane for all model 

solutions (Figure 4.7d), with the sharpest peak occurring for MBM data (£ -0 .5  

units), followed then by NM_T and NM_xp (£ -0 .2  units), and finally by EPTT
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( i  -0.1 units). Notably, EPTT solutions attain the highest Weum (=350). Note, that the 

maxima-peak MBM strain-rate is considerably larger than that for other models; 

about five times that of EPTT and twice as large as for the other micellar models. In 

consequence, MBM attains the lowest Weum=45 amongst other alternative models. It 

is the region beyond the mid-plane where significant solution oscillation can be 

distinguished. This is a flow zone of stable numerical solution for EPTT 

representation, whilst instability in micellar solutions is manifest - through detection 

of local minima-maxima, with the local-minima located towards the end of the 

hyperbolic exit-contraction zone (z=30).

b) Solvent-dominated p=0.9 fluids; MH & SH response

The above high-solute findings may be contrasted against the solvent-dominated 

situation upon adjusting the solvent fraction to /?=0.9 (increasing solvent 

concentration, approaching Boger fluid composition). Then, at the low level setting o f 

We=0.1, and considering both MH and SH response (Figures. 4.8a and 4.8c, 

respectively), solutions for all non-convoluted models are found to produce similar 

flat symmetric profile form about the contraction mid-plane, with strain-rate maxima 

and minima of {£max }-{0.12,-0.12} units. This is the key deformation outcome

sought in such a hyperbolic flow geometry design -  achieving the desired constant 

plateau-level strain-rate throughout the hyperbolic sections, reflected in sign for entry 

and exit zones. This scenario renders useful data upon which extensional viscosity 

estimation may be made (see below to counterpart N] calculation in pure-extension).

Here even at critical elastic levels (Weum), and with the added benefit of 

stabilising high solvent contributions, these smooth profile patterns are now only 

slightly adjusted (see Figures 4.8b and 4.8d; unlike above). Slight highly-localised 

undershoot-overshoots are captured in the micellar solutions, around z={0, 15, 30} in 

M//-response, with minor oscillatory form across the hyperbolic exit-contraction 

zone (15<z<30) (as in Figure 4.8b); these influences are simply amplified under SH- 

response (Figure 4.8d).
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4.4.3 Normal stress difference (Nj) results along the symmetry line (in extension) 
and the boundary wall (in shear), p={l/9, 0.9), MH & SH fluids

In keeping with the above, here, the same settings in terms of the models and 

solvent fractions have been considered. Accordingly, the normal stress difference 

(Nj) response along the symmetry line (Nj in extension) and the boundary wall (Nj  in 

shear) are shown in Figures 4.9-4.12. Once more, both MH and SH cases are covered 

and both low and high (critical) Vfe-levels are reported.

a) Highly-polymeric p=l/9 fluids; MH & SH response

Figure 4.9 (a-d) for {/?= 1/9, MH} case, presents Nj  in pure extension along the 

symmetry line and Nj  in pure shear along the boundary wall. At the low level of 

We-0.1 (Figure 4.9a) all models provide similar sharp rise (overshoot) in Nj  around 

the start of the hyperbolic contraction (z=0) up to Ay-O.l units developed, followed 

by an abrupt drop to the level of Nj~0.06 units. Then, beyond that point, a rising 

trend is observed in N] up to the location before the mid-plane (z=15), with the faster 

rate-of-rise for EPTT followed by that for non-convoluted models (NM_xp & 

NM_T). This rise in Nj is less visible for the MBM model. Viewing Figures 4.7a and 

4.9a, corresponding to strain-rate (£)  and stress (Nj) along the symmetry line 

respectively, such peaks in strain-rate and stress correlate to the same location. Here, 

a stress (N]) minimum occurs just beyond the mid-plane (z=15), followed by a rise 

towards the end of the contraction (z=30), which then recovers to inlet-value levels. 

Additional features arise of local Vy-maxima on entry at z=4 units, and on exit at 

z=(30-4) units; these are more conspicuous in the highly-solvent case and are 

commented upon below. One notes in passing here, that the highly-solvent Nj- 

profiles (below) in contrast to these highly-polymeric alternatives are much more 

amenable to rheological characterisation, specifically to extensional viscosity 

determination.

Results in Figure 4.9b at the critical We, for Nj in pure extension along the 

symmetry line, indicate that in the case of the MBM model with Weum=82 a large 

stress (Nj~22 units) is developed around the constriction mid-plane which is 

responsible for the increasing trend in excess pressure-drop (epd) when compared to 

other corresponding models (see Figure 4.5a). For non-convoluted models (NM_xp & 

NM_T), this peak in stress is located at the same position, but with much smaller
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scale (Nj~3 units). Contrasting EPTT-response at the highest level of Weum (=1000*) 

- this is practically flat through the entire geometry and directly corresponds with the 

smooth strain-rate response (see Figure 4.7b).

Figure 4.9 (c,d) (/?=l/9, MH) presents corresponding findings on the normal 

stress difference along the boundary wall (Nj in shear). At low elasticity level 

(We=0A) and for all models, the same decline is observed to a negative value for Nj, 

in two entrance and exit hyperbolic contraction regions. Here (Figure 4.9c), Nj 

exhibits a peak-value around the mid-plane (z=15), with the sharpest peak and 

highest value of N} for EPTT (Nj~3 units), followed then by NM_T and NM_xp 

(A7-1.8 units), and lastly by MBM (Nj~0.4 units).

Upon increasing We up to critical levels (Weum), a major increase in N j-  

magnitude up to -95 units is observed. This corresponds to the N j-MBM solution 

(Weum=82), whilst the Ay-EPTT (Weum =1000*) displays a reduction to zero (Figure 

4.9d). In general, at critical We levels, the largest values of Nj are predicted by the 

micellar MBM, and smallest values by the EPTT model. This is clear in symmetry 

line A/-values of (Figure 4.9b) and boundary wall Ay-values of (Figure 4.9d). Hence, 

it can be concluded by association that the value of N] (in shear and extension) is 

directly related to the attainable elasticity number (Wfe/,-m). The dependency of Weum 

over A/-value is established through: lowest Weum(=82) with MBM model, highest 

Weum{=1000*) with EPTT model. Moreover, as a direct consequence, it is also 

observed that lowering Nj allows predictive capability to reach much greater levels 

of critical elasticity. The position on findings with Ni-SH for (/?=l/9) of Figure 4.10 

are taken below in comparative form versus Figure 4.9 for Ni-MH, and also against 

solvent-dominated (/?=0.9) results.

b) Solvent-dominated fi=0.9 fluids; MH & SH response

In the high-solvent fraction (/?=0.9) context and for low We=0.1, the profile 

trends in pure extension (variable) along the symmetry line for Nj of Figures (4.11a- 

MH, 4.12a-S7/) are extremely close under any given settings (MH and SH), 

displaying near symmetrical patterns about the domain mid-plane. This is 

informative indeed, as a relationship may thus be established for Ni(z) versus axial- 

distance (z), in both contraction-entry and expansion-exit zones (appears almost
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piecewise-linear, in two sub-sections; split at local maxima points of z=4 units in the 

hyperbolic entry-zone and z=(30-4) units in the hyperbolic exit-zone). Having 

established relatively constant levels of strain-rate (£ ) across these same zones 

above, this provides a direct measure of the functional variation of extensional 

viscosity across the geometry, rje(z). As an indication, average measures of rje( z ) may 

be established for each piecewise-linear sub-section (same on either entry or exit). 

Overall, one seeks to link this zonal data (reflected about the mid-plane) to pressure- 

difference(z) for each Wfc-solution; from which, and at different We-values, a general 

trend may be sought for Nj (or rje) verses epd (or Ap).

The maximum and minimum of such Nj- low We-data on the symmetry line are 

located in the same positions per (MH and S//)-setting, with the maximum shifted 

downstream of the start of the hyperbolic contraction (z=4 units, entry; reflected in 

exit zone) and minimum next to the mid-plane. This is the same realisation as for 

/?=l/9 cases. Across solvent-fraction variation, significant reduction is noted in Np- 

under MH of one-fifth, from Nj (-0.1 units) for /?=l/9 to (-0.02 units) for /?=0.9 (see 

Figures 4.9a and 4.11a); and under SH of one-tenth, from Nj (-0.18 units) for ft =1/9 

to (-0.02) for /? =0.9 (see Figures 4.10a and 4.12a).

Likewise, at critical We for both MH and SH scenarios, Figures (4.11b, 4.12b) 

again contrast Nj along the symmetry line (in extension). Associating MH-results 

presented in Figures (4.9b, 4.11b), would indicate that, for either solvent-fraction 

setting of /?=( 1/9, 0.9), the peak in stress (Nj) lies at the same location around the 

contraction mid-plane; with a much lower value in scale for /?=0.9 setting. This 

outcome is now completely different to that under the low We situation discussed 

above; unfortunately, at such critical We the counterpart strain-rates are much more 

variable, so that any measure of constancy is rendered rather meaningless. 

Considering next the SH response at Weum, for both p  (=1/9, 0.9) sets of Figures 

(4.10b, 4.12b): in the case of /?=l/9 (Figure 4.10b), the A/-peak is located before the 

mid-plane for non-convoluted models (NM_T and NM_xp) and EPTT; whilst for 

MBM, this peak is shifted to just beyond the mid-plane, with the sharpest peak for 

the MBM (A//-18 units), followed then by NM_T and NM_xp> and finally by EPTT 

(N]~ 1 units). This concurs with the results corresponding to strain-rate ( i ), shown in 

Figure 4.7d. For the /?=0.9 of Figure 4.12b and for all micellar models, N) peak-
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values are aligned at the centreline with a minor shift in location; these are 

considerably lowered in value when compared to 0  =1/9 results of Figure 4.10b.

As counterpart to the above, but along the boundary wall in shear (variable), for 

solvent ratio {0=0.9) and between low to critical We, Ay-results are provided in 

Figures 4.11(c, d)-MH and Figures 4.12(c, d)-SH. In Figure 4.11c, Ay-max-MA 

values at low We, decline across models from EPTT (0.3), to NM_xp (0.2), to NM_T 

(0.1),to MBM (0.05); under ^//-setting of Figure 4.12c, N]-max-SH values at low 

We, group around (0.35)-value for (EPTT, NM_xp) and around (0.2)-value for 

(NM_T, MBM).

Comparing and contrasting wall-MA-results between 0=1/9 and 0=0.9 instances, 

first at low elasticity level {We=0.1) (see Figures. 4.9c and 4.11c), the same overall 

trends are observed but with significantly lower Ay-values for 0=0.9. For instance, 

the level of EPTT-Ay value, with sharpest and largest value, shrinks from Ay (~3 

units, 0=H9) to (-0.3 units, 0=0.9). A similar reductive trend can be detected under 

^//-response likewise (see Figures 4.10c and 4.12c). It is difficult to make any 

conclusive statements over wall-shear-findings at critical We levels, either across 

solvent fractions or {MH, SH)-settings, as the levels of We involved themselves vary. 

In this respect, one may quote for insight the extrema in MBM results, with Ay-max- 

M H  value of 18 units at Weum=60 in Figure 4 .lid , as compared to the Nj-max-SH  

value of 110 units at Weum=42 in Figure 4.12d. Here, the MH to ^//-switch at 

comparable Vfe/,m-levels, would appear to make a significant contribution (hence, in 

shear).

