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SUM M ARY

This research investigates the non-linear irreversible behaviour of wood 
cell-walls by means of a finite element-based computational multi-scale ap
proach. A finite strain three-scale model is proposed where the overall re
sponse of the cell-wall composite is obtained by the computational homogeni
sation of a Representative Volume Element (RVE) of cell-wall material, called 
here microfibril-RVE. This RVE is composed of three basic constituents: 
hemicellulose, lignin and cellulose, and the latter with its corresponding crys
talline and amorphous fractions. Furthermore, in a lower scale, the crystalline 
and amorphous portions of cellulose form a periodic arrangement represented 
by a single material whose mechanical response prediction, in turn, involves 
the computational homogenisation of a RVE, named cellulose core-RVE. Nu
merical material tests are conducted with the proposed model. The results 
are compared to published experimental data and demonstrate the predic
tive capability of the proposed model in capturing key features of cell-wall 
behaviour, such as fibre reorientation-induced stiffening, viscous relaxation, 
recovery mechanism and hysteresis. The present results suggest a failure mech
anism for the cell-wall under straining, which is associated with the inelastic 
yielding of the amorphous portion of cellulose fibres.

In order to reduce CPU times and memory requirements in the present 
three-scale finite element model, this research also addresses the impact of 
the use of symmetry conditions in multi-scale models. Two types of RVE 
symmetry often found in practice are considered: staggered-translational and 
point symmetry. These are analysed under three types RVE of kinematical 
constraints: periodic boundary fluctuations, linear boundary displacements 
(which gives an upper bound for the macroscopic stiffness) and the minimum 
kinematical constraint (corresponding to uniform boundary tractions and pro
viding a lower bound for the macroscopic stiffness). Numerical examples show 
that substantial savings in computing times are achieved by taking advantage 
of such symmetries. Speed-up factors in excess of seven have been found 
in such cases, when both symmetry conditions considered are present at the 
same time. In addition, for completeness, the direct enforcement of such con
straints within a Newton-based finite element solution procedure for the RVE 
equilibrium problem is detailed in this thesis.
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C h a p t e r  1

Introduction

1.1 Objectives and methodology
Over the last few years, the investigation of complex and intricate mech
anisms of wood at nano- and microscopic scale levels, has shown remark
able progress, particularly in relation to the understanding of the linear 
elastic material response by means of conventional multi-scale finite el
ement models (Holmberg et al. 1999, Hofstetter et al. 2005, Hofstetter 
et al. 2007, Qing and Mishnaevsky 2009 a, Qing and Mishnaevsky 20096, Qing 
and Mishnaevsky 2010).

Despite the fact that such multi-scale models offer the possibility of de
scribing more accurately the stress response under complex strain paths of 
difficult representation by means of conventional internal variable-based phe
nomenological models, at present only few attempts have been made in cap
turing the non-linear dissipative response of wood at various scales.

Probably one of the crucial factors in understanding the mechanical dissi
pation of wood across different scales is the role that the three major nanos- 
tructural constituents play and the irreversible processes that they show in 
the cell-wall. These are hemicellulose, lignin and cellulose, and the latter with 
its corresponding crystalline and amorphous fractions.

Despite the considerable effort devoted to the experimental study of the 
basic constituents in the cell-wall, only little is known at present about their 
mechanical properties and interactions (Burgert et al. 2006). An important 
contribution in the understanding of cell-wall mechanics has been given by 
Keckes and his co-workers (Keckes et al. 2003). They showed how wood tis
sue and individual cells are able to undergo large strains without apparent 
damage. They have proposed a recovery mechanism after irreversible defor
mation, interpreted as a stick-and-slip mechanism at the molecular level. They 
showed that this velcro-like mechanism provides a plastic response similar to 
the crystallographic sliding in polycrystalline metals.

The main objective of this research is to investigate the highly non-linear 
irreversible behaviour of wood cell-wall by means of a finite element-based 
computational multi-scale approach. In an attem pt to capture the main non
linear phenomenological responses found in the cell-wall, a fully coupled three- 
scale finite element model is proposed where the cell-wall material is idealised 
as a periodic microstructure.



2 Chapter 1. Introduction

One of the most important goals of the present research is the numeri
cal modelling of the following features found in the cell-wall material: fibre 
reorientation-induced stiffening, viscous relaxation, recovery mechanism and 
loading/unloading processes. Here, we anticipate that a very good predic
tive capability is shown when the homogenised mechanical response of the 
present model is compared with experimental information. Moreover, from 
the numerical results, it is found that yielding in the amorphous fraction of 
the cellulose could be interpreted as a potential mechanism of failure in the 
wood cell.

In order to reduce computing times and memory requirements in the 
present three-scale finite element-based model, this research has also addressed 
the use of symmetry conditions in the reduction of CPU times. If, on one hand, 
multi-scale finite element models offer the possibility of describing more ac
curately the stress response under complex strain paths, on the other hand 
they suffer from the drawback of excessive computing costs. These costs are 
usually acceptable when finite element analyses of a single RVE are used to 
calibrate parameters of a macroscopic phenomenological model (refer, for in
stance, to Giusti, Blanco, de Souza Neto and Feijoo (2009), Pellegrino et al. 
(1999) and Speirs et al. (2008)). However, when fully coupled multi-scale fi
nite element analyses are needed (Matsui et al. 2004, Miehe et al. 2002, Terada 
et al. 2003), where the macroscopic equilibrium problem is solved simultane
ously with one RVE equilibrium problem per macroscopic Gauss quadrature 
point, computing times and memory requirements soon become prohibitive. 
In such cases, even with the use of simple phenomenological models and rel
atively coarse meshes at the RVE level, computing costs may rise by several 
orders of magnitude when compared to conventional single-scale analyses of 
similarly sized macroscopic problems. To address this issue, various strategies, 
including the use of parallel processing, sub-stepping schemes and the use of 
more efficient linear solvers, have been suggested in the literature (Matsui 
et al. 2004, Somer et al. 2009). It is emphasised that regardless of any strate
gies adopted to reduce computational costs, the choice of the smallest possible 
RVE always remains a crucial factor. Two types of symmetry are considered: 
staggered-translational and point symmetry. It is remarked that the direct 
enforcement of such symmetry conditions within a Newton-based finite ele
ment solution procedure for the RVE equilibrium problem is straightforward 
and, for completeness, is detailed in this thesis. We anticipate here that sub
stantial savings in computing times are shown by numerical examples. For 
instance, speed-up factors in excess of seven are found when both symmetries 
considered are present at the same time.
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1.2 Layout of the thesis
The present thesis consists of 6  chapters organised as follows.

The present Chapter 1 discusses the objectives and methodology of this 
work. Some results are anticipated here.

Chapter 2  presents a brief review of wood mechanics at different scales. 
Here, the structure of wood at macro- and microscopic scale is studied. The 
chemical constituents present in the wood cell-wall are also reviewed. At the 
end of this chapter, the mechanics of wood cell and wood cell-wall is described.

Chapter 3 presents the theoretical background of the adopted 
homogenisation-based multi-scale theory in continuum form as described in 
(de Souza Neto and Feijoo 2006, de Souza Neto and Feijoo 2010). First, 
the basic principles of the theory under the infinitesimal strains framework, 
and the fundamental concept of Representative Volume Element are reviewed. 
Then, the linear boundary displacement, the periodic boundary displacement 
fluctuations and the uniform boundary tractions model are introduced, with 
their corresponding finite element implementations. At the end of the chapter, 
the theory is extended to the finite strains case.

The symmetry considerations are presented in Chapter 4 together with 
their corresponding computational implementation within the adopted im
plicit finite element framework. Numerical examples showing substantial sav
ings in CPU times when symmetries are considered are also presented in this 
Chapter.

The finite element-based multi-scale model of wood cell-wall is presented 
in Chapter 5. The main numerical tests are conducted here. The results are 
compared to published experimental data and are also discussed in detail. 
Key features of cell-wall behaviour are addressed, such as fibre reorientation- 
induced stiffening, viscous relaxation, recovery mechanism and hysteresis.

Finally, Chapter 6  summarises the main conclusions obtained from the 
present thesis.

As a general scheme of notation, throughout this thesis scalars are written 
as italic light-face letters; points, first and second order tensors as italic bold
face letters; and finite element arrays (vectors and matrices) as upright bold
face letters.
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Structure and mechanics of wood 
at different scales

The purpose of this chapter is to describe briefly the morphology and com
position of wood at different scales. For further information, we refer, for in
stance, Kollman and Cote (1968), Dinwoodie (1981), Bodig and Jayne (1982) 
and Smith et al. (2003).

2.1 Structure of wood at macroscopic scale
At macroscopic scale, trees trunks show a typical internal structure, consisting 
of multiple concentric layers through their corresponding cross-sections (refer 
to Figure 2 .1 ). The first and outermost layer corresponds to the bark, which 
can be divided into an inner and an outer portion. The inner bark comprises 
great part of the living tissue of the tree and is composed by the cork cambium, 
where new layers of cork are formed, and by the secondary phloem, where large 
quantities of nutrients are transported throughout the tree. The outer bark 
comprises deposits of dead cells. Inwards, the next layer is called vascular 
cambium, where new wood cells are produced, along with the relegation of 
older cells into the bark or into the inner region of the trunk. Within the bark, 
and comprising the vascular cambium and the bulk of the stem is the wood, 
represented by two main regions concentrically distributed around the pith or 
central portion of the trunk. The first outer region is called sapwood, whose 
principal functions are structural support, transport of water and minerals 
and storage of carbohydrate reserves. It represents from 10% to 60% of the 
total radius of the tree trunk (Dinwoodie 1981). The second inner region 
is named heartwood and accomplishes functions of support and resistance 
to decay. Since sapwood contains the most nutrients reserves, it is highly 
attractive to the attack of decay organisms, becoming much less durable than 
heartwood.

2.2 Wood microstructure
Microscopically, wood is composed mainly by an arrangement of long slen
der tubular cells, oriented nearly parallel to the axis of the stem and firmly
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Figure 2.1: Diagramatic illustration of the cross-section of a trunk, showing 
the principal structural features.

cemented together, with dimensions and shapes variable within a tree and 
among species (refer to Figure 2.2).

In hardwoods, this cellular microstructure consists basically of three types 
of cells, called fibres, vessels and parenchirnas, whose main functions are struc
tural support, water transport and storage, respectively.

Generally, fibres are elongated cells, averaging 1.2mm long and 10 - 50/mi 
in diameter (Tsoumis 1991). Their walls are considerably thicker than those 
of vessels and normally they are sparsely perforated. On the contrary, vessels 
are usually shorter, of length about 0.2 -  1.2mm and relatively wide, up to 
0.5mm (Dinwoodie 1981). Parenchirnas are usually present horizontally, in 
the form of rays (Figure 2.1) or vertically, either homogeneously distributed 
or in distinct zones.

In softwoods, tracheids are the most common type of cell (Figure 2.3). 
Usually they have poligonal cross-sections and their principal functions are 
support and transport of water and minerals. Their length varies from 3 to 
4mm with diameters between 30 -  40//m (Gardner 2002).

As a consequence of seasonal changes, most tree species show periodical 
variations in the thickness and width of tracheids, represented by concentric 
growth rings (Figure 2.4). Cells developed during rainy months of the year, 
when the dominant function is conduction, are called earlywood tracheids, 
being characterised by thin walls with thickness of about 1.78//m thick (Bodig 
and Jayne 1982). Cells generated during dry months, when the main function
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Figure 2.2: Typical microscopic cellular arrangement in wood.

is support, are called latewood tracheids and have thicknesses up to 10/mi 
(Dinwoodie 1981).

Additionally, other types of tracheids in softwoods can be found in the 
lower side of branches and in inclined stems. They are called compression wood 
and commonly have round cross-sections and thick cell-walls. For instance, in 
Norway spruce, typical compression wood tracheids have an average thickness 
of 4.6/im, mean length of 2.2mm and an average diameter of 21.1//m (Tarmian 
and Azadfallah 2009). In order to illustrate the morphological differences 
among compression wood, earlywood and latewood tracheids, Figure 2.5 shows 
their corresponding cross-section views.

2.3 Nanoscopic constituents in the wood cell- 
wall

At the nanoscopic level, wood cell-wall contains three major chemical con
stituents: cellulose, hemicellulose and lignin. Cellulose is encountered in a 
proportion of 40 -  50% by weight of wood substance, hemicellulose in 25% 
and lignin between 20 -  30% approximately (Smith et al. 2003).

Cellulose is a long polymer composed of glucose units. It is organised into 
periodic arrangements of crystalline and amorphous (non-crystalline) regions 
along their length, called in what follows crystalline-amorphous cellulose core 
(refer to Figure 2.6 for further details). This periodic arrangement is covered 
with an outer surface layer made up of amorphous cellulose (Xu et al. 2007). 
The proportion of crystalline volume is determined by its (volumetric) degree
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Figure 2.3: Typical wood tracheid with four layers in the cell-wall. From 
inside to outside, these are the S3, S2, SI and P-M layers. The different 
orientations of the cellulose fibres through the cell-wall result in an increase 
of the overall stiffness in the wood cell.

of crystallinity. The high stiffness of the cellulose is due to its crystalline frac
tion whereas its flexibility is provided by the amorphous part (Timar-Balazsy 
and Eastop 1998). Only its non-crvstalline fraction may absorb moisture and 
consequently, change its mechanical properties.

Contrary to crystalline cellulose, hemicellulose is a polymer with little 
strength, built up of sugar units. Its structure is partially random, with 
mechanical properties highly sensitive to moisture changes, becoming very 
soft with the presence of water and stiff with the loss of moisture.

Lignin is a complete amorphous polymer tha t contributes to cement the 
individual cells together and to provide shear strength. It is the most hy
drophobic component in the cell-wall, with relatively stable mechanical prop
erties under moisture changes.

These three main constituents, cellulose, hemicellulose and lignin, form a 
complex network characterised by cellulose acting as a fibre embedded in a
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EARLYWOOD TRACHEIDS

LATEWOOD TRACHEIDS

Figure 2.4: Variation in the morphology of wood cells, indicating earlywood 
tracheids and latewood tracheids.

matrix composed by hemicellulose and lignin. This spatial arrangement of 
components is known as microfibril, and can be considered as a periodic unit 
building block of rectangular cross-section with infinite length (see Figure 2.7).

The specific orientation of microfibrils relative to the longitudinal cell axis 
is called microfibril angle (MFA) and constitutes one of the most important 
parameters controlling the balance between stiffness and flexibility in trees.

