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Abstract

We establish variational formulas for Ricci upper and lower bounds, as well as
a derivative formula for the Ricci curvature. Combining these with derivative and
Hessian formulas of the heat semigroup developed from stochastic analysis, we identify
constant curvature manifolds, Einstein manifolds and Ricci parallel manifolds by using
analytic formulas and semigroup inequalities. Moreover, explicit Hessian estimates are
derived for the heat semigroup on Einstein and Ricci parallel manifolds.

AMS subject Classification: 58J32, 58J50.
Keywords: Constant curvature manifold, Einstein manifold, Ricci parallel manifold, heat
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1 Introduction

Let (M, g) be a d-dimensional complete Riemannian manifold. Let TM = U,en 1, M be the
bundle of tangent vectors of M, where for every x € M, T, M is the tangent space at point
x. We will denote (u,v) = g(u,v) and |u| = /(u,u) for u,v € T,M,z € M. Let R, Ric
and Sec denote the Riemannian curvature tensor, Ricci curvature and sectional curvature
respectively.

When M has constant Ricci curvature, i.e. Ric = Kg (simply denote by Ric = K) for
some constant K, the metric is a vacuum solution of Einstein field equations (in particular

*Supported in part by NNSFC (11771326, 11431014).



for d = 4 in general relativity), and M is called an Einstein manifold. In differential ge-
ometry, a basic problem is to characterize topological and geometry properties of Einstein
manifolds. For instance, according to Thorpe [19] and Hitchin [20], if a four-dimensional
compact manifold admits an Einstein metric, then

X(M) > [ (M),

where x is the Euler characterization and 7 is the signature, and the equality holds if and
only if M is a flat torus, a Calabi-Yau manifold, or a quotient thereof. Recently, Brendle
[6] showed that Einstein manifolds with positive isotropy curvature are space forms, while
with nonnegative isotropy curvature are locally symmetric, and an ongoing investigation is
to classify Einstein manifolds of both positive and negative sectional curvatures.

Since the curvature tensor is determined by the sectional curvature, M is called a constant
curvature manifold if Sec = k for some constant k£ € R. Complete simply connected constant
curvature manifolds are called space forms, which are classified by hyperbolic space (negative
constant sectional curvature), Euclidean space (zero sectional curvature) and unit sphere
(positive sectional curvature) respectively. All other connected complete constant curvature
manifolds are quotients of space forms by some group of isometries. Constant curvature
manifolds are Einstein but not vice versa.

A slightly larger class of manifolds are Ricci parallel manifolds, where the Ricci curvature
is constant under parallel transports; that is, VRic = 0 where V is the Levi-Civita connec-
tion. An Einstein manifold is Ricci parallel but the inverse is not true. When the manifold
is simply connected and indecomposable (i.e. does not split as non-trivial Riemannian prod-
ucts), these two properties are equivalent, see e.g. [13, Chapter XIJ.

It is remarkable that A. Naber [15] has provided sharp bounds of the Ricci curvature
by using functional inequalities on the path space over M, see [7, 9, 23, 24| for further
developments. In particular, the related study implies characterizations of the Einstein
metric using infinite-dimensional functional inequalities. In this paper, we aim to identify
the above three classes of manifolds by using analytic formulas and inequalities on the
manifold itself, which should be easier to check comparing with functional inequalities on
the path space.

For f,g € C?*(M) and x € M, consider the Hilbert-Schmidt inner product of the Hessian
tensors Hess; and Hess,:

d
(Hessy, Hess,) ps(z) = Z Hess (@, ®7)Hess, (', ®7),

ij=1

where @ = (®%)1<;<4 € O,(M), the space of orthonormal bases of T, M. Then the Hilbert-
Schmidt norm of Hess; reads

|Hess¢|| ms = \/(Hessf, Hess) s -
For a symmetric 2-tensor 1" and a constant K, we write 7 > K if

T (u,u) > Klu>, u€ TM.



Similarly, 7 < K means T (u,u) < K|u?>,u € TM. Let T# : TM — TM be defined by
(T#(u),v) = T(u,v), u,v€T,M2e M.
Then T# is a symmetric map, i.e. (T#u,v) = (T7v,u) for u,v € T,M,x € M. Let
T |(x) = sup{|T#(u)| s u € T,M, |u| < 1}, x € M.

AC'"map Q: TM — TM with QT,M C T, M for x € M is called constant, if V(Quv)(x) = 0
holds for any x € M and vector field v with Vu(z) = 0. So, M is Ricci parallel if only if
Ric* is a constant map.

For any symmetric 2-tensor 7, define

d

(1.1) (RT)(v1,v2) = tr(R (-, va)v1, TH(+)) = Z (R(P*, va)v1, TH(D)),

i=1
where v1, vy € T,M, 2 € M, ® = (9')1<;<4 € Oy(M). Since T is symmetric, so is RT. Let

IR|[(z) = sup {||RT||(z) : T is a symmetric 2-tensor, ||T]|(z) <1},
IRl = sup [|R]|(x).
zeM

For a smooth tensor 7T, consider the Bochner Laplacian
AT == tr(V.V.T).

Then %A generates a contraction semigroup F; = e2® in the L2 space of tensors, see [16,
Theorems 2.4 and 3.7] for details. In Subsection 3.1, we will prove a probabilistic formula
of P,T, which is a smooth tensor when 7 is smooth with compact support. Precisely, for
any £ € M and ® € O,(M), let ®;(x) be the horizontal Brownian motion starting at P,
and let X;(z) := 7n®;(z) be the Brownian motion starting at z, see (3.3) and (3.5) below
for details. Then ||;= @ (2)®~" : T, M — Tx,(,yM is called the stochastic parallel transport
along the Brownian path. Both X;(z) and [|; do not depend on the choice of the initial
value ® € O,(M). When the manifold is stochastically complete (i.e. the Brownian motion
is non-explosive), for a bounded n-tensor 7 we have

(PtT)(Uh”' 7”71) :E[T(Ht Uy e 7||t UTL):|7 U1, ,Up € T:EM

In the following, we will take this regular (rather than L?) version of the heat semigroup P;.
Finally, For v € T, M, let Wy(v) € Tx )M solve the following covariant differential
equation
d . 1., -
(12) a@t(zr) Wt(U) = _iqjt (ZE)RZC (Wt(v))7 WO(U) = .
W, is called the damped stochastic parallel transport. When Ric > K for some constant
K
K € R, we have |[W;(v)| <e 2|, t > 0,v € T, M.
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In Section 2 and Sections 6-8, we will present a number of identifications of constant
curvature manifolds, Einstein manifolds, and Ricci parallel manifolds. In particular, the fol-
lowing assertions are direct consequences of Theorems 2.1, 6.1, 7.1 and 8.1 below. Comparing
with the elementary Toponogov’s triangle-comparison theorem for sectional curvatures, the
following characterizations are purely analytic using the heat flow and related differential
operators, and thus might be helpful for understanding the link between sectional curvatures
and properties of the heat flow.

(A) Constant curvature. Let & € R. Each of the following assertions is equivalent to
Sec = k:

(A;) Forany t > 0 and f € C§°(M), Hessp,y = e~ PHess; 4+ (1 — e"*)(P,A f)g.
(As) For any f € Cg°(M), Hessay — AHessy = 2k{(Af)g — d Hess; }.
(4s) For any f € C5°(M),

1
5O Hess || — (Hessa s, Hessp) s — |[VHess |7 = 2k (d][Hessy[|7s — (Af)%),

where ||VHess |35 := Y1, | VarHess|[3s, ® = (7)1<i<a € Ou(M).

(A4) Forany x € M,u € T,M and f € Cg°(M) with Hessy(z) = u®@ u (i.e. Hessy(vy,v2) =
<U, ’U1><'LL, 'U2>7 U1,V € T:cM)7

(Hessay — AHessy) (v, v) = 2k(Jul*|v]* = (u,v)?), v € T, M.

