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ABSTRACT
The increased levels of salinity associated with irrigation practices pose a threat to 

crop production, especially where water quality is marginal. Under these conditions plants 

are not only stressed but may also be more susceptible to various pathogens. One strategy 

to maintain yields in such situations, or to increase yields in marginal areas has been to 

develop salt tolerant strains of crops. Such strains should also be resistant to pathogens in 

that environment, including halophytic races of the pathogen that may have adapted to the 

higher salt concentrations. An understanding of the interactions between a crop plant and 

potential pathogens under salinity is, therefore, an important part of a project to develop 

strategies for disease control in crops grown in saline soils.

In this project, plant-pathogen-, plant-salt-, pathogen-salt-, plant-pathogen-salt 

interactions were studied. The interactions between tomato and lucerne and isolates of the 

vascular wilt fungus Verticillium albo-atrum were investigated under non-saline and saline 

conditions. Pathogenicity trials indicated that isolates of VI and V2 were pathogenic to 

tomato, however, the degree of pathogenicity of the isolates were affected by the particular 

cultivar, plant age, method of inoculation and temperature. The pathogenic effects of 

Verticillium on tomato did not increase with increasing spore concentration or when 

isolates were co-inoculated.

NaCl both delayed and reduced the germination rate of seeds and caused severe 

symptoms on plants. The effect of NaCl was also detrimental on the germination and the 

growth rate of the fungus.

Progress of the disease was markedly accelerated by salt stress. Various growth 

parameters were lower in the group of plants both inoculated with V. albo-atrum & treated 

with NaCl than they were for plants inoculated only with V albo-atrum or only treated 

with NaCl. As a defence response, an increase in PAL activity occurred when lucerne cells 

were treated with an elicitor from V. albo-atrum\ a further increase was evident when cells 

were exposed to both elicitor and NaCl. However, the increase in PAL activity was 

minimized both at high concentrations of elicitor and NaCl.

Disease-resistant and salt-tolerant plants showed resistance to VI under non-saline 

and saline conditions; however, disease-susceptible and salt-tolerant plants did not show 

resistance to VI under those conditions. Development of salt tolerant crops should 

therefore, involve selection of strains that maintain or improve its resistance to pathogens.
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GENERAL INTRODUCTION

Humans have relied on plants for many centuries. Many civilizations are 

dependent on crops such as rice, wheat, barley or com for their survival. People not only 

rely on plants for their own food but they also use them for animal feed. So, everything 

we do is affected either directly or indirectly by plants. However, plants are also affected 

by pathogenic or non-pathogenic stresses (Hamilton et al., 1990). For example, plant 

diseases often seriously limit agricultural productivity and have therefore influenced the 

history and development of agricultural practices. On the other hand, limitation on crop 

productivity arising from non-pathogenic stress, such as adverse temperatures, frost 

damage, air pollution and accumulation of salt, are also important problems in 

agricultural areas. Among these stresses, osmotic or toxic stress due to salinity is the 

most serious problem that limits plant growth, particularly in arid regions (Fisher & 

Turner, 1978; Zekri & Parsons, 1990). Such regions are affected seriously by salinity 

(soil containing high concentrations of soluble salts) resulting in a decrease in the area of 

arable land (Flowers & Yeo, 1986).

Today, ca. 20% of the world’s cultivated land and nearly half of all irrigated lands 

are affected by salinity (Rhoades & Loveday, 1990). This is a substantial portion of the 

world’s land (Chowdhury et al., 1993). For example, about 25-30% of the crops grown 

in the United States suffer from severe salinity. On the other hand, semi-arid regions in 

Asia, such as those irrigated by the Indus in Pakistan, the Tigris and Euphrates flowing 

through Syria and Iraq, and the Ganges system in the North-West of India have the worst 

salinity problems (McWilliam, 1986). These figures might increase in the future and 

indicate the magnitude of the problem that must be tackled if  future global food needs are 

to be met.

Since the use of arable land is decreasing, in the future, economically important 

plants may be bred for their resistance to disease and non-pathogenic stress agents and 

should be made commercially available. However, some economically important plants 

may tolerate abiotic stress factors but they may not show resistance to the effect of 

pathogens or they may show resistance to the effect of pathogens but they may not 

tolerate the abiotic stress factors. So, it is important to generate such crops for resistance

1



to diseases and environmental stresses. To do this, it is important to understand the 

physiological responses and the defence mechanisms such plants express under the sorts 

stress conditions in which the plants are required to grow.

The family Fabaceae includes many valuable forage plants, among them medics, 

members of the genus Medicago, which contains more than 50 annual and perennial 

species. One of the species of this genus is Medicago sativa, (lucerne or alfalfa), 

described as “The Queen of the Forages”. It originated near Iran, but related forms and 

species are found as wild plants scattered over central Asia and into Siberia (Stuteville & 

Erwin, 1990). The first recorded reference to lucerne was found on brick tablets of 

Hittite sites in Central Anatolia around 1300 BC. From that time lucerne was spread 

throughout Asia and Europe and into America. High nutritional quality is one of the 

most important characteristics of lucerne. It is rich in protein, vitamins (A and D), and 

minerals and has a very high yield potential compared with that of other forage crops. 

Thus, it is prized by growers as a primary component in dairy cattle rations and is an 

important feed for horses, cattle, sheep, and milking-goats. For example, lucerne meal is 

made into pellets and used in mixed feeds for cattle, poultry and other animals. It may be 

grown as a cover crop, where it may increase the yield of succeeding crops, and improve 

soil structure and tilth. It also controls weeds in subsequent crops (Heichel et al., 1981). 

The presence of effective nodules on the roots of the plants is essential to a vigorous, 

productive stand. These nodules, formed by bacteria (Rhizobium meliloti), are able to fix 

nitrogen from the air for use by the lucerne plants.

A mature lucerne plant may have from 5 to 25 stems, which usually reach a height 

of 38-63 cm, and a deep root system that may reach depths of 2 to 6 m (Heuser, 1931; 

Brown & Miller, 1978), thus protecting the plant from drought (Williams & Stiles, 1962; 

Stiles, 1966). Stems are branched and slender and bear trifoliate leaves. A wide range of 

soil and climatic conditions are suitable for lucerne, but for best production it requires a 

well-drained soil with nearly neutral pH and good fertility (Hanson et al., 1988). 

However, lucerne is affected by a wide range of organisms. For example, more than 20 

diseases are reported as serious in lucerne, these include fungal and bacterial wilts, leaf 

spots, crown and root rots, viruses, nematodes and insects. Wilts that are significant in 

lucerne include bacterial wilt caused by Clavibacter michiganensis subsp. insidiosus,

2



fusarium wilt caused by Fusarium oxysporum Schlecht. f. sp. medicaginis and 

verticillium wilt caused by Verticillium albo-atrum Reinke & Berth (Stuteville & Erwin, 

1990). On the other hand, lucerne is also exposed to many types of environmental stress 

such as salinity and drought. Although, lucerne is recognized as being moderately salt 

tolerant (Maas & Hoffman, 1977) this response varies according to genetic and climatic 

factors.

Another economically important plant group is the Solanaceae family, which 

includes Lycopersicon esculentum (tomato). It is cultivated worldwide in a variety of 

environments. The genus Lycopersicon exhibits a vast reservoir of genetic variability 

that remains largely unexploited. Some have disease resistance and salt tolerance and are 

now mostly commercially available. They have been derived from related species of 

Lycopersicon. Some of these species cross readily to L. esculentum, but a few others 

have compatibility barriers, which make gene transfer by sexual means more difficult. 

The tomato and its close relatives are believed to have originated in the mountainous 

regions of Andes (Peru, Ecuador and Chile). Domestication of the tomato is believed to 

have occurred with the early civilizations of Mexico. European explorers brought the 

tomato and disseminated it throughout Europe and Asia in the sixteenth century.

The global demand for food and raw materials produced by agriculture requires 

the further study and optimal utilization of soil resources of the earth. Thus, improving 

resistance of plants to pests, disease and environmental problems has been the main 

objective of some plant scientists. To overcome problems with salinity in cultivated arid 

areas, generation of salt-tolerant plants, and new technological developments, such as 

drainage improvements and reclamation, have helped. However, classical plant breeding 

has had limited success in improving the salt tolerance of crop species (Epstein et al., 

1980). Consequently, for lucerne, many laboratories have selected salt-tolerant cells 

from cultures (for example, Croughan et al., 1978; Winicov, 1991; Shah et al., 1993; 

Chaudhary et al., 1994; Al-Rawahy, 2000). In some studies, M. media Pers. (cv. 

Rambler) was initiated from leaflet explants and used to produce cell lines tolerant to 

high levels of NaCl (Chaudhary, 1996; Al-Rawahy, 2000). The plants regenerated from 

salt adapted cell lines were found to have more tolerance to NaCl than the unselected 

plants.
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It is possible that salt-tolerant cultivars of lucerne or tomato will be of economic 

importance in the future. On the other hand, lucerne or tomato is affected by various 

diseases, particularly those in which Verticillium is the causal agent (Isaac, 1957; Basu, 

1987; Pennypacker, 1991; Esyanti, 1993) and may still be affected under saline 

conditions. So, it is important to determine the pathogenicity of the fungus under saline 

conditions and if acquisition of salt tolerance affects disease resistance under normal and 

saline conditions. It is already known that salinity decreases the yield in salt-affected 

areas (MeWilliam, 1986; Chaudhary, 1996; Dikilitas & Smith, 1999a). The 

pathogenicity of existing Verticillium strains or evolution of a new strain of the fungus 

that is adapted to saline conditions may cause a reduction in crop yield in salt-affected 

soils, in addition to the deleterious effect of salt. This will make the situation worse. 

Because, plants showing resistance to pathogens under saline-free conditions may be 

exposed to salinity in the future due to gradual accumulation of the salt in the soil. Under 

these conditions, reduction in the resistance of plants against pathogens may be expected 

or more aggressive pathogens may evolve. At that time, salt tolerant plants may not be a 

solution (Dikilitas, 1997).

Since little is known about the complex interactions between salinity and a plant 

and a pathogen (Verticillium sp.), this work was carried out to establish a basis for future 

work. To study any interaction between the fungi and plants, or fungi and salinity, or 

plants and salinity, or a combination of the agents in a complex environmental system, it 

is important to study each factor on its own, in order to gain an understanding of the 

problem before looking for a solution. Therefore, this study has started by giving a brief 

idea about the relevant subject to Verticillium spp., salinity and lucerne or tomato.

This thesis includes the result of studies of the interactions between isolates of the 

phytopathogenic fungus V albo-atrum Reinke & Berth, and drought-resistant & sensitive 

cultivars of tomato plants (Z. esculentum Mill.), and between the pathogen and various 

cultivars of lucerne (M. sativa L. & M. media Pers.) in vitro and in vivo conditions.

The results of experiments related to the pathogenicity against lucerne or tomato 

plants maintained in a growth chamber-, greenhouse- and laboratory conditions are 

included in Chapter 3, which contains the results of studies of the effect of-; temperature 

on fungal growth and the pathogenicity of fungus on plants; inoculation methods and
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spore concentration on infection; a comparison between USA and European isolates of 

Verticillium on the pathogenicity of tomato, and the progress of disease development in 

plants inoculated with one of two isolates of V albo-atrum (VI and V2). The 

pathogenicity of V albo-atrum, isolate VI to cultivars of M. sativa and the salt tolerant 

strains of M. media Pers. cv. Rambler was also investigated over a 3-year experimental 

period to determine whether selection for salt tolerance changes the resistance of M 

media to verticillium wilt.

Chapter 4 includes the effects of NaCl on lucerne and tomato seeds during 

germination and post-germination stage. In vitro studies on various physiological and 

pathological parameters of V albo-atrum on a substrate enriched by Na+ and CT ions 

were also evaluated as well as the effect of other antifimgal compounds.

Chapter 5 includes the interactions between plant, fungus and NaCl. Experiments 

were performed on young and mature and on various tomato cultivars including salt- and 

disease-susceptible ones in hydroponics. Physiological, pathological, biochemical and 

microscopic analyses were made on infected tissues to investigate whether a correlation 

exists between salt stress and pathogenicity. Pathogenicity of VI, V2, USA isolates and 

salt-adapted strains of V albo-atrum on tomato plants was investigated under non-salt 

and salt conditions. The response of lucerne cultivars to V. albo-atrum under salt- and 

non-salt conditions was also investigated in a hydroponic system. Regenerated plants 

from the salt-adapted cell lines of lucerne (cv. Vertus) were tested for the resistance to V 

albo-atrum. The effect of an elicitor, derived from V albo-atrum, on phenylalanine 

ammonia-lyase (PAL) activity on lucerne cells subjected to NaCl was also investigated. 

Finally, the hypersensitivity of lucerne cells was tested under NaCl conditions.
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C H A P T E R  I 

I N T R O D U C T I O N



1.1. Verticillium.
The increased incidence of disease caused by species of Verticillium (a cause of 

vascular wilt disease) during the last century reflects the fact that the genus has become a 

very important plant pathogen to a wide range of economic crops including vegetables, 

field and ornamental crops such as cotton, lucerne, potato, cucumber, strawberry, tomato, 

eggplant, olive, pistachio, pea, pear, strawberry, hops, antirrhinum, dahlia, mint, red 

pepper, okra, chrysanthemum and Brussels sprouts (Schnathorst, 1981; Tjamos, 1989; 

Potti, 1998). For example, V. albo-atrum is a major problem in areas cultivated with 

lucerne, especially in Europe and North America (Heale et al., 1979; Pennypacker & 

Leath, 1986). On the other hand, the effect of V. albo-atrum on tomato, similar to that of 

lucerne, has commonly been reported on greenhouse grown tomato (Lorenzini et al., 

1997). Therefore, studies to improve both the quality of lucerne & tomato and their 

resistance to Verticillium have been of great economic importance. Different cultivars in 

a species have different levels of resistance to pathogens (Bell, 1981). One approach for 

improving resistance has, therefore, been to test different cultivars of a species with a 

view to reducing the impact of Verticillium.

1.2. Taxonomy of Verticillium.
A description of the genus Verticillium was first made by Nees von Esenbeck 

(1816) based on the morphology of the conidiophores. The conidiophores are erect, 

septate and branched with the short branches being arranged in whorls to form the typical 

verticillate conidiophores. Conidia are arranged singly, terminally and before falling 

away might for a short time be associated in mucilaginous spore balls at the end of 

branches. They are unicellular elliptical, ovate or spherical and might be hyaline or 

slightly pigmented. The mycelium is septate. Because there is no sexual stage the fungus 

was first classified in the Deuteromycotina, Fungi Imperfecti (Barnett, 1955). However, 

a few sexual stages in this genus have been recorded in the group Nectria inventa (Hastie 

& Heale, 1984).

There was some confusion between Verticillium and the genus Acrostalagmus 

that was identified by Corda (1838) in the early literature. Acrostalagmus also produced 

verticillate conidiophores. However, Hoffman (1854), presented evidence to show that
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there was no real difference between them and subsequent workers (Klebahn, 1913; 

Carpenter 1918) strengthened the idea that the two genera should be classified under the 

name of the genus Verticillium. Under the Verticillium genus, about 40 species have 

been described (Mace et al., 1981).

The description of V. albo-atrum was first made by Reinke & Berthold (1879) 

who isolated the pathogen from a diseased potato plant in Germany. They observed that 

the fungus had swollen conidiophores, darkened at the base, and branched in a whorl in 

brown infected tissues. Conidia were hyaline and aseptate. With increasing growth, 

septation in the hyaline mycelium increased and they became shorter, darker, and 

torulose resulting in the formation of short black cells. They called these black cells 

“Dauermycelien or Sklerotein” and they regarded them as the resting mycelium by which 

the fungus could survive in the soil and in plant debris in harsh conditions of climate.

In 1913 Klebahn isolated from diseased dahlia plants a species of Verticillium that 

was different from V. albo-atrum because it produced microsclerotia and no dark 

pigmented resting mycelium. He named it V. dahliae. V. dahliae is more effective than 

V. albo-atrum in the warmer climatic regions of the world. V. dahliae and V. albo-atrum 

are the most important species of the genus and both species cause highly destructive 

diseases. V. dahliae has also been isolated from olive (Saydam & Copcu, 1972, 1973); 

sesame and okra (Esentepe et al., 1972); avocado, mango, some vegetables and cotton 

(Karaca et al., 1971).

In 1919 Pethybridge isolated two further Verticillium species associated with 

potato disease. These species produced neither resting mycelium nor microsclerotia. 

They produced dark pigmented chlamydospores either singly or in a group, terminally or 

intercalary in rows of three or four. He called these V. nigrescens (small 

chlamydospores, 7-10 pm in diameter) and V. nubilum (large chlamydospores, 8.5-15.5 

pm in diameter). At first, they were described as saprophytes on potato, but Isaac (1949) 

showed that they were mild pathogens. V. nigrescens is a common soil fungus and a 

typical soil inhabitant, (mainly in Europe), that infects potato, tomato, hop, eggplant, and 

chrysanthemum. In contrast, V. nubilum has been recognized as a true soil inhabitant, 

only weakly pathogen to potato, tomato and antirrhinum (Isaac, 1956).
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In 1951, Mason & Hughes renamed Stachylidum theobromae, which causes 

disease of banana, V. theobromae, based mostly on its phialide shape and size and the 

structure of the conidiophores.

In 1953, V. tricorpus was discovered and described by Isaac. He said it was 

pathogenic to tomato and formed, in addition to young, yellow prostrate mycelium in 

culture, all three types of resting structures viz. resting mycelium, microsclerotia and 

chlamydospores. In 1965, Smith supported the view that this isolate should be classified 

as another species of Verticillium.

In 1954 and 1958 V. intertextum and V. lateritium were discovered by Davies and 

Abraham, respectively.

Although speciation in Verticillium is based both on the type and the size of 

resting bodies, and the characters in culture, the taxonomic status of V. albo-atrum and V. 

dahliae in particular had been controversial since 1913. Some, such as Bewley (1922), 

Rudolph (1931), Caroselli (1957), Basu (1961) and Platt (1986) stated that the 

microsclerotial and the resting mycelium forms should be regarded as the characteristics 

of one large species called V. albo-atrum. They concluded that these two species were 

variants of V. albo-atrum. Others, Klebahn (1913), Van der Meer (1925), Van Beyma 

Thoe Kingma (1940), Robinson et al. (1957), Talboys (1960), Smith (1965), Isaac 

(1967), Clarkson & Heale (1985), Giybauskas & Dutky (1987); Thomson & Buhler 

(1988), remain convinced that both should be kept as separate species because of their 

different morphological and physiological features.

In 1967, Isaac investigated differences between V. albo-atrum and V. dahliae 

from many geographical areas in the UK, USA, Canada, Italy and Germany and he found 

that resting bodies of the two species remained constant and different. V. dahliae 

frequently formed very short strand of dark septate hyphae in direct association with 

microsclerotia. On the other hand, V. albo-atrum after three weeks growth in culture 

developed knots. Such knots were not formed from budding and were never observed in 

V. dahliae.

Heale & Isaac (1965) stated that continuous light could inhibit the formation of V. 

albo-atrum resting mycelia but not V. dahliae microsclerotia. Puhalla (1973) used UV 

irradiation and he stated that V. albo-atrum was more sensitive to light than V. dahliae.
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Talboys (1960) suggested that selective media, prune-lactose-yeast extract, could 

discriminate between V. albo-atrum and V. dahliae. In V. albo-atrum the colony surface 

appeared grey and fibrous while V. dahliae produced fluffy mycelia.

Based on a comparative study of the morphology, physiology and pathogenicity 

of several isolates of Verticillium, Isaac (1953 and 1967) concluded that there were five 

distinct species of Verticillium viz:-

V. albo-atrum (R. & B.) 

V dahliae (Kleb.)

V. nigrescens (Pethybr.) 

V. nubilum (Pethybr.)

V. tricorpus (Isaac)

- forming dark pigmented torulose resting mycelium,

- forming dark pigmented microsclerotia,

- forming small chlamydospores,

- forming large chlamydospores,

- forming resting mycelium, microsclerotia and 

chlamydospores.

Work by Milton et al. (1971) using polyacrylamide gel electrophoresis on the 

buffer-soluble proteins from various Verticillium species indicated that the patterns of 

proteins observed were different between these species and no single protein band was 

common to all five isolates.

In 1973, Levy provided further evidence to support separation of V. albo-atrum, 

V. dahliae, V. nigrescens and V. tricorpus into separate species.

Carder & Barbara (1991) used molecular variation and restriction fragment length 

polymorphism’s (RFLPs) to support Isaac’s (1967) conclusion. Nazar et al. (1991); Hu 

et al. (1993); Moukhamedov et al. (1994); Mahuku et al. (1999) used polymerase chain 

reaction (PCR) to detect differences between Verticillium species. The results of their 

studies accurately revealed substantial differences between V. albo-atrum and V. dahliae.

It is generally accepted that one of the most important parameters used to 

differentiate between V. albo-atrum and V. dahliae is the temperature reaction. Isaac 

(1949) studied the relationship between temperature and growth in several isolates of V. 

dahliae and V. albo-atrum and one isolate of V. nigrescens. He stated that the optimum 

temperature for V. albo-atrum and V. dahliae did not differ (22.5 °C) whereas V. 

nigrescens grew well between 22.5 °C and 25 °C. He also observed that the growth of V.
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albo-atrum declined above 25 °C while V. dahliae and V. nigrescens grew relatively well 

at 30 °C. He also stated that none of these fungi grew at 35 °C nor below 4.5 °C. Similar 

reports were also made by Martinson & Englander (1967); Puhalla & Mayfield (1974); 

Soesanto & Termorshuizen (2001). In addition, Mamluk & Skaria (1979) compared the 

growth rate and the formation of resting bodies for 15 days at 28 °C and found that V. 

dahliae grew normally and formed true microsclerotia while V. albo-atrum grew and 

formed ‘Dauermycelia poorly’. They concluded that the rate of growth in culture and the 

formation of resting bodies were the most important and reliable characteristics in 

identifying Verticillium spp.

Raynal & Guy (1977) mapped the distribution of the disease of V. albo-atrum in 

Europe. From their results, Heale et al. (1979) reported that the pathogenicity of V. albo- 

atrum is restricted to latitudes between 43 °N and 46°N. The distribution of the disease in 

the northern states of the western USA and British Colombia corresponds approximately 

in latitude with the European distribution. The disease of V. albo-atrum has also been 

reported in the southern hemisphere in New Zealand (Smith, 1965) at a similar distance 

from the equator. This distribution clearly reflects a temperature effect, explained by the 

fact that V. albo-atrum is avirulent when temperatures exceed 25 °C (Isaac, 1949; Ingle & 

Hastie, 1974).

1.3. Vascular wilt disease.
Vascular wilt diseases are widespread- and very destructive- plant diseases; 

appearing as wilting, browning and dying of the leaves followed by death. Wilts occur as 

a result of the presence and activities of the pathogen in the xylem vascular tissues of the 

plant. The diseases may be caused by such species of soil-borne fungi as Fusarium, 

Verticillium and Ceratocystis, and bacteria such as Ralstonia, Erwinia and Clavibacter 

(Dey & Van Alfen, 1979; Schnathorst, 1981; Agrios, 1988). Each of them causes 

widespread and severe diseases on several important crop, forest, and ornamental plants. 

However, Verticillium and Fusarium are the two most important groups of soil fungi that 

are responsible for the wilting of many crops of economic importance. The genus 

Fusarium survives in warmer climates, while Verticillium develops well in cooler 

temperatures (Buxton, 1957; Nadakavukaren & Homer, 1961; Hwang et al., 2000). The
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pathogens frequently disturb the flow of water (transpiration) and nutrients 

(translocation) in the plant and consequently cause wilting. The earliest reports of 

vascular wilt disease occurred in the early 1900s (Mace et al. 1981).

Ludwig (1952) stated that blockage and wilting in vascular wilt disease is 

associated with the accumulation of a hyaline substance in the vessels. In later studies by 

Beckman (1964 & 2000); and Van der Molen et al. (1987), the formation of gels in 

vessels was observed as a general response to infection by both host-specific and non

host specific pathogens. Duniway (1971) studied the water relations of fusarium wilt 

(FW) of tomato, and showed that leaves of diseased and water-stressed plants wilted at 

similar values for water potential, and that the wilting which occurred during disease 

development was caused by water stress. He also showed that the transpiration rate of 

Fusarium-infected plants was less than that of healthy plants. He concluded that the 

transpiration was not the main reason for the wilting of diseased plants.

1.4. Verticillium wilt (VW).

The most important species of Verticillium are; V. albo-atrum and V. dahliae 

(Isaac (1967). Especially, V. albo-atrum is a more virulent pathogen than V. dahliae in 

the cool-temperate areas of the world (Heale et al., 1979; Platt & Arsenault, 2001).

-life cycles:

The life cycle of pathogenic Verticillium spp. can be divided into dormant-, 

parasitic- and saprophytic stages. Additional phases within some of these three stages 

can also be identified: germination of resting structures in soil; penetration of roots; 

colonisation of the root cortex and endodermis, and movement to the xylem; colonisation 

of the xylem of stems and leaves; symptom expression; death of host tissue; and 

formation of resting structures (Schnathorst, 1981).

- survival structures:

Heale & Isaac (1963); Heale (1988) reported that the resting mycelium of V. albo- 

atrum could remain viable for 9 months in pieces of decaying lucerne root and in shoot 

tissue buried in 31 cm soil, for 7 months at 15 cm and for 5 months at the surface. They 

also concluded that constantly changing conditions of moisture and temperature on the 

soil surface decreased the viability of the resting mycelium. On the other hand, Basu
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(1987) demonstrated that V. albo-atrum was viable between -5  °C and 5 °C in sterile or 

non-sterile soil for 3-years. However, the longevity of the fungus declined with 

increasing temperature. The fungus was capable of surviving for 18 months in sterilized, 

and 8 months in non-sterilized soil at 15 °C. But the longevity was reduced down to 8, 7 

and 6 months at 25-, 30- and 35 °C, respectively. One of the possible reasons that the 

fungi may survive for some period is that they may exhibit dormancy. For example, 

Isaac & MacGarvie (1962, 1966) reported that resting structures of Verticillium spp., 

except V. nigrescens, exhibited dormancy. Vitamins, amino-acids, enzymes, detergents, 

soil extracts, root exudates, heat shock or freezing and thawing failed to induce 

germination. However, soaking resting structures in distilled water for 12 hours and 

plating them on nutrient agar resulted in a high percentage of germination. They 

suggested that dormancy resulted from inhibitors which needed to be removed by one or 

more agencies prior to germination. Similar findings were also made by Schnathorst, 

1981.

The parasitic stage of the fungus starts when infecting hyphae gain entrance to the 

plant. In order for the pathogen to initiate the infection, the roots have to be in close 

proximity to the infection hyphae, since Verticillium spp. have been shown to be poor 

saprophytes in field soil (Schnathorst, 1981; Agrios, 1988). For example, Sewell (1959) 

observed that hyphae of V. albo-atrum in soil were not found more than 2 mm away from 

germinating propagules. V. albo-atrum is capable of entering unwounded tomato and 

lucerne plants (Flood, 1980; Dikilitas, 1997) and is capable of directly penetrating cells 

which give rise to root hairs (Smith et al., 1988) and penetrates the epidermal cells in the 

region of elongation. Entry of the fungus sometimes is accomplished through wounds on 

the root or stem caused by mechanical injury, or insect damage (Pegg, 1985; Garas et al., 

1986; Dikilitas & Smith, 1999b). Huang et al. (1986) reported that the fungus might also 

penetrate leaves through wounds.

The pathogen produces both cellulolytic and pectolytic enzymes along with other 

enzymes that may attack the cell walls of host tissues, the enzymatic breakdown products 

may be used as a food base, and enzyme action may facilitate penetration of cell walls 

(Green, 1981; Pegg & Brady, 2000). Once entry to the root is gained, hyphae grows both 

inter- and intracellularly across the root cortex to the endodermis and ultimately reaches
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the xylem. From here, the fungus distributes within the plant mainly by means of the 

transpiration stream, especially in the vessel lumen through pits (Schnathorst, 1981; 

Garas et al., 1986; Smith et al., 1988).

Infection and colonization of the host tissue is favoured by relatively cool 

temperatures; this is why most symptom expression is observed in the spring. The fungus 

becomes less active during hot weather. In fact, it is very difficult to isolate Verticillium 

from diseased plants during the summer months. If the plant is vigorous, it may be able 

to restrict the fungus within certain portions of the vascular system due to increased 

enzymatic activity and it may also produce new fungus-free vascular tissues for water 

movement. However, continued invasion by the pathogen will result in death of plants 

(Tisserat, 1998).

When the host dies the fungus passes the saprophytic stage in the dead tissue or in 

the soil (Stuteville & Erwin, 1990).

1.4.1. VW o f lucerne (M. sativa L.).

The disease became more important and spread in Europe after the 1950s (Heale, 

1985). The disease was first recorded in Sweden in 1918 (Hedlund, 1923) and then in 

Germany in 1938 (Richter & Klinowski, 1938). After World War II, there were several 

reports of the disease, viz. from Denmark in 1945 and Holland in 1947 (Hansen & 

Weber, 1948), and from France in 1950 (Kreitlow, 1962). The disease spread rapidly 

throughout Europe and the first report of the disease in Britain was made by Noble et al., 

in 1953. In Britain, the disease affected 12,800 ha in 1942, 44,000 ha in 1944 and 

111,000 ha in 1954. However, the area affected declined to 15,000 ha in 1970 (Rogers,

1976). Outside the European Continent, the disease was reported in Canada by Aube & 

Sackston in 1964 and it was reported in Washington State, USA in 1976 by Graham et 

al., 1977. The disease was also reported in other parts of the United States in the same 

year. Delwiche et al. (1981); Thomson & Buhler (1988) reported the disease in 

Wisconsin (1980) and in Utah (1985) respectively. Erwin & Khan (1988) reported that 

the disease had now spread through the entire northern lucerne-growing region of the 

United Sates, as far south as southern California.
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Isaac (1957), Isaac & Lloyd (1959); Dixon (1981) made a detailed description of 

the disease. They established that in the disease, a high degree of specialisation exists in 

the pathogens. Isaac (1957); Isaac & Lloyd (1959) reported that only V. albo-atrum and 

V. dahliae from lucerne were capable of causing infection in lucerne; other isolates of 

both species obtained from other host plants were incapable of causing infection. Those 

results were also supported by Khan (1977); and Flood (1980). Barasubiye et al. (1994) 

reported host-specialized isolates of Verticillium; the strains from lucerne were more 

virulent on lucerne than the potato strains, though only the potato strains were virulent on 

potato. Tsror et al. (1998) reported that a highly virulent isolate of V. dahliae from 

paprika caused severe reduction in height in potato, watermelon and tomato. However, 

isolates from those plants neither produced symptoms nor a reduction in height in paprika 

plants. Similarly, Patemotte & Vankesteren (1993) reported that resistant tomato 

cultivars were seriously affected by new aggressive isolates but not by a control isolate.

The response of different cultivars of lucerne to infection by V. albo-atrum may 

be different. This is true even within cultivars. For example, various levels of resistance 

to V. albo-atrum was found to vary from one plant to another within the same cultivar 

(personal communication with Assoc. Prof. Barbara W. Pennypacker, USA, 2000). This 

was attributed to the genetic heterogeneity of the crop (Pennypacker, 2000). Latunde- 

Dada et al. (1987) observed that callus cultures derived from individual seedling of 

lucerne exhibit differential response to infection by the wilt fungus V. albo-atrum. 

Newcombe & Robb (1988) separated cultivars of lucerne into three lines according to 

their responses to V. albo-atrum;

-highly resistant symptomless plants from which the pathogen could not be

reisolated 3 months after inoculation,

-moderately resistant, symptomless plants from which the pathogen could be

reisolated up to 7 months after inoculation,

-susceptible plants which died within 6  weeks following inoculation.

Pennypacker et al. (1988 & 1990); Pennypacker & Leath (1993) studied the 

growth and physiological response of resistant lucerne clones inoculated with V. albo-
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atrum and found that V. albo-atrum caused significant reduction in height, percentage of 

flowering, stem, leaf and aerial biomass in disease-free lucerne plants.

Histological examination has shown that V. albo-atrum sporulated freely in the 

xylem vessels facilitating rapid colonization of the host (Pennypacker & Leath, 1983).

Papadopoulous et al. (1991) used histochemical analysis to study the reaction of 

susceptible and resistant cultivars of lucerne to Verticillium species and found that the 

level of stem colonization in resistant cultivars was slightly lower than in susceptible ones 

during the first 2 weeks following inoculation. Susceptible seedlings died during the 8  

weeks-period post-inoculation. Pennypacker & Leath (1986 & 1993) observed that 

infected plants had discontinuous alterations in xylem vessels. They observed that 

protoxylem and some metaxylem vessel elements were obliterated by hypertrophied 

xylem parenchyma.

1.4.2. VW o f tomato (L. esculentum Mill.).

Tomato is a widely distributed annual vegetable crop, which is consumed fresh, 

cooked or after processing: by canning, making into juice, pulp, and paste or as a variety 

of sauces. The tomato crop is adapted to a wide variety of climates ranging from the 

tropics to within a few degrees of the Artie Circle. In this broad environment, tomato 

cultivated areas are affected by environmental and biotic factors.

The first report for VW of tomato was made by Jagger & Steward in 1918. Since 

then the disease has been reported in many parts of the world. V. albo-atrum enters 

tomato through root epidermal cells or wounds in stems or roots as in the case of lucerne. 

Since there are similarities between VW of tomato and lucerne, the detailed symptoms of 

the disease and its occurrence are dealt with in the Symptoms section.

1.5. Symptoms.

There is a great diversity of symptoms involved in vascular wilt disease resulting 

from either the presence of the pathogen or its propagules in the host vascular tissue 

(Mace et al., 1981). Isaac (1992) reported that the vascular wilt diseases caused by 

members of the Deuteromycotina are particularly destructive and are very rapid in their 

effects. If the plant is resistant to disease, no-symptoms or a few symptoms might be 

observed and recovery may generally start in one or two days. On the other hand, if the
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plant is moderately resistant, recovery may be observed 3-4 weeks after infection, 

depending on the environmental conditions and plant age (Dikilitas, 1997; personal 

communication with Dr. J.M. Milton, 1998). If the plant is susceptible, wilting 

progresses upwards until the whole plant appears desiccated; generally no recovery is 

observed and finally death occurs (Dikilitas, 1997; Korolev et al., 2000).

An early description of the disease was made by Isaac (1957), who reported that 

irrespective of the identity of the pathogen, the external symptoms of wilt in all plants 

were identical.

- external symptoms',

Symptoms of VW can develop throughout the growing season, but are more 

common in late spring or early summer or in the autumn. The disease can be readily 

recognised in the field, though in the later autumn months, because of similarities 

between disease symptoms and the natural die-back that occurs in healthy plants, 

recognition of the disease can become difficult (Isaac, 1957).

Externally, leaves on diseased shoots appear ‘off colour’ (pale green to yellow) 

loose turgor and eventually desiccate. The symptoms may appear on individual shoots in 

a section of the plant stem, or throughout the entire plant. In some cases, the disease 

progresses slowly over a period of months resulting in gradual defoliation, shoot dieback 

and eventually the plant may die. Leaves generally loose turgor and the leaf margins roll 

upwards in the warmer periods of summer days, though, with the drop of temperature 

towards evening, some recovery may be observed (Noble et ah, 1953; Isaac, 1957; 

Graham et al., 1977; Esyanti, 1993). Unlike FW, VW causes uniform yellowing and 

wilting of the lower leaves (Isaac & Griffiths, 1962).

Stunting is another symptom of plants infected with Verticillium (Pennypacker et 

al., 1990; Esyanti, 1993). For example, growth reduction was observed by Hawthorne 

(1987); and Pennypacker et al. (1988) in some otherwise symptom-free lucerne plants 

inoculated with V. albo-atrum, though this may be due to a hormonal imbalance rather 

than water stress (Mepsted, 1991).

V-shaped chlorosis of leaflets, or formation of a yellow-to-red-brown lesion near 

the leaf tip, followed by desiccation and abscission, are other characteristics of the
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disease (Pennypacker & Leath, 1986). Eventually such leaves die and turn a light 

reddish-brown colour (Stuteville & Erwin, 1990). Latunde-Dada & Lucas (1982) 

reported that VW of lucerne started as a yellowing of the cotyledons and lower leaves, 

then progressed upwards causing chlorosis in older leaves. In extreme cases, the affected 

foliage wilts, turns dry and brittle, and drops from the plant in a matter of days or weeks 

(Lorenzini et al., 1997). At times, the initial re-growth of a diseased plant will appear 

healthy until the plant reaches six to eight inches in height. At this stage, the plants often 

begin to exhibit the symptoms described above.

Usually there are no external symptoms observed in roots.

- internal symptoms’,

Another diagnostic symptom of VW is vascular discolouration; discolouration can 

be viewed by slicing vertically through the stem and root near the soil line and looking 

for a narrow column of browning between the central pith region and the outer portion of 

the stem (Graham et al., 1977; Pennypacker & Leath, 1986). In severe cases, internal 

tissues of the petioles and pedicels of the flower can also become brown (Graham et al.,

1977). This brown discolouration mainly results from oxidation of polyphenols, giving 

rise to the dark melanin pigments (Bishop & Cooper, 1983).

1.6. The mechanism of wilting.
The conidia are carried throughout the plant in the transpiration stream 

(Newcombe et al., 1990; Heinz et al., 1998). They are usually moved up to a vessel end 

wall where they are trapped. They then germinate to produce new infection sites. So, the 

fungus moves rapidly up the plant by germinating and growing through the pores of the 

vessel and sporulating on the other side (Beckman et al., 1976). The hyphae grow 

through the xylem, ramify throughout the plant, and pass from cell to cell via pit pairs. 

At this stage, the xylem becomes increasingly blocked with mycelium.

Movement of conidia is much more rapid than the mycelial growth in xylem 

tissues. For example, the Panama wilt disease pathogen, F. oxysporum f.sp. cubense can 

migrate from the bottom to the top of an eight-metre tall banana tree in less than two 

weeks (Ploetz, 1994). As the plants begin to die, sporulation is stimulated. At this point,
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many spores are formed and remain in the tissue, ready to be returned to the soil as the 

plant decomposes (Beckman et al., 1976).

There are various reports concerning wilting of the plants; some of which suggest 

that occlusion of xylem vessels is the primary reason for wilting (Cooper & Wood, 1980; 

Douglas & Machardy, 1981). In fact, the pathogen itself or tyloses (growth of adjacent 

xylem parenchyma into the vessel) and vascular gels associated with pathogen, are 

thought to be responsible for partial or complete occlusion of large vessels in the stem. 

Since the wilt fungus V. albo-atrum enters through the cortex in the apical region of the 

root, the endodermis is an effective barrier to the pathogen but as it is not fully developed 

in this region it is easily breached and the fungus then enters the xylem elements. It was 

reported that vascular flow was reduced in wilted tomato plants (Street & Cooper, 1984). 

Duniway (1976); Dey & Van Alfen (1979) made similar comments for FW of tomato and 

clavibacter wilt of lucerne plants respectively. Reduction in flow rate may be caused by 

fungal mycelium and conidia, tylosis xylem hyperplasia, gum and gel deposition, 

blocking of vessel pits and the permanent opening of the stomata (Pegg, 1981; 

Schnathorst, 1981). It is generally believed that Verticillium moves up a plant through 

spore trapping sites in the vascular tissue in a stepwise fashion. In a resistant plant, rapid 

expression of defence responses around the spore-trapping sites slows growth of the 

pathogen and often restricts the fungus to the base of the stem. However, in a susceptible 

plant, the fungus escapes and eventually proliferates at a logarithmic rate, in the upper 

stem and leaves. Heinz et al. (1998) reported that even in resistant plants fungal 

colonization was observed in the upper stems shortly after root infection. They reported 

that V. albo-atrum was not restricted to the base of resistant tomato plants. In fact, high 

amounts of Verticillium were present in the upper stems of both susceptible and resistant 

plants, although symptom expression in the resistant plant was restricted to the stem base. 

They suggested that wilt diseases are more systemic than previously thought and that 

basic assumptions about the nature of the wilt diseases should be re-evaluated.

Many of the symptoms associated with vascular wilt disease point to changes in 

the accumulation of hormones in the plant (Hillocks, 1992; Resende et al. 1995). For 

example, indoleacetic acid (IAA) or ethylene induce the formation of tylose and gels, 

which accumulate at perforation plates and contribute to vascular blockage. These
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hormones are produced by both pathogen and susceptible host plants (Beckman, 1987; 

Hasan, 2002). Both of these factors stimulate the production of tyloses and cause 

plasticity of cell walls. As a result, tyloses may expand to such a degree and such a rate, 

that the xylem vessels may become completely blocked (Whitney et al., 1972). However, 

new conducting elements may also be formed in infected plants and may partly 

compensate for the reduced efficiency of the blocked vessels, so that the extent to which 

tyloses cause wilting is uncertain. After the fungus is established in the xylem elements, 

it releases secondary metabolites that act as toxins to the host plant cells, disturbing cell 

permeability and hastening plant death. Factors that add to the disease symptoms are 

high molecular weight polysaccharides, produced by the pathogen or cleaved from vessel 

walls by hydrolytic enzymes. For example, cellulose, which is broken down by cellulase 

secreted by V. albo-atrum, may cause blockages in the host plant vascular system, thus 

restricting lateral transport and plugging the small vessels in petioles and leaves 

(Beckman, 1987 & 2000).

As a defence response, several changes in the metabolism of the diseased plant 

accompany the increase in respiration that occurs following infection. For example, the 

increase in respiration in diseased plants is accompanied by an increase in activity of the 

oxidative pentose phosphate pathway, which is the main source of phenolic compounds. 

In a similar way, hemicellulosic gels and gums may be produced, in cells adjacent to 

infected tissues. Not only could these block pathogen growth and spread through 

vascular tissues but they may also restrict solute movement through plants (Beckman, 

1987).

Kiessig & Haller-Kiessig (1957) reported that two components were involved in 

VW of lucerne- a thermolabile wilt toxin and thermostable necrosis toxin. Nachmias et 

al. (1985 & 1987) claimed that the active toxin of V. dahliae, which was produced by the 

fungus on culture medium, was a peptide of variable composition, occurring as a 

component of a protein lipopolysaccaharide (PLP) that induced symptoms in susceptible 

but not in resistant cultivars.

Vascular wilt fungi also produce a range of extracellular enzymes in culture and 

some of these have been implicated in pathogenesis. In VW, pectin esterases (PE), 

polygalacturonases (PG) and pectin lyase (PL) are most significant. Such enzymes
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provide the pathogen with essential or supplementary nutrients by degrading and 

removing carbon fragments from the pit membrane (Van der Molen et al., 1987), 

resulting in colonization of the susceptible plant. For example, Cooper & Wood (1980) 

found higher endo-PL and endo-PG activities in tomato plants susceptible to Verticillium 

than in resistant plants. Several workers have also presented evidence for their role in 

vascular occlusion (Beckman, 1987; Cooper & Wood, 1980).

Another mechanism that has been proposed to lead to wilting involves ethylene 

(Van der Molen et al., 1983). Mussell et al. (1982) reported that cell wall from tomato 

contained an enzyme that generates ethylene. The enzyme was released from the cell 

walls by a purified PG from V. dahliae. So, the attack of a pathogen could elicit ethylene 

release though this mechanism and, in turn, this would trigger responses in host tissues 

leading to the formation of tyloses and gel. LAA has also been found in V. albo-atrum 

culture filtrates and in diseased tomato plants (Pegg & Selman, 1959; Beckman, 2000) 

and may play a part in the development of symptoms. The apices of infected stems 

showed a 200% increase in LAA compared to healthy stems, and LAA treatment of cut 

tomato stems caused epinasty and hypertrophy in young cuttings. Since all classes of 

plant growth substances, LAA, ethylene, gibberellins, cytokinins and abscisic acid (ABA) 

are known to interact and in some cases act as substitutes in a particular effect, it is 

difficult to attribute an exclusive role to an individual compound (Pegg & Brady, 2000).

1.7. Spread of the disease.
Isaac (1957) reported that the fungus grows out of xylem elements to form 

conidiophores at the basal portions of the infected stems. These conidiophores bearing 

conidia are responsible for the spread of infection in the crop during harvesting. He also 

stated that towards the end of the season these areas become blackened with the 

production of resting mycelia. Similarly, others (Sheppard & Needham, 1980; Christen, 

1982 &1983; Martin et al., 1991) have reported that V. albo-atrum was introduced into a 

new area, in the form of resting mycelium, from contaminated plant materials, including 

seeds. For example, V. albo-atrum was isolated from Helianthus annuus L. and M. sativa 

L. by Sackston & Martens (1959) and Isaac & Heale (1961) respectively.
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Heale & Isaac (1963) and Heale et al. (1979) reported that contaminated cutter 

blades of harvesting machinery played an important part in the spread of the disease both 

within and between fields. Other ways in which the wilt fungus may be disseminated are 

through cars, people (Nicholls et al., 1987), and insects (Harper & Huang, 1984; Kalb & 

Millar, 1986; Huang et al., 1986). Some authors such as, Lindemann et al. (1982), have 

reported that the fungal spores may be carried by wind and cause epidemics in areas of 

lucerne cultivation although the fungus is known to be a soil-bome-pathogen, however, 

this idea was not supported by Jimenez Diaz & Millar (1988).

1.8. Resistance to vascular wilt diseases.
In spite of the considerable literature on plant-pathogen interactions, there is still 

controversy over the basis of susceptibility and resistance to wilt pathogens and the 

mechanisms involved in recognition are not fully understood.

For example, in cotton plants the level of susceptibility to wilt disease caused by 

V. dahliae is determined by the rate of colonization of the vascular tissues (Beckman, 

1987). The degree of resistance depends on the speed and intensity of the host defence 

response (Mace, 1978). In the resistant interaction, gel plugs, which restrict the 

movement of microconidia to the vessel endings, form within 24-48 hr following 

infection. The response is triggered by host-derived ethylene and LAA (Mussell et al., 

1982) and the gels both cut off the water flow and immobilize the parasite (Beckman et 

al., 1962). At the same time, phenolic substances that are highly resistant to degradation 

start to accumulate. In subsequent stages, parenchyma cells ensheath the vessels with 

suberin or lignin-like coatings (Vance et al., 1980; Street et al., 1986; Beckman, 2000). 

Through pits in the lateral vessel walls, these living cells also produce tyloses that 

completely block the vessel above the trapping site, and then secrete stress metabolites, 

including phytoalexins, (Talboys, 1972). This sequence of events seals off the pathogen, 

preventing further colonization of the vascular system. In susceptible plants, however, 

the vascular gels are not produced quickly enough to stop the pathogen (Harrison, 1981). 

If they do form, they are either too weak or there are not enough of them.

When plants are damaged, whether mechanically or by pathogens, a series of 

responses is initiated, resulting in the formation of wound barriers (Barckhausen, 1978).

22



Damaged cells die and in the adjacent layers of cells, substances such as suberin, lignin, 

gum and tannin accumulate (Eldon, 1995). A few days later, a cork layer is formed 

which may restrict further invasion by pathogens.

Phytoalexins, which are low-molecular weight compounds that are both 

synthesised by and accumulated in plant cells after exposure to microorganisms (Paxton, 

1981; Tang & Smith, 2001), may also be produced and inhibit the growth of 

microorganisms (Flood, 1980; Bianchini et al., 1999).

1.9. Cross-protection or induced resistance.

Cross protection or induced resistance can be defined as a type of biological 

control in which inoculation of the plants with an avirulent pathogen (inducer) causes a 

reduction in severity of the symptoms or delays disease development caused by a virulent 

pathogen (challenger) (Hillocks, 1986). This resistance occurs by reducing, restricting or 

blocking the pathogen in the host plant (Fravel, 1989).

There are many workers in the plant pathology field who have attempted to define 

or give a clear picture for cross protection. It has been shown that cultivars that are 

highly susceptible to a race or a pathovar can be induced to a higher level of resistance 

(cross-protected) to that particular pathogen by pre-inoculation with a non-pathogenic or 

avirulent microorganism (Matta, 1989). Such disease resistance generally requires one to 

a few days to become optimally functional (Biles & Martyn, 1989) and persists for 

sometime thereafter. Pre-inoculation often results in enhancement of some defence 

responses such as callose deposition, gel- and tylose formation and deposition of other 

secondary metabolisms (Matta, 1989).

Millar et al. (1984) reported that the wilt disease caused by V. albo-atrum on 

lucerne could be prevented by inoculation with Gliocladium roseum. The cut-stems were 

inoculated with V. albo-atrum (lxlO4 conidia/ml), then treated immediately with G. 

roseum. They reported that the incidence of wilt was reduced by up to 4- to 5-fold by 

treatment with G. roseum ( 8  x 106 conidia/ml), and that the effect persisted through two 

harvests. Control of the disease in this way was more effective than with benomyl, 

chlorothalonil or maneb. Control of V. dahliae by G. roseum was also demonstrated in 

vitro by Keinath et al. (1991). Hall et al. (1984) reported that suspensions of Bacillus
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subtilis were introduced into silver maples through stem wounds. After 3 days, stems 

were wound-inoculated with a conidial suspension of V. dahliae. After 16 weeks, there 

was a highly significant reduction in the frequency of isolation of V. dahliae. Similar 

cases were reported on tomato plants by Jorge (1990) in which simultaneous root dip 

inoculation with conidial suspensions of Fusarium oxysporum f.sp. lycopersici (Sacc.) 

Sn. et Hans, (inducer) and V. dahliae Kleb. (challenger) resulted in the expression of 

cross-protection in Fusarium-resistant tomato cultivars. On the other hand, Fravel (1995) 

used the biocontrol agents G. roseum and Talaromyces flavus with sublethal rates of 

metham sodium for control of V. dahliae. He found that the combined effect of the 

sublethal rate of the fumigant with either biocontrol fungus was additive for reduction of 

disease incidence.

Some workers used pathogens within the same genus. For example, Schnathorst 

& Mathre (1966) used non-pathogenic V. albo-atrum to control wilt disease in cotton 

caused by pathogenic strains of V. albo-atrum. Melouk & Homer (1975) used V. 

nigrescens against V. dahliae to control the wilt disease in mints. Similar experiments 

were also carried out by Matta & Garibaldi (1977) who protected greenhouse tomato 

against the vascular wilt caused by V. albo-atrum, by dipping roots of the seedlings in a 

spore suspension of an avirulent isolate of V. albo-atrum. Sato (1994) observed that pre- 

inoculation of lucerne with the potato strain of V. albo-atrum decreased the severity of 

wilt disease caused by the strain of V. albo-atrum isolated from lucerne. Hillocks (1986) 

used non-pathogenic strains of F. oxysporum f. sp. vasinfectum against pathogenic strains 

of the same species in cotton plants. Price & Sackston (1983 & 1989) also used non- 

pathogenic strains of V. dahliae to control wilt disease in sunflower caused by pathogenic 

strains of V. dahliae.

Development of cross protection may be influenced by many factors, such as, the 

method of inoculation (Davis, 1967 & 1968), the concentration of the inducer inoculum 

in relation to the challenger inoculum and the timing between inoculation with the 

inducing organisms and inoculation with the challenging organisms (Jorge, 1990; Jorge et 

al., 1992). For example, Jorge (1990) reported that cross-protection was gradually lost as 

the time between the inoculation with the inducer (F. oxysporum f.sp. lycopersici) and 

challenger (V. dahliae) was increased. Millar et al. (1984) reported that control of the
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disease caused by V. albo-atrum was not achieved if treatment with G. roseum was 

delayed 2 min or longer, or if the inoculation with V. albo-atrum was at a concentration 

of 105 conidia/ml or higher. However, in a recent study, Huertas-Gonzalez et al. (1999) 

proposed that extensive protection of tomato cultivars by F. oxysporum f.sp. lycopersici 

race 1 against race 2  only occurred in cultivars carrying resistance gene /  but not in a cv. 

lacking the gene. They supported that the view that the main mechanism of cross 

protection is not competition between the two different races during infection, which 

would be expected to occur in the cultivar lacking resistance gene /  but rather the 

induction of plant defense through the interaction between a specific avirulence factor of 

race 1 with the corresponding resistance gene. They explained that cross-protection is 

induced by simultaneous co-inoculation with the avirulent and the virulent race without 

the need for a time interval between induction and challenge, suggesting that recognition 

and activation of the plant’s defenses are rapid events that occur shortly after the 

pathogen has entered the vascular tissue. However, the nature and biochemical properties 

of cross protection still need some elucidation.

1.10. Control of the disease.
Vascular wilt disease of lucerne, especially Verticillium species, remains one of 

the most destructive diseases of lucerne, tomato and other crops. The problem of 

controlling VW caused by V. albo-atrum and V. dahliae may be divided into three 

categories (Tjamos,1989), there are problems arising from the nature of the pathogen, 

such as its wide distribution and virulence, there are problems related to the epidemiology 

of the disease, such as dissemination of the pathogen, there are problems associated with 

cultural practises.

The best strategy for control involves “disease-free plants in disease-free soil” 

(Isaac, 1957). For this reason, elimination of pieces of plant debris carrying the fungus, 

or soil that is harvested with the seed are important cultural practises (Isaac, 1957; 

Huisman & Gerik, 1989).

Seed treatment with chemicals and soil fumigation can be helpful where 

protection of economically highly valuable crops is concerned (Isaac & Lloyd, 1959; 

Christias, 1989). Fumigation of seed and seed dressing for seed treatment are other
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important methods for controlling the disease (Heale et al., 1979). It has been reported 

that storing seeds at 30 °C for one year (Huang et al., 1994) and dry heat at 75 °C for 5 

hours (Stuteville & Erwin, 1990) could eliminate the fungus in seeds. Although it is an 

expensive method, Ligoxigakis & Vakalounakis (1992) reported that in Greece they 

prevented the vascular wilt caused by V. albo-atrum and V. dahliae, by fumigating the 

soil with methyl bromide.

After the seedling stage, using fertilizers rich in nitrogen, enables the rapid 

formation of a thick layer of sapwood that seals the infected parts beneath. It also 

stimulates leaf growth (Stuteville & Erwin, 1990). An adequate supply of nitrogen is 

associated with vigorous vegetative growth and a dark-green colour of the plant.

Isaac (1957); Heale et al. (1979) reported that cleaning machinery with a suitable 

disinfectant and cutting healthy crops first could help prevent the disease.

Crop rotation can still reduce although not eliminate the pathogen populations in 

the soil. In such cases, appreciable yields from the susceptible crop can be obtained 

every third or fourth year of the rotation (Agrios, 1988).

Soil solarization and ploughing up the soil were also found to be effective in 

controlling the VW of cotton and lucerne (Nicholls et al., 1987; Melerovara et al., 1995). 

For example, when polyethylene is placed over moist soil, during sunny summer days, 

the temperature at the top 5 cm of soil may reach as high as 52 °C compared to a 

maximum of 37 °C in unmulched soil (Agrios, 1988). If the sunny weather continues for 

several days or weeks, the increased soil temperature from solar heat inactivates many 

soil-borne pathogens and thereby reduces the inoculum and the potential for disease. 

