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SUMMARY

The central aim of the study was to describe the spatial arrangement of the zooids 

within a colony of Scrupocellaria reptans, in sufficient detail to reveal previously 

undescribed characteristics.

A rudimentary population study used monthly sampling to ascertain basic biological 

characteristics of the species. These included settlement period, colony size changes 

over time, and longevity. Settlement period was June to August; colonies were 

annual, but suffered extensive partial mortality mid-winter.

The inadvertent collection of Tricellaria inopinata, a species new to Britain, by a 

colleague, necessitated an investigation into its confused taxonomy, via the literature 

and historical and recent material. The species was differentiated from two similar 

species.

A detailed study was made of the spatial arrangement of autozooids and polymorphic 

heterozooids within a colony of S. reptans. The arrangement of autozooids could 

reveal details of colony structure, whilst that of polymorphs, not easily ‘understood’, 

could suggest new lines of enquiry. The methodology involved ‘mapping’ the spatial 

arrangement of zooids within a colony, in respect of a number of parameters, in such 

a way that they could be investigated singly or in any combination. A similar study 

was made in respect of T. inopinata. Did any new characteristics of S. reptans occur 

more widely?

Colonies of both species had a definite structure and form. The structure, which 

involved a small number of long sequences of short ‘intemodes’, from each of which 

laterally limited ‘aggregations’ of short sequences, of generally longer ‘intemodes’, 

developed, essentially the same in both species. The form was slightly different. 

Polymorphs occurred constantly, predictably or unpredictably. The spatial 

arrangement of the latter was very complex, probably involved an intrinsically 

spatial element, positive and negative associations between polymorphs, and their 

level of occurrence. There were numerous asymmetries of occurrence, many 

unexpected, and some answers, but many unanswered questions.
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CHAPTER 1 INTRODUCTION

1.1 ORGANISATION OF THESIS

Before introducing the central focus of this thesis and discussing the broad field that 

underlies it, it is necessary to outline its overall arrangement and the contents of the 

chapters within it.

Chapter 1 provides a general introduction to the subject of colonial life and its 

taxonomic concentration in the eusocial insects and colonial marine invertebrates. 

The similarities and differences between the two groups are briefly considered, with 

particular emphasis on polymorphism, how it arises, and the extent of its occurrence. 

This is followed by a general introduction to the Bryozoa, their general biology, 

structure, classification and growth forms. Particular emphasis is placed on their 

colonial nature, variations in the level of colonial integration, and the role of 

polymorphic individuals within this.

Chapter 2 is a very preliminary population study that aimed only to establish certain 

basic biological characteristics of the species central to the study, Scrupocellaria 

reptans. I felt I should know when settlement occurred, how colonies grew, how 

large they became, and how long they lived; before conducting a detailed study of the 

way zooids were spatially arranged within a colony.

Chapter 3 is concerned with the description and taxonomic identity of a species of 

cellularine Bryozoa, which was collected by a colleague as S. reptans, but proved to 

be a species of Tricellaria new to Britain, and indeed to the Atlantic. It was apparent 

from the literature that there was some confusion regarding the characteristics of 

three sirpilar species. The resolution of this involved an extensive literature search 

and the examination of historical and recent material.

(This Chapter, in somewhat different form, constituted the taxonomic element of 

‘The distribution, origins and taxonomy of Tricellaria inopinata d’Hondt and
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Occhipinti Ambrogi, 1985, an invasive bryozoan new to the Atlantic’; Dyrynda et al., 

Journal of Natural History, 2000, 34, pp. 1993-2006).

Chapter 4 is the ‘Materials and Methods’ section in respect of the central part of the 

study, which investigated the spatial arrangement of autozooids and heterozooids 

within a colony of S. reptans. This sets out the objectives of the study, and various 

considerations which were taken into account in efforts to achieve them. It describes 

in detail a coding scheme which was used to record details of all relevant parameters, 

and was central to the investigation. The advantages and disadvantages of various 

approaches to using this are discussed. There is a brief review of the preliminary, 

detailed and supplementary studies which were carried out.

Chapter 5 introduces, and details the results of, preliminary, detailed and 

supplementary studies in respect of S. reptans. In large measure the results, generally 

in table form, relate zooids to various parameters of their pattern of occurrence 

within the colony. Some important results were only apparent as a result of 

diagrammatic representations. Because the supplementary studies often replicated 

earlier studies, and because there were certain variations in overall level of 

occurrence, the results were collated and summarised.

Chapter 6, without a preliminary investigation, details the results of similar studies 

on Tricellaria inopinata. These investigations were carried out to ascertain whether 

or not characteristics newly described for S. reptans, also obtained in a species from a 

closely related gepus, and therefore had a wider applicability.

Chapter 7, the conclusion, 4iscusses the results in respect of both species, in respect 

of the arrangement of both autozooids^ and polymorphic heterozooids. The 

similarities and differences between the two species are highlighted. A very similar 

colonial structure was identified in both species. Some results, quite clear in 

themselves, raised further questions as to how and perhaps why they occurred. Other 

results, perhaps inevitably in an investigation of this nature, although very definite, 

did not suggest to me any possible explanation for their occurrence.
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1.2 INTRODUCTION

The central focus of this thesis is on the structural, and perhaps functional, 

organisation of two species of arborescent cellularine Bryozoa from closely related 

genera, Scrupocellaria reptans and Tricellaria inopinata (Family Candidae) in as 

much as this is manifested in the spatial arrangement of the constituent zooids within 

a colony. All bryozoans are colonial organisms, the colony being composed of a 

number, often a very great number, of individual zooids which -  formed by asexual 

budding -  are assumed to be genetically identical. Individual zooids are rarely of 

only one form, monomorphic, more often occurring in a variety of discrete forms, 

polymorphic. Overall colony structure and form result from the characteristics of the 

budding process of the individual species, astogeny, and, to a greater or lesser extent, 

environmental factors. Evolution acts at the level o f the colony, and its overall form 

and the nature, number and spatial distribution of all its zooids, both autozooids and 

polymorphic heterozooids, are seen as the result of the evolutionary process.

Essentially I am looking at the spatial relationships between all of the constituent 

zooids of a colony. Current bryozoan taxonomy is largely based on the morphology 

of autozooids, although the types of polymorph present, their numbers, morphology 

and spatial distribution, are also widely used. Information within the literature 

regarding the latter, especially those polymorphs whose occurrence within the colony 

is irregular, is invariably qualitative. The arrangement of autozooids, perhaps via 

intermediate structures such as intemodes (branches) or fronds, and the resulting 

structure and morphology of the colony, are much Jess frequently utilised 

taxonpmically.

This introduction will therefore need tp include a general intro^qcjion to the Bryozoa 

as a grpup, their general biology an(j pjassification. In particular it will concentrate 

on thpse aspects of their biology that relate to their colonial nature. The budding 

process, astogeny; the spatial arrangement of all zooids, autozobids and heterozooids 

within a colony; colony form and variations in the level of colonial integration.

3



In order that the colonial nature of biyozoans can be seen in a wider context, it is 

desirable to discuss briefly the nature of social and colonial life, and the phenomenon 

of polymorphism, which is often although not always, an important element of both. 

As a prelude to that discussion it is necessary to say something about the nature of 

clonal and aclonal organisms, the characteristics of which are of considerable 

importance in relation to social and colonial life.

1.3 CLONAL AND ACLONAL ANIMALS

The essential difference between clonal and aclonal animals “is that parents and 

progeny in the former are genetically identical whereas in the latter they are not” 

(Hughes, 1989). A clone, therefore, “is an assemblage of individuals that are 

genetically identical by descent” (Bell, 1982). The individual clone mates may exist 

as separate individuals (unitary) or remain connected in a colony (colonial).

Asexual reproduction may occur in a variety o f ways which, in the first instance, may 

be distinguished by whether they are gametic or agametic. Within the former, i.e. 

parthenogenesis, the segregated germ line is involved, each offspring develops from a 

single cell, and female gametes give rise to new individuals without fertilisation by a 

male gamete. Whether cloning occurs depends on the details o f the process. 

Parthenogenetic eggs may be haploid and develop into males, arrhenotoky, as in 

hymenopterans; or diploid and develop into females, thelytoky. Diploid eggs may 

result in cloning but the preservation of the maternal genome depends on how they 

became diploid (Hughes, 1989). In apomixis meiosis is suppressed, there is a single 

mitotic division, there is no genetic mixing, and genotypes are identical by descent. 

In automixis meiosis does occur, and the diploid genome is restored by a variety of 

mechanisms which may occur before, during or after meiosis. In the first of these, 

premeiotic restitution, in which chromosome numbers double without concurrent 

nuclear division (and, assuming that only sister chromatids pair) the process is 

equivalent to apomixis, and there is no genetic mixing (Bell, 1982). Intrameiotic and 

postmeiotic restitution both involve genetic mixing (Hughes, 1989). Parthenogenesis 

of one type or another (excluding rare cases) is known to occur in seven phyla 

(Hughes, 1989):-

4



• Gastrotricha

• Rotifera

• Nematoda

• Mollusca

• Arthropoda

• Tardigrada

• Chordata

In agametic asexual reproduction there is no involvement of a segregated germ line, 

offspring develop from a group of cells, and the production of new individuals occurs 

in a variety of ways:-

• Polyembryony, the development of a number of embryos from a single 

zygote, occurs rarely, but is characteristic of cyclostome bryozoans (Harmer, 

1893; Ryland, 1996; Craig et ah, 1997), and certain parasitic hymenopterans 

(Askew, 1971).

• Fragmentation due to external forces results, in some animals, in new 

individuals developing from the fragments, e.g. many echinoderms, some 

annelids.

• An individual may as a result of undergoing fission; give rise to two. It 

occurs in many echinoderms (Emson and Wilkie, 1980) without 

morphological modification; architomy (Hughes, 1989). In other taxa, 

notably turbellarians and annelids, there is morphological modification pridi* 

to fission; paratomy (Hughes, 1989).

• An individual may, by laceration, perhaps repeated, shed small volumes of 

tissue, each of which develops into a new individual. This occurs notably in 

acontiate anemones, and in some benthic ctenophores and turbellarians 

(Hughes, 1989).

• New individuals may arise as a result of the process of budding, the 

formation of new individuals from primordial tissue by growth and cellular 

differentiation, without division of the parent (Hughes, 1989). In many 

instances the newly budded individuals remain physically, and often 

physiologically, connected to their progenitor, and a modular colony, notably 

hydroids, bryozoans, composed of a number of zooids, results. [Such
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colonies pose questions as to what is an individual (Wilson, 1975) since 

individual zooids are frequently, although not universally, able to feed and 

reproduce. From an evolutionary point of view, the colony is the individual 

on which natural selection acts (but see Tuomi and Vuorisalo, 1989)].

Agametic cloning is known to occur in 13 phyla (Hughes, 1989):-

•  Porifera

• Mesozoa

• Ctenophora

• Coelenterata

•  Platyhelminthes

• Nemertea

• Annelida

• Sipuncula

• Phoronida

• Bryozoa

• Entoprocta

• Echinodermata

• Hemichordata

There are a number of advantageous consequences resulting from cloning which 

were summarised by Hughes (1989):-

• High levels of heterozygosity as a result of an absence o f recombination and 

segregation.

•  For the same reason well-adapted genomes are perpetuated.

•  The reproductive rate may be twice that of taxa which produce males.

• Senescence may be delayed or circumvented as somatic copies are developed 

from undifferentiated somatic cells.

•  For all, but especially for non-colonial clones, the risk o f mortality is reduced 

by the physical separation of the ramets of the genet. A high reproductive rate 

also facilitates the replacement of losses.

•  Cloning avoids the allometry between metabolic rate and body mass.
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•  Cloning also avoids the declining surface area to volume ratio that otherwise 

obtains.

• Within a ramet, the fact that modules are isogeneic greatly facilitates the 

production of non-reproductive polymorphic individuals.

Cloning and sexual reproduction are of course not mutually exclusive and the 

widespread occurrence of periods of cloning interspersed with episodes of mixis 

suggests that in evolutionary terms the two are frequently complementary (Lewis, 

1987). The absence of cloning in some animals may be due to developmental 

constraints prohibiting particular cloning pathways. Agametic reproduction requires 

a body plan that can be subdivided, i.e. Arthropods are prevented from any form of 

division by their exoskeleton, and vertebrates by their morphological complexity. 

Alternatively aclonality may result not from any constraint but simply from selection 

pressures (Hughes, 1989).

Within clonal animals it is taxa in which clone mates remain connected, modular 

colonies, which will be considered here. Such colonies with mutually interdependent, 

often polymorphic individuals have an aclonal counterpart in the eusocial insects. A 

brief consideration of their similarities and differences is I believe, relevant.

1.4 SOCIAL AND COLONIAL ANIMALS

1.4.1 Introduction

‘Social’ and ‘colonial’ are terms which, even within the discipline of biology, are 

used imprecisely and often interchangeably. ‘Social’ is often used to refer to less 

than essential associations, and ‘colony’ is frequently used to describe a group of a 

species living within the same area, via more structured groups through to groups 

whose members are obligately mutually interdependent. It is this last characteristic 

which distinguishes the truly social or colonial animals considered here. Colonies 

may consist o f separate motile individuals, and essentially these are restricted to the 

social insects. Alternatively they may consist of physically, and probably 

physiologically connected, non-motile individuals, zooids, which form a collective
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colonial structure. The latter are a more heterogeneous group than the social insects 

and are generally referred to as colonial marine invertebrates.

1.4.2 The eusocial insects

Entomologists concerned with social insects, define the truly social, eusocial, insects, 

in terms of three basic parameters, to differentiate them from species whose 

associations are less fundamental (Wilson, 1975):-

•  Individuals of the same species cooperate in caring for the young.

• There is reproductive division of labour, with only a limited number of 

individuals capable of sexual reproduction.

• There is an overlap of at least two generations, and offspring assist their 

parents for some period of their life.

All eusocial insects are aclonal animals and motile.

1.4.3 The colonial marine invertebrates

The essential characteristics of colonial invertebrates have also been delineated, and 

the three criteria which need to be satisfied for an organism to be designated 

‘colonial’, put forward by Boardman and Cheetham (1973) are generally accepted:-

• The organism consists of asexually produced modules.

•  Modules are physiologically connected, facilitating the sharing of 

resources.

•  There is some degree of colonial coordination of the modules.

As Harvell (1994) has pointed out, ‘by this definition the social insects are not 

strictly speaking ‘colonial’, since modules are not isogeneic and there are no organic 

connections among the modules’. Resources are however shared, modules are 

behaviourally integrated, and the phenomenon of polymorphism, a prominent if  not 

essential characteristic of colonial invertebrates, is also often present. Rosen (1979) 

regarded insect colonies as “discontinuous modular societies”.
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To avoid possible ambiguities, colonies of physically connected ‘units’ are more 

specifically referred to as modular organisms. For modular colonies there is an 

aspect to their organization that is absent from colonies of physically separate 

animals; that is the physical arrangement of the constituent modules or zooids within 

the colony. This will be considered below in Section 1.6.8.

1.4.4 The taxonomic distribution of eusocial and colonial animals

1.4.4.1 THE EUSOCIAL INSECTS

Species of eusocial insects are only found in two of the 25 orders of insects currently 

recognised (Margulis and Schwartz, 1987) the Isoptera, the termites, and the 

Hymenoptera, which includes the bees, wasps and ants.

Before attempting to give some idea of the incidence of eusociality within these 

groups it must be said that many species remain undescribed. For the ants, the group 

about which most is known, Holldobler and Wilson (1990) estimated that while 

-9,500 species have been described, given a binomial name, probably that number 

again remain to be described. Further, and perhaps more importantly, the number of 

species whose behaviour has been investigated to a degree necessary to pronounce on 

their social organization, is minute. Nevertheless it is generally believed that within 

the Isoptera, all -2,000 species are eusocial. In the Hymenoptera the occurrence of 

eusociality is very episodic. In the smaller of the two sub-orders, the Symphyta, there 

are no eusocial species. The second sub-order, the Apocrita, is itself divided into two 

Series, and eusociality is confined to the by far the smaller of the two, the Aculeata 

which includes the ants, bees and wasps. Eusociality occurs often but episodically. 

All species of ant (~9,500spp), but only a small minority, -1,800, of the ~40,0Q0 

species of bee, and -12,000 species of wasp, are eusocial.

1.4.4.2 THE COLONIAL MARINE INVERTEBRATES

Within the 33 phyla in the Kingdom Animalia distinguished by Margulis and 

Schwartz (1987) coloniality is found in only six:-
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• Cnidaria

• Rotifera

• Entoprocta

• Bryozoa

• Hemichordata

• Chordata

The phyla vary considerably in size and in the proportion of species within them that 

are colonial. Colonial invertebrates are very largely marine and constitute a much 

more heterogeneous group than the eusocial insects.

Within the Cnidaria both polypoid and medusoid forms exist and some species have 

both within their life cycle. Coloniality is generally more characteristic of polypoid 

forms although medusoid forms may also occur within generally polypoid colonies. 

The vast majority of the Hydrozoa, in which the polypoid form is generally 

prominent, are colonial. Within the pelagic Siphonophores the colony is composed 

of both medusoid and polypoid forms (Kirkpatrick and Pugh, 1984). Virtually all 

Scyphozoa, in which the medusoid form is pre-eminent are solitary, although a 

minority of the Coronatae (e.g. Stephanoscyphus) have a colonial polypoid stage 

(Wemer, 1979; Barnes, 1980). The majority of the polypoid Anthozoa are colonial; 

all of the octocorals, a variety of different forms, are colonial; and in the Zoantharia, 

most zoanthids, the majority of scleractinian corals and the antipatharians are all 

colonial (Barnes, 1980).

Within the Rotifera among the pelagic species there are a small number of colonial 

forms (Barnes, 1980). The two smaller of the three families within the Eptoprocta 

are colonial (Nielsen, 1989). Pterobranchs, a very small group within the pliylum 

Hemicbordata generally live in aggregations, but in Rhabdopleura individuals are 

connected jsy a stolon (Barnes, 1980). Within the Chqrdates, colonial forms exist in 

the Aspj^apea and the Thaliacea. In the former, the sea-squirts, there are many 

colonial species exhibiting a range of levels of integration (Berrill, 1950b; Millar, 

1970; Sabbadin, 1979). In the latter all pyrosomids and doliolids are colonial (Fraser,

1981).
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The Bryozoa is the only completely colonial phylum, although there is variation in 

the level of their colonial organisation. This is discussed below in Section 1.6.7.

1.4.5 Why is the taxonomic occurrence of eusociality and coloniality 
so episodic?

The taxonomic distribution of eusociality and coloniality exhibits an episodic but 

noticeably clumped distribution. This strongly suggests that while its occurrence is, 

to some degree, related to certain biological characteristics which are associated with 

particular taxonomic groups, other elements are also important.

Does the taxonomic distribution o f agametic cloning and the forms of 

parthenogenesis which result in cloning, relate to the taxonomic occurrence of 

eusociality and coloniality? Whilst agametic cloning is a prerequisite of colony 

formation, it is clear from the taxonomic distribution of the latter (see Sections 1.3 

and 1.4.4.2) that coloniality is of more limited occurrence. The relationship between 

parthenogenesis and eusociality is more tenuous. Parthenogenesis does not occur in 

the Isoptera; and in the Hymenoptera, in the form of arrhenotoky, results in haploid 

males, which are not clonal. The haplodiploid mode of sex determination however 

may play a role in the occurrence of eusociality (see Section 1.4.5.1.1 below).

1.4.5.1 THE EVOLUTION OF EUSOCIALITY

The occurrence of eusociality is taxonomically clumped on a large and small scale. 

How it has evolved in this way is of enormous interest, and theoretical explanations 

and investigative studies have created a vast literature. Nevertheless, no generally 

accepted conclusions have been reached, beyond perhaps, that no single trait can be 

invoked as the causative factor. The situation is quite different in the two orders in 

which it occurs, and a brief survey of the hypotheses advanced, and some of the 

problems associated with them, must suffice.
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1.4.5.1.1 Evolution of eusociality in the Hymenoptera

Because eusociality has arisen at least 11 times in the Hymenoptera, and perhaps only 

once, in the Isoptera, within all other insects, an explanation was sought within the 

characteristics of the group. In almost all of the species of Hymenoptera which have 

been investigated, fertilised eggs produce females and unfertilised eggs males; 

Dzierzon’s rule (Kerr, 1962; Wilson, 1971). This has, via modem genetics, been 

developed into the concept of the haplodiploidy mode of sex determination; a 

characteristic rare in the insects.

Hamilton (1964) put forward a genetic theory, which ascribed a central role for 

haplodiploidy in the evolution of eusociality generally, and in particular the evolution 

of a non-reproductive worker caste. In essence his theory said that for an altruistic 

trait to evolve, the sacrifice of fitness by an individual must be compensated for by an 

increase in the fitness in certain relatives, by a factor greater than the reciprocal 

coefficient of relationship to these relatives. The concept of inclusive fitness. The 

coefficient of relationship is the equivalent of the average fraction of genes shared by 

common descent. The haplodiploid mode of sex determination results in the 

coefficient of relationship among sisters being 3:4, while between mother and 

daughter, it is 1:2. It follows from this that female offspring may increase their 

inclusive fitness more by caring for their younger sisters than by rearing her own 

offspring. According to the theory, hymenopterans should, other things being equal, 

tend to become social (Wilson, 1971).

A number of entomologists have warned against overerpphasis op the 3:4 relatedness 

hypothesis (Alexander;, 1974; Lip and Michener, 1972). Hamilton himself, and 

Wilson, both recogpjsed that the theory cannot, ip itself, completely explain 

eusociality in the Hymenoptera. According to Andersson (1984) “at least five lines 

pf evidence cast doubt on the overwhelming importance sometimes ascribed to 

haplodiploidy”. Primarily, whilst all hymenopterans are haplodiploid only -8%  of 

species are eusocial, and eusociality is characteristic of all termites which are diploid. 

Hamilton’s theory also makes a number o f specific assumptions regarding single
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male mating, a single queen, and the sex ratio of reproductives actually produced 

within a colony, which may not actually be met (Andersson, 1984).

Trivers and Hare (1976) in respect of the sex ratio of reproductive offspring believed 

that if Hamilton’s theory was correct, the sterile workers’ inclusive fitness would be 

best served if the ratio of reproductive females to males was 3:1, whilst for queens 

the optimum ratio would be 1:1. Using data from a number of previous studies, 

predominantly on ants, they felt the results generally approximated to a 3:1 female to 

male ratio.

The matter remains contentious, but indirect kin selection, the propagation of genes 

through relatives rather than offspring, has probably been important in the evolution 

of eusociality in the Hymenoptera, whatever the importance of haplodiploidy may 

prove to be (West-Eberhard, 1975; Wilson, 1975; Sudd and Franks, 1987).

1.4.5.1.2 Evolution of eusociality in the Isoptera

All 2,200 known extant species of termite are believed to have sterile castes 

(Andersson, 1984). Termites are diploid, and workers are of both sexes. Several 

hypotheses have been put forward to explain their eusociality.

• The symbiont hypothesis. Termites require symbiotic intestinal Protozoa to 

digest cellulose, and as these are lost with each moult, termites must obtain 

new Protozoa from other colony members, which they do by anal 

trophallaxis. This requires social life until adulthood, but does not necessarily 

lead to eusociality.

• The inbreeding hypothesis. It has been suggested that inbreeding may lead to 

high degrees of relatedpess withip (polonies and thus facilitate eusociality 

(Bartz, 1979).

• ChromosomqJ linkage hypothesis. In several termites part of the genome is 

propagated as a sex-linked complex. Lacy (1980) suggested that this 

increased relatedness among brothers and among sisters, reduced brother- 

sister relatedness, and could lead to termite workers favouring their own sex, 

which might facilitate the evolution o f sterile workers.
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1.4.5.1.3 Preconditions favouring eusociality in the insects

The selective mechanisms above, considered on their own, do not appear to explain 

why eusociality has evolved within the insects, in the way it has. The evolution of 

eusociality has no simple causality. What preconditions have facilitated eusociality?

A number of traits, favouring eusociality have been identified;-

• Nest building and repeated food provisioning (Hamilton, 1972).

• Defence of offspring (Evans, 1977).

• Overlapping adult generations (Wilson, 1971).

• Mutualism (Lin and Michener, 1972; West-Eberhard, 1975).

• Manipulation of daughters by queens.

All o f the above may be steps on the way to eusociality but they do not explain the 

evolution of a sterile worker caste.

1.4.5.2 THE EVOLUTION OF COLONIALITY

All colonial invertebrates as defined above are clonal animals, and the evolution of 

coloniality is very different from that of aclonal unitary animals evolving to 

eusociality. It is essentially the non-separation of clone mates and the development 

of their mutual interdependence. The concepts underlying colony formation and 

development in colonial marine invertebrates were formulated and reviewed by 

Bekleiqishev (1969) in his ‘Comparative anatomy of invertebrates’, who concluded 

that the development of colonies progressed in three major ways.

• By a reduction in thp individuality of individual zooids.

•  By an increase in the individuality of the colony.

^ By the development of cormidia, regular groupings of various zooid fprms 

\vithin the colony.

Beklemishev distinguished a number of aspects to each of these and in many cases 

described a series o f intermediate stages in the development of true colonial 

organisation.

14



Firstly, the level of an individual zooid’s individuality, their degree of independence 

vis a vis the colony, which involves a number of different parameters. The nature 

and extent of the organic connections between zooids is clearly very important. The 

permanence of the links between individual zooids is fundamental and in true 

colonial marine invertebrates, either all individuals remain connected or, in certain 

groups, only certain specific forms become detached. The size and structure of 

zooids within a colony is reduced relative to individuals of related free-living species. 

Within colonies, the lifespan of the colony is generally greater than that of many of 

its constituent zooids, which may undergo complete or partial degeneration or 

regeneration, e.g. the polypides of many bryozoans. Polymorphism, the development 

of different zooid morphologies within a single colony, related to division of labour 

within it, is an important characteristic of many, but by no means all colonial forms, 

as will be discussed below. The extent of its occurrence varies considerably and in 

extreme cases, such as the various kenozooids of the Bryozoa, individual zooids may 

be unable to feed or to reproduce. In some colonial groups the morphology of a 

zooid may be determined by its precise location within the colony. Finally, the 

partial or total dissolution of zooids may occur as a result of the requirements of the 

colony.

Secondly, there is the increase in the individuality of the colony, which may occur in 

a variety of ways. The formation and development of a coenosarc is a major aspect 

of the colonial nature of some colonial groups. The creation of colonial organs, 

sometimes necessary for a colony -  which is much larger than an individual zooid -  

may occur in various ways. It may be achieved by the specialisation and enhancement 

of the functions of certain zooids, polymorphism, or by the creation of organs 

through the merging of a number of zooids. Tbe development of physiological 

integration in a colony is o f fundamental importance in colonial invertebrates, and 

this involves some form of colonial circulatory apparatus. Increasing colonial control 

oyer its constituent zooids is observable in variations in a number of characteristics 

of colony growth and form. This may involve a particular growth sequence, such as 

the branching pattern of certain arborescent hydrozoans and bryozoans, or a strictly 

determinate growth sequence. It may manifest itself in the final shape and/or form of 

the colony, and in some largely motile colonies, it may be a colony imposed
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symmetry of form. Related to this are degrees of complexity in the growth of the 

colony, largely manifested in differences in the morphology of zooids in different 

generations of the colony, but which may also involve changes in the pattern of 

growth as the colony develops. The extent of the colonial phase, within a life cycle 

which involves sexual and asexual reproduction, and hence includes a solitary phase, 

is also indicative of the level of colonial control. Asexual reproduction may occur 

earlier or later, and colonial life occupy a greater or lesser proportion of the whole. 

The capacity of certain colonies to produce new colonies, by division or budding or 

the production of stolons, is indicative of the primacy of the colony.

Thirdly, there is the development of cormidia, ‘colonies within colonies’, groups of 

zooids of different morphologies, which occur regularly, and which jointly fulfil 

several different functions. Beklemishev felt that the formation of cormidia played a 

minor role in the development of coloniality, compared to the other two processes.

The above theoretical approach was centred on levels (zooids, cormidia and the 

colony) and degrees o f individuality, in relation to the physical structure of a colony. 

Mackie (1986) offered a different perspective stressing physiological and behavioural 

aspects of coloniality. Temporary colonies could initially form in clonal animals 

whenever the rate of bud production exceeded that of bud separation. Such colonies 

may well have possessed a competitive advantage, in terms of substrate colonisation, 

over separate individuals, clonal or unitary. The existence of primary tissue 

connections could facilitate the transfer of metabolites, and this in turn the possibility 

of non-feeding zooids fulfilling specialised functions. Further it could facilitate the 

transmission of behavioural responses to external stimuli throughout the colony and 

thus a colony-wide response.

Mackie (1986) also nptpd that in relation to modular colonies, that it was the 

characteristics of sessile colonies (the vast majority of colonies are sessile) that were 

generally considered. Such colonies often exhibit indeterminate growth and the 

ability to grow rapidly. As a result some achieve a very large size, and for those 

species which are able to regenerate from fragments, great longevity. Modular 

growth frequently results in a branching structure that automatically ‘regulates
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competition between zooids’ (Knight-Jones and Moyse, 1961) and is presumably the 

most effective arrangement for feeding (Bayer, 1973). Plasticity of size and form is 

characteristic. Pelagic colonies are generally very different; they do not exhibit 

indeterminate growth, branching is uncommon and colonies show little plasticity. As 

a result of their motility however, some are amongst the most highly integrated of 

forms (Mackie, 1986).

Variations in the level of colonial integration in the Bryozoa are discussed below in 

Section 1.6.7.

1.5 POLYMORPHISM

1.5.1 Introduction

Polymorphism of complete organisms within the kingdom Animalia is, if we exclude 

sexual dimorphism, of infrequent occurrence. It is essentially concentrated in the 

aclonal terrestrial social insects, and the clonal, aquatic, largely marine, colonial 

invertebrates. In both groups their social or colonial character involves the obligate 

mutual interdependence of the individual members of the colony. This may involve 

division of labour, which may be achieved, especially in motile aclonal animals by 

polyethism, or may involve, especially in sessile clonal animals, polymorphism. 

There are great differences between the two groups, most notably in how the 

polymorphic individuals are produced, and indeed how all ‘individuals’ are 

produced! (As discussed in Section 1.3).

Few accounts consider polymorphism as a phenomenon; that is in both the eusocial 

insects and the colonial invertebrates, and Harvell’s (1994) comprehensive review of 

the topic is very useful. The generally episodic occurrence o f eusociality within the 

insects, and coloniality within the kingdom Animalia, is also apparent in respect of 

polymorphism, which exhibits an even more restricted distribution.
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1.5.2 Taxonomic occurrence of polymorphism

1.5.2.1 THE EUSOCIAL INSECTS

Polymorphism has evolved only sporadically in the eusocial insects. Within the 

Isoptera generally, polymorphism is much more prevalent within the soldier than the 

worker caste. Within the higher termites however polymorphism within the worker 

caste is more developed (Wilson, 1971). Within the ants, where polymorphism 

exhibits the greatest structural differentiation between castes, the differentiation of 

workers into sub-castes, minor and major workers (soldiers) is uncommon. Of 263 

extant genera, in only 44 are there species with a prominent degree of polymorphism 

within the worker caste (Oster and Wilson, 1978). Worker sub-castes are essentially 

absent in the bees and wasps.

1.5.2.2 THE COLONIAL MARINE INVERTEBRATES

In only three of the six phyla which contain colonial species, the Cnidaria, Bryozoa, 

and the Chordata (within the Tunicata) is polymorphism a notable feature. Its 

occurrence is episodic in both the Cnidaria and the Chordata, and in the Bryozoa 

where its occurrence is most frequent, it is not universal.

Within the Cnidaria, polymorphism is absent from the Scyphozoa, rare in the 

Anthozoa, and well developed in the orders Hydroida (benthic) and Siphonophora 

(pelagic) within the Hydrozoa. It is essentially absent from the other orders of the 

class.

Polymorphism is present ill only one of the three classes within the Tunicata, the 

thaliaceans. Salps exist in solitary and aggregate forms, but true polymorphism is 

only present in the doliolids.

Polymorphism within the Bryozoa will be discussed in detail within the section on 

brydzoans below. The level of occurrence varies greatly in extent within the different 

classes, and indeed at all taxonomic levels.
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1.5.3 Why is the taxonomic occurrence of polymorphism so 
episodic?

The episodic nature of polymorphism, within the groups in which it occurs, poses the 

obvious question as to the factors underlying this. In respect of the colonial marine 

invertebrates several explanations have been put forward.

1.5.3.1 THE OCCURRENCE OF POLYMORPHISM IS RELATED TO 
EVOLUTIONARY STATUS

Firstly, there is the argument that since polymorphism is a derived character 

(Cheetham and Cook, 1983) found largely in the most derived clades of the various 

colonial groups in which it occurs, that this in itself could account for the observed 

pattern of polymorph occurrence. There is much evidence in support of this, but 

there is some danger of a circular argument, when presence or absence of 

polymorphism is used in drawing up phytogenies (Harvell, 1994). Within the 

Cnidaria, the paucity of polymorphism in the scleractinian corals could be explained 

thus, and the primitive position of the Anthozoa, in which polymorphism is rare, 

within the phylum, would appear substantiated by its possession of linear rather than 

circular mitochondrial DNA (Bridge et al., 1992). However polymorphism is 

characteristic of the Pennatulacea within the class. Within the hydroids 

polymorphism is rare in the Athecata and much more developed in the Thecata 

(Petersen, 1979). Within the Bryozoa, as discussed below, polymorphism is 

completely absent from the Phylactolaemata, and it is also not well developed in the 

Cyclostomatida and the Ctenostomatida, both of which are considered more primitive 

than the Cheilostomatida, in which polymorphism is much more frilly developed. 

Stratigraphical evidence supports the view of an earlier origination of the 

ctenostomes than the cheilostomes (Cheetham and Cook, 1983). Within the chordate 

Tunicata, polymorphism is completely absent from the ascidians, which Berrill 

(1950b) considered the most primitive class of the group, and is present only in the 

thaliaceans. In general the absence of polymorphism in certain colonial marine 

invertebrates could well be a plesiomorphic condition. Cladograms based on 

molecular characters are necessary to substantiate this (Harvell, 1994).
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1.5.3.2 COMPARTMENTALISATION

It is arguable that for specialisation of individuals to develop it is necessary to have 

separate compartmentalised individuals. (Ryland (1979) has pointed out that the 

advantages of compartmentalisation would be nullified if there was no system for the 

efficient transfer of metabolites). Within the Bryozoa polymorphism is only 

completely absent from one admittedly veiy small class, the Phylactolaemata. The 

autozooids of this class are unlike those of all other bryozoans in that they share a 

continuous body coelom, and in that respect are not separate zooids (Ryland, 1979). 

There is some disagreement concerning when zooids are, and are not, separate. 

According to Harvell (1994) species of thecate hydroids and siphonophores are 

highly integrated and polymorphism is very highly developed, although they are the 

least compartmentalised of any colony, their “polyps sharing a common gut”. 

Mackie (1986) states that “in cnidarian colonies the gut cavity is continuous 

throughout the colony and transport of nutrients is simple and rapid”. (Rees (1971) 

found such rapid transport in the hydroid Pennaria, and Mackie and Boag (1963) 

found it in a siphonophore). A very different view of the degree of separation of 

zooids in thecate hydroids is expressed by Cornelius (1995). He refers to the basal 

sphincter at the junction of the hydranth and the coenosarc, and to the most obvious 

function of the coenosarc as facilitating the transfer of metabolites between zooids. 

He states “the coenosarc is ‘common property’, belonging to no one polyp in the 

colony but to them all”. From this perspective the coenosarc is not a ‘common gut’ 

but a rapid transport system analogous to the bryozoan funiculus.

1.5.3.3 ENERGETIC COSTS

It has been argued that energetic costs, since non-feeding polymorphs are by 

definition a nutritional drain on the colony, could be a constraining factor. Harvell 

(1994) discussing this, said that if  this was the case she would have expected species 

which enjoyed an energy subsidy from endosymbiotic photosynthetic algae, such as 

scleractinian corals, to be at an advantage relative to organisms such as hydroids and 

bryozoans which did not. I am not sure this is a valid argument since it would surely 

be the total available energy rather than its source that would be the crucial factor.
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There is clearly an energetic cost to the production of heterozooids but costs and 

benefits are not easily, and have not been, quantified (Harvell, 1994). Colonies of 

Membranipora membranacea in the field in which spines were induced by weekly 

exposure to nudibranch extract grew more slowly than control colonies (Harvell, 

1992), and the costs of spine production also include reduced reproductive rate 

(Yoshioka, 1982).

1.5.4 Factors facilitating the occurrence and maintenance of 
polymorphism in colonial marine invertebrates

Harvell (1994) suggested that the high incidence of polymorphism in some colonial 

marine invertebrates results from, firstly, unusually high origination rates and, 

secondly, strong natural selection favouring division of labour in colonies constituted 

of isogeneic modules.

1.5.4.1 HIGH ORIGINATION RATES

Harvell argued that high origination rates of morphological novelties are facilitated 

by four features

• the iterated developmental process.

•  the late differentiation of the germ line.

•  the lability of signal transduction pathways.

•  the potential for partially functioning “hopeful monsters” to be nurtured by 

the colony.

Harvell also felt that origination rates of morphological novelties in colonial marine 

invertebrates may be high due to their propensity for environmentally induced 

heterochronic shifts, and that genetic assimilation of environmentally induced 

variants could be facilitated by the late differentiation of germ cells and their 

redifferentiation in each nevyly budded zooid.

1.5.4.2 PHENOTYPIC PLASTICITY

Phenotypic plasticity may facilitate and promote the origination of novel forms 

(West-Eberhard, 1989) and the propensity for plasticity in the colonial invertebrates
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may dispose them to high origination rates of such novelties. High phenotypic 

plasticity is associated with inbreeding, producing low heterozygosity (Lemer, 1954; 

Palmer, 1986) and many colonial marine invertebrates are likely to be inbred, due to 

very limited larval dispersal. Philopatry and inbreeding may prove to be 

characteristic of colonial benthic invertebrates (Jackson, 1986). Hughes (1989) 

suggested that these traits may not be side-effects resulting from short-distance 

dispersed, but result from selection pressures, given the variety of mechanisms 

restricting larval dispersal in different taxa. Harvell (1994) suggested a possible link 

between families with planktotrophic larvae and hence long distance dispersal, and 

low levels of polymorphism. It is of course also true that planktotrophic larvae are 

considered the plesiomorphic condition.

1.5.4.3 STABLE ENVIRONMENTS

The idea that polymorphism would be facilitated by stable environments and constant 

conditions seems reasonable and has been widely accepted (Schopf, 1973; Moyano,

1982). However as Hughes and Jackson (1990) observed, the evidence is not 

completely convincing in several respects. The idea derived in large part from 

Wilson’s (1968) ‘The ergonomics of caste in the social insects’.

Wilson addressed the problem of why the ratios of the castes in a colony of social 

insects varied between species. With the assumption that natural selection occurred 

at the level of the colony he felt that, “this matter of the presence or absence of a 

given caste, together with its relative abundance when present, should be susceptible 

to some form of optimisation theory”. A preliminary Linear Programming Model 

resulted in a number of predictions. Amongst these were firstly, that “as long as 

cpntingencies occur with relative constant frequencies, it is of advantage for the 

species to evolve so that in each mature colony there is one caste specialised to 

respond to each Jdpd of contingency”. Secondly the model predicted that, “in a 

cpnstant environment, caste determination should evolve so that each caste became 

Increasingly specialised to its single assigned task”. He recognised that observed 

levels of polymorphism within the social insects were lower than would be expected 

on this basis. This led to his proposing that there must be opposing selection
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pressures, the most obvious of which were fluctuating environmental conditions. A 

survey of the level of polymorphism occurrence in a number of regional ant faunas 

broadly demonstrated that the level of polymorphism decreased the further one 

travelled from the tropics. There were exceptions but he concluded that the results 

were consistent with the prediction from the ergonomic theory.

Schopf (1973), on the basis of Wilson’s model and his study of a number of 

taxonomic papers, investigated polymorphism within the Bryozoa. He reviewed a 

number of regional bryozoan surveys within the literature, in respect of the species 

present, and the extent of their polymorphism, in three very different environments

• The tropical West Atlantic, <125 metres deep.

• The American Arctic, <150 metres deep.

• The Atlantic deep sea, >2000 metres deep.

He also investigated a number of estuarine species.

Schopf considered that the first and third of the above were more stable, constant 

environments, than the second and the estuarine habitats.

The stability or otherwise of environmental conditions, in as much as they affect 

bryozoans, is not simply a matter of latitude, as Schopf recognised. Unfortunately he 

did not consider all polymorphs, confining his attentions to avicularia and vibracula, 

and the number of these forms a species possessed. The results, in terms of the 

percentage of species with one polymorph, within the different environments, were 

not completely as anticipated. Although none of the 10 estuarine species had even 

one polymorph (not unexpected) the percentage occurrence within the three other 

environments was remarkably similar, at 75%. When the occurrence of two or more 

polymorphs was considered, the incidence was higher in the tropical West Atlantic 

than in the other two environments, by 50%. However, the rate o f occurrence in the 

shallow Arctic was very similar to that in the deep Atlantic. The results were 

therefore, in my opinion, inconclusive. This may be due to variations in sample size, 

an inaccurate assessment of the stability or otherwise of environmental conditions 

(in as much as they affect bryozoans) or perhaps, because the overall incidence of
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polymorphism was not considered, and perhaps indeed, cannot easily be quantified. 

Nevertheless Schopf felt that they confirmed the predictions of the theory.

Other studies, including (Moyano, 1982), have also concluded that environmental 

stability promoted zooidal polymorphism. This view was strongly challenged by 

Hughes and Jackson (1990). They attempted to quantify a more limited range of 

abiotic environmental parameters rather than classifying environments in broad 

terms. They also adopted a more systematic quantified approach to morphological 

variation which included all polymorphs not just avicularia and vibracula. They 

analysed the distribution of polymorphism in cheilostomes in a number of regional 

studies and concluded that, “it provides no evidence for a causal relationship between 

habitat constancy and morphological specialisation at the zooidal level”. They went 

further, that “the analogy between zooidal polymorphism and the caste system in 

social insects (Schopf, 1973) may not be as close as was originally believed”.

Cheetham (1973) in his study of polymorphism in Poricellaria and Vincularia, 

observed the opposing trends (one increasing and one decreasing) which the two 

species exhibited in this respect. Much of the material studied was from sympatric 

species of the two genera, and he observed that if Schopf s claim was valid, the two 

genera must have been responding to different facets of the same environment.

1.5.5 Mechanisms by which polymorphs develop and are 
maintained

1.5.5.1 HETEROCHRONY

Heterochrony was defined as a change in the timing or rate of a developmental event 

relative to that of an ancestor (Gould, 1977). Alberch et al. (1979) defined separate 

parameters for growth rate changes, and variations in the timing of growth initiation 

and offset. They distinguished descendents, relative to their ancestors, with reduced 

morphologies, paedomorphic, from those with enhanced morphologies, peramorphic. 

The former can result from a decrease in growth rate (neoteny), early growth offset 

(progenesis) or delayed growth onset (post-displacement). Peramorphic 

morphologies can result from increases in growth rate (acceleration), early growth

24



onset (hypermorphosis) or delayed growth offset (pre-displacement). Actual 

morphological changes may involve more than one o f these and their individual 

contributions may be very difficult to identify (Harvell, 1994).

Heterochrony is a very important mechanism by which morphological variations -  

polymorphs -  arise, although environmental cues may be a necessary prerequisite for 

their actual occurrence.

1.5.5.2 GENETIC ASSIMILATION

Waddington (1953, 1959), working on Drosophila, described how initially inducible 

variants could become genetically fixed through a process he termed ‘genetic 

assimilation’. By selecting for the propensity for the production of a trait in specific 

environmental conditions, he demonstrated that eventually individuals could be 

produced that developed the trait across a wide range of environments. An inducible 

characteristic became constitutive.

1.5*6 Polymorphism in the social insects

Within the eusocial insects polymorphism has been defined “as the coexistence of 

two or more functionally different castes within the same sex...and they must be 

stable during one or more instars” (Wilson, 1971). Within the eusocial Hymenoptera 

they are stable throughout the adult instar.

1.5.6.1 THE HYMENOPTERA

There is great variation in the extent to which polymorphism occurs and in only a 

minority of ant species is it very fully developed. The situation is different in the 

different groups, most notably between the ants on the one hand and the bees and 

wasps on the other. No bees or wasps have developed a well-defined worker sub

caste.
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Within the ants three basic castes are found, worker, soldier and queen. Soldiers are 

often referred to as major workers, and where this is the case, the smaller coexisting 

workers are described as minor workers. In only a minority of species, are all three 

female castes to be found together. The worker caste has been lost in socially 

parasitic species and queens replaced by workers or worker-like forms. Intermediate 

castes may develop in certain species, i.e. ergatoynes, between queen and worker, and 

media workers, between major and minor worker. Evolution has led to derived 

forms of certain castes, which bear little resemblance to the ancestral type, e.g. the 

very large queens of the army ants (Wilson, 1971).

Although much division of labour in the ants is achieved by temporal polyethism 

some is related directly to caste. Males, beyond inseminating reproductive females, 

contribute virtually nothing to the labour of a colony. The behaviour of queens, 

beyond their production of the brood of the colony, varies with the nature of the 

society of the species, with those of the more primitive species fulfilling, at least 

initially, a greater range of roles. As colonies develop the range of activities 

generally decreases, and in the physogastric condition the queen’s activities become 

limited to locomotion, egg laying and feeding (Wilson, 1971).

The morphological modifications of the soldier caste are generally so extensive that 

these individuals function almost exclusively in the defence of the colony. The 

modifications to the head and/or mandibles adapt them to one of three defensive 

techniques. Firstly, and most commonly, the mandibles may be typical but large and 

powerful, and the head as a result of the necessary musculature, massive. Such 

soldiers are adapted to penetrating integument and severing limbs, shearing. 

Secondly mandibles may be pointed and sickle-shaped or hooked, adapted to 

piercing. Thirdly, the head itself may be shield-shaped, adapted simply to blocking 

an entrance to the nest (Wilson, 1971).

Temporal polyethism, the division of labour by age, occurs much more frequently 

than caste polyethism, division of labour correlated with anatomical differences, 

polymorphism (Holldobler and Wilson, 1990). There are a number of worker sub

castes, and in the small number of species studied, types and patterns of occurrence
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vary considerably. “Although the degree of polyethism is loosely correlated with the 

degree of polymorphism, the patterns of the two phenomena cannot be said to be 

linked in any consistent way among the genera” (Wilson, 1971). Caste, and temporal 

polyethism are not always easily separated. Knowledge concerning the latter relates 

to only a tiny minority of genera and species and an overview of the subject lies in 

the future (Holldobler and Wilson, 1990).

In the bees and wasps, polymorphism is limited to dimorphism between queens and 

workers, and even this is absent from species forming small colonies, and only 

occurs (and increasingly so) in species that form very large colonies. Temporal 

polyethism exhibits a similar pattern of occurrence (Wilson. 1971).

1.5.6.2 THE ISOPTERA

Within the termites generally, the caste system is remarkably similar, given the 

taxonomic distance between the two groups, to that of the ants. The worker caste is 

very similar morphologically from species to species, but behaviourally versatile. The 

soldier caste is morphologically, through head and mandibles, and behaviourally, 

specialised for the defence of the colony. In the higher termites however there is a 

greater incidence of polymorphism within the worker caste (Wilson, 1971).

The caste system of termites differs from that of the Hymenoptera in a number of 

respects. The neuter castes are constituted of both sexes. In the lower termites there 

is no true worker caste and worker tasks are performed by nymphs and pseudogates 

or ‘false workers’. In the higher termites work is performed solely by a true worker 

caste and nymphs and other immature forms are non-functional. The soldier caste is 

morphologically modified for defence and this may involve large powerful mandibles 

or ‘stopper-like’ heads. In more highly developed soldiers physical gives way to 

chemical defence, and involves hypertrophied glands capable of discharging large 

quantities of defensive secretions. In some species in the Nasutitermitinae the 

mandibles have been lost and replaced by a fontanellar ‘gun’, capable of projecting 

these secretions some distance (Wilson, 1971).
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Studies on temporal polyethism, as compared with caste polymorphism have scarcely 

begun (Wilson, 1971).

1.5.7 Polymorphism in the colonial marine invertebrates

Within the Cnidaria, the existence of polymorphic forms is to some degree underlain 

by the simultaneous production of two zooid types, the polyp and the medusa, which, 

in the plesiomorphic condition, occurred sequentially within the life cycle (Berrill, 

1949; 1950a). In the less derived hydrozoans, colonies are dimorphic with a 

monomorphic sessile polyp stage and a pelagic medusoid stage. However, in forms 

with well-developed polymorphism there may be several different polymorphs 

derived from each of these. The most numerous form are the polypoid hydranths 

which capture and ingest prey. In most species these also function in defence but in 

some athecate species, special elongate dactylozooids are also present. These are of 

two kinds, spiral zooids, with numerous nematocysts, which presumably have a 

defensive function; and tentaculazooids which are thought perhaps to possess a 

chemosensory capability (Cornelius, 1995). Many thecate species possess 

nematophores, non-feeding polyps with a defensive function. Whilst in athecates 

hydranths both feed and bud the reproductive medusae, in thecates these are 

produced on gonangia. Medusa may be liberated but are more usually retained.

Within the pelagic siphonophores, perhaps the most integrated of all colonial forms, 

polymorphism is highly developed and involves modified polypoid and medusoid 

individuals (Mackie, 1986). The types present vary within the group but include 

polypoid feeding gastrozooids, and modified forms o f these, palpons, whose function 

may be sensory or excretory (Kirkpatrick and Pugh, 1984)! Medusoid forms include 

nectophores, agents of locomotion, and gonophores, reproductive zooids.

Within the Anthozoa polymorphism is poorly developed. In the Pennatulacea, sea 

pens, colonies consist of an axial polyp, which buds from its upper end two forms of 

secondary polyps, tentacled autozooids, and siphonozooids, modified, generally 

tentacle-less inhalant polyps (Manuel, 1981).
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Within the Tunicata polymorphism is a notable characteristic of the doliolids, the 

various polymorphs fulfilling a variety of roles in a very complicated life cycle 

(Berrill, 1950b; Hardy, 1959; Fraser, 1981).

Polymorphism is generally o f episodic occurrence taxonomically, on a large and 

small scale. Where it does occur its occurrence is often at a low level but in a small 

minority of groups its development is very extensive.

1.5.8 Polymorphism in the eusocial insects and the colonial marine 
invertebrates: a comparison

Clearly eusocial and colonial life, in which specialised morphologies of individuals, 

often unable to perform certain essential functions for themselves, is a prerequisite 

for the existence of complex polymorphisms. Only in such obligatory mutually 

interdependent groups are such individuals viable, and only in such groups, is it 

feasible for the colony to benefit from the activities of such individuals (Harvell, 

1994).

Polymorphism, in the groups in which it does occur, is much more extensively 

developed in the colonial marine invertebrates than in the eusocial insects. What 

differences between the two groups may underlie this?

• Firstly, zooids of colonial marine invertebrates are isogeneic and there is 

therefore no sacrifice of reproductive potential for zooids which do not 

reproduce. It may well be that for haplodiploid Hymenopterans this may also be 

the case, at least to some degree. This is less likely for the termites, but see Lacy 

(1980) who suggested a possible haplodiploid analogy.

• Secondly, division of labour, which underlies polymorphism within an obligately 

social or colonial organisation. This may be achieved behaviourally, by temporal 

polyethism, and/or morphologically, by polymorphism. Behaviour is a more 

pervasive activity in the life of colonies of motile individuals and division of 

labour within the eusocial insects may well be achieved by temporal polyethism. 

Within the colonial marine invertebrates, notably the Bryozoa, many polymorphs 

have no behaviour, they are defined by their morphology.
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• Thirdly, within the motile eusocial insects, all individuals, however specialised 

they may be, have still to be motile, which puts some limits on the degree of 

their polymorphism. Within the zooids of colonial marine invertebrates there are 

no such constraints.

•  Fourthly, whilst some polymorphic social insects may be unable to feed, and are 

fed by other colony members, they still need to be able to metabolise their food. 

Within the colonial marine invertebrates the metabolised products of feeding 

zooids can be made available to non-feeding heterozooids. The scope for 

polymorphism is thus increased.

•  Fifthly, within many colonial marine invertebrates, notably cheilostome 

bryozoans, the scope for morphological variation is enhanced by the various 

structural roles open to them within the architecture of a colony.

1.5.9 Cues inducing the development of polymorphs

1.5.9.1 THE EUSOCIAL INSECTS

Much is known about the development of polymorphism in eusocial insects, 

particularly in respect of the ants, and the following just touches on a complex topic. 

Different types of polymorphism are produced by different growth transformation 

rules. The simplest mechanism involves small differences in initial larval size being 

transformed into large differences in final size by correlated growth rate changes. A 

more complex mechanism involves threshold levels, a larva becoming a minor or a 

major worker as a result of its size at a certain period in its growth (Oster and 

Wilson, 1978). All transformations are governed by rules which operate during 

larval growth and adult development within the pupa. Intrinsic control of 

polymorphism occurs via the levels of two hormones which affect transitions 

between ifistars. High levels of ecdysone and juvenile hormone maintain the larval 

stage, and a drop in the level of the latter is necessary for metamorphosis to the next 

stage. There is interaction between intrinsic and external cues in the control of 

polymorphic transformations. In Myrmica rubra only larvae which have undergone 

winter chilling in the last larval stage can become queens. Polymorphic transitions 

are regulated by six potential types of cues; larval nutrition, winter chilling,
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temperature, caste self-inhibition, egg size and the age of the queen (Oster and 

Wilson, 1978).

1.5.9.2 THE COLONIAL MARINE INVERTEBRATES

The Bryozoa will be considered in Section 1.6.4. Very little is known about cues 

inducing the development of polymorphs in the Tunicata. This section will deal 

briefly with such cues in respect of hydroids.

As in the ants considered above, intrinsic and extrinsic factors are involved. 

Inhibitory and activating morphogenetic factors control the allocation of growth to 

stolons and hydranths (Muller et al., 1987). Inhibitory substances are produced by 

hydranths, limiting the proximity of developing hydranths to a minimum distance 

from existing ones. In Hydr actinia, the stolon tip produces Proportion-Altering 

Factor, which spreads proximally in decreasing concentration, and prevents stolon 

formation in its immediate vicinity (Muller and Plickert, 1982). Also in Hydractinia 

stolon branching is induced by a morphogenetic inducer, Stolon-Inducing Factor 

(Lange and Muller, 1991).

In respect of extrinsic cues, in athecate hydroids, a change from a stolon, to a 

hydranth and gonangium dominated colony can be triggered by a change in 

temperature (Braverman, 1974). In Hydractinia echinata, nematocyst-filled stolons 

proliferate at the margins of contacts with conspecifics, but only at non-self contacts 

(Ivker, 1972).

1.6 BRYOZOA

1.6.1 Introduction

[A glossary, defining terms, whose use is largely restricted to bryozoans, begins on 

page 345].

Bryozoans are coelomate, sessile, filter feeding, aquatic (largely marine) colonial 

invertebrates. Colonies consist of a number, often a very great number, of zooids, all

31



of which arise by budding from the first individual, the ancestrula. This arises by 

metamorphosis of a sexually produced larva, which initially is planktonic and which 

settles on a substratum prior to metamorphosis. Colonies vary enormously in size 

and morphology, but all are clonal modular organisms; the modules, individual 

zooids, arise by asexual budding and are assumed to be genetically identical (Ryland, 

1979; Thorpe, 1979; Hughes, 1989). The extent and importance of any mutations 

occurring during modular replication (Buss, 1985; Carvalho, 1994) are not known 

(Porter et. al., 2000). Intraspecific colony fusion and chimerism are known to occur. 

Craig (1994) using settlement plates amongst a dense population of Fenestrulina sp., 

found skeletal fusion in 70% of paired colonies and evidence of physiological 

integration, although the extent to which this was restricted to closely related 

genotypes was not known. [Interestingly, for ascidians, which have been investigated 

more extensively in this respect, results are variable. Fusion of colonies of Botryllus 

is restricted to closely related colonies (Oka and Watanabe, 1960; Scofield et al.,

1982). However, Bishop and Sommerfeldt (1999) in respect of Diplosoma 

listerianum, found that chimera formation was not dependent on close relatedness. 

Further Sommerfeldt et al. (2003) concluded that much natural chimerism in this 

species was attributable to colony fusion].

In the simplest colonies the individual zooids are all identical morphologically, but 

the vast majority of bryozoan colonies exhibit polymorphism to some degree. It is 

possible to divide the zooids of a colony into two types on the basis of two different 

sets of criteria, which are often confused because the resulting division is very 

similar. Firstly, it is possible to distinguish those zooids, autozooids, which are able 

to collect food and metabolise it on the one hand, from those which are unable to do 

so, the heterozooids. These necessarily derive their nutrition, via the funiculus which 

connects all zooids within the colony, from the feeding autozooids. Secondly, one 

can distinguish between individuals which have the morphology of autozooids from 

those which do not, polymorphic zooids. All heterozooids are, by definition, 

polymorphic, and constitute the vast majority o f polymorphic zooids, but some 

autozooids are also polymorphic, notably in respect of the form of the lophophore of 

their polypide. Polymorphic zooids are therefore generally unable to feed, as they 

lack a food collecting apparatus; or digest, since they have no gut. Clearly such
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zooids are, nutritionally, a drain on the colony, and it is assumed must be of sufficient 

utility to the colony to justify their occurrence and maintenance.

The occurrence of heterozooids requires that metabolites can be transferred from 

feeding zooids. In all bryozoans there is the presence of the funiculus, a network of 

mesenchymatous tissue strands, although the extent of its development and the 

functions it performs, varies considerably between the higher taxonomic groups. 

Within the phylactolaemates and stenolaemates its development and functions are 

very limited in comparison to the gymnolaemates, in which it is a genuinely colonial 

network (Ryland, 1979). Bobin (1977) described what she termed the ‘funiculi- 

rosettes complex’ as a unique anatomic system, “specialised for exchanges”, which 

resolves “the problem of the extreme compartmentalisation of a single colony 

community”. It is important in transporting metabolic products to non-feeding 

polymorphic zooids (Bobin, 1977; Hayward and Ryland, 1998).

A generalised description of the morphology of an autozooid provides a necessary 

benchmark against which the morphologies of the various polymorphs can be 

compared. Autozooids are generally box, or more rarely flask shaped, measuring 

<lmm in their longest dimension. The body wall may be uncalcified (in one order) or 

more usually calcified to some degree. Each zooid consists of a cystid, cellular and 

skeletal layers of the body wall, and a coelom within which there is a polypide. This 

is a food gathering apparatus (a crown of ciliated tentacles, the lophophore) its 

associated musculature, and a gut; all o f which generally undergo periodic 

degeneration and regeneration. Although there are differences between the higher 

taxa regarding the mechanism of lophophore eversion and retraction, all involve 

changing the hydrostatic pressure within the zooid. In the cheilostomes, the presence 

also of an operculum, or hinged flap within the frontal wall, which closes the orifice 

after lophophore retraction, is of great importance in relation to the polymorphs of 

that order (Hincks, 1880; Harmer, 1901; Silen, 1977).

Polymorphic zooids arise by heterochrony (see Section 1.5.5.1), a variation of the 

developmental process which may result in a morphological feature not developing at 

all, or developing to a lesser or greater extent than is normally the case. Polymorphic
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zooids, whatever their morphology, are variations on a theme, the morphology of the 

characteristic autozooid of that species, which sets constraints on what is possible.

1.6.2 Classification

Bryozoan classification has undergone considerable revision in recent time, but this 

has generally been below the level o f ‘order’, and the higher taxonomic groups 

detailed below have been stable for some time. The phylum is divided into three 

classes

• Phylactolaemata, a small and distinct group, very different from all other 

bryozoans. Zooids are essentially cylindrical, with a horseshoe shaped 

lophophore with an epistome. The body wall is uncalcified, and the coelom is 

continuous from one zooid to the next. New zooids arise by replication of 

polypides which occurs prior to the differentiation of the cystid.

Polymorphism is completely absent. All species are only found in freshwater.

• Stenolaemata, a much larger group, although predominantly fossil. Zooids 

are cylindrical, with a calcified body wall and, in extant forms, a circular 

lophophore without an epistome. All zooids have their own discrete coelom 

and new zooids arise by the division of septa, with inception of the polypide, 

preceding the differentiation of the cystid. There is limited occurrence of 

polymorphism. All species are marine. The class is divided into five orders, 

only one o f which, the Cyclostomatida, contains extant species.

• Gymnolaemata, by far the largest group of bryozoans, composed of two very 

different orders:-

•  In the first, and very much the smaller group, Ctenostomatida, the 

zooids are squat or cylindrical, gelatinous or membranous, but always 

with an uncalcified body wall. The lophophore is circular without an 

epistome and the orifice is often terminal and closed by a pleated 

collar. The coeloms of adjacent zooids are separate and new zooids are 

produced by deposition of septa, with cystid formation occurring
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before polypide inception. Polymorphism is of limited occurrence.

The majority of species are marine.

• The second suborder, Cheilostomatida, contains the vast majority of all 

extant bryozoans. Zooids are generally box-shaped and have calcified 

body walls. The lophophore is circular without an epistome and the 

orifice is invariably closed by an operculum. Coeloms of adjacent zooids 

are separate, new zooids are produced by the deposition of septa, with 

cystid formation occurring before polypide inception. Polymorphism is 

very highly developed, in terms of frequency o f occurrence and the 

variety of forms. The vast majority of species are marine.

1.6.3 Reproduction

All bryozoans are hermaphrodites and within the cheilostomes autozooids may be 

dioecious or monoecious, frequently protandrous but sometimes protogynous. In 

dioecious species male and female autozooids may exhibit different morphologies. 

Sperm are released through the tips of the tentacles. Ripe eggs are released into the 

coelom and in oviparous species released via a tube, the intertentacular organ, a 

modified coelomopore. In brooding species, sperm are presumed to enter the 

maternal zooid via the coelomopore and fertilization occurs precociously within the 

zooid (egg activation may be much delayed) (Temkin, 1996), and embryos are 

brooded in a variety of structures but most commonly in ovicells. Their spatial 

disposition relative to the maternal and distal zooid exhibits variation and a variety of 

different types have been distinguished. Ovicells do not always develop in the same 

way (Section 1.6.4.5). The eggs of oviparous species develop into often-bivalved 

planktotrophic larvae (cyphonautes) which may live in the plankton for several 

months, and whose power of dispersal is therefore considerable. Brooding species 

release large lecithotrophic larvae, the vast majority o f which are coronate, but a few 

are shelled (Zimmer and Woollacott, 1977). All settle within a few hours, and have, 

therefore, veiy limited powers of dispersal.

It is an oversimplification to relate actual dispersal to the length of larval life. Porter 

et al. (2002) looked at two species of Alcyonidium one of which has planktotrophic
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and one lecithotrophic larvae. The former, A. mytili, colonises hard surfaces whilst 

the latter, A. gelatinosum, is found on algal substrata. Whilst genetic variation within 

a population was greater in the former the difference was less than expected. 

Although A. mytili produces cyphonautes type larvae (Cadman and Ryland, 1996) the 

length of the free-swimming phase is not known. It is also possible that in the 

populations investigated, in estuarine or ria environments, larvae are retained within 

the system by tides which essentially move water up and down the channel (Young 

and Chia, 1987). Watts (1997) also found a lower level of gene flow between 

populations than expected in Electra pilosa and Membranipora membranacea, two 

species with long lived planktotrophic larvae (Atkins, 1955). It is also possible that 

epiphytic species such as A. gelatinosum could achieve dispersal by rafting on 

detached algal fronds (Porter et al., 2002).

Oviparity and planktotrophic larvae are considered the primitive condition. Larvae 

search for suitable substrata, adhere to this by eversion of an adhesive sac, and 

metamorphose into the first zooid(s) of a colony, the ancestrula. This is generally a 

single zooid but in some cases two or more.

Within the ctenostomes dioecious autozooids are unknown (Hayward, 1985). In 

brooding species embryos are usually held within the tentacule sheath. A minority of 

species are oviparous, producing small planktotrophic larvae rather similar to the 

cyphonautes o f cheilostomes. The brooding species exhibit variation in the brooding 

process but all produce coronate lecithotrophic larvae.

Within the cyclostomes eggs develop only in dimorphic female gonozooids, and it is 

possible that all cyclostome autozooids are dioecious (Hayward and Ryland, 1985). 

Internal fertilization results in a primary embryo, from which blastomeres detach, 

continue cleavage to form secondary embryos, which may in turn fragment to form 

tertiary embryos. Polyembryony in animals generally is rare, and Ryland (1996) has 

suggested that it occurs here perhaps in relation to a shortage of sperm. 

Polyembryony has resulted in the production of brood chambers, highly modified 

zooids, gonozooids, containing a number of genetically identical embryos.
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Gonozooids vary in morphology and perhaps ontogeny (Hayward and Ryland, 

1985).

Astogeny, the process by which a colony is formed by repeated budding, initially 

from the ancestrula, is central to the biology of bryozoans and their colonial nature. 

Because I wish to discuss this sequentially with colony form, the spatial arrangement 

of zooids within colonies, and variations in the degree o f colonial integration, I shall 

delay treatment of astogeny until I have considered polymorphism.

1.6.4 Polymorphism

1.6.4.1 INTRODUCTION

“Polymorphism is the particular mechanism evolved by colonial organisms for 

maximising efficiency in the division of labour, comparable to the evolution of organ 

systems in solitary organisms” (Abbott, 1973).

For all colonial marine invertebrates the definition of polymorphism as 

“discontinuous variation in the morphology of zooids arising at the same astogenetic 

level” (Boardman and Cheetham, 1973) is generally accepted. The idea that some 

polymorphs, intercalated in the normal budding pattern and capable of budding 

further zooids, such as the vicarious avicularia in Steginoporella, represent modified 

autozooids was proposed by Harmer (1900). In some species of this genus, in 

addition to the ‘ordinary’ A-zooids, there exist B-zooids which have an augmented 

operculum and opercular muscles. In certain other congeneric species there are 

vicarious avicularia, but in no species do B-zooids and avicularia occur in the same 

species (Silen, 1938; Banta, 1973). Banta reasoned that if  vicarious avicularia 

developed from polymorphic autozooids, for adventitious avicularia to develop from 

vicarious forms required that the avicularium buds were transferred from the 

primogenial to an adventitious position; and that this was must have occurred in the 

development of frontal budding of autozooids.
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There is, however, no universal agreement on the status of all adventitious 

polymorphs developing from an autozooid budding site which does not normally 

give rise to another autozooid. Such polymorphs generally do not possess the ability 

to bud a further zooid and their appearance is not unlike an ornamentation of a 

zooid’s body wall. A polymorphic zooid is distinguished from the latter by the 

presence of a pore-plate separating the two body cavities (Cheetham and Cook,

1983). For some polymorphs, such as spines, the area of origin of which is very 

limited, this may not be readily apparent (Silen, 1977).

The idea that some, if  not all, polymorphic zooids are modified or reduced 

autozooids was investigated by Cheetham (1973) using principal component analysis. 

He concluded that, for the cheilostomes Poricellaria and Vincularia, evolutionary 

trends in morphologic variation were consistent with gradual transformations 

between monomorphic and polymorphic zooecia, whether this was progressive or 

retrogressive.

Within the Bryozoa “polymorphism is represented to such an extent and takes such a 

multitude of often very specific expressions, that great biological importance must be 

ascribed to it” (Silen, 1977). However, although widespread, its level of occurrence 

varies considerably between groups at all taxonomic levels within the phylum, and 

also often within them. Some of this variation is a direct result of the different 

morphologies of the autozooids of the higher taxonomic groups, and the fact that 

polymorphic zooids arise by heterochrony. They are variations on a theme, and as 

such, the possibilities are circumscribed by the characteristics of that theme. 

Avicularia and vibracula owe their existence to the presence, in the vast majority of 

cheilostomes species, o f a hinged operculum which closes the aperture after 

lophophore retraction. They do not occur therefore, outside the Cheilostomatida. 