According to the Bochner-Weizenbock formula, for any constant K € R, Ric = K is
equivalent to each of the following formulas:

VP.f=e2KPVf, feCF(M), t>0,

SAIVI — (VAS, V) ~ [Hess[ys = KIVSP, f € C(M)

So, (A1)-(As) can be regarded as the corresponding formulas for Sec = k. Below, we present
some other identifications of Einstein manifolds.

(B) Einstein manifolds. Let y be the volume measure, and denote u(f) = f[,, fdu for
f € L'(u). M is Einstein if and only if

w((VE, V) ((Af)? — ||Hesss||%s)
= u(IVF)R((AF)(Ag) — (Hessy, Hessy)s), g € C(M).

Moreover, for any K € R, Ric = K is equivalent to each of the following assertions:

(1.3)



(B1) ||R||eo < 00, and for any t > 0, f € C§°(M),

t
Hessp,; = e~ P;Hess; +/ ™" Py(RHessp, ,;)ds.
0

(By) For any f € C5°(M),
%{HGSSM — AHess} = (RHess;) — KHess;.
(B3) For any f € C§°(M),
n((AF)? = IHessyll5rs) = Kn(IVfI).
(Bs) For any f,g € Cg°(M),
p((Af)(Ag) — (Hessg, Hessg)ws) = Kp((Vf,Vg)).

(Bs) There exists h : [0,00) x M — [0,00) with lim; o h(t,-) = 0 such that
‘Pt|Vf|2 — eKt|VPtf|2‘ < h(t, -)(||Hessptf||%,5 + Pt||Hessf||qu), t>0,feCe(M).

(C) Ricci Parallel manifolds. M is Ricci parallel if and only if
[ A1 = Hessls — (QVAVA}du=0. f € CE0)
M

holds for some constant symmetric linear map @ : TM — T'M, and in this case Ric? = Q.
They are also equivalent to each of the following statements:

(C1) There exists a function h : [0, 00) X M — [0, 00) with limg ¢ 2h(t,-) = 0 such that
|Hessp,f — PHessy|| < h(t,-)(P||Hessy|| + |[Hessp¢||), t>0,f € Cy(M).

(C3) ||R|so < 00, and for any x € M,t >0, f € Co(M) and vy, v € T, M,
t
Hessp, (01, v) — E [Hess (W (1), Wi(v2))] = E / (RHessy, ) (Wi (1), Wi (02))ds.
0
(C3) For any f € C°(M) and xz € M,
(HessAf — AHessf)(vl, Vo) = 2(RHessf)(v1, ve) — 2Ric(vq, Hess?(vg)), vy, V9 € Ty M.

(Cy) For any x € M and f € C§°(M) with Hessf(z) =0,

(AHessy)(v1,v2) = Hessaf(v1,v2), v1,v9 € Ty M.
Since a symmetric 2-tensor is determined by its diagonal, one may take v; = vy in (Cy)-(Cy).

To prove these results, we establish the following variational and derivative formulas for
Ric, see Remark 2.1 and Theorem 5.1 below.



(D) Formulas of Ric. Let Ric and Ric be the exact upper and exact lower bounds of
Ric. Then

Ric = inf { p((Af)? = [Hessll3g) : £ € Cg(M), pl(IV ) = 1},
Ric = sup { p((Af)? = [Hessy|hs) : f € (M), w(|VSP) =1},
Moreover, let € M, vy, vy € T, M. For any f € CH(M) with Vf(x) = vy, Hessy(z) = 0,

(Vo Ric)(vy,v1) = 21im (P, Hess; — Hessp,s)(v1, v2)
w b £10 L

= (AHessf — HessAf)(vl, Ug).

The remainder of the paper is organized as follows. In Section 2, we present variational
formulas of Bakry-Emery-Ricci upper and lower bounds, as well as integral characterizations
of Einstein and Ricci parallel manifolds. In Section 3, we recall derivative and Hessian
formulas of P, developed from stochastic analysis. Using these formulas we estimate the
Hessian of P, in Section 4, and establish a formula for VRic in Section 5. Finally, by
applying results presented in Sections 3-5, we identify constant curvature manifolds, Einstein
manifolds, and Ricci parallel manifolds in Sections 6-8 respectively.

2 Characterizations of Bakry-Emery-Ricci curvature

Let V € C*(M), py(dz) = ¢"@p(dr), and Ly = A+VV. Then Ly is symmetric in L?(py).
Consider the Bakry-Emery-Ricci curvature

Ricy := Ric — Hessy .

Definition 2.1. The manifold M is called V-Einstein if Ricyy = K for some constant K € R,
while it is called Ricy parallel if VRicy =0 (i.e. Rz’c‘?% :TM — TM is a constant map).

By the integral formula of Bochner-Weizenbock, we have

(2.1) /M {(Lyv f)? — |[Hess{ ||} — Ricy (Vf, V) }dpy =0, f e C(M).

According to Theorem 2.1 below, this formula identifies the curvature Ricy, and provides
sharp upper and lower bounds of Ricy, as well as integral characterizations of V-Einstein
and Ricy parallel manifolds.

Theorem 2.1. Let K € R be a constant, and let Q) : TM — T M be a symmetric continuous
linear map.

(1) Ricfﬁ = Q if and only if

22) [ (Lo Moyl — (QVLVO}dp =0, f € (M),

Consequently, M is Ricy parallel if and only if (2.2) holds for some symmetric constant
linear map Q@ : TM — TM.



(2) For anyV € C*(M) and K € R, Ricy > K if and only if
23) [ {@er? - Iessys e = K [ [VeFau e cRn
M M
while Ricy < K if and only if
2t [ {@er? - essysfane <K [ VeFa e cRn)
M M

(3) M is V-Einstein if and only if

Mv(]Vf\Q) -MV((LVf)(LVg) — (Hessy, Hessg>HS)
= v ({(Vf,V9) v ((Lvf)? — [[Hesss|5s), f,9 € C°(M).

Moreover, for any constant K € R, Ricy = K is equivalent to each of

(2.5)

(2.6) . {(Lv f)? = |[Hessfl|}s — K|V [ }duy =0, f € C(M),
and

(27) /M {(va)(ng) - <H6SSf, HeSSQ>HS - K<vf7 Vg)}d,uv = 07 f7g = O(?O(M)

Remark 2.1. Theorem 2.1(2) provides the following variational formulas of the upper and
lower bounds of Ricy. Let

Ricy = sup{Ricy(u,u): v e TM,|ul =1}, Ricy =inf{Ricy(u,u): u € TM,|u| =1}.
We have
Ricy = inf { v ((Ly f)? = [Hessy|s) = f € COM), u (V1) =1},

Ricy = sup {MV((LVf)2 — ||Hessg||3s) © f € C(M), pv (IVf?) = 1}-

To prove Theorem 2.1, we need the following lemma.

Lemma 2.2. For a continuous symmetric linear map @ : TM — M, if

(2.8) /M (QVF.V )y 20, | CR(M),

then @ > 0; that is, (Qu,u) >0 for u € TM.

Proof. Using eV @ replacing (), we may and do assume that V = 0 so that py = p is the
volume measure.



(a) We first consider M = R? for which we have Q = (q;;)1<i j<a With g;; = g;; for some
continuous functions ¢;; on R?. Thus,

d
(Qu,v) = Z gijuvj, u,v € RY

ij=1

Without loss of generality, we only prove that Q(0) > 0. Using the eigenbasis of Q(0), we
may and do assume that Q(0) = diag{qi,--- ,qq}. It suffices to prove ¢ > 0 for 1 <[ < d.
For any f € C§°(RY), let

fu(@) = foon(), (u(2))i=nwz;if i #1, (¢,(2)); :=n’z;, n>1.
By (2.8),

o<2/qm (0,1, ()0, @)z

i,j=1

_ / (@) @) 0 dul@) + 207> 4@ OO} 0 dula)

J#

123 4 ()1 O)0:1)} 0 b)) o

INES
= [ (0 tawe 0, @)@ ) + 200 1Y 0 6, ()@}
Rd Gl
=" gy 0 67 (@O0, He) ) da
INES

where the last step is due to the integral transform x +— ¢ '(z). Since ¢ '(z) — 0 as
n — oo, multiplying both sides by n?~2 and letting n — oo we arrive at

/Rd @@ )2 (2)dz > 0, € Co(RY.