Tjamos & Paplomatas (1988) reported that soil solarization, either singly or in 

combination with a reduced dosage (34 g/m ) of methyl bromide, was effective in 

controlling VW of globe artichokes for three successive cropping seasons. Furthermore, 

propagules of Talaromyces flavus, a heat-resistant V. dahliae antagonist, increased and 

survived better in solarized than untreated control soils.

Although the use of systemic chemicals for wilt control is practically impossible, 

chemicals that act through the host metabolism and can cause the plants to be more 

resistant have been intensively studied. Davis & Dimond (1952) proposed three possible 

actions that could make systemic chemicals effective; they could, counteract toxins;
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enhance host resistance, or kill the pathogen directly within the host. So far, no systemic 

chemicals have been found to successfully counteract toxins, however, some chemicals 

have been found to enhance resistance of the host and suppress the pathogen within the 

host (Beckman, 1987). For example, Dimond & Davis (1953) reduced expression of 

symptoms in tomato caused by Fusarium through chemical methods.

Plant breeding is another method of controlling the disease. For example, 

Niemann et al. (1991) and Miller & Christie (1991) reported that breeding resistant 

lucerne cultivars is an important step in controlling wilt disease, although the mechanism 

of resistance is not fully understood. Finding a conventional method for breeding lucerne 

cultivars resistant to Verticillium species may be complex because lucerne is an 

autotetraploid crop and suffers severe inbreeding depression, which is expressed as a 

reduction in crop productivity after breeding (Christie et al., 1985; Pennypacker, 1991). 

Furthermore, more virulent strains of the fungus may evolve (Flood et al., 1978).

Because, Verticillium is generally a problem where irrigation is involved (Eldon, 

1995), drought resistant plants, as well as disease resistant ones might be also solution for 

VW. Arbogast et al. (1999); Bletsos et al. (1999); Xiao et al. (2000); Jefferson & Gossen 

(2002) reported that an increase in VW was correlated with increasing irrigation. This 

has been attributed to the effect of irrigation water lowering the soil temperature and 

providing better conditions for fungal growth (Talboys, 1972). So, in plants that are 

drought resistant, water stress may be beneficial. Pennypacker (1991), for example, 

found that drought stress decreased the effect of the pathogen on the stem dry weights of 

lucerne infected with V. albo-atrum.

Legislation procedures could also prevent spread of VW to disease-free areas 

(Heale et al., 1979).

1.11. Effects of hydrogen peroxide, peroxidase, NaCl and purified phytoalexins on 
spore germination and germ tube elongation of V. albo-atrum isolates.

Hydrogen peroxide (H2O2) is a stable, partially reduced form of oxygen produced 

in plant cells by dismutation of superoxide (Halliwell & Gutteridge, 1989). Generally, 

physiological concentrations of H2O2 in plant cells lie within 1 pM to 100 pM (Joseph et 

al., 1998). Plant leaves or cell cultures generate O' 2  when exposed to fungi or fungal cell
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wall components (Doke, 1983; Apostol et al., 1989). The H2O2 is involved in lignin 

production to form physical barriers in the host cells that inhibit fungal proliferation. For 

example, Tang & Smith (2001) reported the production of H2O2 in lucerne cells which 

were incubated with an elicitor extracted from V. albo-atrum. It is also known that H2O2 

diffuses rapidly across cell membranes to elicit phytoalexin production in soybean cells 

in response to fungal infection (Apostol et al., 1989). It was recorded that spore 

germination and mycelial growth of Pseudocercospora species was inhibited by H2O2 in 

vitro (Joseph et al., 1998). It was established that peroxidase also inhibited spore 

germination and mycelial growth of Pseudocercospora species (Joseph et al., 1998).

Flood (1980); Bianchini et al. (1999); He et al. (2002), on the other hand, showed 

phytolaexins from lucerne inhibited germination and radial extension of Verticillium 

species. Some other abiotic factors also inhibited the germination and the radial 

extension of fungi. It was reported that low osmotic potentials decreased the germination 

and the radial extension of Verticillium species (Chandler et al., 1994). Similar findings 

were also made by McQuilken et al. (1992), they showed that decreases in osmotic 

potential caused a reduction in mycelial growth and oospore germination of Pythium 

oligandrum. Salinity also seems to inhibit the germination and radial extension or growth 

of fungi. For example, geographical distribution of Fusarium species were affected by 

salinity (Abbas & Mandeel, 1995). The decrease in growth of Phytophthora sp. caused 

by salinity was also reported by Wilkens & Field (1993).

1.12. Environmental stresses and resistance in plants.

Plants are subjected to a number of environmental stresses during their life. So, it 

is important to understand the terminology and mechanism(s) that concern plant stress. 

Stress is an abnormal change in physiological processes caused by one or a combination 

of environmental and biological factors (Table 1.12.1). Austin (1989) described stress as 

having the potential to produce injury as a result of abnormal metabolism; it may be 

expressed as a reduction- in growth, yield, or quality of the plant or of plant parts, or 

death of the plant or plant parts. On the other hand, Boyer (1982) defined a plant as 

‘stressed’ when it was prevented from expressing its full genetic potential for 

reproduction. Jones (1983) subdivided stress tolerance into categories such as escape
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(where the plant avoids being subjected to the stress), avoidance (where the plant avoids 

its tissues being subjected to the stress even though the stress is present in the 

environment) and true tolerance at a biochemical or physiological level.

Table 1.12.1. Sources of Environmental Stress

Physical Chemical Biotic

Drought Salts Diseases

Temperature Allelochemicals (organic) Allelopathy

Radiation Nutrients (inorganic) Lack of symbiosis

Flooding ♦Pesticides (i.e. excess use) Human activities

* Mechanical Toxins Competition

* Electrical ♦Air Pollution (S02, H2S) Insects

Magnetic

Wind

pH of soil solution

* can also be defined as human activities.

Through the processes of evolution, a plant species can become fit or adapted to 

an environment in which it grows. So, the stress may change metabolism, which leads to 

a change in morphology by a process called acclimation, and through such changes plants 

become resistant or tolerant to that stress. In this way, survivors have a tolerance to 

injury from environmental factors that enables them to overcome partially or completely 

any adverse effects (Kramer, 1980).

1.13. Soil salinity.

A soil is considered to be a three dimensional piece of landscape having shape 

(form), area, and depth (Soil Survey, 1951). The concept of a soil as a profile having 

depth but necessarily shape or area is also a common use of the term. Scofield (1942) 

and Campbell & Richards (1950) considered a soil to be saline if the electrical 

conductivity of a solution, extracted from a saturated soil paste, had a value of 4 

mmhos/cm (= 2.56 g/1 dissolved salt, Maas & Hoffman, 1977; Abrol et al., 1988, or more 

at 25 °C), and the exchangeable-sodium-percentage is less than 15. Generally, the pH 

would be less than 8.5.
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Saline soils are recognizable by the presence of white crusts of salts on their 

surface. The kinds and amount of salts present mainly determine the chemical 

characteristics of saline soils. The soluble salt consists of various proportions of the 

cations; Na+, Ca2+, and Mg2+ and the anions; C1‘, and S0 24 . The cation K+, and the anions 

HCO 3 and CO'3 and NO '3 occur in minor amounts. Despite the essentiality of CT as a 

micronutrient for all higher plants and Na+ as a mineral nutrient for many halophytes, an 

increase in their concentration will result in toxicity to non-salt tolerant plants. So, Na+, 

especially as NaCl, is the most significant of the salts causing salt stress in plants (Levitt, 

1972). Other cations such as Ca and Mg are usually present in sufficient quantities to 

meet the nutritional needs of crops; they sometimes contribute to the salinity especially at 

the later stages of soil development (Flowers & Yeo, 1986; Taiz & Zeiger, 1991).

There is no critical point of salinity where plants fail to grow. As the salinity 

increases growth decreases until plants become chlorotic and die. Plants differ widely in 

their ability to tolerate salts in the soil. Salt tolerance ratings of plants are based on yield 

reduction on salt-affected soils when compared with yields on similar non-saline soils. 

Soil salinity classes were given in Table 1.13.1.

Table 1.13.1. General guidelines for plant response to salinity (Adapted from FAO, 
1988).

Soil salinity 
class

Conductivity of the saturation 
extract (EC, dS/m) Effect on crops

Non saline 0 - 2 Salinity effects negligible

Slightly saline 2 - 4
Growth of sensitive plants may 

be restricted.

Moderately

saline
4 - 8

Growth of many plants are 

restricted.

Strongly saline 8 - 1 6
Only tolerant plants grow 

satisfactorily.

Very strongly
>16

Only a few very tolerant plants

saline grow satisfactorily.
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Salts are a common and necessary component of soil, and many salts (nitrates, 

and potassium) are essential plant nutrients. The salts that contribute to the problem of 

soil salinity are derived from various sources. Firstly, water that evaporates from the sea 

includes salt, which then falls as rain over inland areas and may deposit these ’cyclic salts' 

(Teakle, 1937) in coastal regions. This source is considered to be the major cause of salt 

accumulation in the soil and groundwater of inland areas. Secondly, soils derived from 

inland seas that retreated about ten million years ago naturally contain large quantities of 

salts. Thirdly, the continued weathering of rocks, which involves hydrolysis, hydration, 

solution, oxidation, carbonation and other processes, release salts that become soluble 

(Abrol et al., 1988). These salts move from the more-humid- to the less-humid- and 

relatively arid areas, by means of ground-and stream water. In arid areas, over millions 

of years, they gradually concentrate due to lack of leaching and so produce salt affected 

areas. This may results in a salt desert. However, under humid conditions these soluble 

salts are transported to the oceans (Abrol et al., 1988). Tidal inundation of seawater also 

causes salinity in the low-lying areas of the world (Rowell, 1994). Soil salinity in some 

areas result from the restricted drainage caused by the construction of roads and rail lines, 

or other developmental activities. Such activities may cause a high-ground water table or 

low permeability of soil (Abrol et al., 1988). In addition to that, important source of salts 

may come from ice-melters used on roads and sidewalks. Marine salts may also be 

brought by an underground infiltration of sea-water (infiltrating salts) (Waisel, 1972).

Accumulation of excess salts in the root zone causes partial or complete loss of 

soil productivity and this is the oldest and most serious environmental problem 

(MeWilliam, 1986; Zhu, 2001). For example, the collapse of the Babylonian Empire is 

considered to be partly the result of failure of irrigated crops resulting from accumulation 

of salts (Hillel, 1992). Although irrigation practises have increased agricultural 

productivity it is now widely recognised that it has also contributed to the increasing 

salinization of agricultural lands (Sinha & Singh, 1976; Boyer, 1982; Shannon, 1997). 

For example, irrigation of crops with water of marginal quality due to competition 

between agriculture and demand by cities and industries for high quality of water also 

caused soil salinity (Wainwright, 1984). The presence of even small concentration of 

salts in good quality irrigation water leads to salt accumulation in soils unless leached
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away by rain or irrigation water. On the other hand, intensive irrigation without adequate 

drainage results in a rise in the ground water level and capillary action draws up salts 

through the soil profile (Bridges, 1997). It has been reported that World wide there is 

more land going out of irrigation because of salinity then there is new land coming into 

irrigation (Vose, 1983).

Salinity may also occur in soils or compost in glasshouses in the form of 

potassium, nitrate and chloride, resulting from the application of water that contains 

fertilizers, or from the accumulation of residues of fertilizers and liquid feeds in excess of 

crop needs (Epstein et al., 1980).

Salinity, whether natural or induced by agriculture, is a widespread environmental 

stress that can limit growth and development of salt-sensitive plants (Adams et al., 1992; 

Yurtsever & Sonmez, 1996). As salinity levels increase, plants extract water less easily 

from soil, thus aggravating water stress conditions and resulting in accumulation of 

elements that are toxic to plants. An increase in salinity causes nutrient imbalances and 

reduction water infiltration.

The salinity problem is primarily associated with the arid and semi-arid regions of 

the world, where there is insufficient rain to leach away soluble salts (Fisher & Turner,

1978). Most of the salts are left behind after the extraction of water by the root, which 

leads to an increase in concentrations of salts that contribute to salinity in the soil. In 

addition to that, evaporation from the soil surface will remove water and leaves the salt 

behind in the soil, which eventually reaches toxic levels in the root zone.

In humid areas, the soil solution is concentrated very little; consequently root zone 

salinity in humid regions is rarely a problem (Abrol et al., 1988).

1.14. Effects of soil salinity on plant growth.

There are many symptoms caused by salinity, some of these symptoms include; 

increased succulence of leaves or stems, leaf chlorosis and necrosis, leaf drop, root death, 

nutrient deficiency symptoms, and wilting (Johnson, 2000). Most of these symptoms 

may be mixed with the symptoms caused by the wilt fungus V. albo-atrum (Isaac, 1957; 

Esyanti, 1993; Pennypacker et al., 1988 & 1990).
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The investigations of the effects of salinity on plant species, particularly those of 

commercial importance, have increased rapidly during the past few years (Chaudhary, 

1996; Sohan et al., 1999). Salinity limits both plant growth and yield to different extents, 

depending on the plant species involved, salinity levels and the ionic composition of the 

salts.

Plants exposed to saline environments are subjected to several adverse conditions, 

which can be categorised as follows (Levitt, 1980; Fitter & Hay, 1987; Romero & 

Maranon, 1994; Romero et al., 1994):

Direct toxicities of ions (excessive ion accumulation) e.g. Na+ and, Cl', Boron.

Ion-specific effects (ion imbalance in the plant).

Osmotic effects (a reduction in the availability of water resulting from salt).

An increase in the external salinity decreases water flow into the plant and limits 

water uptake to cells. It also causes a reduction in turgor potential and reduces cell 

volume (Tal, 1984). This has been termed physiological drought, because plants are 

affected by a lack of water even though the water content of the soil is apparently 

adequate for crop needs (Greenway & Munns, 1980). There is a close correlation 

between salt concentration and growth. For optimal growth, plants must receive all the 

required elements, in a form that is easily available and must absorb them in the right 

proportions. When the concentration of the salt in the surrounding medium is increased, 

water absorption is reduced, and as a consequence, growth tends to diminish. 

Consequently, plants have to acclimatise to the lowering of water potential in order to 

survive in a saline environment. For example, Avicennia germinans, a maritime 

halophyte, grows in a soil where the salinity can vary from less than half the 

concentration of sea water, during the rainy season, to more than double that in the dry 

season (Smith et al., 1989).

In the past there has been considerable argument as to whether the primary injury 

caused by salt stress was mediated through ion toxicity or osmotic effects. While 

Bernstein & Hayward (1958) emphasised osmotic stress as the primary cause of growth 

reduction, later workers considered toxicity of Na+ and Cl" ions to be more important 

(Chaudhary, 1996; Al-Rawahy 2000). Santa-Cruzz et al. (1997) compared the effect of
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salinity and non-ionic osmotic stress induced by mannitol on the growth of several 

tomato species. They concluded that the primary stress induced by salinity was osmotic 

stress; hence both stresses had similar effects in the short term. Continual exposure to 

high salt concentrations in the root zone has been shown to cause a build-up of potentially 

toxic ions within the plant cells, and to disrupt the uptake of other essential 

micronutrients, so limiting plant growth and in severe cases resulting in necrosis 

(Passioura, 1986). However, in many herbaceous crop species growth inhibition and 

injury occurs even at low levels of NaCl salinization (Maas, 1993). Under this condition 

water deficit is not a constraint (Greenway & Munns, 1980). Certainly there is good 

evidence for ion toxicity having a major effect on plant growth in some species. In a 

number of species, such as avocado (Downton, 1978), growth is reduced by 

concentrations of NaCl (20 mmol I'1) that are so low osmotic stress can be ruled out. In 

these species at least ion toxicity must be major stress. For example, Strogonov (1964) 

found that NaCl depressed the germination of lucerne (M sativa) much more than 

isoosmotic solution of mannitol. The growth of beans, maize and barley was much better 

in Polyethylene glycol (PEG) solutions than in isoosmotic salt solutions (Greenway & 

Munns, 1980). According to Levitt (1980), different salts supplied at isoosmotic 

concentrations often inhibit growth of plants at different threshold osmotic 

concentrations. This again indicates that ion toxicity plays a part in overall stress. 

Especially, high concentrations of Na+ and Cl' may cause disruption in membrane 

function, protein synthesis, enzyme activity, and assimilation and photosynthesis 

(Flowers etal., 1977).

One of the negative effects of salt stress, which might be responsible for the 

reduction in growth, is induction of deficiencies in other essential nutrients, or 

imbalances in ionic content. For example, high external sodium reduces the activity of 

Ca2+ ions in the root medium and so decreases the quantity of Ca2+, which is available for 

uptake by the plant (Cramer & Lauchli, 1986). As a result, root growth and function may 

be inhibited and the translocation of Ca2+ from root to shoot may be impaired (Grieve & 

Maas, 1988). In addition to that ionic imbalance, particularly Na+:Ca2+ and Na+:K+ ratios 

may affect cell metabolism and function and impairs the membrane integrity causing cell 

death (Cuartero et al., 1992; Perez-Alfocea et al., 1996; El-Iklil et al., 2002). It has often
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been observed that salt stress causes a decline in the potassium concentrations of various 

plants (for example, A. stolonifera, tomato, cucumber; Ahmad et al., 1981; Del Amor et 

al., 2001; Alpaslan & Gunes, 2001). It is possible that tissue potassium concentration 

declines to the extent that potassium deficiency causes growth reduction in some cases. It 

has also been reported that salinity increased the Cl' content of the leaves (Inal et al., 

1997; Del Amor et al., 2001; Essa, 2001; Inal, 2002). Thus, it caused a reduction in 

uptake of NO 3 by replacing it.

Salinity can cause changes in photosynthetic pigment composition. High 

concentrations of NaCl were responsible for the inhibition of photochemical reactions of 

isolated chloroplast (Reddy et al., 1992). In halophytes and salt tolerant species, the 

chlorophyll content increased (Reddy et al., 1992) while in salt sensitive species it 

decreased (Salma et al., 1994; El-Bdil et al., 2002; Kaya & Higgs, 2002; Kaya et al., 

2002). The reduction in chlorophyll in salt sensitive species was correlated with CT 

accumulation (Velagaleti et al., 1990). It has been reported that in salt sensitive cultivars 

of M. sativa at 170 mM NaCl treatment, photosynthesis was reduced by the accumulation 

of C f in the chloroplast (Seemann & Chritchley, 1985) and as a result of that productivity 

and quality of the crops decreased (Satti & Yahyai, 1995; Stoop et al., 1996; Jumberi et 

al., 2002).

Salinity occurring during the day, or in the spring or summer cultivation causes 

higher reductions in yield than if it occurs during the night or in autumn cultivation (Van 

Ieperen, 1996). This results, because the higher temperatures and illumination and lower 

relative humidity in summer time lower water potential in the plant by inducing faster 

transpiration. As well as high transpiration affecting water potential, high salinity also 

lowers it, which will reduce the water flow into the fruit and therefore the rate of fruit 

expansion (Johnson, 2000; Johnson et al., 1992; Del Amor et al., 2001).

Nitrogen uptake by tomato plants is not affected at relatively low salt 

concentrations (70 mM NaCl) but at 140 and 200 mM NaCl, nitrogen uptake drops to a 

third of that observed in non-saline conditions (Pessarakli & Tucker, 1988). It has also 

been reported that uptake of NO‘3 from the root solution is strongly inhibited by 

salinization; consequently NO'3 concentration in leaf and stems as well as nitrate
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reductase activity within the leaves are lower in salinized than in control plants (Cramer 

et al., 1995; Flores et al., 2002).

Salinization has been observed to alter the hormone balance in plants. An 

increase in salinity caused a decreased transport of kinetin from roots to leaves, and an 

increase in leaf content of abscisic (ABA) acid. Both changes decrease stomatal aperture 

(Aspinall, 1980). ABA appears to modulate the response of plants to a variety of stresses 

(Zeevaart, 1988). Drought, NaCl, and ‘cold tolerance’ induce a two-to four fold increase 

in the ABA content of tomato leaves (Plant et al., 1991; Yurekli et al., 2001). This 

similarity in the response suggests that ABA may be a common signal for mediating the 

response to all three environmental stresses in tomato. The increase in ABA can be due 

either to higher ABA production in the roots or by a decrease in ABA metabolism in 

leaves (Jackson, 1997).

The (IAA) content, either rises slightly or remains unchanged under saline 

conditions (Dunalp & Binzel, 1996). The hormone causes reduction of the movement of 

water in the roots and therefore, it may play a role in protecting tomato plants from water 

deficit and decreasing plant turgor (Tal & Amber, 1971). Plants might response to 

salinity-mediated water stress by reducing water losses through ABA-regulated stomatal 

closure while IAA may perform independently (Dunlap & Binzel, 1996). Besides 

stomatal closure, the increased ABA concentration in leaves causes a reduction in leaf 

expansion while a lower root IAA content promotes root growth. These two effects 

would partially explain the increased root/shoot ratio in tomato plants grown in saline 

conditions. On the other hand, ethylene was also detected in tomato plants that were 

exposed to salinity (Jones & El-Beltagy, 1989). As a result of that epinasty was observed 

in leaves at the bottom of the stems.

Salinity, reduce the water potential of the external environment which can lead to 

the depletion of cellular water content and the loss of cell turgor (Hare et al., 1998). A 

decrease in cell turgor can result in stomatal closure so inhibiting gas exchange and 

photosynthetic efficiency (Shannon, 1997). Decreases in cell turgor may also negatively 

affect cell division and elongation (Shannon, 1997).

Salinity causes blossom end rot (BER) in tomato plants, which makes fruits 

unacceptable for both the fresh market and the processing industry. BER symptoms
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begin with slight browning at the distal placental tissue, which progressively invades the 

pericarp; the fruit stops growing and starts ripening too early. The main cause of 

symptoms is a local Ca deficiency due to the result of excessive salinity in the irrigation 

solution or growing media (Adams & Ho, 1992). This is made worse in high 

temperatures because, under saline conditions, the increased transpiration causes more
I

Ca to move the leaves and less to the fruit (Adams & Ho, 1993). However, Saure 

(2001) reported that 2 important factors are responsible for the symptoms of BER.

1- an increase in the concentration of physiologically active gibberellins (GAs) 

and a resulting decrease in Ca2+ cause enhanced permeability of cell membranes. 

Increased level of GAs that caused BER has also been reported in many studies 

(Bangerth, 1973; Vettakkorumakanav et al., 1999).

2 - soil water deficit, high salinity or high NH+4 activity also causes the 

deterioration of cell membranes with loss of turgor and leakage of cell liquids.

Salinity also has a detrimental effect on germination. It may affect germination in 

two ways; by creating a low osmotic potential which reduces or prevents water uptake; or 

by providing conditions for the entry of ions which may be toxic to the embryo or 

developing seedling (Bewley & Black, 1982; Bliss et al., 1986a). Hilhorst & Toorop 

(1997) defined germination as the sum total of the processes preceding and including the 

protrusion of the radicle through the surrounding seed structures. Water uptake by the 

seed has been regarded as the starting point of germination; with the end point being the 

emergence and elongation of the radicle through the testa (Bewley & Black, 1994). In 

many studies, it has been reported that a low osmotic potential or the toxicity of the ions 

involved had a detrimental effect on the germination of seeds (Emmerich & Hardegree, 

1990; Johnson, 2000; Essa, 2001; Esechie et al., 2002). Bliss et al. (1986b) showed that 

inhibitory effect of NaCl and betaine (a non-toxic solute) were similar before germination 

began, but they were different subsequently. They proposed that the difference between 

isotonic betaine and NaCl might be the toxic effect of NaCl, which is obvious after the 

hydration threshold had been surpassed. It has also been reported that salinity not only 

causes a reduction in germination but also delays the germination (Kent & Lauchli, 

1985).

37



It appears, then, that all three main components (osmotic effects, ion toxic effects 

and nutritional effects) are responsible for reduction of growth of plants in saline 

conditions (Mahmoud, 1992).

The effects of salinity are not always negative; salt treatment has also been shown 

to improve tomato fruit quality (Mirzahi et al., 1988; Del Amor et al., 2001). The 

improvement of quality through irrigation with saline waters has also been reported in 

grape (Watzman, 1999) and in celery (Pardossi et al., 1999). The application of brackish 

water (2 dS m '1) to vines was reported to result in an increase in wine quality whilst 

maintaining the crop yield (Watzman, 1999). It was also reported that the application of 

moderate salinity during the development of fruit, such as melon and tomato, caused an 

increase in soluble solids. Shannon & Grieve (1999) concluded that a small decrease in 

crop yield resulting from salinity might be partially offset by the increased marketable 

quality of the fruit.

1.15. The effects of salt stress on cell membranes.

It has been reported that many adverse effects of salinity are related to the 

structural and functional integrity of membranes (Laszlo et al., 1980; Balsamo & 

Thomson, 1995; Alpaslan & Gunes, 2001). Binzel et al. (1988) reported that growth 

inhibition resulting from salinity is due to changes in the physical and chemical properties 

of cell membrane. Mansour et al. (1993) reported that alteration in membrane 

permeability resulted in cell death. For example, Na+ increased the permeability of cell 

membrane and caused K+ leakage from barley and bean roots (Nassery, 1975 & 1979). 

Leopold & Willing (1984) reported that the leakage organic solutes from salt-stressed 

soybean leaves increased with the increase of NaCl concentration, while almost no 

leakage was observed resulting from osmotic effects caused by sorbitol. Similar findings 

were made by Alpaslan & Gunes (2001), who reported that the membrane permeability 

of cucumber and tomato plants was increased by increasing salinity.

1.16. Mechanism of salinity tolerance.

Although plant responses to salinity are one of the most widely researched 

subjects in plant physiology the mechanisms that impart salt tolerance are still unresolved 

(Cheeseman, 1988; Munns, 1993).
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Plants, which were able to obtain more water than others from a soil under low 

water potential, would grow better in saline conditions (Cruz & Cuartero, 1990). So, 

plants have developed various mechanisms for survival under high salinity stress. Some 

tolerate the high concentrations of toxic ions present in their root environment by 

exclusion or compartmentation of ions into the vacuole, and the production of high 

concentrations of organic solutes in the cytoplasm that lower the osmotic potential 

(Greenway & Munns, 1980). These organic solutes such as proline (Perez-Alfocea et al., 

1993a) and wyo-inositol (Sacher & Staples, 1985) are generally non-toxic to enzymes.

It has been reported that Na+ and Cf ions were accumulated in the vacuolar sap of 

halophytes (Austin, 1989). As a result of this, plants become succulent. Succulence is 

usually defined as the thickening of the leaves of the plants exposed to salinity, although 

this condition is also applicable to the stem and the root. It is expressed as an increase of 

water content per unit dry weight, fresh weight or water content per unit area (Jennings, 

1976). It has been proposed that increases in succulence in response to salinity could be a 

characteristic indicative of an increased degree of salt tolerance (Tal & Shannon, 1983).

An increase in salt uptake generally depends on transpiration loss, because the 

water loss will increase the flux of saline water into the root system. Consequently, most 

plants, especially halophytes, show morphological features that prevent water loss, such 

as increased succulence, a thick cuticle on leaves, a reduced number of stomata, or 

sunken stomata, altered stomatal distribution and rolled leaves (Begg, 1980; Flowers et 

al., 1986; Cruz & Cuartero, 1990), which would thereby reduce the uptake of ions and 

would improve salinity tolerance. Preventing water loss, by this way, might also reduce 

the toxic effect of excessive ion concentration (Flowers et al., 1991).

The metabolism of CO2 in succulents is unusual, and because it was first 

investigated in members of the family Crassulaceae, it is called crassulacean acid 

metabolism (CAM). CAM plants usually grow where water is scarce or is difficult to get, 

including deserts and semi-arid regions, salt marshes and epiphytic sites (as when certain 

orchids grow attached to other plants). In these habitats CAM plants (like all plants) 

must obtain water and CO2 , but if they fully open their stomata during daylight and 

thereby obtain CO2, they transpire too much water. Therefore, they open their stomata 

and fix CO2 into malic acid primarily at night, when temperatures are cooler and relative
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humidities higher. The formation of acid at night is detectable as a sour taste and is 

accompanied by a net loss of sugars and starch. As a result of accumulation of malic acid 

in CAM plants, sometimes even at concentrations of 0.3 M or more, until sunrise, the 

osmotic potential of the cells become quite negative, so they can absorb and store the 

water when the plant exists in dry or salty soils (Ting, 1985).

Some species possess and use the C4 pathway of photosynthesis as a mechanism 

for decreasing transpiration and limit salt intake (Long & Mason, 1983).

Apart from these physiological adaptations, some developmental traits (e.g. the 

time of flowering) may also counteract the effects of salinity stress. Therefore, selection 

and breeding for salt tolerant cultivars requires an understanding of such mechanisms of 

salt tolerance.

Climate and irrigation also influence salinity tolerance. As the soil dries, salts 

become concentrated in the soil solution, increasing salt stress. Therefore, salt problems 

are more severe under hot, dry conditions than under cool, humid conditions. Detailed 

description of adaptation to salinity was given in Figure 1.16.1 by Waisel (1991).

Fig. 1.16.1. Modes of plant adaptation to salinity (Waisel, 1991).
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Further research on metabolism of salt tolerance needs to be carried out in order 

to find out the traits governed at both plant and the cellular level.

1.17. Glycophytes and Halophytes.
On the basis of their tolerance or sensitivity, plants commonly are distinguished as 

halophytes and glycophytes. Glycophytes (“sweet” plants) tolerate only low 

concentrations of salt, while halophytes (halas=salt, salt plants) tolerate relatively high 

concentrations of salt (Levitt, 1972; Greenway & Munns, 1980; Flowers & Yeo, 1986; 

Flowers & Yeo, 1988). It was estimated by Flowers et al. (1986) that there were at least 

800 species of halophytic angiosperms in more than 250 genera. This illustrates the point 

that there are many species of plants that possess the necessary features to enable them to 

grow and survive in a saline environment (Austin, 1989).

Some halophytes possess glands and bladders, which actively excrete excess salts. 

Examples of these are Spartina, Armeria, Limonium and Glaux (Long & Mason, 1983). 

Each gland may excrete up to 0.5 pi of salt solution in an hour. Obligate halophytes, for 

example Halogeton glomeratus, only grow in saline soil, and Salicornia europaea grows 

well in the presence of NaCl (Wainwright, 1984). For example, saltbush, indigenous to 

Australia, has developed a mechanism to control the Na+ and Cf ion concentration of its 

tissues. The epidermal bladders on the surface of the aerial parts of the plant are 

specialised cells that accumulate salt. As the leaf ages the salt concentration in the cell 

increases and eventually the cell bursts or falls off the leaf, releasing the salt outside the 

leaf (Troughton & Donaldson, 1972).

In non-halophytes, resistance to salinity is commonly correlated with the ability to 

restricted entry of ions into the shoot. Their growth will be retarded when the salt content 

of the soil exceeds a rather low value (Levitt, 1972). Glycophytes lack specialized 

anatomical features as well as tolerance to ions accumulated in the tissues. Typical of 

glycophytic dicotyledons is the uptake of ions from the external medium but the upward 

movement of these ions through the shoots is restricted by mechanisms of varying 

effectiveness (Greenway & Munns, 1980).

In most halophytes osmotic adjustment results from the increase in concentrations 

of Na+ and C1‘ in the tissue. In glycophytes tolerance to salinity is related to the
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exclusion of these ions from tissues. This became clearer by comparing ionic 

concentrations in the tissues of salt-tolerant and non-salt tolerant cultivars of the same 

species. Many salt tolerant non-halophytes tend to restrict Na+ uptake and take up more 

K+ than do the less tolerant ones (Greenway & Munns, 1980). For example, salt tolerant 

clones of Agrostis stolonifera contained lower Na+ in the shoots than a salt-sensitive 

inland clone (Ahmad et al., 1981). This showed that restricted Na+ uptake and 

maintenance of high Na/K ratios were features of salt tolerance in A. stolinifera, a result 

later confirmed by Hodson et al. (1981).

However, Na+ “exclusion and accumulation” have often been implicated, as 

mechanisms of salt-tolerance in non-halophytes but this conclusion cannot be 

generalized. The wild maritime tomato species Lycopersicon chesmanii was a salt 

accumulator but the commercial species L. esculentum exhibited salt exclusion (Rush & 

Epstein, 1976).

The high concentrations of the ions in the tissues of halophytes suggest that their 

metabolic process may be tolerant to salt stress when compared to glycophyte 

metabolism. However, comparison shows the enzymes of halophytes and glycophytes 

have a similar degree of sensitivity to salt (Weber et al., 1980; Gibson et al., 1984). The 

sensitivity of enzymes from halophytes to salt, despite the presence of high ionic 

concentrations, suggests that plant cells have the capability to compartmentalize the toxic 

ions away from sensitive metabolic sites (Flowers et al., 1977).

1.18. The role of proline accumulation under salt stress.
Proline accumulation has occupied a special position in plant physiological 

research, particularly in response to different stresses. Its accumulation as whole plant 

level under salt stress in halophytes has been reported by many workers such as Smirnoff 

& Stewart (1985) in coastal plants; Stewart & Lee (1974) in Triglochin maritime and 

Armeria maritima. In glycophytes proline accumulation has been reported under salt 

stress in Hordeum vulgare (Buhl & Stewart, 1983) in M. media (Chaudhary, 1996), in A. 

stolonifera (Ahmad et al., 1981), in tomato (El-Iklil et al., 2002).

Several hypotheses have been put forward to explain the role of proline 

accumulation in stress metabolism. Proline acts as a compatible solute regulating and
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reducing water loss from the cell during episodes of water deficit. Proline may have also 

a role as a sink for the nitrogen from nitrogenous compounds derived from the net loss of 

protein, and lastly it may represent merely a manifestation of the damaging effects of 

stress (Aspinal & Paleg, 1981) and may act as a substrate for respiration that might 

provide energy needed for recovery from stress (Hare & Cress, 1997). Proline 

accumulation may be a general response to stress, especially under salinity-, water- and 

temperature stress (Stewart, 1981; Heuer 1994; Aziz et al., 1999). For example, salinized 

tomato plants are able to produce osmotically active organic substances that help to 

alleviate the salinity-mediated osmotic stress. Storey & Wyn Jones (1975) detected no 

increase in choline or betaine in the shoots and roots of tomato plants grown with- or 

without salt. In contrast, the proline concentration was 10-fold higher in shoots and 18- 

fold higher in the roots of plants grown at 100 mM NaCl than in plants grown in the 

absence of salinity. Similar findings were also made by Gunes et al. (1995), who 

reported that the proline contents of potato was almost 1 0  times higher than the control 

plants. Proline accumulation in salt-stressed plants could be due to the low activity of the 

oxidising enzymes (Sudhakar et al., 1993) and its accumulation in leaves and mainly in 

roots is considered as a salt sensitive trait in tomato that may be used to select plants with 

different degrees of tolerance (Bolarin et al., 1995).

However, the physiological significance of proline accumulation is rather poorly 

understood. It has been assigned the role of cytosolute or a protective agent for 

cytoplasmic enzymes and cellular structures (Stewart & Lee, 1974; Aziz & Larher, 1995). 

It has been considered to play a central role as an osmoregulatory solute in plants 

subjected to hyperosmotic stresses, primarily drought and salinity (Delauney & Verma, 

1993). Some workers suggested that proline accumulation is neither a sensitive indicator 

of salinity nor of protective value but merely a symptom of injury (Hadson & Hitz, 1982). 

However, most investigations have indicated a positive correlation between proline 

accumulation and adaptation to salt or drought stress (Weimberg et al., 1982; Watad et 

al., 1983; and Rhodes et al., 1986). Under salt stress conditions, a salt marsh ecotype of 

A. stolonifera accumulated more proline in roots and shoots than an inland ecotype 

(Ahmad, 1978). In the apices of maize seedlings growing at -1.6 MPa, proline 

accumulation reached 120 mmolal, accounting for almost 50% of the total osmotic
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adjustment (Voetberg & Sharp, 1991). Such observations clearly suggest that in some 

plants, proline accumulation may play a direct, adaptive role in countering the effects of 

osmotic stress.

Proline may also prevent damage caused by cellular dehydration by increasing the 

water binding capacity of proteins (Vanlerberghe & Brown, 1987).

Addition of proline to salt supplemented medium has also been shown to enhance 

the growth and survival of unselected cells in a number of species (Pandey & Ganapathy, 

1985; Handa et al., 1986; Van Swaaij et al., 1986). For example, exogenous proline 

showed beneficial effects during recovery of barley plants from water stress (Itai & 

Paleg, 1982), and in cultured tomato cells during water stress (Handa et al., 1986). 

Similarly, proline (10 mM) in the external medium of NaCl-selected and unselected cell 

lines of Cicer arietinum under 100 mM NaCl stress, increased fresh and diy weights 

(Pandey & Ganapathy, 1985). A similar treatment increased the growth of salt-unadapted 

callus of rice (Kishor, 1988).

Synthesis and accumulation of proline also occur in cell suspension cultures of 

both glycophytes and halophytes. For example, salt tolerance correlates well with proline 

accumulation in NaCl-tolerant callus lines in C. arietinum (Pandey & Ganapathy, 1985), 

salt-tolerant cultured cells of eggplant (Jain et al., 1987) and NaCl-tolerant calli in M. 

sativa (Shah et al., 1990). Increased proline accumulation in response to NaCl stress, 

also occurs in suspension cultures of Mesembryanthemum crystallinum (Thomas et al., 

1992), while a positive correlation was found between proline accumulation and the 

capacity of cell cultures from chili pepper (a mesophyte) and creosote bush (a xerophyte) 

to grow under water stress (Santos-Diaz & Ochoa-Alejo, 1994).

Osmotic adjustment has been defined as the decrease in plant osmotic potential 

through the production and accumulation of solutes in the plant cells in response to the 

decrease in external water potential (Shannon, 1997). These solutes are often termed 

‘osmoprotectants’ or ‘osmoregulatants’ and have been described as soluble organic 

osmolytes that are non-toxic even at high concentrations (McNeil et al., 1999).

The organic solutes have been produced by plants have been studied extensively 

and has focused mainly on the production and accumulation of specific sugars, 

polyamines and glycine-betaine. Levels of glycine betaine (also as referred as betaine)
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(Holmstrom et al., 2000), mannitol (Stoop et al., 1996), inositol (Karakas et al., 1997), 

and proline (Perez-Alfocea et al., 1993b; Cano et al., 1996) have all been reported to 

increase in response to salinity. The primary role of these compounds is considered to be 

osmotic adjustment. However, Yeo (1998) have reported that these compounds have a 

role to protect to tissue against oxidative damage.

1.19. In vitro selection for salt tolerance.

The generation of salt tolerant plants has potential application to semi-arid and 

arid soils. Plant tissue cultures techniques have been used successfully to develop variant 

lines from somatic cell cultures (Ben-Hayyim & Kochba, 1983; Ben-Hayyim et al., 1985; 

Rumbaugh & Pendery, 1990). Many salt tolerant somatic cell lines have been isolated in 

a number of plant species, including Nicotiana sylvestris and Capsicum anuum (Dix & 

Street, 1975), Citrus (Ben-Hayyim & Kochba, 1983), Cicer (Pandey & Ganapathy, 1984), 

Lycopersicon peruvianum, (Hassan & Wilkins, 1988). It is generally accepted that a 

mechanism regulating Na+/K+ selectivity exists in plant cells, which show salt tolerance 

(Chaudhary, 1996).

Many countries depend heavily on irrigation for food production, however, much 

of the food productivity is affected by soil salinity (Brown, 1981). If the problem of soil 

salinity decreases food production, whilst the population growth increases, then the rate 

of food production cannot keep the pace with the growth of the population for the world 

as a whole. Therefore, improvement of salt tolerance in crop plants is an important 

challenge to biotechnology.

Salt tolerant cell lines of lucerne have been selected in several laboratories 

(Croughan et al., 1978; Smith & McComb, 1983; Bingham & McCoy, 1986; Shah et al., 

1990, Al-Rawahy, 2000). Studies with the first salt-tolerant cell line of lucerne showed a 

halophytic type of salt tolerance which was selected in the cell line that required salt for 

optimal growth (Croughan et al., 1978). In some cases, the selected lucerne cell lines 

were maintained “in vitro” for several years and the plants were finally regenerated, the 

somaclones were so stunted that whole-plant tolerance was not determined (Stavarek & 

Rains, 1984). Similarly, one disappointing example has been with Pennisetum 

purpureum Schum. where plants regenerated from NaCl tolerant callus were even more
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NaCl sensitive than plants regenerated from unselected callus (Chandler & Vasil, 1984). 

Smith & McComb (1981) screened four lucerne cultivars at the whole-plant and cellular 

level. One cultivar W75RS (Regen S), which showed “in vitro” tolerance also had a 

higher level of whole-plant tolerance. However, following selection of a NaCl cell line 

capable of plant regeneration, it was found that the regenerated plants were as salt 

sensitive as the initial plants (Smith & McComb, 1983). This may have resulted from 

loss or interchange of chromosomal segments during the cellular selection process, a 

process that was observed “in vitro” (McCoy et ah, 1982). However, in one study, the 

salt-tolerant lucerne plants that were regenerated from salt-adapted cell lines apparently 

showed dominant salt tolerance and it was transmissible through seed (Winicov, 1991).

1.20. Biotic stresses and plant diseases in salt-affected conditions.

Salinity can also cause a combination of complex interactions that affect plant 

metabolism and susceptibility to injury of wounds caused by insects or mechanical 

(Grattan & Grieve, 1999).

Salinity induces several metabolic changes in plants, such as accumulation of 

proline and glycine-betaine (Bray et al., 1991). Wheat and barley seedlings irrigated with 

saline Hoagland solution (0-700 mM NaCl) accumulated Na+, Cl" and metabolites such as 

glycine betaine, etc. in the leaves, which correlated with a decreased the population and 

growth rate of the aphid Schizaphis graminum and Rhopalosiphum padi feeding on the 

plants (Araya et al., 1991). However, it was noted that glycine-betaine was not harmful 

to aphids, as it increased the survival and reproduction of the aphids on both salt treated 

and untreated plants. It appears that is the accumulation of NaCl that is the real cause for 

the reduction in the survival and reproduction of aphids (Araya et al., 1991). Similar 

findings were made by Kostandi & Soliman (1998). They showed that the effect of 

saline irrigation water containing NaCl or Na2 S0 4  reduced susceptibility to smut by 22.7 

and 10.8% respectively. In contrast, however, high soil salinity or saline irrigation has 

been reported to increase the severity of stem rot caused by Phytophthora citrophthora in 

citrus roots (Sulistyowati & Keane, 1992). Although high salinity did not stimulate 

growth of the pathogen in vitro, the increase in disease under saline conditions was 

attributed to a direct effect in reducing resistance in the host. The similar results of the
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effect of salinity stress on the development of plant diseases have also been reported in 

phytophthora root rot of chrysanthemum and citrus (Blaker & MacDonald, 1986; 

MacDonald, 1982 & 1984) and in pythium blight of penncross creeping bentgrass 

(Agrostis palustris Huds. ‘Penncross’) (Rasmussen & Stanghellini, 1988). The increase 

in disease severity under saline conditions has sometimes been attributed to an increase in 

virulence of the pathogen (Ragazzi et al., 1994). However, reports related to 

modification in the tolerance potentials of plants to biotic stresses in the presence of 

salinity are rare. Consequently, it is difficult to draw any conclusion at this stage and 

when developing strategies for crop improvement, it must be kept in mind that there are 

two factors contributing, resistance of the plant and virulence of the pathogen. 

Furthermore, studies at cellular and molecular level are needed to understand the overall 

response of the plant.

1.21. Possible solutions to salinity.
The cost of salinity control is considerable but unavoidable if agricultural 

production is to be sustained at current or higher levels. In some parts of the world land 

that was once agriculturally productive has been abandoned due to induced salinity, 

which can occur through mismanagement and incorrect irrigation practices. Thus, in 

order to utilize or re-utilize such land, it is necessary first to correct the negative effect of 

salinity or sodicity (soils that contain sufficient exchangeable sodium to degrade soil 

physical properties) and, secondly, to introduce management practices that will prevent 

their recurrence (Qadir et al., 2000).

If soil is saline and not sodic; good quality water can be used to leach salts out of 

the profile (Ayers & Westcot, 1985). The sodium is then leached down below the root 

zone, and the soil structure in the upper layers is restored. The management of salt- 

affected soils would be a reasonably a simple matter if the only consideration was the 

need to leach away salts. However, Na+ has a reduced mobility in comparison to the 

divalent cations such as Ca2+ and Mg2+ and as salt is washed down through the soil, some 

sodium is left behind stuck to clay particles. It displaces more useful substances such as
j -y i

Ca , and as a result Ca uptake by plants is reduced (Cramer & Lauchli, 1986; Adams & 

Ho, 1989). Furthermore, Na+ builds up in the soil and reduces the soil stability, causing
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the soil to set hard when it dries (Soil Survey, 1951; Ellis & Mellor, 1995; Bridges, 

1997). Application of gypsum or macro elements (N, P, Ca and K) to the soil surface 

will increase their concentrations in the root zone and supply extra calcium ions to 

displace sodium in the soil solution (Soil Survey, 1951). For example, a beneficial effect 

of a Ca2+ supplement on the growth of crops in saline media has been reported in many 

studies (barley, Lynch & Lauchli, 1985; cotton, Cramer et al., 1986; cucumber, Kaya & 

Higgs, 2002; strawberry, Kaya et al., 2002).

In many areas of the world drainage problems arise due to accumulation of 

rainfall or excess irrigation water on the soil surface (FAO, 1972). In such areas drainage 

ditches may take off the excess water before it enters the soil. Alternatively, subsurface 

drainage may be used. Another solution is to lower the water table, by planting more 

deep-rooted plants such as trees or perennial plants like lucerne.

Other effective measurements to prevent salinity in agricultural areas are; the use 

of drippers or micro-irrigation, to reduce the loss of water through wind drift, irrigation at 

night; or using pipes instead of channels to reduce loss of water by evaporation. Romero 

et al. (2 0 0 2 ) reported that the detrimental effect of salinity could be alleviated by 

increasing humidity by misting the greenhouse atmosphere.

Mixing fresh and saline waters will help to obtain high crop yield under high 

salinity conditions throughout the cropping season. Alternatively, good quality water 

could be used for irrigation at the more critical stages of growth, e.g. germination, and the 

saline water at the stages where the crop has relatively more tolerance. Del Amor et al. 

(2 0 0 1 ) reported that salt tolerance of tomato plants increased when the application of 

saline irrigation water was delayed.

Scraping or flushing the salts are important methods to keep the salt under 

control. However, the amount of salts removed from the soil is rather small (Qadir et al., 

2000). Leaching is one of the most effective methods for removing salts from the root 

zone of soils. It should be done when the soil moisture content is low and the 

groundwater table is deep. Summer months are less effective for leaching because large 

quantities of water are lost by evaporation. Biological reduction of salts by harvest of 

high salt accumulating aerial plant parts are also helpful to solve the salinity problem 

(Qadir et al., 2000).
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Cultural practices and crop selection to prevent salinity problems are just as 

important are corrective actions after the development of problems. There are several 

management alternatives available to prevent or reduce salinity problems. One of the 

first alternatives relates to the choice of crop (Zonneveld, 1976).

Cuartero & Femandez-Munoz (1999) showed that, for a given EC of the irrigation 

water, the decreases in crop yield were lower in soil cultivation than the decreases 

reported for plants grown in hydroponic culture. This was proposed to result from the 

delay in build-up of salt in the soil. However, Shannon et al. (1987) demonstrated that 

the EC threshold tolerance of L. esculentum cv. Heinz was almost two-fold greater when 

in solution culture than when in sand culture, being 8.1 and 3 dS m’1, respectively.

Harrington & Aim (1988) noticed that tobacco cell culture increases its resistance 

to high NaCl level after a preliminary high temperature treatment. In Gossypium 

hirsutum and G. barbadense a tolerance to the salt stress was noticed due to heat shock 

treatment at 47 °C (for 3 h), which induced a salt resistance that was related to the rapid 

and intensive release of ethylene, and accumulation of proline and osmotin (Kuznetsov et 

al., 1993).

Strogonov (1964) pointed out that plant salt tolerance could be increased by 

treatment of seeds with NaCl solution prior to sowing. Similar findings were also made 

by Alvarado et al. (1987) for tomato and by Ashraf & Rauf (2001) for maize seeds. They 

stated that soaking of seeds in NaCl- or KCl-containing solutions alleviated the adverse 

effects of salt stress, accelerated germination, seedling emergence, and seedling growth. 

Cano et al. (1991) reported greater fruit yield in some cultivars of tomato grown with 

salty water when seed were primed with 1 M NaCl for 36 h. However, any benefits of 

seed priming for later stages of development and in yield is still unclear.

Nitrogen fixing plants may also be used to enrich soil nitrogen (Cordovilla et al., 

1999). Recently, many microorganisms, especially nitrogen fixers, have been shown to 

change the properties of salt-affected soils, resulting in bioremediation of the salinity 

(Zahran, 1991). The major groups of salt tolerant microorganisms reported from many 

salt-affected soils include free nitrogen fixing bacteria e.g. Azotobacter, Alcaligens, 

Azospirillum; cyanobacteria e.g. Anabaena, Nodularia, Nostoc etc. and symbiotic 

Rhizobia species (Zahran, 1991). Vesicular-arbuscular mycorizhal (YAM) ftmgi seem to
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increase salt tolerance in some crops such as onions and bell peppers (Hirrel & 

Gardemann, 1980). In tomato, some soil samples with VAM originating from saline soils 

significantly improved the growth of tomato cultivar ‘H-1350’ irrigated with 10 dS/m 

water but other samples failed to show an effect or even produced slower growth than the 

non-mycorrhizal control (Prud et al., 1984). However, to date the use of mycorrhizae is 

still controversial and cannot be definitely recommended.

Soliman & Doss (1992) showed that tomato fruit yield increased by 

approximately 14% despite the inhibitory effect of salinity, when grown with frequent 

application of liquid fertiliser compared to solid fertilisers.

Moreover, cultivars with enhanced growth of the root system would also have a 

higher capability to replace roots killed by deleterious saline conditions.

High or moderate salinity reduces the fruit size and yield (Johnson, 2000; Del 

Amor et al., 2001). Hence, producing small size tomatoes or even cherry tomatoes could 

be an alternative way in these conditions.
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C H A P T E R  II 

GENERAL MATERIALS and METHODS
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2.1. Growth of fungi.

2.1.1. Preparation o f culture media.

Table 2.1.1. Potato Dextrose Agar (PDA).

Compound Concentration (g/1)

Peeled and chopped potatoes 2 0 0

Glucose 2 0

Oxoid Agar No:3 25

200 g of peeled potatoes were chopped into small pieces and boiled for 30 

minutes with 1000 ml of distilled water. The resulting mash was filtered through Mira 

Cloth (Calbiochem) and 20 g of glucose was added to the filtrate (Table 2.1.1). The 

volume was made up to 1 litre with distilled water and 250 ml of this medium was 

transferred to each of four 500 ml conical flasks containing 6.25 g of agar (2.5% w/v). 

The medium was autoclaved at 121 °C for 20 minutes (2.68 kg cm' 2 pressure) and poured 

into 12 Petri dishes.

Table 2.1.2. Czapek Dox Medium (modified).

Compound Concentration (g/1)

Sucrose 30.0

NaN03 2.0

KCI 0.5

Magnesium glycerophosphate 0.5

FeS04 7H20  0.01

K2S0 4 0.35

Difco Agar 25.0

The ingredients were dissolved in a small volume of distilled water and the 

volume adjusted to 1 litre (Table 2.1.2). 250 ml medium was placed in each of four 500 

ml conical flasks containing 6.25 g of Difco agar and the medium was then sterilized by
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autoclaving at 121 °C for 20 minutes (2.68 kg cm' 2 pressure). The medium from each 

flask was poured into 12 Petri dishes.

- Chemicals

Unless otherwise stated, chemicals were obtained from Sigma Ltd., Dorset, 

England and were of analytical reagent grade quality. Commercially available Czapek 

Dox agar (modified), manufactured by Oxoid Ltd. was also used in some experiments.

2.1.2. Fungal isolates.

Isolates of V. albo-atrum used in this study were obtained from lucerne and tomato 

plants. They were the isolates VI and V2 obtained from M. sativa and L. esculentum, 

respectively. Isolate VI can cause disease in lucerne and tomato whilst V2 can cause 

disease only in tomato (Isaac, 1957; Heale & Isaac, 1963; Dikilitas, 1997). In some studies 

of this dissertation, isolates of V. albo-atrum (Sevcik, Freitag, Arl 8 6 B & Loken) from M. 

sativa that were obtained from the culture collection of Professor Craig Grau (University of 

Wisconsin, Madison-USA) were also used in some pathogenicity and salinity experiments.

Periodically, fresh isolates of VI and V2 were obtained in the following way; for 

VI, plants of lucerne, cv. Europe were inoculated with V. albo-atrum, isolate VI by the 

root-dip method. The inoculated plants were planted in the field and maintained in the 

gardens at UWS, Plate 2.1. Inoculated plants were incubated for 8  weeks in field 

conditions and the reisolations were made at end of this period. For V2, plants of tomato, 

cv. Ailsa Craig were inoculated with V. albo-atrum, isolate V2 by the root-dip method. 

The inoculated plants were incubated in the greenhouse at UWS and resisolations were 

made at the end of 6  to 8  weeks (section 2.2.5).

2.1.3. Morphology o f fungus.

To identify the fungus, its morphology was examined under a light microscopy. 

Mycelia of the fungus were observed while growing on Dox or PDA agar by removal of a 

square of fungus (ca. 1cm ) from the plate with a sterilized scalpel. The morphology of 

conidiophores that grew into this empty area from the edge of the agar was observed 

under a light microscope, Plate 2.2a. Fungal hyphae were also observed by removing 

mycelium and mounting in water on a glass slide, Plate 2.2b.
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Plate 2.1.
Lucerne plants inoculated with V albo-atrum , isolate VI and maintained as a source 
o f  stock in the garden (UWS).



Plate 2.2.
(a); An erect verticiliate conidiophore o f  Verticillium  (x 80) -c: conidia in ‘spore ball’; 
-cph: conidiophore; (b);. Resting mycelium o f  V. albo-atrum  (x 100).



2.1.4. Slope agar.

To maintain fungi as stock cultures they were kept on agar slopes in glass tubes. 

For this purpose, 15 ml slopes of Dox or PDA sterile media were stored at 4 °C ± 1 °C. 

These cultures were renewed every 6  months by transfer of an inoculum to Petri dishes of 

the same medium. The Petri dishes were maintained at 23 °C ± 1 °C in the dark. Cultures 

were checked visually for contamination and new slope cultures of the fungi were 

inoculated from the resulting pure colonies.