Interestingly, a group of Cretaceous and Palaeocene cyclostomes, melicerititids, did 

have operculate zooids, and were highly polymorphic with avicularia-like eleozooids 

(Taylor, 1985).
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Polymorphism is absent in the Phylactolaemata, is not well developed in the 

Cyclostomatida or the Ctenostomatida, and is extensively developed, if  unevenly 

distributed, in the Cheilostomatida.

1.6.4.2 POLYMORPH MORPHOLOGIES AND FUNCTIONS

The complete range of polymorphs has been classified in two different ways, neither 

of which is entirely satisfactory, essentially related to morphology or function. A 

major problem in using function as a basis for classification is that it is not always 

known, and the function of a particular polymorph has often been assumed on the 

basis of the function of another polymorph of similar morphology. This is a dubious 

practice as it is known that certain polymorphs of similar morphology fulfil different 

functions in different species. It also demonstrates that using morphology alone as a 

basis for classification is also not without its problems.

Silen (1977) classified polymorphs according to known or assumed functions and 

distinguished those functioning in:-

• active defence

• passive defence

• cleaning

• colony strengthening

• colony support or attachment

• survival of unfavourable conditions

• interzooidal connections

• sexual reproduction

Although there are a great variety of polymorphs, the vast majority are variations on 

only two basic types. Polymorphs can be distinguish^ by the nature o f the 

modifications their development has undergone rather thaii by their morphology 

alone.

• Many polyjnpfphic zooids are forms of kenozooid, empty zooids, which 

essentially consist of a body wall, which may vary enormously in shape and
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extent, a coelom and a funiculus connecting them to the rest of the colony. 

Polymorphs of this general type, are to be found in all taxa of Bryozoa which 

exhibit polymorphism, but are most varied and numerous within the 

Cheilostomatida.

• A second frequently found type, within the Cheilostomatida, is that in which 

the operculum of the autozooid is hyper-developed into a mandible 

(avicularium), or a seta (vibraculum). In the vast majority of cases, the 

polypide is non existent or vestigial, and the coelom is largely occupied by 

the enhanced musculature necessary to power the mandible or seta.

Kenozooids exist in a wide variety of morphologies and locations and fulfil a 

variety of functions

• They form simple interzooidal connections, pore-plates, between 

cheilostome zooids (Hyman, 1959; Silen, 1944, 1977).

• They may function in colony structure, notably as stolons in the ctenostomes 

where they often form a framework facilitating the spatial arrangement of the 

autozooids within a colony.

•  They may, particularly in encrusting species where irregularities in the 

substrata result in spaces too small for an autozooid to develop, act as 

‘packing’ ensuring the continuity of the colony.

• They may function as stylozooids (Silen, 1977) in elevating feeding 

autozooids into the water column. A series of turgid stylozooids form a 

peduncle elevating the feeding capitulum of autozooids above the substratum 

in Metalocyanidium gautieri (Hayward, 1985). In Semikinetoskias the 

colony is supported on a single long stylozooid. (Silen, 1941)

• They may act to strengthen colonial structure. In frondose forms of the 

Flustridae, kenozooids with particularly thick walls may occur in a 

proximally broadening band along the frond edge (Silen, 1977). In 

Securiflustra securifrons rows of kenozooids at frond edges are also 

responsible for any increase in zooid rows due to bifurcations (Hayward and 

Ryland, 1998).

• In encrusting species, in the form of stolons, they may prevent overgrowth. 

Such stolons in Membranipora membranacea, produced to obstruct the
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growth of conspecifics, grow very rapidly, and may become six times longer 

than an autozooid (Harvell, 1994).

• In non-encrusting species they function, in the form of rhizoids, for attaching 

the colony to the substratum, or one part of it to another. They are long 

tubular structures and, for the former, show a positively geotropic form of 

growth, with a means of attachment to the substratum. This varies in nature 

and in some species of Candidae may develop, according to the substrate 

encountered, a gripping holdfast, or a penetrating grapnel with recurved 

hooks. Rhizoids which connect two branches of the same colony grow to a 

pore plate of the destination branch (Silen, 1941).

• Finally, as spinozooids, they function in passive defence. They frequently 

form a vertical barrier around the distal end of the frontal membrane. In the 

Candidae one spine may develop into an extensive structure, the scutum, and 

overarch the frontal membrane protecting it to a greater or lesser extent. In 

the cribrimorphs spines grow horizontally over the membrane and partially 

fuse together forming a shield.

All kenozooids are without moving parts and have no behaviour which can be 

observed; their function can therefore only be deduced from their form and location. 

Generally this seems beyond debate.

Avicularia occur very frequently, rarely as vicarious forms but usually adventitiously. 

They exist in a great variety of morphologies and sizes, and the fact that two or more 

different forms may be present in a single species suggests that they do not always 

perform identical functions. Because of the rapid manner in which a mandible may 

be closed, and the reinforced character of the rostrum to withstand its impact, 

avicularia are assumed to have a grasping function related to defence (Silen, 1977). 

This has rarely been observed except in respect of the large pedunculate avicularia of 

genera such as Bugula. Kaufrnann (1971) found they were effective against tube- 

building crustaceans <4 mm long and <0.05 mm in diameter. Wyer and King (1973) 

found no evidence that the avicularia o f Bugula or Flustra were any defence against 

pycnogonids. The fact that in some forms of avicularia the mandible may project 

beyond the rostrum, and occur in a variety of shapes, suggests that not all function as
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graspers (Silen, 1977). The spatulate mandibles o f often-large sporadically occurring 

avicularia have been associated with the inferred function of cleaning by the 

generation of local water currents (Cook, 1985). Whilst the pedunculate avicularia of 

the Bugulidae have movement, the vast majority are immobile. They occur in a 

variety of positions relative to their autozooid o f origin.

The function of the vast majority of avicularia remains a matter of speculation. They 

occur in the majority of cheilostome species, they may be very numerous within a 

colony, and also exist in a variety of forms. Many are very small, and they are not 

always sited in obviously defensive locations. Most extremely, the occurrence in 

certain species of Menipea o f avicularia apparently within the body cavity (Levinsen, 

1909; Harmer, 1923) is very difficult to explain in functional terms. Beyond the 

pedunculate avicularia referred to above no defensive function, or any other, has been 

demonstrated for avicularia by Winston (1984). She made a number of lengthy 

observations, under laboratory conditions, and most revealed no behaviour at all! 

Although these observations were made very quickly on introducing the colonies into 

the laboratory, one does not know in what respects, and to what degree, their 

behaviour may have been affected by the environmental changes they experienced.

A variety of other possible functions o f avicularia have been suggested, e.g. nutrient 

storage (Cook, 1979) and respiration (Waters, 1889), but there is little evidence to 

support these (Winston, 1984). Chemical defence was put forward by Lutaud (1969), 

who suggested that they could be centres of chemical production. Lidgard (1981) has 

shown that strong water currents, containing debris of varying origin, exist just above 

the surface of the colony, having passed through the lophophores and exited via 

chimneys or at the edge of the colony. Prominent frontal avicularia, Winston (1984) 

suggested could act as current baffles/trash chutes. None of the above explains why 

avicularia should have a mandible.

Vibracula occur much less frequently than avicularia, being especially characteristic 

of two groups with very different colony form, the arborescent Candidae and certain 

lunulitiform genera. They exist uncommonly as vicarious forms, the vast majority 

being adventitious. They are less variable in form than avicularia. Vibracula are
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characterised by a generally very long and mobile seta and are generally assumed to 

perform a cleaning function, especially in arborescent forms, removing detritus and 

perhaps also preventing organisms settling on the colony surface. Cook (1985) 

observed of the setae of Scrupocellaria, that they “are capable of movement in two

planes and three directions and the movements are then reversed”. The

movements of the setae are not coordinated within the colony (Silen, 1950). 

Vibracula perform a very different function in free-living lunulitiform species, 

providing colony support and the ability to right overturned colonies (Cook, 1963).

Winston (1984) in respect of avicularia, having had little success in provoking any 

response from them, suggested that not all polymorphs actually fulfil a function 

within the colony, and that perhaps they have not been selected for, they just occur as 

result o f the budding process. She went on to say “the adaptionist orientation of 

most bryozoologists over the last 100 years....has produced little evidence to explain 

the occurrence of avicularia in bryozoans. Perhaps the basis of the polymorphism is 

not ecological but developmental”. Given that many polymorphs fairly obviously do 

perform useful functions (see Section 1.6.4.3, below) this would seem an over 

reaction.

There are other polymorphs with a more limited occurrence.

Within the Cyclostomatida the nanozooids of the Diastoporidae (described by Borg, 

1926) resemble autozooids but are considerably smaller, have no gut, and a reduced 

polypide with a single long tentacle. This is normally motionless but periodically 

sweeps from its proximal orientation to a distal one and back again. Much less 

frequently it moves in a circular motion until it regains its original position (Silen and 

Harmelin, 1974). Nanozooids occur in a strict one to one ratio with autozooids 

(Hayward and Ryland, 1985). In Diplosolen obelia, Silen and Harmelin found them 

so sited that collectively they swept the entire frontal surface of the colony. They 

presumably remove detritus and discourage settlement.

Spinozooids in some crisiids are not single kenozooids, as in the cheilostomes, but 

are composed of a series o f such kenozooids (Hayward and Ryland, 1985).
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The cyclostomatous gonozooids are budded within the normal autozooid sequence 

but the body wall subsequently expands to enclose an often much larger volume, to 

house the numerous embryos which result from polyembryony. Their form, and that 

of their modified orifice, varies, and is often species specific. It is possible that some 

brood chambers are not actual zooid homologues. Borg (1926) regarded those of the 

Lichenoporidae as constituting a part of the zoarial coelomic cavity and thus as 

zoarial brood chambers. In many species however, they are highly modified zooids, 

the body wall of which subsequently expands to form a voluminous chamber 

(Hayward and Ryland, 1985).

The above has been restricted to polymorphic heterozooids, and one example of a 

polymorphic autozooid is necessary. In encrusting species the normal feeding water 

current takes water into the tentacle crown, toward the mouth, and then between the 

tentacles towards the colony surface. Where this is extensive, groups of zooids with 

modified asymmetrical lophophores protruded at an angle may form ‘chimneys’, 

which form exhalent water outlets (Cook, 1977; Cook and Chimonides, 1980).

In some dioecious species there is sexual dimorphism which may involve differences 

in zooid size and/or morphology, and/or the nature of the lophophore; e.g. 

Celleporella hyalina (Hayward and Ryland, 1999) and Alcyonidium nodosum 

(Ryland, 2001).

1.6.4.3 GENERAL REMARKS REGARDING POLYMORPHIC 
HETEROZOOIDS

The fundamental questions regarding polymorphic heterozooids are why they are 

present, are as they are, in the number that they are, and where they are. Variations in 

the occurrence of polymorphs in relation to autozooids, intemodes, and the colony as 

a whole could throw some light on tfreir function and/or their importance in terms of 

the organisation of the complete colony. All heterozooidal polymorphs are, by 

definition, a nutritional drain on the colony. If the colony is the unit upon which 

natural selection acts one would expect polymorph production, in terms of number, 

morphology, size and siting, to be optimised, maximising the benefits relative to their 

costs.
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There is much evidence given in Section 1.6.4.2 that many polymorphic heterozooids 

perform particular functions in a sophisticated division of labour. The assumed 

functions, on the basis of their position within the colony or in relation to a 

constituent part of it, of virtually all kenozooids would seem perfectly reasonable and 

beyond debate. Kenozooids connecting, strengthening, spacing, reinforcing, or 

elevating autozooids, surely do just that. Spines protect vulnerable areas and rhizoids 

attach non-encrusting species to the substratum. Within the Cyclostomatida the 

morphology and spacing of nanozooids results in the entire frontal surface of the 

colony being subject to their sweeping tentacles. The large gonozooids of the group 

are able to contain the multiple embryos resulting from polyembryony.

Nevertheless there are two major problems.

Firstly, although the assumed function of many polymorphs is probably correct, their 

occurrence might be expected to be more frequent and more regular. The widespread 

variation of occurrence of polymorphs within a colony, a species, and indeed at all 

taxonomic levels is difficult to understand. These irregularities are not easily 

explained in functional terms. Species, and indeed colonies, may differ in their 

ability to produce a particular polymorph, and variable environmental conditions may 

cause the need for it to vary. Further, genetic variation may affect the threshold level 

at which colonies respond to these. Intrinsic and extrinsic factors in polymorph 

initiation interact, and given that compromises are probably necessary between 

competing requirements, it would seem likely that some kind of hierarchy operates. 

In certain instances the space available for a zooid determines whether an autozooid 

or a particular polymorph is produced. The production, for example of an 

avicularium rather than an autozooid or a kenozooid, purely in response to the size of 

the available space is difficult to explain in functional terms. It would seem to result 

simply from the astogenetic ‘rules’ of the species ‘deciding’ which zooid type should 

be produced.

Secondly, that the function of the vast majority of avicularia, and to a lesser extent 

some of the vibracula, is far from clear. It was in respect of the former that Winston

(1984) failing to find any evidence supporting the conventional view of a defensive
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function, suggested that perhaps either they performed some completely different 

function, or that they did not have a division of labour type function at all!

1.6.4.4 CUES INDUCING POLYMORPHS IN THE BRYOZOA

For constitutive polymorphs that occur absolutely constantly or predictably, no 

intrinsic or extrinsic environmental cues are involved in their production. For all 

other polymorphs, “the expression of polymorphism in bryozoans appears to be 

hierarchical with both intrinsic and extrinsic cues operating” (Harvell, 1994). Silen 

(1977) expressed a similar view, differentiating the colonial from the external 

environment.

A single factor which can be influential in determining whether a zooid develops into 

an autozooid or some form of polymorph is simply its size. In certain encrusting 

species, whether a zooid develops into an autozooid, an avicularium or a kenozooid, 

appears to depend purely on the size of the zooecium. In Thalamoporella, zooids 

below a certain size became avicularia, and below a smaller size still, developed into 

kenozooids (Silen, 1938; Powell and Cook, 1966). In this case it appears that a 

single intrinsic cue, zooid size, is involved. That zooid size does not always act 

alone is apparent from the case of the stolons produced at colony edges in the 

presence of conspecifics by Membranipora membranacea. Such stolons may be four 

or five times the length of normal autozooids, but are kenozooids without polypides. 

The species also produces kenozooids when zooid size is below a certain threshold, 

and autozooids with two functioning polypides in extra large zooecia. In autozooid 

development, polypide inception occurs after calcification of the body wall has 

begun. Stolons remain uncalcified and it is conceivable that polypide formation and 

calcification are cued by the same developmental environment, or that polypide 

inception requires the cue o f calcification (Harvell, 1994).

A second factor, which may be very important in respect of whether or not a 

polymorph develops, is the age o f the autozooid from which if develops. The spines 

which Membranipora membranacea may produce, in response to the presence of one 

of its pudibranch predators Doridella steinbergae or Corambe pacifica (Yoshioka, 

1982) develop from spine chambers which are always present. Such spines develop
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only from the spine chambers of ontogenetically young autozooids around the 

growing edge. Zooid age alone, in this case, appears to determine the ability to 

respond to an external inducer (Harvell, 1991). This case clearly involves an 

intrinsic cue, defining when an extrinsic cue should result in the production of the 

polymorph. The interaction of the two results in only those young autozooids around 

the periphery of the colony producing defensive spines. These do not act as a barrier 

protecting the complete colony; the unprotected centre is attacked but the spined 

peripheral zooids suffer much-reduced predation and are generally able to regenerate 

the central region (Harvell, 1984).

In general it would seem arguable that the production of those polymorphs (which do 

not occur constantly or regularly because they are constitutive) whose function is in 

relation to the integrity of the colony, packing or strengthening kenozooids, would be 

essentially controlled by intrinsic cues. Conversely, those polymorphs whose 

function is directly related to the external environment, one would expect to be 

controlled more by external cues. As shown above, however, internal and external 

cues may interact.

1.6.4.5 OVICELLS

The majority of cheilostomes brood their larvae and in the majority of species this 

occurs in essentially globular ovicells. An ovicell is here defined, following Nielsen

(1985) as “the hooded structure exclusive of closing structures such as the ooecial 

vesicle and operculum”. The ovicell wall consists of an outer layer, ectooecium, 

generally calcified, and an inner layer, endooecium, frequently membranous 

(Hayward and Ryland, 1998). Ovicell structure has been poorly understood, and the 

literature is often ambiguous and contradictory (Santagata and Banta, 1996).

Woollacott and Zimmer (1972) looking at the origin and structure of the ovicell of 

Bugula neritina showed that it formed from the zooid distal to the maternal zooid, 

and that it was separated from its zooid of origin by a pore plate; it was a kenozooid. 

Nielsen (1981) concluded that with few exceptions such as Thalamoporella and 

Scruparia, cheilostome ovicells were probably formed from the zooid distal to the
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maternal zooid. In a further study involving four cellularine species (Nielsen, 1985) 

distinguished between three species of the Candidae in which the “ovicells are 

integral parts of the distal zooid”; from Bugula pacifica in which “the connection 

with the autozooid becomes very narrow and is probably a pore connection”. In 

many cheilostomes, including some species of Scrupocellaria, the ovicell 

primordium is bilobate (Levinsen, 1909), consistent with derivation from a pair of 

modified spines, a hypothesis initially put forward by Harmer (1902), (Santagata and 

Banta, 1996).

Ovicells derived from a single primordium are kenozooidal polymorphs, whilst those 

of a bispinose origin are perhaps best considered as polymorph composites. The 

situation is made more complex when the gymnocyst of the distal zooid forms the 

floor of the ovicell. I have, therefore, in the central chapters of this study, concerned 

with species of Scrupocellaria and Tricellaria, referred to ‘polymorphs’ and 

‘ovicells’. Ovicell production by one zooid for the embryo of another; and ovicells 

constituted of more than one polymorph; are both indicative of a high level of 

colonial co-ordination.

1.6.5 Budding and astogeny

1.6.5.1 BUDDING

All zooids beyond the ancestrula arise by budding, and variations in the way this 

occurs underlie the resulting spatial arrangement of zooids within the colony. Within 

the encrusting Cheilostomatida, three main types of budding (and within these, sub- 

types) were distinguished by Lidgard (1985).

• Intrazooidal, in which a new zooid develops from a pre-existing space in an 

existing zooid.

• Zooidal, in which a new coelomic space is created, which is then separated 

from the parent zooid by an interior wall.

• Multizooidal, as zooidal but the new space created is much longer than a 

single zooid and is partitioned by a series of interior walls.
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Colonies exhibiting intrazooidal or zooidal budding may develop in linear series or 

into sheets. In coalescent multiserial (Lidgard, 1985) each zooid develops not from a 

single progenitor but from the fusion of several. In discrete multiserial colonies, the 

zooids of each series are separated by interior and the series by exterior walls; these 

are distinguished from compound linear in which some series are separated by 

interior walls. In compound non-linear colonies all zooids are separated by interior 

walls (Lidgard, 1985).

1.6.5.2 ASTOGENY

Astogeny was defined very succinctly by Boardman, Cheetham and Cook (1969) as 

“the course of post larval development of a colony”. It is the process of colony 

growth by budding following the original settlement and metamorphosis of the larva. 

It is a major determinant of the arrangement o f all zooids, autozooids and 

heterozooids, within a colony. There is much variation in the degree to which the 

astogenetic ‘rules’ determine this, and the colony structure and form which results.

All bryozoans exhibit some characteristic pattern of growth, both in respect of 

autozooids and heterozooids, as a result of the characteristic astogenetic pattern of 

the species. Those species in which astogenetic control is not well developed are 

more susceptible to the influence of environmental factors. In encrusting species 

which achieve no overall structure or form, and the extent of whose growth is much 

determined by the extent and nature of their substrata, astogenetic patterns are 

generally loose. Nevertheless even encrusting species have characteristic budding 

patterns. Membranipora membranacea colonies always advance on a broad front, 

whilst those of Electra pilosa, advance on a number o f narrow fronts but may 

subsequently ‘backfill’ the spaces between them. Species such as Flustra foliacea, 

commence growth as an encrusting sheet, which develops into a bilaminar erect 

frond, with two equally extensive surfaces of autozooids growing back to back, and 

which subsequently divides from time to time, to form an extensive, bilaminate 

lobate structure (Stebbing, 1971; Silen, 1981). Lace corals (Phidoloporidae) develop 

three-dimensional forms, by folding and enrolling reticulate bilaminate sheets, with a 

frontal surface of autozooids and polymorphs, and a basal surface of kenozooids.
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Such structured colonies involve a high level of colonial organization and integration 

(Hayward and Ryland, 1998).

Arborescent biyozoans generally have a more or less determinate structure and form, 

evidence of a tightly controlled astogenetic pattern. Intemodes (branches) in many 

species are biserial, whilst they have the potential to form new lateral rows in a 

number limited only by available space (Silen, 1977). The form of such intemodes 

requires the suppression of rows of autozooids which could develop. Silen went on 

to say that such autozooid rows are either directly totally suppressed or suppressed 

via the production of dwarf zooids, adventitious polymorphs. I find the latter 

difficult to square with his assertion of the great biological importance of 

polymorphism. The production of numerous heterozooids would seem a very 

extravagant way to bring about the suppression of a row of autozooids. Further, 

when such dwarf zooids are not produced why do autozooids not develop? The 

autozooids within the intemodes of such species occur in several different forms 

related to their position within the intemode. In the arborescent cellularine species of 

this study, the simple and branched spines associated with all autozooids except the 

ancestrula are similarly arranged in relation to the position of their autozooid within 

the intemode. Astogenetic pattern is ubiquitous.

Related to astogeny is the phenomenon of astogenetic change. There may well be 

gradual changes in the morphology in the early generations of autozooids, defining a 

zone o f astogenetic change, which is followed by a much more extensive zone of 

astogenetic repetition in which autozooids essentially have the same morphology. 

Patterns may be barely discernible or more complex.

Although astogenetic change is a well-known phenomenon and is usually very 

limited in extent and gradual in its progression, this is not always the case. 

Corbulipora tubulifera, described by Bock and Cook (1994), exhibited three very 

different autozooid morphologies. Three previously described species in three 

different genera, and two different families, were found to be astogenetic and 

ontogenetic phases of the same taxon!
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1.6.6 Colony form

Bryozoan colonies exist in a number, but not unlimited variety, of forms, which may 

be grouped into four types.

1.6.6.1 ENCRUSTING

The great majority of species are encrusting and form unilaminar colonies, varying 

considerably in shape and extent, on a great variety of substrates, inorganic and 

organic. In a limited number of species growth occurs as a number of linear runners, 

but more commonly the colony covers an area completely. In some species new 

zooid layers develop above the initial layer, and in others the colony develops a 

nodular form.

1.6.6.2 ERECT

A sizeable minority of species adopt a variety o f upright forms. The majority of free

standing upright species possess specialised attachment zooids, rhizoids, by which 

they are attached to the substrata. In a minority of species there is an initial 

encrusting phase before erect growth begins. In some ‘rooted’ species living on soft 

sediments the rhizoids attach to sand grains or similar very small substrate. Such 

species invariably have a series of kenozooids serving to raise the feeding autozooids 

clear of the sediment surface.

The vast majority of erect forms grow distally and laterally by the production of new 

branches or lobes, and the manner in which this occurs gives rise to a variety of 

colony morphologies, the nature and form of the upright component varying 

considerably. In the first instance a distinction can be made between flexible and 

rigidly erect forms. Flexibility may be achieved in a variety of ways. It may result 

from an absence of calcification in ctenostomes such as Alcyonidium, light 

calcification in cheilostomes such as Bugula, or the possession of non-calcified 

joints, nodes, between calcified branches in arborescent bryozoans such as Crisia, 

Cellaria, and cellularines such as Scrupocellaria. Within the cheilostomes, erect 

colonies may be unilaminate such as Scrupocellaria or bilaminate as in Flustra
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foliacea. Autozooids may be arranged in narrow branches as in the former or broad 

lobes as in the latter. In ctenostomes such as Alcyonidium and cheilostomes such as 

Cellaria autozooids are arranged all round an essentially circular ‘stem’. Rigidly 

erect forms may also be unilaminate, with narrow, or bilaminate, with much wider or 

cylindrical, branches. In both, in the absence of flexibility, the colony may be 

strengthened by branches being linked or anastomosing, and in bilaminate adeonifom 

species by heavier calcification.

1.6.6.3 FREE LIVING

A few species exist as free-living colonies with the form of a small inverted saucer, 

and are held above the substrate by very long vibracular setae. Other species are 

sometimes found free living, although they have, in all probability, adhered initially 

to a limited substratum, have subsequently completely surrounded it, and the 

aggregation then became detached.

1.6.6.4 BORING

Another very small number of species inhabit a substrate by boring into it and 

generally form linear runners between two different layers within it (Pohowsky, 

1978). Similar in form are species which live between different layers of tubes 

secreted by polychaetes.

The above attempts to classify a diverse assemblage into a limited number of basic 

types. Although there are variations within them, bryozoan colony form is essentially 

conservative, with very similar forms persisting over evolutionary time (McKinney 

and Jackson, 1989).

1.6.7 Bryozoan colonies vary in the degree of their colonial 
integration

The diversity in form of Bryozoan colonies is accompanied by a similar diversity in 

the level of colonial integration. The extensiveness of the fossil record and the 

difficulties associated with observing live material, at the scale necessary to discern
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colony-wide patterns, has resulted in theoretical considerations based on hard part 

morphology being the dominant approach (Cook, 1979).

Variations in the degree of colonial integration and the elements contributing to it 

were extensively reviewed by Boardman and Cheetham (1973). They inferred 

various degrees of colony dominance from variations in respect of six morphological 

characteristics:-

• The nature of zooid walls.

• The nature of soft-tissue inter-zooidal connections.

• The presence/absence of extrazooidal growth.

• The complexity of the astogenetic process.

• The extent of morphological differences between polymorphic zooids.

• The positioning of polymorphs within the colony.

I shall confine myself to their discussion regarding the Cheilostomatida.

For colonies composed of a number of individual zooids, it is possible to envisage 

theoretically, in terms of their degree of integration, a continuum of possibilities. At 

one extreme the zooids have complete independence, whilst at the other colony 

control or domination is total. In reality the continuum is not likely to reach either 

extremity. The transition from zooid independence to colony control is the result of 

increasing integration of zooids and perhaps the development of extrazooidal parts. 

Whilst autozooids are very small, and relatively constant in size and shape, a 

considerable range of colony size and form are achieved via variations in the number 

o f autozooids, and their spatial arrangement in relation to one another. In the vast 

majority of cheilostomes in addition to the autozooids, there exist a variety of 

polymorphs, generally heterozooids, the morphology of which are modified, often 

very considerably.

Morphological variation of zooids within colonies is not restricted to polymorphic 

individuals, and Boardman et al. (1969) distinguished four sources and types of such 

variation:-
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• Ontogenetic variation.

• Astogenetic variation.

• Polymorphism

• Variations due to environmental factors

For each of the six morphological characteristics listed above, Boardman and 

Cheetham (1973) described a series of states, which they arranged in order of 

increased integration:-

• The distinction between exterior and interior body walls (Silen, 1944; Banta, 

1969) is important in determining degrees of colonial integration. The former 

-  in that they do have the ability to separate a zooid from the external 

environment -  express zooid autonomy, whilst the latter -  which do not 

possess this ability -  reflect colony dominance.

• The presence of interzooidal connections by soft tissue is not a feature of 

solitary animals, and clearly expresses colony dominance.

• The presence of extrazooidal parts, which are not part of any zooid, is 

indicative of colonial control.

• The presence/absence, and the extent, of generational differences in zooid 

morphology, astogenetic change, is a characteristic indicative of the degree of 

colony dominance.

• The range of morphological variation between polymorphic zooids provides 

some measure of the degree of colony dominance.

• The extent of the structural dependence of polymorphic zooids on another 

zooid, and the positioning of polymorphs within a colony, random, regular, 

grouped, are both indicators of the degree of colony dominance.

For each of the above, a series of four or five actual or postulated states were 

described, ranging from zooid autonomy to colony domination. The theoretical 

framework, described above, was applied to 16 cheilostome species or groups of 

species.

Firstly, zooid walls, the nature of which is closely related to the mode of budding. In 

the majority of cheilostomes zooids are produced in linear series (Boardman and
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Cheetham, 1969) each of which is bounded frontally, laterally and basally by exterior 

walls, whilst the zooids within each series are separated by interior walls. The higher 

the proportion of interior walls the greater the level of colony dominance.

Secondly, soft tissue connections between zooids. Whist some minor variations 

exist, within the order there is little variation.

Thirdly, the presence or absence of extrazooidal parts. In the majority o f the 

cheilostomes none are present, but in a minority, e.g. Cupuladria, some such parts 

are well developed. Such development is indicative of well-developed colonial 

integration.

Fourthly, the presence/absence and complexity of zones of astogenetic change. In the 

majority of cheilostomes there is a single, proximal zone of astogenetic change, but 

in a minority of species more than one such zone exists. The greater the complexity 

of this pattern the greater the level of colony dominance.

Fifthly, the extent of morphological variation between polymorphs. Polymorphism is 

characteristic of the cheilostomes, although variable in extent between taxonomic 

groups at all levels. The greater the range o f morphological variation the higher the 

level of colonial integration.

Sixthly, the degree of structural independence of polymorphs, and the regularity or 

otherwise of their location. Polymorphs intercalated in the budding pattern, 

vicarious, are considered more structurally independent than those which are not so 

budded, adventitious, and are structurally dependent on the autozooid which 

produced them. Vicarious polymorphs which occur, apparently randomly within the 

colony are deemed to be more independent than those whose siting is regular and or 

predictable, and therefore assumed to be under colonial control. (Interestingly, 

within this last series, the regularity or otherwise of adventitious polymorphs, was not 

considered).

The delineation of six relevant characteristics does not, in itself, indicate their 

relative importance in regard to colonial integration The regularity of the actual
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spatial arrangement of autozooids within the colony, a parameter difficult to quantify, 

was not considered, but is surely relevant.

A range of levels of integration occur within the cheilostomes, in four of the six

characteristics (the level of interzooidal communication and the range of

morphological variation between polymorphs show little variation within the order). 

There appears to be no simple progression from less to more integrated types. 

Certain groups may be highly integrated in certain respects but low in others, whilst 

other groups exhibit a very different mix. The observed pattern suggests that there is 

more than one adaptive trend within the cheilostomes.

Beklemishev (1969) considered that adaptive trends should be related to

characteristics which “ intensify the individuality of the colony”. Boardman and

Cheetham (1973) felt that three of the trends identified by Beklemishev were 

particularly important in respect of the evolution o f the cheilostomes:-

•  Structural integration, through the development of structures shared by 

zooids, or to a lesser degree, external to them.

• Physiological integration by increased communication between zooids. 

(Although within the group there appeared little variation).

•  Increased functional integration, via specialised polymorphic zooids, and 

often their joint activity.

Boardman and Cheetham (1973) felt that increased regularity of budding and 

astogenetic complexity, were in part, related to these.

With regard to structural integration, it is notable, within the species studied, that 

extrazooidal parts were developed in those species whose vertical walls were largely 

interior, e.g. Cupuladria, and not developed in the majority of species in which 

exterior vertical walls were also present.

With regard to physiological integration, essentially dependent on the degree of 

communication between zooids, there was no evidence o f evolutionary development.

56



With regard to functional integration, increased complexity of astogenetic changes; 

the number, variety, and precision of siting of polymorphs within the colony, could 

all be argued as increasing its functional integration.

The somewhat artificial division of integration into these component parts did 

facilitate some generalisations relating the character of the integrative state to 

particular colony forms.

For non-encrusting forms, generally achieving a definite colony form, some degree of 

colonial integration is clearly necessary. The most structurally integrated species 

were rigidly erect or free-living forms, for which the danger of breakage was greatest. 

The most functionally integrated species were flexible, jointed, erect species. 

Jointing would appear to require some colonial control of branching, via budding, 

and the more regular siting and/or grouping of polymorphs. Encrusting forms 

generally exhibited a range of generally low-level structural and functional 

integration, and some ancestral species with a very low level o f integration, still exist. 

Encrusting species have no colony form to achieve, and their size is much related to 

that o f the available substrate.

The above theoretical considerations relate levels of structural and functional 

integration, in some degree, to variations in colony form discussed in Section 1.6.6.

A complementary, but less-utilised approach, involving the observation of live 

material, together with inferences from hard part morphology, may be necessary to 

reveal certain aspects of colonial integration, especially where there is a behavioural 

element. Cook (1979) envisaged a gradient of colonial integration, from colonies in 

which zooids function almost as an aggregation of solitary animals (e.g. Aetea) to 

others in which colony control of constituent zooids is considerable (e.g. 

Cupuladria). In Aetea the budding pattern is uniserial, there is no colony form, the 

majority of zooid walls are in contact with the environment, zooids are 

monomorphic, are in contact via a single pore, and each feeds separately. In the 

highly integrated colonies of Cupuladria, the discoid colonies are free-living, have a 

regular budding pattern and colony form, and only a small fraction of zooid walls are
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in contact with the environment. Zooids communicate through several pores, both 

with each other and with a basal colony-wide coelom (Hakansson, 1973). Some 50% 

of zooids are heteromorphs and require nutrition from autozooids. That the 

peripheral setae may function simultaneously, suggests that behaviour may also be 

colony controlled (Cook, 1963).

The role played by groups of autozooidal polymorphs with asymmetrical tentacle 

crowns in relation to a colony-wide arrangement of excurrent ‘chimneys’ facilitating 

the disposal of already filtered water (Cook, 1977; Cook and Chimonides, 1980) was 

referred to in Section 1.6.4.2. These may involve differences in behaviour and/or 

morphology, and may be centred on a non-feeding zooid. The production and 

maintenance of such groups indicates considerable colonial control of zooid 

morphology and behaviour (Cook, 1979). She also traced series representing 

variation in the extent of colonial integration in respect of avicularia and vibracula, in 

terms of morphology, siting and its regularity; and in respect of ovicells in relation to 

the number of autozooids involved.

Cook (1979) concluded that “integrated, colony-wide functions may be much more 

common in bryozoan colonies than hitherto expected”, and that an understanding of 

colony morphology was a prerequisite to revealing them. She pointed out, however, 

that there is no simple relationship between highly integrated morphology and 

colony-wide functions.

1.6.8 THE SPATIAL ARRANGEMENT OF ZOOIDS WITHIN 
MODULAR BRYOZOAN COLONIES

The actual spatial arrangement of all of the modules (zooids) within a bryozoan 

colony results from the astogenetic pattern of the species, invariably affected to some 

degree by various environmental factors. In the species considered in this thesis, in 

Chapters 5, 6 and 7, polymorphism is very well developed and polymorphic 

heterozooids may outnumber autozooids by a factor of 10. It is however the spatial 

arrangement of the autozooids which is fundamental in determining colony structure 

and morphology. The spatial disposition within a colony of the assemblage of
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polymorphic heterozooids, however, may be of value in determining the way such 

colonies are structurally and functionally organised.
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CHAPTER 2 -  PRELIMINARY POPULATION STUDY OF 
SCRUPOCELLARIA REPTANS

2.1 INTRODUCTION

A literature search on Scrupocellaria reptans revealed little in regard to the general 

biology, or ecology, of the species. Lutaud (1953) looked in detail at the ancestrula, 

the development of young colonies, the lengths of intemodes and bifurcations, and 

described the consistent branching pattern. I am aware of no study of the species 

which investigated colonies beyond the early stages of growth. Species descriptions 

within various regional bryozoan faunas give generalised accounts of colony form 

and the polymorph types present. Silen (1980) looked intensively at the relationship 

between the ancestrula and the substratum. Eggleston (1963) in the Isle of Man, 

found embryos in all months except April and October, with the greatest abundance 

between June and August. Embryos were present throughout the year but most 

abundant from June to October (possibly North Wales, Ryland, pers. com.), 

(Hayward and Ryland, 1998). I have found no reference to the settlement period, the 

rate of colony growth, mean or maximum colony size, or longevity.

2.1.1 Objectives

It seemed desirable, therefore, before looking in detail at the spatial arrangement of 

zooids within colonies and their structural organisation, to obtain some idea of the 

basic biological characteristics listed above. It seemed possible that some ecological 

information would also be obtained from such an investigation. It was intended as a 

very preliminary study, which aimed only to answer questions relating to the basic 

elements referred to above.

2.2 MATERIALS AND METHODS

A littoral population is present on the lower shore at Musselwick, in Milford Haven, 

Pembrokeshire (grid reference SM 819064), and this was sampled, generally 

monthly, at suitable low tides. Ideally, this sampling would have been quantitative.
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However, the colonies of S. reptans exhibited a very pronounced clumped large-scale 

distribution. As a result, although suitable habitat -  here largely Chondrus crispus -  

was present over much of the lower shore, S. reptans was found only in discrete areas 

of it. Any sampling using random quadrats would have led to very variable results, 

and sampling was therefore carried out simply by visual searching. This essentially 

revealed the larger colonies, and then all suitable substrate in that vicinity was 

collected. I thus tried to ensure that the sample was not biased in favour of the larger 

colonies. Only colonies still attached to their algal substrate, and which itself was still 

attached, were collected. The material collected was then scrutinised very closely in 

the laboratory, to ensure that all colonies were investigated. The aim of the study 

was to obtain a representative picture of the relative numbers of the various size 

colonies present at each sampling visit. It is apparent from Tables 2.3, 2.4 and 2.5 

that small, often very small, colonies were collected by this method.

The ‘Sea Empress’ oil spill, 18/03/96, and its subsequent clean up, led to three 

abortive sampling visits; with the entire shore being covered in filamentous algae, 

and I feared that the population might have been wiped out. However, when the site 

was visited on 31/07/96 most of the filamentous algae had gone and the population 

was clearly still there. I had six months data before the oil spill, but an absence of 

any for the next four months. I therefore began a year long study, on 31/07/96, and 

as a result have two sets of results, one for the six months prior to the disaster and 

one covering a year beginning when the population was rediscovered.

Colony size was determined by counting the number of autozooids, so the results 

show the net result of growth minus any reduction caused by physical damage and/or 

predation. It was not possible to distinguish colonies that had been reduced in one 

way or another from those that had not. It subsequently became apparent that such 

reduction was common and extensive for a certain period of the year, and was an 

important element in any description of colony size changes over time.

The raw data detailing the sizes of colonies collected at each sampling date are in 

Appendix ‘A’.

61



A sub-sample of the material obtained at each visit was used for the population study. 

Again it would have been preferable if this could have been quantitative, a certain 

number of colonies perhaps. The great range of colony sizes did not encourage such 

an approach and, to maintain the randomness of the sample, the material used was 

simply the complete contents o f a number of collection containers.

The sizes of the colonies within these sub-samples were obtained by counting the 

numbers of autozooids in each colony. I had aimed to use at least 100 colonies from 

each sample, but this was not always possible when colonies were very large.

This data were used in two ways:-

•  Firstly, the mean number of autozooids within a colony was calculated for 

each sampling date, and these were plotted as bar charts over time. It was 

apparent from the raw data that, for most of the year, a great range of colony 

sizes existed at any one time. This also needed to be quantified.

•  Secondly, therefore, it was decided to group colony sizes, in terms of number 

of autozooids, into a limited number of size classes, which would provide a 

more detailed picture of the size structure o f the population at each sampling 

date. This posed the problem of how to determine the number and ranges of 

these.

How useful are size classes here? Two completely separate factors are in operation, 

the importance of each of which varies temporally as does the relationship of one to 

the other.

•  Firstly, for dichotomously branching species, the potential number of growing 

points doubles with each successive generation of bifurcations. This, while 

occurring in the early generations o f intemodes, cannot continue indefinitely, 

and the rate o f increase then decreases at an unknown rate. It is, therefore, 

not possible for this aspect, to calculate size classes which will be appropriate 

for all colonies, at all stages o f their growth.
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• Secondly, in a temperate climate, a colony’s rate o f growth will vary with 

seasonal environmental parameters, level of available food, temperature, and 

perhaps salinity. Further, changes in colony size were not solely the result of 

how fast they were growing but also size reduction, caused by abiotic damage 

or predation, resulting in partial mortality. (This is a problem in respect of all 

modular colonies; Hughes and Jackson (1980) discussed this in respect of 

scleractinian corals, where the situation is further complicated by fission and 

fusion, elements absent here). Partial mortality must occur to some degree all 

the time, but the fact that for a certain period mean colony size fell 

considerably, clearly indicates the extent of its impact and that it varied 

greatly in extent over time.

These two elements are essentially independent of one another.

Despite these difficulties, it was necessary to try to put some structure into the range 

of colony sizes observed. Given that colonies initially grow exponentially, but then 

slow by a variable and unknown amount, it seemed that colony size classes used 

should attempt to reflect this.

When data had been collected it became apparent that although settlement occurred 

over a three-month period, for most of the year there was a great range of colony 

sizes at any one time. A very small minority of colonies grew very large but many 

only achieved a much smaller size before they reproduced and died. This also 

strongly militated against meaningful size classes.

Size classes were calculated on the premise that initially growth would be 

exponential (Ryland, 1976b) and that this growth rate would slow as colonies grew 

and competition for space reduced the rate of increase of growing points. The size 

classes were also initially calculated to produce nine such classes. The data were 

plotted as bar charts showing percentage occurrence of each class against time. It 

enabled the changes of colony size over time to be explored more closely: e.g. did 

such changes occur in certain size classes only, or across them all?
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Attempts were made to calculate appropriate size classes in relation to an arbitrarily 

defined ‘size class 1’ (which was deliberately made very small, to facilitate the 

separation of newly established colonies). These size classes were very rough 

estimates of meaningful size classes. When the detailed study of one large colony of 

S. reptans was carried out (Chapter 5) additional data became available (although not 

directly translatable into size classes) which provided some guidance. It produced, 

admittedly for only one very large colony, data on the actual number of growing 

points and cumulative number of autozooids which existed in each generation of 

intemodes. It thus provided information on a previously only estimated variable, 

changes in the number o f growing points over time, although it did nothing to 

quantify changes in the rate of growth. Still ignoring variation in environmental 

conditions, size classes could be estimated on the assumption that a certain number 

of new generations of intemodes would be produced since the previous sample was 

taken. Although such size classes would not incorporate any changes in growth rate 

over time which resulted from a change in environmental conditions, it was thought 

possible that some idea of this could be obtained from data obtained on successive 

samplings throughout the year. It became apparent, however, from this data that 

colonies frequently suffer partial mortality during the winter, and growth rates are 

then negative.

Size classes were calculated in relation to the number of autozooids present 

following each generation of bifurcations in the colony investigated in the detailed 

study described in Chapter 5. Given that that colony at its greatest extent had some 

28 generations of intemodes, nine size classes could be calculated on the basis of 

three generations of intemodes equalling one size class, using the cumulative figures 

of the numbers of autozooids present.

The large colony investigated in Chapter 5 was collected in mid November and it is 

not unreasonable to assume from the data on settlement period that the colony would 

have originated ip May to June, and that partial mortality would not have occurred to 

any great extent by this date. On these assumptions this colony had reached this size 

in less than six months.
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2.3 RESULTS

(The raw data are in Appendix A).

2.3.1 Changes in mean and median colony size over time

Various parameters of colony size are shown in Table 2.1, below.

Sample
Date

Day
number

Number of 
colonies

Mean 
number of 
autozooids

Standard
deviation

Median 
number of 
autozooids

09/10/95 75 123 690 1451 170
23/11/95 120 44 1169 2809 453
24/12/95 151 50 4107 5611 1696
22/01/96 180 102 2676 2822 1462
19/02/96 208 88 1746 1837 1229
19/03/96 237 134 1776 2228 1006

SEA EMPRESS OIL SPILL

31/07/96 5 350 83 565 11
29/08/96 34 199 275 557 87
28/09/96 64 74 684 1267 268
26/10/96 92 75 1626 1853 978
12/12/96 139 52 2334 3303 1273
12/01/97 170 105 1366 2266 516
08/02/97 197 99 1159 1386 614
08/03/97 226 125 1972 3463 1150
09/04/97 258 87 2018 2034 1352
06/05/97 285 32 3200 3946 1552
22/06/97 331 237 187 667 15
23/07/97 362 1511 33 98 10

Table 2.1 Mean and median numbers o f autozooids per colony at each sampling 
date

The most striking feature of Table 2.1 in respect of changes in mean/median colony 

size throughout the year is that they increased rapidly until the end of the year and 

then fell dramatically in January and February. They then increased to an even 

higher level (in the year-long study) in under a year, before crashing when colonies 

reproduced and died, in mid-summer. Table 2.1 also shows definite patterns of 

change in mean/median colony size over time and from these the following are 

apparent:-
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•  That this population of the species appears to be annual, with very low 

mean/median colony size only in late June and July.

• That it appears (on the basis of mean colony size) that there was not a simple 

increase in colony size throughout the year. Initially colonies grew very 

rapidly, but in the winter average colony size fell dramatically, and then 

increased again in the spring.

•  That, for the six months period of the year included in both series of samples, 

the largest average colony size, reached in December, was much higher in the 

year before the oil spill. It is noticeable, however, that by mid March, the end 

of the six months period, there was very little difference between the two 

years. Indeed the average size of colonies at the beginning and end of the six- 

month period was very similar to those in the year long sample, and the 

pattern of change was very similar in the two periods.

•  It is clear from the very large standard deviations that a great range of colony 

sizes was generally present at the majority of sampling dates.

The changes in mean colony size are shown graphically in Figures 2.1 and 2.2 below.
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Figure 2.1 Mean colony size over the six month period commencing 09/10/95 and 
ending with the Sea Empress oil spill .
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Figure 2.2 Mean colony size over the twelve month period commencing 31/07/96, 
four months after the Sea Empress oil spill.
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Figures 2.1 and 2.2 above graphically illustrate the results discussed above. The 

species here is probably an annual, but growth occurs in two periods separated by 

three months when, unless there is an influx of new colonies mid-winter, growth 

appears to be negative. This is a very broad picture; and the breakdown of each 

sample into a number of size classes is necessary to clarify what is happening.

2.3.2 Temporal changes in size class structure

The figures below are calculated utilising the numbers of intemodes and autozooids 

in the colony of the detailed study in Chapter 5 (see Materials and Methods, Section 

2.2) and assuming that the number of new generations of intemodes was constant 

over time. Whilst this is obviously not realistic in respect o f changing environmental 

conditions, because the period covered excluded the mid winter, the more extreme 

variations probably did not occur within this period.

68



Sample
Date

No.
of

col
onies

Size class
1 2 3 4 5 6 7 8 9

Number of autozooids
1-30 31-

340
341-
2060

2061-
4570

4571-
8080

8081-
13320

1332-
17300

17301-
18810

18811
+

091095 123 12 54 26 5 1 2 0 0 0
231195 44 4 39 48 7 0 0 0 2 0
241295 50 0 18 38 12 14 12 2 0 4
220196 102 1 13 45 18 16 7 0 0 0
190296 88 0 16 53 24 5 2 0 0 0
190396 134 2 21 48 18 9 1 1 0 0

SEA EMPRESS OIL SPILL

310796 350 73 25 2 0 0 0 0 0 0
290896 199 27 54 16 3 0 0 0 0 0
280996 74 19 39 35 5 0 2 0 0 0
261096 75 8 19 47 21 4 1 0 0 0
121296 52 0 29 36 21 8 2 4 0 0
120197 105 5 35 39 13 7 0 0 1 0
080297 99 7 36 36 19 2 0 0 0 0
080397 125 8 19 38 28 6 0 0 0 1
090497 87 0 17 45 28 9 1 0 0 0
060597 32 3 12 41 16 19 6 0 3 0
220697 237 76 16 5 3 0 0 0 0 0
230797 1511 81 17 2 0 0 0 0 0 0

Table 2.2 Percentage occurrence of colonies of the different size classes, at each 
sampling date

It is clear from Table 2.2 that:-

• The very high incidence of very small colonies for only a two to three month 

period mid-summer, and their very low level of occurrence for the rest of the 

year confirms the species is, at least here, an annual.

• That since there is no influx of new colonies at the turn of the year which 

could account for the decrease in mean colony size at that time; there is a 

period of negative growth (partial mortality).

Table 2.2 shows that the changes in the percentage occurrence of the various size 

classes exhibited a less distinct pattern than might have been anticipated given the
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single, if  extended, period of settlement. This is in large part due to the substantial 

fall in mean colony size around the turn o f the year. It is also true that the numbers 

involved for some sampling dates were perhaps rather small to be split into nine size 

classes. Nevertheless patterns are apparent, especially for the year-long period, and 

are more clearly seen represented graphically:-

• Figure 2.3 shows changes in the percentages o f the various size class 

frequencies over time.

• Figure 2.4 shows for size classes one, three and five, changes in their 

percentage level of occurrence over time.
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Figure 2.3 The frequency distribution of size classes, at each of the sampling 
dates over the year commencing 31/07/96
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2.3.3 Range of colony sizes present at any one time

Although settlement was restricted to an essentially three to four month period; for 

much of the year the range of colony sizes to be found at any one time was 

considerable. Only for a short period in mid summer, when all colonies were small 

or very small was this not the case.

2.3.4 Final size of colonies

There was a great range of colony sizes prior to reproduction and only a very small 

fraction attained the largest or even the larger sizes. Probably 50% of colonies 

achieved < 2,000 autozooids, a few colonies attained more than 8,000, and a still 

smaller minority were of >20,000.

2.3.5 Settlement period

The percentage occurrence of the smallest colonies, very high only in samples taken 

in late June and late July indicate a limited settlement period. It was unfortunate that 

settlement commenced during a six-week interval between samplings between early 

May and late June.

2.4 OTHER OBSERVATIONS

2.4.1 Clumped distribution of colonies

As discussed under Materials and Methods, although there were extensive areas of 

Chondrus crispus (the preferred substratum here on the lower shore), S. reptans was 

found in abundance in certain areas and completely absent from others. The 

bryozoan exhibited a large-scale clumped distribution.

When small colonies were collected soon after settlement it became clear that 

clumped distribution also occurred on a small scale. Lengths of C. crispus, which 

had been separated from the parent plant as one or more colonies were present, for 

their autozooids to be counted, invariably proved to have more colonies present than 

was initially thought. Typically the vast majority of the frond was uncolonised but
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where a very small colony was found, there often proved to be two, three or more 

colonies, with their first intemodes very close together. There was no obvious micro

environmental characteristic related to these clusters.

2.4.2 Substrata

The vast majority of all of the colonies collected at Musselwick were on C. crispus, 

which existed in quantity low on the shore. Colonies were very occasionally found 

on other algae, such as Mastocarpus stellatus and Ulva lactuca.

2.4.3 Relationship to degree of water movement

The shore at Musselwick is Grade 5, ‘fairly sheltered’, on Ballantine’s (1961) 

‘Biologically defined exposure scale’, which graded shores around Pembrokeshire, 

from ‘1’, ‘extremely exposed’, to ‘8’, ‘extremely sheltered’.

2.4.4 Colony habit

Colony habit on C. crispus was not really procumbent. The fronds of this alga are 

limited in extent, and colonies were not ‘plume like’ as some on filamentous red 

algae, but neither were they as procumbent as those on Fucus serratus. Colony habit 

reflects the extensiveness of their substrate available for rhizoid attachment.

2.5 DISCUSSION

2.5.1 Longevity

Very small colonies occurred at very high levels only in samples at the end of June 

and July, and for most of the year they occurred at a very low level. During the 

settlement period average colony size was very low (in the sample taken 23/07/97, of 

>1,500 colonies all were of < 1,000 autozooids) and large colonies were completely 

absent. This indicates that colonies do not survive for longer than one year. The 

littoral population at Musselwick, which therefore appears to be annual, was almost 

exclusively found on C. crispus, which is a perennial plant (Pybus, 1977).
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2.5.2 Settlement period

Very small colonies were abundant in late July, but the much smaller numbers of 

such colonies found in late August and late September could be due to late settlement 

or slowly growing or damaged colonies. Settlement appears to be centred on June, 

July and the first half of August. Given the frequency and extent of partial mortality, 

and probable variation between colonies in their rate of growth, I doubt that the few 

very small colonies found throughout the rest of the year were the result of new 

settlement.

2.5.3 Temporal changes in mean colony size

It has been said that the number of autozooids in a growing bryozoan colony, in the 

absence of any environmental constraints, increases logarithmically during its 

growing season (Ryland, 1976b). Such constraints of course may take many forms: 

e.g. lack of space (Hayward, 1973) or seasonal factors such as falling temperature or 

low level of available food. Bushnell (1966) found that the arborescent form Bugula 

turrita exhibited geometric growth. Exponential growth, if it continues long enough, 

inevitably results in an environmental constraint, lack o f space. Growth in 

Alcyonidium hirsutum (Hayward and Harvey, 1974; Hayward and Ryland, 1975; 

Owrid, 1988) exhibited geometric growth initially but then declined, resulting in the 

characteristic sigmoid curve.

For this population of S. reptans mean colony size increased rapidly until the end of 

the year, then fell dramatically for several months before increasing again in the 

spring and early summer to a higher level. It is known that old fronds of C. crispus 

degenerate and are thrown off in the winter (Rosenvinge, 1931) but whilst this may 

well account for a mid winter reduction in the population of S. reptans, it is unlikely 

to result in a reduction in mean colony size. This would require that larger colonies 

are disproportionally affected, which they may well be, given that the larger the 

colony the more likely it is to be damaged by water movement. This will be 

discussed briefly below in Section 2.5.5.
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The evidence of the detailed study of a large colony of Scrupocellaria reptans 

(Chapter 5) indicated that for that colony of arborescent form, exponential growth, in 

terms of the number of points of growth, occurred for only a very short period. 

Growth then continued at an ever-declining rate. From the detailed study it appears 

that it may well be that the growth form of the colony is such that actual interference 

between ‘aggregations’ of intemodes (lateral sections of a colony) may not occur. 

Limitations of space do however determine the lateral extent of the essentially small 

number of laterally discrete areas of extensive vertical growth which develop. This is 

discussed further in Chapter 5.

2.5.4 Range of colony sizes present at any one time

Although settlement did occur over a period of approximately three months, the 

range of colony sizes present at any one time was, for much of the year, far greater 

than might have been expected. This may have resulted from variations in growth 

rate and/or variations in the extent of damage and predation. Given the considerable 

decline in mean colony size in January and early February, and the fact that there was 

no influx of new colonies to account for this, partial mortality must have been a 

substantial factor. Do the variations in the percentages of the various size classes 

throw any light on this?

2.5.5 Temporal changes in size class structure

There were temporal changes apparent in size class structure but patterns were far 

less distinct than one might expect with a single, if  protracted, period of settlement. 

Although the numbers of the larger colonies were always small there is evidence (see 

Table 2.2, and Figures 2.5 and 2.6) that to some degree it was these which were more 

severely affected, in both years, when whatever impacted on mean colony size in mid 

winter, occurred. It is of course true that the larger the colony, and therefore the 

greater its surface area, the more liable it is to suffer fragmentation (Hughes, 1989).
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2.5.6 Final size of colonies

Although the final size of probably 50% of colonies consisted of < 2.000 autozooids, 

a few colonies consisted of >8,000 autozooids and a very small minority consisted of 

>20,000. I did consider that perhaps the very small number of very large colonies 

found could have been the result of two colonies growing together. In the colony of 

the detailed study (Chapter 5), however, for which a single intemode of origin was 

not in doubt, the number of autozooids in the probably smaller ‘half of the colony 

which were counted, was -9,500. The colony would therefore, have consisted of at 

least 19,000 autozooids.

The final size of colonies therefore varied enormously, for whatever reasons, and the 

largest size was seldom approached and very rarely achieved.

2.5.7 Rate of growth

No direct information was obtained on the rate of growth and the great variation in 

colony size could result from variation in rate of growth and/or damage or predation. 

For those colonies which did achieve large size this was often achieved in six 

months. On average half of this was lost in the winter and colonies tended to regain 

their former size after -11 months. Growth rates for successful colonies were 

therefore very high from mid summer to the New Year, and only somewhat lower in 

spring and early summer. The relative importance of variation in growth rate, which 

may be genetic or result from environmental factors, and partial mortality, remain 

unknown, apart from the clear role of the latter in the substantial mid winter decrease 

in average colony size.

2.5.8 Clumped distribution

Aggregation of bryozoan colonies on both a large and small scale is well known. For 

the former, this may well be due to large-scale variation in certain environmental 

conditions. Whilst these may be less apparent to a researcher than to bryozoans, the 

lower shore at Musselwick appeared homogeneous. Where this is the case the
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clumped distribution probably results from a combination of very limited larval 

dispersal and/or a tendency to aggregated settlement.

Clumped distribution on a small scale, aggregated settlement, is often related to 

microenvironmental variation, Celleporella hyalina (as Hippothoa sp.) in the 

depressions o f Laminaria saccharina (Ryland, 1959), Alcyonidium hirsutum 

alongside the midrib of Fucus serratus (Hayward, 1973) and several species in 

association with the channelled side of Pelvetia canaliculata (Ryland, 1959). There 

are no such obvious vagaries in the surface of a frond of C. crispus, but settlement 

was very definitely clumped on a very small scale. Given that the clumping of young 

colonies was so very tight it is difficult not to believe that it results from aggregated 

settlement of larvae.

The distribution o f many sessile marine invertebrates is heterogeneous on a small 

scale, and this is very often produced when larvae settle from the plankton; some 

settle in relative isolation, whilst others settle near conspecific individuals (Keough, 

1983). Gregarious, or perhaps more accurately ‘clumped’ settlement, in Bugula 

neritina and Celleporella hyalina was demonstrated by Ryland (1976a). As cited 

above, the clumping of the latter species is probably related to environmental 

heterogeneity, and not true gregariousness. Keough investigated the settlement of 

Bugula neritina larvae, the. colonies of which, at the southern Californian site 

investigated generally occurred in clumps of two to eight colonies. His study revealed 

that larvae reacted differently to sibling larvae than to those unrelated to them, which 

suggests a kin-recognition mechanism. Such aggregations of colonies afforded some 

protection from fish predators, at least for the individuals within the cluster, and 

suggest that the aggregation behaviour is best explained by a kin-selection 

hypothesis.

Given that very small colonies were often found very close together it is possible that 

large colonies were not always single colonies. Conversely, if  they were, it follows 

that one colony in each original cluster survived at the expense of the others.
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2.5.9 Substrata

The vast majority o f all colonies collected at Musselwick were on Chondrus crispus 

which existed in quantity low on the shore. Colonies were occasionally found on 

other algae, notably Mastocarpus stellatus and Ulva lactuca, but although Fucus 

serratus was present in abundance no colonies of S. reptans were found upon it 

Colonies collected for me from another littoral site, at Salcombe in Devon, were 

invariably on F. serratus. I do not know if C. crispus was present at that site. 

Gautier (1962) found much evidence that for many species there was often a close 

association with a particular algal substrate. It is also known that different 

populations of a species frequently have different preferred substrates at different 

geographical locations (Ryland, 1976b). It is possible that there is a hierarchy of 

preferred substrata, and if this is the case the Musselwick population points to C. 

crispus being preferred to F. serratus. Interestingly although the importance of 

bacterial film for larval attachment is well known, C. crispus has been shown to 

possess considerable anti-bacterial properties (Hornsey and Hide, 1976).

Ryland (1959) suggested that substrate selection could, especially for intertidal 

epiphytes, perhaps facilitate larvae settling at the appropriate level on the shore. At 

Musselwick F. serratus occurs immediately above C. crispus on the shore. In the 

sheltered shores around Dale and the western end of Milford Haven F. serratus 

occurs in a narrow band low on the shore, the lower limit of which is constant 

relative to chart datum, regardless of the degree of exposure of the shore (Moyse and 

Nelson-Smith, 1963). It is easy to imagine with greater exposure S. reptans would be 

able to extend further up the shore, and onto F. serratus.

2.5.10 Relationship to degree of water movement

It is quite likely that the degree of water movement is not a factor of great ecological 

significance in the distribution of S. reptans. As discussed in the introduction, the 

species is often found on Flustra foliacea, which occurs sublittorally, generally on 

coarse bottoms, most frequently in areas subject to strong currents (Hayward and 

Ryland, 1998). Ryland and Nelson-Smith (1975) described a rapids system at Cashla 

Bay, Galway Bay, in which S. reptans was found on Laminaria digitata and L.
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saccharina, the latter species characteristic of sheltered conditions. Kitching and 

Ebling (1967) in their study of Loch Ine rapids, found S. reptans on boulders within 

the rapids, but only on those which experienced lower levels of maximal currents, 

and lower levels of mean tidal flow. My sampling site on the lower shore at 

Musselwick, in Milford Haven, was classified by Ballantine (1961) as a ‘fairly 

sheltered’ shore, grade 5, in a scale from 1 to 8.

2.5.11 Colony habit

Colony habit is generally described as ‘creeping’ (Hincks, 1880; Hayward and 

Ryland, 1998). Colonies which I have seen on F. serratus certainly should be so 

described. Colonies on the less extensive fronds of C. crispus are less so, and 

colonies on filamentous red algae, with a very restricted area for rhizoid attachment, 

still less so, exhibiting an almost ‘plume-like’ habit. Colony habit is strongly related 

to the extensiveness of the substratum available for rhizoid attachment.

Many of the larger colonies from Musselwick had a somewhat ‘spiralled’ 

appearance, as if a force had been applied from above, and then rotated through a 

short arc. I cannot envisage how or why this occurs, or whether this happens to the 

colony, or is achieved by it.

2.6 SUMMARY

Colonies of Scrupocellaria reptans at Musselwick, Milford Haven, were found on 

the lower shore, almost exclusively on Chondrus crispus, although other algae, 

notably Fucus serratus, were also present in abundance. Colonies exhibited a 

noticeably clumped distribution on both a macro and micro scale. On the former, 

they were often absent from considerable areas of their preferred substrate at this site. 

In respect of the latter, very young colonies were frequently found very closely 

aggregated, whilst the vast majority of the frond was uncolonised.

Although settlement of larvae and the initiation of new colonies occurred between 

mid May and early September, a great range of colony sizes was present through 

much of the year. This presumably results from differential rates of growth and 

damage. Only a very small minority of colonies achieved a very large size. The
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species here is an annual, but mean colony size was almost as high after six months 

as it was after a year. In mid winter average colony size fell abruptly and 

considerably, and recovered in the spring, to above its former level. Large colonies 

were increasingly rare as the settlement period proceeded, and were totally absent by 

August, presumably having reproduced and died.
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CHAPTER 3 - A SPECIES OF CELLULARINE BRYOZOAN 
NEW TO BRITISH AND ATLANTIC WATERS

(This Chapter, in somewhat different form, constituted the taxonomic element of:- 

‘The distribution, origins and taxonomy of Tricellaria inopinata d’Hondt and 

Occhipinti Ambrogi, 1985, an invasive bryozoan new to the Atlantic’; Dyrynda et al., 

Journal of Natural History, 2000, 34, pp. 1993-2006).

3.1 INTRODUCTION

Colonies of a cellularine bryozoan were first found during August 1998, in and 

around Poole Harbour, Dorset. Material was initially collected on a detached frond 

of Sargassum muticum, and subsequently on attached plants and from inorganic 

substrata, littorally and in the shallow sublittoral. Colonies were numerous, often 

growing very closely together. They varied in size and in reproductive vigour, often 

being densely ovicellate. Although originally collected on the assumption that they 

were a species of Scrupocellaria (although such colonisation of S. muticum had not 

been previously observed), subsequent examination revealed them to be a species of 

Tricellaria not previously found in British or, it subsequently transpired, any Atlantic 

waters. A preliminary review of the modem literature revealed a remarkable degree 

of similarity between this material and some of the more recent descriptions of T. 

occidentalis (Trask, 1857), a species described previously from all around the rim of 

the Pacific but not outside it. D’Hondt and Occhipinti Ambrogi (1985) introduced 

Tricellaria inopinata for a species that had recently invaded the Venice lagoon. 

Gordon and Mawatari (1992) claimed that this new name was unnecessary as the 

range of variations which occurred within the material described by d’Hondt and 

Occhipinti Ambrogi fell within that known to occur in T. occidentalis, as described 

and figured by Mawatari (1951). Occhipinti Ambrogi and d’Hondt (1994) remained 

unconvinced and suggested a ‘species complex’ of T. occidentalis, T. inopinata and 

T. porteri (MacGillivray, 1889), a species first described from Australasia, which 

required further investigation.
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The classification of the Candidae is largely based on the arrangement of the 

autozooids within an intemode relative to each other and to the joints that separate 

intemodes at bifurcations. Harmer (1923) distinguished a number of different types, 

which are useful taxonomically. The bifurcation o f my material is as per the figure 

below.

zooid g
zoo id f

zooid d

zooid c

zooid e

zooid b

Figure 3.1 The arrangement of autozooids to each other, and to a bifurcation, in 
Harmer’s bifurcation type 9, basal view (modified after Hayward and 
Ryland)

The presence or absence, number, morphology and spatial distribution of 

heterozooids polymorphs are also important in the classification o f the group. (The 

lengths of intemodes have also proved in this investigation to be o f some value).

Harmer’s work, which did much to clarify the classification o f the family, was not 

published until 1923, and early descriptions of the species considered here were all as 

species of Menipea, as indeed were some of those that appeared after that date. In 

Menipea the arrangement o f autozooids at bifurcations is o f Type 17, 18 or 19 of 

Harmer’s classification, and scuta are absent throughout the genus. In Tricellaria 

bifurcations are o f Type 9, 10, ] 1 or 12, an4 scuta may be present or absent.
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Few of the published descriptions refer to the bifurcation type as characterised in 

Harmer’s classification. Mawatari (1951) ascribed his material to Type 5, although 

his figure suggests Type 9 or 10. D’Hondt and Occhipinti (1985) referred theirs to 

Type 9, as do I.

3.1.1 Objective

The objective of the study was to determine the identity of the material collected in 

Dorset. As the study progressed, other taxonomic problems became apparent which 

merited further investigation in regard to the two additional species, T. occidentalis 

and T. porteri, suggested to be within the species complex proposed by Occhipinti 

Ambrogi and d’Hondt (1994). I regard these as beyond the scope of this 

investigation and have confined myself, firstly, to noting material which requires 

reappraisal, as Occhipinti Ambrogi and d’Hondt’s description was not reconcilable 

with mine; and secondly, to recording variations within any museum material which 

has been registered as conspecific.

3.2 MATERIALS AND METHODS

The comparative morphological study involved:-

• The collection of material by hand, littorally and sub-littorally, either 

complete with its algal substratum or removed from inorganic substrata. All 

of the material was preserved in 70% ethanol. Some of the material was 

partially cleaned, using fine brushes and some using diluted bleach, and 

examined using a binocular microscope.

• The examination o f historical and recent literature descriptions and figures of 

the three species under consideration.

• Th? examination o f museum paratype material of T. occidentalis and T. 

porteri, and recent museum material of T. occidentalis and T. inopinata.
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3.3 RESULTS

3.3.1 Description of material

3.3.1.1 Colony form and composition

Colonies varied in size, the largest being -15mm high x -30mm in diameter, and in 

colour from white, through cream to buff, largely related to the age of the colony and 

the amount of material adhering to it. Intemodes (branches) are often somewhat 

concave along their length, and the two produced at a bifurcation are angled relative 

to their precursor and each other. As a result the complete colony is a dense bushy 

mass, which is essentially circular in outline. The intemodes of Tricellaria are 

unilaminar, essentially biserial (the two series of autozooids being staggered relative 

to one another), and have a single autozooid, centrally positioned, wedged between 

the distalmost pair (zooid e in Figure 3.1). All o f the complete intemodes so far 

examined contain an odd number of autozooids, from 3 to 19. Intemodes branch 

dichotomously in a consistent manner but increasingly irregularly as the colony gets 

larger and variations in intemode length increase. Each bifurcation is asymmetrical 

as a result of the way autozooids are arranged before it. The original ramus or ‘stem’ 

continues, but is deflected slightly to one side, and a new secondary ramus or 

‘branch’ projects at a greater angle on the other side, slightly more proximally. 

Because intemodes consist o f an odd number of autozooids, each bifurcation is a 

mirror image of the one which precedes it.

3.3.1.2 Autozooids

Autozooids vary in size and shape in relation to their position within the intemode, 

but all are elongate and taper proximally. The most distal autozooid of each 

intemode is truncated proximally where it is wedged between the two autozooids 

proximal to it. The two most proximal autozooids of each intemode are attenuated 

proximally where they span the joint with the preceding intemode. Intermediate 

autozooids are, therefore, longer than the former and shorter than the latter. The
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figures in Table 3.1, below, are based on measurements of 100 non-ovicellate and 

100 ovicellate intermediate autozooids (20 of each from five different colonies).