In summary for each model employed and over the two selected levels of 

elasticity, lowest We=0.1 and critical We, the elevation of solvent-fraction 0  from 1/9 

to 0.9, produces a significant reduction in Ay-maxima along the symmetry line (in 

extension) and boundary wall (in shear). Switching between MH  to S/7-setting, also 

has its consequences with elevation in Ay-maxima for wall-shear conditions. 

Moreover, at critical levels (Weum), not only is there Ay-magnitude reduction to 

observe, but also a downstream distortion in Ay-pattem.
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4.5 Conclusion

This study has revealed some interesting results concerning hyperbolic 

contraction flows for thixotropic and non-thixotropic materials. Pressure-drops are 

seen to strongly adopt shear-thinning characteristics, falling rapidly at early levels of 

Weissenberg number to the second Newtonian plateau levels. Both highly-polymeric 

fluids and solvent-dominated {mimicking Boger) fluids follow such trends, each 

ultimately asymptoting around the corresponding second Newtonian plateau level. 

Here, there are differences picked up at high deformation rates (elasticity) and with 

convoluted models (with MH-setting), in that epd for solvent-dominated fluids 

ultimately falls below the level of the second Newtonian plateau, whilst for highly- 

polymeric fluids, epd lies above the same plateau.

Relatively constant strain-rates throughout the hyperbolic-entry/exit regions 

have been well recovered for solvent-dominated fluids and at low elasticities (all 

models; MH  or ^//-settings). For highly-polymeric fluids, this property is degraded 

for thixotropic forms; and even more so in the MH-setting. In this regard, the non- 

thixotrpoic EPTT strain-rates are less variable (hence, more reliable).

Following on from above, first normal stress-difference (Nj) data are instructive. 

Data from the pure-extension centreline zone, for solvent-dominated fluids and at 

low elasticities, reveals tractable results (all models; MH  or SH-settings), from which 

useful measures may be derived on extensional viscosity. In addition, maxima in 

shear wall TVy-data, provide the link to successful numerical convergence and 

indication of pending numerical breakdown. These maxima become large towards 

critical levels of We, and particularly so under ^//-setting.
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Table 4.1. Steady-state/-function expressions
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Model
P =1/9 >9=0.9

MH SH MH SH

E P T T £=0.25 £=0.02 £=0.25 £=0.02

M B M
(0=4.0

5nO=0.1
co=0.28
§,o=0.1

(0=4.0 (0=0.28 
o=0.1

N M _ tp
(0=4.0 

£r =0.1125~G0
(0=0.28 

^  =0.1125
(0=4.0

&o =10
(0=0.28

&„=10

N M _T
(0=4.0 

4 o =0.1030
(0=0.28 

=0.1100
(0=4.0 

4  =0.1500
(0=0.28 

£c =0.5800

E P T T /M B M
£=0.25
co=4.0

^ o= 0 .0010
-

£=0.25
(0=4.0

U =o.o io
-

E P T T /N M _tp

£=0.25
co=4.0

4  =0.0010
-

£=0.25 
(0=4.0 

&0 =0-010
-

E PT T /N M _T

£=0.25 
(0=4.0 

£c =0.0010
-

£=0.25 
(0=4.0 

4 o =0.010
-

Table 4.2. Parameter sets; highly-polymeric fluids (>9=1/9), 
solvent-dominated fluids (>9=0.9)
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Model
0 = 1 /9 0= 0 .9

MH SH MH SH

E P T T 1000* 3 5 0 1000* 1000*

M B M 82 45 53 4 2

N M _tp 195 3 9 .6 53 79

N M _T 110 55 5 0 0 3 5 0

E P T T /M B M 1000* - 1000* -

E P T T /N M _xp 1000* - 1000* -

E P T T /N M _T 1000* - 1000* -

Table 4.3. Limiting We; highly-polymeric fluids ( 0 - 1/9), 
solvent-dominated fluids ( 0 =  0.9)
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Figure 4.3. Schematic diagram: rounded-corner hyperbolic 4:1:4 contraction-expansion
geometry
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Figure 4.4. Excess pressure-drop (epd) vs. We\ EPTT, Original MBM: a) moderate hardening response,

b) strong hardening response; highly-polymeric (/?=l/9)
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Figure 4.5. Excess pressure-drop (epd) vs. We\ EPTT, Micellar-type (MBM, NM_xp and NM_T):
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Figure 4.7. Strain rate profiles along symmetry line; EPTT, Micellar-type (MBM, NM _ip and NM_T):
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93



EPTT; We=0.1 
MBM; We=0.1 
NM t ; We=0.1 
NM_T; We=0.1

EPTT; We=1000 
MBM; Welln=53 
NM r ;  WeSm=53 
NM_T; We,, =500

— | i i !
EPTT; We= 0.1 
MBM; We=0.1 
NM t ;We= 0.1 
NM_T; We= 0.1

pie 4.8. Strain rate profiles along symmetry line; EPTT, Micellar-type (MBM, NM_xp and NM_T):
P  =0.9; MH response: a) low We, b) high We; SH response: c) low We, d) high We

94



3=1/9; MH 
N1- Sym

3=1/9; MH EPTT; We=0.1  
MBM; We=0.1 
NM_xp; We=0.1 
NM_T; We=0.1

EPTT; W e=0.1  
MBM; W e=0.1 
N M _tp; W e=0.1  
NM_T; We=0.1

N1-Wall

-20 -10-10 20

100EPTT; W e=1000  
MBM; W eln=82 
N M _tp; W elin=195  
NM _T; W elim=110

3=1/9; MH EPTT; W e=1000  
MBM; W ellm=82  
NM_xp; W elim=195  
N M _T ;W e ltm=110

N1-Wall

-10 -20 -10
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Figure 4.11. First normal stress difference (Nj) profiles; EPTT, Micellar-type (MBM, NM_xp and
NM_T): /?=0.9; M H  response; Nj along symmetry line: a) low We, b) high We;
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The ultimate object is to measure something which we 
have already seen...to obtain a numerical estimate of

some magnitude.

James Clerk Maxwell

Chapter 5
Rheological Characterization of Polymer 
Melts in Shear

In order to guarantee an improved processing performance one needs to 

appreciate and be able to control the rheology of the material within the indicated 

range. The knowledge of rheological behaviour of polymers (polymer melts of 

particular) is the key to set up an accurate process window, such as temperature and 

flow rates, and to the development of polymers (new materials) for smooth 

processing. Also, rheological information is required for process simulation, which is 

considered as an essential part of new process setup. Due to the sensitivity of the 

polymer melts to small changes of the polymer structure, using the rheometers in
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linear range is a most convenient technique to Theologically characterize polymer 

melts.

This chapter presents the experimental work and characterisation results for 

three polymer-melts. This study focuses on the determination of the dynamic 

viscoelastic properties of High-Density Polyethylene (HDPE), Nylon 11 (Polyamide- 

PA11), and Poly-Vinylidene Fluoride (PVDF) melt. An advanced controlled-strain 

rheometer (TA Instruments ARES-G2) was used for the rheological measurements, 

with stationary upper-plate connected to the transducer (measuring stress/torque) and 

rotating lower-plate connected to the motor (applying strain or strain-rate). A 

uniform temperature was stablished during the experiments conducted by using a 

convection oven (designed for optimum temperature retention, rapid heating and 

cooling). This oven was mounted on either side of the test station. All the 

rheometrical tests were performed utilizing parallel plate geometry with plate- 

diameter 25mm and 1mm plate-gap separation.

The procedure followed for loading samples (in the form of pellets) into the 

rheometers was to place a guard-ring on top of the geometry. Then, the pellets were 

loaded into this ring, the oven was closed and heating activated up to the desired test 

temperature (220°C, 230°C, or 240°C). Shortly afterwards, the oven was opened and 

the guard-ring was removed, the gap was set and the normal force was observed. 

Finally, the sample was trimmed and the final gap was set.

Frequency sweep measurements were performed in a frequency range from 100 

down to 0.1 rad/s with the strain level of 1% (in the linear regime) at temperatures of 

220°C, 230°C, and 240°C, respectively. Using the Cox-Merz rule, dynamic 

oscillatory data (in terms of G , G ) were fitted to predictions according to the Cross 

model. The experimental data collected in this part of the study was used by others as 

characteristic material input-data to the same simulation software suite as used here 

(see [5.1]).

5,1 Determination of the Linear Viscoelastic Region [5.2]

In order to use Dynamic Mechanical Analysis (DMA) to accurately determine 

mechanical properties and develop morphological relationships, a polymeric material
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must be deformed at amplitudes that lie within its linear viscoelastic (LVE) range. 

Then, within the LVE range ( yL), material response is independent of the magnitude 

of the deformation and the material structure is maintained unbroken. At amplitudes 

larger than^L , the structure of the sample has either already been changed

irreversibly, or is in fact completely destroyed. Characterization of the material 

within the linear regime yields a ‘fingerprint’ as to the structure of the polymer. 

Therefore, any differences in the structure of a polymer can easily be measured and 

interpreted through differences in the dynamic mechanical properties.

Special care should be paid when selecting the amplitude for a DMA test. The 

linear region can be measured for a particular material by employing an amplitude 

sweep test. In such a sweep test, the frequency is fixed and the amplitude is 

incrementally increased. To determine the LVE range, the storage modulus should be 

plotted against the amplitude, as the amplitude is the control variable in the DMA. 

To determine the extent and termination of the linear regime, a general rule-of-thumb 

is to locate the amplitude at which the initial value of the storage modulus changes 

by 5% (eg. the storage modulus at the lowest amplitude in the sweep).

When performing an amplitude sweep, the limiting value of the LVE range that 

is determined is valid only for the actual frequency used. Whilst performing the 

amplitude sweep tests, under various frequency conditions (i.e.102, 10, 1, and 0.1 

rad/s), at the three required temperature levels (220, 230, 240° C), it became apparent 

that these polymers may be prone to some degree of thermal degradation, when 

temperatures are held for a sustained period of time (at low frequencies).

Since amplitude sweeps do not normally represent behaviour at rest, and hence, 

to evaluate a material in the rest-state, a frequency sweep should be performed and 

analysed at very low frequency values. Prior to testing samples of polymer melts and 

in order to avoid degradation for example, it is recommended to check thermal 

stability properties through the thermal stability time at the desired test temperature 

(according to ISO 6721-10).
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5.1.1 Determination o f the Thermal Stability Time (Time Sweep)

A relatively straightforward test to determine if a system has time dependent 

rheological properties is an oscillatory time sweep. Thermal stability o f  all the 

polymer melts o f  interest (HDPE, P A 1 1 and PVDF) was investigated under constant 

temperature and mechanical conditions. The thermal stability time is defined as that 

taken from the start o f  the test to the time station at which any of the measured values 

o f  complex shear modulus (G ), storage modulus (G  ) and loss modulus ( G  ) have 

changed by as much as 5% from their initial values [5.2]. Once this time has been 

determined, any subsequent measurements on new specimens of the same sample at 

that identical temperature should be performed in a time shorter than the thermal 

stability time.

Using an oscillatory time sweep, both the frequency and the amplitude were kept 

at a constant level in each test. In this fashion, constant dynamic mechanical shear 

conditions are pre-set and ensured. In addition, the measuring temperature is also 

kept constant (isothermal conditions). The resulting thermal stability times for 

HDPE, PA 11 and PVDF polymer melts, at the three desired temperatures, are 

recorded in Tables 5.1, 5.2, and 5.3, respectively. The total test time duration covers 

some 600 seconds.