2.1.5. Preparation o f spore suspension.

Cultures of V. albo-atrum, maintained on either Dox or PDA medium and 

subcultured every 23 days, were used for inoculation. Spores were removed from the 

surface of the 23-day old cultures by addition of 1 0  ml of sterile distilled water followed by 

gentle stroking of the mycelial surface with a sterile glass rod. The resulting suspension was 

transferred to a beaker and the concentration of spores was determined under a microscope 

using a neubauer haemacytometer slide and counter. The concentration of spores in the
7  1suspension was adjusted with sterile distilled water to give approximately 1 0  conidia ml"

2.2. Growth of plants.
The various cultivars of M. sativa, strains of M. media and cultivars of L. esculentum 

and L. lycopersicon were used in this study and were germinated in trays of John Innes No. 

1 unsterilised compost in a greenhouse (in the Botany Garden at UWS) at 23 °C ± 2 °C, 

under supplementary daylight fluorescent tubes (150 pE m"2 s'1), with a 16 hour per day 

photoperiod (when necessaiy). The trays were covered with transparent plastic domes to 

protect the seedlings from desiccation. When the plants showed significant growth, the 

plastic domes were removed. After 2 weeks, the seedlings were transferred to individual 15- 

cm plastic pots containing John Innes No. 2 unsterilised compost. Growth was continued 

for a further four weeks before seedlings were used for experiments.

Seedlings of salt tolerant M. media were grown from the cuttings derived from the 

parent plants maintained in the greenhouse. The original salt tolerant strains of M. media 

Pers. cv. Rambler were generated from cells, adapted to different levels of NaCl in liquid
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culture (Chaudhary, 1996) in this department. A new salt line was also prepared by using 

the leaf of original salt tolerant plants (250 mM NaCl-tolerant plant) by Al-Rawahy (2000).

The new cell line was adapted to different levels of salt in liquid culture as well. 

Plants which were generated from the first salt line was called “the original salt tolerant 

plants” while the plants which were generated from the second salt line was called “the new 

salt tolerant plants”. In text the plants are designated by the letter “R”- for ‘Rambler’, 

followed by a number indicating the molarity (in millimoles) of the salt concentration to 

which the line is tolerant and either ‘O’ to indicate ‘original’, or ‘N’ to indicate the new 

generation of salt tolerant plants.

Salt tolerant plants were propagated by rooting the 12-cm cuttings with the help of 

rooting powder either in a test tube containing 1/5 dilution of Amon and Hoagland (A&H) 

(1940), solution with a ferric-EDTA iron source, or in trays of perlite in a heated mist 

propagator (Table 2.2.1). In both cases shoots were maintained for 16 days in the 

greenhouse. Cuttings in the trays of perlite were also watered at three-days intervals with 

A&H solution with a ferric-EDTA. Non-salt tolerant plants were also propagated by 

cuttings to avoid from genetic differences in the population although the seeds were 

available, because the genetic differences in plants, grown form seed would vary 

(personal communication with Assoc. Prof. Barbara W. Pennypacker, USA, 2000). After 

2 weeks the rooted-cuttings were transferred to pots of John Innes No. 2 compost. These 

plants were then used for pathological experiments after four weeks of growth.

M. media Pers. cv. Rambler is a synthetic cultivated variety resulting from the 

combination of seven separate lines. Some of these lines resulted from the FI of Ladak (M 

media) X Siberian (M. falcata) being back crossed to Ladak because of its drought 

tolerance, a feature that could be of value in salinity problems. The seeds and cultivar 

information were provided by the Seeds Division of the Plant Health and Plant Products 

Directorate, Canada (Chaudhaiy et al., 1994). Chaudhary et al., 1994 and Al-Rawahy 

(2000) stated that the cultivar Rambler exhibited a high degree of creep, some resistance to 

bacterial wilt disease and drought. However, Dikilitas (1997) showed that cultivar Rambler 

was quite susceptible to VW.

During the course of these studies, some salt tolerant lucerne plants were also 

generated from the cells of cv. Vertus by using the method of Chaudhary (1996) with minor
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modifications. The resistance of cv. Vertus, a Verticillium-Tesistant cultivar, was assessed 

against V. albo-atrum when the cultivar became salt tolerant.

Table 2.2.1. Amon and Hoagland Stock Solution (A&H) (1:5).

Compound Concentration (g/1)

1. Macronutrients: -

Potassium Nitrate (KNO3) 1 0 . 1 0 0

Calcium Nitrate (Ca(N0 3 )2 .4 H2 0 ) 4.9230

Ammonium Dihydrogen Orthophosphate (NH4H2PO4) 2.3008

Magnesium Sulphate (MgS0 4 .7 H2 0 ) 4.9300

2. Micronutrients: -

Manganous Chloride (MnCl2 .4 H2 0 ) 0.3870

Boric Acid(H3B0 3 ) 0.6310

Zinc Chloride (ZnCL) 0.0240

Ammonium molybdate (NH4)2Mo.4 H2 0 ) 0.0154

Cupric Sulphate (CUS0 4 .5 H2O) 0.0154

3. Iron Solution: -

Ethylenediaminetetraacetic acid (FeNa EDTA) 6.5652

From the above stock solutions lml of micronutrients, 20 ml of macronutrients 

and 1 ml of iron solution were taken and made up to 1 litre with distilled water. Lucerne 

cuttings were sprayed with the A&H solution every three days to promote root 

development. The stock solutions were stored at 4 °C.

2.2.1. Growth conditions o f stock salt tolerant plants.

During the course of experiments, the stock plants were grown in a greenhouse 

with John Innes Compost No. 2. The temperature of the heated, ventilated greenhouse 

was regulated to about 23 °C ± 2 °C. The humidity fluctuated from about 50 to 70%.
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Shoots of salt tolerant plants were cut 15-20 cm from the soil level and kept as stock in the 

greenhouse.

2.3. Inoculation of plants.

Tomato and lucerne plants were inoculated with spores of V. albo-atrum with the 

isolates VI and V2 using one of the following methods.

(i) Root dipping;

Plants were removed from pots and the soil was removed by shaking the plants 

gently, followed by washing in tap water. The roots of the plants were placed in the spore 

suspension for 10 minutes. The inoculated plants were re-planted using the same soil. 

Sterile distilled water was used in place of the spore suspension to treat the roots of control 

plants. At 1-week interval the heights and disease symptoms of the plants were recorded 

over a six- or seven-week period following inoculation.

(ii) Wound inoculation;

The stem of each plant just beneath the soil level was wounded with a razor blade. 

The wounded area was inoculated by fixing a block of agar medium, which had been cut 

from PDA or Dox cultures of the fungus onto the wound (culture face towards to the 

wound). The heights and disease symptoms of the plants were recorded at weekly interval 

over a six-week period following inoculation. Control plants were treated with blocks of 

agar that had not been inoculated with the fungus.

(iii) Soil drenching;

Unless otherwise stated, each plant was inoculated with 100 ml of 1 x 107 

spores/ml, applied around the base of tomato seedlings. Control seedlings received 100 

ml of distilled water in place of the spore suspension. Following inoculation tomato 

plants were watered on demand like other treated plants.

(iv) Stem puncture method;

Tomato plants were inoculated with a stem puncture method following the 

procedure described by Resende et al. (1995), with minor modifications. The conidial 

suspension ( 1  x 1 0 7 spores/ml) was injected from a sterile syringe to the base of the stem.
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Approximately 0.5 ml of the inoculum suspension was absorbed in 5 punctures. The 

drop of inoculum that formed between the stem and the needle disappeared rapidly into 

the cortex. Control seedlings were similarly injected, with distilled water in place of the 

spore suspension.

(v) Root dipping with shaved roots;

Plants were removed as for the root dipping method, their roots were shaved to 

facilitate the entry of conidia to plant roots prior to the inoculation and the roots were placed 

in spore suspension for 10 minutes. Sterile distilled water was used in place of the spore 

suspension to treat the roots of control plants.

2.3.1. Disease symptom assessment.

Plants were scored for symptoms of a disease using a system adapted from Dixon 

& Doodson (1971) and Moller-Nielson & Andreasen (1971) using the following scale:

0 - no wilt symptoms.

1 - trace of infection: chlorotic yellowing visible on the cotyledons and first 

unifoliate leaf only.

2- slight infection: chlorosis and epinasty affecting less than 50% of leaves.

3- moderate infection: widespread symptoms including chlorosis, epinasty 

and necrosis, new largely symptom free branches emerging.

4- severe infection: plant weak and stunted; both main stem and branches 

show advanced symptoms.

5- extremely severe infection: branches and stem necrotic but some 

greenness still visible at the shoot apex.

6 - plant completely dead.

Intermediate scores i.e. 1.5 and 2.5 were used when symptoms did not fall into the 

main categories.

Plants which scored between 0 and 2 were categorised as resistant, between 2.5 

and 3.5 as moderately susceptible, and between 4 and 6  as susceptible (Latunde-Dada & 

Lucas, 1982).
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From these scores a symptom index, which records the time of onset of symptoms 

and their rates of progression in the plants, was calculated as a percentage for each group 

of plants in a single treatment. The number of plants showing a particular value (from 0 

to 6 ) were multiplied by that value and the figure obtained for all plants summed and the 

total multiplied by 100. This value was divided by a maximum value of symptoms i.e. 6 , 

times the total number of plants for that treatment

SI: Symptom index 

n: number of plants

2.3.2. Root symptom index.

To assess the effect of the pathogen or salt or both in plant roots, a root symptom 

index was recorded according to the method described by Graham et al. (1977).

1 - clean root,

2 - trace of discoloration,

3- moderate discoloration,

4- severe discoloration,

5- dead.

2.3.3. Reisolation o f fungi from inoculated plants.

Reisolation of the fungus was made from the plants that had been inoculated, either 

to establish whether infection had taken place, or as part of a program to maintain the 

pathogenicity of the fungi. Inoculated and control plants were removed from the soil and 

their roots were washed carefully under tap water to remove soil particles. Small portions of 

root and stem segments were removed, and the sections were chopped into pieces 2 to 3 cm 

in length then surface sterilized by immersion for 1 minute in HgCb solution (0.25% w/v). 

The sections were transferred to fresh HgCk solution (0.25% w/v) for another 1-minute 

period. After this treatment, the sections were washed twice by immersing in a large

Therefore,
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amount of sterile distilled water for 1 minute using flame-sterilized forceps to handle the 

material. Following this treatment the sections were cut into small pieces and transferred to 

a Petri dish containing Dox agar medium. The cultures were maintained at 23 °C ± 0.5 °C 

in the dark for 3 to 4 days during which the plates were examined daily for the appearance 

of characteristic verticillate conidiophores. When the presence of Verticillium was 

indicated, a dilution series were prepared to produce a pure single-spore colony. These 

spore colonies were removed as appropriate.

2.3.4. Streaking technique (a method to obtain a pure culture).

A small portion of the fungus identified as V. albo-atrum was removed from plant 

tissue using a sterile loop. The inoculum was then streaked over Dox medium in a Petri 

dish. The plates were incubated for 4 days at 23 °C ± 0.5 °C in the dark and then 

examined for the presence of the fungus. Then a dilution series were prepared to obtain a 

pure-single colony.

2.3.5. Serial dilution.

Spores of colonies identified as V. albo-atrum on the basis of their conidiophore 

morphology were removed from the surface of a culture grown on Dox agar medium to a 

tube containing sterilized water, by means of a loop that was pre-wetted with sterile distilled 

water. Spores removed from the surface of mycelia were transferred from the loop by 

immersion in 5 ml sterile water. The spores were dispersed by gentle shaking and 1 ml of 

suspension was transferred with a sterile pipette to a second 5 ml aliquot of sterile water. 

From this aliquot 1 ml suspension was transferred to a third aliquot and the process was 

repeated until the 7th dilution. Each spore suspension was poured into a Petri dish 

containing 10 ml Dox agar medium, which was held at just above setting point. The 

medium was mixed and the dish was transferred to an incubator at 23 °C ± 0.5 °C in the 

dark. The cultures were observed daily for colonies of V. albo-atrum. Colonies that were 

identified as originating from a single spore were transferred to Dox and PDA for 

subsequent culture.
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2.4. Histological analysis.

To examine and observe the changes in the internal structures or spread of 

mycelium in xylem tissues, 1 -cm plant stems from tomato were cut by a razor and fixed 

overnight in 2.5% (v/v) gluteraldahyde (Agar Scientific, Stansted, UK) in 0.1 M 

phosphate buffer, pH 7.0, at 4 °C. Fixed tissues were washed with 0.1 M phosphate 

buffer at 4 °C, four changes were made over a period of an hour then rinsed with distilled 

water and dehydrated through a graded ethanol series in room temperature following by 

embedding in LR white medium grade resin series (London Resin Co., Reading, UK). 

Then samples were placed under a vacuum chamber for several hours at maximum 

vacuum and fixed in absolute resin over a night at 60 °C. Semi-thin (2 pm) sections were 

cut on glass knives, collected on glass slides and stained in 0.5% (w/v) cotton blue in 

lactophenol (2 min, 60 °C) prior to light microscopy.

2.5. Preparation of elicitor from Verticillium.
V. albo-atrum isolates from lucerne (VI) and from tomato (V2) were reisolated 

and grown on Dox medium as described previously. Elicitor from culture filtrate was 

prepared as follows: 1 cm discs were cut from 4 week-old fungal cultures of isolates 

grown on Dox agar plate. 1 disc was transferred aseptically to 100 ml Czapex Dox liquid 

medium in a 250 ml conical flask and the flasks (25 for each isolate) were placed on an 

orbital shaker, (100 rpm), in the dark at 23 °C ± 2 °C for 6  weeks. After this time the 

contents of a number of flasks were combined to make a total of ca. 2.5 litres of culture. 

This was filtered through 2 layers of cheesecloth and the mycelium discarded. The 

filtrate was centrifuged at 10,000g for 20 min at 4 °C and kept overnight at -20 °C, then 

it was freeze-dried. The resulting residue was re-suspended in 200 ml distilled water and 

the suspension was dialysed exhaustively against distilled water at 4 °C. After the second 

feeze-drying the crude elicitor was re-dissolved in a known amount of distilled water and 

then centrifuged (20,000g, 20 min, 4 °C). The preparation was stored at -20 °C 

following assay of carbohydrate and protein content from 5 ml aliquots.
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2.6. Determination of protein and carbohydrate.

2.6.1. Protein.

Two methods were used to determine the protein content of the samples, the 

Lowry and the Bradford methods.

(i) Lowry method (Lowry et al., 1951);

The protein content of various samples was determined using the method of Lowry 

(Lowry et al., 1951).

Preparation:
Solution A, 100 ml 
0.5 g CuS04 .5H20  
1 g Na3C6H5C>7.2 H2 0  (Na-citrate).
Solution may be stored indefinitely at room temperature.

Solution B, 1 litre 
2% Na2C 0 3 in 0.1 M NaOH
Solution may be stored indefinitely at room temperature.

Solution C, 51 ml 
1 ml Solution A 
50 ml Solution B

Solution D, 20 ml
20 ml Folin-Ciocalteu phenol reagent 

Solution E, 50 ml
Bovine Serum Albumine (0.5 mg/ml)

5 ml of fresh mixed solution C was mixed with 1 ml of protein sample (containing 

between 0-500 pg protein). The mixture was incubated for 10 min at room temperature, 

and 0.25 ml of Folin-Ciocalteau reagent was added to the solution, which was mixed 

immediately. After a further 30 min, the absorbance at 500 nm was recorded. A 

calibration curve was constructed using bovine serum albumin (BSA, Sigma type V) as 

standard protein. The response was linear over the range 0 to 500 pg.

All protein concentrations from elicitor preparation were determined by this 

method.
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(ii) Bradford method (Bradford, 1976);

Dye Reagent: 100 mg of Coomassie Brilliant Blue G-250 (Sigma) was dissolved 

by agitation in 50 ml of 95% ethanol then the solution was mixed with 100 ml of 85% 

w/v phosphoric acid (H3PO4) than it was diluted with distilled water to 1 litre and filtered. 

The reagent is stable at room temperature for at least 2 weeks.

Sample (100 pi containing 10-100 pg of protein) was mixed with 5 ml of 

Coomassie blue reagent. The absorbance (595 nm) was measured after 10 min and 

before lh  in 3 ml cuvette against a reagent blank prepared from 0.1 ml of the appropriate 

buffer and 5 ml of protein reagent.

A standard curve was prepared using Bovine Serum Albumin fraction V (Sigma) 

and measuring absorbance at 595 nm. The response was linear over the range 10 to 100 

pg protein. All protein concentrations from lucerne suspension cells were determined by 

this method.

2.6.2. Carbohydrate.

The carbohydrate content was determined using the Phenol Sulphuric Acid 

method described by Hodge & Hofreiter (1962). A standard curve was prepared using D- 

Glucose over the range of 10-100 pg and distilled water was used as a control.

1 ml of 5% (w/v) phenol solution (Sigma) was added to 1 ml carbohydrate 

solution (containing 10-100 pg carbohydrate), the solution was mixed and 5 ml 

concentrated sulphuric acid (analytic reagent) was carefully added using a fast flowing 

pipette. After 10 minutes, the tubes were mixed thoroughly and placed in a water bath at 

30 °C for 20 minutes after which time the absorbance at 490 nm was recorded. Glucose 

was used to prepare a standard curve. The amount of carbohydrate in a sample is 

expressed in glucose equivalents.
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2.7. Effect of NaCI on lucerne and tomato.

2.7.1. Seed viability.

According to Moore, (1973), the reaction between tetrazolium and hydrogen 

atoms released by the dehydrogenase enzymes involved in the respiration of living 

tissues, results in the production of the water-insoluble, oil-soluble red pigment, 

formazan. The testing solution is prepared by dissolving 2% tetrazolium salt in distilled 

water, at a pH of approximately 6.5-7.0. Seeds were placed between two sheets of 

Whatman1 No.2 filter paper to which 0.5 ml of distilled water was added. These were 

incubated at room temperature in the dark for 24 h. Each seed was then cut 

longitudinally and the halves were placed in a micro centrifuge tube to which 0.3 ml of 

2% tetrazolium solution was added. The tubes were incubated at 25 °C ± 1 °C in the dark 

for 24 h. After this period the viability of each seed was scored. Ten seeds from lucerne 

and five from tomato were used for the viability of seeds.

2.7.2. Evaluation o f  different lucerne (M. sativa L. & M. media) and tomato (L.
esculentum) cultivars under different concentrations o f  NaCI during germination.

The development of cultivars with the ability to germinate under high salt stress 

would be useful in the reclamation of saline soils. One of the major problems has been 

the development of uniform, repeatable methods for selecting for the ability to germinate 

under salt stress conditions. However, the most common selection technique was used 

involving, Whatman filter paper in closed containers and moistening with salt solution 

(Al-Niemi et al., 1992), since the preliminary experiments with the other methods were 

either inconvenient for the screening of large number of seeds or carrying high risks for 

contamination during the experimental period. As Carlson et al. (1983) stated that blotter 

or filter paper are useful however, localised evaporation and seed positioning might 

change the microenvironment of the seeds but he did not comment about any other 

disadvantages using filter paper. If localised evaporation is reduced by a cling film over 

the Petri dishes, and seeds were positioned carefully, the disadvantages of using filter 

paper would be minimised.

1 The use o f trade names in this document does not imply endorsement by the University o f Wales,
Swansea, nor criticism o f similar ones not mentioned.
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So, rapid screening techniques would be useful if the data would be used for 

further stages. Whatman filter paper was successfully used as saline medium to rapidly 

screen large numbers of lucerne or tomato seeds for ability to germinate under salt stress.

2.7.3. Effect o f salinity on germination and seedling growth in Petri dishes.

(i) Lucerne;

Seeds of M. sativa from 18 cultivars and one cultivar from M. media (Table 2.7.1) 

were scarified with sandpaper and exposed to 0, 25, 50, 100, 150, 200, 250, 300 and 350 

mM NaCI during germination using standard test procedures (Rumbaugh et al. 1993). A 

sample of seed from each cultivar was obtained from the originating company or from 

research institutes in different countries on the basis of contract. It is not known whether 

the environment during seed development affects the ability of the seed to germinate in 

saline solutions. Two replicates of 25 scarified seeds of each cultivar were placed in 100- 

mm glass Petri plates (surface sterilised with 95% ethanol) containing a single Whatman 

No. 2 filter paper. Then 4.5 ml of appropriate NaCI solution was added, and the plate 

was sprayed with 0.75 ml of 0.8% aqueous solution of a fungicide (0.006 g phenyl 

mercuric ammonium acetate per plate). Petri plates were sealed by cling film to prevent 

evaporation and they were stacked in twos in a dark growth chamber used as a germinator 

at 25 °C.

Germinated seeds were counted after 7 days. Germination in each plate was 

compared to the control group (0 mM NaCI), which was set as 100, and expressed as a 

percentage.

The experiment was conducted in a randomized complete block design with two 

replications. Data were analysed by analysis of variance procedures. The adjusted 

germination data also were analysed by regression (Bliss et al., 1986a) and probit 

procedures, as suggested by Carlson et al. (1983). The IC25 and IC50 values were 

determined for each cultivar by probit analysis of the germination percentages, i.e., the 

IC50 value is the NaCI concentration in mM that inhibits germination of 50% of the viable 

seeds for a particular cultivar. The corresponding standard error was computed to 

provide a measure of precision.
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The estimated inhibitory concentration of NaCI that prevents 50% of the seeds 

from germinating (IC50) was estimated from the quadratic curves for each cultivar. 

Formulae used to calculate the IC25 and IC50 and approximation of its associated standard 

error are:

Y -  ax + b A typical linear regression equation

Y = ax2 +bx + c A typical quadratic equation

IC25 =

icso =

- b - J b 2 -A a (c -1 5 )  
2  a

- b - i ] b 2 - 4a(c-50)
2  a

SE(—- —) 
= ra'“

(b + 2aICvdue)

IC v a lu e  ~  0 r  I C 5Q

(ii) Tomato;

Same sterilisation and germination technique were used as in lucerne. However, 

amount of germination solution and germination time was twice as much of lucerne 

(Bradbeer, 1988). 20 seeds were plated per treatment and arranged as in lucerne

germination experiment (Table 2.7.2).
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Table 2.7.2. Source of tomato cultivars used for salinity and the pathogenicity tests.

Country 
of origin

Name Cultivar Specifications

England L. esculentum Ailsa Craig1 Produces heavy crops, with medium 
sized fruit. Response to salinity 
unknown. Susceptible to VW.

England L. esculentum Cyclon Hybrid F I1 Naturally resistant to virus and VW 
andFW.

England L. esculentum Hybrid Sweet 100 F I1 Response to salinity and VW 
unknown.

Israel L. esculentum Margarita (Fa-558)2 Response to salinity and VW 
unknown.

Turkey L. esculentum Fantastic FI2 Response to salinity and VW 
unknown.

Turkey L. esculentum Falkon2 Response to salinity and VW 
unknown.

Turkey L. lycopersicon Tomato2 Response to salinity and VW 
unknown.

Turkey L. esculentum Simge F1J It grows well in the greenhouse. 
Response to salinity and VW 
unknown.

Egypt L. esculentum Edcawy4 Salt tolerant, response to VW 
unknown.

Tomato seeds were derived from;
‘Murat Dikilitas, University o f Wales, Swansea-UK, 1997.
2Murat Dikilitas, Ankara/Adana-Turkey, 1998.
3Prof. Yuksel Tuzel, University o f Ege, Izmir-Turkey, 1999.
4Dr. Helen Johnson, Univeristy o f Aberyswyth, Aberyswyth-UK, 1999.

2.7.4. Effect o f salinity on germination in soil conditions.

The effect of salinity on seedling emergence was conducted according to the 

method of Johnson (2000).

(i) Lucerne;

From the results of previous experiments (the effect of salinity on seed 

germination and seedling growth in Petri dishes) the effect of NaCI and various osmotic 

potentials on seed germination were assessed in five lucerne cultivars (13R Supreme, 

Vertus, Mesa Sirsa, Vela and Rambler) in seed trays, under greenhouse conditions.

Seed trays were filled with John Innes No. 1 compost to a weight of 500 g. A 

volume of 100 ml of either distilled H2O or various concentrations of NaCI or Mannitol
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was applied to the compost until the seed tray weight reached 600 g. A spray bottle was 

used, to ensure an even application of the solution (Table 2.7.3). NaCI concentrations 

chosen in this experiment were selected from the conclusion of germination experiments 

carried out in Petri dishes. All the chemicals used in this section were purchased from 

BDH (Merck Ltd, Merck House, Poole, Dorset-UK) and Fisher Chemicals (Fisher 

Scientific UK Ltd, Bishop Meadow Road, Loughborough, Leics.-UK), unless otherwise 

stated.

A grid 1 0 x 1 0  mm was marked on the compost using a metal template and a 

single seed was sown into each square of the grid. Prior to sowing, the seeds were soaked 

in running distilled water in a filtration flask for overnight. Each seed was sown to a 

depth of 5 mm and was covered with the surrounding compost (25 seeds for each 

treatment was used). The seed trays were covered with black polyethylene bags and 

incubated in the greenhouse at an average temperature of 23 °C ± 1 °C. Each day the 

seed trays were weighed and the treatments were applied until the tray weight reached 

600 g. The black polyethylene bags were removed when hypocotyl emergence was first 

observed. Emergence, the point at which 2 mm of the hypocotyl was visible above the 

soil surface, was scored daily. Percentage germination seeds was calculated over a 9-day 

period.

(ii) Tomato;

The same method was also used for germination of tomato seeds (20 seeds were 

used for each treatment). However, concentrations of NaCI or mannitol solutions were 

different from the solutions used for lucerne seeds (Table 2.7.3). Five tomato cultivars 

were assessed: Margarita (Fa-558), Fantastic FI, Ailsa Craig, Simge FI, and L. 

lycopersicon.
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Table 2.7.3. The concentrations of salt or mannitol treatments and their osmotic 
potentials on lucerne or tomato seed germination.

NaCI Mannitol* Osmotic
potential

(% wt/vl 
0.438

(mM)
75

(% wt/wt) 
2.727

(mM)
150

(MPa)
-0.36

0.585 100 3.644 200 -0.48

0.880 150 5.466 300 -0.72

1.168 200 7.26 400 -0.96

*non-ionic-penetrating substance.

The osmotic values of the germination media were measured as mmol kg'1 with a 

ChemLab Scientific Product Ltd. 5500 vapor pressure osmometer.

2.8. Root formation of the lucerne cultivars in saline medium.

In this experiment cultivars that showed tolerance or susceptibility to salt [Protea, 

13R Supreme (USA), Bilensoy-80, Mesa Sirsa, Peru (Turkey) and Vertus (Europe)], were 

used in an experiment to test their ability to form roots in saline conditions. The aim of 

this experiment is also to confirm the results of previous experiments and observe the 

responses of the cultivars during rooting stage.

Cuttings were derived from parent (stock) plants that had been grown from seed. 

Shoots were cut 10 to 12 cm from the top of those plants and were individually 

transferred to 10-cm pots of perlite standing on Petri dishes (8 replicates per treatment). 

Rooting ability of the cultivars was tested under the stress of 0, 50, 100 and 150 mM 

NaCI containing A&H (Table 2.2.1) nutrient solution. Plants were flushed through with 

100 ml of A&H solution every other day for 2 weeks. NaCI content of the nutrient 

solution was increased by increments of 50 mM daily until the required salinity of 

medium was reached. Watering was carried out by holding the plant pots above a bucket, 

slowly pouring over excess solution and allowing it to drain. By this method salt 

accumulation in the perlite was prevented.

The plants were grown in a growth room throughout the experiment with a photo 

flux density of photosynthetically active radiation (PAR) of 250 pE m~2 s_1, relative 

humidity of 60%, temperature of 22 °C and a 16 photoperiod per day.
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Beside the growth parameters, proline concentration in leaves was also measured.

2.9. Effect of temperature, NaCI, and various antifungal compounds on
germination and growth of V albo-atrum,

2.9.1. Effect o f temperature on fungal growth ofN. albo-atrum.

The flasks were inoculated with mycelial disk (0.5 cm) of the isolates VI or V2 

and incubated at 18, 22, 25 and 30 °C for 6  weeks in a rotary shaker (100 rpm/min) after 

that mycelial mats were harvested and mycelia weight in mg was recorded. 1 0  replicates 

were used for each treatment per isolate and the mean value was calculated.

2.9.2. Effect o f NaCI on fungal growth o/V. albo-atrum.

V. albo-atrum isolates from lucerne (VI) and from tomato (V2) were reisolated 

and grown on Dox medium as described previously in Materials and Methods.

1-cm diameter discs were cut from 4 week-old fungal cultures of isolates grown 

on Dox agar plate. 1 disc was transferred aseptically to 100 ml Czapex Dox liquid 

medium containing, 0, 25, 50, 100, 150 and 200 mM NaCI in a 250 ml conical flasks and 

the flasks ( 1 0  flasks for each treatment of each isolate) were placed on an orbital shaker, 

(100 rpm), in the dark at 23 °C ± 1 °C for 6  weeks.

After this time the contents of a number of flasks were combined to make a total 

of ca. 1 litre of culture. This was filtered through 2 layers of cheesecloth. Filtrate was 

used for elicitor assay (see section, 2.5) and the residue was washed with distilled water 

to remove residual solutes, and then dried in an oven at 60 °C for 24 h. The mycelial 

mats were removed from the oven and cooled before weighed. Fungal growth is 

expressed as mg dry weight/culture. 1 0  replicates were taken and the mean value was 

recorded.

2.9.3. Effect o f NaCI on the linear growth offungi.

Various concentrations of NaCI were tested for their effects on the radial growth 

and sporulation of the V. albo-atrum, isolates VI and V2. Various concentrations of 

NaCI (0, 50, 100, 150, 200, 250, 300 and 350 mM) were incorporated with Dox medium 

content and autoclaved at 121 °C for 20 min (2.68 kg cm' pressure). The plates 

containing Dox medium at various NaCI concentrations were inoculated with mycelial
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disks (3 mm) cut from the outer margin of 3 week-old cultures on Dox and the plates 

were then incubated at 23 °C ± 1 °C for 3 weeks. One disc was transferred aseptically to 

each plate and five replicates were used for each concentration and isolate. The linear 

growth of fungi was measured in mm diameter.

(i) Sporulation;

Sporulation was determined by pouring 10 ml of sterile water on to the surface of 

a culture, gently stroking the surface with a flame sterilized glass rod, and collecting the 

liquid containing spores and hyphal fragments in a sterile flask. Suspension was filtered 

through a Whatman No. 1 filter paper and counting was made with a neubauer 

haemacytometer. Five replicates were used for each concentration of each isolate.

2.9.4. Viability ofW. albo-atrum, isolates VI or V2, in various concentrations o f liquid
Dox medium.

1 x 105 conidia/ml of V. albo-atrum, isolates VI or V2, were incubated at 23 °C ± 

1 °C for 24 h in sterile boiling tubes containing 10 ml liquid Dox medium at different 

concentration of NaCI (0, 50, 100, 150, 200 and 250 mM). After the period of 

incubation, 1 0 0  pi of treated spores were smeared on sterile microscope slides and 

counted with a neubauer haemacytometer under a microscope. Spores germinated 

counted as alive.

2.9.5. Selection procedures for salt-adaptedfungal isolates.

Initially, isolates VI and V2 were grown on Dox medium containing 50 mM NaCI. 

Every 3 weeks, the cultures were transferred to medium in which the concentration of 

NaCI was increased by an increment of 50 mM. Each isolate was grown in this way until 

the NaCI concentration reached 150 mM. At this concentration, both isolates VI and V2 

were maintained for 5 months prior to the start of the experiment. Those isolates, which 

had been maintained on medium containing 150 mM NaCI are designated V I-150 and 

V2-150. A sample of each V I-150 and V2-150 was transferred to medium in which the 

NaCI concentration was increased to 200 mM. Isolates were then maintained on 200 mM 

NaCI for 2 months and are designated V I-200 and V2-200.

73



2.9.6. Effects o f hydrogen peroxide and purified phytoalexins on the germination o f  
conidia and germ tube elongation o fV . albo-atrum isolates.

Conidial suspensions (105 spores ml'1) of V. albo-atrum were prepared as 

described by Dikilitas (1997). The method of Lu & Higgins (1999) was adopted with 

slight modifications. A known quantity of H2O2 or phytoalexins (medicarpin and sativan) 

was added to 1 ml samples of the spore suspension in plastic centrifuge tubes and 1 0 0  pi 

of these treated spores were smeared on sterile micro cavity microscope slides (76 mm x 

26 mm) which were incubated at 23 °C ± 1 °C for 24 h in Petri dish moisture chambers. 

Three replicates were used for each concentration per treatment per isolate. Spores were 

considered germinated when the length of the germ tube exceeded the diameter of spore. 

The percentage of spore germination was determined by counting the number of 

germinated spores in every 100 spores under a microscope. Three counts were made for 

each replication and the average was calculated.

In the case of phytoalexins; the residue of purified phytoalexins, medicarpin (0.09 

mg/ml) and sativan (0.12 mg/ml), were re-dissolved in 1 ml of 5% v/v ethanol. An 

equivalent of sterile-distilled water and 5% v/v ethanol were used for H2O2- and 

phytoalexins-treated groups, respectively.

2.9.7. Effects o f hydrogen peroxide and purified phytoalexins on hyphal growth o f germ 
tubes o f \ .  albo-atrum.

The effect of various concentrations of H2O2 and phytoalexins (medicarpin and 

sativan) on germ tube growth of V. albo-atrum was tested on slides with untreated spores 

previously germinated for 24 h as described above. A known quantity of H2O2 or 

phytoalexins (medicarpin and sativan) or 50 (il H2O was added to the 50 pi of spore 

suspension on sterile micro cavity microscope slides and was well mixed with the 

germinating spores by gently rotating the slides. The spores were incubated for a further 

18 h and the lengths of the germ tubes were measured microscopically. The average 

length of germ tubes measured just before the treatment was used to determine the germ 

tube length at the time of treatment (Lu & Higgins, 1999). After the period of incubation 

the average length of germ tubes ( 1 0 0  germ tubes per replicate) were determined using an 

ocular micrometer and from these values a mean germ tube length was calculated.
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2.10. Effect of various NaCI concentrations on disease severity of tomato plants 
inoculated with V. albo-atrum.

The resistance of 4- (young) and 8 -week (mature) old tomato plants that were 

inoculated with V. albo-atrum, isolate V2 was assessed under saline conditions. The seeds 

of cv. Ailsa Craig was germinated as described before and transferred individually to 15-cm 

pots of perlite and Levington’s Universal Compost mixture (4:1). The surface of the pots 

was covered with vermiculate to keep the moist in pots thus preventing from drought.

The plants which were inoculated with Y2 or used as controls were watered with 

1/5 A&H solution for 3 days before the salinity treatment started. After this period both 

inoculated and non-inoculated tomato plants were treated with various concentrations of 

NaCI. The plants were watered every other day (250 ml) with 1/5 A&H solution, 

containing different concentrations of NaCI (0, 25, 50, 100, 150 and 200 mM). The 

concentration of NaCI in the culture solution was increased by increments of 50 mM 

NaCI until the required salinity of the medium was reached. Watering was carried out as 

described before. Two control groups consisting of NaCI- and non NaCl-treated groups 

(only tap water used) were set up for the inoculated plants. The plants were maintained 

in the greenhouse and were harvested after a total of 5 or 8  weeks depending on the 

experimental procedure.

For each NaCI concentration 10 1 of stock solutions were prepared.

2.10.1. The drip irrigation system.

Human beings must increase and extend the growing period of agricultural crops 

to compensate for the increase in world population. However, many factors, 

environmental and biological, limit the crop productivity. In many countries regenerated 

or modified plants for the resistance to stress are now available to increase the crop 

production even in marginal lands. Although these developments are promising only one 

factor is considered to be important when plants are developed against stress. However, 

many stress factors can deteriorate the development of plants by acting synergistically. 

For example, irrigated lands may be exposed to salinity by many reasons in the near 

future therefore salt-tolerant plants, which tolerate the high levels of salt, may be of 

economic importance. However, the stress factors, other than the salinity, may still have
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the potential damage on those plants that tolerate the effect of salt. If one of those factors 

is considered to be a plant pathogen, which has always limitation on economic crops, this 

means that the problem is not solved yet. Since a living organism is involved, adaptation 

or in a long term, evolution of the pathogen may create bigger problems for the 

agricultural lands or in a short term the toleration of the level of salt by regenerated plants 

might be less than that of the plant pathogen.

So, to evaluate the problem in detail and assess the each stress factor for 

commercial crops, a drip irrigation system was used. In this system, both water and 

nutrients can be delivered to the crop as required.

For this project, valuable information was obtained from a research group, Prof. 

Mike Hall, Dr. A.R. Smith and a Research Assistant Helen Johnson, in the Biological 

Sciences Department in Aberystwyth University. As a result of this research, preliminary 

plans were prepared for the development of an open drip irrigation system. The system 

was designed for the purpose of assessing plant, pathogen and salt interactions. Unless 

otherwise stated all equipment required for the system was obtained from Aquaplast 

Irrigation Co. (26 Penketh Place, Skelmersdale, Lancashire and B & Q, Swansea).

The pre-diluted nutrient solution containing NaCI or not was pumped from two 

central tanks (Aqua Butt, Sankey Home & Garden Products, Nottingham) via control 

valves and filtered to the main pipes. Each pipe has 112 drippers arranged at set, 

intervals in groups of four. It is recommended by the Irrigation Company that two 

drippers should be assigned to one plant; one of them went into the pot and the other went 

into between pots and troughs (each dripper has the capacity to deliver 2 1 h-1). After 

calibration, each dripper delivered 1 2  ml nutrient solution/min in four different time scale 

(morning, mid morning, noon and evening, total 22 min irrigation per day), therefore, 264 

ml were delivered to the troughs from each dripper. The scheduling of drip irrigation was 

programmed by a digital timer (Smith Industries Pic). After each irrigation period, water 

run-through was observed under the troughs. The same timer controlled the two 

hydroponic systems, so ensuring simultaneous irrigation.

This system has the capacity to grow 56 plants per pipe holding 20 plants that 

were inoculated with VI, 16 with V2 and 20 as control. Plants were grown in raised 

troughs filled with perlite (B & Q, Swansea) as this allowed easy drainage by means of a
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gutter and prevented cross-contamination between control and salt solutions. Four plants 

were placed in each trough (dimensions 40x76x26 cm) with holding approximately 80 1 

of medium perlite. To prevent direct light to the root zone and to minimise algal growth 

and evaporation, each trough was covered with black polyethylene. The entire system 

described above was illustrated in Plate 2.3.

Prior to transplanting of the plants into the hydroponic system, the perlite in the 

troughs was irrigated with water until run-through was observed.

6 -week old tomato plants (cv. Ailsa Craig) were inoculated with V. albo-atrum, 

isolates VI or V2. Before inoculation the roots of the plants were washed under tap 

water to remove excess soil. Inoculated plants were transferred individually to the pots 

(15 cm) of perlite that was placed in the troughs. At the time of transplantation a sample 

of 5 plants was harvested and the growth parameters including leaflet surface area, stem 

and root length and their dry weights were recorded. The initial harvest provided a 

standard degree of variation within the sample population. Plants were left to settle to 

establish the disease development for couple of days prior to the application of salt 

treatment. After this period, groups of plants that were inoculated with VI or V2 were 

irrigated either with the nutrient solution containing 50 mM NaCI or with the nutrient 

solution alone. The plants were initially supported using wooden canes. As they grew, 

each plant was supported by a piece of string attached to long & big wooden canes.
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2.10.2. Medium culture o f drip irrigation hydroponic system.

The ‘Solufeed F’ culture medium was used in a hydroponic culture nutrient 

system. The Solufeed F (Table 2.10.1) is considered to provide a balanced and easy to 

manage nutrient system for commercial crop production in perlite etc. and Nutrient Film 

Technique (personal communication with Mr. Dick Holden, Solufeed Ltd., Saffron 

Walden, Norfolk House-Essex).

Table 2.10.1. Contents of Solufeed F (Analysis %).

Compound Concentration

Total (N) 8.7

Nitric nitrogen 8.7

Phosphorus Pentoxide 6 . 8  (3 % P)

Potassium oxide 37.3 (30.8% K)

Magnesium oxide 4.6 (2.8% Mg)

Boron 0.024

Copper chelated by EDTA 0.016

Iron chelated by EDTA 0.088

Manganese chelated by EDTA 0.052

Molybdenum 0.004

Zinc chelated by EDTA 0 . 0 1 2

The stock solution o f Solufeed F;
The method o f use is to prepare 10% Solufeed F stock solution to be diluted according to 
crop requirements, normally 1:100 (final concentration 0.1%).

All chemicals with the exception of the nutrient feed were purchased from Fisher 

Scientific UK (Bishop Meadow Road, Loughborough, Leicestershire, UK). Stock

solutions of Solufeed F and calcium nitrate [Ca(NO3)2 .4 H2 0 ] were prepared. It was 

advised that Solufeed F and calcium nitrate mixture caused pellets in the nutrient solution 

(personal communication with Dr. Helen Johnson), therefore, the stock-solutions were 

added to the tanks separately. The concentration of calcium nitrate to be added to the 

feed tanks was calculated as described in the Solufeed manual, taking into account the 

calcium concentration in the mains water supply (20 ppm Ca, consultation with Welsh
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Water Co.). This resulted in a stock solution to be added extra 80 ppm Ca. In addition to 

those chemicals, 50 ppm potassium nitrate was also added to the nutrient solution.

The appropriate weight of NaCI was pre-diluted in a beaker then it was 

completely dissolved in the tank with tap water to give the concentration of 50 mM. The 

nutrient stocks and the NaCI were added to the tanks when they were re-filled.

2.10.3. Monitoring o f the nutrient solution.

The pH (Hanna Instruments, Woonsocket, RI, USA 02895) and EC (electrical 

conductivity) meter (Milwaukee, Australia) were used regularly throughout the 

experimental period. It was aimed to maintain pH accordance with the criteria described 

in Solufeed manual. With the help of the EC meter, it was possible to check whether 

excess salt was building-up.

A hydroponic system is a suitable testing system to compare individual and 

combined effect of the fungus and salt. So, when the plants were watered by salt solution 

no salt accumulation was detected at the bottom of the plant root area. So any toxic and 

physiological effects of salt concentrations applied on plants were observed accurately.

As a result of communications and preliminary experiments four tomato cultivars 

were selected for plant, salt & pathogen interactions study. Fantastic FI and Margarita 

(Fa-558) were from Israel, Simge FI and Ailsa Craig were supplied from Turkey and 

England, respectively. Although Edcawy was known to have salt tolerance (Mahmoud et 

al., 1986a. & 1986b), because of limited seed stock, this cultivar could not be tested for 

plant & pathogen & salt interactions in the hydroponic system.

At 7 d intervals, plant height and symptom index were taken and in the 4th week, 

four representative plants were selected randomly from each treatment to screen the salt 

and pathogen interaction in the early stage. Total harvest was made in the final week (7 

week). Leaf area, fresh and dry weights of stem and roots, chlorophyll contents of the 

leaves were recorded both in the middle and at the end of the experimental trial.
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2.11. Harvesting plants.

At the start of the experiment five or ten representative plants of each cultivar 

were harvested, dried for a period of 3 days in an oven at 60 °C and the initial fresh and 

dry weights were calculated as follows:

F w t m u  Plant = F w l ,nmai shoot + F w t M M  root 

Dwtmmi plant =  D w t m u l  shoot + D w t m a  root 

F w t  final Plant = PwtfM  shoot + Fwtfinal ™Ot 

Dw‘final plant = D w t  fml shoot + D w t fmal root

During or after the experimental trial, some leaf samples were collected for 

chlorophyll and other laboratory determinations, the remaining fresh weight from each 

cultivar was recorded and the plants were then dried for a period of 3 days in an oven at 

60 °C. These were then re-weighed to find the diy weight.

(i) The relative growth rate per week, RGR (week'1);

D„ „ ,  , , ,  I W D w t ^ ) - \n(MeanDwtm , )]
RGR (week ) = -------------------------------------------

Weeks

Index o f  RGR =
Mean RGRCmlnl

(ii) Relative rate of height increase (index of height);

True height = Final height o f shoot -  Mean o f  initial height o f shoot

Index o f  height = — True he,ghtTrMmM-----
Mean o f  True heightCMrol

SO



(iii) Relative rate of root length increase (Index of root length);

True root length = Final root length -  Mean o f initial root length

r 7 /• True root lenghtTrpntmpntIndex o f root = -------------------- 6 Treatment-----
Mean o f True root lengthControl

(iv) Measuring leaf area;

Tomato leaf area was determined from its weight using a calibration curve (Fig. 

2 .1 1 .1 ) constructed in the following way; about seventy five leaves were harvested from 

the appropriate tomato plants and each was placed and spread onto the plate of a 

photocopier. A copy of each leaf was made and the image of each leaf was cut out and 

weighed. In addition, the Fwt of each leaf was recorded.

The weight of the image of each leaf was converted to area using the information 

that for the paper used in the copying process, each sheet (21- x 29.5 cm) weighed 5.36 g, 

giving a ratio of 115.587 cm2: 1 g.

So,

If the image of an individual leaf weighed 0.120 g. then, the total leaf area for one
9  9surface would be 1382 mm , for both leaf surfaces it would be 2764 mm .

Using this data, a calibration curve was constructed in which the area of each leaf, 

calibrated from its photocopied image, was plotted against its Fwt. This process was 

followed for leaves from 9-10 week-old- and 13-15 week old plants. In both cases, the 

plot was a straight line (r=0.96 and 0.99 respectively), indicating a linear relationship 

between area and Fwt area across a wide range of leaf size.

Consequently, Fwt was regarded as a good indicator of leaf area and the 

conversion was achieved using x and c determined from the two plots for young (9-10 

weeks old) and mature (13-15 weeks old) tomato plants (Fig. 2.11.1) in the following 

formula;
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Calculation of Leaf Area (LA);

- for young tomato plants,;

IW
LA = 81.967 x   ----------+ 4.2879

Number o f leaf

- for mature tomato plants'.;

IW
LA = 51.711 x -------------------- + 6.3029

Number o f  leaf

IA
Index o f LA = Treatment

Mean o f  L A , ^

(v) Net Assimilation Rate (NAR): g.cm' .week

NAR = EzK  x [M+d+HM
Weeks 2LA-XLA

Index o f NAR = rrea”“ '
Mean o f NAR,Ccnlml

iW; initial dry o f a plant, 2W; final dry weight o f a plant, iLA; initial leaf area of a plant, 2LA; final leaf 
area of a plant, LW; leaf weight.

(vi) The percentage of water content (WTC) in a plant;

Dwt%WTC = 100-100 x
Fwt

Computation of an index of RGR, height, root length, chlorophyll content, Net 

Assimilation Rate etc. is a useful criteria to compare the different cultivars under the
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stress of NaCl or a pathogen or both. The index for height, root length, RGR, NAR etc. 

was calculated for each cultivar as a proportion of the mean of the same cultivar grown in 

unstressed conditions and the comparison was made between treatments and control 

groups within each cultivar. The index figures were used in graphs and statistical 

analysis to minimize the calculation error when statistical analysis was made.

83



90

80

70

60

50

< 40

20

y =  81.967x  + 4 .2879  

r =  0.96

o 0.2 0.4 0 .6 0.8

L e a f  W e ig h t  (g )

90

80

70

60

50

< 40

- 1 30

20

y  = 51.71 lx +  6.3029 

r  = 0 .99

0.5 1.50 2

L e a f  W e ig h t  (g )

Fig. 2.11.1. Calibration between leaf weight and area. (A) young- (n=62); (B) mature- 
tomato plants (n=13).
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2.11.1. Spectrophotometric quantitation o f chlorophyll.

The procedure for determination of chlorophyll was conducted according to 

Amon (1949). At the time of harvest, a sample (2 g) of leaf sample was placed into small 

glass tubes with 5 ml acetone:water (80% (v/v)) and covered with aluminium foil to 

prevent access light and placed in the fridge until use. Subsequently, a further 10 ml 

aliquot of aqueous acetone (80%, v/v) was added to each leaf sample, which was 

homogenized for 5 min with a Polytron Homogeniser, by which time all the chlorophyll 

had been released. The extract was filtered on a sintered glass funnel, washing with 5 ml 

acetone-water mixture. The extracts and washings were made up to 15 ml volume and 

stored in a refrigerator. Chlorophyll determination, after appropriate further dilution, if 

necessaiy, was made in a UV-visible spectrophotometer at 663.5 nm for Chlorophyll a 

and 645 nm for Chlorophyll b against an acetone (80%) blank. The results were 

expressed mg/1 on a fresh or dry weight basis.

Calculation of chlorophyll concentration in acetone extracts;

Total chlorophyll (mg/1) = 20.2A645 + 8 .0 2 ^ 3  5

Chlorophyll a (mg/1) = 12.7J663 5 -  2.69A645

Chlorophyll b (mg/1) = 22.9A645 -  4 .6 8 ^ 3  5

2.11.2. Determination o f proline.

Proline extraction and estimation were conducted according to Bates et al. (1973). 

Acid-ninhydrin was used as a reagent. The reagent was made by dissolving (warming 

and agitating) 1.25g ninhydrin in 30 ml glacial acetic acid and 20 ml 6  M phosphoric acid 

(the reagent remains stable for 24 hours at 4 °C). After weighing, the leaves were frozen 

in liquid nitrogen and crushed immediately in a mortar and homogenized in 10ml of 3 

%(w/v) aqueous sulphosalicylic acid. The homogenate was filtered through Whatman 

No. 2 filter paper. Two ml of filtrate was mixed with 2 ml acid ninhydrin in a test tube 

and boiled at 100 °C for 1 hour, and the reaction was terminated in an ice bath. The 

reaction mixture was extracted with 5 ml toluene, the tubes were shaken thoroughly for 

15-20 seconds and left for 20 min for separation of the two layers. The chromophore 

containing toluene was removed and allowed to warm to room temperature.
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The absorbance was measured in a spectrophotometer (UV-1601-Shimadzu) at 

515 nm against a toluene blank. The assay was calibrated with standard solution of L- 

Proline. The proline concentration was determined from a standard curve and expressed 

in pmol/g on a fresh weight basis.

2.12. In vitro studies with lucerne;

2.12.1. Development and maintenance o f  callus cultures.

Callus was initiated from leaves of lucerne plants, grown in a glasshouse or 

growth room under fluorescent tubes supplemented by mercury vapour lamps with 16 

hours photoperiod and flux density of 110 pE m'2 s'1 at 23 °C ± 2 °C and 60-70% relative 

humidity, in the following way. Young terminal leaflets were excised from the plants 

and transferred into 100 ml conical flasks containing 50 ml of 5% bleach solution (1% 

hypochlorite solution) with 2-3 drops of washing up liquids. The flasks were plugged 

with a foam bung and were shaken gently for 5 min. Leaves were then rinsed with 

sterilised water (4 x 20 ml) to remove any traces of sterilising solution and the edge of the 

leaves were cut with scalpel to initiate the growth of callus before aseptic transfer onto 

M&S (Murashige & Skoog, 1962) solid medium in Petri dishes, Table 2.12.1. Cultures 

were then developed at 23 °C ± 2 °C in the dark. Callus cultures were subcultured every 

6 weeks to maintain fresh callus stock.

2.12.2. Development and maintenance o f cell suspension culture.

Liquid suspension cultures were derived from 4 week-old callus culture. 

Approximately 1 cm of callus was transferred aseptically into 75 ml M&S liquid 

medium in a 250 ml conical flask and the flask incubated on an orbital shaker (100 rpm) 

at 23 °C ± 2 °C in the dark. Once established, this initial culture was subcultured after 4 

weeks by transferring 25 ml of cell suspension and microcalli into 50 ml fresh M&S 

liquid medium. Once the culture was fully established it was routinely subcultured every 

2 or 3 weeks.
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2.12.3. The culture media.

- Preparation of cell suspension media;

A modified M&S medium was used for the induction and maintenance of callus 

and cell suspension cultures. The detailed composition of the medium is presented in 

Table 2.12.1.

Table 2.12.1. The composition of M&S medium for cell cultures of M. sativa.

1. Macronutrients mg/1 3. Iron Source mg/1

NH4NO3 1650 Na2EDTA* 74.6

CaCl2 .2H20 440 FeS04 .7H20 27.8

MgS04 .7H20 370

k h 2p o 4 170 4. Vitamins & Glycine mg/1

KNO3 1900 Thiamine HC1 1 0

Nicotinic acid 5

2. Micronutrients mg/1 Pyridoxine HC1 1 0

H3BO3 6 . 2 0 Glycine 2

MnS04 .4H20 22.30

ZnS04 .7H20 10.60 5. Growth Regulators mg/1

KI 0.83 Kinetin 0.25

Na2Mo042H20 0.25 2,4-D** 2 . 0 0

CuS04 .5H20 + 0.025

CoC12 .6H20 + 0.025

+Cu+Co can be made up as stock solution then added to micronurtients stock.

+CuS0 45H20  0.25 g/100 ml

+CoC126H20  0.25 g/100 ml

*Disodium ethylene diamine tetraacetic acid

** 2,4-D Dichloro phenoxyacetic acid
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Media stock solutions were made up as follows:-

Stock Solutions;

Macronutrients and iron source; stock solutions were made at a concentration 10 

times that of the final medium. Chemicals were dissolved in a 1000 ml volumetric flask 

using distilled water and stored at 4 °C.

Micronutrients and vitamins; stock solutions were prepared at 100 times of the 

final medium strength. Micronutrient stock solutions were stored at 4 °C while vitamins 

were dispensed in 10 ml aliquots and stored at -20 °C.

Growth regulators;

Auxin: 50 mg 2,4-D was dissolved in 2.5 ml ethanol in a warm water bath, gradually 

diluted to 100 ml with distilled water and stored at room temperature.

Kinetin: Kinetin stock solution was prepared by dissolving 25 mg Kinetin in 2 ml of 0.2 

N HC1, warmed in a water bath, slowly diluted to 100 ml with distilled water and stored 

in a refrigerator at 4 °C in the dark.

Ingredients for preparation of 1 litre medium;

Macronutrients 100 ml

Iron source 100 ml

Micronutrients 10ml

2,4-D 4 ml

Kinetin 1 ml

Vitamins & glycine 10 ml

Myo-inositol O.lg

Sucrose 30.0 g

Ceasin hydrolysate 2.0 g

Agar (Difco Bacto) 7-5g

The components were added to 400 ml distilled water, mixed and the solution 

made up to 990 ml with distilled water. The pH was adjusted to 5.8 and 5.9 with 0.2 N 

KOH and the volume made up to 1 litre. For liquid medium, 75 ml of medium was 

dispensed into a 250 ml conical flask. In the case of salt containing medium, desired
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concentrations of salt were added and the medium was dispensed in to the flasks as stated 

above. The flasks were plugged with foam bungs and covered with tin aluminium caps. 

For agar supported medium the nutrient solution was transferred into a 2 litre conical 

flask and agar was added accordingly. To dissolve the agar completely and uniformly, 

the flask was heated and stirred on a magnetic stirrer for 15 minutes. Then the medium 

was autoclaved at 121 °C for 20 min (2.68 kg cm' pressure). The cooled flasks were 

either inoculated or stored at 4 °C. In the case of agar containing flasks, the medium was 

dispensed into Petri dishes (M&S solid medium) and stored at 4 °C for further use.