Depending on the proportions of chemical components and microfibril an
gle, the cell-wall of softwood tracheids can be divided in the following layers 
(refer to Figure 2.3). The layer which connects two adjacent cells is called mid
dle lamella (M). It is characterised by the significative abundance of lignin. 
The subsequent layer is referred to as primary wall (P). Commonly, this lat
ter is very thin and therefore both layers, P and M, are treated as compound 
middle lamella. The remaining internal portion of cell-wall is called secondary 
and can be subdivided into outer (SI), middle (S2 ) and inner (S3) layers.

Through the cell-wall, the microfibril takes different orientations, gener
ating a mechanical locking effect and consequently, an increase in the overall 
stiffness in the cell (Perre and Keey 2007). Among all these layers, S2 is 
the thickest and most influential factor in the mechanical behaviour of wood 
cells. It comprises about 80 -  90% of the total volume of cell-wall (Hofstetter 
et al. 2005) and concentrates a high content of cellulose corresponding to 50 % 
by weight (Bodig and Jayne 1982). Because of the structural importance of 
this layer, in what follows the term MFA will be used exclusively to indicate 
the orientation of the microfibril in the S2  cell-wall layer (refer to Figure 2.8).

For further information about cell-wall layers and their functions from a 
structural point of view, we refer to Booker and Sell (1998).
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2.4 Mechanics of wood cell and cell-wall
Depending mainly on the structural function, wood cells can exhibit notable 
differences in MFAs within each tree. For instance, compression wood cells 
are characterised by having large MFAs in tree branches in order to withstand 
strong wind loads and continuous vibrations without breaking. A sufficiently 
large MFA allows the cell to be more flexible and consequently to tolerate 
adequately the high levels of deformation encountered naturally in branches. 
On the contrary, in trunks of tall trees, earlywood and latewood tracheids 
present low MFAs to ensure a stiffer stem and to support the increasing weight 
of the tree (Figure 2.9). Experimental information about the influence of 
MFA on the overall stiffness of wood cells obtained by tensile testing has been 
reported widely (Sedighi-Gilani and Navi 2007).

Despite the considerable amount of experimental investigation carried out 
in wood cell and cell-wall in recent years, only little is known about mechan
ical properties and mechanical interactions among its constituents (Burgert 
et al. 2006). However, one of the most important contributions in the un
derstanding of cell-wall mechanics has been given recently by Keckes and his 
co-workers (Keckes et al. 2003). By means of tensile tests on compression 
wood tissues and individual cells of Norway spruce, they reported a change 
in the orientation of the MFA from 46° to 35° when an axial strain of 20% 
was applied. This reorientation of MFA was interpreted as a mechanism of 
shear deformation in the lignin-hemicellulose matrix, allowing cellulose fibres 
to rotate into an orientation more parallel to the cell axis. In addition, they 
showed how wood tissue and individual cells are able to undergo large de
formations without apparent damage during tensile tests. Furthermore, they 
pointed out a recovery mechanism after irreversible deformation, interpreted 
as a stick-and-slip mechanism at the molecular level. They showed that this 
velcro-like mechanism provides a plastic response similar to that encountered 
in metals due to crystallographic sliding.

As shall be seen later, one of the main contributions of the present work 
will be the development of a multi-scale finite element model in order to study 
the complex non-linear phenomena present within the wood cell-wall. In what 
follows, we describe the basis of the homogenisation-based multi-scale theory.
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(a) Compression wood tra- (b) Earlywood tracheids.
cheids.
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Figure 2.5: Cross-section views of different tracheids.
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CRYSTALLINE • AMORPHOUS 
CELLULOSE CORE

AMORPHOUS
CELLULOSE

AMORPHOUS
CELLULOSE

CRYSTALLINE
CELLULOSE

Figure 2.6: Schematic representation of cellulose with its crystalline and amor
phous fractions.

AMORPHOUS
CELLULOSE

LIGNIN

HEMICELLULOSE CRYSTALLINE - AMORPHOUS 
^  CELLULOSE CORE

Figure 2.7: Idealised representation of the microfibril with its basic compo
nents in the wood cell-wall.
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Figure 2.8: Typical tracheid with its different layers and microfibril angle 
(MFA).

MFA

EARLYWOOD / LATEWOOD 
TRACHEIDS

MFA

LIGNIN-HEMICELLULOSE
MATRIX

CELLULOSE
FIBRE

COMPRESSION WOOD 
TRACHEIDS

Figure 2.9: MFA of earlywood/latewood tracheids and compression wood cells 
in different parts of a tree. Depending on the structural function, MFA may 
vary considerably to provide more flexibility in the branches or more stiffness 
in the trunk.
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Homogenisation-based multi-scale 
theory

3.1 Introduction
Over the last two decades, homogenisation-based multi-scale constitutive 
modelling techniques relying on the volume averaging of the stress and 
strain fields over a Representative Volume Element (RVE) of material 
have attracted considerable attention within the Computational Mechan
ics community (Giusti, Novotny, de Souza Neto and Feijoo 2009, Matsui 
et al. 2004, Michel et al. 1999, Miehe et al. 1999, Miehe et al. 2 0 0 2 , Pelle
grino et al. 1999, Castaneda 1991, Suquet 1993, Terada et al. 2003). The 
interest in this area stems mainly from the suitability of multi-scale models of 
this type for finite element implementation and, more importantly, from their 
potential ability in capturing non-linear response of difficult representation 
by means of conventional internal variable-based phenomenological models. 
In this context, the development of multi-scale constitutive models seems to 
be a very promising alternative for the description of complex solid materi
als, circumventing the natural limitations of the classical phenomenological 
approaches.

The formulation presented here provides an axiomatic variational frame
work for the family of multi-scale constitutive theories. Here, the main as
sumptions are: the local strain and stress volume averaging relationships; the 
Principle of Virtual Work for the RVE; the choice of a set of kinematical 
constraints over the RVE domain; and the Hill-Mandel Principle of Macro- 
Homogeneity (Hill , 1965; Mandel , 1971). In what follows, the description 
of the above variational approach is given. For further details, we refer to 
de Souza Neto and Feijoo (2006).

3.2 Infinitesimal multi-scale constitutive theory
The point -of departure of the present family of homogenisation-based multi
scale constitutive theories of solids is the assumption that stresses and strains 
at any arbitrary point x  of the macroscopic continuum are the volume average 
of the microscopic stress and strain tensor fields defined over a local repre
sentative volume element (RVE). The RVE is such that its domain has a
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characteristic length, /M, much smaller than tha t of the macroscopic contin
uum, /, and at the same time, is sufficiently large to represent the mechanical 
behaviour of the heterogeneous medium in the averaged sense (refer to Fig
ure 3.1). The RVE is assumed to be formed by a solid part and a void part 
that can include pores and cracks. Models of the present type are described in

Representative Volume 
Element 

(micro-scale)

— Voids

Solid m atrix  
— Voids

i  J
Figure 3.1: Macroscopic continuum and associated local RVE.

further detail, for instance, in Michel et al. (1999) and Pellegrino et al. (1999).
At any instant £, the macroscopic or homogenised strain tensor e a t a 

point x  of the macro-continuum is assumed to be the volume average of the 
microscopic strain tensor field e l( over the domain

e{x , t )  = y  j  £p(y, t) dV, (3.1)

where Vfl is the volume of the RVE associated to point x , y  denotes the local 
RVE coordinates and

=  V'su M, (3.2)

with V s denoting the symmetric gradient operator and the RVE (or mi- 
croscropic) displacement field.

Further, it is possible to decompose the displacement field u M as a sum of 
a linear displacement e ( x , t ) y , which represents a homogeneous strain, and a 
displacement fluctuation field i.e.,

u li(y , t )  = e { x , t ) y  + Up(y, t ) .  (3.3)

The displacement fluctuations field represents local variations about the linear
displacement e ( x . t ) y  and do not contribute to the macroscopic scale strain.

Macroscopic continuum  
(macro-scale)



3.2. Infinitesim al m ulti-scale constitutive theory 17

The field u^  depends on the presence of heterogeneities within the RVE. Thus, 
the microscopic strain field can now be defined as,

Analogously to definition (3.1), the macroscopic or homogenised stress 
tensor field <r, at a point x  of the macro-continuum, is assumed to be the 
volume average of the microscopic stress tensor crM, over

In general, the present multi-scale contitutive theory requires the prescrip
tion of kinematical constraints upon the selected RVE. Such constraints define 
the functional set of kinematically admissible displacement fluctuations -  de
noted in what follows -  which coincides with the corresponding space of 
virtual kinematically admissible displacements of the RVE (de Souza Neto and 
Feijoo 2006). Different choices of space ^  lead in general to different constitu
tive models, such as the widely used affine (or linear) boundary displacement, 
periodic boundary fluctuations and uniform boundary traction models. Here 
these three models are considered and the corresponding definitions of ^  will 
be given later in this Chapter.

Another fundamental concept in multi-scale constitutive theories of the 
present type is the Hill-Mandel Principle of Macro-homogeneity (Hill (1965); 
Mandel (1971)), which establishes that the macroscopic stress power must 
equal the volume average of the microscopic stress power over

for any kinematically admissible microscopic strain rate field at any state 
of the RVE characterised by a microscopic stress field in equilibrium.

The Hill-Mandel Principle above requires the RVE body force vector b and 
external surface traction vector t e to produce no virtual work (de Souza Neto 
and Feijoo 2006) -  they are purely reactive to the imposed kinematical con
straints. That is:

£«(»>*) + (3.4)

(3.5)

(3.6)

a
(3.7)

As a result, the virtual work equilibrium equation for the RVE is reduced
to
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Internal traction forces arising, for instance, from frictional contact on 
crack surfaces or internal pressure of fluids contained within RVE voids have 
been ommitted for simplicity in (3.8), but could be included in a straightfor
ward manner.

With the RVE response described by a generic local dissipative constitutive 
theory, the microscopic stress tensor <rM is a functional of the history of 
This can be symbolically expressed as

t) = 3 y{s‘llt(y)), (3.9)

where the functional $ y associated with point y  maps the strain history, ej,, up 
to time t, into the stress crM of time t. In view of the constitutive assumption 
(3.9), the expression of the virtual work principle in (3.8) leads to

J 5»{[V X (w .*)]‘} : V ‘n d V  =  0  Vr, 6  % . (3.10)

By taking into account Equations (3.2) and (3.4), the above relation can be 
expressed as

G{e , 77) =  / s j [ £ ( a ^ t )  +  V su M(2/,t)]*} : V sr)dV = 0 V77 E (3.11)

where we have defined G as virtual work functional. Equation (3.11) defines 
the microscopic equilibrium problem stated as follows: Given the history of the 
macroscopic strain tensor e = e (x ,t) , at a point x  of the macro-continuum, 
find a microscopic displacement fluctuation field G such that for each 
instant t, Equation (3.11) is satisfied.

3.3 Different types of multi-scale models
In order to complete the formulation presented in the previous section 3.2, a 
functional space ^  must be specified so as to make problem (3.11) well-posed. 
Depending on the choice of four multi-scale models can be found typically 
in the literature. These are:

(i) Periodic RVE boundary displacement fluctuations model;

(ii) The linear RVE boundary displacement model;

(iii) The minimum kinematical constraint or uniform RVE boundary traction 
model,

(iv) The Taylor or constant RVE strain model, generally called the rule of 
mixtures.
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In general, Taylor model provides a poor description of the constitutive 
response in solid materials. It is a widely known fact th a t this model does 
not consider the possible interactions present among phases or those contact 
forces coming from internal crack surfaces or voids, which may have a crucial 
impact in the mechanical macroscopic response. It assumes the strain to 
be homogeneous within the RVE. Consequently, Taylor model will not be 
further discussed in this work. In the following, we review the kinematical 
assumptions for the remaining three multi-scale models.

3.3.1 Periodic boundary fluctuations
This is typically associated with the modelling of periodic media. In this 
particular case, the RVE is a so-called unit cell whose periodic repetition gen
erates the entire heterogeneous macro-continuum. Figure 3.2 shows a typical

ri

r l
O p

y - y±.n t

Figure 3.2: Three-dimensional periodic medium represented by parallelepiped
shaped unit cells.

three-dimensional representation of a heterogeneous periodic microstructure, 
formed by parallelepiped-shaped unit cells. In this case, each pair j  of cell 
sides consists of equally sized subsets TJ+ and of with respective unit 
normal fields n \  and n J_, such tha t

=  — n J_, (3-12)

with a one-to-one correspondence between points y + and belonging respec
tively to the subsets T+ and TJ_. The fundamental kinematical assumption 
which defines the space for this class of constitutive models consists in 
prescribing identical displacement fluctuation vectors for each pair { y +, y _ }  
of corresponding points:

(3. 13)
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Note tha t the one-to-one correspondence between points belonging to a pair 
j  of boundary subsets can be expressed by

y -  = y + + P i , (3.14)

where p 7 are constant vectors associated with the size of the RVE. For this 
particular model, these vectors are related to the periodicity of the microstruc
ture. Accordingly, the space %  is defined as

%  =  {u„ sufficiently regular | *„({/+,*) =  «„({/_,*) V pairs {y+,y~}} .
(3.15)

Additionally, taking into account the orthogonality condition (3.7), the 
definition of ^  implies that t e is anti-periodic on <9f2^, i.e.,

t e(y+,t) =  - t e(y~,t)  V pairs{y+,y~}  e  dtl^. (3.16)

In similar form, it is also possible to conclude that the body force vector
b is (de Souza Neto and Feijoo 2006):

b(y, t)  = 0 in (3.17)

3.3.2 Linear boundary displacem ents constraint
For this class of models, the space ^  is defined as

sufficiently regular | u fl( y Jt) = 0 V y  G (3.18)

That is, the displacements field along the boundary dVL̂  is fully prescribed:

Up(y,t) = e (x , t )y .  (3.19)

In this case, the external surface traction, t e, orthogonal to ^  belongs to 
the space of all sufficiently regular fields over 00,^. Finally, the body force 
vector b here is, as for the periodic boundary displacement fluctuations model,

b ( y , t ) =  0 in  (3.20)

3.3.3 Uniform boundary traction or m inimal kinem atic  
constraint

This class of models assumes the minimum kinematical constraint of the RVE 
(de Souza Neto and Feijoo 2006) compatible with the strain averaging (3.1). 
The corresponding space ^  is given by

%  = {uM sufficiently regular | J  n dA = 0}, (3.21)
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where <g)s denotes the symmetric tensor product. The (reactive) tractions on 
the boundary of the RVE resulting from the present kinematical constraint 
satisfy (de Souza Neto and Feijoo 2006)

t e(y , t)  = (T^y .t )  n (y )  = tr(x, t)  n (y )  My E (3.22)

where a  is the macroscopic stress. That is, uniform boudary traction fields 
are the only reactions compatible with the minimum kinematical constraint.

