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Abstract

Distributed information processing has attracted more interests re­
cently because of its advantages in distributed network than central­
ized method. Some of the tools of distributed signal processing are 
the distributed consensus algorithms. If the consensus algorithms are 
to find the average value over the network, the algorithms are called 
distributed average consensus (DAC) algorithms, which are matrix 
iterative algorithms to find the dominant eigenvector of the matrix. 
Generally, the DAC algorithms with optimized convergence rate can 
return the result more quickly so that the distributed system can have 
higher signal processing speed. Therefore, many efforts have been de­
voted into its optimization. However, most of the optimizations are 
centralized methods so that the system can not be optimized in a dis­
tributed network. In addition, the existing distributed optimization 
algorithm converges very slowly.

Consequently, we proposed a distributed real-time optimization for 
the DAC algorithms. The optimization has advantages not only in 
short computation time but also can work simultaneously with the 
consensus algorithms. Simulation results show that the DAC algo­
rithms using centralized optimization and proposed optimization have 
similar performance in convergence rate, when floating point number 
in double format is used and the network size is less than 32. Later, 
an application of cloud detection is presented where optimized DAC 
algorithms are applied to perform the hypothesis testing. In addi­
tion, the performance of the detection system with different number 
of sensors is evaluated using relative operating characteristic curves. 
It is shown that detection system with more sensors can have better 
performance.
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Chapter 1 

Introduction

Due to the development of wireless sensor networks and the decreasing cost of 
sensor nodes, processing information that originally acquired by the nodes is often 
necessary. As each node only has a piece of local information, all information 
needs to be gathered and processed at a special node called fusion center. This 
method is intuitive and is called centralized signal processing.

However, fusion center is usually the most important and expensive node in 
the network. Once it is destroyed or failed, the whole network breaks down. In 
addition, as data gathering is an energy consuming process, centralized signal 
processing is limited due to energy constraints of sensor nodes. Moreover, there 
is unbalanced energy consumption between nodes with different communication 
loads [3] [4].

Distributed signal processing has become more attractive, as it can be robust 
against nodes failure or topology changes [5]. However, not all the signal pro­
cessing can be distributed. Many processing algorithms are still implemented by 
centralized method.

Distributed Average Consensus (DAC) algorithms are tools for distributed 
information processing. They have received significant attention recently because 
of their robustness and simplicity. It is widely used in many applications such 
as time synchronization [6], rendezvous [7], cooperative control of vehicles [8], 
formation control/flocking [9] and WSNs [10]. In these applications, it is often 
necessary that a group of nodes can agree on certain quantities.

In different applications, DAC algorithms may also need a little modification, 
for example, in distributed tracking of a moving target by wireless sensor net­
works. Suppose each sensor is observing the target coordinates but the output is 
corrupted by independent and identically distributed zero-mean Gaussian noise, 
to minimize the interference from the noise, the sensors need to take the average
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of all initial values. In distributed hypothesis testing, we need to find the global 
likelihood ratio which is equal to the product of local likelihood ratios at each 
sensor. Therefore, each sensor first calculates the log of the local likelihood ratio 
and substitutes it into the DAC algorithms. The log of global likelihood ratio is 
then the average multiplied by the number of nodes in the network.

In practice, DAC algorithms also face the challenges of link failure, time de­
lay, dynamic network, asynchronous communication and other practical aspects. 
Therefore, a reliable solution which can face these challenges is much needed 
in practice. First-order DAC algorithms have been proved to be robust against 
topology changes and they play important roles in practice [11]. The optimization 
of first-order DAC algorithms in a dynamic network still attracts lots of research 
interests [12] [13].

1.1 Motivation of Research

The research is motivated by the distributed detection of cloud using WSNs. 
One of the properties of sensor nodes is the limited energy capacity. Therefore, to 
minimize the power consumption of the sensor nodes, DAC algorithms to perform 
the distributed signal processing need to be optimized for faster convergence rate. 
In addition, the Gaussian plume model of cloud requires a modification because 
the sensor is using laser sensing technology. It emits a laser to illuminate the 
cloud and collects the backscatters to sense the cloud concentration.

1.1.1 To Find a Faster DAC Algorithm

In the distributed tracking of a moving target, when the target is highly dynamic 
or the sensors need to sample at a very high frequency, it requires that the DAC 
algorithms return the result in a short time. Thus, many efforts have been devoted 
to optimize the DAC algorithms.

DAC algorithms can be divided into asymptotic and non-asymptotic algo­
rithms. For asymptotic algorithms, the optimization is to minimize the sub- 
dominate eigenvalue of a weight matrix [14] [15] [1]. However, these optimization 
of DAC algorithms are centralized methods.

For non-asymptotic DAC algorithms, such as finite-time [16] and adaptive 
filter DAC algorithm [17], the optimization is to minimize the number of necessary 
iterations before a FIR filter is estimated. Sumdaram and Hadjicostis [16] verify 
that there exists an FIR filter that can estimate the consensus value. Cavalcante 
and Mulgrew [17] follow Sundaram and Hadjicostis’s work to propose an adaptive
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algorithm to find the filter. However, their filter estimation algorithms are not 
robust against topology changes. They take local values over time obtained by the 
first-order DAC as inputs. As a result, if the network topology changes, these filter 
estimation algorithms have to be reinitialized, as outdated information during the 
filter estimation will lead to a wrong answer.

To enable the whole system to work distributively, the DAC algorithms should 
be robust against topology changes and the optimization should also be dis­
tributed.

A distributed method inspired by the gossip algorithm [18] can be used to 
optimize the first-order DAC but it converges very slowly. The method involves 
triple nested distributed matrix iterations. The inner iteration has to converge 
to a certain range so that the iteration outside can return the right result. Thus, 
it is not surprising that it could not finish in a reasonable time when the network 
size is large.

Therefore, a distributed optimization method with less computation time is 
required. In addition, it is better that no cost of additional communication is re­
quired. Moreover, if the optimization algorithms and the DAC algorithms can be 
executed simultaneously, consensus process will not be interrupted and the opti­
mization can be running in background to keep the optimal parameters updated 
in a dynamic network.

1.1.2 To D etect the Cloud P lum e by Laser Sensor

The cloud here is a group of harmful particles floating in the air. To detect the 
cloud, it is illuminated by a laser beam emitted by a sensor and the backscatters 
(light reflected by particles) are collected to generate signals.

Because the laser beam penetrate the cloud, the intensity of backscatters is 
the integration along the laser beam in that range. Consequently, a new cloud 
plume model needs to be obtained by taking integration of original Gaussian 
plume model along the direction of the laser beam.

Specifically, in the cloud detection application, the DAC algorithms may also 
have a little modification. Because DAC algorithms perform the task of dis­
tributed hypothesis testing, to find the global likelihood ratio, each sensor first 
calculates the log of the local likelihood ratio and substitutes it into the DAC 
algorithms as the initial local value. DAC algorithm will then find the average. 
The average multiplied by the number of nodes in the network is log of global 
likelihood ratio.
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1.2 Contributions

The main contribution of this thesis is that it proposed a distributed real-time 
optimization method, which could run simultaneously with constant first-order 
DAC algorithm. Thus, the consensus algorithms will not be interrupted by the 
optimization. As a result, communication cost and initialization time can be 
dramatically reduced compared to conventional distributed optimization. In ad­
dition, a least mean square solution is obtained to mitigate the numerical error 
of the optimal solution calculated by the proposed method. When using float­
ing point number in double format and the network size is smaller than 32, the 
numerical error after mitigation does not dramatically decline the algorithm per­
formance.

In addition, the proposed distributed eigenvalue estimation algorithm could 
be an alternative of algebra connectivity estimation [8]. By the proposed method, 
the times of matrix iterations can be reduced to the order of O (n) and the result 
is obtained with sufficient numerical accuracy.

Moreover, we have proposed a generalized finite-time DAC algorithm, which 
does not require knowledge of network topology but will estimate the necessary 
consensus finding filter during the iteration. Compared to the algorithm intro­
duced in [16], it doesn’t require the re-initialization of the constant first-order 
DAC algorithm for several times. Therefore, total data transmission in all iter­
ations can be reduced. However, re-initialization can be introduced to increase 
the accuracy of the consensus value.

Finally, a modified Gaussian plume model is presented, which is the integra­
tion of the original Gaussian plume model along the laser beam to simulate the 
laser penetration. This modified Gaussian plume model can only describe the 
mean of the cloud concentration. However, a real cloud’s concentration is actu­
ally a random process. To reveal the dynamics and turbulence properties of the 
cloud plume, a 3D cloud animation is implemented with the help of computer 
graphic technology [19]. A bunch of the simulated cloud plumes are generated to 
test the detection algorithm.

1.2.1 Publications

“Distributed Real-time Optimization of Average Consensus”, Submitted to the 
9th International Wireless Communications and Mobile Computing Conference 
(IWCMC 2013) - Wireless Sensor Networks Symposium.
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1.3 Outline

This thesis is structured as follows: Chapter 2 is the review of some asymptotic 
and non-asymptotic DAC algorithms, as well as some distributed signal processing 
methods based on DAC algorithms. In Chapter 3, a generalized finite-time DAC 
algorithm will be presented. In Chapter 4, a distributed real-time optimization 
to increase the convergence rate of asymptotic DAC algorithms is proposed. A 
distributed detection of cloud plume using wireless sensor networks and the DAC 
algorithms will be introduced in Chapter 5. Finally, Chapter 6 concludes this 
thesis and gives out the direction of future work.



Chapter 2 

Background of DAC

2.1 Preliminary

Suppose a connected graph Q = (V, £, A)  is a weighted digraph (or undirected 
graph) consisting of a set of nodes V =  {vi,U2, ...,vn}, a set of edges £  C V x V 
and a weighted adjacency matrix A  = [a^]. The edge e* =  (Vi,Vj) e  £, I ~  (i , j ) 
is an ordered pair of distinct nodes, associated with an element in the adjacency 
matrix A , i.e. e* =  (Vi,Vj) e  £ aij. \£\ denotes the number of edges of 
the graph Q. For node viy its communication neighbors set is denoted by A/J =  

{vj E V| (vi,Vj) E £}, and |A/i| denotes the number of neighbours of v*. Assume 
E V, a^ = 0 if Vj £ (note that an = 0, as £ A/J). Node V{ can only 

transmit information to nodes that belong to A/J. During the DAC iteration, the 
local value at new time step is a weighted sum calculated by coefficient a^, see 
(2.1.7).

For each edge e; =  {vi,Vj) E £, we arbitrarily choose one end of ei to be 
positive and another to be negative. The incidence matrix Q = Q(Q) E Mnxl£:l 
is defined by

Q  (Qik) — *

1 if Vi is the positive end of e;

—1 if Vi is the negative end of ei • (2.1.1)

0 otherwise

The Laplacian matrix of the graph Q, defined by L  =  L (Q) = QQT, is a useful 
tool to analyse the network topology [20]. In fact L  is independent of the choice 
of positive ends of the edges. It is a symmetric, positive semidefinite, singular 
matrix [21].
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The Laplacian spectrum of a graph [22], denoted by

5 (L ) =  {A1(L),A2 ( L ) , . . . , A n (L)} (2.1.2)

reflects many properties of the graph, where Â (L ) is the eigenvalue of L  (we 
use Ai (A) to denote the eigenvalue of matrix A) and we assume they are ordered 
non-decreasingly so that 0 =  Ai (L ) < A2 (L ) < . . .  < An (L ). The second smallest 
eigenvalue A2 (L ) is called algebraic connectivity of the graph.

Suppose each node holds an initial scalar local value Xi (0) G M, which can be 
a value that is locally acquired by node representing physical quantities such as 
temperature, humidity, illumination, attitude, etc. The network is said to have 
reached a consensus if and only if Xi = Xj, for all nodes V{,Vj G V ,i ^  j .  In the 
other words, all the nodes are in an agreement of a quantity. The common value 
in the consensus state is called the consensus value.

2.1.1 Consensus Problem  on Graphs

To describe the behavior of each node or agent, suppose each node has the fol­
lowing dynamics

Xi = f  (xi,Ui) ,i e V  (2.1.3)

and the graph (or network) is a system having the dynamics

x =  F ( x ,  u) (2.1.4)

where F  (x, u) is the column-wise concatenation of individual dynamics /  (x^ Ui), 
for all nodes i = l , . . . , n .  In an ad-hoc network with the mobile nodes, the 
topology G is switching and the system will update its F ( x ,  u) from time to 
time.

The input or feedback Ui to the node’s dynamic is a function of the historical 
states of node i and its neighbors

“ < =  9 ( x h < x n < - - - > x inH) (2.1.5)

where j i , . . - , j mi are the node indexes that belong to set {2} U Mi. (2.1.5) is 
called a consensus protocol under topology G. If the network graph is not fully 
connected, it is said to be a distributed consensus protocol.

D efinition 2.1.1. Let X  : R n —> R  be a function of n variables of x\, £2, • • •, %n
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and let x  (0) denote the initial condition of the network. The ^-consensus prob­
lem is a distributed method to calculate the consensus value X  (x (0)) in a graph

G.

Consensus problems can be different by their consensus values. For instance, 
we give the definition of the average consensus X  (x) =  ^ 2 ? = ix* (0)> maximum 
consensus X  (x) =  max (x), minimum consensus X  (x) =  min (x) and variance 
consensus X  (x) =  var (x) by their expressions, respectively. The average con­
sensus is a special case of consensus problem, which computes the average of all 
initial values x  =  mean (x) =  £ Yli=ix* (0) using a distributed system dynamics 
x  =  F  (x, u) in a network G.

We are interested in the distributed solutions of the consensus problem as 
the network only allows an node to communicate with its neighbors. We say the 
protocol (2.1.5) solves the consensus problem asymptotically if and only if there 
exists an asymptotically stable state x* = X  (x) of system dynamics (2.1.4), which 
satisfyies for all 5 > 0, there exists a time index £* > 0, such that |x%{t) — a?*| < 6 
for all t > t* and Vz G V.

Maximum or minimum consensus is very similar to information flooding. Each 
node Vi in the network just compares the local values held by itself and oth­
ers in Mi, then broadcasts the maximum or minimum values. Therefore, maxi­
mum/minimum consensus can be finished in a number of steps that equal to the 
diameter of the graph. For upper boundary of the diameter, see [20].

Distributed average consensus is a more challenging problem than the maxi­
mum (or minimum) consensus, because the average value is a linear combination 
of all the initial states of network nodes and the condition x\ — X  (x) for all z 
has to be satisfied. In this chapter, we will discuss the average consensus and es­
pecially its convergence rate optimization problem, which is solved distributively 
by discrete-time matrix iteration. Furthermore, the variance consensus problem 
can be solved by two instances of average consensus, because we have the relation 
var (x) =  mean (x • x) — [mean (x)]2. Thus, in the following of this work we focus 
on the average consensus problem and the distributed average consensus (DAC) 
algorithms.

2.1.2 Continuous-tim e vs. D iscrete-tim e DAC

In this section, we will show the difference between continuous-time and discrete­
time consensus

The dynamics of the consensus protocol that solves the average consensus 
problem X  (x) =  mean (x) is given by
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Xi (t) = Ui (t ) (2 .1 .6 )

where Ui (t ) is a consensus protocol

Ui ( t )  — ^   ̂ Uiji %i)

jetfi
(2.1.7)

where a -̂ is the entry of weighted adjacency matrix A.
The continuous-time consensus requires the nodes in a network have dynamics 

in a form of differential equations. Continuous-time consensus involves analog 
signals that are easily interfered by channel noise. Consequently, the consensus 
value will be a random variable with mean equals to the average of all initial 
values and variance proportional to the signal to noise ratio. It is shown in [23], 
the variance is also proportional to time t hence it is increasing in the iteration.

On the other hand, discrete-time consensus only involves the quantization er­
ror during the iteration as long as the data packages are correctly received. Nowa­
days, sensor nodes with digital processing unit becomes more cheaper. Conse­
quently, discrete-time consensus algorithms are mainly discussed in the following 
of this thesis.

2.1.2.1 C ontinuous-tim e C onsensus

The continuous-time consensus with system dynamics (2.1.6) is a linear differen­
tial equation

Solving the differential equation (2.1.8) will yield a continuous-time solution in 
an exponential matrix form

where C is called the weighted graph Laplacian associated with network graph Q, 
which is defined by

For a graph with 0-1 adjacency, the weighted graph Laplacian can be denoted in 
another form, which is unweighted Laplacian matrix denoted by L

x  (t) =  — £ x  (t) (2 .1 .8)

x  (t ) = exp (—Ct) x  (0) (2.1.9)

a'k i  ~  * (2.1.10)
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\M\ j  =-i 

hj =  < —1 j  6 Af% (2 .1 .11)

0 otherwise

In some literature [2], they use the second definition ((2.1.11)) of the Laplacian 
matrix to analyze the convergence rate of DAC algorithms. It is a special case 
when weights a+j for all edges in 8  equal to one. Therefore, to distinguish them, 
we denote the weighted graph Laplacian matrix and the unweighted Laplacian 
matrix by C and L, respectively.