2.12.4. Selection Procedure for salt tolerant cell lines.

After the pathogenicity experiments with V. albo-atrum on lucerne plants, it was 

decided that cv. Vertus or Kabul should be used for the selection of salt tolerance ability. 

A multi-step procedure was used for selecting salt-tolerant cell lines, by transferring the 

suspension cells to successively higher concentrations of NaCl as used by Chaudhary 

(1996) with minor modifications (not only the cells but the medium from the previous 

culture were also transferred to a higher NaCl concentration containing medium) to 

produce salt-tolerant cultures of alfalfa. Sterilization of the leaves was carried out as in 

section 2.12.1. The way of maintenance and subculture of cell suspension culture was 

prepared as described previously with the exception that cultures were illuminated under 

50-60 pE m‘2s-1for 16 h photoperiod by cool fluorescent lights.

Approximately 1-2 g cells were inoculated into 75 ml of medium containing 25 

mM NaCl to produce a culture containing 25 mM NaCl. After one month, the suspension 

cultures were subcultured into a medium of 50 mM and higher salinity (75 and 100 mM). 

Because of the limited time, only 50 mM NaCl-adapted cell lines (6 months) were used to 

produce regenerated salt tolerant strains.

2.12.5. Preparation o f regeneration medium.

The cell cultures were adapted to 50 mM NaCl (approx. 6 months) then they were 

transferred to hormone-free BOi2Y regeneration medium, Table 2.12.2, (Bingham et al., 

1975). Microcalli and sedimented cells from suspension cultures were transferred to the 

regeneration medium by means of a fine stainless-steel mesh scoop with very little carry-
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over liquid medium. During the first month on the regeneration medium, green 

embryoids started to develop on the surface of the starting callus. These were then 

subcultured onto a fresh BOi2Y medium to initiate the growth of the embryoids into 

small plantlets. When the plantlets were 3 cm high and had well-developed roots, they 

were transferred to John Innes No. 1 potting compost in small pots. The pots were 

covered with transparent plastic domes to protect the plantlets from desiccation and were 

placed in trays filled with water to a dept of 3 cm. When the plants showed significant 

growth, the plastic domes were removed and the plants were placed in a mist propagator 

for several days before being transferred to the greenhouse bench. The plants, which 

were generated from salt adapted cells, were watered with salt solution to which they 

were adapted. The regenerated and control plants were propagated by cuttings as 

described in section 2.2. The temperature of the heated greenhouse was regulated to 

about 23 °C. These clones were referred to as NaCl-selected lines.

Stock solutions were prepared as in M&S liquid culture medium.

Ingredients for preparation of 1 litre medium;

Macronutrients 100 ml

Iron source 100 ml

Micronutrients 10 ml

Vitamins & glycine 10 ml

Myo-inositol 0.1 g

Sucrose 30.0 g

Yeast extract 2.0 g

Agar (Difco Bacto) 10.0 g

The ingredients were made up to 1 litre with distilled water. The pH of the 

medium was adjusted to 5.9. The medium was dispensed into honey jars or small bottles 

and sterilised in an autoclave at 121 °C for 20 min (2.68 kg cm'2 pressure).
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Table 2.12.2. The composition of BOi2Y regeneration medium.

1. Macronutrients mg/1 3. Iron Source mg/1

NH4NO3 1 0 0 0 Ferric EDTA* 32

Ca(N03)2 .4H20 347

MgS04 .7H20 35 4. Vitamins & Glycine mg/1

k h 2p o 4 350 Thiamine HC1 0 . 1

KNO3 1 0 0 0 Nicotinic acid 0.5

KC1 65 Pyridoxine HC1 0 .1

Glycine 2

2. Micronutrients mg/1

H3BO3 1 . 6

MnS04 .4H20 4.4

ZnS04 .7H20 1.5

KI 0 . 8

* Ferric Ethylene diamine tetraacetic acid 

2.13. Histochemical staining.

2.13.1. Evans Blue procedure for quantitation o f dead cells.

Cell death was determined using Evans Blue as described by (Levine et al., 1994). 

The selective staining of dead cells with Evans Blue depends on the exclusion of this 

pigment from living cells by the intact plasmalemma, whereas it passes through the 

damaged plasmalemma of dead cells and accumulates as a blue protoplasmic stain 

(Turner and Novacky, 1974).

Treated and untreated cells, described above, were incubated for 15 min with 

0.05% Evans Blue and then washed extensively to remove excess and unbound dye by 

centrifuging (lOOOg, 5 min). Dye bound to dead cells (0.5 g) were solubilized in 5 ml 

50% methanol with 1% SDS for 30 min at 50 °C. The resulting solution was then cooled
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and then the absorbance of supernatant was recorded at 600 nm. All data are either 

duplicates or more.

2.13.2. FDA stains o f living cells;

Fluorescene diacetate (FDA) staining method was used following the methods of 

Larkin (1976) with some modifications. Live cells absorb FDA and consequently 

fluoresce when exposed to 300-500 nm. FDA was stored in an acetone stock solution (10 

mg/ml in acetone) at 0 °C. It was added to the cell sample to give a final concentration of 

0.05%. After 15 min incubation at room temperature, the cells were washed with 

distilled water to remove surplus FDA, they were then transferred to a slide and covered 

with slip. A fluorescence microscope with an epifluorescence condenser (Zeiss 

photomicroscope, Germany) was used to count the living cells. Viable cells were 

recognised by their fluorescence however, non-fluorescing ones were judged to be 

nonviable.

2.14. Assay of PAL activity from cell cultures.

-Cell Suspension;

To assess the early defense response of lucerne cells exposed to NaCl, V2 elicitor 

or both, PAL activity assay was performed. Cell suspension culture was used for the 

assay, 6 days after subculture, at a time when endogenous PAL activity was minimal 

(Little, 1989). The required quantity of test compound, never exceeded 2 ml, was added 

to the culture from a sterile syringe via a sterile membrane filter. An equivalent volume 

of water was used as a control. Each culture was then incubated on an orbital shaker (100 

rpm) for 4 hours at 25 °C in the dark, for analysis of PAL activity. After the incubation, 

cells of lucerne were recovered from suspension cultures by filtration and stored in liquid 

nitrogen prior to extraction. The frozen cells were weighed before being transferred to a 

pre-chilled mortar, and homogenized (1ml buffer per 2 g fresh weight of cells) in 50 mM 

Tris-HCl, pH 8.4, containing 4 mM Na2EDTA, 10 mM mercaptoethanol, 2 mM ascorbic 

acid and 1 mM PMSF, with a pestle with the aid of some acid-washed sand. The 

homogenate was filtered through two layers of wet Mira Cloth (Calbiochem), and the 

resulting filtrate was centrifuged (20,000 g, for 20 min at 4 °C). The supernatant was
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dialyzed overnight against 2 litres of dialysis buffer (50 mM Tris-HCl, pH 8.4 containing 

10 mM mercaptoethanol, 4 mM Na2EDTA and 0.5 mM PMSF). The protein 

concentration was determined in a Coomassie-blue dye-binding assay using the Bradford 

method (1976).

PAL activity was determined (Bolwell et aL, 1985) by measuring, at 30 min 

intervals, the increase of absorbance at 290 nm of reaction mixtures. Incubation mixtures 

(3 ml) contained 1.5 ml of 50 mM Tris-HCl buffer (pH 8.4) containing, 4 mM Na2EDTA, 

lOmM mercaptoethanol, 5 mM ascorbic acid and lpM  PMSF and 1 ml of lOmM L- 

phenylalanine (final concentration). The reaction was started by addition of enzyme 

extract (0.5 ml) containing 0.4 to 1.0 mg protein to the mixture, which was incubated at 

40 °C for 2 hours. Assays were performed in duplicate and the control incubation was 

prepared using D-phenylalanine (10 mM final concentration) in place of the L-isomer.

Activities have been calculated from the molar absorption coefficient of cinnamic 

acid at 290 nm, which was determined to be 10, 900 litre.mol'1 cm'1 under the conditions 

of assay. PAL activity was expressed as: nmol cinnamic acid mg'1 protein h '1.

The change in absorbance was converted to nmol of cinnamic acid using the 

following equation;

E = - ^ —
C x i

A : Absorbance at 290 nm.

C : Concentration of cinnamic acid in Moles/L.

1: Path length of light (1 cm).

E : The molar absorption coefficient of cinnamic acid at 290 nm, which was

determined to be 10,900 litres mol^cm'1

Chemicals; All chemicals were from Sigma, and Fisher Co. except where 

specified.
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2.15. Data Analysis.

Data were analysed using a One or Two-Way factorial design Analysis of 

Variance, ANOVA, (including Duncan Multiple Range Test) to determine the 

significance of differences between the plant cultivars and treatments using a significance 

level of P < 0.050 (*) and P < 0.001 (**)1. Data were also presented as means ±_ Standard 

error (SE). Statistical analysis of the data was performed by using the SPSS for Windows 

statistical data analysis package (SPSS is a registered trademark of SPSS inc.).

1 *: Significant 
**: Highly significant
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R E S U L T S

C H A P T E R III 
Plant Pathogen Interactions
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3.1. Effect of method of inoculation, spore concentrations, age of culture and 
temperature on the pathogenicity of V. albo-atrum on tomato plants.

Environmental conditions such as temperature or conditions specific to the 

pathogen, such as the concentration of conidia, age of culture, or method of inoculation, 

may have effects on the virulence of the pathogen. These effects may increase or 

decrease the virulence of the pathogen. To assess those conditions on the pathogenicity 

of V. albo-atrum, the following experiments were performed.

3.1.1. Effect o f the method o f inoculation on disease development in tomato plants.

This experiment was performed to assess the effect of the method of inoculation

and establish the pathogenicity of V. albo-atrum, isolate V2, towards the tomato cultivar 

Ailsa Craig under greenhouse conditions.

Six-week-old tomato seedlings were inoculated with spores of V2 by the root dip- 

, wound-, root-dip- (shaved roots prior to inoculation), stem puncture- and Soil drenching 

methods (see Materials and Methods). Seedlings, 8 plants per treatment, were transferred 

to 15-cm diameter pots and were placed in a greenhouse at 22 °C ± 1 °C. As controls, 8 

seedlings were treated with distilled water. Observations on plant growth and 

pathogenicity of the fungus (reflected by the symptom index) were recorded weekly for 6 

weeks following inoculation. The average height of the inoculated plants was compared 

with the average height of the control plants. The disease symptom index was also 

compared with the symptom index of the control plants. At the end of the experimental 

period, plants were harvested and procedures to reisolate the fungus from individuals of 

the inoculated plants were carried out. So, three different features were noted as 

indicators of disease progression:

Growth, indicated by the mean height of the plants, and the disease symptom 

index over time, is presented in Figs. 3.1.1a & b. The results of statistical analysis and 

attempts to reisolate the fungus from inoculated plants are presented in Tables 3.1.1 &

3.1.2.

(i) Analysis of height and symptom index.

The effectiveness of the inoculation methods was compared statistically and on 

the basis of the following results subsequent experiments were carried out. Briefly, the
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height of all inoculated plants, whatever the method of inoculation was used, was lower 

compared to controls (Figs. 3.1.1a & 3.1.2). The difference in height was statistically 

significant compared to the control group (PO.OOl, Table 3.1.1). The stem injection-, 

and soil drenching methods were not as effective as the other methods, although their 

height was significantly shorter than the controls (PO.OOl, Table 3.1.1). In other words, 

the increase in height per week following inoculation was much higher in stem injection- 

and soil drenching methods compared to other inoculated plants.

The inoculated plants showed symptoms after the first week following inoculation 

(Fig. 3.1.1b). In the case of the plants inoculated with the root dip- and wound methods, 

the severity of the symptoms increased towards the end of the experimental period. 

However, this was not the case for those inoculated with the stem injection- and soil 

drenching methods. Root-dip-, wound- and root-dip (shaved roots) inoculation methods 

resulted in mild level (35-40 %) after the 3rd week of inoculation, and there were no 

significant differences between them in terms of disease progression, and the symptoms 

of the disease did not increase further until the end of the experiment. On the other hand, 

those plants inoculated with the stem injection- and soil drenching methods had slight 

symptoms and recovered quickly from the effect of the fungus (Fig. 3.1.1b). This was 

confirmed by the failure to reisolate the fungus from those plants.
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Fig. 3.1.1. Effect of method of inoculation with V. albo-atrum, isolate V2, on (a) the 
height, and (b) the disease symptom index of tomato plants (cv. Ailsa 
Craig).
C - Control; R-dip - Root-dip-; W - Wound; R-dip (sr) - Roots were shaved 
prior to inoculation by the root-dip method; S-inj - Stem puncture injection; 
S. Dren - Soil Drenching method. Vertical bars show ± SE of mean.
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Fig. 3.1.2. Effect of method of inoculation with V. albo-atrum, isolate V2, on the relative 
rate of height increase of tomato plants (cv. Ailsa Craig) over a 6-week 
period. C - Control; R-dip - Root-dip-; W - Wound; R-dip (sr) - Roots were 
shaved prior to inoculation by the root-dip method; S-inj - Stem puncture 
injection; S. Dren - Soil Drenching method. Values plotted are means ± SE.

Table 3.1.1. Analysis of variance of the effect of the method of inoculation with V. albo- 
atrum, isolate V2, on the relative rate of height increase of tomato plants 
(cv. Ailsa Craig).

Parameters Treatments* ANALYSIS OF VARIANCE

Height C S.Dren. S. ini. R- dip. 
(sr)

w R. dip SS df MS F Sig.

a b b c d e 2.65 5 0.53 61.3 0.000

♦Between treatments, values with the same letters are not significantly different from each other at 0.05 
level. C - Control; R-dip - Root-dip-; W - Wound; R-dip (sr) - Roots were shaved prior to inoculation by 
the root-dip method; S-inj - Stem puncture injection; S. Dren - Soil Drenching method.
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(ii) Reisolation of the fungus.

To confirm the effect of inoculation methods, attempts were made to reisolate the 

pathogen from root and basal stem of the inoculated plants at the end of the experiment. 

For convenience, 4 plants were selected out of 8. Whatever the method of inoculation 

was used, plants were uprooted six weeks after inoculation and the roots were washed 

carefully under tap water to remove soil particles. A 3-cm section from the basal stem 

and root of each plant were cut and reisolation was carried out as described in Materials 

and Methods. The fungus was reisolated from all root-dip- and wound inoculated plants 

as tested. However, only 2 isolations from the basal stem and 1 isolation from the root 

were achieved from the plants inoculated by the root-dip (shaved roots) method. No 

isolation was achieved from either root or basal stems of the plants inoculated with stem 

injection- and soil drenching methods, although those plants showed slight symptoms 

during the experimental period (Table 3.1.2).

In this section, the root-dip inoculation method was found more effective than the 

other methods. As a result of that, this inoculation method was used in the subsequent 

experiments.

Table 3.1.2. Reisolation of V. albo-atrum, isolate V2, from inoculated tomato plants. (4 
plants were chosen randomly from 8 plants of each treatment).

Inoculation Number of plants from which reisolation was
Methods successful

Root Basal stem Svmntom index (%)

Root-dipping 4 4 35

Wound 4 4 40

Root-dipping (s.t.)1 2 1 30

Stem injection 0 0 0

Soil Drenching 0 0 0

1 s.r.-shaved roots

100



3.1.2. The effect o f spore concentration on disease development in five-week old tomato 
plants.

In order to find out the effect of various spore concentrations of V. albo-atrum on 

disease development in tomato plants, five-week old seedlings were inoculated by the 

root-dip method (10 plants for each treatment). Plants were placed in the greenhouse in 

15-cm pots. Four different spore concentrations were used, 1 x 104-, 1 x 1 0 6- , 1 X 1 0 7- 

and 1 x 10s per ml. The height of the plants and the disease symptom index were 

recorded weekly over a five-week period, Fig. 3.1.3a & b. After harvest, the relative rate 

for increase in height and RGR were calculated, Table 3.1.3.

(i) Analysis of height and symptom index.

Plants inoculated with VI or V2 by the root-dip method showed significant 

stunting compared to the control group, regardless of the spore concentrations used. 

Increasing the concentration of spores used in the VI inoculations did not cause any 

further reduction in height or disease severity. However, increasing the concentration of 

spores in the V2 inoculations resulted in a slightly greater reduction in height but not 

severity of the disease, Fig. 3.1.3a & b.

At the end of the treatment, the relative rates for the increase in height and RGR 

were calculated. In the case of VI, all the spore concentrations that were used caused a 

significant reduction in height and RGR compared to the control, Tables 3.1.3 & 3.1.4, 

P<0.05. However, in the case of V2, while an increase in the spore concentration caused 

a slightly greater reduction in height, it did not cause a further reduction in RGR.
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C Vl - A V l - B  Vl - C V l - D  V2-A V2-B V2-C V2-D

Weeks
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Fig. 3.1.3. The effect of various spore concentrations of V. albo-atrum, isolates VI & 
V2, on (a) the height; (b) disease symptom index of tomato plants (cv. Ailsa 
Craig). Vertical bars show ± SE of mean. Spore concentrations were; VI- 
A or V2-A, 1 x 104; Vl-B or V2-B, 1 x 106; Vl-C or V2-C, 1 x 107; Vl-D 
orV2-D, 1 x 108 spores/ml.
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Table 3.1.3. The effect of various spore concentrations of V. albo-atrum, isolates VI or 
V2, on the relative rate of height increase (H) and RGR of tomato plants 
cv. Ailsa Craig.

Treatments

Parameters Control VI V2

*A B C D A B C D

H 1.00 0.75 0.75 0.71 0.71 0.71 0.50 0.38 0.58

RGR Week'1 1.00 0.82 0.87 0.87 0.88 0.84 0.83 0.78 0.89

'A: 1 x 104; B: 1 x 10 ; C: 1 x 10 ; D: 1 x 10 spores/ml.

Table 3.1.4. Analysis of variance of the effect of various spore concentrations of V.
albo-atrum, isolates VI & V2, on relative rate of height increase (H) and 
RGR of tomato plants.

Parameters Treatments* ANALYSIS OF VARIANCE

C
A

Y i 
B C D A

V2 
B C D SS df MS F Sj&-

Height a b b b b b c c b 1.45 8 0.18 10.7 0.000

RGR a b b b b b b b b 0.25 8 3E-02 2.80 0.009

♦Between treatments, H, RGR with the same letters are not significantly different from each other at 
0.05 level. A: 1 x 104; B: 1 x 106; C: 1 x 107; D: 1 x 108 spores/ml.
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3.1.3. The effect o f continued sub-culturing on the pathogenicity ofV. albo-atrum.

There are many ways to maintain fungus cultures for future use. For example, 

they may be stored at -80 °C under mineral oil or glycol, or they may be transferred to 

slope agars and stored at 4 °C or they may even be freeze-dried (CABI Bioscience-UK, 

1997). One of the standard methods is to regularly transfer the fungus to fresh agar 

medium. Through this type of subculture, the fungus is readily available and normally 

will be maintained in a viable state for a long period. This was important in a project of 

this type where comparisons of pathogenicity of the fungus, under different cultivation 

conditions, were to be made over a prolonged time. However, one of the disadvantages 

of this method is that regular sub-culturing may cause the pathogen to loose its 

pathogenicity over a long period of time (personal communication with Dr. JM Milton, 

1997; Thomson eta l., 1993; CABI Bioscience-UK, 1997; Krokene & Solheim, 2001).

Isolates of V. albo-atrum that had been subcultured regularly over a three-year 

period were available at the beginning of this project and in order to establish whether 

such regular sub-culturing had affected the pathogenicity of the fungus to tomato, the 

pathogenicity of one of these isolates was compared with the pathogenicity of freshly 

isolated fungus (see Materials and Methods). In this section, freshly isolated V. albo- 

atrum is referred to “New” while the isolate that had been subcultured over a three year 

period is referred to as “Old”.

Six-week old tomato seedlings were inoculated by the root-dip method with 

spores (1 x 107 spores/ml) of V. albo-atrum, isolates VI (New or Old) or V2 (New or 

Old). Plants were placed in the greenhouse in 15-cm pots (10 plants for control and 10 

plants for each treatment). At the beginning of the experiment, separate batches of 10 

seedlings were weighed and their fresh and dry weights were determined. Observations 

on the growth and development of the disease in the remaining plants were recorded 

weekly for a period of 6 weeks following inoculation, Fig. 3.1.4a & b. Four features 

were taken as indicators of disease progression: the average height of inoculated plants 

compared with the average height the control plants; RGR of the inoculated plants 

compared with the average RGR of the control group, the disease symptom index and the
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ability to reisolate the fungus from individual plants from each of the inoculated groups. 

Mean temperature during the growth period was < 22 °C.

The relative rates of increase in height and RGR are presented in Fig. 3.1.5. All 

the plants inoculated with V. albo-atrum, isolates VI or V2, whether the inoculum came 

from the freshly isolated fungus or the isolate maintained in culture for three years, 

caused stunting in height when compared to the control group. Inoculated plants showed 

symptoms from the 2nd week of the experiment. During the period of 6 weeks, inoculated 

plants, regardless of the source of the isolate, showed similar growth patterns although 

the plants inoculated with freshly isolated fungus had slightly higher growth rates, Fig. 

3.1.4a. Plants inoculated with V2 had more symptoms of disease than those inoculated 

with VI, Fig. 3.1.4b. However, no big differences were observed between the plants 

inoculated either VI (old or new isolates) or V2 (old-or new isolates) in terms of disease 

symptom index. After the completion of the experiment, plants were harvested and their 

relative rate of height increase and RGR were calculated; it was found that all the 

inoculated plants showed significant differences from the control plants in height or 

RGR, Table 3.1.5. Plants inoculated with VI showed clear differences from the ones 

inoculated with V2 irrespective of the age of isolates when RGR was calculated, P<0.05, 

Table 3.1.5.

At the end of the experiment, attempts were made to reisolate the pathogen. For 

convenience, four plants were selected from each treatment; root sections (2-3 cm) were 

used, as described in the previous sections. Reisolation was positive from the inoculated 

plants (Table 3.1.6), though in the case of those plants inoculated with V2 the fungus was 

isolated from 3 plants (whether from VI- or V2 inoculated plants), whereas only one 

isolation was possible from the plants inoculated with V1.

It was clear that, at the temperature prevailing during the course of this 

experiment, the inoculated plants were affected by the fungus, whether the VI or V2 

isolate was used. Apart from confirming the results of the previous experiments, which 

were carried out at 22 °C, it is apparent that isolates of V. albo-atrum were still 

pathogenic to tomato plants although they had been subcultured over a three-year period.

105



100

Weeks  

□ 0 
□ 1 
□ 2
□  3
□  4

□  5
□ 6

C VI (old) VI ( ne w)  V2 (old) V2 ( ne w)

100

80

2  60  
T3 C
E
o
E. 40 
E>.

C/2

0
C VI (old) VI ( ne w)  V2 (old) V2 ( ne w)

Fig. 3.1.4. Effect of old and new isolates of V. albo-atrum on (a) the height, and (b) the 
symptom index of tomato plants cv. Ailsa Craig. Vertical bars show ± SE of 
mean.

Weeks

□ 0
□ 1

80

60

.cOJ2
'C 40

20

ifl

£

106



1.5

0.5

0
VI (Old) V I V2 (Old) V2 

(N ew ) (N ew )

1.5

<u<u
1 £

Od
a
ed<+M
o

0-5g
G
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increase (A), and RGR ( 4  ° f  tomato plants cv. Ailsa Craig. Values plotted 
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Table 3.1.5. Analysis of variance of the effect of old and new isolates of V. albo-atrum 
on the relative rate of height increase (H) and RGR of tomato plants.

Parameters Treatments* ANALYSIS OF VARIANCE

C VI
(old)

VI
(new)

V2
(old)

V2
(new)

SS df MS F Sif*.

H a b b b b 0.58 4 0.14 8.38 0.000

RGR a b b c c 1.28 4 0.32 16.2 0.000

Between treatments, H and RGR with the same letters are not significantly different from each other at the 
0.05 level.
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Table 3.1.6. Reisolation of V. albo-atrum, isolate VI and V2, from inoculated tomato 
plants (4 plants per treatment) with the method of root-dip.

Isolates Number of plants from which reisolation was 
successful

Root Svmntom index (%)

VI (Old) 1 5

VI (New) 1 5

V2 (Old) 3 10

V2 (New) 3 10

3.1.4. The effect o f temperature on disease development o f  tomato plants inoculated with
V. albo-atrum.

Having established the most effective method of inoculation, the effect of 

temperature on the pathogenicity of isolates VI & V2 of V. albo-atrum towards tomato, 

cultivar Ailsa Craig was examined. There temperatures were selected, 22-, 25- and 30 

°C. In each case, plants were maintained in the greenhouse for the duration of the 

experiment. In the case of the experiment carried out at 22 °C ± 1 °C six-week old plants 

were used. For the other two temperatures, plants were five weeks old. 

Developmentally, however, there appeared to be no difference between plants of the two 

age groups and previous data (not shown) had indicated that the week difference in age 

had little effect on development of the disease in tomato.

In each experiment, tomato seedlings (10 plants for each treatment) of the 

appropriate age were inoculated with spores of the fungus (either the VI- or the V2 

isolate, 1 x 10 spores/ml) by the root dip method (see Materials and Methods) and 

planted in pots (15 cm). The pots were placed in the greenhouse under the conditions 

described. At the same time, 10 seedlings were treated with distilled water as a control 

group. At this point also, a separate group of 10 seedlings were taken from the same
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batch of plants from which the treated plants were taken and were weighed and their fresh 

and dry weights recorded. Observations on both plant growth and on development of the 

disease were recorded weekly for a period of 6 weeks following inoculation. Five 

features were recorded as indicators of disease progression: the average height or root 

length of inoculated plants compared with the average height or root length of the control 

plants; the RGR of inoculated plants compared with the average RGR of the control 

group, the disease symptom index and the ability to reisolate the fungus from individuals 

of the inoculated plants.

Growth, indicated by the mean height of the plants, and the disease symptom 

index (severity of the wilt disease) over a 6-week period is presented in Figs. 3.1.6 (a, b, 

c, d, e, & f). Relative rate of height & root length increase and relative growth rate 

(RGR) of the inoculated and control plants are presented in Table 3.1.7. The results of 

statistical analysis and attempts to reisolate the fungus from inoculated plants are 

presented in Tables 3.1.8 & 3.1.9.

(i) Symptom development.

The symptoms of wilt disease were initially observed as wilting and yellowing of 

the lower leaves that occurred during the second week after inoculation, Plate 3.1a & b. 

This was followed by chlorosis and flaccidity of the leaves. Epinasty was clearly visible 

up to 2/3 heights of the infected plants, Plate 3.1c. In the following weeks those leaves 

became desiccated and abscised from the stem. Abscission was more common at the 

bottom of the stem; however, symptoms progressed to some higher leaves but did not 

spread through the whole plant. During the day, the upper leaves of the infected plants 

showed signs of wilting but recovered towards evening. From the third week onwards, 

inoculated plants with VI showed recovery, Plate 3.Id, however, those inoculated with 

V2 expressed moderate symptoms of the disease in the following weeks. As the disease 

progressed, a characteristic V-shaped area at the tip of the young leaflets became visible 

Plate 3.2a. These areas later curled inward and shriveled, Plate 3.2b. Adventitious roots 

were also observed more commonly in the lower part of the stems of plants inoculated 

with VI than those inoculated with V2, Plate 3.3. Towards the end of the experiment,
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inoculated plants, especially VI, produced more branches compared to the beginning of 

the experiment.

In general terms, there were some significant differences between the symptom 

index of those plants inoculated with VI and those inoculated with V2, Fig. 3.1.6b. 

Plants that were inoculated with VI showed almost no symptoms, while those that were 

inoculated with V2 showed moderate symptoms of the disease, although the symptoms 

appeared to be lessening towards the end of the experiment, Plate 3. Id.

In addition to external symptoms, the fungus also caused internal disease 

symptoms. These symptoms and penetration of the fungus into the vascular system were 

observed by histological examination in which thin sections of the stems were prepared 

and stained with cotton blue in lactophenol and examined under the microscope (see 

Materials and Methods). Germination of spores and accumulation of mass hyphae were 

observed inside xylem vessels, Plate 3.4a & b. Spread of mycelium from one xylem 

vessel to another was also visible. In subsequent weeks, as the disease progressed, in 

response to infection a number of tyloses were observed, together with lignification of 

cortical cell walls, Plate 3.5a & b. Towards the end of the experiment, vascular 

discoloration was observed in the xylem vessels while ascent of spores and production of 

mycelium possibly caused blockage in the xylem vessels, resulting in wilting in stems, 

Plate 3.6a & b.

(ii) The effect of temperature on development of symptoms.

Development of symptoms was affected by temperature. At 25 °C (Fig. 3.1.6 d), 

for example, the severity of the symptoms as measured by the disease symptom index, 

was much lower than those of the plants inoculated with V2 at 22 °C (Fig. 3.1.6b), while 

the disease symptom index of plants maintained at 30 °C was again lower (Fig. 3.1.6f).

Apart from observations on the expression of such symptoms by infected plants, 

the heights of experimental plants were recorded and some plants were harvested. This 

allowed comparison between various parameters for the inoculated and control groups.
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a b

Plate 3.1.
Tomato plants inoculated with V albo-atrum , isolate V2, showing typical symptoms, 
such as (a) wilting and (b) yellowing o f  the lower part o f  the stem leaves; (c) epinasty 
(clearly visible up to 2/3 heights o f  the infected plants); and (d) recovery o f  the plants 
towards the end o f  the experiment.



Plate 3.2.
Characteristic symptoms shown by Verticillium-lnfected plants (isolate V2). (a)
characteristic yellow V-shaped area at the tip o f  young leaflets; (b) leaves, curled 
inward and shrivelled.

Adventitious
roots

Plate 3.3.
Appearance o f  adventitious roots, as external defence response, on the lower stem part 
o f  tomato plants following inoculation with V. albo-atrum  (isolate V2).



Plate 3.4.
Stages in the germination o f  spores, development and spread o f  mycelium o f  V. albo- 
atrum  (isolate V2) in xylem vessels o f  tomato (cv. Ailsa Craig) (xlOO). (a) clear 
xylem free from spores; (b) germination o f  mycelium from spores & colonization o f  
the xylem by mycelium; (c) spread o f  mycelium from one xylem vessel to another; 
and (d) lignifications o f  cell walls and blockage o f  xylem by mycelium ball.
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Plate 3.5.
Formation o f  tyloses and mucilage in the xylem vessels o f  tomato (cv. Ailsa Craig) 
inoculated with V. albo-atrum , isolate V2, (x 100). (a) clear xylem; (b) production o f  
defence response structures such as tyloses and mucilage or gummosis.
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Plate 3.6.
(a) Longitudinal stem sections o f  tomato inoculated with V. albo-atrum  (isolate V2) 
showing symptoms such as vascular discoloration (b) drawing o f  an internal stem o f  a 
tomato showing how spores and mycelium propagates in the xylem tissues.



(iii) The effect of temperature on height, root length and dry weight.

In the case of the plants maintained at 22 °C there was a clear difference between 

those plants inoculated with V2 and the control plants (Table 3.1.7). This difference was 

evident throughout the experiment and the difference was found to be significant 

(PO.OOl) when analysis of variance was carried out (Table 3.1.8) on the relative rate for 

increase in height. Similarly, inoculation with VI resulted in a decrease in height 

compared to control plants, though this was not obvious until week 4 and was not as 

severe as with V2, Table 3.1.7. Again, this difference was reflected in the relative rate 

for increase in height (Table 3.1.7). In the case of root length, however, there was no 

difference in the effect of V2 and VI, and neither V2 nor VI significantly affected the 

rate of root growth (Table 3.1.7 & 3.1.8). VI and V2 also significantly affected Dwt 

(PO.OOl), expressed as RGR (Tables 3.1.7 & 3.1.8).

Temperature significantly altered the effects of V2 and VI on the disease 

symptom index (Figs. 3.1.6b, d & f), height (Figs. 3.1.6a, c & e), relative rates for 

increase in height & root length and the RGR (Table 3.1.7) and analysis table (Tables 

3.1.8), at both 25- and 30 °C. In those temperatures, VI was not statistically different 

from the control groups on height and RGR (Table 3.1.8), however, V2 was still effective 

at 25 °C and not effective at 30 °C on height but effective on RGR (Tables 3.1.8).
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Table 3.1.8. Analysis of variance of the effect of temperature on the pathogenicity of V.
albo-atrum, isolates VI and V2, on the relative rate of height (H), root 
length (RL) and RGR of tomato plants.

Temp.
(°C)

Parameters Treatments* ANALYSIS OF VARIANCE

22 C Y i V2 SS df MS F Sig.

H a b c 0.353 2 0.177 10.4 0.001

RL a a a 4E-03 2 2E-03 0.29 0.750

RGR W eek1 a b b 7E-02 2 3E-02 17.7 0.001

25

H a a b 0.619 2 0.309 12.0 0.000

RL a a a 3E-02 2 IE-02 1.16 0.331

RGR Week'1 a a b 1.181 2 0.590 35.3 0.000

30

H a a a 7E-02 2 3E-02 0.66 0.528

RGR Week'1 a a b 1.416 2 0.708 6.45 0.008

♦Between treatments, H, RL and RGR with the same letters are not significantly different from each
other at 0.05 level.

(iv) Reisolation of the fungus.

At the end of the experiment, attempts were made to reisolate the pathogen from 

the group of the plants inoculated at 22 °C. For convenience, four plants were selected 

from each treatment. Both basal stem and root sections of the inoculated plants were 

used. Plants that had been inoculated by the root-dip method were uprooted after six 

weeks and the roots carefully washed under water to clean the root area. A section (2-3
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cm) was removed from the stem and a 3 cm section from the root. Reisolation was 

carried out as described in Materials and Methods.

Reisolation was positive from only one plant inoculated with V2, Table 3.1.9. 

This may have been because the rest of the plants were heavily contaminated with 

saprophyte fungi, making reisolation difficult. However, despite this failure there was 

evidence that these sections carried the fungus. For example, those particular stem 

sections had accumulated dark melanin pigments, which is often an indicator that the 

fungus is present. No reisolation was made from plants inoculated with VI, despite the 

fact that these plants showed stunted height and a reduction in RGR compared to control 

groups.

No attempt was made to reisolate the fungus from the group of plants inoculated 

at 25 °C and 30 °C because they either show little or no symptoms of the disease.

Table 3.1.9. Reisolation of V. albo-atrum, isolate VI and V2, from inoculated tomato 
plants (4 plants per treatment) with the method of root-dip.

Isolates Number of plants from which reisolation was 
successful

Root Basal stem SvmDtom index (%)

VI 0 0 0

V2 1 1 30

3.1.5. Effect o f temperature on fungal growth.

Pathogenicity of both isolates of V. albo-atrum was negatively affected in 

increasing temperatures. To assess whether fungal biomass was effected (responsible for 

pathogenicity), growth of fungal mycelium was recorded in various temperatures. 

Having tested the pathogenicity of the fungus V. albo-atrum in various temperatures 

towards tomato plants, growth of V. albo-atrum was also tested in liquid Dox culture in 

vitro conditions. 10 flasks of Dox medium with 0.5 cm mycelium disk of each isolate 

was incubated at 18-, 22-, 25- and 30 °C for 6 weeks in an orbital shaker (100 rpm).
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After the incubation the mycelial mats were harvested and the amount of dry weight of 

mycelia was recorded.

Growth of the fungus was affected by temperature. Both isolates, VI and V2, had 

highest growth at 22-, and 25 °C, Fig. 3.1.7. However, increase in temperature resulted 

in decrease in fungal growth. At 30 °C, fungal growth was negatively affected and had 

its lowest growth rate. This was also corresponded with the pathogenicity experiment; 

Fig. 3.1.6 & Table 3.1.7, in that V. albo-atrum isolates were not pathogenic to tomato 

plants. At 18 °C only dry weight of mycelium of isolate VI was recorded. At this 

temperature, fungal growth was lower compared to the growth rate obtained at 22-, and 

25 °C, Fig. 3.1.7.

C D
E

O)
<1)£

250

200

150

100

50

0
18 22 25 30

Temperature (°C)

Fig. 3.1.7. Mycelium growth of V. albo-atrum in liquid culture (6 weeks).
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3.2. Co-inoculation of V. albo-atrum isolates on the pathogenicity of tomato Ailsa 
Craig.

In the field, it is not unusual for plants to be exposed to more than one pathogen at 

the same time, and it is not uncommon for two or more fungi to infect a host at the same 

time. In such cases interactions between the fungi may occur (Jorge, 1990; Ganeshan, 

1999). Such interaction may involve synergism so that the effects of the fungi on the 

plant are greater than the effects of infection by individuals (Dewey et al., 1999). On the 

other hand, the fungi may have an antagonistic effect on each other so that the combined 

effects of the fungi are less than those of the individuals (Jorge et al., 1992; Tsahouridou 

& Thanassoulopoulos, 1999; Schmidt et al., 2001). To determine whether there was any 

such interaction between the two isolates of V. albo-atrum, VI and V2, 6-week old 

tomato plants, cv. Ailsa Craig, were inoculated with either the VI- or V2 isolate, or with 

both isolates simultaneously. Plants were inoculated by the root dip method and were 

maintained in the greenhouse at 22 °C following inoculation. Observations of the growth 

of plants and development of the wilt disease were made weekly for a period of 6 weeks.

Growth, indicated by the mean height of the plants, and the disease symptom 

index are presented in Figs. 3.2.1a & b. The relative increase in height rate, RGR and the 

chlorophyll content of the leaves are presented Figs. 3.2.2a & b. The results of 

reisolation of the fungus from inoculated plants are presented in Table 3.2.1. It is known 

that V. albo-atrum causes chlorosis in leaves (DeVay et al., 1997) and it is one of the 

early symptoms of the wilt disease (Bowden & Rouse, 1991). However, in a co

inoculation where two isolates of a fungus is involved, it is not clear whether chlorosis 

will be severe or mild compared to the inoculation made by one isolate.

Like the results of the previous experiment (section 3.1.4), plants inoculated with 

the V2 isolate showed more severe symptoms than those inoculated with the VI isolate, 

Fig. 3.2.1b. A similar trend was also observed with the height increment per week, Fig. 

3.2.1a. When the two isolates were used together, there was only a marginal effect on the 

height of the plants and no difference in the development of symptoms. The effects of 

the two isolates were reflected in the rate of height increase and RGR. The inoculated 

plants showed significant differences from the control group (Fig. 3.2.2a; P<0.05, Table

3.2.2. with those plants inoculated with isolate V2 or V1+V2 showing a greater reduction
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in RGR and rate of height increase compared to plants inoculated with only VI (Fig.

3.2.2a; Table 3.2.2).

The chlorophyll content of the leaves was also compared. However, there was no 

statistical difference between the treatments (Fig. 3.2.2b; Table 3.2.2).

Finally, reisolation was positive from the plants inoculated with V2 or V1+V2, 

Table 3.2.2.
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Fig. 3.2.1. The effects of V. albo-atrum, isolates VI or V2, and V1+V2 on (a) the height, 
and (b) the symptom index for tomato (cv. Ailsa Craig). Vertical bars show ± 
SE of mean.

119



1.5 1.5

JZ
o

<u 0.5 0.5

O'o

o'

VI V2 V1+V2

4

crcc
-3 3
%
u.

eo 2

JC
Q .Oi __o
o 1
iso
E

0

Fig. 3.2.2. The effects of F. albo-atrum, isolates VI or V2, and V1+V2 on (a) the 
relative rate of height increase and RGR (A-Height; A-RGR), and (b) the 
chlorophyll content of the leaves of tomato (cv. Ailsa Craig). Vertical bars 
or values ± SE of mean.

□  V 1 + V 2

Chi A Chi B

Chlorophyll

Total  Chi

1 2 0



Table 3.2.1. Reisolation of V. albo-atrum, from tomato plants (3 plants per treatment) 
inoculated isolate VI or V2, or VI and V2 in combination with the method 
of root-dip.

Isolates Number of plants from which reisolation was 
successful

Basal stem SvmDtom index (%)

VI 0 11

V2 3 36

V1+V2 3 30

Table 3.2.2. Analysis of variance of the effects of V. albo-atrum, isolates VI or V2, and 
V1+V2 on the growth parameters of tomato (cv. Ailsa Craig).

Parameters Isolates* ANALYSIS OF VARIANCE

C V I V2 V1+V2 SS df MS F Sis.

H a b be c 0.508 3 0.169 13.3 0.000

RGR a b c c 6E-02 3 2E-02 19.6 0.000

CHL a a a a 0.878 3 0.293 3.31 0.139

* Between isolates, growth parameters o f Ailsa Craig (6-week old) with the same letters are not 
significantly different from each other at 0.05 level. H: relative rate o f height increase; RGR 
Relative Growth Rate; CHL: Chlorophyll content o f the leaves.
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3.3. Cultivar response of tomato plants towards V. albo-atrum isolates.

The previous experiments have established that isolate V2 is more pathogenic 

towards tomato cv. Ailsa Craig than the VI isolate. However, cultivars may differ in 

their susceptibility to pathogens (Daniel et al., 1990; Dolar, 1995). Consequently, the 

pathogenicity of V. albo-atrum was tested towards various cultivars of tomato that were 

available. The characteristics of the various cultivars are included in Table 2.7.2. Groups 

of 10 plants were inoculated with spores of either isolate VI or V2 with the root dip 

method and plants were maintained for 6 weeks in the greenhouse at UWS.

After 6 weeks the relative rate of height increase, RGR and water content (WTC) 

of the plants were recorded. The results, Tables 3.3.1 & 3.3.2, show that on the basis of 

height and RGR, there were no significant differences between cultivars of Cyclon 

Hybrid FI, Edcawy, L. lycopersicon and Margarita (Fa-558) and the control plants, 

indicating resistance to VW. Resistant cultivars produced symptom-free new branches 

while susceptible ones did not. On the basis of these two parameters, the three other 

cultivars, Hybrid Sweet FI, Falkon and Simge FI were significantly affected by both the 

VI- and the V2 isolate. In general, as was the case with Ailsa Craig, the effects of the V2 

isolate were greater than the VI, except in the case of Falkon (Tables 3.3.1 & 3.3.2).

After the harvest, final fresh and dry weights of plants were recorded to determine 

the water content of the plants. In contrast to the results for the increase in height and 

RGR, none of the cultivars differed in WTC from the control plants (Tables 3.3.1 & 

3.3.2). It seems likely then that either blockage of the xylem tissues by either mycelium 

or secondary plant tissues did not take place in those cultivars, or that it was not sufficient 

to significantly restrict water flow. It is probable that genetic variability of the plants 

played a major role in this respect.

From the results of this experiment, some of the cultivars (commercially 

available) used in the further experiments, their response to salt or VW or both were 

assessed in seedling or mature plant level.
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Table 3.3.2. Analysis of variance (both one way and two-way) on the pathogenicity of V.
albo-atrum, isolates V1 and V2, on the relative rate of height increase, 
RGR and WTC of tomato plants.

Parameter Cultivars Treatments* ANALYSIS OF VARIANCE

H C Y1 V2 SS df MS F Sis.

Cyclon Hybrid FI a a a 7E-02 2 3E-02 1.19 0.318

Hybrid Sweet FI a ab b 0.230 2 0.115 5.06 0.028

Margarita (Fa-558) a a a 9E-02 2 4E-02 1.66 0.210

Falkon a b b 0.254 2 0.127 4.72 0.022

L. lycopersicon a a a 5E-02 2 2E-02 2.913 0.088

SimgeFl a ab b 0.215 2 0.107 4.22 0.031

Edcawy a a a 4E-03 2 2E-03 0.07 0.929

Sig.+ ns s s

RGR W eek1

Cyclon Hybrid FI a a a 4E-03 2 2E-03 1.16 0.848

Hybrid Sweet FI a ab b 0.427 2 0.214 4.76 0.032

Margarita (Fa-558) a a a 3E-02 2 IE-02 4.42 0.026

Falkon a b b 0.429 2 0.214 16.8 0.000

L. lycopersicon a a a 6E-04 2 3E-04 0.82 0.451

Simge FI a a b 0.411 2 0.206 21.2 0.000

Edcawy a a a IE-02 2 5E-03 2.14 0.151

Sig.+ ns s s

WTC

Cyclon Hybrid FI a a a 7.59 2 3.79 0.90 0.419

Hybrid Sweet FI a a a 16.0 2 8.01 0.88 0.440

Margarita (Fa-558) a a a 77.2 2 38.64 2.65 0.098

Falkon a a a 1.00 2 0.504 1.18 0.329

L. lycopersicon a a a 15.1 2 7.552 1.28 0.298

Simge FI a a a 2.13 2 1.067 2.60 0.102

Edcawy a a a 0.40 2 0.203 0.06 0.940

* Between treatments, height, RGR and WTC with the same letters are not significantly 
different from each other at 0.05 level.
+ One-Way ANOVA test between cultivars within a treatment at 0.05 level, 

ns: not significant; s: significant
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3.4. Comparison of the effects of European- and USA isolates of V. albo-atrum on
young (4-week old) tomato seedlings.

The pathogenicity of two isolates of V. albo-atrum from Europe (VI and V2) 

towards young tomato seedlings was compared with that of four isolates from the USA 

(Sevcik, Arl 86 B, Freitag and Loken obtained from the culture collection of Prof. Craig 

Grau (Madison-USA).

Seedlings of tomato plants were inoculated with spores of the isolates VI, V2, VS 

(Sevcik), VA (Arl 86 B), VF (Freitag) and VL (Loken) by the root-dip inoculation
n

method (10 plants for each treatment, 1 x 1 0  spores/ml) and placed in a greenhouse in 

15-cm pots. While the pathogenicity of VI and V2 on tomato plants has been reported 

many times since the 1980's, the pathogenicity of USA isolates has not previously been 

tested on tomato plants. Comparisons of VI and V2 isolates for pathogenicity test were 

recorded both on tomato and lucerne in 1997 by Dikilitas.

Observations on relative rate of increase in height and root length and RGR were 

recorded for a period of 6 weeks after inoculation. At the start of the experiment, ten 

representative plants were harvested, the initial mean fresh and dry weights of shoots and 

roots and root lengths were recorded and the initial mean of dry weights and RGR were 

calculated.

The relative rate of height and root length increase and RGR are presented in 

Table 3.4.1 and the result of the statistical analysis is presented in Table 3.4.2.

All isolates of V. albo-atrum, regardless of their country or plant origin caused 

significant reduction in height, root length and RGR in young tomato seedlings Tables

3.4.1 & 3.4.2. However, the isolates from Europe (VI and V2) caused greater reductions 

in height, root length and RGR than the isolates from the USA P<0.001.
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3.5. Pathogenicity of V. albo-atrum, isolate VI, towards M. media cv. Rambler 
strains.

The Pathogenicity of the V 1 isolate of V. albo-atrum had previously been tested 

on strains of M. media cv. Rambler, which were tolerant to various concentrations of 

NaCl, (Dikilitas, 1997). In that study, the salt tolerant strains (150,200, 250 and 300 mM 

salt tolerant plants) showed significant differences from the control groups in terms of 

height and RGR. Progressively, the more salt tolerance they gained the more susceptible 

they became to the fungus (Dikilitas, 1997).

However, after a period of time, salt tolerant plants may loose their ability to 

survive in the concentration of salt in which they were generated, if they have been 

maintained subsequently in non-saline conditions. To keep the salt lines fresh for the 

salinity tests a new salt line should be generated (personal communication with Dr. Salim 

Al-Rawahy, 1999). Therefore, in the present study, two generations of salt tolerant M. 

media lines were again tested for resistance to VI, one was generated from the original 

salt-adapted cell lines of M. media (Chaudhary, 1996). The other was regenerated by Al- 

Rawahy (2000) from the original salt tolerant plants of M. media generated by Chaudhary 

(1996). In the text, plants are designated by the letter “R”- for ‘Rambler’, followed by a 

number indicating the molarity (in millimoles) of salt to which the line is tolerant. The letter 

‘O’ indicates the original line of Chaudhary, while ‘N’ to indicates the newly generated salt 

tolerant plants by Al-Rawahy.

The original salt tolerant strains of M. media were tested against the isolate VI 

both in the first- and third year of the study in order to assess any change in resistance to 

infection over time. The original and the new generation of salt tolerant plants were 

compared in the third year of the study.

The cuttings of Rambler strains were rooted under a misting bed, inoculated with 

V. albo-atrum, isolate VI, by the root-dip method and then grown in the greenhouse for 

10 weeks. Batches of ten plants from each strain were used as treatment and control 

groups. The symptom index of the inoculated plants was recorded weekly for a period of 

10 weeks following inoculation, Fig. 3.5.1. The relative rate increase in height and RGR 

of the plants are presented in Fig. 3.5.2a, b, c, d, e & f.
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Rambler strains, either original, newly-generated or non salt tolerant ones showed 

significant differences from the control plants in terms of height and RGR, Figs. 3.5.1 & 

3.5.2; Tables 3.5.1 & 3.5.2. All the inoculated plants showed wilting in the first or 

second week after inoculation, leaves became yellow and desiccated, however, no 

recovery was observed during the course of the experiments in the salt tolerant plants. 

There was no interaction apparent between strains and treatments, in terms of height and 

RGR measurements either in the experiment of the first- or third year (Table 3.5.1). This 

means that all the strains showed a similar response to the pathogen. However, newly 

generated salt tolerant plants showed significant interaction between strains and 

treatments in terms of RGR measurement; this means that, the parental Rambler plants 

(although it was susceptible to the disease) showed better defence reaction than the newly 

generated salt tolerant plants, Table 3.5.2.

When the symptom index values were recorded in each experiment, it was 

obvious that Rambler plants showed great susceptibility to the disease. The original salt 

tolerant plants showed similar trends both in the first and third year. Again, newly 

generated salt tolerant plants also showed great susceptibility to the disease. Symptoms 

of the disease of the inoculated plants became more severe towards the end of the 

experiment.
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Table 3.5.1. Effect of V. albo-atrum, isolate VI, on the relative rate of height increase of 
M. media cv. Rambler strains.

Year Strains Treatments* ANALYSIS OF VARIANCE

I f C Y i SS df MS F Sig.

Rambler a b 0.513 1 0.513 4.92 0.047

R-150 mM-0 a b 0.198 i 0.198 7.15 0.025

R-200 mM-0 a b 0.756 1 0.756 9.33 0.008

R-300 mM-0 a b 1.445 1 1.445 23.3 0.000

Sig.+ ns ns

2-Way interaction

Strains x Treatment 0.156 3 5E-02 0.72 0.539
yd

Rambler a b 0.670 1 0.670 46.7 0.000

R-150 mM-0 a b 0.102 1 0.102 7.01 0.027

R-200 mM-0 a b 0.381 1 0.381 11.7 0.014

R-300 mM-0 a b 0.329 1 0.329 8.32 0.023

Sig.+ ns ns

2-Wav interaction

Strains x Treatment 0.169 3 5E-02 2.38 0.088

New
isolates

Rambler a b 0.670 1 0.670 46.7 0.000

R-200 mM-N a b 1.176 1 1.176 30.8 0.000

R-300 mM-N a b 0.610 1 0.610 13.8 0.000

R-350 mM-N a b 1.131 1 1.131 14.6 0.000

Sig.+ ns ns

2-Wav interaction

Strains x Treatment 3E-02 3 9E-03 0.37 0.774
* Between treatments, RGR o f lucerne with the same letters are not significantly different from each 
other at 0.05 level.
+ One-Way ANOVA test between cultivars within a treatment at 0.05 level. 
ns. Not significant
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Table 3.5.2. Effect of V. albo-atrum, isolate VI, on the RGR of M. media cv. Rambler 
strains.

Year Strains Treatments* ANALYSIS OF VARIANCE

I f C Y i SS df MS F Sig.
Rambler a b 0.238 1 0.238 5.32 0.038

R-150 mM-0 a b 0.553 1 0.553 38.7 0.000

R-200 mM-O a b 0.369 1 0.369 15.2 0.002

R-300 mM-0 a b 0.576 1 0.576 13.7 0.003

Sig.+ ns ns

2-Wav interaction

3 rd
Strains x Treatment 9E-02 3 3E-02 0.96 0.417

Rambler a b 0.152 1 0.152 7.35 0.024

R-150 mM-O a b 0.114 1 0.114 12.0 0.010

R-200 mM-0 a b 0.901 1 0.901 9.91 0.014

R-300 mM-0 a b 1.080 1 1.080 18.9 0.005

Sig.+ ns ns

2-Wav interaction

Strains x Treatment 0.379 3 0.126 2.87 0.053

New
isolates

Rambler a b 0.152 1 0.152 7.35 0.024

R-200 mM-N a b 1.961 1 1.961 49.4 0.000

R-300 mM-N a b 1.394 1 1.394 46.9 0.000

R-350 mM-N a b 1.909 1 1.909 104 0.000

Sig.+ ns ns

2-Wav interaction

Strains x Treatment 0.505 3 0.168 6.40 0.001
Between treatments, RGR of lucerne with the same letters are not significantly different from each 

other at 0.05 level.
+ One-Way ANOVA test between cultivars within a treatment at 0.05 level. 
ns. Not significant
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R E S U L T S

C H A P T E R  IV 
Effect of NaCI on plant development and fungal growth.
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In subsequent experiments it is the intention to determine the combined effects of 

NaCI and pathogen on the growth of tomato and lucerne. Prior to those experiments the 

effects of NaCI on germination and development of lucerne- and on tomato seeds was 

assessed as a means to screen the tolerance of various cultivars to salinity. The effects of 

NaCI on fungal growth were also assessed, to determine what concentration of NaCI 

inhibits and reduces fungal germination and hyphal growth. The results of these 

experiments were then used to select the concentration of NaCI used in experiments 

involving plant-pathogen-salt interactions.

4.1. Effect of NaCI on germination and development of tomato seed.

4.1.1. Germination.

Before testing the pathogenicity of V. albo-atrum on various tomato cultivars 

under saline conditions, seeds of tomato were initially screened, in a germination assay, 

for their response to salinity and to water stress. Germination assays are a recognized 

method for assessing salt tolerance at seed germination stage (Carlson et al., 1983) 

although the salt tolerance at this stage may not always reliably predict the tolerance 

status at other stages (Greenway & Munns, 1980). However, it was one of the aims of 

this experiment to identify such cultivars in order to test them in later experiments. In 

order to make a wide comparison between tomato cultivars, seeds were collected from 

different sources, Table 2.7.2. At the time of selection, little was known concerning their 

level of tolerance to salinity or drought conditions, or the level of their resistance to V. 

albo-atrum. Selection was made mainly on the basis of their commercial importance, 

availability and cost.

