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Abstract

We establish variational formulas for Ricci upper and lower bounds, as well as

a derivative formula for the Ricci curvature. Combining these with derivative and

Hessian formulas of the heat semigroup developed from stochastic analysis, we identify

constant curvature manifolds, Einstein manifolds and Ricci parallel manifolds by using

analytic formulas and semigroup inequalities. Moreover, explicit Hessian estimates are

derived for the heat semigroup on Einstein and Ricci parallel manifolds.

AMS subject Classi�cation: 58J32, 58J50.
Keywords: Constant curvature manifold, Einstein manifold, Ricci parallel manifold, heat
semigroup, Brownian motion.

1 Introduction

Let (M;g) be a d-dimensional complete Riemannian manifold. Let TM = [x2MTxM be the
bundle of tangent vectors of M , where for every x 2 M , TxM is the tangent space at point
x. We will denote hu; vi = g(u; v) and juj = phu; ui for u; v 2 TxM;x 2 M: Let R, Ric
and Sec denote the Riemannian curvature tensor, Ricci curvature and sectional curvature
respectively.

When M has constant Ricci curvature, i.e. Ric = Kg (simply denote by Ric = K) for
some constant K, the metric is a vacuum solution of Einstein �eld equations (in particular

�Supported in part by NNSFC (11771326, 11431014).
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for d = 4 in general relativity), and M is called an Einstein manifold. In di�erential ge-
ometry, a basic problem is to characterize topological and geometry properties of Einstein
manifolds. For instance, according to Thorpe [19] and Hitchin [20], if a four-dimensional
compact manifold admits an Einstein metric, then

�(M) � 3

2
j�(M)j;

where � is the Euler characterization and � is the signature, and the equality holds if and
only if M is a 
at torus, a Calabi-Yau manifold, or a quotient thereof. Recently, Brendle
[6] showed that Einstein manifolds with positive isotropy curvature are space forms, while
with nonnegative isotropy curvature are locally symmetric, and an ongoing investigation is
to classify Einstein manifolds of both positive and negative sectional curvatures.

Since the curvature tensor is determined by the sectional curvature,M is called a constant
curvature manifold if Sec = k for some constant k 2 R. Complete simply connected constant
curvature manifolds are called space forms, which are classi�ed by hyperbolic space (negative
constant sectional curvature), Euclidean space (zero sectional curvature) and unit sphere
(positive sectional curvature) respectively. All other connected complete constant curvature
manifolds are quotients of space forms by some group of isometries. Constant curvature
manifolds are Einstein but not vice versa.

A slightly larger class of manifolds are Ricci parallel manifolds, where the Ricci curvature
is constant under parallel transports; that is, rRic = 0 where r is the Levi-Civita connec-
tion. An Einstein manifold is Ricci parallel but the inverse is not true. When the manifold
is simply connected and indecomposable (i.e. does not split as non-trivial Riemannian prod-
ucts), these two properties are equivalent, see e.g. [13, Chapter XI].

It is remarkable that A. Naber [15] has provided sharp bounds of the Ricci curvature
by using functional inequalities on the path space over M , see [7, 9, 23, 24] for further
developments. In particular, the related study implies characterizations of the Einstein
metric using in�nite-dimensional functional inequalities. In this paper, we aim to identify
the above three classes of manifolds by using analytic formulas and inequalities on the
manifold itself, which should be easier to check comparing with functional inequalities on
the path space.

For f; g 2 C2(M) and x 2M , consider the Hilbert-Schmidt inner product of the Hessian
tensors Hessf and Hessg:

hHessf ;HessgiHS(x) =
dX

i;j=1

Hessf (�
i;�j)Hessg(�

i;�j);

where � = (�i)1�i�d 2 Ox(M); the space of orthonormal bases of TxM . Then the Hilbert-
Schmidt norm of Hessf reads

kHessfkHS =
q
hHessf ;HessfiHS :

For a symmetric 2-tensor T and a constant K, we write T � K if

T (u; u) � Kjuj2; u 2 TM:
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Similarly, T � K means T (u; u) � Kjuj2; u 2 TM: Let T # : TM ! TM be de�ned by

hT #(u); vi = T (u; v); u; v 2 TxM;x 2M:

Then T # is a symmetric map, i.e. hT #u; vi = hT #v; ui for u; v 2 TxM;x 2M: Let

kT k(x) = sup
�jT #(u)j : u 2 TxM; juj � 1

	
; x 2M:

A C1 map Q : TM ! TM with QTxM � TxM for x 2M is called constant, ifr(Qv)(x) = 0
holds for any x 2 M and vector �eld v with rv(x) = 0. So, M is Ricci parallel if only if
Ric# is a constant map.