Thus, ¢; > 0 as wanted.

(b) In general, for zy € M, we take a neighborhood O(z) of xy such that it is diffeo-
morphic to R? with zy corresponding to 0 € R, Let ¢ : O(zy) — R? with ¢(z) = 0 be a
diffeomorphism. Then under the local charts induced by 1,

(QV(f o), V(foy))du= Z 6i(2)(0: ) (@) (0, ) (w)dw, f € CF°(R)

holds for some symmetric matrix-valued continuous functional (gi;)1<ij<qs. Therefore, by
step (a), (2.8) implies ZZFI ¢ij(x)uu; > 0,2, u € RY. In particular, Q(zo) > 0. O



Proof of Theorem 2.1. (1) By the Bochner-Weitzenbdck formula, we have

1 . oo
(2.9) 5LVny\? —(V[,VLyf) = Ricy(Vf, V) + |[Hess; |55, f € CE(M).
So, Ricﬁ = ( implies

SLVIVIP — (V£ VL f) = (@QVF V) + [Hessy s

Integrating both sides with respect to py proves (2.2).
On the other hand, integrating both of (2.9) with respect to uy, we obtain (2.1). This
together with (2.2) implies

(2.10) [ (RIt (T - QUL dur =0, f € (),

Therefore, by Lemma 2.2 for Ric@E — @ replacing ), we prove Rz’cff = Q.

(2) By integrating both sides of (2.9) with respect to py, we see that Ric}. > K implies
(2.3). On the other hand, applying Lemma 2.2 to ) = Rz’c‘ﬁ — K, if (2.3) holds then
Rz’cﬁ > K. Similarly, we can prove the equivalence of Ric‘#f < K and (2.4). Therefore,
Theorem 2.1(2) holds.

(3) By assertion (2), Ricy = K is equivalent (2.6). It remains to prove that (2.5) is
equivalent to the Einstein property, since this together with the equivalence of Ricy = K
and (2.6) implies the equivalence of (2.6) and (2.7).

If M is V-Einstein, there exists a constant K € R such that Ricy = K. Let f,g € C§°(M)
with v ([Vf|?) > 0, let f; = f + sg. Then there exists so > 0 such that py(|V fs]?) > 0 for
s € [0, s9]. By (2.6), we have

pv (Lv fs)* — |[Hessy,

rs)
A5 — K, sel0,sg]

") = e (Y £.7)
So,
i (V12 (L £)(Ag) — (Hossy, Hoss)) — v ((VF, V) (L £)? — [[Hossy [4s)
i (VIR

1
= —h'(0) = 0.
S1'(0) =0

Therefore, (2.5) holds.
On the other hand, for f € C§(M) with uy(|Vf]?) > 0, let

pyv ((Ly f)? — ||Hessy([75)
pv(IVFP)

By the equivalence of Ricll = K and (2.6), it suffices to prove

K = e R.

(2.11) v ((Lvg)? = |[Hess|[7r5) = Kpv(IVgl*), g € C5°(M).
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By the definition of K, this formula holds when ¢ is a linear combination of f and 1. So, we
assume that f, ¢ and 1 are linear independent. In this case,

gs = (L =s)f +59, s€[0,1]
satisfies py (|Vgs|?) > 0. Let

v ((Lvgs)? — ||[Hessg, ||7)
1y ([Vgsl?) ’

K(s) == s€[0,1).

Then (2.5) implies

1 o 2 2 _ _
K'(s) = —Mv(IVgs|2)2{W(Wgs| v ((Lvgs) Ly (g — f) — (Hess,,, Hess, ) us)

— i (V90 V(g = ID)iv ((Lvgs)® = Hessy, [375) } =0, 5 € 0.1].
Therefore,

v ((Lvg)? — ||[Hessy||7s)

— K(1) = K(0) = K,
i (V4P) W= R0

that is, (2.11) holds as desired. O

3 Derivative and Hessian formulas of P,

In this section, by using the (horizontal) Brownian motion, we first formulate the heat
semigroup P; acting on tensors, then recall the derivative and Hessian formulas of P on
functions.

3.1 Brownian motion and heat semigroup on tensors

Consider the projection operator from the orthonormal frame bundle O(M) onto M:
7:OM)— M; 7®=ugzif &€ O,(M).

Then for any a € R and & = (¥")1<;<4 € O(M),

d
Da:=Y a0 € TroM;

=1

and for any v € T M,
d

oty = Z<U, d'e; € RY,

=1

where {e;}1<i<q is the canonical orthonormal basis of R%.
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For any a € R% and ® € O(M), let ®(s) be the parallel transport of ® along the geodesic
s — exp[sPa], s > 0. We have

d
H,(®) = &@(s)\szo € ToO(M),
which is a horizontal vector field on O(AM). Let H; = H,,. Then (H;)1<j<q forms the

canonical orthonormal basis for the space of horizontal vector fields:

d
H, = Z%Hi; a= (ai)lgz'gd € R%
i=1
We call
d
(3.1) Aoy = ZHE
i=1

the horizontal Laplacian on O(M). For any smooth n-tensor T,

TO(M)(q)) = (7'(@“7 R ,q)in)) by c ®an7 d = (q)i)lgigd c O(M)

1<y, Jin
gives rise to a smooth ®"R%valued function on O(M). Let A be the Bochner Laplacian A.
For any x € M, vy,--- ,v, € T,M and ® € O,(M), we have

(AT) (UIJ e 7vn) - {AO(M)TO(M) (@)}(®_1U17 % q)_lvn)7

(Vo) (o1, ,05) = (Vg TN (@ oy, @7 0,), v € T, M.

Now, consider the following SDE on O(M):

d
(3.3) dd, = H(®;) 0 dB; =Y H;(®,) 0 dBj,

=1

where B, := (Bj)1<i<a Is the d-dimensional Brownian motion on a complete probability space
(Q, #,P) with natural filtration .#P := o(B, : s < t) (by convention, we always take the
completion of a o field). The solution is called the Horizonal Brownian motion on O(M).
Let ¢ be the life time of the solution. When ¢ = oo (i.e. the solution is non-explosive) we
call the manifold M stochastically complete. It is the case when

(3.4) Ric > —c(1+ p?)

for some constant ¢ > 0, where p is the Riemannian distance to some fixed point, see the proof
of Proposition 3.1 blow. See also [10] and references within for the stochastic completeness
under weaker conditions.

Let X; := 7®, for ¢t € [0,(). Then (X});cpo,c) solves the SDE

(35) dXt = q)t(Xt) (6] ClBt7
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and is called the Brownian motion on M. For any x € M, let X;(z) be the solution of (3.5)
with Xy = 2. Note that X;(z) does not depend on the choice of the initial value ®; € O,(M)
for (3.3), and for fixed initial value ®y € O,(M), both ®,(X;) and B; are measurable with
respect to .Z;* 1= o(X, : s < t). Therefore, ZP = .ZX,t > 0. When the initial point z is
clearly given in the context, we will simply denote X(z) by X;.

Let

|, := @@y " : T, M — Tx,M

be the stochastic parallel transport along X;, which also does not depend on the choice of
®,. For any smooth n-tensor 7 with compact support, let

(3.6) (PT)(vr, o) =E[Lgey T(levr, -+ S lle va)], 01,0 0p € T, M

As is well known in the function (i.e. 0-tensor) setting, by (3.1), the first formula in (3.2),
(3.3) and It6’s formula we have the forward/backward Kolmogorov equations

1 1

For later use, we present the following exponential estimate of the Brownian motion
under condition (3.4).

Proposition 3.1. Assume (3.4). Then there exist constants r,c(r) > 0 such that

1— —rt
(3.8) Eexple ™ p*(X,)] < exp |p*(z) + et =) , t>0,z € M.
r

Consequently, if
log [[VRic|| 0

2 b

(3.9) lim

P—00 p
then for any ¢ € (0,1) and p > 1, there exists a positive function C., € C([0,00)) such that
(3.10) E||VRic||P (X (x)) < e @+Ce® ¢ >0 2 € M.