220 C Thermal
independent

Thermal
independent

Thermal
independent

Thermal
independent

230 C Thermal
independent 600 s 450 s Under 300 s

240 C Thermal
independent 180 s

Between (88- 
106 s) 
-90 s

Table 5.1. Thermal stability time, HDPE melt 
(According to ISO 6721-10)

1 0 2



220 °C 22 s 1 8 s 1 2 s

230 °C 1 6 s 1 7 s

240 °C 13 s  8 s

Table 5.2. Thermal stability time, P A 1 1 melt 
(According to ISO 6721-10)

220 °C Thermal
independent

Thermal
independent

Thermal
independent

Thermal Thermal Thermal Thermal
independent independent independent independent

* Thermal  Thermal Thermal . . .
240 C . ,  . . . .  , . independent

independent independent independent r

Table 5.3. Thermal stability time, PVDF melt 
(According to ISO 6721-10)

At low frequencies and high temperatures, both first (HDPE and PA11) 

polymers were prone to lower thermal stability times. In the case o f  the P A 1 1 melt, 

given in Table 5.2, degradation occurs rather rapidly. The major difficulty at lower 

frequencies is that the experimental determination time for a single data point is 

large, rendering reliable and reproducible experimental data difficult to obtain. The 

data for PVDF would indicate little to no degradation during the tests (of time 

duration 600s) and excellent resistance to temperature change.

103



5.1.2 D eterm ination o f  Time D ependent Shear B ehaviour (Frequency Sweep)

Frequency sweeps are oscillatory tests performed at variable frequencies, whilst 

maintaining the amplitude (and the measuring temperature) at a constant level. 

Frequency sweeps are used to investigate time-dependent shear behaviour, since 

frequency is inversely related to time. Short-term behaviour is detected by rapid 

motion (i.e., at high frequencies) and long-term behaviour by slow motion (i.e., at 

low frequencies).

Thus, the dynamic response of a material may be monitored and evaluated by 

systematically selecting the appropriate conditions and range of parameters for all 

three quantities of: the control variable (a value of strain found within the linear 

viscoelastic regime), the frequency and the temperature of interest.

In this manner, frequency sweep tests provide the storage and loss modulus, G 

and G . In order to limit the effect of degradation, the frequency sweeps started at 

100 rad/s and decreased subsequently. Only data down to about 0.1 rad/s (for HDPE 

and PVDF melts) and 1 rad/s (for PA 11 melt) is considered to be reliable, and only 

that has been used in the data fitting performed below.

The method of taking data in a few intervals of frequency has been suggested to 

avoid problems with either long exposure time at high temperature, or with taking 

data in a time shorter than the thermal stability time. This approach allows for a 

small improvement in precision under the data acquisition. The data thus obtained 

has been interpreted in terms of the shear viscosities, as presented in Figures 5.1-5.3 

for the HDPE melt. It is fairly apparent that a significant improvement in precision 

has been obtained at higher temperatures and lower frequencies.

From Figure 5.4 it can be observed that in the case of the PA 11 melt, the 

viscoelastic properties cannot be investigated by a discrete frequency-sweep, since 

the substance is changing dramatically during the measurement. This renders a 

meaningful status description almost impossible. An alternative procedure is to 

speed-up the data acquisition time -  known as a Multiwave test, whereby 

investigating the frequency dependency proves to significantly shorten the measuring 

time.
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The Multiwave principle is based on a pre-set basic sine wave and higher 

frequencies modulated about that specification. Multiwave oscillation is an enhanced 

version of the conventional (single frequency) oscillation mode, which allows the 

sample material to be exposed simultaneously to multiple oscillatory frequencies. 

Notably, as these multiple oscillations pass through the material, they act 

independently of each other. As a result, the accumulated strain present in the 

material is the sum of the strains caused by each of the individual oscillations. (Note: 

the total resultant strain must lie within the materials linear viscoelastic region)[5.2].

From the outset, Multiwave measurements were made on the basic sine wave 

{(D=0.\ rad/s), and eight harmonic multiple sine waves were modulated about this 

basic value. This generated a total of nine logarithmically equidistant frequencies 

over two decades, to be used in the evaluation procedures. Such a test protocol 

reduced the measuring time from 600s to 126s; hence, offering a considerable time 

saving over the traditional frequency sweep test. The pre-set strain levels were 

selected for the Multiwave measurements so that the resulting deformations stayed 

within the range of 0.1 and 1% (^=0.05%). Figure 5.5 illustrates the frequency

dependency of the dynamic complex viscosity r f  during such measurements, which 

evidences rapid dynamic change in the response of the material. Also, the results 

from the frequency sweeps for the PVDF melt, in terms shear-viscosity ( 77*) are 

provided in Figures 5.6.

In terms of the G and G data, the findings for HDPE, PA11 and PVDF melts are 

displayed in Figures 5.7(a,b), 5.8(a,b) and 5.9(a,b), respectively. Here, in order to fit 

the data, one assumes that a temperature dependent discrete relaxation spectrum At 

(T) exists, defined by:

(5.1)

and

(5.2)
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where T represents the temperature (°K) and g, the elastic modulus (independent of 

temperature) correspond to X; . In addition, one may assume that the temperature 

dependence satisfies the time-temperature superposition principle, which enhances 

the accessible frequencies of the linear viscoelastic experiment. As such, the 

relaxation spectrum may be represented as:

M T )  = a A ( T 0) ,  (5.3)

where To is a reference temperature and a j is a temperature-dependent shift factor. 

For simplicity, the shift factor is taken to conform to the common Arrhenius 

relationship:

Ef 1 1
R T Tn (5.4)

where E is the activation energy (ev) and R is the universal gas constant (ev/K), T is 

the measurement temperature (°K), To is a reference temperature (°K) and aj is a 

time-based shift factor.

Thus, the fitting procedure consists of the following three steps:

1) Choose a reference temperature, To. In this study, 220°C (493°K) is used.

2) Determine gf, , X, (T0) by fitting the storage and loss moduli at the

reference temperature, To, to equations (1) and (2). Six relaxation modes 

for HDPE, and five relaxation modes for PA11, PVDF provide a 

reasonable fit to the data.

3) Determine the parameter E/R in order to fit the data across other 

temperatures.

The resulting { g„ X, } parameter sets for HDPE and PA11 melts are found to be:

|" HDPE I

E/R (K) 2662

Relaxation 8 (  Pa) A (8)
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mode

1 220100 3.58E-03
2 57104.1 0.0242068
3 25841.9 0.111604
4 10974.7 0.509666
5 4358.59 2.41874
6 1910.91 15.5448

j PA11 I

E/R (K) 1646
Relaxation

mode g (Pa) 't(s)
1 587407 1.00E-03

2 57231.9 0.013587

3 16626 0.051046

4 8887.59 0.173783

5 4270.75 1.11918

| PVDF i

E/R (K) 9318
Relaxation

mode 2 (Pa) A ( S )

1 281530 7.11E-03
2 98957.6 0.0595669
3 50448.6 0.397239
4 24545.4 2.64045
5 13982.1 24.9029

5.2 Viscosity Measurements of Polymer Melts

For many polymers the Cox-Merz viscosity is a reliable indicator of the steady 

shear viscosity. An empirical relationship, termed the Cox-Merz rule, states that the
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shear rate dependence of the steady state viscosity 7j{y) is equal to the frequency 

dependence of the complex viscosity 77* (co) , that is: 1 ( Y )  = \l  ( )| .

The usefulness of this rule, which holds well for most conventional polymers, is 

that while steady measurements of shear viscosity are virtually impossible for shear 

rates larger than 5s'1 with rotational instruments, dynamic measurements can easily 

be conducted up to 500 rad/s (corresponds to shear rate of 500s'1 ) or even higher. 

Thus, the full range of viscosity needed in extrusion may be covered.

The Cox-Merz rule shows excellent agreement with the oscillatory data obtained 

for both HDPE and PA 11 polymers at 220° C and this agreement is reasonable for 

PVDF melt at 220° C. These data on shear viscosity are presented for HDPE, PA 11 

and PVDF in Figures 5.10, 5.11 and 5.12, respectively. Rheometrical equipment was 

not available to provide extensional viscosity data for these melts; yet much may be 

gathered from shear viscosity trends and levels and by cross-reference to the initial 

findings on PVDF, PA11 and PVDF melts.

5.2.1 Flow Data Modelling: Viscosity model for shear-thinning polymer melt

For quantitative analysis purposes, a mathematical model fit is performed to the 

results of the oscillatory experiments. Many commercial software packages contain 

curve-fitting procedures to perform this function, but a reliable model should provide 

both a reasonable fit to the data (in some measurable sense), and be physically 

realistic.

Various different models are commonly used to describe the flow behaviour of 

shear-thinning fluids. By fitting such a model to the experimental data set, the flow 

behaviour can be predicted over a wider range of shear rates than that used solely in 

the experimental range. Amongst such models, the Cross model is a suitable 

candidate of choice, capable of describing a constant zero shear-rate Newtonian 

viscosity plateau, a shear thinning viscosity, and also a transition zone between them; 

whilst avoiding the specification of a second limiting Newtonian plateau level at high 

shear-rates:
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ri (y) = ---------- — , Cross Model (5.5)i c\ * \ |_ml +  (Xy)

with fitting parameters: r|o a zero shear-viscosity, m a Power-law index, and X a 

characteristic material time.

As a final observation, it should be noted that the oscillatory data cannot be 

represented by a single relaxation time with any reasonable accuracy. However, a 

pseudo-relaxation time X may be defined by fitting the shear viscosity to a model 

such as the Cross model.

To be consistent with the oscillatory data, it is not unreasonable to adopt the 

value o f  the zero-shear viscosity, rjo, as:

N

n0 = Z g iXi ’ (5-6)
i=l

Then, appropriate parameters derived for HDPE, P A 1 1 and PVDF melts are:

Tjo (Pa.s) 50900 8540 441000

m 0.43 0.40 0.34

A (s) 4.91 0.28 18.04

These data are included in Figures 5.10, 5.11 and 5.12, respectively.

References

[5.1] A, Al-Muslimawi, H.R. Tamaddon-Jahromi and M.F. Webster, N um erical 
com putation o f  extrusion and  draw -extrusion cable-coating flo w s  with 
polym er melts. Appl. Rheol. 24 (2014) 34188. DOI: 10.3933/ApplRheol-24- 
34188

[5.2] T.G. Mezger, The Rheology Handbook: fo r  users o f  rotational and  oscillatory  
rheom eters , Vincentz Network, Hannover (2006).