Non-ovicellate Ovicellate
Mean S.D. Mean S.D.

Autozooid length 473 54.5 398 27.9
Autozooid width 180 8.2 186 9.4
Opesia length 288 39.2 218 24.4
Opesia width 139 6.9 145 8.4

Table 3.1 Comparison of autozooid dimensions of non-ovicellate and ovicellate 
autozooids. in urn

Non-ovicellate autozooids are almost 20% longer than those with ovicells, and this 

difference is reflected in the different lengths of the opesia in the two.

The ancestrula is bath shaped, -200 (am high x -152 pm wide, lacks a scutum, and 

its opesia is virtually surrounded by -8  thin straight spines. The autozooid budded 

from it arises disto-basally, very differently from the distal budding that occurs 

subsequently, and the connection between the two is much weaker than the common 

transverse wall that separates all other autozooids from their successor. I have found 

the ancestrula in situ only in very small colonies, a feature which is also characteristic 

o f Scrupocellaria reptans and, I suspect, o f many other cellularines.

3.3.1.3 Heterozooids

3.3.1.3.1 Spines

All autozooids have spines around the rim of the opesia. The limited amount of 

variation in their number and location relate to the position of the autozooid within 

an intemode. For autozooids that occur biserially, the arrangement of spines in the 

two series are mirror images of one another. Generally there are three disto-lateral 

spines on the outer side of the autozooid. The most proximal is slender, often bifid, 

and angled somewhat over the opesia; the second is again slender, generally straight 

and more upright, and the third is generally more robust, longer, straight and more 

horizontal. On the inner side there are generally only two disto-lateral spines, both
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slender, straight and upright. The axial autozooid, with a ‘handing’ the reverse of the 

autozooid proximal to it, has an additional long, thick, straight, near median spine, 

very prominent in the axil at bifurcations.

3.3.1.3.2 Scuta

All autozooids, except the ancestrula, have a scutum, a specialised spine, developed 

proximal to the midpoint of the inner lateral rim of the opesia. Initially it is a simple, 

straight, upright spine, but it subsequently bends laterally through -90  degrees, 

overarches the opesia, and to a greater or lesser extent grows proximally, distally and 

laterally to form a shield of varying shape and extent. Whilst some species within the 

Candidae do not possess scuta, for those that do, scutal morphology is generally 

constant within a species and therefore useful taxonomically. In this species there is 

a considerable range of scutum size and morphology even within a single colony. 

Morphologies vary from a simple, slender or forked strut to an extensive cervicom 

structure with a large-scale seal lopped or spiky edge, via a number of intermediate 

forms.

3.3.1.3.3 Avicularia

Avicularia are numerous and varied within the Candidae, and they are found both 

frontally and laterally within the genus Tricellaria. In this species they occur only 

laterally, and are not present on all autozooids, their presence/absence correlating 

with several different features. Excluding the apical autozooid of each intemode, on 

which they cannot occur, they were found, taking the colony as a whole, on probably 

25% of them. They occur more frequently in the more proximal region o f the colony 

and more constantly on the most distal pair of autozooids within each intemode. 

They are sited disto-laterally and vary considerably in size, from 86 to 210 pm long, 

and from 57 to 172 pm wide, the largest forms occurring only on the most distal pair 

of autozooids o f an intemode. There is little morphological variation, although some 

are not attached throughout their length to the autozooid that gives rise to them. All 

are essentially triangular and largely directed laterally, although some are inclined 

partially frontally. The mandible and rostrum are hooked at their tips.
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3.3.1.3.4 Rhizoids

Rhizoids are concentrated on the more proximal intemodes. At bifurcations they 

occur proximal to the joints.

3.3.1.4 Ovicells

The sub-immersed hyperstomial ovicells which are positioned orthogonally to the 

branch axis are sub-globular and -184 pm high x -173 pm wide. The ectooecium 

has a number of pores, usually -15, situated on a smaller number of radiating 

sutures. Because the ovicell in Tricellaria is produced by the autozooid distal to the 

one producing the embryo (Nielsen, 1985) the axial or apical autozooid of each 

intemode is never ovicellate. The two autozooids proximal to it, have, distal to them, 

autozooids proximally traversed by the joints between intemodes, and are rarely 

ovicellate. Whilst short intemodes are generally infertile, the longest intemodes are 

often completely ovicellate apart from the three autozooids referred to above. The 

embryos are deep pink in colour.

3.3.2 Descriptions of the three nominate species related to the 
examination of relevant historical and/or recent material

3.3.2.1 Introduction

How does the material described above relate to that described in the literature as 

Tricellaria occidentalis, T. porteri and T. inopinata, and how do these relate to one 

another? Most descriptions of these species are in accounts of the bryozoan fauna of 

a particular area and, as such, are often briefer than one would wish. They are also 

often frustratingly lacking in detail of the characteristic(s) crucial to identification, 

being written long before Harmer’s (1923) delineation of the various bifurcation 

configurations. Dredged material, especially in the case of arborescent forms, often 

involves the collection of colony fragments rather than complete colonies, and this 

may well have adversely affected the completeness o f resultant descriptions.
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3.3.2.2 Historical and recent accounts within the literature, related where possible, 
to the examination of relevant historical and/or recent material

I shall describe what I believe to be three very different morphologies, and relate the 

most relevant descriptions to them. Other accounts will be considered 

chronologically once these three morphologies have been described.

Firstly, the morphology initially described by Trask (1857) as Menipea occidentalis, 

from the west coast of the USA, from Santa Barbara, California, to Cape Flattery, 

Washington. Whilst the description and figure are lacking in detail, Trask was very 

definite that the intemodes of M. occidentalis consisted of three autozooids. Some 

idea o f the form of the scuta can be deduced from the fact that he made no reference 

to scuta as such but only to stout, curved spines pointing upward and inward. (I 

have, unfortunately, been unable to locate type material of M. occidentalis and have 

been led to believe that it may no longer be retrievable from other conspecific 

material; D.F.Soule, personal communication). Hincks (1882) describing material 

from the Queen Charlotte Islands, British Columbia, and apparently unaware of 

Trask’s description, erected Menipea compacta n  sp. form triplex on the basis of 

‘zooecia in triplets’, although in 1884 he conceded that not all were such, some being 

of five or six. Paratype material (B.M.N.H. 99.1666 -  Vancouver, Busk Collection) 

has been seen. I have also had access to other material of T. occidentalis from 

various localities on the west coast of North America (B.M.N.H. 77.3.7.5 -  San 

Francisco, 1837; B.M.N.H. 1991.9.27.2.3. -  Port Townsend, Washington State, 

1991; B.M.N.H. 67.1.9.35 -  Vancouver; B.M.N.H. 2.14.2 & 3 -  NW. America, 

1963). The majority of the material held by the B.M.N.H. as T. occidentalis (which 

is not all identical), is composed almost entirely of intemodes of three autozooids, 

with a small number of fives toward branch tips. The autozooids are noticeably 

squat. A characteristic described by Hincks (1882; 1884) and also apparent in the 

B.M.N.H. material, is that the scuta are stmt like or, if larger, still very moderate in 

size. Neither Trask (1857) nor Hincks (1882; 1884) described bifid spines and none 

were observed in the B.M.N.H. material. In that material two spines are prominent in 

the axil of bifurcations and lateral avicularia are numerous and large.
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Secondly, the morphology first described by MacGillivray (1889) as Menipea 

porteri, from South Australia. Intemodes were of five to seven autozooids, the most 

proximal of the three outer spines being clavate or bifid; scuta were extensive, 

somewhat reniform; and the lateral avicularia were rather scarce, often one per 

intemode and sometimes even this was lacking. MacGillivray described and figured 

ovicells with a distal row of ectooecial pores, as opposed to scattered pores. I have 

examined paratype material of T. porteri from South Australia (including slides 

65508 & 65509 -  Rev. Porter collection; 65511 and 65513; Museum Victoria, 

Melbourne). Whilst I have seen ovicells in his material, which look from one side as 

if  this is so, most ovicells appear to have pores scattered over their entire surface, 

although these are less apparent/numerous than in T. inopinata. (Whilst the majority 

of the paratype material which I have seen is as MacGillivray described it, two 

colonies are possibly of different morphologies).

[Interestingly in 1890 MacGillivray received another colony from Rev. Porter and in 

respect of this he noted that the scuta were wanting or small and clavate, and that the 

marginal spines were thicker and that none were bifurcate. Unfortunately he made 

no reference to intemode lengths but his brief comments suggest that he was puzzled 

by these differences].

Thirdly, the morphology very fully described and figured by Mawatari (1951) as 

T. occidentalis, from the coasts of Japan, with intemodes of three to nine autozooids, 

or more in distal intemodes, one or two (?) bifid spines, and various scuta 

morphologies ranging from broad or forked stmts (typical form) to large cervicom 

forms with large-scale scallopped edges (var. catalinensis) via a number of 

intermediate forms. (He figured some 10 of these). Lateral avicularia were variable 

in size and numerous. Gordon (1986) and Gordon and Mawatari (1992) both 

described material from New Zealand, identical to the description of Mawatari, but 

with some bifid spines only in the proximal outer position. Finally, d’Hondt and 

Occhipinti Ambrogi (1985) introduced T. inopinata for a species that had recently 

invaded the Venice lagoon, distinguishing it from presumed T. occidentalis on the 

basis of avicularium size, ovicell morphology and proportions, and ecological 

differences. They made no reference to the characteristics that I believe separate T.
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occidentalis and T. inopinata (see Table 3.2). Essentially their description is of 

material with this third morphology, long and varied intemode lengths; some 

proximal external bifid spines; variable scuta morphologies ranging from stmt-like to 

large cervicom (but not reniform), via intermediate forms; and numerous lateral 

avicularia that vary in size. This is the morphology of my material.

I shall now consider chronologically the other cited accounts. The material described 

in these other accounts cited below can, where discrepancies are largely omissions 

rather than contradictions, often be straightforwardly assigned to one of the three 

morphospecies described above. However in some accounts the description and/or 

figures do not accord with the above scheme and a re-examination of the material is 

required.

Ortmann (1890) described material referred to M. compacta and also introduced var. 

dilatata for material which had kidney-shaped scuta, but which, in other respects, 

was identical to the nominate species. His figure, presumably of M. compacta, 

shows scuta, which are essentially‘T’ shaped! This material needs reappraising.

Robertson (1905) describing material collected between San Diego and north to the 

Queen Charlotte Islands, described in addition to the nominate species M. 

occidentalis, a variety M. occidentalis var. catalinensis. The former was 

characterised as having intemodes of three autozooids, with scuta being spine-like or 

slightly flabellate and, although spines were referred to, there was no reference to any 

of them being bifid. Var. catalinensis was introduced for colonies with intemodes 

more often of five or seven autozooids, having large and fan-shaped scuta, with their 

edge divided and extended into a number of spiny processes, and with one or both of 

the spines that met over the upper part o f the aperture sometimes being bifid. [This 

differs from a description of T. inopinata only in the reference to the occurrence on 

some autozooids of two bifid spines]. The bifid spines in her figure are all only one 

per autozooid and occur as the most proximal of the outer spines. This is as in T. 

inopinata and the fact that in this species some of the very variable scuta are simply 

forked stmts seems a likely explanation for this. Robertson went on to say that the 

variations from the type species occurred rather constantly in specimens from the
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south, but that she considered them insufficiently important to establish a new 

species. Robertsons’s description and figures of the spines are somewhat confusing.

There is some ambiguity in Robertson’s (1905) account as to the characteristics of 

var. catalinensis in that it can be interpreted as meaning that longer intemodes, bifid 

spines and extensive scuta are present throughout the colony. It is only in the note at 

the end of the account, referred to above (that variations from the type occurred 

rather constantly in southern specimens) that there is a suggestion that variations of 

these features can occur within a single colony.

Yanagi and Okada (1918) describing Japanese material, stated that most of it 

conformed to M. occidentalis var. catalinensis. They clearly believed that M. 

occidentalis had only undivided scuta and var. catalinensis only divided ones, since 

they used this character to distinguish between the two in their key. They also noted 

the presence of some intemodes of three autozooids in colonies of var. catalinensis 

and implied that this was at odds with Robertson’s description.

O’Donoghue and O’Donoghue (1923) noted that their material, from Vancouver 

Island region, had some forms [colonies?] that approximated to M. occidentalis, but 

that a number o f others were intermediate between that and the var. catalinensis. 

They noted, “none of them quite reaches the extremes exemplified in Robertson’s 

sub-species”.

Okada (1929) described material referred to M. occidentalis var. catalinensis from 

Mutsu Bay, Japan, and made reference to variations of intemode length and to the 

variety of scuta morphologies within a single colony.

Silen (1941) described young colonies with the morphology ascribed above to 

T. occidentalis, but with some larger scuta, and older, larger colonies having, in then- 

distal parts, the morphology ascribed to var. catalinensis, but with the scuta kidney

shaped and undivided! Because of this intra-colony variation he believed that the 

variety catalinensis was invalid. The reference to kidney-shaped scuta requires

92



further examination, especially in the context of variable scuta morphologies within a 

colony. (T. porteri has, I believe, all reniform scuta).

(It is worth noting here that proximal/distal variations in T. inopinata exist but are 

neither simple nor absolute. Whilst the longer, especially the longest, intemodes are 

generally located distally, ovicells are generally similarly situated, and bifid spines 

and extensive scuta are more often found on ovicellate autozooids, intemodes of five 

autozooids may be found very proximally, and bifid spines and extensive scuta are to 

be found on non-ovicellate autozooids within them).

Osbum (1950) describing material collected from Southern California north to 

British Columbia, still separated the nominate species, T. occidentalis, from var. 

catalinensis, with the former having intemodes o f three autozooids (occasionally five 

or seven) with scuta which were spur-like or a simple fork, and presumably simple 

spines (since there was no reference to any being bifid). In the latter, there is no 

reference to intemode lengths, scuta varied from a curved spine to a broadly branched 

structure with a number of points, and bifid spines were present but not constant. He 

also referred to the intergrading of Robertson’s characters within a single colony of 

var. catalinensis.

Bock (1982) described material referred to T. porteri, from South Australia, with 

intemodes o f three to nine autozooids. He neither described nor figured bifid spines, 

described elliptical scuta but figured ones much more irregularly shaped, and figured 

lateral avicularia more numerous than on the material of T. porteri that I have seen. 

This material needs reappraising.

Brock (1985), again from South Australia, figured T. porteri, and showed some bifid 

spines and a variety of scuta morphologies, including stmt-like forms, and others 

larger with wavy or spiky edges, but none as being reniform. I believe that this 

material is T. inopinata.

Gordon (1986) described material from Nelson Harbour, South Island, New Zealand 

as T. occidentalis. The intemodes are of three, five, seven or nine autozooids, the
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most proximal outer spine is often forked, and scuta are very variable, awl-like, bifid, 

trifid or lobate. Gordon referred to the amount of variation within the species and 

that at least two varieties had been named, but that they seemed part of the intrinsic 

variation possible in the species. That is a description of T. inopinata.

Gordon and Mawatari (1992) described identical material found in a number of ports 

and harbours in New Zealand, again as T. occidentalis. They referred to earlier 

descriptions and misidentifications but did not appear to appreciate the differences 

between T. occidentalis (as described by Trask and Hincks) and their material.

Soule, Soule and Chaney (1995) described and SEM’d material from the Santa Maria 

Basin and Western Santa Barbara Channel as T. occidentalis. The intemodes of their 

material were of three autozooids, but sometimes up to five or six (?). The scuta 

varied from a simple spur, usually in northern specimens, to an expanded multi

pronged structure, usually in southern material. It is not clear if  individual colonies 

had only one or the other or if  there were colonies with a range including both. 

Spines were described as three on the outer and three on the inner margin, with no 

reference to any being bifid. Their SEMs show rather clavate, non-bifid spines, two 

of which are prominent in the axil at bifurcations, and slender scuta. These features 

and the squat nature of the autozooids are T. occidentalis like, and utterly different 

from T. porteri and T. inopinata. The median suture on the ovicell referred to in the 

text as sometimes being present, and clearly visible on one of the SEMs, is however 

something that I have not observed in any of the material I have seen of any of the 

three species.

3.4 DISCUSSION

Before considering the characteristics which distinguish the three species being 

considered and the sequence of events that resulted in so much taxonomic confusion, 

it is worthwhile to say something with regard to the pattern of branching which 

occurs in T. inopinata and indeed T. occidentalis, T. porteri and, I suspect, other 

cellularine Biyozoa. It was described by Lutaud (1953) in respect of Scrupocellaria 

reptans.
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It has often been observed that in many biserial cellularines successive bifurcations 

are mirror images of one another. This cannot occur without the ‘handing’ of the 

arrangement of autozooids immediately proximal to the bifurcation being reversed at 

each successive bifurcation. Given the arrangement of autozooids within an 

intemode, a number of staggered pairs and a centrally placed apical autozooid, only 

intemodes consisting of an odd number of autozooids can bring this about. 

References within the literature to intemodes of an even number of autozooids are 

problematical, and almost certainly wrong, none have been seen in my material or in 

any of the museum material that I have seen of the other two species.

The characteristic branching pattern and the fact that all intemodes are 

morphologically identical (apart from length and ‘handing’) was not apparently 

appreciated by a number of early workers. Robertson (1905), Yanagi and Okada 

(1918), and Okada (1929), refer to primary, secondary and tertiary branches, although 

neither how they differed nor how they came about was made clear. Mawatari 

(1951) also referred to the branches thus.

Related to the above, the fact that ovicellate and non-ovicellate autozooids differ 

considerably in length, and in the consistency of the relationship o f the autozooids 

immediately proximal to the bifurcation, it is not surprising that ovicellate autozooids 

generally occur in staggered pairs.

Cheilostomate taxonomy is heavily reliant on the determination of morphospecies 

using qualitative and/or quantitative exoskeletal characteristics. Jackson and 

Cheetham (1990) using breeding experiments and protein electrophoresis, 

investigated three distantly related cheilostomate genera in respect of the reliability of 

morphospecies. They concluded, “morphospecific identity of cheilostomes is 

heritable and that morphospecies are genetically distinct with no indication of 

morphologically cryptic species”. Morphologic species appeared to be good biologic 

species. They noted that cryptic species were a common occurrence in soft-bodied 

Ctenostomatida (Thorpe et al. 1978; Thorpe and Ryland, 1979).
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Lidgard and Buckley (1992) investigated phenotypic variation and the likelihood of 

morphologically cryptic species in Recent populations of Adeonellopsis yarraenensis 

from Australia and New Zealand. Using principal component analysis, cluster 

analysis and discriminate analysis, they concluded that there were actually probably 

five separate species. They went on, “these results also suggest that an alarming 

number of cryptic species may exist within currently accepted yet poorly defined 

species boundaries, particularly among taxa that are morphologically variable and 

geographically widespread.”

The reliability of morphospecies in determining actual biologic species would appear 

to be very variable taxonomically, and perhaps also in relation to precision of the 

identification of the morphospecies. Nevertheless many morphospecies are readily 

identifiable according to the presence of highly consistent features (Hayward and 

Ryland, 1998). T. inopinata, on the other hand, is characterised in certain respects by 

a high level of morphological variability within an individual colony. This appears to 

have been the source of considerable confusion within the Pacific literature 

pertaining to T. occidentalis (Trask), T. occidentalis var. catalinensis (Robertson), 

and to a lesser extent T. porteri (MacGillivray).

In essence I believe that much of the confusion in respect of the identities o f the 

material described in the accounts cited above has its origins in Robertson’s erection 

and description of T. occidentalis var. catalinensis. Firstly, I believe she was in error 

in her expressed intention to differentiate a variety from its nominate species, rather 

than to distinguish between two distinct species. Within the literature cited, no 

material resembling the material originally described by Trask, as M. occidentalis, or 

Hincks, as M. compacta form triplex, has been described from New Zealand, Venice 

or England, which supports the view that var. catalinensis is not merely a variety but 

a separate species, T. inopinata. Secondly, the ambiguity of that description led to 

subsequent workers noting the occurrence of T. occidentalis ’ characters within 

colonies o f var. catalinensis. Yanagi and Okada (1918) distinguished T. occidentalis 

from var. catalinensis on the basis of scuta morphology, and were concerned that 

intemodes of three autozooids were to be found in colonies of var. catalinensis. 

O’Donoghue and O’Donoghue (1923) felt that “none of them [the colonies] quite

96



reaches the extremes exemplified in Robertson’s sub-species”. Okada (1929) again 

noted the variations in intemode lengths and scuta morphologies within a single 

colony.

This led Silen (1941) to declare that if  a single colony of T. occidentalis var. 

catalinensis exhibited all of the characteristics of both the nominate species and the 

variety, then that variety was invalid. As a result, firstly the distinction between T. 

occidentalis and T. occidentalis var. catalinensis was lost, and subsequently material 

very different from that originally described by Trask was assigned to the nominate 

species. This, I suspect, led Mawatari (1951) -  although referring in his description 

to the simple scuta (typical form) and broad flabellate forms (var. catalinensis) -  to 

ascribe his material to T. occidentalis, with Gordon (1986) and Gordon and Mawatari 

(1992) doing likewise.

What I believe was not appreciated was that T. occidentalis possessed a more limited 

range of certain characteristics, intemode lengths, spine and scuta morphologies, than 

did var. catalinensis. The number of prominent spines in the axils of bifurcations, 

two in T. occidentalis and one in T. occidentalis var. catalinensis, is, I suggest, the 

most constant single characteristic distinguishing the two.

Thus, three distinct species seem to have been confused in these previous accounts:-

• In the first, the intemodes are almost exclusively of three autozooids; all scuta are 

simple and poorly developed; no spines are bifid, two are prominent in the axil of 

a bifurcation; and lateral avicularia are numerous: this is T. occidentalis.

• In the second, intemode lengths are longer and more varied; some proximal outer 

spines are bifid; scuta are never sfrut-like, are always extensive but are reniform 

rather than wavy or spiky edged; and lateral avicularia are sparse: this is T. porteri.

• In the third, the intemodes are very variable in length, including some which are 

very long; some proximal outer spines are bifid, only one is prominent in the axil 

of a bifurcation; scuta are very variable, ranging from a broad or forked stmt

to a large wavy edged cervicom (but not reniform) structure, through a variety of 

intermediate forms; lateral avicularia occur on ~ 25 % o f autozooids, excluding 

apical ones, and vary in size: this is T. inopinata.
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Table 3.2, below, summarises the diagnostic features separating the three species).

T. inopinata T. occidentalis T. porteri
Intemode lengths- 
(number of 
autozooids)

Very variable- 
Observed range 3-19

Majority of 3, 
some of 5

V ariable-observed 
range 3-13

Marginal spines- 
(excluding scuta)

Proximal external 
spine sometimes 
bifid

Proximal external 
spine never bifid

Proximal external 
spine sometimes 
bifid

Number of spines 
prominent in 
branch axils

1 2 ?

Scuta

Very variable even 
within a colony-from 
a slender stmt, 
perhaps forked, to an 
extensive cervicom 
structure with a 
wavy/spiky edge

Slender or at most 
slightly spatulate

Consistently large 
and reniform

Lateral avicularia

Distribution complex, 
more common in 
proximal intemodes 
and on distal 
autozooids within an 
intemode. Variable in 
size

Present on the 
majority of non- 
apical autozooids

Present on a minority 
of non-apical auto
zooids

Table 3.2 Diagnostic characteristics distinguishing Tricellaria inovinata, T. occidentalis 
and T. porteri

The problematical accounts within the above and the fact that the B.M.N.H. material of T. 

occidentalis and the paratype material of MacGillivray’s T. porteri both contain some 

colonies of probably different species, strongly suggest that the story is not yet complete. 

However, I believe that I have characterised T. inopinata and differentiated it from the 

other two species of the complex put forward by Occhipinti Ambrogi and d’Hondt 

(1985), T. occidentalis and T. porteri Whether or not these two species, especially the 

former, includes one or more sibling species, remains to be determined.
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CHAPTER 4 -  MATERIALS AND METHODS

4.1 INTRODUCTION

For modular colonial organisms there are particular problems, which arise in any 

attempt to give a comprehensive description of the spatial arrangement of the 

constituent zooids within a colony. For bryozoans generally, colonies consist of a 

number, often a very great number, of zooids. Further, these will almost inevitably 

vary in form, zooidal polymorphism being characteristic of the vast majority of 

species, most notably and extensively in those having various erect morphologies. In 

all non-encrusting species, such as the arborescent Scrupocellaria reptans and 

Tricellaria inopinata considered in this study, the situation is considerably more 

complex than for encrusting species. A three-dimensional colonial morphology 

allows their constituent zooids to be spatially arranged in a number of different ways. 

It should be noted, however, that for erect bryozoans, in terms of their large-scale 

colonial morphology, only a limited number have been evolutionarily successful 

(McKinney and Jackson, 1989). These forms must have characteristics which have 

contributed considerably to the success of such species, but I suspect that other, less 

obvious, characteristics remain undescribed.

The original intention had been to concentrate attention on Scrupocellaria reptans, 

and then perform a similar study on a congeneric species, to establish if  any newly 

discovered characteristics occurred more widely. The chance discovery of 

Tricellaria inopinata, in a closely related genus and a recent addition to the British 

fauna, caused me to rethink this. It became apparent during the investigation 

necessary for its description that, being closely related to S. reptans, it possessed a 

number of similar characteristics, but also that the two species were different in a 

number of respects. This invited a comparison. If previously undescribed 

characteristics emerged from the investigation into S. reptans should also be present 

in T. inopinata, this would be even stronger evidence of their more widespread 

significance. Conversely, if such characteristics differed in the two species, 

additional criteria in species differentiation would have been revealed.
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4.1.1 Aspects of the spatial arrangement, within a colony, of 
autozooids and heterozooids, in erect cellularine Bryozoa

Underlying all scientific investigation is the belief that, however complicated it may 

be and how many disparate elements it may involve, there is an underlying order to 

the natural world. One manifestation of this, which is apparent in many colonial 

organisms such as Bryozoa, is the existence of pattern (Cook, 1985). The premise 

for this investigation is the belief that in many Bryozoa, especially erect forms, the 

spatial arrangement within a colony of all zooids, both autozooids and heterozooids, 

may exhibit characteristics which could be described with greater definition than is 

generally the case. This could reveal previously undetected aspects of colonial 

structure and organization, and perhaps suggest new lines of enquiry.

The spatial arrangement of autozooids is clearly fundamental to colony structure, 

and, by virtue of their monomorphic nature, was also always the more likely to lead 

to direct results. The spatial arrangement of polymorphic heterozooids is clearly 

secondary to that of the autozooids from which they develop. It is also, by virtue of 

the number o f different forms, and the various factors involved in their occurrence, 

much more difficult to deduce, from their observed spatial distributions, why they are 

as they are.

I contemplated reviewing the literature in respect of the lengths of intemodes which 

occurred in cellularine arborescent bryozoans. The number of autozooids within 

intemodes of arborescent bryozoans is generally described as being within the range 

of ‘X’ to ‘Y \ I have always assumed that these numbers referred to the number of 

autozooids in complete intemodes, i.e. those which have bifurcated into two new 

intemodes. I have only looked in depth at two such species. In one, Tricellaria 

inopinata (d’Hondt and Occhipinti Ambrogi, 1985), intemodes were described as 

having between 6 and 10 autozooids. In the second, Scrupocellaria reptans, in the 

most recently published account (Hayward and Ryland, 1998) intemodes were of 

between five and eight, but up to 12 autozooids. In both species, excluding the very 

first intemode of a colony of S. reptans, which may be o f four autozooids, I have 

failed to find a single complete intemode of an even number of autozooids, and for 

reasons which will be detailed later, believe that they are unlikely to be found.

100



Further I have found intemodes, of both species, of a lesser and greater number of 

autozooids, than the ranges quoted. These inaccuracies did little to encourage a 

review of the literature to obtain a broad survey of such information.

The presence or absence of various heterozooidal polymorphs is an integral part of 

bryozoan classification and is therefore invariably included in species descriptions. 

The vast majority o f such descriptions are to be found in regional faunas, and it is 

clearly not feasible for each to be exhaustive. As a result, however, there are rarely 

attempts to quantify presence beyond ‘rare’, ‘uncommon’ or ‘abundant’. References 

to patterns of distribution within a colony are uncommon, references to variations in 

morphology are more frequent, but there are few attempts to bring the two together. 

The two most notable exceptions to the above remarks, that I have seen, are Harmer’s 

‘Cellularine and other Bryozoa’ (1923) and Hastings’ ‘Discovery Report’ (1943). 

Both refer extensively to the Candidae, although not very extensively to the two 

genera considered here.

I know of no precedent for an investigation of this type and it was, I believe, 

important to approach the search for possible patterns, trends or correlations, with an 

open mind. I recorded as many parameters as possible without any preconceived 

ideas as to their utility.

The precise spatial arrangement of all zooids, both autozooids and heterozooids 

within the colony, needed to be recorded if any patterns were to be discerned. For 

autozooids this involved their arrangement within intemodes and the arrangement of 

intemodes within the colony. For heterozooids, it involved their occurrence, 

morphology and distribution, both in relation to the position of their autozooid of 

origin within intemodes, within the colony as a whole, and in relation to each other. 

It should be remembered that, in addition to the spatial aspect of zooidal occurrence, 

there is also a temporal aspect. Whilst autozooids can only develop in the proximal 

to distal sequence within each intemode, the developmental sequence of polymorph 

production is not similarly constrained. Preliminary examination suggested that most 

of the adventitious polymorphs develop immediately their autozooid has been 

formed, but that rhizoids, although developing initially in this fashion, may
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subsequently exhibit delayed development. It is, therefore, conceivable that other 

polymorphs could also exhibit delayed development.

4.1.2 D efin itio n s  o f  new ly  in tro d u c e d  te rm s

Before discussing the requirements o f a coded recording scheme, which I believe is 

essential for such an investigation, it is necessary to define certain terms which I have 

introduced to define certain previously undescribed, or unused, characteristics.

Autozooid number

Autozooids are numbered from proximal to distal within the internode.

X

5

Figure 4.1 Autozooid numbers within an intemode (modified after Hayward and 
Ryland)
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Autozooid position.

Autozooids are designated ‘apical’ (the single terminal zooid in the intemode); ‘sub- 

apical’ (the pair o f zooids contiguous with but proximal to the apical zooid); and 

‘proximal’ (all zooids proximal to the above three), as shown in the figure below.

APICAL

PRO XIM AL

SU B -A P IC A L

Figure 4.2 Autozooid positions within an intemode (modified after Hayward and 
Ryland); working back from the apical autozooid

‘Stem’ and ‘branch’ intemodes

At bifurcations ‘stem’ intemodes develop more distally and deviate at a shallower 

angle than ‘branch’ intemodes, as in the figure below.

STEM

B R A N C H

Figure 4.3 ‘Stem’ and ‘branch* internodes at a bifurcation (modified after Hayward 
and Ryland)
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‘Stem’ and ‘branch’ internodes have generally been described as primary and 

secondary rami; cumbersome for repeated use. ‘Branch’ has been generally been 

used interchangeably with ‘intemode’, and ‘branches’ in respect of a number of 

intemodes. I am using the term in a very specific way.

Intemode generation

The very first intemode is a, indeed the, first generation intemode. When it 

bifurcates, the two intemodes it gives rise to are second generation, and so on, as per 

figure below.

— F.

— C

7
Figure 4.4 Intemode generations

(It is o f course true that, given the variations in intemodes length, an intemode 

generation, especially in the distal region of a colony, does not absolutely describe 

intemodes that have developed simultaneously, but it gives some measure of vertical, 

and temporal distance, from the origin of the colony).
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Stem sequences

‘Stem sequences’ are sequences of internodes each of which deviate from the 

direction of their predecessor by the smaller of the two possible angles. All, except 

the one originating from the very first intemode, by definition begin with a ‘branch’ 

intemode and continue with a series o f ‘stem’ intemodes, see figure below.

B

A

‘A’ -‘B’ main ‘stem sequence’, the very first intemode and continuing with ‘stem’ 
intemodes

‘C’-‘D’ a ‘stem sequence’ originating with a ‘branch’ intemode (in the second
generation of intemodes), and continuing with a series o f ‘stem’ intemodes

Figure 4.5 ‘Stem sequences'

‘Stem sequence’ is a concept which enabled a previously undescribed aspect of the 

arrangement of intemodes within a colony to be described, and has proved very 

useful.

105



Aggregation^)

‘Aggregation’, was used to denote the essentially discrete assemblage of intemodes 

which consisted of a long ‘stem sequence’, together with all of the intemodes 

(beyond the proximal region of a colony) which developed from it.

NB. I have in two respects used terms which have a generally accepted usage in 

respect of bryozoans, in a more specific way;-

• Firstly ‘proximal’ and ‘distal’ refer to the sides towards and away from the 

ancestrula respectively. Solely in respect of autozooids within an intemode I 

have referred to all autozooids other than the apical and sub-apical pair as 

‘proximal’.

• Secondly ‘branches’ frequently refer simply to a number of intemodes. I have 

used ‘branch’ specifically to differentiate such an intemode from a ‘stem’ in 

relation to the angle of deviation at a bifurcation.

4.2 THE REQUIREMENTS OF A CODED RECORDING 
SCHEME

The use o f a coded recording scheme enabling the relative spatial positions of fill 

zooids within a colony to be recorded was made possible by two characteristics of 

both species. Firstly, intemodes consist of autozooids with an identical front and 

back orientation; and secondly all branching is by simple bifurcation. As a result a 

colony can be described as if it were two dimensional, in terms of designating the 

precise location of each zooid within the colony.

Such a coding scheme needed to facilitate the recording and retrieval of information 

in as flexible way as possible. The aim was to arrange the data in such a way that 

correlations, associations, trends and comparisons could be sought via the computer 

quickly and easily, enabling a multiplicity of possibilities to be explored. In essence, 

it needed to allow the isolation of each individual factor, but also facilitate the 

investigation of synergistic effects.
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Ideally designations would have included all of the information listed below, but in 

practice some compromises were necessary. Time was limited and a balance needed 

to be struck between approaching the investigation without preconceptions, and 

making the most effective use of the time available.

Autozooids required designations which identified:-

•  Their numerical position within an intemode.

•  Their position relative to a bifurcation.

•  Whether they were in the internal or external row within an intemode.

Intemodes required designations which:-

•  Identified their ‘generation’ within the colony (from the ancestrula).

• Identified their lateral position within their ‘generation’.

•  Indicated the number of autozooids within them.

• Indicated whether they were complete or not.

•  Indicated whether they were a ‘stem’ or ‘branch’.

•  Identified their distance from the growing edge.

‘Stem sequences’ required designations which identified:-

•  The number of generations within them.

• The generation of their origin.

• The numerical position of each intemode within its ‘stem sequence’.

The usefulness of ‘stem sequences’ only became apparent after the preliminary study, 

and their details were added to the data sheets subsequent to the original data 

recording.

Polymorphs required designations which

• Identified precisely the autozooid that produced them.

• Indicated, if more than one, how many there were.

• Indicated, if variable in form, their morphology.

• Indicated, if variable in size, their size.
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Ovicells required designations which identified

•  The autozooid that they related to.

• The autozooid that produced them.

• Their position relative to the growing edge.

(Ovicell production also, perhaps, has a temporal aspect. Are they produced 

synchronously, or if not, in which direction does development proceed, distally 

or proximally, or perhaps in some other fashion?).

4.3 A CODED RECORDING SCHEME TO DESCRIBE, WITHIN 
A COLONY, THE SPATIAL ARRANGEMENT OF ITS 
CONSTITUENT AUTOZOOIDS AND HETEROZOOIDS

Colonies are unilaminar, with a frontal and a basal face with all lophophores 

emanating from the former. They are composed of intemodes, which are biserial, 

with two rows of autozooids, staggered relative to one another, with a centrally 

placed autozooid wedged between the distalmost pair. The characteristic form of the 

colony, resembling a small bush, results from the bifurcations, which occur when an 

intemode reaches maturity, and the angulation between intemodes where this occurs. 

Each intemode is separated from those that precede and follow it by a joint of 

chitinous tubes (node) and an uncalcified band.

All intemodes can be considered identical in overall form, except that they exist in 

various lengths corresponding to the number of autozooids they contain, and are 

‘handed’, according to whether the first autozooid is in the left or right hand series of 

autozooids. It is also possible to introduce another element, in respect of their 

relationship to the bifurcation that resulted in their formation. Bifurcations are 

asymmetrical in relation to the intemode that precedes them. O f the two intemodes 

produced, one is a slightly deflected continuation of its predecessor, the primary 

ramus, and the second, which deviates at a greater angle, the subsidiary ramus. For 

ease o f use, as I refer to these frequently, I designate them, ‘stem’ and ‘branch’ 

respectively (see Section 4.1.2.3). Although as colonies grow they cease to be two 

dimensional, since all intemodes have a frontal and basal surface with a consistent 

orientation, and all branching occurs as simple bifurcations, they can be identified
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and described as if they were. This was central to the approach to ‘map’ the precise 

spatial arrangement of zooids in relation to the colony. Designations identifying 

intemodes defined their vertical and horizontal position, relative to each other, and 

within the colony. They did not include the three dimensional aspect o f colony 

structure, although of course the spatial arrangement of intemodes in relation to one 

another is ultimately related to this. This aspect was not easily quantified but will be 

considered qualitatively.

Intemodes were designated as follows

• Their vertical position (intemode generation) was designated by a letter. The 

first generation as ‘A’, and so on.

• Their horizontal position within a generation was designated numerically, 

viewed frontally, and reading from left to right. (For each intemode to be 

accurately related to one another, both intemodes which had developed and 

positions where they had not, were numbered).

• Intemodes were differentiated into ‘stem’, ‘S’, or ‘branch’, ‘B’ types.

•  Intemodes were differentiated on the basis of whether they were complete, 

‘C’, or incomplete, ‘I’, depending on whether or not they had bifurcated.

The above facilitated the theoretical spatial reconstruction, in two dimensions, of all 

of the intemodes recorded, including intemode length, whether the intemode was a 

‘stem’ or a ‘branch’, and whether it was complete or incomplete.

Autozooids were designated in two respects which provided complementary 

information, as follows:-

• Each autozooid within an intemode was designated with an autozooid 

number, the most proximal being number one, and so on, to the most distal, 

the apical autozooid. With the exception o f this last, autozooid number also 

indicated in which of the two series of autozooids within the intemode it 

occurred, relative to the preceding bifurcation. Odd-numbered autozooids are 

always in the external of the two series and even-numbered in the internal.
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(There was a complication in this regard, in respect of vibracula, which will 

be dealt with when necessary).

• Each autozooid was also designated with reference to its position within an 

intemode in relation to the bifurcation. ‘Apical’ autozooids, ‘A’; the two 

autozooids immediately proximal to it, ‘sub-apical’, ‘S/A’; and all other 

autozooids, ‘proximal’, ‘P \  (Positions were calculated back from the apical 

autozooid i.e. autozooids one and two in an intemode of three were 

designated ‘sub-apical’. If the first two autozooids of an intemode needed to 

be selected, this could be done using autozooid number).

The above provided a firm basis for designating the occurrence of polymorphs, since 

they could be related to the precise autozooid from which they emanated. These in 

turn could be placed within their intemode, and in relation to its length and character, 

and within the colony as a whole. The only exception to this, for the species in this 

study, was the axial vibracula, which occurred with absolute constancy in the axils of 

bifurcations in S. reptans.

The designations for polymorphs related simply to their presence or absence. Any 

variations in usage to accommodate aspects peculiar to a particular polymorph, will 

be indicated where they occur.

The coded recording scheme described above identified the ‘generation’ of each 

intemode and whether it was a ‘stem’ or a ‘branch’. At each bifurcation one of the 

succeeding intemodes, the ‘stem’ intemode, deviating only slightly from its 

predecessor, can be considered as a continuation of the existing ‘stem sequence’, 

whilst the second, the ‘branch’ intemode, deviating at a greater angle, can be 

considered as the first intemode of a new ‘stem sequence’. It was therefore possible, 

although all bifurcations occurred in the same way, to differentiate ‘stem sequences’ 

on the basis of the number o f intemodes within them and on the generation of their 

initial intemode. It was also possible to identify the position of each intemode within 

its ‘stem sequence’.

Progressing distally along a ‘stem sequence’ each bifurcation is a mirror image of the 

one which preceded it, with ‘branch’ intemodes occurring alternately to left and
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right. As a result of this and the fact that all intemodes are numbered within their 

generation as if none were missing, it is possible to identify the constituent 

intemodes of any ‘stem sequence’, generation on generation, using a very simple 

formula: -

All ‘stem sequences’ of intemodes proceed, from one generation to the next, by a 

doubling of intemode number, alternating with a doubling minus one. An odd- 

numbered intemode in one generation is followed by an intemode of double that 

number in the next, and double that, minus one in the next, and so on.

Apart from the information relating to ‘stem sequences’, all details were observed 

through the microscope, recorded on data sheets and then transferred to the computer.

For the detailed study of S. reptans it was necessary, for the unpredictably occurring 

polymorphs, to sub-sample, and separate data sheets were used. This was not 

necessary for the detailed study of T. inopinata.

There had to be a way of recording ‘no information’, where damage or overgrowth 

prevented accurate observation. Also, because I was anxious to obtain as much 

information as possible, I included that relating to ‘incomplete’ intemodes, and it was 

not possible to designate the position within such intemodes of the more distal 

autozooids. No information in such cases was designated with an ‘x ’.

Further I separated the ‘no information’ cases, referred to above, from those cases 

where there was incomplete development. This was to enable me to distinguish 

branch tips, which were apparently still growing when the colony was collected, from 

those which were not. This information was necessary if  any investigation into the 

temporal aspect of polymorph production was to be attempted, using the extent of 

their development in relation to the growing tip of the intemode. No information in 

such cases was designated with an ‘i’.
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4.4 POSSIBLE APPROACHES TO USING A CODED 
RECORDING SCHEME

Ideally one would ‘map’ entire colonies, and would have a complete picture of all of 

the relevant details but this was not a practical proposition for even a single colony of 

any size. There was a need to investigate colonies very extensively since I had had 

no idea on what scale any patterns of occurrence might occur. Conversely it was also 

desirable to investigate as wide a range of material as possible to ascertain if there 

was inter-colony, or perhaps inter-population variation.

In any event, apart from very small colonies, complete mapping for the very small 

polymorphs was not a practical proposition, and it was necessary to ascertain regions 

of a colony which constituted genuinely representative sub-samples. This, while 

reducing the amount of data recorded, could neither compromise the validity of the 

data obtained, nor reduce the number or variety of investigations possible.

It was important, however extensive the material investigated, that all was kept and 

identified (i.e., labelled so that a reconstruction o f a sample or the entire colony 

would be possible). Only then, would any possibly necessary re-investigations be 

possible.

Various approaches were possible, each with their own advantages and 

disadvantages, and which could be used in a variety o f combinations.

Some o f the possibilities were:-

• To initially undertake investigations that were believed to be relatively simple 

or constant. The frontal avicularia of S. reptans, on preliminary investigation, 

seemed to occur simply in relation to the number of the autozooid within an 

intemode. It was straightforward to establish if this was so and to obviate the 

need for any further investigation.

• To map completely (intemodes, autozooids, polymorphs and ovicells), within 

the main ‘stem sequence’, from ancestrula to colony edge. This could give
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some general indication of polymorph occurrence and any proximal to distal 

trends.

• To investigate a number of such main ‘stem sequences’, which could provide 

some idea of the extent of any variation between colonies and or populations.

•  To map an entire colony, if  not too large, in respect of intemode arrangement 

and lengths, which could show if any trends were apparent, vertically or 

laterally, or any overall pattern to colony structure.

• To map ovicell distribution for a complete colony, perhaps in conjunction 

with the above.

• To sample certain areas of a colony or investigate the occurrence of various 

polymorphs or ovicells in relation to a number of single parameters. Such an 

approach would not however allow such factors to be separated from others.

• To carry out a number of straightforward investigations of a single aspect in 

which colonies would be broken up, the particular aspect studied and 

recorded, and the material discarded. Such investigations would ignore all 

other aspects and no follow-up study would be possible. Such investigations 

could be very useful perhaps in expanding the sample size in respect of 

findings obtained from a small sample.

There was a need, in relation to polymorph occurrence, to establish regions of a 

colony which could be used as genuinely representative samples of the colony. It 

was difficult to see how such could be identified without a very thorough 

examination of a substantial part of a colony.

The approach investigating a number of main ‘stem sequences’ seemed initially the 

most useful, if  only because it could establish the extent o f variation between 

colonies and, if  desired, populations; and therefore the extent of the need for 

replicates. Also it would provide basic information, within these ‘stem sequences’, 

on intemode lengths and polymorph occurrence and distribution. It could well 

provide information which would suggest simple follow-up studies and perhaps rule 

out unnecessary investigations.
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4.5 THE APPROACHES UTILISED IN CHAPTERS 5 AND 6

4.5.1 Introduction

Whilst ideally all relevant information would be recorded for all of the material 

investigated, this was not a practical proposition. Any sub-sampling, however, had to 

be done carefully to ensure its validity, and ideally carried out only when there were 

reasonable grounds for believing the sample to be representative of the whole. 

Where this was not the case, it was important to be aware of the factors which were 

not considered or were outside the scope of the method used.

The use of the coded recording scheme facilitated the investigation, via the computer, 

o f all of the various parameters, both singly and in whatever combinations were 

required. In order that comparisons could be made it was important that both 

‘presence’ and ‘absence’ were recorded; and that sites at which a polymorph either 

could not occur or where, for whatever reason, there was no information were also 

identified and excluded. The investigation thus resulted in numerous data tables in 

which the results were expressed as ‘percentage occurrences’. This allowed 

comparisons to be made in terms of relative levels of occurrence in simple numerical 

terms. Data tables have been used, rather than more arresting bar charts, because the 

numbers involved frequently varied considerably in respect of different elements of a 

comparison, and tables are quite explicit in this respect.

There was one polymorph of S. reptans which posed a problem using the above 

approach, the axial vibraculum. The species produces one vibraculum in the axil, 

and this is produced by autozooid ‘f  at the bifurcation, autozooid No. 2 in the ‘stem’ 

intemode following the bifurcation (Santagata and Banta, 1996 in respect of S. 

ferox). Given that such vibracula are never produced by autozooid ‘g’, No. 2 in the 

‘branch’ intemode, I had to decide how to treat this information, whether to ignore it 

as ‘could not occur’ or as ‘absence’. I decided to ignore it and to treat the vibracula 

which occurred simply as ‘axillary’, which describes their actual location. (They also 

differ from all other vibracula in not giving rise to a potential rhizoid). I did not then 

include them in the analysis in respect o f the parameters used elsewhere. They
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occurred on all No. 2 autozooids in ‘stem’ intemodes and, on essentially an identical 

number of such autozooids in ‘branch’ intemodes, they were absent.

4.5.2 Statistics

The data were not normally distributed and only non-parametric tests of significance 

were possible. Chi-squared tests were carried out, and where these involved 2 x 2  

tables, Yates’ Correction for Continuity was applied. For some of the larger tables 

the results were statistically significant, but the assumption that the minimum 

expected cell frequency should be five or greater (or at least 80% of cells have 

expected frequencies of five or more) (Pallant, 2001) was not satisfied. This, 

depending on its extent, clearly reduced the value of the result, but to a varying 

degree. Where this was the case, I have therefore, in addition to the Chi-Square 

value and the Significance level, detailed the extent of this failure by two numbers in 

parentheses separated by a 7 ’ indicating the number of such cells and their 

percentage o f the total, respectively.

In relation to the above, I believe that especially in respect of the spatial arrangement 

of polymorphs, whose observed patterns of occurrence, I suspect, often have no 

single cause, it is unwise to consider these parameters in strict isolation. The relative 

frequencies are perhaps composite results, but they are of course, all that we have.

4.5.3 Preliminary study

Scrupocellaria reptans was the first species to be investigated (Chapter 5) and the 

preliminary investigation (Section 5.2) used sampling which inevitably had no 

previously established justification. The main ‘stem sequences’, all of the ‘stem’ 

intemodes from the very first o f the colony to its edge, of 30 colonies from two 

separate populations, were investigated in respect of the lengths and sequence of their 

constituent intemodes. The numbers and precise location of the various polymorphs 

were also recorded for five main ‘stem sequences’ o f each population. This was a 

preliminary investigation, which aimed to address a central concern, the extent of any 

inter-colony or inter-population, variation. Colonies investigated were from a littoral
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population at Musselwick, Milford Haven, Pembrokeshire, and a sub-littoral 

population at Bay Fine off the SW of the Isle o f Man.

There was no a priori reason to suppose that main ‘stem sequences’ actually existed, 

it was simply a sampling method to include zooids from each generation of 

intemodes o f a colony. The approach ignored the possibility that the characteristics 

o f the main ‘stem sequence’ might not also obtain in other areas of the colony, and 

other aspects o f the spatial arrangement of zooids within the colony would remain 

unrecorded. It was felt, however, that such an approach would provide a useful 

starting point in quantifying levels of variation, and that it would, perhaps, rule out 

the need for certain other work and perhaps suggest areas where further work was 

likely to be most productive.

The preliminary study gave no indication of marked variation between colonies, or 

populations, in respect of intemode lengths. It did suggest, however, since it was 

apparent that the length of the constituent intemodes of these main ‘stem sequences’ 

was very different from that of the complete colonies, that there was some cryptic 

organisation of different length intemodes, within a colony, worthy of investigation.

In these main ‘stem sequences’, five from each population, the occurrence o f the 

majority o f polymorphs was remarkably constant. Only in respect of lateral 

avicularia was there evidence of inter-colony and inter-population variation.

As a result o f the above, it was decided to cany out a detailed study of a single 

colony from the Musselwick population (Section 5.3).

4.5.4 Detailed studies

4.5.4.1 SCRUPOCELLARIA REPTANS

It is impossible, because of the three-dimensional nature of a complete colony, to 

manipulate it under a microscope sufficiently well to record the characteristics of 

interest throughout the entire colony, as damage is inevitably caused in the process. 

It was necessary to divide the colony into a number of pieces, which were small
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enough to be looked at in their entirety, with minimal damage to them. These pieces 

were stored separately, each together with a label recording the coding scheme 

designation (the generation, and the lateral position within it) of the most proximal 

intemode at its base. Each portion of the colony was examined as a separate entity 

but the information recorded was in relation to the colony as a whole.

Overall colony form is variable and in some cases, especially those colonies where 

there are physical obstructions to colony growth, appears to be very much determined 

by the shape of the space available to it. Because of this, a large colony, without any 

obvious obstructions to growth, was chosen, in an attempt to get some purchase on 

potential colony size and form, affected as little as possible by any physical 

constraints of available space. It would also include any features, which might 

develop late in the astogenetic process. A vast amount of data would be involved if 

the complete colony was to be mapped, and it was necessary to try to reduce this, 

without compromising the validity of the data. The problem was much more acute in 

respect of the heterozooids than the autozooids. The size o f the samples selected 

within a colony needed to reflect this.

A preliminary investigation established that the extent of growth was uneven, with 

regions of limited and very extensive growth. There was no evidence to suggest that 

if the colony was divided vertically down an imaginary central axis, one half would 

differ appreciably from the other. Indeed, it suggested that any lateral variation 

would be on a somewhat smaller scale.

I decided that the scale and nature of any lateral variation would become apparent if I 

recorded all the information relating to one half of the colony. This approach made 

possible the investigation of a whole range of aspects, features, trends and 

correlations as will be shown below, but it must be borne in mind that the data refer 

strictly to only half a colony. It is o f course, once a characteristic becomes apparent, 

a comparatively simple matter to check whether or not it is also present in other 

colonies o f the same, or indeed other populations.
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The preliminary investigation had highlighted the considerable difference in the 

percentage occurrence of the different intemode lengths in the main ‘stem sequences’ 

and the colonies as a whole.

This finding posed the questions:-

• If there was a main ‘stem sequence’ distinguished by the lengths of its 

intemodes, were there also other ‘stem sequences’, with this or another 

particular characteristic?

• If so, how were such ‘stem sequences’ arranged within the colony?

• If this was the case, how were all other intemodes, within ‘stem sequences’, 

arranged relative to them?

‘Stem sequences’ were an unforeseen element which required recording, and the 

coded recording scheme, formulated in advance, did not facilitate this. In any event, 

it would have been very difficult to record the relevant information, much of which 

was cumulative, in conjunction with the directly observable characteristics. Details 

of the lengths of ‘stem sequences’, their generation of origin, and the numerical 

position of intemodes within them, were established manually and incorporated 

subsequently into the datasheets on the computer.

This revealed a limited number of very long ‘stem sequences’, with the intemode 

composition of the main ‘stem sequences’ of the preliminary study, and a great 

number of short ‘stem sequences’ with a somewhat different intemode composition.

It was known that the intemode composition of the colony and the 10 longest ‘stem 

sequences’ differed in two respects; the proportions of the intemodes o f the various 

generations, and that of ‘stem’ and ‘branch’ intemodes. It was therefore necessary to 

establish whether or not these differences could account for those observed between 

the colony and the 10 longest ‘stem sequences’.

It was also apparent that the long ‘stem sequences’ were laterally well spaced. It was 

difficult to represent clearly, diagrammatically, the spatial arrangement of intemodes, 

even within a limited region of the colony, because the numbers involved are so
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large. Few attempts have been made to represent the spatial arrangement o f different 

length intemodes within a colony. A very early system of notation denoting such 

characteristics, and the positions of gonozooids, for crisiids, was developed by Smitt 

(1865) and modified by Harmer (1891). It was complex system, not a practical 

proposition for extensive material, and did not give a straightforward visual 

impression of spatial relationships, but did show what needed to be done.

Several different approaches have been adopted in this study, each illustrating certain 

aspects well whilst distorting others. The fact that each intemode had a unique 

designation, which defined both the generation of intemodes in which it occurred, 

and its lateral position within it, did however; enable a number of parameters to be 

described.

A diagrammatic representation of the number and location of those intemodes that 

did occur, in relation to all o f the possible positions in which they were possible, 

Figure 5.4, was made. This, whilst grossly distorting the picture from one generation 

to the next, did establish that beyond the proximal region of the colony, where 

virtually all the intemodes possible did develop, as the colony developed intemodes 

were essentially, and increasingly, restricted to narrow groups, each centred on a long 

‘stem sequence’.

It was then possible to diagrammatically represent all of the intemodes developing 

beyond the proximal region, from a single long ‘stem sequence’, with some 

confidence that the ‘aggregations’ associated with other long ‘stem sequences’ would 

be similar (Figure 5.5).

I felt that I now had a handle on the pattern of lateral variation within the colony and 

that, for unpredictably occurring polymorphs, an ‘aggregation’ of intemodes, 

constituted a natural sub-sample.

As far as polymorphic heterozooids were concerned, the limited evidence of the 

preliminary study suggested certain consistent characteristics and some less regular 

trends. For lateral avicularia, there was evidence of variation between colonies and
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populations. There were a number of aspects to be considered in any attempt to 

describe the pattern of distribution of a particular polymorph. It must always be 

borne in mind that the pattern of distribution of a polymorph within a colony may 

appear without order simply because one or more factors involved in its causation are 

not readily apparent. Environmental factors may be involved, the influence of which, 

singly or perhaps synergistically, may vary temporally. Having said that, I believe 

that much can be said about the pattern of occurrence of various polymorphs within a 

colony, providing that all o f the relevant parameters and their possible interactions 

are considered. Whilst the spatial arrangement of polymorphs probably results from 

several different factors, in the first instance, all that can be recorded is the actual 

spatial arrangement that has resulted. The results were investigated and revealed that 

in addition to a genuinely spatial dimension, polymorphs probably interacted with 

each other; and also, that the level of occurrence could influence a pattern of 

distribution. Subsequently, it was sometimes possible to extract some pointers as to 

how the various factors involved, had interacted to produce the observed result.

Some polymorphs (spines and scuta) occurred constantly on all autozooids or in all 

branch axils (axial vibracula); another (frontal avicularia) occurred absolutely 

predictably on only certain numbered autozooids within an intemode. For these 

polymorphs there was no other aspect to their pattern of occurrence.

For those polymorphs which occurred unpredictably (lateral avicularia, vibracula and 

rhizoids), and which are very time-consuming to record, it was always going to be 

necessary to sub-sample. The difficulty had been in determining a region of the 

colony which would be representative of the whole. The fact that intemodes, within 

this colony, were arranged, as the colony developed, in an increasingly clumped 

manner around a small number of long ‘stem sequences’, indicated regions which 

constituted natural sub-samples.

In order to include the distal-most parts of the colony it was desirable to use the 

longest of the long ‘stem sequences’, the intemodes of which are shown in Figure 

5.5. Intemodes essentially formed a vertical, lanceolate, band, centred on a long 

‘stem sequence’, with very infrequent ‘arms’, to either side. I still needed to reduce
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the amount of material investigated, if  this was possible without compromising the 

validity of the data. I decided that any vertical variation, if  it existed, would probably 

be continuous and that it would not be necessary to record all o f the generations. 

Similarly, any lateral variation which occurred would be likely to occur in relation to 

a long ‘stem sequence’ and that taking all o f the intemodes within it, together with all 

of those which developed to one side, would be sufficient.

A complication became apparent regarding the actual location of vibracula which 

occurred on No. 1 autozooids:-

Their much higher level of occurrence on autozooid No. 1, relative to all other odd- 

numbered autozooids, in all o f the material investigated was initially as puzzling as it 

was consistent. The explanation may be in the following:-

The fact that the joints between intemodes cut across the proximal ends of both 

number one autozooids, in the two intemodes resulting from a bifurcation, creates a 

complication, which must be allowed for, in respect of such vibracula, in translating 

autozooid number into internal/external, autozooid series. Following a bifurcation, 

the vibracula on both new number one autozooids occur at the distal end o f the 

preceding intemode, one in its internal, and one in its external series of autozooids, 

although both of these autozooids are predominantly in the external series of the new 

intemodes.

Vibracula on No. 1 autozooids were, therefore, in terms of autozooid series, 

‘reallocated’ to the actual series in which they occurred. This was a simple exercise 

due to the consistency of the branching pattern and, as a result of the numerical 

arrangement of stem and branch intemodes within a generation of intemodes. As a 

consequence of this, the vibracula on No. 1 autozooids of stem intemodes occurred in 

the internal series of the preceding intemode, and those of branch intemodes in the 

external.
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4.5.4.2 TR1CELLAR1A INOP IN ATA

The detailed investigation into the spatial arrangement of zooids within a colony of 

Tricellaria inopinata (Chapter 6) utilised the same methodology, centred on the 

coded recording scheme. The fact that the detailed study in respect of S. reptans had 

been carried out on -50% of a very large colony suggested that it would be 

worthwhile, for this species, to use a complete — if rather smaller — colony.

Differences between the two species meant that this investigation was different in 

certain respects. There are no frontal avicularia or vibracula in T. inopinata, lateral 

avicularia occur in a range o f sizes rather than ‘small’ and ‘giant’ and these needed to 

be recorded in a limited, but genuinely representative region of the colony. If the 

colony structure, in terms of its ‘stem sequences’, was similar to that of S. reptans 

this would be in relation to ‘aggregations’ of intemodes associated with long ‘stem 

sequences’.

Certain mural spines and the scuta, both constant in morphology in S. reptans, 

exhibited variation in T. inopinata. Certain spines were sometimes bifid and scuta 

exhibited a great range of size and morphology. It would have been desirable to 

undertake an investigation into any possible relationship between variations of these 

two polymorphs and also, perhaps, the presence or absence of ovicells. However, 

such a study required very pristine material; spines and scuta are very easily damaged 

and no quantitative study was possible.

4.5.5 Supplementary studies

Although the two detailed studies were felt to be the most useful approach, because 

only they could investigate any colony wide aspects of zooid occurrence, they were 

not in all respects completely satisfactory.

Firstly, there was the matter of the constancy of characteristics throughout the 

species. The preliminary investigation of main ‘stem sequences’ o f 15 colonies from 

each of two separate populations of S. reptans, established the presence of long ‘stem 

sequences’ with a particular intemode composition, as a consistent characteristic.
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For the spines, scuta, frontal avicularia, vibracula and rhizoids, there was no evidence 

of inter-colony or inter-population variation. Lateral avicularia however, occurred 

five times more frequently in the material from the I.O.M. and there was evidence of 

inter-population variation at Musselwick.

Secondly, in some instances, tentative conclusions had necessarily been drawn from 

too small a sample, notably for ovicells in S. reptans. In respect of T. inopinata, the 

numbers and lengths of ‘stem sequences’, in the partly developed colony was, as a 

result, less conclusive than it might have been. The presence or absence of lateral 

avicularia and ovicells, within long ‘stem sequences’ of T. inopinata, also invited 

further study.

It was therefore, desirable to carry out a number of supplementary studies, although 

these regrettably did not always include colony-wide aspects of zooid distribution. 

Nevertheless such studies acted as useful crosschecks.

For S. reptans there was evidence that, for lateral avicularia, there was considerable 

variation between the two populations. Although this was only one polymorph, it 

was only two populations! It would obviously be worthwhile to look at material 

from another geographically separate population. I used material from Swanage in 

Dorset.

4.5.5.1 SCRUPOCELLAR1A REPTANS

4.5.5.1.1 Irregularly occurring polymorphs

In an enquiry designed to look further at possible inter-colony or inter-population 

variation, a supplementary study was carried out on an ‘aggregation’ of intemodes in 

association with its long ‘stem sequence’. Data were recorded using the coded 

recording scheme (the raw data are in Appendix ‘H’)
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4.5.5.1.2 Possible delayed development of lateral avicularia, vibracula and rhizoids

The variations in the form of scuta, related to their ontogenetic stage of development, 

are very obvious. They can be used to distinguish branch tips which were apparently 

still growing when the colony was collected from those which had suffered damage. 

Examination of unbroken branch tips and the minimum distance each of the three 

polymorphs occurred from them, established the extent of any obligatory delayed 

development.

4.5.5.1.3 Ovicell occurrence related to autozooid number and the presence/absence 
o f frontal avicularia

Because ovicells were only sparsely present in the large colony studied in Section

5 .3 .1 felt that a limited investigation into the relationship between autozooid number 

(and therefore frontal avicularia occurrence) and ovicell production would be 

worthwhile. A large fertile colony, collected at Swanage was selected, broken up 

into manageable size pieces, and 300 randomly selected intemodes, each with at least 

one ovicell, were investigated, simply relating ovicell occurrence to autozooid 

number, and thus to frontal avicularia occurrence, (see Section 5.4.4). (Raw data in 

Appendix T ).

4.5.5.2 TR1CELLARIA INOPINATA

4.5.5.2.1 The frequency of occurrence of different lengths of ‘stem sequences’, and 
intemode lengths in relation to their position within them

A substantial portion of a large colony was investigated solely in respect of the 

number and lengths of its ‘stem sequences’, and their constituent intemodes.

4.5.5.2.2 Ovicell occurrence related to the presence/absence of lateral avicularia 
in long ‘stem sequences’

In the detailed study of T. inopinata, ovicells were virtually absent from the four long 

‘stem sequences’. Although numbers were very small, they offered some evidence 

supporting the idea that lateral avicularia occurrence could be related to the presence 

or absence of ovicells. A single colony has only a small number of long ‘stem
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sequences’, and it was considered worthwhile to investigate a number of long ‘stem 

sequences’ from several colonies, in this respect.

4.5.5.2.3 The distribution of intemodes, lateral avicularia and ovicells, within two 
long ‘stem sequences’, and all of the intemodes which developed from 
them

A supplementary investigation was deemed necessary to include two aspects not 

included within the detailed study. Firstly, no attempt had been made to relate 

intemode length, or the spatial arrangement of intemodes relative to each other or to 

the overall pattern of occurrence of lateral avicularia and ovicells. Secondly, the fact 

that lateral avicularia occurred in different sizes had been ignored. The data relating 

various parameters in respect of lateral avicularia and ovicell occurrence in the 

detailed investigation was from one colony, and it was worthwhile to repeat this, in 

respect of material from other colonies. Two long ‘stem sequences’, together with all 

of the intemodes which developed from them, were chosen from two different 

colonies, and all o f the relevant details recorded using the coded recording scheme. 

Because, in one instance, the material selected was not from a complete colony, I did 

not know the actual generations of the intemodes, hence they were designated from 

the most proximal, ‘X’, ‘X’ + 1.... (Raw data in Appendices ‘L’ and ‘M’).

4.5.6 Unquantified investigations

Two aspects of the approach adopted to this study have mitigated against both the 

amount and range of material investigated:-

• Firstly, there was the need to investigate as much of a single colony as 

possible in order that any pattern of occurrence, on however large a scale, was 

apparent.

• Secondly, although the heterozooids were often small and difficult to see, it 

was decided to record as far as possible their definite presence or absence. 

This, although time consuming, was felt to be worthwhile, because it enabled 

true percentage occurrence figures to be obtained.
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Ideally sample sizes would have been larger, and the range of material, number of 

colonies, and perhaps populations, would have been greater. The supplementary 

studies described above, were carried out to remedy, to some degree, the inevitable 

deficiencies of the approach adopted. Further efforts were made, in the form of 

unquantified investigations, which tackled particular concerns remaining after the 

supplementary studies.

Although not ideal, the use of unrecorded investigations concentrated attention on the 

areas where it was most needed. Additional material was examined, with particular 

attention to:-

• Features which were important, but which had been observed in only a 

limited amount of material.

• Situations in which the level of a polymorph’s occurrence varied between 

colonies of two populations.

The approach of this study has been to investigate how zooids are arranged relative to 

one another within a colony. The carrying out of replicate studies in just three 

populations of S. reptans highlighted substantial variations in the level of occurrence 

of two polymorphs and species wide generalisations should be approached with 

caution. Nevertheless, conversely, there was much evidence of consistency in respect 

of many characteristics, often in both species, and variations in level of occurrence 

I blunted rather than obliterated patterns previously observed.

i

i

|
i
i
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CHAPTER 5 -  THE SPATIAL ARRANGEMENT, WITHIN A 
COLONY, OF THE AUTOZOOIDS AND 
HETEROZOOIDS OF SCRUPOCELLARIA 
REPTANS

5.1 INTRODUCTION

Before defining the objectives of this study, it is necessary to give a conventional 

morphological description of the species. This will provide a background before I 

indicate, in the ‘Objectives’ section below, the limitations, as I see them, of such a 

description, and suggest some of the questions which could be asked, to produce a 

more comprehensive picture of a colony as an entity.

Arborescent colonies of cellularine bryozoans, within the family Candidae, exhibit a 

general constancy of colony form (Harmer, 1923). They consist of unilaminar, 

generally biserial branches, intemodes, which consist of various numbers of 

autozooids. Intemodes, on completing their growth, generally bifurcate to produce 

two new intemodes. Polymorphic heterozooids, fulfilling various functions, are 

numerous and varied throughout the family.

Although Harmer (1923) defined various bifurcation types as a useful tool for 

separating genera, Canu and Bassler (1929) still felt that this was achieved 

principally on the basis of heterozooecia, although they recognised that various 

exceptions resulted in different interpretations and conclusions. Today the various 

genera within the family are essentially differentiated in respect of two separate 

criteria (Ryland, 1965):-

• The spatial relationship between the autozooids in the region of the 

bifurcation, in their relation to it, and to the joints which occur after it.

•  The presence or absence, number, morphology and distribution of the 

various polymorphs.

There remains, however, much variation in respect of the latter within a genus.
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Polymorph occurrence, morphology and distribution, vary considerably at all 

taxonomic levels within the Bryozoa. Basic polymorph types themselves may be 

monomorphic or polymorphic. For S. reptans, as with many other Bryozoa, the 

architecture of the colony prevents certain polymorphs occurring in certain positions. 

Some polymorphs occur absolutely constantly, on all autozooids, or at certain 

locations within the colony, but many occur with varying degrees o f unpredictability. 

Of the latter, some are clearly concentrated in certain areas of the colony, but for 

many, their pattern of occurrence, if they have them, are not readily apparent. It is 

conceivable that the presence of a certain polymorph is positively or negatively 

correlated with that of a second polymorph, or with embryo and ovicell production. 