Proof. Let p be the Riemannian distance to a fixed point o € M. By the Laplacian compar-
ison theorem, (3.4) implies

Ap<elp+p)

outside {0} U cut(o) for some constant ¢; > 0, where cut(o) is the cut-locus of o. By Itd’s
formula of p(X;) given in [12], this gives

dp(X;)? < {1+ p(Xy)?}dt + 2p(X,)db,

for some constant ¢, > 0 and an one-dimensional Brownian motion b;. By 1t0’s formula, for
any 7 > 2 + ¢y there exists a constant ¢(r) > 0 such that

dexple™p*(Xy)] < exple™ p*(X,)] ({(02 +cop® (X)) —re T p(X,)
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+ 2077 p?(X,) bt + 2e_”p(Xt)dbt)
< exple " p*(Xy)]{c(r)e " dt + 2" p(Xy)db, .

Therefore, (3.8) holds.
On the other hand, by (3.9) we may find a positive function ¢,,. € C([0,00)) such that

IVRic#|[P* < exp [e 'p* + ¢,/ ()], t> 0.
Combining this with (3.8) for r = 1, we obtain

E||VRic|"(Xi(z)) < (E|VRic[?* (X))
< (D ®)F < ot @ eclyecy.()

Therefore, (3.10) holds for C. ,(t) := elc(1) 4 ¢p/(1)]. O

3.2 Derivative formula of P,

In this subsection, we assume

h
(3.11) Ric > —h(p) for some positive h € C([0,00)) with lim hir) = 0.

"—00 7"2

Let Wy : T,M — T'x, M be defined in (1.2). By (3.11) and Proposition 3.1, we have

(3.12) E sup [[W;]|P < oo, t>0.
s€[0,¢]

We have (see e.g. [8, 10])
(3.13) Vo Pif(z) = B(V f(Xi(2)), Wi(v)), t>0,fe€Cy(M).

Following the idea of [8, 17], it is standard to establish the Bismut type formula using
(3.13). By 8P, f = 3AP,f, (3.5) and 1t6’s formula, we have

dptfsf(Xs) - <VPtfsf(Xs)> q)sst>7

so that
(3.14) F(Xu(x) = Puf () + / (VB f(X,(2)). B,(2)dBy).

In particular, P,_,f(X,) is a martingale. Next, by (3.13) and the Markov property, we have
(VP_of(Xy), Wi(v)) = E(V f(Xy), Wilv))|ZF), s€0,1],
which is again a martingale. Indeed, according to e.g. [22, (2.2.7)], we have

(3.15) (VP f(X;), Ws(v)) = Hessp,_, s(P,dBs, Ws(v)), s € [0,1].

13



So, for any adapted process h € C'([0,1]) such that hy = 0, hy = 1, (3.13), (3.14) and (3.15)
imply

s [ (W), v.(a8,)] =& [ (W (). VP (X ()

_E {WVS (0. VP (K, = [ hadW0), TP (X))
— E(Wi(0), V/(Xi(2)) = VuPuf (0).

Therefore,

(3.16)  V,Bif(z) = E[f(Xt(ﬂ?)) /Ot hy(Wy(v), %(l‘)st)}; t>0,2€M,feC,(M).

This type formula is named after J.-M. Bismut, K.D. Elworthy and X.-M. Li because of their
pioneering work [5] and [8]. The present version is due to [17] and has been applied in [2, 18]
to derive gradient estimates using local curvature conditions.

3.3 Hessian formula of P,
To calculate Hessp, r, we introduce the following doubled damped parallel transport W;(vq, vs)

for vy, v € T, M:

@, ()W (01, v2) :% / ®;H{(VRicH) (W, (v2))Wi(v1) — Ric* (W (v1,v)) bs
(3.17) 0 .
+ / B, (2) " R(D,(x)A By, W) Wa(v1), >0,

where the cycle derivative VRic# is defined by
(3.18)  ((VRic®) (ug)uy, us) == (Ve Ric)(uy, us) — (Vi Ric) (ug, us) — (Vuy Ric) (ur, us)

for uy, ug,us € T,M,y € M. According to Proposition 3.1 and (3.12), conditions (3.9) and
(3.11) imply
E sup [|[WH|P < oo, p>1,t>0.
s€[0,t]

Proposition 3.2 ([1, 14]). Assume (3.9) and (3.11). Then for any f € CZ(M) and vi, vy €
T, M,

(3.19) Hessp, ; (01, v5) = E{Hess (W (v1), Wy (02)) + (V F(Xi(2)), W (v1,09)) }.

Proof. Let vy(s) be the parallel transport of v, along the geodesic s — exp[svi],s > 0.
According to (3.10), we define the following covariant derivative of W;:

d
W (vy,v5) 1= Vo, Wy () = EWt(vs(S))\szo-

14



By (3.13),

Hessp, p(v1, v2) = E{Hess(Wy(v1), Wi(v2)) + (V f(X¢(x)), W (v, v2)) }.

It remains to prove that Wt@) satisfies (3.17). Since in the present setting .Z#;X = .Z7, this

follows from formula (7) in [1], see also (3.1) in [14]. O

Similarly to the Bismut type derivative formula (3.16) deduced from (3.13), Bismut type
Hessian formulas of P, f have been presented in [1, 8, 14] by using (3.19). In Section 4 we
will use the following local version of Hessian formula, which follows from [1, Theorem 2.1]
and [1, Proof of Theorem 3.1] for e.g. Dy = B(z, 1), Dy = B(x,2), where B(xz,r) is the open
geodesic ball at x with radius r.

Proposition 3.3 ([1]). Let M be a complete noncompact Riemannian manifold. Let
Ti(x) =inf{t > 0: Xy(x) € OB(z,i)}, i=1,2.

There exists a positive function C € C(M) such that for any x € M, vy,vy € T, M with
|U17 |U2| S 1) and f S ‘%b(M))

(320) HeSSPtf(vh Ug) = E[-Pt*t/\Tl(ﬂ?)f(Xt/\Tl(l’) (x))Mt + Ptft/\TQ(I)f(Xt/WQ(I) (x))NtL t>0.

holds for some adapted continuous processes (My, Ny)y>o determined by (X4(2))o<t<ro(z) Such
that

C(x)

, >0,
tA1

(321) B[N+ [4]] <

4 Hessian estimates and applications

In this section, we first present Hessian estimates of P, for Einstein and Ricci parallel mani-

folds, then apply these results to describe the lower and upper bounds of the Ricci curvature.
Recall that for any x € M and [ € C*(M),

|Hessy||(z) := sup{|Hesss(u,v)| : w,v € T, M, |ul, |v] <1},
d
[essy [3s(a) = 3 Hossy (@, 0)2, @ = (@)ycq € Ou(M).

1,7=1

Theorem 4.1. Let M be a Ricci parallel manifold with |R||s < oo. Then for any x €
M;t>0, f e Cyo(M) and vy,ve € T, M,

Hessp, ;(v1, v2) — E [Hess  (Wy(v1), Wi(vs))]

4. !
(4.1) :IE/O (RHGSSPtfsf) (Ws(vl);Ws(U2))d3=

where RHessp,_ s is defined in (1.1) for T = Hessp,_ . Consequently:

15



(1) If Ric > K, then for any f € CZ(M),

(4.2) |[Hessp, || < elRllee=F) P | Hess,||, ¢ > 0.
(2) If Ric = K, then

(4.3) |Hessp, |4 < e2URllee=F P || Hess (|46, © > 0.