The main aim of this experiment was to determine the tolerance of these seeds to 

salinity prior to testing the resistance of the plants to V. albo-atrum under both saline and 

non-saline conditions, so that proper conclusions could be made about their resistance to 

the fungus and the combined effects of salinity and the fungus. V. albo-atrum is a soil 

borne pathogen and the fungus is widespread in moderate climate conditions. Similarly, 

tomato and lucerne are cultivated widely in those same climatic conditions. However, as 

discussed earlier, external factors such as salinity and drought may also represent a threat 

to such crops, in addition to the fungus. It is timely, therefore, that the effects of V. albo-
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atrum on tomato and lucerne are assessed against under conditions of salinity and 

drought.

Viability of the seed stocks was routinely assessed with the tetrazolium method 

(see Materials and Methods) and found to be more than 85% for all the cultivars.

In order to study the effect of NaCI on tomato seedlings, seeds were germinated in 

a series of glass Petri dishes containing one of 0-, 50-, 100-, 150- and 200 mM NaCI (see 

Materials and Methods).

Samples of the six cultivars of tomato seeds, (Ailsa Craig, Sweet 100 FI, Simge 

FI, Fantastic FI, Edcawy, Margarita (Fa-558) and one cultivar of L. lycopersicon, were 

germinated over a 2-week period on filter paper containing the NaCI solution, in glass 

Petri dishes. At the end of that period, germination was assessed by counting germinated 

seeds. Tables 4.1.1 & 4.1.2 show the total germination and the result of analysis of 

variance respectively, for the tomato seeds after 2 weeks of incubation.

Cultivars showed significant differences in their ability to germinate on the 

various salt media (P0.001, Table 4.1.2). Maximum differences were observed at 50, 

100 and 150 mM NaCI concentration (Table 4.1.1). The germination of most cultivars 

showed significant differences from the control group at 100 and 150 mM NaCI, with the 

exception of Sweet 100 FI, which also showed a significant difference from the control 

group in the presence of 50 mM NaCI.

On average, 87% of the seeds germinated in the presence of 50 mM NaCI though 

the figure for Sweet 100 FI was only 50%, making it significantly different from the 

control group (Table 4.1.2). This salt concentration corresponded to a 5.20 dS/m (EC) at 

21 °C (Table 4.1.3). With 100 and 150 mM, NaCI level, the figure for average 

germination was decreased (48 and 17 %, respectively). In general, concentrations of 

NaCI over 50 mM caused a significant reduction in germination (P0.001, Table 4.1.2). 

The lowest germination was observed with 200 mM NaCI (corresponding to 18.10 dS/m 

at 21 °C -Table 4.1.3), in which only 7% of the seeds germinated.

The relationship between percentage germination and the concentration of salt for 

any cultivar showed almost a quadratic fit. Correlations ranged from 0.93 to 0.98, which 

is a highly significant correlation. This meant that an increase in concentration of NaCI 

in the medium resulted in a significant reduction in germination of tomato seeds.
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The concentration of NaCI that prevents 50% of the seeds from germinating 

(IC50) was estimated from the quadratic curves for each cultivar and are presented in 

Table 4.1.4. It is apparent that the germination of the cultivars Edcawy, Simge FI and L. 

lycopersicon were less affected by NaCI-, while Fantastic FI and Ailsa Craig were 

moderately -affected. In contrast, Sweet 100 FI and Margarita were most affected by 

NaCI.

There were also highly significant interactions (PO.OOl, Table 4.1.2) between 

tomato cultivars and NaCI concentration. This means that different cultivars responded 

to salinity differently, some of them were resistant and some of them were not.

4.1.2. Hypocotyl elongation.

To see the effect of NaCI after post-germination, the length of hypocotyl 

elongation was also recorded after 2 weeks incubation. In this case, all the seedlings 

showed severe effects at 50 mM NaCI concentration (Table 4.1.5) unlike the effects on 

their germination (Table 4.1.1). Most seedlings showed significant differences at 50 mM 

NaCI concentration (P<0.01, Table 4.1.6), whereas L. lycopersicon showed tolerance up 

to 150 mM NaCI.

There were also highly significant interactions (PO.01) between cultivars and 

NaCI concentration (Table 4.1.6).

In general, cultivars of tomato were more tolerant to NaCI at germination stage 

than at the post germination stage. No hypocotyl elongation was recorded at NaCI 

concentrations of 150 mM and above, whereas, L. lycopersicon showed some growth at 

150 mM NaCI however, this growth was significantly different from the control group, 

(P<0.05, Table 4.1.6).
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Table 4.1.1. Mean adjusted percent germination of tomato cultivars after 2 weeks 
incubation on saline conditions.1

Cultivars NaCI (mM)

0 50 100 150 200

Ailsa Craig 100 93 14 0 0

Hybrid Sweet FI 100 50 25 0 0

Margarita (Fa-558) 100 92 8 0 0

Fantastic FI 100 100 42 0 0

L. lycopersicon 100 86 71 42 29

Simge FI 100 86 72 29 0

Edcawy 100 100 100 50 20

Mean 100 87 48 17 7

term ination expressed as a percent o f the no-salt control within each cultivar.

Table 4.1.2. Analysis of variance of the effects of [NaCI] on the germination of tomato 
cultivars grown at 0-, 50-, 100-, 150-, 200- mM NaCI for 2 weeks.

Cultivars [NaCI] mM* ANALYSIS OF VARIANCE

0 50 100 150 200 ss df MS F Sis.

Ailsa Craig a a b b b 20489 4 5122 50.2 0.000

Hybrid Sweet FI a b be c c 14000 4 3500 14.0 0.006

Margarita Fa-558 a a b b b 20944 4 5236 94.2 0.000

Fantastic FI a a b c c 20099 4 5024 226 0.000

L. lycopersicon a a ab be c 7020 4 1755 7.16 0.027

Simge FI a a b b b 13881 4 3470 14.0 0.006

Edcawy a a a b c 4040 4 2760 69.0 0.000

2-Wav Interaction

Cultivars 12554 6 2092 15 0.000

[NaCI] 94494 4 23623 171 0.000

Cultivars x [NaCI] 12981 24 540 4 0.000

^Between NaCI concentrations, percentage o f germination o f tomato cultivars with the same 
letters are not significantly different from each other at 0.05 level.
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Table 4.1.3. Electrical conductivity of various salt solutions at 21 °C.

NaCI (mM) EC (dS/m)

0 0.01

25 2.32

50 5.20

100 9.40

150 14.35

200 18.10

250 23.10

300 27.80

350

Electrical conductivity (EC) could not have been measured because of the high salinity.

Table 4.1.4. Concentration of NaCI which would reduce germination by 50% (IC50) for 
tomato cultivars.

Cultivars IC50 (NaCI mM)

Ailsa Craig 70

Hybrid Sweet FI 58

Margarita (Fa-558) 65

Fantastic FI 95

L. lycopersicon 146

Simge FI 128

Edcawy 165
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Table 4.1.5. Mean adjusted hypocotyl length of tomato cultivars after 2 weeks 
incubation on saline conditions.1

Cultivars NaCI (mM)

0 50 100 150 200

Ailsa Craig 1.00 0.69 0.32 0 0

Hybrid Sweet FI 1.00 0.77 0.32 0 0

Margarita (Fa-558) 1.00 0.83 0.04 0 0

Fantastic FI 1.00 0.85 0.07 0 0

L. lycopersicon 1.00 0.79 0.64 0.53 0.26

Simge FI 1.00 0.57 0.15 0.04 0

Edcawy 1.00 0.70 0.10 0.07 0.03

Mean
Lf t  _ _  J  1

1.00 0.74 0.23 0.10 0.04

Hypocotyl expressed as 1 unit o f the no-salt control within each cultivar.

Table 4.1.6. Analysis of variance of the effects of [NaCI] on the hypocotyl elongation of 
tomato cultivars grown at 0-, 50-, 100-, 150-, 200- mM NaCI for 2 weeks.

Cultivars [NaCI] mM* ANALYSIS OF VARIANCE

0 50 100 150 200 SS df MS F Sifr.
Ailsa Craig a b c d d 1.537 4 0.384 234 0.000

Hybrid Sweet FI a b c d d 1.648 4 0.412 168 0.000

Margarita Fa-558 a b c c c 1.980 4 0.495 668 0.000

Fantastic FI a b c d d 1.981 4 0.495 1610 0.000

L. lycopersicon a ab abc be c 0.610 4 0.153 5.29 0.048

Simge FI a b c d d 1.465 4 0.366 399 0.000

Edcawy a b c c c 1.571 4 0.393 331 0.000

2-Wav Interaction

Cultivars 0.60 6 0.10 19 0.000

[NaCI] 10.1 4 2.54 492 0.000

Cultivars x [NaCI] 0.629 24 2E-02 5.0 0.000

♦Between NaCI concentrations, hypocotyl length of tomato cultivars with the same letters are not 
significantly different from each other at 0.05 level.
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4.1.3. The effect o f  NaCI and mannitol on germination and development o f tomato 
seeds in soil.

The previous experiment had shown that NaCI inhibited germination of the 

selected tomato seeds, to a greater or lesser extent. That experiment was carried out in 

vitro rather than the conditions normally encountered by tomato seeds. Furthermore, two 

factors may have been operating in that experiment; the toxicity of the NaCI and the 

osmotic potential of the solutions used. In order to learn more about the inhibitory effect 

of NaCI on germination NaCI on germination was assessed using seeds germinated in 

soil. In addition, the effect of mannitol, as an osmoticum, on germination was also 

assessed.

The percentage germination was recorded over a 13-day (see Materials and 

Methods). The total percentage germination for each cultivar at the end of the experiment 

is presented in Table 4.1.7, while the cumulative percentage germination is shown in 

Figs. 4.1.1-4.1.5.

Germination of the seeds from the control treatments were assigned a value of 100 

and the germination observed in the other treatments of the same cultivars is expressed as 

a percentage of that. Whichever cultivar is considered, the percentage germination 

decreased with increasing- NaCI or mannitol concentration, (Figs. 4.1.1. -  4.1.5, Table 

4.1.7), though some were more affected than others. Margarita (Fa-558) and Fantastic FI 

showed similar responses to salinity and were more affected by 75 mM NaCI than Ailsa 

Craig, Simge FI and L. lycopersicon. However, in the presence of 100 mM NaCI, the 

percentage germination of all the cultivars decreased to a minimum, with Fantastic FI 

being most affected (5%, Table 4.1.7), though L. lycopersicon was the most resistant

Mannitol, used at the same osmotic potential as the NaCI, also caused a 

significant decrease in germination over the 2-week period of the experiment (Figs. 4.1.1- 

4.1.5 and Table 4.1.7), though with the exceptions of Ailsa Craig at -0.36 MPa and L. 

lycopersicon at both -0.36- and -0.48 MPa the effect of mannitol was not as severe as 

NaCI. The data suggest, therefore, that at least a part of the inhibition caused by NaCI 

resulted from the toxicity of the ions, rather than from an osmotic effect. The results of 

the determination of cumulative germination, normalized for each cultivar to a figure of 

100 for the control (distilled water), are presented in Figs. 4.1.1 - 4.1.5. In the cases of
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Margarita (Fa-558), Fantastic FI and Ailsa Craig the majority of germination in the 

control treatments occurs over the period 4 to 8 days after sowing. In the cases of Simge 

FI and L. lycopersicon maximum germination is not achieved until day 10. NaCI 

significantly reduced the percentage germination whether it was used at 75- or 100 mM. 

In some cases, the time taken for germination to occur was increased. The exception was 

Simge FI in the presence of either 75- or 150 mM NaCI (-0.36- & -0.48 MPa 

respectively, Fig. 4.1.4), in which the maximum level of germination was achieved before 

the control plants, albeit at a lower level. In the case of Fantastic FI, there was an 

increase in the initial time taken for germination to occur (Fig. 4.1.2). The data is 

expressed in Table 4.1.8 as the time taken for 50% germination to occur and is compared 

with the same data for treatment with mannitol. Few generalizations can be made, 

though the delay caused by isoosmotic mannitol appears not to be so marked as with 

NaCI, except in the case of Ailsa Craig at 150 mM- and L. lycopersicon at 200 mM 

mannitol (-0.36- & -0.48 MPa respectively). Again, this suggests that the effect of NaCI 

results both from toxicity of the ions and an osmotic effect.
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In general, percentage germination of tomato seeds under NaCI or mannitol 

treatment was significantly increased over time and was significantly decreased with 

increasing salt or mannitol concentration (Figs. 4.1.1-4.1.5).

The results of the germination experiment indicated that NaCI or mannitol were 

inhibitory to the tomato seeds. The effects of NaCI or mannitol were also observed after 

post-emergence such as hypocotyl elongation.

The effects of NaCI or mannitol on hypocotyl elongation are presented in Table 

4.1.9. Hypocotyl elongation was inhibited by treatment with NaCI in all cultivars in a 

pattern that was closely similar to its effect on germination (Table 4.1.7); Fantastic FI 

treated with 100 mM NaCI showed the greatest inhibition (final hypocotyl length was 3% 

of the control treatment), while L. lycopersicon showed the most resistance (final 

hypocotyl length was 19.5% of the control treatment). Similarly, mannitol at the same 

osmotic potentials inhibited hypocotyl elongation, though as in the case of its effect on 

germination, not to the same extent as NaCI. Again, this data suggests that in the case of 

NaCI both toxic effects from the ions and osmotic potential play a part in the inhibition. 

Curiously, hypocotyl elongation in L. lycopersicon was more affected by the higher 

concentration of mannitol than it was by the iso-osmotic concentration of NaCI, just as 

was the case with seed germination (Table 4.1.7).
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4.2. The effect of NaCl on germination and development of lucerne.

4.2.1. Germination.

The main aim in this study, is to see the tolerance level of seeds to NaCl and 

choose the resistant and susceptible ones for further experiments for a number of 

experimental approaches.

Little had been established concerning the tolerance to salinity or resistance to 

VW of the range of lucerne seeds that were available in this project Table 2.7.1. So, prior 

to their use in later experiments, the seeds of the various cultivars were screened to 

determine the effect of salinity and mannitol (which simulates water stress), on their 

germination. Again, the purpose of this assessment was to identify suitable plants for use 

in experiments designed to investigate resistance to the combined effects of a pathogen 

and salinity.

The seeds were germinated on filter paper in glass Petri dishes, as in the 

experiment with tomato seeds, described above, and incubated for 1 week with different 

concentrations (0, 25, 50, 100, 150, 200, 250, 300 and 350 mM) of NaCl (see Materials 

and Methods).

The percentage germination and the analysis of variance are presented in Tables

4.2.1 & 4.2.2. Hypocotyl- and radicle length and the respective analysis of variance are 

presented in Tables 4.2.4-4.2.7, respectively.

Seeds of cv. Kabul failed to germinate in concentrations of NaCl above 100 mM. 

Subsequently, it was established that the germination rate was less than 40% in the 

absence of NaCl. Consequently no data is presented for Kabul.

The remaining cultivars showed significant differences with regard to their ability 

to germinate on media containing NaCl (Tables 4.2.1 & 4.2.2). The biggest differences 

were observed in the treatments in which the concentration of NaCl was 150 mM or 

higher, (Tables 4.2.1 & 4.2.2). While small decreases in percent germination compared 

to the control occurred at 25- and 50 mM NaCl, with the exceptions of Europe, Vela and 

Rambler more than 90% of the seeds germinated at these concentrations. Up to 150 mM 

further increases in NaCl concentration caused only small decreases in the germination 

rate of the seeds. However, above 150 mM NaCl there was a marked, decrease in 

germination for most of the seeds and most of the cultivars showed significant differences
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from their control groups (P<0.001, Table 4.2.2). In the presence of 350 mM NaCl none 

of the seeds germinated. Cultivars Euver, Vela, Mesa Sirsa, 13R Supreme and Lobo 

showed the greatest tolerance to the effects of 300 mM NaCl, 13R Supreme showing 43% 

of the germination of the control at that concentration. Curiously, Vela was one of three 

cultivars, including Rambler and Bitlis the germination of which was less than 70% in the 

presence of 150 mM NaCl.

At the same concentration Peru, Mesa Sirsa, Lobo, Vertus and SA Standard 

showed germination rates of 90% or better compared to the controls, yet at 300 mM NaCl 

the germination for Peru and Vertus was 8% and for SA Standard it was 0. Clearly there 

is not a straightforward linear relationship between the concentration of NaCl and its 

effect on germination across the range of cultivars tested. In some cases the change in 

germination caused by increasing NaCl is stepped, suggesting the presence either of a 

protective- or adaptive mechanism.

Response of lucerne seeds to NaCl was similar to the response of tomato seeds to 

NaCl. The graph showed quadratic shape between percentage germination and NaCl 

concentrations. Correlations of the germination of seeds under various NaCl conditions 

were significantly high ranging from 0.94 to 0.99.

The data from Table 4.2.1 was plotted as a series of graphs and were used to 

calculate the concentration of NaCl, which would inhibit germination of the seeds by 25- 

and 50% (IC25 and -50, respectively), (Table 4.2.3). From this table four cultivars 

emerge as showing particular sensitivity to the effects of low concentration of NaCl; 

Vela, Rambler, Bitlis and AC Blue J, with IC25s of 71.2- 84.0-, 79.1- and 106.5 mM 

(compared to a mean for the group as a whole of 160 mM. This position is reflected in 

the values for IC50 (164.8-, 164.5-, 164.5- and 174.3 mM for Vela, Rambler, Bitlis and 

AC Blue J respectively, compared to a value of 230 mM for the whole group). These 

differences in the response of the individual cultivars to treatment with NaCl is highly 

significant (P0.001, Table 4.2.2).
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4.2.2. Hypocotyl elongation.

In addition to measurement of germination, the length of the hypocotyl and 

radicle were also recorded, at the end of the experiment, Tables 4.2.4-4.2.7, in order to 

assess the effect on these two growing tips of the seedling. Again, increasing 

concentration of NaCl caused a decrease in hypocotyl and radicle length. In contrast to 

the effects of NaCl on germination (Tables 4.2.1 & 4.2.2) where many cultivars were 

tolerant to 150mM NaCl and a few of them were tolerant to 200 mM NaCl, Tables 4.2.5 

& 4.2.7, 50% of the cultivars showed significant differences in the length of their 

hypocotyls from their control groups at 50 mM NaCl and all of them at 100 mM NaCl. 

Similar results were obtained for radicle length; 50% of the cultivars showed significant 

differences in the length of their hypocotyls from their control groups at 50 mM NaCl and 

all of them at 100 mM NaCl (Tables 4.2.6 & 4.2.7).

In general, when comparison was made, in terms of hypocotyl or radicle length, 

all the cultivars from the USA showed greater tolerance to NaCl than those of other 

cultivars. From other countries, only Vertus and Bilensoy-80, Barrier and SA Standard 

showed tolerance up to 100 mM NaCl (P0.001, Table 4.2.5 & 4.2.7).

The interaction between cultivars and NaCl concentrations was found important 

in hypocotyl length, however this case was not important in radicle length measurement 

(P0.001, Table 4.2.5 & 4.2.7).
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Table 4.2.1. Mean adjusted percent germination of 18 lucerne cultivars after one-week 
incubation in saline conditions, f

Cultivars NaCl (mM)

0 25 50 100 150 200 250 300 350

Euver 100 100 90 78 78 78 14 17 0

Europe 100 89 89 89 80 82 62 4 0

Vela 100 97 66 62 62 31 31 17 0

Rambler 100 90 85 85 50 30 20 5 0

Vertus 100 100 98 94 90 90 79 8 0

Elci 100 92 90 88 88 86 66 0 0

Peru 100 100 100 98 96 94 73 8 0

Bilensoy-80 100 100 100 87 83 80 40 7 0

Mesa Sirsa 100 100 98 92 90 88 81 13 0

Kayseri 100 98 94 89 87 87 60 6 0

Bitlis 100 94 94 88 53 31 6 3 0

13R Supreme 100 100 100 90 87 80 53 43 0

Redgreen 100 95 88 86 86 71 52 2 0

Protea 100 97 94 81 77 77 35 3 0

Lobo 100 95 95 95 92 81 65 14 0

SA Standard 100 98 95 93 93 86 20 0 0

Barrier 100 100 100 98 83 68 24 5 0

AC Blue J 100 97 94 94 75 39 0 0 0

Mean 100 97 93 88 81 71 44 9 0

f  Germination expressed as a percent o f the no-salt control within each cultivar.
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Table 4.2.2. Analysis of variance of the effects on the germination of lucerne seeds of
NaCl (at 0-, 25-, 50-, 100-, 150-, 200-, 250-, 300- and 350 mM. Seeds
were grown for one-week.

Cultivars [NaCl] mM* ANALYSIS OF

0 25 50 100 150 200 250 300 350 s s d f M S F Sig.

Euver a a a a a a b b b 25396 8 4174 11.8 0.001

Europe a a a a ab ab b c c 22691 8 2836 25.3 0.000

Vela a a b be be cd cd d d 18929 8 2366 13.7 0.000

Rambler a a ab ab be cd cd d d 24700 8 3087 12.4 0.001

Vertus a a ab ab ab ab b c c 25216 8 3152 453 0.000

Elci a ab ab ab ab ab b c c 24919 8 3114 22.0 0.000

Peru a a a a a a b c c 26510 8 3313 229 0.000

Bilensoy-80 a a a a a a b c c 25886 8 3235 35.4 0.000

Mesa Sirsa a a a ab ab ab b c c 23937 8 2992 66.0 0.000

Kayseri a a a a a a b c c 24501 8 3062 28.1 0.000

Bitlis a a a a b c d d d 29335 8 3666 44.4 0.000

13R Supreme a a a ab ab abc be c d 18612 8 2326 7.98 0.003

Redgreen a a a ab ab ab b C' c 23751 8 2968 14.9 0.000

Protea a a a a a a b b b 24936 8 3117 10.4 0.001

Lobo a a a a a ab b c c 22861 8 2857 27.0 0.000

SA Standard a a a a a a b c c 31404 8 3925 65.7 0.000

Barrier a a a a a a b b b 29101 8 3637 19.7 0.000

AC Blue J a a a a b c d d d 33302 8 4162 93.3 0.000
Sig. + ns ns ns ns ns ns s s ns

2-W av Interaction

Cultivars 17310 17 1018 7.22 0.000

[NaCl] 420110 8 52513 372 0.000

Cultivars x [NaCl] 35887 136 264 1.87 0.000

Between NaCl concentrations, percentage germination of lucerne seeds with the same letters are 
not significantly different from each other at 0.05 level.
+ One-Way ANOVA test between cultivars within a [NaCl] at 0.05 level.
s. Significant
ns. Not significant
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Table 4.2.3. Concentration of NaCl calculated to reduce germination by 25 (IC25) and 
50% (IC50) for lucerne cultivars. Values presented are ± SE of the mean.

Cultivars NaCl (mM)

IC (25) IC (50)

Euver 139.7 ±2.9 219.6 ±8.4

Europe 181.4 ± 1.1 246.4 ± 2.3

Vela 71.2 ±2.9 164.8 ±1.8

Rambler 84.0 ±18 164.5 ±20

Vertus 220.1 ±0.2 273.1 ± 2.8

Elci 198.1 ± 17 257.9 ±13

Peru 215.5 ±5.7 264.0 ± 6.3

Bilensoy-80 175.6 ± - 244.2 ± -

Mesa Sirsa 215.9 ±9.0 269.5 ±1.6

Kayseri 199.9 ±6.9 260.5 ± 5.9

Bitlis 79.1 ± 16 164.5 ±12

13R Supreme 199.5 ±9.0 265.3 ± 3.0

Redgreen 167.8 ± 1.6 237.7 ± 1.2

Protea 151.0 ± 33 225.7 ± 9.9

Lobo 203.8 ± 7.2 261.6 ±3.4

SA Standard 172.8 ±5.1 234.9 ± 1.9

Barrier 156.1 ±3.7 202.1 ± 1.9

AC Blue J 106.5 ± 10 174.3 ±6.2

Mean 160 230

T Germination expressed as a percent of the no-salt control within each cultivar.
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Table 4.2.4. Mean hypocotyl length of 18 lucerne cultivars after one week incubation on
saline conditions. *

Cultivars NaCl (mM)

0 25 50 100 150 200 250 300 350

Euver 1.00 0.81 0.73 0.64 0.55 0.32 0.12 0.05 0

Europe 1.00 0.81 0.76 0.56 0.51 0.32 0.16 0.03 0

Vela 1.00 0.90 0.65 0.64 0.50 0.17 0.12 0.09 0

Rambler 1.00 0.88 0.57 0.55 0.39 0.23 0.04 0.03 0

Vertus 1.00 1.00 0.93 0.76 0.59 0.50 0.29 0.15 0

Elci 1.00 0.98 0.79 0.72 0.59 0.52 0.26 0 0

Peru 1.00 0.81 0.75 0.69 0.53 0.48 0.20 0.06 0

Bilensoy-80 1.00 1.00 1.00 0.89 0.68 0.41 0.11 0.00 0

Mesa Sirsa 1.00 1.00 0.70 0.56 0.49 0.46 0.32 0.06 0

Kayseri 1.00 0.91 0.64 0.51 0.36 0.29 0.19 0.09 0

Bitlis 1.00 0.98 0.83 0.76 0.27 0.11 0.00 0.00 0

13R Supreme 1.00 0.95 0.88 0.77 0.51 0.37 0.19 0.17 0

Redgreen 1.00 1.03 1.00 0.90 0.68 0.44 0.27 0.04 0

Protea 1.00 0.83 0.81 0.66 0.38 0.35 0.13 0.01 0

Lobo 1.00 0.97 0.92 0.56 0.37 0.31 0.16 0.06 0

SA Standard 1.00 0.94 0.94 0.79 0.54 0.30 0.09 0.00 0

Barrier 1.00 0.98 0.98 0.63 0.63 0.39 0.23 0.09 0

AC Blue J 1.00 1.00 0.61 0.57 0.41 0.31 0.00 0.00 0

Mean 1.00 0.93 0.81 0.68 0.50 0.35 0.16 0.05 0

For each cultivar hypocotyl length expressed relative to a unit o f 1 for the no-salt control.
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Table 4.2.5. Analysis of variance of the effects of [NaCl] on the hypocotyl length of
lucerne cultivars grown at 0-, 25-, 50-, 100-, 150-, 200-, 250-, 300- and
350 mM NaCl for a period of 1 week.

Cultivars [NaCl] mM* ANALYSIS OF

0 25 50 100 150 200 250 300 350 s s d f MS F Sig.

Euver a ab b b be cd de de e 2.087 8 0.261 21.0 0.000

Europe a ab be cd de e f gh h h 1.969 8 0.246 24.4 0.000

Vela a a b b b c cd cd d 2.211 8 0.276 64.1 0.000

Rambler a a b b be cd d d d 2.195 8 0.274 17.6 0.000

Vertus a a ab b c c d de e 2.255 8 0.282 50.8 0.000

Elci a a b b c c d e e 2.341 8 0.293 170 0.000

Peru a ab be bed cd d e e e 1.944 8 0.243 26.4 0.000

Bilensoy-80 a a a b c d e f f 3.130 8 0.391 598 0.000

Mesa Sirsa a a b c c c d e e 2.040 8 0.255 70.1 0.000

Kayseri a a b be cd de e f gh h 1.963 8 0.245 54.0 0.000

Bitlis a a b c d e f f f 3.173 8 0.397 1110 0.000

13R Supreme a ab ab b c cd de de e 2.253 8 0.282 37.2 0.000

Redgreen a a a b c d e f f 2.823 8 0.353 239 0.000

Protea a ab ab b c c d d d 2.255 8 0.282 40.6 0.000

Lobo a a a b c c d de e 2.518 8 0.315 90.7 0.000

SA Standard a ab ab b c d e e e 2.864 8 0.358 51.6 0.000

Barrier a a a b b c cd de e 2.455 8 0.307 46.0 0.000

AC Blue J a a b b c c d d d 2.541 8 0.318 85.7 0.000
Sig. + ns ns s s s s s s ns

2-W av Interaction

Cultivars 0.916 17 5E-02 9.27 0.000

[NaCl] 41.33 8 5.1660 888 0.000

Cultivars x  [NaCl] 1.686 136 IE-02 2.13 0.000

Between NaCl concentrations, percentage germination o f lucerne seeds with the same letters are 
not significantly different from each other at 0.05 level.
+ One-Way ANOVA test between cultivars within a [NaCl] at 0.05 level.
s. Significant
ns. Not significant
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Table 4.2.6. Mean radicle length of 18 lucerne cultivars after one week incubation in
saline conditions. ^

Cultivars NaCl (mM)

0

Euver 1.00

Europe 1.00

Vela 1.00

Rambler 1.00

Vertus 1.00

Elci 1.00

Peru 1.00

Bilensoy-80 1.00

Mesa Sirsa 1.00

Kayseri 1.00

Bitlis 1.00

13R Supreme 1.00

Redgreen 1.00

Protea 1.00

Lobo 1.00

SA Standard 1.00

Barrier 1.00

AC Blue J 1.00

25 50 100 150

0.78 0.52 0.42 0.35

0.77 0.47 0.40 0.23

0.97 0.74 0.52 0.42

0.85 0.44 0.26 0.29

0.93 0.73 0.54 0.54

0.92 0.76 0.64 0.60

0.61 0.48 0.48 0.40

0.98 0.95 0.75 0.60

0.77 0.65 0.35 0.33

0.94 0.86 0.69 0.61

0.94 0.88 0.75 0.25

0.91 087 0.75 0.33

0.99 0.87 0.56 0.42

0.94 0.74 0.54 0.54

0.96 0.70 0.62 0.58

0.95 0.91 0.73 0.66

0.95 0.92 0.66 0.63

0.97 0.70 0.6 0.50

0.89 0.74 0.57 0.46

200 250 300 350

0.09 0.06 0.03 0

0.14 0.11 0.03 0

0.18 0.16 0.11 0

0.12 0.03 0.03 0

0.44 0.15 0.05 0

0.40 0.24 0.00 0

0.31 0.09 0.04 0

0.35 0.09 0.00 0

0.30 0.14 0.05 0

0.50 0.25 0.08 0

0.08 0.00 0.00 0

0.19 0.05 0.05 0

0.37 0.10 0.02 0

0.21 0.08 0.03 0

0.36 0.19 0.07 0

0.14 0.09 0.00 0

0.40 0.21 0.08 0

0.33 0.00 0.00 0

0.27 0.11 0.03 0Mean 1.00
_ _

For each cultivar radicle length is expressed relative to a unit o f 1 for the no-salt control.

159



Table 4.2.7. Analysis of variance of the effects of [NaCl] on the radicle length of lucerne
cultivars grown at 0-, 25-, 50-, 100-, 150-, 200-, 250-, 300- and 350 mM
NaCl for a period of 1 week.

Cultivars [NaCl] mM* ANALYSIS OF

0 25 50 100 150 200 250 300 350 SS df MS F Sis.

Euver a a b b b c c c c 2.018 8 0.25 20.4 0.000

Europe a a b be be cd d d d 1.922 8 0.24 17.2 0.000

Vela a ab be cd d e e e e 2.278 8 0.28 27.8 0.000

Rambler a ab be be c c c c c 2.137 8 0.267 4.79 0.015

Vertus a a ab b b be cd d d 2.128 8 0.266 14.5 0.000

Elci a ab be c c d d e e 2.202 8 0.275 48.3 0.000

Peru a ab be be be be c c c 1.614 8 0.202 4.81 0.015

Bilensoy-80 a a a b c d e e e 2.888 8 0.361 170 0.000

Mesa Sirsa a ab b c cd cd cde ef f 1.857 8 0.232 15.5 0.000

Kayseri a ab b c cd d e f f 2.185 8 0.273 99.3 0.000

Bitlis a ab b c d e e e e 3.183 8 0.398 193 0.000

13R Supreme a a ab b c c d d d 2.759 8 0.345 95.7 0.000

Redgreen a a a b b be cd d d 2.577 8 0.322 20.2 0.000

Protea a a ab b b c c c c 2.441 8 0.305 17.6 0.000

Lobo a a ab b b be cd cd e 2.150 8 0.269 12.8 0.000

SA Standard a a a b b c c c c 3.001 8 0.375 79.7 0.000

Barrier a a a b b c cd d d 2.358 8 0.295 28.1 0.000

AC Blue J a a b b be c d d d 2.556 8 0.319 27.5 0.000
Sig. + ns ns ns s s s s ns ns

Cultivars 

[NaCl] 

Cultivars x [NaCl]

1.305

40.07

2.179

2-Wav Interaction

17 7E- 5.22 
02

8 5.00 340

136 IE- 1.09 
02

0.000

0.000

0.298

Between NaCl concentrations, percentage germination o f lucerne seeds with the same letters are 
not significantly different from each other at 0.05 level.
+ One-Way ANOVA test between cultivars within a [NaCl] at 0.05 level.
s. Significant
ns. Not significant
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4.2.3. The effect o f NaCl and mannitol on germination o f lucerne in soil.

The previous experiment has established that NaCl is inhibitory to the 

germination of lucerne seeds and can affect the subsequent elongation of both radicle and 

hypocotyl in vitro. The following experiment was performed to establish the response to 

NaCl of lucerne seeds grown in soil. The effect of mannitol on germination was also 

assessed, to establish the osmotic effect on germination. Cultivars that showed a degree 

of high tolerance (Vertus and 13R Supreme), moderate tolerance (Mesa Sirsa) and 

susceptibility (Vela and Rambler) to NaCl, either in the germination or post-germination 

stage, were selected and used in this study.

The percentage germination was recorded over a 9-day period and the total 

percentage seed germination for each cultivar is presented in Table 4.2.8.

Although there was a decline in seed germination in response to treatment with 

NaCl (Figs. 4.2.1-4.2.5 & Tables 4.2.8 & 4.2.9), it was not as great as occurred in Petri 

cishes (above). With the exception of Vertus in the presence of 200 mM NaCl, in all 

cases in which the NaCl treatment was equivalent, inhibition was less when the seeds 

were germinated in soil. As in the experiment in vitro, 13R Supreme, Vertus and Mesa 

Sirsa showed some tolerance to salinity. However, in contrast to their germination in 

\itro, Vela and Rambler also showed a degree of tolerance. The rate at which 

germination occurred is not greatly affected by treatment with NaCl, as indicated by the 

calculations of the days taken to achieve 50% germination (Table 4.2.9).

Treatment with mannitol, at the same osmotic potentials as the NaCl used in the 

experiment, also inhibited germination (Figs. 4.2.1-4.2.5 & Tables 4.2.8 & 4.2.9). In all 

cases, the effect of mannitol was greater than that of NaCl. However, this was not the 

case with tomato seeds in which the effect of mannitol was lower than that of NaCl. The 

same pattern that occurred to lucerne seeds with NaCl was also observed with mannitol, 

13R Supreme, Vertus and Mesa Sirsa showed some tolerance, Vela and Rambler less so. 

As was the case with NaCl treatment, there was no significant difference in delay of 

germination (T50) between NaCl- and mannitol-treated seeds, Table 4.2.9.

161



100

2  80

60

o  40

20

0
20 4 6 8 10

NaCl,
MPa

0
-0 .7 2
-0 .9 6

Days

Mannitol,
MPa

—u — 0 .9 6

0 2 4 6 8 10
Days

Fig. 4.2.1. Germination of M. sativa cv. 13R Supreme in response to a) NaCl and b) 
mannitol of different osmotic potentials (MPa).
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Fig. 4.2.2. Germination of M. sativa cv. Vertus in response to a) NaCl and b) mannitol 
under various osmotic potentials (MPa).
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Fig. 4.2.3. Germination of M. sativa cv. Mesa Sirsa in response to a) NaCl and b) 
mannitol under various osmotic potentials (MPa).
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4.3. Root formation of the lucerne cultivars in saline medium.

In the previous experiments, it was established that some lucerne cultivars showed 

tolerance to up to 100 mM NaCl in the seedling stage following germination (Tables 

4.2.6 & 4.2.8). In this experiment, cultivars that had showed the greatest level of 

tolerance or susceptibility to NaCl were used in an experiment to test their ability to 

produce roots in saline conditions, which has been used as an indicator of tolerance or 

susceptibility previously (Taufikrahman, 1993).

Root formation, as indicated by the length of the longest root (Taufikrahman, 

1993; Dessalegne, 1996; Douirani, 1998), of cultivars was assessed in the presence of a 

nutrient solution (A & H) containing one of 0-, 50-, 100- or 150 mM NaCl. The un

rooted cuttings of tolerant (Protea, 13R Supreme, Bilensoy-80, Mesa Sirsa, Vertus) and 

susceptible (Peru) cultivars (10 cm, 8 replicates per treatment) were placed individually 

in perlite in 10 cm pots that stood on Petri dishes. Each treatment was watered with 100 

ml A & H solution for 2 weeks every other day (see Materials and Methods). The NaCl 

content of the nutrient solution was increased by increments of 50 mM daily until the 

required salinity was reached. In addition to measurement of root length and dry weight 

of the entire plant, the proline concentration of the leaves was measured.

Tables 4.3.1-4.3.5 summarize the results and the statistical analysis for root 

length, dry weight and proline content of the cultivars. Root length and dry weight of all 

the cultivars were greatly affected by 150 mM NaCl. However, root formation and dry 

weight of cultivar Peru (the root length and hypocotyl elongation were affected at 50 mM 

NaCl in the previous experiment, Table 4.2.6 & 4.2.8) was also affected at 50 mM 

(Tables 4.3.1,4.3.2, 4.3.3 & 4.3.4).

The accumulation of proline was considered as a sign of stress by many workers 

(Aziz et al., 1999; El-Ddil et al., 2002). However, in this study proline content of the 

leaves slightly increased at 100 mM NaCl treatment when comparison was made to the 

control group. No statistical table was produced for this parameter since there were no 

significant differences observed between treatments (Table 4.3.5). Plants treated with 

150 mM NaCl had showed severe symptoms of the salinity and died before the 

measurement was taken.
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Table 4.3.1. The effect of NaCl (at 0-, 50-, 100- and 150 mM) on the index of root
length of lucerne (cuttings). The formation was assessed over a two-week
period.

Cultivars NaCl (mM)*

0 50 100 150

Protea 1.00 ±0.08 0.95 ± 0.08 0.97 ± 0.08 0.77 ± 0.05

13R Supreme 1.00 ±0.07 0.86 ±0.06 0.86 ± 0.05 0.75 ± 0.05

Bilensoy-80 1.00 ±0.09 0.95 ± 0.05 0.96 ±0.05 0.78 ± 0.04

Peru 1.00 ±0.02 0.83 ± 0.05 0.82 ± 0.06 0.69 ±0.03

Mesa Sirsa 1.00 ±0.06 1.02 ±0.06 0.84 ± 0.03 0.79 ± 0.08

Vertus 1.00 ±0.03 1.00 ±0.06 0.87 ± 0.09 0.71 ±0.05

Table 4.3.2. The effect of NaCl (at 0-, 50-, 100- and 150 mM) on the index of root 
length of lucerne (cuttings). Their ability to form roots was assessed over 
a two-week period.

Cultivars [NaCl] mM* ANALYSIS OF VARIANCE

0 50 100 150 SS df MS F Sis.

Protea a ab ab b 0.202 3 6E-02 2.06 0.135

13R Supreme a ab ab b 0.144 3 4E-02 2.83 0.071

Bilensoy-80 a ab ab b 0.164 3 5E-02 1.99 0.144

Peru a b b b 0.240 3 7E-02 5.40 0.009

Mesa Sirsa a a ab b 0.191 3 6E-02 3.73 0.033

Vertus a a ab b 0.338 3 0.113 5.38 0.007

* Between NaCl concentrations, index o f root length o f lucerne cultivars with the same letters are 
not significantly different from each other at 0.05 level.
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Table 4.3.3. The effect of NaCl (at 0-, 50-, 100- and 150 mM) on the index of dry
weight of the entire lucerne plants. Their ability to form roots was
assessed over a two-week period.

Cultivars NaCl (mM)*

0 50 100 150

Protea 1.00 ±0.08 1.00 ±0.12 0.81 ±0.13 0.52 ± 0.07

13R Supreme 1.00 ±0.11 0.83 ±0.13 0.73 ± 0.03 0.34 ±0.06

Bilensoy-80 1.00 ±0.25 0.68 ±0.10 0.60 ± 0.04 0.43 ± 0.07

Peru 1.00 ±0.16 0.46 ±0.12 0.46 ±0.12 0.31 ±0.03

Mesa Sirsa 1.00 ±0.10 1.39 ±0.15 0.81 ±0.20 0.48 ± 0.07

Vertus 1.00 ±0.12 1.06 ±0.15 0.73 ±0.15 0.26 ±0.05

Table 4.3.4. The effect of NaCl (at 0-, 50-, 100- and 150 mM) on the index of dry 
weight of the entire lucerne plants. Their ability to form roots was 
assessed over a two-week period.

Cultivars [NaCl] mM* ANALYSIS OF VARIANCE

0 50 100 150 SS df MS F SI&.
Protea a a ab b 0.93 3 0.313 4.82 0.010

13R Supreme a a a b 1.02 3 0.342 8.51 0.001

Bilensoy-80 a ab ab b 1.05 3 0.351 2.43 0.092

Peru a b b b 1.38 3 0.461 6.75 0.004

Mesa Sirsa a ab be c 1.93 3 0.646 6.40 0.005

Vertus a a a b 2.36 3 0.789 8.62 0.001

*Between NaCl concentrations, dry weight o f lucerne cultivars with the same letters are not 
significantly different from each other at 0.05 level.
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Table 4.3.5. The effect of NaCl (at 0-, 50-, 100- and 150 mM) on proline content of
lucerne (cuttings). Their ability to form roots was assessed over a two-
week period.

Cultivars NaCl (mM)*

0 50 100 150

Protea 2.50 ±0.50 2.50 ±0.50 3.50 ± 0.50 _i

13R Supreme 2.50 ±0.50 2.00 ± 0.00 3.00 ± 0.00 -

Bilensoy-80 2.50 ±0.50 2.00 ±1.00 3.00 ± 0.00 -

Peru 2.50 ±0.50 3.00 ±0.00 3.00 ±0.00 -

Mesa Sirsa 2.00 ±0.00 2.00 ± 0.00 2.50 ± 0.50 -

Vertus
U r .  *_ _  J ..

2.50 ±0.50 3.50 ± 0.00 3.50 ± 0.00 -
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4.4. Effect of NaCl on radial growth-, germination of conidia- and mycelial
weight of V. albo-atrum.

Source of isolates;

In this study, fungal isolates of V. albo-atrum were obtained from lucerne and 

tomato plants. The isolates VI and V2 were isolated from lucerne and tomato, 

respectively (UWS). Other isolates, which were isolated from lucerne (VS, VF and VL), 

were obtained from the culture collection of Prof. Craig Grau (University of Wisconsin- 

Madison).

4.4.1. Effect o f growth media and NaCl on radial growth.

Many of the semi-arid and arid areas in the world are characterized with salinity. 

Salinity may interact with the fungus in soil fauna and might reduce the effectiveness of 

the fungi. For example, Amir et al. (1996) reported that the salinity induced soil 

suppressiveness to the vascular fusariois. It reduced sporulation and germination of 

Fusarium oxysporum. Therefore, the negative effect of salinity could prevent the 

pathogen propagules from reaching the root infection sites. For example, Engel & Grey 

(1991) stated that chloride fertilizers increased the yield of winter wheat and reduced the 

severity of root diseases caused by Fusarium culmorum. It has also been reported that 

salinity might negatively affect the prevalence and distribution of the pathogen (Mandeel, 

1996). However, it has been reported that salinity might also prevent the development of 

symbiotic bacteria in the soil (Botsford, 1983).

On the other hand, salinity had positive effect on fungal growth. For example, it 

increased the development of motile zoosporangia of Perkinsus sp. and the 

developmental rates increased with increasing salinity (Ahn & Kim, 2001). Similar 

findings were made by Ragazzi et al. (1994), who reported F. oxysporum f.sp. 

vasinfectum chlamydospores and their germ tubes have been found to grow better in a 

saline medium and the pathogen was more virulent when it had been cultured on a saline- 

enriched medium.

So, the effect of NaCl is not clear on growth and sporulation of fungi, especially 

on V. albo-atrum.
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In the first instance, the radial growth of the isolates of V. albo-atrum was 

compared over a 3-week period on Dox- and PDA media. The radial growth rates of 

isolates are presented in Fig. 4.4.1a & b and their statistical analysis is presented in Table

4.4.1. The results indicate that isolate V2 grew faster than the other isolates during the 

incubation period; its radial growth rate was significantly different from the other isolates 

(Table 4.4.1). However, isolates from lucerne, irrespective of their origin of country, 

showed similar growth rates and no significant differences were observed between them 

(Table 4.4.1), although the radial growth rates of the lucerne isolates were slightly higher 

in Dox medium than in PDA (Fig. 4.4.1).

>,
03TJ
EE

03
T3
03CC

□  PDA

□  DOX

V 2 V1 VS VF VL

Fig. 4.4.1. Radial growth of Verticillium isolates grown on PDA and Dox media. VI, 
VS, VF and VL-isolates from lucerne. V2-isolate from tomato cv. Ailsa 
Craig. Vertical bars show ± SE of mean.

Table 4.4.1. Analysis of variance of the growth rates of isolates of V. albo-atrum on 
PDA and Dox media.

Media [Isolates]* ANALYSIS OF VARIANCE

Y2 V i VL VF VS SS df MS F Si&

PDA a b b b b 1635 4 408 11.4 0.001

Dox a b b b b 903. 4 226 18.0 0.000

* Between treatments, isolates with the same letters are not significantly different from each other 
at 0.05 level.
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e f  g h

Plate 4.1.
Development o f  mycelium o f  V. albo-atrum  (isolate VI) on Dox medium containing 
different concentrations o f  NaCI. (a) Control, 0 mM NaCl-; (b) 25 mM-; (c) 50 mM-; 
(d) 100 mM-; (e) 150 mM-; (f) 250 mM-; (g) 300 mM-; and (h) 350 mM NaCl.



i

Plate 4.2.
Development of mycelium of V. albo-atrum (isolate V2) on Dox medium containing 
different concentrations of NaCl. (a) Control, 0 mM NaCl; (b) 25 mM-; (c) 50 mM-; 
(d) 100 mM-; (e) 150 mM-; (0 200 mM-; (g) 250 mM-; (h) 300 mM-; and (i) 350 mM 
NaCl.



Having established that there were no significant differences in the growth rate of 

the various isolates whether they were grown on Dox- or PDA medium, the radial growth 

rates of the two isolates VI and V2, which would be used in subsequent experiments 

were assessed under various concentrations of NaCl (0-, 25-, 50-, 100-, 150-, 200-, 250-, 

300-, and 350 mM) in Petri dishes of Dox medium. NaCl was incorporated into Dox 

medium at the required concentration, which was then autoclaved, and plated in Petri 

dishes as described in Materials and Methods. The plates were inoculated with mycelial 

disks (3-mm in diameter) cut from the outer margin of 3-week old cultures on Dox and 

the plates were then incubated at 23 °C ± 1 °C.

At the end of the 3-week period, the growth of each colony was measured and the 

amount of spores present was determined. Sporulation was determined by rinsing each 

culture with 10 ml of distilled water, scraping the spores with a glass spatula, and 

counting them with a neubauer haemacytometer. The results and statistical analysis are 

presented in Fig. 4.4.2 and Table 4.4.2, respectively.

The results showed that both isolates VI and V2 had reduced growth rate with 

increasing NaCl concentrations. The radial growth rate of the isolates were almost 

similar and significantly decreased at 200 mM and above NaCl concentrations (Fig. 

4.4.2a & b). The growth rate of isolates, although it decreased with increasing salinity, 

did not show statistical difference from each other and the control group up to 150 mM 

NaCl concentration (Table 4.4.2). Although the growth rate of both isolates declined 

significantly after 150 mM NaCl concentration, the decline in growth rate of isolate VI 

was more rapid than the isolate V2. Not surprisingly, the slowest growth rate was 

observed in the highest concentration of NaCl (350 mM). The appearances of the 

colonies are presented in Plates 4.1 & 4.2. From the plates, it can easily be seen that after 

150 mM NaCl the colour of the colonies of both isolates VI and V2 change suddenly and 

become feathery.

A decrease in sporulation was also observed in response to increasing 

concentrations of NaCl (Fig. 4.4.2a & b). Spores of both isolates were slightly affected at 

25 and 50 mM NaCl. Significant decrease in number of spores was observed in both 

isolates when the concentration of NaCl reached 100 mM. The decrease in sporulation in 

response to NaCl was greater in V2 than in VI. However, it should be pointed that the
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area of colonial mat where isolate VI grew (in Petri) was less than that of isolate V2. So, 

the number of spores measured in colonial mat was, of course, lower in isolate VI than 

that of V2. For example, isolate VI produced 1200 x 105 conidia/ml while isolate V2 

produced 5620 x 105 conidia/ml, in control conditions. In the presence of 100 mM NaCl, 

isolate VI produced 826 x 105 conidia/ml while isolate V2 produced 2912 x 105 

conidia/ml. The decline in amount of spores of isolate V2 was doubled at 100 mM 

whilst, the decline in amount of spores of isolate VI was 1.5 times. At the highest NaCl 

concentration (350 mM), isolate VI produced 70% less spores than that of control 

conditions while V2 produced 80% less spores than that of non-salt conditions. In 

general, up to 300 mM NaCl, the growth rate of V2 was almost equal to the growth rate 

of VI.

The production of conidia by isolate V2 was 4 or 5 times greater than that of VI up 

to 50 mM NaCl concentration. Above 50 mM NaCl concentration, although V2 

produced more conidia than VI, the ratio between V2/V1 was reduced down to 3.50 at 

100-, 2.65 at 150-, 2.17 at 200 mM NaCl level. Although isolate V2 was capable of 

producing more spores per unit area than VI and produced more colonial mat in Petri 

dishes, which would make larger surface area to provide more spores, it is clear that the 

negative effect of NaCl (above 150 mM) was more on V2. From pathological point of 

view, it is important that the sporulation and the colonial growth of the fungus are 

affected significantly at 100 and 200 mM NaCl, respectively. This study indicated that 

the pathogen might sporulate under moderately saline conditions and possibly play an 

important role as a pathogen under those conditions.

Table 4.4.2. Analysis of variance of the growth rates of isolates of V. albo-atrum grown 
at various concentrations of NaCl conditions in Dox medium.

Isolates NaCl] mM* ANALYSIS OF VARIANCE

0 25 50 100 150 200 250 300 350 SS df MS F Sig_

VI a a a a a b b c d 4136 8 517 47.1 0.000

V2 a a a a a b b b b 2817 8 352 18.5 0.000

*Between NaCl treatments, concentrations with the same letters are not significantly different from each 
other at 0.05 level..
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Fig. 4.4.2. Effect of NaCl (mM) on radial growth and sporulation of V albo-atrum. (a) 
Isolate VI and (b) Isolate V2 on Dox agar after 21 days incubation. Radial 
growth-(*-»); sporulation (o-o).
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4.4.2. Radial growth rates o f non-salt adapted and salt-adapted Verticillium isolates.

In the previous experiments, the effect of NaCl on the radial growth of isolates VI 

and V2 was determined. In this section, the effect of NaCl was determined on the growth 

of isolates of V albo-atrum that have been adapted to grow on saline medium.

Initially, isolates V1 and V2 were grown on Dox medium containing 50 mM NaCl, 

then every 3 weeks, the cultures were transferred to medium in which the concentration 

of NaCl was increased by an increment of 50 mM. Each isolate was grown in this way 

until the NaCl concentration reached to 150 mM. At this concentration, both isolates VI 

and V2 were maintained for 5 months prior to the start of the experiment. Those isolates, 

which had been maintained on medium containing 150 mM NaCl are designated V I-150 

and V2-150. A sample of each Vl-150 and V2-150 was then transferred to medium in 

which the NaCl concentration was increased to 200 mM. Isolates were then maintained 

on 200 mM NaCl for 2 months and are designated V I-200 and V2-200.

In this experiment, the radial growth of isolates VI and V2, and their salt-adapted 

strains were grown in the respective conditions under which they were normally 

maintained. Three mm mycelial disks of each isolate, VI and V2, Vl-150 & V2-150, 

V I-200 & V2-200, were transferred to the appropriate medium; in the case of VI & V2, 

normal Dox medium -  no salt; in the case of VI- and V2-150, Dox medium plus 150 mM 

NaCl; in the case of VI- and V2-200, Dox medium containing 200 mM NaCl. The 

cultures were grown for 3 weeks, at the end of which radial growth and spore formation 

were assessed, (Fig 4.4.3 & Table 4.4.3).

Isolates VI and V2 and their salt adapted strains, Vl-150 and V2-150 showed 

similar radial growth rates over the 3-week period, (Fig. 4.4.3), statistical analysis 

showing that there were no differences in growth rates between the original isolates, V 1 

& V2, and their salt-adapted strains Vl-150 & V2-150 (Table 4.4.3). However, the 

growth rates of both V I-200 or V2-200 (grown on 200 mM NaCl) were significantly 

different from those of the original isolates (VI or V2, which were grown under no-salt 

conditions) Table 4.4.3.

Adaptation to growth on medium containing NaCl cause a marked decrease in the 

ability of the isolates to form spores, in all the salt-adapted isolates, Fig. 4.4.3. The effect 

was more marked in VI- and V2-200 than in the corresponding -150 strains, and VI was
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more affected than V2. This study indicated that the fungus was not affected by NaCl up 

to 150 mM NaCl in a long term. Although the sporulation of both isolates declined, it 

should be considered that the production of spores even under stress conditions might still 

play an important role and cause pathogenicity. From the results, Fig. 4.4.3, both isolates 

produced enough conidia to spread and cause pathogenicity under saline and non-saline 

conditions. The pathogenicity of those salt strains on tomato plants was studied in the 

following chapter.

Table 4.4.3. Analysis of variance of the growth rates of isolates of V. albo-atrum and 
their salt-adapted strains.

[Isolates]* ANALYSIS OF VARIANCE

VI Vl-150 V I-200 SS df MS F Si&

a a b 181 2 90.71 11.0 0.002

V2 V2-150 V2-200 SS df MS F Sie.

a a b 416 2 208 10.4 0.004

* Between treatments, isolates with the same letters are not significantly different from each 
other at 0.05 level.

179



R
ad

ia
l 

G
ro

wt
h 

(m
m

/d
ay

) 
R

ad
ia

l 
G

ro
w

th
 

(m
m

/d
ay

)

4 1 5 0 0

°  1000x
E
ropco
o

5 0 0

V1 V 1 - 1 5 0  V 1 - 2 0 0 V1 V 1 - 1 5 0  V 1 - 2 0 0

6 0 0 0

5 0 0 0

<=> 4 0 0 0

t  3 0 0 0

c  2000

1 00 0

V 2 V 2 - 1 5 0  V 2 - 2 0 0

Isolates

V 2 - 1 5 0

Isolates

V 2 - 2 0 0

Fig. 4.4.3. Radial growth and spore formation of Verticillium isolates and their salt- 
adapted strains. Isolates were grown as described in the text and at the end of 
the 3-week growth period growth and spore formation were measured as 
described in Materials and Methods, a & c-radial growth; b & d-number of 
conidia produced by isolates. Vertical bars show ± SE of mean.
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4.4.3. The effect o f  NaCl on spore germination and mycelial dry weight.