C onvergence C onditions for C on tinuous-tim e C onsensus There are some 
important theories for continuous-time consensus convergence problem. To pro­
vide the necessary and sufficient conditions of the graph Laplacian matrix so that 
a convergent first-order average consensus algorithm could be carried out on the 
network, some results are induced from Perron-Frobenius theorem [21] and Ger- 
schgorin’s theorem [21] that gives the upper and lower boundaries of the spectral 
radius.

T heo rem  2.1.1. [21] Let the graph be the Laplacian matrix C , denote the max­
imum node out-degree of the graph by

which is centered at z = dmax +  0j  on the complex plane.

Proof. [21] Based on the Gerschgorin’s theorem, all the eigenvalues of C are 
located in the union of the disks.

max
l < i < n

'max (2 .1 .12)

Then, all the eigenvalues of C are located in the following disk,

z dmax ^  dn'max (2.1.13)

n

(2.1.14)

Since A  = [â j] is a non-negative matrix, by the definition of Laplacian matrix,
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-2d. 2 d.

Figure 2.1: Boundary of eigenvalues of Laplacian matrix 

lij <  0 and liti = J2k=i,k& aik ^  Therefore, let di = lifi and

n

d i =  Y ,  M

the union of disks becomes

[J {z 6 C : \ z - d i \  < di} (2.1.16)
l < i < n

On the other hand, all these disks are located inside the largest disk with radius 
dmax• This result ends the proof of the theorem □

Based on the Theorem 2.1.1, it is obvious all the nonzero eigenvalues of £  
have positive real parts. This immediately leads to a convergence theorem of the 
continuous-time consensus protocol (2.1.7). Since all the nonzero eigenvalues of 
—£  located in the disk \z + dmax\ <  dmax, and the eigenspace associated with 
zero is one-dimensional, the eigenvector associated with zero eigenvalue has the 
form a l ,  i.e. Xi = a  for all i. This result will be very helpful as the negative real 
part can guarantee that the system dynamic is stable and convergent, see Figure 
2 . 1 .

We will prove that the solution given in exponential matrices form (2.1.9) 
converges to a consensus value as t —>■ oo in the next.

Considering the system dynamic x ( t)  = exp (—£t) x  (0). Because exp(—£t)
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is a non-negative matrix, the Perron-Frobenius theorem states that exp (—Ct) has
a positive real eigenvalue equaling one which is also the spectral radius. Together
with the Theorem 2.1.1 which implies that all the eigenvalues of — C have negative 
real part, see Figure 2.1, we immediately come to the following theorem.

Theorem 2.1.2. [24] Assume Q =  (V ,£ ,A ) is strongly a connected graph, and 
the graph weighted Laplacian matrix C is defined in (2.1.10), which has only one 
zero eigenvalue. Let ur is the uniformed right eigenvector and ui be the uniformed 
left eigenvector associated with the zero eigenvalue of C, i.e. Cur =  0, u f  C = 0. 
We have u ju r = 1 and the system dynamic

x (t) = exp (—Ct) x (0) (2.1.17)

will have the stable state given by

x (t) = K x  (0) (2.1.18)

where K  is a matrix in R n, and K  = lim^oo exp {—Ct) = uru j .

Proof. [24] Let A = —£, and it has a Jordan form of A  = UJU~l . Then we 
can have exp {At) = U exp {Jt) U~l . Because A  has all its eigenvalues except a 
simple zero eigenvalue has negative real part, thus, as t —»• oo, all other Jordan 
block vanish, and exp (Jt) converges to a matrix with only single nonzero entry, 
denoted by Q. Since matrix U contains a column which associated with the zero 
eigenvalue of A  is ur, similarly, [ /-1 has a corresponding row equaling to ui. By 
simply calculating the equation K  = UQU~l , we can show that K  = uru f .  And 
the fact U~l U =  /  shows that u fu r = 1 . This ends the proof. □

For the average consensus problem, it is obvious that all the elements in K  
must equal to A This requires the graph Laplacian C satisfies the conditions: 
£1  =  0, 1TC =  0, where 1 £ R n is an all unity vector. And the ur and Ui will 
change into vectors with equivalent constant in all its components. If they are 
uniformed, then ur = U[ =

2.1.2.2 D iscrete-tim e Consensus

The discrete-time consensus with the dynamics (2.1.6) is

Xi  { k  +  1) =  Xi  (k) +  Ui  {fc) (2.1.19)
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For network agents having discrete-time consensus protocol, their system dynam­
ics can be given in a matrix form

x(fc +  1) =  Wx(fc) (2.1.20)

where W  = [w^] = I  -  C. We say the iteration is convergent if there exists a
vector denoted by x*, which satisfies

x* =  Wx* (2 .1 .21)

Moreover,

x(fc +  1) -  x* -  W  [x(fc) -  x*] (2.1.22)

(2.1.21) states that x* is a right eigenvector of matrix W  associated with a simple
eigenvalue 1. For convergence conditions and more details about discrete-time
first-order DAC algorithm, see Section 2.3.1.

2.2 Categories of Distributed Consensus Average 
Algorithms

To introduce the DAC algorithmss, let’s first take a look at the Figure 2.2. ( Fig­
ure 2.2 only shows the family of discrete-time distributed consensus algorithms. 
For more details about continuous-time consensus algorithms, see Section 2.1.2). 
We may start from one of the simplest in their family: the first-order DAC algo­
rithm introduced in Section 2.3.1. Its convergence rate is related to the spectral 
radius of a graph dependent matrix. So the optimization problem is to find the 
optimal matrix with minimum sub-dominant eigenvalue. However, global infor­
mation of the graph matrix must be available. In distributed methods, this is a 
quite demanding condition. Without the global information, constant first-order 
DAC and metropolitan DAC can be the sub-optimal solution to the consensus 
problem [15]. The first-order DAC algorithm together with higher-order DAC 
algorithms ( introduced in Section 2.3.2 )belong to the family of the asymptotic 
algorithms. The motivation to develop the higher-order algorithms are the de­
mand of a fast convergent rate. The higher-order DAC algorithms could have 
faster convergence rate, and no additional requirement and cost of communica­
tion is required compared with first-order DAC [1]. Therefore, higher-order DAC 
algorithms have applied to practical consensus protocols [25].
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OptimalBest
Constant

First Order

Asymptotic Finite-time

Adaptive
Filter

Discrete DAC

Metropolitan

Higher-Order

Figure 2.2: Categories of discrete-time consensus algorithms

Some of the novel methods can solve the average consensus problem in finite 
number of iterations. These methods are referred to as finite-time consensus 
algorithm [16]. It is actually a very sophisticated signal processing technique that 
finds the asymptotically stable equilibrium x  by extrapolation, see Section 2.4. 
Given the sequence of local values obtained by the first-order DAC, [16] verifies 
that there exists a filter that can estimate the consensus value. Based on [16]’s 
work, [17] proposed an adaptive filter algorithm to asymptotically converge the 
estimated coefficients to the correct coefficients of the filter [17]. As a contribution 
of this thesis, a method to calculate the filter directly by inverting a Toeplitz 
matrix is introduced in Chapter 3.
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2.3 Asymptotic Distributed Consensus Algorithms

The distributed averaging consensus problem can be solved not only by DAC 
algorithms, but also in many other ways, such as flooding, gossip and so on.
In the flooding algorithms, each sensor maintains a table of local values which 
initialize by its local initial value. At each iteration of the flooding algorithm, 
every node exchanges the table with their neighbors. After enough steps, which 
is larger than the diameter of the network, every node will get all the initial 
values of all sensors. The gossip algorithm is asynchronous. Only one node that 
is selected by a random schedule wakes up and chooses another node randomly. 
These two nodes exchange their local values and change their local values to the 
average.

Due to the simplicity and robustness of asymptotic distributed consensus algo­
rithms, it still plays an important role in the practice. They are already applied 
to network with a large number of nodes and proved to be robust against the 
topology variation [11]. In this section, we start from the first-order DAC al­
gorithm and then expand to higher-order algorithms in order to yields a higher 
convergence rate.

2.3.1 D iscrete First Order D istributed Consensus A lgorithm

For the network Q, the first-order DAC (FO-DAC) algorithm obtains the average 
by the iterations given by

Xi(k +  1) =  Xi(k) +  ^  Wij [xj(k) -  Xi(k)] (2.3.1)
j£Afi

= waXi(k) +  WijXj(k) (2.3.2)
jeAfi

where k = 0, 1, 2, ... is the time index, is the weight to Xj at node i , = a,ij,

i 7̂  j  is the weight to Xj at node V{. The local value at time fc+1 is a weighted sum 
of node’s local values one time k. The weight to Vi itself is wu = l -  £ \ eyv, clij, 
so that the sum of all weights equals to one, w%j = 1- 

The iteration (2.3.1) can be written in a vector form

x(fc +  1) =  Wx{k)  (2.3.3)

where x(fc) =  [xi(k)i x 2(k ) , . . .  ,x n(A;)]:r E Rn and W  =[wi:j] is the weight matrix 
or the Perron matrix induced by Q [24]. We define the initial local value vector



CHAPTER 2. BACKGROUND OF DAC 16

x  (0) G Mn to represent all the initial values on the network. The iteration implies 
that x(k)  =  W kx(0)  for k = 1,2, • • ■.

Let ei, e2, . . . ,  en be the eigenvectors of W  and Ai ( W ) , A2 ( W ) , . . . ,  An ( W)  

be the associated eigenvalues and they are ordered so that |Ai (W)| >  | A2 (VF)| >
• • • > |An {W)\ .  The largest eigenvalue Ai ( W)  is called the dominant eigenvalue 

and ei is called the dominant eigenvector. Besides, A2 (W )  and e2 are called the 
sub-dominant eigenvalue and sub-dominant eigenvector.

Since the initial value vector is randomly chosen, the matrix W  must satisfy 
some conditions to make sure the iteration is convergent. The problem is how 
to choose W  so that Vi, Xi(k) —>■ x, as k —>■ 00. Actually the convergence rate 
depends on the spectral radius of matrix W.  The following section gives the 
sufficient and necessary conditions of W  to achieve the average consensus.

2 .3 .1.1 C onvergence C onditions

For the matrix iteration defined in (2.3.3), the average consensus problem is 
to choose the weight matrix W,  so that for any initial value x(0) G R n, x(/c) 
converges to the vector

X =  ( l Tx(0)/n ) 1 =  ^ - x ( 0 )  (2.3.4)

T heorem  2.3.1. [15]For a network Q and the associated weight matrix W  =  

[wij], whose entries w tj =  0, i f (vi ,Vj )  £,  lim^oo x(fc) =  x  if and only if matrix  

W  satisfies

lim W k = —  (2.3.5)/c—> 0 0 n

which holds if and only if

1TW  =  1T

W 1  =  1

p ( W  — l l T/n) < 1

where vector 1 =  [1,1, • • • 1, ]T G R n, p (■) denotes the spectral radius of the matrix.

(2.3.6) means that W  has a left eigenvector 1 associated with the eigenvalue 
1. This implies that the sum of local value vector is not changed in the iteration 

Zliev x i { k  + 1) =  S ie v  x i M  and the sum of each column of matrix W  is equal to 
one. (2.3.7) shows that W  is a row stochastic matrix and has an eigenvalue 1 with 
associated eigenvector 1. Both (2.3.6) and (2.3.7) together with the convergence

(2.3.6)

(2.3.7)

(2.3.8)
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condition (2.3.8) mean that W  has a simple eigenvalue that equals to one, and 
modular of all other eigenvalues are less than one.

11T
Lem m a 2.3.1. If limfĉ oo W k = ----- , matrix W  — l l T/n  shares the same eigen-

n
values as matrix W  except the simple eigenvalue one is replaced by zero.

Proof. (2.3.6) implies that the matrix W  has a left eigenvector 1 associated with
eigenvalue one. (2.3.7) implies that 1 is a right eigenvector of W  associated with

11T
eigenvalue one. The fact that lim^oo W k =  exists if and only if there exists
a matrix U and W  can be Jordan decomposition as

W  = U

J i

J-2

J n

u-1 (2.3.9)

where m  is the number of distinct Jordan block. «/< is the r* dimensional Jordan 
block corresponding to eigenvalue A*, J\ = Iri is the r* dimensional identity matrix 
(0 <  Ti < n) and all other Jordan blocks are convergent, i.e. p (Ji) < 1,2 <  i < m.

Let Wi, U2, . . . ,  un be the column of U and v f ,  v%, • • •, be row of C/_1. Then 
we have

lim W k
k—too

= u l n

0

= E TUiV- =
i = l

u

11
n

- l (2.3.10)

(2.3.11)

As the property of unitary matrix U, both Ui and are sets of independent 
vectors, each uivj  is a matrix with rank one and matrix UivJ has rank n. 
The sum Y^,LiuivI  must have rank r\. Eq. (2.3.11) shows that r\ must equal

to one and Uivf =
11
n

■, both Ui and Vi are vectors with the same constant on 

11T
all components. Therefore, W  has the same Jordan decomposition as W

n
except the Jordan block Ji is replaced by zero, and all other Jordan blocks remain 
the same. This completes the proof. □

The convergence rate of the FO-DAC is related to the spectral radius of matrix 
11T

W  . To get the maximum convergence rate, an optimization problem to
71

minimize the spectral radius of the matrix could be solved [15].
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Minimize p [ w  —

Subject to 1TW  =  1T, W 1  =  1 ,
(2.3.12)

But it requires knowledge of network topology to solve the problem. However, 
some non-optimal convergent weight matrices that satisfy the condition in (2.3.5) 
are given below.

2.3.1.2 O ptim ization of FO-DAC

Theorem 2.3.1 means one is a simple and dominant eigenvalue of W  and the 
optimization problem is

2.3.1.3 Constant First-order DAC

Find the optimal weight matrix for FO-DAC is not a simple task. However, a 
heuristic way is to set all edges symmetric and their weights equal to the constant 
e. Thus, the weight matrix is symmetric. A special weight to a node itself is chosen 
to be 1 — e \Afi\. Therefore, the weight matrix can be defined by the Laplacian 
matrix

where the constant e is the step length. This kind of DAC algorithm is called the 
constant FO-DAC algorithm (CFO-DAC).

Choosing the step length From (2.3.14), the eigenvalues of W  and L  have re­
lationship given by Ai (W ) = 1 — eA* (L). Thus, we can determine the convergence 
range of e in terms of A* (L).

The constant FO-DAC algorithm is convergent, if and only if the step length 
e is in the range (0 ,2/An (T)). The best constant to minimize p {W  — l l T/n ) is

eopt,FO =  A2(L)+An(L) 1151-
By Gerschgorin’s theorem, we have another upper boundary of An (L) < 

2dmCLX, then convergence is guaranteed if e G (0 ,l /d maJ .  This maximum degree 
step length is usually a practical solution but very slowly convergent compared 
with the optimal step length.

minp (W  — 11 T/ n) (2.3.13)

under the constraints in Theorem 2.3.1, where W  — 11 T/ n  is a deflated matrix

W  =  In - e L (2.3.14)
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2.3 .1.4 Local D egree F irs t O rd e r DAC

Another option of FO-DAC is Metropolis FO-DAC (or local degree FO-DAC), 
where the weight matrix is determined by degree of the nodes,

where d(i) and d(j) are the degrees of nodes i and j .
This weight matrix would be very easy to implemented in practical, because 

nodes in the distributed network doesn’t need to have any knowledge of the whole 
network topology.

2.3.2 D iscrete High Order D istributed Consensus Algorithm s

Higher-order DAC (HO-DAC) algorithms can be easily implemented by storing 
past data, which is potentially faster than FO-DCA and doesn’t require additional 
communications. However, compared to the third-order DAC algorithm, fourth 
order algorithm can only achieve a negligible improvement [1]. Thus, it is not 
necessary to extend the order of DAC algorithms to larger than fourth.

In addition, HO-DAC can be regarded as a generalized form of DAC algorithm. 
When the forgetting factor is set to zero, the HO-DAC algorithms can be reduced 
to the CFO-DAC. Moreover, when the order is set to 2, it is reduced to second- 
order DAC (SO-DAC) algorithm.

In a time-invariant network Q, the M th higher-order DAC algorithms have the 
form

where e is a constant step length, M  is the order of the HO-DAC, Cm is a predefined 
constant, c i = C 2 =  c3 =  l , C4 =  |  and Cm ^  0 (m > 4), 7 is a forgetting factor 
and |7 | < 1.

After introducing the Laplacian matrix L , HO-DAC can be written as

l+max{d(z),d(j)} ’ ^  ^  ^

w *3 =  \ 1 - ' E { i , k ) e e w * >  i  =  3 (2.3.15)

0, otherwise

M

X i ( k ) Xi(k — 1) -  e ^ 2  Cmi-l)™ 1A x i(k,m)  (2.3.16)
m = 1

^  (x{ (k — m) — Xj (k — m))  (2.3.17)
jeAfi

M

x(&) — (In — eL)x(fc — 1) — e ^  cm(—7)m-1Lx(fc -  m) (2.3.18)
7 7 1 = 2
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assume Vk < 0, x(fc) =  x(0), x(0) is the initial local state information for node

i.