As for the linear and periodic boundary condition models, the above choice 
of Vp implies b(y,t)  = 0 in

3.4 Finite element approximation
This section describes the numerical approximation of multi-scale constitutive 
models by means of the Finite Element Method. A generic non-linear implicit 
finite element discretisation scheme is used as the underlying framework. In 
what follows, the microscopic constitutive response that characterises the be
haviour of the RVE material is assumed to be described within the frame
work of continuum thermodynamics with internal variables (de Souza Neto 
et al. 2008, Lemaitre and Chaboche 1990).

The first crucial component of the implicit finite element approximation 
consists of an incremental (time-discrete) counterpart of the original micro
scopic constitutive law. In this case, an implicit numerical algorithm is used to 
discretise the rate constitutive equations of the internal variable-based model. 
Within a time interval A t  = tn +1 — tn, with a given initial value a n for the set 
of internal variables at time tn, the microscopic stress tensor cr^ln+i at time 
tn +1 is determined by the chosen numerical integration algorithm as a function 
of the microscopic strain tensor eM|n+i at time tn+1. This procedure gives rise 
to an approximate (generally implicit) incremental constitutive function, 
for the stress tensor, such that

^/z|ra+l — & ii\n+\i ^ ^ 5  &n) = ^"/x(^n+ 1 V |n+l, At,  Q!n) . (3.23)

Equation (3.23) is analogous to a (generally non-linear) elastic constitutive 
law applicable within the time interval [tn, tn+J  and may be understood as 
the discretised counterpart of (3.9).

The next basic ingredient in the finite element approximation to the con
sidered multi-scale models is the incremental counterpart of the microscopic 
equilibrium problem (3.11). By replacing the time-continuum constitutive 
functional $ y of (3.11) with its time-discrete counterpart <rM of (3.23), the 
incremental equilibrium problem of step n + 1  is obtained:

G i ^ n + l i  ^ j u l n + l j  V i )  —  I  ^ " / i ( ^ n + l  " h  ^  ^ r a )  • ^  ^ 7  d V  M f )  E  ^

(3.24)
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where G is the incremental virtual work functional.
Finally, to complete the numerical approximation to the model, a stan

dard finite element discretisation h is introduced in the time-discrete problem
(3.24). By replacing the domain with its discrete counterpart and 
the infinite-dimensional functional space with the corresponding finite
dimensional counterpart the fully spatial-temporal discretised version of
(3.24) is obtained:

G'XfiJn+i) =  < [ B TcrM(e„+1 +  B u„|„+1) dV  1 n =  0 Vn 6 (3.25)

4  J
in which B denotes the global strain-displacement matrix, £n+1 is the pre
scribed finite element array of macroscopic engineering strains at time tn+1 , 
CTfj, is the incremental constitutive functional at the RVE level that delivers the 
array of stress components, u M|n+i is the array of global nodal displacement 
fluctuations and rj is the array of global nodal virtual displacements.

Within the present framework, the algebraic equation system (3.25) is 
solved by the quadratically convergent Newton-Raphson iterative procedure.
Then, with a given £n+i, the following equation system is solved for the itera
tive correction S i i ^  to the displacement fluctuation during the typical Newton 
iteration (k):

[p(fc-i) +  k • rj =  0 Vr| G (3.26)

where
F (*-0 =  J  B T6’(1(en+i +  B u jf-11) dV  (3.27)

is the residual vector, and

K (fc-1) =  j  B r D (i,_1)B dV  (3.28)
Oh

is the tangent stiffness matrix, with

D (fc-i) =  do'/x
d£

(3.29)
£=£n+l + B u { f '1)

denoting the consistent tangent operator associated with the numerical algo
rithm represented by The new guess u]^ for the solution u^ is updated 
according to

a W =  ii(fc-1) +  (5uW. (3.30)
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Due to its relevance to one of the main contributions of this thesis, we show 
in the following some practical details of the actual computer implementation 
of finite element approximations to the periodic and uniform traction multi
scale models. The implementation of the linear boundary model is omitted 
due to its standard procedure in general linear solids mechanic problems, 
requiring no further consideration.

3.4.1 Periodic boundary fluctuations m odel
At the outset, for convenience, we shall assume the finite element mesh topol
ogy here to be such that a one-to-one correspondence exists between nodes 
of opposing sides of the RVE boundary. In this case, the kinematical con
straint (3.13) can be enforced by simply requiring each pair of such nodes to 
have identical displacement fluctuation. Further, we split the RVE mesh into 
three subsets of nodes: one set of interior nodes, with corresponding quantities 
denoted by the subscript i, and; two sets of boundary nodes denoted, respec
tively, with subscripts +  and — so that for each node of set +  with coordinate 
y + there is a corresponding node of set — with coordinate satisfying (3.14). 
By taking this partition into account, the discretised space of kinematically 
admissible nodal displacement fluctuation vectors, is defined according to

i / h = r v v  =
’  Vi

\

V + < + II <! 1

v _ >

(3.31)

By applying the same partition to the components of F, K, and t|, the 
Newton-Raphson equation (3.26) can be explicitly written as

> =  0 Vr|i, r |+ 

(3.32)

F i ' (fc-i) kii kj_j_ kj_ (fc-i) <5Ui W'j
' v i

F+ + k+i k++ k+_ 5u+ r n+
F_ k_i k_+ k__ £u+ II ri+

Straightforward algebraic operations on the above equation yields

k a ki+ + ki_
k+i + k_i k++ + k+_ + k_+ + k—

Fi (fc-i)

_ F + +  F_ _ +
(k-1)

Su i
£u+

( ,k )

Vi — 0 Vr|i ,r i+,

(3.33)
which, in view of the arbitrariness of and r | ,, leads to the reduced form

kfi ki+ + ki_ (k-1) <fai (,k) r f - i A %
_ k+i + k_i k++ + k+_ + k_+ + k— _ ^u+ _ F+ +  F_ _

(fc-i)

(3.34)
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Figure 3.3: On the left, division of periodic medium into rectangular unit 
cells. On the right, a repeating unit cell with zero fluctuations in the corners 
and one-to-one correspondence between opposite sides of the cell.

In what follows, and for simplicity, our presentation will focus on two- 
dimensional models. However, its application to the three-dimensional case 
is straightforward. W ithout loss of generality, any periodic medium can be 
represented as an array of rectangular unit cells (refer to Figure 3.3).

Accordingly, if the lower left corner of the RVE has coordinate y°,  the 
coordinates of the remaining three corners are defined from (3.14) as y ° + p l , 
y ()+ p 2 and y n+ p l + p 2, with p ] and p 2 denoting the vectors defined in (3.14) 
and illustrated in Figure 3.3. If the fluctuation displacement at point y {) 
is known, then according to relationships (3.13) and (3.14) the fluctuation 
is also known at these three additional points of the boundary. These four 
points define and delimit the domain f o f  the rectangular base cell.

To eliminate rigid body motions, the lower left corner y {) of the cell is 
assigned a prescribed zero displacement fluctuation and, as a result, the fluc
tuation u fl a t the remaining three corners is equally set to zero:

u^(y°)  = U^{y[) +  P [) = Un{y° +  p [ +  p 2) = u » {y[] +  p 2) = 0. (3.35)

where, for simplicity, the argument t has been omitted in function u^.  Nodes 
with zero prescribed fluctuations are denoted z 1,--- , z n in the figures (see 
nodes z l - z A in Figure 3.3). Having defined such nodes, the solution of the 
Newton-Raphson equation (3.34) can be undertaken in the usual fashion after 
removing the corresponding prescribed degrees of freedom from the system.

3.4.2 Uniform boundary traction model
A direct discretisation of definition (3.21) gives the discretised version of the 
minimally constrained vector space of kinematically admissible displacement
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fluctuations field, expressed as

V = < v  = Vi
Vb J

an*
N bVb n dA = 0 (3.36)

where v* and v b are the nodal displacement fluctuation vectors for the set 
of interior nodes and for the set of boundary nodes (denoted by subscript b) , 
respectively, and Nj, is the matrix of shape functions of the elements sharing 
the boundary of the discretised RVE.

The above discretised (linear) kinematical constraint (3.36) may be rewrit
ten in a compact form as

C v b = 0, (3.37)

where C is the constraint matrix which takes into account the dependency of 
three or six arbitrary degrees of freedom (in two or three dimensions, respec
tively) on the discretised boundary respect to the remaining boundary 
degrees of freedom of the RVE.

By partitioning the set of boundary degrees of freedom into three subsets: 
free, dependent and prescribed, denoted respectively with subscripts / ,  d and 
p, Equation (3.37) can be written as

[ Of cd cp ] V J
V d =  0 . (3.38)

By assigning zero displacement fluctuations to the prescribed set, v p = 0, to 
eliminate rigid body motions, Equation (3.38) reduces to

v d =  R v/,

where
R  =  - C , 1 Cf.

(3.39)

(3.40)

Finally, by taking the above into account we arrive after straightforward ma
nipulations at the Newton-Raphson correction formula for the present model:

^ii k i f  -I- kj^R (fc-i)
SHi

(k)

_ k/j T R r kdi k f f  +  k/^R +  R Tkdf +  R TkddR _ 6 u .f

Fi
F f +  R t F£

( k - 1)

(3.41)
In what follows, the axiomatic variational framework presented up to here 

is extended to the description of a family of large strain multi-scale constitutive 
theories.
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3.5 Large strain formulation
The main assumption in this family of large strain multi-scale constitutive 
theory presented here is that the deformation gradient F  at any arbitrary 
point x  of the macroscopic continuum is the volume average of the microscopic 
deformation gradient field defined over the local RVE. Similarly to (3.1), 
at any instant t, the macroscopic or homogenised deformation gradient F  at 
a point x  can be expressed as

where and are the volume of the RVE and its domain, respectively, in 
their reference configuration. Here, I  denotes the second order identity tensor, 
V the material gradient operator (with respect to the reference coordinates), 
and and y  as defined in Section 3.2.

Further, it is possible to decompose the displacement field u M as a sum of 
a linear displacement (F (x ,  t) — I ) y  and a displacement fluctuation field u^,

In addition, analogously to definition (3.42), the macroscopic or ho
mogenised first Piola-Kirchoff stress tensor field P ,  at a point x  of the macro
continuum, is assumed to be the volume average of the microscopic first Piola- 
Kirchoff stress tensor P M, over

Following the context of large strains, the Hill-Mandel Principle of Macro
homogeneity establishes that the macroscopic stress power must equal the 
volume average of the microscopic stress power over for any kinematically 
admissible microscopic deformation gradient rate field at any state of the 
RVE in equilibrium. It can be expressed as

F ( x ,  t) = y J  F„(y, t)dV, = I  + ± r J  dV, (3.42)

i.e.
u„(y,  t) = (F{x ,  t) -  I ) y  +  t). (3.43)

(3.44)

(3.45)

Similarly to (3.7), the Hill-Mandel Principle above requires the RVE body 
force vector per unit reference volume and external surface traction vector 
measured per unit reference area to produce no virtual work. As a result, and
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ignoring contact stresses or internal pressure of fluids contained in the RVE, 
the virtual work equilibrium equation for the RVE is reduced to

f  P ^ y ,  t ) : V r j d V  = 0 Vry G %.  (3.46)

a*

To complete the large strain continuum formulation, the functional space 
Vp is specified following the same description given in Section 3.3, requiring 
no further discussion.

The computational implementation of the above finite strain multi-scale 
constitutive theory follows the same steps described in Section 3.4, for the 
corresponding small strains counterpart.

By introducing a numerical approximation, resulting from time- 
discretisation at the micro-scale, the approximate incremental microscopic 
constitutive function, P M, for a time interval [tnitn+1], becomes

P»\n+1 = P ^ i^ ln + I, At; OLn ) = P fl(Fn + 1 +  V tijn + i, A t; a n ) ,  (3.47)

with A t and a n representing the increment of time and the microscopic in
ternal variable field, as defined in Section 3.4. Consequently, the discretised 
counterpart of the macroscopic first Piola kirchhoff stress tensor can be com
puted:

Pn+1 =  Y  J  P^(Fn+1 +  Vfqjn+i, At; an) dV. (3.48)
riM

Similarly, the RVE incremental equilibrium problem can be expressed as 

[  P^Fn+i  +  V * M|n+i, A t;a n) : V rjdV  = 0  Vr/ G (3.49)

which consists in finding a kinematically admissible displacement fluctuations 
field Uft\n+i £ for a given macroscopic deformation gradient, Fn+1 , and 
microscopic internal variable field, a n, such that relation (3.49) is satisfied.

Lastly, to complete the numerical approximation to the present finite strain 
multi-scale model, a standard finite element discretisation h is introduced in
(3.49). By replacing the domain with its discrete counterpart and 
the infinite-dimensional functional space ^  with the corresponding finite
dimensional counterpart the fully spatial-temporal discretised version of
(3.49) is obtained:
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in which B denotes the global discrete gradient matrix containing the appro
priate shape function derivatives, F n+1 is the array of macroscopic deformation 
gradient components at time tn+i ,  P M is the incremental constitutive func
tional at the RVE level that delivers the array of First Piola-Kirchhoff stress 
components, u^n+i  is the array of global nodal displacement fluctuations and 
rj is the array of global nodal virtual displacements.

Finally, Equation (3.50) together with the finite element-discrete version of 
(3.48) define the fully discretised multi-scale constitutive model. The discreti
sation of the different kinematical constraints coincides with that described in 
the preceding section and therefore, it is omitted here.

As shall be seen in Chapter 4, one important point in the present work will 
be the consideration of implicit symmetries present commonly in microstruc
tures, in order to reduce computer times and memory requirements.
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Symmetry conditions

4.1 Introduction
In this chapter, we explore the consequences of further symmetry conditions 
that arise often in the modelling of microstructures. W hat we show here is 
that, in many circumstances of practical interest, when the RVE possesses 
special symmetries, very simple considerations can lead to substantial sav
ings in computing times in the solution of the microscopic equilibrium prob
lem. The obvious benefits of such savings become particularly pronounced in 
coupled two-scale simulations, where the macroscopic equilibrium problem is 
solved simultaneously with (possibly) a large number of microscopic equilib
rium problems at Gauss-point level (Matsui et al. 2004). The computational 
effort put in the solution of the RVE equilibrium problem is directly related to 
the number of degrees of freedom of the discretised RVE domain. In this con
text, the presence of additional symmetries may allow the choice of RVEs with 
domain comprising only a symmetric portion of the generic domain consid
ered in the above. Whenever such conditions are met, substantial reductions 
in computational costs associated with CPU time and storage requirements 
may be achieved. In particular, these will be useful in the treatment of wood 
cell wall.