It is also quite possible that polymorph occurrence may be inhibited, or stimulated, 

by environmental factors, acting singly or synergistically, the effect of whose 

influence may also vary temporally; and result in no obvious level, or pattern, of 

occurrence.

5.1.1 Characteristics of the family Candidae d’Orbigny, 1851

Colonies are arborescent, with unilaminar branches, generally biserial, in which case 

the two rows of autozooids are staggered relative to one another, with a centrally 

positioned autozooid wedged distally between the distalmost pair. Intemodes 

bifurcate asymmetrically at intervals, and these generally involve flexible chitinous 

joints between intemodes. The precise arrangement of autozooids, in relation to 

these joints and the bifurcation, is important in distinguishing genera within the 

family. Autozooids lightly calcified with an extensive frontal membrane. Mural 

spines generally present. A specialised modified spine, the scutum, which is unique 

to the family, is often present. This, varying in shape and extent, overarches the 

frontal membrane. Avicularia #nd vibracula arc generally present and the colony is 

anchored to the subst/^tum by tubular rhizoids. Embryos are brooded in ovicells, 

which are sub-globular and hyperstomial.
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5.1.2 C h a r a c te r i s t i c s  o f  the  genus  Scrupocellaria v a n  B en ed en ,
1845

Colony form is erect/procumbent, and branching. The branches, each o f which is 

jointed at its inception, consist of two rows of autozooids, staggered relative to each 

other, and with a centrally placed distal autozooid proximal to each bifurcation. The 

arrangement o f autozooids to each other and to the joints at bifurcations, accords 

with Type 8 o f Harmer’s (1923) classification (see Fig 5.1, below). Autozooids 

narrow proximally, having an oval frontal membrane; mural spines generally present, 

as is the scutum, which overarches the frontal membrane. The ancestrula is vase 

shaped with mural spines; it and the developing colony are attached to the substratum 

by tubular rhizoids. Avicularia and vibracula are found in most species but not on all 

autozooids. Distally sited lateral avicularia are generally present, and proximally 

sited frontal avicularia less frequently so, sometimes only in association with 

ovicells. Baso-distally sited vibracula generally present, and one or two may be 

present in the axil o f bifurcations. Ovicells subglobular and hyperstomial (Hayward 

and Ryland, 1998).

zooid f

zooid d zooid g

zooid e zooid c

zooid b

zooid a

Figure 5.1 The arrangement of autozooids relative to each other, and to a bifurcation 
in Harmer’s bifurcation type 8 (modified after Hayward and Ryland)
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5.1.3 A general morphological description of Scrupocellaria reptans 
(L.)

Scrupocellaria reptans has been described in numerous regional faunas (Hincks, 

1880; Prenant and Bobin, 1966; Hayward and Ryland, 1998). Lutaud (1953) 

provided a detailed study of the species, with particular attention to the ancestrula, 

and the growth of young colonies. The description below essentially summarises the 

position prior to this investigation, although there is no absolute consensus, even 

among recent accounts, in regard to intemode length; and, in respect o f polymorph 

occurrence and distribution, information is generally qualitative.

5.1.3.1 THE COLONY

A well-developed colony of S. reptans has the overall appearance of a miniature, 

deciduous bush in winter. When spread out under water, colonies may be ~25mm 

high and ~35mm in diameter. Such a colony consists of a great number of branches, 

intemodes, each of which consists of a number of autozooids. The entire colony 

originates from one such intemode, which arises from the first autozooid of the 

colony, the ancestrula. This intemode bifurcates at its distal end to produce two 

further intemodes, which in their turn, at their distal ends each produce two more, 

and so the colony grows distally and laterally.

5.1.3.2 INTERNODES AND BIFURCATIONS

Intemodes are unilaminar, consisting of a single layer of autozooids, all with their 

lophophores projecting on the same side, and vary in length with the number of 

autozooids they contain, although there is no consensus in the literature as to the 

actual numbers or their range. (Hincks, 1880, ‘five or seven’; Ryland, 1965, “five to 

seven mostly”; Prenant and Bobin, 1966, ‘five to seven’; Hayward and Ryland, 1998, 

“five to eight but up to fourteen”). Lutaud (1953) ‘intemodes most frequently of 

five, seven or nine autozooids’, stated that all complete intemodes were o f an odd 

number of autozooids.

Autozooids within an intemode are essentially arranged biserially but with the two 

rows, staggered slightly relative to one another, and with a single centrally positioned
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‘apical’ autozooid, wedged between the distal ends o f the distalmost pair. The ‘sub- 

apical’ pair of autozooids, one of which is slightly distal to the other, produce, via 

distal buds, the first autozooids of the external rows o f autozooids o f the new 

intemodes. Hence the asymmetrical nature o f bifurcations. The apical autozooid 

produces, via a distal bud, the first autozooid of the internal row o f one of the new 

intemodes, the primary ramus, and via a disto-lateral bud, the first autozooid of the 

internal row of autozooids of the other, the secondary ramus. Because the apical 

autozooid is always distal of the sub-apical pair, the internal rows o f both new 

intemodes are always slightly distal to the external. One intemode, the secondary 

ramus, originates slightly more proximally, and diverges at a greater angle, and the 

other, the primary ramus, originates slightly more distally, and diverges less from the 

direction o f the intemode which gave rise to it. Because the more distal o f the sub- 

apical pair of autozooids of one internode develops, at its bifurcation, into an 

intemode in which the more distal of the sub-apical pair o f autozooids is on the 

opposite side, an alternation in the handing o f successive bifurcations is inevitable 

(Lutaud, 1953).

PRIM AR Y
RA M U S
S T E M ’ S E C O N D A R Y

R A M U S
‘B R A N C H ’

Figure 5.2 Primary and secondary rami, ‘stem’ and ‘branch’ intemodes, following a 
bifurcation (modified after Hayward and Ryland)

The joints between intemodes consist o f two echelons o f chitinous tubes, within the 

proximal regions of the first two autozooids; and when these are fully formed, a 

narrow band of calcification dissolves away, leaving the chitinous tubes as a strong, 

but flexible joint, between one intemode and the next. Harmer (1923) provided a 

comprehensive account o f the process.



Lutaud (1953) described and figured the consistent branching pattern which obtains 

throughout the colony.

BRANCHSTEM

Figure 5.3 The consistent pattern of ‘stem’ and ‘branch’ intemode production at 
bifurcations ('modified after Lutaud)

Lutaud recognised that one element of this consistent branching pattern, the fact that 

each bifurcation was a mirror image of its predecessor, resulted in what she termed, 

the “axiale principale”, maintaining an essentially constant direction of growth.

5.1.3.3 AUTOZOOIDS

The autozooids within an intemode are not all identical in size and shape. The apical 

autozooid is truncated proximally, where it is wedged in between its predecessors, 

and the first two autozooids are attenuated proximally, although not equally so, as 

they span the joint between the two intemodes. All other autozooids are longer than 

the former and shorter than the latter. All autozooids, except the ancestrula, the very 

first autozooid of the colony, which results from the metamorphosis of the originally 

plan^tonic larva, are, apart from the differences referred to above, identical in form. 

They are essentially rhombic, narrowing proximally, with an oval frontal membrane 

occupying the most distal two-thirds, and a smooth gymnocyst occupying the most
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proximal one-third. The ancestrula is bath shaped with mural spines. The associated 

polymorphs, which occur on some or all autozooids, are described below.

5.1.3.4 HETEROZOOIDS

5.1.3.4.1 Simple straight spines

Simple straight spines occur around the distal end of the rim surrounding the frontal 

membrane, generally three on the outer and two on the inner edge. They occur in 

similar fashion on all autozooids, except that there are left and right ‘handed’, and 

central, assemblies. The ancestrula has nine spines symmetrically arranged around 

its more extensive frontal membrane (Lutaud, 1953).

5.1.3.4.2 Scuta

Scuta are produced from the mid point of the internal edge of the rim surrounding the 

frontal membrane, on all autozooids except the ancestrula. When fully developed, 

they form a cervicom structure, which covers much of the frontal membrane.

5.1.3.4.3 Frontal avicularia

Large frontal avicularia occur on the frontal wall, just proximal to the frontal 

membrane. They do not occur on all autozooids, there are often two on an intemode 

of five autozooids and three on an intemode of seven (Hincks, 1880).

5.1.3.4.4 Lateral avicularia

Lateral avicularia vary little in morphology. They are triangular, with the mandible 

generally directed laterally. The majority are very small, often difficult to see, as 

they may be hidden behind the spines, but much larger giant forms, do occur 

infrequently. Lateral avicularia occur disto-laterally, in relation to the autozooid 

from which they develop. They cannot occur on the apical autozooid of each 

intemode, as this has no external lateral edge, and they are frequently missing from 

other autozooids.
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5.1.3.4.5 Vibracula

Vibracula are sited laterally, proximally, basally, in relation to the autozooid from 

which they arise. They emanate from either the distal half of a double-tiered 

chamber o f a single polymorph, as is generally claimed (Hincks, 1880; Harmer, 

1923; Ryland, 1965), or perhaps, from the more distal of two separate chambers 

(polymorphs) (Santagata and Banta, 1996). Banta has confirmed to me (pers. com.) 

that the two are separate zooids. Whichever is the case, the distal 

chamber/polymorph always gives rise to a vibraculum. Vibracula also occur in the 

axil of each bifurcation, from a single chamber/polymorph and therefore without a 

rhizoid.

5.1.3.4.6 Rhizoids

Simple tubular rhizoids anchor the colony to the substratum and are concentrated in 

the proximal region of the colony. Where they occur, they are sited, as are the 

vibracula, laterally, proximally and basally, in relation to the autozooid from which 

they arise. They emanate from either the proximal half of a two-tiered chamber, or 

from the more proximal of two separate chambers (polymorphs), as described above. 

Whichever is the case, the more proximal may give rise to a rhizoid. A number of 

workers have observed that the morphology of the distal end of the rhizoid is varied 

in relation to the nature of the substrate it encounters (Peach, 1877; Hincks, 1880). If 

this is a flat surface, a structure similar to an algal holdfast, although flatter, 

develops, which adheres to the substratum. If on the other hand the substrate is such 

that it requires a more three-dimensional attachment, e.g. a sponge, the rhizoid 

penetrates the substrate, and anchors itself within by a series of recurved hooks.

5.1.3.5 EMBRYOS AND OVICELLS

Embryos are dull pink, are found throughout the year, but are most numerous from 

June to October (Hayward and Ryland, 1998). The ovicells, in which they are 

brooded, are hyperstomial, sub-globular with an ectooecium which has a number of 

pores. Ovicells in Scrupocellaria are produced by the autozooid distal to the one 

producing the embryo (Nielsen, 1985) and they cannot occur on the apical autozooid
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of an intemode because there is no autozooid directly distal to it. They are often 

confined to the autozooids on one side of an intemode (Hayward and Ryland, 1998).

5.1.4 Objectives

From the above description it is clear that although much is known about the 

morphology of the various zooids that make up a colony, information on the 

arrangement of them within it, beyond Lutaud’s identification of the constant 

branching pattern, is much less evident. I am aware of no attempt to describe the 

arrangement of intemodes within a colony. There is no general agreement within the 

literature as to the lengths of the intemodes; only Lutaud (1953) recognised that all 

intemodes consisted of an odd-number of autozooids. There is only limited 

information on the presence or absence of polymorphic zooids and their distribution 

within a colony.

Underlying this investigation is the belief that in many Bryozoa, especially erect 

forms, the spatial arrangement of all the zooids, both autozooids and heterozooidal 

polymorphs, within a colony may exhibit characteristics, which could be described 

with greater definition than is generally the case. In the case of the autozooids this 

could reveal previously undescribed structure, and for both, it could reveal aspects of 

colonial organisation previously unsuspected, and perhaps suggest new lines of 

enquiry.

Questions concerning pattern include:-

•  Continuous exponential growth in the number of intemodes, generation on 

generation, is not possible, given the finite space available, and not all 

intemodes can produce two more. Is there an overall pattern to those 

produced and aborted, and indeed to the form of the colony as a whole?

•  Do the various length of intemodes occur in any consistent way within the 

colony?

•  Do ‘stem’ and ‘branch’ intemodes exhibit any different characteristics?

•  Do polymorphs exhibit any consistent pattern of occurrence, e.g. in relation 

to intemodes, bifurcations, particular regions of the colony, or the entire 

colony?
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• Are there any correlations, positive or negative, between the occurrence of 

any two polymorphs?

• Are there any correlations, positive or negative between the occurrence of 

any polymorph and ovicells?

• Does the distribution of ovicells, and therefore reproductive zooids, exhibit 

any particular pattern?

Essentially I have mapped, as completely as possible, the occurrence, morphology, 

and distribution of both auto and heterozooids. The gross arrangement of the former, 

within a colony, is clearly fundamental to any structure it may possess. There may 

well also be some cryptic arrangement of various intemode lengths and types. The 

spatial disposition of polymorphs is secondary to that of autozooids, but of great 

importance in terms of how a colony functions as an entity.

5.2 PRELIMINARY STUDY OF THE MAIN ‘STEM 
SEQUENCES’ OF COLONIES COLLECTED 
LITTORALLY AT MUSSELWICK, PEMBROKESHIRE, 

AND SUB-LITTORALLY AT BAY FINE, ISLE OF MAN

5.2.1 Introduction

This preliminary investigation was aimed at establishing the arrangement of 

autozooids and their associated polymorphs, within intemodes of a main ‘stem 

sequence’, from the first intemode, via all successive ‘stem’ intemodes to the edge of 

the colony. This, since it sampled each generation of intemodes, would also provide 

information on any changes which might occur from one generation to the next. The 

method could also throw some light on the extent of any inter-colony, or, since 

colonies from two separate populations were investigated, inter-population, variation. 

Thirty colonies were investigated, in respect o f the intemode lengths and their 

sequence, within the main ‘stem sequences’; 15 from a littoral population at 

Musselwick, Milford Haven, Pembrokeshire, and 15 from a sub-littoral population at 

Bay Fine, off the south west of the Isle of Man. For five colonies from each 

population all of the polymorphs associated with them were also recorded.
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5.2.2 Results

5.2.2.1 INTERNODE LENGTHS AND THEIR SEQUENCE WITHIN THE MAIN 
‘STEM SEQUENCES’ OF 30 COLONIES FROM TWO POPULATIONS

Did these main ‘stem sequences’ exhibit any particular characteristics in terms of the 

lengths and/or sequences of their constituent intemodes?

Intemode
generation

Intemode lengths and their sequence

14 5
13 5 5
12 5 5
11 5 5 5
10 5 5 5 7 5 5
9 5 5 5 5 5 5 5 5
8 5 5 5 5 5 5 5 5 5 5 5
7 5 5 5 5 5 5 5 5 5 5 5
6 5 5 5 5 5 5 5 5 5 7 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3 5 5 5 5 5 5 5 5 5 7 5 5 5 5 5
2 5 5 3 5 3 5 3 5 3 5 5 3 3 3 5
1 4 4 4 3 4 4 4 4 4 4 6 4 4 4 4

Colony No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Intemode
generation

Intemode lengths and their sequence

14 5 5 5
13 5 5 5 5 5
12 5 5 5 5 5
11 5 5 5 5 5 5
10 5 5 5 5 5 5 5 5 5 5
9 5 5 5 5 5 3 5 5 5 5 5 5 5
8 5 5 5 5 5 5 5 5 5 5 5 5 5 5
7 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 7 5 5 5 5 5 5
4 5 5 5 5 5 5 5 5 5 5 5 5 3 5 5
3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
1 4 4 3 4 3 3 3 3 5 4 3 3 3 3 4

Colony No. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Table 5.1 Intemode lengths, and their sequence within the main ‘stem sequences’ of 
30 colonies of Scrupocellaria reptans; (colonies 1-15 from Pembrokeshire, 
colonies 16-30 from the Isle of Man)

137



There is no indication in Table 5.1 (the raw data are in Appendix ‘B’) that there was 

any inter-colony or inter-population variation. From the table two interesting 

characteristics are apparent:-

•  Whilst the vast majority of intemodes were of an odd number of autozooids, 

those of the first generation (no ancestrulae present) were sometimes of an even 

number.

•  Although there was no consistent sequence of intemode lengths, the first 

generation of intemodes were almost all of three or four autozooids, the second 

generation almost exclusively o f three autozooids, and in all subsequent 

generations, virtually all intemodes were of five, or, very rarely seven, 

autozooids.

How frequently did the various intemode lengths occur?

Autozooids in 
intemode

Frequency Percentage
occurrence

3 33 11.3
4 18 6.1
5 237 80.9
6 1 0.3
7 4 1.4

Total 293 100.0

Table 5.2 The numbers mid percentage occurrence in the 30 main ‘stem sequences’ 
o f the various lengths of complete intemodes

Table 5.2 shows that 80% of intemodes were o f five, and <2% were of seven, 

autozooids.

Whilst not apparent from Tables 5.1 and 5.2, it was very obvious when viewing the 

colonies under the microscope, that intemodes of seven autozooids were actually 

very numerous, perhaps the most numerous, in the colonies as a whole, although they 

were veiy rare in these main ‘stem sequences’. Clearly, different length intemodes 

do exhibit some degree of spatial organization.

138



5.2.22  POLYMORPH OCCURRENCE AND DISTRIBUTION

Five main ‘stem sequences’ from each population were investigated in respect of 

polymorph presence or absence. (The raw data are in Appendix ‘C’). It is important 

to remember that all information in this section refers to main ‘stem sequences’, not 

complete colonies.

5.2.2.2.1 Simple straight spines

Spines occurred as described in Section 5.1.3.4.1, around the distal end of the frontal 

membrane in an apparently consistent manner. Naturally these were often broken, 

frequently at the base. They occurred on all autozooids, of all the main ‘stem 

sequences’, of all o f the colonies.

5.2.2.2.2 Flattened branched spines (scuta)

Scuta occurred as described in Section 5.1.3.4.2. As with the simple straight spines, 

left and right-handed forms existed in the two series o f autozooids, with that of the 

apical autozooid being the reverse of the autozooid immediately proximal to it. They 

occurred on all autozooids, of all the main ‘stem sequences’, of all the colonies 

(except the ancestrulae).

5.2.2.2.3 Frontal avicularia

Frontal avicularia occurred on the gymnocyst, just proximal to the frontal membrane. 

They were always large, and occurred on all odd-numbered autozooids, except 

number one, and never on even-numbered autozooids. This pattern o f occurrence 

obtained in all the intemodes, except the first, in all the main ‘stem sequences’, in all 

the colonies.

5.2.2.2.4 Lateral avicularia

Lateral avicularia occurred distolaterally on a number of autozooids. Although 

generally small, much larger forms occurred intermittently, usually on one of the 

sub-apical autozooids.
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Was their level of occurrence similar in the two populations? Was the occurrence of 

lateral avicularia related to autozooid number?

Autozooid
number

Musselwick, Pembrokeshire Bay Fine, Isle of Man
Lateral avicularia Percentage

occurrence
Lateral avicularia Percentage

occurrencePresent Absent Present Absent
4 7 34 17 46 5 90
3 14 26 35 45 4 92
2 1 40 2 36 12 75
1 6 35 15 45 5 90

Total 28 135 17 172 26 87

Chi-Square, Yates’ Correction for Continuity 172.924 P= < 0.001 (By site) 
Chi-Square 11.357 P=<  0.001 (By autozooid number)

Table 5.3 Lateral avicularia presence/absence by autozooid number, in the two 
populations (apical autozooids and ‘x’ and ci’ cases excluded)

Table 5.3 shows that lateral avicularia occurred five times more frequently on the 

Isle of Man material. Here they occurred almost equally on the variously numbered 

autozooids. On the Musselwick material they were virtually absent from autozooid 

No. 2, and occurred much more frequently on autozooid No. 3, than autozooid Nos. 1 

and 4.

5.2.2.2.5 Vibracula

Was their level of occurrence similar in the two populations? Was the occurrence o f 

vibracula related to autozooid number?

Autozooid
number

Musselwick, Pembrokeshire Bay Fine, Isle o: 'M an
Vibracula Percentage

occurrence
Vibracula Percentage

occurrencePresent Absent Present Absent
4 43 4 91 47 4 92
3 10 34 23 11 36 23
1 35 8 81 47 4 92

Total 88 46 66 105 44 70

Chi-Square, Yates’ Correction for Continuity .544 P= 0.461 (By site) 
Chi-square 126.377 P= < 0.001 (By autozooid number)

Table 5.4 Vibracula presence/absence by autozooid number, in the two 
populations (apical and No. 2 autozooids and ‘x’ and T  cases 
excluded)
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Table 5.4 shows no evidence of variation between populations in respect of 

vibracula, in either the overall level, -68%, or pattern of occurrence. Although the 

numbers are small, it is clear that vibracula occurrence was strongly related to 

autozooid number. Vibracula occurred ~4 times more frequently on autozooids Nos. 

1 and 4, than on No. 3.

As discussed in Materials and Methods, Section 4.5.1, a single axial vibraculum was 

always produced by the No. 2 two autozooid of the ‘stem’ intemode, following a 

bifurcation. The pattern of presence/absence of these vibracula was absolutely 

constant, and their actual siting was in the axil: assigning them to one intemode or 

the other would have been meaningless. As a result, and because I was undecided if 

the ‘absences’ should be treated as such or ‘not possible’, I treated them simply as 

‘axilliary’ and excluded them from the general analysis. They occurred on all No. 2 

autozooids in ‘stems’ and were absent from these autozooids in ‘branches’.

5.2.2.2.6 Rhizoids

The colony was attached to the substratum by tubular rhizoids, which terminated in 

holdfast like attachment discs. Rhizoids developed from all of the first few 

autozooids, but soon occurred less frequently and were absent from the more distal 

intemodes.

5.2.2.3 OVICELLS

No ovicells were present in any of the 30 main ‘stem sequences’.

5.2.2.4 INTER-COLONY VARIATION

There was no evidence of inter-colony variation except in the case of lateral 

avicularia, the level of occurrence of which did vary between colonies o f the 

Musselwick population.

5.2.2.5 INTER-POPULATION VARIATION

There was no evidence of inter-population variation with the notable exception of the 

substantial variation in lateral avicularia occurrence.
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All of the above descriptions were based on zooids in the main ‘stem sequences’ of 

colonies. It was apparent, although not quantified, that the intemode composition of 

these main ‘stem sequences’ was very different from that of the colonies overall. 

Colonies were not homogeneous in respect of intemode lengths, and immediately 

demonstrated that one cannot extrapolate the findings in respect of main ‘stem 

sequences’ to complete colonies.

5.3 DETAILED INVESTIGATION INTO THE SPATIAL 
ARRANGEMENT OF AUTOZOOIDS AND 
HETEROZOOIDS, WITHIN A SINGLE COLONY FROM 
MUSSELWICK

5.3.1 Introduction

The preliminary study of 30 ‘main stem sequences’ had not revealed any obvious 

differences between colonies, or populations, except in respect of the level of 

occurrence of lateral avicularia. For that polymorph there was variation within the 

Musselwick population, and between the two populations. The study showed that 

main ‘stem sequences’ were, in respect of the lengths of their constituent intemodes, 

very different from the colony generally. This demonstrated that there was some 

cryptic organization of various length intemodes within the colony. It was therefore 

decided to look in detail at a single colony.

A general indication of the uneven nature of colony growth can be seen from the 

following table, which shows estimates of the relative sizes of the ‘segments’ of the 

colony, which developed from 5th generation intemodes El to E8; and the actual 

autozooid numbers in all the intemodes which generated from intemodes E9 to E l6. 

(The estimates were made prior to the actual investigation).
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First intemode of Estimated or actual size
‘segment’ o f ‘segment’

E l Medium
E 2 Large
E 3 Veiy large
E 4 Small
E 5 Very large
E 6 Small
E 7 Small
E 8 Very large
E 9 91 autozooids
E10 2628 autozooids
E ll 2549 autozooids
E12 455 autozooids
E13 125 autozooids
E14 2496 autozooids
E15 654 autozooids
E16 518 autozooids

Table 5.5 The estimated and actual sizes of the 16 colony Segments’ which 
developed from the fifth generation o f intemodes

The subjective evaluations of the ‘segments’ developing from El to E8 were 

necessarily approximate, but they were very similar in extent to the actual figures of 

E9 to E l6 in Table 5.5, in that generally sections were either ‘small’ (91-654) or 

‘very large’ (2496-2628).

As discussed in Chapter 4, Materials and Methods, Section 4.5.3.1, I felt that if I 

divided the colony down an imaginary central axis, and recorded information in 

relation to one half, the scale and nature of any lateral variation would become 

apparent. The data in this study, except for that relating to the 10 longest ‘stem 

sequences’ which were in relation to the complete colony, relate to one half o f the 

colony.

The astogenetic pattern of S. reptans, and indeed many other cellularine bryozoans, 

involves the repeated bifurcation of intemodes, and therefore the number of 

intemodes potentially doubles in each new generation. Clearly this is an aspect of 

the ability of such colonies to grow very quickly, but how important an aspect? It 

seemed reasonable to me, prior to this study, that growth would initially be 

exponential, and then, as growth proceeded the rate of increase would reduce at a 

progressively increasing rate but I could not quantify this, even approximately.
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5.3.2 Results

The raw data are in Appendix ‘D’

5.3.2.1 AUTOZOOIDS, INTERNODES AND ‘STEM SEQUENCES’

5.3.2.1.1 The interrelationship of intemodes at bifurcations

Although, as discussed in Section 4.3, it is possible to describe a colony as if it were 

two dimensional, it obviously is not. The three dimensional nature of a colony 

derives primarily from the angulation of intemodes in relation to one another at 

bifurcations. Firstly, the angles between the frontal surface of a parent intemode and 

the two produced at its bifurcation were less than 180°, especially so in respect of its 

‘branch’ intemode. Secondly, this intemode was also intumed, so that its frontal 

face, relative to that of its companion ‘stem’ intemode, was much less than 180°. In 

addition, the intemodes themselves, most noticeably the longer ones, were slightly 

concave, lengthwise. As a result of all of the above, colonies are essentially cup

shaped externally, although not empty internally.

The branching pattern, as described by Lutaud (1953) and detailed in Figure 5.3, is 

absolutely constant in respect of the way in which ‘stem’ and ‘branch’ intemodes are 

produced at bifurcations. As a result of this, if one ignores the first two generations 

of intemodes, in which there are only one and two intemodes respectively, the 

arrangement of ‘stem’ and ‘branch’ intemodes is the same within all generations o f 

intemodes. If all of the intemodes within a generation (including any which are 

missing) are numbered, intemode number one is a ‘branch’, numbers two and three 

are ‘stems’, number four is a ‘branch’, and the pattern is repeated across the 

generation.

The constancy of the branching pattern is in marked contrast to the resulting 

arrangement of intemodes within a colony.
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5.3.2.1.2 The numbers and lengths of intemodes. complete and incomplete, and in 
relation to intemode generation

How did the numbers of intemodes, complete and incomplete, vary with intemode 

generation?

Intemode Complete Incomplete Total
generation Percentage Number Percentage Number Percentage

Number occurrence occurrence occurrence
28 1 0.1 1 0.1
27 1 0.1 3 0.4 4 0.2
26 2 0.2 4 0.6 6 0.3
25 3 0.3 19 2.7 22 1.3
24 16 1.6 19 2.7 35 2.0
23 21 2.0 27 3.8 48 2.8
22 29 2.8 50 7.1 79 4.6
21 50 4.9 67 9.5 117 6.8
20 70 6.8 42 6.0 112 6.5
19 84 8.2 63 8.9 147 8.5
18 84 8.2 82 11.6 166 9.6
17 94 9.2 73 10.4 167 9.7
16 93 9.1 50 7.1 143 8.3
15 81 7.9 24 3.4 105 6.1
14 59 5.8 33 4.7 92 5.3
13 61 5.9 26 3.7 87 5.0
12 48 4.7 30 4.3 78 4.5
11 45 4.4 33 4.7 78 4.5
10 46 4.5 21 3.0 67 3.9
9 42 4.1 20 2.8 62 3.6
8 38 3.7 13 1.8 51 2.9
7 27 2.6 4 0.6 31 1.8
6 16 1.6 16 0.9
5 8 0.8 8 0.5
4 4 0.4 4 0.2
3 2 0.2 2 0.1
2 1 0.1 1 0.1
1 1 0.1 1 0.1

Total 1026 100.0 704 100.0 1730 100.0

Table 5.6 The number and percentage occurrence of complete and incomplete 
Intemodes. by intemode "generation’

Table 5.6 shows that exponential growth, in terms of the number of intemodes, 

ceased after sixth generation of bifurcations. Intemode numbers per generation, 

increased slowly over the succeeding 9 or 10 generations, and then declined rapidly. 

The number of incomplete intemodes, as a proportion, increased generation on
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generation, and in distal generations they were more numerous than complete 

intemodes.

For complete intemodes was there a relationship between intemode length and 

intemode generation?

Intemode
generation

Number of autozooids in intemode Number
of

intemodes

Mean 
number of 
autozooids

3 4 5 7 9 11 13
Frequency

27 1 1 5.0
26 2 2 5.0
25 3 3 5.0
24 13 3 16 5.4
23 12 9 21 5.9
22 13 15 1 29 6.2
21 21 25 4 50 6.3
20 21 43 6 70 6.6
19 22 57 4 1 84 6.6
18 27 50 6 1 84 6.5
17 33 58 2 1 94 6.4
16 28 58 6 1 93 6.6
15 26 46 8 1 81 6.6
14 18 36 4 1 59 6.6
13 18 34 7 1 1 61 6.8
12 16 29 3 48 6.5
11 17 25 3 45 6.4
10 22 20 4 46 6.2
9 19 17 4 2 42 6.5
8 18 16 4 38 6.3
7 12 15 27 6.1
6 9 7 16 5.9
5 8 8 5.0
4 4 4 5.0
3 2 2 5.0
2 1 1 3.0
1 1 1 4.0

Total 1 1 385 563 66 9 1 1026 6.4

Table 5.7 Lengths of complete intemodes by intemode generation

Table 5.7 shows a very clear but complex relationship, between the length o f 

(complete) intemodes and intemode generation. Intemodes of five autozooids 

predominated in the more proximal generations, but as growth proceeded, intemodes 

of seven became the most numerous, and some longer intemodes were present. In 

the more distal regions of the colony this trend was reversed, with intemodes of five
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again becoming the most abundant. In effect, the longer the intemode, the more 

distal, in terms of intemode generation, its first appearance, and the more proximal, 

its disappearance. The average number of autozooids per intemode essentially 

increased in the more proximal, and decreased in the more distal, generations, and 

remained high throughout the central generations.

Which intemode lengths occurred and how frequently?

Autozooids 
in intemode

Complete Incomplete
Number Percentage

occurrence
Number Percentage

occurrence
1 65 9.2
2 133 18.9
3 1 0.1 86 12.2
4 1 0.1 144 20.5
5 385 37.5 86 12.2
6 87 12.4
7 563 54.9 56 8.0
8 19 2.7
9 66 6.4 13 1.8

10 10 1.4
11 9 0.9 2 0.3
12 2 0.3
13 1 0.1 1 0.1

Total 1026 100.0 704 100.0

Table 5.8 The number and percentage occurrence of the various length intemodes, 
both complete and incomplete

From Table 5.8 it was apparent:-

• All complete intemodes (except the first) were of an odd number of 

autozooids.

• Complete intemode lengths ranged from 3 to 13 autozooids.

• Intemodes of seven autozooids were the most numerous, and together with 

those of five constituted > 90% of complete intemodes.

• 40% of intemodes were incomplete.

(Incomplete intemodes occurred within all but the first six generations of intemodes, 

and it is unfortunate that one cannot determine whether these were still growing or 

had ceased to grow, when the colony was collected. The stage of development of the
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scuta on the most distal autozooids of an intemode enabled unbroken and broken 

intemodes to be differentiated, but does not throw any light on whether or not the 

former were still growing when the colony was collected).

5.3.2.1.3 ‘Stem’ and ‘branch’ intemodes

Were there equal numbers of ‘stems’ and ‘branches’, and was there a relationship 

between the length of a complete intemode, and whether it was a ‘stem’ or a 

‘branch’?

Autozooids in 
intemode

‘Stem’ intemodes ‘Branch’ intemodes
Frequency Percentage

occurrence
Frequency Percentage

occurrence
3 1 100.0
4 1 100.0
5 204 53.0 181 47.0
7 299 53.1 264 46.9
9 43 65.2 23 34.8

11 7 77.8 2 22.2
13 1 100.0

Total 555 54.1 471 45.9

Chi-Square 6.877 P= 0 .009 (‘stems’ and ‘branches’) 
Chi-Square 8.568 P= 0.199 (‘stems’ and ‘branches’ by length.)

Table 5.9 The frequency and percentage occurrence of complete ‘stem’ and 
‘branch’ intemodes, by length

Two features are apparent from Table 5.9:-

•  For complete intemodes there were -17.5% more ‘stems’ than ‘branches’.

•  The longer an intemode the more likely it was to be a ‘stem’.
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The length o f incomplete intemodes was of little value but were there equal numbers

o f ‘stems’ and ‘branches’?

Intemode type Frequency Percentage occurrence
‘stem’ 386 54.8
‘branch’ 318 45.2

Chi-Square 6.568 P=0.01

Table 5.10 The frequency and percentage occurrence of incomplete ‘stem’ and 
‘branch’ intemodes

Table 5.10 shows that there were -21%  more ‘stem’ than ‘branch’ intemodes.

How did the mean lengths of complete and incomplete ‘stem’ and ‘branch’ 

intemodes compare?

Intemode Number of Number of Mean number of
characteristics autozooids intemodes autozooids

Complete ‘stems’ 3594 555 6.48
Complete ‘branches’ 2985 471 6.34
Incomplete ‘stems’ 1606 386 4.16
Incomplete ‘branches’ 1331 318 4.19

Table 5.11 The mean number of autozooids in complete and incomplete intemodes. 
in ‘stem’ and ‘branch’ intemodes

Table 5.11 shows that, on average, incomplete intemodes were >2 autozooids shorter 

than complete intemodes. (This apparently trivial result is included because the 

situation in respect of T. inopinata, detailed in Chapter 6, was veiy different).

5.3.2.1.4 ‘Stem sequences’

The differentiation of ‘stem’ and ‘branch’ intemodes, led to the concept of ‘stem 

sequences’. ‘Stem sequences’ are sequences of intemodes, all of which deviate from 

their predecessor by the smaller of the two angles possible. All ‘stem sequences’, 

except the one which originates with the very first intemode of the colony, 

commence with a ‘branch’, and all subsequent intemodes are ‘stems’.
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5.3.2.1.4.1 The lengths of ‘stem sequences’

How frequently did ‘stem sequences’ of different lengths occur, and how did their 

occurrence relate to their generation of origin?

Number of 
intemodes in 

‘stem 
sequence’

Intemode generation of origin

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Frequency

26 1
25
24
23
22 1
21
20
19
18 1
17
16
15
14
13 1 2
12 1
11 1
10 1
9 1 1 1
8 1 1 1 1 1
7 1 1 1
6 2 2 1 2
5 2 2 2 2 3
4 1 3 1 1 4 2 3 1 4 4
3 1 2 4 4 5 2 4 5 7 8
2 1 3 7 5 8 7 12 12 4
1 3 11 11 13 18 14 16 16

Total 0 1 1 2 4 8 15 25 28 30 36 35 41 39

Table 5.12 The occurrence, in terms of ‘stem sequence’ lengths (number of all
intemodes) of all of the ‘stem sequences’, in relation to their generation 
of origin

(This Table continues, for ‘stem sequences’ originating in the subsequent 13 

generations of intemodes on the following page).
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Number of 
intemodes in 

‘stem 
sequence’

Intemode generation of origin
Total

15 16 17 18 19 20 21 22 23 24 25 26 27
Frequency

26 1
25
24
23
22 1
21
20
19
18 1
17
16
15
14
13 3
12 1
11 1
10 1
9 3
8 1 2 8
7 1 4
6 1 1 1 10
5 5 2 2 1 21
4 2 3 2 2 4 2 1 2 42
3 11 16 9 7 9 7 5 2 3 111
2 15 24 28 27 16 22 12 7 7 6 1 1 225
1 16 22 34 37 38 20 36 24 11 9 5 2 2 358

Total 52 66 75 76 69 51 54 36 21 15 6 3 2 791

Table 5.12 (cont.) The occurrence, in terms of ‘stem sequence' lengths (number of 
all intemodes) of all o f the ‘stem sequences’, in relation to their 
generation of origin

Table 5.12 shows that there were a small number of long ‘stem sequences’, all of 

which originated in the first six generations of intemodes, and a great number of 

short ‘stem sequences’, which originated beyond the first three generations. One 

cannot, therefore, distinguish a hierarchy of orders of ‘stem sequences’, related 

simply to their generation of origin.
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5.3.2.1.4.2 The relationship between the length of complete intemodes and their 
position within a ‘stem sequence’

Was there a relationship between the length of a complete intemode, and its position 

within a ‘stem sequence’?

(The data relating to the lengths of all complete intemodes, and their sequence within 

the ‘stem sequences’ initiated in the first 13 generations o f intemodes, is in Appendix 

‘E’).

Numerical 
position 

within4 stem 
sequence’

Intemode length

3 5 7 9 11 13

25 1
24 1
23 1
22 1
21 1 1
20 2
19 2
18 2 1
17 3
16 3
15 3
14 3
13 3
12 5 1
11 6 1
10 6 2
9 9
8 11 2
7 13 7
6 17 6 1
5 19 17 1
4 26 29 1
3 41 67 2 1
2 25 165 38 6 1
1 1 181 264 23 2

Total 1 385 563 66 9 1

Table 5.13 Lengths of complete intemodes by their numerical position within their 
‘stem sequence’

Table 5.13 shows that intemodes of seven or more autozooids were essentially 

restricted to the proximal positioned intemodes, within a ‘stem sequence’.
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5.3.2.1.4.3 Intemode lengths and their sequence within the ten longest ‘stem 
sequences’

Did these long ‘stem sequences’ exhibit any particular characteristics, in terms of the 

lengths and/or sequence, of their constituent intemodes?

Intemode
generation

Intemode lengths and sequence

27 5
26 5
25 5 5
24 5 5 5 5 5
23 5 7 5 5 5 5
22 5 5 5 5 5 5
21 5 5 5 5 5 5
20 5 5 5 5 5 5 5 5
19 7 5 5 5 5 5 5 5 5
18 5 5 5 5 5 5 5 5 7
17 5 5 5 5 5 7 5 5 5 5
16 5 5 5 5 5 5 5 5 5 5
15 7 5 5 5 5 5 5 5 5 5
14 7 5 5 5 5 5 5 5 5 7
13 5 5 5 5 5 5 5 5 5 5
12 5 5 5 5 5 5 5 5 5 5
11 5 5 5 5 5 5 5 5 7 5
10 7 5 5 5 5 5 5 5 5 5
9 5 5 5 5 5 5 5 5 5 5
8 7 5 5 5 5 5 5 5 5 5
7 7 5 5 5 5 5 5 5 7 7
6 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5
4 5 5 5 5 5
3 5 5 5 5
2 3 3
1 4

Intemode 
of origin A1 B2 Cl C4 D5 El E5 E8 F4 F8

Table 5.14 The intemode lengths and their sequence in the 10 longest ‘stem 
sequences’

Table 5.14 shows that that the 10 longest ‘stem sequences’, o f the complete colony, 

had an identical intemode composition to that o f the main ‘stem sequences’ of the 

preliminary study. Four ‘stem sequences’ consisted entirely of intemodes of five 

autozooids and a further three had only one intemode of seven autozooids. The main
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‘stem sequence’, in the first column, is the one which deviated most from the general 

pattern, containing no fewer than five intemodes of seven. No intemodes of more 

than seven autozooids were present in any of the long ‘stem sequences’.

It is not only main ‘stem sequences’ which are constituted overwhelmingly of 

intemodes o f five autozooids. All of the 10 longest ‘stem sequences’ within this 

colony had this intemode constitution. The above has to be seen against a 

background o f the colony as a whole, in which intemodes of seven outnumbered 

those of five autozooids, by virtually three to two, and intemodes of more than seven 

autozooids constituted ~7% of the total.

The table shows no obvious sequences of intemodes, but it is noticeable that the only 

intemode of four autozooids was in the first, and that the two intemodes of three 

autozooids were both in the second generation.

How did the intemode composition of the colony compare with that of the 10 longest 

‘stem sequences’?

Autozooids in 
Intemode

Colony 10 longest ‘stem sequences’
Number Percentage

occurrence
Number Percentage

occurrence
3 1 0.1 2 1.1
4 1 0.1 1 0.5
5 385 37.5 177 91.7
7 563 54.9 13 6.7
9 66 6.4

11 9 0.9
13 1 0.1

Total 1026 100.0 193 100.0

Chi-Square 267.779 P=<  0.001

Table 5.15 The frequency and percentage occurrence of complete intemodes of 
different numbers of autozooids. in the colony, and in the 10 
longest ‘stem sequences’

Table 5.15 shows that the difference in intemode composition between the long 

‘stem sequences’ and the colonies as a whole, apparent, but not quantified in the 

original investigation, extended here into the small number o f very long ‘stem 

sequences’ present in this colony. In this colony 55% of complete intemodes were of
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seven autozooids, whilst in the 10 longest ‘stem sequences’ they constituted only 

7%. Whilst within the 10 longest ‘stem sequences’ over 90% of intemodes were of 

five autozooids, within the colony they constituted 37.5%. Within the colony, some 

7% of intemodes were of nine or more autozooids, but nonesuch were present within 

the 10 longest ‘stem sequences’.

To establish, whether or not the intemode composition of long ‘stem sequences’ was 

a primary feature, or secondary, resulting from other characteristics, two differences 

between the colony and its long ‘stem sequences’ had to be investigated.

• 1) The proportions of the different length intemodes in the various generations

of intemodes were very different in the colony and the long ‘stem sequences’. 

In order to establish whether or not this difference, in itself, could account for 

the observed difference in intemode length composition, it was only necessary 

to calculate the numbers of the various lengths of complete intemodes, that one 

would expect to find in the 10 longest ‘stem sequences’, if  the proportions of 

these, within the various intemode generations, were the same as in the colony.



Did differences in the proportions of the different length intemodes per generation, 

within the colony, and within the 10 longest ‘stem sequences’, account for the 

differences in the intemode composition of the two?

Inter
node

gener
ation.

Number of autozooids in intemode
3 4 5 7 9 11 13

Frequency
Act Exp Act Exp Act Exp Act Exp Act Exp Act Exp Act Ex

27 1 1.0
26 1 1.0
25 2 2.0
24 5 4.1 0 0.9
23 5 3.6 1 2.4
22 6 2.7 0 3.1 0 0.2
21 6 2.4 0 3.1 0 0.5
20 8 2.3 0 5.0 0 0.7
19 8 2.3 1 6.3 0 0.3 0 0.1
18 8 2.9 1 5.3 0 0.6 0 0.1
17 9 3.5 1 6.2 0 0.2 0 0.1
16 10 3.0 0 6.2 0 0.6 0 0.2
15 9 3.2 1 5.7 0 1.0 0 0.1
14 8 3.1 2 6.0 0 0.7 0 0.2
13 10 2.9 0 5.6 0 1.1 0 0.2 0 0.2
12 10 3.3 0 6.0 0 0.6
11 9 3.8 1 5.5 0 0.7
10 9 4.8 1 4.3 0 0.9
9 10 4.5 0 4.0 0 1.0 0 0.5
8 9 4.7 1 4.2 0 1.1
7 7 4.4 3 5.6
6 10 5.6 0 4.4
5 8 8.0
4 5 5.0
3 4 4.0
2 2 2.0
1 1 1.0

Total 2 2.0 1 1.0 177 88.1 13 89.8 0 10.2 0 1.5 0 0.2

Table 5.16 Comparison of the actual numbers of the various lengths of complete 
intemodes in the 10 longest ‘stem sequences’, with the numbers 
expected if the proportions of the different intemode lengths in the 
various intemode generations, were the same as in the colony

Table 5.16 shows that if  the proportions of the various intemode lengths in the 10 

longest ‘stem sequences’ were the same as in the colony, one would have expected
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88 intemodes of five, 90 of seven autozooids, and -12  of intemodes of more than

seven autozooids.

If the figures in Table 5.16 are added to those in Table 5.15, did they account for the 

differences within that table?

10 longest ‘stem sequences’
Autozooids Colony Actual intemode Expected intemode

m composition composition
intemode Number % Number % Number %

3 1 0.1 2 1.1 2 1.1
4 1 0.1 1 0.5 1 0.5
5 385 37.5 177 91.7 88 45.6
7 563 54.9 13 6.7 90 46.6
9 66 6.4 11 5.7

11 9 0.9 1 0.5
13 1 0.1

Total 1026 100.0 193 100.0 193 100.0

Chi-Square 168.89 P=< 0.001 (Actual and expected)

Table 5.17 The figures derived from Table 5.16 are added to the original comparison 
between the intemode length composition of the colony and the 10 
longest ‘stem sequences’ (Table 5.15)

Table 5.17 shows that this factor, the difference between the proportions of the 

different intemode generations within the colony and within the 10 longest ‘stem 

sequences’, could account for little of the observed variation. In the 10 longest ‘stem 

sequences’ over 90% of intemodes were of five, some 7% of seven autozooids; and 

no intemodes of more than seven autozooids were present. The ‘expected’ figures 

were —46% intemodes of five, —47% intemodes of seven and -6%  of intemodes with 

more than seven autozooids.

•  2) The constituent intemodes of the ten longest ‘stem sequences’ differed from 

those of the colony in that the former, by definition, consisted virtually entirely 

o f ‘stem’ intemodes. One would have expected the colony to consist of 

approximately equal numbers of each. (In this colony there were actually -15% 

more ‘stem’ than ‘branch’, complete intemodes).
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The percentages of ‘stem’ and ‘branch’ intemodes of five and seven autozooids were 

almost identical to the percentage obtaining overall (see Table 5.9) and there was no 

imbalance here to which the observed differences could be ascribed.

The intemode composition of the long ‘stem sequences’, does not result from other 

characteristics of the spatial arrangement of intemodes, it is a primary feature.

How did the mean number of autozooids per intemode compare in the colony and in 

the 10 longest ‘stem sequences’?

Number of 
autozooids

Number of 
intemodes

Mean number 
of autozooids

Colony 6579 1026 6.41
10 longest ‘stem sequences’ 986 193 5.11

Chi-Square 50.93 P= < 0.001

Table 5.18 The mean length of complete intemodes in the colony, and in the 10 
longest ‘stem sequences’

Table 5.18 shows that, on average, intemodes of long ‘stem sequences’ had 1.3 fewer 

autozooids than those within the colony.

5.3.2.1.4.4 The spatial arrangement of intemodes within the colony, particularly in 
relation to the long ‘stem sequences’

An indication of the distribution of the 10 longest ‘stem sequences’ in the colony can 

be obtained by looking at the distribution of their intemodes in the 16th generation, 

generation ‘P’. Theoretically some 32,000+ intemodes were possible within this 

generation. The actual intemode numbers, indicating the lateral position of the 

intemodes of the 10 longest ‘stem sequences’ within this generation, are:-

1,366; 3,714; 5,462; 7,510; 9,558; 10,923; 15,019; 19,115; 21,846; 27,307.

They were well, if  not evenly, spaced.

In the proximal region of the colony all possible intemodes did develop, but as 

growth proceeded there was a ‘thinning out’, which increased in magnitude in the
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more distal regions. The manner in which intemodes of these were distributed 

laterally, can be seen in the details below:-

In the 18th generation, ‘R’, -130,000 intemodes were theoretically possible. In the 

half of the colony which was ‘mapped’, some 166 intemodes were present, occurring 

within the numerical range of -  65,000-130,000. (It was the right-hand half of the 

colony which was mapped).

The clumped nature of their distribution is evidenced by the following:-

* 52 intemodes occurred between 76,373 and 76,720

* 65 intemodes occurred between 87,201 and 87,808

* 43 intemodes occurred between 109,138 and 109,400

6 intemodes occurred between 119,977 and 119,983 (all were incomplete)

(No other intemodes were produced within this half of the colony).

* Each of these three large clusters had an intemode of one of the ten longest ‘stem 

sequences’ within it.

The spatial arrangement of intemodes in relation to the long ‘stem sequences’ is 

shown in Figure 5.4. It shows, for certain generations, for the half of the colony 

which was ‘mapped’, the proportion of available intemode positions actually 

‘occupied’, and how these were distributed in these generations.

• The dashed vertical lines indicate the long ‘stem sequences’.

•  The dotted vertical line a ‘stem sequence’ which was not very long but which 

had the intemode composition of such a ‘stem sequence’ (possibly damaged).

• The boxes and vertical lines within each generation the lateral extent of 

intemode occurrence.

The figure inevitably gives a veiy false impression of the numbers of intemodes 

occurring in each generation. 90% of all intemodes occurred distal to generation ‘I’, 

and 60% distal to generation ‘O’.
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Figure 5.4 shows, for the half o f the colony which was mapped, the relationship 

between the long ‘stem sequences’ and the distribution o f intemodes within a 

number o f  intemode generations. Initially intemodes are produced in all positions 

open to them but as growth continues, gaps between groups o f intemodes appear 

which rapidly increase in width. The concentration o f narrow groups o f intemodes 

around long ‘stem sequences’ in the central and distal regions o f  the colony is very 

pronounced. It is also apparent from Figure 5.4, that even when a long ‘stem 

sequence’ came to an end, growth often continued in that direction. The long ‘stem 

sequences originating with intemodes B2 and D8 had growth continuing in the 

direction o f  those ‘stem sequences’, for four and seven generations respectively, 

beyond the extent o f the long ‘stem sequences’ themselves.

Figure 5.4 does not show the actual spatial arrangement o f intemodes within the 

‘aggregations’ o f intemodes associated with long ‘stem sequences’. Although the 

number o f intemodes in each generation o f  intemodes is theoretically double the 

number o f  its predecessor, scaling requires each generation to be represented by an 

identical space. The figure also does not provide any information on the distribution 

o f the different lengths o f intemode.

The problem can be largely circumvented, and a more realistic picture obtained, in 

these respects, i f  a laterally, and vertically, limited region o f the colony, in relation to 

one long ‘stem sequence’, is considered, allowing an identical scale to be used for 

each generation.

Figure 5.5, shows the lengths, whether they were complete or incomplete, and their 

actual position within their generation, o f  the vast majority o f  the intemodes which 

were generated, from generations ‘J ’ to ‘Z ’, from a long ‘stem sequence’ which 

developed from intemode ‘D 5’.

•  All intemodes are drawn to scale, one square = one autozooid.

•  Incomplete intemodes are indicated by a dot above the most distal autozooid.

• Complete intemodes o f  five autozooids are shaded.

•  The horizontal line beneath each generation o f  intemodes, indicates the extent 

o f their possible occurrence, and the X / Y figures at the sides, the number o f 

intemodes which occurred, and the number o f intemodes possible, beyond 

the margins o f the figure.
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Figure 5.5 gives a more realistic picture o f  the relationship and lengths o f  most o f  the 

intemodes, from generation ‘J ’ to ‘Z ’, which developed from a long ‘stem sequence’. 

The vast majority o f  intemodes occurred in the vicinity o f  the long ‘stem sequence’, 

the number o f intemodes first steadily increasing and then decreasing from one 

generation to the next. A very small number o f  intemodes formed ‘arm s’ outside the 

central ‘core’. Complete intemodes o f  five autozooids, the shorter o f  the abundant 

lengths, were concentrated in the vicinity o f  the long ‘stem sequence’ and in these 

‘arm s’.

Diagrammatically, in two dimensions, an ‘aggregation’ o f intemodes developing 

from a long ‘stem sequence’ is lanceolate shaped. In actuality it is three- 

dimensional, fusiform. The angulation o f intemodes in relation to one another at 

bifurcations, and to a lesser degree the lengthwise concavity o f  the longer intemodes, 

results in incurving, both distally and laterally, o f the ‘aggregation’ o f intemodes. 

The resulting three-dimensional overall structure o f the colony is essentially an 

incomplete circle o f  discrete, slender, incomplete ‘flasks’, which develop from a 

vertically limited, laterally continuous, proximal region.

5 3 2 2  POLYMORPH OCCURRENCE AND DISTRIBUTION

5.3.2.2.1 Predictably occurring polymorphs

5.3.2.2.1.1 Frontal avicularia

This confirmed the finding o f  the preliminary study, that frontal avicularia occurred 

predictably (except in the first intemode o f  a colony) on all odd-numbered 

autozooids except number one, and on no even-numbered autozooids.

5.3.2.2.2 Unpredictablv occurring polymorphs

The spatial distribution o f  unpredictably occurring polymorphs, perhaps involving 

external factors, may not exhibit any pattern, or perhaps, given that these factors may 

vary over time, exhibit one which occurs intermittently.
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For polymorphs o f unpredictable occurrence (lateral avicularia, vibracula and 

rhizoids) it was necessary to estimate their distribution by sampling the colony. The 

problem was to establish a region which constituted a genuinely representative 

sample o f the whole. The limited vertical dimension was not a problem, and the 

discovery o f the existence o f largely discrete ‘aggregations’ o f intemodes, each 

centred on a long ‘stem sequence’, suggested that these could provide the necessary 

lateral element previously lacking.

Two separate ‘aggregations’ o f intemodes, each in association with their long ‘stem 

sequence’, were investigated. In the first, selected generations o f intemodes o f a 

long ‘stem sequence’, together with all o f the intemodes which developed, in those 

generations, from one side o f  it, were recorded. This will be referred to as 

Aggregation ‘A ’. In the second, a shorter long ‘stem sequence’, together with all o f 

the intemodes which developed from it, were recorded. This will be referred to as 

Aggregation ‘B’.

(The distribution o f all three polymorphs in Aggregation ‘A ’ is shown in Figure 5.6).

Figure 5.6 shows, for Aggregation ‘A ’, the distribution o f lateral avicularia, vibracula 

and rhizoids in relation to autozooids and intemodes, within certain generations o f a 

long ‘stem sequence’, and all o f the intemodes within these, which developed from 

one side o f it.
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Figure 5.6 shows very little evidence of any over-all pattern of occurrence of a 

polymorph, relative to the ‘aggregation’ of intemodes. Neither lateral avicularia nor 

vibracula exhibited any over-all pattern of distribution, but both exhibited a higher 

level of occurrence within the long ‘stem sequence’. Lateral avicularia also 

exhibited a decidedly clumped distribution. Rhizoids showed evidence of zones of 

occurrence, being concentrated vertically within the proximal generations, and 

laterally within intemodes of, or close to, the long ‘stem sequence’.

5.3.2.2.2.1 Lateral avicularia

The preliminary investigation of main ‘stem sequences’ had established very little 

regarding their distribution of lateral avicularia, beyond the fact that the frequency of 

their occurrence varied between colonies at Musselwick and between the 

Musselwick and Bay Fine populations. For the Musselwick population the overall 

level o f occurrence was 17%, and it varied considerably with autozooid number. 

They rarely occurred on autozooid No. 2 and occurred most frequently on No. 3.

166



Was lateral avicularia presence or absence related to intemode generation?

Aggregation ‘A’
Intemode
generation

Lateral avicularia Percentage
occurrencePresent Absent

24 0 36 0
20 20 78 20
16 18 118 13
14 12 68 15
12 11 29 27
10 4 18 18
8 4 11 27
6 2 8 20

Total 71 366 16

Aggregation ‘B’
Intemode
generation

Lateral avicularia Percentage
occurrencePresent Absent

18 0 10 0
17 1 24 4
16 2 16 11
15 2 20 9
14 3 35 8
13 9 77 10
12 6 43 12
11 15 45 25
10 22 47 32
9 22 46 32
8 11 25 31
7 4 16 20
6 5 5 50
5 1 0 100

Total 103 409 20

Aggregation‘A’-Chi-Square 14.312 P= 0.046 (3/19)
Aggregation ‘B’- Chi-Square 44.679 P= < 0.001 (7/25)

Table 5.19 Lateral avicularia presence or absence by intemode generation (apical 
autozooids and ‘x’ and T  cases excluded)

There is some evidence in Table 5.19 to suggest that in Aggregation ‘A’ lateral 

avicularia occurrence was related to intemode generation. In Aggregation ‘B’, there 

was evidence of a decrease in the level o f occurrence, in more distal generations.
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Was lateral avicularia presence or absence related to whether an intemode was a

‘stem’ or a ‘branch’?

Intemode
type

Aggregation ‘A’ Aggregation ‘B’
Lateral avicularia Percentage

occurrence
Lateral avicularia Percentage

occurrencePresent Absent Present Absent
‘stem’ 43 187 19 62 226 22
‘branch’ 28 179 14 41 183 18
Total 71 366 16 103 409 20

Aggregation ‘A’- Chi-Square, Yates’ Correction for Continuity 1.776 P= 0.183 
Aggregation ‘B’- Chi-Square, Yates’ Correction for Continuity .627 P -  0.429

Table 5.20 Lateral avicularia presence or absence by whether an intemode was a 
‘stem’ or a ‘branch’ (apical autozooids and ‘x’ and ‘i’ cases excluded)

Table 5.20 shows that lateral avicularia occurred more frequently in ‘stem’ than 

‘branch’ intemodes, but not to any significant extent.

Was lateral avicularia presence or absence related to whether an intemode was 

complete or incomplete?

Intemode
type

Aggregation ‘A’ Aggregation ‘B’
Lateral avicularia Percentage

occurrence
Lateral avicularia Percentage

occurrencePresent Absent Present Absent
Complete 65 262 20 92 299 24
Incomplete 6 104 5 11 110 9
Total 71 366 16 103 409 20

Aggregation ‘A’- Chi-Square, Yates’ Correction for Continuity 11.546 P= 0.001 
Aggregation ‘B’- Chi-Square, Yates’ Correction for Continuity 11.106 P= 0.001

Table 5.21 Lateral avicularia presence or absence by whether an intemode was 
complete or incomplete (apical autozooids and ‘x’ and ‘i’ cases 
excluded)

Table 5.21 shows that lateral avicularia occurred ~three to four times more 

frequently in complete than incomplete intemodes.
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Was lateral avicularia presence or absence related to autozooid position within an

intemode?

Autozooid
position

Aggregation ‘A’ Aggregation ‘B’
Lateral avicularia Percentage

occurrence
Lateral avicularia Percentage

occurrencePresent Absent Present Absent
Sub-apical 41 87 32 47 96 33
Proximal 27 263 9 50 287 15
Total 68 350 16 97 383 20

Aggregation ‘A’- Chi-Square, Yates’ Correction for Continuity 32.008 P= < 0.001 
Aggregation ‘B’- Chi-Square, Yates’ Correction for Continuity 19.139 P= < 0.001

Table 5.22 Lateral avicularia presence or absence by autozooid position within an 
intemode (apical autozooids and ‘x’ and T  cases excluded)

Table 5.22 shows that lateral avicularia occurred ~2 to 3.5 times more frequently on 

sub-apical than proximally sited autozooids.

Was lateral avicularia presence or absence related to autozooid number?

Autozooid
number

Aggregation ‘A’ Aggregation ‘B’
Lateral avicularia Percentage

occurrence
Lateral avicularia Percentage

occurrencePresent Absent Present Absent
10 0 1 0
9 0 1 0
8 1 1 50 1 8 11
7 2 2 50 3 6 33
6 2 36 5 5 45 10
5 19 25 43 19 35 35
4 12 66 15 16 71 18
3 20 66 23 32 59 35
2 4 86 4 3 100 3
1 11 84 12 24 83 22

Total 71 366 16 103 409 20

Aggregation‘A ’-Chi-Square 45.733 P = <  0.001 (4/25) 
Aggregation‘B’-Chi-Square 45.061 P= < 0.001 (6/30)

Table 5.23 Lateral avicularia presence or absence by autozooid number (apical 
autozooids and cx ’ and ‘i’ cases excluded)

Table 5.23 confirmed and extended the findings of the preliminary study, and shows 

that, if  one ignores the very small figures for autozooids seven and eight, in
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Aggregation ‘A’; and nine and ten, in Aggregation ‘B’; lateral avicularia occurred 

more frequently on the odd, than even numbered autozooids of each pair, especially 

the first.

Was lateral avicularia occurrence related to odd and even-numbered autozooids?

Autozooid
number

Aggregation ‘A’ Aggregation ‘B’
Lateral avicularia Percentage

occurrence
Lateral avicularia Percentage

occurrencePresent Absent Present Absent
Odd Nos. 52 177 22.7 78 184 29.8
Even Nos. 19 189 9.1 25 225 10.0
Total 71 366 16.2 103 409 20.1

; Aggregation ‘A’- Chi-Square, Yates’ Correction for Continuity 13.776 P= < 0.001
Aggregation ‘B’- Chi-Square, Yates’ Correction for Continuity 29.900 P= < 0.001

Table 5.24 Lateral avicularia occurrence by odd and even-numbered autozooids 
(apical autozooids and ‘x’ and ‘i’ cases excluded)

Table 5.24 shows that lateral avicularia occurred between two and three times more 

frequently on odd than even- numbered autozooids.

Within the long ‘stem sequences’, in Aggregation ‘A’, 10 lateral avicularia were 

j produced by the 33 autozooids, an occurrence rate o f 30%, twice that obtaining in the

| ‘aggregation’. In Aggregation ‘B’, 12 lateral avicularia were produced by 25

i autozooids, an occurrence rate of 48%, more than twice that obtaining in the

; ‘aggregation’.

! 5.3.2.2.2.2 Vibracula

The initial investigation had established very little regarding the distribution of
!
I vibracula, beyond that they occurred very frequently on autozooid Nos. 1 and 4, and

much less frequently on autozooid No. 3.
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Was vibracula presence or absence related to intemode generation?

Aggregation ‘A’
Intemode
generation

Vibracula Percentage
OccurrencePresent Absent

24 8 28 22
20 23 64 26
16 27 88 23
14 19 54 26
12 11 22 33
10 5 12 29
8 6 6 50
6 6 2 75
4 3 0 100

Total 108 276 28

Aggregation ‘B’
Intemode
generation

Vibracula Percentage
occurrencePresent Absent

18 0 10 0
17 5 16 24
16 3 13 19
15 3 16 16
14 5 32 14
13 7 65 10
12 11 31 26
11 14 41 25
10 15 46 25
9 21 35 37
8 16 13 55
7 10 6 62
6 5 3 62
5 2 0 100

Total 117 327 26

Aggregation‘A’-Chi-Square 21.790 P= 0.005 (5/28)
Aggregation ‘B’- Chi-Square 56.486 P=<  0.001 (6/22)

Table 5.25 Vibracula presence or absence bv intemode generation (apical and 
number two autozooids and *x’ and T  cases excluded)

Table 5.25 shows, that the level of vibracula occurrence was high in the early, and 

lower in the later generations. (The numbers for the earliest generations were 

necessarily small).
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Was vibracula presence/absence related to whether an intemode was a ‘stem’ or a 

‘branch’?

Intemode
type

Aggregation ‘A’ Aggregation ‘B’
Vibracula Percentage

occurrence
Vibracula Percentage

occurrencePresent Absent Present Absent
‘stem’ 67 134 33 75 183 29
‘branch’ 41 142 22 42 144 23
Total 108 276 28 117 327 26

Aggregation ‘A’- Chi-Square, Yates’ Correction for Continuity 5.132 P= 0.023 
Aggregation ‘B’- Chi-Square, Yates’ Correction for Continuity 2.023 P= 0.155

Table 5.26 Vibracula presence or absence by whether an intemode was a ‘stem’ or a 
‘branch’ (apical and number two autozooids and ‘x’ and ‘i’ cases 
excluded)

Table 5.26 shows that vibracula occurred more frequently on autozooids within 

‘stem’ than ‘branch’ intemodes; 50% more frequently in Aggregation ‘A’, but only 

25% in Aggregation ‘B’. (But see Table 5.44).

Was vibracula occurrence related to whether an intemode was complete or 

incomplete?

Intemode
type

Aggregation ‘A’ Aggregation ‘B’
Vibracula Percentage

occurrence
Vibracula Percentage

occurrencePresent Absent Present Absent
Complete 92 174 35 110 206 34
Incomplete 16 102 13 7 121 5
Total 108 276 28 117 327 26

Aggregation ‘A’- Chi-Square, Yates’ Correction for Continuity 16.853 P= < 0.001 
Aggregation ‘B’- Chi-Square, Yates’ Correction for Continuity 38.914 P= < 0.001

Table 5.27 Vibracula presence or absence by whether an intemode was complete or 
incomplete (apical and number two autozooids and ‘x ’ and ‘i’ cases 
excluded)

Table 5.27 shows that vibracula occurred much more frequently on autozooids which 

were in complete as opposed to incomplete intemodes, although to a very different 

degree in the two ‘aggregations’. This was not due to their absence from the distal
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ends of intemodes (incompletely formed distal autozooids, ‘i’ cases, were ignored); it 

was frequently due to their complete absence from a number of these intemodes.

(Raw data are in Appendix ‘F’).

Was vibracula occurrence related to autozooid position within an intemode?

Autozooid
position

Aggregation ‘A’ Aggregation ‘B’
Vibracula Percentage

occurrence
Vibracula Percentage

occurrencePresent Absent Present Absent
Sub-apical 38 94 29 44 99 31
Proximal 62 138 31 72 165 30
Total 100 232 30 116 264 30

Aggregation ‘A ’- Chi-square, Yates’ Correction for Continuity .095 P= 0.758 
Aggregation ‘B’- Chi-Square, Yates’ Correction for Continuity .000 P= 1.00

Table 5.28 Vibracula presence or absence by autozooid position within an
intemode (apical and number two autozooids. and ‘x’ and T  cases 
excluded)

Table 5.28 gives no indication that vibracula occurrence was related to autozooid 

position within an intemode.

Was vibracula presence/absence related to autozooid number?

Autozooid
number

Aggregation ‘A’ Aggregation ‘B’
Vibracula Percentage

occurrence
Vibracula Percentage

occurrencePresent Absent Present Absent
10 0 1 0
9 0 1 0
8 2 0 100 0 8 0
7 0 3 0 0 11 0
6 10 29 26 22 33 40
5 0 40 0 1 57 2
4 58 17 77 58 37 61
3 2 81 2 4 97 4
1 28 62 31 32 82 28

Total 100 232 30 117 327 26

Aggregation ‘A ’- Chi-Square 133.296 P= < 0.001 (4/29) 
Aggregation ‘B’- Chi-Square 116.129 P= < 0.001 (6/33)

Table 5.29 Vibracula presence or absence by autozooid number (apical and 
number two autozooids and cx’ and ‘i’ cases excluded)
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Although the numbers are small, Table 5.29 confirms that vibracula occurrence was 

strongly related to autozooid number. They were virtually absent from all of the 

odd-numbered autozooids, excluding No. 1, on which they occurred on some -29%  

of autozooids. They occurred very frequently on autozooid No. 4, and less 

frequently on autozooid No. 6.

Within the long ‘stem sequence’ of Aggregation ‘A’, 18 vibracula were produced by 

26 autozooids, a rate of occurrence of 69%, -2.5 higher than the level in the 

‘aggregation’. Within that of Aggregation ‘B’, 21 vibracula were produced by 36 

autozooids, a rate of occurrence of 71%, almost three times higher than the level in 

the ‘aggregation’.



5.3.2.2.2.3 Rhizoids

How does rhizoid presence or absence relate to intemode generation?

Aggregation ‘A’
Intemode
generation

Rhizoid
Present Absent

24 36
20 87
16 1 114
14 1 73
12 2 31
10 3 14
8 3 9
6 2 6
4 3 0

Total 15 370

Aggregation ‘B’
Intemode
generation

Rhizoid
Present Absent

18 10
17 21
16 16
15 19
14 37
13 72
12 42
11 55
10 61
9 56
8 1 29
7 2 16
6 2 8
5 1 2

Total 6 444

Table 5.30 Rhizoid presence or absence by intemode generation (number two and 
apical autozooids and ‘x’ and T  cases excluded)

Table 5.30 shows that rhizoids w ep cppcentrated vertically in the mor? proximal 

generations of the colony. (They were also concentrated horizontally, in the 

intemodes of the long ‘stem sequences’, and those intemodes laterally close to 

them).
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5.3.23 THE DISTRIBUTION OF OVICELLS THROUGHOUT THE COLONY

In this section, ovicells were used as indicators of the distribution of autozooids 

producing embryos, requiring ovicells; i.e. the autozooid referred to, is that proximal 

to the autozooid actually producing the ovicell.