2.3.2.1 O ptim ization Problem  of HO-DAC

In the convergence analysis of higher-order DAC, we need to rewrite iteration 
(2.3.18) into matrix form. Therefore, we define the higher-order weight matrix 
H  G ]J5^ nx

H  =

In -  eL c2je L
L 0r

0T L

- c m (-7 )  eL
Onvn

'n x n  -‘■n 'Jnx.n

and the matrix J  G ]RMnxMn to deflate the matrix H

(2.3.19)

J  =

K  Onxn 
Onxn

K  Onxn

Onxn
Onxn

Onxn

(2.3.20)

where K = (^) l l r , and 0nxn denotes the n  x n all-zero matrix.
Note that the deflated matrix H  — J  has the same eigenvalue as H , except 

the eigenvalue Ai (H ) — 1 is replaced by zero. Therefore, the high-order DAC 
optimization problem can be formulated by

(2.3.21)
Minimize p{H — J)
Subject to e,7  E R

The high-order DAC algorithms with initial condition x (—M  +  1) = , . . . ,  
x (—1) =  x(0) is convergent if and only if p (H  — J) < 1 [1].

2.3.2.2 Solve the O ptim ization Problem  of HO-DAC

As shown in (2.3.21), the convergence rate maximization for high order DAC 
algorithms can be cast into a spectral radius minimization problem.

The spectral radius is related to eigenvalues of Laplacian matrix. In the 
optimization problem of HO-DAC, eigenvalues of the associated graph Laplacian 
matrix or weight matrix must be known.

Finding the solution is not easy because we have to solve the high-order poly­
nomial to calculate eigenvalues.
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For example, the high-order polynomial of the eigenvalues of H  — J  when 
M  = 3, Ci =  1 and C2 =  1 is

/(A) =  A3 -  (1 -  eAj (L)) A2 -  7eA; (L) A +  72eA; (L) =  0 (2.3.22)

where A*(L) is the ith smallest eigenvalue of the Laplacian Matrix [1].
Since each A*(L), i = 1, 2, ••• ,n  with generate one equation which has M 

roots, there are totally M x n  eigenvalues for H —J. Thus, (2.3.21) can be written 
into minimize the maximum absolute value of all the eigenvalues of H  — J.

Minimize max{|Ai (H  -  J)|} , i = 1,2, • • • , n (2 3 23)
Subject to e,7  E R

The convergence rate optimization problem (2.3.23) of HO-DAC in undi­
rected network can be graphically illustrated by Figure 2.3, where the surface of 
max{|A; (H — J ) |}, i =  1,2, • • • , n is plotted and the optimal solution (coptj'fopt) 
is marked with a star. We denote the optimized spectral radius by popt = 
min p [ (H  — J)}.

Since the eigenvalues of Laplacian matrix are network topology dependent, if 
M  > 2, problem (2.3.23) is more challenging as it requires the whole Laplacian 
spectrum to solve a high-order polynomial to obtain p ( H  — J) and find the global 
minimum on the surface of p ( H  — J) [1]. The problem (2.3.23) may not have a 
unique analytical solution. In this case, the problem will be solved numerically.

2.3.2.3 Solutions for Second-order DAC O ptim ization

If M  = 2, HO-DAC reduces to the second-order DAC (SO-DAC) algorithm. 
In this case, the problem (2.3.23) does have an analytical solution [2]. The 
convergence region for second-order DAC in undirected network which satisfies 
p(H  — J) < 1 is 1Z = 'JZiU n 2, where

n 2

Figure 2.4 graphically illustrates these region 7£i and 1Z2. The eigenvalues of 
H corresponding to eigenvalue of A * (L ) is denoted by Â  (H ) and A*-> (H ), which

■ {

- {

- 1
e \ n (L)  

- 1  
^An (T)

< 7 < l , 0 < e <  

2

1

< 7 < -  1

An ( L )  

1
e \n (L) An (L )

<  e <
An ( L )

(2.3.24)

(2.3.25)
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C  max(|A..(H-J)|) 

Minimum

Figure 2.3: Illustration of convergence rate optimization [ 1].

Convergence Region

X  (H) real

/  X  (H) complex

-1

0.5 2.5

Figure 2.4: Convergence region for second-order DAC [2].
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are

\ ' ( H )  =  2

M f f )  =  \

1 — eAi (L ) +  v/ (1 — € \ i  (L )) +  47 eÂ  (L )

1 -  eXi(L) -  V (1 -  {L)Y +  47eA < (L) (2.3.26)

Since A2 (L) <  ••• < An (L), in the convergence region of the second-order 
DAC algorithm, the optimization problem (2.3.23) can be equivalent to

Minimize max{|A2/ ( i f ) | , |A2» (H) \ , |An/ ( i / ) | , |An» (/if)|} 
Subject to e, 7 £ R

(2.3.27)

Finding the optimal solution needs consideration of different combinations 
of A2' (H ), A2» (H ) , An/ (H ) ,  An» (H ) when they are real value or complex value. 
However, for a connected network and in the convergence region, A2> ( H ) , A2» (H) 
are real and An> ( H ) , An» (H ) are complex values. The minimum is achieved when 
the following equation satisfies

|A* (H )| =  |An/ (H)\ — |An» (H )| (2.3.28)

Thus, by solving this equation, we have the optimal solution for second-order 
DAC algorithm.

=  3An(L) +  A2(L) . .
^  An(L)[An(L) +  3A2(L)] (2'3'29)

[An(L) -  A2(L)]2 
lapt,s° [A„(L) +  3A2(L)][3An(L) +  A2(L)] >

which only requires the second smallest and the largest eigenvalues of L. These 
parameters could be flooded to all nodes before the algorithm starts.

Besides these results, it needs to point out that the optimal solutions e ^ s o  
and 'joptjSO have the following relationship

_  [1 — eopt,SO^n (T)] /'o o o i \
lopt,so — A \ ( t\ (2.3.31)—4Copt,SO*n {L)

which implies the discriminant under the radical sign in (2.3.26) is equal to zero 
and An/ (H ) ,  An» (H ) are all real values. Note the dashed curve in Figure 2.4 sep­
arates the regions where An> (H ) and An» (H ) are real and complex. The optimal
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solution is always located on this curve.

2.3.3 Sim ulation and Algorithm s Performance

To test the performance of high-order DAC algorithms with different orders, 1000 
random networks are generated and a simulation is carry out on each network. 

The algorithm ’s performance is evaluated by the average spectral radius and 

average mean square error, shown in Figure 2.6.

2.3.3.1 R an d o m  N etw ork  G enera tion

The following is a method of network generation when the wireless sensor nodes 

are distributed. The methods of network generation and communication ranges 

are illustrated in Figure 2.5b.
First, a certain number of nodes are randomly and uniformly distributed in a 

unit square. Second, connect any two nodes if they satisfy certain communication 
constraints. Finally, each sensor chooses a random local initial value th a t is 
uniformly distributed in a certain range.

f>- .17

a-

(b)

Figure 2.5: Randomly generated networks (a) 50 nodes and 200 edges (b) 16 
nodes and radius constraint /? =  0.3

There are two cases to generate the links between nodes.

C a se  1. Consider the graph show in Figure 2.5a, which has 50 nodes and 200 

edges. The number of nodes and edges are fixed; 50 nodes are ran­
domly and uniformly distributed in the unit square; Any two nodes 
are connected if their edge is in the list of 200 shortest edges.
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Case 2. The network in Figure 2.5b is generated as follows: nodes are randomly 
and uniformly distribute in the unit square ; connect any two nodes if 
their distance is less than the communication radius constraint R.

2.3.3.2 Performance Comparison for A sym ptotic DAC

The performance of DAC algorithms with different orders are compared by the 
optimal spectral radius Popt =  minp{(H — J)}. The spectral radius has the rela­
tionship with convergence rate given by — —log (popt)- Figure 2.6a shows the 
optimal spectral radius for DAC algorithms with different communication radius 
constraints. Y-axis is corresponding to the minimum spectral radius and x-axis 
is corresponding to the radius constraint. For each instance of DAC algorithm, 
the minimum on the surface max{|Ai (H — J) |} obtained by numerical searching. 
Each curve is the average obtained by 1000 instances of DAC initialized with 
random local value vectors and random networks.

In another point of view, Figure 2.6b plots the convergence behavior of local 
value vector of high-order DAC algorithms together with first-order DAC in terms 
of mean square error (MSE) on random network. The MSE is defined by

which actually is the Euclidean distance between current local vector ~x.i(k) and 
the global average. By observing the gradient of curves, it is apparent that 
higher-order DAC algorithmss have larger convergence rate. However, there are 
negligible improvement for the fourth order DAC compared to the third order 
one. Furthermore, high-order DAC algorithms have a MSE overshoot at the 
beginning. This phenomenon happens especially when the communication radius 
is small. Second-order DAC algorithm does have a faster convergence rate than 
first order algorithm as the slop of the curve is steeper. But it becomes worse as 
it converges to error tolerance 10-6 more later than the first order algorithm. A 
hybrid algorithm is proposed to overcome this disadvantage. Its step size is equal 
to the first-order DAC step size and forgetting factor is equal to second-order 
DAC forgetting factor.

1
M S E { k ) =  Xi(k) (2.3.32)
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Figure 2.6: Comparison of DAC algorithms (a) compared by spectral radius (b) 
compared by MSE over time.
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2.4 Finite-Time DAC Algorithm

Finite-Time Distributed Consensus Algorithm (FT-DAC) is an non-asymptotic 
algorithm. It tries to find the consensus value after the FO-DAC algorithm is 
iterated for a certain number of times. This is based on the assumption that after 
a certain number of iterations, local values would contain sufficient information 
to estimate the consensus value.

Definition 2.4.1. Given the network Q and initial local value vector x(0), it is 
said the algorithm achieves a finite-time consensus if it solves a consensus problem, 
and there exists a time t* and the consensus value x such that Xi (t) =  x,  for all 
time t >  t*.

Motivated by the works in [27], we try to decompose the local value vector 
into a form which reveals an important property of its iteration. Therefore we 
propose a filtering technique to estimate the consensus value.

2.4.1 Find the Consensus Value by Linear Filter

In the network that adopts first-order DAC algorithm, each node has a number 
of consecutive local values obtained after serveral iterations. There exists a linear 
filter, if each node passes its consecutive local values to this filter, the output 
after is the global average of the initial values over the network.

Definition 2.4.2. The linear filter h G Rd, whose output Xi(k) = h*Xi ( k)  is the 
consensus value x = J  °f the network, is called the consensus finding

filter, where local values Xi(k) are obtained by (2.3.1), k > d.

Theorem 2.4.1. [27] There exists a linear filter defined by h G R d, such that by 
passing through local values Xi(k) obtained by (2.3.1), the output Xi(k) = h*:rj(A;) 
is the consensus value x =  J ° f  network after k step ( k ^ m ) ,

where m  is the number of distinct and nonzero eigenvalues of the weight matrix  

W  and W  satisfies the convergence condition (2.3.5).

Proof. To avoid complicated analysis, suppose an undirected network with n 

nodes, where duplex communication is possible in each link. Therefore, the as­
sociated weight matrix W  G R nxn is symmetric and diagonalizable. Thus, there 
are n linear independent eigenvectors of the weight matrix. Let e i , e 2 , . . .  , en be 
the eigenvectors of W  and Ai, A2, . . . ,  An be the associated eigenvalues. They are 
ordered so that 1 =  |Ai| > |A2| > . . .  >  |An|. Ai is called the dominant eigenvalue 
and ei is associated dominant eigenvector. Since all the eigenvectors consist a



CHAPTER 2. BACKGROUND OF DAC 29

and hi (d) =  [Ai> A2, • • • Ad]T, then we have the following equation satisfied

y i( M )  =  V (M )M < 0  (2-4.7)

To obtain the consensus value x  for node z, we need to take sufficient samples 
of X i ( k )  and solve (2.4.7), where d  should at least be equal to or larger than m, 
which is the number of distinct and nonzero eigenvalues of weight matrix W  

Let A(k,m)  = V ~ 1(k,m)  and the first row of A(k ,m )  is given by

h  =  [An {k, m ) ,A i2{k, m ) , . . . ,  Aim{k, m)]T (2.4.8)

we have

Ai =  hTyi(£;,m) (2.4.9)

(2.4.9) shows that the consensus value can be calculated by the filter h. This 
ends the proof. □

Lemma 2.4.1. The sum all coefficients {ho , . . . ,  An-i} is equal to one, i.e.

Proof. Since x  =  h  * y i(k,m)  satisfied as k —► 00, when the iteration converges, 
we have x +  /im_\X +  . . .  +  h\X +  hox =  x. Then, canceling the value x  from the 
equation will obtain the result. □

It is worth noting that Vandermonde matrix is related to a polynomial interpo­
lation problem and can be easily inverted in terms of Lagrange basis polynomials 
[28]. Due to this reason, this method can be treated as an extrapolation method 
to find the consensus value at infinity. At the same time, we only need to find out 
the first coefficient Ai in the distributed averaging. Therefore, only the elements 
in the corresponding row of V ~ 1(k , m)  need to be found. This approach can save 
lots of computation time in the inverting of Vandermonde matrix.

Since simulation results show that h  only depends the associated Vander­
monde matrix V(fc,m) which is independent of the nodes initial values and time 
index k. Therefore, each node in the network could find the consensus value at 
any time f c ^ m b y  passing a number of consecutive local values to this filter. In 
addition, all nodes in this network may share the same filter, which means all the 
filters have the same impulse response. However, such a consensus finding filter 
is not unique. As an example, a number of filters which have different impulse 
responses or filter lengths are found by different samples of Xi(k).  Each node
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could choose its own, but filter length determines how many time-steps before a 
node could find the consensus value.

Suppose we take d samples of X{(k),  where d >  m.  Because the Vandermonde 
matrix 'V(k,d) G R dxm is non-square, we introduce the Moore-Penrose pseudo 
inverse to find the least mean square solution.

Let

A ( k t d) =  V +( M )  (2.4.10)

where + denotes the Moore-Penrose pseudo inverse [29]. The first row of A(k,d)  
is given by

h' =  [Au(fc, d), A n (k, d ) , . . . ,  A ld(k, d)]T (2.4.11)

Still, the value j3n = h ^ y i s  an accurate estimation of consensus value.
Therefore, another consensus finding filter is obtained.

Due to the multiplication of the consensus finding filter, the set of filter is 
defined by

{h G R d\Vd ^  m, hTyi(k,d) = x}  (2.4.12)

However, the shortest filter has its length equaling to m, which means node can
only have the consensus value after m  steps.

In Section 3.3, the performance of this algorithm is shown by comparing it 
with the first-order DAC algorithm using optimal weight matrix in [15].

2.4.2 Inverse of the Vandermonde M atrix

The Vandermonde matrix has its applications in some problems like polynomial 
fitting, reconstruction of distributions from their moments, and so on. Solving 
Vandermonde matrix is related to a polynomial interpolation problem and can be 
easily inverted in terms of Lagrange basis polynomials. It can be very difficult to 
invert in other way if the size of the matrix is large, as the Vandermonde matrix 
is notoriously ill-conditioned by its nature. It is a good way to always work on 
the problems related to Vandermonde matrix in double precision or higher.

Let Vm be the Vandermonde’s matrix of order m  given by
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Then the equation

A i A2

A? A2
V  =v m

\m  \m  
A1 2

A i A2 • A 771 '  A

A? A2 • . • \ 2Am A

\ ra \ra 
A1 A 2

\m  
Am . _ P m

X-m

Ai
(2.4.13)

m .

y i

V2

Vm

(2.4.14)

is related to the problem of moments: Given the values of all A*, find the unknown 
coefficients 6*, so that they match the given values yi of the first m  moments.

Its inverse is closely related to Lagrange’s polynomial interpolation formula. 
Let the polynomial of degree m  be defined by

n
i =  1 

3

X - X i

Xj Aj
(2.4.15)

fc=i

The polynomial Pj (A) is a function of A specially designed so that it is equal to 
zero at all A* except i = j  and takes on a value of one at A =  Xj .  In other words,

m

k= 1

where 6ij = 1 when i = j .  The equation says that bjk is exactly the inverse of the 
matrix Vm, with the subscript k as the column index.

To drive the analytical expression of bjk and make it as easy as possible, let’s 
define some intermediate result. Define the polynomial qj (A) and work out its 
coefficients

Qj
(A) =  r K i ( A - * o  =  - q  (A_ Aj)

(A -  A.)

— c j ,m A m  1 +  Cj>m_ i A m  2 +  . . . +  CA 2A  +  CA i

(2.4.16)



CHAPTER 2. BACKGROUND OF DAC 32

Examining the polynomial (2.4.15) and polynomial (2.4.16), we have

h — Cj,k  Ojk —
Qj i ^ j )

Therefore, the solution of (2.4.14) is just the inverse of Vandermonde matrix time 
the vector on the right.

771

f t j  ~  ^  ] b j k U k  

l
If we only need to calculate the consensus value, as explained in Section 2.4.1 
only the elements in the corresponding row of inverse of Vandermonde’s matrix 
need to be found. The computation saving can be enormous by this approach.
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2.5 Consensus Based Signal Processing

Sensor networks have a variety of applications such as surveillance, environment 
monitoring and collaborative signal processing. As the advantages of reliability, 
survivability, and increased range of coverage, there is an increasing interest in 
employing multiple distributed sensors for these applications [5]. A fundamental 
problem in sensor networks is to process spatially distributed information using 
a scalable algorithm [30].