109



(P
a.

s)
 

— 
j 

(P
as

)

100000
H D PE 2 20C  -F req . S w ee p  (100-0.1 rad /s )  ( J  )

*  HD PE 2 2 0 C  -Split F req . S w ee p  1st (100-1 rad /s )  ( J  )
T  HD PE 2 2 0 C  -Split F req  S w ee p  2nd (1.5-0.1 rad /s )  ( J  )

1 0 000  0 -

1000 00 01 0.1 10 10 0 100 0 1000.0

D (rad/s)

Figure 5.1. Shear viscosity vs. Angular frequency 
M easuring results for Freq. Sweep and Split Freq. Sweep 

HDPE at 220 °C

100000
HDPE 230C -Freq. Sweep (100-0.1 rad/s) ( J )

& HDPE 230C_Split Freq Sweep_ 1st (100-0.7 rad/s) ( J ) 
+  HDPE 230C_Split Freq. Sweep_ 2nd (1-0.25 rad/s) ( J ) 
A HDPE 230C_Split Freq Sweep_ 3rd (0 4-0 16 rad/s) ( J ) 
❖ HDPE 230C_Split Freq. Sweep_ 4th (0.25-0 1 rad/s) ( J )

10000.0  -

“5

1000.0
0.01 0.1 1.0 10.0 1000.0100.0

0 (rad/s)

Figure 5.2. Shear viscosity vs. Angular frequency 
M easuring results for Freq. Sweep and Split Freq. Sweep 

HDPE at 230 °C

1 1 0



1000000
9  HDPE 240C-Freq Sweep (100-0 1 rad/s) ( J )
O  HDPE 240C_Split Freq Sweep_ 1st (100-0 7 rad/s) ( J  ) 
+  HDPE 240C_Split Freq Sweep_ 2nd (1-0 4 rad/s) ( J  )
^  HDPE 240C_Split Freq Sweep_ 3rd (0 7-0 25 rad/s) ( J  ) 
O HDPE 240C_Split Freq Sweep_ 4th (0 4-0 16 rad/s) ( J ) 
A. HDPE 240C_Split Freq. Sweep_ 5th (0 25-0 1 rad/s) ( J )

1
&

1 0  1 0 0  

D (rad/s)

Figure 5.3. Shear viscosity vs. Angular frequency 
Measuring results for Freq. Sweep and Split Freq. Sweep 

HDPE at 240 °C

1 1 1



(Pa
 

s) 
O

Nylon 1 1 -220C _Freq. Sw eep

N ylon  11- 2 2 0 C _ F re q  S w e e p  ( J  )
N y lon  11- 2 2 0 C _ M u lliw a v e  F re q  Iso th e rm a l  ( J  )

O  N y lon  11- 2 2 0 C _ S p lit  F re q  S w e e p _ 1 s t  ( 1 0 -1 0 0  r a d s )  ( J  
♦  N y lon  1 1 _ 2 2 0 C _ S p lit  F re q  S w e e p _ 2 n d  (4 -1 5  8  r a d s )  ( J
-F N y lon  1 1 _ 2 2 0 C _ S p lit  F re q  S w e e p _ 3 r d  (1 6 -6  4  r a d s )  ( J
a  N y lon  1 1 _ 2 2 0 C _ S p lit  F re q  S w e e p _ 4 th  (1 -2  5 r a d s )  ( J  )

4=1 N y lon  1 1 _ 2 2 0 C _ S p lit  F re q  S w e e p _ 5 th  (0 .4 -1  r a d s )  ( J  )
▼ N y lon  1 1 _ 2 2 0 C _ S p lit  F re q  S w e e p _ 6 th  (0  1 6 -0  4 r a d s )  ( J

0.1 1 0
(rad/s)

Figure 5.4. Shear viscosity vs. Angular frequency 
Measuring results for Freq. Sweep and Split Freq. Sweep 

PA l l  at 220 °C

Nylon 1 1 -220C_Multiwave Freq. Isothermal

1000.0

(rad/s)

Figure 5.5. Shear viscosity vs. Angular frequency 
M easuring results from Multiwave measurements 

PA 11 at 220 °C

1 1 2



(Pa
 

s)

*■ KYNAR_220 C_Freq Sweep ( J ) 
♦  KYNAR_230 C_Freq Sweep ( J ) 
« . KYNAR_240 C_Freq. Sweep ( J  )

100000  -

10 ’ 10’
Q (rad/s)

Figure 5.6. Shear viscosity vs. Angular frequency 
Measuring results for Freq. Sweep 

PVDF at three desired temperature (220- 240 °C)

113



1000000

S. 100000 r <*240 G' ■ II

I
3 ■ *TJ ■ ▼
0 •
» 10000 r g  •
S' ♦  ♦  ♦  f 1

1000 --------------------------------------------------------------------------------
0.01 0.1 1 10 100

Angular Frequency (rad/s)

Figure 5.7a. Storage modulus vs. Angular frequency 
Measuring results for Freq. Sweep 

HDPE at three desired temperature (220- 240 °C)

■ 220 G' HDPE_PE80

•  230 G'

♦  240 G' ■ I

♦ ♦ ♦ t 1 
• • •

1000000
2 2 0  G" HDPE PE80

2 3 0  G"

2 4 0  G"100000

10000

1000
10 1000.01 0.1 1

Angular Frequency (rad/s)

Figure 5.7b. Loss modulus vs. Angular frequency 
Measuring results for Freq. Sweep 

HD PE at three desired temperature (220- 240 °C)

114



1GOOOOO

■ 220 G' Nylon_PA11

•  230 G

Q. 100000

0000
U)

1000
0.10.01 1 10 100

Angular Frequency (rad/s)

Figure 5.8a. Storage modulus vs. Angular frequency 
Measuring results for Freq. Sweep 

PA 11 at three desired temperature (220- 240 °C)

1000000

■ 2 2 0  G" Nylon_PA11

•  2 3 0  G"

OGOOO

10000

1000
0 01 0.1 1 10010

Angular Frequency  (rad/s)

Figure 5.8b. Loss modulus vs. Angular frequency 
Measuring results for Freq. Sweep 

P A 1 1 at three desired temperature (220- 240 °C)



Lo
ss

 
M

od
ul

us
 

(P
a)

 
St

or
ag

e 
M

od
ul

us
 

(P
a)

1000000

100000

10000

1000

KYNAR

.........................................................................

220  G'

230  G'

♦  240  G

0.01 0.1 1 10 
Angular F requency  (rad/s)

100

Figure 5.9a. Storage modulus vs. Angular frequency 
Measuring results for Freq. Sweep 

PVDF at three desired temperature (220- 240 °C)

1000000

100000

10000

12 2 0  G" 

'230  G" 

•240 G”

KYNAR

I* I *
I *

M
i  11

1000
0.01 0 1 1 10

Angular Frequency (rad/s)

Figure 5.9b. Loss modulus vs. Angular frequency 
Measuring results for Freq. Sweep 

PVDF at three desired temperature (220- 240 °C)

100

116



1000000

-■-220
S tO1000

9- 100
0.001 0.01 0.1 1 10 

Apparent shear rate (1/s)
100 1000

Figure 5 . 10. Fitting Model, HDPE at 220 °C

-■-220 
- • “ 230
-■ -2 4 0

A 220 C-M  
- * -C r o s s  Analysis -

n0=8540 p a s  
m=0.40 
A =0.27 s

Apparent shear rate (1/s)

Nylon_PA11

Figure 5.11. Fitting Model, PA 11 at 220 °C

117



A
pp

ar
en

t, 
Co

x~
M

er
z 

vi
sc

os
ity

 
<P

a.
s)

1000000

KYNAR

100000

-*-220

- • - 2 3 0

-* -240
10000

a 220 C-M Ho =441000 pa.s 
m*0.34 
A =18.04 s

-H -C ro s s  Analysis ‘

1000
0.001 0.01 iOO 10000.1

Apparent shear rate (1Js)

Figure 5.12. Fitting Model, PVDF at 220 °C

118



In any real material... rearrangement necessarily 
require a finite time ... [therefore] all real materials

are viscoelastic.

Nicholas W. Tschoegl

Chapter 6
Rheological Characterization on Bio-fluid 
(Sputum); Exp. vs. Computational

The main focus of this computational modelling chapter is to determine the 

extensional rheological response of sputum biofluids to provide a diagnostic tool 

(biomarker) for experimentally-based pathological analyses and clinical practice. 

This may be accomplished through advanced rheological parameterisation and 

characterisation of sputum samples, when considering extensional deformation flow 

situations that mimic sputum escalator deformation in the lung-airways. Sputum 

samples have been collected from patients (male and female, over fifty years of age) 

suffering from Chronic Obstructive Pulmonary Disease (COPD) at two stages of
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development: uninfected (stable or non-infective) state and infected (suffering 

exacerbations) state.

Samples have been tested without any pre-treatment such as mechanical 

homogenisation. Experimental and numerical studies of Capillary Break-up 

Extensional Rheometer (CaBER) have been performed, from which comparison 

significant correlations are presented. Typically, the dynamic development of the 

mid-filament diameter is monitored during the process of necking and filament- 

failure (break-up). The aim is to link this type of data with that emerging from 

experimental/clinical trials to provide a biomarker revealing insight on state of 

disorder and resultant treatment.

The rheology of sputum samples is represented through two rheological fluid 

modelling approaches: (i) a kinetic Single Extended pom-pom (SXPP) model; (ii) a 

time-dependent thixotropic Modified Bautista-Manero (MBM) model. These models 

are sufficiently rich to enable description of both network-structure and rheological 

properties, exhibiting viscoelastic response (memory), with strain- 

hardening/softening and shear-thinning properties.

6.1 Introduction

Biological materials have been the subjects of many rheological studies due to 

the relationship between their viscoelastic properties and their physiological 

function. Typically, the biorheology field covers the investigation of deformation and 

rheological properties of materials within biological systems. One such situation, in 

which the viscoelastic properties of a biomaterial is linked to a pathologic state, is via 

the enhanced elasticity and viscosity of sputum in patients with pulmonary disease 

conditions - such as, cystic fibrosis (CF), chronic obstructive pulmonary disorder 

(COPD), and asthma. The increased rigidity of respiratory mucus (sputum) has been 

proposed to be responsible for the exertion in lung clearance observed in CF patients. 

As such, some current treatments are directed towards decreasing the stiffness of

infected sputum, and rebuilding its viscoelastic features, that are suitable for

clearance. Hence, it is important to study the viscoelasticity of sputum, and its

rheology in relation to physiological function, so that diagnosis and treatment of

respiratory infection can be improved.
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On COPD To provide some background, chronic obstructive pulmonary disorder 

(COPD) is the third main disease killer world-wide (fourth highest killer in UK). It is 

estimated that about three million people in the UK have COPD. Most patients with 

COPD remain undiagnosed until late in their disease history; yet, early detection can 

be influential. It is important to capture COPD-sufferers at an initial stage of 

infection to prevent possible irreversible lung-damage inflicted by intense COPD. 

Currently the initial diagnostic of COPD is defined according to breathing tests (such 

as spirometry), CT scan, electrocardiogram, chest X-ray and blood-tests. 

Nevertheless, these assessments are often inaccurate and involve professional 

analysis.

Rheometry Conventional rheometry, performed using rotational/oscillatory 

rheometers, reveals the shear properties of a material sample (in ideal shear flow 

deformation) (see chapter 2 section 2.5.1 for more details). However, most actual 

flows in nature (for instance those which are biologically relevant) and in technology 

are complex and can include both shear and extensional components. In fact, 

extensional flows can significantly stretch macromolecules, providing orders of 

magnitude increase in elastic forces and extensional viscosity. Hence, quantifying the 

extensional rheology properties of a material in a complex flow condition is crucial 

in order to fully characterize its rheological behaviour. The rheology of biological 

complex fluids is necessary for normal vital functions of many processes in the body. 