Proof. We fix ¢ > 0 and f € CZ(M). Let d be the exterior differential. By e.g. [22, (2.2.6)]
we have

(44) AP ) (X)) = Vaas. (AP f)(X,) + %mc(., VP f(X.))ds, s€[0.4]

Equivalently,

_ _ IR A !
(4.5) O;7'VF(Xy) :<I>01VPtf+§/0 D] IRZC#(VPt_Sf(XS))der/O Hess}, ,(®,dB,).
On the other hand, since VRic# = 0, (3.17) becomes

t 1 t
B D (v, v5) = / D R(B,AB,, Wy (02)) W) — / B RicH (W (vy, v3))ds.
0 0

Combining this with (4.5), we obtain

@6) BV, WD (0, 0)) = E/Ot { Hessp,_, (. R, Wi(o2)) Wa(0)) 1
Plugging (4.6) into (3.19) gives
Hessp, r(v1,v2) — E [HeSSf(Wt('Ul); Wt(U2))]
= E/Ot tr((R(-, Wi (v2)) Wi (v1), Hessﬁ_sf(-)»ds
_E /0 ' (RHessp_) (Wi(on), Wi (us))ds.
Therefore, (4.1) holds.
Below we prove (4.2) and (4.3) for Ricci parallel and Einstein manifolds respectively.
(a) (4.1) and Ric > K imply (4.2). If Ric > K, then (1.2) implies
Wy(v)] < e™25u].

So, according to (4.1), for any s > 0 we have

dr.

S
[Hessp | < Py Hessy|| + [Rll [ o Hessr._ s
0
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Letting
o(s) = e_K(t_s)Pt_sHHesspsfH, s € [0,t],

we obtain

B(s) < e Kt=s)p, <65KP5||HQSSf|| + ||R||oo/ e’TKPTHHesspSfo
0

or)

t
< e Kt P||Hessy|| + ||R||OO/ e KWr=9)p . _||[Hessp, f||dr.
0
Using the change of variable # = s — r, we arrive at

B(s) < B(0) + Rl / o(6)d6, s € [0,1.
0
By Gronwall’s lemma, this implies

o(t) < (0)el™l=",

which is equivalent to (4.2).
(b) Let Ric = K. Then (1.2) implies W,(v) = e 2. So, for z € M,v € T,M and
Q) € O, (M), (4.1) implies

Hessp, (v, ®f) =e “'E[Hess;(||,v, ®})]

4.7 ¢
(4.7 +E/ e "% (RHessp,_.)(®F, ||,v)ds
0
Let
Bul(s) = e KU EHesslh (@5 )|, s€[0,6,1<h<d

By (4.7) and the Markov property, for any 0 < sy < 51 <t we have

Hessp, r(|,_, v, ®;_,,) =e K(SI’SQ)E(HeSSpSQf( v, D} ,)

ytw 51)

||t S9

51 —82
+/ e_TKE<(RHeSSP31*Tf) (Qf—sl"r'f" ||t—$1+7" ) ym
0

t— 81)

So,

Ik,v(Sl, 32)

=F e*(tfsl)KHeSSPSIf(Htﬂlv,CDf_sl) - e’K(t’”)E(HessPS il 0, ) [ FE)

$1—82
< ole O RILE [ e st (8, ldr
0

— lIR]l / o KOO | Hossf, (B ,)[d6

52

= V][Rl | ox(60)d0

51

17



where we have used the change of variable § = s; — r. Then

Pr(51) — dr(s2) < |SI‘1<p1 T (51, 52)

< ||7zuoo/ bu(0)d0, 0< sy < 51 <t
S1

By Gronwall’s lemma, this implies

\Hesspf( N =or(t) < e\IR\Imt¢k(0) - e(”RHw*K)tE]Hess?(q)f)\, 1<k<d.

Therefore,

IS

d

|Hessp, |75 = z:\Hesspf@k)\2 < e2(IRlleo— Ktz E]Hessf (®F) D
k=1 k=1

< IRl =) P || Hess f||% .
0

Next, we apply the above results to characterize the lower and upper bounds of Ric for

Ricci parallel manifolds.
Theorem 4.2. Let M be a Ricci parallel manifold. Then for any constant K € R, the

following statements are equivalent each other:
(1) Ric > K.
(2) For any f € C§(M) and t > 0,

oKt _ o2(K—|IR|s0)t 9 2 Kt 2
SR IHesnll’ < RIVIE — VR

(3) For any f € C§*(M) and t > 0,
Kt _

. ARy T
< — — .
|Hessp, ¢ ||? / 2||R||oo_ s < Bf* = (Pf) K VP, f]

(4) For any f € C§°(M) and t > 0,

1 —e K
P f?— (Ptf)2_TPt|vf|2

t 2| Rlloe—K)s _ g—Ks
< —||Hess 2eQ(K_m'("’)t/ °
= || PtfH . 2||R||00_K

ds.
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Proof. (a) (1) = (2). Let t > 0 and f € CZ(M). By (3.5) and Ito6’s formula, we have

AV P, (X)) = (%A\vpmfmxs) (VP VAPtsf><Xs>>ds
+2(V|IVP, fI3(X,),®,dB,), s¢€][0,1].

(4.8)

By the Bochner-Weitzenbdck formula and Ric > K, we obtain

%mvpts FP(X,) = (VP f, VAP, f)(X,)

= Ric(V P s f, VP s f)(X) + [Hessp,_,ll35(X5)
> K[V P fI*(X,) + |[Hessp,_ ¢ ][ 75 (X5)-

Then (4.8) implies
AP SPEX) > (KIVP S+ [Hessp_ ) (Xo)ds + 2(V VP f(X.), 9,B,)

for s € [0,¢]. Combining this with (4.2), we arrive at

t
P|Vf]> =K VP f? > / M=) P, ||Hessp, _;
0

2
1rgds

t
> / o (1=5) 2Rl )8 s, 25
0

oKt 2(K—||R|joo)t

= H 2,
2||R||oo K || eSSPtfH

(b) (2) implies (3) and (4). By (3.5) and Itd’s formula, we have
AP ) X,) = VP fP(X,)ds + (V|P—s f1*(X,), @,dB;), s € [0,t].

So,
t

(4.9) Pf* — (Pf)? :/ P,V P,_,f|*ds.
0

Combining this with (2) and (4.2), we obtain

Pf? = (PJ)?
Ks _ eQ(KfHRHOO)S

t (&
> { VP, fl?efs + Hess 2}d3.
= /0 | tf| 2||R||oo K || Ptf||

Then (3) is proved.
Similarly, (4.2) and (2) imply

e PV S|P — P_|VP, f|?
1 — e(K—2[Rl|eo)s

>
2[[Rjeo — K

P, |[Hessp,;||*
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AR Rlleo)t| | 1 2 2Rlloe—K)s — g=Ko
> e\ e essp, . ,
ORIl - K
which together with (4.9) gives (4).
(c) Each of (3) and (4) implies (1). For v € T, M with |v| = 1, take f € C§°(M) such
that

Vf(z) =v, Hessy(z)=0.
We have
2(K—[[Rlloo)s

(4.10) hm||HessPt I& / ds=0
! wnwm—K

On the other hand, by the Bochner-Weitzenbdck formula we have (see [22, Theorem 2.2.4]),

(4.11) L ie(o,v) = lim LAV P @) ~ VR P(2)
. 9 ) £10 pt

, p>0.
Combining this with (3), (4.9) and (4.10), we obtain

P, f2 — (Pf)? —
0 < 2lim 7= ()
10 t2

et

VPSP

2 [ 2 Ks 2 :
:1t1¢%1t_2/0 {P)|VP_sf|? = "*|VP,f|*} ()ds = Ric(v,v) — K,

Therefore, (3) implies (1). Similarly, (4) also implies (1). O
The following result provides corresponding characterizations for the Ricci upper bound.

Theorem 4.3. Let M be a Ricci parallel manifold. Then for any constant K € R, the
following are equivalent each other:

(1) Ric < K.
(2) For any f € CP(M) and t > 0,
IR~ _

2Rl — K

1
dP||Hess;||> > BV f]> — ™|V P, fI%.