For any symmetric 2-tensor T , de�ne

(1.1) (RT )(v1; v2) := tr

R(�; v2)v1; T #(�)� =

dX
i=1


R(�i; v2)v1; T #(�i)
�
;

where v1; v2 2 TxM;x 2M;� = (�i)1�i�d 2 Ox(M): Since T is symmetric, so is RT . Let

kRk(x) = sup
�kRT k(x) : T is a symmetric 2-tensor; kT k(x) � 1

	
;

kRk1 = sup
x2M

kRk(x):

For a smooth tensor T , consider the Bochner Laplacian

�T := tr
�r�r�T

�
:

Then 1
2
� generates a contraction semigroup Pt = e

t
2
� in the L2 space of tensors, see [16,

Theorems 2.4 and 3.7] for details. In Subsection 3.1, we will prove a probabilistic formula
of PtT , which is a smooth tensor when T is smooth with compact support. Precisely, for
any x 2 M and � 2 Ox(M), let �t(x) be the horizontal Brownian motion starting at �,
and let Xt(x) := ��t(x) be the Brownian motion starting at x, see (3.3) and (3.5) below
for details. Then kt= �t(x)�

�1 : TxM ! TXt(x)M is called the stochastic parallel transport
along the Brownian path. Both Xt(x) and kt do not depend on the choice of the initial
value � 2 Ox(M): When the manifold is stochastically complete (i.e. the Brownian motion
is non-explosive), for a bounded n-tensor T we have

(PtT )(v1; � � � ; vn) = E
�T (kt v1; � � � ; kt vn)�; v1; � � � ; vn 2 TxM:

In the following, we will take this regular (rather than L2) version of the heat semigroup Pt.
Finally, For v 2 TxM , let Wt(v) 2 TXt(x)M solve the following covariant di�erential

equation

(1.2)
d

dt
�t(x)

�1Wt(v) = �1

2
��1
t (x)Ric#(Wt(v)); W0(v) = v:

Wt is called the damped stochastic parallel transport. When Ric � K for some constant
K 2 R, we have jWt(v)j � e�

K
2
tjvj; t � 0; v 2 TxM:
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In Section 2 and Sections 6-8, we will present a number of identi�cations of constant
curvature manifolds, Einstein manifolds, and Ricci parallel manifolds. In particular, the fol-
lowing assertions are direct consequences of Theorems 2.1, 6.1, 7.1 and 8.1 below. Comparing
with the elementary Toponogov's triangle-comparison theorem for sectional curvatures, the
following characterizations are purely analytic using the heat 
ow and related di�erential
operators, and thus might be helpful for understanding the link between sectional curvatures
and properties of the heat 
ow.

(A) Constant curvature. Let k 2 R. Each of the following assertions is equivalent to
Sec = k:

(A1) For any t � 0 and f 2 C1
0 (M); HessPtf = e�dktPtHessf +

1
d
(1� e�dkt)(Pt�f)g:

(A2) For any f 2 C1
0 (M); Hess�f ��Hessf = 2k

�
(�f)g � dHessf

	
:

(A3) For any f 2 C1
0 (M);

1

2
�kHessfk2HS � hHess�f ;HessfiHS � krHessfk2HS = 2k

�
dkHessfk2HS � (�f)2

�
;

where krHessfk2HS :=
Pd

i=1 kr�iHessfk2HS; � = (�i)1�i�d 2 Ox(M):

(A4) For any x 2M;u 2 TxM and f 2 C1
0 (M) with Hessf (x) = u
 u (i.e. Hessf (v1; v2) =

hu; v1ihu; v2i; v1; v2 2 TxM),

�
Hess�f ��Hessf

�
(v; v) = 2k

�juj2jvj2 � hu; vi2�; v 2 TxM:

According to the Bochner-Weizenb�ock formula, for any constant K 2 R, Ric = K is
equivalent to each of the following formulas:

rPtf = e�
t
2
KPtrf; f 2 C1

0 (M); t � 0;

�rf �r�f = Krf; f 2 C1
0 (M);

1

2
�jrf j2 � hr�f;rfi � kHessfk2HS = Kjrf j2; f 2 C1

0 (M):

So, (A1)-(A3) can be regarded as the corresponding formulas for Sec = k: Below, we present
some other identi�cations of Einstein manifolds.