Examples of biological flows where extensional mechanism are likely to play a key 

role comprise blood circulation [6.1], mucus transport in the airways, tear-fluid flow 

in the eyes, and saliva-flow in the mouth [6.2, 6.3]. As a result, understanding the 

behaviour of healthy and unhealthy bio-fluids under extensional deformation could 

provide significant insight and medical benefits, in terms of discovering and 

developing novel treatments, therapies and more accurate/potential diagnostic 

outcomes.

Sputum -  properties and measurement To understand the flow mechanism of 

mucus in the lungs by coughing, there have been many simulated experimental 

investigations (using a simulated cough machine) [6.4-6.9]. These researchers have 

brought several issues into focus, on the subject of the role played by rheological 

properties of mucus (as a viscoelastic biomaterial) [6.10-6.12]. Most of the
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published data on the rheology of sputum focused in studies relating to the 

application of steady and oscillatory shear, considering sputum as a non-Newtonian 

viscoelastic material exhibiting shear-thinning and thixotropic properties [6.14].

However, for scientific reasons, many of the early rheological tests performed on 

sputa have been conducted under relatively large deformation and forces. The 

increased stiffness of infected sputum prevents its proper airway clearance. As such, 

therapeutic methods are often directed to reducing sputum-viscoelasticity to their 

normal (healthy) levels. Design of catalysts capable of altering the increased rigidity 

of CF sputum is a main target for treatment of this ailment, and rheological studies of 

these materials can shed light on the structures responsible for the shifted 

viscoelasticity within the diseased condition. Consequently, much of the rheological 

data on rheology has focused on the viscosity of the material after the primary 

disruption of its elastic component.

To investigate the possibility of damaging the network structures in the sputum 

during the shear viscosity measurements, Nielsen et al. [6.15] used a combination of 

oscillatory, creep-recovery and steady shear techniques. Their results suggest that 

measurements of elastic moduli reflects the mechanical properties of sputum in situ 

rather than viscosities, and those methods used to measure viscosities, may destroy 

part of the biopolymer structures responsible for the abnormal rheology of CF 

sputum. In contrast, measurements of shear elastic moduli at low strain rates appear 

to protect more of the original structure of the sputum and may establish superior 

techniques to evaluate the effects of potential mucolytic agents.

Filament stretching The filament stretching rheometer has emerged as an 

approved apparatus for measuring the extensional properties of moderately viscous 

(mobile) non-Newtonian fluids [6.16-6.22]. Under continuous stretching, the 

filament-stretching rheometer is operated in FiSER-mods\ alternatively, under step- 

strain (CaBER) mode, operation is under capillary-break-up (short initial stretch) 

conditions[6.17, 6.18, 6.22] (see chapter 2 section 2.5.2 for specific details). In 

continuous stretching operation, a vertical cylindrical liquid bridge of the sample 

(vary in length and loading) formed between two circular end-plates is subjected to a 

prescribed extensional deformation. Subsequent necking leads to significant thinning 

and reduction of the middle-section of the filament, whilst the rigid end-plates result
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in considerable shearing within the filament-foot region. In CaBER trials, a rapid 

axial step-strain of fixed magnitude is imposed on the sample, which is subsequently 

allowed to respond to that local conformational change, before proceeding towards 

break-up under the action of capillary forces (fluid self-selecting time-scale).

An extensive survey of filament stretching technology is provided by McKinley 

and Sridhar [6.16], covering the dynamical response of non-Newtonian fluids within 

filament-stretching rheometers. In the present study, it is anticipated that sputum 

samples demonstrate strain-hardening, requiring various representative constitutive 

equations to accommodate such response. An extensive experimental and numerical 

review on break-up for Newtonian fluid filaments and jets has been provided by 

Eggers [6.17]. Regarding the step-strain mode, Anna and McKinley [6.18] studied 

the dependency in the transient of the diameter-profile of the filament, and the time 

to break-up as a function of the sample molecular weight. This work included 

comparison against simple theory for breakup of slender viscoelastic filaments.

Typically, in either mode, the transient evolution of the mid-filament diameter 

profile is monitored during the process of necking and failure, from which the 

appropriate rheological calculations are performed. Ambitions are to link this type of 

data (as a rheological bio-marker), with that emerging from experimental/clinical 

trials to assist diagnosis and treatment-selection in the early stages of COPD 

advance.

Predictive CFD study The focused challenge of the present computational study 

relates to the advanced prediction of biofluid flows within the respiratory system. 

Here and under filament-stretching, the focus is principally on the analysis and 

influence of material parameters on the temporal-evolution of the cylindrical 

filament shape (Rmid profile). The sputum samples are collected from three COPD- 

suffering patients, without stimulation. These patients have donated sputum-samples 

that correspond to two distinct stages of disease development: uninfected (stable or 

non-infective) state and infected (suffering exacerbations) state. In the present 

context, sputum rheology may be modelled through a number of approaches, from 

kinetic-molecular theory (non- thixotropic pom-pom SXPP models [6.23-6.25]) and 

from thixotropic micellar network theory (worm-like micelles-MBM model [6.26- 

6.29]). Here, pom-pom parametric variation is conducted over structural network
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description to explore a wide variety of topologies (entanglement, branching - 

molecular architecture), rheological properties (tension-hardening or softening, 

shear-thinning), relaxation mechanisms (backbone stretch, multiple time-scales). 

Under dynamic thixotropic micellar network models, parametric variation covers 

temporal network construction and destruction parameters.

To address the simulation and to solve the discretised system of partial 

differential equations involved, the basis of the present numerical strategies 

employed follows those implemented in our previous related studies [6.30-6.35]. 

This absorbs appropriate adjustments suitable to the specific problem characteristics 

of step-strain filament-stretching. The foundation of this semi-implicit time-stepping 

approach is that of a parent-subcell hybrid finite element/volume method, based on a 

Taylor series expansion of second-order in time, in combination with a fractional- 

staged incremental pressure-correction method. In addition, an Arbitrary Lagrangian 

Eulerian (ALE) formulation is introduced with particle tracking facilities to deal with 

domain and free-surface dynamic movement. Adopting this approach, spatial 

discretization is performed for the momentum-continuity equations through finite 

element procedures, whilst the finite volume method is employed for stress. Further 

discretisation detail is expanded upon below.

6.2 Governing Equations and Mathematical Modelling

This chapter focuses on the representation of steady incompressible viscoelastic

flow problems under isothermal conditions. The associated non-dimensional

continuity-momentum balance equations, whilst neglected gravitational body and 

inertial forces {Re—>0), may now be given by:

V w  = 0 , (6.1)

Re----h Reu • Vw — —Vp + V • T . (6.2)
dt

where the primary dependent variables of velocity, pressure and extra stress are 

represented by w(Vr,Vz) , p  and T , respectively, with each being a function of space 

(r, z) and time (t).
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Here, the total stress T  is split into elastic polymeric-stress (t) and solvent- 

viscous stress (2 jusd ) contributions. Similarly, the total zero shear-rate viscosity (po) 

is distinguished into solvent viscosity (jus) and polymeric viscosity (pp) contributions, 

so that juQ= jus + n p , and hence the solvent-fraction factor p  introduces, as f i  = f l j

The deformation rate tensor (d) is expressed through the standard notation for spatial 

gradients and tensor transpose (velocity gradient L = Vw) as 

d = (L + lI) /  2 = (Vu+Vu7) /  2. Some relevant characteristic quantities are presented 

based on a characteristic velocity scale U (average velocity), the initial filament 

length (Lo) (m) as a length scale (L=Lo), and a viscosity scale (p=po, zero-shear rate 

viscosity). For the purpose of introducing dimensionless group numbers, a time-scale 

(tscale= Lq/U  ) (s) is derived, the inverse of which defines a characteristic

8 ideformation rate and an initial stretch-rate (e0 =U / L0) (s ). By considering the 

principal material relaxation time X (s), constant fluid density p (kg/m ) and the 

interfacial surface tension coefficient % (N/m), the dimensionless group numbers of 

Reynolds, Deborah, Capillary and Bond can be specified, viz:

g g

Re = £ £ l h l y Oe = Ae0 , Ca = ^ £|)Zo- ,  B0 = ^ - g .  (6.3)
X X

g
Then, the stress and pressure are non-dimensionalised with a scale of ( ju0 eQ).

Here, two strain hardening/shear thinning; the kinetic/molecular-based pom-pom 

and the time-dependent thixotropic MBM models are considered. A general 

statement of the differential constitutive model may be expressed in dimensionless 

form as:

f ( r ) r+ Z ? e r+ ^ o ^ [ g ( r ) ] l +  f i ) d , (6.4)

where, r  = — +u.V T -(V u)^.r-<r.(Vu). (6.5)
dt

From this general formulation, and with appropriate parameter selection for 

governing equation (6.4), the functional f(t) and g(?) for the Single extended pom-
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pom (SXPP) model in terms of the base parameters {q, spom, \ pom, a-pom) and (De, /?) 

may be given by:

/(* )= ■
( 1

1 —
&v P°m j

v U  -1] ie I p °m J +  1

X
^ t r ( r r )

A

V
( 1 - ^ )  3

; (6 .6)

and g(T) = f (T ) ~  1.

Here, the free parameter v is estimated by data-fitting and found to be inversely 

proportional to the number of side-branch arms dangling from an end of the 

molecular chain-segment (v = dq, with c taken as 2), see Blackwell et al. [6.16]. The 

parameter epom is the ratio of the polymer-chain backbone stretch (2os) to the 

orientation (20t>) relaxation times. With the single-equation (SXPP) approximation to 

the pom-pom model, representation of the back-bone stretch parameter \ om,, is given 

as a function of trace T through expression:

I  -  1 1 D e
pom V + 3 ( l - p ) K M l  ; £po„ = y -> 

A ) b

(6.7)

For this class of pom-pom model, the identifying parameter set (q, epom, 'Xpom, 

a Pom) are defined as: the number of side-branch arms to the backbone chain-segment 

(q), system entanglement (£pom), the stretch of the back-bone segment (kpom), and the 

degree of system anisotropy (apom) as well as solvent fraction (/?). Here, in 

corresponding physical properties the implication behind the parameter settings is as 

follows: high-solvent (J3—>1) to low-solvent (/?—►()) fractions imply dilute to 

concentrated polymeric content; whilst highly-entangled (e—>0) to mildly-entangled 

(e—>1) network descriptions imply more cross-linking/less-mobile (polymer-melts) to 

less cross-linking/highly-mobile (polymer-solutions) system properties.

Considering the MBM model, its precise form is recovered from equation (6.4) 

when setting the Giesekus parameters a = 0, g(r) = Oand then:

f ( r ) = l  + <y<^oV D .  (6.8)
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In this micellar model, (O and £ are structural construction and destructionv>

parameters, respectively.

To summarise, the model parameters that control the material characteristic 

response of each fluid are then: {co, g , /?}m bm  for the MBM model; and { q, £pom,VpO

h p o m , a p o m , /?}sxpp  for the SXPP model. In this respect and current study, the 

viscometric data of relevance are reported in Figure 6.1, covering extensional 

viscosity response for the various system variation parameters cited above.