The result of the previous experiment have shown that at the higher concentration 

of NaCl used, there was a significant reduction in the ability of the salt-adapted strains to 

form spores. This may affect the ability of V albo-atrum to infect plants under 

conditions of salinity. Another factor that may also influence infectivity is germination 

of the spores. Consequently, this was assessed for both the original VI & V2 isolates. In 

the previous experiments also, growth was reported as radial growth. While a good 

indicator of growth for some purposes, it has the disadvantage that it affords no indication 

of the amount of mycelium in the fungal colony (Milton, 1966). Therefore, isolates VI 

and V2 were also tested for their growth in various concentrations of NaCl in liquid 

culture (Dox) medium.

For measurement of germination, a suspension, (1 x 1055 conidia/ml) of V. albo- 

atrum, isolates VI or V2, was transferred to each of a series of sterile boiling tubes, each 

of which contained 10 ml liquid Dox medium and NaCl at 0-, 50-, 100-, 150-, 200- or 

250 mM. The tubes were incubated in the dark at 23 °C ± 1 °C for 24 h and at the end of 

the incubation period, 100 (il of each of the cultures were smeared onto a sterile 

microscope slide and the germination of spores was determined microscopically, Plate

4.3. For determination of mycelial dry weight, a 1-cm diameter disk from a culture of 

each isolate was transferred aseptically to a 250 ml conical flask containing 100 ml 

Czapex Dox liquid medium with NaCl at one of the concentrations; 0, 25, 50, 100, 150 

and 200 mM (10 flasks for each treatment). The flasks were placed on an orbital shaker 

100 rpm, in the dark at 23 °C ± 1 °C for 6 weeks. After the period of incubation 

mycelium mats were harvested (see Materials and Methods) and dry weights determined. 

The results show that germination was largely unaffected by NaCl up to a concentration 

of 150 mM (Table 4.4.4). However, increasing the concentration to 200 mM caused a 

decrease in germination. Nevertheless, even at the highest concentration of NaCl (200 

mM) significant germination occurred and at 100-150 mM NaCl, a substantial level of 

germination occurs, sufficient that fungus may still become a pathogen.

Mycelium dry weights are presented in Fig. 4.4.4. From the results, it was 

observed that both isolates showed similar growth curves. Increasing NaCl
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Plate 4.3.
Germination o f  V. albo-atrum  (isolate V2-control group) spores, 12 h after the start o f  
the incubation period.



concentrations in the medium caused a decrease in mycelial dry weights, though the

decrease was not large up to 50 mM NaCl. At 100 mM and above, however, growth of

the isolates decreased markedly.

Table 4.4.4. Spore germination at different concentrations of NaCl.

NaCl (mM) VI (%) V2 (%)

0 90> 90>

100 90> 90>

150 85 85

200 70 70

250 50< 50<

300

250

o5 200

O) 150

100

50

150 200 25050 1000

NaCl (mM)

Fig. 4.4.4. Mycelium growth of V. albo-atrum in liquid culture (6 weeks). (•  — •) VI; 
(o -o )  V2.
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4.5. Effects of hydrogen peroxide (H2O2) and purified phytoalexins on spore 
germination and germ tube elongation of V. albo-atrum isolates.

In the previous section, the effect of NaCl in vitro, was tested on the germination, 

viability, mycelium growth and radial growth of the V. albo-atrum isolates. Both isolates 

showed similar patterns in response to NaCl, even the salt-adapted strains, although 

sporulation and the radial growth per day was lower in the isolate VI than that of V2. In 

this study, the effect of antifungal compounds was tested on the fungal isolates to 

establish if there is a difference between isolates in terms of germination and mycelium 

development in vitro.

Spore germination and germ tube elongation of V albo-atrum, isolate VI and V2, 

were inhibited by the effects of antifungal compounds such as H2O2 and the purified 

phytoalexins.

4.5.1. The effect o f H2 O2  on conidial germination and germ tube elongation.

Conidial germination started after 12 h incubation in the control group. The 

germinated conidia were counted after 24 h at which time most of the length of germ 

tubes exceeded the length of conidia. An increase in concentration of H2O2 resulted in a 

decrease in germination for both isolates (Fig. 4.5.1a). Significant inhibition of 

germination for the isolate VI started at 50 pM H2O2 , while the significant inhibition for 

the isolate V2 took place at a concentration of 5 pM H2O2 . Germination was almost 

inhibited at 1000 pM H2O2 for both isolates. When LD50 (lethal dose which inhibits the 

50 % of the population from germinating) was calculated V2 was more sensitive to H2O2 

than VI isolate, Table 4.5.1.

The effect of H2O2 on germ tube elongation of germinated conidia was tested with 

the same concentrations of H2O2 used for the previous experiment. Germ tube elongation 

was significantly inhibited at 5 pM H2O2 for the isolate V2 (Fig. 4.5.1b). However, 

effective concentration for VI was 10 pM H2O2 . Again, increase in concentration of 

H2O2 caused decrease in germ tube elongation for both isolates. No germ tube elongation 

was observed at 1000 pM H2O2 for both isolates.
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4.5.2. The effect ofpurified phytoalexins on conidial germination.

The effect of medicarpin and sativan on the percentage germination of isolates VI 

and V2 are presented in Fig 4.5.2a & b. Medicarpin significantly inhibited the 

germination of conidia at a concentration of 30 pg/ml for V2, and 40 pg/ml for VI, (Fig 

4.5.2a). LD50 of V2 was lower than that of VI, Table 4.5.1. In the case of sativan, 

inhibition of germination of conidia was markedly affected as compared to the effect of 

medicarpin. The significant inhibition for sativan started at a concentration of 10 pg/ml. 

It was observed that sativan was more inhibitory to both isolates than that of medicarpin. 

Increase in concentration of sativan also caused severe decrease in germination of conidia 

for both isolates (Fig. 4.5.2b).

Table 4.5.1. The calculated LD50 of the antifungal compounds for germination of the 
conidia of V. albo-atrum, isolates VI or V2.

Isolates Antifungal Compounds

HbO? (uM) Medicarpin Sativan
(pg/ml) fug/ml)

VI 500 35 17

V2 48 25 17
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R E S U L T S

C H A P T E R  V 
Interactions between the effect of salt and pathogen on plant disease

development
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5.1. The effect of age and NaCl on the pathogenicity of V. albo-atrum towards L.
esculentum.

The separate effects of the pathogen V. albo-atrum and of NaCl on growth and 

development of various tomato cultivars were reported earlier. In this study, the 

combined effect of V albo-atrum & NaCl are reported. The studies were conducted with 

both 4- and 8-week old plants of cv. Ailsa Craig, to establish whether the age of the 

plants has any effect on development of the disease, and in soil.

Seeds were germinated in trays of John Innes No. 1 compost and at the first 

opportunity, seedlings were transplanted into 15-cm pots of a mixture of perlite and 

Levington’s Universal Compost mixture (4:1).

In the initial experiment, 4-week old plants were treated with NaCl at 0-, 25-, 50-, 

100-, 150- and 200 mM. Five replicate pots, one seedling per pot, were used for each 

treatment. A replicate series of plants treated with the same NaCl concentrations were 

inoculated with lxlO7 conidia/ml of V. albo-atrum, isolate V2 by the root-dip method 

(see Materials and Methods). Due to the severe effects of V. albo-atrum and NaCl on 

young tomato seedlings, the plants were incubated in the greenhouse for 5 weeks. 

Subsequently, the response of 8-week old plants to the same treatments was assessed with 

the exception that, the treatments with 25- and 200 mM NaCl concentrations were 

omitted. In the case of the 4-week old tomato plants, treatment with 25 mM NaCl 

produced very few signs of symptoms while in the case of treatment with 200 mM NaCl, 

the effects were too severe. In the second experiment, the experimental plants were 

incubated in the greenhouse for a period of 8 weeks following inoculation. The 

conditions of the greenhouse were described in Materials and Methods.

In the case of both the 4- or 8-week old seedlings, non-salinity stressed & non

inoculated control plants or non-salinity stressed & inoculated control plants were 

watered with 250 ml of 1/5 A & H culture solution for 3 days before the salinity 

treatment started. After this period, plants were watered with 250 ml 1/5 dilution of A & 

H solution, containing the appropriate NaCl concentrations (described above), every 

other day. The concentration of NaCl in the culture solution was increased by increments 

of 50 mM NaCl until the required salinity of medium was reached.
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Two control groups; NaCl- and non-NaCl- treated groups, were used to make a 

comparison against inoculated plants.

Observations of height and symptom index development were recorded weekly 

for all plants. In addition, a further 8 features were taken as indicators of disease or 

physiological development.

- The average height of the plants,

- the symptom index of plants above pot level and root symptom index,

- the ability to reisolate the fungus from individuals of the inoculated plants,

- water content (WTC) of the plants,

- the chlorophyll content (Total Chi) of the leaves,

- relative rate of height increase & root length increase (H & RL),

- relative growth rate (RGR),

- Leaf area (LA),

- Net assimilation rate (NAR).

Tomato plants were harvested after a total of 5 or 8 weeks depending on the 

experimental procedure.

5.1.1. Effect o f salinity on the severity o f symptoms resulting from inoculation with V.
albo-atrum, isolate V2, o f 4-week old tomato plants.

Observations of height of the 4-week old tomato plants inoculated with V. albo- 

atrum, or treated with NaCl, or both are presented in Fig. 5.1.1. The symptom index for 

shoot and root, indicating the severity of the wilt disease, or the effect of NaCl, or both 

are presented in Fig. 5.1.2. Leaf chlorophyll content is presented in Fig. 5.1.3. The 

parameters root symptom index, H, RL, RGR, LA, NAR and WTC of the plants, 

recorded at the end of 5-week experimental period, are presented in Tables 5.1.1 & 5.1.2. 

Analysis of variance tables, which compare the effect of salt and fungus, are presented in 

Tables 5.1.3 & 5.1.4. The results for reisolation of the fungus from plants in the various 

treatments are presented in Table 5.1.5.
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Treatment of plants with NaCl at all the concentrations used (0-, 25-, 50-, 100-, 

150- and 200 mM) inhibited the increase in height after the 3 rd week of the experiment, 

compared to the controls (Fig. 5.1.1a). Increasing concentrations of NaCl were more 

inhibitory, although the effect of 25 mM was marginal over the 5-week period. At 200 

mM NaCl there was very little increase in height (Fig. 5.1.1a).

By itself, V. albo-atrum, also inhibited the growth Fig. 5.1.1b, however, in 

combination, NaCl and V. albo-atrum were more inhibitory than either of the treatments 

alone (Fig. 5.1.1b). In fact, there was no significant increment in height above a NaCl 

concentration of 50 mM. Analysis of variance of the relative rate of increases in height 

and root length, Table 5.1.3, shows that NaCl concentrations of 50 mM and above caused 

a significant reduction in both, P<0.05. However, inoculated plants exposed to NaCl 

showed significant differences at 25 mM NaCl, P0.001, Table 5.1.4.

Symptoms on the plants that were exposed to NaCl (0-, 25-, 50-, 100-, 150-, 200 

mM) were visible to some degree after the first week of the treatment, Fig. 5.1.2a. While 

plants treated with 25- and 50 mM NaCl showed few symptoms until the last two weeks 

of the experiment, in general, increasing the salt concentration in the medium resulted in 

the appearance of more severe symptoms in the following weeks. In general, treatment 

with the higher concentrations of NaCl also resulted in an earlier appearance of 

symptoms. The effect was especially noticeable at 100 mM and above. These symptoms 

were observed initially as yellowing of the lower leaves that spread up to the upper leaves 

resulting in general chlorosis in the plants. Chlorosis was also observed in leaf petioles, 

which became thinner in the following weeks, causing the leaves to be abscised. Some 

lower leaves were rolled-inwards and abscised towards the end of the experiment. 

Towards the end of the experiment, plants treated with 200 mM NaCl were almost dead; 

only some stem parts and leaves remained green.

The symptoms of disease in response to inoculation with V. albo-atrum, isolate 

V2, were observed after 2 weeks in tomato as yellowing of the lower leaves Fig. 5.1.2c. 

The disease progressed (as recorded in previous experiments) as wilting, flaccidity and 

epinasty. Some of the upper leaves of the infected plants also showed wilting; however, 

no adventitious roots appeared in the lower part of the stems. No recovery was observed
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in the inoculated plants, by the end of the experiment. Control plants showed no external 

symptoms of the disease.

Plants inoculated with V2 and treated at the same time with NaCl solutions 

showed more severe symptoms than either of the treatments alone. For example, plants 

that were inoculated with V2 and treated with 25 mM NaCl showed almost the same 

severity of symptoms as plants inoculated with the fungus alone (Fig. 5.1.2c); while those 

plants inoculated with V2 and treated with 50 mM NaCl showed more severe symptoms 

than either of the treatments alone, Fig. 5.1.2b. Above 50 mM, treatment with NaCl 

alone resulted in marked symptoms but again; these symptoms were more severe in the 

plants inoculated with V2 at the same time. Towards the end of the experiment, the 

symptom index values increased markedly in all plants inoculated with V2 and treated 

with NaCl. Plants inoculated with V2 and treated with 200 mM NaCl were almost dead 

by the end of the experiment.

Root symptom index showed a similar pattern; NaCl-treated plants showed some 

browning and this symptom increased with increasing concentration of NaCl, Fig. 5.1.2b. 

With the exception of those plants inoculated with V2 and treated with 25 mM NaCl, 

plants inoculated with V2 and treated with NaCl had more severe symptoms than the 

plants either inoculated with V2 alone or treated with NaCl alone, Fig. 5.1.2d. At higher 

salt concentrations, especially 200 mM, whether inoculated or not, plants did not show 

root development, by the end of the experiment the roots were almost dead, Fig. 5.1.2b & 

d.

The water content of almost all the plants was 90-95 %, whether they were 

inoculated, or treated with NaCl, or both, Tables 5.1.1, 5.1.2, 5.1.3 & 5.1.4, suggesting a 

mechanism for managing the higher external osmotic potential. In contrast, an increase 

in the NaCl concentration resulted in a decrease in chlorophyll content of the leaves, Fig. 

5.1.3a. Again, all treatments with NaCl at 25 mM and above resulted in a significant 

difference in chlorophyll content from the control group, Tables 5.1.3. & 5.1.4. Plants 

inoculated with V2 and treated with NaCl had lower chlorophyll contents than either of 

the treatments alone, Fig. 5.1.3b.

These combined effect of V2 & NaCl are reflected in the values for the relative 

rate of increase in height and in root. An increase in the NaCl concentration inhibited the

191



increase in height and root length compared to the control group, Table 5.1.1. The same 

trend was also observed for RGR, Table 5.1.1. Plants inoculated with V2 and treated 

with NaCl suffered greater reductions in height and root length compared to the control 

group, Table 5.1.2. Plants treated with NaCl at 50 mM showed significant differences for 

both height and root length parameters, Table 5.1.3. Plants inoculated with V2 whether 

exposed to salt or not showed significant differences in height from the control group 

P<0.050, Table 5.1.1, 5.1.2, 5.1.3 & 5.1.4. However, the root length of plants inoculated 

with V2 did not show significant differences from the control plants. However, under 

salinity (50 mM and above), they showed significant differences from the control plants, 

Tables 5.1.3 & 5.1.4.

RGR was also decreased with increasing NaCl concentration, Table 5.1.1. Again, 

the decrease was more severe when plants were treated with NaCl & inoculated with V2, 

in all salt concentrations, Table 5.1.2. At 50 mM and above, the RGR of plants that were 

treated with NaCl was significantly different from control plants, P<0.050, Table 5.1.3, 

while plants inoculated with V2 showed significant differences from the control plants, 

P<0.050, Table 5.1.4. Inoculated plants under saline conditions were more affected than 

either of the treatment alone, Table 5.1.4.

Significant differences were also observed in leaf area (LA) and Net assimilation 

rate (NAR) at NaCl concentrations of 50 mM and higher, Tables 5.1.1, 5.1.2, 5.1.3 &

5.1.4. The LA and NAR of plants inoculated with V2, whether treated with salt or not 

showed significant differences from the control plants, P<0.050, Tables, 5.1.1, 5.1.2, 

5.1.3 & 5.1.4.

At the end of the experiment, the reisolation procedure was followed to establish 

whether the fungus was present in the inoculated or inoculated- & salt-treated plants. 

Reisolation was possible from the inoculated plants, Table 5.1.5. However, inoculation 

was not made from the inoculated plants that were treated with 150 mM or 200 mM 

NaCl. Their basal stems and roots were almost dead before the harvest and were 

contaminated with saprophytic fungi.
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Table 5.1.3. Analysis of variance of the effects of NaCl on selected growth parameters 
of tomato cv. Ailsa Craig (4-week old), grown at 0-, 25-, 50-, 100-, 150- 
and 200 mM NaCl for 5 weeks. The results of analysis presented in black 
are derived from uninoculated plants, the ones in blue are derived from the 
plants inoculated with V. albo-atrum

Parameters [NaCl] mM* ANALYSIS OF VARIANCE

0 25 50 100 150 200 s s df MS F Sis.

H a ab be c c - 0.849 4 0.212 4.34 0.011

RL ab a b b b - 3.209 4 0.802 3.61 0.025

RGR a a b b b - 1.276 4 0.319 4.04 0.016

LA ab a be be c - 0.416 4 0.104 4.25 0.014

NAR a a b b b - 2.168 4 0.542 4.02 0.017

WTC a a a a a - 28.513 4 7.128 1.61 0.213

CHL a b c c c _ 1.635 4 0.409 40.5 0.001

- Data is not available

Table 5.1.4. Analysis of variance of the effects of NaCl, V albo-atrum or both on 
growth parameters of tomato cv. Ailsa Craig (4-week old), grown at 0-, 
25-, 50-, 100-, 150- and 200 mM NaCl for 5 weeks.

Parameters [NaCl] mM* ANALYSIS OF VARIANCE

0 o! 2 £ 50! 100+ 150+ SS df MS F Sig,
H a b be c c c 1.830 5 0.366 15.1 0.000

RL a ab ab be c c 0.955 5 0.191 3.91 0.016

RGR a b b c c c 2.632 5 0.526 15.1 0.000

LA a b b be c be 0.907 5 0.181 9.68 0.000

NAR a b be be be c 2.753 5 0.551 9.10 0.000

WTC a a a a a a 16.894 5 3.379 0.67 0.651

CHL a b b c c c 1.935 5 0.387 36.4 0.000

* Between treatments, growth parameters o f Ailsa Craig (4-week old) with the same letters are not 
significantly different from each other at 0.05 level.
+ Ailsa Craig was exposed to [NaCl] and inoculated with V albo-atrum, isolate V2.
- Data is not available
CHL: Leaf Chlorophyll Content (Chlorophyll A, B and Total).
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Table 5.1.5. Reisolation of V albo-atrum, isolate V2, from inoculated tomato (4-week- 
old) plants, grown at 0-, 25-, 50-, 100-, 150- and 200 mM NaCl. 
Reisolation was made at the end of the experimental period.

Isolates Number of plants from which reisolation
was successful

Funeal reisolation SvmDtom index (%)

Control 0 0

V2 3 30

25 + V2 3 27

50 + V2 2 47

100+ V2 1 80

150+ V2 0 80

200 + V2 0 97

3 plants were examined for reisolation.

5.1.2. Effect o f NaCl on the severity o f  symptoms resulting from inoculation with V.
albo-atrum, isolate V2 o f 8-week old tomato plants.

The measurements of height and symptom index of the 8-week old tomato plants 

inoculated with V albo-atrum, isolate V2 or treated with NaCl or both are presented in 

Fig. 5.1.4. The chlorophyll content of the leaves is presented in Fig. 5.1.5. The results of 

the relative rate of height & root length increase (H&RL), RGR, LA, NAR are presented 

in Tables 5.1.6 & 5.1.7. Analysis of variance tables, which compare the effect of salt and 

fungus, are presented in Tables 5.1.8 & 5.1.9. No reisolation was made from the 

inoculated plants at the end of the experimental period.

The 8-week old plants were treated with three concentrations of NaCl, (50-, 100- 

and 150). Since 25 mM NaCl had little effect on 4-week old plants and the effects of 200 

mM NaCl were rather severe, these concentrations were omitted in this experiment. Six 

replicates were used for each treatment. In another set, tomato plants treated with the 

same series of salt concentrations were also inoculated with lxlO7 conidia/ml of V albo- 

atrum, isolate V2 by the root-dip method.
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Increasing the concentration of NaCl had a marked effect on height and on the 

visual symptoms of the plants. An increase in the concentration of NaCl inhibited the 

increase in height but caused an increase in the symptom index, Fig. 5.1.4a & b. This 

effect was more severe in plants that were also inoculated with V2 at the same time that 

they were treated with NaCl, Fig. 5.1.4c & d.

In general, the symptoms resulting from the fungus or from treatment with NaCl 

were the same as those observed on 4-week old tomato plants. However, the appearance 

of some lower leaves was succulent, especially in the group of plants treated with 100 

mM NaCl and above. However, this had no effect on the calibration curve constructed 

for determination of the leaf area from the leaf weight (see Materials and Methods). 

Towards the end of the experiment, those inoculated plants that were treated with 100 

mM- and 150 mM NaCl were almost dead and their symptom index values were higher 

than the other group of plants, Fig. 5.1.4d.

An increase in the NaCl concentration resulted in a decrease in chlorophyll 

content of the leaves Fig. 5.1.5a. Plants inoculated with V2 and treated with NaCl at all 

concentrations (0-, 50- and 100 mM) showed a reduced chlorophyll content Fig. 5.1.4b.

Relative rate of increase in height and root length were recorded at the end of the 

experiment. An increase in the NaCl concentration inhibited the increase in height and 

root length compared to the control group, Tables 5.1.6. Concentrations at or above 50 

mM NaCl caused significant differences in height of plants from the control group, Table

5.1.8. However, no significant difference was observed between salt-treated and control 

plants in root length measurement up to 150 mM NaCl concentration, on the other hand, 

plants inoculated with V2 and treated with NaCl showed significant differences from the 

control group at 100 or above (150 mM) NaCl concentrations. It is clear that the root 

length of the plants was less affected than the aerial parts of the plants, Tables 5.1.8 &

5.1.9. The significant effect of both V2 & 100 mM NaCl on the development of the roots 

clearly indicated that the fungus was still pathogenic under 100 mM NaCl concentration 

in a long-term.

The RGR was significantly affected at all the concentrations, Tables 5.1.6 & 

5.1.8. However, inoculated plants with V2 alone did not show significant differences 

from the controls. It is probable that the plants recovered from the effect of the fungus
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after some time. However, inoculated and NaCl-treated plants showed significant 

differences from the control plants at as low as 50 mM NaCl concentrations, Table 5.1.7 

& 5.1.9.

Significant differences were also observed in LA and NAR at 100 mM NaCl 

concentration (comparisons were made between control and 100 mM NaCl-treated or 

control and inoculated & 100 mM NaCl-treated plants) Table 5.1.6. Significant 

differences were observed between control and treatment groups, Tables 5.1.7 & 5.1.9.

The result showed that the fungus had severe effect on young seedlings, however, 

the effect was found to be more severe with the additive effect of NaCl. On the other 

hand, NaCl itself also affected the plant growth and caused severe symptoms, especially 

at and above 100 mM NaCl concentration. No recovery was observed in plants 

inoculated with V2 and treated with NaCl at all the concentrations used, although some 

recovery was recorded from the effect of fungus in 8-week old plants.

The results indicated that the fungus is still pathogenic under salt conditions and 

delays the recovery of plants. Increased NaCl concentration causes more severe 

symptoms in both young and mature tomato plants and reduces the resistance to the effect 

of the pathogen thus making them more susceptible to the fungus.
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Table 5.1.6. The effect of NaCl on selected growth parameters of tomato cv. Ailsa Craig 
(8-week old). Values for each treatment are expressed relative to the value 
of non-stressed & non-inoculated control group, which was assigned a 
value of 1.

Parameters NaCl (mM)

0 50 100 150

H 1.00 ±0.04* 0.81 ±0.05 0.54 ± 0.03 0.46 ±0.03

RL 1.00± 0.13 1.02 ±0.13 0.71 ± 0.09 0.57 ±0.03

RGR 1.00 ±0.03 0.83 ±0.05 0.70 ±0.04 0.63 ± 0.06

LA 1.00 ±0.00 - 0.87 ±0.00 -

NAR 1.00 ±0.00 - 0.64 ± 0.00 -

- measurement was not taken due to stage o f the plants.

Table 5.1.7. The effect of V2, NaCl or both V2 & NaCl on selected growth parameters 
of tomato cv. Ailsa Craig (8-week old). Values for each treatment are 
expressed relative to the value of non-stressed & non-inoculated control 
group, which was assigned a value of 1.

Parameters NaCl (mM)

0 50 100 150

H 0.89 ± 0.09* 0.31 ±0.06 0.29 ±0.04 0.24 ±0.03

RL 1.05 ± 0.12 0.86 ±0.01 0.24 ±0.05 0.16 ±0.06

RGR 1.02 ± 0.10 0.55 ± 0.06 0.48 ±0.05 0.47 ±0.02

LA 1.00 ±0.00 - 0.45 ± 0.00 -

NAR 1.00 ±0.00 - 0.24 ± 0.00 -

- measurement was not taken due to stage o f the plants. 
* figure represents SE o f the mean.
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Table 5.1.8. Analysis of variance of the effects of [NaCl] on selected growth parameters
of tomato cv. Ailsa Craig (8-week old), grown at 0-, 50-, 100- and 150
mM NaCl for 8 weeks.

Parameters [NaCl] mM* ANALYSIS OF VARIANCE

0 50 100 150 SS df MS F Sis.

H a b c c 0.741 3 0.247 45.43 0.000

RL a a ab b 0.577 3 0.192 4.235 0.029

RGR a b be c 0.323 3 0.108 12.67 0.000

LA 0.303 1 0.303 5E+6 0.000

NAR 0.579 1 0.579 5E+5 0.000

CHL a b b - 0.929 2 0.464 10.9 0.042

Table 5.1.9. Analysis of variance of the effects of [NaCl] or V. albo-atrum or their 
combined effect on selected growth parameters of tomato cv. Ailsa Craig 
(8-week old), grown at 0, 50, 100 and 150 mM NaCl for 8 weeks.

Parameters [NaCl] mM ANALYSIS OF VARIANCE

0 £

+ 
i 

^1 +oo

150+ SS df MS F Sig.

H a a b b b 2.168 4 0.542 43.60 0.000

RL a a a b b 2.936 4 0.734 19.44 0.000

RGR a a b b b 1.266 4 0.316 23.37 0.000

LA IE-02 1 IE-02 1E+5 0.000

NAR 0.129 1 0.129 1E+5 0.000

CHL a b c d _ 1.688 3 0.563 77.0 0.001

* Between treatments, growth parameters o f Ailsa Craig (4-week old) with the same letters 
are not significantly different from each other at 0.05 level.
+ Ailsa Craig exposed to [NaCl] was also inoculated with V. albo-atrum, isolate V2.
- Data is not available
Chi: Leaf Chlorophyll Content (Chlorophyll A, B and Total)
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5.2. Interactive effects of NaCl (50 mM) and V. albo-atrum, isolates VI & V2, on 
VW disease severity, growth and development of various tomato cultivars in 
a hydroponic system.

The results of the previous section, show that at some concentrations NaCl caused 

severe symptoms on tomato, whether on young or mature plants. The effect of NaCl, at 

all concentrations used, was more severe on inoculated plants. This increase in disease 

severity under saline conditions is unlikely to result from a direct effect of NaCl on the 

fungus but rather from a reduction in the resistance of host plants. It is clear that NaCl 

does not stimulate growth of the pathogen in vitro (Chapter 4; section 4.4) and does not 

increase the virulence of the pathogen in vivo (Chapter 5, section 5.4). Nevertheless, it is 

still not possible to conclude that the pathogen would not be more aggressive under saline 

conditions.

Since Verticillium stays viable in non-saline soil for long periods (Basu, 1987), 

there is always a threat to plants from the pathogen in the soil environment. If the fungus 

were to stay viable for a long-term under saline conditions, it is probable that it would 

adapt to salinity and remain pathogenic. Although there is no indication that adaptation 

to salt increases virulence of V. albo-atrum, there is a previous report of an exogenous 

stress, in this case an increase in temperature, causing V. albo-atrum to become more 

virulent to lucerne cultivars in southern California (Howell & Erwin, 1995).

So far, there have been no reports describing the interactive effects of salinity and 

V. albo-atrum on tomato; and only two works have been dedicated to the interactive 

effects of salinity and V. albo-atrum on lucerne (Nachmias et al., 1993 and Howell et al., 

1994). Since it has been established that V. albo-atrum can survive and produce spores 

under saline conditions (above), and that NaCl has an adverse effect on plant health, 

making them more susceptible to wilt disease (above), it is important to determine the 

combined effect of fungus & NaCl. A variety of cultivars were selected for assessment, 

including resistant ones. For this work, 50 mM was used as the concentration of NaCl. 

This particular concentration was selected because 50 mM is the concentration of NaCl 

that has been reported to be the point at which problems begin in agricultural areas (Abrol 

et al., 1988). Both VI & V2 isolates of V. albo-atrum were used and the experiments 

were performed on 6-week old tomato cultivars, disease-resistant and susceptible

205



varieties. From the results of the previous experiment (section 5.1), it was concluded that 

4-week old tomato seedlings were quite susceptible to both NaCl and V. albo-atrum, 

whilst 8-week old ones were only susceptible to NaCl. Individual effects of NaCl or V. 

albo-atrum or the combined effect of NaCl & V. albo-atrum were more severe on 4-week 

old seedlings than on 8-week old ones. Therefore, it was considered that the selection of 

6-week old tomato seedlings might show better resistance to both NaCl and V. albo- 

atrum than 4-week old seedlings and they might as well be affected by the fungus V. 

albo-atrum unlike 8-week old seedlings. As a result of that, the combined effect of NaCl 

& V. albo-atrum might clearly be examined under the hydroponic conditions. Initially, 

the cultivars were selected on the basis of the results from the pathogenicity experiments 

(see Chapter 3); they were Ailsa Craig and Simge FI (susceptible-) and Margarita Fa-558 

(resistant to V. albo-atrum). Fantastic FI was classified neither resistant nor susceptible 

to V. albo-atrum. The results of the pathology and salinity tests had indicated that cvs. 

Edcawy and L. lycopersicon were highly resistant and tolerant to both V. albo-atrum and 

NaCl, and normally both would have been selected for assessment. However, it proved 

impossible to obtain further stocks of the seed from the original suppliers, despite 

repeated attempts. A hydroponic system was used, to minimize other influences on 

disease development. The system not only enabled regular and even irrigation for plants, 

but also allowed greater replication for each treatment. The distribution of root system in 

pots of perlite was also monitored periodically.

Each cultivar was screened separately for the effects of pathogen and salt in the 

hydroponic culture system. Seeds were germinated in trays of John Innes No. 1 compost 

and at the first opportunity, were transplanted into 15-cm pots of soil. At 6 weeks plants
n

were inoculated with the conidia (1 x 10 conidia/ml) of V. albo-atrum (isolates VI or 

V2) by the root-dip method. At the same time, a group of plants were treated with 

distilled water as controls. Following inoculation, the plants were transferred to the 15- 

cm pots of perlite in the troughs of the hydroponic culture system, Plate 5.1. Plants were 

then irrigated with Solufeed F culture solution (Materials & Methods) for three days for 

an adaptation period. After this period, the pre-diluted nutrient solution, with or without 

NaCl, was pumped for a period of 7 weeks from two central tanks via control valves and 

filtered to the main pipes. Each pipe has a capacity to deliver fertigation solution to 56

206



pots of plants arranged at 14 troughs. A digital timer controlled the scheduling of drip 

irrigation system, (the entire system is described in detail in Materials and Methods. For 

each cultivar, a total 112 plants were used for the pathogenicity and salinity tests. The 

arrangement was made as follows;

(C): non-salinity stressed & non-inoculated control group (20 plants),

(VI): inoculated group with V. albo-atrum, isolate VI (20 plants),

(V2): inoculated group with V. albo-atrum, isolate V2 (16 plants),

(S): salinity-stressed & non-inoculated group (20 plants),

(Vl+S): salinity stressed & inoculated group with V. albo-atrum, isolate VI (20 

plants),

(V2+S): salinity stressed & inoculated group with V. albo-atrum, isolate V2 (16 

plants).

At the start of the experiment, a sample of five plants was harvested and the 

growth parameters including initial stem height and root length, fresh and dry weight of 

the plants, and leaflet surface area were recorded.

Four plants from each treatment group were randomly selected and harvested after 

4 weeks of the start of the inoculation to observe the progress of any effects of NaCl and 

Verticillium on the growth and development of the plants. No judgment was made 

concerning the plant selection during the experiment. At the end of the 7-week trial, 

plants from each treatment group were harvested. At 4th and 7th week of the experiment, 

the following selected growth parameters were assessed, including;

The relative rate of increase in height and root length (H & RL),

Relative growth rate (RGR) and water content (WTC) through stem and root fresh 

and dry weights,

Leaf area (LA),

Net assimilation rate (NAR),

Chlorophyll content (CHL) of the leaves,
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The flower numbers (FLW) of the plants were either recorded or calculated (see

Materials and Methods).

Height and symptom index values were recorded weekly for a period of 7 weeks.

5.2.1. Ailsa Craig - Growth Analysis.

The effects of V. albo-atrum (VI and V2), or NaCl or both on growth and 

development of 6-week old tomato cv. Ailsa Craig were compared under a hydroponic 

system, Plate 5.1. Observations on height and the symptom index, indicating severity of 

the disease, or the effect of NaCl or both are presented in Fig. 5.2.1 (a & b). Leaf 

chlorophyll content is presented in Fig. 5.2.2. The parameters, H, RL, RGR, FLW, LA, 

NAR and WTC recorded at the end of 4- and 7-week experimental period, are presented 

in Tables 5.2.1 and 5.2.2. Analysis of variance tables, which compare the effect of salt 

and fungus or both, are presented in Tables 5.2.3 and 5.2.4.

In general, plants that were treated with 50 mM NaCl (S) or inoculated with V. 

albo-atrum, isolate V2 or both (Vl+S or V2+S) appeared stunted in height, Fig. 5.2.1a; 

Plate 5.1. However, plants that were inoculated with, isolate VI did not differ from the 

control plants during the experimental period, Fig. 5.2.1a.

By itself, V. albo-atrum, (especially isolate V2) or NaCl inhibited the growth of 

plants, Fig. 5.2.1a, however, the inhibition was more significant in V2 inoculated and 

NaCl (V2+S) treated group, Fig. 5.2.1a.

The symptoms resulting from treatment with the pathogen or NaCl or both were 

described in the previous sections. Here, a visual comparison of the symptoms resulting 

from the different treatments is presented in Plates 5.2 and 5.3. Up to the 4th week, there 

were no significant difference in the development of symptoms resulting from the 

treatment with NaCl or pathogen Fig. 5.2.1, and after this period, plants started to recover 

from the effects of salt or the pathogen. However, plants treated with V2+S showed more 

severe symptoms than the other groups and no recovery was observed, although the 

symptoms of the disease were not as severe in the later part of the experiment as they 

were in the initial period, Fig. 5.2.1b.
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The treatment groups, VI, V2, Vl+S or V2+S, showed some chlorosis and their 

chlorophyll content decreased compared to the control group (C). However, the decrease 

in chlorophyll content was not statistically significant up to the 4th week, Fig. 5.2.2 & 

Table 5.2.3, and at the end of the 7-week experiment, only V2- and V2+S-treated groups 

showed statistical differences from the control group Fig. 5.2.2b; P<0.05, Table 5.2.4.

The treatment groups, V2, S, Vl+S, V2+S, also showed significant differences
i L

from the control group when the relative rate of increase in height was recorded at 4 

week, Tables 5.2.1 & 5.2.3. Although some reduction in the other growth parameters 

such as RL, RGR, LA, NAR, WTC, CHL and FLW were recorded, particularly for the 

V2- and V2+S-treated plants, these were not significantly different from the control 

group, Table 5.2.1 & 5.2.3, due to the high standard errors recorded either in control or 

the treated groups.

At week 7, the final harvest was made and the same parameters were recorded as 

in the 4th week harvest. The plants that were inoculated with VI did not show any 

significant differences from the control group for any of the parameters, Tables 5.2.2 &

5.2.4. However, groups such as V2, S, Vl+S and V2+S showed significant differences 

from the control groups in terms of H, RL, RGR (Tables 5.2.2 & 5.2.4). When FLW or 

CHL was compared only V2 or V2+S treatment groups showed significant differences 

from the control group, Tables 5.2.2 & 5.2.4.

In summary, plants inoculated with fungi and treated with salinity showed more 

severe symptoms and lower values in their growth parameters than either of the 

treatments alone suggesting that mild-salinity stress predisposes plants to infection in a 

long-period if not in a short period.
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Plate a.

Plate 5.1.
Tomato plants grown in a hydroponic culture system at (a) 4-; and (b) 7 weeks 
following the start of the treatments. 1-control, consisting of control and plants 
inoculated with V. albo-atrum, isolate VI or V2, (received nutrient via tubing 
system); 2-salt-treated, consisting of control and plants inoculated with V. albo-atrum, 
isolate VI or V2, (received nutrient and 50 mM NaCl via tubing system).



a

Plate 5.2.
Tomato plants (a) control; (b) inoculated with V. albo-atrum  (isolate V2), growing 
under hydroponic conditions showing symptoms such as w ilting and flaccidity on the 
lower leaves; (c) treated with NaCl showing wilting and chlorosis; and (d) inoculated 
with V. albo-atrum  (isolate V2) and treated with 50 mM NaCl.



VI V2 V2+50 mM NaCl

Plate 5.3.
The typical effect o f  V. albo-atrum  isolates, VI or V2, and the combined effect o f  
isolate V2 and 50 mM NaCl on tomato plants.
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Table 5.2.3. Analysis of variance of the effects of V. albo-atrum, NaCl, or both on
selected growth parameters of tomato cv. Ailsa Craig (6-week old).
Analysis was made 4 weeks after the start of the experiment.

Parameters [Treatments] * AN AL Y SIS OF V ARIAN CE

C Y i V2 S Vl+S V2+S SS df MS F Sis.

H a a b b b b 0.651 5 0.130 3.24 0.029

RGR a a a a a a 0.521 5 0.104 1.11 0.387

FLW a a a a a a 0.260 5 5E-02 1.20 0.349

CHL a a a a a a 0.724 5 0.145 0.71 0.506

LA a a a a a a 0.281 5 5E-02 1.00 0.446

NAR a a a a a a 0.934 5 0.187 1.29 0.312

WTC a a a a a a 3.545 5 0.709 0.88 0.509

Between treatments, parameters o f tomato with the same letters are not significantly different 
from each other at 0.05 level.

Table 5.2.4. Analysis of variance of the effects of V albo-atrum, NaCl, or both on 
selected growth parameters of tomato cv. Ailsa Craig (6-week old). 
Analysis was made 7 weeks after the start of the experiment.

Parameters [Treatments]* ANALYSIS OF VARIANCE

C Y i V2 S Vl+S V2+S SS df MS F Sig.

H a a be be b c 1.679 5 0.336 14.5 0.000

RL a a b c be c 2.543 5 0.509 22.2 0.000

RGR a a b b b c 0.889 5 0.178 21.5 0.000

FLW a a b a a b 3.422 5 0.684 5.53 0.000

CHL a a be ab a c 1.600 5 0.320 3.73 0.032

WTC a a a a a a 994.9 5 198.9 0.78 0.561

Between treatments, parameters o f tomato with the same letters are not significantly different 
from each other at 0.05 level.
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5.2.2. Simge FI - Growth Analysis.

The effects of pathogenicity of V. albo-atrum (VI and V2) or NaCl or both, on 

growth and development of 6-week old cv. Simge FI are presented in Figs. 5.2.3 & 5.2.4; 

Tables 5.2.5 & 5.2.6.

All treatments, VI, V2, S, Vl+S and V2+S, at week 4, resulted in stunting 

compared to the control group, Fig. 5.2.3a. The inhibition of growth was more 

significant in the group of plants treated with both V2 and NaCl (V2+S).

Symptoms of the disease or salinity on tomato plants were not observed until the 

2nd week of the experiment, Fig. 5.2.3b. Symptom index values were higher in V2-, S-, 

and V2+S-treated groups although recovery was observed towards the end of the 

experiment.

In terms of the relative rate of increase in height, V1-, V2-, S-, Vl+S- and V2+S- 

treated groups showed significant differences from the control group, Tables 5.2.5 & 

5.2.7, P<0.050. For RL, RGR, and LA, only the V2-, S-, Vl+S- and V2+S-treated 

groups were statistically different from the control group, P<0.050, Tables 5.2.5 & 5.2.7. 

and only the V2+S-treated group was statistically different from the controls for NAR, 

FLW and CHL , Fig. 5.2.4a; Tables 5.2.5 & 5.2.7. WTC was not different for any of the 

treated groups, Tables 5.2.5 & Table 5.2.7.

At the end of the 7-week trial, the V2-, S-, Vl+S- and V2+S-treated groups of 

plants were significantly different from the control groups in regard to all parameters 

except WTC and CHL, Fig. 5.2.4b; Tables 5.2.6 & 5.2.8. Although the height of plants 

inoculated with VI was affected at 4th week of the experiment, they showed recovery 

from the effect of V1 and they were not significantly different from the control group at 

the end of the experiment.

At the 4th week, there were some differences between the chlorophyll content of 

leaves of treated groups, however, these differences disappeared towards the end of the 

experiment and all chlorophyll content of the leaves were almost same, Fig. 5.2.4b.
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Table 5.2.7. Analysis of variance of the effects of V. albo-atrum, NaCl, or both on
selected growth parameters of tomato cv. Simge FI (6-week old).
Analysis was made 4 weeks after the start of the experiment.

Parameters [Treatments]* ANALYSIS OF VARIANCE

C Y ! V2 S Vl+S V2+S SS df MS F Sis.

H a b b b b b 0.637 5 0.127 4.32 0.052

RL a ab b b b b 0.301 5 6E-02 4.70 0.043

RGR a a b b b c 1.09 5 0.218 25.5 0.001

FLW a ab ab ab ab b 0.351 5 7E-02 2.78 0.122

CHL a a a a a b 207.93 5 41.58 6.39 0.005

LA a a b b b b 0.422 5 8E-02 8.06 0.012

NAR a ab ab ab ab b 1.089 5 0.218 2.62 0.136

WTC a a a a a a 23.05 5 4.610 1.44 0.329

Between treatments, growth parameters o f tomato with the same letters are not significantly different 
from each other at 0.05 level

Table 5.2.8. Analysis of variance of the effects of V albo-atrum, NaCl, or both on 
selected growth parameters of tomato cv. Simge FI (6-week old). Analysis 
was made 7 weeks after the start of the experiment.

Parameters [Treatments]* ANALYSIS OF VARIANCE

C VI V2 S Vl+S V2+S SS df MS F Sfc.
H a a b b b c 1.965 5 0.393 31.7 0.000

RL a ab b be be c 0.891 5 0.178 4.97 0.002

RGR a ab be be be d 0.926 5 0.185 4.33 0.004

FLW a a b b b c 0.759 5 0.152 7.37 0.000

CHL a a a a a a 5.411 5 1.082 0.50 0.768

LA a ab be be be c 0.801 5 0.160 4.64 0.003

NAR a ab be be be c 1.912 5 0.382 5.50 0.001

WTC a a a a a a 13.33 5 2.666 1.68 0.167

Between treatments, growth parameters o f tomato with the same letter are not significantly different 
from each other at 0.05 level
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5.2.3. Margarita (Fa-558) - Growth Analysis.

In general, treatment with V2-, S-, V1+S-, V2+S resulted in inhibition of growth 

compared to the control groups; inhibition in height was more severe in the S- and V2+S- 

treated groups, Fig. 5.2.5a, and isolate VI, as in the previous experiments, had either little 

or no effect on the height of the plants, Fig. 5.2.5a.

V. albo-atrum, isolate V2-, S-, and V2+S-treated groups caused symptoms. And 

again, the V2+S-treated group was markedly affected, 5.2.5b. The chlorophyll content 

(CHL) of the plants did not differ from treatment to treatment either at the 4th or 7th week 

of the experiment, although V2-, S- and V2+S-treated groups had low chlorophyll 

contents, Fig. 5.2.6a & b. However, they were not statistically different from the control 

groups.
thThere were significant differences in regard to H, RGR, LA and FLW at the 4 

week, for the V2-, S-, Vl+S- and V2+S-treated, Tables 5.2.9 & 5.2.11. However, there 

were no statistical differences between the treatment groups in regard to RL and WTC, 

Tables 5.2.9 & 5.2.11. Furthermore, plants inoculated with isolate VI did not show any 

differences from the non-stressed & non-inoculated control group, Tables 5.2.9 & 5.2.11.

At the end of the experiment (7 weeks), S-, Vl+S- and V2+S-treated groups were 

all significantly different from the control group in regard to H, RL, RGR and FLW . 

However, the plants inoculated with isolate V2 did not show statistical differences from 

the control group with the exception of the relative rate of increase in height (H). Again, 

the effect of VI was not significant in regard to any of the measured parameters, Tables 

5.2.10 & 5.2.12., while WTC was not significantly affected in any of the treated groups, 

Tables, 5.2.10 & 5.2.12.
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Table 5.2.11. Analysis of variance of the effects of V albo-atrum, NaCl, or both on
selected growth parameters of tomato cv. Margarita (Fa-558) (6-week old).
Analysis was made 4 weeks after the start of the experiment.

Parameters [Treatments]* ANALYSIS OF VARIANCE

C VI V2 S Vl+S V2+S SS df MS F Sig,

H a a b cd be d 3.251 5 0.650 22.1 0.000

RL a a a a a a 7E-02 5 IE-02 1.92 0.224

RGR a ab be c c c 0.998 5 0.200 6.87 0.000

FLW a ab be c c c 1.073 5 0.215 7.34 0.000

CHL a a a a a a 13.72 5 2.744 0.18 0.963

LA a a b b b b 0.993 5 0.199 9.92 0.000

WTC a a a a a a 21.94 5 4.38 2.32 0.167

* Between treatments, growth parameters o f tomato with the same letters are 
different from each other at 0.05 level

not significantly

Table 5.2.12. Analysis of variance of the effects of V. albo-atrum, NaCl, or both on 
selected growth parameters of tomato cv. Margarita (Fa-558) (6-week old). 
Analysis was made 7 weeks after the start of the experiment.

Parameters [Treatments]* ANALYSIS OF VARIANCE

C VI Y2 S Vl+S V2+S SS df MS F Sis.

H a a b cd c d 2.076 5 0.415 31.7 0.000

RL a a a b b b 1.103 5 0.221 8.69 0.000

RGR a a ab cd be d 1.260 5 0.252 8.54 0.000

FLW a a ab b c c 0.882 5 0.176 12.1 0.000

CHL a a a a a a 53.02 5 10.61 2.55 0.091

WTC
J---------

a a a a a a 2.139 5 0.428 0.097 0.992

Between treatments, growth parameters o f tomato with the same letters are not significantly 
different from each other at 0.05 level
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5.2.4. Fantastic FI - Growth Analysis.

Before the start of the experiment, Fantastic FI was classified neither resistant nor 

susceptible to VW (see section, 5.2). In this study, in terms of resistance to disease, 

Fantastic FI showed some differences from the other cultivars used in the study. For 

example, only those plants that had been treated with salt, whether inoculated or not, or 

whether the inoculum was VI or V2, showed stunting. Plants that only been treated with 

fungus showed no stunting throughout the experimental period, Fig. 5.2.7a. A similar 

pattern was observed in the symptom index values, 5.2.7b. Fantastic FI showed 

complete resistance to both VI and V2 isolates throughout the experimental period. In 

contrast, it showed marked susceptibility to NaCl. Again, only S-, Vl+S- and V2+S- 

treated groups showed significant differences from the control group in regard to most of 

the other parameters, Fig. 5.2.7a and Tables 5.2.13 & 5.2.15. The exceptions were RL 

and CHL, which were not significantly different from the control groups in any of the 

treated groups.
th  tliCHL content of the leaves were not affected by any treatments, after 4 and 7 

week of the experimental period, Fig. 5.2.8a & b.

At the end of the experiment, same trend was observed as in the 4th week. 

However, WTC and CHL were still not different from the control group although RL was 

affected at the end of the experiment, Fig. 5.2.8b; Tables 5.2.14 & 5.2.16.
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I
[ Table 5.2.15. Analysis of variance of the effects of V albo-atrum, NaCl, or both on
! selected growth parameters of tomato cv. Fantastic FI (6-week old).

Analysis was made 4 weeks after the start of the experiment.

Parameters [Treatments]* ANALYSIS OF VARIANCE

C VI V2 S Vl+S V2+S SS df MS F Sig.

H a a a b b b 1.604 5 0.321 29.2 0.000

RL a a a a a a 0.313 5 6E-02 2.18 0.101

RGR a a a b b b 1.094 5 0.219 7.66 0.001

LA a a a b b b 1.071 5 0.214 9.92 0.000

FLW a a a b b b 0.694 5 0.139 5.29 0.004

CHL a a a a a a 5.904 5 1.181 2.68 0.115

Between treatments, growth parameters of tomato with the same letters are not significantly 
different from each other at 0.05 level

Table 5.2.16. Analysis of variance of the effects of V albo-atrum, NaCl, or both on 
selected growth parameters of tomato cv. Fantastic FI (6-week old). 
Analysis was made 7 weeks after the start of the experiment.

Parameters [Treatments]* ANALYSIS OF VARIANCE

C Y i V2 S Vl+S V2+S SS df MS F Sig.
H a a a d c b 4.834 5 0.967 58.2 0.000

RL a a a b b b 2.454 5 0.491 25.8 0.000

RGR a a a c b b 1.136 5 0.227 17.0 0.000

LA a a a b b c 0.278 5 5E-02 22.4 0.000

FLW a a a b b b 12.47 5 2.495 5.18 0.000

CHL a a a a a a 16.31 5 3.26 0.68 0.643

WTC a a a a a a 0.309 5 6E-02 1.27 0.290

Between treatments, growth parameters o f tomato with the same letters are not significantly 
different from each other at 0.05 level
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5.2.5. Fantastic FI (8-week old) - Growth analysis.

In the previous experiment, Fantastic FI showed great susceptibility to salinity. 

For example, plants that were treated with NaCl showed greater severity of symptoms, 

and their weekly height increments were lower than the plants that were inoculated with 

fungal isolates only, Fig. 5.2.7. Furthermore, the combined effect of NaCl and the fungal 

isolates did not exceed the effect of NaCl alone. In this experiment, 8-week old Fantastic 

FI was tested for the response of salinity and disease interaction. The aim of this 

experiment is to determine whether susceptibility to salinity arises from the genetic 

feature or the age of the plant. However, the same pattern was observed as in the
iL aL

previous experiment when the harvest was made at 4 and 7 week, Figs. 5.2.9, 5.2.10; 

Tables 5.2.17, 5.2.18, 5.2.19 & 5.2.20. At the end of the experiment, S-, V1+S-, V2+S- 

treated groups showed significant differences from the control group when all parameters 

were recorded, Tables 5.2.18 & 5.2.20. When height increment was recorded weekly for 

a period of 7 weeks, the same pattern was observed as in the previous experiment, Fig. 

5.2.9a. However, symptom index values were lower than that of the previous experiment 

Fig. 5.2.9b.
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Table 5.2.19. Analysis of variance of the effects of V. albo-atrum, NaCl, or both on
selected growth parameters of tomato cv. Fantastic FI (8-week old).
Analysis was made 4 weeks after the start of the experiment.

Parameters [Treatments]* ANALYSIS OF VARIANCE

C Y i V2 S Vl+S V2+S SS df MS F Sis.

H a a a c c b 0.876 5 0.175 100 0.000

RL a a a a a a 5E-02 5 IE-02 1.42 0.335

RGR a a ab c b b 0.450 5 8E-02 13.5 0.003

LA a a a a a a 0.137 5 2E-02 1.61 0.287

FLW a a a a a a 0.927 5 0.184 1.45 0.327

CHL a a a a a a 69.32 5 13.86 2.12 0.165

Between treatments, growth parameters o f tomato with the same letters are not significantly 
different from each other at 0.05 level.

Table 5.2.20. Analysis of variance of the effects of V. albo-atrum, NaCl, or both on 
selected growth parameters of tomato cv. Fantastic FI (8-week old). 
Analysis was made 7 weeks after the start of the experiment.

Parameters [Treatments]* ANALYSIS OF VARIANCE

C VI V2 S Vl+S V2+S SS df MS F Sig,
H a a a c b b 1.471 5 0.294 48.9 0.000

RL a a a b b b 0.860 5 0.172 18.0 0.000

RGR a a a c be b 0.523 5 0.105 11.8 0.000

LA a a a b b b 0.128 5 2E-02 25.1 0.000

FLW a a a be c b 1.919 5 0.384 19.2 0.000

CHL a a a a a a 12.09 5 2.41 0.21 0.947

Between treatments, growth parameters o f tomato with the same letters are not significantly 
different from each other at 0.05 level.
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5.3. Interactive effect of NaCl (50 mM) and K albo-atrum, isolates VS, VL and 
VF (from USA) on VW disease severity, growth and development of cv. Ailsa 
Craig in a hydroponic system.

This experiment was performed to establish the pathogenicity of V. albo-atrum, 

isolates VS, VL and VF (all isolated from lucerne), towards the 6-week old tomato 

cultivar Ailsa Craig under non-saline and saline conditions. The plants were inoculated 

with isolates VS, VL or VF (1 x 107spores/ml) by the root-dip method. Following 

inoculation, the plants were transferred to the hydroponic system and irrigated with or 

without NaCl (50 mM) for six weeks. The set up of the plants was same as in the 

previous experiments as described in the beginning of this chapter. Their pathogenicity 

was assessed previously towards 4-week old tomato cultivar Ailsa Craig in chapter 3. It 

was found that they were pathogenic to young tomato seedlings. However, they were not 

tested towards the 6-week old tomato plants. The isolates are known to be pathogenic to 

lucerne (personal communication with Prof. Craig Grau, 1999), however, it is not 

confirmed that they are pathogenic to tomato.

Observations on height and symptom index were recorded, weekly for a period of 

6 weeks, and are presented in Fig. 5.3.1. The chlorophyll contents of the plants are 

presented in Fig. 5.3.2. The growth parameters and their analysis are presented in Tables 

5.3.1, 5.3.2 and 5.3.3.

Tomato plants inoculated with the isolates of V albo-atrum from USA, did not 

show significant differences from the control plants, in fact, their weekly height 

increments were bigger than the control plants over the 6 weeks of experimental period 

and they showed only slight symptoms of the disease, Fig. 5.3.1a & b. Their symptom 

index values were all the same and low until the end of the experiment. Analysis of 

variance on the selected growth parameters, H, RL, RGR, LA, NAR, CHL and WTC, 

showed that plants inoculated with USA isolates were not significantly affected, Tables 

5.3.1 & 5.3.2. However, the combined effect of NaCl & the fungus were more inhibitory 

than the either of the treatments alone, Tables 5.3.1 & 5.3.3. The plants inoculated and 

grown under 50 mM NaCl grew slowly and showed severe symptoms. No recovery was 

observed as compared to the other treatment groups, Fig. 5.3.1b. Their growth
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parameters were significantly affected, except RL, CHL and WTC, Tables, 5.3.1, 5.3.2 &

5.3.3.