Generally, there are two options for multiple sensors signal processing: First 
option is centralized signal processing. This requires the network contains a fusion 
center, and all sensor’s information being transmitted to the central processor.

The Second option is distributed signal processing. Distributed average con­
sensus (DAC) algorithms are tools for distributed information processing. It has 
received significant attention recently because of its robustness and simplicity. In 
this section, we will introduce two distributed signal processing methods based 
on consensus algorithms.

2.5.1 D ata  Fusion and Decision M aking

In this section, we will consider a distributed detection problem in wireless sensor 
networks without the fusion center. A consensus based approach of distributed 
data fusion and decision making is introduced.

In centralized data fusion and decision making, a hypothesis test based on the 
ML (Maximum Likelihood), MAP (Maximum a Posteriori) or Bayesian decision 
rule will be carried out at the fusion center. Therefore, we intend to carry out 
the hypothesis test in a distributed manner.

Considering a binary hypothesis testing problem with the following two hy­
potheses

1. target is absent

2. target is present.

Suppose each sensor acquires a scale value from its sensing area, its signal has 
the following form

Vi,o +  ni if no target present 

(J'l,i +  Tii if target present
(2.5.1)
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where fiiyTn is the mean value of Xi depending on hypothesis m  and ni is the noise 
of xi. The prior probability of these two hypotheses is denoted by P  (Hm) == 

P-m  ? ^  0,1.
To make a declaration whether the target present or not, based on classical 

hypothesis test theory, the global log likelihood ratio (G-LLR ) test is given by

t t e >( \ _  i f { x u - , x L\Hi) 5  P ( H 0)
LLR{x u ...,x l ) l°S f  {xu XlIHo) <HOg p (H i)  ( • ■ )

where f  (xi, ...,XL\Hm) is the likelihood function of hypothesis Hm.
If the sensor signals are independent from one to another. Therefore, we have 

f ( x i , . . . , x L\Hm) = f { x i \ H m) • . . .  • f ( x L\Hm) and

According to (2.5.3), G-LLR is the sum of local log likelihood ratio (L-LLR) 
and can be calculated by distributed average consensus (DAC) algorithms. First, 
each sensor node i only calculates its L-LLR individually based on Xi. Then, 
all the sensors update their L-LLRs in the DAC iteration until they converge to 
a common value. Once the DAC algorithms converges, G-LLR is obtained by 
multiplying the average value with the number of sensors in the network.

LLR Calculation W hen N oises Are Correlated

The detection noise in sensor signal are Gaussian white noise and can be treated as 
independent. However, in real environment the sensor signal may also interfered 
by other aspect, which may cause correlated sensor signal fluctuation. One of the 
examples can be found in Chapter 5.

If the noises in sensor’s signals are not independent from one to another, some 
expressions need to be derived to calculate G-LLR by DAC algorithms.

Let the sensors observation, the joint Gaussian white noises and the mean of 
sensor observation in a vector form be given by

X =  [xu . .. , x l \t

n  =  [ n i , . . . , n L]T ~Af (0 , E)



CHAPTER 2. BACKGROUND OF DAC 35

Um — ■ j I^L,m\ > ^  0 , 1. (2-5.4)

where the noises is the joint Gaussian white noise denoted by n ~  Af {0, £).
Thus, the likelihood function is a joint Gaussian function /  (a;i, . . . ,xL\Hm) = 

 1 r exp ( - H x  -  um)T S -1 (x -  um) J and G-LLR becomes
(2?r)L /2 |E |3  I  2 /

LLR(x) =  (uj* -  u j )  £ -1x +  i  (uq S _1u 0 -  u 7 S _1u i) (2.5.5)

L

=  ^2 wix i + c
i=i

where is the Ith component of (u^ — u j ) E _1, C  is the last term of the equation.
(2.5.5) means G-LLR can be a weighted sum of sensor’s observation plus C.

As a result, G-LLR can be caculated by DAC algorithms, provided that each 
sensor knows the weight wi and C. Actually, the constant C  changes the threshold 
of the hypothesis testing and can be subtract from both side of the hypothesis 
testing equation. Therefore, we have

v -  §  P(Ho) „

where the average values ^Zi=i wix i IS obtained by distributed average consensus 
(DAC) algorithms. Then each sensor multiply the average i with the number of 
sensors in the network to get Ylt=i wix i-

In Section 5.4, how to calculate G-LLR by DAC algorithms on more general­
ized conditions will be presented. The sensor signals will be correlated and mixed 
with joint Gaussian white noises. In addition, the signal fluctuation noises are 
not only correlated but also depends on the existence of target.

2.5.2 Network Information Flooding

The conventional information flooding is actually done by copying information to 
all other nodes. Each node maintains a table of all nodes values in the network, 
initialized with its own value, and exchanges the tables of their own with those 
from their neighbors in each step. After a certain number of time steps which is 
equal to the diameter of the network, each node will obtain values of all nodes, 
distributed averaging can also be implemented by this way.

However, copying information and forwarding to all other nodes takes too 
much resources for the networks. If a networks has n  nodes, the conventional
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flooding will need at least (n  — 1) copies for each piece of information. And 
this estimation doesn’t consider the cost in transmitting the information to the 
destination.

We intend to develop an algorithm to accomplish the information flooding, but 
didn’t copy all the information to other nodes, so that the communication cost 
can be dramatically reduced. However, The difficulties of this kinds of distributed 
signal processing is that any individual node only knows partial information on 
the whole network. And information exchange is only allowed between neighbors.

Based on FT-DAC algorithm we introduced in Section 2.4, each node could 
decompose the local value vector by a linear combination of eigenvalues and 
eigenvectors and can calculate the coefficients before each term. Actually, with 
some signal processing techniques, there are more information in the local values 
sequence that each node can extract. These may also be applied to wireless sensor 
networks as they could be carried out distributively.

Therefore, in this section we propose a novel network information flooding 
technique based on consensus algorithms. It doesn’t require copying information 
for so many times, instead, it transmits information by broadcasting. The ad­
vantage of this method is that it can save the costs in copying and transmitting 
information.

Suppose the network weight matrix W  satisfies the same condition (2.3.5). 
Recall the initial local value decomposition given by

which shows that the initial local value vector can be defined by a set of coeffi­
cients and a new basis defined by the eigenvectors. In addition, the eigenvectors 
e* only depends on the weight matrix. Therefore, once the coefficients and 
weight matrix are available, the initial values vector x  (0) can be calculated. It is 
possible to exchange information between nodes in the network without copying 
information to all other nodes.

To show how this method can be carried out distributively, let the sample 
vector yi{k,d) € R d be defined by the history of Xi(k)

n

(2.5.6)

y i(k, d) =  [xi(k), Xi(k -  1), . . .  Xi(k -  d +  1)]T (2.5.7)

and the coefficients vector a  =  f a q , ^ , . . .  , a n]T. If we involve the eigenvectors



CHAPTER 2. BACKGROUND OF DAC 37

and redefine (2.4.7) by

Yi(k,d) = Vi{k,d)diag ([efu ,, e^u*, . . .  , e £ u j )  a  (2.5.8)

where U* is the unit vector with all zeros except the ith component is one, eju* 
means the ith component of e^. Solving the above equation will obtain the coef­
ficients Otj.

The consensus based information flooding is ideally suitable for time-invariant 
network. Because this method requires a node knows all the eigenvectors and 
eigenvalues of the network before it can estimate initial values of other nodes. It 
can be initialized by flooding all weight coefficients to all nodes in the network. 
However, instead of flooding a table of local values, flooding the weight matrix 
is only performed at the initialization stage for one time. The proposed method 
could have lower cost both in computation and communication, if the topology 
changes at a very low frequency.

2.6 Summary

In this chapter, we first introduced the preliminary in Section 2.1, where consensus 
problem on network is presented as well as the difference and connection between 
continuous-time and discrete-time DAC algorithms. The whole family of DAC 
algorithms and their categories are shown in Section 2.2.

In Section 2.3, it states that optimized higher order DAC (its spectral ra­
dius of weight matrix are minimized) will have better convergence rate than the 
lower order one. However, the algorithm complexity and computational cost will 
increase by introducing more orders. There are negligible improvement for the 
fourth order DAC compared to the third order one.

The convergence rates of HO-DAC algorithms depend on eigenvalues of graph 
Laplacian matrix A* (L ) which is topology dependent. Therefore, the optimiza­
tions of HO-DAC larger than second order don’t have unique analytic solution.

In Section 2.4, it is shown that the finite-time DAC algorithm in an invariant 
network can find the average in finite number of iterations, and local value vector 
x  (k ) can be represented by a linear combination of a new normal basis defined 
by eigenvectors of W.  Furthermore, the weight matrix W  doesn’t need to be 
convergent.

Some distributed signal processing based on consensus algorithms, such as 
data fusion and decision making, information flooding were introduced in Section 
2.5.



Chapter 3

Finite-time DAC on Generalized 
Conditions

The finite-time DAC algorithm can calculate the consensus value by a linear 
combination of local values in the past, as shown in Section 2.4.1 Although a 
distributed algorithm to calculate the coefficients of the linear combination has 
been introduced in [16], it requires the FO-DAC algorithm being executed for 
several instances initialized with a set of linear independent vectors. As mentioned 
before, the finite-time DAC is not reliable to topology changes. If the method 
has to run multiple re-initializations of original FO-DAC algorithm, it may take 
more risks of being terminated by topology changes. Alternatively, the original 
consensus algorithm can run these instances in parallel with a set of independent 
initial values. However, the data transmission at each iteration increases.

Here we propose a generalized finite-time DAC algorithm, which does not 
require knowledge of network topology and multiple re-initializations of the orig­
inal consensus algorithm. In the future research, the finite-time DAC algorithm 
probably will be generalized to non-symmetrical network. Before introducing the 
algorithm, there are two important linear filters need to be introduced, as the 
algorithm is based on the relationship of these filters. The first is the FIR filter 
to estimate the consensus value which has been already introduced in Section
2.4.1. The second one is introduced in the next Section 3.1.

3.1 Linear Predictor for Local Value

In observing the convergence curve of each node’s local value sequence, we come 
to the idea that the sequence must obey some rules as it converges. In Section
2.4.1, it is shown that local value vector can be decomposed in terms of eigenvalues
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and eigenvectors. Based on this fact, a consensus value estimation method by- 
inverting the Vandermonde matrix is proposed.

Furthermore, we have the following theorem to reveal another important prop­
erty of FO-DCA.

T h eo rem  3.1.1. Suppose an undirected graph Q with associated weight matrix 
W  E Mnxn which satisfies the conditions in Theorem 2.3.1. For the DAC iteration 
x(fc +  1) =  Wx(fc), local value xi (k) at node Vi is equal to a linear combination 
of local values of itself in m  previous time steps, i.e. Xi (k ) = —am-\Xi (k — 1) —
.. .  — a\Xi (k — m  +  1) — aoXi (k — m), where for any k > m  and m  is a certain 
number.

Proof. The minimal polynomial of W  is given by

p( A) =  P [  (A — Xi)r< =  0 
2 = 1

=  Am +  am_iAm 1 +  . . .  +  aiA +  oq (3.1.1)

where m  = Y^i=i ri• Since p (W) = 0nxn, we have,

W m +  am- i W m 1 +  . . .  +  a{W  +  OqI  = 0nxn

Multiplying both sides with x  (0) we obtain

x  (k) +  Om-ix (k -  1) +  . . .  +  a0x  (k -  m) = 0nxn (3.1.2)

For any node Vi E V, its local value at time k is just the ith component of x  (k ). 
After a little evolution, we have

Xi (k) = - a m_iXi (k -  1) -  . . .  -  a0Xi (k -  m) (3.1.3)

In other words, Xi (k) can be predicted by an FIR filter given by [—ar, —ar_ i , . . . ,  —a0] 
if we pass a number of consecutive local values in the past through that filter, 
after the time index k > m. In addition, all the nodes in the network can share 
the same coefficients, when the minimal polynomial of W  is not changed. □

L em m a 3.1.1. The sum of coefficients am_ i , . . .  ,ai ,ao is equal to —1.

Proof. Since (3.1.2) is satisfied as k —y oo, we have x+<2Tn_1x + . . . + a 1x+aox =  0 . 
Then, canceling the vector x  will obtain aj = ~  1- □
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Given the local value vector sequence obtained by FO-DCA, one may instantly 
comes to the idea of applying an adaptive filter algorithm to estimate the set of 
coefficients. For example the Kalman filter algorithm. One benefit of the adaptive 
filter algorithm is that when the network topology is changed, the filter could 
adaptively change its coefficient during the iteration.

Find the Coefficients of Linear Predictor

After running FO-DAC algorithm for a number of steps, node Vi could list a num­
ber of equations by its available local values. Once they are sufficient equations to 
construct a matrix, which is a Toeplitz matrix, we can have an important result 
in the following.

Let T i  = T i ( k , D i )  G M.Di XDi  be a function at Vi which outputs a Toeplitz 
matrix with size Di with Xi (k ) as diagonal entries.

Ti (k, Di) =

Xi  (k) Xi (k — 1) . X i ( k  — D i + 1)
Xi (k -1-1) Xi  (k) • Xi (k -  D i  +  2)

Xi (k + D i - 2) Xi (k-\- D i — 3) • Xi (k -  2)
Xi  (k + D i — 1) Xi (k +  D i -  2) • Xi  (fc)

Similarly, define the function y* =  y* (k, Di) =  [xi (k +  1), Xi (k +  2 ) , . . . ,  Xi (k +  Di)]T 
which outputs the local value history at from time k +  1 to k +  Di. Then, 

let a* (Di) = [oitDi-i, ■ ■ •»o<,i> a*,o]T £ Di be a vector of length Di representing 
the coefficients in the minimal polynomial calculated at w*. Then, we have the 
solution of these equations given by

a* (Di) =  - T r 1 (k, Dt) y t (k, D i)  (3.1.5)

The size of the Toeplitz block Di, should be less or equal to m  so that (3.1.5) has 
unique solution. To solve (3.1.5), node % needs to have sufficient local values.

Toeplitz matrix is a special type of matrix and can be inverted by some algo­
rithms in the polynomial time of order D\, rather than the order of D\ in general 
case (for example by LU decomposition), which is an enormous computational 
saving [28]. Levinson developed a recursive algorithm to solve the system quickly 
if the Toeplitz matrix is symmetric.

One interesting advantage of Levinson’s method is it can also apply to the 
case when weight matrix is non-symmetric. The fact that the method can be
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generalized to the non-symmetric case is stated in the texts [31]. Therefore, We 
will invert this Toeplitz matrix using Levinson’s method.

It totally needs 2Di +  2 local values to construct the Toeplitz matrix and 
(3.1.5), all the local values can be obtained from one instance of FO-DCA after 
2D{ +  1 iterations. By comparing to the original finite-time consensus algorithm 
[16] who requires D\  iterations of FO-DCA in total, the proposed method has 
improvement in reduced number of matrix iterations.

In Section 3.2, we will show how to obtain the consensus finding filter by the 
linear predictor.

3.2 Convert Linear Predictor to Consensus Find­
ing Filter

Once there are sufficient local values, node i can solve the equation and obtain 
the set of coefficients a and construct the polynomial

P i { A) =  Am +  a m _ i A m 1 +  . . .  -f- a \ \  +  ao

If matrix W  satisfies the condition in Theorem 2.3.1 there is a simple eigen­
value equaling to one. As shown in Section 2.4.1 we can let the first eigenvalue 
Ai =  1, and it will be located in the first row of Vandermonde’s matrix. Therefore, 
the consensus finding filter is given by the first row of inverse of Vandermonde’s 
matrix;.

Examining the Lagrange’s polynomial interpolation formula (2.4.15) we can 
rewrite the consensus finding filter in terms of a*,.

To make the expression simple, we may define another polynomial (Also see 
(2.4.16))

Qi (^ )  — ^  j  — CmAm 1 +  Cto-1 Am 2 +  . . . +  C2A +  Ci

where Ck = 1 +  SJlfc+i aj- The consensus finding filter can be given by the 
coefficient of qi  (A).

h  =  [ C b . , ^ - i , - . g 2 ]  (3.2.1.)
Z->fc=i ck

This indicates the possibility of using the adaptive filter to estimate the consensus 
value after a certain number of iterations.

One interesting property of the consensus finding filter is that it can be found 
by this method when the weight matrix is non-symmetric. It can be demonstrated
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Figure 3.1: Graph with optimal weights which maximize convergence rate

by finding the inverse of a confluent Vandermonde matrix. In examining the 
expression of the inverse of confluent Vandermonde matrix, we note that the 
corresponding row where the dominant eigenvalue Ai is located are actually the 
coefficients of a consensus finding filter. The length of the filter is not required 
to be the same. It may be not equal to the number of distinct and nonzero 
eigenvalues m, but less or equal to the sum of all orders in minimal polynomial 
of weight matrix However, the relationship of local value predictor and
consensus finding filter still holds.

3.3 Simulation

Consider the graph from [15] (see Figure 3.1), the weight matrix W  corresponding 
to this graph is symmetric and has eigenvalues A(VF) =  {1,0.6,0.4,0,0,0, —0.4, —0.6}. 
The time index k can be chosen large enough so that there are sufficient number 
of local values to estimate the filter coefficients. For example, there are 5 distinct 
and nonzero eigenvalues of W, so we choose the time index k = 5 and d = 5 
which is the minimum filter length.