Was ovicell occurrence related to intemode generation?

Intemode
generation

Ovicell Percentage
occurrencePresent Absent

28 1
27 14
26 21
25 64
24 140
23 202
22 348
21 530
20 547
19 710
18 3 808 0.4
17 796
16 13 728 1.8
15 10 559 1.8
14 18 456 3.8
13 18 485 3.6
12 21 389 5.1
11 25 337 6.9
10 21 308 6.4
9 15 301 4.7
8 11 265 4.0
7 4 163 2.4
6 2 76 2.6
5 32
4 17
3 8
2 2
1 3

Total 161 8310 1.9

CHi-Square 221.118 P=<  0.001 (16/29)

Table 5.31 Ovicell presence or absence by intemode generation (apical autozooids 
and *x’ and T  cases excluded)
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Table 5.31 shows that ovicells were absent from the first five generations of 

intemodes, occurred at a low if variable level throughout the next 13, and were 

completely absence from the most distal 10 generations.

[The colony was collected 15/11/97, and given that larval settlement occurs in June 

and July, embryo and ovicell production were probably in their early stages].

Was ovicell occurrence related to whether an intemode was a ‘stem’ or a ‘branch’?

Intemode type Ovicell Percentage
occurrencePresent Absent

‘stem’ 87 4552 1.9
‘branch’ 74 3757 1.9

Chi-Square, Yates’ Correction for Continuity 0.12 P= 0.851

Table 5.32 Ovicell presence or absence by ‘stem’ and ‘branch’ intemodes (apical 
autozooids and ‘x* and ‘i’ cases excluded)

Table 5.32 gives no indication that ovicell occurrence was related to whether an 

intemode was a ‘stem’ or a ‘branch’.

It is worth noting that ovicells were both rare and restricted to even-numbered 

autozooids. Further, no ovicells were present within the 10 long ‘stem sequences’.

5.4 SUPPLEMENTARY STUDIES

5.4.1 Introduction

As discussed in Section 4.5.4 of Materials and Methods, although only the detailed 

studies could investigate any colony-wide aspects of a zooid’s pattern of occurrence, 

they were not completely satisfaptory. Firstly, it was desirable tp look at more 

colonies, perhaps from more populations. Secondly, tentative conclusions had been 

drawn from very small samples, and it was necessary to expand the scale of these 

where possible. I felt, therefore, that a number of supplementary studies would be 

useful in an effort to address these deficiencies. These investigations did not always 

include all of the parameters considered in the detailed study, but were targeted at 

aspects requiring further investigation.
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5.4.2 The distribution of unpredictably occurring polymorphs and 
ovicells associated with a long ‘stem sequence’ and the 
internodes which developed from it

The previous investigations showed that there was considerable variation in the level 

of occurrence of lateral avicularia between colonies of the Musselwick population, 

and between these and those of the Bay Fine population. A long ’stem sequence’, 

together with all of the intemodes which developed from it, was taken to compare, in 

respect of lateral avicularia, vibracula, rhizoids, and ovicells, with the colony from 

Musselwick, of the detailed study.

5.4.2.1 LATERAL AVICULARIA

(The distribution of lateral avicularia is shown diagrammatically in Figure 5.7).
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Figure 5.7 shows that in this ‘aggregation’ of intemodes, lateral avicularia occurred 

on -60%  of the autozooids which could give rise to them. There was no obvious 

pattern of occurrence, vertically or laterally, relative to the ‘aggregation’ of 

intemodes as a whole.

How did their distribution relate, compared to the colony of the detailed study, in 

respect of the parameters considered earlier?

Was lateral avicularia presence or absence related to intemode generation?

(The material was only part of a colony and I did not know the actual generations of 

the intemodes, hence ‘X’, ‘X’+ l...) .

Intemode
generation

Lateral avicularia Percentage
occurrencePresent Absent

X+10 3 2 60
X+9 17 6 74
X+8 26 13 67
X+7 41 19 68
X+6 31 20 61
X+5 44 31 59
X+4 41 31 57
X+3 18 18 50
X+2 7 14 33
X+l 2 7 22
X 0 3 0

Total 230 164 58

Chi-Square 21.535 P= 0.018 (5/23)

Table 5.33 Lateral avicularia presence or absence by intemode generation (apical 
autozooids and ‘x ’ and ‘i’ cases excluded^

Table 5.33 shows a steady increase in the occurrence of lateral avicularia, generation 

on generation.
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Was lateral avicularia presence or absence related to whether an intemode was a

‘stem’ or a ‘branch’?

Intemode type Lateral avicularia Percentage
occurrencePresent Absent

‘stem’ 126 73 63
‘branch’ 104 91 53

Total 230 164 58

Chi-Square, Yates’ Correction for Continuity 3.639 P= 0.056

Table 5.34 Lateral avicularia presence or absence by whether an intemode was a 
‘stem’ or a ‘branch’ (apical autozooids and ‘x’ and ‘i’ cases excluded)

Table 5.34 shows some evidence that lateral avicularia occurrence was related to 

whether an intemode was a ‘stem’ or a ‘branch’.

Was lateral avicularia presence or absence related to whether an intemode was 

complete or incomplete?

Intemode type Lateral avicularia Percentage
occurrencePresent Absent

Complete 162 104 61
Incomplete 68 60 53
Total 230 164 58

Chi-Square, Yates’ Correction for Continuity 1.843 P= 0.175

Table 5.35 Lateral avicularia presence or absence by whether an intemode was 
complete or incomplete (apical autozooids and ‘x’ and ‘i’ cases 
excluded)

Table 5.35 shows little evidence that lateral avicularia occurrence was related to 

whether an intemode was complete or incomplete.

181



Was lateral avicularia presence or absence related to autozooid position within an

intemode?

Autozooid position Lateral avicularia Percentage
occurrencePresent Absent

Sub-apical 86 18 82
Proximal 123 141 47
Total 209 159 57

Chi-Square, Yates’ Correction for Continuity 38.169 P= < 0.001

Table 5.36 Lateral avicularia presence or absence by autozooid position within an 
intemode (apical autozooids and ‘x’ and T  cases excluded)

Table 5.36 shows that lateral avicularia occurred very much more frequently on sub- 

apical than proximal autozooids.

Was lateral avicularia presence or absence related to autozooid number?

Autozooid number Lateral avicularia Percentage
occurrencePresent Absent

10 1 0 100
9 3 0 100
8 10 4 71
7 16 1 94
6 23 14 62
5 40 3 93
4 26 34 43
3 58 13 82
2 5 61 8
1 48 34 59

Total 230 164 58

Chi-Square 125.800 P=< 0.001 (4/20)

Table 5.37 Lateral avicularia presence or absence by autozooid number (apical 
autozooids and *x* and T  cases excluded)

Table 5.37 shows that lateral avicularia occurred more frequently on the odd- 

numbered autozooid of each staggered pair. The extent of the difference decreased, 

but the rate of occurrence increased, for both odd and even numbered autozooids, as 

autozooid number increased. They occurred very infrequently on autozooid No. 2.
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To what extent did lateral avicularia occurrence differ on odd and even-numbered 

autozooids?

Autozooid number Lateral avicularia Percentage
occurrencePresent Absent

Odd-numbered 165 51 76.4
Even-numbered 65 113 36.5

Total 230 164 58.4

Chi-Square, Yates’ Correction for Continuity 62.216 P= < 0.001

Table 5.38 Lateral avicularia presence or absence bv odd and even-numbered 
autozooids (apical autozooids and ‘x’ and T  cases excluded)

Table 5.38 shows that lateral avicularia occurred more than twice as frequently on 

odd than even-numbered autozooids.

Within the long ‘stem sequence’, 25 lateral avicularia were produced by 39 

autozooids, a rate of occurrence of 64%, marginally higher than the level obtaining in 

the ‘aggregation’.

5.42.2 VIBRACULA

(The distribution of vibracula is shown diagrammatically in Figure 5.8)
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Figure 5.8 shows that there was no obvious pattern of occurrence, vertically or 

horizontally, relative to the ‘aggregation’ as a whole.

Table 5.39 below shows that vibracula occurred on 63% of the autozooids able to 

produce them, a level of occurrence ~3x the level o f the colony from Musselwick.

How did their pattern of occurrence relate to the parameters considered earlier?

Was vibracula presence or absence related to intemode generation?

Intemode
generation

Vibracula Percentage
occurrencePresent Absent

X+10 7 2 78
X+9 19 5 79
X+8 29 7 81
X+7 40 17 70
X+6 31 17 65
X+5 40 31 56
X+4 32 32 50
X+3 20 15 57
X+2 13 10 57
X+l 5 3 62
X 2 1 67

Total 238 140 63

Chi-Square 16.537 P= 0.085

Table 5.39 Vibracula presence or absence by intemode generation (apical and 
number two autozooids and ‘x’ and ‘i’ cases excluded)

Table 5.39 shows that vibracula occurrence was generally constant over the 

generations, increasing slightly distally.
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Was vibracula presence or absence related to whether an intemode was a ‘stem’ or a 

‘branch’?

Intemode type Vibracula Percentage
occurrencePresent Absent

‘stem’ 141 48 75
‘branch’ 97 92 51
Total 238 140 63

Chi-square, Yates’ Correction for Continuity 20.976 P= < 0.001

Table 5.40 Vibracula presence or absence bv whether an intemode was a ‘stem’ or 
a ‘branch’ (apical and number two autozooids and ‘x’ and *i’ cases 
excluded)

Table 5.40 shows that vibracula occurred -50%  more frequently in ‘stem’ than 

‘branch’ intemodes. (But see Table 5.44).

Was vibracula presence or absence related to whether an intemode was complete or 

incomplete?

Intemode type Vibracula Percentage
occurrencePresent Absent

Complete 159 75 68
Incomplete 79 65 55
Total 238 140 63

Chi-Square, Yates’ Correction for Continuity 5.998 P= 0.014

Table 5.41 Vibmcula presence or absence bv whether an intemode was complete or 
incomplete (apical and number two autozooids and ‘x’ and ‘i’ cases 
excluded)

Table 5.41 shows that vibracula occurred somewhat more frequently in complete 

than incomplete intemodes.
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Was vibracula presence or absence related to autozooid position within an intemode?

Autozooid position Vibracula Percentage
occurrencePresent Absent

Sub-apical 70 38 65
Proximal 135 75 64
Total 205 113 64

Chi-Square, Yates’ Correction for Continuity .000 P= 0.926

Table 5.42 Vibracula presence or absence bv autozooid position within an
intemode (apical and number two autozooids and ‘x’ and ‘i’ cases 
excluded)

Table 5.42 shows no evidence that vibracula occurrence was related to autozooid 

position within an intemode.

Was vibracula presence or absence related to autozooid number?

Autozooid number Vibracula Percentage
occurrencePresent Absent

11 0 1 0
10 0 2 0
9 1 3 25
8 9 7 56
7 2 16 11
6 43 1 98
5 14 31 31
4 76 0 100
3 23 56 29
1 70 23 75

Total 238 140 63

Chi-Square 160.575 P=< 0.001 (6/30)

Table 5.43 Vibracula presence or absence bv autozooid number (apical and number 
two autozooids and ‘x’ and ‘i’ cases excluded)

Table 5.43 shows that vibracula occurred considerably more frequently on even- 

numbered autozooids. They occurred on virtually all autozooid Nos. 4 and 6, and on 

>50% of No- 8; occurred on 75% of autozooid No. 1, but only one third as frequently 

on autozooids Nos.3 and 5, compared with their even-numbered ‘partners’.
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The much higher level of occurrence of vibracula on autozooid No. 1, relative to all 

other odd-numbered autozooids, in the preliminary study, both ‘aggregations’ of the 

detailed study, and again here, although to a lesser degree, was initially as puzzling 

as it was consistent. The explanation may be in the following:-

The fact that the joints between intemodes cut across the proximal ends of both No. 1 

autozooids in the two intemodes resulting from a bifurcation creates a complication, 

which must be allowed for, in respect of their vibracula, in translating autozooid 

number into internal and external autozooid series within an intemode. Following a 

bifurcation, the vibracula on both new No. 1 autozooids occur at the distal end of the 

preceding intemode, one in its internal, and one in its external autozooid series. Both 

of these autozooids essentially occur in the external series of autozooids, in the ‘new’ 

intemodes.

As a result of the consistent pattern of ‘stem’ and ‘branch’ production, the No. 1 

autozooid of ‘stem’ intemodes occurs in the internal series of the preceding 

intemode, and the No. 1 autozooid of ‘branch’ intemodes occurs in the external row, 

relative to the bifurcation (see Figure 5.3). It was, therefore a simple matter to 

‘reallocate’ vibracula on No. 1 autozooids, to the ‘actual’ autozooid series in which 

they occurred.

The logic of the above argument also required a re-designation of the ‘stem’ and 

‘branch’ location of vibracula on No. 1 autozooids. This was necessary to ascertain 

if ‘stem’ and ‘branch’ intemodes, in themselves, were related to vibracular 

occurrence.
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Was vibracula occurrence, in the three aggregations investigated (two in the detailed 

study, and one here) related to whether an intemode was a ‘stem’ or a ‘branch’?

Site ‘Aggregation’ Intemode
type

Vibracula Percentage
occurrencePresent Absent

Musselwick ‘A’ ‘Stem’ 62 139 31
Musselwick ‘A’ ‘Branch’ 46 137 25
Musselwick ‘B’ ‘Stem’ 70 188 27
Musselwick ‘B’ ‘Branch’ 47 138 25
Swanage ‘Stem’ 128 61 68
Swanage ‘Branch’ 110 79 58

Musselwick ‘A’, Chi-Square, Yates’ Correction for Continuity 1.276 P= < 0.5 
Musselwick ‘B’, Chi-Square, Yates’ Correction for Continuity .088 P= < 0.9 
Swanage, Chi-Square, Yates’ Correction for Continuity 3.278 P= < 0.1

Table 5.44 Vibracula presence or absence bv whether an intemode was a ‘stem’ or a 
branch’ (apical and number two autozooids and ‘x’ and ‘i’ cases 
excluded)

Table 5.44 shows that vibracula were produced more frequently in ‘stem’ than 

‘branch’ intemodes; by 20%, in Aggregation ‘A’, 8% in Aggregation B, and 17% at 

Swanage.

Was the occurrence of vibracula on No. 1 autozooid correlated with whether the 

intemode was a ‘stem’ or a ‘branch’ and therefore, to whether it was as a result, 

produced within the internal or external series of autozooids within the preceding 

intemode?

‘Stem’, (internal) ‘Branch’, (external)
Present % Present %

Musselwick (Aggregation A) 24 86 4 14
Musselwick (Aggregation B) 25 78 7 22
Swanage 47 67 23 33

Musselwick ‘A’, Chi-Square, Yates’ Correction for Continuity 25.784 P= < 0.001 
Musselwick ‘B’, Chi-Square, Yates’ Correction for Continuity 27.564 P= < 0.001 
Swanage, Chi-Square, Yates’ Correction for Continuity 15.116 P= < 0.001

Table 5.45 Vibracula occurrence on number one autozooids bv whether they were 
produced bv ‘stem’ or ‘branch’ intemodes. and therefore whether they 
occurred within the internal or external series of autozooids of the 
preceding intemode
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The results in Table 5.45 are variable, reflecting variation in level o f occurrence, 

between the ‘aggregations’. The differences would not seem ascribable to the much 

smaller difference in levels of occurrence in ‘stem’ and ‘branch’ intemodes, shown 

in Table 5.44. In the two ‘aggregations’ of intemodes from the Musselwick colony, 

86% and 78% respectively of vibracula on number one autozooids were produced on 

‘stem’ intemodes, and hence within the internal series of autozooids of the preceding 

intemode. In the material from Swanage, where there was a much higher overall 

level of occurrence, 67% occurred on the internal series of the preceding intemode.

When all of the above were taken into account, and vibracula occurrence was related 

to the actual series of autozooids within an intemode in which it occurred, their 

presence or absence was very strongly related to autozooid series within an 

intemode. In ‘detailed, Musselwick’, in Aggregations ‘A’ and ‘B’ 94%, and 90%, 

respectively, of vibracula occurred within the internal series of autozooids within an 

intemode, whilst in the Swanage aggregation, 74% did so.

Within the long ‘stem sequence’, 31 vibracula were produced by 36 autozooids, a 

rate of occurrence of 86%, somewhat higher than the level in the ‘aggregation’.

5.4.2.3 RHIZOIDS

(The distribution of rhizoids is shown diagrammatically in Figure 5.9).
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Figure 5.9 shows, that rhizoids were concentrated vertically within the proximal 

generations, and laterally, within the vicinity of the long ‘stem sequence’. In this 

‘aggregation’, they occurred firstly proximally, and then formed a second, more 

distal discrete cluster.

5A.2A  OVICELLS

(The distribution of ovicells is shown diagrammatically in Figure 5.10).
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Figure 5.10 shows no overall pattern of ovicell occurrence in relation to the 

‘aggregation’ of intemodes. They were essentially confined to even-numbered 

autozooids within an intemode, and only one was present within the long ‘stem 

sequence’.

Was ovicell occurrence related to intemode generation?

Intemode
generation

Ovicell Percentage
occurrencePresent Absent

X+10 0 5 0
X+9 0 23 0
X+8 3 44 6
X+7 8 63 11
X+6 10 49 17
X+5 18 71 20
X+4 20 54 27
X+3 9 33 21
X+2 4 23 15
X+l 3 7 30
X 0 4 0
Total 75 376 17

Chi-Square 20.070 P= 0.029 (7/32)

Table 5.46 Ovicell presence or absence by intemode generation (apical autozooids 
and ‘x’ and ‘i’ cases excluded)

Table 5.46 shows, beyond the fact that this ‘stem sequence’ did not originate in one 

of the earliest generations, that ovicell production was not noticeably related to 

intemode generation, and when it did occur, that it was at a generally low level.

Was ovicell occurrence related to whether an intemode was complete or incomplete?

Intemode type Ovicell Percentage
occurrencePresent Absent

Complete 49 239 17.0
Incomplete 26 137 16.0
Total 75 376 16.6

Chi-Square, Yates’ Correction for Continuity .025 P= 0.873

Table 5.47 Ovicell occurrence by whether an intemode was complete or incomplete 
(apical autozooids and ‘x’ and ‘i’ cases excluded)
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Table 5.47 gives no indication that ovicell occurrence was related to whether an 

intemode was complete or incomplete.

Was ovicell occurrence related to whether an intemode was a ‘stem or a ‘branch’?

Intemode type Ovicell Percentage
occurrencePresent Absent

‘Stem’ 27 199 11.9
‘Branch’ 48 177 21.3

Total 75 376 16.6

Chi-Square, Yates’ Correction for Continuity 6.504 P= 0.011

Table 5.48 Ovicell presence or absence by ‘stem’ and ‘branch’ intemodes (apical 
autozooids and ‘x’ and ‘i’ cases excluded)

Table 5.48 shows that ovicells occurred almost twice as frequently on ‘branch’ than 

‘stem’ intemodes.

Was ovicell occurrence related to autozooid position within an intemode?

Autozooid position Ovicell Percentage
occurrencePresent Absent

Sub-apical 4 104 3.7
Proximal 71 217 24.7
Total 75 321 18.9

Chi-Square, Yates’ Correction for Continuity 21.109 P= < 0.001

Table 5.49 Ovicell presence or absence by autozooid position within an intemode 
(apical autozooids and ‘x* and ‘i’ cases excluded)

Table 5.49 shows that ovicells were rarely produced in association with sub-apical 

autozooids.
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Was ovicell occurrence related to odd or even-numbered autozooids?

Autozooid number Ovicell Percentage
occurrencePresent Absent

Odd-numbered 1 230 0.4
Even-numbered 74 145 33.8
Total 75 375 16.7

Chi-square, Yates’ Correction for Continuity 87.678 P= < 0.001

Table 5.50 Ovicell presence or absence by odd and even-numbered autozooids 
(apical autozooids and ‘x’ and T  cases excluded)

Table 5.50 shows that ovicells occurred virtually only on even-numbered autozooids.

All 75 ovicells, including the one on an odd-numbered autozooid, had a vibraculum 

adjacent to them.

Within the long ‘stem sequence’ one ovicell was produced by 45 autozooids, a rate 

of occurrence o f 2.2%, less than 1/6* the level obtaining in the ‘aggregation’.

5.4.3 Possible delayed development of polymorphic zooids

Because the coded recording scheme did not facilitate the investigation of the 

distribution of polymorphic zooids in relation to branch tips, this was carried out in a 

separate study. A number of branch tips were examined, and it was assumed that a 

series of different scuta morphologies present, working back from the branch tip 

(related to ontogenetic stages of growth) indicated that growth was occurring, or had 

been stopped when the colony was collected. It certainly enabled damaged branches 

to be distinguished.

For frontal and lateral avicularia, and vibracula, there was evidence of their incipient 

formation up to the distalmost autozooid. Rhizoids were not found within several 

intemodes of growing tips, except in very small colonies.
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5.4.4 Production of ovicells in relation to autozooid number, frontal 
avicularia occurrence and autozooid position within an 
internode; and whether an internode was complete or 
incomplete

The main ‘stem sequences’ investigated in the preliminary study were completely 

without ovicells. The large colony chosen for the detailed investigation had very 

few, and all o f these were on even-numbered autozooids; and frontal avicularia and 

ovicells were mutually exclusive. It was therefore, desirable to investigate a more 

fertile colony, and 300 ovicellate intemodes from this were investigated (see Section 

4.5.5.1.3). (Raw data are in Appendix ‘I’).

Was ovicell occurrence related to autozooid number?

Autozooid number Ovicell Percentage
occurrencePresent Absent

14 0 4 0
13 0 4 0
12 1 6 14
11 1 6 14
10 7 7 50
9 1 14 7
8 15 30 33
7 1 51 2
6 75 114 40
5 3 200 2
4 208 74 74
3 11 282 4
2 254 46 85
1 0 299 0

Total 577 1137 34

Table 5.51 Ovicell presence or absence by autozooid number in 300 ovicellate 
intemodes of one colony (apical autozooids and ‘x ’ and ‘i’ cases 
excluded!

Table 5.51 shows, that only 17 of the 577 ovicells, 3%, were produced by odd- 

numbered autozooids. Those odd-numbered autozooids which did produce ovicells, 

also produced frontal avicularia. This was achieved by a slight reduction in the size 

of the ovicell, a greater reduction in the size of the frontal avicularium, and the fact 

that the latter appeared to be positioned slightly more centrally within the intemode.
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Was ovicell presence or absence related to autozooid position within an intemode?

Autozooid position Ovicell Percentage
occurrencePresent Absent

Sub-apical 59 347 15
Proximal 512 771 40
Total 571 1118 34

Chi-Square, Yates’ Correction for Continuity 87.604 P= < 0.001

Table 5.52 Ovicell presence or absence by autozooid position within an intemode 
(apical autozooids and ‘x’ and ‘i’ cases excluded)

Table 5.52 shows that ovicells occurred almost three times more frequently on 

proximal than sub-apical autozooids.

Was ovicell occurrence related to whether an intemode was complete or incomplete?

Intemode type Ovicell Percentage
occurrencePresent Absent

Complete 411 827 33
Incomplete 165 293 36
Total 576 1120 34

Chi-Square, Yates Correction for Continuity 1.069 P= < 0.9

Table 5.53 Ovicell presence or absence bv whether an intemode was complete or 
incomplete (apical autozooids and *x* and ‘i’ cases excluded!

Table 5.53 shows no evidence that ovicell occurrence was related to whether an 

intemode was complete or incomplete.

5.4.5 Unquantified investigations

An inevitable consequence of the detailed nature of the two detailed studies was that 

only a limited range of material was investigated. There was concern that variation 

in level or pattern of occurrence could well occur between populations, or between 

colonies, and go unrecorded. The supplementary studies were carried out to address 

this, but ideally a still greater range of material would have been investigated.
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A number of unrecorded investigations were therefore made, in respect of two 

aspects.

•  Firstly, to confirm, or refute, the general occurrence of a characteristic, 

present in all of the material investigated.

•  Secondly, where there was evidence of variation, to try to establish whether 

this occurred at the level of the population, or that of the colony.

Four separate areas were investigated:-

•  Firstly, there was the whole question of the existence of a limited number of 

long ‘stem sequences’, with lateral growth centred on them, within a colony. 

Main ‘stem sequences’ were apparent in all 30 colonies o f the preliminary 

study. A main, and a small additional number of long ‘stem sequences’, were 

present in ‘detailed Musselwick’, and ‘supplementary Swanage’, each of 

which were single colonies. I looked at a number of well-developed colonies 

from all three populations, and in all, the existence of a limited number of 

long ‘stem sequences’, and distally, largely discrete aggregations of 

intemodes, within short ‘stem sequences’, associated with them, were 

characteristic.

• Secondly, the colonies of the five main ‘stem sequences’ of colonies from 

Musselwick, in the preliminary investigation, were examined to determine 

whether or not the colonies differed, in respect of level of lateral avicularia 

occurrence, to the same extent as their main ‘stem sequences’. The level of 

lateral avicularia occurrence was low in all five colonies, and although less 

variable than in the main ‘stem sequences’, there was evidence of inter

colony variation.

•  Thirdly, the single ‘aggregation’ of intemodes investigated from the Swanage 

population, exhibited a level of lateral avicularia occurrence, nearly four 

times higher than that of the Musselwick material. An investigation of 

‘aggregations’ from six further colonies from this population, revealed a 

similar high level of lateral avicularia occurrence in all six.

• Finally, the single aggregation of intemodes investigated from the Swanage 

population, exhibited a level of vibracula occurrence twice the level of that of 

the Musselwick material. An investigation of aggregations from six further
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colonies from this population, revealed a similar high level of vibracula 

occurrence in all six.

The above, whilst not conclusive, strongly suggest, that a limited number of long 

‘stem sequences’ with, distally, areas of growth occurring only in relation to them, 

were characteristic of all three of the populations investigated. Further, that in 

respect o f the variation in the aspects described above, the material investigated was 

generally typical of its population. Only at Musselwick, in respect of the level of 

lateral avicularia occurrence, was there evidence of inter-colony variation. This casts 

considerable doubt on the validity, for lateral avicularia, o f speaking of inter

population variation. The level of vibracula occurrence at Swanage, in the material 

investigated, was twice that obtaining at Bay Fine and Musselwick, strongly 

suggesting inter-population variation. For unpredictably occurring polymorphs, 

variation in level of occurrence is not unexpected. It is also true, that while spatial 

patterns of occurrence, were less pronounced at high levels of occurrence, they did 

not change in character, nor disappear.

5.5 COLLATION AND SUMMARY OF RESULTS

5.5.1 Introduction

To avoid unnecessary repetition, the full discussion of the results of this Chapter and 

of Chapter 6 will be contained in Chapter 7. In this collation and summary I shall 

bring together the results from the preliminary, detailed and supplementary studies, 

make clear the extent of any variation between them, and summarise the results 

characteristic by characteristic.

A major concern at the outset was that inter-colony, or inter-population, variation 

could militate against the making of statements applicable to the species. Bringing 

together the results from the various studies gives some idea of which characteristics 

occurred consistently, and which did not. There was, however, little initial evidence 

in the preliminary study of such variation, in respect of autozooids, intemodes, ‘stem 

sequences’, or the majority of the polymorphs. The one exception was the level of 

lateral avicularia occurrence, which differed, for the main ‘stem sequences’, both 

between the colonies at Musselwick, and also between the Musselwick, and Bay
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Fine, populations. A subsequent supplementary study of a colony from Swanage, 

revealed a much higher level of lateral avicularia and vibracula occurrence, than 

occurred at Musselwick.

This collation and summary of results can conveniently be divided into two sections. 

The first, initially concerned with the arrangement of autozooids within intemodes, 

bifurcations, complete and incomplete intemodes, and ‘stems’ and ‘branches’. This 

leads to intemodes within ‘stem sequences’, ‘stem sequences’ within the colony, and 

colony structure and form. The second, relating to the numbers and spatial 

arrangement of polymorphic heterozooids, and the pattern of reproductive zooids, as 

evidenced by the presence or absence of ovicells, within the colony.

The preliminary study was concerned solely with the main ‘stem sequences’ of a 

number of colonies from populations at Musselwick, Pembrokeshire, and Bay Fine, 

I.O.M. The detailed study was carried out on a single colony from Musselwick. 

Supplementary studies, to augment the above, were carried out on material from 

Swanage, Dorset. In order to minimise the wordiness of the references to these in 

what follows, I shall refer to them as ‘preliminary, Musselwick’; ‘preliminary, Bay 

Fine’; ‘detailed, Musselwick’; and ‘supplementary, Swanage’.

5.5.2 Autozooids in internodes, bifurcations, internodes within
‘stem sequences’, their arrangement within the colony, and its 
structure and form

5.5.2.1 AUTOZOOIDS WITHIN INTERNODES, AND BIFURCATIONS

Intemodes were distinguished in three respects, the number of their constituent 

autozooids, whether they were complete or incomplete, and whether they were a 

‘stem’ or a ‘branch’.

The arrangement of autozooids within the first intemode of a colony is different from 

that in all other intemodes. The ancestrula is rarely present, except in very young 

colonies, and the number of autozooids present, excluding it, may be an odd or even 

number (generally three or four). The distalmost three autozooids are always
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arranged as in all other intemodes (which are always of an odd-number of 

autozooids) (Lutaud, 1953).

Within the main ‘stem sequences’ of the preliminaiy study, the overwhelming 

majority of intemodes were of five autozooids, with only the first intemode of each 

being generally of three or four, and the second, of three autozooids (see Table 5.1). 

Although not quantified, it was clear that outside these main ‘stem sequences’, where 

only four intemodes (1.5%) were of seven autozooids, such intemodes were probably 

the most numerous length. Within the colony of ‘detailed Musselwick’, the very first 

intemode of the colony was of four, the next two were of three, and all other 

intemodes were of an odd-number of autozooids (Table 5.7). Of these, the majority, 

>90%, were of five or seven; intemodes of seven outnumbering those of five by three 

to two; and there were a minority of nine, and a small number of 11 and 13 (Table 

5.8).

Intemodes, on completing their growth, bifurcate and initiate two more. Each 

bifurcation is asymmetrical; the parent intemode is essentially continued by the 

production of a primary ramus, or ‘stem’, the direction of growth of which deviates 

little from that of its precursor. A secondary ramus, or ‘branch’, is produced slightly 

more proximally, and deviates from the original direction of growth at a greater 

angle. Because all intemodes consist of an odd-number of autozooids and each 

bifurcation is asymmetrical, each bifurcation, if  one progresses from ‘stem’ to 

‘stem’, is a mirror image of its predecessor. The consistent pattern of branching 

which obtains throughout a colony results from this (Lutaud, 1953).

The finite space available for colony growth means that not all intemodes reach 

maturity and bifurcate. Such ‘incomplete4 intemodes constituted some 40% of the 

intemodes of the colony of ‘detailed Musselwick’.

Tables 5.9 and 5.10 showed that, in ‘detailed, Musselwick’, there were more ‘stems’ 

than ‘branches’, 17.5% and 21%, more for complete and incomplete intemodes, 

respectively. Also the longer a complete intemode, the more likely it was to be a 

‘stem’. In terms of occurrence and length, ‘stems’ and ‘branches’ did differ.
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Distinguishing between ‘stem’ and ‘branch’ intemodes led to the concept of ‘stem 

sequences’, which was central to describing the arrangement of intemodes within a 

colony.

5.5.2.2 INTERNODES WITHIN ‘STEM SEQUENCES’

‘Stem sequences’ are sequences of intemodes, which deviate from their predecessor 

and successor by the smaller of the two angles possible.

The preliminary investigation revealed, although not quantitatively, that the 

intemode composition of these main ‘stem sequences’, was very different from that 

obtaining in the colonies. In the former the vast majority of the intemodes were of 

five autozooids (Table 5.1), whilst in the colonies, intemodes of seven autozooids 

were very common, probably the most numerous length.

In ‘detailed Musselwick’, there were a very small number o f long, and a large 

number of very short, or short, ‘stem sequences’, (Table 5.12). 90% of ‘stem

sequences’ were of five or fewer intemodes, and only 3% were of 16 or more.

The 10 longest ‘stem sequences’ of ‘detailed Musselwick’ (and the main ‘stem 

sequences’ of the preliminary study) were constituted almost completely of 

intemodes of five autozooids. A very small number of intemodes of seven 

autozooids were present, but no longer intemodes. There was no obvious sequence 

to their occurrence.

There was a possibility that the particular intemode composition of the main, and 

long ‘stem sequences’, was a secondary feature, resulting from two known 

differences between them and the colony. Firstly the proportions of the different 

intemode lengths, in the various generations of intemodes, were very different in the 

two. Secondly, the main and long ‘stem sequences’, were composed almost entirely 

of ‘stem’ intemodes, whilst in the colony, there were only slightly more ‘stems’ than 

‘branches’. In Section 5.3.2.1.4.3, it was demonstrated that neither of these 

characteristics could be invoked to explain the different intemode composition o f the 

main and long ‘stem sequences’.
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The intemode composition of the long ‘stem sequences’ does not result from other 

characteristics of the spatial arrangement of intemodes, it is a primary feature.

In ‘detailed Musselwick’ (Table 5.13) intemodes of more than five autozooids were 

largely confined to the proximal positions within a ‘stem sequence’. Beyond the third 

intemode within a ‘stem sequence’ only 10% were of more than five autozooids, 

although such intemodes constituted 54% of the total.

5.5.2.3 THE ARRANGEMENT OF INTERNODES AND ‘STEM SEQUENCES’ 
WITHIN A COLONY, AND THE STUCTURE AND FORM WHICH 
RESULTS

Within ‘detailed Musselwick’, all of the long ‘stem sequences’ originated in the first 

six generations of intemodes, although short ‘stem sequences’ also originated in 

generations four, five, and six. From generation seven on, the ‘stem sequences’ were 

overwhelmingly (94%) of four or less intemodes.

It was established in Section 5.3.2.1.4.4, that the 10 longest ‘stem sequences’ were 

well, if not evenly spaced within the colony.

The detailed study showed (Table 5.6) that although the potential ability of the 

colony to double the number of intemodes, and therefore its number of growing 

points with each successive generation of intemodes, was initially exploited, it 

ceased to be so in the sixth generation. For the next 10 generations, the number of 

intemodes increased modestly, at a steadily decreasing rate, and beyond that their 

numbers fell.

Complete intemodes showed a pattern of increase and decrease in number over the 

generations. Incomplete intemodes were completely absent from the first six 

generations, and their number, as a proportion of the total number within a 

generation, essentially increased generation on generation.

The actual spatial distribution of all of the intemodes in the half o f the colony of the 

detailed study was represented diagrammatically (see Figure 5.4). Beyond the 

pj-oximal region of the colony, where all possible intemodes did develop, as growth
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proceeded, there was a large scale ‘thinning out’, which increased in magnitude in 

the more distal regions. In the central and distal regions of the colony, this resulted 

in discrete zones of extensive vertical growth, and at the centre of each, a long ‘stem 

sequence’.

The vast majority of the intemodes of such an ‘aggregation’, diagrammatically 

represented in two dimensions, occurred in a vertical lanceolate band. The number 

of intemodes increased, and then decreased, from one generation to the next. A very 

small minority of intemodes formed discrete thin ‘arms’, which diverged widely 

from this central core.

The different length intemodes exhibited a complex if ill-defined pattern of 

occurrence vertically within the colony (Table 5.7) in that the longer the length of 

intemode the more distal, in terms of intemode generation, was its first appearance, 

and the more proximal its disappearance. This pattern probably largely results from 

the arrangement of different intemode lengths within ‘stem sequences’ and their 

changing numbers in relation to intemode generation. Intemodes longer than five 

autozooids were essentially restricted to the most proximal positions within their 

‘stem sequence’. Laterally, intemodes of five autozooids were concentrated within 

the long ‘stem sequences’.

Incomplete intemodes vertically increased as a proportion of the total number of 

intemodes, generation on generation. Laterally, they exhibited no discernible 

pattern, beyond their more limited occurrence, close to long ‘stem sequences’.

The limited number of very long ‘stem sequences’ and, beyond the more proximal 

generations o f intemodes, the very strongly clumped distribution of intemodes in 

association with them, is shown in Figures 5.4 and 5.5. It resulted in a limited 

number of vertically extensive, laterally limited, ‘aggregations’ of intemodes, which 

distally were laterally discrete. Each ‘aggregation’, centred on a long ‘stem 

sequence’, was, in two dimensions lanceolate shaped.

In actuality an ‘aggregation’ of intemodes developing from a long ‘stem sequence’, 

is not two-dimensional. The angulation of intemodes in relation to one another at 

bifurcations, and to a lesser extent, the concave nature, lengthwise, of the longer
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intemodes, results in incurving, both distally and laterally of the ‘aggregation’. The 

three-dimensional overall structure of the colony which results, is essentially an 

incomplete circle of discrete, slender, incomplete ‘flasks’, which develop from a 

vertically limited, laterally continuous, proximal region.

5.5.3 The spatial arrangement of polymorphs and ovicells

5.5.3.1 INTRODUCTION

The results of the investigation into the spatial arrangement of polymorphic 

heterozooids and ovicells were more complicated than those of autozooids and 

intemodes. Firstly, this was because there was evidence, for two of the polymorphs, 

of inter-population, and perhaps, inter-colony, variation. Secondly, because there 

were a greater number of parameters to consider, the influences of which, were not 

necessarily, independent of one another. Polymorph and ovicell pattern of 

occurrence can, indeed initially has to, be described by reference to their observed 

spatial distribution. A polymorph’s occurrence may be described relative to certain 

parameters of characteristic elements of the colony, or their spatial disposition, on 

various scales, within the colony. There may be difficulties in establishing the actual 

scale at which some of these distributions occur.

As will be discussed in Chapter 7, the observed spatial arrangement of polymorphs 

and ovicells, whilst it may include intrinsically spatially determined elements, is 

likely to result from the combined affects of several factors. Correlations, positive 

and negative between polymorphs, or between a polymorph and an ovicell, may well 

exert an influence, as may the overall level of occurrence. I shall consider each of 

these in turn but it is important that the various aspects of the pattern of occurrence 

actually observed are not viewed as inevitably occurring independently of one 

another. For convenience they will be considered in the following order:-

• The observed spatial pattern of polymorphs and ovicells, in relation to the 

colony or smaller constituent units within it.

• The various apparent correlations, positive or negative, between 

polymorphs, or between polymorphs and ovicells.

• The level of polymorph occurrence.
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5.5.3.2 THE SPATIAL ARRANGEMENT OF POLYMORPHS AND OVICELLS 
WITHIN A COLONY

Patterns of spatial occurrence of polymorphs within a colony, on whatever scale, can 

be ascribed to one of three categories, in relation to whether they occurred 

constantly, predictably or unpredictably.

Mural spines and scuta occurred absolutely constantly on all autozooids, except the 

ancestrula, in a constant fashion, as has long been known. Likewise a single 

vibraculum occurred in each branch axil.

5.5.3.2.1 Frontal avicularia

Large frontal avicularia occurred in an absolutely predictable fashion, except on the 

first intemode of a colony, on all odd-numbered autozooids, including the apical 

autozooid, but excluding number one; and on no even-numbered autozooids.

The remaining polymorphs, lateral avicularia, vibracula and rhizoids, and the 

ovicells, all occurred unpredictably, although not equally so! Although I had 

anticipated that their occurrence could relate to the ‘aggregations’ of intemodes 

associated with long ‘stem sequences’ none exhibited any such pattern in relation to 

them.

5.5.3.2.2 Lateral avicularia

For lateral avicularia, in ‘preliminary Musselwick’ there was considerable variation 

in the level of occurrence, between the main ‘stem sequences’, of the five colonies. 

The overall level of lateral avicularia occurrence, within the main ‘stem sequences’, 

was five times higher at Bay Fine than at Musselwick. The level of occurrence in the 

two ‘aggregations’ of ‘detailed Musselwick’ were slightly different, but that in 

‘supplementary Swanage’ was on average ~3 times greater, and all asymmetries of 

occurrence were much reduced.
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• Lateral avicularia exhibited a decidedly clumped distribution.

• Lateral avicularia occurred approximately twice as frequently in long ‘stem

sequences’ than outside them in ‘detailed Musselwick, but only marginally so 

in ‘supplementary Swanage’.

• Lateral avicularia occurrence exhibited no relation to intemode generation in 

‘detailed Musselwick’; but the level of occurrence increased, generation on 

generation, in ‘supplementary Swanage’.

• Lateral avicularia occurred somewhat more frequently in ‘stem’ than ‘branch’ 

intemodes, in ‘detailed Musselwick, and in ‘supplementary Swanage’.

• Lateral avicularia occurred three to four times more frequently in complete

than incomplete intemodes, in ‘detailed Musselwick’; but only marginally

more frequently in ‘supplementary, Swanage’,

• Lateral avicularia occurred 2-3.5x more frequently on sub-apical, than 

proximal autozooids, in ‘detailed Musselwick’, but only twice as frequently 

in ‘supplementary Swanage’.

• Lateral avicularia occurrence, in relation to autozooid number, showed a 

similar pattern of occurrence in ‘detailed, Musselwick’, and ‘supplementary 

Swanage’. They occurred more frequently, ~2.5x, on the odd-numbered 

autozooid of each staggered pair, and, in ‘supplementary Swanage’ the 

frequency o f occurrence generally increased as autozooid number increased. 

They occurred most frequently on autozooids three and five and rarely on 

autozooid number two. The three times higher level of occurrence at 

Swanage blurred the pattern of occurrence.

• The large forms were invariably only found on the external autozooid of the 

sub-apical pair, in all o f the material studied.

5.5.3.2.3 Vibracula

The level of vibracula occurrence in the preliminary investigation was very similar in 

the main ‘stem sequences’ of colonies from Musselwick and Bay Fine, at - 66%. The 

level in the colony, of ‘detailed Musselwick’, was much lower at -27%, although the 

level o f occurrence within the long ‘stem sequences’ was -70% , very similar to the 

level obtaining in the main ‘stem sequences’, of the preliminary study. The level of 

occurrence in ‘supplementary Swanage’, of 63%, was more than twice that at
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Musselwick. The level in the long ‘stem sequence’ here, was also higher, at 91%. 

The >2 times higher level of occurrence in ‘supplementary Swanage’ resulted in all 

asymmetries being much reduced.

• Vibracula occurred more frequently in long ‘stem sequences’ than outside 

them, 2.5 and 3 x in the two ‘aggregations’.

• Vibracula occurred at a high level in the early generations, but then fell to a 

much lower level, in ‘detailed Musselwick’. In ‘supplementary Swanage’ the 

level of occurrence was consistently high.

•  Vibracula occurred ~3, and ~7 x, more frequently in complete intemodes, in 

the first and second ‘aggregations’ respectively in ‘detailed Musselwick’; but 

only 25% more frequently in ‘supplementary Swanage’.

• Vibracula occurred 50% more frequently in ‘stem’ than ‘branch’ intemodes 

in Aggregation ‘A’ from Musselwick, and in ‘supplementary Swanage’. 

They occurred only 25% more frequently in Aggregation ‘B’.

• Vibracula occurrence was not related to autozooid position within an 

intemode in ‘detailed Musselwick’, nor in ‘supplementary Swanage’.

• Vibracula were rare on odd-numbered autozooids, except autozooid number 

one, in both ‘aggregations’ in ‘detailed Musselwick’. The situation was very 

similar in ‘supplementary Swanage’, but less clear-cut.

Their much higher level of occurrence on autozooid number one, relative to all other 

odd-numbered autozooids, in all of the material in all of the studies, was investigated 

in Section 5.4.2.2. Essentially this involved reallocating the vibracula on number 

one autozooids, which actually occur within the preceding intemodes; to the actual 

autozooid series, internal or external, within the intemode in which they occurred, 

relative to the preceding bifurcation. This adjustment revealed that in all of the 

material:-

• Vibracula were concentrated in the internal series of autozooids. In ‘detailed 

Musselwick’, in Aggregations ‘A’ and ‘B’, 94% and 90%, respectively, of 

vibracula occurred within the internal series of autozooids within this, whilst 

in the ‘aggregation’ of ‘supplementary Swanage’, 74% did so.

209



It is worth noting that axial vibracula, excluded from the general analysis, occurred 

on all No. 2 autozooids in stem intemodes and were absent from all such intemodes 

in branches. They thus occurred on 100% of stems, were absent from all branches, 

and occurred on 50% of No. 2 autozooids.

5.5.3.2.4 Rhizoids

Rhizoids were concentrated vertically, as has long been known, in the more proximal 

generations of intemodes. They also exhibited a definite lateral spatial arrangement, 

being concentrated within, or close to, long ‘stem sequences’.

5.5.3.2.5 Ovicells

• In ‘detailed Musselwick’ no ovicells were produced in the first five 

generations of intemodes, they were produced at a very low, but variable 

level, over the next 10 generations, and none were produced in the distalmost 

generations. The situation was very similar in ‘supplementary Swanage’.

• In ‘detailed Musselwick’, all of the few ovicells produced were on even- 

numbered autozooids. In more fertile material in ‘supplementary Swanage’, 

97% of ovicells were produced by even-numbered autozooids.

•  Ovicells were absent from the main ‘stem sequences’ of ‘preliminary 

Musselwick’ and the long ‘stem sequences’ of ‘detailed Musselwick’. In 

more fertile material in ‘supplementary Swanage’, a small number of ovicells 

were produced within long ‘stem sequences’.

•  Ovicells occurred almost three times more frequently on proximal than sub- 

apical autozooids, in ‘supplementary Swanage’.

•  Ovicell occurrence was not related to whether an intemode was complete or 

incomplete in ‘supplementary Swanage’.

•  Ovicells occurred twice as frequently on branches than stems in 

‘supplementary Swanage’.
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5.53.3 POSITIVE AND NEGATIVE CORRELATIONS BETWEEN VARIOUS 
POLYMORPHS, AND BETWEEN POLYMORPHS AND OVICELLS

These were observed correlations, which may not, of course, be due solely to 

positive or negative associations between polymorphs, or between polymorphs and 

ovicells.

5.5.3.3.1 Frontal avicularia and vibracula.

In ‘detailed Musselwick’, frontal avicularia and vibracula were virtually mutually 

exclusive, with the former occurring on all odd-numbered autozooids, except number 

one, and the latter being restricted, almost entirely, to even-numbered autozooids, 

plus number one. (However, see remarks regarding vibracula on number one 

autozooids in Section 5.5.3.2.3). In ‘supplementary Swanage’, the overall level of 

vibracula occurrence was more than twice the level obtaining at Musselwick, and the 

two polymorphs were, inevitably, less mutually exclusive.

5.5.3.3.2 Frontal avicularia and ovicells

Frontal avicularia and ovicells occupy a very similar position on the gymnocyst 

proximal to the frontal membrane. The main ‘stem sequences’ of all o f the colonies 

of the preliminary study were without ovicells, and the colony of the detailed study 

had very few, all of which occurred on even-numbered autozooids, which were 

always without frontal avicularia. A supplementary study of a number of intemodes, 

containing ovicellate autozooids, from a very fertile colony at Swanage revealed that 

only 17 of 577 ovicells, 3%, were produced by odd-numbered autozooids, and that 

these autozooids also produced frontal avicularia. This was achieved by a reduction 

in the size of both avicularium and ovicell, and, an apparent slight shift in the 

location of the former. Frontal avicularia and ovicells, were therefore, not absolutely 

mutually exclusive, but very largely so.

5.5.3.3.3 Vibracula and ovicells

Vibracula occurred far more frequently on the autozooids within the internal series of 

autozooids. This was more apparent in ‘detailed Musselwick’ than ‘supplementary
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Swanage’ and here ovicells occurred almost exclusively on autozooids, in the 

internal series of autozooids. Vibracula were more numerous than ovicells, and, for 

all of the material investigated in this respect, each ovicell had a vibracula sited 

adjacent to it.

5.5.3.3.4 Vibracula and rhizoids

Rhizoids, where they do occur, develop from vibracula, and cannot develop in their 

absence. There was evidence that vibracula occurred more frequently within long 

‘stem sequences’, than outside them, and conceivable that this was related to a 

requirement for rhizoids, which were concentrated laterally within them.

5.5.3.4 THE LEVEL OF POLYMORPH OR OVICELL OCCURRENCE

There was consistent evidence, throughout Sections 5.5.3.2 and 5.5.3.3, that 

pronounced patterns of polymorph presence or absence, very apparent at low levels 

of occurrence, persisted, but much less well defined, at higher levels. This is, 

depending on the level of occurrence, to some degree mathematically inevitable, and 

does nothing to suggest that the pattern observed is without significance.

5.5.4 Summary

There was no indication of any variation between colonies or populations, in respect 

of the arrangement of autozooids within intemodes, intemodes within ‘stem 

sequences’, or ‘stem sequences’ within a colony.

Intemodes, except perhaps the first of a colony, consisted of an odd-number of 

autozooids, resulting in asymmetrical bifurcations, and a consistent branching pattern 

(Lutaud, 1953). Spatial constraints meant that not all intemodes bifurcated, 40% of 

intemodes were incomplete. Differentiating between ‘stems’ and ‘branches’ at 

bifurcations, led to the concept of ‘stem sequences’, sequences of ‘stems’. A colony 

consisted of a small number of very long, and a large number of much shorter, ‘stem 

sequences’. All ‘stem sequences’ develop in a shallowly sinusoidal manner, with an 

essentially constant direction of growth, and with ‘branches’ developing alternately
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to left and right. The considerable lateral variation in the extent o f vertical growth, 

even in the absence of external constraints, was clearly related to the existence of a 

limited number of long ‘stem sequences’, with growth, beyond the more proximal 

region, only developing, directly or indirectly, from them. Long ‘stem sequences’ 

differed from the shorter lengths comprising the mass of the colony, in that their 

constituent intemodes were generally shorter, with the longest lengths being 

completely absent. The spatial arrangement o f the various length intemodes, within 

a colony, exhibited an indistinct pattern vertically. In general, the longer the length of 

intemode the more distal, in terms of intemode generation, its first appearance, and 

the more proximal its disappearance. This pattern largely results from the 

concentration o f intemodes longer than seven autozooids in the proximal positions 

within ‘stem sequences’, and their changing numbers in relation to intemode 

generation. Laterally, intemodes of five autozooids were concentrated within long 

‘stem sequences’.

Long ‘stem sequences’, laterally well-spaced, formed central ribs of lanceolate 

‘aggregations’ of intemodes (within short ‘stem sequences’), which, in the central 

and distal regions of the colony, were quite discrete. Each ‘aggregation’ was 

incurved, distally and laterally, and the resultant colony form, was an incomplete 

circle of incomplete narrow flasks, developing from a vertically limited, laterally 

continuous, proximal region.

Autozooids are arranged, within intemodes, within ‘stem sequences’, within a 

colony, in a characteristic, if not mathematically precise fashion.

There was, in respect of polymorph occurrence, evidence of both inter-colony, and 

inter-population variation. The level of lateral avicularia occurrence probably varied 

between colonies of the Musselwick population, and certainly varied between the 

Bay Fine and Swanage populations; and that at Musselwick. The level of vibracula 

occurrence was very similar in the Bay Fine, and Musselwick, populations, but was 

much higher in the material from Swanage.

Polymorphs occur absolutely constantly, absolutely predictably, or unpredictably. 

As was well-known, mural spines, scuta and axial vibracula, occurred absolutely
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constantly; the first two, on all autozooids except the ancestrula, and the third in each 

branch axil. Frontal avicularia occurred absolutely predictably, only on odd- 

numbered autozooids, but not on autozooid No. 1. Lateral avicularia, vibracula, and 

rhizoids, occurred unpredictably. The spatial disposition of these can be described in 

respect of various parameters within a colony. Lateral avicularia tended to occur on 

odd-numbered, and sub-apical autozooids, within an intemode. They occurred 

somewhat more frequently in ‘stems’ than ‘branches’, and much more frequently in 

complete than incomplete intemodes. Vibracula occurred much more frequently on 

autozooids within the internal series of autozooids within an intemode; and also 

much more frequently in complete intemodes. Rhizoids were concentrated vertically 

in proximal generations, and laterally in, or close to, long ‘stem sequences’. Ovicells 

occurred almost exclusively on even-numbered autozooids, rarely on sub-apical 

autozooids, and infrequently within long ‘stem sequences’. Various positive and 

negative associations were observed between polymorphs, and between polymorphs 

and ovicells. Frontal avicularia were negatively correlated with both vibracula and 

ovicells, and these two were positively correlated with each other, as were vibracula 

and rhizoids; the latter developing from the former. It was noticeable that many 

patterns of occurrence, very apparent at low levels, persisted, but less well defined, at 

higher levels of occurrence.
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C H A P T E R  6 -  T H E  S P A T IA L  A R R A N G E M E N T , W I T H I N  A 
C O L O N Y , O F  T H E  A U T O Z O O ID S  A N D  
H E T E R O Z O O I D S  O F  TRICELLARIA INOPINATA

6.1 IN T R O D U C T IO N

The characteristics of the family Candidae were described in Section 5.1.1.

6.1.1 C h a r a c te r i s t i c s  o f  th e  g e n u s  Tricellaria F le m in g , 1828

Colonies are erect, unilaminar, branching; one or both branches at bifurcations being 

jointed at their inception. They consist o f two rows of autozooids staggered relative 

to one another, with a centrally placed distal autozooid proximal to each bifurcation. 

The arrangement o f autozooids, relative to each other and to the joints at 

bifurcations, is of Type 9 or 11 of Harmer’s 1923 classification (see Figure 6.1, 

below). Autozooids are narrow proximally and have an oval frontal membrane, 

usually with mural spines and a modified lateral spine, the scutum, which overarches 

it. The ancestrula is vase shaped with mural spines and the colony is attached to the 

substratum by tubular rhizoids. Distally sited lateral avicularia are found in most 

species, but not on all autozooids. There are no vibracula. Ovicells are sub-globular 

and hyperstomial. The genus differs from Scrupocellaria in the complete absence of 

vibracula and in the arrangement o f autozooids at bifurcations: here the apical 

autozooid is more exposed.

zooid f
zoo id e

zooid d

zooid c

zooid e

zooid b
zooid a

Figure 6.1 The arrangement o f autozooids to each other, and to a bifurcation, in 
Harmer’s bifurcation type 9 (modified after Hayward and Ryland)
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6.1.2 General morphological description of Tricellaria inopinala

The morphological characteristics of Tricellaria inopinata d’Hondt and Occhipinti 

Ambrogi, 1985 were described in Section 3.3.1 in Chapter 3. The species is an 

arborescent cellularine bryozoan, with branches (intemodes) which are unilaminar 

and biserial, and which bifurcate at intervals resulting in the characteristic bush-like 

form of the colony. T. inopinata is morphologically variable, in some respects so 

variable as to pose the question as to whether there is any obvious pattern to the 

occurrence of such variations, or correlations between them.

6.1.3 Objectives

The objectives of this study were the same as those described in Section 5.1.4, in 

respect of Scrupocellaria reptans; to describe the spatial arrangement of autozooids 

and heterozooids within a colony in as much detail as possible. Would this reveal 

any previously undescribed patterns, correlations or trends of zooid occurrence, and 

would any of these coincide with any recently revealed in respect of S. reptans? In 

respect of the autozooids, this could again provide direct information on the structure 

and form of a colony. Information on the spatial distribution of polymorphs was less 

likely to lead to definite conclusions and be more difficult to interpret.

The situation differed from the previous study in three respects

• Firstly, a spatial arrangement of autozooids within intemodes, intemodes 

within ‘stem sequences’, and ‘stem sequences’ within a colony, had been 

described for S. reptans, together with the structure and form of the colony. 

Superficially, T. inopinata appeared to be similar, in respect of the 

arrangement of autozooids within intemodes, the nature of bifurcations, and 

the pattern of branching. Did T. inopinata have an identical or similar 

structure and form? If so, did that structure have a more widespread 

significance, occurrihg in at least two different genera? If it did not, perhaps 

a different colony structure would be revealed.
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• Secondly, the situation for heterozooids was less complex than in S. reptans, 

in that there were fewer polymorphs. It was, therefore, conceivable that 

more progress could be made in trying to determine why their pattern of 

occurrence was as it was.

• Thirdly, all of the material came from one, recently discovered, population.

6.2 DETAILED INVESTIGATION INTO THE SPATIAL 
ARRANGEMENT OF AUTOZOOIDS AND HETEROZOOIDS 
WITHIN A SINGLE COLONY FROM POOLE HARBOUR 

6.2.1 Introduction

Because the detailed study of Scrupocellaria reptans, described in Chapter 5, had 

essentially involved -50%  of a large colony, it was felt desirable here to study a 

complete, if somewhat smaller, colony.

6.2.2 Results

(The raw data are in Appendix J)

6.2.2.1 AUTOZOOIDS, INTERNODES AND ‘STEM SEQUENCES’

6.2.2.1.1 The interrelationship of intemodes at bifurcations

The situation here is identical to that obtaining in S. reptans and described in Section 

5.3.2.1.1.
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6.2.2.1.2 The numbers and lengths of intemodes. complete and incomplete, and in 
relation to intemode generation

How did the number of intemodes, complete and incomplete, vary with intemode 

generation?

Intemode
generation

Complete Incomplete Total
Frequency % Frequency % Frequency %

15 0 0.0 3 1.6 3 0.6
14 2 0.7 12 6.2 14 2.8
13 15 4.9 17 8.8 32 6.4
12 29 9.5 25 13.0 54 10.9
11 41 13.5 38 19.7 79 15.9
10 50 16.4 33 17.1 83 16.7
9 44 14.5 25 13.0 69 13.9
8 37 12.2 27 14.0 64 12.9
7 33 10.9 11 5.7 44 8.9
6 23 7.6 1 0.5 24 4.8
5 15 4.9 1 0.5 16 3.2
4 8 2.6 0 0.0 8 1.6
3 4 1.3 0 0.0 4 0.8
2 2 0.7 0 0.0 2 0.4
1 1 0.3 0 0.0 1 0.2

Total 304 100.0 193 100.0 497 100.0

Table 6 .1 The number and percentage occurrence of complete and incomplete 
intemodes. by intemode generation

Table 6.1 shows that exponential growth in terms o f the number of intemodes had 

ceased to occur by the sixth ‘generation’. The maximum number of intemodes, 83, 

occurred in the tenth ‘generation’, whilst the potential was for 512. Incomplete 

intemodes, which were absent from the first four generations, steadily increased in 

number, and in the distalmost generations, outnumbered complete intemodes.
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For complete intemodes was there any relationship between intemode length and 

intemode generation?

Inter-
node

gener
ation

Number of autozooids in intemode Number
of

intemodes

Mean 
number of 
autozooids3 5 7 9 11

Frequency
14 2 2 5.00
13 1 9 3 2 15 5.80
12 3 15 10 1 29 5.62
11 8 21 6 5 1 41 5.54
10 9 30 5 4 2 50 5.40
9 15 21 8 44 4.68
8 14 17 3 1 2 37 4.84
7 17 10 5 1 33 4.39
6 12 9 1 1 23 3.83
5 15 15 3.00
4 8 8 3.00
3 4 4 3.00
2 2 2 3.00
1 1 1 3.00

Total 109 134 41 14 6 304 4.86

Chi-Square 114.591 P=<  0.001 (49/90)

Table 6.2 Lengths of complete intemodes. bv intemode generation

Table 6.2 shows that the shortest intemodes, of three autozooids, dominated the more 

proximal generations of intemodes. In this colony no longer intemodes were found 

until the sixth generation. Beyond this, they became proportionally less numerous in 

each subsequent generation. Intemodes of five and seven autozooids became 

proportionally more numerous and both increased and then decreased in number. 

Intemodes of 9 and 11 intemodes occurred sparsely throughout the central and more

distal regions of the colony. The average length of intemodes, beyond generation

five, essentially increased generation on generation.
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Which intemode lengths occurred, and how frequently?

Autozooids 
in intemode

Complete Incomplete
Number % Number %

1 12 6.2
2 25 13.0
3 109 35.9 20 10.4
4 28 14.5
5 134 44.0 29 15.0
6 20 10.4
7 41 13.5 16 8.3
8 16 8.3
9 14 4.6 7 3.6

10 7 3.6
11 6 2.0 6 3.1
12 3 1.6
13 1 0.5
14 2 1.0
15 1 0.5

Total 304 100.0 193 100.0

Table 6.3 The number and percentage occurrence of the various length intemodes, 
both complete and incomplete

(The lengths of incomplete intemodes are of much less value than those which are 

complete, although they are not valueless. Some 30% of incomplete intemodes had 

seven or more autozooids and showed no signs of bifurcating).

From Table 6.3 it is apparent that:-

• All complete intemodes were of an odd number of autozooids.

• Complete intemodes ranged from 3 to 11 autozooids.

• 80% of complete intemodes were of three or five autozooids.

• There were a small number of incomplete intemodes which were as 

long, or longer, than the longest complete intemode.

• Almost 40% of intemodes were incomplete.

(As with S. reptans it was not possible to establish if incomplete intemodes were still 

growing when the colony was collected).
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6.2.2.1.3 "Stem’ and ‘branch’ intemodes

Were there equal numbers of ‘stems’ and ‘branches, and was there a relationship 

between the length of a complete intemode and whether it was a ‘stem’ or a 

‘branch’?

Autozooids in 
intemode

‘Stem’ intemodes ‘Branch’ intemodes
Frequency Percentage Frequency Percentage

3 43 39.8 65 60.2
5 115 85.2 20 14.8
7 20 48.8 21 51.2
9 4 28.6 10 71.4

11 1 16.7 5 83.3
Total 183 60.2 121 39.8

Chi-Square 14.329 P= < 0.001 (‘stems’ and ‘branches’)
Chi-Square 64.531 P=< 0.001 (2/20) (‘stems’ an d ‘branches’ by length)

Table 6.4 The number and percentage occurrence of complete ‘stem’ and ‘branch’ 
intemodes. by length

Three features are apparent from Table 6.4:-

• For complete intemodes there were 50% more ‘stems’ than ‘branches’.

•  The breakdown between ‘stem’ and ‘branch’ intemodes for each individual 

intemode length was clearly not a simple 60/40 one, indeed not one 

approximated to this. Some 85% of intemodes of five autozooids were 

‘stems’ and similarly but conversely 60% of intemodes of three autozooids 

were ‘branches’.

• Intemodes of more than five autozooids were more often ‘branches’ than 

‘stems’ and this trend increased with intemode length.

For incomplete intemodes, how did the numbers of ‘stems’ and ‘branches’ compare?

Intemode type Frequency Percentage occurrence
‘stem’ 75 39
‘branch’ 118 61

Chi-Square 9.580 P= 0.002

Table 6.5 The number and percentage occurrence of incomplete ‘stem’ and ‘branch’ 
intemodes
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Table 6.5 shows that for incomplete intemodes, there were 50% more ‘branches’

than ‘stems’.

How did the mean lengths of complete and incomplete ‘stem’ and ‘branch’ 

intemodes compare?

Intemode Number of Number of Mean number of
characteristics autozooids intemodes autozooids

Complete ‘stems’ 899 183 4.86
Complete ‘branches’ 577 119 4.85
Incomplete ‘stems’ 378 75 5.04
Incomplete ‘branches’ 652 118 5.53

Table 6.6 The mean number of autozooids in complete and incomplete intemodes, 
in ‘stem’ and ‘branch’ intemodes

Table 6.6 shows that, on average, incomplete intemodes were longer than complete, 

and that this was especially so in respect of ‘branches’.

222



6.2.2.1.4 ‘Stem sequences’

6.2.2.1.4.1 The lengths of ‘stem sequences’

How frequently did ‘stem sequences’ of different lengths occur (number of 

intemodes, complete and incomplete) and how did their occurrence relate to their 

generation of origin?

Intemodes 
in ‘stem 

sequences’

Intemode generation of origin Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15 1 1
14
13
12 1 1
11 1 1
10 1 1
9
8 2 1 3
7 1 1
6 1 2 2 1 1 7
5 2 2 4 1 9
4 2 3 1 2 8
3 1 5 3 3 6 3 5 1 27
2 1 2 3 4 6 8 8 4 2 38
1 4 1 10 19 19 26 25 18 11 8 1 142

Total 1 1 2 4 8 12 22 .33 33 40 38 23 13 8 1 239

Table 6.7 Occurrence, in terms of ‘stem sequence’ lengths (number of complete
and incomplete intemodes) of all ‘stem sequences’, by their generation of 
origin

Table 6.7 shows that there were a small number of long ‘stem sequences’, originating 

in the first few generations of intemodes, and a much larger number of short or very 

short ‘stem sequences’. Over 93% of ‘stem sequences’ were of five or fewer 

intemodes, and less than 2% were of 11 or more.
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6.2.2.1.4.2 The relationship between the length of complete intemodes and their 
position within their ‘stem sequence’

(The data relating to the lengths of all of the complete intemodes and their sequence, 

within the ‘stem sequences’ initiated in the first 10 generations of intemodes, is in 

Appendix ‘K’).

Was there a relationship between the length of a complete intemode and its 

numerical position within its ‘stem sequence’?

Numerical 
position of 
intemode 

within ‘stem 
sequence’

Length of intemoc e

3 5 7 9 11

14 1
13 1
12 1 1
11 3
10 2 1
9 1 3
8 2 2 1
7 2 5 1
6 3 7
5 4 12 1
4 7 18 1 1
3 11 21 3 2
2 10 40 13 1 1
1 65 20 21 10 5

Total 108 135 41 14 6

Table 6.8 Numbers of the various lengths of complete intemodes by their 
numerical position within their ‘stem sequence’

Table 6.8 shows that, generally, only intemodes of five and to a lesser extent three 

autozooids occurred within the more distal intemode positions within 3 ‘stem 

sequence’. The longer an intemode, beyond those of five autozooids, the more 

pronounced their concentration in the more proximal positions.
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6.2.2.1.4.3 Intemode lengths and their sequence within the four longest ‘stem
sequences’

Did these long ‘stem sequences’ exhibit any particular characteristics in terms of the 

lengths, and/or sequence, of their constituent autozooids?

Intemode
generation

Intemode lengths and sequence

14 5
13 5 5 5
12 3 5 5 5
11 5 3 3 5
10 3 5 5 3
9 5 3 3 5
8 3 5 5 5
7 5 3 3 3
6 3 3 5 5
5 3 3 3 3
4 3 3 3 3
3 3 3 3
2 3 3
1 3

Intemode of 
Origin A1 B2 C4 D4

Table 6.9 Intemode lengths, and their sequence, within the four longest ‘stem 
sequences’

Table 6.9 shows that:-

•  No intemodes longer than five autozooids were present.

• All of the intemodes of the first five generations were of three autozooids.

•  There was a marked tendency, beyond the first five generations, for 

intemodes of three and five autozooids to occur alternately.
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How did the intemode composition of the four longest ‘stem sequences’ compare 

with that of the colony overall?

Autozooids in 
Intemode

Complete colony Four longest ‘stem sequences’
Number Percentage

occurrence
Number Percentage

occurrence
3 109 36 27 59
5 134 44 19 41
7 41 13 0 0
9 14 5 0 0

11 6 2 0 0
Total 304 100 46 100

Chi-Square 16.003 P=<0.01

Table 6 .10 The number and percentage occurrence of complete intemodes of 
different lengths, within the colony, and in the four longest ‘stem 
sequences’

Table 6.10 shows that:-

•  Within the four longest ‘stem sequences’, intemodes of three autozooids 

occurred much more frequently than in the colony overall.

• Intemodes of 7, 9 and 11, 20% of intemodes within the colony, were 

completely absent from the four longest ‘stem sequences’.

As discussed in Chapter 5 (Section 5.3.2.1.4.3) in respect of S. reptans, the intemode 

composition of the complete colony, and the long ‘stem sequences, here four, also 

differed in two important respects:-

•  1) The proportions of the different length intemodes in the various 

generations of intemodes.

•  2) The proportions o f ‘stem’ and ‘branch’ intemodes.

Could t^ese differences account for the differences observed in the intemode 

composition of the long ‘stem sequences’ and the colony?
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With regard to 1) above:-

Did differences in the proportions of the different length intemodes per generation 

within the colony, and within the four longest ‘stem sequences’, account for the 

differences in the intemode composition of the two?