The two types of RVE symmetry explored here -  staggered-translational 
and point symmetry -  are present in a large number of examples re
ported in the literature (Michel et al. 1999, Pellegrino et al. 1999, Matsui 
-et al. 2004, Giusti, Blanco, de Souza Neto and Feijoo 2009, Somer et al. 2009), 
but unfortunately have not been exploited to reduce the size of the RVE equi
librium problem. Nevertheless, the use of symmetry considerations for com
puting time reductions in this context has been originally considered by Ohno 
et al. (2001), but limited to the analysis of periodic media (with the corre
sponding periodicity kinematical assumption). Here we extend their analysis 
by considering in addition the other two classes of models -  linear boundary 
displacements and uniform boundary traction.

In what follows, for the sake of clarity we will keep our explanation re
stricted to two-dimensional problems under infinitesimal strains. However, at 
the end of this chapter, some numerical examples will be given, for both two 
and three dimensions, under small and finite strains regime. We refer here to 
Saavedra Flores and de Souza Neto (2010).
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Figure 4.1: Example of unit cell where staggered-translational symmetry is 
present. Constant vectors qJ link different points in the domain tha t satisfy 
Equation (4.4)

4.2 Staggered-translational sym m etry
Here we shall say tha t staggered-translational symmetry  is met if the original 
RVE may be split into four non-overlapping subdomains (refer to Figure 4.1):

n li = n 1+\ j n 1_ u n 2+ uc.i2_ (4.1)
with the m aterial properties and kinematical constraints at any point y \  E iV+ 
being identical to those of the corresponding point y J_ E related to y J+ by 
the staggered-translational mapping

yJ- = y J+ + qJ (4.2)

The constant vectors qJ are

q l = W + P %  <72  =  ! (  P l ~ P 2), (4-3)

where p >  are the vectors given in (3.14). It is emphasised here th a t in the 
general case, these vectors are determined by the size of the RVE (Figure 4.1) 
but in the particular case of the periodic boundary fluctuations model, vectors 
p 1 coincide with those tha t define the periodicity of the RVE. For the general 
case, the following relation holds:

u^(y+ , t )  = u IL(yJ_,t) ,  (4.4)

so th a t the knowledge of the displacement fluctuation field over, say, =
is sufficient to determine u fl over the entire domain This allows
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the finite element approximation to the multi-scale constitutive model to be 
made by discretising only the half-domain with appropriate symmetry
conditions imposed on its boundary <91//2flM.

We remark that symmetry relation (4.4) is not satisfied in general when 
the linear boundary displacement or the minimum constraint models are con
sidered. That is, a staggered-translational symmetric medium (with pairs 
of points related by (4.2) having identical mechanical properties) will not in 
general have staggered-translational kinematics under such constraints. Thus, 
the implementation of this type of symmetry will be addressed only for the 
periodic boundary fluctuations model.

4.2.1 Periodic boundary displacem ent fluctuations 
m odel

W ith the lower left corner of the original RVE (Figure 4.2(a)) having zero 
prescribed fluctuation, (4.4) implies that

W/i(y°, t) = u^(y° + q \ t )  = 0, (4.5)

i.e., the displacement fluctuation at the centre of the original RVE (point z 5) 
is zero. Further use of (4.4) allows the RVE to be re-defined as the half-domain 
1/2fiM with its boundary d1/ 2̂  split into three pairs of subsets {1//2r^_,1/2 T i}  
(refer to Figure 4.2(b)) and the direct enforcement of identical fluctuations 
for corresponding pairs of boundary points follows the same procedure as 
that described for the original (full) RVE. Then, similarly to (3.31), the space 

for the discretised reduced RVE, with domain 1//2f^ , is here defined as

f
’ Vi

V+
v_< V =
Vox
vG2

.  V°3 .

v+ =  v_ ; v 0l =  v 02 =  v03 } , (4.6)

where v*, v + and v_ have been defined in (3.31) and vectors vGl, v02 and 
vG3 are the nodal displacement fluctuations at points oi, 02 and o3 of Fig
ure 4.2(b), respectively. The prescription of identical fluctuations for the set 
{v Gl, v G2, v 03} of nodal vectors follows directly from (4.4), but since unlike the 
standard case this set does not form a pair, the corresponding constraint has 
been made explicit in definition (4.6).

Following the same procedure as that of the previous chapter, we obtain,
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(b) Half-domain, 1/ 20 M. Arrows indicate one-to-one correspondence.

Figure 4.2: Reduction of the original RVE into a half-domain when staggered- 
translational symmetry is present. Figures show zero-fluctuation points high
lighted with black points for and respectively.
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after straightforward manipulations,

k+i +  k_i
ki+ +  ki_ 

k++ +  k_|— +  k —1_ +  k —
^01 i T  ko2i T k03| kQl+ T k0l_ +  k02+ 1(NO
P*+

+ ^03+ + k03-

^zoi T k ;G2 -f- k i03
-1 (fc-i)

<̂Uz
k +01 +  k + G2 +  k + 03 -f k_0l +  k 1 S + -03 du+

koioi "F k0l02 k0l03 k020l -|- k 0202 -|- k 0203 T ^0301 "F k 0302 + k03 03, _ <5u0l _

FA I
F+ +  F_ 

F 0l +  F 0, +  F 03

(k-1)

(4.7)
In summary, straightforward symmetry considerations in the present case 

allowed a significant reduction in the number of unknowns by using a reduced 
RVE domain, comprising only one half of the domain adopted in the original 
problem whose system of linearised finite element equations is given in (3.34). 
As we shall see in the numerical examples presented later, this results in 
substantial reductions in computational costs for analyses involving RVEs 
with staggered-translational symmetry.

4.3 Point symmetry
In two-dimensional problems, point symmetry is defined by the invariance of 
the RVE material properties and kinematical constraints to rotations of 180°. 
This is illustrated in Figure 4.3, where the original configuration, of the 
RVE coincides with the configuration obtained by rotating ^  by 180°. 
We start by observing that the Cartesian components of a second-order tensor 
are invariant to changes of basis comprising a 180° rotation. Then consider 
the coordinate systems defined by the basis vectors { e i,e 2} and {e'^e^} dif
fering by a rotation of 180° (see Figure 4.3). Without loss of generality, we 
assume the origin of the two systems to be located at the centre of the RVE. 
The invariance of second-order tensors implies that any imposed macroscopic 
strain will have the same representation in both coordinate systems. This, 
combined with the assumed symmetry of material properties and kinematical 
constraints, requires the equilibrium problem to have identical representation 
in both systems. As a result, any fluctuation field satisfies

= -U p (ye ,t) 

for any pairs {y®, y e } of points of f s u c h  that

y® = -ye-

(4.8)

(4.9)
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Figure 4.3: Typical RVE with point symmetry.

In the following, the numerical implementation taking advantage of point 
symmetry is detailed for the three classes of multi-scale models considered 
here.

4.3.1 Periodic boundary displacem ent fluctuations 
m odel

Due to the point symmetry conditions (see Figure 4.4(a)), points z () and z 8 of 
satisfy condition (3.13) satisfy condition (3.13) and (4.8) simultaneously. 

The same applies to points z 5, z 7 and Zg. Hence, we have

Un(zr\ t )  = u ^ z (), t) = u ^ { z \ t )  = u ^ { z 8 , t) = u ^ ( z \ t )  = 0. (4.10)

In addition, again as a consequence of (3.13) and (4.8), the displacement 
fluctuation field along the side of the micro-cell defined by points z 4  and z 3  

satisfies a point symmetry about point z 8. The same type of displacement 
fluctuation symmetry is observed along the lines z l- z 2, z l- z 4, z 2 - z ' \  z 6 - z 8  

and z [>- z 7, as shown by Figure 4.4(a). Similarly to the staggered-translational 
symmetry case, the present point symmetry allows the domain of analysis to 
be reduced to one symmetric half, 1//2 DM, of the original domain f lM. The 
reduced RVE domain is shown in Figure 4.4(b). The boundary here
can be conveniently split into three pairs of subsets, { r^ .rL } ,  { r | , r | }  and 
{ r ^ r ^ } .  The original constraint (3.13) holds for pair { r+ ,rL } . For pairs
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z

(a) Displacement fluctuations variation 
and zero-values.

z*  r© zs r®

z

(b) One-to-one correspondence between points 
on 1/ 2d n u

Figure 4.4: Point symmetry
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{r®,r@} and { r | , r | } ,  constraint (4.8) applies instead. To write the corre
sponding equilibrium equations, we use the definitions

{ r+ ,r_ }  =  { r ^ , r l } ,  { r e , r e } =  {i* u r | , r | u r | } .  (4 .11)

Accordingly, on the discretised half-domain 1//2f^ , the space of kinemat
ically admissible nodal displacement fluctuation vectors is defined as

/
’  Vi

>

V +

II> v_ c + < 1 <! © II 1 ©

V®

< . v© . >

(4.12)

Note that the one-to-one correspondence between nodes of { r^ ,r]_}  follows 
the rule of (3.14). For the pairs { r | , T |}  and { r ^ , r |}  the one-to-one nodal 
correspondence satisfies the rotational symmetry about z 5 about z 8, respec
tively.

Finally, by following the same procedure as that leading to (3.34) and
(4.7), the reduced linearised equilibrium equation here is obtained as

h j i  k i +  - t-  k j _  k * ®  k i ®

k+i + k_i k++ + k+_ + k_+ + k__ k+® -  k+e + k_® -  k_e
k®i — k@i k®+ + k®_ — k@+ — k®_ k®® — k®@ — ke® 4- k®®

£Ui (k) Fi
£u+ = — F+ + F_

_ <5u® _ _ F® — F®

( k - 1)

(fc- i )

(4.13)

4.3.2 Linear boundary displacem ent m odel

Under the linear boundary displacement constraint, point symmetry is also 
preserved for RVEs whose material properties satisfy 180° rotations symme
try. Hence, in this case the domain of analysis can also be reduced to one 
symmetric half Figure 4.5 shows the reduced domain with the corre
sponding boundary constraints. For the purpose of computer implementation, 
the boundary d1/2^  is conveniently split into a subset r 0 =  Tj U Tq U Tq, 
and a pair of subsets {r®,r®}. The constraint defined by (3.19), correspond
ing to zero displacement fluctuations, holds on To whereas for pairs of points 
belonging to {r®,r®} constraint (4.8) applies instead.

Following the same procedure described in the previous sections, and tak
ing into account definition (3.18), the discretised version of the kinematically
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Figure 4.5: Half domain and linear boundary displacements constraint, 

admissible displacement fluctuations space, J f j 1, can be defined on the dis
cretised half-domain 1//2 f ^ ,  as

V i

v = V 0 < © II 1 < ©
1 . v e  .

(4.14)

The corresponding Newton-Raphson equilibrium iteration results in

©
rXJ*

1______ -  k i©
(fc -i)

5 u ;
(k)

F  1A I

k © i  k © i  k 0 0  k © © — k © ©  -I- k e e
.

©
.

(j_i1©fa
•

( k - 1) 

(4.15)

4.3.3 Uniform boundary traction model

From point symmetry assumption in the RVE and definition (3.21), we have

j  u ^ ® sn d A =  j  u li{y(Sht )® an (Bd A +  J u M(ye , *)Cbrae cL4 =  0 , (4.16)
dil . on}, dill

where y® and y Q satisfy constraint (4.8), with normal vectors n 0  and n 0 , 

respectively, satisfying n 0  =  —n Q. Here, y 0  and y e  are generic points on 
the corresponding half-boundaries dFllfi and such th a t U<9f^.
Then it follows tha t

J 1) ®» ns>dA = 0 (4.17)

Oil}.

Condition (4.17) is illustrated in Figure 4.6. Here, similar to the linear bound
ary model, the boundary d l 2̂ Qfl is partitioned into a subset =  T} u r^ U F 'J
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Figure 4.6: Half domain with minimal kinematic constraint.

(on and a pair of subsets {r®,r0}, such tha t constraint (4.17) holds
for r i , and Equation (4.8) for pairs located on {T®,r0}.

It is emphasised here tha t the assumptions of minimal kinematic constraint 
and linear boundary displacements place no restrictions on the geometry of 
the RVE. Hence, all results presented here for these two classes of multi
scale models apply equally to any RVE with point symmetry (regardless of 
its shape).

In the present case, the discretised space J ^ / \  can be defined on the dis
cretised half-domain 1//2 F2  ̂ alone as

/

'  Vi

v /
Vd

< v  = V/1
V dl

V®

.  v e

1 vd =  R ’ v / "

.  v /i .

V® =  v ® V / l  =  - v di

(4.18)
with v/x and vdl representing the displacement fluctuations of the degrees of 
freedom illustrated in Figure 4.6. Vectors v^, vd, v® and ve have the same 
definition as before. Matrix R  is defined here as

R  =  - C J 1 [C/ (C A - C dl)]. (4.19)
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The resulting reduced Newton-Raphson iteration in the present case reads

k/i 
k /li kdH

+  R Tkdi

k /
kj/

k/// -  kIV +  R Tkv

k v i i i

k ix 
kx  -  kX/

+  R  kxii

k@ i k 0 i k VI -  ky"77 k x 7 7 7  — k x 7 V

(.k) -
F*

- ( k - i )

6uf
6ufl

=  — F /
F/x -  F di

+ R TF d 1

Su® F © - i re

where:

k/ = [ kif (ki/i -  kidx) ] + kidR , 
k/jj =  [ k/iy (kfifi -  k/xdi) ] +  k /ldR
ky =  [ kdf  (kd/x — k ddi) ] +  k ddR  , 
ky// = [ k©/ (ke/x — kedl) ] +  kedR , 
k /x  =  k/® — k f Q , 
k x /  =  kdx© — kdxe , 
kx777 = k00 — k00 ,

( k - 1)

(4.20)

k77 =  [ k / /  {kffi  — k fdi) ] +  kf dH  ,

k j y  =  [ kdi f  (kdx/i — kdxdi) ] +  kdxdR
kVi = [ k0y (k0/x — k0dx) ] +  k0dR ,
k v m  =  ki0 — ki0 ,
k x  =  k /x ©  -  k f l e  ,

kx77 = kd0 — kde ,
k x 7 K  =  k 0 0  — k e e  .

4.4 Simultaneous symmetry conditions
If both the staggered-translational and point symmetries discussed in the 
above are present, then a further reduction in computational costs can be 
obtained. As commented in Section 4.2, the implementation of the staggered- 
translational symmetry is given only for the periodic boundary displacement 
fluctuations model. Thus, in the following, the simulatenous symmetries con
dition will be addressed only for this particular model.