(B) Einstein manifolds. Let � be the volume measure, and denote �(f) =
R
M
fd� for

f 2 L1(�). M is Einstein if and only if

�
�hrf;rgi���(�f)2 � kHessfk2HS

�
= �

�jrf j2���(�f)(�g)� hHessf ;HessgiHS

�
; f; g 2 C1

0 (M):
(1.3)

Moreover, for any K 2 R, Ric = K is equivalent to each of the following assertions:
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(B1) kRk1 <1, and for any t � 0; f 2 C1
0 (M);

HessPtf = e�KtPtHessf +

Z t

0

e�KsPs(RHessPt�sf )ds:

(B2) For any f 2 C1
0 (M),

1

2

�
Hess�f ��Hessf

	
= (RHessf )�KHessf :

(B3) For any f 2 C1
0 (M),

�
�
(�f)2 � kHessfk2HS

�
= K�

�jrf j2�:
(B4) For any f; g 2 C1

0 (M),

�
�
(�f)(�g)� hHessf ;HessgiHS

�
= K�

�hrf;rgi�:
(B5) There exists h : [0;1)�M ! [0;1) with limt!0 h(t; �) = 0 such that��Ptjrf j2 � eKtjrPtf j2

�� � h(t; �)�kHessPtfk2HS + PtkHessfk2HS

�
; t � 0; f 2 C1

0 (M):

(C) Ricci Parallel manifolds. M is Ricci parallel if and only ifZ
M

�
(�f)2 � kHessfk2HS � hQrf;rfi

	
d� = 0; f 2 C1

0 (M)

holds for some constant symmetric linear map Q : TM ! TM , and in this case Ric# = Q.
They are also equivalent to each of the following statements:

(C1) There exists a function h : [0;1)�M ! [0;1) with limt#0 t
� 1

2h(t; �) = 0 such that

kHessPtf � PtHessfk � h(t; �)�PtkHessfk+ kHessPtfk
�
; t � 0; f 2 C2

b (M):

(C2) kRk1 <1, and for any x 2M; t � 0, f 2 C0(M) and v1; v2 2 TxM ,

HessPtf (v1; v2)� E
�
Hessf (Wt(v1);Wt(v2))

�
= E

Z t

0

�RHessPt�sf
��
Ws(v1);Ws(v2)

�
ds:

(C3) For any f 2 C1
0 (M) and x 2M ,�

Hess�f ��Hessf
�
(v1; v2) = 2

�RHessf
�
(v1; v2)� 2Ric(v1;Hess#f (v2)); v1; v2 2 TxM:

(C4) For any x 2M and f 2 C1
0 (M) with Hessf (x) = 0,

(�Hessf )(v1; v2) = Hess�f (v1; v2); v1; v2 2 TxM:

Since a symmetric 2-tensor is determined by its diagonal, one may take v1 = v2 in (C2)-(C4).

To prove these results, we establish the following variational and derivative formulas for
Ric, see Remark 2.1 and Theorem 5.1 below.
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(D) Formulas of Ric. Let Ric and Ric be the exact upper and exact lower bounds of
Ric. Then

Ric = inf
n
�
�
(�f)2 � kHessfk2HS

�
: f 2 C1

0 (M); �(jrf j2) = 1
o
;

Ric = sup
n
�
�
(�f)2 � kHessfk2HS

�
: f 2 C1

0 (M); �(jrf j2) = 1
o
:

Moreover, let x 2M , v1; v2 2 TxM . For any f 2 C4
b (M) with rf(x) = v1;Hessf (x) = 0,

(rv2Ric)(v1; v1) = 2 lim
t#0

(PtHessf � HessPtf )(v1; v2)

t
=
�
�Hessf � Hess�f

�
(v1; v2):

The remainder of the paper is organized as follows. In Section 2, we present variational
formulas of Bakry-Emery-Ricci upper and lower bounds, as well as integral characterizations
of Einstein and Ricci parallel manifolds. In Section 3, we recall derivative and Hessian
formulas of Pt developed from stochastic analysis. Using these formulas we estimate the
Hessian of Pt in Section 4, and establish a formula for rRic in Section 5. Finally, by
applying results presented in Sections 3-5, we identify constant curvature manifolds, Einstein
manifolds, and Ricci parallel manifolds in Sections 6-8 respectively.