(3) For any f € C§*(M) and t > 0,

4P||H HQ /t eClRllec—K)t—Ks _ QZ(HRHoo—K)Sd
ess s
R 2[Rl — K
2 , eff—1 2
> P f* = (Pf) - IVE I
(4) For any f € C§*(M) and t > 0,
. ) . ) 1 — efKtP - ) - ) t QQ(HRHoo*K)S - efKSd
_ - > _ :
= (P = e RIVIE 2 —apessy | [ s
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Proof. By using
(4.12) |[Hess |7 < d|[Hess/|*,
the proof is completely similar to that of Theorem 4.2. For instance, below we only show
the proof of (1) implying (2).
By Ric < K and (4.8), we have

AIVP_ f1*(X,) < (K|VP_sf|” + |[Hessp, ,;

|§{S) (XS)dS + 2<V|VPt_sf|2(Xs), (I)sdBS>

for s € [0,¢]. Combining this with (4.2) and (4.12), we arrive at
ot
BRIV =" VPf? < d/ X P, || Hessp,_, ¢||*ds
0

t
<d / MU=l =)= P || Hess | |*ds
0

ClIRllo=F)t _ 1

= P,||Hess |12
QHRHOO_K tH essfH

Then (1) implies (2). We therefore omit other proofs. O

5 Formula of VRic

Theorem 5.1. For any v € M, vi,vgs € T,M and f € Cp(M) with V f(z) = vy, Hess;(z) =
0, there holds

PH —H
(5.1)  (Vo,Ric)(v1,01) = 2lim (L1158 = Hessp ) (vr, va)

in . = (AHess; — Hessay) (v1, v2).

Consequently, M is Ricci parallel if and only if AHessy = Hessay holds at any point x € M
and f € C§°(M) with Hesss(z) = 0.

When f € C§°(M), the second equation in (5.1) follows from (3.7). By a standard
approximation argument, this equation holds for all f € CZ(M). So, it suffices to prove the
first equation or the formula (5.2) below for z € M and f € C§°(M) with Hess;(z) = 0.
Here, we prove both of them by using analytic and probabilitstic arguments respectively,
since each proof has its own interest.

Analytic Proof. For any x € M and f € C§°(M) with Hess;(z) = 0, we intend to prove
(5.2) (VoRic)(Vf, V)= (AHess;)(Vf,v) — Hessaf(Vf,v), ve T,M.
According to the Bochner-Weizenbock formula, we have

(5.3) Ric* (Vf) = AVf — VA,
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where AV f = @(AO(M)V?(M))(CI)) is independent of ® € O(M). Consequently,

(5.4 Rie(Vf,Vf) = SANVF ~ (VA VF) ~ [Hessylfys.
Since Hess;(z) = 0, (5.4) and (5.3) imply that at point z,

(VRie)(V1.Vf) = V{Rie(V/.V])}

= SVAIVS? — Hess¥ (V) — Hessf (VA) — 2|[Hessy sV | Hoss, |

= SA{VIVIP} — SRicH(VIV ) — Hesst, (V)

= A{Hess}?(Vf)} - Hessﬁf(Vf)

= (AHess;)#(Vf) + Hess?ﬁ(AVf) + 2tr{(V.Hessﬁ&)(Hessf(-))} — Hessﬁf(Vf)

= (AHess;)#(V f) — Hessff(Vf).
Therefore, (5.2) holds. O
Probabilistic Proof. We first consider bounded VRic and R, then extend to the general case
by using Proposition 3.3.

(a) Assume that ||R||w + [|VRic||so < o0. Let x € M and vy,v9 € T, M. We take f €
C2(M) such that Vf(z) = v; and Hessy(z) = 0. Below we only consider functions taking
value at point z. Since Hess¢(z) = 0, there exists a constant ¢ > 0 such that

1 t
(5.5) Py||Hess |3 5(z) = 5/ P,A||Hesss||5g(z)ds < ct, t>0.
0

Then there exists a constant ¢; > 0 such that

(5.6) Py||Hess;|| < 1/ Ps||Hess;||2 < c1v/s, s €]0,1].

Since V f(z) = vy and VP, f(z) is smooth in s, this together with (4.5) yields

(5.7) E|Vf(X,) — |[,01] < 25, s€]0,1]

for some constant ¢o > 0. Moreover, by (1.2) there exists a constant ¢; > 0 such that
(5.8) [Wi(vi) = || vil <ess, s€l0,1],i=1,2.

Combining (5.6)-(5.8) with (3.10), (3.17) and (4.5), for small ¢ > 0 we arrive at

E(V /() W (01, 2)) =5 / ((VRick) (Wi (02))Wa(01), V £(X,)ds

d t
(5.9) +ZE/ Hessp, (@1, R(DL, Wy(vs)) Wi (v1))ds
i=1 70

—oft) + %((6Ric#)(u2)yl, o)t = oft) — %(vwmc) (o0, 012,
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where the last step follows from (3.18).
On the other hand, by (3.19), (5.6) and (5.8), there exist a constant ¢, > 0 such that for
small £ > 0,
E(V£(X,), W (v1, v5)) = Hessp, ;(v1, v3) — EHess ; (W (v1), Wiy(vs))
= Hessp, ¢(v1, v9) — PHess(v1, v2) + O(t) P||Hess||
= Hessp, f(v1, v2) — PHess;(v1, v2) + o(1).

Combining this with (5.9) we derive the desired the first equation in (5.1).

(b) In general, let M be a complete non-compact Riemannian manifold. For fixed x € M
we take D = B(z,4). Let f € C®(D) with flop = 0, flpws) = 1, [Vf] = 1 on 9D and
f>0in D. Then (D, f2g) is a complete Riemannian manifold. We use superscript D to
denote quantities on this manifold, for instance, R is the Riemannian tensor on (D, f2g).
Then both R? and VPRic” are bounded. So, by (a), for P the heat semigroup on D,

PPHess? — Hessbp ) (vy, v
(5.10) (V. Ric)(vy, 01) :ltij%l( i Hess t rpp) (01 t2).

Since f =1 in B(x,3), we may construct the horizontal Brownian motion ®P(y) on D with
®P(y) = @9 € O, (M) such that

O (y) = ®uly), t<ms(y), X (y) =Xu(y),t <73(y),

where

73(y) = inf{t > 0: X\ (y) € dB(x,3)}.
Noting that
Pf(y) = E[f(Xi(y)lp<q]s PP fy) =Ef (X7 W), f € By(M),
where ( is the life time of X;, we obtain
1Pf(y) = PP )] < IfllP(ms(y) <), >0, f € B(M).

Combining this with [3, Lemma 2.3], we may find constants ¢;, ¢, > 0 such that

(5.11) IPof(y) — PP F(y)| < aill flloe ", t€(0,1],y € B(x,2).
Consequently,
(5.12) | P,Hess ;(v1,v9) — PPHess;(v1,v)| < ¢1]|Hessy|le /", ¢ € (0,1].

Moreover, since X; = XP € B(x,2) before time 75, Proposition 3.3 and (5.11) imply that at
point x,

|Hessp, r(v1,v2) — HeSSlPin(U17 Vo)
S E[(|Pretnr f(Xinr) = P2 F (X200 - | M]]
+E[|Peinn f(Xinm) = P2opry f(X5) D IN]

C(z)
715,
Combining this with (5.10) and (5.12), we prove the first equation in (5.1). O

< Clefc;)/t

t € (0,1].
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6 Identification of constant curvature

Theorem 6.1. Let k € R. Then each of the following assertions is equivalent to Sec = k:

(1) For anyt >0 and f € C§°(M),

1
(6.1) Hessp,; = e~ %" P,Hess; + 3(1 —e " (PAf)g.

(2) For any f € C§(M),

(6.2) Hessay — AHessy = 2k(Af)g — 2dkHessy.

(3) Foranyx € M,u € T,M and f € C§°(M) with Hess¢(z) = u®u (i.e. Hessf(vy,v9) =
<U,’U1><’LL,U2>,U1,U2 € Ta;M)7

(6.3) (Hessay — AHessy) (v, v) = 2k (|u]*|v]” — (u,v)?), v € T, M.
(4) For any f € C§°(M),

1
(6:4) 5 A|[Hessy |35 — (Hessay, Hessy) s — |[VHess; s = 2k(dl[Hess l/3s — (AF)?).

To prove this result, we need the following lemma where RT is defined in (1.1).

Lemma 6.2. If the sectional curvature Sec = k for some constant k, then for any symmetric

2-tensor T,
RT = ktr(T)g — kT.