4.4.1 Periodic boundary displacem ent fluctuations 
m odel

Figure 4.7(a) shows a typical chessboard-type pattern where both symmetry 
conditions are met. In such cases, conditions (4.4) and (4.8) must be satis
fied simultaneously. This implies that thirteen points of the RVE have zero 
displacement fluctuation:

i ) = 0 ,  7 =  1 , - -  ,13. (4.21)

In this case, the analysis can be reduced to a symmetric quarter of the 
original RVE domain, which we shall refer to as The choice of 1//4n M
is not arbitrary. The reduced RVE domain must be selected such that the
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Figure 4.7: Simultaneous staggered-translational and point-symmetry.
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entire field of displacement fluctuations of the original RVE domain can be 
obtained directly from the field over 1//4flM by using constraints (4.4) and (4.8) 
alone. One possible choice is the reduced domain shown in Figure 4.7(b). For 
instance, this figure shows an arbitrary point y 1 E lying outside x/4f B y  
point symmetry, the fluctuation at point y 2, also lying outside 1/,4fL , is

(4.22)

By staggered-translational symmetry, this fluctuation is identical to that of 
point y 3 which, in turn, belongs to the reduced domain 1//4f

(4.23)

To define the appropriate boundary kinematical constraints in this case, 
we firstly note that the simultaneous symmetry conditions imply that the 
displacement fluctuation field on each side of the reduced RVE has point 
symmetry about the corresponding mid-point (see Figure 4.7(c)). It is then 
convenient to split the reduced RVE boundary <91//4flM into four pairs of subsets 
{ rJ0 , r Je } such that the one-to-one correspondence between points y® and y e 
belonging to a pair of subsets is defined by point symmetry about the mid
point of each side. The boundary constraint to be imposed in this case satisfies 
Equation (4.8).

To proceed with the description of the finite element implementation of 
the present type of RVE symmetry, similarly to (4.11) we define

{ 4 4

U  r ®’ U  r e

3=1 3=1

(4.24)

The space of kinematically admissible nodal displacement fluctuation vectors 
over the discretised reduced domain 1//4f2  ̂ is accordingly defined as

/
’  V i

V®

V©
< V  = V 0!

v 02
Vo3

. V04 .

v® =  - v e o i =  - V 02 =  V n, =  - V03 04

(4.25)
where v Ql, vD2, v 03 and v04 contain the degrees of freedom of the corner nodes 
of the cell as shown in Figure 4.7(c) and v 0 and v 0 contain the degrees of 
freedom of the boundary nodes that satisfy the point symmetric one-to-one 
correspondence referred to in the above.
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Finally, with the above at hand, we find that the iterative correction to 
the nodal displacement fluctuation vector for a Newton-Raphson iteration (k) 
in the present case is obtained as the solution of the equation system:

with
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As we shall see in the following section, the savings in computing time in 
the present case can be substantial.

4.5 Numerical examples

This section illustrates by means of numerical examples the significant reduc
tions in computational costs that are obtained as a result of the relatively 
straightforward implementation of the symmetry conditions discussed in the 
preceding sections. For completeness, the resulting speed-up factors achieved 
for both single-scale analysis (i.e., analysis involving the RVE alone) and fully 
coupled two-scale analysis are presented. Since we are interested in quantify
ing the reduction of CPU times in the analyses, arbitrary loading programmes 
are imposed in all of the numerical examples. In all cases, the full Newton- 
Raphson scheme, characterised by quadratic rates of asymptotic convergence, 
is adopted in the solution of the RVE equilibrium problem as well as in the 
global (macroscopic) equilibrium problem. The corresponding linear systems 
of equations are dealt with by the HSL/MA41 direct sparse frontal solver 
(Amestoy and Duff 1993).
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4.5.1 Point-sym m etry. Square unit cell w ith  two circular 
holes

This example illustrates the point-symmetry case under the linear bound
ary displacement and uniform boundary traction assumptions. A square RVE 
(shown in Figure 4.11(a)) under plane stress is assumed which is made of a von 
Mises elastic-perfectly plastic matrix containing two holes. Small strains for
mulation is considered here. The diameter of each hole is taken as 20% of the

(a) F ull sq u are  R V E  g eo m etry  w ith o u t (b ) H a lf  sq uare R V E  w h en  p o in t
sy m m e try  co n sid era tio n s. sy m m e try  c o n d itio n s  are in c lu d ed .

Figure 4.8: Typical square RVE with two circular voids.

length of the side of the RVE. The matrix material has Young modulus E  = 
200GPa, Poisson ratio v =  0.3 and yield stress oy = 0.24GPa. A single-scale 
analysis is carried out where the RVE is subjected to an incremental macro
scopic engineering strain array e =  {exx, eyy, 7 xy} =  {0.0015,0.0004,0.0035}T 
imposed in 20 proportional steps. In all cases (and in what follows), x  and y 
axes coincide respectively with the horizontal and vertical directions. For com
parison, the calculations are carried out for the full RVE (Figure 4.11(a)) as 
well as for a reduced counterpart (Figure 4.11(b)) obtained by considering the 
underlying point symmetry. The full RVE is discretised by a mesh of 418 three- 
noded linear triangular elements and a total of 253 nodes. The reduced RVE 
mesh contains 209 elements and 132 nodes. In order to make consistent com
parisons, the full RVE mesh was generated through a rotation of coordinates of 
the half-RVE mesh. The macroscopic array of stress components obtained at 
the end of the loading programme for the linear boundary displacement model
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(a) Full RVE geometry, without symmetry (b) Quarter-domain RVE.
considerations.

Figure 4.9: Typical square RVE with staggered circular holes.

is a  =  {ctxan Qyy, Txy] 1 =  {0.1286,0.0695,0.0951} 1 GPa. For the uniform 
boundary traction model in tu rn  we obtain c  =  {0.0985,0.0597,0.0921} 1 GPa.

Very importantly, the CPU time required in the solution of the linear 
boundary displacements model, with the reduced RVE is only 53% of tha t 
required when the full RVE is used, corresponding to a speed-up factor of 
1.89. Similarly, in the solution of the uniform boundary traction model, the 
speed-up factor obtained is 1.79.

4.5.2 Square unit cell w ith staggered circular holes

Here we analyse again a model of porous-plastic material. Only the single
scale case is considered under the periodic boundary fluctuations kinematical 
constraint. Small plastic strains and plane stress are assumed. The pores rep
resented by circular holes in the RVE have staggered-translational symmetry. 
In the present case, both point-symmetry and staggered-translational symme
try  conditions are met. The full RVE, without symmetry considerations, is 
illustrated in Figure 4.9(a).

The circular holes have diameter equal to one half of the side of the cell. 
The corresponding mesh has 2768 three-noded linear triangular elements and 
1500 nodes. The reduced RVE -  in this case comprising only one quarter 
of its original counterpart -  is shown in Figure 4.9(b). The mesh contains 
692 elements and 396 nodes. The behaviour of the m atrix m aterial is de-
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Figure 4.10: Contour diagram of equivalent plastic strains in the full micro
scopic cell and in a quarter-domain (enclosed by a black square). Simultaneous 
symmetries are emphasised by the contour plot in the quarter-domain and by 
its repetition (four times) in the full RVE domain.

scribed by a linearly isotropic hardening von Mises model, with Young mod
ulus E  — 68.9GPa, Poisson ratio v =  0.33, initial yield stress oy — 0.24GPa 
and hardening modulus H = 2.5GPa. The simulation here consists in pre
scribing a total macroscopic engineering strain array e =  {0.02, 0.03, 0.03}7 
incrementally in 26 proportional load steps. The resulting homogenised stress 
components are a  =  {0.119,0.124,0.023}r G Pa for both RVEs. The speed-up 
factor achieved with the consideration of both symmetries in the reduced RVE 
was 5.72. These symmetries are emphasised in Figure 4.10, where the corre
sponding contour plot of accumulated plastic strain a t the end of the loading 
programme is shown for both RVEs.

4.5.3 Square unit cell w ith centred circular hole

The use of point-symmetry in the RVE is illustrated here under periodic 
boundary fluctuations kinematical constraint. We consider a periodic porous- 
plastic medium represented as a square RVE under plane strain conditions 
containing a centred circular hole, as shown in Figure 4.11(a). The RVE 
matrix is modelled as an elastic-perfectly plastic von Mises material under 
infinitesimal strains. An identical RVE was used by Giusti et al. (Giusti, 
Blanco, de Souza Neto and Feijoo 2009) in the estimation of macroscopic
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porous-plastic yield surfaces. The size of the hole corresponds to a void ratio 
of 15%. The m atrix material has Young modulus E  =  200GPa, Poisson ratio 
u =  0.3 and yield stress ay = 0.24GPa.

We s tart with a single-scale analysis, where the RVE is subjected to 
an incremental macroscopic engineering strain array e =  {eIX, eyy, 7 xy} =  
{0.007, 0.01, 0.01} 7 imposed in 19 proportional steps. For comparison, the 
calculations are carried out for the full RVE (Figure 4.11(a)) as well as for 
a reduced counterpart (Figure 4.11(b)) obtained by considering underlying 
point-symmetry.

(a) Full square RVE geometry without (b) Half square RVE when point-
symmetry considerations. symmetry condition is included.

Figure 4.11: Typical square RVE with a centred circular void.

The full RVE is discretised by a mesh of 320 eight-noded quadrilateral 
isoparametric elements with reduced (2 x 2 ) Gauss quadrature and a total of 
1040 nodes. The reduced RVE mesh contains 160 elements and 537 nodes. 
The macroscopic array of stress components obtained at the end of the loading 
programme for both cases is cr =  {<rxx, rryy, rx y } 1 = {0.232,0.232,7.322 x 
10~4 }7 GPa. Very importantly, the CPU time required in the solution with 
the reduced RVE is only 35% of tha t required when the full RVE is used. This 
corresponds to a speed-up factor of 2 .8 6 .

In a second step, a fully coupled two-scale finite element analysis is carried 
out where the above RVEs are used to define the macroscopic constitutive 
response a t each Gauss-point of the macroscopic mesh. The macroscopic 
initial value problem considered consists of a perforated strip with a circular 
hole in the centre, subjected to uniaxial stretching. For obvious symmetry 
reasons, only a quarter of the problem geometry is discretised and a mesh of
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18cm

5 cm

Figure 4.12: Perforated strip under tensile load (Mid-side nodes have been 
omitted in the mesh).

32 eight-noded quadrilateral elements with reduced ( 2 x 2 )  Gauss quadrature 
is adopted with a total number of 121 nodes (Figure 4.12).

The loading programme consists in applying a monotonically increasing 
uniform vertical displacement on the nodes of the upper edge of the mesh up 
to a total displacement of 0.1% of the original length of the strip. A total 
number of 60 proportional load steps is used. The total vertical reaction 
at the constrained nodes of the macroscopic mesh at the end of the loading 
programme is 8.425KN. Again, a very substantial reduction in CPU time is 
observed when the point-symmetry is taken into account in the treatment of 
the RVE equilibrium problem. Here, the total CPU analysis time observed 
with the reduced RVE is only 31% of that of the full RVE. The corresponding 
speed-up factor is 3.23.

4.5.4 RVE w ith honeycom b-type m icrostructure

In this example, we consider the fully coupled two-scale analysis of materi
als with honeycomb-type periodic microstructures. The RVE in such cases 
satisfies both staggered-translational and point symmetry. This type of mi
crostructure is encountered in most species of wood and is also common in 
many engineered materials. The particular geometry adopted in the present 
analysis have been obtained from Watanabe et al. (2000) and correspond to 
Pinus radiata wood cells. It consists of a periodic arrangement of hexagonal 
cells whose wall material is modelled here by an elastic-perfectly plastic von



48 Chapter 4. Sym m etry conditions

(a) F in ite  e lem en t m esh  o f  fu ll R V E  w ith  
h o n ey c o m b -ty p e  p a ttern , rep resen ted  by  

D a sh ed  square sh ow s a  quarter- 
d o m ain .

(b) M esh  o f  h e x a g o n a l  
R V E , co rresp o n d in g  to  
a  d iscretised  h a lf-d o m a in  

U se  o f  s ta g g ered -  
tr a n sla tio n a l sym m etry .

(c) A  d iscretised  q u arter-d om ain . U se  o f  
sta g g e re d -tr a n s la tio n a l and  p o in t sy m m etr ies .

Figure 4.13: Honeycomb-type microstructure represented by different RVEs.

Mises law under plane strain conditions and small strains regime. The corre
sponding material constants are: Young modulus E  = 30GPa, Poisson ratio 
v =  0.2 and yield stress cry =  180MPa.

For comparison, the coupled two-scale analysis is carried out with the 
multi-scale constitutive model described by three different RVEs: The full 
RVE (Figure 4.13(a)); A half-domain RVE (Figure 4.13(b)), obtained by from 
the full RVE by staggered-translational symmetry consideration alone, and; 
A quarter-domain RVE (Figure 4.13(c)), obtained by considering both sym
metries.

The full RVE mesh contains 336 eight-noded quadrilateral isoparametric 
elements with reduced (2x2) integration points with a total number of 1221 
nodes. The half-domain RVE mesh consists of 168 elements and 672 nodes
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Figure 4.14: Timber block subjected to compression load (Mid-side nodes 
have been omitted in the mesh).

and the quarter-domain is discretised with 84 elements and 307 nodes. Figure 
4.13(c) also illustrates the one-to-one correspondence in the sets of boundary 
nodes of d1/4^ ,  as explained earlier (Figure 4.7(c)). The nodes highlighted 
in black have zero prescribed displacement fluctuation.

The macroscopic problem consists of the compression of a 4cm x4cm spec
imen of timber in plane strain (Figure 4.14).

A mesh of 34 eight-noded isoparametric quadrilaterals with reduced 2x2  
Gauss quadrature is used to discretise one symmetric half of the problem 
domain with appropriate kinematical constraints imposed along the symmetry 
lines. The total number of nodes is 123. The compression load is applied by 
means of a uniform prescribed vertical displacement of the central nodes of 
upper edge. The total prescribed compressive displacement, corresponding to 
0.5% of the initial length of the sample, is applied in 20 incremental steps. The 
maximum total reactive force on the constrained edge is found to be 57.823N 
(which is the same in the three cases tested). Again, the speed-up obtained 
as a result of the symmetry considerations at the RVE level are substantial. 
For the half-domain RVE, the speed-up factor (compared to the full RVE 
description) is 2.15. With the quarter-domain RVE description, for which all 
symmetries are explored simultaneously, the speed-up factor achieved is 7.41.
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CONSTITUENT 4

CONSTITUENTS

CONSTITUENT 2

CO NSTITUENT!