2 Characterizations of Bakry-Emery-Ricci curvature

Let V 2 C2(M), �V (dx) = eV (x)�(dx), and LV = �+rV . Then LV is symmetric in L2(�V ):
Consider the Bakry-Emery-Ricci curvature

RicV := Ric� HessV :

De�nition 2.1. The manifoldM is called V -Einstein ifRicV = K for some constantK 2 R,
while it is called RicV parallel if rRicV = 0 (i.e. Ric#V : TM ! TM is a constant map).

By the integral formula of Bochner-Weizenb�ock, we have

(2.1)

Z
M

�
(LV f)

2 � kHessfk2HS �RicV (rf;rf)
	
d�V = 0; f 2 C1

0 (M):

According to Theorem 2.1 below, this formula identi�es the curvature RicV , and provides
sharp upper and lower bounds of RicV , as well as integral characterizations of V -Einstein
and RicV parallel manifolds.

Theorem 2.1. Let K 2 R be a constant, and let Q : TM ! TM be a symmetric continuous
linear map.

(1) Ric#V = Q if and only if

(2.2)

Z
M

�
(LV f)

2 � kHessfk2HS � hQrf;rfi
	
d�V = 0; f 2 C1

0 (M):

Consequently,M is RicV parallel if and only if (2.2) holds for some symmetric constant
linear map Q : TM ! TM .
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(2) For any V 2 C2(M) and K 2 R, RicV � K if and only if

(2.3)

Z
M

n
(LV f)

2 � kHessfk2HS

o
d�V � K

Z
M

jrf j2d�V ; f 2 C1
0 (M);

while RicV � K if and only if

(2.4)

Z
M

n
(LV f)

2 � kHessfk2HS

o
d�V � K

Z
M

jrf j2d�V ; f 2 C1
0 (M):

(3) M is V -Einstein if and only if

�V
�jrf j2� � �V �(LV f)(LV g)� hHessf ;HessgiHS

�
= �V

�hrf;rgi� � �V �(LV f)
2 � kHessfk2HS

�
; f; g 2 C1

0 (M):
(2.5)

Moreover, for any constant K 2 R, RicV = K is equivalent to each of

(2.6)

Z
M

�
(LV f)

2 � kHessfk2HS �Kjrf j2	d�V = 0; f 2 C1
0 (M);

and

(2.7)

Z
M

�
(LV f)(LV g)� hHessf ;HessgiHS �Khrf;rgi	d�V = 0; f; g 2 C1

0 (M):

Remark 2.1. Theorem 2.1(2) provides the following variational formulas of the upper and
lower bounds of RicV . Let

RicV = supfRicV (u; u) : u 2 TM; juj = 1g; RicV = inffRicV (u; u) : u 2 TM; juj = 1g:

We have

RicV = inf
n
�V
�
(LV f)

2 � kHessfk2HS

�
: f 2 C1

0 (M); �V (jrf j2) = 1
o
;

RicV = sup
n
�V
�
(LV f)

2 � kHessfk2HS

�
: f 2 C1

0 (M); �V (jrf j2) = 1
o
:

To prove Theorem 2.1, we need the following lemma.

Lemma 2.2. For a continuous symmetric linear map Q : TM !M , if

(2.8)

Z
M

hQrf;rfid�V � 0; f 2 C1
0 (M);

then Q � 0; that is, hQu; ui � 0 for u 2 TM:

Proof. Using eVQ replacing Q, we may and do assume that V = 0 so that �V = � is the
volume measure.
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(a) We �rst consider M = R
d for which we have Q = (qij)1�i;j�d with qij = qji for some

continuous functions qij on R
d. Thus,

hQu; vi =
dX

i;j=1

qijuivj; u; v 2 Rd:

Without loss of generality, we only prove that Q(0) � 0. Using the eigenbasis of Q(0), we
may and do assume that Q(0) = diagfq1; � � � ; qdg: It su�ces to prove ql � 0 for 1 � l � d:

For any f 2 C1
0 (Rd), let

fn(x) = f � �n(x); (�n(x))i := nxi if i 6= l; (�n(x))l := n2xl; n � 1:

By (2.8),

0 �
dX

i;j=1

Z
Rd

qij(x)(@ifn)(x)@jfn(x)dx

=

Z
Rd

�
n4qll(x)(@lf)

2 � �n(x) + 2n3
X
j 6=l

qjl(x)f(@lf)(@jf)g � �n(x)