Proof. Let T = ktr(T)g — kT. Since both RT and T are symmetric, it suffices to prove
(6.5) (RT)(v,v) =T (v,v), veT,lv|=1z€M,

Let v € T, M with |v| = 1. By the symmetry of T', there exists ® = (9%),<;<4 € O, (M) such
that . A
T#(@) =\, 1<i<d

holds for some constants A\;, 1 < i < d. Then Sec = k implies

(RT)(v,v) = Z (R(®, v)v, TH(d")) = Z)\ (R(®', v)v, @)
=k Z Ai(1 = (@ 0)?) = ktr(T) — kT (v,v) = T(v,v).
Therefore, (6.5) holds. O
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Proof of Theorem 6.1. Obviously, (3) follows from (2). Next, by (??) and taking derivative
of (6.1) with respect to ¢ at ¢t = 0, we obtain (6.2). So, (1) implies (2). Moreover, by chain
rule we have

1
(6.6) §A||HessfH%IS = (AHessy, Hess) gs + || VHess || %5-

Then (4) follows from (2) and the identity ((6f)g, Hessf)ns = (Af)?. To complete the proof,
below we prove “Sec =k = (1)”, “(3) = Sec =k ” and “(4) = Sec = k 7 respectively.
(a) Sec = k = (1). Let Sec = k. Then Ric = (d — 1)k. By (1.2), (4.1), we have

K

Ws(v) =e 2% ||sv, s >0,v € TM, and for any z € M, vy, vy € T, M,
¢
Hessp, ;(v1,v2) = e~ X' P,Hessf(v1, vo) +/ e ™5 P,(RHessp, ;) (v1,vs)ds.
0
Noting that AP,_,f = P,_sAf and (||s v1,||s va) = (v1,v2), this together with Lemma 6.2
gives

Hessp, ;(v1,v2) — e X' P;Hess(vy, vy)
t
_ / e (P{k(or, 0) P Af} — kP, (Hessp,_p)(or,02))ds, £ 0.
0
Therefore,

t
Hessp, ¢ (v1,v2) = ¢ KPP Hess (v, vq) + k(vy, 112}/ e B+ p A fds
0

1— e—dkt

———— (P Af){v1,v2).

= e~ * P Hess ;(v1,v9) + y

So, (6.1) holds.
(b) (3) = Sec = k. By taking u = 0, (3) implies that for any f € C{(M) with
Hess¢(z) =0,
(AHess; — Hessas)(v,v) =0, v e T, M.

By the symmetry of AHess; — Hessay, this is equivalent to
(AHess; — Hessay)(vi,v2) =0, v1,v5 € T, M.

So, for any vy, v, € T, M, by taking f € C§°(M) such that Vf(z) = v; and Hess(z) = 0,
we deduce from Theorem 5.1 that

(vaRic) ('U1, 'U1) = (AHGSSf — HessAf) (Ub 1)2) = (.

Thus, M is Ricci parallel. By Theorem 4.1, (4.1) holds. Due to (1.2) and Ité’s formula, by
taking derivative of (4.1) with respect to ¢ at ¢t = 0, we obtain

1HessAf(vl, Vo)
67 % |
= E(AHessf)(vl, vy) — Ric(vy, Hessff(w)) + tr(R (-, vo)vy, Hess}#(-)), feCe(M).
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Now, letting u,v € T,M with |u| = |v| = 1 and (u,v) = 0, and combining (6.7) with (6.3)
for v; = vy = v, and f € C§°(M) with Hess;(z) = u ® u, we arrive at
1
k= k(|ul®|v]* — (u,v)?) = §(HessAf — AHessy) (v, v)
= —Ric(v, Hess}#(v)) + tr(R (-, v)v, Hessjﬁ’&(-)) = Sec(u,v).

Therefore, Sec = k.
(c) (4) = Sec = k. By (6.6), (6.4) is equivalent to

1
(6.8) §<AHGSSf — Hessay, Hessy) o = k(d|[Hessg|| %5 — (Af)?).

We first prove that (6.8) implies VRic = 0. Let f € C§°(M) with Hess;(z) = 0. For any
ue T, M, let h € C5°(M) with Hessp,(x) = u ® u. Applying (6.8) to fs := f + sh,s > 0, we
obtain at point x that

2
(AHess; — Hessar)(u, u) + %(AHessh — Hessap)(u, u)

= k(ds*||Hessp||3 5 — s*(AR)?), s> 0.

NNV

Multiplying by s~ ! and letting s — 0, we arrive at (AHess; — Hessay)(u, u) = 0. As shown

above, this implies VRic = 0.
Next, we prove Sec = k. Since VRic = 0, (6.7) holds. For x € T,M and u,v € T,M
with |u| = |v| =1 and (u,v) = 0, take f € C§°(M) such that

Hess;(z) =u® v+ v ® u.

Then at point z,
Hess?&() = (u, )v + (v, -)u.

So, by (6.7) and (6.8) we obtain
2kd = k(d||Hess |75 — (Af)*) ()
1
(6.9) = §<AHessf — Hessay, Hessf) ps(x) = (AHessy — Hessaf)(u, v)
= 2Ric(u, Hessj?ﬁ (v)) = 2tr(R (-, v)u, Hess?&()) = 2Ric(u,u) + 2Sec(u, v).

Letting {v; }1<i<a—1 be orthonormal and orthogonal to u, replacing v by v; and sum over ¢
leads to
2kd(d — 1) = 2(d — 1)Ric(u,u) + 2Ric(u, u) = 2dRic(u, u).

Thus, Ric(u,u) = (d — 1)k, and (6.9) implies Sec(u,v) = k.
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7 Identifications of Einstein manifolds

Theorem 7.1. For any constant K € R, the following statements are equivalent each other:
(1) M is an FEinstein manifold with Ric = K.

(2) |R||oo < 00, and for any x € M,t >0, f € Co(M) and vy,vy € T, M,
¢
(7.1)  Hessp,;(v1,v2) — e X' PHess;(vy, v2) = / e " P,(RHessp,_, 1) (v1, v9)ds.
0

(3) IR||oo < 00, and

Kt 2(K—[IRllo0)t

e — €
2||R|| K ||HeSSPtf||%IS < Pt|vf|2 - eKt|VPtf|2
00
2Rl KOt _

= P,||Hess;||? C2(M),t > 0.
S s DR = & Hessillas, f e GiM) =

(4) There exists h : [0,00) x M — [0, 00) with lim,_,o h(t, ) = 0 such that
‘Pt|Vf|2 — eKt|VPtf|2‘ < h(t, -)(||HessPtf||?qS + Pt||Hessf||%IS), t>0,fe€CyP(M).
(5) |IR]|oo < 00, and

) t eKs _ eQ(K—HRHOO)s ) ) oKt _ 1 )
Hessr s | g —ds < St = (RS = = VRS
0 00
(1 Hessy ) /t A 2o
< ess s, € ,t > 0.
= litiessslins) R~ K Fec

(6) |R||oo < 00, and

t eQ(HRHOO—K)s o e—Ks) 1 — e—K

t
— (P,||H 2 ds < P.f? — (P,f)? — ———P, 2
( dl eSSfHHS)/O R — K s < P f* = (Bf) K 1V f]

R|lco—K)s __ est

2
> 0.
S feCiM),t>0

t o2
< — || Hessp, [ 7%l /
0

(7) There exists h : [0,00) x M — [0,00) with lim,_,ot *h(t,-) = 0 such that
1— efKt
min { P.f* = (Pf)’ - Pf? = (Pf)? = ——

K
< ﬁ(t, -)(||Hessptf||%,5 + Pt||Hessf||qu), t>0,feC(M).

et — 1

VP f|? PV fI?

)

|

(8) For any f € C§°(M),
1
§{HessAf — AHess;} = (RHessy) — K Hess;.