This experiment showed that isolates from USA were not pathogenic to tomato. 

However, the combined effect of the isolates and NaCl decreased the growth parameters 

causing significant differences from the control group.
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Table 5.3.2. Analysis of variance of the effects of V albo-atrum isolates, VS, VL, VF on
selected growth parameters of tomato cv. Ailsa Craig. Analysis was made
6 weeks after the start of the experiment.

Parameters [NaCl] mM* ANALYSIS OF VARIANCE

C VS VL YF SS df MS F Sig.

H a a a a 2E-02 3 7E-03 0.29 0.829

RL a a a a 2E-02 3 7E-03 0.11 0.950

RGR ab ab ab a 5E-02 3 IE-02 3.67 0.044

LA a a a a IE-02 3 6E-02 0.99 0.427

NAR a a a a 0.350 3 0.117 2.54 0.105

CHL a a a a 0.285 3 9E-02 0.29 0.827

WTC a a a a 45.741 3 15.24 72.31 0.128

Table 5.3.3. Analysis of variance of the effects of NaCl or V albo-atrum or both on 
selected growth parameters of tomato cv. Ailsa Craig. Analysis was made 
6 weeks after the start of the experiment.

Parameters [NaCl] mM* ANALYSIS OF VARIANCE

C c l VS+ VL+ VF+ SS df MS F Sig.
H a b c c c 0.785 4 0.196 14.9 0.000

RL a a a a a 0.245 4 6E-02 1.24 0.333

RGR a b c c c 0.527 4 0.132 11.3 0.000

NAR a b b b - 1.103 3 0.368 13.0 0.000

CHL a a a a a 1.527 4 0.382 1.50 0.328

WTC a a a a a 181.6 4 45.40 1.37 0.289

* Between treatments, growth parameters o f Ailsa Craig with the same letters are not 
significantly different from each other at 0.05 level.
+ Ailsa Craig was inoculated with V. albo-atrum, isolates USA and subsequently grown at 50 
mM [NaCl] solution.
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5.4. Interactive effect of NaCl (50 mM) and V albo-atrum, isolates VI or V2 and
their salt-adapted strains (VI- V2-150; V1-, V2-200), on growth and 
development of cv. Ailsa Craig in a hydroponic system.

This experiment was conducted in the greenhouse to confirm the pathogenicity of 

the isolates of V. albo-atrum and their salt adapted strains under saline and non-saline 

conditions towards the 6-week old cultivar Ailsa Craig. The plants were inoculated with 

V albo-atrum (1 x 10 spores/ml), isolates VI or V2 or with their salt-adapted strains. 

Isolate VI or V2 were cultured on NaCl-ffee Dox medium. Salt-adapted isolates of the 

fungus were grown in NaCl enriched Dox medium (see Materials and Methods).

Unlike the previous experiments, no weekly observations were made on the 

growth of experimental plants. However, at the end of the experiment (7 weeks), height 

& root length and RGR, CHL contents were recorded and analysed for both isolates 

including the salt-adapted strains.

Previously, it was established that the fungus sporulates and grows under saline 

conditions. In this study, it was found that isolate VI and its salt-adapted strains had no 

significant effect on the height, root length and RGR of tomato plants, Tables 5.4.1, 5.4.2, 

5.4.3. However, V2 isolate and its salt adapted-strains were pathogenic to tomato, Tables

5.4.1, 5.4.2, 5.4.3.

Under salinity, the selected parameters were significantly affected. The plants 

inoculated with VI and treated with NaCl at the same time, showed the same growth 

pattern as plants treated with NaCl alone. However, they were significantly different 

from the control plants, Table 5.4.4. Under salinity, the effect of V2 and its salt-adapted 

strains showed more inhibitory effect on plants than either of the treatments alone.

Apart from the parameters described above, at the end of the experiment, leaf 

samples were taken to measure the chlorophyll content of the experimental plants. The 

chlorophyll contents of the plants inoculated with VI and its salt-adapted strains were not 

markedly reduced when compared to the control group, with the exception that the plants 

inoculated with strain V I-150 caused a significant reduction in chlorophyll content, Fig.

5.4.1 and Table 5.4.3. However, under 50 mM NaCl condition, the chlorophyll contents 

of the plants inoculated with VI and its salt-adapted strains were markedly affected, Fig.

5.4.1 and Table 5.4.4.
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The measurement of chlorophyll was also achieved for the plants inoculated with 

V2 and its salt-adapted strains either in non-salt or salt conditions. As it was in the 

height, root length and RGR parameters, all the plants here contained significantly lower 

amounts of chlorophyll when compared to the control group, Fig. 5.4.1 and Table 5.4.3. 

Again, the inoculated plants contained significantly lower amounts of chlorophyll under 

salinity, Fig. 5.4.1 and Table 5.4.4.

*
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Chlorophyll Chlorophyll

Fig. 5.4.1. Effect of V. albo-atrum, isolates VI and V2 and their salt adapted strains 
under non salt and 50 mM NaCl conditions on the leaf chlorophyll content 
tomato plants, a & b isolates VI and V2 and their salt adapted strains under 
non-salt conditions; c & d isolates VI and V2 and their salt adapted strains 
under 50 mM NaCl conditions. Vertical bars show ± SE of mean.
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Ij
I
I Table 5.4.3. Analysis of variance of the effect of V albo-atrum, isolates VI & V2 and 

their salt adapted strains on the relative rate of height & root length 
increase, RGR and CHL content of the leaves of tomato plants. Analysis 
was made 7 weeks after the start of the experiment.

Parameters Treatments* ANALYSIS OF VARIANCE

C Y i Vl-150 V I-200 SS df MS F Sis.

H a a a a 7E-02 3 2E-02 1.32 0.297

RL a a a 3E-02 3 IE-02 0.06 0.978

RGR a a a a 4E-02 3 IE-02 0.38 0.767

CHL a ab b ab 0.237 3 7E-02 4.34 0.095

C V2 V2-150 V2-200 SS df MS F Sis.

H a b d c 0.481 3 0.160 87.2 0.000

RL a a a a 0.108 3 3E-02 0.31 0.815

RGR a b b b 0.119 3 3E-02 2.70 0.088

CHL a b b b 0.331 3 0.110 7.75 0.038

* Between treatments, height with the same letters are not significantly different from each 
other at 0.05 level.
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Table 5.4.4. Analysis of variance of the effect of V. albo-atrum, isolates VI & V2 and 
their salt adapted strains under 50 mM NaCl on the relative rate of height 
and RGR of tomato plants. Analysis was made 7 weeks after the start of 
the experiment.

Parameters Treatments* ANALYSIS OF VARIANCE

C C+S VI Vl-150 V I-200 SS df MS F Sig

H a b b b b 0.583 4 0.146 54.6 0.000

RGR a b b b b 0.198 4 4E-02 2.94 0.058

CHL a be c b be 1.106 4 0.276 12.4 0.008

C C+S V2 V2-150 V2-200 SS df MS F Sig

H a b c c c 0.651 4 0.163 97.7 0.000

RL a b b b b 0.687 4 0.172 6.59 0.002

RGR a b c c c 0.586 4 0.147 13.4 0.000

CHL a b b b b 1.147 4 0.287 44.1 0.000

Between treatments, height with the same letters are not significantly different from each other 
at 0.05 level.
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5.5. Pathogenicity of V. albo-atrum, isolate VI and the effect of 50 mM NaCl in
lucerne plants.

From the previous results of germination, pathogenicity and rooting ability 

experiments, cultivars that showed susceptibility to both NaCl and the pathogen or 

tolerance to both NaCl and the pathogen were selected and tested for their response to 

pathogen V. albo-atrum under 50 mM NaCl conditions.

The cultivars M. sativa cv. 13R Supreme, Bilensoy-80, Vertus (disease-resistant 

& salt-tolerant) and M. media cv. Rambler (disease- & salt-susceptible) and its salt 

tolerant strain of Rambler R-350-N (disease-susceptible & salt-tolerant) were employed.

Lucerne cuttings were rooted under a misting bed and inoculated with V albo- 

atrum, isolate VI (1 x 107 conidia/ml) by the root-dip method and placed individually in 

10-cm plant pots containing perlite (8 replicates per treatment). They were watered with 

100 ml A & H solution every 2 days for 8 weeks (see Materials and Methods).

In another set of plants, three days after the inoculation, 100 ml A & H solution 

containing 50 mM NaCl was applied to the pots for 8 weeks.

Upon completion of the experiment, final height and dry weights of the plants 

were recorded. Relative rate of increase in height and RGR are presented in Fig. 5.5.1, 

their results of analysis are presented in Tables 5.5.1 & 5.5.2.

Cultivars of M. sativa, 13R Supreme, Bilensoy-80 and Vertus showed resistance 

to V albo-atrum, isolate VI, when height and RGR values were compared with their own 

control groups, Fig. 5.5.1, Table 5.5.1 & 5.5.2. However, cultivars of M. media, Rambler 

and R-350-N, showed susceptibility to the disease Fig. 5.5.1, Tables 5.5.1 & 5.5.2.

Under salinity, cultivars of M. sativa inoculated with V1 did not show significant 

differences from their control groups in terms of height and RGR measurements. 

However, M. media cv. Rambler inoculated with VI showed great susceptibility to the 

fungus. The salt tolerant strain of M. media, R-350-N, also showed great susceptibility to 

the effect of fungus, Fig. 5.5.1, Tables 5.5.1 & 5.5.2.

The cultivars of M. media inoculated with V albo-atrum, isolate VI showed 

severe symptoms of the wilt disease such as wilting and chlorosis on the lower leaves, 3 

weeks after in the inoculation. However, the cultivars of M. sativa, especially Vertus, 

showed symptoms of the disease but recovered quickly from the effect of the pathogen.
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Cultivars 13R Supreme and Bilensoy-80 were free from those symptoms, although height 

and RGR were slightly lower than their controls. However, this was not statistically 

significant. Probably, the fungus was transported in the conducting elements but did not 

cause symptoms of the disease.

There were also highly significant interactions between cultivars and treatments 

when height measurement was taken P<0.001, Table 5.5.2. This means that different 

cultivars responded differently to the effect of salinity.

1.5

eS©
o
.6

0
13R Supreme Bilensoy-80 Vertus Ram bler R-350 N

1.5

©£ai001
0.5

0
13R Supreme Bilensoy-80 V ertus Rambler R-350 N

Fig. 5.5.1. Effect of V albo-atrum, isolate VI or the combined effect of 50 mM NaCl & 
isolate VI; (a) on the relative rate of height increase; (b) RGR of lucerne 
plants, o -control; ©-VI; A-Vl + 50 mM NaCl. Values plotted ± SE of 
mean.
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Table 5.5.1. Analysis of variance of the individual and combined effect of VI & [NaCl]
on the index of height of lucerne cultivars, M. sativa and M. media.

Cultivars Treatments* ANALYSIS OF VARIANCE

c V i Y i! SS df MS F Sig,
13R Supreme a a a 7E-02 2 3E-02 1.44 0.272

Bilensoy-80 a a a 3E-02 2 IE-02 0.31 0.737

Vertus a a a 5E-02 2 2E-02 2.14 0.157

Rambler a b c 1.292 2 0.646 11.4 0.000

R-350-N a b b 0.651 2 0.325 16.7 0.000

Sig. + ns s s

2-W av Interaction

Cultivars 1.261 4 0.315 14.1 0.000

Treatments 1.309 2 0.655 29.4 0.000

Cultivars x [NaCl] 0.890 8 0.111 4.99 0.000

* Between treatments, index o f height o f lucerne with the same letters are not significantly 
different from each other at 0.05 level.
1 lucerne plants were treated with NaCl following the inoculation with VI.
+ One-Way ANOVA test between cultivars within a treatment at 0.05 level.
s. Significant
ns. Not significant
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Table 5.5.2. Analysis of variance of the individual and combined effect of VI & [NaCl]
on the index of RGR of lucerne cultivars, M. sativa and M. media.

Cultivars Treatments* ANALYSIS OF VARIANCE

C Y ! Y f SS df MS F Sis.

13R Supreme a a a 5E-02 2 3E-02 0.26 0.774

Bilensoy-80 a a a IE-02 2 6E-03 0.03 0.967

Vertus a a a 3E-02 2 IE-02 0.39 0.681

Rambler a b b 0.676 2 0.338 22.0 0.000

R-350-N a b b 1.046 2 0.523 62.0 0.000

Sig. + ns s s

2-■Wav Interaction

Cultivars 1.385 4 0.346 4.75 0.002

Treatments 1.142 2 0.571 7.82 0.001

Cultivars x [NaCl] 0.791 8 9E-02 1.35 0.235

* Between treatments, RGR with the same letters are not significantly different from each 
other at 0.05 level.
1 lucerne plants were treated with NaCl following the inoculation with VI.
+ One-Way ANOVA test between cultivars within a treatment at 0.05 level.
s. Significant
ns. Not significant
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5.6. The regeneration of salt tolerant lucerne from 50 mM NaCl-adapted cell
cultures of M. sativa cv. Vertus and its resistance against VW.

M. sativa cv. Vertus has been found to be one of the most resistant cultivars to V 

albo-atrum among the cultivars used in this study. In this section, an attempt has been 

made to regenerate cv. Vertus on 50 mM NaCl- containing medium (see Materials and 

Methods). Callus cultures used in this experiment was obtained from leaf explants of cv. 

Vertus. The calli were maintained on salt-free M & S medium and then transferred to 

liquid M & S medium containing 50 mM NaCl. After successful subculturing (6 

months), the cells (0.5 g) of lucerne were transferred onto agar supported salt-and 

hormone-free BOi2Y regeneration medium (Bingham et al., 1975), Plate 5.4. Ten vials 

were used for the regeneration treatment. A number of green somatic embiyos was 

transferred onto another salt-free BOi2Y medium. Later, plantlets were transferred into 

small pots containing perlite and kept under a mist bed unit for 15 days. Plantlets were 

propagated by rooting cuttings in perlite trays for 2 weeks then they were transferred into 

individual pots and watered with 1/5 A & H culture solution (see Materials and Methods).

Pathogenicity test were performed with non salt-adapted and 50 mM NaCl- 

adapted plants. Because of the limited amount of cuttings, only height and RGR 

parameters were measured in this experiment.

Six-week old cuttings were inoculated with the spores of V albo-atrum, isolate 

VI by the root-dip method. Inoculated plants were transferred into individual 10-cm 

pots. After 6-week, the relative rate of height increase and RGR were taken as disease 

indices, Table 5.6.1.

From the results, it was concluded that there was no significant difference 

between non salt-adapted and 50 mM NaCl-adapted plants in response to V albo-atrum, 

isolate VI. Both lines, non-salt and salt-adapted, were resistant to VI under salt free 

conditions. However, this experiment could have been repeated with higher NaCl 

concentrations, and the regeneration of salt tolerant plants could have been made from the 

cell lines in which the adaptation of NaCl is higher than 50 mM. However, because lack 

of time and plant material this was not possible at that time.
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Table 5.6.1. Effect of inoculation with V. albo-atrum, isolate VI, on the relative rate of 
height increase and RGR of M. sativa cv. Vertus (non-salt adapted and salt 
adapted plants).

Parameters Cultivars

Vertus Vertus (50 mM NaCl-adapted)

C Y i C Y i

H 1 ± 0.25 0.95 ±0.15 1 ± 0.19 0.83 ±0.10

RGR 1 ± 0.20 0.90 ±0.15 1 ± 0.15 0.80 ±0.12

5.7. Cell death of lucerne cells.

In general, a pathogen or its derivatives, such as, elicitors causes a hypersensitivity 

reaction in a host that results in cell death. In this section, lucerne cells, cv. Kabul, were 

treated either with an elicitor derived from V albo-atrum, or NaCl or both, to assess the 

viability of lucerne cells.

Lucerne cells were incubated with the VI or V2 elicitor (0.05 mg/ml) or NaCl (50 

mM) or both for 24 hours, then each culture was stained with 0.05% Evans Blue for 15 

min. After washing with distilled water, the percentage of dead cells was quantified from 

the absorbance at 600 nm.

Elicitors of V albo-atrum (VI or V2) caused an increase in percentage cell death 

occurring compared to the control group, Table 5.7.1. However, no difference was 

observed between the isolates in terms of the cell death they caused. The increase in cell 

death was also observed in NaCl-treated cells, the percentage cell death was even higher 

than the elicitors caused. Cell death was further increased (22%) with the combined 

effect of elicitor (VI) & NaCl, however, no difference was observed between the NaCl- 

and NaCl & elicitor-treated cells in terms of percentage cell death.

Fluorescene diacetate (FDA) was tested to assess the number of living cells, unlike 

the previous experiment in which cell death was assessed with Evans Blue. Lucerne cells 

were incubated with VI or V2 elicitor, or NaCl, or both NaCl and elicitor for 24 hours.
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Living cells were counted under a UV fluorescent microscope. However, from this 

experiment no useful data was obtained, Table 5.7.1.

Table 5.7.1. Effect of VI or V2 elicitor or NaCl (50 mM) or both NaCl and the elicitors 
on viability of lucerne cells. The results are expressed as %.

Chemicals Treatments

C Elicitor NaCl (mM) Elicitor + NaCl (50 mM)

H?0 VI V2 50 Vl+50 V2+50

Evans Blue 0 14 13 23 22
(dead cells)
FDA (living cells) - - - -

- no data was obtained.

5.8. Effect of V2 elicitor or NaCl or both NaCl & V2 elicitor on PAL activity of 
lucerne cell suspension.

PAL was assessed in cell suspension cultures of lucerne cv. Kabul. This 

experiment was performed to determine if an elicitor from V. albo-atrum cause an 

increase in PAL activity in NaCl-stressed cells.

Cell suspension cultures of lucerne cv. Kabul were treated with elicitor (0.05 or 

0.1 mg/ml) from V albo-atrum, isolate V2 by aseptic addition of elicitor solution to the 

cultures. At the end of the incubation period (4 hours), PAL activity was determined in 

cell-free homogenates as described in Materials and Methods.

The results are shown in Fig. 5.8.1 for cultures treated with V2 elicitor (0.05 and 

0.1 mg carbohydrate ml"1), NaCl (50 mM), and NaCl & V2 elicitor, and NaCl (200 mM) 

& elicitor (0.1 mg carbohydrate ml-1).

Elicitor (0.05 mg carbohydrate ml-1) caused an increase in PAL activity compared 

to the control group, however, a further increase in elicitor concentration caused a 

decrease in PAL activity, Fig. 5.8.1a. It was observed that salinity also caused an 

increase in PAL activity and a further increase in PAL activity was evident in cells
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treated with the elicitor & NaCl, Fig. 5.8.1b. However, increasing the concentration of 

NaCl to 200 mM (highly toxic to non-salt tolerant lucerne cells, Chaudhary, 1996; Al- 

Rawahy, 2000), and the addition of V2 elicitor (0.1 mg carbohydrate ml’1) caused a 

decrease in PAL activity, Fig. 5.8.1c.
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Fig. 5.8.1. (a) Effect of V2 elicitor; (b) effect of V2 elicitor and 50 mM NaCl; (c) the 
effect of NaCl (200 mM) and elicitor on PAL activity in cell suspension of 
lucerne cv. Maris Kabul. (The activity of PAL was determined after 4 hours 
of incubation with either elicitor or NaCl or both).
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6.1. Pathological response of tomato and lucerne plants to V, albo-atrum.
The growth and yield of plants depend upon the availability of nutrients and water 

in the soil where they grow and on maintenance, within certain ranges, of such 

environmental factors as temperature, moisture, and light. Anything that affects the 

health of plants is likely to affect their growth and yield and may consequently seriously 

reduce their usefulness to humans (Agrios, 1988). A plant is considered healthy or 

normal when it can carry out its physiological functions to the best of its genetic 

potential. Whenever plants are disturbed for example, by pathogens or by certain 

environmental conditions, and one or more of these functions is disturbed beyond a 

certain deviation from the normal, then plants become diseased. The primary causes of 

disease may be either pathogenic or environmental factors, or a combination of both. 

However, if the environmental factors are not in favour of the pathogen, it is certain that 

no disease will occur (Talboys, 1972).

The purpose of the programme of work reported here was to determine, under 

‘normal’ and conditions of raised salt, the pathogenicity of the fungal pathogen V. albo- 

atrum to L. esculentum, M. sativa and to various salt tolerant strains of M. media. To this 

end, a series of experiments was carried out in which selected cultivars of L. esculentum, 

M. sativa and M. media were inoculated with V. albo-atrum, isolate VI (isolated 

originally from lucerne), or V2 (isolated originally from tomato) under conditions of 

normal- and increased salinity. In addition, the effects of increased salt on growth and 

development of the fungus and selected cultivars of tomato and lucerne were also 

assessed. In preliminary experiments, the conditions for such experiments were 

established through a series of experiments in which the effects of age of the plants, of 

growth temperature, of the method of inoculation and of spore concentration on the 

pathogenicity of V. albo-atrum towards tomato were assessed. At the same time, the 

pathogenicity of V. albo-atrum towards selected salt-tolerant strains of M. media was also 

assessed.

Initially, an experiment was carried out to compare the effects on disease 

development in tomato cv. Ailsa Craig of different methods of inoculation (section 3.1). 

While root-dip, wound-, shaved root-dip- and stem injection methods led to development 

of the disease, however, the soil inoculation method did not cause symptoms of the wilt
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disease although a reduction in height was evident. Among the inoculation methods, the 

root dip inoculation method was found to be the most successful as indicated by the index 

of height, symptom index and the number of successful reisolations (Fig. 3.1.1 & Table 

3.1.2). Similar results were reported for cauliflower stems inoculated with Verticillium, 

in which a root-dipping inoculation method was more successful than such methods as 

stem injection or a method in which seedlings were planted alongside an agar block 

colonised with microsclerotia Koike et al. (1994). Similarly, Atibalentja & Eastbum 

(1997) reported that a root-dip inoculation method was most effective differentiating 

between susceptible and resistant horseradish cultivars. On the other hand, Malik (1978) 

reported that reisolation of V. dahliae from tulip was more successful from plants 

inoculated by a root-dip method than those inoculated through a wound. It is likely that 

more conidia enter the plant, through the broken parts of the roots and root hairs with the 

root-dip method, than do with a wound method. (In wound-inoculated plants, the area 

exposed to the fungal spores is rather small compared to the area of root exposed to 

spores in the root-dip method). Furthermore, the wounded area may regain mitotic 

activity and so form wound-cambium that replaces the damaged tissue, or produces a 

layer of boundary tissue, such as a periderm and so seal the wound (Barckhausen, 1978) 

preventing further invasion by the fungus. Despite such considerations, the wound 

method of inoculation used in this study was the next most effective method of 

inoculation as judged by the symptom index, measurement of height and reisolation (Fig.

3.1.1 & Table 3.1.2). The method in which roots were shaved prior to dipping in a spore 

suspension was not very effective, most likely because the root hairs, which occupy the 

biggest surface area of the root mass, were damaged and so the area available to the 

spores for penetration was greatly reduced. Whatever the reason for the differences 

observed, the root dip method was adopted as the method of inoculation for subsequent 

experiments.

The concentration of spores in an inoculum is also a factor that can determine the 

progress of disease in an infected plant (in this respect, the term inoculum is applied to 

potentially infective units of conidia of the fungus capable of starting a new infection) 

(Horsfall, 1932); while Garrett (1960) defined inoculum potential as ‘the energy of 

growth of the pathogen available for infection of the host.). So, for example resistance to
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wilt disease of cocoa (Theobrama cacao L.) depended in part on the spore concentration 

in the inoculum, as well as the virulence of the pathogen (Resende et al., 1995). In that 

study, a resistant cocoa cultivar (Pound-7) was overcome by concentrations of V. dahliae 

spores greater than 106 conidia/ml. Similar results were obtained from maple and apricot 

trees inoculated with V. albo-atrum (Caroselli, 1957; Taylor & Flentje, 1968) and Isaac et 

al. (1971) reported that there was a positive relationship between disease severity in 

potato plants and fungal population of V. dahliae in the soil. On the other hand, with 

lower inoculum concentrations plants in this study showed only mild symptoms. 

Although susceptible cultivars may show symptoms even when very low levels of 

inoculum are present, with an increased spore concentration, a decrease in incubation 

period and an increase in incidence and severity of symptoms, including mortality, can be 

expected (Bell & Mace, 1981; Xiao & Subbarao, 1998). As the concentration of spores 

in the inoculum concentration exceeds certain critical levels, even resistant cultivars may 

become progressively more susceptible (Alon et al., 1974). For example, Baayen & 

Schrama (1990), showed that higher inoculum concentrations of F. oxysporum f. sp. 

dianthi overcame the resistance of carnation plants and caused higher wilting rates, while 

Schnathorst & Mathre (1966) reported that increase in inoculum concentrations of 

Verticillium might overcome the resistance of resistant cotton cultivars. It was also 

reported that high populations of the pathogen could break the highest level of wilt 

resistant of some plants (Frank et al., 1975). On the other hand, Xiao & Subbarao (1998) 

reported that although wilt incidence and severity of the disease caused by V. dahliae on 

cauliflower increased with increasing inoculum density, additional inoculum did not 

result in significantly higher disease incidence and severity.

However, in this study, even the lowest concentration of spores tested (1 x 104 

conidia/ml) caused significant symptoms of disease on 5-week old tomato plants, and 

increasing the concentration of spores did not result in a further increase in symptom 

development, Fig. 3.1.3. Undoubtedly, increasing the numbers of spores in the inoculum 

would have presented the root with a higher number of germinating spores. The fact that 

in this investigation no linear relationship was established between the increase in spore 

concentration and symptom index values, height and RGR, must mean that even the 

lowest concentration of spores (104 conidia/ml) was sufficient to establish an effective
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infection. Similarly, Atibalentja & Eastbum (1997) and Khan et al. (2000), working with 

VW of horseradish, reported that there was no correlation between inoculum density of V. 

dahliae and severity and incidence of root discoloration of horseradish. They stated that 

some fields infested with low inoculum densities of V. dahliae had high ratings of 

severity and incidence of root discoloration, while other fields with high inoculum 

densities had low ratings of severity and incidence of discoloured roots. As a result, they 

suggested that inoculum densities might not be a good predictor of severity of the disease. 

Bejarano-Alcazar et al. (1995) also reported that there was no linear significant 

correlation between the inoculum density of V. dahliae and the incidence of plants with 

vascular discoloration on cotton at the end of the crop season. These results also agreed 

with those of DeVay et al. (1974), who concluded that the inoculum density of the 

pathogen in soil was not the only determinant of the final incidence of foliar symptoms of 

VW of cotton.

Both isolates of V. albo-atrum, VI, isolated originally from lucerne, and V2 

isolated originally isolated from tomato, caused symptoms of wilt disease when 

inoculated onto tomato plants. Where comparisons were made, in general terms, both VI 

and V2 were effective at causing symptoms of wilt disease in tomato plants, though the 

degree of severity of the symptoms of each isolate depended on the temperature at which 

the plants were subsequently grown (Fig 3.1.6) and seedling age at inoculation (Fig 3.1.5; 

Tables 3.4.1 & 5.2.1).

Isolates of V. albo-atrum that had been subcultured regularly over a 3-year period 

were tested to establish whether regular sub-culturing had affected the pathogenicity of 

the fungus. The pathogenicity of regularly sub-cultured isolates (designated as ‘old’) was 

compared to the pathogenicity of freshly isolated fungus (designated as ‘new’). The 

results showed that all the isolates, whether ‘new’ or ‘old’ caused stunting in height and 

reduction in RGR of tomato cv. Ailsa Craig (Table 3.1.5). Reisolation of the fungus was 

also positive from all the inoculated plants. The results, therefore, suggest that V. albo- 

atrum remains pathogenic to tomato although sub-cultured over a 3-year period. 

Similarly, Simpfendorfer et al. (1996) reported that the isolates of Phytophthora 

clandestina were still pathogenic to millet plants after 10 months storage in sterile 

deionised water on millet seeds at 4 °C. However, Krokene & Solheim (2001) reported
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that a subculture of blue-stain fungus Ceractocystis polonica lost its pathogenicity to 

Norway spruce (Picea abies) after serial transfers on artificial substrates.

The effect of temperature on the nature of resistance and susceptibility is always a 

complex one. It does not only affect the germination and disease development of 

Verticillium spp. but also affects the geographic distribution. Here the results of 

experiments to determine the effects of temperatures on disease development in tomato 

showed that for both isolates of Verticillium, the pathogenicity of the fungus was more 

severe at 22 °C than at the two other temperature regimes (Fig. 3.1.6). The effect was 

especially evident with isolate VI, which failed to cause symptoms of the disease at 25 

°C, though at 22 °C there was some symptom development (symptom development at 22 

°C was described in section 3.1 and in this case was measured in terms of reduction in 

height, symptom index, reisolation of the fungus and the relative growth rate (RGR)). In 

contrast, the symptoms resulting from inoculation with isolate V2 (reduced height 

compared to controls, symptom index and reisolation of the fungus and the RGR) were 

more marked than from VI, and isolate V2 remained pathogenic at 25 °C, though the 

symptoms of the disease were reduced (Fig. 3.1.6).

At 22 °C both control and plants inoculated with V. albo-atrum (either isolate) 

showed similar growth curves but when symptoms (chlorosis, wilting, formation of 

adventitious roots and epinasty) became apparent the growth curve of the infected plants 

was significantly lower than that of the control plants (Figs. 3.1.2, 3.1.5, 3.1.6), and the 

fungus colonised intercellularly although the host showed a reaction such as tyloses and 

adventitious roots on the lower stem parts (Fig 3.1.6; Plate 3.5). Similar findings were 

made in diseased tomato, lucerne and even in elm trees (Ulmus spp) (Karagiannidis et al., 

2002; Pennypacker et al. 1990; and Rauscher et al., 1974). At 25 °C the effect of V2 on 

the rate of growth was not as marked as at 22 °C while V 1 had no effect (Table 3.1.8). At 

30 °C plants inoculated with isolate VI showed no symptoms at all, while the symptoms 

of those plants inoculated with V2 were much less severe (Fig. 3.1.6). Although some 

wilting was evident on the lower part of the stems in the early weeks of inoculation and 

more adventitious roots were present, towards the end of the experiment a great recovery 

(as judged by symptom index and the weekly increments in height) was observed in those 

plants (Fig. 3.1.6). In fact, in subsequent weeks the inoculated plants at the higher
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temperatures grew faster and produced more branches than those at the lower 

temperatures. The recovery of plants inoculated at 22 °C was evident four or five weeks 

following inoculation, while at higher temperatures recovery began ca. two or three 

weeks following inoculation. Although V2 was not effective on the relative rate of height 

increase at 30 °C, there was still an effect on the RGR (Table 3.1.8). Root lengths of 

inoculated plants seemed not to be affected by the fungus at any temperatures (Table 

3.1.7).

A decrease in disease development in the host with increase in temperature, such 

has been observed here, may be explained by a decrease in aggressiveness of the 

pathogen, or by an increase in resistance of the host (Griffiths & Isaac, 1966; Brinkerhoff, 

1978; Nerpin et al., 1978). It is known, for example, that V. albo-atrum is limited in its 

distribution because it fails to grow at temperatures much above 30 °C (Raynal & Guy, 

1977, described in the introduction). In this study it is likely that the primary effect of 

temperature on disease development is on the fungus. For example, the average height of 

the tomato plants in the control groups at 22-, 25- and 30 °C was around 80 cm, 

indicating that above 22 °C temperature had little effect on the growth and development 

of tomato. So, it is likely that the decreased effect of the pathogen on the height of plants 

at the higher temperatures can be accounted for by a decrease in the aggressiveness of the 

fungus, rather than an increase in vigour of the plant. Furthermore, reisolation of the V2 

isolate was only possible from plants maintained at 22 °C; at 25 °C and 30 °C, no 

reisolation was possible (Table 3.1.9), suggesting that the fungus had failed to colonise 

the plant. Such a result is in accord with the studies of others. For example, Griffiths & 

Isaac (1966) failed to reisolate V. albo-atrum from tomato plants maintained at 30 °C and 

similar observations have been made for tomato and cotton plants (Virgin & Maloit 1947; 

Garber & Huston 1967).

It is possible that the fungus affected water transport particularly in the early 

weeks following inoculation causing a decrease in water uptake that resulted in a 

decreased rate of photosynthesis. This is consistent with the findings of Duniway & 

Slatyer (1971) who studied transpiration and photosynthesis in diseased tomato plants 

inoculated with F. oxysporum f. sp. lycopersici. They reported that photosynthesis and
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transpiration in the inoculated plants were reduced after 15 days inoculation. Similar 

reports were made by Mathre (1968) on cotton plants infected with V. albo-atrum.

A study of fungal growth also showed that the maximum production of dry weight 

of mycelium occurred between 22 °C and 25 °C (Fig. 3.1.7). At 30 °C mycelium growth 

significantly declined corresponding with the decrease in pathogenicity of the fungus on 

tomato plants at that temperature. The effect of high temperature was similar on the 

growth of both isolates. Similarly, Busch (1967) also reported that the colony growth of 

V. albo-atrum in Petri dishes was inhibited at 30 °C. Sharma (1966) reported that an 

increase in temperature influenced the growth of two strains of V. dahliae after 15 days 

on liquid Dox medium. He also concluded that optimum mycelium growth was obtained 

between 22.5 -  25 °C. Similar findings were also made by Bremner (1981). 

Furthermore, Isaac (1949) showed that the development of symptoms on tomato plants 

inoculated with V. albo-atrum was inhibited around 29 °C. Similar reports were made in 

potatoes inoculated with V. albo-atrum (Busch, 1967) and in cauliflowers inoculated with 

V. dahliae (Koike et al., 1994). Graham et al., (1977) and Wilderspin & Heale (1983) 

also reported that V. albo-atrum did not cause severe symptoms of the disease in hop 

plants above 30 °C.

Mepsted (1991) suggested that the reduction in height might result from a 

hormonal imbalance rather than water stress. However, other workers have suggested 

that a gradual increase in water scarcity in the plant, resulting from xylem blockage and 

the fungus, by causing symptoms such as wilting and chlorosis, also reduces height in 

infected plants (Street & Cooper 1984; Pennypacker & Leath, 1986). Occlusion of 

vascular elements has been reported by the many workers, for example, Bishop & Cooper 

(1983); Street & Cooper (1984), Hutson & Smith (1980) and Douglas & MacHardy 

(1981) suggested that in Verticillium-infected cotton, tomato or chrysanthemum plants, 

tyloses and gels in vascular elements might have a role in restricting the upward spread of 

the pathogens but also may lead to restriction in water flow thereby causing wilting. For 

example, Street & Cooper (1984) showed that vascular flow was reduced in wilted 

tomato plants and they suggested that vascular occlusion was the primary cause of water 

stress in Verticillium wilt. Furthermore, Hutson & Smith (1980) found that resistance to 

water flow in tomato, infected with V. albo-atrum, was greater than in uninfected plants
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and this resistance was correlated with vessel blockage. Clearly, wilting is caused by 

water shortage; water shortage is caused by occlusion of vascular elements especially 

where alternative routes of flow are not present (Beckman, 1987), Beckman (1987) also 

suggested that a severely reduced water supply could also be responsible for some of the 

other symptoms. However, the cause of wilting has also been attributed to the result of 

toxins released by the fungus, enzymes or hormones released by the plant or the fungus 

(DeVay, 1989; Madhosingh, 1995; Hasan, 2002). As a result of such factors, desiccation 

of leaves and reduction in various growth parameters are inevitable.

Plants affected by wilt-inducing fungi and bacteria usually display a number of 

growth responses in addition to the typical symptoms of water deficiency. These 

responses include hyperplasia of the parenchyma adjoining infected vessels, epinasty, 

adventitious root formation etc. It has been suggested that auxins secreted by the 

pathogen increase the plasticity of the cell walls thus allowing pectic enzymes to damage 

the pits and enabling the protoplasts of adjoining parenchyma cells to bulge into the 

lumen of the vessel (Beckman, 1987). There is as yet no direct evidence that tyloses are 

major factors contributing to the wilting phenomenon, since in other wilt diseases tyloses 

may not be formed at all or may be associated only with mild symptoms and sparse 

development of the pathogen (Beckman, 1987). Ethylene, on the other hand, plays a 

major role in development of the symptom of vascular wilt diseases by causing epinasty 

(DeVay, 1989). Pegg (1981) reported that three commonly recognised symptoms of wilt 

diseases, epinasty, foliar abscission and adventitious roots can also be attributed directly 

or indirectly to the action of ethylene. On the other hand, Dimond & Davis (1953) 

suggested that ethylene was the cause of epinastic symptoms in FW of tomato. Gentile & 

Matta (1975) and Pegg & Cronshaw (1976) showed in Fusarium- and Verticillium- 

infected tomato plants that ethylene is produced as a pulse about a week after inoculation. 

They suggested that the progressive increase in ethylene correlated with senescence.

When histological examination was made in infected plants (tomato), mycelia of 

the fungus were observed in the xylem tissue with spores dispersed (Plate 3.4). 

Generally, following entry into the plant, either by hyphal growth or by uptake of conidia 

through broken roots or stem puncture, colonization proceeds gradually, radially and 

basipetally (Pegg & Brady, 2000). Similar findings were made by Pennypacker & Leath
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(1983); Delwiche et al. (1981) and Eldon (1995) both in lucerne and cotton plants. They 

proposed that internal sporulation was probably the mechanism facilitating rapid 

colonisation of the host by V. albo-atrum. However, Madhosingh (1995) suggested that 

physical blockage with mycelia is not the main reason of onset of wilt on tomato, instead 

he proposed physiological and biochemical factors may cause main vessel blockage. So 

far, it has been shown that most of the vessel-occluding factors (gels, tyloses and 

phenolic products) are of host origin. Apparently the plant itself causes a water shortage, 

in essence, causing its own demise for the sake of a defence system (Beckman, 1987). 

Apart from those symptoms described, generally Verticillium-infQctQd plants also showed 

typical dark-brown discoloration in the xylem cell walls as a response to pathogen attack 

(Plate 3.6). This symptom was clearly explained by Isaac (1957) and (Pennypacker & 

Leath, 1986), as oxidation and polymerisation of phenolic compounds leading to 

deposition of melanin. These symptoms are also characteristic plant responses to 

invasion by fungi or bacteria. In this study, epinasty of petioles, and adventitious root 

formation were also observed, Plate 3.1.

There were differences between cultivars of tomato in response to V. albo-atrum. 

Cultivars Ailsa Craig, Simge FI, Falkon and Hybrid Sweet 100 FI were among the 

susceptible cultivars. While other cultivars were resistant to V. albo-atrum, often their 

height and RGR were lower than those of the controls. Furthermore, resistant cultivars 

produced new branches while susceptible ones did not (section 3.3). A similar kind of 

report was made by Resende et al. (1995), who reported that resistant cocoa plants 

inoculated with V. dahliae recovered from the disease by producing new disease-free 

shoots and leaves while the susceptible ones did not. On the other hand, Pegg & Dixon 

(1969) used the tomato (T) strain of V. albo-atrum to evaluate tomato cultivars for VW 

resistance. They found that the cultivars ‘Loran Blood’ and ‘Moscow’ showed resistance 

to disease expression and had little vascular colonization at all levels of inoculum 

concentrations with T strain. Cultivars ‘Bony Best’ and ‘Potentate’ were susceptible to 

the T strain. Genetic heterogeneity of the cultivars may be one of the main factors that 

make plants susceptible or resistant to the disease (Pennypacker, 2000). For example, the 

terms qualitative resistance involves a specific host resistance gene and pathogen 

avirulence gene. Quantitative resistance describes host resistance that lacks a recognized
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gene-for-gene relationship (Heath, 1995). Because of the genetic differences, (symptom- 

free) resistant plants could produce more lateral and main roots that enable plants to 

avoid the effect of the pathogen.

Resistance to VW also varied according to the age of the plants inoculated. The 

present study showed that inoculation of younger seedlings (four-week old) of tomato 

plants with USA (VS, VA, VF & VL) or European (VI & V2) isolates (1 x 107 

conidia/ml) at 23 °C caused severe symptoms (section 3.5). The height of plants 

inoculated with European or USA isolates were extremely shortened to a height of ca. 25- 

30- and 60-70 % of the control plants, respectively, and their RGR values were again 40- 

50- and 40-60 % of the control group, respectively, Table 3.4.1. However, older tomato 

plants (6-week old) showed more resistance to V. albo-atrum than the younger seedlings. 

For example, the height of plants inoculated with European isolates, VI or V2, was 65-85 

% of the control group, and their RGR values were also 85 % of the control group, Table

3.1.7. Similarly, Evans et al. (1966) showed that younger cotton plants were more 

readily invaded by Verticillium than older plants. In older plants the formation of disease 

symptoms are often delayed. Bell (1992) also reported that cotton plants infected with 

Verticillium when young might be killed quickly or remain stunted. It is probable that the 

young seedlings do not possess such established root systems and strong suberin layers at 

the time of inoculation. In contrast, Resende et al. (1995) reported that older seedlings of 

cocoa were more susceptible to V. dahliae than younger ones.

When comparison was made, isolates of V. albo-atrum from USA (VS, VL, VF- 

all isolated from lucerne) or Europe (VI or V2) had severe effect on young tomato plants 

under pot conditions (Table 3.4.1) though isolates from USA was less pathogenic. 

Furthermore, experiments in chapter 5 showed that isolates VI, VS, VL and VF were not 

pathogenic to 6-week old tomato under hydroponic conditions (Figs. 5.2.1 & 5.3.1; 

Tables 5.2.3 & 5.3.2). None of the growth parameters measured on tomato, inoculated 

with lucerne isolates, showed significant differences from the control plants (Tables 5.2.4 

& 5.3.2). Whereas isolate V2 was pathogenic to tomato. All the growth parameters 

recorded for plants inoculated with V2 showed significant differences from the control 

plants. This may be caused by the degree of host specialisation of the pathogens. For 

example, Barasubiye et al. (1994) reported that strains V. albo-atrum from lucerne were
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more virulent on lucerne than the potato strains, though only the potato strains were 

virulent on potato. Furthermore, while Tsror et al. (1998) reported that a virulent isolate 

of V. dahliae from paprika caused severe reduction in height in potato, watermelon and 

tomato, isolates from those plants neither caused reduction in height nor produced 

symptoms in paprika plants. Similarly, Isaac & Lloyd (1959) reported that only V. albo- 

atrum and V. dahliae from lucerne were capable of causing infection in lucerne; other 

isolates of both species obtained from other host plants were incapable of causing 

infection. These results were also supported by Flood (1980).

The co-inoculation of isolates VI and V2 were also investigated on tomato plants. 

It is not unusual for plants to be exposed to more than one pathogen at the same time; for 

example, two or more fungi can infect a host at the same time (Tsor & Hazanovsky, 

2001). In such cases, synergism or antagonism between the organisms can be expected 

(Dewey et ah, 1999; Schmidt et al., 2001). To determine whether there was any 

interactions between two isolates, 6-week old tomato cv. Ailsa Craig was inoculated with 

the VI- or V2 isolate or both simultaneously. The results showed that the isolates VI and 

V2 caused significant reductions in height and RGR, however only isolate V2 led to 

development of symptoms of wilt disease. No disease symptoms were observed in the 

group of plants inoculated with VI. On the other hand, when two isolates were 

inoculated simultaneously (V1+V2) on tomato, there was only a marginal effect on those 

parameters; the effect of simultaneous inoculation of both isolates (V1+V2) on these 

growth parameters was not significantly different from the effect of V2 alone. Symptom 

index values were almost the same in V2- or Vl+V2-inoculated plants. This indicated 

that simultaneous inoculation of both isolates did not result in synergism or antagonism 

between the isolates. Simply, isolate V2 had more a marked effect than isolate VI, and 

the additive effect of both isolates on disease development and growth parameters was 

not significantly different from the effect of V2 alone. These results suggest that there 

were no interactions between the isolates on disease development of tomato. However, 

Johnson & Santo (2001) reported that two isolates of V. dahliae (VCG 2B-more 

aggressive and VCG 4A-less aggressive) were tested for aggressiveness on peppermint, 

Scotch spearmint and native spearmint in combination with the lesion nematode, 

Pratylenchus penetrans. They stated that in native spearmint isolate VCG 2B interacted
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synergistically with P. penetrans while isolate VCG 4A did not. However, But they did 

not comment on interactions between the isolates of the fungus on development of the 

disease. On the other hand, Tsror & Hazanovsky (2001) reported that co-inoculation of 

different groups of fungi such as V. dahliae and Colletotrichum coccodes, major causal 

agent of potato early dying syndrome, caused more foliar disease symptoms, and crown 

rot and a greater colonization with C. coccodes, than inoculation with the pathogens 

separately.

The pathogenicity of the VI isolate of V. albo-atrum had been previously tested 

on salt tolerant strains of M. media cv. Rambler under greenhouse conditions by Dikilitas 

(1997). In that study, the results showed that the susceptibility of salt tolerant strains 

(150-, 200-, 250- and 300- mM) to V. albo-atrum increased with increased tolerance to 

salt. Similarly, Al-Rawahy (2000) stated that plants of M. media regenerated from NaCl- 

adapted cultures were found to be less resistant to pathogens than the parent type. He 

observed that 29 out of 35 regenerants from NaCl-adapted cultures became contaminated 

with fungi in some stages of their lives, and 86 % of these eventually died within three 

months of their regeneration. On the other hand, this phenomenon was less marked with 

regenerants from non-NaCl selected (salt-sensitive) cultures, only 9 out of 37 of 

regenerants from non-NaCl selected cultures died as a result of contamination. Araya et 

al., (1991) also showed that salt tolerant cultivars of barley accumulating high gylcine- 

betaine were more prone to aphids. These workers stressed that genetic manipulation of 

the cultivars for improved insect resistance needed to be considered at the same time as 

improved salt tolerance.

It has been reported that salt tolerance is stable in many cell lines, even after the 

stress agent has been removed from the medium over number of passages (Jain et al., 

1987), for example, in regenerated plants of Nicotiana (Nabors et al., 1975), rice 

(Vajrabhaya et al., 1989), sugar beet (Freytag et al., 1990), wheat (Karadimova & 

Djambova, 1993), M. sativa (Winicov, 1991) and M. media (Al-Rawahy, 2000). 

However, Watad et al. (1991) reported that tolerance to salinity was lost when cells of 

tobacco were re-cultured in the absence of salt. However, there is no report for 

regenerated salt tolerant lucerne plants about loss of tolerance to salinity under non-saline 

conditions that is, if they were maintained for a number of years under normal conditions.
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It has been suggested that salt tolerant M. media cv. Rambler plants may lose their salt 

tolerance under non-saline conditions (personal communication with Dr. Salim Al- 

Rawahy). It has also been reported that Hawaiian Hibiscus tiliaceus, which usually 

grows in conditions of high salinity, lost its salinity tolerance when grown in non-saline 

upland habitats in Hawaii (Santiago et al., 2000). So, it is not clear whether the level of 

susceptibility of salt tolerant plants to V. albo-atrum will change after a number of years.

Because of such considerations, the experiment in which the pathogenicity of V. 

albo-atrum towards salt tolerant plants of lucerne was assessed, was performed with old- 

(R-Tolerance level (mM)-O) and newly- (R-Tolerance level (mM)-N) generated salt 

tolerant plants, under greenhouse conditions. The old-generated salt tolerant plants, in 

general, showed susceptibility to V. albo-atrum. Their height and RGR were 

significantly reduced (Fig. 3.5.2). Reduction in height and RGR were also reported by 

Pennypacker et al. (1990) on lucerne cultivars. For old-generated salt tolerant plants, the 

progress of the disease was similar both in not-salt tolerant and salt-tolerant strains of M. 

media in the first and third year of the experiments. However, the effect of V. albo-atrum 

was more marked on the newly-generated salt-tolerant lines (Fig. 3.5.2). Nevertheless, 

the progress of disease development more or less followed the same pattern in old and 

newly generated salt tolerant plants. It was once more established that when M. media 

cv. Rambler plants gained more tolerance to salt they became more susceptible to the 

effect of V. albo-atrum (see Chapter 3).

6.2. Effect of salinity on tomato and lucerne.
Soil salinity is a major and the most persistent threat to irrigated agriculture. In 

saline soils, crop growth is hampered by salt accumulation in the crop root zone. If the 

upward salt movement caused by evaporation exceeds the downward gravitational 

movement of water, salt will accumulate in the root zone (Mondala et al., 2001). Salt in 

the soil interferes with crop growth when its concentration exceeds the tolerance limits of 

the crop (Mondala et al., 2001).

In semi-arid areas, irrigation can result in large increases in agricultural 

productivity (Prendergast et al., 1994). However, the method of irrigation in many 

irrigated fields has resulted in higher water tables and salinity problems (Prendergast et
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al., 1994). Much research has been carried out to optimise the irrigation systems in terms 

of maximizing crop yield and minimizing water wastage. However, excessive use of 

irrigation without adequate drainage results in a rise in the ground water level and 

capillary action draws salts up through the soil profile (Bridges, 1997).

In this study the effects of salinity on the growth of tomato and lucerne were 

assessed, prior to evaluating their effects in combination with V. albo-atrum. However, 

the effect of salinity on plant growth is related to the stage of plant development at which 

salinity is imposed. For example, salt tolerance in germination is not consistently related 

to tolerance during emergence, vegetative growth, flowering or fruiting (Shannon, 1985).

The effect of salinity on seed germination has been carried out in both lucerne and 

tomato cultivars to determine for their level of tolerance to salinity, in order to make a 

comparison between cultivars. Screening for salt tolerance during germination is a vital 

criterion required for any crop variety that is to be grown in saline stressed environments 

(Johnson, 2000).

In the screening stage, 25 replicate for lucerne and 20 replicate for tomato seeds 

of each variety were used for a single treatment. Unfortunately, replicate number could 

not have been increased to minimise the error in the population because limited seed 

stock was available.

The effect of NaCl on germination of both tomato and lucerne was assessed in a 

series of glass Petri dishes containing 0-, 50-, 100-, 150-, and 200 mM NaCl (for tomato 

cultivars) and 0-, 25-, 50-, 100-, 150-, 200-, 250-, 300- and 350 mM NaCl (for lucerne 

cultivars). In both lucerne and tomato, whichever cultivar is considered, the percentage 

germination decreased with increasing NaCl concentration, though some were more 

tolerant than others. In the case of tomato; the germination of most cultivars showed 

significant differences from the control group at 100 and 150 mM NaCl, with the 

exception of Hybrid Sweet FI, which showed a significant difference from the control 

group at 50 mM NaCl concentration. The differences between cultivars in response to 

salinity were calculated through their IC50 values (Table 4.1.5), leading to classification 

of Margarita (Fa-558) and Hybrid Sweet FI as susceptible-; Fantastic FI and Ailsa Craig 

as moderate-; and Simge FI, Edcawy and L. lycopersicon as tolerant cultivars. However, 

in the case of lucerne, an increase in NaCl up to 150 mM caused only small decreases in
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the germination rate of the seeds. Nevertheless, above 150 mM NaCl, there was a 

marked decrease in germination and most of the cultivars showed significant differences 

from their control groups (Table 4.2.3). According to IC50 values, Vela, Rambler, Bitlis 

and AC Blue J were classified as the most susceptible cultivars. Similarly, Chartzoulakis 

& Loupassaki (1997) reported that external salinity up to 50 mM NaCl did not reduce the 

final percentage germination after 7 days of eggplant seeds. However, the rate of 

germination of lucerne was significantly reduced at 100 and 150 mM NaCl 

concentrations.

Bliss et al. (1986a) reported that the inhibitory effect of NaCl, mannitol or betaine 

(non-toxic solute) on germination of barley seeds was primarily due to an osmotic effect. 

High concentrations of salt or other solutes such as mannitol or betaine slow down water 

uptake by seeds, thereby inhibiting their germination (Werner & Finkelstein, 1995). On 

the other hand, Bliss et al. (1986b) suggested that the difference between isotonic salt and 

betaine might be due to a toxic effect of NaCl, which is revealed only after a threshold 

concentration of NaCl has been surpassed. In general, seeds must reach a threshold level 

of hydration before the processes leading to visible germination can begin (Bliss et al., 

1986b). For example, Bliss et al. (1986b) reported that germination of barley seeds 

increased in both salt- and betaine treatments with increasing time of pre-imbibition in 

water. They have suggested that the inhibitory effect of osmotica declines as seeds begin 

germination. However, if  it is insufficient hydration that blocks germination during the 

imbibition phase, then any mechanism that could boost hydration over a critical threshold 

value should allow germination to proceed. During seed germination cell elongation is 

the primary growth event, facilitating radicle extension and leading to emergence 

(Obroucheva, 1999). Cell elongation needs an increase in the water content of the cells. 

However, under stress conditions, the water availability retards cell elongation and as a 

result, radicle elongation and germination is delayed (Cuartero & Femandez-Munoz, 

1999).

Seed germination is also affected by the degree of sensitivity of the germination 

enzymes and/or hormones to the level of toxic ions, i.e. Na+ and Cl' in the medium 

(Smith & Comb, 1991; Al-Niemi et al., 1992). It is probable that the high concentration 

of salt keeps cell water potential low and reduces protein hydration and enzyme activity
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(Kramer, 1983). These physico-chemical effects upon the seed seem to result in a slower 

and/or lower rate of germination. For example, Flowers (1972), in the genera Beta 

solicarnia and Suaeda; and Cavalieri & Huang (1977), in the genera Borrichia, 

Distichlis, Juncus, Salicornia, Spartina, reported that malate and glucose-6-phosphotae 

dehydrogenase were among the enzymes that play critical roles in seed germination.

When comparison was made between tomato and lucerne a decrease in 

germination of cultivars of both species decreased with increasing salinity, however, 

lucerne seemed to be less affected by NaCl than tomato, although cultivars responded to 

salinity differently (Tables 4.1.7 & 4.2.3). In fact, the percent of lucerne seed 

germination in saline conditions is not higher than that of some other vegetable crops, e.g. 

tomato, (Miyamoto & Petticrew, 1985) but lucerne germinates faster. This is a 

favourable feature for establishment because the fast rate of germination reduces the time 

for salt accumulation (Waissman & Miyamoto, 1987). However, emergence can be 

reduced through post-germination salt injuries such as hypocotyl mortality, because 

hypocotyl and cotyledon must pass through the surface of the soil where salt is 

accumulated (Assidan & Miyamoto, 1987).

So far the discussion has focused on the effect of salinity on seed germination. 