Viscometric functions The steady extensional viscosity material functions of the 

pom-pom (SXPP) and MBM models are displayed in Figure 6.1(a-b). The selected 

parameter values of (q, epom, a) for SXPP and (co, £) for MBM have been matched

together at the peak extensional rheological response. According to Figure 6.1, the 

steady extensional viscosity of both models displays an initial rise to a peak with 

increasing extension-rate, then a decrease (sharp drop in the case of the MBM 

model). The plots demonstrate that, at the set parameter of (epom=0.99, p=0.262), 

increasing the number of dangling arms (q) leads to a significant rise in the level of 

the extensional viscosity in the SXPP fluid. Whilst increasing the entanglement state 

of the fluid (zpom) at fixed parameters of (q=8, p=0.262), the rising trend in the level 

of the extensional viscosity is followed by a shifted-peak to the lower extensional 

rate observed.

As shown in Figure 6.1b, increasing the value of structure-construction 

parameter (co), at a fixed structure-destruction value (£=0.028) and solvent-fraction 

(p=0.262), leads to significant growth in the peak-value of the extensional viscosity. 

Similar trend in peak extensional viscosity rise is also realised when the structure 

destruction ©  parameter is elevated, for structure-construction parameter (co=4) and 

solvent-fraction (P=0.262).

At a specified parameters of (q=8, zpom=0.99) in SXPP and (co=4, £=0.028) in 

MBM model, the peak extensional-viscosity value decreases for rising solvent 

fraction (from p=0.262 to p=0.915), and exhibits a lower second-plateau viscosity 

level at reduced levels of solvent-fraction (P=0.262).
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Experimental procedure The experimental apparatus used in this study is 

principally that referred to in chapter 2, sections 2.5.2. Sputum samples have been 

collected from patients (male and female, over fifty years of age) suffering from 

COPD at two different stages of development: uninfected (stable or non-infective) 

state and infected (suffering exacerbations) state. All samples delivered by the 

Respiratory Medical School of Singleton Hospital, were provided with consent from 

the donor patients.

The basic configuration of the filament-stretching rheometer is that presented 

schematically in Fig. 2.9. Under present experimental protocols, test-samples were 

not subjected to any form of pre-treatment, such as mechanical homogenisation. The 

experimental procedure adopted was to load a small volume of sputum between the 

top and bottom rounded flat-plates, each of diameter 7 mm, and subject to a gap- 

width setting of 4mm. Then initially, the sample was extended rapidly by moving the 

top-endplate upwards, and away from the fixed bottom-endplate. This established the 

formation of a filament, of central uniform thickness, and proceeded to the point 

where the combined action of surface tension, inertia and rheological effects caused 

capillary break up (typically producing filament lengths of 1.5-2.5cm). The mid­

plane radius of the filament, established between the two plates during and after 

stretching, was then monitored using a high speed camera (Photron Fastcam ultima 

APX). A series of such experimental runs were conducted on each sample due to the 

potential material limitations associated with the nature of the sputum, and problems 

encountered with reproducibility.

6*3 Problem Specification

Under the filament-stretching procedures of current interest, the filament is 

stretched between two flat circular end-plates through a controlled synchronous 

motion to a specific time/length, followed by a sudden halt in motion. This leads to 

both stress growth (FiSER) and relaxation (CaBER), followed by filament break-up. 

In the FiSER mode, the time-scale is inversely proportional to the initial constant 

stretch-rate imposed on the moving-plates. In contrast, for the CaBER mode, a self- 

selective (own) time-scale of material sample itself is chosen (see Figure 6.2).
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Using a cylindrical coordinate system {r, 0, z}, the flow was constrained to be 

axisymmetric so that all flow fields are independent of the angular coordinate 0, and 

the simulation may be restricted to the rz-plane. The problem is axisymmetric about 

the axial z-axis, along the filament centreline and perpendicular to the end-plates. 

The origin is taken at the intersection between the filament mid-plane and this axis. 

The moving domain has an initial aspect-ratio (A0 = L0//?p/a,f=0.54) and a final

aspect-ratio ( a f =  L f  / Rplate= 2L/D piate), where L f and Rpiate represent the final

filament lengths and plate-radius, respectively.

The filament stretching problem involves a free-surface determination, where 

capillary forces act upon the liquid-gas free-surface to determine its displacement. 

The force balance on this interface may be expressed in dimensional terms, for a 

fluid with surface tension coefficient %, as a function of the Cauchy stress (o), 

ambient surrounding pressure (pa), principal radii of curvature (/?; and R2) [6.36] and 

normal vector (n ) to the free-surface,

G-n — —pan — x r± + i A
V *« ^2 J

n . (6.9)

Based on the initial imposed stretch-rate (£0), the appropriate corresponding 

boundary conditions are those of no-slip on the end-plates, under specific axial 

velocity component, Vz = £0L (t) , where L(t) = ±0.5L0 exp (£0t ). Here, the notation of 

positive/negative L(t) are assigned to upper and lower halves of the filament.

Background theory that links evolution of filament mid-plane radius (Rmid)(X) to 

rheometric functions, such as apparent extensional viscosity C«app)» and principal 

relaxation time (2), requires the satisfaction of certain base assumptions. Here, in 

pure uniaxial extensional deformation, one seeks the formation of a cylindrical 

filament shape, persistent in symmetry about the mid-plane, on which constant state 

of stress/deformation-rate applies at any particular time. Then, during the thinning- 

down stress-growth process under CaBER trials, evolution of the filament mid-plane 

radius, Rmid{t), can be measured and related to extensional viscosity. Hence, both 

such quantities are governed by a force balance on the filament, determined through
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viscous, elastic and capillary forces. The extensional viscosity may be expressed 

dimensionally as [6.37],

Aw = f  <6-10)2(dR„ti 1 d t)

where centre-plane extension-rate for a slender filament may be interpreted through 

the evolution of filament radius, Rmid(t), as [6.25].

& t) = — —  dR“d{t) . (6.11)
Rmii dt

Here, the problem of data correlation is tackled directly, by avoiding extraction 

of temporal gradients on (Rmid)(t), as this is a perennial error prone process 

(secondary data); instead, preferring to retain raw Rmid-data in both experimental 

measurement and numerical assessment. From this Rmid-data quality of match may be 

inferred therefore on extensional viscosity. From the simulations, and with 

knowledge of the Nj and extension-rate on the centreline, one may cross-check this 

evidence. Then, in addition, dimensional time for thinning-down and stress-growth 

{Xg), taken to be related to the principal relaxation time (2), can be estimated from the 

counterpart relationship,

% ( 0 = ( ^ ) X e x p ( - f ) ,  ( 6 1 2 )

7]
where G=—  is the elastic modulus of the material. For more details, readers are 

X

referred to [6.37].

6.4 Results and Discussion

6.4.1 Experimental Data

Beyond the limitations inherent to specific rheological measurement techniques, 

current rheological characterization of sputum is largely hampered by the difficulty
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of collecting sputum in sufficient quantities to facilitate single or reproducible 

measurements.

The experimental time evolution of the midpoint of the filament is given in 

Figure 6.3. What one is seeking here is to derive a correlation between Rmi(i data (for 

sputum, which relates to rheological properties) and the relative state of health of the 

donor-samples. Anomalies that may arise between data for patient-individuals, and 

also day-to-day for a single individual, may tie in to those noted in rheological 

properties (Rmid).

It is necessary to adopt appropriate criteria, in order to analyse these 

experimental data with their broad distribution, seeking consistency in trends on 

infected versus uninfected data across three patient-samples. In this manner, three 

different criteria have been proposed and Figure 6.4 plots comparison of the results 

against each criteria. Under the first criteria, only the median is considered, between 

highest and lowest value, in both infected and uninfected results, for all three patient- 

cases. From Figure 6.4a and in all three test cases, it can be seen that Rmid evolution 

for infected states were longer in time compare to their uninfected counterparts. On 

the other hand, there is no consistency in Rmjd starting-value, between the behaviour 

of the uninfected state when compared to the infected state, taken across each 

patient-case. To address this issue, a second criteria is proposed: choosing the 

longest-time to break-up for infected sputum, and for uninfected sputum - the 

average of {higher, lower starting value} around the infected state (see Figure. 6.4b). 

Here, the figure for all cases displays the characteristic feature of an increased 

filament life-time for infected sputum, suggesting larger extensional viscosity when 

compared to uninfected sputum. Hence, a third and more appropriate criteria (see 

Figure 6.4c), has been developed: seeking the longest-time to break-up, as well as the 

larger extensional viscosities (rje) amongst the infected data. Here, in the comparison 

and for the uninfected state, the closest Rmid starting-value to the infected state is 

adopted (equivalencing their initial Hencky-strain at the start of CaBER-mode). In 

addition, larger extensional viscosity (r|e), is defined relatively in terms of greater 

R»«7/-values for infected states compared to uninfected states.
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6.4.2 C om putational Predictions

Extensional response across models: pom-pom and MBM: One aspect of this 

work has been to compare and contrast the behaviour in complex flows of both pom­

pom (kinetic-based) and MBM (thixotropic) models in their predictive capacity to 

represent that of the test bio-fluid sputum. In this respect, we configure matching 

peak extensional rheological response for the pom-pom model against that for the 

MBM model. This allows us to independently match over extensional viscosity (rje) 

covering three scenarios of strain-hardening for pom-pom and MBM models. The 

relevant selected parameter values of (q, epom, a) for pom-pom and (co, Q for MBM,

along with terminating Hencky-strain (FiSER) and the step-strain duration times 

(time-to-break up for CaBER), are tabulated in Table 6.1 for each model. We have 

observed that commencing from various alternative starting positions (in Rmid, end of 

FiSER, start of step-strain) can significantly influence subsequent flow response. To 

demonstrate this aspect, hence the practical implications of variation in final (FiSER) 

filament aspect-ratios, we have investigated three choices of filament length: 

diameter ratio, L/Z)= {1.6, 1.8 and 2} (see Figure 6.5), each relevant to the FiSER- 

phase.

Findings are reported comparatively across the two models and three samples, in 

terms of Rm,</-profiles (see Figures. 6.6, 6.7 and 6.8) and their corresponding first 

normal stress difference (Ni) fields (see Figures 6.9, 6.10 and 6.11). In terms of mid­

filament time-evolution, this analysis reveals that numerical predictions starting at 

Hencky-strain 2 best match (in pattern) to the experimental results. For all three 

levels of strain-hardening trialled and at the higher aspect-ratio, equivalent to a 

starting Hencky-strain of 2, it is observed that the pom-pom fluid filament takes 

longer-time to reach its break-up phase compared to that for MBM. For lowest 

aspect-ratio (emncky =1.6) there is no differences between pom-pom and MBM 

predictions.

6.4.3 Rmid-Profiles:

Variation in aspect-ratio (Aj=L/Rpiate)

A primary objective in selecting an appropriate final filament aspect-ratio (LID 

variation), is to establish a substantial and sustainable necking-down filament column
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at its core (undisturbed cylindrical structure). Under FiSER protocol, trends in Rmici 

development as a function of Hencky-strain (Figure 6.5), confirm that both model- 

predictions follow similar patterns over the early stages of stretching. As the level of 

stretch (aspect-ratio) increases, slight departure between model-predictions in Rmid 

becomes apparent. At the elevated Hencky-strain level of 8=2, this departure between 

pom-pom and MBM predictions for the highly-polymeric ((3=0.262) choice is indeed 

quite significant.

Asyect-ratios (£H»nrkv)=L6 & 1.8: Figure 6.6(a-c) demonstrate for both models 

and for three patient-samples, the variation of Rmid as a function of time, starting at 

Hencky-strain 1.6. Inspection of Figure 6 indicates only slight variation in Rmid- 

profiles between model-predictions, in which Rmid for the highly-polymeric fluid 

((3=0.262) lies slightly above those with lower-polymeric contribution. The 

predictions of Rmid in highly-polymeric ((3=0.262) instances, for both pom-pom and 

MBM models, show imperceptible oscillation at earlier times, up to around t=l unit.