Figure 4.15: Finite element mesh of full RVE I  domain 

4.5.5 RVE with constituent described by a second RVE

In this example, we consider a three-dimensional periodic microstructure 
represented by a RVE, called RVE I  (Figure 4.15). RVE I  satisfies point- 
symmetry and has four constituents: constituents 1, 2, 3 and 4: with volume 
fractions 0.243, 0.325, 0.375 and 0.057, respectively. The mechanical response 
of constituent 1  is obtained by the computational homogenisation of a second 
RVE, named RVE II  (Figure 4.16). This RVE is described by periodic and 
alternating regions of constituents A and B , with volume fractions of 0.66 and 
0.44, respectively. Material of constituent A is assumed to be purely elastic, 
with Young modulus Ea = 17.5GPa and Poisson ratio va = 0.3. Material of 
constituent B  is modelled by an elastic-perfectly plastic von Mises law, with 
Young modulus Eb  =  10.42GPa, Poisson ratio vB =  0.23 and yield stress 
(TyB = 0.4MPa. Similarly, materials of constituents 2, 3 and 4 are also mod
elled here as elastic-perfectly plastic von Mises materials. The correspond
ing mechanical properties of material in constituent 2 are: Young modulus 
E 2 =  0.4GPa, Poisson ratio z/ 2 — 0.2 and yield stress <ry 9  =  0.22MPa. For con
stituent 3, the properties are : Young modulus £ 3  =  2.75GPa, Poisson ratio

=  0.3 and yield stress cry 3  =  0.22MPa; and for constituent 4 '• Young mod
ulus E 4 = 10.42GPa, Poisson ratio ^ 4  =  0.23 and yield stress ayi =  0.4MPa. 
Large strain formulation is adopted in all the analyses.

To eliminate volumetric locking, F-Bar methodology (de Souza Neto 
et al. 1996) is used in the finite element meshes. The full RVE I  mesh con-
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CONSTITUENT A

CONSTITUENT B

Figure 4.1C: Finite element mesh of RVE II. This RVE defines the constitutive 
law at each gauss integration point of the constituent 1 , in the RVE I.

tains 640 F-bar eight-noded hexahedral elements with a total number of 1362 
nodes. The RVE II  mesh has 12 F-bar eight-noded hexahedral elements with 
a number of 52 nodes.

By taking into account point-symmetry, a half of the full RVE I  domain 
is modelled (4.17). The half-domain RVE I  mesh consists of 320 F-bar eight- 
noded hexahedral elements and 708 nodes. As shall be seen in the next Chap
ter 5, a similar geometry will be adopted in the analysis of wood cell-wall.

The simulation here consists in prescribing a total engineering strain ar
ray e  =  {-0 .00015,-0 .00015,0 .05,0 , 0, 0 } 7 incrementally on the RVE I  in 
10 proportional load steps. The resulting homogenised stress components 
are a  -  {0.02613,0.02613,0.22595,0,0,0}TGPa for both full and half-RVE  
I  domains. The speed-up factor achieved with the consideration of point- 
symmetry in the reduced RVE I  domain compared to the corresponding full 
RVE is 2.08.
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Figure 4.17: Finite element mesh of half RVE I  domain



C h a p t e r  5

Finite element modelling of wood 
cell-wall

5.1 Introduction
Over the last few years, the investigation of the complex interacting mecha
nisms of wood at nano- and microscopic levels by means of multi-scale finite 
element models has brought substantial progress to the understanding of the 
linear elastic response of these materials (Holmberg et al. 1999, Hofstetter 
et al. 2005, Hofstetter et al. 2007, Qing and Mishnaevsky 2009 a, Qing and 
Mishnaevsky 20096, Qing and Mishnaevsky 2010).

Multi-scale approaches to constitutive modelling have an inherent poten
tial ability to capture the macroscopic dissipative response under complex 
strain paths which is of difficult representation by means of conventional in
ternal variable-based phenomenological theories. Successful use of method
ologies of this type in the context of dissipative phenomena is reported, for 
example, in the modelling of crystal plasticity (Miehe et al. 1999, Watanabe 
et al. 2008), frictional granular (Wellmann and Wriggers 2008) and cellular 
plastic materials (Terada et al. 2003). Until now, however, research on the 
multi-scale constitutive description of wood appears to have been focussed 
exclusively on the study of reversible behaviour.

Probably, one of the most crucial factors in understanding the mechanical 
dissipation in wood across different scales is the role played by its three major 
nanostructural constituents -  hemicellulose, lignin and cellulose -  and the 
associated irreversible processes in the wood cell-wall.

Despite the considerable effort devoted to the experimental study of the 
basic constituents of wood cell-wall, only little is currently known about 
their mechanical properties and interactions as a composite material (Burgert 
et al. 2006). One important contribution to the understanding of cell-wall 
mechanics has been recently made by Keckes et al. (2003). These authors 
showed how wood tissue and individual cells are able to undergo large defor
mations without apparent damage and also proposed a recovery mechanism 
after irreversible deformation, interpreted as a stick-slip mechanism at the 
molecular level. They showed that this velcro-like mechanism produces a 
plastic response similar to crystallographic sliding in poly crystalline metals.

In this chapter, we investigate the highly non-linear irreversible behaviour
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of wood cell-wall by means of a finite element-based computational multi
scale approach. In this context, we propose a three-scale constitutive model 
where the response of the cell-wall composite (the large scale continuum in 
the present case) is obtained by the computational homogenisation of a Rep
resentative Volume Element (RVE) of cell-wall material (the microfibril R V E ) 
at nanoscopic level (the intermediate scale), whose mechanical response pre
diction, in turn, involves the computational homogenisation of a cellulose core 
RVE  made of crystalline and amorphous cellulose (the small scale). A large 
strain formulation is adopted throughout. We remark that the consideration 
of finite strain kinematics is crucial in the present context in view of the magni
tude of the strains involved in the analyses carried out and resulting phenom
ena such as large cellulose fibre rotation. We anticipate that key features of 
the mechanical behaviour of wood cell-wall, such as fibre reorientation-induced 
stiffening, viscous relaxation, stiffness recovery mechanism and hysteresis are 
reproduced by the proposed model. The predictive capability of the present 
multi-scale model is demonstrated by comparing the results obtained in Nu
merical Material Tests with published experimental data (Keckes et al. 2003). 
Further investigation of the numerical results suggests a possible failure mech
anism for the cell-wall under straining, associated with the inelastic yielding 
of the amorphous portion of cellulose.

In what follows, we shall focus on the description of this multi-scale model 
and at the end of this chapter, some numerical results will be given. We refer 
here to Saavedra Flores et al. (2011).

5.2 Finite element modelling of wood cell-wall

In order gain insight into the complex phenomena of mechanical interactions 
in wood at the level of chemical constituents, we select compression wood of 
Norway spruce (Picea abies (L.) Karts.) for our study. The moisture con
dition considered here is that found naturally in living trees. In this state, 
compression wood displays remarkable features, particularly suitable for the 
study of internal mechanisms present in the cell-wall. Under natural condi
tions, compression wood cells are characterised by a low content of cellulose 
which results in low overall stiffness, and by large MFAs that vary substan
tially under tensile loading. These features allow compression wood cells to 
become very flexible and develop high levels of deformation and strain when 
stressed.

The procedure adopted here consists of assuming that the S2 layer is a rep
resentative enough portion of the entire cell-wall for the purpose of describing 
the overall mechanical behaviour of cell-walls. This assumption makes sense 
since the S2 layer in spruce cells amounts to about 80% of the total cell-wall 
volume (Fengel and Stoll 1973) and, as was already explained in Chapter 2, is
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the principal element controlling the strength in the wood cell. This simplifica
tion allows us to model the cell-wall by means of a RVE called microfibril-RVE, 
representing a typical microfibril in the middle secondary layer S2. It consists 
of lignin, hemicellulose, an outer amorphous cellulose layer and a periodic 
crystalline-amorphous cellulose core (refer to Figure 2.7). Simultaneously, at 
a lower scale, this periodic arrangement of crystalline-amorphous cellulose is 
characterised by a single material whose constitutive description is defined 
by a second RVE, named cellulose core-RVE. Consequently, what we propose 
here is a fully coupled three-scale model, in which the overall mechanical re
sponse of the cell-wall composite (large scale) is obtained by the computational 
homogenisation of the microfibril-BVE at the nanoscopic level (intermediate 
scale). Further, the mechanical response prediction of the microfibril-RVE, in 
turn, involves the computational homogenisation of the cellulose core-RVE at 
the level of the crystalline and amorphous portions of cellulose (small scale). 
That is to say, each microfibril-YWE equilibrium problem is solved simulta
neously with a large number of cellulose core-RVE equilibrium problems at 
Gauss-point level of the microfibril-RVE finite element mesh.

Timell (1982) specified for compression wood 30% of cellulose content, 
about 29% for hemicelluloses and a range of 35-40% for lignin. Similar values 
for spruce were presented by Timell (1986) later on. Consequently, in the 
present model we adopt volume fractions of 30, 32.5 and 37.5% for cellulose, 
hemicellulose and lignin, respectively.

Due to the highly non-linear nature of the phenomena taking place within 
the cell-wall, we remark that all the aspects of modelling discussed here take 
into account non-linear kinematics and dissipative response of the material 
under finite strains regime.

5.2.1 H em icellulose and lignin. C onstitutive description

As previously mentioned, hemicellulose structure is partially amorphous. It is 
considered that certain fraction of its structure is aligned along the micro fib
ril and consequently, its general behaviour can be modelled as orthotropic 
(Salmen 2004). However, the principal mode of deformation in hemicellulose 
during tension of the cell-wall is related exclusively to shear, with little con
tribution of the degree of anisotropy in the mechanical response (Nilsson and 
Gustafsson 2007). Hence, an assumption of isotropy will be adopted here to 
describe hemicellulose. In the same way, lignin is assumed to be an isotropic 
material due to its amorphous nature.

Hemicellulose and lignin materials are modeled here with a visco
elastic/visco-plastic response. Experimental evidence of rate-dependent be
haviour in the lignin-hemicellulose matrix, isolated fibres or thin wood tissues 
can be found, for instance, in Navi (1995), Baley (2002), Keckes et al. (2003) 
and Sedighi-Gilani and Navi (2007). To capture rate-dependence, we shall
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adopt for both hemicellulose and lignin, a constitutive model based on the 
combined action of two rheological models in parallel arrangement. The first 
component corresponds to a visco-plastic Prandtl model, whereas the second 
component, to a visco-elastic Maxwell model. For further details, we refer 
to Peric and Dettmer (2003). In what follows, we describe the assumptions 
made in the modelling of each of these rheological components.

(i) Rate-dependent Prandtl model

For the description of the constitutive response under finite strains, an 
isotropic hyperelastic material model is chosen for Prandtl and Maxwell 
components. Here, a regularised compressible version of the one-term 
Ogden strain energy function is adopted. The strain-energy function 
reads:

y°9* =  +  ( j - i x 2)a +  ( J - h 3)a -  3)

+ \K { ln J )2,

where A1} A2 and A3 are the principal stretches and J  the determinant of 
the deformation gradient, J  = det(F) = AiA2A3. The material constants 
here are x  and o l  and the bulk modulus K .  The corresponding parame
ters assumed in the Prandtl rheological component for hemicellulose are: 
X =  6.667e-2GPa, a — 0.5 and K  =  2.222e-2GPa. These constants are 
chosen such that the linearised elastic response of the Prandtl/Maxwell 
constitutive model for hemicellulose (under static conditions and in
finitesimal strains) coincides with a linear elastic response given by a 
Poisson ratio 1/  = 0.2 (Salmen 2004) and a Young modulus E  = 4e-2GPa 
(Burgert et al. (2006), based on Salmen (2001)), for moist conditions. 
Further information about the mathematical theory of linearisation in 
the context of nonlinear elastic solids can found, for instance, in Mars- 
den and Hughes (1983). We note also that other possible sets of Ogden 
material constants can be adopted in order to obtain the same linearised 
mechanical response. However, our particular choice has been made not 
only to fit the response of the hemicellulose material model in the linear 
elastic range but also to fit the homogenised mechanical behaviour of 
the microfibril-TWE model to experimental data over a larger range of 
strains.

In lignin, elastic properties can be assumed constant over 12% moisture 
content (Salmen 2004). Here, we adopt the following constants in the 
Ogden strain energy function: x  = 1.2GPa, a = 1.0 and K  = 1.3GPa. 
In this particular case, the linearised elastic constitutive response of the 
Prandtl/Maxwell model coincides with the adoption of a linear elastic 
mechanical behaviour given by a Poisson ratio v = 0.3 (Salmen 2004) 
and a Young modulus of E  — 1.56GPa (the latter calculated from

5.1)
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the isotropic relationship G = £7/[2(l +  */)], with a shear modulus 
G = 0.6GPa (Salmen 2004) and the adopted Poisson ratio v = 0.3). 
Similarly to hemicellulose, we also choose these constants in order to fit 
the homogenised mechanical response of the microfibril-RVE model to 
experimental information (refer to Section 5.3.4).

For both materials, hemicellulose and lignin, the Prandtl rheological 
component is modelled within a conventional von Mises visco-plasticity 
framework, with no hardening, endowed with a potential structure 
(de Souza Neto et al. 2008, Lemaitre and Chaboche 1990). Unfortu
nately, little experimental information has been reported on the yield 
stress of the lignin-hemicellulose matrix. However, in the modelling of 
the critical shear stress of the lignin-hemicellulose matrix, Altaner and 
Jarvis (2008) utilised a value of shear yield stress asy = l.le-2GPa, 
based on Fratzl et al. (2004). By using this shear stress and the von 
Mises criterion, we adopt a value of yield stress ay = 1.9e-2GPa for 
hemicellulose and lignin.

Due to the lack of experimental information, it is wise to use the simplest 
possible description of viscous dissipative response. Then, we choose the 
following standard dissipation potential (de Souza Neto et al. 2008):

which defines the evolution of the internal variables. Here, repre
sents the von Mises yield criterion, (•) the ramp function and rjp a 
viscosity-related parameter. In order to fit the homogenised mechan
ical response of the microfibril-RVE to experimental information and, 
in view of the little experimental information about viscosity-related 
material constants for isolated hemicellulose and lignin, we proceed to 
adopt a value r)p = 8.5 and 20.0GPa-s for both materials, respectively.