Based on (3.2.1) the consensus finding filter is given by

h =  [1.8601, 0, -0.9673, 0, 0.1071]T

For any random generated x(0) G R n, node values vector x(fc) is updated by 
the iteration (2.3.3). At the same time each node passes its local values through 
filter h. Filter output is given by Xi(k) = h(k) *Xi(k). Figure 3.2 is presented to 
compare the convergence performance of first-order DAC (FO-DAC) algorithm 
with optimal matrix and the finite-time consensus algorithm. The performance 
is evaluated by the mean square error (MSE), defined by MSEpQ_p)^Q(fc) =

E l\x i(k ) ~  ^l2]’ MSEfilterW  =  'Eiejsr E [\a Ak ) ~  respectively, where 
x  =  (1/n ) The result shows that the consensus finding filter cal-
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Figure 3.2: Performance of the first order iteration with optimal matrix vs. con­
sensus finding filter algorithm

culates the consensus value after a finite number of iterations and MSE drops 
dramatically to the quantization error at the same time.

3.4 Summary

In this section, we introduced the finite-time DAC on generalized condition. Com­
pared to the previous version of finite-time DAC, the improvements are: it doesn’t 
require the eigenvalues to be known prior to the algorithm. However, the number 
of iterations can not be less than a certain limit, because the minimum num­
ber of iterations depends on the weight matrix, which is the same as the previous 
finite-time DAC. With this improvement, some further algorithm could be driven. 
They will be introduced in Chapter 4.



Chapter 4 

Real-time Optimization of DAC

Distributed average consensus (DAC) algorithms utilize matrix iteration to find 
the dominant eigenvector. To minimize the required number of iterations, the 
algorithms need to be optimized. However, this optimization needs the knowl­
edge of network topology, which is very hard to obtain for an individual agent 
in distributed networks. Thus, optimal step length and forgetting factor need 
to be calculated offline and forwarded to every agent. To solve this problem, 
we propose a distributed real-time optimization technique so that each node can 
estimate these optimal parameters individually. In addition, the method is based 
on constant first-order DAC itself, so it will not stop the consensus process. 
The result shows that a numerical error due to quantization would exist in the 
distributed solution. It will increase as the network becomes larger. Thus, a nu­
merical technique is introduced to mitigate the error. The estimated parameters 
after mitigation do not obviously decline the performance of higher-order DAC 
when network size is smaller than a threshold.

4.1 Introduction

As introduced in 1.1.1, DAC algorithms can be divided into asymptotic and non- 
asymptotic algorithms. However, the current optimization of asymptotic DAC 
algorithms are centralized methods. The distributed method inspired by the 
gossip algorithm [18] converges very slowly. Non-asymptotic DAC algorithms, 
such as finite-time [16] and adaptive filter DAC algorithm [17], they find the 
average in finite number of iterations but not robust against topology changes.

After investigating these problems, we intend to find a distributed optimiza­
tion method for the constant first-order DAC and higher-order DAC algorithms 
to enable the whole system to work distributively. Because in centralized op­
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timization methods, optimal parameters of these algorithms are only related to 
the eigenvalues of Laplacian matrix of the network [1], if we could estimate these 
eigenvalues in a distributed manner, these centralized methods could be carried 
out distributively.

Consequently, a distributed eigenvalue estimation algorithm is proposed in 
this chapter. In contrast to other distributed algorithms [32] [33] [8], initializa­
tion of the proposed algorithm is actually the first-order DAC itself. Therefore, 
first-order DAC will not be interrupted during the optimization and algorithm 
complexity and communication cost can be dramatically reduced.

However, the distributed solution has a numerical error due to quantization, 
which may decline the algorithm performance. Therefore, a least mean square 
solution is obtained to mitigate the numerical error. When using the floating 
point number in double format and the network size is smaller than 32, the 
numerical error after mitigation does not dramatically decline the performance 
and the proposed method is applicable.

The rest of this chapter is structured as follows. First, the distributed real­
time optimization of DAC will be given in Section 4.2. Second, the mitigation of 
numerical error will be proposed in Section 4.3. Third, the algorithm complexity 
will be analysed in Section 4.4. Fourth, in Section 4.5, the performance of DAC 
using the distributed real-time optimization will be analysed and compared with 
the centralized one. Finally, the conclusion will be given in Section 4.6.

4.2 Real-time Optimization of DAC

Traditional optimization of HO-DAC or CFO-DAC requires a centralized node 
to gather information of the Laplacian matrix [1]. Without the spectrum of 
Laplacian matrix, each node could only choose a non-optimal point (e, 7 ) in the 
boundary of the convergence region.

In Section 2.3.2, it is shown that the optimal parameters €opt,7opt of HO-DAC 
are only related to Aj (L). To enable the distributed optimization, the key is to 
estimate these eigenvalues in a distributed manner.

In fact, there are some decentralized techniques [8] [32] [33] to estimate the 
eigenvalues. However, they are not designed for DAC algorithms and will involve 
complex and costly initialization. In addition, as they are also matrix iteration 
algorithms, DAC algorithms have to be stopped during the eigenvalue estimation.

In contrast, the distributed real-time optimization and CFO-DAC can be run­
ning simultaneously and algorithm complexity and communication cost can be
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dramatically reduced. Because the initialization of the proposed algorithm is to 
store a number of local values obtained by CFO-DAC, the distributed system 
can still work using non-optimal parameters at the very beginning just after the 
deployment. After a number of iterations of CFO-DAC, these eigenvalues could 
be estimated and better parameters could be used in the next iterations.

4.2.1 Find the Characteristic Polynom ial

Because A* {W) is the root of the characteristic polynomial p(A) =  n S u  — =
AD +  a o - iAD_1 +  . . .  +  ao =  0, the distributed eigenvalues estimation is subject 
to the calculation of the coefficients {%}.

To calculate {%}, we need to use the Theorem 3.1.1 introduced in Section
3.1. If more local values are available, node Vi could list a number of equations 
similar to (3.1.3). Once they are sufficient to construct a matrix, the coefficients 
{ a , j }  could be estimated.

Define the function y i = y* (fc, Di) = [a;* (k 4-1),  Xi ( k +  2 ) , . . . ,  Xi (k -I- Di)]T E 
R Di which outputs a local value history vector of Vi from time k +  1 to k 4- Di. 
Then, define a function Ti = Ti (k,Di) E that outputs a Toeplitz matrix
with Xi (k) on the diagonal. Ti (/c, Di) =

Xi (k)
Xi (k +  1)

Xi (k -  1) 
Xi (k)

_Xi { k  +  Di  -  1) Xi (fc +  Di -  2)

Xi ( k -  D iP  1) 
Xi ( k -  Di + 2)

Xi (k )

(4.2.1)

Besides, let a* (Di) = • • •, Oi,i, &i,o]T G R -Di be a vector to store the coef­
ficients calculated at Finally, we have the solution of a* (Di) given by

a i  ( D i )  = 1 (fc, D i )  y i  (k, D t ) . (4.2.2)

Toeplitz matrix is a special type of matrix and can be inverted by Levinson’s 
algorithms in the polynomial time of order D?, rather than the order of Df  in 
general case (for example by LU decomposition) [28].

4.2.2 Estim ated Eigenvalues of Laplacian M atrix

After node Vi could calculate the coefficients vector a* (Di), it will construct a local 
polynomial pi (A) and find the roots of the polynomial. Then, the local eigenvalues 
spectrum of W  at Vi is obtained, which is defined by § i ( W )  = | a ^  ( ! F ) j  =
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{A|pf (A) =  0}, j  — 1 , . . . ,  Di. Because W  — In — eL, an estimated Laplacian 
spectrum at Vi could be obtained, which is denoted by 5* (L) =  | a ^  (L ) j ,  where

4.2.3 Eigenvalues M issing In Local Spectrum

In simulation, some eigenvalues are missing in some of the local eigenvalue spec- 
trums. The reason is because sometimes the Toeplitz matrix Ti with the original 
size D  will lose rank, so that the solution is not unique. Node Vi  could only build 
a smaller Toeplitz matrix with size D i  ( D i  <  D  <  n). As a result, the local 
polynomial Pi (A) will be reduced to Di coefficients.

However, the following theorem in [16] assure that the roots of local polyno­
mial is the same roots of minimal polynomial of W.

Theorem  4.2.1. [16] The local polynomial Pi (A) of node Vi divides the minimal 
polynomial p ( A) o fW  for all 1 < i < n. (see [16] for proof)

Every node may recover the complete eigenvalue spectrum of W  by exchanging 
its local eigenvalue spectrum with its neighbors. To assure that no eigenvalue is 
missing in the final eigenvalue spectrum, we have the following theorem that any 
eigenvalue Ai(W) must be estimated by at least one node in the network.

Theorem  4.2.2. Suppose a graph Q whose associated weight matrix W  satisfies 
the convergence condition, and initial value vector x  (0) £ Mn is chosen randomly. 
I f  all nodes estimate the eigenvalue of W  by the proposed method using local values 
that are available, any eigenvalue Ai (W) could be estimated by at least one node 
in the network.

Proof. The proof can be generalized to non-diagnosable matrix with the help of 
Jordan decomposition of W.

w k = UJkU~l 
Jk

= u • • .  u
JkJrh

where m  is the number of Jordan blocks. Therefore, x(fc) =  I7Jfct / _1x (0). □

Assume that all nodes miss an eigenvalue A/ in their estimated eigenvalue 
spectrums, I = 1,2, . . . , m .  This means all the terms contain A; are multiplied

- l
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by zero. Since x(0) is chosen randomly in Rn, we can only have W k = U JkU 1 
with all terms involving A* are equal to zero, thus

U
0

u~l = or (4.2.3)

Since J k /  0 and the matrix U is consisted of linear independent vectors, the 
above equation (4.2.3) can not be valid. Thus, the assumption is not true and 
A/ (W)  could be estimated by at least one node in the network.

4.3 Mitigation of Numerical Error of Eigenvalues

Due to the limited accuracy of the floating point number, the solution obtained 
by the proposed method has a numerical error. To mitigate the error, one of the 
options is to use floating number with more bits. However, communication cost 
is increased in each iteration.

As floating point number in double format is available on most computers, we 
apply our numerical mitigation on this basis.

The idea is to have more equations similar to (3.1.3) and involve the Moore- 
Penrose pseudo-inverse to find the least mean square solution. Thus, Toeplitz 
matrix in (4.2.2) should be replaced by a matrix constructed by some other way, 
whose height is larger than width. The local value history vector y i (k , D) on the 
left of (4.2.2) is also expanded accordingly.

There are two ways to expand the matrix. First, the new matrix can be built 
by concatenating Toeplitz matrix Ti and Tj,Vj E Mi along the column. As Xj is 
available for node Vi, this improvement will not increase the communication cost.

Second, more than one instances of CFO-DAC could be carried out to obtain 
more useful local samples. Let x x (0), x2 ( 0 ) , . . . ,  x #  (0) denote N  different and 
independent initial local value vectors. Each one of them is used to reinitialize 
an instance of CFO-DAC and each instance of CFO-DAC is iterated for at least 
2n +  2 steps. During this initialization, each node Vi will store the local values 
obtained by each instance of CFO-DAC.

To construct the new matrix, first let T^s =  TiyS (Di — 1, A )  be the Toeplitz 
matrix of Vi at s instance of CFO-DAC, with x i>s (A  -  1) on the diagonal, where 
Xi'S is the local value of node Vi at s instance of CFO-DAC. Second, concatenating
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Ti}S and T j^V v j  £ Mi will obtain Mit

Ms. =

where s =  1,..., iV. Finally, concatenating the matrix MitS will construct another 
matrix,

(4.3.2)

The width of M i>s, denoted by Di , is the maximum integer so that the matrix 
MitS has full column rank.

On the other hand, let yi>fl=  yi|S {Di -  1, A ) =  fci.a ( A ) , xijS (A  +  1), • • •, a?*,* (2A  
be the local value history vector of Vi at s instance of DAC. First, concatenating 
yit8 and yjt8,Vj £ Mi will obtain

T
(4.3.3)Qm =

Second, concatenating qi)S will obtain

^  =  [q?i» q?2» • • • > q ^ ] T • (4-3-4)

The vector q* is constructed by this way so that each local value is one time step 
later than the first local value in each row of matrix Mi.

Therefore, the coefficient vector can be obtained by inverting the new matrix
Mi

a i = -M +q* (4.3.5)

where + denotes the Moore-Penrose pseudoinverse. Simulation result indicates 
that, the more rows in Mi, the more accurate the solution could be. However, 
increasing the height of Mi after a limit n \Mi | can not obtain a more accurate 
result.

4.4 Analysis of Algorithm Complexity

This section is to compare the algorithm complexity of the existing and proposed 
distributed optimization for DAC.

To solve the problem (2.3.12), Xiao [15] proposed two centralized methods: 
interior-point method and subgradient method to minimize p (W  — 11 T/n ) .  Let 
n  be the network size and m  be the number of edges. The interior-point method 
is iterative and usually finds the optimal solution in 20n ~  80n step, at a cost of
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A lg o rith m  4.1 Distributively find the Optimal Matrix for FO-DAC.
• In itia liza tion : Initialize vector w with some feasible entries, for example 

the maximum degree weights.

•  R ep e a t for t  > 1

-  W  = I -  Qw®QT.

-  R ep e a t for s > 1 to find subgradient g® E

* u («+i) =  W u ^

(10/3)n3 +  (l/3 )m 3 flops per steps.
Compared to interior-point method, the subgradient method can be computed 

locally but relatively slow. [18] proposed a distributed subgradient method to 
minimize the sub-dominate eigenvalue of a probability matrix. This method can 
be used to optimize the first-order DAC after a little modification. The modified 
method is given in Algorithm 4.1, where the function Avg =  A ]T^=1 
is implemented by DAC. Given the error tolerance eave, the DAC algorithm has 
to be iterated at least Tave = O (n 2log times [34], so that the local value
vector can converge to the range ||x (Tave) -  x|| < eave• The second loop to calcu­
late sub-dominant eigenvector ur is also similar to the first iteration. It needs to 
be executed for a number of times to obtain a result within the error tolerance esub 
[18]. Furthermore, the third iteration, which is the subgradient algorithm, takes 
enormous steps to converge and there is no simple stopping criterion to guarantee 
a certain level of optimality [15]. Therefore, with a conservative estimation, the 
times of matrix iteration might be more than O (n4).

Compare to the enormous number of matrix iterations in Algorithm 4.1, there 
is a significant time reduction by the proposed optimization if problem (2.3.12) 
reduces to find the best constant. When higher accuracy is needed, we execute n 
instances of CFO-DAC and the number of matrix iterations is in the order of n2.

* u (s+1) =  u(s+1)/ ||u(s+1)||,S =  s +  1 

— TTn+i l  IUi(s) — i / l l  <? c  .

-  9i =

w (*+!) _  w (t) -  = t +  i.
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Furthermore, if the network topology doesn’t change after the optimization, 
the estimated eigenvalues can drive to an estimated solution (e, 7 ) for HO-DAC 
algorithms, which are faster than the optimal FO-DAC.

4.5 Simulation of Eigenvalue Estimation

The simulation is coded by Matlab and taken by the following steps. First, n 
nodes are uniformly distributed in an unit square and a link is established between 
any two nodes if their distance is less than a threshold r. To ensure the generated 
graph is connected with high possibility, r is chosen as -y/log10 (n) / n  [35]. Besides, 
assume each link is symmetric so that the network graph is undirected.

Second, on the random generated network, one or more instances of CFO- 
DAC are executed. Local values obtained in each DAC instance are stored in 
local memory of each node. The step length is a constant shared by all nodes 
and chosen in the convergence range.

Third, once sufficient number of local values are obtained, the eigenvalue 
estimation algorithm is executed and local Laplacian spectrum is obtained at 
each node.

Finally, the performance of eigenvalue estimation is evaluated by the esti-
is matched withmation errors. Before that, each Laplacian eigenvalue Xj (L ] 

only one eigenvalue (L), if the distance A^ (L ) — Aj (L ) 
for all eigenvalues in the estimated local Laplacian spectrum. Let the minimum

is the minimum

The mean estimation error ofdistance be e ^ j  — m in^ i,...^  A[  ̂ (L ) — A j  (L )

A j  ( L ) i s  J  2i=l,...n e i , j-

In Figure 4.1, we use the box plot to graphically illustrate the performance 
of eigenvalue estimation. The distribution of log mean estimation errors are 
obtained from 1000 simulations.

Simulation results show that taking local values from neighbors has better 
performance in lower estimation errors. Excluding local values of neighbors will 
create more outliers and increase the estimation error. In addition, the estimation 
errors will decrease if more instances of CFO-DAC are taken. On the other hand, 
the estimation errors will increase as the network size becomes larger. However, 
the numerical errors of A2 (L ) and An (L ) increase very slowly compared to other 
eigenvalues in the spectrum. Even their outliers in Figure 4.1 have estimated 
error lower than 10-8.