Proof. Obviously, (3) implies (4), each of (5) and (6) implies (7). According to Theorem 4.1
for Ric = K, (1) implies (2). Moreover, by taking derivative of (7.1) with respect to ¢ at
t = 0, we obtain (8). So, it suffices to prove that (1) implies (3); (3) implies (5) and (6); and
each of (4), (7) and (8) implies (1).
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(a) (1) = (3). By the Bochner-Weitzenbock formula and using Ric = K, we obtain
SAIVELJP(X,) ~ (VA f, VAP f)(X)
= Ric(VP, sf, VP _f)(Xs) + ||Hessp,__ || 75(Xs)
= K|VPof*(X,) + [|[Hessp,_,l[7r5(Xs)-
Then (4.8) implies
d[VP—s f[*(Xy) = (K|VP—s f|* + |[Hessp,
for s € [0,¢]. Thus,

[715) (Xs)ds + 2V |V P f*(X), @,dBy)

t
(7.2) PV f* — eKtPt|Vf]2 = / eK(t’S)PSHHeSSPt_Sf||quds.
0

Since by (4.3)
[frg < 2Rl P || Hess |7,

[Hessr, s
it follows from (7.2) that

t
PIVFI = MEIVF < [N R0 ey s
0

@RI~ K}t _ 1

e

= F|H 2,
QHRHOO K t|| essf||

So, the second inequality in (3) holds. Similarly, (4.3) implies

> e 2Rl —EK)s| e~2(IRllse=K)s|

|%15 = |HeSSPtf||%IS7

PSHHeSSPtfsfH%{S |HeSSPsPtfsf

the first inequality in (3) also follows from (7.2).

(b) (3) = (5) and (6). By (3) and (4.3) we have
Ks _ o2(K|Rjoo)s

2[R0 — K
2Rlloo—K)s _ 1

e
[Hesspsll7s < Pl VP fI? = " |VPf?

X
<

2Rl — K

e(ClIR o~ K}t K(t-5)

Py|[Hessp,_,¢l7s

— 2| Rlfeo—K)(t—5)

<
2R |oe — K
This together with (4.9) ensures (5).
Similarly, (4.3) and (3) imply
o K (IRl K)s _ |
2[Rl — K

1 — o(K—2lRl|u)s

P;||Hess [75-

L PHessy s = e KRV IR — P VPP

> P, |H 7
- 2||R||oo K t 8” CSSp, f ’HS
2[Rl —K)s _ oK
> p2EK-IIR ]l )t || 2 ©
= € H eSSPtfHHS 2||R||00_K )

which together with (4.9) gives (6).
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(c) (4) = (1). For v € T,M with |v] =1, take f € C§°(M) such that
Vf(z) =v, Hesss(z)=0.
Then (4.11) holds. Moreover, since Hessp, f(x) is smooth in ¢, Hessy(z) = 0 implies
[Hessp, r(z)|| < c(x)t, te[0,1]
for some constant ¢(x) > 0. Combining this with (4.11), (5.5) and (4), we obtain

2 NS 2
o = AUV = IV R P

1 —eK

= lim <Réc(v, v) +

110 tPt‘Vf]2($)> = Ric(v,v) — K.

Therefore, Ric(v,v) = K|v|? holds for all v € TM. By the symmetry of Ric and g, this is
equivalent to Ric = K.

(d) (7) = (1). Let v and f be in (c). In the spirit of (4.11) and using (4.9), we have
W= (B = SV RP

2ltiJ,O 12
- 13%1 t% /Ot {P|VP_,f|* — *°|VP,f|*}(z)ds = Ric(v,v) — K,
and
oy P = (P = S PIVfP
10 12

A CKs :
:11mt—2/0 [PIVP_f]? — e BV} (2)ds = K — Ric(v,v).

10

Thus, multiplying the inequality in (7) by ¢t~2 and letting ¢ — 0, we prove Ric(v,v) — K = 0.
That is, (1) holds.

(e) (8) = (1). Forany vy,v, € T, M, take f € C§°(M) such that V f(z) = vy, Hess;(z) = 0.
According to Theorem 5.1, (8) implies

(Vy,Ric)(vy,v1) = 0.

So, M is Ricci parallel, and as shown in the proof of Theorem 4.1 that (6.7) holds. Taking
v = vy = v for v € T, M with |v| = 1, and letting f € C§°(M) such that Hess;(z) = v ® v,
(6.7) implies

%{HessAf — AHessy }(v,v) = —Ric(v,v) + tr(R(-, v)v, Hess?&()) = —Ric(v,v).

Combining this with (8) we obtain
—Ric(v,v) = —KHessf(v,v) = — K.
So, (1) holds.
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8 Identifications of Ricci Parallel manifolds
Theorem 8.1. The following assertions are equivalent each other:
(1) M is a Ricci parallel manifold.
(2) |R||oo < 00, and (4.1) holds for any x € M,t >0, f € Co(M),v1,vy € T, M.
(3) |IR]|oo < 00, and for any constant K € R with Ric > K, t > 0, f € C3(M),

Ric|lao(1 — e K*
(8.1) ||Hessp,; — PHessy|| < <|| icl (K ¢ )4—e(”72”°°’K)lt —eKt>Pt||Hessf||.

(4) There exists a function h : [0,00) x M — [0, 00) with lim,, t2h(t,-) = 0 such that
(8.2) |Hessp,; — PHessy| < h(t,-)(P;||Hess;| + ||Hessp||), t>0,f € C3°(M).
(5) For any f € C(M) and xz € M,
(HessAf — AHessf)(vl, Vo) = Q(RHessf)(vl, ve) — 2Ric(vy, Hess}#(vg)), vy, Ve € Ty M.
(6) For any x € M and f € C5°(M) with Hessp(x) = 0,
(AHessy)(v1,v2) = Hessaf(vi,v2), v1,v2 € T, M.

Proof. The equivalence of (1) and (6) follows from Theorem 5.1, (1) implying (2) is included
in Theorem 4.1, (5) follows from (2) by taking derivative of (4. 1) with respect to t at t = 0,
)

and it is obvious that (3) implies (4) while (6) follows from (5). So, it remains to prove that
(1) implies (3), and (4) implies (1).

(a) (1) implies (3). Let M be Ricci parallel with Ric > K. By (1.2) we have
(8:3) Wa(0)] < e el v e T,
and

d[Wi(v) = [l,o* = d|®, "Wy (v) — @5 vl*

= (Wi(v) = |o, Ric* (Wi (v))dt < [Wy(v) = [|,v] - || Riclloce™ " 0].
So,

) e} 00 - 77?:
|IIrt(U) —U| < ||‘2’22C|| /0 ——sd ||R/ZC|| ( )7 |U| <1.
Thus, for |v1],|ve] =1

[Hess (Wi(u1), Wi(u2)) — Hess ([vn, 2]

(8.4) < |[Hess || ([We(vi)| - Wi(v2) — llv2)] + [Welvr) — 1)
[Ric]|oo |||73i0||oo(1 —e )

< ||Hessf||(e_%t+1) (1 —e_%{t) 7 i

— |[Hess,|
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Combining (4.1) with the first formula in (?7) for ( = oo, (4.2), (8.3) and (8.4), we obtain

||Hessp, ; — P Hess¢|

[ IRiclle(1 ==

S |Hessp, ¢ (v1,v2) — EHess (Wi (v1), Wi(v2)) P;||Hessy|
- ||Ric\!oo£—eKt)pt“Hessfn + IR |loo /te—KSEHHessPHf |(X)ds
0
< MR 50 Pty + [ [ oo s s
0
= (IRl Z 7y ctimbesr _ ost) s |

So, (8.1) holds.

(b) (4) = (1). For any x € M and vy,vy € T, M, let f € C3°(M) such that Vf(z) = v,
and Hess¢(z) = 0. Since Hess;(z) = 0 and Hessp, ¢(z) is smooth in ¢ > 0,

||Hessp,f||(z) < ct, te]0,1]
holds for some constant ¢ > 0. Combining this with Theorem 5.1, (8.2) and (5.5), we obtain

(Vo Ri) (01, v1)| = lim L1557 = Hessel(v, v2)
" b £,0 /

. h(t, ) . h(t, ) (et + ct)
< 1?:1%1 , (PHessy||(z) + ||Hessp||(z)) < ltlfg ; = 0.
By the symmetry of (V,,Ric), this implies VRic = 0. Thus, (4) implies (1). ]
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