However, hypocotyl emergence and subsequent seedling growth are also important 

factors influencing crop productivity, particularly when seeds are sown in conditions 

adverse to germination. In this study, hypocotyl elongation of tomato or lucerne cultivars 

was found to be less tolerant to NaCl than the germination stage (Table 4.1.7). Similar 

findings were made by Douirani (1998) on rice cultivars. For example, hypocotyl 

elongation of all tomato cultivars, except L. lycopersicon, showed susceptibility at 50 

mM NaCl concentration though only 50 % of lucerne cultivars showed susceptibility to 

50 mM NaCl and the rest are tolerant up to 100 mM NaCl concentration (Tables 4.1.7 & 

4.2.6). Similarly, Chartzoulakis & Loupassaki (1997) stated that hypocotyl elongation of 

eggplants was more sensitive to salinity than seed germination and they observed that 

seedling growth was severely affected at 10 mM NaCl concentration. This reduction 

could be a combined effect of osmotic stress (Greenway & Munns, 1980), which is more 

harmful to plants during the seedling stage, and higher ion uptake (Dumbroff & Cooper, 

1974). Similarly, Rhoades (1990) reported that some plants are generally relatively
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tolerant during germination, but become more sensitive during emergence and early 

seedling stage. Any failure at this stage will reduce the plant stand and the potential 

yields far more than predicted. Ungar (1996) also reported that seeds of A triplex patula 

(Chenopodiaceae) were less affected than growing plants.

In general, cultivars from USA showed greater tolerance in terms of final 

hypocotyl or radicle length to NaCl than those of other cultivars. From other countries; 

only Vertus (Europe-Switzerland), Bilensoy-80 (Turkey), Barrier (Canada) and SA 

Standard (South Africa) were among the tolerant cultivars (Table 4.2.6 & 4.2.8).

The effect of NaCl and mannitol (a non-ionic substance) which reduces the 

external water potential without the toxic effect associated with Na+ and Cl", were also 

investigated on germinating lucerne and tomato seeds. When the seeds of lucerne and 

tomato cultivars were germinated in soil conditions; the percentage germination 

decreased with increasing NaCl or mannitol concentrations (Figs 4.1.1-4.1.5; 4.2.1-4.2.5). 

From tomato cultivars, Fantastic FI was the most affected cultivar though L. lycopersicort 

was the most resistant. Mannitol, used at the same osmotic potential as the NaCl, also 

caused a significant decrease in germination although the effect of mannitol was not as 

severe as NaCl, with the exceptions of Ailsa Craig and L. lycopersicort. The data, 

therefore, suggested that at least a part of the inhibition caused by NaCl resulted from the 

toxicity of the ions.

When hypocotyl elongation was measured, it was inhibited in a pattern that was 

closely similar to its effect on germination. Fantastic FI at 100 mM NaCl, showed the 

greatest susceptibility while L. lycopersicort showed the most resistance. Similarly, 

mannitol at the same osmotic potentials inhibited hypocotyl elongation but not to the 

same extent as NaCl. For example, the average hypocotyl length of cultivars Margarita 

(Fa-558), Fantastic FI, Ailsa Craig and Simge FI dropped by 39 % and 32 % in the 

presence of mannitol; but by 22 % and 11 % in the presence of NaCl at -0.36 MPa and -  

0.48 MPa, respectively, indicating that NaCl has both toxic and osmotic effects. 

However, L. lycopersicort responded differently; the effect of NaCl was less inhibitory 

than that of mannitol. Strogonov (1974) reported that root growth of alfalfa dropped by 

42.9 % in the presence of mannitol and by 89.3 % in the presence of NaCl. Zhao & 

Harris (1992) found that the seedling stage of Prosopis chilensis was more sensitive to
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NaCl than to PEG under iso-osmotic treatments. They suggested that this might be 

associated with the differential permeability of roots to NaCl and PEG. Similarly, 

Katembe et al., (1998) reported that higher concentrations of NaCl were found to be more 

inhibitory to germination and seedling root elongation than iso-osmotic PEG solutions on 

Atriplex patula (Chenopodiaceae). One possible mechanism is that, unlike mannitol, 

NaCl may readily cross the cell membrane into the cytoplasm of the cells, unless an 

active metabolic pump prevents accumulation of the ions. In these cases, NaCl in the 

cytoplasm can result in toxic accumulation of particular ions (Na+ and Cl') or decreased 

availability of some essential nutrients (Waisel, 1972; Werner & Finkelstein, 1995) thus 

causing reduced growth in hypocotyl or root elongation.

Under optimal germination conditions, most tomato seeds germinate within 36-72 

h of seed imbibition (Foolad et al., 1999). However, in these studies, germination of the 

various cultivars in control conditions occurred 4 or 5 days after imbibition of the seeds, 

Figs. 4.1.1-4.1.5. Under saline stress, germination has been reported to be decreased or 

not to occur on tomato (Jones, 1986). The results presented in Figs. 4.1.1-4.1.5 clearly 

illustrate the inhibitory effect of salinity on germination. Not only did the total 

percentage germination decrease with increasing NaCl concentration, but there was an 

increase in the lag before germination occurred, which increased with increasing NaCl 

concentration and resulted in an increase in the time taken for 50 % germination to occur, 

Table 4.1.9. This result is supported by those of Cuartero & Femandez-Munoz (1999), 

who has showed that tomato seeds need 50 % additional days to germinate at 80 mM 

NaCl than in a medium without salt and almost 100 % more days at 190 mM. 

Lengthening of the germination period can be very dangerous for a direct-sown crop 

because the probability of crust formation on the soil surface, which would make 

difficult, or even prevent emergence, and they become more susceptible to the attack of 

several fungi and pests.

The time taken for germination of tomato seeds was also increased through iso- 

osmotic mannitol solution although the effect was so marked as with NaCl, except in the 

case of L. lycopersicort at 200 mM mannitol. Similar reports were also made by Johnson 

(2000) on tomato cultivars. In the case of lucerne, the delay in germination caused by 

NaCl or mannitol was not significantly different (Table 4.2.10). The reduction in
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germination and the increase in time taken for 50 % germination that resulted from salt- 

stress could be due to an increase in the concentration of potentially toxic ions (Torres- 

Schumann et al., 1989) or osmotic effects of the saline medium (Alvarado et al., 1987) or 

both. Reduction or delay in germination due to exposure to salinity stress has also been 

reported in a variety of crop species including Cucumis melo (Botia et al., 1998), 

sunflower (Delgado & Sanchez-Raya, 1999) and soybean (Wang & Shannon, 1999).

There were also differences between cultivars in response to salinity. The most 

susceptible and the resistant ones to salinity were Fantastic FI and L. lycopersicort, 

respectively. For example, Johnson (2000) reported that increasing salt concentration 

resulted in a decrease in the rate of germination in Fantastic FI, Simge FI and Edcawy, 

however, the effect was more marked in Simge FI and Fantastic FI compared to Edcawy. 

Although Johnson (2000) reported that Fantastic FI was not a highly salt tolerant 

cultivar, she recommended that this cultivar had the potential to be a viable crop to be 

grown in mildly salinised areas as a result of consultation with Prof. Yuksel Tuzel 

(Turkey).

6.3. Root formation of salt-susceptible and tolerant lucerne cultivars in saline
medium

The cultivars that had showed the greatest level of tolerance or susceptibility to 

NaCl during germination and post-germination stage were used to test their ability to 

produce roots under saline conditions, which has been used as an indicator of tolerance or 

susceptibility (Taufikrahman, 1993). The root formation of tolerant or susceptible 

cultivars under saline conditions was evaluated with increasing NaCl concentrations. 

However, the tolerant cultivars (Protea, 13R Supreme, Bilensoy-80, Mesa Sirsa), which 

were established in the germination experiment, did not show significant differences from 

the control plants in terms of root length and dry weight up to 150 mM NaCl treatment 

(Table 4.3.1-4.3.4). Those cultivars initially showed susceptibility to 100 mM NaCl in 

terms of radicle length during post-germination stage. However, in this experiment, a 

concentration of 100 mM NaCl was not found really effective on tolerant cultivars. 

Similar results were reported by Taufikrahman (1993) on Trifolium repens clones in 

which the formation of roots was greatly reduced by 150 mM NaCl. It is probable that
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the short-term effect (2 weeks) of NaCl has no significant inhibitory effect in tolerant 

cultivars. However, a susceptible cultivar (Peru) was significantly affected at 50 mM 

NaCl concentration in terms of root length and dry weight. As a result of salinity, the 

reduction in root growth results in a decrease in uptake of nutrients, in turn this would 

reduce the growth of all other organs of the plant, thus causing reduction in dry weight.

Proline content of the leaves at 50 mM NaCl concentration did not show 

significant difference from the control group and it slightly increased at 100 mM NaCl 

concentration when compared to the control group. However, this was also not 

significant when compared to the control group (Table 4.3.5). Similar findings were also 

reported by Chaudhary (1996). Delauney & Verma (1993) reported that the proline 

might increase as a result of low water potential to participate in osmotic adjustment. 

Proline can also act as a compatible solute that can exist in high concentrations without 

disturbing the activity of macro molecules (Ahmad et al., 1982). It could also serve as a 

nitrogen source in the cells under stress (Kohl et al., 1994).

6.4. Effect of NaCl on the growth and development of V. albo-atrum.
Interactions of salinity and fungus have been widely studied for some species, 

though there are few reports concerning interactions between V. albo-atrum and NaCl. 

Salinity may interact with the fungus in soil fauna and might reduce, or sometimes 

increase the sporulation and pathogenicity of the fungi. For example, Amir et al. (1996) 

reported that salinity induced soil suppressiveness to vascular Fusarium by reducing the 

sporulation and germination of F. oxysporum. Similarly, Engel & Grey (1991) reported 

that fertilization with chloride increased the yield of winter wheat and reduced the 

severity of root diseases caused by F. culmorum. It has also been reported that the 

combined effect of high temperature and high salinity suppressed the growth of Fusarium 

species and limited the distribution in an arid environment of Bahrain (Abbas & Mandeel, 

1995; Mandeel, 1996). Salinity may affect fungal metabolism as reported by Omar & 

Abd-Alla (2000). They stated that salinization of the growth media with NaCl (85-250 

mM) strongly inhibited enzymatic activity (cellulase, pectin lyase, polygalacturonase) in 

growth-promoting fungi such as Cladosporium cladosporioides, F. moniliforme, F. 

oxysporum, F. solani, Rhizoctonia solani and Macrophominia phaseolina on the nodules
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of Vicia faba L. On the other hand, salinity may have positive effects on fungal growth. 

For example, it increased the development of motile zoosporangia of Perkinsus sp. (Ahn 

& Kim, 2001) and it created more virulent pathogens in the case of F. oxysporum f. sp. 

vasinfectum on cotton (Ragazzi et al., 1994).

In this study, initially, the radial growth of isolates of V. albo-atrum in vitro was 

compared. The results show that under non-saline conditions the growth rate of isolate 

V2 (isolated from tomato) was greater than that of the isolate from lucerne, Table 4.4.1. 

When assessed under saline conditions it was found that with an increase in concentration 

of NaCl the mycelial and radial growth of both isolates of V. albo-atrum decreased, in 

particular, with 100- and 200 mM NaCl (Figs. 4.4.2, 4.4.3, 4.4.4). Sporulation and spore 

germination were also inhibited by 100- and 150 mM NaCl. It is interesting that the 

fastest growing isolate, V2, under non-saline conditions was the most affected isolate 

under saline conditions especially where sporulation was accounted.

The effect of NaCl has also been reported by other workers. For example, Hasan 

(2002) stated that the mycelial growth of F. oxysporum significantly increased with 1-10 

% (0.17-1.70 M) concentrations of NaCl, although the production of GA and IAA by the 

fungus decreased above 1 % NaCl. However, neither he did report has made no attempt 

how he measured mycelial weight, nor discuss why his result was different from the other 

workers. For example, Amir et al. (1996) reported that concentrations of NaCl over 1 % 

(170 mM) negatively affected the radial growth of the F. oxysporum f. sp. albedinis and 

F. oxysporum f. sp. lini. They reported that sporulation and spore germination were 

inhibited at concentrations of NaCl above 85- and 170 mM respectively. They also noted 

that the inhibitory effect of NaCl increased with increasing time.

Sporulation of both isolates was inhibited at lower concentrations of NaCl than was 

required to inhibit radial growth (see Chapter 4, section 4.4). It has been suggested that 

for fungi, generally a narrower range of environmental conditions are required for 

sporulation than for mycelial growth and the results presented here are consistent with 

that of Sung & Cook (1981). Similarly, Gao & Shain (1995) reported that the conidial 

germination of Cryphonectria parasitica (Murr.), chestnut blight fungus, was more 

sensitive than mycelial growth to NaCl at -2.0 MPa osmotic potential. The appearance 

of the colonies of both isolates (VI and V2) also became more feathery with increasing
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NaCl concentrations. The morphological switch to feathery patterns in some mycelial 

fungi at low osmotic potentials has been attributed to their ability to adapt to drought 

conditions (Griffith & Boddy, 1991).

The effect of NaCl on the growth of isolates of V. albo-atrum that had previously 

been adapted to grow on saline medium was also determined. Non salt-adapted (VI and 

V2) and salt-adapted strains (V1-, V2-150; V1-, V2-200) were grown in the respective 

conditions under which they were normally maintained. Isolates VI and V2 and their 

salt-adapted strains, Vl-150 and V2-150, showed similar radial growth rates over the 3- 

week period under the adapted conditions (Fig. 4.4.3). Statistical analysis showed that 

there was no significant difference between the original isolates, VI & V2 and their salt- 

adapted strains Vl-150 & V2-150 (Table 4.4.3). However, at 200 mM NaCl the growth 

rates of both V I-200 and V2-200 were significantly different from those of the original 

isolates with the growth of the salt-adapted strains being higher. However, although salt- 

adaptation resulted in this ability to maintain better growth rates under elevated 

concentration of NaCl than strains that had not been adapted, adaptation did coincide 

with a decrease in ability to form spores, in all the salt-adapted isolates, Fig. 4.4.3, though 

the effect was more marked in VI- and V2-200 than in the corresponding -150 strains. 

This may affect the ability of V. albo-atrum to infect plants under saline conditions. 

Though the lower rate of sporulation under saline conditions might still be efficient to 

cause pathogenicity. Furthermore, the pathogen may eventually develop an adaptation 

mechanism. For example, many fungal species, such as Aspergillus, Penicillium, 

Rhizopus and Fusarium, produce hormones, such as GA or IAA or both, as in the case of 

F. oxysporum (Hasan 2002) and at 0.5 and 1 % NaCl the content of GA and IAA was 

significantly increased after 5 days. The author suggested that an increase in the level of 

hormones might act as an adaptive response that maintains the stability of the fungus. 

However, at higher concentrations of NaCl, the content of GA and IAA decreased, an 

effect that was more marked over time. It should also be remembered that salinity does 

not only exert stress on fungal metabolism but also reduces the resistance of the cultivars. 

In such circumstances, lower germination rate for the conidia might still result in 

pathogenicity.
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Not only might the lower sporulation rate resulting from the higher concentrations 

of NaCl affect pathogenicity of the fungus but another factor that may also influence 

infectivity is the germination rate of those spores which are produced. Consequently, this 

was assessed for both the original VI & V2 isolates. The results showed that germination 

was mostly unaffected by NaCl up to a concentration of 150 mM (Table 4.4.4), though 

increasing the concentration to 200 mM caused a decrease in germination. Nevertheless, 

even at the highest concentration of NaCl (200 mM) 70 % germination occurred. The 

reduction in germination under saline conditions may be attributed to both toxic and 

osmotic effects of NaCl as was concluded in the seed-germination experiment. For 

example, Chandler et al. (1994) reported that reduced osmotic potentials decreased 

germination and the radial extension in Verticillium species. Similar findings were made 

by McQuilken et al. (1992) who showed that a decrease in osmotic potential caused a 

reduction in mycelial growth and germination of oospores of Pythium oligandrum. 

Similarly, salinity by itself also inhibits development and growth fungi. For example, a 

decrease in growth of Phytophthora sp. caused by salinity was also reported by Wilkens 

& Field (1993).

The amount of mycelium in the colony of both isolates was also assessed (Fig 

4.4.4). The results of mycelium dry weights indicated that NaCl up to 50 mM had no 

effect on the growth of the pathogen although at that concentration the growth of plants 

was markedly affected (Fig 5.1.1 & Tables 4.1.7; 4.2.6; 5.1.3). The data, therefore, 

suggest that V. albo-atrum and NaCl may have an additive effect, if not synergistic, at 

least up to 50 mM NaCl and be responsible for the symptoms and reduction in growth 

parameters on plants. Similar findings were made by Danti & Broggio (1997) who 

reported that the growth of V. dahliae declined on aqueous and solid media containing 

0.05-0.35 M NaCl, however, sporulation, in that range, was not affected.

6.5. The effect of hydrogen peroxide and purified phytoalexins on spore
germination and germ tube elongation of V. albo-atrum isolates.

The effect of antifungal compounds such as H2O2 , sativan and medicarpin were 

also tested on the fungal isolates, to establish whether there is a difference between 

isolates in terms of germination and mycelium development in vitro.
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An increase in concentration of H2O2 resulted in a decrease in germination for 

both isolates (Fig. 4.5.1a). When the LD50 was calculated, V2 was found to be more 

sensitive to H2O2 than VI isolate, Table 4.5.1. The effect of H2O2 on germ tube 

elongation of germinated conidia was also tested, with the same concentrations of H2O2 

that was used for the germination experiment. Again, the effect was more marked in V2 

than VI (Fig. 4.5.1b). In general, the inhibitory effect of H2O2 was more marked on 

conidia than the germ tube elongation of V. albo-atrum. Inhibitory effect of H2O2 was 

also reported by Peng & Kuc (1992) on Peronospora, Cladosporium and Colletotrichum 

spores. Similarly, Lu & Higgins (1999) reported that higher concentrations of H2O2 were 

required to inhibit germ tubes than for inhibition of the conidia of Cladosporium fulvum. 

H2O2 may inhibit pathogens directly, or may generate other reactive free radicals that are 

themselves antimicrobial (Peng & Kuc, 1992). In this study, the extent of the effects of 

H2O2 depended on the concentration used.

Medicarpin was more inhibitory to germination of V2 than VI (Fig 4.5.2a & 

Table 4.5.1) while sativan inhibited germination of the conidia of both isolates equally 

(Fig. 4.4.2b). Sativan was more inhibitory than medicarpin. Similarly, Flood (1980) 

reported that ED50’s of sativan was much lower than that of medicarpin and the effect of 

phytoalexins was more pronounced on V2. Such inhibitory effect of phytoalexins on 

germination and growth of fungus are not uncommon. For example, Bianchini et al. 

(1999) reported that the phytoalexins, hemigossypol and desohemigossypol, (from 

cotton) inhibited conidial germination of V. dahliae and He et al. (2002) presented that 

phytoalexins from lucerne inhibited germination and radial extension of Verticillium 

species. Similarly, Turkusay & Onogur (1998) inhibited the germination and colony 

growth of Alternaria solani and Botrytis cinera with extracts from Hedera helix.
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6.6. Interactive effect of NaCl and V. albo-atrum on the severity of VW disease
(and yield) of tomato and lucerne cultivars.

In the past, researchers have directed their attention to either the relation between 

plants and abiotic stresses or that between plants and pathogens. The present study, for 

the first time, examined the disease incidence and the physiological developments in 

tomato and various salt & disease resistant or salt & disease susceptible lucerne cultivars 

growing under salinity stress in the presence of vascular wilt pathogen V. albo-atrum. 

For crop plants, different stresses may interact, both in their occurrence and in their 

effects. So, real progress in crop improvement is likely to depend on a better 

understanding of these interactions and their consequences for plants and ecosystems 

(Austin, 1989).

In this section, tomato plants were exposed either to progressively increased or 

continuous low levels of NaCl (50 mM-the start of salinity problems for most of the 

crops, Abrol et al., 1988). An increase in NaCl levels in nutrient medium can be used to 

simulate field conditions where salt concentrations fluctuate widely over time (because, 

concentration of NaCl in an irrigated field gradually increases as water is lost through 

evapo-transpiration and quickly drops with the application of irrigation water (Rhoades, 

1972)).

Although the main aim of these experiments was to study the effect of salinity and 

V. albo-atrum on the development of tomato and lucerne cultivars, classical growth 

analysis was also used to monitor the effect of salt on vegetative growth of plants in 

hydroponics.

6.6.1. Effect o f NaCl on young (4-week old) and old (8-week old) tomato plants in the 
presence or absence ofV.  albo-atrum.

Exposure of plants to salt stress usually begins with the exposure of the roots to 

that stress. Salt stress leads to changes in growth, morphology and physiology of the 

roots that will in turn change water and ion uptake and the production of signals 

(hormones) that can communicate information to the shoot. The whole plant is then 

affected when roots are growing in a salty medium (personal communication with 

Professor T.J. Flowers; Cuartero & Femandez-Munoz, 1999). This was the case in this
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experiment. Four-week old young tomato plants (cv. Ailsa Craig) were exposed to 

various concentrations of NaCl (0-, 25-, 50-, 100-, 150- and 200 mM) for 5 weeks. The 

results showed that after 3 weeks of the start of the experiment the height of seedlings 

was inhibited, Table 5.1.1, and at the end of the experiment the growth parameters (H, 

RL, RGR, LA, NAR and chlorophyll content of the leaves, Table 5.1.1) were 

significantly reduced compared to the control group. At 50 mM NaCl, reduced height 

was the only visible response. However, at 100- and 150 mM NaCl concentration, the 

reduction was more pronounced and accompanied by toxicity-related symptoms of NaCl 

(chlorosis, rolled- and abscinded-leaves). Furthermore, at high salinity levels (100 and 

150 mM NaCl) abscission of lower leaves also contributed to the reduced RGR and NAR. 

Inhibition of vegetative growth in tomato at high salinity levels is associated with marked 

inhibition of photosynthesis (Tables 5.1.1. & 5.1.6). For example, in a more detailed 

study, Nieman et al. (1988) reported that salt stress reduced the growth of pepper and 

suggested that it was due to reduced assimilation of photosynthate. Reduction in 

chlorophyll content also correlated with an increase in NaCl concentration (Tables 5.1.3 

& 5.1.5). Similarly, Velagaleti et al. (1990) reported that the reduction in chlorophyll 

content of soybean correlated with increased chloride ion accumulation. Reduced 

chlorophyll content was also noted by Gunes et al. (1995), in potato. By itself V. albo- 

atrum also inhibited growth (Table 5.1.2). However, the combined effect of NaCl & V. 

albo-atrum were more inhibitory than either of the treatments (Table 5.1.2). Similarly, 

MacDonald (1984) reported that root systems of hydroponically grown chrysanthemums 

exposed to salinity after inoculation with Phytophthora cryptogea developed more severe 

symptoms than the plants that were not exposed to salinity. Swiecki & MacDonald 

(1988), on the other hand, showed that rooted cuttings of Chrysanthemum morifolium 

grown in nutrient solution were given a 24 h pulse exposure to salinity by amending the 

solution with 200 mM NaCl. They found that penetration of non-stressed roots by 

Phytophthora cryptogea was frequently limited and the plant exhibited a high degree of 

resistance. In contrast, hyphae of P. cryptogea rapidly colonized salinity-stressed roots, 

causing extensive necrosis after 12 h inoculation, indicating a salt-induced change from a 

resistant to a highly susceptible condition. Similarly, Turco et al. (2002) reported that a 

nutrient solution with an EC of 20 mS cm'1 increased the severity of Fusarium wilt about
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34% in the cotton cultivars ‘Coker 304’ and ‘Acala SJ2’, compared with the non-saline 

test group.

The reduction of the growth of young tomato plants in saline conditions can be 

attributed largely to reduced water absorption caused by reduced water potential in the 

root environment. Under saline conditions, the Na+ and Cl" ions are taken up at high 

rates, which may lead to excessive accumulation in tissues. These ions may inhibit the 

uptake of other ions into the root and their transportation to the shoot (Mer et al., 2000).

For some growth parameters (H, RL, RGR and chlorophyll content of the leaves) 

the effect of NaCl (50-, 100- and 150 mM) was also severe on 8-week old tomato. 

However, the effect of fungus, by itself, was not so marked on the growth parameters of 

8-week old tomato plants as it was on the younger plants. Again, the combination of salt 

and the fungus was more deleterious to the development of tomato than either of the 

treatments alone (Tables 5.1.5, 5.1.8 & 5.1.9). Similarly, Rasmussen & Stanghellini 

(1988) reported that increased salinity levels predisposed Penncross creeping bentgrass to 

cotton blight caused by Pythium aphanidermatum and accelerated the onset and 

development of disease. Similar results were reported by Nachmias et al. (1993) who 

simulated field conditions in potato cultivars (Cara, Desiree and Nicola) by adding NaCl 

and CaCl2 (4:1) in irrigation water (to 5 mmhos cm'1). They showed that the height of 

potato plants were further reduced and the severity of the disease increased by V. dahliae 

in the presence of salt compared with the non-inoculated but stressed control group.

Comparison of the data for the younger and older tomato plants showed that; 8- 

week old plants were less affected than the 4-week old ones, in terms of growth 

parameters. For example, in 4-week old tomato plants RL was affected equally with the 

shoot, but in the case of 8-week old tomato, RL was less inhibited than the shoot. A 

similar case was made by Papadopoulos & Rendig (1983) and Cuartero & Femandez- 

Munoz (1999) with tomato plants. The lower leaves of 8-week old tomato plants had 

showed signs of succulence, especially those treated with 100 mM NaCl and above, 

unlike 4-week old tomato plants, in which the lower leaves died or did not develop as a 

result of NaCl. Changes in plant tissue succulence have been shown to be a feature of 

salt tolerance (Flowers et al., 1977) and has been attributed to accumulation of Na+ and
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Cl' ions in the leaves (Brugnoli & Bjorkman, 1992). It has been proposed that increased 

succulence in the leaves aid the dilution of potentially toxic ions (Cuartero et al., 1992).

The age of the plants during salinity stress affected the resistance of the plants to 

disease. For example, younger tomato plants under salinity showed more susceptibility 

to disease than the older plants. Similarly, Cruz & Cuartero (1990) reported that 

adaptation to salinity was higher in older plants than in younger ones. In terms of 

symptoms, young tomato (4-week old) plants showed more severe symptoms than did 8 

week-old tomato plants.

Recovery of the plants from the effects of the either fungus or salt was quicker 

and earlier than the combined effect of salt & the fungus. The results, therefore, 

suggested that the V. albo-atrum was still pathogenic under salt conditions and delayed 

the recovery of the plants in whatever ages they are. This is in good agreement with 

results of Swiecki & MacDonald (1991) who reported that exposure of tomato plants (L. 

esculentum Mill.) to salinity stress either before or after inoculation with Phytophthora 

parasitica increased root and crown rot severity relative to non-stressed control. The 

synergy between salinity and P. parasitica was most pronounced on young (pre-bloom) 

plants and least pronounced on older (post-bloom) plants. For example, the interaction 

between salinity and P. parasitica had significantly increased root necrosis and reduced 

top weight, and caused a higher incidence of crown infection than corresponding non- 

stressed plants.

It is not clear how salinity stress has such a pronounced effect on disease severity 

in plants, while having relatively less effect on non-inoculated plants. This mechanism, 

so far, is not fully understood, but may result from an impairment of normal host defense 

mechanisms. For example, plants respond to pathogenic invasion in numerous ways that 

function to block, slow or prevent the pathogen from its successful establishment or 

spread in host tissue (Bell, 1981). Many of the defense responses involve biosynthesis of 

compounds that are toxic to the invading pathogens (Bell, 1981). However, salinity 

stress has many adverse effects on plants including changes in membrane permeability 

(Campbell & Pitman, 1971), the ultra structure of organelles, synthesis of DNA, RNA 

and proteins (Campbell & Pitman, 1971). It is also possible that the host is predisposed 

to the disease by the decreased availability of water and the accumulation of toxic ions in
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tissues. As a result of that, the plant may have a lower photosynthetic activity and a 

lower daily growth (Brugnoli & Bjorkman, 1992). Inhibitions of these processes in 

dehydrated tissues have been reported to reduce plant resistance through inhibition of 

protein synthesis that might contribute increased host susceptibility by preventing the 

synthesis of important enzymes for disease resistance in the host. (Bell, 1981). However, 

there is still little work on enzyme synthesis for disease resistance under salinity or 

dehydrating condition (Boyer, 1995). Under salinity, fungus may also be more 

aggressive, for example, El-Abyad et al. (1992) reported that the activities of cell wall 

enzymes (xylanase and galactanase) of Scrlerotium rolfsii increased with increased salt 

concentrations when compered to non-saline conditions.

6.6.2. Effects o f  NaCl (50 mM) and its interactions with V. albo-atrum on various
tomato and lucerne cultivars in a hydroponic system.

A hydroponic drip irrigation system was employed to assess the response of 

plants to V. albo-atrum under saline conditions. Perlite is one of the inorganic media 

used in soilless systems and was the substrate used in this work. In this section, the 

plants were exposed continuously to a low NaCl (50 mM) concentration over a period of 

7 weeks. Salinity at this level is an important limiting factor for crop plants. For 

example, Jennings (1976) reported that NaCl at a concentration around 50 mM and above 

would generally suppress leaf expansion, although the level of NaCl that would affect a 

plant depends on the plant concerned. In the long-term, the plants also absorb and 

accumulate appreciable amounts of salts in their tissues that may adversely affect the 

growth and yield potential (Kostandi & Soliman, 1998).

Salinity tolerance of tomatoes has been studied for decades and the characteristic 

symptoms of salinity stress include mainly a reduction in plant height and retardation of 

the plant growth, increased abaxial leaf curl, and increased chlorosis and necrosis of the 

older leaves, as shown by Johnson (2000) in studies screening tomato varieties for salt 

tolerance. The findings reported here are in good agreement with her results.

Screening experiments, in this study and in much of the literature, have been 

performed in a greenhouse on a small-scale monitoring for a specific period of time. 

Experiments of this kind are suitable for preliminary identification of potentially salt

287



tolerant varieties, though further screening of tomato varieties via large-scale field trials 

focusing on fruit yield and quality is also necessary to enable the recommendation of 

suitable potentially salt tolerant varieties for commercial application.

Although plants may not show stress symptoms and may metabolise normally 

under low to moderate salinity levels, additional energy may be required to cope with the 

disease with an additional effect of stress caused by microorganisms such as fungi. For 

example, VW disease generally depends on the conditions in which the plants are grown. 

It has been reported that the irrigation regime may increase the incidence of wilt 

(Jefferson & Gossen, 2002). If the irrigation water were associated with salinity, the 

detrimental effects on plants would be inevitable. In fact, VW is now becoming more 

prevalent in many areas where an increase in the salinity of the irrigation water poses its 

greatest threat (Nachmias et al., 1993). Since it is known that the reaction to infection by 

disease can be modified by environmental factors, the potential for an interaction between 

salinity and disease is a realistic possibility that must be considered. Indeed, it has been 

reported that abiotic stresses such as drought, pollution, heat or salinity may increase 

symptoms by directly affecting the pathogen or its host (Ayres, 1984).

In the present work, the effect of V. albo-atrum, isolates VI or V2 on 6-week old 

tomato cvs. Ailsa Craig, Simge FI, Margarita (Fa-558) and Fantastic FI were 

investigated in the presence or absence of 50 mM NaCl. In general, isolate VI did not 

cause significant reduction in the growth parameters (H, RL, RGR, FLW, WTC etc.) on 

any of the cultivars tested (Tables 5.2.4, 5.2.8, 5.2.12 & 5.2.16). However, isolate V2 

caused symptoms and reduced growth parameters and proved to be a more pathogenic 

isolate than VI on cvs. Ailsa Craig and Simge FI (Tables, 5.2.4 & 5.2.8). Cvs. Margarita 

(Fa-558) and Fantastic FI showed complete resistance to V2 and none of the growth 

parameters for these two cultivars were significantly reduced when compared to their 

corresponding control groups (Tables 5.2.12 & 5.2.16). NaCl, on the other hand, affected 

growth parameters on all cultivars tested (Ailsa Craig, Simge FI, Margarita (Fa-558) and 

Fantastic FI). However, the combined effect of both NaCl & V. albo-atrum, especially 

isolate V2, were more pronounced on the growth parameters above. The combined effect 

of both NaCl & isolate VI was as marked as NaCl alone, suggesting that VI isolate did 

not play an important role even in the presence of NaCl (Tables 5.2.4, 5.2.8, 5.2.12 &
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5.2.16). Similar results were reported by Snapp & Shennan (1994) who reported that a 

tomato cv. UC82B became vulnerable to infection by P. parasitica when subjected to salt 

stress and produced thinner roots and higher root-senescence rates when compared to the 

non-stress control group. There is also a report that soil salinity markedly increased the 

incidence of Phytophthora root rot of tomato in field conditions Snapp et al. (1991). The 

combination of salinity and enhanced disease severity led to significant reductions in 

fresh fruit yields, fruit size and total above-ground biomass. In some cases salinity not 

only increased susceptibility of plants to pathogens but also decreased their resistance 

against soil-borne saprophytes such as Pythium ultimum (Martin & Hancock, 1981).

Salt stresses have also been observed in heavy metal contaminated soils. Plants 

near an industrial vicinity especially in developing countries, suffer from both stresses. 

For example, an additive effect of NaCl (6 EC) and lead acetate (1.0 mM) on biomass 

accumulation was observed in Vigna radiata (L.) Wilczek cv. Pusa baisakhi (Singh, 

1995). It is well known that plants exposed to salinity show marginal Ca2+ deficiency 

(Kostandi & Soliman, 1998; El-Ddil et al., 2002). Under such conditions, the membrane 

becomes fragile, permitting continuous out flow of assimilates (sugars and amino acids) 

that facilitate fungal growth (Hancock & Huisman, 1981). In contrast, since disease 

severity is determined by the ability of a pathogen to produce extracellular pectolytic 

enzymes (e.g. polygalacturanase) that dissolve the middle lamella, it seems likely that
^  j

increasing leaf Ca content would prevent pathogen invasion and improve host resistance 

(Bateman & Lumsden, 1965).

Inoculation with V. albo-atrum, isolates from USA (VS, VL & VF-all isolated 

from lucerne) did not cause any symptoms or reduction in growth parameters (H, RL, 

RGR, NAR) on tomato cv. Ailsa Craig, as was the case for the VI isolate (Table 5.3.2). 

However, in the presence of 50 mM NaCl, the growth parameters (H, RGR, NAR) again 

showed significant differences from the control group, while isolates of V. albo-atrum 

(VS, VL & VF) caused further reductions in the growth parameters in the presence of 

NaCl (Table 5.3.3). This may be explained by a reduced resistance of the host. Under 

saline conditions, plants may become susceptible or even non-pathogens may act as 

pathogens. For example, Howell et al. (1994) reported that V. albo-atrum inoculation 

alone had little effect on the foliage yield of a lucerne cultivar, NK-89786. Only a
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salinity (simulated by irrigation with NaCl or CaCh) of 5.0 or 7.5 dS m '1 significantly 

reduced yield of the cultivar in the absence of V. albo-atrum. However, imposition of 

salinity stress (3.0 dS m’1) to inoculated NK-89786 plants enhanced the progression of 

VW disease and resulted in a significant decrease in yield relative to yield loss resulting 

from inoculation or salinity alone. Their results suggest that salinity caused NK-89786 

plants to become more severely compromised by Verticillium infection resulting in 

greater yield loss.

The pathogenicity of isolates of V. albo-atrum that had been adapted to saline 

conditions (V1-, V2-150; V1-, V2-200) towards tomato was also evaluated, under saline 

and non-saline conditions. The salt adapted strains of isolate VI (Vl-150 and V I-200) 

did not cause any significant reductions, in the absence of NaCl, in H, RL and RGR, just 

as was the case for the parent isolate VI. However, stains of V2-150 and V2-200 

affected the growth parameters in a similar way to the parent isolate V2 (Table 5.4.3). 

Growth parameters were also significantly decreased in the presence of NaCl (50 mM) 

and the fungus, especially the salt adapted strains of V2 (V2-150 & V2-200) were more 

effective in the presence of NaCl (50 mM), as was the case for the parent isolate V2 

(Table 5.4.4). These salt-adapted strains of V2 (V2-150 or V2-200) were still pathogenic 

to tomato even under non-saline conditions, suggesting that the fungus did not lose its 

pathogenicity over a period of time even when subcultured under saline conditions. It is 

possible, therefore, that cultivars of tomato or lucerne in areas where soil salinity is a 

problem could undergo an increase in susceptibility to VW and suffer a greater yield loss 

as a result of the combined stresses or increased pathogenicity. It has been reported that a 

tomato isolate of P. parasitica recovered from saline soil was more tolerant to salinity 

than one recovered from non-saline soils (Bouchibi et al., 1990). Similarly, Ragazzi et 

al. (1994) reported that mycelia of F. oxysporum f. sp. vasinfectum (FOV) from non

saline medium and from saline-enriched medium both produced wilt symptoms, however, 

the symptoms on a medium-resistant cotton cv. GSC 20 appeared earlier and advanced 

more rapidly with the mycelium from the saline-enriched culture. Furthermore, Ragazzi 

& Vecchio (1992) reported that chlamydspore viability and pathogen virulence of FOV 

were enhanced when it was subcultured on NaCl-enriched media. Turco et al. (1999) 

also reported that FOV had greater enzymatic activity in saline environments, especially
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with regard to pectate lyase (PL) and polygalacturonase (PG) enzymes. One conclusion 

that can be drawn from the present experiment is that when saline water is use to irrigate 

tomato or lucerne plants, where V. albo-atrum may be present, soil salinity should be 

maintained and controlled to prevent the fungus from reaching a degree of virulence that 

would put even medium resistant cultivars at risk.

The pathogenicity of V. albo-atrum, isolate VI, was also tested on various 

disease-resistant & salt tolerant- (13R Supreme, Vertus & Bilensoy-80; see Chapter 5); 

disease susceptible & salt susceptible- (Rambler, see Chapter 3) or disease susceptible & 

salt tolerant (R-350-N, see Chapter 3) cultivars lucerne. Cvs. 13R Supreme, Vertus and 

Bilensoy-80 showed resistance to VI under non-saline and saline conditions (50 mM 

NaCl), whereas Rambler and R-350-N both showed susceptibility under saline or non

saline conditions, as indicated by H and RGR measurements compared to the 

corresponding controls (Tables 5.5.1 & 5.5.2). This result indicates that a low level of 

salinity was not enough to alter the resistance of cvs. 13R Supreme, Vertus and Bilensoy- 

80 to the pathogenicity of V. albo-atrum. Because of the limited time available, those 

cultivars were not tested under high salinity against V. albo-atrum. However, Besri 

(1990) reported that high salt levels in irrigation water in Morocco caused a total 

breakdown of resistance of tomato cultivars that were normally resistant to race 1 of V. 

dahliae. He also reported that cultivars that are resistant to race 2 became susceptible 

with increasing soil salinity. The disease-susceptible cultivars, whether they were salt 

tolerant or not, showed susceptibility to V. albo-atrum under low saline conditions. 

Therefore, higher concentrations of NaCl were not tested on those strains.

Plants that had been generated for tolerance to NaCl, from disease-resistant plants, 

were also tested for their resistance to V. albo-atrum, under saline and non-saline 

conditions (Table 5.6.1). The plants were regenerated from 50 mM NaCl-adapted cell 

lines of M. sativa of cv. Vertus. At this level of tolerance neither, V. albo-atrum or 50 

mM NaCl caused significant reductions in H and RGR. In this regard 50 mM NaCl- 

tolerant cv. Vertus plants differed from the salt tolerant cvs of Rambler strains, which 

showed more susceptibility when the levels of tolerance to NaCl were increased 

(Dikilitas, 1997). This result suggests that, either level of tolerance for NaCl was not 

high enough for cv. Vertus to become susceptible to V. albo-atrum or regenerated salt

291



tolerant (and disease-resistant) plants might still show resistance to V. albo-atrum unlike 

susceptible cv. Rambler.

Reports concerning salt stress effects on plant diseases are still limited and 

incomplete. For example, Soliman & Kostandi (1998) showed that smut severity, 

induced by Ustilago maydis (DC.) Corda, was markedly reduced under salt stressed 

conditions on highly susceptible or resistant com cultivars. Therefore, the results 

documented on chloride-disease interactions are incomplete and inconsistent, varying 

from a positive response (Heckman, 1995) to a negative response (Engel & Grey, 1991).

Our suggestion is that, although much work has been done on breeding alfalfa 

cultivars with tolerance to salinity (Carlson et al., 1983), salt tolerant & disease resistant 

cultivars should also be included in breeding programs for tolerance to salinity and VW 

resistance to minimize further yield decline in areas where the two factors occur together.

6.6.3 Effect o f the elicitor or NaCl or both on PAL activity o f lucerne cells.

Studies with cell cultures have some advantages compared with studies at the 

whole plant level. Cultured cells can offer uniform conditions, thereby eliminating 

complications arising from morphological variability and the highly differentiated state of 

whole plant tissues. Suspension cells are advantageous because the osmotic and 

nutritional environment can be controlled and cell developmental age is relatively 

uniform (Binzel et al., 1985). Consequently, cell cultures can provide a very useful tool 

in attempting to elucidate mechanisms of salt tolerance that operate at the cellular level. 

In this study, Kabul, a resistant cultivar reported by Flood (1980); Esyanti (1993) and 

Dikilitas (1997), was selected for cell culture studies.

Compounds that elicit plant defence responses are known as elicitors. Elicitors 

may be divided elicitors into 2 groups, abiotic and biotic elicitors. Abiotic elicitors are 

molecules that are not derived from the pathogen or host. Examples are fungicides, 

heavy metal ions and detergents. Biotic elicitors are molecules that are derived from 

pathogens and host plants.

L-phenylalanine ammonia-lyase is an enzyme that catalyses the first step in the 

phenylpropanoid pathway and is a key enzyme in control of the biosynthesis of 

isoflavonoids and other phenylpropanoids derived from phenylalanine. The enzyme can
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be induced by a number of stimuli including, chemical elicitation, microbial, wounding or 

stress, light, plant growth regulators, heavy metal salts and UV radiation (Hadwiger et al., 

1973; Jones, 1984; Dixon et al., 1983).

Frequently, pathogen attacks on plants induce alterations in enzyme synthesis in 

the plant, which can lead to development of various degrees of resistance around 

infection sites. An enzyme that generally exhibits increased activity or greater new 

synthesis in diseased tissues is PAL (Agrios, 1988). PAL is a key enzyme in the 

production of the basic molecule used for the biosynthesis of most phenolics, including 

phytoalexins and lignin (Agrios, 1988; Tang, 2001). The resistance of plants to the 

pathogen may depend on the speed and the extent of synthesis of the enzymes induced in 

the host by the pathogen.

Accumulation of PAL in response to V. albo-atrum, isolate V2 or/and NaCl was 

studied in cell suspension cultures of lucerne cv. Kabul (Fig. 5.8.1). Isolate V2, or NaCl, 

or both were effective in inducing PAL accumulation in cell cultures in vitro (22 °C). 

The combined effect of NaCl (50 mM) and the elicitor, derived from the isolate V2 of V. 

albo-atrum, (0.05 or 0.1 mg/ml) resulted in further increase in PAL activity. However, 

PAL activity was inversely correlated with a further increase in concentration of NaCl 

(200 mM) and the elicitor (0.1 mg/ml). The results presented here also indicated that the 

size of increase in PAL activity did not correlate with the amount of elicitor used. 

Similarly, Jbir et al. (2001) reported that salt stress increased PAL activity in wheat 

plants. On the other hand, Dunn et al. (1998) reported that after 30 days of high salinity 

(0.1 M NaCl), citrus plant grew more slowly and produced lower PAL activity and as a 

result became more susceptible to nematode attack (Tylenchulus semipenetrans).

6.7. Summary.

The increased levels of salinity frequently associated with irrigation practices of 

agricultural land pose a threat to crop production, especially where water quality is 

marginal. Under such conditions, plants are not only stressed but may also be more 

susceptible to various pathogens. One strategy to maintain yields in such situations, or to 

increase yields in marginal areas, has been to develop salt tolerant strains of crops. Such 

strains should also be resistant to pathogens in that environment, including halophytic
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races of the pathogen that may have adapted to living in higher salt concentrations. An 

understanding of the interactions between a crop plant and potential pathogens under 

salinity is, therefore, an important part of any project to develop strategies for disease 

control for crops grown in saline soils, which may have a minimal impact on an already 

stressed environment.

In this project, plant-pathogen, plant-salt, pathogen-salt, plant-pathogen-salt 

interactions were studied. The interactions between tomato (L. esculentum Mill.) and 

lucerne (M. sativa L and M. media) and isolates of the vascular wilt fungus V. albo-atrum 

(European and USA isolates) were investigated under non-saline and saline conditions.

Pathogenicity trials indicated that isolates of VI and V2 were pathogenic to 

tomato, however, the degree of pathogenicity of the isolates were affected by the cultivar 

inoculated, the age of the plants and the temperature at which the inoculation occurred. 

Plants inoculated with V. albo-atrum showed symptoms of wilt disease such as epinasty, 

wilting, chlorosis and formation of adventitious roots on the lower part of the stem. 

Internally, characteristic dark-brown discoloration of the stems was observed. As internal 

disease responses; tyloses, gum and melanin-accumulated dark xylem walls were evident.

Pathogenicity experiments showed that a root-dipping inoculation method was the 

most successful method for inoculation of lucerne and tomato plants. Plants inoculated 

with isolate V2 using the root dip method had the lowest increment in height and 

reisolation of the fungus was more successful from root-dip inoculated plants than from 

plants inoculated with one of the other methods used.

Temperature also significantly affected the growth and pathogenicity of the 

fungus, and altered disease development. At 22 °C, both isolates of V. albo-atrum were 

pathogenic to tomato. However, at 25 °C VI lost its pathogenicity whilst V2 was still 

pathogenic to tomato. At 30 °C no disease development was observed on tomato with 

either isolate. Symptoms of the disease were also reduced with increase in outside 

temperature. Increased temperature also reduced growth of the fungus; optimum 

mycelial growth occurred at 22 °C and 25 °C, however, increasing the temperature to 30 

°C reduced growth drastically.

No pathogenic differences were determined between isolates of V. albo-atrum that 

had been maintained in culture for many months and fresh isolates of V. albo-atrum. The
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pathogenic effects of virulence of Verticillium on tomato did not increase with increasing 

spore concentrations or when isolates were co-inoculated. In both cases symptoms of the 

disease did not show significant differences from each other.

Inoculation of young seedlings with isolates of V. albo-atrum derived either from 

tomato or lucerne (including USA isolates) caused significant reductions in height, and 

root length and in RGR of tomato plants. All young tomato seedlings were susceptible to 

V. albo-atrum.

Salt tolerant plants of M. media cv. Rambler showed the highest degree of 

susceptibility to V. albo-atrum both under normal and saline conditions. The 

susceptibility of salt tolerant plants increased with increasing level of tolerance to 

salinity; newly-generated salt tolerant lines of M. media in particular showed great 

susceptibility to the pathogen.

NaCl both delayed and reduced germination in tomato and lucerne at 100 and 250 

mM NaCl respectively. Differences were observed between the cultivars in response to 

NaCl. The cultivars of tomato which were most susceptible to NaCl were Sweet 100 FI, 

Margarita (Fa-558), Fantastic FI and Ailsa Craig; the most tolerant ones were L. 

lycopersicon and Edcawy. The seedling stage was susceptible even to lower 

concentrations of NaCl. All the varieties of tomato except L. lycopersicon, showed 

susceptibility to NaCl at around 50 mM. NaCl both reduced the water potential of the 

solution resulting in delay in germination and caused toxic effects on germinating seeds. 

Lucerne seeds, in general, showed more tolerance to NaCl than tomato. Cultivars Bitlis, 

Vela, Rambler and AC Blue J showed susceptibility to NaCl while other cultivars of 

lucerne were tolerant to NaCl up to 250 mM. Lucerne seedlings, as was the case with 

tomato seedlings, showed more susceptibility to NaCl in the seedling stage. At this stage, 

cultivars from USA and Canada showed greater salt tolerance than those cultivars from 

Turkey or Europe.

Cultivars which produced radicle and hypocotyl under 100 mM NaCl were also 

capable of producing roots from the cuttings under the same NaCl concentration.

In this study, proline, an amino acid that generally increases in concentration in 

plant cells in response to water- and salt stress, did not increase under low levels of 

salinity (50 mM NaCl).
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In vitro experiments with V. albo-atrum showed that isolate VI had more 

resistance to anti fungal compounds than that of V2. However, in radial growth 

experiment, isolate V2 grew better than other isolates of V. albo-atrum obtained from 

lucerne.

In terms of radial growth under saline conditions both VI and V2 showed 

tolerance to NaCl up to 150 mM while production of spores was not affected up to 100 

mM NaCl. Their salt-adapted strains, V1-, V2-150 did not show significant differences 

from the control group in terms of radial growth. However, they produced fewer spores 

than the control group. In contrast, V1-, V2-200 strains showed severe reduction in radial 

growth, in their respective medium, and produced fewer spores than the control group.

Long-term effect of NaCl on the growth of isolates of VI and V2 in liquid culture 

reduced the mycelial growth (dry weight) significantly after 50 mM NaCl.

By itself, NaCl caused symptoms and reduced height, and RGR and many other 

growth parameters. The effect of NaCl was especially marked on young plants.

Progress of the disease caused by V. albo-atrum was markedly accelerated by salt 

stress and there was a significant differences in the degree of enhancement of the 

progress of the disease by salinity, were between young and mature tomato plants. 

Overall various growth parameters were lower in the group of plants that were inoculated 

with V. albo-atrum & treated with NaCl than in the groups that received one or other 

treatment. However, some differences were observed between the various cultivars in 

their response to the diseases in the presence of salt. For example, if a cultivar (Ailsa 

Craig or Simge FI) showed susceptibility separately to V. albo-atrum and to NaCl, the 

combined effect of both V. albo-atrum & NaCl on those cultivars was more detrimental 

than the either of the treatments alone. However, if  a cultivar (Margarita Fa-558 or 

Fantastic FI) showed resistance to V. albo-atrum but susceptibility to NaCl, the 

combined effect of both V. albo-atrum & NaCl was not significantly different from the 

effect of NaCl.

The salt-adapted strains of isolate VI did not cause significant reductions, under 

normal conditions when compared to control group, in height, root length, RGR or 

chlorophyll content of leaves of tomato cv. Ailsa Craig with the exception that strain VI- 

150, caused significant reduction in chlorophyll content. In contrast, the salt-adapted
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strains of isolate V2 caused significant reductions in height, RGR or chlorophyll content 

of leaves. However, all salt-adapted strains of the fungus caused significant reductions in 

growth parameters under salinity.

Disease-resistant & salt-tolerant lucerne plants (Vertus, Bilensoy-80, 13R 

Supreme) showed resistance to VI under non-saline and saline conditions (50 mM NaCl); 

however, disease-susceptible & salt-tolerant lucerne plants (R-350-N) or disease- and 

salt-susceptible cultivar (Rambler) did not show resistance to VI under those conditions. 

Disease resistant and in vitro regenerated salt tolerant plants (regenerated salt tolerant cv. 

Vertus) did not loose its resistance to V. albo-atrum under non-saline and saline 

conditions. Development of salt tolerant crops should therefore, involve selection of 

strains that maintain or improve its resistance to pathogens.

PAL activity was observed to increase when lucerne cells were treated with an 

elicitor from V. albo-atrum. The increase was lower when the cells were treated with 

both elicitor and 50 mM NaCl. However, the increase in PAL activity was minimized 

both at high concentration of elicitor and NaCl (200 mM).

6.8. Limitations.

It was quite difficult to achieve everything intended. The limited time available, 

the nature of the experiments and problems with the seed stock prevented many questions 

from being answered fully. Therefore, there is a great deal of possible future work 

arising from work performed and data generated by this study.

Since the salt tolerant plants have already showed susceptibility to V. albo-atrum, 

under non-saline or saline (50 mM NaCl) conditions, salt tolerant M. media cv. Rambler 

(0-, 200-, 300- and 350- mM salt tolerant plants) was not tested under increasing NaCl 

concentrations with VI isolate.

Salinity experiments with the plants regenerated from NaCl-selected cell lines and 

unselected original plants were performed under controlled conditions. It is very 

important to know whether this salt tolerant trait in regenerated plants can be passed 

through the seeds. Such information will be important for a more complete 

understanding of the mechanism of salt tolerance in regenerated plants.
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6.9. Suggestions for future work.

Salinity is one of the most devastating problems in the irrigated regions of the 

world. The usual strategy for land reclamation has been either to install drainage systems 

to remove excess salts or to leach the salt from the soil with high quality water. 

Alternatively, the land could be made productive by using salt tolerant plants. However, 

as shown in this work, salt tolerant plants are not always a solution when they face a 

pathogen under saline conditions. Development of crop varieties with increased salt 

tolerance is crucial to provide a long-term solution to the problem of salinization, 

however, the problem of improving salt tolerance in plants becomes more complex when 

plants are also exposed to other environmental and biotic factors. Although interactions 

between heat and drought, and heavy metal toxicity and biotic stresses have been studied 

in certain cases, the interactions between salinity and fungus should also be considered 

carefully. For example, disease-resistant plants should be generated from suspension 

cells that have been adapted to higher salt concentrations. In the short term, it has been 

possible to regenerate 50 mM NaCl-tolerant plants from a disease resistant cultivar of 

lucerne. However, it is not known if further increase in the level of salt tolerance of the 

resistant cultivar will decrease the resistance of the plants towards the fungus under non

saline and saline conditions. Meanwhile, commercially available drought or salt tolerant 

plants should be considered to maximize the crop production and marketable fruit yield.

The research described here focused on the study of the effect of salinity on 

tomato and lucerne. The results have led to the recommendation of cultivars from USA, 

which are salt tolerant and disease resistant. Those cultivars should be selected for salt 

tolerance and disease resistance work under salinity. Fantastic FI, a tomato variety, 

looked promising for disease resistance work. This cultivar should be considered for the 

selection of salt tolerance work. However, further screening of this variety is required to 

assess the effect of salinity on growth, development and most importantly fruit yield and 

quality in a semi-arid environment.

Changes in gene expression have been reported in various crops and 

microorganisms when they were subjected to the various environmental stresses such as 

salt, drought and heat stress (Katsuhara & Kawasaki, 1996; personal communication with 

Dr. Tinley Basset). Therefore, salt-adapted strains of the fungus should be examined at a
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molecular level to see if any changes have been made in gene-sequence by the 

accumulated of NaCl. If they have been made, these genes should be characterized.

The potential of the V2 strain of V. albo-atrum and other species of Verticillium 

that are ‘weak’ pathogens, should be assessed as biocontrol agents to protect the salt 

tolerant lucerne strains against V. albo-atrum.

A further objective for future research would be to assess the long-term effects of 

accumulation of salts within the soil profile and ground water. In order to achieve the 

proposed future objectives for the long-term improvement crop production in saline 

environments the research must be carried out with close association between scientists, 

commercial growers, retailers and consumers. Plant scientists including plant 

physiologists, molecular biologists, geneticists and plant pathologists should work 

together to improve agricultural productivity in many areas of the world.
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