Inter
node
gener-
tion

Number of autozooids in intemode
3 5 7 9 11

Freq[uency
Act Exp Act Exp Act Exp Act Exp Act Exp

14 1 1.0
13 0 0.2 3 1.8 0 0.6 0 0.4
12 1 0.4 3 2.1 0 1.4 0 0.1
11 2 0.8 2 2.0 0 0.6 0 0.5 0 0.1
10 2 0.7 2 2.4 0 0.4 0 0.3 0 0.2
9 2 1.4 2 1.9 0 0.7
8 1 1.5 3 1.8 0 0.3 0 0.1 0 0.2
7 3 2.1 1 1.2 0 0.6 0 0.1
6 2 2.1 2 1.6 0 0.2 0 0.2
5 4 4.0
4 4 4.0
3 3 3.0
2 2 2.0
1 1 1.0

Total 27 23.2 19 15.8 0 4.8 0 1.5 0 0.7

Table 6 .11 Comparison of the actual numbers of the various lengths of complete 
intemodes in the four longest ‘stem sequences’, with the numbers 
expected, if  the proportions of intemodes in the various generations 
were the same as in the colony

Table 6.11 shows that if the proportions of the various intemode lengths in the four 

longest ‘stem sequences’ were the same as in the colony as a whole, one would have 

expected slightly fewer intemodes of three and five autozooids. A minority o f longer 

intemodes would also have been expected.
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If the figures in Figure 6.11 are added to those of 6.10, did they account for the 

differences within that table?

Autozooids
in

intemode

Complete colony

Four longest ‘stem sequences’

Actual intemode 
composition

Expected intemode 
composition

Number % Number % Number %
3 109 36 27 59 23.2 50.4
5 134 44 19 41 15.8 34.4
7 41 13 0 0 4.8 10.4
9 14 5 0 0 1.5 3.3

11 6 2 0 0 0.7 1.5
Total 304 100 46 100 46.0 100.0

Chi-Square, 8.270 P=<0.1

Table 6.12 The figures derived from Table 6.11 are added to the original
comparison between the intemode composition of the colony and the 
four longest ‘stem sequences’ (Table 6.10)

Table 6.12 appears to show that this factor, the difference between the proportions of 

the different lengths of intemodes within the different intemode generations within 

the colony and in the four longest ‘stem sequences’, could explain some, but not all, 

o f the observed differences in respect of intemodes of three and five autozooids. The 

absence of any intemodes of seven or more autozooids from the four longest ‘stem 

sequences’ cannot however be explained thus; some 15% of such intemodes could 

have been expected. The figures are not statistically significant, I believe, because 

the colony was not sufficiently well developed. The proximal generations, of short 

intemodes are therefore over represented, and the distal generations, in which long 

intemodes occur more frequently, under represented.
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With regard to 2) above:-

Autozooids
in

intemode

Complete colony

Four longest ‘stem sequences’

Actual intemode 
composition

Expected
intemode

composition

Number % Number % Number %
3 109 36 27 59 16.5 36
5 134 44 19 41 20.4 44
7 41 13 0 0 6.1 13
9 14 5 0 0 2.1 5

11 6 2 0 0 0.9 2
Total 304 100 46 100 46.0 100

Chi-Square 15.878 P=<0.01

Table 6.13 The figures derived from calculating the expected numbers o f different 
length intemodes as if  the proportion of item s’ to "branches’ was the 
same as that in the colony as a whole: related to those comparing the 
numbers of such intemodes in the colony, and the four longest ‘stem 
sequences’ (Table 6 .11)

Table 6.13 shows that the imbalance between the number of ‘stem’ and ‘branch’ 

intemodes of the various length complete intemodes within the colony, and the very 

different numbers in the four longest ‘stem sequences’, does not account for the 

differences observed between them. Intemodes of three autozooids occurred much 

more frequently than would be expected, and intemodes of seven, nine and eleven 

were absent altogether, although on this basis, one would have expected them to 

constitute some 20% of the total.
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How did the mean number of autozooids per intemode within the colony, compare 

with that in the four longest ‘stem sequences’?

Number of 
autozooids

Number of 
intemodes

Mean number 
of autozooids

Complete colony 1476 304 4.85
4 longest ’stem sequences’ 176 46 3.83

Chi-square, Yates’ Correction for Continuity 9.733 P= < 0.01

Table 6.14 The mean lengths of complete intemodes within the colony and in 
the four longest ‘stem sequences’.

Table 6.14 shows that, on average, complete intemodes of the colony were one 

autozooid longer, than those of the four longest ‘stem sequences’.

6.2.2.1.4.4 The spatial arrangement of intemodes within the colony, particularly in 
relation to the four longest ‘stem sequences’

(The spatial arrangement of all the intemodes within the first eight generations, 

together with that of ovicells, is shown in Figure 6.2).

•  The first autozooid of ‘stem’ intemodes are shaded.

•  Incomplete intemodes are indicated by a dot following the most distal 

autozooid.

• Ovicells are shown in red.
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Figure 6.2 The spatial arrangement o f all o f the intemodes within the first eight
generations o f  intemodes. showing internode lengths and ovicell 
occurrence



Although the colony was probably still growing when it was collected, a number o f 

characteristics are apparent in Figure 6.2:-

•  The consistent character o f the intemodes o f  the first five generations, being 

short and without ovicells; and their persistence, although in decreasing 

numbers in the subsequent three generations, in which long, largely 

ovicellate intemodes became numerically dominant.

•  A majority o f the longest intemodes were incomplete (long intemodes 

often brought a ‘stem sequence’ to an end).

•  Except where the intemodes following a bifurcation were both o f three 

autozooids, all bifurcations which resulted in two complete intemodes, 

produced two o f different lengths.

•  Ovicells exhibited a clumped distribution in two respects. Firstly intemodes 

were generally either without ovicells or densely ovicellate. Secondly, 

intemodes with, or without ovicells, exhibited a laterally clumped 

distribution.

•  Ovicells were absent from the first five generations o f  intemodes.

•  Ovicells occurred much more frequently in incomplete intemodes.

An indication o f  the distribution o f the four longest ‘stem sequences’ within the 

colony can be obtained by looking at the distribution o f  their intemodes within the 

12th generation, generation ‘L’. Theoretically some 2000+ intemodes were possible 

in this generation. The actual intemode numbers, indicating their lateral position 

within this generation were:-

683; 854;1366; 1707.

These were not well spaced, laterally, and probably reflect either damage or a growth 

pattern much influenced by spatial constraints.

In the proximal region o f the colony all possible intemodes developed, but as growth 

proceeded there was a ‘thinning-out’, which increased in magnitude in the more 

distal regions. The manner in which intemodes beyond the proximal region were 

distributed can be seen in the details below:-
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In the 12th generation o f intemodes, generation ‘L’, some 2000+ intemodes were 

theoretically possible. In this colony some 54 intemodes had developed in this 

generation and their clumped distribution is evident from the following:-

3 intemodes occurred between positions 330 and 332 (all were incomplete)

* 18 intemodes occurred between positions 651 and 696

* 6 intemodes occurred between positions 854 and 860

* 13 intemodes occurred between positions 1361 and 1387

1 intemode occurred in position 1454 (incomplete)

* 9 intemodes occurred between positions 1705 and 1718

4 internodes occurred between positions 1877 and 1881

* Each o f the four larger clusters had an intemode o f one o f the four longest ‘stem 

sequences’ within it.

[The pattern was very similar to that found in S. reptans, but the colony here was not 

as well developed].

Figure 6.3 shows, for a number o f generations, the proportion o f available intemode 

positions, which were actually ‘occupied’, and how these were distributed in each 

generation.

• The dashed vertical lines indicate the long ‘stem sequences’.

•  The dotted vertical line a ‘stem sequence’ which was not very long but which 

had the interpode composition o f such a ‘stem sequence’ (possibly damaged).

•  The boxes and vertical lines within each generation the lateral extent o f 

intemode occurrence.

The figure inevitably gives a very false impression o f  the numbers o f intemodes 

occurring in each generation.
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Figure 6.3 The positions o f  intemodes produced, relative to potential but 
unoccupied ‘sites’, in relation to long ‘stem sequences’.



Figure 6.3 shows the relationship, within a number o f generations, between the long 

‘stem sequences’ and the distribution o f  intemodes. Initially intemodes were 

produced in all positions open to them but as growth continued, gaps between groups 

o f intemodes appeared which rapidly increased in width. The concentration o f 

narrow groups o f  intemodes around long ‘stem sequences’ in the central and distal 

regions o f  the colony was very pronounced.

Whilst Figure 6.3 shows the relationship between the longest ‘stem sequences’ and 

the distribution o f  intemodes within a number o f generations, it does nothing to show 

their actual spatial arrangement, or that o f their various lengths, within these 

‘aggregations’. These aspects could be shown only when a vertically and laterally 

limited region o f  the colony, relative to its long ‘stem sequence’, was considered.

The limited number o f long ‘stem sequences’ and, beyond the more proximal 

generations o f  intemodes, the strongly clumped distribution o f intemodes in 

association with them results in laterally discrete ‘aggregations’ o f intemodes.

Figure 6.4, shows the lengths, whether they were complete or incomplete, and their 

actual position within their generation, o f the vast majority o f  the intemodes which 

were generated, from generations ‘F’ to ‘N ’, from a long ‘stem sequence’ which 

developed from intemode ‘FI 1 ’.

• All intem odes are drawn to scale, one square = one autozooid.

•  Incomplete intemodes are indicated by a dot above the most distal autozooid.

• Complete intemodes o f five autozooids are shaded.

•  The horizontal line beneath each generation o f intemodes, indicates the extent 

o f their possible occurrence, and the X / Y figures at the sides, the number o f 

intemodes which occurred, and the number o f  intemodes possible, beyond 

the margins o f the figure.
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From Figure 6.4 it is clear that intemodes were very strongly concentrated around the 

long ‘stem sequence’. Although this colony was not as well developed as that of S. 

reptans, considered in Chapter 5, the pattern o f intemode occurrence was very 

similar. An ‘aggregation’, in two dimensions, was essentially a truncated lanceolate 

shape, and there was also some evidence, of the development of the occasional 

lateral ‘arm’ outside the central band, found in that colony.

The two-dimensional lanceolate shape of an ‘aggregation’ of intemodes, developing 

from a long ‘stem sequence’, becomes fusiform in three dimensions. The pronounced 

angulation between intemodes at bifurcations, and to a lesser degree, the lengthwise 

concavity of the longer intemodes, results in incurving, both distally and laterally. 

As a result ‘aggregations’ often form semi-clenched fist-like structures. The overall 

three-dimensional structure of the colony is very dense. It is, essentially an 

incomplete circle of these structures which develop from a vertically limited, 

laterally continuous, proximal region.

6 .2 2 2  POLYMORPH OCCURRENCE AND DISTRIBUTION

6.2.2.2.1 Lateral avicularia

The preliminary investigation of a proximal region of a colony led me to believe that 

lateral avicularia occurred frequently, perhaps on 50% of the autozooids which could 

give rise to them.

On closer examination of this colony, it became apparent that the level of lateral 

avicularia occurrence, taking the colony as a whole, was much lower. Further, their 

distribution exhibited no simple pattern. (Lateral avicularia in this species vary in 

size, but this aspect will be considered later).
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Was lateral avicularia occurrence related to the intemode generation, in which they 

occurred?

Intemode
generation

Lateral avicularia Percentage
occurrencePresent Absent

13 1 2 33.3
12 12 48 20.0
11 42 190 18.1
10 68 255 21.0
9 70 232 23.1
8 80 214 27.2
7 56 113 33.1
6 50 26 65.7
5 17 12 58.6
4 13 3 81.2
3 5 3 62.5
2 2 0 100.0
1 0 0 0.0

Total 416 1098 27.4

Chi-Square 127.698 P=< 0.001 (6/25)

Table 6.15 The number and percentage occurrence of lateral avicularia bv intemode 
generation (apical autozooids and *x* and ‘i’ cases excluded)

Table 6.15 shows that, whilst lateral avicularia occurrence was initially high in 

proximal generations, it declined suddenly and remained low thereafter.

Was lateral avicularia occurrence related to the length of the intemode in which they 

occurred?

Autozooids in 
intemode

Lateral avicularia Percentage
occurrencePresent Absent

11 16 40 28.6
9 22 61 26.5
7 62 111 35.8
5 174 226 43.5
3 79 117 40.3

Total 353 555 38.9

Chi-square 12.287 P - 0.015

Table 6.16 Lateral avicularia presence or absence bv length of complete intemodes 
(apical autozooids and ‘x’ and T  cases excluded)
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Table 6.16 shows no evidence, that the occurrence of lateral avicularia was related to 

intemode length in any consistent way.

Was lateral avicularia occurrence related to whether the intemode in which it 

occurred was complete or incomplete?

Intemode type Lateral avicularia Percentage
occurrencePresent Absent

Complete 353 555 38.8
Incomplete 63 543 10.3

Total 416 1098 27.4

Chi-Square, Yates’ Correction for Continuity 146.515 P= < 0.001

Table 6.17 Lateral avicularia presence or absence bv complete and incomplete 
intemodes (apical autozooids and ‘x’ and ‘i’ cases excluded.)

Table 6.17 shows that lateral avicularia occurred almost four times more frequently 

in complete than incomplete intemodes.

Was lateral avicularia occurrence related to whether an intemode was a ‘stem’ or a 

‘branch’?

Intemode type Lateral avicularia Percentage
occurrencePresent Absent

‘stem’ 269 475 36.1
‘branch’ 147 623 19.0

Chi-Square, Yates’ Correction for Continuity 54.445 P= < 0.001

Table 6.18 Lateral avicularia presence or absence bv ‘stem’ and ‘branch’ 
intemodes (apical autozooids and ‘x’ and ‘i’ cases excluded.)

Table 6.18 shows that lateral avicularia occurred almost twice as frequently in ‘stem’ 

than ‘branch’ intemodes.
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Was lateral avicularia occurrence related to autozooid position within an intemode?

Autozooid
position

Lateral avicularia Percentage
occurrencePresent Absent

Sub-apical 289 189 60.4
Proximal 93 795 10.4

Total 382 984 27.9

Chi-Square, Yates’ Correction for Continuity 382.958 P= < 0.001

Table 6.19 Lateral avicularia presence or absence by autozooid position within an 
intemode (apical autozooids and cx’ and 4 ’ cases excluded.)

Table 6.19 shows that lateral avicularia occurred ~6 times more frequently on sub- 

apical than proximal autozooids.

Was the frequency of lateral avicularia occurrence related to autozooid number?

Autozooid
number

Lateral avicularia Percentage
occurrencePresent Absent

13 1 1 50.0
12 1 3 25.0
11 3 3 50.0
10 2 9 18.1
9 10 10 50.0
8 8 30 21.0
7 22 24 47.8
6 25 64 28.0
5 44 63 41.1
4 85 145 36.9
3 101 139 42.0
2 79 278 22.1
1 35 329 9.6

Total 416 1098 27.4

Chi-Square 127.445 P=<  0.001 (7/27)

Table 6.20 Lateral avicularia presence or absence bv autozooid number (apical 
autozooids and ‘x’ and ‘i’ cases excluded.)

From Table 6.20 a definite, if  complex pattern, was apparent. For the most proximal 

pair of autozooids, lateral avicularia occurred infrequently but were twice as 

numerous on the even- numbered of the pair. Thereafter they occurred more 

frequently on the odd-numbered; increasingly so with increasing autozooid number.
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Was lateral avicularia occurrence related to odd and even-numbered autozooids?

Autozooid number Lateral avicularia Percentage
occurrencePresent Absent

Odd-numbered 216 569 27.5
Even-numbered 200 529 27.4
Total 416 1098 27.5

Chi-Square, Yates’ Correction for Continuity .000 P= 1.000

Table 6.21 Lateral avicularia occurrence bv odd and even-numbered autozooids 
(apical autozooids and ‘x’ and T  cases excluded)

Table 6.21 shows that, overall, lateral avicularia occurred with equal frequency on 

odd and even-numbered autozooids.

If lateral avicularia occurrence is considered relative to both autozooid position, 

within an intemode, and intemode generation, was any pattern apparent?

Intemode
generation

Lateral avicularia
Proximal autozooids Sub-apical autozooids

Present Absent % Present Absent %
13 2 0.0
12 2 38 5.0 8 3 72.7
11 7 139 4.8 29 30 49.2
10 6 186 3.1 56 40 58.3
9 17 175 8.8 48 35 57.8
8 24 164 12.8 47 24 66.2
7 16 80 16.7 36 25 59.0
6 21 11 65.6 28 14 66.6
5 17 12 58.6
4 13 3 81.3
3 5 3 62.5
2 2 0 100.0
1

Total 93 795 10.5 289 189 60.5

Table 6.22 Lateral avicularia presence or absence bv both intemode generation and 
autozooid position within an intemode (apical autozooids and ‘x’ and ‘i’ 
cases excluded.)

Table 6.22 shows that the percentage of sub-apical autozooids which gave rise to 

lateral avicularia, remained high and constant in all generations. The situation was 

very different in respect of proximal autozooids. Because the first five generations
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of intemodes were all of three autozooids, there were no proximal autozooids here; 

but they were numerous from the sixth generation on. Lateral avicularia occurred on 

66% of such autozooids in generation six, but thereafter declined rapidly and 

remained at a very low level in all subsequent generations. The intemode generation 

factor operated only on proximal autozooids. Because it was known that lateral 

avicularia were negatively correlated with ovicells and related to intemode 

generation, it seemed worthwhile to calculate the figures for the parameters included 

in Table 6.22 for just the four longest ‘stem sequences’. The relationship here, 

between intemode generation and ovicell occurrence, was very different from that in 

the colony as a whole; although the numbers were, of course, very small.

If lateral avicularia occurrence was considered relative to both autozooid position, 

within an intemode, and intemode generation, within the four longest ‘stem 

sequences’, was the pattern as that in Table 6.22?

Intemode
Generation

Lateral avicularia
Proximal autozooids Sub-apical autozooids

Present Absent % Present Absent %
13
12
11 1 1 50 3 3 50
10 0 4 0 7 1 87
9 3 1 75 4 4 50
8 3 2 60 7 1 87
7 1 1 50 5 3 62
6 2 0 100 4 3 57
5 5 3 62
4 8 0 100
3 4 2 66
2 2 0 100
1

Total 10 9 52 49 20 71

Table 6.23 Lateral avicularia presence or absence bv intemode generation and 
autozooid position within an intemode in the four longest ‘stem 
sequences’ (apical autozooids and ‘i’ and ‘x’ cases excluded.)

Table 6.23 shows, although the figures are very small, that the percentage of 

autozooids producing lateral avicularia in the four longest ‘stem sequences was 67% 

(whilst within the colony it was only 27.5%). The sudden decline in lateral
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avicularia occurrence from intemode generation seven on, a notable feature in Table 

6.22, is not apparent in Table 6.23.

Lateral avicularia occur in a variety of sizes, from very small to very large (and to a 

lesser degree morphologies) and it is worth noting that the largest forms occurred 

only on the distalmost autozooid in the external series of autozooids in an intemode.

Was lateral avicularia presence or absence related to the length of the ‘stem 

sequence’ in which they occurred?

No. of intemodes 
in ‘stem sequence’

Lateral avicularia Percentage
occurrencePresent Absent

15 18 6 75.0
12 15 9 62.5
11 14 9 60.9
10 13 6 68.4
8 32 29 52.5
7 15 11 57.7
6 45 58 43.7
5 44 86 33.8
4 26 57 31.3
3 73 179 29.0
2 52 209 19.9
1 69 439 13.6

Total 416 1098 27.5

Chi-Square 175.663 P=< 0.001

Table 6.24 Lateral avicularia presence or absence by length of ‘stem sequence’ in 
which they occurred (apical autozooids and ‘x’ and ‘i’ cases excluded).

Table 6.24 shows that the longer the length o f a ‘stem sequence’ the higher the level 

of lateral avicularia occurrence.
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Was lateral avicularia presence or absence related to the numerical position of an

intemode within a ‘stem sequence’?

Numerical position 
of intemode within 

‘stem sequence’

Lateral avicularia Percentage
occurrencePresent Absent

11 3 1 75.0
10 3 1 75.0
9 5 5 50.0
8 6 8 42.9
7 13 12 52.0
6 17 25 40.5
5 18 32 36.0
4 36 53 40.4
3 59 119 33.1
2 105 217 32.6
1 151 625 19.5

Total 416 1098 27.5

Chi-Square 65.882 P= < 0.001 (6/27)

Table 6.25 Lateral avicularia occurrence by numerical position o f intemode 
within its ‘stem sequence’ (apical autozooids and ‘x ’ and ‘i’ cases 
excluded)

Table 6.25 shows that the incidence of lateral avicularia increased in relation to the 

numerical position of an intemode within its ‘stem sequence’. Investigation of ‘stem 

sequences of equal length established that this did not occur within a ‘stem sequence’ 

but resulted from the higher level of occurrence in longer ‘stem sequences’, shown in 

Table 6.24.

Was there any relationship between the occurrence of lateral avicularia and the 

presence of ovicells?

Ovicell Lateral avicularia Percentage
occurrencePresent Absent

Present 81 791 9.2
Absent 285 236 54.7

Chi-Square, Yates’ Correction for Continuity 344.895 P= < 0.001

Table 6.26 Lateral avicularia presence or absence related to the presence or absence 
of ovicells /apical autozooids and ‘x’ and ‘i’ cases excluded)
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Table 6.26 shows that lateral avicularia occurred ~6 times more frequently on non- 

ovicellate autozooids (the autozooid producing the embryo not the ovicell).

6.2.2.2.2 Rhizoids

Rhizoids were heavily concentrated within the more proximal region of the colony, 

and laterally within long ‘stem sequences’, and intemodes adjacent to them.

6.2.2.3 THE DISTRIBUTION OF OVICELLS THROUGHOUT THE COLONY

In this section, ovicells were used as indicators o f the distribution of autozooids 

producing embryos requiring ovicells; i.e. the autozooid referred to was the one 

proximal to that actually producing the ovicell. The opening to the ovicell is 

however adjacent to any lateral avicularium produced.

Was ovicell occurrence related to intemode generation?

Intemode
Generation

Ovicells Percentage
OccurrencePresent Absent

15 0 2 0
14 14 6 70
13 63 40 61
12 131 70 65
11 184 92 67
10 206 103 67
9 199 93 68
8 196 87 69
7 104 63 62
6 21 61 26
5 0 31 0
4 0 16 0
3 0 8 0
2 0 4 0
1 0 2 0

Total 1118 678 62

Chi-Square 167.124 P=< 0.001 (8/27)

Table 6.27 The number and percentage occurrence of ovicells by intemode 
generation (apical autozooids and ‘x’ and ‘i’ cases excluded)
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Table 6.27 shows that in the colony as a whole ovicells occurred on >60% of 

autozooids able to produce them, and that they were completely absent from the first 

five generations. The sixth generation appeared to be a transitional one, with some 

26% of autozooids producing ovicells. Thereafter ovicell production was consistently 

>60%.

Was ovicell production related to the lengths of complete intemodes in which they 

occurred?

Autozooids in 
Intemode

Ovicell Percentage
occurrencePresent Absent

11 47 8 85
9 77 20 79
7 148 86 63
5 189 324 37
3 7 207 3

Chi-Square 278.925 P= < 0.001

Table 6.28 The number and percentage occurrence of ovicells by length of complete 
intemodes (apical autozooid and ‘x’ and T  cases excluded)

Table 6.28 shows that the longer the intemode, the greater the percentage of 

autozooids which gave rise to ovicells.

Was ovicell production related to whether an intemode was a ‘stem’ or a ‘branch’?

Intemode type Ovicell Percentage
occurrencePresent Absent

‘stem’ 455 443 50.7
‘branch’ 663 235 73.8

Chi-Square, Yates’ Correction for Continuity 101.526 P= < 0.001

Table 6.29 Ovicell presence or absence by ‘stem’ and ‘branch’ intemodes (apical 
autozooids and ‘x’ and ‘i’ cases excluded^

Table 6.29 shows that ovicells occurred -50% more frequently on autozooids in

‘branch’ than ‘stem’ intemodes.
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Was ovicell production related to the autozooid number and/or position within an

intemode?

Autozooid
number

Proximal autozooid position Sub-apica autozooid position
Autozooids Ovicells % Autozooids Ovicells %

12 3 3 100 0 0 0
11 3 3 100 0 0 0
10 6 6 100 4 0 0
9 7 7 100 4 0 0
8 24 24 100 9 0 0
7 27 27 100 9 0 0
6 60 58 97 36 3 8
5 60 57 95 38 2 5
4 132 124 94 129 18 14
3 140 136 97 126 8 6
2 317 267 84 107 7 7
1 319 255 80 107 0 0

Total. 1098 967 88 569 38 7

Chi-Square 1032.321 P=< 0.001 (Proximal/Sub-apical)

Table 6.30 The number and percentage occurrence of ovicells by autozooid number 
and autozooid position within an intemode (apical autozooids and ‘x’ 
and T  cases excluded.)

Table 6.30 shows that:-

•  Ovicell occurrence was not related to autozooid number.

•  Whilst 88% of all ‘proximal’ autozooids were ovicellate, 93% of sub-apical 

autozooids were not.

Was the occurrence of ovicells related to odd and even-numbered autozooids?

Autozooid number Ovicell Percentage
occurrence• Present Absent

Odd-numbered 576 357 61.7
Even-numbered 542 321 62.8
Total 1118 678 62.2

Chi-Square, Yates’ Correction for Continuity .174 P= 0.676

Table 6.31 Ovicell occurrence by odd and even-numbered autozooids (apical 
autozooids and ‘x ’ and ‘i’ cases excluded!

247



Table 6.31 shows no evidence that ovicell occurrence was related to odd and even-

numbered autozooids.

If ovicell occurrence is considered relative to both autozooid position within an 

intemode, and intemode generation, was any pattern apparent?

Intemode
Generation

Ovicell
Proximal autozooids Sub-apical autozooids

Present Absent % Present Absent %
15 0 2 0
14 10 2 83 0 4 0
13 51 12 81 0 28 0
12 114 16 88 2 54 4
11 160 20 89 9 62 13
10 172 22 89 11 81 12
9 176 16 92 9 76 11
8 172 18 91 4 66 6
7 92 7 93 3 56 5
6 20 16 56 0 44 0
5 0 30 0
4 0 16 0
3 0 8 0
2 0 4 0
1 0 2 0

Total 967 131 88 38 531 7

Table 6.32 Ovicell presence or absence by intemode generation and autozooid 
position within an intemode (apical autozooids and ‘x’ and T  cases 
excluded)

Table 6.32 shows that for ‘proximally’ sited autozooids, once ovicells were produced 

they continued to be so in each generation at a very high rate. It also shows that sub- 

apical autozooids rarely produced ovicells, and that ovicell production by such 

autozooids commenced later, and was concentrated in a small number of intemode 

generations.

What is not apparent from the data is the extent to which ovicells were concentrated 

within distally sited, long intemodes, which were often incomplete.
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Was ovicell production related to whether an intemode was complete or incomplete?

Intemode type Ovicells Percentage
occurrencePresent Absent

Complete 468 645 42
Incomplete 650 33 95
Total 1118 678 62

Chi-Square, Yates’ Correction for Continuity 505.977 P= < 0.001

Table 6.33 The number and percentage occurrence of ovicells by complete and
incomplete intemodes (apical autozooids and ‘x’ and ‘i’ cases excluded)

Table 6.33 shows that ovicells occurred more than twice as frequently in incomplete 

than complete intemodes.

Was ovicell presence or absence related to the length of the ‘stem sequence’ in which 

they occurred?

No. of intemodes 
in ‘stem sequence’

Ovicell Percentage
occurrencePresent Absent

15 1 39 2.5
12 0 33 0.0
11 0 32 0.0
10 0 28 0.0
8 17 54 23.9
7 8 18 30.8
6 37 87 29.8
5 55 85 39.3
4 45 56 44.6
3 190 103 64.8
2 228 77 74.8
1 537 66 89.1

Total 1118 678 62.2

Chi-Square 575.231 P=<  0.001

Table 6.34 Ovicell occurrence by the length of the ‘stem sequence’ in which they 
occurred (apical autozooids and ‘x’ and ‘i’ cases excluded)

Table 6.34 shows that the level of ovicell occurrence was inversely related to ‘stem 

sequence’ length; being heavily concentrated in short ‘stem sequences’.
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How did the frequency of ovicell occurrence, within the four longest ‘stem

sequences’, compare with that in all other ‘stem sequences’?

Ovicells Percentage
occurrencePresent Absent

4 longest ‘stem sequences’ 1 129 0.8
All other ‘stem sequences’ 1117 546 67.2

Table 6.35 The number and percentage occurrence of ovicells within the four
longest ‘stem sequences’ and in all other intemodes (apical autozooids 
and ‘x’ and T  cases excluded)

Table 6.35 shows that whilst ovicells were abundant within the colony they were 

virtually absent from the four longest ‘stem sequences’.

Was ovicell presence or absence related to the numerical position of an intemode 

within a ‘stem sequence’?

Numerical position 
of intemode within 

‘stem sequence’

Ovicell Percentage
occurrencePresent Absent

15 0 2 0.0
14 0 4 0.0
13 1 3 25.0
12 0 6 0.0
11 0 12 0.0
10 0 8 0.0
9 0 14 0.0
8 4 15 21.1
7 4 26 13.3
6 17 25 40.5
5 24 47 33.8
4 43 62 41.0
3 127 81 61.1
2 232 135 63.2
1 666 238 73.7

Total 1118 678 62.2

Chi-Square 226.140 P=<  0.001 (11/37)

Table 6.36 Ovicell occurrence by numerical position of an intemode within its 
‘stem sequence’ (apical autozooids and ‘x’ and ‘i’ cases excluded!

Table 6.36 shows that the level of ovicell occurrence decreased in relation to 

increased numerical position of an intemode within its ‘stem sequence’.
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Investigation of ‘stem sequences’ of equal length established that this did not occur 

within a ‘stem sequence’, but resulted from the higher level of occurrence in shorter 

‘stem sequences’, shown in Table 6.34.

It was apparent in the section on lateral avicularia that they were negatively 

correlated with the presence of ovicells, and Table 6.37 rearranges this data in 

respect of ovicells.

Lateral avicularia Ovicells Percentage
occurrencePresent Absent

Present 81 285 22
Absent 791 236 77

Chi-Square, Yates’ Correction for Continuity 344.895 P= < 0.001

Table 6.37 Ovicell presence or absence related to the presence or absence of lateral 
avicularia (apical autozooids and ‘x’ and ‘i* cases excluded)

Table 6.37 shows that ovicells occurred 3.5 times more frequently on autozooids 

without lateral avicularia.

6.3 SUPPLEMENTARY STUDIES

As discussed in Section 4.5.4.2, the colony investigated in detail in Section 6.2 was a 

single, not very large colony. To address this, at least in part, it was felt desirable to 

carry out a number of supplementary studies, concentrating on aspects where such 

were particularly necessary.

6.3.1 ‘Stem sequences9 and internode lengths

The colony of the detailed investigation was not fully developed, and the information 

regarding the occurrence of various length ‘stem sequences’ was therefore not as 

conclusive as in the colony of S. reptans. A substantial portion of a large colony was 

investigated, solely in respect of all of its ‘stem sequences’ and their intemode 

composition. The investigation did not utilize the recording scheme. ‘Stem 

sequences’ were recorded individually, and therefore, without information on the 

spatial relationship between them. The existence o f ‘aggregations’ of short ‘stem
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sequences’, in association with a minority of long ‘stem sequences’, was however, 

very apparent.

6.3.1.1 THE LENGTHS OF ‘STEM SEQUENCES’

How frequently did the various lengths of ‘stem sequences’ occur?

ntemodes in ‘stem sequence’
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Frequency 80 36 11 15 4 4 5 4 2 2 1 0 1 2

Table 6.38 The frequency of occurrence of different length ‘stem sequences’

Table 6.38 shows that the vast majority of ‘stem sequences’ were very short, and that 

only a very small minority were long.



6.3.1.2 INTERNODE LENGTHS IN RELATION TO THEIR NUMERICAL
POSITION WITHIN A ‘STEM SEQUENCE’

Was there a relationship between the length of an intemode and its numerical 

position within a ‘stem sequence’?

Numerical 
position of 
intemode 

within ‘stem 
sequence’

Length of intemode

3 5 7 9 11 13 15

14 2
13 3
12 1 1 1
11 5
10 7
9 8
8 3 9
7 17
6 4 16 1
5 1 24
4 3 34 3
3 8 36 4 3
2 70 14 3 1 1
1 40 54 37 21 12 3 1

Table 6.39 The lengths of complete intemodes by their numerical position 
within a ‘stem sequence’

Table 6.39 shows that distally positioned intemodes, within a ‘stem sequence’, were 

largely of five autozooids; and that both longer and shorter intemodes, were 

essentially restricted to proximal positions.
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6.3.1.3 INTERNODE LENGTHS AND THEIR SEQUENCE IN 22 LONG ‘STEM
SEQUENCES’

The lengths of intemodes and their sequence within them were recorded for 22 long 

‘stem sequences’ taken from five separate colonies. The material was separated into 

‘stem sequences’, and numerical position does not equal intemode generation.

Did these long ‘stem sequences’ exhibit any particular characteristics in terms of the 

lengths and/or sequences of their constituent intemodes?

Numerical 
position of 
intemode

Intemode lengths and their sequence

15 5 5
14 5 5
13 5 5 3
12 5 5 5 7
11 5 5 5 5 5 3 5
10 5 5 5 3 5 5 5 5 5 5 3

9 5 5 3 5 3 5 5 5 5 3 5
8 3 3 5 3 5 3 3 5 5 5 5
7 5 5 5 5 5 5 5 5 5 3 5
6 5 3 3 5 3 5 5 3 3 5 3
5 5 3 3 3 5 3 5 3 5 3 5
4 5 3 5 5 3 5 3 3 5 5 3
3 3 3 3 3 5 3 5 3 5 3 3
2 5 3 5 5 3 5 5 3 3 5 5
1 3 3 3 3 5 3 3 3 3 3 3

S/S number 1 2 3 4 5 6 7 8 9 10 11

Table 6.40 Intemode lengths and their sequence within 22 long ‘stem sequences’
from five separate colonies. The numerical position is from the base, and 
is not intemode generation.

(This Table continues, for ‘stem sequences’ originating in the subsequent 11 

generations of intemodes on the following page).
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Numerical 
position of 
intemode

Intemode lengths and their sequence

19 5
18 5
17 5 5 5
16 5 5 5
15 5 5 5 5
14 5 5 5 5 3 5 5
13 3 5 5 5 5 3 5
12 5 5 5 5 5 5 5 5 5 3
11 3 5 5 5 3 5 5 3 5 5 5
10 5 3 3 5 5 5 5 5 3 3 5

9 5 5 5 3 5 5 5 3 5 5 3
8 5 3 5 5 3 3 5 5 3 5 5
7 3 5 5 5 5 5 3 3 3 3 3
6 5 3 5 3 5 3 5 3 3 5 5
5 3 5 3 5 3 5 5 5 3 3 3
4 5 3 5 5 5 3 5 3 3 5 5
3 5 5 3 5 3 5 5 3 3 3 3
2 5 5 5 3 5 3 5 3 3 5 5
1 3 3 3 3 3 5 3 3 3 3 3

S/S number 12 13 14 15 16 17 18 19 20 21 22

Table 6.40 (cont.) Intemode lengths and their sequence within 22 long "stem
sequences’ from five separate colonies. The numerical position is from 
the base, and is not intemode generation.

Table 6.40 shows that long ‘stem sequences’ were essentially constituted of 

intemodes of three and five autozooids; there was just one of seven. It thus confirms 

the results in respect of the four long ‘stem sequences’ o f the detailed study. The 

frequent, but not constant, alternation of intemodes of three and five noted there is 

also apparent here.
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6.3.2 The distribution of lateral avicularia and ovicells in two long 
‘stem sequences’ and all of the internodes which developed 
from them.

The detailed study investigated certain parameters in relation to the presence or 

absence of lateral avicularia and ovicells in a single colony. However, it ignored two 

aspects

•  Firstly, no attempt was made to relate the actual presence or absence of either 

to the precise spatial arrangement of intemodes within the colony.

•  Secondly, the fact that lateral avicularia occurred in a variety of sizes had 

been ignored.

It was felt desirable to make good these deficiencies, and confirm or refute the 

findings of the detailed study. Two long ‘stem sequences’, together with all of the 

intemodes which developed from them, were taken as representative samples from 

two separate colonies. In one, the material was only part of a colony, and I did not 

know the actual generations of the intemodes; hence ‘X’, ‘X’+ l... In the second 

‘aggregation’, the long ‘stem sequence’ originated in generation ‘H’. In the results 

below, the two aggregations will be designated Aggregations 1 and 2, respectively.

(The overall spatial arrangement of intemodes relative to one another, the numbers of 

their constituent autozooids, and the lateral avicularia and ovicells in relation to their 

autozooid of origin, for Aggregation 2, are shown in Figure 6.5).

•  One square represents one autozooid.

• Incomplete intemodes are indicated by a dot above the most distal autozooid.
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•  Lateral avicularium (small) 

Lateral avicularium (medium)

•  Lateral avicularium (large)

— Ovicell

Figure 6.5 The pattern o f  intemode presence and absence (and their length) in 
Aggregation ‘2 \  together with that o f  lateral avicularia and ovicells.



Figure 6.5 shows that lateral avicularia exhibited no overall pattern o f occurrence 

within the ‘aggregation’. They did exhibit a noticeably clumped distribution; 

intemodes with lateral avicularia usually had more than one, and laterally, especially 

in the more distal generations, several intemodes side by side would be with, or 

without, lateral avicularia. Lateral avicularia occurred very infrequently on 

autozooids Nos. 1 and 2. and medium and large forms were very largely restricted to 

odd-numbered autozooids within an intemode. Ovicells also, exhibited no overall 

pattern o f occurrence within the ‘aggregation’. They did, although to a lesser degree 

than lateral avicularia, exhibit a clumped distribution. Ovicells were largely absent 

from sub-apical autozooids.

Lateral avicularia occurred more frequently within the long ‘stem sequences’, than 

outside them; twice as frequently in Aggregation 1, and -1 .5  times in Aggregation 2. 

Ovicells occurred much less frequently within the long ‘stem sequences’, than 

outside them. No ovicells were present within the long ‘stem sequence’, in 

Aggregation 1, and the level in Aggregation 2 was 20% o f that within the 

‘aggregation’. (The fact that intemodes o f  long ‘stem sequences’ were short was 

certainly a factor here).

Having considered the overall pattern o f  occurrence relative to the ‘aggregations’, 

how did lateral avicularia and ovicells occur in relation to the parameters that were 

investigated in the detailed study?

2 5 8



6.3.2.1 LATERAL AVICULARIA

Was lateral avicularia presence or absence related to intemode generation?

Aggregation 1
Intemode

Generation
Lateral avicularia Percentage

occurrencePresent Absent
X+10 4 13 24
X + 9 9 40 18
X + 8 10 33 23
X + 7 16 44 27
X + 6 19 35 35
X + 5 15 43 26
X + 4 18 23 44
X + 3 11 16 41
X + 2 6 3 67
X + l 3 1 75

X 2 0 100
Total 113 251 31

Aggregation 2
Intemode
generation

Lateral avicularia Percentage
occurrencePresent Absent

22 3 7 30
21 13 28 32
20 19 33 37
19 22 46 32
18 19 50 28
17 23 45 34
16 23 45 34
15 23 46 33
14 21 40 34
13 36 56 39
12 25 28 47
11 25 27 48
10 7 5 58
9 3 3 50
8 0 2 0

Total 262 461 36

Aggregation‘1’-Chi-Square 24.783 P= 0.006 (5/23)
Aggregation ‘2’- Chi-Square 14.314 P= 0.427

Table 6.41 Lateral avicularia presence or absence by intemode generation (apical
autozooids and ‘x’ and T  cases excluded)
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Table 6.41 shows that the two ‘aggregations’ were very different. In both however, 

the percentage occurrence of lateral avicularia fell at a certain stage, and did not 

regain its earlier level, although this was more marked in ‘aggregation 1’.

Was lateral avicularia presence or absence related to whether an intemode was a 

‘stem’ or a ‘branch’?

Intemode
type

Aggregation 1 Aggregation 2
Lateral avicularia Percentage

occurrence
Lateral avicularia Percentage

occurrencePresent Absent Present Absent
‘stem’ 82 121 40 154 206 43
‘branch’ 31 130 19 108 255 30
Total 113 251 31 262 461 36

Aggregation ‘1’- Chi-Square, Yates’ Correction for Continuity 17.769 P= < 0.001 
Aggregation ‘2’-Chi-Square, Yates’ Correction for Continuity 12.715 P= < 0.001

Table 6.42 Lateral avicularia presence or absence by ‘stem’ or ‘branch’ intemodes 
(apical autozooids and ‘x’ and ‘i’ cases excluded)

Table 6.42 shows that lateral avicularia occurred substantially more frequently in 

‘stem’ than ‘branch’ intemodes, although not to the same extent in the two 

‘aggregations’.

Was lateral avicularia presence or absence related to whether an intemode was 

complete or incomplete?

Intemode
type

Aggregation 1 Aggregation 2
Lateral avicularia Percentage

occurrence
Lateral avicularia Percentage

occurrencePresent Absent Present Absent
Complete 102 179 36 202 304 40
Incomplete 11 72 13 60 157 28
Total 113 251 31 262 461 36

Aggregation ‘ 1 ’-Chi-Square, Yates’ Correction for Continuity 14.839 P= < 0.001 
Aggregation ‘2’-Chi-Square, Yates’ Correction for Continuity 9.373 P= 0.002

Table 6.43 Lateral avicularia presence or absence by complete and incomplete 
intemodes (apical autozooids and ‘i’ and ‘x’ cases excluded)

Table 6.43 shows that lateral avicularia occurred more frequently in complete than 

incomplete intemodes, but to a very different extent in the two ‘aggregations’..
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Was lateral avicularia presence or absence related to autozooid position within an

intemode?

Autozooid
position

Aggregation 1 Aggregation 2
Lateral avicularia Percentage

occurrence
Lateral avicularia Percentage

occurrencePresent Absent Present Absent
Sub-apical 92 67 58 153 58 73
Proximal 18 180 9 91 392 19
Total 110 247 31 244 450 35

Aggregation41 Chi-Square, Yates’ Correction for Continuity 96.117 P= < 0.001 
Aggregation 42’- Chi-Square, Yates’ Correction for Continuity 183.207 P= < 0.001

Table 6.44 Lateral avicularia presence or absence by autozooid position within an 
intemode (apical autozooids and ‘x’ and "i’ cases excluded)

Table 6.44 shows that lateral avicularia occurred much more frequently on sub-apical 

than proximal autozooids, but to a very different extent in the two "aggregations’.
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Was lateral avicularia presence or absence related to autozooid number?

(Although lateral avicularia probably occur in a continuous range of sizes, I felt that 

some information could be obtained by dividing them by eye, into ‘small’, ‘medium’ 

and ‘large’, since a certain pattern of occurrence was apparent).

Aggregation 1
Autozooid

number
Lateral avicularia Percentage

occurrencePresent Absent
Small Medium Large Total

8 0 0 0 0 1 0
7 1 0 0 1 2 33
6 3 0 0 3 8 27
5 4 4 0 8 6 57
4 21 6 0 27 37 42
3 7 16 21 44 26 63
2 22 0 0 22 78 22
1 5 3 0 8 93 8

Total 63 29 21 113 251 31

Aggregation 2
Autozooid

number
Lateral avicularia Percentage

occurrencePresent Absent
Small Medium Large Total

14 2 0 0 2 0 100
13 2 0 0 2 0 100
12 2 0 0 2 1 50
11 4 1 0 5 0 100
10 2 1 0 3 4 43
9 6 1 1 8 0 100
8 6 0 0 6 15 29
7 9 11 3 23 1 96
6 13 0 1 14 27 32
5 25 12 5 42 5 88
4 39 0 0 39 84 30
3 35 42 26 103 29 78
2 9 0 0 9 147 6
1 3 1 0 4 148 3

Total 157 69 36 262 461 36

Aggregation‘1’- Chi-Square 173.127 P = <  0.001 (16/50) 
Aggregation ‘2’- Chi-Square 492.555 P= < 0.001 (32/57)

Table 6.45 Lateral avicularia presence or absence by autozooid number (apical
autozooids and ‘i’ and ‘x’ cases excluded)
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Table 6.45 shows that although lateral avicularia occurred at a very different level in 

the two ‘aggregations’, in both their occurrence was related to autozooid number. 

They occurred very infrequently on autozooids Nos. 1 and 2. They occurred more 

frequently on the odd-numbered autozooid of each staggered pair, except for the first 

where the opposite was the case. The larger forms occurred predominantly on 

autozooid number three (all occurred on this number autozooid in intemodes of five 

autozooids, i.e. on the external of the sub-apical pair); and all but one occurred on 

odd-numbered autozooids. Table 6.44, above, showed that lateral avicularia 

occurred much more frequently on sub-apical autozooids. It was apparent, although 

not from these data (See Figure 6.5), that the lateral avicularium on the external of 

the sub-apical pair of autozooids was invariably the larger. (It is also clear from that 

figure that lateral avicularia did occur, if less frequently, on ovicellate autozooids; 

and that, the medium and large forms, were largely restricted to non-ovicellate 

autozooids).

Was lateral avicularia occurrence related to odd and even-numbered autozooids?

Autozooid
number

Aggregation 1 Aggregation 2
Lateral avicularia Percentage

occurrence
Lateral avicularia Percentage

occurrencePresent Absent Present Absent
Odd Nos. 61 126 32.6 187 183 50.5
Even Nos. 52 124 29.5 75 278 21.2
Total 113 250 31.1 262 461 36.2

Aggregation 1- Chi-Square, Yates’ Correction for Continuity .269 P= 0.527 
Aggregation 2- Chi-Square, Yates’ Correction for Continuity 65.830 P= < 0.001

Table 6.46 Lateral avicularia occurrence by odd and even-numbered autozooids 
(apical autozooids and ‘x’ and ‘i’ cases excluded)

Table 6.46 shows that the two ‘aggregations’ were very different. Lateral avicularia 

occurred with equal frequency on odd and even-numbered autozooids in 

‘aggregation 1’, but in ‘aggregation 2 ’ they occurred more than twice as frequently 

on odd-numbered autozooids.
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Was there any relationship between the presence or absence of lateral avicularia and 

the presence or absence of ovicells?

Ovicell Aggregation 1 Aggregation 2
Lateral avicularia Percentage

occurrence
Lateral avicularia Percentage

occurrencePresent Absent Present Absent
Present 14 156 8 112 361 24
Absent 95 86 52 116 76 60
Total 109 242 31 228 437 34

Aggregation ‘ 1’- Chi-Square, Yates’ Correction for Continuity 78.121 P= < 0.001 
Aggregation ‘2’- Chi-Square, Yates’ Correction for Continuity 80.186 P= < 0.001

Table 6.47 Lateral avicularia presence or absence related to the presence or absence 
of ovicells (apical autozooids and ‘x’ and T  cases excludedO

Table 6.47 shows that lateral avicularia occurred much more frequently on non- 

ovicellate autozooids, although to a different extent in the two ‘aggregations’.



6.32.2 OVICELLS

Was ovicell occurrence related to intemode generation?

Aggregation 1
Intemode

Generation
Ovicell Percentage

OccurrencePresent Absent
X + 1 0 4 17 19
X + 9 26 26 50
X + 8 24 29 45
X + 7 35 30 54
X + 6 30 35 46
X + 5 35 23 60
X + 4 16 19 46
X + 3 15 12 56
X + 2 0 8 0
X +  1 0 4 0

X 0 2 0
Total 185 205 47

Aggregation 2
Intemode
generation

Ovicell Percentage
occurrencePresent Absent

22 2 3 40
21 13 25 34
20 13 38 25
19 32 31 51
18 34 26 57
17 48 19 72
16 54 12 82
15 57 11 84
14 51 7 88
13 79 9 90
12 44 6 88
11 42 8 84
10 8 4 67
9 0 6 0
8 0 2 0

Total 477 207 70

Aggregation 41’- Chi-Square 25.403 P= 0.005 (6/28)
Aggregation‘2’- Chi-Square 158.415 P = <  0.001 (7/24)

Table 6.48 Ovicell presence or absence by intemode generation (apical autozooids
and ‘x’ and T  cases excluded)
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Table 6.48 shows that the level of ovicell occurrence was quite different in the two 

‘aggregations’. In both, however, they were initially absent and were then produced 

at a consistent level for a number of generations. In ‘Aggregation 2’ the level of 

occurrence declined in the distalmost generations.

Was ovicell occurrence related to the length of complete intemodes?

Intemode 
length, 

number of 
autozooids

Aggregation 1 Aggregation 2
Ovicell Percentage

occurrence
Ovicell Percentage

occurrencePresent Absent Present Absent

15 12 2 86
13 11 0 100
11 16 1 94
9 66 10 87
7 34 20 63 63 22 74
5 70 116 38 130 137 49
3 2 62 3 5 20 20

Total 106 198 35 303 192 61

Aggregation ‘ 1 Chi-Square 47.791 P= < 0.001 
Aggregation ‘2’- Chi-Square 80.772 P= < 0.001 (1/7)

Table 6.49 Ovicell presence or absence bv length of complete intemodes (apical 
autozooids and ‘x’ and ‘i’ cases excluded)

Table 6.49 shows that the longer the intemode the higher the level of ovicell 

occurrence. The fact that ovicells occurred much more frequently on proximally 

sited autozooids, 11 times more frequently in ‘aggregation 1’ and >3 times in 

‘aggregation 2’ (see Table 6.52) was clearly a factor.



Was ovicell occurrence related to whether an intemode was a ‘stem’ or a ‘branch’?

Intemode
type

Aggregation 1 Aggregation 2
Ovicell Percentage

occurrence
Ovicell Percentage

occurrencePresent Absent Present Absent
‘stem’ 88 134 40 207 127 62
‘branch’ 97 71 58 270 80 77
Total 185 205 47 477 207 70

Aggregation ‘ 1 Chi-Square, Yates’ Correction for Continuity 11.847 P= 0.001
Aggregation ‘2’- Chi-Square, Yates’ Correction for Continuity 17.916 P= < 0.001

!

I
i
i Table 6.50 Ovicell presence or absence by ‘stem’ and ‘branch’ intemodes (apical

autozooids and ‘x ’ and ‘i’ cases excluded)

Table 6.50 shows that ovicells occurred more frequently in ‘branches’ than ‘stems’,

| but to a different extent in the two ‘aggregations’.

[
Was ovicell occurrence related to whether an intemode was complete or incomplete?

Intemode
type

Aggregation 1 Aggregation 2
Ovicell Percentage

occurrence
Ovicell Percentage

occurrencePresent Absent Present Absent
Complete 106 198 35 303 192 61
Incomplete 79 7 92 174 15 92
Total 185 205 47 477 207 70

Aggregation ‘1’- Chi-Square, Yates’ Correction for Continuity 85.054 P= < 0.001 
Aggregation ‘2’- Chi-Square, Yates’ Correction for Continuity 60.232 P= < 0.001

Table 6.51 Ovicell presence or absence bv complete and incomplete intemodes 
(apical autozooids and ‘x’ and ‘i* cases excluded')

Table 6.51 shows that although the situation was very different in the two 

‘aggregations’, in both, they occurred on >90% of autozooids in incomplete 

intemodes. The level of occurrence in complete intemodes was almost twice as high 

in ‘aggregation 2’. (Although not apparent from the table, incomplete intemodes 

were often completely ovicellate).
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Was ovicell occurrence related to autozooid position within an intemode?

Autozooid
position

Aggregation 1 Aggregation 2
Ovicell Percentage

occurrence
Ovicell Percentage

occurrencePresent Absent Present Absent
Sub-apical 13 162 7 49 144 25
Proximal 170 43 80 428 56 88
Total 183 205 47 477 200 70

Aggregation ‘ 1 Chi-Square, Yates’ Correction for Continuity 199.094 P= < 0.001 
Aggregation ‘2’- Chi-square, Yates’ Correction for Continuity 260.426 P= < 0.001

Table 6.52 Ovicell presence or absence by autozooid position within an intemode 
(apical autozooids and ‘x’ and ‘i’ cases excluded)

Table 6.52 shows that ovicells occurred much more frequently on proximal than sub- 

apical autozooids, but to a very different extent in the two ‘aggregations’.
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Was ovicell occurrence related to autozooid number within an intemode?

Aggregation 1
Autozooid number Ovicell Percentage

occurrencePresent Absent
7 1 1 50
6 3 9 25
5 5 11 31
4 32 38 46
3 28 45 38
2 63 45 58
1 53 56 49

Total 185 205 47

Aggregation 2
Autozooid number Ovicell Percentage 

. occurrencePresent Absent
14 0 1 0
13 0 1 0
12 2 0 100
11 3 0 100
10 6 0 100
9 6 1 86
8 15 3 83
7 15 6 71
6 29 8 78
5 30 20 60
4 70 41 63
3 56 62 47
2 126 25 83
1 119 39 75

Total 477 207 70

Aggregation ‘ 1 ’- Chi-Square .11.811 P= 0.066 
Aggregation‘2’- Chi-Square 61.258 P=<  0.001 (12/43)

Table 6.53 Ovicell presence or absence by autozooid number (apical autozooids and 
‘x’ and T  cases excluded")

Table 6.53 shows no evidence that ovicell occurrence was related to autozooid 

number in any consistent way.
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Was ovicell occurrence related to odd and even-numbered autozooids?

Autozooid
number

Aggregation 1 Aggregation 2
Ovicell Percentage

occurrence
Ovicell Percentage

occurrencePresent Absent Present Absent
Odd Nos. 87 113 43.5 229 123 65.1
Even Nos. 98 92 51.6 248 78 76.1
Total 185 205 47.4 477 201 70.4

Aggregation 1- Chi-Square, Yates’ Correction for Continuity 2.237 P= 0.135 
Aggregation 2 - Chi-Square, Yates’ Correction for Continuity 9.328 P= 0.002

Table 6.54 Ovicell occurrence by odd and even-numbered autozooids (apical 
autozooids and ‘x’ and *i* cases excluded)

Table 6.54 shows that although the level of ovicell occurrence was very different in 

the two ‘aggregations’, in both ovicells occurred somewhat more frequently on even- 

numbered autozooids.

Was there any relationship between the presence or absence of ovicells, and the 

presence or absence of lateral avicularia?

Lateral
avicularia

Aggregation 1 Aggregation 2
Ovicell Percentage

occurrence
Ovicell Percentage

occurrencePresent Absent Present Absent
Present 14 95 13 112 116 49
Absent 156 86 64 361 76 83
Total 170 181 48 473 192 71

Aggregation ‘1’- Chi-Square, Yates’ Correction for Continuity 78.121 P= < 0.001 
Aggregation ‘2’- Chi-Square, Yates’ Correction for Continuity 80.186 P= < 0.001

Table 6.55 Ovicell presence or absence related to the presence or absence of lateral 
avicularia (apical autozooids and ‘x ’ and ‘i’ cases excluded)

Table 6.55 shows that ovicells occurred much more frequently on autozooids without 

lateral avicularia, but again the difference between the two ‘aggregations’ was 

considerable.
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For ‘aggregation 2’ I related the presence or absence of lateral avicularia and 

ovicells, to their level of occurrence, and intemode generation. The results are 

shown in Table 6.56, below: -

Intemode
generation

Lateral 
avicularia only

Ovicell only Both present Both absent

V 3 2 0 2
u 8 12 0 14
T 18 13 0 19
S 16 29 3 16
R 14 32 2 12
Q 14 40 7 4
p 12 43 10 1
0 8 45 13 1
N 4 35 15 2
M 5 53 27 1
L 4 24 19 1
K 7 27 15 0
J 4 5 3 0
I 3 0 0 3
H 0 0 0 2

Total 120 360 114 78

Table 6.56 Lateral avicularia and ovicell presence or absence by intemode
generation, in an ‘aggregation’ of intemodes developed from a long 
‘stem sequence’ (apical autozooids and ‘x’ and ‘i’ cases excluded)

From Table 6.56 it appears that lateral avicularia and ovicells may occur on the same 

autozooid, only when the numbers of both produced were at such levels that it was 

impossible for them to be on separate autozooids.

6.3.3 The presence/absence of lateral avicularia and ovicells in long 
‘stem sequences9

In the detailed study described in Section 6.2, observations were made in respect of 

the presence or absence of lateral avicularia and ovicells within the four longest 

‘stem sequences’ of that colony. They were compare^ with the situation obtaining 

within the colony overall. (See Table 6.23 re lateral avicularia, and Table 6.35 re 

ovicells). The numbers involved in both cases were very small, and it was necessary 

to investigate these aspects more folly (see Section 4.5.5.2.2).
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14 long ‘stem sequences’, each of 12 or more intemodes, were extracted from a 

small number of colonies (each of which was densely ovicellate) and the presence or 

absence, and distribution, in certain respects, of lateral avicularia and ovicells 

recorded.

6.3.3.1 LATERAL AVICULARIA

How did the frequency of lateral avicularia occurrence, within these long ‘stem 

sequences’, compare with that of the complete colony considered earlier?

Table 6.15 showed that, within the complete colony, lateral avicularia occurred on 

27.5% of those autozooids which could give rise to them. Within the four longest 

‘stem sequences’, they occurred on 67% of such autozooids. In the 14 long ‘stem 

sequences’ investigated here, of the 611 autozooids which could produce lateral 

avicularia, 334 (55%) did so.

Was the level of lateral avicularia occurrence similar in each of the long ‘stem 

sequences’, and in their colonies of origin?

Colony
number

‘Stem sequence’ 
number

Lateral avicularia Percentage
occurrencePresent Absent

1 1 27 3 90
1 2 24 15 62
2 3 28 20 58
2 4 27 22 55
2 5 25 30 45
2 6 20 22 48
2 7 22 25 47
2 8 11 27 29
3 9 19 31 38
3 10 30 24 56
4 11 24 4 86
4 12 20 8 71
5 13 38 23 62
5 14 19 23 45

Total 334 277 55

Table 6.57 Lateral avicularia presence or absence in 14 long ‘stem sequences’ from
five separate colonies (apical autozooids and ‘x’ and ‘i’ cases excluded)

272



Table 6.57 shows considerable variation in the level of lateral avicularia occurrence, 

be^veen different ‘stem sequences’, from 29% to 90%; and to a lesser extent 

beween different colonies.

Was presence or absence of lateral avicularia related to the position within the 

intemode of the autozooid which gave rise to it?

Autozooid position Lateral avicularia Percentage
occurrencePresent Absent

Sub-apical 282 89 76
Proximal 52 188 22

Chi-Square, Yates’ Correction for Continuity 170.854 P= < 0.001

Table 6.58 Lateral avicularia presence or absence by autozooid position within an 
intemode (apical autozooids and ‘x’ and ‘i’ cases excluded!

Table 6.58 shows that lateral avicularia occurred 3.5 times more frequently on sub- 

apical than proximal autozooids.

Was lateral avicularia occurrence related to autozooid number?

Autozooid
Number

Lateral avicularia
Present Absent Percentage

occurrence
6 0 1 0
5 1 0 100
4 90 20 82
3 112 4 97
2 57 135 30
1 74 117 39

Table 6.59 Lateral avicularia presence or absence bv autozooid number (apical 
autozooids and ‘x’ and ‘i’ cases excluded)

Table 6.59 shows that lateral avicularia occurred much more frequently on 

autozooids three and four than on autozooids one and two, and they occurred 

somewhat more frequently on the odd-numbered autozooid of each pair. (Not only 

did lateral avicularia occur more frequently on autozooid number three than number 

four, but the largest forms, invariably occurred only on this autozooid).
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6.33.2 OVICELLS

How did the frequency of ovicell occurrence, within these long ‘stem sequences’,

compare with that of the complete colony considered earlier?

Table 6.35 showed, that within that colony, ovicells occurred on 67% of those 

autozooids which could give rise to them, but in the four longest ‘stem sequences’ 

130 such autozooids produced just one ovicell. In the 14 long ‘stem sequences’ 

considered here, of the 637 autozooids which could produce ovicells, 80 (13%), did

Was the rate of ovicell occurrence similar in each of the long ‘stem sequences’, and 

in their colonies of origin?

Colony
number

‘Stem
sequence’
number

Ovicell Percentage
occurrencePresent Absent

1 1 0 34 0
1 2 0 42 0
2 3 2 45 4
2 4 6 44 12
2 5 11 47 23
2 6 10 32 24
2 7 12 36 25
2 8 13 25 34
3 9 11 39 22
3 10 7 51 12
4 11 0 32 0
4 12 0 32 0
5 13 3 59 5
5 14 5 39 11

Total 80 557 13

Table 6.60 Ovicell presence or absence in 14 long ‘stem sequences’ from five 
separate colonies (apical autozooids and ‘x’ and ‘i’ cases excluded)

Table 6.60 shows considerable variation in ovicell occurrence between ‘stem 

sequences’, and less between colonies. Four ‘stem sequences’, from two colonies, 

had none at all; five, from two colonies, had a level between 22% and 34%.
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Was ovicell occurrence related to the autozooid position within an intemode?

Autozooid position Ovicells Percentage
occurrencePresent Absent

Sub-apical 13 384 3
Proximal 67 173 28

Chi-Square, Yates’ Correction for Continuity 80.481 P= < 0.001

Table 6.61 Ovicell presence or absence by autozooid position within an intemode 
(apical autozooids and ‘x’ and ci’ cases excluded)

Table 6.61 shows that ovicells occurred nine times more frequently on proximally 

than sub-apical autozooids.

6.4 COLLATION AND SUMMARY OF RESULTS

6.4.1 Introduction

To avoid unnecessary repetition, where the situation here is identical to that in 

respect of S. reptans, detailed in Chapter 5 ,1 shall refer to the results of that chapter. 

The full discussion of the results of both chapters constitutes Chapter 7. In this 

collation I shall bring together the results from the detailed and supplementary 

studies, and make clear the extent of any variation.

As in Chapter 5, this collation is in two sections. The first is concerned with 

autozooids, intemodes, ‘'stem sequences’, and colony structure and form. The second 

relates to the occurrence of polymorphs and ovicells.

The results are largely derived from the colony of the detailed study. Data from 

supplementary studies will be identified as such.
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6.4.2 Autozooids in internodes; bifurcations; internodes within 
‘stem sequences9, their arrangement within the colony, and its 
structure and form

6.4.2.1 AUTOZOOIDS WITHIN INTERNODES, AND BIFURCATIONS

As discussed in respect of S. reptans, in Section 5.5.2.1, intemodes were 

distinguished in three respects: their length; whether they were complete or 

incomplete; and whether they were a ‘stem’ or a ‘branch’.

The arrangement of autozooids within intemodes was exactly the same as in S'. 

reptans and all complete intemodes were of an odd number of autozooids. 

Regarding the lengths of complete intemodes, 80% were of three or five, with the 

latter occurring 25% more frequently than the former. Intemodes of seven, nine and 

eleven also occurred, their numbers decreasing with increasing length.

The relationship between intemode length and intemode generation was shown in 

Table 6.2. The shortest intemodes, of three autozooids, dominated the more 

proximal generations; in this colony no longer intemodes were found until the sixth 

generation. Subsequently, intemodes of three autozooids continued to occur, but 

they became proportionally less numerous with each subsequent generation. 

Intemodes of five and seven autozooids became increasingly more important in the 

more distal generations of intemodes, and longer intemodes occurred sparsely 

throughout the central and more distal regions of the colony. The average length of 

intemodes, beyond the first five generations, essentially increased generation on 

generation.

The arrangement of intemodes at bifurcations, and the consistent pattern of 

branching, were also the same as for S. reptans, as described in Section 5.5.2.1.

Regarding complete and incomplete intemodes, the situation was virtually identical 

to that for S. reptans with some 40% incomplete.

The total numbers, and the numbers of the various lengths o f ‘stem’ and ‘branch’ 

intemodes, were not as might have been expected. A very different pattern from that
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observed in S. reptans was apparent. For complete intemodes, there were 50% more 

‘stems’ than ‘branches’, but neither of the two intemode lengths which occurred in 

quantity, approximated to this 60/40 ratio. The percentage of ‘stems’, for intemodes 

of three and five, were -40%  and 85%, respectively. For intemodes with more than 

five autozooids, the longer the intemode, the more likely it was to be a ‘branch’. For 

incomplete intemodes, there were 50% more ‘branches’ than ‘stems’. In terms of 

occurrence and length, ‘stems’ and ‘branches’, did differ.

6.4.2.2 INTERNODES WITHIN ‘STEM SEQUENCES’

The investigation into the ‘stem sequences’ of S. reptans revealed three features:-

• A small number of very long, and a very large number of short, or very short, 

‘stem sequences’.

• That the intemode composition of the very long ‘stem sequences’, was very 

different from those of the complete colony.

• That for all ‘stem sequences’, intemodes of other than five autozooids, were 

very largely confined to the most proximal positions within a ‘stem 

sequence’.

Although the colony investigated in detail was not as large as that of S. reptans it did 

exhibit a small number of long, and a much larger number of short, ‘stem sequences’. 

Over 93% of ‘stem sequences’ were of five or fewer intemodes, and less than 2% 

were of 11 or more. A supplementary study on much of a larger colony produced 

almost identical percentage occurrences.

The intemode constitution of long ‘stem sequences’ was different from that of S. 

reptans in that it consisted of intemodes o f three (~ 60%) and five autozooids 

(-40%). Within the colony, the percentages were 36% and 44% respectively, and 

20% o f  intemodes, were of seven, nine or eleven autozooids. A supplementary study 

of a  number of somewhat longer long ‘stem sequences’ than those in the colony of 

the detailed study, produced similar results, but with intemodes of five outnumbering 

those of three, two to one. Intemodes of three were more numerous in proximal, and 

those of five in more distal generations
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As for S. reptans, there was a possibility that the particular intemode composition of 

the long ‘stem sequences’ was a secondary feature, resulting from known differences 

between them and the colony. Firstly, the proportions of the different intemode 

lengths in the various generations of intemodes were very different in the two. 

Secondly, the long ‘stem sequences’ were, by definition, composed almost entirely 

of ‘stem’ intemodes, whilst within the colony, there were only slightly more ‘stems’ 

than ‘branches’. In Section 6.2.2.1.4.3, it was demonstrated that neither of these 

characteristics could be invoked to explain completely the difference between the 

intemode composition of the long ‘stem sequences’ and the colony. The figures 

were not as clear-cut as those for the colony of S. reptans, which was much better 

developed. In the material used in the supplementary studies, and a number of 

unrecorded observations, distally discrete ‘aggregations’ of intemodes in short ‘stem 

sequences’ associated with, and centred on, long ‘stem sequences’, were 

characteristic.

For all intemodes, their length, and their numerical position within the ‘stem 

sequence’ in which they occurred were recorded (Table 6 .8). This showed, that 

intemodes of other than five autozooids, especially those which were longer, were 

largely confined to the first or second positions, within a ‘stem sequence’. A 

supplementary study of a substantial part of a large colony (Table 6.39) confirmed 

that 85% of intemodes beyond the second position within a ‘stem sequence’ were of 

five autozooids, although they constituted only 53% of all intemodes.

6.4.2.3 THE ARRANGEMENT OF INTERNODES AND ‘STEM SEQUENCES’ 
WITHIN A COLONY, AND THE STRUCTURE AND FORM WHICH 
RESULTS

As for S. reptans, the long ‘stem sequences’ again generally originated in the more 

proximal generations of intemodes. One long ‘stem sequence’ in one of the 

supplementary studies, however, had its origin in generation eight, and therefore 

there was no direct link between the generation of origin of a ‘stem sequence’ and its 

potential length.

Although the colony was probably still growing when collected, it was clear from 

Table 6.1 that the theoretically possible doubling of the number of intemodes in each
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successive generation ceased to occur in the fifth generation, and that intemode 

numbers thereafter increased only slowly and then declined. Complete intemodes 

showed a pattern of increase and decrease in number over the generations. 

Incomplete intemodes were completely absent from the first four generations, and 

their number, as a proportion of the number within a generation, essentially increased 

generation on generation.

As shown in section 6.2.2.1.4.4, it was apparent that the four longest ‘stem 

sequences’ of the detailed study were far from evenly spaced laterally within the 

colony. Their lateral arrangement suggested a colony much influenced by available 

space or damage. Their distribution was illustrated diagrammatically in Figure 6.3, 

which also showed the position of one ‘stem sequence’, which was not particularly 

long, but which had the intemode composition of such a long ‘stem sequence’ 

(possibly broken).