(ii) Maxwell model ,

As previously mentioned, a hyperelastic description for the Maxwell rhe
ological component given by Equation (5.1) is also adopted here. We 
note that for a constant deformation in time the mechanical stress pro
vided by Maxwell model tends to zero with time (relaxation). Therefore, 
under static conditions, the Maxwell rheological component does not 
contribute in the linearisation process of hemicellulose and lignin mod
els. That is to say, the linearised response of hemicellulose and lignin 
constitutive models depends solely on the Prandtl rheological compo
nent. Consequently, the Ogden constants in the Maxwell model are 
chosen here exclusively to fit the overall mechanical response of the mi- 
crofibril-KVE model at large strains (refer to Section 5.3.4) but not
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to fit the response of the hemicellulose and lignin models to their lin
ear elastic mechanical properties. After the fitting process, the Og
den constants adopted for hemicellulose are: x  — 1.2GPa, ol =  2.3 
and K  = 2.222e-2GPa; and for lignin: x  =  0.2GPa, a  — 0.3 and 
K  = 1.3GPa.

To capture the viscous response of hemicellulose and lignin in the 
Maxwell component, we propose to adopt an evolution law suggested by- 
Reese and Govindjee (1998), restricted here to the isochoric viscoelastic 
response, given by

-  = ~ ( l  -  \ l  ® 1) : t , (5.3)
2 2?]m 3

with J fv representing the so-called Lie derivative (refer to de Souza Neto 
et al. (2008)), B e the elastic left Cauchy Green strain tensor, r  the 
Kirchhoff stress tensor, ® the standard tensorial product and I  and I, 
the second and fourth order identity tensor, respectively. The only ma
terial constant here is the deviatoric viscosity parameter of the Maxwell 
model, r]m. Here, we shall adopt a value r}m = 6.5 and 3.lGPa-s for both 
materials, lignin and hemicellulose, respectively. As shall be seen later 
in Section 5.3, these values allow us to reproduce a numerical response 
similar to that found experimentally in wood cells.

5.2.2 C onstitutive description of cellulose

The cellulose structure has already been described as a periodic alternation of 
amorphous and crystalline domains. In addition, an outer amorphous cellulose 
layer covering this periodic arrangement has been considered. Consequently, 
to model the whole cellulose, including this additional layer, we follow the pro
cedure described by Andersson (2006). Donaldson and Singh (1998) employed 
transmission electron microscopy to obtain an average thickness of cellulose 
about 3.6nm, which included the crystalline core and the amorphous sheet
ing. Furthermore, Andersson et al. (2004) determined an average thickness 
of 3.2nm for the crystalline cellulose in Norway spruce. In consequence, a 
0.2nm thick layer of amorphous cellulose can be assumed at the surface of the 
crystalline-amorphous core. Additionally, Andersson et al. (2004) indicated 
a mass degree of crystallinity of 52%. Since the density of the crystalline 
and amorphous constituents are approximately in the same order of magni
tude, 1.59 and 1.50g/cm3, respectively (Hofstetter et al. 2005), no distinction 
between volumetric and mass degree of crystallinity is needed. Considering 
a mean length of the crystalline fraction about 36.4nm, there should be a 
length of 18.9nm of amorphous cellulose between two consecutive crystalline 
units (Andersson 2006).
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Further description of the assumptions made in the modelling of both 
materials is given in the following.

(i) Amorphous cellulose

It is obvious that because of the random structure of amorphous cellu
lose, we assume isotropy. In addition, since the deformation of (amor
phous and crystalline) cellulose is very small as a consequence of its 
interaction with the weak hemicellulose-lignin matrix, a compressible 
version of the isotropic Neo-Hookean strain-energy function is chosen 
here, due to its mathematical simplicity and predictive accuracy for 
moderate deformations.

The amorphous cellulose assumes a conventional von Mises elastic- 
perfectly plastic law. No viscosity effects are considered since the ex
perimental evidence supporting the assumption of a viscous response 
of the cellulose is very little. Evidence of the poor deformation recov
ery of cellulose in amorphous state is provided by molecular models 
(Chen et al. 2004a, Chen et al. 20046). At dry conditions, Chen et al. 
(2004a) determined stress-strain curves for amorphous cellulose, with an 
average Young modulus E  = 10.42GPa and a Poisson ratio v =  0.23. 
Furthermore, they indicated an onset of plastic yielding at 7 -  8% strain, 
corresponding to an approximated yield stress ay — 0.8GPa. Later on, 
Chen et al. (20046) studied the effects of crosslinks and different water 
concentrations on stress-strain curves in amorphous cellulose. They re
ported that the yield stress in stress-strain curves for models containing 
50% water was only half the value at dry conditions. Consequently we 
adopt the above elastic properties and a yield stress ay =  0.4GPa.

(ii) Crystalline cellulose

Contrary to amorphous cellulose, the corresponding crystalline fraction 
is assumed to be elastic (Peura et al. 2007), consisting of a transversally 
isotropic material. In order to capture this type of constitutive response 
at large strains, we adopt a generalisation of the compressible version of 
the isotropic Neo-Hookean strain-energy function. For further details, 
we refer to Bonet and Burton (1998). Here, it is possible to assume that 
the Neo-Hookean elastic potential 'Lnh can be decomposed into a fully 
isotropic component and an orthotropic, transversally isotropic 
component according to

* ’*'• =  (5-4)

The strain-energy function tynh can be evaluated by knowing the follow
ing material constants: the Young modulus and the Poisson ratio of the 
material on its isotropic plane, E  and z/, and the Young modulus and
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the shear modulus along the principal axis of orthotropy, E a and Ga , 
respectively. The linear elastic mechanical properties chosen here for 
the crystalline cellulose are E a =  134GPa, Ga — 4.4GPa, v — 0.1 and 
E  = 27.2GPa. The same mechanical properties have been used widely in 
the literature. We refer, for instance, to Bergander and Salmen (2000), 
Baley (2002) and Salmen (2004).

In Table 1, we list a summary of all the values of mechanical properties 
used in the modelling of the present chemical constituents.

5.2 .3  RVEs Finite elem ent m eshes
(i) Microfibril -  RVE

In order to reduce computing times and memory requirements, point 
symmetry condition (Ohno et al. (2001) and Saavedra Flores and 
de Souza Neto (2010)) present in the geometry was taken into con
sideration. In consequence, only one half of the full RVE domain was 
modelled. Furthermore, to avoid possible shear locking problems, the 
final microfibril-BVE mesh used was obtained after a convergence anal
ysis. The optimal finite element mesh chosen in this study is illustrated 
in Figure 5.1(a). To eliminate volumetric locking, the F-Bar methodol
ogy (de Souza Neto et al. 1996) is used in all the finite element meshes. 
The microfibril-RVE mesh contains 1008 F-bar eight-noded hexahedral 
elements with a total number of 2136 nodes.

(ii) Cellulose core -  RVE

Finally, to obtain the optimal finite element mesh for the cellulose core- 
RVE, we also carry out here a finite element convergence study. The 
converged mesh consists of 24 F-bar eight-noded hexahedral elements 
and a total number of 100 nodes. Figure 5.1(b) shows the corresponding 
finite element mesh for the cellulose core-RVE.

5.3 Numerical results
In order to better understand the mechanical interactions present at the level 
of wood cell-wall, we investigate the strain state in the cell-wall when it is 
subjected to tensile loading in the direction of the cell axis. By means of 
numerical experiments, we study the viscous relaxation, loading/unloading 
cycles and the recovery mechanism in the cell-wall. In addition, we explore 
the effects of the degree of crystallinity on the overall mechanical response.

To make consistent direct comparisons with available experimental infor
mation (refer to Keckes et al. (2003)), all measures of stress calculated from the
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Material /  property Value References
Crystalline cellulose

E a (GPa) 134.00 (Salmen 2004)
E  (GPa) 27.2 (Salmen 2004)

Ga (GPa) 4.4 (Salmen 2004)
V 0.1 (Salmen 2004)

Amorphous cellulose
E  (GPa) 10.42 (Chen et al. 2004 a)

V 0.23 (Chen et al. 2004 a)
(Ty (GPa) 0.4 (Chen et al. 2004a, Chen et al. 20046)

Hemicellulose
E  (GPa) 4e-2a (Salmen 2001)

V 0.2a (Salmen 2004)
r]p (GPa-s) 8.5 Fitted. ̂
Vm (GPa-s) 3.1 Fitted.^
c7y (GPa) 1.9e-2 Estimated0 from (Fratzl et al. 2004)

Lignin
E  (GPa) 1.56d Estimated6 from (Salmen 2004)

V 0.3d (Salmen 2004)
r]p (GPa-s) 20.0 Fitted.6
rjm (GPa-s) 6.5 Fitted.6
<Ty (GPa) 1.9e-2 Estimated6 from (Fratzl et al. 2004)

Table 5.1: Summary of the mechanical properties adopted in the consti
tutive modelling of the chemical constituents. “The linearisation of the 
Prandtl/Maxwell rheological model adopted for the description of the hemi
cellulose coincides with a linear elastic response given by a Young modulus 
E  =  4e-2GPa and a Poisson ratio v = 0.2. 6 At present, no experimental data 
for this constant is available in the literature, neither for isolated hemicellu
lose nor for isolated lignin. “Estimated indirectly by means of the von Mises 
criterion. Original value was used in the modelling of the hemicellulose-lignin 
matrix. dThe linearisation of the Prandtl/Maxwell rheological model adopted 
for the description of lignin coincides with a linear elastic response given by a 
Young modulus E  = 1.56GPa and a Poisson ratio v = 0.3. “Estimated from 
the relationship G = E /[2(1 +  z/)], where the shear modulus is G =  0.6GPa 
and the Poisson ratio u = 0.3.
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(a) Finite element rnicrofibril-~R\lE mesh. By tak- (b) Finite element cellu- 
ing advantage of symmetry conditions, only half of lose core RVE mesh, 
the domain is modelled.

Figure 5.1: Finite element RVE meshes utilised in the present multi-scale 
model.

homogenised mechanical response of the microfibril-RVE model correspond 
to homogenised first Piola-Kirchhoff stress components (or homogenised nom
inal stress) measured in the reference configuration. For the same reason, Biot 
strain tensor components (de Souza Neto et al. 2008), which measure changes 
in length per unit reference (initial) length, are used here to quantify straining.

In what follows, the cell-wall is assumed to be defined on the x-y  plane, 
with y denoting the cell axis direction, and x, its corresponding normal di
rection. The z  direction is defined perpendicular to the x-y  plane, along the 
cell-wall thickness.

5.3.1 Strain state in the cell-wall under tensile loading

Here, we investigate the strain state in the cell-wall resulting from a tensile 
load applied in the direction y of the cell axis. By assuming an inextensible 
cellulose fibre and considering an uniform micro fibril angle MFA, referred to 
as /i, it is possible to obtain a simple expression th a t relates the applied strain, 
eyy, in the direction y, with the resulting variation, A//, of the MFA. If we 
consider a rectangular material element of cell-wall on the x-y  plane, with 
dimensions Ix and ly , in the corresponding x  and y directions, it follows tha t



5.3. N um erical results 63

cos(/z) is proportional to ly under the assumption of inextensible cellulose. 
Then, the relationship between the applied strain and the variation of MFA 
can be expressed as eyy = — tan(/i0 )A/x (Keckes et al. 2003), with fiQ denoting 
the initial microfibril angle. Despite the limitation of this expression to small 
strains, it has shown good agreement with experimental data for different 
wood specimens and different MFAs and even for strains up to 20% (Keckes 
et al. 2003). Similarly, a second relationship can be obtained in the x  direction. 
Here, the length Ix in the portion considered of cell-wall, is proportional to 
sin(fi) under the assumption of inextensible fibre. In this case, the strain in 
the direction x  can be calculated as exx =  cot(/i0)Ay. Moreover, if we relate 
the expressions for exx and eyy by means of the in-plane Poisson ratio of the 
cell-wall, v — —exx/£yy, we can obtain the relationship v = [cot(/i0)]2. By 
taking an initial microfibril angle in compression wood, equal to 45.7° (Keckes 
et al. 2003), we can estimate an in-plane Poisson ratio v = 0.95 for the cell- 
wall. High values of in-plane Poisson ratio have been also determined by 
Marklund and Varna (2009 a) and Marklund and Varna (20096), for the S2 
layer when using classical laminate theory.

W ith the above estimated in-plane Poisson ratio in the cell-wall, we pro
ceed to define a prescribed incremental strain array to be applied in the mi- 
crofibril-BVE of the cell-wall. If we assume a strain history whose final state 
in the direction of the cell axis is £yy = 0 .2 , a corresponding lateral strain 
sxx = —0.19 is obtained under the consideration of v =  0.95. Also, since 
compression wood cells present thick cell-walls, and considering that the ex
isting load acts only along the axis of the cell, it is reasonable to assume 
£zz = ixz — lyz — 0 - In addition, the interaction between two or more ad
jacent cells in wood tissue severely constrains torsion about the cell axis, so 
that we can assume 7 xy — 0 (Keckes et al. 2003) in the cell-wall. Similarly, 
for single cells under tensile loading, the torsional rotation is prevented by 
the tensile testing device and in this case it is also reasonable to take j xy = 0  

(Marklund and Varna 2009 a). Finally, the end strain state in the cell-wall, to 
be prescribed incrementally to the microfibril-BVE in the analyses presented 
in the following, is chosen as

£ — {£xxi &yyi &zzi 'l/xy) 'Yyzi 'Yxz\ { 0.19,0.2,0,0,0,0} , (h-5)

in standard engineering strain array format.
We emphasise that, in our analyses we assume the cell-wall to be free from 

pits or defects so that there will be no distinction between the cell-wall in wood 
tissue and individual cells. Hence, we assume here that the variation A /i, of 
the MFA, is identical in tissue and in single cells under axial straining. Note, 
however, that this assumption could be questionable because of the existence 
of pits and defects over the length of individual cells, which generally results in 
an inhomogeneous deformation not observed in wood tissue due to the cell-cell 
interactions mediated by the middle lamella (Keckes et al. 2003).
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We also remark that the assumption of inextensible cellulose is used here 
only to define the macroscopic strain path to be imposed in the analysis of the 
cell-wall subjected to tensile loads, as an approximation to the actual (more 
complex) strain path. It should be emphasised though that this assumption 
is not made in the definition of the multi-scale model of the cell wall. That 
is, in the microfibril-RVE the cellulose fibre (both crystalline and amorphous 
constituents) is modelled as a deformable material. We note that more realis
tic strain paths could be naturally obtained if the proposed three-scale model 
were used in fully coupled three-scale analyses, where the macroscopic (wood 
tissue level) strain is determined as a result of the corresponding macroscopic 
equilibrium problem. Fully coupled schemes of this nature are discussed, 
among others, by Miehe et al. (1999) and Terada et al. (2003) but are not the 
focus of the present study. The high memory requirements and computing 
times associated with such methodologies make them a prohibitive alterna
tive for the simulation of large-scale boundary value problems at present. The 
purpose of our study is precisely to gain insight into the behaviour of wood 
cell-wall with a view to the future development of new simplified phenomono- 
logical constitutive models able to render accurate predictions of macroscopic 
behaviour at the reasonable computing costs of conventional single scale finite 
element analyses.