Figure 6.7(a-c) displays the position for the same fluids at a larger aspect-ratio 

(L/D=1.8). Comparing results for the MBM model with solvent-fraction P=0.262 at 

two alternative aspect-ratios {1.6, 1.8}, see Figures. 6.6 and 6.7, identifies a 

significant change in rate-of-decrease in Rmij-profile. In this instance, increase in 

Hencky-strain level from 1.6 to 1.8 yields steeper decrease in the Rm,j-profile.

Aspect-ratio (SHp»rkJ=2: As above, Figure 6.8(a-c) shows data starting at

Hencky-strains 2, with comparison between experimental observations for three 

sputum patient-samples and numerical predictions for both models. Here, the 

variation of Rmid (scaled by Ro, initial radius at onset of step-strain) provides close 

agreement with equivalent experimental sputum-data, commending Hencky-strain 2 

as the superior choice. With the pom-pom model, the time to break-up for the 

filament is observed to increase upon rise in the level of strain-hardening. In contrast, 

under the MBM model, Rmî -profiles demonstrate a decreasing trend in time-to-break 

up at higher-rates with increased level of hardening. The pom-pom fluid filament 

thins at the slowest rate, compared to the other model alternatives, and takes a longer 

time to reach its break-up phase.
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Comparison of pom-pom (q=4, £pOm=0.99, a-0) and MBM (a)=4, £=0.242); 

P=0.915; Both model-predictions follow similar trends in Rmid(t) up to the level of

t=5 units (t~50 sec). Beyond this time-stage, the declining evolution of pom-pom 

^m/w(t)-profile begins to depart, at a slightly lower rate in comparison to that for 

MBM model-predictions. Having relatively higher rate of filament-thinning under 

MBM model-prediction, causes the slightly shorter time to break-up at t=2.8 time 

units, when compared to t=3.2 time units for the pom-pom fluid. This result is 

consistent with the viscometric data, as one might expect greater stability to be 

retained by the pom-pom variant.

Comparison of pom-pom (q=8, £pOm=0.99, a=0) and MBM (co=4, £=0.082); 

p=0.915; Once again, both pom-pom and MBM filaments neck-down in similar 

fashion up to t=5 time units (at t~50 sec). Subsequently, the necking-down process 

under MBM model-prediction is more rapid, and the filament breaks-up at t=2.2 time 

units; whilst under pom-pom prediction, the filament has a smoothly declining trend 

to break-up at t=3.6 time units.

Comparison of pom-pom (q=4, £pOm=0.99, a=0) and MBM (co=4, £=0.028); 

p=0.262; Over the relatively short and early process period 2<t<4, the MBM 

filament profile displays more rapid thinning and necking-down at filament-core. No 

temporal oscillations/fluctuations are detected under MBM prediction, and the 

process terminates earlier (t = 0.6 units, Figure 6.8) than for the corresponding pom­

pom model with t=  4 units. This is due to the rapid and excessive necking when

stress levels rise sharply; see Figure ll-N i profiles. The reason for such differences 

in flow response may well originate in the respective viscometric properties of these 

fluid models at the relevant levels of strain-hardening sustained.

pom-pom data comparison: p=0.262 (solid red): P=0.915 (solid blue) (q=4, 

spom=0.99, a=0); Here, we discuss the consequences of switching between the 

polymeric viscosity ratios, from high (p= 0.262) to low ((3=0.915). In particular, for 

pom-pom model (q=4, 8pom=0.99, a=0), on the resulting filament deformation profile 

(Figure 6.8), and at a selected aspect-ratio of L/D=2. The variation in RmiJf) for pom­

pom with p=0.262 departs from that of p=0.915 around t=l unit (at t~5 sec); 

subsequently, the high-polymeric fluid filament thins at a lower rate compared to the
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low-polymeric case. There is a slight hint here of local minima and maxima 

formation over 0<t<1.5 units (0<t<15sec) in the highly-polymeric scenario (P=0.262) 

profile. After t=1.5 units, this profile enters long-time behaviour up to t=4 units. In 

the low-polymeric scenario (p=0.915), lesser extension, experienced at filament mid­

plane, causes greater thinning in filament mid-plane radius. Under such P-change, 

and due to variation in strain-hardening, the time-to-break-up reduces from 0(4 

units) for the high-polymeric (p=0.262) fluid, to 0(3.2 units) for the low-polymeric 

fluid (P=0.915).

MBM data comparison: £=0.242 (dashed blue): £=0.082 (dashed sreen) (co=4, 

P=0.915): Solutions are presented for the MBM model with a fixed solvent-fraction 

of P=0.915 and at a selected aspect-ratio L/D=2. The structure-construction 

parameter used is ©=4.0; with two different structure-destruction parameters of 

§=0.242 and 5=0.082. Note that, as the 5 (structural destruction parameter) decreases, 

the micellar model system will exhibit greater level of strain-hardening. Temporal 

trends in response are shown in the trace of /?m,j-profiles of Figure 6.8, where the 

fluid is observed to break-up earlier at -2.2 time units (at t~23 sec) for 5=0.082 

(higher level of strain-hardening), compared to 2.8 units (at t~29.5 sec) for 5=0.242 

(lower level of strain-hardening). The higher resistance of the fluid to break-up is 

observed to arise in the filament with larger network-destruction parameter 

(5=0.242). This outcome would appear to oppose that observed under pom-pom 

predictions.

Numerical results vs. experimental data: In Figure 6.8(a-c), the experimental 

results were selected from the third criteria listed earlier, as this gave rise to 

improved correlation between experiments and numerical predictions. Both model- 

predictions under pom-pom and MBM with p=0.262 reflect the properties of sputum 

more closely. It is apparent that, in general, pom-pom /^.^-predictions (with q=4,

£pom=0.99, a=0 and p=0.262) follow similar patterns to those recorded for infected 

sputum test-cases 1 and 3, but are less good for test-case 2. For uninfected sputum 

test-cases, measured /^ -p ro file s  show reasonably good agreement with Rmid- 

predictions for MBM (co=4, 5=0.028 and p=0.262) in cases 2 and 3. Nonetheless, 

considering the practical shortcomings that lead to uncertainties associated with the 

experimental data, the agreement between Rmid{measured) and /^(predicted) is held to be a 

fairly close match, and hence, encouraging.
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The results on uninfected-sputum data for candidate-one reflect similar 

behaviour to the infected-state up to t=5 time units; and then, the Rmid~curve declines 

sharply for a short time, terminating at t~6 time units. For the infected-state, the Rmid- 

profile is barely changing over the time of the experiment (Figure 6.8a). In the case 

of patient-two and the uninfected-state, the Rmid~curve declines abruptly at the outset 

of the test; and hence, any error induced may have further affected subsequent 

precision in readings. In this case, the filament-thinning behaviour for infected- 

sputum mimics that under MBM (co=4, 5=0.082; (3=0.915), with break-up at shorter 

times (Figure 6.8b), when compared to their numerical counterparts.

6.4.4 First Normal Stress Difference (Ni) Fields:

High polymeric viscosity fluids fi=0.262, pom-pom, MBM, various UD:

Filament-shape and first-normal stress difference (Nj) fields are presented in Figures 

6.9-6.11, at different times using different time-scales. These are derived with pom­

pom (q=4, 8Pom=0.99, apom=0) and MBM (oo=4, 5=0.028) versions. To compare with 

experimental results and timings, the time unit of T is chosen as a scaling time 

(defined relative to the experimental CaBER-time) to calibrate against the numerical 

results, and tf is then the CaBER process-time. For this highly-polymeric fluid 

((3=0.262), qualitative observation from the figures reveals significant variation in the 

manner of filament-thinning, when comparing predictions from pom-pom 

(kinematic-based) and MBM (thixotropic) models.

Aspect-ratio (sHencky)=l-6 & 1.8: A comparison across models at a starting 

Hencky-strain of 1.6 units is depicted in Figure 6.9(a-d). For the MBM filament, a 

pinching structure forms at the centre of the filament at t=0.6T. As time advances, 

the symmetrical filament-shape pattern is maintained with no fluctuations and the 

filament thins down gradually until numerical failure occurs. This feature is also 

present in a much reduced form with the pom-pom filament. For both models, the 

maxima in first normal stress (Ni) are located at the filament-core and as time 

progresses, the region of these maxima moves towards the filament mid-plane at the 

free-surface.

At median aspect-ratio, equivalent to a starting Hencky-strain 1.8, comparison is 

made across model-predictions as displayed in Figure 6.10(a-c). The pom-pom fluid
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displays the thicker filament core at all times, and consequently, a longer step-strain 

period. Here, the MBM fluid provides the more bulbous feet, thinner core and shorter 

time to break-up. Under pom-pom results, Ay-maxima decrease from 11.69 to 0.89 

units (over 0.2<t<3 time unit) increasing thereafter slightly to 0.96 units at 

termination-time (t=4 time unit) (see Figure 6.10a and 6.10c). The converse is the 

case under MBM prediction, with shorter time to break-up displaying a monotonic 

increase in Ay-maxima from 15.05 to 21.17 units (over 0.2<t<0.6 time unit) (see first 

normal-stress fields of Figure 6.10b, also /^ -p ro file s  of Figure 6.7). With stronger 

necking forces acting on the filament, the sooner the filament will thin down.

Aspect-ratio (sHencky)=2: By L/D=2, the same behaviour occurs as with L/D=1.8 

in terms of time-to-break-up, in both instances of pom-pom and MBM predictions 

(see Figure 6.11(a-c)). It is clearly apparent that the pom-pom fluid takes a longer 

time to reach its break-up point. For the pom-pom filament, centre and foot pinching 

structures are formed beyond the early fluctuation period (0.6<t<l unit), and the 

filament thins down at a slower rate compared to that with MBM, until numerical 

failure is encountered. Attached to the filament-feet, a bulge structure in the upper 

and the lower portions of the filament length appears at t=0.6 unit and beyond. The 

associated axial travelling wave is more apparent here up to t=l unit, gradually 

diminishing and drawing out into the filament-feet as the step-strain period advances. 

In this case, the central section of the filament is thicker, leading to longer life-period 

of the thinning filament.

With the MBM fluid, the filament necks-down most rapidly (t=0.4 unit) to a fine 

thread in the central region (see first normal stress fields of Figure 6.1 lb, also Rmd- 

profiles of Figure 6.8) before break-up occurs, leaving two characteristic wine-glass 

upper and lower filament sections attached to the end-plates. In this case, since the 

level of Hencky-strain is close to a critical state, the filament breaks up rapidly at 

tf=0.6 units. Note that, the maxima in first-normal stress (Ay) plots for both models 

are located around the centre of the filament. In the case of pom-pom, Ay-maxima 

decrease from 13.20 to 4.23 units (over 0.2<t<3 time units); increasing thereafter 

rapidly to reach 23.63 units during the latter time (3<t<4 time units); prior to ultimate 

termination (just before filament break-up). Quantitative data in Figure 11 indicate 

that Ay-maxima increase monotonically from 18.17 to 20.05 units (over 0.2<t<0.6
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time units) with MBM, as opposed to under pom-pom. These TVy-maxima lie 

consistently higher than those at equivalent CaBER process-time, when compare to 

the pom-pom fluid. Note that A^y-maxima at time-period of t=0.6 units for MBM 

closely approximate those at t=4 time units for pom-pom. Such disparity in stress 

development between the two contexts permits the longer period of stretching under 

the pom-pom representation. The reason for such differences in flow response may 

be principally attributed to the contrast in strain-hardening properties endured, as 

discussed above.