+ n2
X
i;j 6=l

qij(x)f(@if)(@jf)g � �n(x)
�
dx

=

Z
Rd

�
n3�dqll � ��1n (x)(@lf)

2(x) + 2n2�d
X
j 6=l

qjl � ��1n (x)f(@lf)(@jf)g(x)

+ n1�d
X
i;j 6=l

qij � ��1n (x)f(@if)(@jf)g(x)
�
dx;

where the last step is due to the integral transform x 7! ��1n (x). Since ��1n (x) ! 0 as
n!1, multiplying both sides by nd�3 and letting n!1 we arrive at

Z
Rd

ql(@lf)
2(x)dx � 0; f 2 C1

0 (Rd):

Thus, ql � 0 as wanted.
(b) In general, for x0 2 M , we take a neighborhood O(x0) of x0 such that it is di�eo-

morphic to Rd with x0 corresponding to 0 2 Rd. Let  : O(x0) ! R
d with  (x0) = 0 be a

di�eomorphism. Then under the local charts induced by  ,

hQr(f �  );r(f �  )id� =
dX

i;j=1

qij(x)(@if)(x)(@jf)(x)dx; f 2 C1
0 (Rd)

holds for some symmetric matrix-valued continuous functional (qij)1�i;j�d. Therefore, by

step (a), (2.8) implies
Pd

i;j=1 qij(x)uiuj � 0; x; u 2 Rd: In particular, Q(x0) � 0:
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Proof of Theorem 2.1. (1) By the Bochner-Weitzenb�ock formula, we have

(2.9)
1

2
LV jrf j2 � hrf;rLV fi = RicV (rf;rf) + kHessfk2HS; f 2 C1

0 (M):

So, Ric#V = Q implies

1

2
LV jrf j2 � hrf;rLV fi = hQrf;rfi+ kHessfk2HS:

Integrating both sides with respect to �V proves (2.2).
On the other hand, integrating both of (2.9) with respect to �V , we obtain (2.1). This

together with (2.2) implies

(2.10)

Z
Rd


Ric#V (rf)�Qrf;rf� d�V = 0; f 2 C1
0 (M):

Therefore, by Lemma 2.2 for Ric#V �Q replacing Q, we prove Ric#V = Q.
(2) By integrating both sides of (2.9) with respect to �V , we see that Ric#V � K implies

(2.3). On the other hand, applying Lemma 2.2 to Q = Ric#V � K, if (2.3) holds then
Ric#V � K: Similarly, we can prove the equivalence of Ric#V � K and (2.4). Therefore,
Theorem 2.1(2) holds.

(3) By assertion (2), RicV = K is equivalent (2.6). It remains to prove that (2.5) is
equivalent to the Einstein property, since this together with the equivalence of RicV = K

and (2.6) implies the equivalence of (2.6) and (2.7).
IfM is V -Einstein, there exists a constantK 2 R such thatRicV = K. Let f; g 2 C1

0 (M)
with �V (jrf j2) > 0, let fs = f + sg. Then there exists s0 > 0 such that �V (jrfsj2) > 0 for
s 2 [0; s0]. By (2.6), we have

h(s) :=
�V ((LV fs)

2 � kHessfsk2HS)

�V (jrfsj2) = K; s 2 [0; s0]:

So,

�V (jrf j2)�V ((LV f)(�g)� hHessf ;Hessgi)� �V (hrf;rgi)�V ((LV f)
2 � kHessfk2HS)

�V (jrf j2)2

=
1

2
h0(0) = 0:

Therefore, (2.5) holds.
On the other hand, for f 2 C1

0 (M) with �V (jrf j2) > 0, let

K =
�V ((LV f)

2 � kHessfk2HS)

�V (jrf j2) 2 R:

By the equivalence of Ric#V = K and (2.6), it su�ces to prove

(2.11) �V
�
(LV g)

2 � kHessgk2HS

�
= K�V (jrgj2); g 2 C1

0 (M):
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By the de�nition of K, this formula holds when g is a linear combination of f and 1. So, we
assume that f; g and 1 are linear independent. In this case,

gs := (1� s)f + sg; s 2 [0; 1]

satis�es �V (jrgsj2) > 0: Let

K(s) :=
�V ((LV gs)

2 � kHessgsk2HS)

�V (jrgsj2) ; s 2 [0; 1]:

Then (2.5) implies

K 0(s) =
2

�V (jrgsj2)2
n
�V (jrgsj2)�V

�
(LV gs)LV (g � f)� hHessgs ;Hessg�fiHS

�

� �V (hrgs;r(g � f)i)�V
�
(LV gs)

2 � kHessgsk2HS

�o
= 0; s 2 [0; 1]:

Therefore,
�V ((LV g)

2 � kHessgk2HS)

�V (jrgj2) = K(1) = K(0) = K;

that is, (2.11) holds as desired.