5.3.2 Stress relaxation and recovery m echanism

In this first numerical experiment, we proceed to apply the prescribed strain 
array, e, in Equation (5.5), in 32 time steps of 10s each. Consequently, the 
complete duration is 320s, however in order to investigate the mechanism of 
viscous relaxation, it is stopped for 30s at time t\ = 60s, — 120s, 13 =  190s
and £4 =  250s. Thus the strain rate adopted here, in the direction y , is 
le-3s_1, which has been obtained from Keckes et al. (2003), when a thin 
wood foil of 50mm length is strained at a rate of 0.05mm/s. In order to 
study the recovery mechanism, a second numerical experiment is performed, 
in which the deformation is applied mbnotonically for 2 0 0 s at the same strain 
rate without interruptions. The corresponding component of the homogenised 
stress array in the direction of the cell axis is plotted in Figure 5.2, for both 
cases. Here, sharp falls in the level of stresses are observed after each stop of 
the numerical experiment, as a consequence of the viscosity provided in the 
lignin-hemicellulose matrix. Furthermore, after stopping and loading again, 
the level of stress increases and the original stiffness, given by the monotonic 
straining, is recovered. The same phenomenological response has been ex
perimentally observed by Keckes et al. (2003) in compression wood tissue of 
Norway spruce, under similar conditions of deformation rate, total duration 
and intervals of stops.
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Figure 5.2: Cell-wall under axial tensile straining. Homogenised stress and 
strain.

5.3.3 Change of MFA under straining

In this section, we continue with the study of the previous numerical experi
ment, however we focus our attention in the variation of the microfi,bril angle 
MFA with the applied strain eyy. In this case, whether or not interruptions 
occur in the monotonic loading process is immaterial in the evolution of the 
MFA. Note tha t interrupting the straining in our model at any instant causes 
no variation in the orientation of the microfibril because of the prescription 
of the strain state.

Figure 5.3 shows both the experimental information reported in the liter
ature (Keckes et al. 2003) during a tensile test of compression wood tissue, 
and the result obtained from the analysis of the microfibril-UVE. The general 
trend of the numerical curve is almost linear, showing an increase of the slope 
at the end of the complete deformation process in 3.5% (though not visible in 
the graph) with respect to the initial slope. This slight increase is due mainly 
to the geometric non-linear relationship between the prescribed strain and the 
variation of MFA. Note th a t the linear relationship assumed in Section 5.3.1, 
between the applied strain and the variation of MFA, is used exclusively to 
calculate the final strain state in the loading programme. However, it does 
not impose an exact linear variation between the microfibril orientation and 
the prescribed strain along the deformation process.

From numerical experiments (not shown here), we also note th a t the 
changes in the in-plane Poisson ratio can lead to substatial variations in slope 
in the graph of Figure 5.3. In addition, a relatively constant in-plane Pois-
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Figure 5.3: Change of MFA in the cell-wall under straining. Tensile experi
ment in compression wood tissue (Keckes et al. 2003) and numerical simula
tion.

son ratio during the deformation process results in a general linear trend. 
Therefore, the good agreement between numerical and experimental results 
suggests tha t a suitable Poisson ratio has been obtained when the expres
sion v — [cot(//0)]2 is used along with an initial microfibril angle p 0 = 45.7°. 
We note, however, th a t for lower (initial) microfibril angles, this expression 
will fail to predict the Poisson ratio. This is explained by the fact th a t for 
smaller MFAs the cellulose fibres begin to take larger portions of the axial 
loads leading to higher axial deformations. Then, the assumption of inex- 
tensible cellulose in this case is not clearly reasonable and the corresponding 
expression u = [cot(//0)]2 will lead to unacceptable results for the Poisson 
ratio.

5.3.4 L oading/unloading cycles
Here, we investigate the effects of cyclic loading on the wood cell-wall. For 
comparison purposes, we select the experiment reported by Keckes et al.
(2003), consisting of three loading/unloading cycles applied on a compres
sion wood cell of Norway spruce. In this particular experiment, stresses were 
calculated considering the full initial area of the cell cross-section, including 
the area of the cell lumen (or central cavity). Consequently, in order to make 
it possible to compare our numerical simulations with this experiment, the ho
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mogenised stress values shown here (refer to Figure 5.4) have been divided by 
a factor 1.66. This factor is obtained by dividing the full initial area of the cell 
cross-section (including the cell lumen) by the net area of the cross-section 
after deduction of the lumen. Here, the corresponding factor is calculated 
considering the diameter of the tested cell reported by Keckes et al. (2003), 
equal to 25/mi, and a thickness of 4.6/zm, indicated as a mean wall thickness 
for compression wood cells of Norway spruce according to Tarmian and Azad- 
fallah (2009). In addition, since the cell is long enough, with walls assumed 
to be free of pits and defects, a uniform deformation is considered along the 
cell, for the range of strains in study.

The experiment reported by Keckes et al. (2003) (Figure 5.4) shows a 
maximum strain of 0.22 in the cell-axis direction before total failure of the 
specimen. Consequently, in order to reach this maximum strain, we pro
ceed to apply the prescribed strain array £, in Equation (5.5), but multi
plied by a factor 1.1. That is to say, here we apply a prescribed strain array 
£ =  {—0.209,0.22,0,0,0,0}T, applied in 101 time steps of 5s each one. The 
adopted strain rate is 6.58e-4s_1 and is calculated from Keckes et al. (2003), 
when the tested cell of 0.76mm length is strained at a rate of 500nm/s. For 
unloading/reloading the same strain rate is used under contraction/stretching.

The corresponding time intervals of tensile straining are: [0,60]s, [75,110]s, 
[125,250]s and [305,505]s. For unloading, the intervals are [60,75]s, [110,125]s 
and [250,305]s. In order to investigate the recovery mechanism in the ma
terial, we perform another analysis under monotonic straining at the same 
strain rate. Figure 5.4 presents the stress-strain curves obtained in the exper
imental test of Keckes et al. (2003) and in the two numerical simulations. As 
in the previous examples, the direction of analysis is the cell axis. The corre
sponding graph shows a good agreement between the numerical simulations 
and the experimental result, which demonstrates the very good predictive ca
pabilities of the present model. Moreover, after each loading/unloading cycle 
in the numerical curve, the level of stress tends to reach the original stiffness 
of the monotonic straining curve. This shows once more the ability of the 
model to capture the recovery mechanism at the cell-wall level. In addition, 
we also observe that the model is able to reproduce with accuracy the charac
teristic stiffening developed in the cell-wall, when the microfibril angle, MFA, 
decreases under the continued straining.

In spite of the good predictive capabilities shown by the present model, 
Figure 5.4 shows very low dissipated energy after the first and second hys
teresis loop, when the response is supposed to be predominantly elastic. To 
address this issue, we remark however, that further improvements could be ob
tained with the adoption of more precise viscosity-related material constants 
obtained directly from experiments carried out on lignin and hemicellulose. In 
any case, a much better response is found in the third hysteretic cycle, when 
both numerical and experimental curves tend to coincide.
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Figure 5.4: Loading/unloading cycles. Experimental test in compression wood 
cell (Keckes et al. 2003) and two numerical simulations.

5.3.5 Degree of crystallinity

In this section we investigate the variation of the degree of crystallinity, ev, 
in the overall mechanical response of the wood cell-wall. We compare the 
m aterial response predicted by the microfibril-RVE for four different degrees 
of crystallinity, 45, 50, 55 and 60%. The different values of crystallinity are 
obtained in the model by suitably changing the length of the amorphous cel
lulose fraction between two consecutive crystalline portions, keeping constant 
the thickness of the outer amorphous cellulose layer. By setting the volume 
fraction of amorphous cellulose in the cellulose core-RVE model, we obtain 
four different microfibril-RVE models. Note th a t we compare here the over
all response of the four different models, under the prescription of the same 
monotonically incremental engineering strain array e, in Equation (5.5), as
suming th a t this strain state is representative for all the cases analysed. This 
is possible since £ has been obtained from considerations independent of the 
volume fractions of material and mechanical properties (we have assumed only 
th a t the cellulose fibre is much stiffer than the m atrix). The adopted strain 
rate is le-3s_1.

Figure 5.5 shows the stress-strain curves for the different degrees of crys- 
tallinity considered. In the corresponding graph, we see tha t the mechanical 
response is virtually independent of the degree of crystallinity for strains un-



5.3. N u m erica l resu lts 69

C L

D

0.12
V a ria tio n  of s lo p e s :  b e g in n in g  of 
y ie ld ing  in a m o r p h o u s  c e l lu lo s e

0.1

0.08

0.06

0.04

0.02

0
0 0.05 0.1 0.15 0.2

£ VV

Figure 5.5: Stress-strain diagrams in the cell-wall, obtained from the microfib
ril-  RVE with different degrees of crystallinity, ev.

der 4-5%. From the numerical results, it can be concluded tha t up to this level 
of strain, the cellulose fibre remains almost inextensible. After 8-9% of strain, 
however, the dependence of the response on the degree of crystallinity be
comes more considerable. The little influence of the degree of crystallinity on 
the overall mechanical response at lower strain levels is attributed to the high 
MFAs (near 45%) at this stage. Here, only a small portion of the axial load is 
carried by the cellulose. In addition, the main mechanism of deformation in 
the cell-wall is shear, localised in the hemicellulose/lignin matrix, due to the 
relative displacements among cellulose fibres undergoing rigid body rotation 
and alignment in the direction of the external loads. Therefore, any increase of 
the stiffness in the cellulose due to a rise in the degree of crystallinity will not 
affect significantly the overall mechanical response of the cell-wall under low 
strain levels since the cellulose fibre will experience predominantly changes 
in its orientation rather than straining along its own axis. If the straining 
process continues, the microftbril angle will reduce considerably and the cel
lulose fibres will begin to take larger portions of axial loads and the overall 
response will stiffen accordingly. At this stage, the influence of the degree of 
crystallinity on the global mechanical response of the cell-wall will become 
significantly more pronounced as shown in Figure 5.5. We note tha t a higher 
influence of the degree of crystallinity on the macroscopic response should be 
observed throughout the entire loading process for smaller values of (initial) 
microfibril angles.

A nother interesting aspect tha t can be observed in Figure 5.5 is the fact
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that the onset of inelastic yielding in the cellulose fibre occurs for lower levels 
of strains, when the degree of crystallinity is increased. After about 15% of 
strain in the microfibril-RVE, curves show a slight change in their slopes. A 
further inspection of the numerical results shows that this slight change of the 
slope represents the beginning of yielding in the cellulose, specifically in the 
amorphous fraction. For instance, in the microfibril-RVE model with 60% of 
crystallinity, the cellulose starts to yield at about 16% of strain, however in 
the RVE model with degree of crystallinity 45%, cellulose begins to yield at 
strain level above 20%.

A third very important conclusion can be reached by examining Figures 
5.4 and 5.5. Analogously to the curves of Figure 5.5, the experimental curve 
presented in Figure 5.4 shows a slight variation in its slope at about 20% strain, 
very close to the total failure of the tested cell. This variation of the slope 
in the numerical results (refer to Figure 5.4, about 19% strain) is caused by 
the onset of yielding in the amorphous region of the cellulose. The fact that 
the cell collapses almost immediately after the amorphous cellulose reaches 
the condition of plasticity, would indicate that yielding in the non-crystalline 
portion of cellulose would correspond to a mechanism of failure in the wood 
cell under straining. In fact, this explanation seems to be reasonable since the 
failure of the amorphous cellulose would jeopardize the whole integrity of the 
cellulose fibre and consequently, of the entire unit.

By taking these last two conclusions into consideration, the fact that an 
increase in the crystallinity would mean an onset of yielding in the amorphous 
cellulose for lower levels of strain, and that yielding of the amorphous cellulose 
would result in a potential mechanism of failure in the cell-wall, we could also 
conclude that the increase in the degree of crystallinity would result in a 
potential failure in the wood cell-wall for smaller strains. It is not a surprise 
that we arrive at this conclusion, since highly crystalline cellulosic materials 
show a very stiff response with low values of strain at fracture.
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Conclusions

The irreversible behaviour of wood cell-walls has been investigated by means 
of a finite element- based computational multi-scale approach. A finite strain 
three-scale model has been proposed under the periodic boundary displace
ment fluctuations kinematic constraint, where the overall response of the 
cell-wall composite is obtained by the computational homogenisation of a 
Representative Volume Element (RVE) of cell-wall material, called here mi- 
crofibril-RVE, whose mechanical response prediction, in turn, is described by 
the computational homogenisation of a cellulose core RVE.

Numerical material tests have been conducted and the results have been 
compared to published experimental data, demonstrating the predictive ca
pability of the proposed model. In particular, the model is able to capture 
phenomena such as fibre reorientation-induced stiffening, viscous relaxation, 
recovery mechanism and hysteresis. The analyses presented in this thesis sug
gest the inelastic yielding of the amorphous cellulose as the main mechanism 
of failure of the cell-wall under straining.

In addition, in order to reduce CPU times in the present three-scale finite 
element model, this research has also addressed the use of symmetry condi
tions to reduce computing times in multi-scale models. Two types of sym
metry often present in materials of practical interest have been considered: 
staggered-translational and point symmetry. These have been considered un
der the three common types of assumed kinematical constraints of the RVE: 
Periodic boundary fluctuations; linear boundary displacement, and minimum 
constraint (or uniform boundary traction model). Their direct implementation 
within a Newton-Raphson based iterative procedure for the finite element so
lution of the RVE equilibrium problem is straightforward and for completeness 
has been shown in detail. Numerical examples have shown that as expected 
this leads to substantial savings in computing times. Speed-up factors in ex
cess of seven have been found in such cases when both symmetry conditions 
considered are present at the same time. In conclusion, it appears that any 
efforts to improve overall efficiency in this context, such as the use of special 
solvers and parallel computing strategies, should be considered in conjunc
tion with the (far more straightforward) implementation of the relevant RVE 
symmetry conditions.

The present modelling strategy, with the support of experimental work, 
can provide a robust platform for further investigations on the dissipative re
sponse of wood with a particular view to clarify features of the microscopic
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behaviour, and their influence on the macroscopic response, which are not 
well-understood at present. For example, inclusion of further non-linear mech
anisms such as frictional contact and debonding between phases is relatively 
straightforward and are likely to shed more light into the constitutive be
haviour of such materials. Moreover, possible studies to establish functional 
forms of macroscopic failure surfaces for wood based on the present framework, 
or the development of new materials inspired in the structure and mechanics 
of wood cell-wall, are some the subjects to carry out in a near future.
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