6.5 Overview remarks

In this chapter, experimental and computational approaches of Capillary Break­

up Extensional Rheometer (CaBER) have been considered to predict extensional 

rheological response, and correlate this to the degree of infection in patients suffering 

from Chronic Obstructive Pulmonary Disease (COPD). In this manner, a measure of 

extensional rheology through RwW-evolution of sputum (experimental), from three

doner-patients with COPD at two stages (stable and exacerbation - without 

stimulation), has been compared against that derived from numerical prediction. 

Rheological models employed for this purpose are the pom-pom (kinetic-molecular 

theory) (SXPP) and the MBM (time-dependent thixotropic) models. Typically, the 

dynamic progress of the midpoint of the filament is monitored during the process of 

necking and failure, with the aim of linking this temporal data with that emerging 

from counterpart experimental trials.

The broad distribution of experimental results across three patient-samples 

suggests the necessity of adopting specific criteria, to derive consistent correlations 

between infected versus uninfected data. In this manner, three different criteria has 

been investigated through this study and the most appropriate criteria has been found 

to be the one with the longest-time to break-up, as well as the larger extensional 

viscosities (r|e) amongst the infected data. For the uninfected data, the closest Rmid 

starting-value to the infected state is chosen (equivalencing their step-strain Hencky- 

strain). The sensitivity of the simulation to the choice of aspect ratio (L/D=1.6, 1.8 

and 2) has also been investigated to predict suitable windows for experimental
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operation sets. The outcome suggests that the results commencing from Hencky- 

strain 2 is the superior choice to adopt.

Overall, in this preliminary study, the capability has been demonstrated of these 

rheological models (pom-pom and MBM) to qualitatively predict rheological 

measures that can gainfully be used to assess the disparity between infected and 

uninfected sputum samples. This points the way towards a biomarker for COPD 

(process and device accordingly), in detecting the severity of COPD-infection with 

appropriate criteria and parameter sets. In general, pom-pom /^.^-predictions (with

q=4, SpOm=0.99, a=0 and (3=0.262) follow similar patterns to those recorded for 

infected sputum. While, measured /?m,^-profdes for uninfected sputum test-cases 

appear to be in good agreement with /^^-predictions for thixotropic MBM (co=4, 

5=0.028 and (3=0.262).
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Scenarios FiSER CaBER =27 Hencky

Model Parameters

p=0.262
(Highly-

Polymeric)

p=0.915
(Solvent-

dominated)

P=0.262
(Highly-

Polymeric)

p=0.915
(Solvent-

dominated)

Hencky
Strain

Hencky
Strain

Time-to-
breakup

Time-to-
breakup

po m -p o m

q=4; s =0.99;
n  pom

a= 0
3.6 5.0 4 3.2

q=8; s =0.99;
n  pom

a= 0
5.0 5.0 4 3.6

... ............ .

co=4.0;^=0.028 2.2 -
0.6 (0.8 

pom -pom )
-

MBM co=4.0; 5=0.242 - 5 - 2.8(4.0 
pom -pom )

co=4.0;5=0.082 - 3.8 - 2.2(4.0 
pom -pom )

Table 6.1. FiSER and C aB ER (L/D )=2 senarios; pom -pom  &
M BM
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You have to learn the rules o f the game. And then you 
have to play better than anyone else.

Albert Einstein

Chapter 7 

Concluding Remarks

This work has tacked the two bases of rheology, computational simulation and 

experimental rheometry. This has involved numerical solutions for two complex 

viscoelastic flow test problems: flows in axisymmetric hyperbolic 4:1:4 

contraction/expansion configurations (dominated by shear deformation), and 

filament stretching and step-strain (dominated by extensional deformation). In 

addition, rheological characterization (experimental rheology) has been conducted 

for three polymer melts.
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Through this study, a time-dependent hybrid finite element/finite volume (fe/fv) 

parent-subcell scheme has been employed, which has been developed in-house by 

the computational rheology group (INNFM) at Swansea University.

First, flow in a rounded-corner hyperbolic 4:1:4 contraction/expansion has been 

considered, comparing predictions for time-dependent thixotropic Modified Bautista- 

Manero (MBM) models and time-independent network-based EPTT models., This 

has been conducted under comparatively moderate and strong hardening response, 

for highly-polymeric and solvent-dominated fluids. At low-levels of elasticity 

(We—>0), the MBM (micellar model) inconsistently predicted epd-walues, as opposed 

to the network-based EPTT. Here, the MBM data-curve underpredicted the epd 

values at the Stokesian limit by {40%, 10%} for the {MH, SH} polymeric fluids, 

respectively. To overcome this anomaly in epd at low deformation rates (equivalent 

to low We), a correction to the MBM model has been proposed that introduces elastic 

effects into the structure equation (destruction) [7.1]. In this context, two model 

variants have been proposed:- namely, (i) a model in which the energy dissipated by 

the polymer to breakdown the structure of the material (NM_xp model) is used; and 

(ii) an option that considers the polymeric+solvent dissipation in its structural 

dynamic readjustment (NM_T model).

The capability of new models has been examined in predicting enhanced epd. 

For all three types of constitutive models used - MBM, new micellar models (NM_xp 

& NM_T) and EPTT- the relationship has been considered, under rising We, between 

the pressure-drop, the first normal stress difference (Ay) (along the symmetry line in 

extension, and the boundary wall in shear), the strain rate across the geometry and 

the material functions involved.

Advancing from the knowledge gained in our previous studies on the modelling 

of wormlike micellar solutions through contraction-expansion configurations [7.1], 

the influence of the shape of the contraction/expansion configuration and its effect on 

epd prediction has been demonstrated. This has been achieved by comparison against 

findings for the rounded-corner abrupt 4:1:4 geometry flow.

It should be noted that the majority of experimental research performed on 

wormlike micellar systems relates to steady-state (axisymmetric or planar),

159



oscillatory and extensional measurements, on standard commercial devices (to mimic 

ideal/model flow scenarios). The role for numerical simulations, as performed in the 

present study, is particularly useful in providing insight into complex flow response 

for these complex wormlike micellar systems. This may aid in future to help design 

and develop more advanced experimental techniques suitable for such material 

systems (tackling their inherent complexities, such as shear-banding behaviour).

Precise knowledge of the rheological behaviour of polymers (polymer melts in 

particular) is the key to setting up an accurate process operating window, typically 

governing temperature and flow rates, and in the development of new polymeric 

materials for smooth processing control. Also, rheological information is required for 

process simulation, which is considered as an essential component of any new 

process setup. Due to the sensitivity of polymer melts to small changes in polymeric 

structure, use of rheometers in the linear deformation-rate range is a most convenient 

strategy of choice to Theologically characterize polymer melts.

Chapter 5 has presented the experimental work and characterisation results for 

three polymer-melts. The study focuses on the determination of the dynamic 

viscoelastic properties, using small amplitude oscillatory shear (SAOS) technique, of 

High-Density Polyethylene (HDPE), Nylon 11 (Polyamide-PAll), and Poly- 

Vinylidene Fluoride (PVDF) melt, which were measured using a controlled-strain 

rheometer (TA Instruments ARES-G2). Frequency sweep measurements were 

performed in a frequency range from 100 down to 0.1 rad/s (in order to limit the 

effect of degradation), with the strain level of 1% (in the linear regime) at 

temperatures of 220°C, 230°C, and 240°C, respectively. The method of taking data 

measurements in a few intervals of frequency has been suggested to avoid problems 

with either long exposure time at high temperature, or with taking data in a time 

shorter than the thermal stability time. This approach allows for a small improvement 

in precision under the data acquisition. The data thus obtained has been interpreted in 

terms of the relevant shear viscosities. It is fairly apparent that a significant 

improvement in precision has been obtained at higher temperatures and lower 

frequencies. However, in the case of the PA 11 melt, the viscoelastic properties 

cannot be investigated by a discrete frequency-sweep, since the substance has been 

found to change dramatically during the measurement. This renders a meaningful
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status description almost impossible. An alternative procedure is to speed-up the data 

acquisition time -  known as a Multiwave test, whereby investigating the frequency 

dependency proves to significantly shorten the measuring time.

Using the Cox-Merz rule, dynamic oscillatory data (in terms ofG ,G  ) were 

fitted to predictions derived according to the Cross model. Here, the experimental 

data collected was effectively used by others as characteristic material input-data to 

the same fe/fv simulation software suite, tackling such application problems as 

extrudate-swell and tube-tooling cable-coating (see [7.2]).

In chapter 6, combined experimental and computational studies have been 

performed for Capillary Break-up Extensional Rheometry (CaBER). This technique 

has been considered to predict extensional rheological response for the biofluid 

sputum; and to correlate this to the degree of infection in patients suffering from 

Chronic Obstructive Pulmonary Disease (COPD). In this manner, a measure of 

extensional rheology through Rmid~evolution of sputum (experimental), has been

compared against that derived from numerical prediction. To this end, sputum 

samples were derived from three doner-patients with COPD, at two stages of disease 

development (stable and exacerbation - without stimulation). Rheological models 

employed for this purpose are the pom-pom (kinetic-molecular theory) (SXPP) and 

the MBM (time-dependent thixotropic) models. Typically, the dynamic evolution of 

the filament-midpoint has been monitored during this process of necking and failure, 

with the aim of linking this temporal data with that emerging from counterpart 

experimental trials. The aim is to link this type of data with that emerging from 

experimental/clinical trials, to provide a diagnostic tool (biomarker) revealing insight 

on the state of disease-disorder and to aid subsequent resultant (early) treatment.

The broad distribution of experimental temporal results across three patient- 

samples has suggested the necessity of adopting specific criteria, to derive consistent 

correlations between infected versus uninfected data. In this manner, three different 

criteria have been investigated through this study. The most appropriate criteria 

emerging, amongst the infected data, has been found to be that dependent on the 

longest-time to break-up, whilst possessing the larger extensional viscosities (qe)- For 

the uninfected data, the closest Rmid starting-value to the infected state has been 

chosen (equivalencing their step-strain Hencky-strain). The sensitivity of the
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simulation results to the choice of aspect ratio (L/D=1.6, 1.8 and 2) has also been 

investigated to predict suitable windows for experimental operation sets. The 

outcome suggests that the results commencing from Hencky-strain 2 is the more 

superior choice to adopt.

Overall, the capability has been demonstrated of these rheological models (pom­

pom and MBM) to qualitatively predict rheological properties that can gainfully be 

used to assess the disparity between infected and uninfected sputum samples. This 

points the way forwards towards a biomarker for COPD (process and device 

accordingly), in detecting the severity of COPD-infection with appropriate criteria 

and parameter sets. In general, pom-pom /^.^-predictions (with q=4, epOm=0.99, a=0

and p=0.262) follow similar patterns to those recorded for infected sputum. While, 

measured /?m̂ -profiles for uninfected sputum test-cases appear to be in good 

agreement with /^^-predictions for the thixotropic MBM (co=4, §=0.028 and 

p=0.262) model.
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