To see how these estimation errors take effect on the performance of DAC, 
we conducted another simulation where estimated parameters (£,7 ) are used to
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Figure 4.2: Mean of spectral radius of CFO-DAC and HO-DAC, using optimal 
param eters and estimated parameters.

construct a suboptimal higher-order weight m atrix H .  The spectral radius of 
y H  — J j  is plotted and compared with the optimal one in Figure 4.2.

As shown in Figure 4.2, CFO-DAC or SO-DAC using estimated parameters 
has similar spectral radius as the one using optimal parameters. It seems tha t 
the numerical errors of A2 (L ) and An (L ) do not decline their performances dra­
matically. For third-order DAC algorithm, estimated errors of eigenvalues don’t 
have disastrous impact on the performance. The spectral radius goes slightly 
upper than the optimal one after the network size is larger than 25. It seems 
that estimating other eigenvalues with low accuracy is not a critical problem. 
However, the param eters e and 7 might not be located in the convergence region 
if the network size is larger than 32. The simulation of fourth-order DAC for even 
larger network up to 40 nodes, reports several divergent cases.

4.6 Sum m ary

In this chapter, we introduced a distributed method to estimate the optimal 

param eters for DAC algorithms. However, numerical errors of these parameters 
due to quantization can decline the algorithm performance. Especially for DAC 
algorithms with order larger than second, they are more sensitive to the errors. 

To mitigate this effect, we introduce a numerical technique to find the least mean 
square solution. After mitigation, the numerical errors of estimated parameters 

slightly declines the performance of first-order DAC and second-order DAC. For 
the third-order DAC, estimated param eters by local Laplacian spectrum is still
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convergent and the algorithm is faster than second order. However, if floating 
point number in double format is used and the network size is larger than 32 
nodes, the numerical errors will be too large even after mitigation. These findings 
indicate that the proposed method is applicable to optimize higher order DAC 
algorithms when network size is small. Otherwise, we should decrease the order 
of DAC or increase the accuracy of the floating point number. The second- 
order consensus algorithm could be a compromise as it requires fewer parameters, 
converges faster than first-order DAC and maintains convergence reliability. In 
the future, we are intending to investigate the effect of link failure and other 
practical aspects while applying the proposed method to a distributed system.



Chapter 5 

Distributed Cloud Detection

In this chapter, the DAC algorithms will be applied to the remote detection of 
cloud.

The introduction of the cloud detection is shown in Section 5.1, followed by 
the the system model in Section 5.2. Gaussian plume model is widely used in 
cloud concentration modeling. However, the sensors is using laser remote sensing 
technology. In addition, the cloud concentration of a plume is actually a ran­
dom process, which the Gaussian plume model can not capture. Therefore, the 
Gaussian plume model needs a little modification. Furthermore, a 3D cloud ani­
mation is implemented to get data of cloud concentration. The modified models 
are presented in Section 5.3.

Section 5.4 illustrates the techniques of distributed detection of cloud and 
sensor observation model. Expectation-maximization algorithm is adopted to 
build Gaussian mixture model for sensor observation from background in the 
training stage, followed by the detection stage. The decision of cloud existence 
is made based on a log likelihood ratio test, which is performed by each sensor 
with the help of DAC algorithms. Finally, the detection performance is simulated 
and presneted in Section 5.5. To get more real cloud data, 3D fluid animation 
techniques with turbulence flow are used. It shows the multiple sensor detection 
will be more reliable in the noisy environment.

5.1 Introduction

A cloud is a group of liquid or solid particles floating in the air. Sometimes 
it contains harmful or dangerous particles so that it needs to be observed and 
tracked. According to their types of targets, the detection can be categorized 
into smoke/gas/aerosol detection. The concepts are similar, but the types of
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sensors to perform the detection are various. For example, sensors are divided 
into contact detection and remote sensor, based on their sensing methods.

Smoke and gas detection sensors are very common in daily life, for example, 
the fire alarm sensors inside our buildings, which are contact sensing devices. 
When smoke or gas agent contacts with the sensing element, the chemical or 
physical reactions change the electrical characteristics of the sensing element. 
Then the alarm is set off if the agent’s concentration is larger than a threshold.

Smoke detection based on video and image processing is possible., which also 
attracts a lot of research interests. For example, in the wildfire video surveillance, 
people try to change the human based surveillance into automatic smoke/fire 
detection. These intelligent algorithms extract smoke’s features based on video 
signal, and then classify the areas in the video frames as smoke or non-smoke.

Sometimes, the agent does not directly contact with the sensing element. The 
device pumps in some air sample and illuminates it with multiple wavelengths to 
get the absorption spectrum, which is normally done by an infrared spectroscopy. 
After that, the concentration and type of the agent can be identified when prior 
knowledge of this agent is given.

When sensors are not able to contact with the cloud in the sky, laser tech­
nology enables the remote sensing of cloud’s properties. The concept of remote 
sensing is very close to spectroscopy. When the cloud is illuminated by a laser 
beam, the particles absorb the energy and emit fluorescent light, as well as “re­
flect” light back to the source (referred as backscatter). These lights are collected 
by the sensor. Then, microprocessor in sensor node could identify the received 
signal, and make a declaration of cloud. The back-scattered light wavelength is 
identical to the transmitted light [36], and the magnitude of the back-scattered 
light at the given range depends on the back-scatter coefficient of scatterers and 
the extinction coefficients of the scatterers along the path at that range [37]. The 
“fingerprint” of the fluorescent light can be an evidence of the species of particles 
in that cloud [38].

In battlefield applications, aerosol detection may also relate to bio-aerosol 
detection [39]. As the bio-aerosol released by a biological weapon is extremely 
dangerous to any biological unit in that area. It is necessary to detect and dis­
criminate it as soon as possible. The detection and discrimination can be done by 
a LIDAR (Light Detection And Ranging) detector. Similar to the spectroscopy, it 
illuminates the bio-aerosol and collects back-scatters by a telescope. Therefore, 
the agent could be discriminated according to its spectrum. In research simu­
lation, the bio-aerosol is often created by spread bacillus subtilis spores in the
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air. However, the reflection/extinction coefficients and absorption spectrum are 
closely related to the species of particles and different from one agent to another. 
To estimate the concentration of an aerosol based on received signals requires 
prior knowledge of the wavelength-dependent backscatter coefficients.

There are many challenges in outdoor environment for this method. First, 
in real environment, the received signals may be interfered by background radia­
tion, noise and moving object. For example, the background radiation (sunshine 
or cloud reflection) will ruin the LIDAR signals. But it can be compensated 
by increasing the laser power, adding optical filter in front of the telescope and 
tracking the background radiation level. Second, the interference o'f moving ob­
jects in the sky like birds and balloons will have a very high reflection coefficient 
compared with gases/aerosol. Third, sensors are energy limited and vulnerable 
to intruders and they often malfunction or become unreliable. Fourth, the cloud 
plume is a diffusive target whose special concentration is random and the distri­
butions are different from one place to another. The model have to capture the 
special variation of concentration of cloud [40]. Finally, a LIDAR detector with 
discrimination ability is very expensive so that it often performs passive detection 
and discrimination. Active detection of the bio-aerosol is taken by some cheaper 
sensors distributed in the battlefield. So this comes to our problem: detecting 
the bio-aerosol by unreliable sensors distributed in the environment with noise 
and interference.

Signal can be processed by distributed processing method such as distributed 
average consensus (DAC) algorithms. The word consensus means each node 
would reach an agreement on the declaration of the target after the algorithm. In 
addition, each node only broadcast its local value until the algorithm converges 
[15]. This method can save much energy for nodes that heavily loaded in the data 
gathering..

5.2 Background and System Model

This section shows the system model, the sensor observation model and Gaussian 
plume model.

5.2.1 Cloud D etection Scenario

In the cloud detection scenario shown by Figure 5.1a, a source produces cloud in 
a fixed position with fixed power. A wind with time invariant velocity blows in 
parallel with the ground, which brings the cloud particles to the positive direction
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(a) Cloud detection scenario (b) Gaussian plume model.

Figure 5.1: Cloud detection system model

of the x-axis. With these parameters available, the Gaussian plume model [41][42] 
is used to describe the cloud concentrate at any position (x , y, z). On the ground, 
multiple sensors (numbered from 1 to L ) aim to the plume perpendicularly to 
the ground plane and don’t change their positions. The positions were chosen so

by the laser receivers.

5.2.2 Gaussian Plum e M odel of Diffusive Cloud

This section introduces the Gaussian plume model mentioned in some state-of-art 
applications. The Gaussian plume model is widely used in cloud plume concen­
tration modeling since 1970’s, which can describe the mean value of the cloud 
concentration at any position [43]. If we observe the cloud plume for a long time 
and take the average, the result is Gaussian plume model. However, in a real 
cloud plume, the concentration is actually a random process.

[40] gives a model of the concentration values C  of pollutants to be emitted 
by point instantaneous source at height H , described by the normal (Gaussian) 
distribution

that the laser beams can penetrate into the plume and backscatters are observed

exp exp -  (5-2 1 )

where t is the time, Q the source emission power, u ,v ,w  are the orthogonal 
components of wind velocity, ax,a y, az are the horizontal and vertical dispersions, 
H  the source height.
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To describe the cloud emitted by a continuous point source, an integration 
form t = 0 to oo is taken for (5.2.1). So the model for continuous source is not 
related to the time t. The model after integration is called Gaussian plume model. 
To make things easy, assume the wind velocity components v = 0, w =  0. The 
Gaussian plume model changes into

where ay =  axb, az =  cxd, a , 5, c, d are the coefficients which relate to the atmo­
spheric stability.

The Gaussian plume model describes the mean concentration of cloud plume. 
However, especially designed for remote laser sensing, some other models are 
introduced in Section 5.3.

5.3 Modified Gaussian Plume Model For Laser 
Detection

The Gaussian plume model can describe the mean value of the cloud concentra­
tion. However, the cloud concentration of a real cloud plume is actually a random 
process, which can not captured by Gaussian plume model. In this section, first 
some other models are derived based on the diffusive equations to obtain the 
modified Gaussian plume model especially for laser detection. Second, with the 
3D animation technology [19], simulated cloud plume is implemented to show its 
fluid dynamics and turbulence properties. In addition, a bunch of cloud plumes 
are generated for testing and detection.

5.3.1 Integration of Cloud Along Laser Beam

Because laser emitted by optical sensor is penetrating the cloud, the received 
signal at each sensor can be simplified to be proportional to the integration of 
concentration along the line of laser. Therefore, the Gaussian plume model needs 
some modifications, based on the same assumption.

Similar to the heat diffusion model, the cloud’s diffusive behavior can be 
described by the 3-dimensional partial differential equation.

(5.2.3)
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dC „ d 2C „ d 2C  n  d2C
dt ~  d2x + v d2y + z d2z   ̂ ^

where C  is cloud concentration, and Dx,D y, Dz are the diffusion coefficients along 
three axis, respectively.

This equation indicates that the rate of density change is proportional to the 
curvature of cloud concentration. The density increases where curvature is posi­
tive and decreases where it is negative. If the cloud is released instantaneously at 
a single point, the spatial distribution will be a 3-dimensional normal distribution.

In consideration of the isotropic diffusion case, the diffusion equation can be 
simplified, which means Dx = Dy = Dz = D. Assume a point instantaneous 
source, located at the origin starts to release cloud at time t = 0, the solution to 
(5.3.1) is

c(a’g’* f) = ^ £ ^ exp +4Vm  0  (5-3'2)
where Q is the power of the point source. This solution can be verified by taking 
partial derivative for both sides.

In addition, if the surrounding air is assumed to be moving towards the posi­
tive direction of x-coordinate in a constant velocity u. The model changes into

sy/ ' \ Q ( (x — ut)2 + y2 + z2\
{X'V' ] = ' &XP I -------- 4Di-------- )  (5-3'3)

For point and continuous source at origin, an integration from t = 0 to T  is
taken to find the concentration distribution. If T  —> oo , the concentration model
for continuous source evolves into

poo
C (x ,y ,z )  = /  C (x,y, z ,t)d t  (5.3.4)

J o

This integration is very hard to find without the help of computer, as the 
denominator in (5.3.3) contains t i .  Some later research of atmospheric diffusion 
has found the analytical integration [41].

As the laser penetrates the cloud, the received signal at each sensor can be 
simplified to be proportional to the integration of concentration along the line of 
laser. Therefore, the received signal

/oo poo poo
C (x ,y ,z )d z  = /  /  C {x,y ,z ,t)d td z  (5.3.5)

■oo J —oo J 0
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Figure 5.2: 2-D Gaussian plume model modified for laser detection

Since I  Jo”  |C { x ,  y , z ,  t)| d t d z  <  oo, the two integrations can he swapped, thus,
we have

/oo roo r  oo r  oo

/ C ( x , y ,  z , t ) d t , d z  =  /  / C ( x ,  y ,  z , t ) d z d t  (5.3.6)

-oo J 0 ■/() J —oo

Therefore, the finial model of received signal at point { x , y )  can be given by

s(x’y) = ^D-expilb)-f0 vm cos(U T y / x 2 +  y 2

2 D

or
q / \ Q  ( x u \  I-s ( u y / x 2 + y 2
S ^ y) = ^ D - eXp{ w ) - K o \

) d r  (5.3.7)

(5.3.8)

where K 0 ( z )  is the special case of modified Bessel function of the second kind 
K n (z ) .  K 0 ( z )  is simplified to

r  oo oc

K 0( z )  =  / cosfz • s in h r)d r =
J o  Jo

cos(z • r)  
yjr2 +  1

d r (5.3.9)

The concentration distribution is shown in Figure 5.2.

5.3.2 Simulated Cloud by Fluid Dynam ics

In 3D fluid simulation [19], the cloud model is a 3D space which is divided into 

tiny cells where fluid dynamics and wind turbulence is considered. The cloud 
plume will be more like real with the help of this technology.
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Figure 5.3: Cloud simulation frame sequence. 192 x 256 pixels in each frame
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Figure 5.4: Cloud concentration and Sensor’s observation. Images frame are
obtained by 3D raw data  projection

The Figure 5.3 shows the frame sequence obtained by the fluid simulation. 
Each frame image is obtained by taking integration of the 3D raw data  along 
z-axis, as shown in Figure 5.4. This is to simulate the effect of laser beam pen­
etration through cloud. As the received light magnitude is the integration of 

backscatter along the laser beam, pixels value in the frame image is proportional 
to the magnitude of received light. In this simulation, the pixel values in these 
frames are normalized by dividing them with the maximum pixel value in these 
frames.

5.4 D istribu ted  Cloud D etection Based on DAC 
A lgorithm s

In the applications of environment surveillance and monitoring, sensor networks 

performs the data  gathering of spatially distributed sources, and the collaborative 
signal processing. Processing the local acquired signals using a scalable algorithm 
is a fundamental problem in a sensor network [30].
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Cloud declaration is normally made through a hypothesis test. When new 
observation is acquired, the decision of cloud existence is made based on the ML 
or MAP decision rule [5], which need the probability density function of all the 
sensor’s observation and calculate the log likelihood ratio.

Generally, there are two options for multiple sensors signal processing.
Firstly, it is the centralized processing. This requires the network containing 

a fusion center, and all sensor’s data needs to be transmitted to the fusion center 
and processed. At the same time, a hypothesis test based on the ML (Maximum 
Likelihood), MAP (Maximum A Posteriori) or Bayesian decision rule will be 
carried out at the fusion center. Normally the global log likelihood ratio (G- 
LLR) is calculated and compared with a threshold to make the decision. Besides, 
an optimal data fusion scheme is proposed in [5], the decision is made by an 
optimal linear combination of local decisions of all sensors.

Secondly, the global LLR can be calculated without a fusion center by dis­
tributed signal processing. In the consideration of reliability, survivability, and 
range of coverage, there is an increasing interest in employing multiple sensors 
for these applications [5].

In this section, we will consider a distributed detection problem in wireless 
sensor network without the fusion center. Then, there will be an introduction 
about consensus based approach in the distributed data fusion and decision mak­
ing, in the case of each sensor acquires a scale value of an unknown parameter. 
However, [44] discussed the case when each sensor acquires a vector of unknown 
parameters and the signal is mixed with joint Gaussian white noise, and proposed 
a more sophisticated data fusion scheme. We will show it later.

The detection method should be separated into two stages, training and de­
tection. The training stage is to build the probability density function (PDF) 
for background radiation and cloud reflection signals (modeled by a Gaussian 
mixture model) based on their own observation distributively.

5.4.1 Received Signal M odel

As we know, the cloud concentration variation is caused by turbulence flow, 
which is a random process which brings the cloud particles more far away than 
the molecular motion. Therefore, the associated sensor’s detection at a given 
position is a random process with mean and variance.

Suppose the sensor’s observation has the following form:
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xi =
fj,ito +  ni}o if no cloud exists 

Hi,i +  nlti if cloud exists
(5.4.1)

where Hi,m is the mean value of xi depending on hypothesis m; n^m is the noise of 
xi depending on hypothesis m  and ~  Af (0, crm). Actually, Hi,o and ^,0 denote 
the mean and variance of background noise. Besides, we have Hi,i — Hi,o +  Ht> 
ni l = o +  n t , where Ht and n t denote the signal of mean and fluctuation of 
cloud concentration due to wind turbulence. These parameters is estimated or 
calculated expectation-maximization algorithm in the training stage.