As for S', reptans, all possible intemodes developed in the proximal region of the 

colony, but as growth proceeded there was a large scale ‘thinning-out’, which 

increased in magnitude in the more distal regions.

As discussed in Section 6.2.2.1.4.4, the clustering of intemodes beyond the proximal 

generations of intemodes, around intemodes within the long ‘stem sequences’, was 

very apparent. It resulted in a limited number of vertically extensive ‘aggregations’ 

of intemodes, which distally, were laterally discrete.

Diagrammatic representation of a single long ‘stem sequence’, and the intemodes 

which developed from it (over a number of generations) showed that these 

‘aggregations’ were laterally very limited. Intemodes were very largely concentrated 

in a narrow, probably potentially lanceolate, vertical band, centred on a long ‘stem 

sequence’.

Such ‘aggregations’ of intemodes, developing from long ‘stem sequences’, are not, 

of course, two-dimensional. The angulation of intemodes in relation to one another 

at bifurcations, and to a lesser degree the lengthwise concavity of the longer 

intemodes, results in incurving, both distally and laterally. These characteristics are
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more pronounced in T. inopinata than S. reptans, and with ‘aggregations’ often 

forming semi-clenched fist-like structures, the colony is generally altogether denser. 

The overall three-dimensional structure of the colony, which results, is essentially an 

incomplete circle of these structures which develop from a vertically limited, 

laterally continuous, proximal region.

6.4.3 The spatial arrangement of polymorphs and ovicells

6.4.3.1 INTRODUCTION

The situation was less complex than it was for S. reptans, partly because material 

from only one population was considered; although there was some evidence of 

inter-colony variation, particularly in respect of ovicells. There were also fewer 

polymorphs to consider, and also therefore, fewer possible associations between 

them. It was known that the most proximal external spine was sometimes bifid, and 

that scuta varied greatly in morphology. The condition of the material did not, 

unfortunately, allow an investigation into any possible pattern of occurrence of these 

characteristics individually, together, or perhaps with a third element, ovicells.

The introductory remarks made in Section 5.5.3.1, to the collation and summary of 

results, regarding polymorphic zooids in S. reptans, are equally applicable here.

6.4.3.2 THE SPATIAL ARRANGEMENT OF POLYMORPHS AND OVICELLS 
WITHIN A COLONY

The spatial occurrence of polymorphs can be distinguished on the basis of whether 

they occurred constantly, predictably, or unpredictably.

Spines and scuta occur, as was already known, constantly on all autozooids, except 

the ancestrula, in a consistent fashion, in relation to the position of their autozooid of 

origin, within an intemode. Variations in morphology were referred to above.
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6.4.3.2.1 Lateral avicularia

Lateral avicularia occurred unpredictably, but their spatial disposition exhibited a 

number of characteri sties:-

• Avicularia occurrence was related to intemode generation. In the colony of 

the detailed study, they were numerous in the first six generations and then 

exhibited a sudden decline, firstly to 50% of their previous level and then 

lower still. One of the ‘aggregations’ of the supplementary study showed a 

similar pattern, whilst the trend was less obvious in the second.

• Avicularia occurred virtually twice as frequently in ‘stem’ than ‘branch’ 

intemodes, in the detailed study, and one of the ‘aggregations’ of the 

supplementary study. In the second the difference was somewhat smaller.

• Avicularia occurred almost four times more frequently in complete, than 

incomplete intemodes in the colony of the detailed study. In the 

‘aggregations’ of the supplementary study the asymmetry was not as great, 

but still substantial.

• Avicularia occurrence was not related to intemode length.

• Avicularia occurred ~6 x more frequently on sub-apical, as opposed to 

proximal autozooids in the colony of the detailed study, and in the first 

‘aggregation’. In the second ‘aggregation’ they occurred ~4 x more 

frequently. Large forms occurred almost completely on the odd-numbered 

autozooid of the sub-apical pair.

•  In the colony of the detailed, and the ‘aggregations’ of the supplementary 

study, avicularia occurrence showed a definite, if complex, relationship to 

autozooid number. They occurred infrequently on autozooids Nos. 1 and 2 

(and twice as frequently on the latter) but thereafter were more numerous on 

the odd-numbered autozooid of each pair. This trend was increasingly 

apparent as autozooid number increased. Overall avicularia occurred with 

equal frequency on odd and even-numbered autozooids in the colony of the 

detailed study and in ‘aggregation 1’. In ‘aggregation 2’ they occurred 2.5 x 

more frequently on odd-numbered autozooids.

•  Avicularia occurrence was related to length of ‘stem sequence’; the longer the 

‘stem sequence’ the higher the level of avicularia occurrence.
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Lateral avicularia were thus positively correlated with:-

• Intemodes within proximal generations.

• Complete intemodes.

• ‘Stem’ intemodes.

• Sub-apical autozooids.

• Odd-numbered autozooids, excluding No. 1.

• Longer length ‘stem sequences’

When lateral avicularia presence or absence was related to both autozooid position 

within an intemode and intemode generation (see Table 6.22), it appeared, although 

numbers were very small, that the latter was only a factor in respect of proximally 

positioned autozooids. On sub-apical autozooids lateral avicularia occurred at a high 

percentage of available sites. They occurred six times more frequently on sub-apical 

as opposed to proximal autozooids. Further the very largest forms occurred only on 

the externally positioned of this pair. The situation in the supplementary studies was 

again slightly less clear-cut. Lateral avicularia production was, therefore, in two 

respects, number and size, heavily concentrated on the sub-apical autozooids, 

especially the external.

6.4.3.2.2 Rhizoids

Rhizoids, as has long been known, were strongly concentrated vertically in proximal 

generations. They were also concentrated laterally within long ‘stem sequences’, and 

intemodes adjacent to them.

6.4.3.2.3 Ovicells

Before considering the results in respect of the various parameters investigated in the 

detailed and supplementary studies, it is worth recalling one aspect that was 

investigated in Chapter 3. Non-ovicellate and ovicellate autozooids generally look 

‘different’, and their basic dimensions were recorded. The results (see Table 3.1) 

show that, on average, non-ovicellate were - 20% longer than ovicellate autozooids. 

The results also show that the actual difference in autozooid length was reflected in 

an identical difference in the length of the opesia.
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The detailed and supplementary studies showed that:-

• Ovicell occurrence level varied considerably between colonies, but they were 

absent from the first few generations of intemodes, occurred consistently 

thereafter, and declined perhaps, only in the distalmost generations.

• Ovicells were virtually absent from the four longest ‘stem sequences’ of the 

colony of the detailed study, although it was abundantly ovicellate. Within 

fertile ‘aggregations’ of the supplementary study, ovicells were absent, or 

sparse, in long ‘stem sequences’

• The longer the length of intemode, the higher the level of ovicell occurrence.

• Ovicells occurred more than twice as frequently in incomplete intemodes in 

the colony of the detailed study, and in one o f the ‘aggregations’ in the 

supplementary study; and 1.5 x higher in the other.

• Ovicells occurred more frequently, in ‘branch’ than ‘stem’ intemodes; by 

-50% in the colony of the detailed study and in ‘aggregation 1 ’; and by 25% 

in ‘aggregation 2’ of the supplementary study.

• In the detailed study ovicell presence or absence was strongly correlated with 

autozooid position within an intemode; positively so with ‘proximal’, 88% of 

which were ovicellate, and negatively with sub-apical, 93% of which were

not. The situation was very similar in ‘aggregation 1 but the difference was

-3.5 x in ‘aggregation 2’.

• In the detailed study, ovicells occurred equally on odd and even-numbered 

autozooids. In the two ‘aggregations’ of the supplementary study they 

occurred somewhat more frequently on even-numbered autozooids..

• Ovicell occurrence was inversely related to the length of ‘stem sequences’; 

occurring abundantly in short ‘stem sequences’ and being rare in, or absent 

from, long ‘stem sequences’.

It is clear from the above, that in respect of the majority of the parameters

considered, both lateral avicularia and ovicells exhibited marked, or very marked

asymmetries of occurrence. These, whilst often varying in extent in the replicate 

studies, were always in the same direction. It is also very apparent, that in almost 

every respect, the ‘preferred’ site of one, was the ‘less favoured’ of the other. The 

relationship between the two will be considered below.
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6.4.3.3 POSITIVE AND NEGATIVE CORRELATIONS BETWEEN VARIOUS 
POLYMORPHS, AND BETWEEN POLYMORPHS AND OVICELLS

There was only one such correlation here, between lateral avicularia and ovicells. 

This was an observed correlation, which may not, of course, be due solely to a 

positive or negative association between the two.

6.4.3.3.1 Lateral avicularia and ovicells

Lateral avicularia were negatively correlated with ovicells; they occurred almost six 

times more frequently on non-ovicellate autozooids, in the colony of the detailed 

study and in ‘aggregation 1’. In ‘aggregation 2’ they occurred 2.5 x more frequently.

Ovicells occurred more than 3.5 x as frequently on autozooids that did not 

have lateral avicularia in the detailed study. In the ‘aggregations’ of the 

supplementary study they occurred 5 x more frequently in the first, but only by 60% 

in the second.

It is clear from Tables 6.15 and 6.27 that lateral avicularia occurrence decreased 

dramatically in the intemode generation in which substantial ovicell production 

began. Tables 6.57 and 6.60 show that for the 14 long ‘stem sequences’, lateral 

avicularia occurrence was negatively correlated with the occurrence of ovicells.

The results of an investigation into the occurrence of lateral avicularia and ovicells in 

‘aggregation 2’ of the supplementary studies were shown in Table 6.56. This 

suggests that the two may have occurred on the same autozooid, largely only when 

there were insufficient autozooids, for the numbers produced, to be produced by 

separate autozooids.

There was much evidence, in virtually all of the parameters investigated, that in T. 

inopinata lateral avicularia and ovicell occurrence were strongly negatively 

correlated. The results were slightly different for the three colonies.
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• When lateral avicularia and ovicell occurrence was related to ‘stem’ and ‘branch’ 

intemodes, lateral avicularia occurred twice as frequently in ‘stems’, whilst 

ovicells occurred -50%  more frequently in ‘branches’.

• In relation to complete and incomplete intemodes, lateral avicularia occurred 

-four times more frequently in complete, whilst ovicells occurred twice as 

frequently in incomplete, intemodes.

• When autozooid position was considered, lateral avicularia occurred four to six 

times more frequently on sub-apical autozooids whilst ovicells occurred >10 

times more frequently on proximal autozooids, in the majority of the material 

studied.

Strictly speaking, these results relate the production of lateral avicularia and 

embryos, not ovicells. However the opening to an ovicell produced by an autozooid 

for an embryo produced by the autozooid proximal to it, is adjacent to any lateral 

avicularia produced by that autozooid.

6.4.3.3.2 Single/bifid spines and limited/extensive scuta

As discussed above, there may well be a correlation between simple and bifid spines 

and the extensiveness of scuta, and perhaps with the presence or absence of ovicells. 

The condition of the material did not, unfortunately, allow a quantitative 

investigation to be made.

6.4.4 Summary

There was no indication of any variation between colonies in respect of the 

arrangement of autozooids within intemodes, intemodes within ‘stem sequences’, or 

‘stem sequences’ within a colony.

All intemodes were of an odd number of autozooids, resulting in asymmetrical 

bifurcations, and a consistent branching pattern. Spatial constraints mean that not all 

intemodes bifurcate. Differentiating between ‘stems’ and ‘branches’ at bifurcations, 

led to the concept of ‘stem sequences’. A colony consisted of a small number of 

long, and a large number of much shorter, ‘stem sequences’. All ‘stem sequences’,
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develop in a shallowly sinusoidal manner, with an essentially constant direction of 

growth, and with ‘branches’ developing alternately to left and right. The considerable 

lateral variation in the extent of vertical growth, even in the absence of external 

constraints, was clearly related to the existence of a limited number of long ‘stem 

sequences’; with growth, beyond the more proximal region, only developing, directly 

or indirectly, from them. Long ‘stem sequences’ differed from the shorter ‘stem 

sequences’ of the mass of the colony, in that their constituent intemodes were 

generally shorter, with the longest lengths being completely absent. The spatial 

arrangement of the various length intemodes exhibited an indefinite pattern; early 

generation intemodes were exclusively of three autozooids, but intemodes of five 

and longer increasingly superseded them in later generations. The fact that longer 

length intemodes were essentially confined to the more proximally positioned 

intemodes within a ‘stem sequence’ was the dominant element of the spatial 

arrangement of different length intemodes. Long ‘stem sequences’ generally well

spaced, formed central ribs of lanceolate, ‘aggregations’ of intemodes (within short 

‘stem sequences’) which in the central and distal regions of the colony, were quite 

discrete. Each ‘aggregation’ was noticeably incurved, distally and laterally, often 

resembling a partially clenched fist. The resultant colony form, an incomplete circle 

of such structures, developing from a vertically limited, laterally continuous, 

proximal region, was generally dense.

Polymorphs can be said to occur constantly, predictably, or unpredictably. Mural 

spines and scuta occurred constantly on all autozooids, except the ancestrula; but 

both exhibited unpredictable morphological variation. The proximal external spine 

was sometimes bifid, and scuta occurred in a number of different morphologies. 

Lateral avicularia occurred unpredictably, their distribution being very complex. 

They were positively correlated with early generations of intemodes, and with odd, 

high-numbered and sub-apical autozooids, within an intemode. The largest forms 

were only present on the external sub-apical autozooid of an intemode. Lateral 

avicularia also occurred much more frequently in complete, than incomplete 

intemodes and, to a lesser extent, in ‘stems’ than ‘branches’. They occurred more 

frequently in longer length ‘stem sequences’. Lateral avicularia were strongly 

negatively correlated with the presence of ovicells. Rhizoids were concentrated 

vertically, in proximal generations, and laterally, within or close to, long ‘stem
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sequences’. Ovicellate autozooids were, on average, -20%  shorter than non- 

ovicellate. The level of ovicell occurrence varied between colonies, but was 

generally high. Ovicells were infrequent or absent, in early generations of 

intemodes, within long ‘stem sequences’, and on sub-apical autozooids. They 

occurred more frequently in incomplete than complete intemodes, in ‘branches’ than 

‘stems’, and in short ‘stem sequences’. They occurred much more frequently on 

autozooids which were without lateral avicularia.
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CHAPTER 7 - CONCLUDING DISCUSSION

7.1 INTRODUCTION

The basic premise for the studies of Scrupocellaria reptans and Tricellaria inopinata 

was that the arrangement of zooids, autozooids and polymorphic heterozooids, within 

a colony, could be described in greater definition than was generally the case; and 

that this could reveal previously undescribed patterns, trends or correlations. The 

spatial arrangement of autozooids could reveal the gross structure of a colony.

The study investigated a number of parameters and possible relationships, many of 

which, so far as I am aware, had not previously been looked at in a quantitative way. 

There is therefore, for these, little pertinent information in the literature. In respect of 

S. reptans, however, Lutaud (1953) described its consistent branching pattern. There 

are few synoptic reviews of polymorphism within the Bryozoa; Silen’s (1977) review 

being the most notable, and unfortunately the most recent, exception. There is an 

enormous amount of generally qualitative information on polymorphic heterozooids 

scattered throughout the taxonomic literature. Some of these published observations, 

particularly those concerning unilaminar, biserial, arborescent Bryozoa, together with 

those of Harmer (1923) and Hastings (1943) do resonate with results of this study 

and will be incorporated where appropriate. I also have limited information on a 

third such species, Scrupocellaria scruposa.

Theoretically, especially for non-encrusting species, autozooid modules could be 

spatially arranged in an almost infinite variety of ways. In fact, if  upright forms are 

viewed in terms of their large-scale structural organization, a surprisingly small 

number of forms are to be found in the fossil record. The same forms, by and large, 

exist today (McKinney and Jackson, 1989). This, in itself, suggests that only certain 

spatial arrangements of modules have proved to be evolutionally successful. The 

various colony forms which have been described have been distinguished on the 

basis of large-scale characteristics, i.e. unilaminar and bilaminar, bifurcating and 

anastomosing, flexible and rigid. It is surely to be expected, that other characteristics 

of colony structure exist, as less obvious manifestations of the evolutionary process.
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Whilst the study of a single species could reveal much about that species, it was also 

desirable to look at a second species to establish whether or not any newly revealed 

characteristics occurred more widely, and were therefore of greater significance. The 

discovery of T. inopinata, a species new to Britain, suggested itself as an ideal 

second species to investigate. It is very similar to S. reptans, in that both are 

unilaminar, biserial and arborescent forms. They had therefore, a number of 

characteristics in common which could be compared.

7.2 DISCUSSION

7.2.1 Introduction

This discussion brings together the results of the studies of Scrupocellaria reptans 

and Tricellaria inopinata (Chapters 5 and 6) and discusses the similarities and 

differences of their characteristics. A variety o f parameters were investigated and 

numerous asymmetries of occurrence were apparent in respect of autozooids, 

intemodes, ‘stem sequences’, polymorphic heterozooids and ovicells. It is probable 

that some of these asymmetries are secondary and it is important to distinguish these 

from primary characteristics.

I shall speculate where possible and appropriate on why certain characteristics might 

occur, and on their possible biological significance. Results of the studies which 

appear to lack obvious explanation will be identified. Finally, where an investigation 

has, in my view, suggested likely further lines of enquiry, these will be set out. The 

discussion will be centred on S. reptans and T. inopinata but broadened where this 

seems worthwhile.

The arrangement of autozooids within intemodes and intemodes within ‘stem 

sequences’ is fundamental in determining the structure of the colony. The spatial 

distribution of heterozooids, however numerous and varied they may be, is 

secondary. This discussion will deal firstly with autozooids, intemodes, bifurcations, 

‘stems’ and ‘branches’, ‘stem sequences’, and the structure and form of a colony. 

Secondly it will be concerned with the numbers and spatial arrangement of
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heterozooids and the pattern of female reproductive zooids, as evidenced by the 

presence or absence of ovicells.

To minimize repetition, and to highlight similarities and differences in respect of the 

two species, this discussion is organised by characteristic rather than species. Where 

the situation was identical or very similar in both species the account highlights any 

differences. Where the situation was very different in the two species, separate 

accounts are given. A summary of the similarities of, and the differences between, 

the two species, is given at the end of the section in order that their colonies can be 

seen as entities.

7.2.2 Autozooids, internodes, bifurcations, ‘stems9 and ‘branches9, 
complete and incomplete internodes, ‘stem sequences9 and 
colony structure and form

122.X  INTRODUCTION

A central question underlying this study was does the structure and form of a colony 

primarily result from the configuration of available space, or is there an intrinsic 

structure and form which may be modified by any such constraint?

The structure of the colony results from the spatial arrangement of different length 

intemodes, of ‘stems’ and branches’, and complete and incomplete intemodes; their 

arrangement in ‘stem sequences’; and their characteristics and spatial distribution 

within the colony. Is order apparent in these characteristics? If so, beyond a 

description of the totality o f these spatial relationships there are clearly questions 

regarding the mechanism(s) by which they occur; and why they might be beneficial 

to the colony. There is probably interaction of a genetically determined astogenetic 

pattern, and environmental factors which may modify it.

1 2 2 2  AUTOZOOIDS WITHIN INTERNODES, AND BIFURCATIONS

The length of a complete intemode is determined by which autozooid within it 

produces not only another distally, but also one distolaterally, the apical autozooid. It
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would have been very useful to know whether or not an incomplete intemode had 

ceased to grow, or was still growing when the colony was collected. It was not 

possible to reliably determine this for all incomplete intemodes, but it is probable, at 

least for the large colony of the detailed study of S. reptans, given the arrangement of 

intemodes within ‘aggregations’, that only a minority were still growing. If intemode 

lengths, and/or, genuinely incomplete intemodes exhibit any pattern of occurrence 

within a colony, this suggests organisation and presumably a degree of colonial 

control.

The most notable feature of intemode lengths for both species was that, except for 

perhaps the very first intemode (in S. reptans only), all consisted of an odd-number 

of autozooids (Tables 5.8 and 6.3). Lutaud (1953) observed this and was clearly 

aware of the asymmetric nature of bifurcations (each of which is a mirror image of its 

predecessor) and the absolutely consistent branching pattern (Figure 5.3) related to 

it.

Wass (1977) looked at branching patterns in the Vittaticellidae and formulated three 

laws of branching, only one of which (the most fundamental) occurred throughout the 

family. Autozooids within intemodes are arranged very differently from the species 

of this study and do not appear to inevitably result in asymmetric bifurcations of 

opposite hands alternating. Nevertheless they do, and the branching pattern (as 

Wass’ first law) is identical to the one described by Lutaud (1953) and observed here 

in both species. Constantly reversed handing of asymmetric bifurcations is probably 

widespread; it occurs, for example, in the cheilostome genera Eucratea and Bugula 

(Hayward and Ryland, 1998), in some biserial cellularines, and in some crisiids 

(Harmer, 1891).

Clearly intemodes produce an apical autozooid before they bifurcate, and it is 

difficult not to see the consistent branching pattern as resulting from the consistent 

production of intemodes containing an odd-number of autozooids and the 

asymmetrical bifurcations. It is significant that, for S. reptans, the only intemode that 

may consist of an even number of autozooids is the first, where there is no previous 

bifurcation ‘handing’ to be reversed.
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Both species contained a range of complete intemode lengths although the two 

species were very different in respect of those lengths that occurred most frequently. 

In S. reptans, intemodes of seven autozooids were most numerous and those of seven 

or five, constituted > 90% of the total, with a few having 9 or 11 (Table 5.8). In 

contrast, in T. inopinata, intemodes of five were the most numerous, and those of 

three or five constituted 80% of the total, with a few of 7 ,9  or 11 (Table 6.3).

In the colony of S. reptans the different length intemodes exhibited a complex if ill- 

defined pattern, in which the longer the length of intemode the more distal, 

generation-wise, was its first appearance and the more proximal its disappearance 

(Table 5.7). Although the colony of T. inopinata was less developed than that of S. 

reptans, a similar pattern of occurrence was apparent. It differed in that the first five 

generations of intemodes were all o f the shortest length, three autozooids (Table 6.2). 

There would appear to be some form of control, presumably colonial, here. Five 

generations of very short intemodes, maximising the number of growing points in the 

early stages of growth, would seem very much in keeping with the opportunistic 

character of the species (Occhipinti Ambrogi, 1991; Occhipinti Ambrogi and 

d’Hondt, 1994).

The vertical pattern of the occurrence of the various length intemodes referred to 

above, probably largely results from their arrangement within ‘stem sequences’, and 

the arrangement of ‘stem sequences’ of various lengths within the colony. These 

aspects will be discussed in Sections 1.2.2.5 and 7.2.2.6.

Continuous exponential increase in the number of intemodes, generation on 

generation, is clearly impossible in a finite space, and some intemodes do not 

bifurcate. In the colonies o f both species investigated some 40% of intemodes were 

incomplete (Tables 5.8 and 6.3). Their spatial disposition exhibited no real small- 

scale pattern.

1.2.23 ‘STEM’ AND ‘BRANCH’ INTERNODES

‘Stem’ and ‘branch’ intemodes were distinguished purely in relation to the 

bifurcation which gave rise to them. There was no reason to expect to find, since 

each bifurcation gives rise to one of each, any asymmetry in their occurrence.
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For the colony of S. reptans studied in detail there were ~ 20% more ‘stems’ than 

‘branches’ (Tables 5.9 and 5.10). In the T. inopinata colony the situation was very 

different, for complete intemodes there were 50% more ‘stems’ than ‘branches’ 

(Table 6.4) whilst for incomplete intemodes there were 50% more ‘branches’ than 

‘stems’ (Table 6.5). There was a very pronounced tendency for ‘stems’ to bifurcate 

and for ‘branches’ not to. These figures and the differences between the two species 

were initially very unexpected and suggested that ‘stems’ and ‘branches’ might, in 

some respect, fulfil different functions.

For S. reptans the numbers of ‘stems’ and ‘branches’, by intemode length, exhibited 

asymmetries, the longer an intemode the more likely it was to be a ‘stem’ (Table 

5.9). For T. inopinata although the overall ‘stem’ to ‘branch’ ratio was 60:40, none 

of the three lengths present in quantity (three, five or seven autozooids) were close to 

this. For these intemodes, the ratios were 40:60; 85:15; and 50:50 respectively, and 

for the few longer intemodes the ratio was 25:75. Longer intemodes tended to be 

‘branches’ (Table 6.4). Do these asymmetries suggest, perhaps, some cryptic 

arrangement of intemode lengths within the colony?

7.2.2.4 ‘STEM SEQUENCES’

Distinguishing between ‘stem’ and ‘branch’ intemodes led to the concept of ‘stem 

sequences’, a level of organisation between the intemode and the colony. In the 

preliminary study of S. reptans, whilst main ‘stem sequences’ were constituted 

overwhelmingly of intemodes of five autozooids, intemodes of seven were probably 

the most numerous outside them. This posed the questions:-

• If there was a main ‘stem sequence’ which differed from the colony overall in 

respect of its intemode composition, were there perhaps other ‘stem 

sequences’ which exhibited a similar character?

• Could there be other characteristics in which main, or indeed any other,

‘stem sequence’ differed from the rest of the colony?

• If there were a number of ‘stem sequences’ with particular characteristics, 

did other ‘stem sequences’ exhibit any particular relationship to them?
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Again any pattern in respect of intemode or ‘stem sequence’ length surely indicates 

some form of colonial control.

12.2.5. INTERNODES WITHIN ‘STEM SEQUENCES’

Two characteristics of the arrangement of intemodes within ‘stem sequences’ were 

apparent in both species

• Long ‘stem sequences’ were composed virtually entirely of short intemodes 

(Tables 5.14 and 6.9).

(A suggestion of the existence of long ‘stem sequences’ composed of short 

intemodes can be found in Harmer (1923). In respect of ‘branches’ in Tricellaria he 

wrote, “intemodes commonly constituted by three zooecia, at least in the main 

stems”).

• Within a ‘stem sequence’, long intemodes rarely occurred beyond the more 

proximal positions within it (Tables 5.13 and 6 .8).

Regarding the lengths of intemodes within ‘stem sequences’ the situation was very 

similar in both species, allowing for the different proportions of the various lengths 

between the two. For S. reptans, in the main ‘stem sequences’ of the preliminary, 

and the 10 longest ‘stem sequences’ of the detailed study, 98% and 93% respectively 

of intemodes were of five autozooids or less, and none were of more than seven 

(Tables 5.1 and 5.14). Within the colonies intemodes of seven autozooids were the 

most numerous and longer intemodes also occurred (Table 5.15).

Although the intemode lengths which occurred most frequently in T. inopinata were 

different, shorter than in S. reptans, a very similar pattern was apparent in respect of 

both of the characteristics described above. Intemodes of three autozooids were 

more numerous, however, and long ‘stem sequences’ were of intemodes of three and 

five (Tables 6.9 and 6.10).

For the colony of S. reptans analysis showed that within all ‘stem sequences’ (Table 

5.13) intemodes of >5 autozooids were very largely restricted to the more proximal,
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and intemodes of >7, to the most proximal positions of intemodes. The situation was 

very similar for the colony of T. inopinata (Table 6 .8).

The fact that in both species long ‘stem sequences’ were constituted overwhelmingly 

of short intemodes and that none of the longest lengths were present, will be 

discussed below in connection with the structure and form of a colony. It is difficult 

to see what disadvantage, in itself, could result from long intemodes occurring in 

other than proximal positions within a ‘stem sequence’. It is possible, given that long 

intemodes generally signalled the termination of a ‘stem sequence’, that the former 

are related to how the latter occurs.

The first intemode of each ‘stem sequence’ is a ‘branch’ and all subsequent 

intemodes within them are ‘stems’. The relative numbers of ‘stems’ and ‘branches’ 

results simply from the relative numbers of the various length ‘stem sequences’. 

Similarly with complete and incomplete ‘stems’ and ‘branches’, the longer the ‘stem 

sequences’ the more ‘stem’ intemodes will tend to be complete, and the shorter the 

‘stem sequences’ the greater the probability that ‘stem’, and if  very short, ‘branch’, 

intemodes will be incomplete.

The very different proportions of complete and incomplete ‘stems’ and ‘branches’ in 

the colonies of the two species investigated in detail may result from intrinsic 

differences in the numbers of ‘stem sequence’ of various lengths in the two species, 

or perhaps from different stages of growth of the two colonies. The proportion of 

incomplete intemodes essentially increases generation on generation (Tables 5.6 and 

6.1). As stated earlier it was not possible to differentiate terminally incomplete 

intemodes from those which were still growing when the colony was collected. 

Nevertheless the proportion of total intemodes that were incomplete was almost 

identical, at 40% in the colonies of both species.

In S. reptans only intemodes of >7 autozooids exhibited a disproportionate ‘stem’/ 

‘branch’ occurrence. They were concentrated in the most proximal positions within a 

‘stem sequence’, but more frequently in the second rather than the first (Table 5.13). 

In T. inopinata all intemode lengths, with the exception of intemodes of five, 

declined rapidly in frequency of occurrence moving distally along a ‘stem sequence’.
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Those of five occurred twice as frequently in the second position than the first. (All 

first position intemodes are ‘branches’, and all second position ‘stems’). Intemodes 

of five dominated the more distal positions within ‘stem sequences’, together with a 

minority of three autozooids (Table 6 .8).

The figures relating intemode lengths to position within a ‘stem sequence’ (Tables 

5.13 and 6 .8) rearrange the figures for complete ‘stems’ and ‘branches’ by intemode 

length (Tables 5.9 and 6.4). Do the former explain the asymmetries so apparent in 

the latter? There is clearly some intrinsic pattern of intemode lengths in relation to 

intemode generation, especially so for T. inopinata. In the colony of the detailed 

study only intemodes of three occurred in the first five generations, and then the 

situation changed very quickly over subsequent generations (see Figure 6.2). 

Nevertheless it is difficult not to feel that the numbers and spatial distribution of the 

various lengths of ‘stems’ and ‘branches’ result in large part from the essentially 

consistent pattern of their occurrence in ‘stem sequences’.

1.22.6 INTERNODES AND ‘STEM SEQUENCES’ WITHIN THE COLONY

Brief mention was made in Section 1 2 2 2  to the distribution of the various lengths 

of complete intemodes in relation to intemode generation. Their distribution in 

relation to the ‘stem sequences’ in which they occurred, and their spatial distribution 

within the colony, are probably more fundamental in this respect.

Clearly a pattern of occurrence of different length intemodes related to the position of 

an intemode within its ‘stem sequence’ will not result in a general vertical or lateral 

pattern within the colony. As a result the most visually apparent lateral feature was 

the existence of a limited number of long ‘stem sequences’ of short intemodes. The 

changes in the proportions of the various length intemodes with intemode generation 

(Seption 1 2 2 2 )  result, in central and distal generations, from the changing 

proportion of intemodes within a generation that are proximal intemodes within a 

new ‘stem sequence’, or more distal in ones established earlier.
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The initial exponential growth in the number o f intemodes could not continue 

indefinitely. The questions were, at what stage and at what rate, did slowing occur, 

and was there any pattern to the spatial arrangement of intemodes and ‘stem 

sequences’ which resulted?

This section is very largely based on the colonies studied in detail, but the salient 

characteristics were also apparent in the other studies and in all of the material 

investigated of both species.

For Scrupocellaria reptans the changes in the numbers of intemodes over the 

generations (Table 5.6) result from, in two-dimensions, the lanceolate shape of the 

‘aggregations’ of intemodes which developed in central and distal regions of the 

colony, in association with long ‘stem sequences’, discussed below. The potential 

for exponential growth was exploited only in the first five generations. For the next 

10 generations the number of intemodes increased modestly, at a decreasing rate, and 

then declined over the final 10.

Laterally also, a pattern was apparent, if not rigidly defined (see Figure 5.4). Beyond 

the proximal region of the colony where all possible intemodes did develop, there 

was a large scale ‘thinning out’ which increased in magnitude, generation on 

generation. As a result, intemodes occurred generation by generation in a small 

number of narrow groups with increasingly large spaces between them.

For Tricellaria inopinata, although the colony of the detailed study was less fully 

developed, the situation was very similar (Figure 6.3) as the examination of other 

colonies confirmed.

The spatial arrangement of intemodes, both their numbers and lengths within a 

colony, has to be seen in the context of the lengths and spatial arrangement of its 

‘stem sequences’.

Three characteristics of the arrangement of ‘stem sequences’ within a colony, were 

apparent in both species
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• Colonies consisted of a very limited number of long ‘stem sequences’ and a 

much larger number which were short or very short (Tables 5.12 and 6.7).

• When exponential growth in the number of intemodes yielded to limitations 

of space, growth occurred only in discrete ‘aggregations’ o f intemodes, each 

in association with a single long ‘stem sequence’ (Figures 5.4 and 6.3).

• Growth within each ‘aggregation’ of intemodes, within short ‘stem 

sequences’, was restricted laterally to a vertical lanceolate shaped band 

(Figures 5.5 and 6.4).

The situation was very similar in both species and clearly fundamental to their overall 

structure.

(Wass (1977) in respect of Orthoscuticella lorica (referred to above in relation to its 

branching pattern) referred to primary, secondary and tertiary branches but made no 

reference to their lengths. Busk (1852) figured O. lorica (as Catenicella lorica), and 

clearly shows what I would describe as a small number of very long ‘stem 

sequences’).

Further evidence apparently supporting the significance of ‘stem sequences’ of 

different lengths was apparent when, in the colony of T. inopinata, the level of 

occurrence of lateral avicularia and ovicells was related to the lengths of ‘stem 

sequences’. The occurrence of lateral avicularia was positively correlated with ‘stem 

sequence’ length (Table 6.24), whilst the occurrence of ovicells was the converse 

(Table 6.34).

I shall describe the situation in respect of S. reptans and indicate for T. inopinata 

those minor respects in which it differed.

For S. reptans, in the colony of the detailed study there was a very small number of 

very long, and a very large number of short or very short, ‘stem sequences’ (Table 

5.12). All of the long ‘stem sequences’ originated in the first six generations of 

intemodes, although short ‘stem sequences’ also originated in generations four to six. 

(One very long ‘stem sequence’, in a colony of T. inopinata, used in a supplementary 

study, originated in the eighth generation). There was, therefore, no absolute
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relationship between intemode generation and whether or not a ‘stem sequence’ 

became long. From generation seven on, and the colony reached generation 28, 

‘stem sequences’ were overwhelmingly (94%) of four intemodes or less.

In S. reptans, the limited number of very long ‘stem sequences’ and, beyond the more 

proximal generations of intemodes, the very strongly clumped distribution of 

intemodes in association with them (Figure 5.4) resulted, in the central and distal 

regions of the colony, in discrete zones of extensive vertical growth. Each of these, 

in two dimensions, was a lanceolate ‘aggregation’ of intemodes with a long ‘stem 

sequence’ at its centre, developing in a shallowly sinusoidal manner essentially 

maintaining a constant direction of growth (Figure 5.5). A very small minority of 

intemodes formed discrete thin ‘arms’ which diverged widely from this central core, 

and these may have been part of the structure or merely aberrations resulting from a 

local failure of ‘the system’. The situation was identical in T. inopinata (Figure 6.4).

The changes in the numbers of intemodes over the generations referred to above in S. 

reptans result from the shape of these ‘aggregations’. The numbers produced would 

seem to be the numbers required to form that number o f ‘aggregations’ of that shape 

rather than intemodes ceasing to grow because o f mutual interference. In T. 

inopinata, the frequently much more incurved ‘aggregations’ were perhaps more 

likely to lead to intemode interference and inhibition.

How did the intemodes within ‘stem sequences’, within these ‘aggregations’, develop 

in two dimensions into this lanceolate shape? If all possible intemodes developed, 

such an ‘aggregation’ would form an inverted triangular shape which increased in 

width exponentially, generation on generation. Whilst it is not surprising that this 

did not occur, what did was a very considerable modification. For S. reptans, as 

referred to above, it presumably results from a spatially organised pattern of 

intemode and ‘stem sequence’ termination and/or suppression, although I have been 

unable to discern any small-scale pattern by which the large scale one occurred. This 

may also be the case for T. inopinata, but mutual interference and inhibition of 

intemodes may occur in this species.
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As was noted earlier, the length o f an intemode is determined by which autozooid 

within it buds the apical autozooid. Although the mechanism activating this is not 

known, the occurrence of sequences of particular length intemodes, within the long 

‘stem sequences’, suggests some form of control, presumably colonial. Is there a 

control mechanism that determines which autozooid buds an apical autozooid (and 

hence the length of an intemode) and which triggers its occurrence? If that should be 

the case is it such a large step for no such ‘instruction’ to be given, for the intemode 

not to bifurcate, and the ‘stem sequence’ to terminate? In T. inopinata especially, 

very long incomplete intemodes existed which anthropomorphically appeared 

positively hedonistic!

In S. reptans the very long ‘stem sequences’ were composed almost entirely of 

intemodes of five autozooids, and in T. inopinata of intemodes of three and five 

autozooids. For both, the combination of their very long length, together with a 

unique intemode constitution, points to their being a primary feature of the structure 

of the colony.

1.22.1 COLONY STRUCTURE AND FORM

Because the two species exhibited a very similar structure I shall discuss that of S. 

reptans and then identify in what respects T. inopinata differed.

The arrangement o f intemodes and ‘stem sequences’ described above has to be seen 

in relation to the resultant three-dimensional structure of the colony. In Section

1 2 2 .5  I described the existence of a limited number of largely discrete areas of 

growth, each of which, centred on a long ‘stem sequence’, was long but laterally 

limited. Each ‘aggregation’ of intemodes developing from a long ‘stem sequence’ is 

lanceolate in two dimensions. As a result of the angulation of intemodes in relation 

to one another at bifurcations, and to a lesser degree the lengthwise concavity of the 

longer intemodes, ‘aggregations’ are incurved laterally and distally. In three 

dimensions ‘aggregations’ are essentially fusiform, if incompletely so. The colony is 

an incomplete circle of incurved, incomplete ‘flasks’, which develop from a 

vertically limited (proximal to distal), laterally continuous, proximal region.
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Colonies of S. reptans not constrained by irregularities of available space may still 

occur in a range of forms from a broad, shallow, cup-like shape, to a much narrower 

but taller form. This aspect is much influenced by the extensiveness of the substrate. 

Procumbent colonies on more extensive substrata, less constrained laterally, may 

perhaps have a greater number of long ‘stem sequences’ and/or laterally more 

extensive and less incurved ‘aggregations’ developing from them, than colonies of a 

more erect habit.

There is a tendency for colonies of T. inopinata, which is very similar in overall 

structure to S. reptans, to differ somewhat in form. Colonies may develop below the 

horizontal plane of limited substrata and envelop it to a greater or lesser extent, 

which I have not seen in S. reptans. The overall colony form of T. inopinata, with 

very incurved ‘aggregations’, often like partly clenched fists, is also often much 

denser.

Before considering why the characteristics described above might be desirable it is 

necessary to consider the nature of arborescent sessile colonies, the problems they 

face, and possible solutions to them.

7.2.2.7.1 Characteristics of arborescent sessile colonies, the problems they face, and 
possible solutions to them

Most sessile animals (and plants) in an aquatic (or indeed terrestrial) environment 

have an essentially radial symmetry, with a generally convex upper surface 

(Wainwright et al., 1976). Both of these characteristics, for sessile marine colonies, 

would seem to be desirable in that they reduce the level of drag experienced by a 

colony. An essentially radial symmetry, especially for colonies with a single point of 

attachment, also facilitates an increase in the extent of the feeding surface area.

Sessile aquatic animals are oriented to the direction of water flow, anisotropy 

(Wainwright et al., 1976). In environments in which food is brought in currents 

essentially from one direction, planar fan-shaped colonies are the norm but more 

commonly, in less constant conditions, globular, tree or cone shaped colonies 

predominate (McKinney, 1981; Ryland and Warner, 1986). Apart from any
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irregularities resulting from the form of their substrate, arborescent colonies grow 

into a three-dimensional volume within the water column. Ecologically a branched 

modular growth form represents a way to exploit spatially distributed resources 

(Waller and Steingraeber, 1985). It has been said, regarding the evolution of such 

arborescent forms, that they can be considered as sheets which have repeatedly 

subdivided (Harmer, 1923). Unilaminate forms are composed of closely spaced 

narrow branches with each branch, and the spaces between them, generally 1mm or 

less. In bryozoans in which zooidal apertures are close together their polypides may 

co-operate to produce feeding currents which are more effective than those produced 

by zooids functioning independently (McKinney and Jackson, 1989). Bryozoans 

constituted of narrow unilaminate branches have zooids orientated towards only one 

side. When they feed, their obliquely truncate lophophores generate a current that is 

drawn towards, and then passes by, the branches (Cook, 1977; Winston, 1979).

Erect growth form is generally considered to confer three main advantages relative to 

an encrusting habit: (Cheetham, 1971; Jackson, 1979).

• Reduced competition from encrusting competitors (Sebens, 1982) and 

predators on the substratum.

• Increased tissue area for feeding and reproduction per unit area of 

substratum (McKinney and Jackson, 1989).

• Increased access to food within the water column. At the interface between 

a solid surface and a moving fluid the velocity o f the fluid is zero (6no slip’) 

and increases gradually with increasing distance above it, the boundary layer 

(Vogel, 1981). Increased height above the substratum therefore brings 

access to faster rates of flow (Ryland and Warner, 1986).

Whilst the above are probably all true, although not demonstrated experimentally 

(McKinney and Jackson, 1989) there are also costs to the adoption of an erect growth 

form:-

• Such colonies are very dependent on their ability to resist damage by water 

movement, especially those colonies with a single point of attachment 

(Jackson, 1979). Whether the threat of damage is countered by
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reinforcement or the production of flexible elements (Wainwright et al., 

1976) an energetic cost is incurred (Denny, 1988).

• Erect colonies are more susceptible to browsing (McKinney and Jackson, 

1989).

The structure and form of erect colonies, therefore needs:-

• Firstly, to be such that the possibility o f damage by water movement is 

minimised.

• Secondly, that it exploits the potential advantage of being within the water 

column by the possession of an extensive area of zooids, so arranged to 

enhance the feeding ability of the colony.

Whilst increases in the extent of the surface area increase feeding capability, they 

also heighten the risk of damage due to the action of water movement, raising the 

level of drag acting on the colony. Increases in colony height and cross-sectional 

area (both relevant in the two species considered here) increase the level of this 

(McKinney and Jackson, 1989).

Erect bryozoan colonies are either rigid, deriving their strength from enhanced 

calcification of the entire structure, or flexible, in which all or certain elements are 

flexible and allow the colony to bend (Wainwright et al., 1976). In areas of vigorous 

water movement most erect bryozoans are of the latter type, with rigid forms 

occurring more frequently at increased depth in quieter waters (Schopf, 1969).

One other aspect for those species which are potentially capable of exponential 

increase in the number of growing points, is the inevitable constraint of finite space. 

As colonies grow there is a need for the number of points of growth to be limited.

122.1 .2  How do the characteristics of the structure of a colony described earlier 
accord with the general considerations detailed above?

(Beyond the arrangement of intemodes within the colony, both S. reptans and T. 

inopinata have narrow calcified branches separated by flexible chitinous joints, and
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are attached to the substratum by numerous flexible rhizoids; adaptations to life in 

moving water).

The production of a sub-circular arrangement of a limited number of ‘aggregations’ 

o f intemodes each of which is incurved laterally and distally results in the overall 

form of a colony being essentially radially symmetrical. In more upright colonies 

there is also a convex upper surface. This structure and form is achieved by an 

arrangement of unilaminar intemodes which bifurcate at intervals, and its three- 

dimensional nature is largely achieved by virtue of the complex angulation between 

them.

The limited number of distally discrete ‘aggregations’ of intemodes, their limited 

lateral extent and the increasing distance (proceeding distally) between them, would 

appear to systematically control the number and spatial distribution, within a 

generation, of intemodes produced, generation on generation.

The fact that each ‘aggregation’ is centred on a long ‘stem sequence’ results in a 

constant direction of growth. In a colony form in which distally, growth occurs on a 

limited number of narrow fronts, a constant direction of growth of their central axis is 

surely advantageous. This idea is supported by the fact that when certain long ‘stem 

sequences’ came to an end (perhaps broken) the constant direction of growth was 

often maintained for several generations, by intemodes which developed from 

intemodes laterally adjacent to the distalmost of the long ‘stem sequence’ (Figure 

5.4).

The form of a colony can perhaps be envisaged as if a large circular tablecloth was 

placed on a smaller circular table, and then inverted. A colony is a  series of branches 

not a continuous sheet, but the surface area of the frontal feeding face of autozooids, 

within intemodes, is clearly very extensive, with only narrow spaces between them. 

The two dimensional shape of ‘aggregations’, the angulation between intemodes, and 

the lengthwise concavity of the longer forms, results in their essentially fusiform 

morphology. This in turn greatly increases the surface area of feeding lophophores 

and may well enhance the filter feeding process. The essentially sub-circular form of 

the colony and its ‘aggregations’, with lophophores being everted into their interior,
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results in a reduction in the space between them and also in similar numbers of 

feeding zooids facing in every direction. Spiral forms such as certain species of 

Bugula (and many hydroids, Cornelius, 1995)) achieve a similar result.

The above is probably an over-simplification. At each bifurcation, because each 

‘branch’ is partially intumed towards its companion ‘stem’ intemode, there may well 

be still smaller sub-circular forms, within each intemode generation, within 

‘aggregations’, each consisting of a series of four intemodes. Such an arrangement 

further increases surface area and may well also increase feeding efficiency. Winston 

(1979) looking at feeding currents in relation to colony morphology made the 

following observations in respect of S. diegensis. ‘The expanded lophophores are 

directed towards those of the adjacent intemode thus occupying the space between 

the two’. “Viewed from the distal end, the lophophore-bearing surfaces o f the colony 

form semi-circles rather than planar fans, yet the water current passes only once 

through the colony”.

The sub-circular nature of ‘aggregations’, and perhaps their possession of laterally 

projecting ‘arms’, may well, especially for the more plume-shaped colonies, act to 

keep them separate within the water column.

Long ‘stem sequences’ constituted of the shortest length intemodes to occur in 

quantity may be advantageous in two respects. Firstly there may be a biomechanical 

aspect to this, in that it maximises the number of strong flexible joints between 

intemodes, probably desirable in very long sequences of intemodes. Secondly it 

maximizes the number of ‘branch’ intemodes, and thus the number of new ‘stem 

sequences’ to which it gives rise. Given that growth only occurs on a limited number 

of fronts this would seem desirable, the limitations of space being lateral rather than 

vertical.

Given the overall consistency of the pattern of occurrence and spatial arrangement of 

intemodes within ‘stem sequences’, the various lengths of these, their arrangement in 

‘aggregations’, and their distribution within the colony, it is difficult not to see them 

as important elements of the means by which the structure and form of the colony are 

achieved. The overall structure of a colony results from a combination of the
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consistent branching pattern, a large-scale pattern of intemode suppression and ‘stem 

sequence’ termination, and the angulation between, and the concavity of, intemodes. 

(The three-dimensional structure of the colony would be very different if  any of these 

characteristics did not occur as they do). The consistency of occurrence of these 

characteristics points to colonial control and suggests a considerable degree of 

colonial coordination.

7.2.2.7.3 How widespread is the occurrence of this colony structure and form?

It was shown in Chapter 2 (Section 2.4) that for S. reptans, damage and partial 

mortality occurred frequently and significantly. (Colony form involves a 

compromise between the need to reduce the level of drag acting on the colony, and 

increase the extent of the surface area of feeding zooids, see Section 7.2.2.7.1 above). 

It is unfortunate that it is not known to what extent damage was the result of 

predation or of failure to withstand abiotic forces. Susceptibility to such damage, 

however it occurs, is likely to be greater in a form in which the majority of the colony 

develops from a limited number of very long ‘stem sequences’, than where all ‘stem 

sequences’ are of moderate length. They are perhaps, all the more vulnerable 

occurring as they do within the exposed periphery of the colony.

Nevertheless the structure and form of the colony in both S. reptans and T. inopinata 

(and I suspect other unilaminar, biserial cellularines) is clearly a successful one, in 

spite of the frequency and extent of partial mortality demonstrated for S. reptans

This suggests perhaps the more widespread occurrence of this structure and form in 

unilaminar, biserial, arborescent cellularines. This arrangement may not however be 

characteristic of all such species. A limited amount of material of S. scruposa which 

I have seen is very different, in that I found no evidence of a limited number of long 

‘stem sequences’ of shorter intemodes, around which the colony was structurally 

organised. Intemodes found were of up to 17 autozooids; those of seven or nine 

autozooids predominated, but none shorter than seven were seen.

A possible explanation may lie in the fact that colonies of S. reptans and T. inopinata 

appear to occur, however abundantly, as separate colonies, whilst those of S.
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scruposa, which I have seen, form a continuous ‘tu rf in which the scope for lateral 

growth is very circumscribed. It would seem arguable that S. scruposa is less 

advanced than S. reptans in that it perhaps neither possesses, nor perhaps needs, the 

ability to spatially organise its intemodes, and does not produce a structured colony 

form. This presupposes of course, that a structure or lack of it is constant for a 

species.

In his description of S. macrorhyncha, a species very similar to S. reptans, Gautier 

(1962) referred to the distinguishing features between the two, including that the 

intemodes of the former were of 9 -  21, whilst those of the latter were of five or 

seven autozooids. (I have found intemodes o f up to 13 autozooids in S. reptans). The 

spatial arrangement of frontal avicularia and ovicells, as described by Prenant and 

Bobin (1966) (as S. macrorhynchus) is identical to that of S. reptans, and Zabala and 

Maluquer (1988) believe their description is of S. reptans, although they ignore the 

difference in intemode lengths. S. macrorhyncha appears to combine many of the 

characteristics of S. reptans with the intemode characteristics of S. scruposa. It is 

doubtful if a species in which all intemodes were of nine or more autozooids could 

have a structure revolving around a limited number of long ‘stem sequences’ 

constituted of shorter intemodes. Are there (at least) two different colonial 

morphologies for these unilaminar biserial arborescent cellularines, one as S. reptans 

and T. inopinata, and one as S. scruposa and perhaps, S. macrorhyncha?

7.2.3 Polymorphic heterozooids and ovicells

7.2.3.1 INTRODUCTION

The situation for polymorphs and ovicells was much more complex than that for 

autozooids, intemodes and ‘stem sequences’ because:-.

• Firstly, the two species differ in many respects.

• Secondly, there were more zooid types involved, parameters to consider, and 

possible interactions between them.

• Thirdly there was, for one polymorph of S. reptans, evidence of inter-colony, 

and for two, of inter-population variation. (These have not been given much
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attention, as whilst they affected the definition of patterns and trends, they did 

not negate them).

Polymorphs occurred constantly on all autozooids; predictably on certain autozooids; 

or, on some, with various degrees of unpredictability. For the first of these their 

distribution must be genetically determined, there is no question of environmental 

factors, internal or external being involved, and no question of differential effect on 

the production of other polymorphs or reproductive activity. For the second group, 

whilst again their distribution must be genetically determined, their presence or 

absence may well influence the presence or absence of another polymorph or 

reproductive activity. In neither group is there any variation in their spatial 

distribution to investigate. For the third group, their distribution may result from 

various factors, which may well interact with one another, and whose individual 

importance may vary temporally.

In S. reptans, the predictably occurring frontal avicularia, and the unpredictably 

occurring lateral avicularia, clearly result from control mechanisms of different 

plasticity. It is also interesting that whilst the level of occurrence of the former is 

constant that of the latter is very variable. The situation is somewhat similar in 

respect o f vibracula, the axial occurring at a constant level whilst there was inter

population variation in respect of all other vibracula.

It is tempting to assume that constantly occurring polymorphs must be of the greatest 

utility to the colony. This may well be so, but the ability to respond appropriately to 

changing circumstances would seem very desirable. In the context of trying to 

understand why certain polymorphs occurred constantly or predictably, is it 

conceivable that this has sometimes resulted from genetic assimilation (Waddington, 

1953) and that the ability to respond in a more plastic manner, which would be more 

advantageous, has been lost? I believe the jury is very much still out on genetic 

assimilation, but Harvell (1994) felt that it could be a factor by virtue of the late time 

differentiation of germ cells and their redifferentiation in each newly budded zooid.

For unpredictably occurring or morphologically variable polymorphs and ovicells, 

their numbers and their spatial arrangement within a colony may well result from the
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interactions of a variety of factors. Environmental factors may be what Silen (1977) 

termed internal or colonial, or external. Genetic factors may well affect the threshold 

level at which the colony responds to external environmental influences.

If environmental factors, either limiting polymorph occurrence or necessary for its 

initiation, are involved (and these may vary temporally, and perhaps interact) it is 

unlikely that any observable pattern of occurrence will develop. Conversely, 

however, any observable pattern within the colony, especially if not simply regional, 

is likely to have a substantial astogenetic component.

The observed distribution o f a polymorph, or ovicells, whilst it may involve an 

intrinsically spatial element, may also be influenced positively or negatively by the 

presence or absence of another polymorph or reproductive activity. It may also be 

affected by its own overall level of occurrence.

Questions concerning why, when and where a polymorph occurs are very complex. 

They are not answered simply by describing its observed spatial distribution. Such a 

description, however, is a necessary prerequisite to any attempt to tease out the 

interaction of the various factors involved.

For S. reptans, the mural spines, scuta, frontal avicularia, and axial vibracula, are 

constantly or predictably occurring polymorphs, but for T. inopinata, the variations in 

morphology of one mural spine, and the scutum, mean that only for the remaining 

mural spines can the influence of environmental factors, colonial or external, be ruled 

out.

The discussion regarding the distribution of heterozooids and female reproductive 

zooids, as evidenced by the presence or absence of ovicells, is far from 

straightforward. Numerous parameters of their individual spatial occurrence have 

been recorded in relation to the constituent parts of a colony, on a variety of scales. 

(Some asymmetries of occurrence may prove to be secondary and simply result from 

another). The information obtained is more usefully considered from the aspect of 

differential production by a region, or constituent element of the colony, on a variety
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of scales, but references within the literature are invariably related to ‘the 

polymorph’. The discussion will therefore approach the results from both 

perspectives. It is also necessary for all polymorphs and ovicells to be considered 

together in respect of these, and this will include possible associations, positive and 

negative, between them. Polymorphs with no variation in their level of occurrence 

need to be included for the picture to be complete. The aim of the study was to look 

at a colony in its entirety.

I shall therefore sequence this discussion as follows:-

• Firstly, the observed spatial distribution of the various polymorphs and ovicells.

• Secondly, the various apparent associations, positive and negative, between 

polymorphs or between a polymorph and ovicells.

• Thirdly, the affect that variation in the level of occurrence may have on the 

spatial distribution of a polymorph.

• Fourthly, an analysis from the ‘viewpoint’ of the colony and its constituent parts.

1 2 3 .2  THE OBSERVED SPATIAL DISTRIBUTION OF POLYMORPHS AND 
OVICELLS WITHIN A COLONY

7.2.3.2.1 Spines

For both species, apart from the ancestrula which had its own particular arrangement, 

all autozooids had mural spines, the precise arrangement of which was related to the 

position of the autozooid within the intemode. For S. reptans there was no variation 

of form in respect of the mural spines. In T. inopinata the most proximal of the 

external spines was sometimes bifid. This variation is discussed in Section 7.2.3.5.I.

7.2.3.2.2 Scuta

For both species all autozooids except the ancestrula had a scutum. In S. reptans this 

was always a cervicom structure, but in T. inopinata there was much variation in size 

and form. This is discussed in Section 7.2.3.5.I.
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7.2.3.2.3 Frontal avicularia

No frontal avicularia are present in T. inopinata.

In S. reptans, excluding the first intemode of the colony, large frontal avicularia 

occurred constantly on all odd-numbered autozooids except No. 1, and were absent 

from all even-numbered autozooids. Their absence from the first intemode of a 

colony may be simply astogenetic or ascribed to very close arrangement of the 

autozooids there. Their absence from all No. 1 autozooids was almost certainly due 

to the very short gymnocyst, which is bisected by the uncalcified joint between 

intemodes. (See Section 7.2.3.5.2 re the occurrence of frontal avicularia and ovicells 

in S. reptans).

The absolutely predictable occurrence of a polymorph indicates that their production 

must be genetically controlled, albeit in a more sophisticated fashion than where the 

polymorph is produced on all autozooids. With such a pattern of occurrence, there 

was clearly no colony-wide aspect to their spatial distribution. They occurred, 

however, only in the external series of autozooids in both of the intemodes resulting 

from a bifurcation. Why were they always produced on those particular autozooids? 

It may be another instance of the dichotomy between the two series of autozooids 

within an intemode. It may involve positive or negative correlations between 

polymorphs or polymorphs and ovicells. Both of these will be discussed below. 

(Sections 7.2.3.5.1 and 1 .2 3 3  respectively).

7.2.3.2.4 Lateral avicularia

Lateral avicularia occurrence in both species was unpredictable. In S. reptans, for 

which material from three populations was examined, there was clear evidence that 

overall level of occurrence differed between colonies within the Musselwick 

population, and substantially so between it and the Swanage and Bay Fine 

populations. The level of occurrence was 3x higher at Swanage, and 5x at Bay Fine, 

in a sub-littoral population. In respect of the latter, the higher level of occurrence 

may be related to a generally higher level of biological interaction in such a habitat.
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There was often evidence of a clumped distribution, and this may support the idea 

that they occurred in response to an environmental stimulus, and perhaps that a single 

avicularium was rarely a sufficient response to it.

In neither species were these avicularia monomorphic. In S. reptans most were very 

small and a few much larger. In T. inopinata there appeared to be a continuous range 

of sizes and virtually all were larger than the small forms in S. reptans. The situation 

in S. reptans would seem to be in line with that in many species in which, if both 

frontal and lateral avicularia are present, one is invariably poorly developed (Harmer, 

1923). Whether this is, as Harmer speculated, because one form is declining due to 

the well developed presence of the other is debateable.

In S. reptans the level of overall occurrence of lateral avicularia was very variable; 

there is no single level of occurrence for the species. Their occurrence at Swanage 

was approximately three times that at Musselwick and patterns of distribution clearly 

reflected this. Occurrence of lateral avicularia for T. inopinata was investigated in 

the detailed study and in two additional colonies from the same population. Their 

level of occurrence in all three was similar at ~30%.

The detailed summary of the results in respect of all the parameters of lateral 

avicularia occurrence for S. reptans is in Section 5.5.3.2.2, and for T. inopinata in 

Section 6.4.3.2.I.

In S. reptans lateral avicularia did not exhibit any consistent pattern of occurrence in 

relation to intemode generation. In T. inopinata, in relation to intemode generation, 

lateral avicularia initially occurred frequently, but this level soon fell abmptly and did 

not regain its former level. There is some evidence that this pattern is not due to a 

direct relationship to intemode generation but is related to the distribution of ovicells 

(Section 7.4.3.2.4.)

In S. reptans lateral avicularia occurred more frequently within long ‘stem sequences’ 

than outside them. In T. inopinata, for which more data were available, the longer a
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‘stem sequence’, the higher the level of lateral avicularia occurrence (Section 

1 2 3 .5 3 .)

In both species (except for the most proximal pair of autozooids in the intemode in T. 

inopinata, where the opposite was the case) lateral avicularia occurred more 

frequently on odd-numbered autozooids in the external series. This may be an 

element of the general dichotomy between the two series of autozooids within an 

intemode (Section 7.2.3.2.11). Why the small number of lateral avicularia on the 

most proximal pair of autozooids in T. inopinata should occur more frequently on the 

even-numbered autozooid is puzzling.

In both species lateral avicularia occurred more frequently on higher numbered and 

especially sub-apical autozooids. The latter may be an element of the former or 

involve an entirely separate factor. The fact that they occurred much more frequently 

on complete than incomplete intemodes suggests the latter.

Lateral avicularia, in both species, occurred more frequently in complete than 

incomplete intemodes, and on ‘stems’ rather than ‘branches’. This apparently linked 

asymmetry occurred with other polymorphs and will be dealt with in Section 

123.5.2.

In S. reptans the infrequent large forms always occurred in the external series of 

autozooids, generally on the external of the two sub-apical autozooids. In T. 

inopinata, almost invariably ‘large’ forms occurred on the external of the two sub- 

apical autozooids and if lateral avicularia were present on both, the one on the 

external was always the larger.

The concentration, in species in which most lateral avicularia are small, of large 

forms on sub-apical autozooids was noted by Osbum (1950) in respect of S. 

californica. Lateral avicularia “are rather small, but these are frequently replaced, 

especially towards the end of branches, by giant avicularia of about the same form.”
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(There are also references in the literature to very large frontal avicularia on the 

axillary autozooid in S. diadema and S. obtecta (Harmer, 1926; Canu and Bassler, 

1929; Osbum, 1950; Ryland and Hayward, 1991).

Why large lateral avicularia should be concentrated on the external of the two sub- 

apical autozooids is unclear. Such large avicularia are likely to be more effective 

organs of defence against larger intruders than smaller forms, but there is no obvious 

reason why they should be sited as they are, or why their occurrence is so episodic.

7.2.3.2.5 Vibracula

Vibracula are absent in the genus Tricellaria. Their absence may be invoked to 

explain the far greater occurrence of overgrowth, generally by other bryozoans, in T. 

inopinata, compared with S. reptans.

The frequency of vibracula occurrence at Swanage was more than twice the level at 

Musselwick.

The detailed summary of the results in respect o f all the parameters of vibracula 

occurrence is in Section 5.5.3.2.3.

Vibracula did not exhibit any pattern of occurrence in relation to intemode 

generation, or autozooid position within an intemode. They occurred twice as 

frequently in long ‘stem sequences’ than outside them. This may be related to the fact 

that rhizoids, which develop from them, occur more frequently in long ‘stem 

sequences’ (see Section 7.4.3.2.6). It may simply be another instance of polymorphs 

in general occurring more frequently in longer ‘stem sequences’ (see Section

7.2.3.5.3).

Vibracula occurred much more frequently on even-numbered autozooids in the 

internal series. It has been generally assumed that the central function of vibracula in 

arborescent species was the removal of sediment and/or the discouragement o f would 

be settlers by the sweeping movements of the setae (Cook, 1985; Winston, 1991; 

Barnes, 1994). It is difficult to see why, if this were the case, they should be strongly
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concentrated on one side of an intemode. This may be an element of the general 

dichotomy between the two series of autozooids within an intemode and will be 

discussed in Section 7.2.3.2.11. It may be that vibracula occurrence is related to that 

o f ovicells whose occurrence was essentially restricted to that series (see Section

7.2.3.5.3).

Vibracula occurred more frequently on complete than incomplete intemodes, and on 

‘stems’ than ‘branches’. This apparently linked asymmetry occurred in respect of 

other polymorphs and will be dealt with in Section 7.2.3.5.2.

7.2.3.2.6 Axial vibracula

One other polymorph which occurs absolutely constantly in S. reptans is the axillary 

vibraculum, which actually develops from the No. 2 autozooid of the stem intemode 

produced at a bifurcation. Species within the genus Scrupocellaria are either without 

such vibracula, have one, or two; and their occurrence, or lack of it, is generally 

constant within a species (Waters, 1896). S. jullieni, however, while typically having 

two, may lack one or both (Hayward, 1978). It is difficult to see why variation 

should occur, given the constant arrangement of autozooids at bifurcations within the 

genus. In species with two such vibracula, they are produced by the No. 2 autozooid 

in each intemode following the bifurcation. It is difficult to see the utility of having 

two vibracula situated side by side.

7.2.3.2.7 Rhizoids

Both S. reptans and T. inopinata are attached to the substratum by tubular rhizoids, 

which originate differently in the two species. In S. reptans the rhizoid chambers 

develop from vibracula and are, therefore, produced throughout the colony regardless 

of whether or not a rhizoid will develop. No vibracula are present in T. inopinata 

and rhizoids are produced from rhizoid chambers which are not produced in such a 

profligate manner. This may well influence the pattern of distribution in the two 

species.
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The numbers of rhizoids a colony produces and the size of the area of the colony in 

which they occur, are inevitably related to the form of the colony and the 

extensiveness of the substrate. References to rhizoids within the literature generally 

refer to the fact they are concentrated in the more proximal region of the colony. 

Whilst this is broadly true, the two species investigated do differ even in this respect. 

Rhizoids in S. reptans are concentrated in the proximal generations of intemodes but 

this zone is often quite extensive and in well-developed colonies, a second, more 

distal zone of intemodes may also develop rhizoids. In T. inopinata, rhizoids are 

much more noticeably concentrated in the early generations of intemodes; the zone 

probably expanding distally as required. Although Robertson (1905) stated that 

rhizoid chambers without rhizoids did not occur, I have seen them but only on 

autozooids in intemodes immediately distal to those with rhizoids.

To say simply that rhizoids are concentrated proximally implies that there is no 

horizontal aspect to their distribution. This is not the case. In both species, rhizoids 

were concentrated horizontally within the intemodes of long ‘stem sequences’, and 

those laterally adjacent to them. Given the structure of the colony, this is not 

unexpected, but again suggests a degree of colonial control.

7.2.3.2.8 Ovicells

Ovicell occurrence was substantially different in the two species, and they will be 

considered separately before comparing them.

Scrupocellaria reptans

The detailed summary of the results in respect o f all the parameters of ovicell 

occurrence is in Section 5.5.3.2.5.

In a fertile, medium sized colony from Swanage, ovicells were absent from the early 

generations, occurred at a consistently low level for a number of generations and 

declined in the most distal generations. Colonies clearly need to establish themselves 

before commencing reproduction. The absence of ovicells from the more distal 

generations of a colony, which was probably still growing, seems simply to result
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from the time delay between the production of an autozooid and the requirement for, 

and production of, an ovicell.

Ovicells were very largely absent from the long ‘stem sequences’ (see Section 

1 2 3 .5 3  below).

In a second colony from Swanage ovicells occurred much more frequently on 

proximal than sub-apical autozooids. As far as the general absence of ovicells on 

sub-apical autozooids is concerned, perhaps the involvement of the autozooids distal 

to them in the bifurcation, with the change in direction of growth that this involves, is 

a factor. They are produced by such autozooids however, if infrequently.

Some 97% of ovicells were produced on even-numbered autozooids within the 

internal series, and while this may be one aspect of the dichotomy between the two 

series of autozooids in an intemode, it is probably related to the spatial distribution of 

frontal avicularia. Both aspects discussed below in Sections 7.2.3.5.1 and 1 2 3 3 2  

respectively.

Tricellaria inopinata

The detailed summary of the results in respect of all the parameters of ovicell 

occurrence is in Section 6.4.3.2.3.

Before discussing the results in respect of the various parameters investigated in the 

detailed and supplementary studies, it is worth recalling one aspect that was 

investigated in Chapter 3. Non-ovicellate and ovicellate autozooids generally appear 

‘different’ and their basic dimensions were recorded. The results (Table 3.1) showed 

that the mean length of non-ovicellate autozooids was -20%  longer than ovicellate. 

It was noticeable that non-ovicellate and ovicellate autozooids generally occurred in 

pairs.

It is difficult to see why non-ovicellate autozooids should be larger, but the difference 

occurs so consistently that it is surely significant. Regarding ovicells in relation to 

autozooid size in Tricellaria aculeata, Hastings (1943) observed, “non-fertile
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intemodes consist o f relatively long, stout zooecia, and are less tapering proximally 

and less sinuous in outline than those of colonies with shorter fertile intemodes”.

The frequency of ovicell occurrence was inversely related to the length of the ‘stem 

sequence’ it was in. This is discussed in Section 7.2.3.5.3. Although not quantified, 

it was apparent when viewing colonies that there were often sequences of short 

intemodes, composed of long autozooids without ovicells. The long and very long 

incomplete intemodes, some longer than the longest complete intemodes, were 

generally composed of shorter autozooids, and invariably completely ovicellate.

There appears to be a general organization with shorter intemodes, largely without 

female reproductive autozooids, in long ‘stem sequences’ and fulfilling a structural 

or growth role; with other generally longer intemodes of ovicellate autozooids, in 

short ‘stem sequences’, maximizing the rate of reproduction. If this is the case it 

suggests remarkable coordination between structural organization and reproductive 

effort. It is difficult to see why such an arrangement would be desirable, unless 

autozooids within long ‘stem sequences’ are also different in other respects. Are they 

perhaps structurally more resilient? They are certainly generally longer.

The overall level of ovicell occurrence varied between the different colonies, but in 

all they were absent from proximal generations and sometimes from the most distal. 

Ovicells were found right to the growing tip in some instances, and this, given the 

time gap between autozooid production and ovicell requirement, probably indicates 

that the intemode, often long and incomplete, had ceased to grow.

Ovicells occurred more frequently in branch than stem intemodes and in incomplete 

than complete. This apparently linked asymmetry, although the reverse of that 

occurring in respect of polymorphs, will be dealt with below (Section 7.2.3.5.2).

Within the detailed study, ovicell occurrence in relation to intemode length was 

investigated, and it was clear that the longer the intemode the higher the level of 

ovicell occurrence. They were almost entirely absent from intemodes of three 

autozooids. The investigation into the level of ovicell occurrence in relation to both
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autozooid number and autozooid position, revealed that whilst autozooid number was 

not a factor, autozooid position was. The extent of the difference between the level 

of occurrence on proximal and sub-apical autozooids varied between the three 

colonies, but in two, ovicells occurred >10 x more frequently on proximal than sub- 

apical autozooids. This explains, to some degree, why the rate of ovicell occurrence 

increases with intemode length.

As for S. reptans, the general absence of ovicells on sub-apical autozooids is perhaps 

also related to the involvement of the autozooids distal to them in the bifurcation, 

with the change in direction of growth that this involves. It may, however, be related 

here to the relationship between ovicells and lateral avicularia discussed in Section 

7.2.3.3A

Scrupocellaria reptans and Tricellaria inopinata compared

The most obvious difference between the two species is the overall level of ovicell 

occurrence which, although variable within a species, was probably three to four 

times higher in T. inopinata. This is well known as an opportunistic species 

(Occhipinti Ambrogi, 1991; Occhipinti Ambrogi and d’Hondt, 1994; Dyrynda et al. 

2000) with considerable powers of colonisation, and a high level of fecundity is 

clearly an important element of this. In T. inopinata, ovicells occurred at a virtually 

identical level in the two series of autozooids within an intemode. For S. reptans, the 

situation was very different, ovicells are essentially only produced in the internal of 

the two series of autozooids, and they are rarely produced by the sub-apical autozooid 

of this. There are, therefore, severe constraints on the overall level o f ovicell 

occurrence, and hence reproduction. Clearly fecundity is not as important to this 

species.

12.3.3 POSITIVE AND NEGATIVE CORRELATIONS BETWEEN VARIOUS 
POLYMORPHS, AND BETWEEN POLYMORPHS AND OVICELLS

As with the observed spatial arrangement of polymorphs and ovicells, such 

correlations, positive or negative, may be secondary, and result from other factors. 

The presence or absence of one polymorph may be positively or negatively correlated
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with that of another, or with female reproductive activity. A positive correlation 

could have a functional origin; the juxtaposition of vibracula and ovicells in S. 

reptans is perhaps of this nature. A negative correlation could be simply a matter of 

the available space, as is probably the case of S. reptans, where frontal avicularia and 

ovicells are virtually mutually exclusive. Is it conceivable that two energy-demanding 

polymorphs, such as the large frontal avicularia and the active vibracula in S. reptans, 

are not ‘ ideally’ produced by a single autozooid?

7.2.3.3.1 Simple and bifid spines and variations in scuta morphology in 
Tricellaria inopinata

Unfortunately, spines and scuta in this species are very easily damaged, and more 

pristine material than I have seen would have been required for a quantitative 

investigation. Nevertheless some discussion is necessary.

In contrast to S. reptans, in T. inopinata there is morphological variation in respect of 

the proximal external mural spine, which is sometimes bifid, and in the extensiveness 

or otherwise o f the scuta. The scutum originates proximal to the mid point of the 

internal rim of the frontal membrane, and thus, however extensive, it does not cover 

the distal end of the frontal membrane. The proximal external spine, which is 

frequently bifid, is directed more distally than laterally, overarches little of the frontal 

membrane, and its forked end is generally close to the opening of the ovicell. It is 

quite possible that these two variations occur in parallel. If the constancy of the 

situation in S. reptans reflects a constant requirement, the two variations in T. 

inopinata referred to above could result from some third characteristic, which causes 

the level of protection required to vary. Given that all autozooids have, at some 

stage, a functioning polypide, it is difficult to see what third element other than an 

embryo could be involved.

Several authors have observed a sometimes-bifid proximal external spine. Harmer 

(1926) noted, “bifurcate proximal outer spine” in S. diadema. Fransen (1986) 

describing a new species, S. carmali noted, “the outer proximal spine is often one 

time bifurcated”, but he made no reference to variation in scuta morphology, or any 

relationship between the two, or of any relationship to ovicells. Osbum (1950)
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describing S. regularis, noted that both the proximal external and internal spines 

were sometimes bifid, but made no further comment. Regarding scuta in S. diadema 

Harmer (1926) noted that scuta were often absent from proximal intemodes, and 

were found “particularly in those which are provided with ovicells”. Regarding the 

same species (though named as S. annectens), MacGillivray (1887) noted that 

proximal parts have no scuta, whilst those on fertile “branches” are large. Gordon 

(1986) regarding T. inopinata (as T. occidentalis) felt that scuta were more extensive 

on ovicellate autozooids but did not refer to the distribution of bifid spines. The 

condition of my material makes me reluctant to speculate, but ovicellate autozooids 

with bifid spines were apparent on a limited number of undamaged zooids. 

Strangely, infertile autozooids and intemodes were invariably more damaged than 

those which were ovicellate. If there was a relationship between the two polymorphs 

and the production of embryos and ovicells, this would indicate considerable colonial 

coordination. It must be admitted that incurring additional costs to protect embryos 

is not a characteristic one would expect to find in such an opportunistic species. 

There may of course, be no functional basis underlying these variations, but they are 

not simply ontogenetic or astogenetic in nature.

1.2.33.2 Frontal avicularia and ovicells in Scruvocellaria reptans

In S. reptans, frontal avicularia and ovicells occupy an almost identical position on 

the gymnocyst proximal to the frontal membrane. Excluding the first intemode of 

the colony, frontal avicularia were found without fail on all odd-numbered 

autozooids except autozooid No. 1, and on no even-numbered autozooid. Ovicells 

were not numerous and found almost exclusively on even-numbered autozooids. The 

two were virtually mutually exclusive. In the rare instances when an ovicell was 

produced on an odd-numbered autozooid, it was produced in addition to the frontal 

avicularium, with both reduced in size.

The absolute constancy of occuiTence o f frontal avicularia, the low level of ovicell 

production and the fact that they were virtually mutually exclusive, suggests that their 

patterns of occurrence may well be related, perhaps one being restricted by the other. 

If this is so, it would seem more likely that it is the spatial distribution of frontal
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avicularia which constrains that of ovicells, and therefore of female reproductive 

autozooids, rather than the converse.

The arrangement of frontal avicularia and ovicells in S. macrorhyncha, a species very 

similar to S. reptans, was described by Prenant and Bobin (1966) (as S. 

macrorhynchus) as one frontal avicularium per pair of autozooids, except the one 

following the bifurcation. (The figure shows frontal avicularia in one series of 

autozooids, and ovicells in the other). This is identical to the arrangement in S. 

reptans. Zabala and Maluquer (1988) believe Prenant and Bobin’s description refers 

to S. reptans and note that their description and figures of that species refer to 

pedunculate frontal avicularia!).

7.2.3.3.3 Vibracula and ovicells in Scruvocellaria reptans

Vibracula were very largely confined to the internal series of autozooids. In the two 

aggregations from Musselwick, 94% and 90%, and in that from Swanage, 74% of 

vibracula occurred in this series. Ovicells were even more heavily concentrated in 

the internal series. It was, therefore, quite likely that vibracula would occur on 

autozooids which actually produced ovicells. Furthermore, given that both occurred 

at the proximal end of an autozooid they would be very close together. In all of the 

material investigated in the quantified studies, each ovicell had a vibraculum sited 

adjacent to it.

(With reference to pseudopores in the Cyclostomatida, Ryland (1970) referred to the 

general assumption that the function of these was to permit the passage of dissolved 

gasses through an otherwise impermeable barrier. He went on to note that in the 

brood chambers, the incidence o f such pseudopores was twice that occurring in the 

walls of the autozooids, and that this must be to satisfy the high oxygen requirements 

of the developing embiyos).

Cheilostome ovicells do not contain the results of polyembryony but presumably the 

uncalcified pores in the ectooecium are to facilitate gas exchange and, if  this is so, 

that there is a potential problem. At low Reynolds numbers is it possible that the 

movement of vibracular setae could result in increased local water movement, and
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increase oxygen levels available to embryos developing within ovicells? Vogel 

(1981) suggested that the beating of cilia [in an unspecified animal and environment] 

“may augment diffusive exchange by reducing the amount of semi-stagnant water 

around an animal”.

That this is not the sole explanation for their pattern of distribution, if indeed it is an 

explanation at all, is obvious from the more frequent occurrence of vibracula. Also, 

at higher levels of vibracula occurrence as in ‘supplementary Swanage’, where 

ovicells were still essentially absent from odd-numbered autozooids, limited numbers 

of vibracula occurred on these. It is also the case that vibracula consistently occurred 

more frequently within long ‘stem sequences’ than outside them, whilst for ovicells 

the converse was the case. This latter point will be discussed further in connection 

with the relationship between the distribution o f vibracula and rhizoids (Section 

7.2.3.3.6). The above suggests that a polymorph may well be involved in more than 

one association, in addition to any pattern of sites of ‘preferred’ production.

7.2.3.3.4 Lateral avicularia and ovicells in Tricellaria inopinata

There was much evidence in virtually all of the parameters investigated, that in T. 

inopinata lateral avicularia and ovicells were strongly negatively correlated. The 

results were slightly different for the three colonies investigated.

• Lateral avicularia occurred 2.5 -  6.0 times more frequently on non-ovicellate 

autozooids (i.e. the autozooid producing the embryo, not the ovicell).

• The sudden fall in the level of lateral avicularia occurrence in a particular 

generation of intemodes, coincided exactly with the sudden increase in the level 

of ovicell production, and after which they became generally restricted to sub- 

apical autozooids, where ovicells rarely occurred.

• In relation to ‘stem sequences’, the longer the ‘stem sequence’ the higher the 

level of lateral avicularia occurrence, whilst for ovicells the converse was the 

case.

•  In relation to ‘stem’ and ‘branch’ intemodes, lateral avicularia occurred 50% 

more frequently in ‘stems’, whilst ovicells occurred 50% more frequently in 

‘branches’.
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• In relation to complete and incomplete intemodes, lateral avicularia occurred five 

times more frequently in complete, whilst ovicells occurred almost three times 

more frequently in incomplete, intemodes.

•  When autozooid position was considered, lateral avicularia occurred three times 

more frequently on sub-apical autozooids whilst ovicells occurred 12 times more 

frequently on proximal autozooids.

The above is all the more surprising given that lateral avicularia (in total) and 

ovicells occurred at almost identical levels in the two series of autozooids within an 

intemode. Nevertheless, ovicellate autozooids tended not to produce lateral 

avicularia.

A negative correlation between lateral avicularia and ovicell production is a counter 

intuitive situation, as it is difficult to see how the presence of a lateral avicularium 

adjacent to the opening of an ovicell could be disadvantageous. In some species 

frontal avicularia are found only in association with ovicells, e.g. S. scruposa (see 

Ryland, 1965), S. inermis (see Ryland and Hayward, 1977). Given the assumption 

that such avicularia have a defensive function, this would seem a more 

understandable arrangement. Harmer (1926) noted in S. diadema “frontal avicularia 

rarely wanting, typically present, at least in the fertile branches”.

Given the above, is it conceivable that there is a disadvantage in a single autozooid 

producing both an embryo and a lateral avicularium? Certainly it is not an absolute 

factor as they do occur together on a minority of autozooids.

Given the extent to which lateral avicularia and ovicells occur on different 

autozooids, the question arises why do they sometimes occur together? In part o f a 

densely ovicellate colony of T. inopinata, the relationship between lateral avicularia 

and ovicells was investigated in relation to intemode generation. The situation 

changed from one generation to the next. In early and late generations where there 

were a number of ‘free’ autozooids, without lateral avicularia or ovicells, ‘dual 

occupation’ did not occur. In the intermediate generations, where both ovicells and 

lateral avicularia were numerous, there were no ‘free’ autozooids without either a
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lateral avicularium or an ovicell, and the two occurred together on a minority of

autozooids.

It may well be that the numbers ‘required’ in certain generations o f intemode were 

such that this ‘over-ruled’ a preference for the two to be produced on separate 

autozooids. It would seem inevitable in general, given the various requirements of a 

colony, that compromises have to be made regarding their satisfaction, and that some 

prioritisation in the form of a hierarchy of requirements operates.

Given that lateral avicularia and ovicells are so strongly negatively correlated it is 

difficult to imagine that their individual distributions are not related, and that the 

distribution of one influences that of the other. Lateral avicularia occurrence always 

declined in the intemode generation in which ovicells occurred in number, and they 

then continued to be produced essentially only on sub-apical autozooids which rarely 

produced ovicells. This suggests it is more likely that the production of embryos and 

ovicells constrains that of lateral avicularia, rather than the converse. Temporally 

lateral avicularia, which are produced very early, are likely to be produced before 

embryos, and their non-production would have to be ‘determined’, in anticipation of 

future embryo production. This would seem to indicate considerable colonial 

coordination. Given that there are no frontal avicularia and that lateral avicularia are 

very largely restricted to sub-apical autozooids, is it conceivable that ovicells are not 

produced on these because lateral avicularia ‘need’ to be? (As discussed in Section 

7.2.3.2.8, ovicells in S. reptans also occurred much less frequently on sub-apical 

autozooids and this may be a widespread phenomenon with a completely different 

cause).

The above scenario is the converse of that postulated in respect of S. reptans, 

although in that species the avicularia were frontally sited. Given the ecological 

character of the two species however, the two postulations are not unexpected. S. 

reptans clearly, to judge from its level of fecundity, does not give priority to 

reproduction. T. inopinata, being very much an opportunistic species, as evidenced 

by its reproductive fecundity, is unlikely to give priority to defence over 

reproduction. If the two postulations are correct, it follows that not only is there
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considerable colonial control, but that it is operating in opposite directions in the two 

species.

7.2.3.3.5 Lateral avicularia and vibracula in Scruvocellaria reptans

In S. reptans lateral avicularia occurred more frequently on autozooids without 

vibracula. Given the very small size of the majority of lateral avicularia it is difficult 

to envisage any possible reason why there could be any problem for the two to occur 

together. This may be another aspect of the dichotomy of polymorph and ovicell 

assemblages between the two series of autozooids within an intemode discussed in 

Section 7.2.3.3.

7.2.3.3.6 Vibracula and rhizoids in Scrupocellaria reptans

Because rhizoid chambers develop from vibracula, it is conceivable that vibracula 

could be produced at certain sites to facilitate the production of a rhizoid chamber, 

and therefore a rhizoid. There is some evidence for this, in the form of increased 

numbers of vibracula within proximal intemodes of long ‘stem sequences’.

7.2.3.4 OCCURRENCE LEVELS OF POLYMORPHS AND OVICELLS

There was much evidence that patterns of distribution, very apparent at low levels of 

occurrence, persisted in a much less clearly defined way at higher levels. This was so, 

both in respect of the spatial disposition of apparently ‘preferred’ sites of production 

and in relation to apparent correlations, positive or negative, between polymorphs or 

a polymorph and ovicells. To some degree this is mathematically inevitable, as the 

level of occurrence increases, the scope for asymmetry is reduced. In all cases, 

however, the less well-defined pattern observed at high levels of occurrence was 

exactly that -  a somewhat less distinct version of the one that obtained at lower levels 

of occurrence. This suggests that although these patterns may be modified by the 

level of occurrence, they are always present and therefore, presumably significant.
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In the colony of S. reptans from the Musselwick population looked at in detail, 

vibracula were virtually confined to even-numbered autozooids, or more precisely the 

internal series of autozooids within an intemode. In material from Swanage, the 

overall level of vibracula occurrence was much higher, and virtually all autozooids in 

the internal series had vibracula, and they were also produced on a limited number of 

those in the external. A similar situation in respect of lateral avicularia and ovicells 

was described in Section 7.2.3.3.4.

Whatever the cause of the variations in levels of occurrence, which are beyond the 

scope of this study, the significant point is that patterns of occurrence exist despite 

them.

7.2.3.5 DIFFERENTIAL POLYMORPH AND OVICELL PRODUCTION IN 
DIFFERENT PARTS OF A COLONY

7.2.3.5.1 Autozooid series within intemodes, and perhaps in relation to bifurcations

In S. reptans there was a partial or complete dichotomy between the two series of 

autozooids within an intemode in that they gave rise to two very different assemblies 

of polymorphs and ovicells. Frontal avicularia were restricted to odd-numbered 

autozooids in the external series and lateral avicularia also occurred at least twice as 

frequently in this. Vibracula, as described above, at low level of occurrence were 

very heavily concentrated on even-numbered autozooids in the internal series, and at 

a higher level of occurrence occurred on virtually all even-numbered autozooids and 

on a minority of odd-numbered. This in itself shows that other factors may ‘override’ 

this apparent pattern of ‘preferred’ production. Ovicells were virtually restricted to 

even-numbered autozooids in the internal series.

Why should this be the case and at what scale is the variation occurring? The two 

intemodes produced at a bifurcation are mirror images of one another simply as a 

result of the configuration of autozooids at the bifurcation. It may be that the two 

series simply bear two different assemblies of polymorphs and ovicells. It is also 

possible that this dichotomy relates to the internal/external series of autozooids 

within the two intemodes, and thus to the bifurcation which gave rise to them.
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This is difficult to resolve. Positive and negative associations between polymorphs 

and polymorphs and ovicells, discussed above in Section 7.2.3.3, may also be 

important. It may be that frontal avicularia and ovicells, which occupy essentially 

identical sites, necessarily occur in different series; because frontal avicularia 

consistently occupy the external, ovicells are restricted to the internal. This is 

perhaps, in turn, the basis for vibracula occurring in the internal series. (In T. 

inopinata ovicells essentially occurred equally in the two rows as did lateral 

avicularia overall).

Does the assembly of the internal or external series of autozooids differ in its 

requirements? Does occurrence in one row confer any advantage relative to the 

other? For vibracula and ovicells, both occurring in internal series, the latter at least 

would arguably benefit from being in a ‘protected’ position. Frontal avicularia 

occurred only in the external series and lateral avicularia were concentrated here. 

With a presumed defensive function their occurrence concentrated in this way could 

be considered advantageous.

It is tempting to think of ‘external’ as more vulnerable and ‘internal’ as more 

protected, but these terms relate here to a simple bifurcation. Several elements point, 

if faintly, to the arrangement possibly being in relation to the bifurcation. Avicularia 

generally, and large forms particularly, occurred more frequently in the external, and 

virtually all ovicells in the inner series, rather than conversely. (If frontal avicularia 

occurred in the internal series I suspect they could also occur on the first autozooid of 

that series, No. 2). The occurrence of vibracula in the same row as ovicells could 

perhaps benefit the latter as discussed above. Winston (1979) in respect of S. 

diegensis observed that expanded lophophores were directed towards those of the 

adjacent intemode thus occupying the space between the two. Given the low 

Reynolds numbers is it possible that the concentration of vibracula in both internal 

rows, especially on the more proximal autozooids within an intemode, could exercise 

an influence on local water movement and perhaps enhance feeding?
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1 23 .5 .2  ‘Stems’ and ‘branches’ and complete and incomplete intemodes

The fact that I could not distinguish between incomplete intemodes which were still 

growing from those which were not, undermines to some extent any figures related to 

complete and incomplete intemodes. I suspect that for the larger colony of S. reptans 

the proportion of terminally incomplete intemodes was higher than in the less fully 

developed colony of T. inopinata.

Given that polymorphs generally occur early and ovicells late, in relation to their 

autozooid of origin, one might anticipate that in the intemodes at the ends of ‘stem 

sequences’ polymorphs would perhaps not exhibit reduced occurrence whilst ovicells 

probably would.

It was apparent that several unpredictably occurring polymorphs in both species, and 

also for ovicells in T. inopinata (for which there were more data) exhibited 

asymmetries of occurrence in respect of stem and branch and complete and 

incomplete intemodes. This is perhaps best investigated initially in T. inopinata with 

only mirror image patterns of occurrence of lateral avicularia and ovicells to 

consider. Did these asymmetries result from these intemode characteristics? They 

varied considerably in extent and, in general terms:-

• Lateral avicularia occurred 4x more frequently in complete intemodes.

• Lateral avicularia occurred 2x more frequently in stem intemodes.

• Ovicells occurred 2.5x more frequently in incomplete intemodes.

• Ovicells occurred 1.5x more frequently in branch intemodes.

In respect of complete and incomplete intemodes the results are the converse of what 

one might expect.

For complete and incomplete intemodes the levels of occurrence on proximal and 

sub-apical autozooids are relevant. Lateral avicularia occurred 6x more frequently on 

sub-apical (which only occur in complete intemodes) than proximal autozooids; 

whilst ovicells occurred ~ 12x more frequently on proximal than sub-apical 

autozooids.
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Whilst the different levels o f occurrence in both would seem to result in part from 

their very different levels of occurrence on proximal and sub-apical autozooids, this 

was not the sole cause. For lateral avicularia, when only proximal autozooids were 

considered, they still occurred twice as frequently in complete intemodes. For 

ovicells the over-riding factor is that they occurred on a very high proportion of 

proximal autozooids in incomplete, and a much lower one in complete, intemodes. 

For lateral avicularia and ovicells there would appear to be intrinsic asymmetries of 

occurrence, in for me, opposite directions to those anticipated. Lateral avicularia are 

produced less frequently towards the growing edge whilst ovicells are generally 

produced right up to it. Anthropomorphically the colony may not be ‘concerned’ 

with protecting intemodes which will develop no further, and is ‘intent’ on utilising 

to the full, its reproductive capacity.

For stem and branch intemodes there is no obvious reason why any asymmetry 

should exist, and here, they presumably result from larger scale patterns of lateral 

avicularia and ovicell occurrence. For lateral avicularia their level of occurrence is 

inversely related to the numerical position of the intemode in which they occur, 

within the ‘stem sequence’ (see Table 6.25). (This actually relates to the length of a 

‘stem sequence’ rather than intemode position within it). As a result the level of 

occurrence is lowest where the potential for it is highest, in the branch intemode 

which initiates each ‘stem sequence’, (more than 50% of possible sites occur in 

these). They therefore occur more frequently in stems. For ovicells the situation is 

the reverse (see Table 6.36) the level of occurrence is very high in the initial branch 

intemode and therefore ovicells occur more frequently in branches. There is no 

obvious reason why polymorph or ovicell production should be different in stems and 

branches as such. Given this and that the trends within ‘stem sequences’ are apparent 

over a number of numerical positions within them, it is probable that this 

characteristic is primary, but why it should occur is far from clear.

It was noted earlier in the colony of T. inopinata, that for complete intemodes there 

were 50% more stems than branches, but for incomplete there were 55% more 

branches than stems! These initially very surprising figures result simply from the 

relative numbers of the various lengths of ‘stem sequences’, as discussed in Section
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7.2.2.3, but would seem to facilitate the production of both lateral avicularia and 

ovicells.

Lateral avicularia and vibracula in S. reptans both occurred more frequently in 

intemodes which were stems rather than branches, and complete rather than 

incomplete. The asymmetry in occurrence was always much more pronounced in 

respect of complete or incomplete intemodes than stems and branches. The degrees 

of asymmetry were less at Swanage, where levels of occurrence were higher than at 

Musselwick. At the latter they varied considerably in extent and in general terms: -

• Lateral avicularia occurred 200-300% more frequently in complete 

intemodes.

• Lateral avicularia occurred 22-35% more frequently in stem intemodes.

•  Vibracula occurred 150-550% more frequently in complete intemodes.

• Vibracula occurred 8-20% more frequently in stem intemodes.

In respect of complete and incomplete intemodes the levels of occurrence on 

proximal and sub-apical autozooids are relevant. Lateral avicularia occurred 2-3.5 x 

more frequently on sub-apical (in complete intemodes only) than proximal 

autozooids; whilst vibracula occurred with equal frequency on proximal and sub- 

apical autozooids.

For lateral avicularia in respect of complete and incomplete intemodes, their greater 

frequency of occurrence on sub-apical autozooids is a factor. However, when only 

proximal autozooids are taken into account lateral avicularia still occurred twice as 

frequently in complete than incomplete intemodes. This is not due to incompletely 

developed distalmost autozooids, which were discounted; it was often due to their 

complete absence from such intemodes. It must be remembered that lateral 

avicularia exhibited an extremely irregular distribution.

Vibracula occurred with equal frequency on proximal and sub-apical autozooids 

although they occurred much more frequently in complete intemodes. The most 

notable characteristic of their pattern of occurrence was their concentration on 

autozooid No. 4. Although these occurred in equal numbers in complete and
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incomplete intemodes, vibracula occurred more than 6x as frequently in those of 

complete. As with lateral avicularia, vibracula were often completely lacking on 

incomplete intemodes. Again there seems to be an intrinsic asymmetry between 

complete and incomplete intemodes. The remarks above, in respect of T. inopinata, 

regarding the decrease in the level of polymorph production towards the growing 

branch tips also apply here.

For stem and branch intemodes there is again no obvious reason why any asymmetry 

should exist. Here, it probably results from larger scale patterns of lateral avicularia 

and vibracula occurrence. The asymmetries for both polymorphs were not that great 

and would seem to result simply from the fact that both occurred in the first intemode 

of ‘stem sequences’ at a lower level of occurrence, than in subsequent generations. 

The numbers here were much smaller than for T. inopinata, but I still suspect that the 

trend related to intemode position within a ‘stem sequence’ is cause rather than 

effect.

It appeared that for many polymorphs in both species, and also ovicells for T. 

inopinata, that there was, in terms of ‘preferred’ sites o f production, a link between 

‘complete’ and ‘stems’ and ‘incomplete’ and ‘branches’. From the above it is clear 

that the elements determining differential production of lateral avicularia and ovicells 

in T. inopinata and lateral avicularia and vibracula in S. reptans, in respect of 

‘complete’ and ‘incomplete’, and ‘stems’ and ‘branches’, are quite separate, and that 

there is no actual linkage.

1 2 3 .5 3  ‘Stem sequences’

A central aspect of the arrangement o f intemodes within a colony was their structured 

arrangement in ‘stem sequences’ within the colony. It was nevertheless a surprise 

when it appeared that the levels of polymorph and ovicell production were also 

related to ‘stem sequence’ length.

The data were more extensive in respect of T. inopinata, as lateral avicularia and 

ovicells were recorded for the entire colony. The level of lateral avicularia 

occurrence exhibited a positive, almost directly linear relationship to ‘stem sequence’
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length. Ovicells conversely were strongly negatively correlated with ‘stem sequence’ 

length.

(The data in respect of S. reptans were less extensive as the polymorphs had only 

been recorded in limited areas of the colony of the detailed study. Ovicells were also 

rare in this colony. The levels of occurrence, especially for lateral avicularia, were 

also lower; nevertheless the level of their occurrence, and that of vibracula, generally 

increased with increased ‘stem sequence’ length. Unfortunately no comparable data 

were available in respect of ovicells, although they occurred infrequently, if  at all, in 

long ‘stem sequences’).

Why should unpredictably occurring polymorphs occur more frequently the longer 

the ‘stem sequence’; and ovicell occurrence be so heavily concentrated in short ‘stem 

sequences’ in T. inopinata?

Almost 50% of all ovicells were produced in ‘stem sequences’ of a single intemode, 

and a further 37% in ‘stem sequences’ of two or three intemodes. Only one ovicell 

occurred in a ‘stem sequence’ of >8 intemodes, so there was a negative relationship 

here which cut across the general vertical, by intemode generation, pattern of ovicell 

occurrence within the colony. The distribution of ‘stem’ sequences’ by length and 

generation of origin (Table 6.7) shows, not surprisingly, that long ‘stem sequences’ 

originated in proximal generations and short ‘stem sequences’, in much larger 

numbers, in central and distal generations. Their prolific production coincided with 

that of ovicells. The heavy concentration of ovicells in short ‘stem sequences’ would 

appear to result simply from the fact that both occur in number, essentially in the 

same generations of intemodes. Their general absence from intemodes of the long 

‘stem sequences’, within these generations, is the interesting feature.

For lateral avicularia, which exhibited a mirror image pattern of distribution, their 

high level of occurrence in longer ‘stem sequences’ may well be related to the 

absence of ovicells. Their low level of occurrence in short ‘stem sequences’, the 

majority of which were initiated in the intemode generations in which ovicell 

production was at its peak, also probably results from this (see Section 7.2.3.3.4).
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The low level of ovicell production in long ‘stem sequences’ appears to be a primary 

characteristic related to ‘stem sequence’ length. Ovicells are produced at a high level 

in short ‘stem sequences’. The distribution of lateral avicularia in relation all ‘stem 

sequences’ results in large part, I suspect, from that of ovicells (see also Section 

7.2.3.3.4).

7.2.3.5.4 ‘Aggregations’ of intemodes

There was an initial requirement, in regard to investigating the spatial arrangement of 

unpredictably occurring polymorphs in S. reptans, to establish regions of a colony 

which constituted genuinely representative samples of the whole. The discovery of a 

limited number of ‘aggregations’ of intemodes associated with long ‘stem sequences’ 

probably provided such sub-samples o f the mass of the colony, even though they 

excluded the proximal region. It also seemed possible, that if  apparently 

unpredictably occurring polymorphs exhibited any large-scale pattern of occurrence, 

it could well be in relation to these ‘aggregations’. It has to be said that that no large- 

scale patterns of occurrence in relation to them were observed.

There was evidence in both species, however, that for all unpredictably occurring 

polymorphs and ovicells, long ‘stem sequences’ were ‘different’ from the rest o f the 

‘aggregation’. The polymorphic heterozooids were produced more frequently, and 

ovicells much less frequently, if  at all, within them. The intemodes at the centre of 

the structure of the colony are very largely without female reproductive zooids.

7.2.3.5.5 The colony

Two intrinsically regional patterns of occurrence in both species, both well known, 

are the proximal production o f rhizoids and the absence of ovicells from that region. 

These patterns of distribution are not problematical. Rhizoid production is essential 

in the early generations o f intemodes to anchor the colony, but progressively less so 

once it is securely attached. Ovicells are absent in early generations, the colony 

needing to establish itself before commencing reproduction.
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7.2.4 Scrupocellaria reptans and Tricellaria inopinata compared

Some newly described characteristics of S. reptans were also found in T. inopinata, 

confirming their significance if not explaining them. For other aspects the situation 

was very different in the two species, and this encouraged me to look at the sum of 

the characteristics of the two species as alternative coherent strategies.

The two species exhibited identical characteristics in respect of the way autozooids 

were arranged in intemodes, intemodes bifurcated, and the pattern of branching 

which resulted. The constitution of the colony in respect of the numbers of the 

various lengths of ‘stem sequences’, their intemode composition and spatial 

arrangement were also very similar. The structure of a colony was essentially the 

same in both species but differed in certain respects. The lengths of intemodes were 

generally shorter in T. inopinata, and their pattern o f occurrence in relation to 

intemode generation was slightly different with early generations being exclusively 

of very short intemodes. The latter would facilitate rapid growth for an opportunistic 

species. The proportions of intemodes in respect of their length, whether they were 

stems or branches, or complete and incomplete, were very different in the two 

species. There may be intrinsic differences here or they may result largely from 

variation in the stage of development of the two colonies. Although the form of a 

colony within a species did vary, particularly in relation to the extensiveness of their 

substrata, the two species typically differed in that colonies of S. reptans were 

generally more open and the ‘aggregations’ less incurved, than those of T. inopinata.

In respect of their polymorphs and ovicells the two species were very different. In 

general, as was already known, S. reptans had the more extensive assembly of 

polymorphs. In S. reptans different assemblies of polymorphs and ovicells occurred 

in the two different series of autozooids within an intemode, possibly in relation to 

the bifurcation. This was not the case in T. inopinata. Interestingly whilst spines and 

scuta are unvarying in form in S. reptans, in T. inopinata the situation is more 

complex in that one of its spines is sometimes bifid, and scuta are of variable 

morphology. This appears somewhat at odds with its characterisation as an 

opportunistic invasive species. (It is difficult not to view S. reptans as more ‘K’, and 

T. inopinata as more ‘r’, selected organisms). For aclonal animals, the concept of r
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and K-selected species is perhaps today considered less clearly defined than 

previously (Wilbur et al., 1974). For clonal species, which typically include in the 

same animal characteristics attributed to opportunistic and specialist species, the 

concept tends to break down completely (Jackson and Coates, 1986). In both 

species avicularia were negatively associated with ovicells and it is very difficult, 

given their assumed defensive function, to see why this should be. It would also 

appear that in S. reptans, ovicell, and presumably embryo production may be 

constrained by the occurrence of frontal avicularia. Conversely in T. inopinata it 

may well be embryo and ovicell production which constrains that of lateral 

avicularia. The absence of vibracula in T. inopinata could be invoked to support the 

idea that they prevented settlement, overgrowth occurring much more frequently than 

in S. reptans. T. inopinata was considerably more fecund than S. reptans.

7.2.5 Models

The approach adopted in this study has been an empirical one and the overall 

structure of a colony shown to result from a combination of several quite discrete 

factors. A consistent branching pattern, a large-scale pattern of intemode suppression 

and ‘stem sequence’ termination, and the angulation between, and the lengthwise 

concavity of, intemodes, are all essential elements. The relative importance of these 

is unlikely to be constant throughout the growth of a colony. Modular organisms 

may have fairly ‘simple’ rules of growth, but these generally change over an 

organism’s lifetime in response to changing internal, colonial, or external conditions 

(Waller and Steingraeber, 1985).

Models of branching are constructed for different reasons, with corresponding 

variations of approach. Essentially a mathematician describes branching patterns in 

terms of nodes and intemodes (Bell, 1986). Models o f branching may be qualitative 

or more frequently, with the use of computer simulations, quantitative. The latter 

take many forms, they may be non-spatial, incorporating only mles of bifurcation, or 

spatial, and if the latter, two or three-dimensional. The model may predict a constant 

developmental pattern, deterministic, or with a certain number of built-in random 

effects, stochastic. Finally a model may assume that mles remain constant,
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stationary, or that they change, perhaps more realistically, non-stationary (Waller and 

Steingraeber, 1985).

Two-dimensional spatial models of encrusting Bryozoa (Gardiner and Taylor, 1982) 

are comparatively straightforward. Three-dimensional models (Cheetham and 

Hayek, 1983) which involved, in addition to bifurcation angle, the angle of twist 

between successive bifurcations, are considerably more complex.

“A model represents the isolation of certain features of a complex situation so that 

their mutual relationships can be seen without the distraction of other features of 

lesser significance” (Mackay, 1975). It has been demonstrated that a small change in 

the specified angle of bifurcations can produce a considerable change in the structure 

which results (Gardiner and Taylor, 1982). Omitting an essential element of a 

branching pattern would clearly have a more substantial impact. Whilst models may 

be used quite simply to investigate particular aspects of growth, complete modelling 

of a colony requires, “either the morphology of the organism must be recorded in 

considerable detail, or the underlying features of its developmental architecture fully 

appreciated” (Bell, 1986).

For the species of this study the length of intemodes and angle of bifurcation may be 

straightforward. Given the complexity of the angulation and twisting of intemodes at 

bifurcations, that they occurred in several different planes, and that the two 

intemodes produced were very different from one another in this respect, modelling 

the complete structure would seem very difficult. All of the above ignores what Bell 

(1986) referred to as “the lynchpin in branching astogeny.. .the control of new branch 

initiation”. This study may suggest parameters which need to be incorporated into 

any computer generated model but it has not quantified them. In identifying the 

repeated occurrence of ‘aggregations’ of intemodes in association with long ‘stem 

sequences’, it perhaps suggests a more limited structure which could benefit from 

such an approach.
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7.3 UNANSWERED QUESTIONS AND SUGGESTIONS FOR 
FURTHER WORK

7.3.1 Unanswered questions

Because I quantified parameters and relationships which generally had not, as far as I 

am aware, been investigated before, it was always likely that unexpected results 

would be revealed for which there were no obvious explanations. Unanswered 

questions include the following:-

•  Does the occurrence of long ‘stem sequences’ composed essentially o f short 

intemodes, result from colonial control of intemode length?

• Does intemode and ‘stem sequence’ termination result from colonial control 

of intemode length and whether or not a bifurcation should occur?

•  What is the advantage of lanceolate (in two dimensions) and fusiform (in 

three) ‘aggregations’ of intemodes in association with long ‘stem sequences’?

•  Why are colonies of T. inopinata so much denser than those of S. reptans?

• Why are colonies of S. reptans and T. inopinata composed of a limited 

number of ‘aggregations’ of intemodes and colonies of S. scruposa so very 

different in this respect?

•  Why should long intemodes be essentially restricted to proximal positions 

within a ‘stem sequence’?

•  Why the concentration of large lateral avicularia on external sub-apical 

autozooids?

•  Why, in S. reptans, is the assembly of polymorphs and ovicells so different in 

the two series of autozooids within an intemode? Simply two different 

intemodes, or in relation to the bifurcation?

• Why, in general, do polymorphs occur more frequently the longer the ‘stem 

sequence’, and ovicells exhibit the converse?

•  Why, in T. inopinata, are ovicellate autozooids shorter than those which are 

non-ovicellate?

•  Why, in T. inopinata, are ovicells rare on sub-apical autozooids?

• In T. inopinata, is there a relationship between simple and bifid spines, the 

extensiveness of scuta, and the presence or absence of ovicells?
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• In S. reptans, is there a positive association between vibracula and ovicells?

• In S', reptans, is there a relationship between the occurrence of frontal 

avicularia and ovicells? Does that of the former constrain that of the latter?

• In T. inopinata, is there a relationship between the occurrence of lateral 

avicularia and ovicells? Does that of the latter constrain that of the former?

• In T. inopinata, why should polymorphs occur more frequently in complete 

intemodes, and ovicells exhibit the converse?

I have speculated, perhaps too much, as to possible benefits accruing from particular 

arrangements, and there is much scope for further investigation (see below).

7.3.2 Suggestions for further work

There would seem to be two separate areas directly related to this study:-

• Establishing whether or not findings here also applied to other material of the 

same species, or indeed other similar, and perhaps not so similar species.

• Investigating individual findings, via testable hypotheses, as to why they 

might be biologically advantageous.

In particular it would be interesting to know to what extent the branching pattern, and 

colony structure described here applies to other unilaminar biserial cellularines. It 

may be that the branching pattern occurs much more widely. Are there other 

substantially different structures, and if so, do they achieve something which this 

does not? Is S. scruposa without any recognisable structure and are there other 

similar species?

The colonies of the species of this study lent themselves to systematic quantitative 

investigation by virtue of the fact that the spatial arrangement of their constituent 

zooids could be recorded as if it occurred in two dimensions. The method used 

could, and perhaps with careful prior investigation reduced in extent, be applied to 

other such species.
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The extent of variations in the level of occurrence of certain polymorphs in material 

from three populations of S. reptans demands caution in respect o f species wide 

generalisations. At the same time the constant direction of asymmetries of 

occurrence suggests constancy in a number of respects.

Investigating the numbers and distribution of polymorphic heterozooids and ovicells 

within a colony is very complex, and is probably best attempted in species where the 

number of elements (polymorphs or polymorphs and ovicells) is small (as in T. 

inopinata). S. reptans is very fascinating in this respect, but very complex.

I said at the outset of this study that that the majority of species descriptions, 

understandably as they were generally within regional faunal descriptions, were less 

comprehensive than they might have been. Given the possible occurrence of intra- or 

inter-colony (or indeed inter-population) variation, caution is obviously necessary 

before any character is deemed characteristic of a species. It is important that 

tendencies and trends are identified but are differentiated from absolutely constant 

characteristics. Nevertheless, this study has highlighted a variety of patterns, trends 

and correlations in respect of both autozooids (and the larger units in which they are 

arranged), and polymorphic heterozooids and ovicells, which appear significant if  not 

absolute. Their causality and/or significance are generally unknown, and the extent 

of their occurrence in other taxa would be invaluable in these respects. A number of 

these characteristics could be usefully investigated (even if not exhaustively) and 

referred to in species descriptions. Doubtless others exist, which either I have not 

detected, or which are not present in the taxa considered here. “Population dynamics 

of modular organisms should be studied at the level of the intracolony module. This 

will not only describe the process of development but will also portray the form of 

modular organisms as a consequence of their internal population dynamics” (Harper 

and Bell, 1979).

7.4 SUMMARY

In the two species Scrupocellaria reptans and Tricellaria inopinata this study has 

revealed previously undescribed fundamental aspects of colonial structure: viz., the 

arrangement of intemodes within ‘stem sequences’, ‘stem sequences’ within
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‘aggregations’, and ‘aggregations’ within a colony. Although colony form was 

slightly different in the two species the structure was essentially identical in them 

both. It was thus found in species in two different genera. It was, however, absent, 

in the limited material I have seen, from a congener (S. scruposa) of one of them.

The production in S. reptans, of a number o f long ‘stem sequences’ constituted 

entirely (or virtually so) of a single length of intemode, which within the colony 

overall was in a minority, demonstrates a considerable degree of colonial control of 

intemode length. Further, if the colony can determine when an intemode is to 

bifurcate, it may well, by not triggering a bifurcation, be able to bring an intemode 

and its ‘stem sequence’ to an end, and thus directly control the extent of growth. In 

T. inopinata long ‘stem sequences’ consisted of the two shortest length intemodes, 

and the most proximal generations within the colony overall were all of the shortest 

length. Colonies of both species are essentially, beyond the initial phase of growth, 

an incomplete circle of incomplete circular structures. The structure and essentially 

radially symmetrical form of the colonies of both species would seem well suited 

both to withstand the stresses of water movement, and to maximise the area, and 

optimise the orientation, of the feeding zooids. The structure results from a 

combination of a consistent pattern of bifurcations; a pattern of intemode and 

therefore ‘stem sequence’ termination; and the complex angulation and twisting 

between intemodes at bifurcations.

In relation to the spatial arrangement of polymorphs and ovicells within a colony the 

results were much less conclusive, and the situation was very different in the two 

species. For constantly and predictably occurring polymorphs there was no pattern of 

occurrence to investigate. The study has identified for S. reptans, in addition to the 

axial vibraculum, a second polymorph, the frontal avicularium, whose pattern of 

occurrence was utterly predictable and therefore genetically determined.

For unpredictably occurring polymorphs the situation was very complex. Much 

information was assembled in respect of the occurrence, on various scales, of 

polymorphs and ovicells. Variations in patterns o f occurrence are more usefully 

considered as differential production by autozooids in relation to their position within
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an intemode, the characteristics of that intemode, that of its ‘stem sequence’, or in 

relation to the complete colony. The two species are best considered separately 

although there were characteristics common to both.

In S. reptans, for which three populations were investigated, there was evidence o f 

inter-colony and inter-population variation of lateral avicularia, and of inter

population variation of vibracula. In relation to this, patterns which were very clearly 

defined at low levels of occurrence remained, but less clearly defined, at higher 

levels. The patterns are significant.

There was a dichotomy between the two series of autozooids within an intemode in 

respect of the polymorphs and ovicells. When most apparent, at low levels o f 

occurrence, the external series contained all of the predictably occurring frontal 

avicularia, a majority of the lateral avicularia, but very few vibracula and virtually no 

ovicells. The internal series contained a minority of lateral avicularia, most of the 

vibracula and virtually all o f the sparsely produced ovicells. Whether these 

asymmetries of occurrence result simply from two different ‘handed’ intemodes, or 

occur in relation to the bifurcation is unclear. There are observed possible 

associations, positive and negative, between polymorphs or a polymorph and 

ovicells, which may be involved. The constant occurrence of a large frontal 

avicularium on all but the first autozooid in the external series would seem a 

probable explanation why ovicells, which occupy an identical position on the 

autozooid, are virtually limited to the internal series. It is possible that vibracula 

occur predominantly in the internal series because that is where the ovicells are, and 

that avicularia are concentrated in the external by virtue of their (assumed) defensive 

function.

In relation to ‘stem sequences’ both lateral avicularia and vibracula occurred more 

frequently the longer the ‘stem sequence’. Ovicells exhibited the opposite pattern, to 

a greater extent, and were rare or absent in the long ‘stem sequences’.

In T. inopinata the situation was simpler with only lateral avicularia and ovicells to 

consider. Within intemodes there was no dichotomy in relation to the two series of
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autozooids, but lateral avicularia were concentrated on sub-apical, and ovicells on 

proximal, autozooids. Lateral avicularia occurred more frequently in complete, stem 

intemodes, and ovicells in incomplete, branch intemodes. In relation to ‘stem 

sequences’, lateral avicularia occurrence was positively correlated with their length 

whilst that o f ovicells exhibited the converse pattern. Lateral avicularia and ovicells 

exhibited contrary patterns of occurrence in all respects. This is a counter intuitive 

situation and it is difficult to imagine in what respect it could be of value. Does it 

perhaps result from a constraint of some kind? Regarding the relationship between 

the two, evidence points to ovicells, and therefore embryo producing autozooids, 

perhaps determining to some degree, the spatial distribution of lateral avicularia. The 

high level of ovicell occurrence in short ‘stem sequences’ largely resulted from the 

simultaneous occurrence of many short ‘stem sequences’ and the prolific production 

of ovicells. The higher level of lateral avicularia occurrence in long ‘stem sequences’ 

probably resulted from the absence of ovicells. The virtual absence of ovicells in all 

of the longer ‘stem sequences’ is a primary feature. Embryo production was 

therefore largely absent from the most structurally important ‘stem sequences’, which 

were generally also constituted of significantly longer autozooids.

There appears to be a very different relationship between polymorphs and ovicells in 

the two species. In S. reptans, ovicell and embiyo production is probably constrained 

by the number and spatial distribution o f frontal avicularia. In T. inopinata the 

reverse situation probably obtains with lateral avicularia largely restricted to sites 

where embryos and ovicells do not occur. There would appear to be considerable 

colonial control, operating in opposite directions, in the two species. The scenarios 

accord well with the assumed ecological characteristics o f the two species. The most 

obvious difference between the two species was, as was already known, in the level 

of their fecundity. This study provides evidence of a dynamic interaction between 

somatic and reproductive effort in colonial organization.

Consistent patterns of occurrence were apparent, if  not always absolute, at all levels 

within the colony. Those of certain polymorphs persisted through variations in the 

overall level of occurrence. All such patterns are indicative of order and presumably 

of colonial organization. They point to the pervasive central role of genetically
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determined astogenetic patterns which exhibit varying degrees of plasticity. These 

must interact with each other and incorporate environmental inputs, to produce the 

actual arrangement of zooids within a colony. This would seem to need to involve a 

hierarchical arrangement of ‘requirements’, which itself may need to be plastic, to 

adjust to temporal changes within the colony and in the external environment.

7.5 ADDENDUM

A very recent paper, ‘Branching and Self-Organisation in Marine Modular Colonial 

Organisms: a Model’ (Sanchez et al., 2004) is of some interest. The authors state, 

“despite the universality of branching patterns in marine modular colonial organisms, 

there is neither a clear explanation about the growth of their branching forms nor an 

understanding of how these organisms conserve their shape during development”. 

The authors continue, “branching in marine modular colonial organisms is both a 

developmental and ecological process”. Using gorgonians the authors endeavour to 

model not only colony form but also its development. Branching here is less 

complex than in the bryozoans of this study and branches are described in terms of 

‘mother’ and ‘daughter’ branches (where the latter develop from the former). The 

authors argue that colony shape is maintained by the maintenance of a constant ratio 

between the total number of branches and the number of ‘mother’ branches.

Their model aimed to “reconcile the intrinsic process of branching, as a ‘self- 

organised criticality’, with ecological/physiological size-dependent constraints”. 

They state that, “the [branching] pattern found among these gorgonians is similar to 

that of systems whose dynamics can be described by a process of self-organised 

criticality (Bak, 1996)”. Such a process consists of dynamic behaviour around a 

parameter due to the critical effect of that value in the system. The concept is new to 

me, but may well be involved in some of the probably intrinsically controlled 

characteristics observed in this study, notably the arrangement of intemodes in ‘stem 

sequences’, and their arrangement within a colony.
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GLOSSARY

Adhesive sac: everted by larva to attach to substrata.

Adventitious avicularium: one developing on the external body wall of an

autozooid (cf. vicarious).

Ancestrula: the first zooid(s), of a colony, formed as a result of the metamorphosis 

of the originally planktonic larva.

Aperture: in ascophorines an opening in the frontal wall not necessarily

coextensive with the orifice.

Astogenetic change: the progressive change in zooid morphology related to

autozooid generation relative to the ancestrula; generally limited to early generations.

Astogenetic level: the generation of an autozooid relative to the ancestrula.

Astogeny: the development of the colony by budding.

Autozooid: a zooid capable of feeding (cf. heterozooid).

Avicularium (pi. Avicularia): a specialised zooid, in the Cheilostomatida, usually 

with a vestigial polypide and enhanced musculature operating a mandible, a 

structurally reinforced homologue of the operculum.

Basal: the underside of an encrusting colony, the non-orifice bearing face of all 

unilaminar colonies (cf. frontal).

Brown body: spherical non-histolysable remains of degenerated polypide.

Capitulum: generally spherical group of autozooids supported on a peduncle of 

kenozooids.

Coelomopore: a pore connecting the coelom with the exterior.

Cyphonautes: planktotrophic bivalved larva of some biyozoans.
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Cystid: cellular and skeletal layers of external body wall of a zooid.

Distal: the side away from the ancestrula (cf. proximal).

Epistome: a projecting flap covering the mouth in Phylactolaemates

Exterior wall: the outer body wall of an autozooid, including the cuticle

Frontal: the upper side of an encrusting colony, the orifice bearing face of all 

unilaminar colonies (cf. basal).

Frontal membrane: the uncalcified part of the frontal wall in Cheilostomatida.

Funiculus: mesenchymatous strands connecting the polypide with the zooid wall, 

and then to adjacent zooids.

Gonozooid: modified zooid forming a brood chamber

Gymnocyst: calcified frontal shield of exterior calcification.

Heterozooid: specialised zooid incapable of feeding (cf. autozooid).

Hyperstomial ovicell: rests on or partially embedded in the distal zooid, and opens 

above the operculum of the parent zooid.

Interior wall: calcified internal body wall of an autozooid, not bounded by cuticle.

Internode: the assembly of zooids between nodes in jointed arborescent species.

Intertentacular organ: tubular extension of the coelomopore by which ova are 

released in oviparous species.

Kenozooid: heterozooid without a polypide, and usually without an orifice or 

muscles.

Lophopbore: a ring of ciliated tentacles surrounding the mouth of a zooid.

Mandible: reinforced homologue of the operculum in avicularia, powered by 

enhanced musculature.
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Marginal spines: spines often found around the frontal membrane in 

Cheilostomatida.

M aternal zooid: the zooid producing the ova, (but not necessarily the ovicell).

Nanozooid: dwarf zooid in the Cyclostomata with a reduced polypide with one 

tentacle.

Operculum: a generally uncalcified lamina which closes the orifice in the vast 

majority of Cheilostomatida.

Opesia: in the Neocheilostomatina the opening below the frontal membrane which 

remains after the development of a cryptocyst.

Orifice: the opening in the frontal wall through which the lophophore is everted.

Ovicell: the spherical brood chamber in many Cheilostomatida.

Polypide: the organs and tissues of an autozooid which undergo periodic

degeneration and regeneration, i.e. the tentacles, tentacle sheath, alimentary canal, 

associated musculature and nerve ganglion.

Pore-plate: differentiated zone of a vertical wall pierced by several communication 

pores, connecting adjacent zooids.

Proximal: refers to the side towards the ancestrula (cf. distal).

Rhizoids: tubular kenozooids which attach upright forms to the substratum, and 

sometimes interconnect branches of such a colony.

Scutum (pi. Scuta): a specialised spine which overarches the frontal membrane in 

many species of the Candidae.

Septum (pi. Septa): an interior wall without cuticle.

Seta (pi. Setae): whip-like homologue of the operculum in vibracularia, powered by 

enhanced musculature.

Spinozooid: kenozooidal spine
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Stolon: tubular kenozooids, most commonly in Ctenostomatida, linking 

autozooids.

Tentacle sheath: part of body wall introverted in lophophores retraction and which 

then encloses them.

Vibraculum (pi. Vibracula): a specialised zooid, in the Cheilostomatida, without a 

polypide and with enhanced musculature operating a long seta, a homologue of the 

operculum.

Vicarious avicularium: replaces an autozooid in a series.

Zooecium (pi. Zooecia): zooid skeleton.

Zooid: a single bryozoan individual or module.
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APPENDIX ‘E’. The lengths, and intemode composition and sequence, o f ‘stem 
sequences’ originating in the first 13 generations of intemodes
in one half of a colony of Scrupocellaria reptans (incomplete 
intemodes denoted *)

Intemode
generation

28 1*

27 5
26 5
25 5 2*
24 5 5
23 7 5
22 5 5
21 5 5
20 5 5
19 7 5 5
18 5 5 5
17 5 5 5
16 5 5 5
15 5 5 5
14 5 5 5 4*
13 5 5 5 5
12 5 5 5 7* 5
11 5 5 5 5 7 5
10 5 5 5 5 5 5
9 5 5 5 5 5 5
8 5 5 5 5 5 9* 5 6*
7 5 5 5 5 4* 5 5 5 1 5
6 5 5 5 5 7 5 5 7 7 7
5 5 5 5 5 5 5 5 5
4 5 5 5 5
3 5 5
2 3
1

Intemode B C D D E E E E F F
of origin 2 4 5 8 9 12 13 16 17 20

374



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10 8* 3*
9 7* 1* 7 2* 5 2* 4*
8 5 7 1* 5 7 7 9 7
7 7 7 7 7 7 7 10* 7 5* 5
6 5 5 7 5 7 7
5
4
3
2
1

Generation F F F F F F G G G G
of origin 21 24 25 28 29 32 33 37 40 41

375



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11 2* 3*
10 2* 9 7
9 7 10* 7 7 7
8 5 7* 7 9 9* 5 7 7 5
7 5 7 5 7 7 7 7 5 7 10*
6
5
4
3
2
1

Intemode G G G G G G G G G G
of origin 44 45 48 49 52 53 56 57 60 61

376



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12 4* 7*
11 7 5
10 5 7 7
9 7 11 5* 7 7
8 5 9 9 3* 7 5 5 5 2* 7
7
6
5
4
3
2
1

Intemode H H H H H H H H H H
of origin 68 73 76 77 81 84 85 88 89 92

377



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10 4*
9 2* 11 10* 9
8 6* 5* 6* 7 7* 5 7 9* 7 7
7
6
5
4
3
2
1

Intemode H H H H H H H H H H
of origin 93 96 97 101 104 105 108 109 112 113

378



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14 7*
13 7
12 7 6*
11 2* 7 4* 7
10 1 1* 3* 7 7 7
9 1 9 9 7 3* 7 9 2* 5
8 1 5 7 6*
7
6
5
4
3
2
1

Intemode H H H H I I I I I I
of origin 117 120 124 125 145 148 149 152 165 169

379



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14 8*
13 7 7
12 5 1* 5 1*
11 5 5 7 7
10 5 2* 4* 5 5 7
9 5 9* 7 5 5 4* 5 4* 4* 7
8
7
6
5
4
3
2
1

Intemode I I I I I I I I I I
of origin 172 173 181 184 197 212 213 216 220 221

380



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12 8*
11 2* 6* 7 1*
10 9 7 7 2* 5* 7 9
9 7 5 4* 7 7 1 5 5 5 4*
8
7
6
5
4
3
2
1

Intemode I I I I I I I I I I
of origin 224 225 228 233 236 237 240 245 248 252

381



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16 5
15 5 7
14 5 5
13 5 6* 7
12 5 7 7
11 7 8* 4* 5 7 7
10 3* 4* 5 5 7 12* 8* 5 5 5
9
8
7
6
5
4
3
2
1

Intemode J J J J J J J J J J
of origin 289 297 300 301 304 337 340 341 344 364

382



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12 2*
11 3* 5 2* 9
10 5 7 5 7 3* 6* 1 5* 5 5
9
8
7
6
5
4
3
2
1

Intemode J J J J J J J J J J
of origin 393 428 437 441 444 449 465 468 469 472

383



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12 5*
11 6* 4* 7 2* 7 7
10 5 4* 7 7 7* 5* 6* 9 5
9
8
7
6
5
4
3
2
1

Intemode J J J J J J J J J K
of origin 476 480 489 492 496 505 508 509 512 596

384



Intemode
generation

28
27
26
25
24
23
22
21
20
19 4*
18 4* 5
17 7 7
16 5 7
15 7 5
14 7 7
13 5 7 7
12 7 7 1* 9
11 7 7 3* 7* 1* 7 3* 5 5 13*
10
9
8
7
6
5
4
3
2
1

Intemode K K K K K K K K K K
of origin 597 600 601 604 608 676 677 681 684 685

385



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12 7 5
11 7 7 1* 7* 3* 4* 1* 2* 2* 1*
10
9
8
7
6
5
4
3
2
1

Intemode K K K K K K K K K K
of origin 688 728 729 732 785 788 900 929 932 933

386



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14 2* 7*
13 7 9 7 6*
12 7 7 5 7 4*
11 5 6* 7 4* 1* 5 5 9 5 7
10
9
8
7
6
5
4
3
2
1

Intemode K K K K K K K K K K
of origin 940 941 944 952 980 981 984 1013 1021 1024

387



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16 4* 4 *

15 7 7* 7
14 7 7 4 * 7 3*
13 7* 7 7 7 7 8* 13
12 7 8* 7 7 7 7 4 * 3* 9 7
11
10
9
8
7
6
5
4
3
2
1

Intemode L L L L L L L L L L
of origin 1189 1192 1193 1196 1197 1200 1205 1349 1364 1368

388



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14 2*
13 2* 7* 9 5*
12 10* 5* 7 7* 7 4* 9* 4* 7 7
11
10
9
8
7
6
5
4
3
2
1

Intemode L L L L L L L L L L
of origin 1373 1376 1452 1453 1456 1461 1701 1704 1873 1876

389



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14 2*
13 10* 6* 7 9 6* 1*
12 7 6* 5 7 5 7* 7 5 6* 3*
11
10
9
8
7
6
5
4
3
2
1

Intemode L L L L L L L L L L
of origin 1880 1884 1888 1961 1964 1965 1968 2041 2044 2045

390



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17 3*
16 7 7*
15 4* 7 7
14 7 3* 7 5 7 5* 4* 4*
13 7 7 5 5 7 7 5 9 7
12 4*
11
10
9
8
7
6
5
4
3
2
1

Intemode L M M M M M M M M M
of origin 2048 2377 2380 2385 2388 2389 2392 2393 2396 2397

391



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16 4 * 6*
15 7* 4* 5 7 7* 7*
14 1 9 7 7 1* 9 7
13 7 7 7 5 11 9 7 7 5* 7
12
11
10
9
8
7
6
5
4
3
2
1

Intemode M M M M M M M M M M
of origin 2400 2724 2725 2732 2733 2736 2741 2744 2748 2908

392



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16 5*
15 9 3*
14 6* 7 7 9 7
13 4* 6* 7 5 5 7 7 7* 9* 7
12
11
10
9
8
7
6
5
4
3
2
1

Intemode M M M M M M M M M M
of origin 2912 3404 3412 3413 3416 3417 3420 3421 3424 3745

393



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14 7* 3* 4* 6* 2*
13 9 7 7 8* 5 3* 7 7 3* 8*
12
11
10
9
8
7
6
5
4
3
2
1

Intemode M M M M M u M M M M
of origin 3749 3752 3757 3760 3773 3776 3921 3924 3925 3928

394



Intemode
generation

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13 6* 6*
12
11
10
9
8
7
6
5
4
3
2
1

Intemode 
of origin

M
3932

M
3933

395



APPENDIX T  Ovicell occurrence related to autozooid number: based on 300
intemodes, each of which contained at least one ovicellate autozooid, 
selected at random from a colony of Scruvocellaria reptans collected at 
Swanage, 130701

P = present; X= not possible here; 1= incompletely developed (end of intemode).

Autozooid number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P P X
P X
P P X
P p*
P I I
P I I
P P I I
P I I

P X
P X

P P I I
P X
P X
P P P X
P X
P X

P P X
P X

P P I I
P P X
P I I
P P X

P I I
P I I
P P X
P P P I I
P X
P P I I
P I I
P X
P X
P P X

P X
P P I I
P P X
P X

396



p p X
p p p X
p I I
p X
p I I
p X
p I I
p p p X
p p p I I
p p X
p p I I

p p X
p X
p p X
p p X
p p I I
p I I

p I I
p p X
p p X

p X
p p p X

p I I
p p X
p X
p X
p p X
p p X

p p X
p p X
p X
p p X
p X
p p X
p p X
p p X
p p X
p I I
p X
p I I

p I I
p I I

p p X
p p X
p X
p p p p X

397



p p X
p p X
p p I I
p p X
p p X
p X

p X
p p X
p X
p X
p p p X
p p X

p X
p p X

p p I
p I I
p p I I
p p X
p p X
p I I
p p p X

p X
p p I I
p p p p I I
p p p X
p p p X

p X
p I I
p
p

p p X
p p X
p p p X
p I I
p p X
p p I I

p X
p p p X
p p p I I
p p I
p p I I
p p I I
p X
p p I I
p p p I I
p p X

398



p I I
p p p I I

p p I I
p p X
p p p X
p I I
p p X

p p X
p I I

p X
p p p I I
p p I I
p p p X

p X
p p I I

p p X
p p I
p p p I I
p X
p p p X
p p p X
p p X
p p I I

p X
p p p I I

p X
p X
p p I I
p I I
p X
p p X
p p p X
p p p X
p I I
p p X
p p p X
p p I I
p I I
p p X
p X
p p p X
p p p X
p p I I
p p X
p p p X
p p p X

399



p p X
p p p X
p I I
p p I I
p p I I
p p X
p I I
p X
p p I I
p p I I
p p X
p p p I I
p X
p p X
p p I I
p p X
p p p X
p p I I
p I I
p p X
p p X
p p X
p p X
p I I
p I I
p p X
p p X

p X
p X
p p p X

p X
p I I
p p p X
p X
p p p X

p X
p X
p X
p p X
p p X
p X
p p*
p I I
p X
p p X
p p X

400



401

^



p p p p p p X
p p p p X

p p X
p p X
p p p p X
p p p p I I
p p p p p p X
p p p I I
p p p p p p X
p p p p I I

p p p p p X
p p p p X
p p p p X
p p p p X
p p X
p I I
p I I
p p p X
p p X
p I I
p p I I
p I I
p X
p p X

p p X
p p X
p p X
p p p X
p p X
p p p X
p p p X
p X
p p X

p X

402



APPENDIX 4K’ The lengths, and intemode composition and sequence, of 'stem 
sequences’ originating in the first 10 generations of intemodes 
in a colony of Tricellaria inovinata (incomplete intemodes *)

Intemode
generation

15 5*
14 5
13 5 5 5 2*
12 3 5 5 5
11 5 3 3 5 2* 7
10 3 5 5 7 3 5 5 5
9 5 3 3 5 5 5 3 5
8 3 5 3* 5 5 5 5 5 5
7 5 3 3 3 5 3 3 3 5
6 3 3 3 5 5 5 5 5 5
5 3 3 3 3 3 3 3 3 3 3
4 3 3 3 3 3 3 3 3
3 3 3 3 3
2 3 3
1 3

Intemode A B C C D D D D E E
of origin 1 2 1 4 1 4 5 8 1 4

Intemode
generation

15
14
13
12
11 5*
10 6* 5
9 3 5
8 5 5 6*
7 3 11* 2* 5 5
6 5 5 7 8* 11 3 3
5 3 3 1* 3 3 3
4
3
2
1

Intemode E E E E E E F F F F
of origin 5 8 9 12 13 16 1 4 5 9

403



Intemode
generation

15
14
13
12
11 1*
10 4* 1* 5
9 3 7 5
8 5 6* 5 3 11* 9* 9* 8*
7 3 7 5 5 7 3 5* 5 7 2*
6 3 3 3 3 3 5 3 3
5
4
3
2
1

Intemode F F F F F F F F G G
of origin 12 13 20 21 24 25 28 29 5 8

Intemode
generation

15
14 5*
13 5
12 5
11 5 4*
10 2* 5 5
9 8* 7 3 5
8 10* 7 7 5 5
7 7 5 9 8* 3 3 6* 3 7 6*
6
5
4
3
2
1

Intemode G G G G G G G G G G
of origin 9 12 13 17 20 21 25 28 37 40

404



Intemode
generation

15
14
13
12 5
11 5 5
10 4* 5 5
9 7 3 4* 5 2 *
8 5 5 11 9* 5 5
7 3 3 3 11* 5 3 14* 14* 3 7*
6
5
4
3
2
1

Intemode G G G G G G G G G G
of origin 41 44 45 48 49 53 56 57 60 61

Intemode
generation

15
14
13
12 5*
11 5
10 5
9 5 5
8 9 7 4* 12* 3 2* 7* 4* 2* 4*
7
6
5
4
3
2
1

Intemode H H H H H H H H H H
of origin 9 12 17 20 21 24 25 28 36 40

405



Intemode
generation

15
14
13
12 5* 2*
11 5 5 4*
10 5 3 9 5
9 5 5 5 5* 5
8 3 3 3 6* 3 3* 5* 3 7* 15*
7
6
5
4
3
2
1

Intemode H H H H H H H H H H
of origin 41 44 45 52 53 56 73 76 77 81

Intemode
generation

15
14
13
12
11 9 5
10 3 9* 6* 5
9 9* 5 7 7 6* 5
8 3 3 3 12* 3 8* 6* 10* 11 3
7
6
5
4
3
2
1

Intemode H H H H H H H H H H
of origin 84 85 88 89 92 93 97 100 105 108

406



Intemode
generation

15
14
13
12
11 5*
10 5 8*
9 5 10* 5* 10* 7 6* 7* 11*
8 8* 3 5*
7
6
5
4
3
2
1

Intemode H H H I I I I I I I
of origin 116 117 120 21 24 37 41 45 53 77

Intemode
generation

15
14
13
12 5
11 2* 2* 4* 5
10 13* 5 5 5 5 5*
9 4* 5 3 4* 3 5 3 6* 5 4*
8
7
6
5
4
3
2
1

Intemode I I I I I I I I I I
of origin 81 84 85 89 92 105 108 109 149 152

407



Intemode
generation

15
14
13
12 5
11 9 3
10 10* 7 5 6*
9 ?* 8* 7 9* 3 3 11* 12* 4 * 3
8
7
6
5
4
3
2
1

Intemode 
of origin

I
156

I
164

I
165

I
168

I
169

I
172

I
173

I
176

I
179

I
182

Intemode
generation

15
14
13
12
11 1*
10 6* 5 3* 5 5* 7 9
9 7 8* 3 7 6* 3 7*
8
7
6
5
4
3
2
1

Intemode I I I I I I I J J J
of origin 183 212 213 216 233 236 237 44 76 81

408



Intemode
generation

15 4*
14 5
13 5
12 2* 5
11 9 5 8* 1*
10 11 1* 4* 7 2* 3* 3 5 9 1*
9
8
7
6
5
4
3
2
1

Intemode J J J J J J J J J J
of origin 84 156 164 165 168 169 172 173 180 181

Intemode
generation

15
14
13
12
11 5* 4*
10 4* 8* 1* 7 2* 5* 3 6* 3* 3*
9
8
7
6
5
4
3
2
1

Intemode J J J J J J J J J J
of origin 184 209 213 216 220 297 300 301 325 329

409



Intemode
generation

15
14
13 9 7*
12 5 3* 5
11 8* 5 5 7* 5 5*
10 2* 2* 5 3 7* 5 4* 5 3 5
9
8
7
6
5
4
3
2
1

Intemode J J J J J J J J J J
of origin 332 337 340 341 361 364 365 425 428 429

Intemode
generation

15
14
13
12
11
10 5* 8* 3 9
9
8
7
6
5
4
3
2
1

Intemode 
of origin

J
432

J
468

J
469

J
472

410