This received signal model doesn’t consider interference of moving objects 
or be covered by obstacles. To deal with this problem, sensors may need to 
build the Gaussian mixture model, which was introduced in [45], Expectation- 
Maximization(EM) algorithm [46] can be adopted to build the Gaussian mixture 
mode.

5.4.2 H ypothesis Testing

Considering the binary hypothesis testing problem with the following two hy­
potheses

1. target is absent.

2. target is present.

The prior probability of these two hypotheses is denoted by P  (Hm) = Pm = 
\ ,m  =  0,1.

Suppose the observation of all sensors x \ , ..., xl is available (for example, gath­
ered by a fusion center), we can have the global log likelihood ratio (G-LLR ) 
test given by

where /  (#1, ...,XL\Hm) is the likelihood function of Hm.
To drive and simplify the expression of global log likelihood ratio, sensor’s 

observation is described by the model in Section 5.4.1. Let

L L R (x i , ..., x l) = log

(5.4.3)

nm =  [ni ,m i  • • • i n L ,m] (5.4.4)
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Um —  ̂ ^  0? L (5.4.5)

If n A f (0, £ m), G-LLR is given by

L L R ( x )  =  i ( x - u 1)T ( S 0- 1 - S r 1) ( x - u 0) +  i / o g ( | | 2 | j  (5.4.6)

=  ( u ^ S ^ 1 -  uJ S q') x  +  i  [log |E0| -  log |Ei|] -

i  (uJ'Er'u!  -  uJEq'u o)  -  i  [xT ( E 71 -  S q 1) x] (5.4.7)

=  ^ Wlx 1 +  C - i [ x T ( E r 1 - S 3 - 1) x ] ,  (5.4.8)
1 = 1

where wi denotes the Ith component of u'J'Xj-1—u j S q \  and C =  |  [log (|£o|) ~  log(\Ei 
|  (u J 'S ^ U i - u J S ^ u o ) .

5.4.3 D istributed Calculation of G-LLR

A common approximation is to assume £1 =  diag (o'? i, 02,11 • • • an(i ^0 —
OqI , (5.4.8) can be reduced to

L L

LL R (x) = wix i +  c  -  9 Y  (°”m “  ao 2) (5'4'9)
1=1 1=1

which can be calculated by two instances of DAC algorithms. Thus, the obser­
vation of sensors is assumed to be independent from one to another. Sensors will 
build the Gaussian signal model separately.

Provided that each sensor knows the weight and ctq, (5.4.9) states that
G-LLR is equal to the weighted sum of xi and x f  plus the constant C. Therefore, 
the distributed average consensus (DAC) algorithms can be used to calculate 
it. Actually, the constant C  changes the threshold of the hypothesis testing and 
can be subtracted from both sides of hypothesis testing equation. Therefore, we 
modify the hypothesis testing into

L L R ( x )  =  ^ 2  W i  X i  -  1 K i  "  a o 2 )  x i ^  7T7T7T -  C  (5.4.10)
1=1 2  1=1 h 0 P ( H i )

where wi is the Ith component of (u fE j-1 — u J S q 1).
The algorithm is as follows: First, each sensor calculates its local LLR indi-
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vidually; Then, each sensors updates its local LLR in the DAC iterations until 
it converges to the consensus value; Finally, after the algorithm converges, the 
global LLR is obtained by multiplying the average local LLRs with the number 
of sensors in the network. When G-LLR is available, cloud declaration could be 
made based on the ML or MAP decision rule.

Challenges o f D istributed Calculation of G-LLR

In a network without fusion center, it is desirable to find L L R (x ) in a distributed 
manner. However, the quadratic form in (5.4.8) contains high-order components 
of x. To calculate the global LLR, E 7 1, Eg1, u x and u0 should be known. 
Specifically, the entries of (E j-1 — Eg *) should be known to nodes.

In a centralized method, E x and u x can be obtained by expectation-maximization 
(EM) algorithm. But it seems not possible to calculate Ej"1 without global in­
formation.

When no cloud exists, the sensor’s signal is only caused by atmospheric 
backscatter and noise. It is described by joint Gaussian distribution A /*(ug,E0).

If these distributions are independent and identical, we have

On the contrary, E x can’t be written in the same form. At first, the cloud 
concentration fluctuating may be different from one sensor to another. Second, 
the fluctuating of cloud concentration is correlated, especially for the sensors close 
to each other. As shown in Figure 5.7a, the correlation is obvious when sensor’s 
observation is shifted with the right time delay. The correlation is the major 
challenge to invert E x.

To make it possible to calculate G-LLR using DAC algorithm, we assume that 
correlations only exist between sensors that are located very close to each other. 
If node i and node j  are not neighbors, their signals have low correlation and are 
approximately not correlated. Therefore, each node can only store the entries of 
( E r 1 — E gx) that related to itself and its neighbors. The last term in (5.4.8) can 
be written into

I. (5.4.11)

(5.4.12)
i=1 j= 1

where [qj] = (E x 1 -  E01), Cy =  0, if v{ £ A/J.
We can find the value of (5.4.8) by the following algorithm:
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Figure 5.5: Sensor’s observation impaired by Gaussian white noise

1. Assume for a node i , it stores the value Xi and cy. As the m atrix is sym­
metric and the entries Cij =  Cji, node i  sends Xi and receives Xj  from all 
node j  in the neighbors set J\fz to compute the value

2. Initialize a DAC algorithms with local values Vi until they converge to the 

average v  =  -j- v i-

4. G-LLR is equal to u  +  v  +  C  multiplied by the number of sensors in the

5.5 Sim ulation

The distributed cloud detection simulation consists of two stages, training and 

detection. In the training stage, sensors are trained to build the Gaussian mix­
ture models, which are important to calculate the L-LLR. After the training, 
when a new observation comes, all sensors calculate L-LLRs and take them into 
DAC iterations to obtain G-LLR. The decision of cloud existence can be made 

distributively once the algorithm converges.

The 3D cloud animation is simulated to generate a bunch of cloud plumes. If 
we observe the cloud for a long time and take the average, the result is Gaussian 
plume model.

The cloud animation is simulated several times to generate enough data, which 
is divided into two groups for both training and testing of system performance.

(5.4.13)
j e  Afi

3. S tart another DAC algorithm to find u  =  Y l i = \  w ix i-

network.
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Because the turbulence flow is a random process, the data generated each time 
is different from the others in the cloud concentration distribution, as well as the 
cloud particles moving track. This provides a very practical testing environment 
for the system.

Some other considerations for this simulation are that sensors are randomly 
distributed in the sensing area and sensor’s detections are impaired by Gaussian 
white noise, which will be introduced in the following.

5.5.1 Sensor’s Observation

Gaussian white noise impairs the received signal when sensor observes the cloud 
concentration. And the source of noise includes: (i) the external noise, arising 
from the incidence of radiation at the detector both from laser scattering and 
from the background; and (ii) the internal noise, arising from fluctuations in the 
detector dark current and thermal noise in the detector load resistor [37]. These 
noise is additive, and the overall noise is treated as a Gaussian white noise denoted 
by A f (uo, cto). In this simulation, these parameters are chosen as Uq = 0.3 and 
(Jo =  0.1, shown in Figure 5.5.

Again, sensors are randomly distributed in the sensing area with the uniform 
distribution. The sensing area in this simulation is defined by pixels in the frame 
which has x > D, where D  is the distance from the cloud source on the downwind 
direction. After they are distributed, to get ready for the DAC algorithm, all 
the nodes will automatically connect their neighbors to obtain a network. DAC 
algorithm is used to obtain G-LLR without copying L-LLRs to all sensor nodes 
in the network. Once G-LLR is available, cloud declaration could be made based 
on the ML or MAP decision rule.

Here we give an example, three sensors are distributed as shown in Figure
5.5. They build a Gaussian mixture model by processing the training data. Here 
we choose K  = 1. It can be 2 or more, depending on how many components of 
the noise in the environment. Then, the testing data generated by another cloud 
animation is passed through all the sensors frame by frame. As shown in Figure
5.6, L-LLRs for the two sensors and G-LLR is given. Before frame 47, all the 
sensors have no contact with cloud, and only noise is presented in each sensor. 
Only after sensor 5i has its cloud contact, G-LLR raises to the first stage. After 
S2 has its contact of cloud at frame 63, G-LLR is increased to an even high level, 
which is larger than the threshold and a strong evidence of the cloud existence. 
Because S3 has no chance to contact with the cloud, its L-LLR is actually less 
sensitive to the sensors signal. Thus, its L-LLR has very low contribution to
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(a) Global LLR and Local LLR
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Figure 5.6: (a) Global LLR vs. Local LLRs and (b) Sensor’s Observation (Only 
frame 40 to 80 are shown)

G-LLR.
Another interesting thing is that, if two sensors S I  and S 2 are put close to 

each other, especially when they are very nearly located on the cloud particle’s 
moving path, their observation have high correlation. For example in Figure 5.5 
and Figure 5.7a. The time delay r  is simply calculated by local wind velocity 

and sensor’s distance. The cross-correlation can be another feature of the moving 

cloud.

5.5.2 Performance of Cloud D etection  Sensor Network

Simulation is running for hundreds of times to give the average performance for 
different number of sensors in the network. The sensor’s positions are chosen 

randomly in the area where x  > 128 ( x  is the index of the pixel). Figure 5.8 gives 

the relative operating characteristic (Also known as a ROC curve) of the detection 
system with different sensors numbers. The curve is represented by plotting the 

fraction of true detection out of the cloud exist vs. the fraction of false alarm out 
of the cloud not exist. When there is only one sensor in operation, a special case
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(a) The distribution of tuples [ x i ( t ) , X 2 (t  — r)], (b) Two sensors observation x i ( t ) , X 2 ( t )
t  is the time delay

Figure 5.7: Correlation of sensor’s observation
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Figure 5.8: Detection relative operating characteristic for different sensor numbers
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is that the position is chosen by hand to make sure the sensor can contact with 
the cloud plume. With this assurance, the one sensor detecting system could have 
performance close to the three sensor detecting system randomly distributed. The 
advantage of using distributed detection with multiple sensors is obvious. As the 
detecting system with more sensors is more reliable to noise which leads to a 
higher performance.

5.6 Summary

In this chapter, we introduced a distributed detection method using wireless 
sensor networks and the DAC algorithms. First, the hypothesis testing based 
on the ML or MAP decision rule is introduced. In the outdoor environment, 
signal of an individual sensor might be corrupted by Gaussian noise or moving 
object with high reflection coefficient, which might raise the false alarm in high 
possibility. Because multiple sensors detection has better performance, it was 
adopted in the cloud detection and the expectation-maximization algorithm is 
used to build the joint Gaussian model of background noise and cloud backscatter. 
Thus, interferences to a few sensors in the network are less likely to raise the false 
alarm. Second, by assuming sensors signals are independent, global log likelihood 
ratio is the average of local log likelihood ratio. The global log likelihood ratio 
in the hypothesis testing is calculated by the DAC algorithms. Each sensor 
calculates the local log likelihood ratio and substitutes it into the DAC iterations 
as the initial local value. The global log likelihood ratio is available to each sensor 
once the DAC algorithms converges.



Chapter 6 

Conclusion and Future Work

This section gives a summary of this thesis and direction for future research.

6.1 Conclusion

In this thesis, at first asymptotic and non-asymptotic DAC algorithms are re­
viewed. The asymptotic algorithmsfirst-order DAC are robust against topology 
changes and their optimization needs to know the network topology, which is 
very difficult to obtain for any individual node and can not change during the 
optimization. Non-asymptotic algorithms can find the average faster in a time- 
invariant network. They use a finite impulse response filter to estimate the con­
sensus value. However, the filter estimation is not reliable and will be interrupted 
once the topology is changed, because outdated information will lead to a wrong 
answer of the filter. Therefore, to choose the suitable DAC algorithm, it depends 
on the network properties.

Second, in Chapter 3, a generalized finite-time DAC algorithm is presented. 
Compared to the previous version of finite-time DAC, the number of iteration can 
be reduced to 2n, where n is the number of nodes in the network. In addition, 
the eigenvalues of the associated weight matrix are not required prior to the 
algorithm. Actually, the number of iterations can be further reduced to the 
number of distinct eigenvalues of the associated weight matrix.

Third, in Chapter 4, we proposed a distributed real-time optimization method 
to increase the convergence rate of asymptotic DAC algorithms. As stated in 
Chapter 4, the optimal parameters are only related to eigenvalues of the Lapla- 
cian matrix associated to the network. Therefore, the key of the optimization 
algorithm is to distributively estimate the eigenvalues. However, numerical errors 
of these parameters due to quantization can decline the algorithm performance.
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To mitigate this effect, we introduce a numerical technique to find a least mean 
square solution. If floating point number in double format is used and the net­
work size is smaller than 32 nodes, the numerical errors of estimated parameters 
after mitigation will only slightly decline the performance of higher-order DAC. 
first-order DACsecond-order DACthird-order DAC Otherwise, the numerical er­
rors will be too large even after mitigation. Generally, parameters optimized for 
the old network are not optimal for the new network or even not located in the 
convergence region. So the DAC algorithm must be reinitialized with conver­
gent parameters to continue the consensus process. Once the network topology 
is stable for a certain time, the optimal parameters are estimated again.

Finally, we introduced a distributed detection of cloud plume using wireless 
sensor networks and the DAC algorithms in Chapter 5. First, the hypothesis 
testing based on the ML or MAP decision rule is introduced. In the outdoor 
environment, signal of an individual sensor might be corrupted by Gaussian noise 
or interfered by moving object. Therefore, single sensor detection is unreliable and 
might raise the false alarm very often. Multiple sensors detection is adopted to 
improve the performance of cloud detection. Thus, interferences to a few sensors 
in the network are less likely to raise the false alarm. Second, if we assume sensors 
signals are independent, the global log likelihood ratio in the hypothesis testing 
can be calculated by the DAC algorithms.

6.2 Future Work

In this thesis, we introduced several DAC algorithms. It seems to be impossible 
to find an algorithm robust against topology changes and faster than finite-time 
DAC in a distributed and dynamic network. It is very demanding for any indi­
vidual node to know the network topology.

Therefore, further research could be carried out to optimize the existing algo­
rithms and make some modifications according to the applications.

First, the distributed real-time optimization to DAC can be applied on a 
distributed system. Before that, a consensus protocol should be developed and 
implemented. We are supposed to deal with some of the problems in practice, 
such as link failure, channel noise, time-delay and asynchronous communication.

Second, the distributed real-time optimization to DAC might be able to ap­
plied in a dynamic network. As stated in Chapter 4, the optimal parameters is 
only related to eigenvalues of the Laplacian matrix associated to the network. 
Therefore, optimized parameters for the old network are usually not optimal or
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not located in the convergence region for the new network. However, simulation 
results show that constant first-order DAC algorithm and second-order DAC algo­
rithm can maintain the convergence in most of the time, even old parameters are 
used. Some research should be carried out to find out the conditions to maintain 
the convergence.

Third, to avoid complex analysis, the network graph is assumed to be sym­
metric in the analysis. However, some algorithms such as the finite-time DAC 
algorithm and the eigenvalue estimation algorithm, can be generalized to the 
case when the network in unsymmetrical. Therefore, the distributed real-time 
optimization might be able to be generalized the unsymmetrical network.

Finally, for the application of cloud detection, the correlation of sensor signals 
can be used to improve the performance of the cloud detection. If sensors are lo­
cated in short distance in the plume, their detections are correlated. In addition, 
interference due to Gaussian noise or moving object has very low correlation be­
tween sensors. Therefore, correlation can be an important property of the cloud 
plume. Besides, a modified Gaussian plume model need to be developed to cap­
ture the the correlation and random properties of the cloud of the concentration 
at different position, mean value. In addition, the parameters of cloud plume 
should be should be treated as unknown random variable, such as the position 
the diffusion coefficient, wind speed and so on. The DAC algorithms need to be 
modified to capture these changes. At the same time sensors need to be able to 
estimate these parameters from their observation.



Appendix A 

Graph and Matrix Theory Review

In this section, some basic concepts of the graph theory and matrix theory will 
be introduced. They are used in the analysis of convergence or performance of 
consensus algorithms. Because consensus algorithms actually relates to a matrix 
iteration, it is necessary to introduce some of these theorems. For full informa­
tion about matrix theory, see [21], and the work [20] states more details about 
Laplacian matrix. However, some useful properties of Laplacian matrix will to 
be introduced here.

A .l Basic Concepts

Let Q =  (V, £, A ) be a graph with n  nodes. The in-degree and out-degree of node 
i are defined by:

n

Din (i) =  ^   ̂d jj (A.1.1)
i

n

Dautii) =  (A. 1.2)
3 = 1

where a^j is the elements of matrix A. This definition states that in-degree of 
node i is the ith column sum of matrix A  and the out-degree of node i is the ith 
row sum of matrix A. And the graph Laplacian matrix £  induced by the Q is the
same as defined before, see (2.1.10). In addition, we can find the relationship of
£  and A.

C = A - A  (A.1.3)

where A is a diagonal matrix A =  [Ajj], Aiyj = 0 for all i ^  j  and A# =  D ^ t  (i). 
Note that we assume the diagonal elements a^  of matrix A  equal to zero for

75
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all i. Thus, the Laplacian matrix is only dependent on the off-diagonal elements 
of A. Moreover, if we assume matrix A  is non-negative, we can benefit from the 
properties of non-negative matrix, and use them in optimization of convergence 
rate of consensus algorithm.

A .2 Irreducibility and Strong Connected Graph

For an undirected graph, the consensus state x* can be achieved if and only if 
the graph is connected. (Note that the consensus is a stable state of the system 
dynamic. For the average consensus problem the consensus state is a state where 
all the network nodes converge to the global average.) But for the directed graph, 
the consensus state can be achieved if and only if the graph is strongly connected.

A directed graph is strongly connected if and only if for any two distinct nodes 
i and j , there exists a path that follows the direction of the edges and connects i 
and j  on the digraph.

D efin ition  A .2.1. For n > 1, an n  x n  matrix A  £ Rnxn is reducible if there 
exists an n x n  permutation matrix P  such that P A P T is in block upper triangular 
form.

Ai,i A1j2)
O A.2,2

where A ^i  is a r x  r submatrix and A 2j2 is an (n — r) x (n — r) submatrix, and 
O is a null matrix, 1 <  r < n. If no such a permutation matrix exists, matrix A  
is irreducible. If n = 1, then A  is reducible if A  =  0, and irreducible otherwise.

The relationship of the irreducible property of matrix A  and the strong con­
nected property of directed graph Q (A) is stated by the following theorem.

T h eo rem  A .2 .1. An n x n  complex matrix A  £ Cnxn is irreducible if and only 
if its directed graph Q (A) is strongly connected. [21]

The proof of this theorem is obvious. If a graph is strongly connected, all the 
off diagonal elements of graph matrix A  cannot be vanished by matrix permuta­
tion. Therefore, matrix A  doesn’t exists the block upper triangular form as given 
in Def. A.2.1.

P A P  = (A.2.1)

A.3 Spectral Radius of a Matrix

Spectral radius of a matrix is one of the basic concepts in the matrix iteration 
theory. It is defined by the largest eigenvalue of the matrix. The matrix iteration
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is very useful in many applications, denoted by A, A2, A 3, —  The power sequence 
is said to be convergent, if and only if lim^oo A k = O, where O is a zero matrix 
with all zero entries. The following theorem states that the convergent property 
is strongly connected with the spectral radius.

T h eo rem  A .3.1. [21] I f  A  £ Cnxn is an n  x n complex matrix, then A  is 
convergent if  and only if p (A) < 1 .

Proof. The proof uses the Jordan form of a matrix. For any matrix A £ Cnxn, 
there exists a nonsingular n x n  matrix T, such that A  reduces into the Jordan 
normal form

r J i O
J 2 (A.3.1)

O ' •. «/m

T ~ lA T  = J  =

where each Jordan block «/,• is a r, x n  submatrix in the form

J i  =

A i 1
Ai 1

A,;

. 1
A,;

(A.3.2)

Thus, matrices J  and A  are similar and have the same eigenvalues A*, i = 1 ,. . .  m  
A direct computation of the power iteration of matrix A  will give us the 

following equation

A k =  T J kT - i  =  T
J k O

4

O •*. J l

1 - 1

because the property of Jordan block, the power of each Jordan block will have 
the form

J?

'A ? 2\ 1

A? 2Aj '
= A? ■ 1

■ 2A4

A?

, if n  > 3
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and more generally, let J k = [cm,n (h &)]> 1 < m , n <  r*, and it has

0 n < m

(■i , k) =  < \ k —n+ m m < n < min (r*f, A; +  m)

0 A: +  m < n < r  *
V

Since p(A )  < 1, and matrix J  shares the same eigenvalue with A , |A<| < 1. This 
leads to lim^oo (i, k) =  0, for all 1 < m  < r<, 1 < n < rit so that the each 
Jordan block is convergent. Therefore, the matrix iteration A k = T J kT ~ l is also

We give the proof of Theorem A.3.1 here as it will be very useful in the 
proof of an convergence conditions theorem for distributed consensus algorithms, 
see Section 2.3.1. At the same time, the Jordan normal form weight matrix 
W k =  T J kT~ l gives the local value vector x(A;) =  Wfex(0) another expression 
in terms of eigenvalues and eigenvectors, which reflects the basic ideas of the 
finite-time consensus algorithms. This will be introduced in Section 2.4.

A.4 Gerschgorin’s Theorem

The calculation of eigenvalues of a matrix A  involves determination of the matrix 
XI — A  and solving a high order polynomial equation. In some situations, for 
example, when the matrix dimension is very large, it is very difficult to determine 
the spectral radius precisely. However, the following theorem of Gerschgorin 
provides an upper bound of the spectral radius.

T h eo rem  A .4.1. [47] Let A  = (a*j) be an arbitrary n x n  matrix. Denote the

convergent. This completes the proof. □

n

(A.4.1)

then all the eigenvalues of matrix A  are lie in the union of the disks.

(A.4.2)

The theorem is well-known, so the proof is omit here. 
The above theorem immediately gives the result of
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Recall the problem of finding the bounds for the spectral radius, the Perron- 
Frobenius theorem provides the nontrivial lower-bound of p(A). In Theorem 
A.4.1 the nontrivial upper bound of p{A)  is found. Together with these two 
results, we can have a conclusion of the spectral radius of a non-negative and 
irreducible matrix given in the following.

Lem m a A .5.1. [21] I f  A  — [o*j] is an n x n  non-negative and irreducible matrix, 
then either

n

Oij = p (A) ,/o r all 1 <  i < n, (A.5.1)
j =i

or

mm ( j > , ^  < P ( A ) <  ' m x  ( £ “« )  ' (A5-2)

T heo rem  A .5 .2 . [21] Let A  =  [a^-] be an n x  n non-negative and irreducible 
matrix, for any x  >  0 , either

( Y l j = i a i , jXj \  ( a \  ^ ( Y ^ j = \ a i,3Xj \  ( \  z, o \mm —------------  < p i A) < max —-----------  (A.5.3)
\ < i < n  \ Xi  /  l < i < n  \ X i

or E n
j = 1 a i , j X j

Xi
= p (A) , for all 1 <  i < n. , (A.5.4)

Moreover,

E n ^ \  /
j = l  a i , j x j  \  . . (  Z ^ j = i a i , j X jmax min —  -----:—  =  p (A) =  min max ——------:—  I (A.5.5)

xeP  l<i<n \ Xi  ]  xeP l<t<n \  X i  )

The equality is valid if we choose the x  equal to the positive eigenvector 
e > 0 corresponding to the eigenvalue p (A). The method shown above will be 
applicable, because it provides us both the upper bounds and lower bounds for the 
spectral radius of a non-negative and irreducible matrix, by a simple algorithm 
without calculating the determination of XI — A.

A .6 Diagonalizable Matrix & Symmetric Matrix

The Jordan normal form of weight matrix W k = T J kT~ l gives the local value 
vector x  (k ) =  W kx  (0) an analytical expression in terms of eigenvalues and eigen­
vectors. Moreover, if the matrix W  is symmetric, the expressions of x(fc) can 
be simplified. Then, some algorithms such as the finite-time consensus, can be 
implemented more easily. In addition, under the the assumption of symmetric



Bibliography

[1] G. Xiong and S. Kishore, “Linear high-order distributed average consensus 
algorithm in wireless sensor networks,” EURASIP J. Adv. Signal Process, 
vol. 2010, pp. 31:1-31:6, February 2010.

[2] ------, “Discrete-time second-order distributed consensus time synchroniza­
tion algorithm for wireless sensor networks,” EURASIP J. Wirel. Commun. 
Netw., vol. 2009, pp. 1:1-1:12, January 2009.

[3] R. Cristescu, B. Beferull-Lozano, and M. Vetterli, “On network correlated 
data gathering,” in Proc. INFOCOM 2004■ Twenty-third Annual Joint Conf. 
of the IEEE Computer and Communications Societies, vol. 4, 2004, pp. 2571- 
2582.

[4] K. Yuen, B. Liang, and L. Baochun, “A distributed framework for corre­
lated data gathering in sensor networks,” IEEE Transactions on Vehicular 
Technology, vol. 57, no. 1, pp. 578-593, 2008.

[5] Z. Chair and R  K. Varshney, “Optimal data fusion in multiple sensor de­
tection systems,” IEEE Transactions on Aerospace and Electronic Systems, 
no. 1, pp. 98-101, 1986.

[6] L. Schenato and F. Fiorentin, “Average timesynch: A consensus-based pro­
tocol for clock synchronization in wireless sensor networks,” Automatical 
vol. 47, no. 9, pp. 1878 -  1886, 2011.

[7] W. Ren, H. Chao, W. Bourgeous, N. Sorensen, and Y. Chen, “Experimen­
tal validation of consensus algorithms for multivehicle cooperative control,” 
Control Systems Technology, IEEE Transactions on, vol. 16, no. 4, pp. 745 
-752, july 2008.

[8] P. Yang, R. Freeman, G. Gordon, K. Lynch, S. Srinivasa, and R. Sukthankar, 
“Decentralized estimation and control of graph connectivity for mobile sensor 
networks,” Automatica, vol. 46, no. 2, pp. 390 -  396, 2010.

82



BIBLIO GRAPHY 83

[9] R. Olfati-Saber and P. Jalalkamali, “Coupled distributed estimation and con­
trol for mobile sensor networks,” Automatic Control, IEEE Transactions on, 
vol. 57, no. 10, pp. 2609-2614, 2012.

[10] S. O. H. F. D. P. Hlinka, 0 . and M. Rupp, “Likelihood consensus and its 
application to distributed particle filtering,” IEEE Transactions on Signal 
Processing, vol. 60, no. 8, pp. 4334 -4349, aug. 2012.

[11] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multive­
hicle cooperative control,” IEEE Control Systems Magazine, vol. 27, no. 2, 
pp. 71-82, 2007.

[12] D. JakoveticI4 and, J. Xavier, and J. Moura, “Weight optimization for con­
sensus algorithms with correlated switching topology,” Signal Processing, 
IEEE Transactions on, vol. 58, no. 7, pp. 3788 -3801, july 2010.

[13] A. Nedic, A. Ozdaglar, and P. Parrilo, “Constrained consensus and opti­
mization in multi-agent networks,” Automatic Control, IEEE Transactions 
on, vol. 55, no. 4, pp. 922 -938, april 2010.

[14] C. Asensio-Marco and B. Beferull-Lozano, “Network topology optimization 
for accelerating consensus algorithms under power constraints,” in Dis­
tributed Computing in Sensor Systems (DCOSS), 2012 IEEE 8th Interna­
tional Conference on, may 2012, pp. 224 -229.

[15] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Sys­
tems & Control Letters, vol. 53, no. 1, pp. 65 -  78, 2004.

[16] S. Sundaram and C. N. Hadjicostis, “Finite-time distributed consensus in 
graphs with time-invariant topologies,” in Proc. American Control Conf. 
ACC ’07, 2007, pp. 711-716.

[17] R. L. G. Cavalcante and B. Mulgrew, “Adaptive filter algorithms for accel­
erated discrete-time consensus,” IEEE Transactions on Signal Processing, 
vol. 58, no. 3, pp. 1049-1058, 2010.

[18] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algo­
rithms,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2508 
-  2530, june 2006.

[19] S. He, H.-C. Wong, and U.-H. Wong, “An efficient adaptive vortex parti­
cle method for real-time smoke simulation,” in Computer-Aided Design and



BIBLIOGRAPHY 84

Computer Graphics (CAD/Graphics), 2011 12th International Conference 
on, sept. 2011, pp. 317 -324.

[20] Russell and Merris, “Laplacian matrices of graphs: a survey,” Linear Algebra 
and its Applications, vol. 197-198, no. 0, pp. 143 -  176, 1994.

[21] R. Varga, Matrix Iterative Analysis. Springer, 2010, vol. 27.

[22] K. Das, “The laplacian spectrum of a graph,” Computers & Mathematics 
with Applications, vol. 48, no. 5-6, pp. 715 -  724, 2004.

[23] S. Kar and J. Moura, “Distributed consensus algorithms in sensor networks 
with imperfect communication: Link failures and channel noise,” IEEE  
Transactions on Signal Processing, vol. 57, no. 1, pp. 355 -369, jan. 2009.

[24] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of 
agents with switching topology and tirne-delays,” IEEE Transactions on Au­
tomatic Control, vol. 49, no. 9, pp. 1520-1533, 2004.

[25] W. Yu, G. Chen, W. Ren, J. Kurths, and W. X. Zheng, “Distributed higher 
order consensus protocols in multiagent dynamical systems,” Circuits and 
Systems I: Regular Papers, IEEE Transactions on, vol. 58, no. 8, pp. 1924 
-1932, aug. 2011.

[26] L. Mackey, “Deflation methods for sparse pea,” Advances in neural informa­
tion processing systems, vol. 21, pp. 1017-1024, 2009.

[27] E. Kokiopoulou and R Frossard, “Accelerating distributed consensus using 
extrapolation,” Signal Processing Letters, IEEE, vol. 14, no. 10, pp. 665 - 668, 
oct. 2007.

[28] W. Prass, Numerical Recipes: The Art of Scientific Computing, 3rd ed. 
Cambridge University Press, 2007.

[29] R. Piziak and P. Odell, Matrix Theory: From Generalized Inverses to Jordan 
Form, ser. Pure and applied mathematics. Chapman &; Hall/CRC, 2007.

[30] R. Olfati-Saber and J. Shamma, “Consensus filters for sensor networks and 
distributed sensor fusion,” in Decision and Control, 2005 and 2005 European 
Control Conference. CDC-ECC ’05. 44th IEEE Conference on, dec. 2005, pp. 
6698 -  6703.



BIBLIOGRAPHY 85

[31] E. Robinson and S. Treitel, Geophysical Signal Analysis. Soc of Exploration 
Geophysicists, 2000.

[32] D. Kempe and F. McSherry, “A decentralized algorithm for spectral analy­
sis,” Journal of Computer and System Sciences, vol. 74, no. 1, pp. 70 -  83, 

2008.

[33] M. Franceschelli, A. Gasparri, A. Giua, and C. Seatzu, “Decentralized 
laplacian eigenvalues estimation for networked multi-agent systems,” in 
CDC/CCC 2009. Proceedings of the 48th IEEE Conference on Decision and 
Control, dec. 2009, pp. 2717 -2722.

[34] J. Zhou and Q. Wang, “Convergence speed in distributed consensus over 
dynamically switching random networks,” Automatical vol. 45, no. 6, pp. 
1455-1461, 2009.

[35] W. Li, H. Dai, and Y. Zhang, “Location-aided fast distributed consensus 
in wireless networks,” IEEE Transactions on Information Theory, vol. 56, 
no. 12, pp. 6208-6227, 2010.

[36] (2011, Sep) Lidar. Wikipedia. [Online]. Available: http://en.wikipedia.org/ 
wiki/LIDAR

[37] P.M.Hamilton, “The application of a pulsed-light rangefinder (lidar) to the 
study of chimney plumes,” Royal Society of London Philosophical Transac­
tions Series A, vol. 265, pp. 153-172, Nov. 1969.

[38] J. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff 
sensing of bioaerosols using intensified range-gated spectral analysis of laser- 
induced fluorescence,” Geoscience and Remote Sensing, IEEE Transactions 
on, vol. 42, no. 4, pp. 865-874, 2004.

[39] J. Bufton, “Development of the lidar controlled-airspace scanner for bio­
aerosol detection,” in Lasers and Electro-Optics, 2007. CLEO 2007. Confer­
ence on, may 2007, p. 1.

[40] N.Kh. and Arystanbekova, “Application of gaussian plume models for air pol­
lution simulation at instantaneous emissions,” Mathematics and Computers 
in Simulation, vol. 67, no. 4U5, pp. 451 -  458, 2004.

[41] J.-S. Lin and L. M. Hildemann, “Analytical solutions of the atmospheric 
diffusion equation with multiple sources and height-dependent wind speed



BIBLIO GRAPHY 86

and eddy diffusivities,” Atmospheric Environment, vol. 30, no. 2, pp. 239 -  
254, 1996.

[42] (2011, Sep) "gaussian plume model java applet". [Online]. Available: 
htt p : /  /  www. geos. ed. ac. uk/abs /  research /  micromet/ j ava /  plume. html

[43] L. J. Shieh, P. K. Halpern, B. A. Clemens, H. H. Wang, and F. F. Abraham, 
“Air quality diffusion model; application to new york city,” IBM  Journal of 
Research and Development, vol. 16, no. 2, pp. 162 -170, march 1972.

[44] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion 
based on average consensus,” in Information Processing in Sensor Networks, 
2005. IPSN 2005. Fourth International Symposium on. Ieee, 2005, pp. 63- 
70.

[45] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for 
real-time tracking,” in Proc. IEEE Computer Society Conf Computer Vision 
and Pattern Recognition, vol. 2, 1999.

[46] T. Moon, “The expectation-maximization algorithm,” Signal Processing 
Magazine, IEEE , vol. 13, no. 6, pp. 47 -60, nov 1996.

[47] R. Horn and C. Johnson, Matrix Analysis. Cambridge Univ Pr, 1990.