3 Derivative and Hessian formulas of Pt

In this section, by using the (horizontal) Brownian motion, we �rst formulate the heat
semigroup Pt acting on tensors, then recall the derivative and Hessian formulas of Pt on
functions.

3.1 Brownian motion and heat semigroup on tensors

Consider the projection operator from the orthonormal frame bundle O(M) onto M :

� : O(M)!M ; �� = x if � 2 Ox(M):

Then for any a 2 Rd and � = (�i)1�i�d 2 O(M),

�a :=
dX
i=1

ai�
i 2 T��M ;

and for any v 2 T��M ,

��1v :=
dX
i=1

hv;�iiei 2 Rd;

where feig1�i�d is the canonical orthonormal basis of Rd.
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For any a 2 Rd and � 2 O(M), let �(s) be the parallel transport of � along the geodesic
s 7! exp[s�a]; s � 0: We have

Ha(�) :=
d

ds
�(s)

��
s=0

2 T�O(M);

which is a horizontal vector �eld on O(M). Let Hi = Hei . Then (Hi)1�i�d forms the
canonical orthonormal basis for the space of horizontal vector �elds:

Ha =
dX
i=1

aiHi; a = (ai)1�i�d 2 Rd:

We call

(3.1) �O(M) :=
dX
i=1

H2
i

the horizontal Laplacian on O(M): For any smooth n-tensor T ,

T O(M)(�) :=
�T (�i1 ; � � � ;�in)

�
1�i1;��� ;in�d

2 
n
R
d; � = (�i)1�i�d 2 O(M)

gives rise to a smooth 
n
R
d-valued function on O(M). Let � be the Bochner Laplacian �.

For any x 2M , v1; � � � ; vn 2 TxM and � 2 Ox(M); we have

(�T )(v1; � � � ; vn) = f�O(M)T O(M)(�)g(��1v1; �;��1vn);

(rvT )(v1; � � � ; vn) = (rH
��1v

T O(M))(��1v1; � � � ;��1vn); v 2 TxM:
(3.2)

Now, consider the following SDE on O(M):

(3.3) d�t = H(�t) � dBt :=
dX
i=1

Hi(�t) � dBi
t;

where Bt := (Bi
t)1�i�d is the d-dimensional Brownian motion on a complete probability space

(
;F ;P) with natural �ltration FB
t := �(Bs : s � t) (by convention, we always take the

completion of a � �eld). The solution is called the Horizonal Brownian motion on O(M).
Let � be the life time of the solution. When � = 1 (i.e. the solution is non-explosive) we
call the manifold M stochastically complete. It is the case when

(3.4) Ric � �c(1 + �2)

for some constant c > 0, where � is the Riemannian distance to some �xed point, see the proof
of Proposition 3.1 blow. See also [10] and references within for the stochastic completeness
under weaker conditions.

Let Xt := ��t for t 2 [0; �). Then (Xt)t2[0;�) solves the SDE

(3.5) dXt = �t(Xt) � dBt;
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and is called the Brownian motion on M . For any x 2M , let Xt(x) be the solution of (3.5)
with X0 = x. Note that Xt(x) does not depend on the choice of the initial value �0 2 Ox(M)
for (3.3), and for �xed initial value �0 2 Ox(M), both �t(Xt) and Bt are measurable with
respect to FX

t := �(Xs : s � t): Therefore, FB
t = FX

t ; t � 0: When the initial point x is
clearly given in the context, we will simply denote Xt(x) by Xt.

Let
kt := �t�

�1
0 : TX0

M ! TXtM

be the stochastic parallel transport along Xt, which also does not depend on the choice of
�0. For any smooth n-tensor T with compact support, let

(3.6) (PtT )(v1; � � � ; vn) = E
�
1ft<�gT (kt v1; � � � ; kt vn)

�
; v1; � � � ; vn 2 TxM:

As is well known in the function (i.e. 0-tensor) setting, by (3.1), the �rst formula in (3.2),
(3.3) and Itô's formula we have the forward/backward Kolmogorov equations

(3.7) @tPtT =
1

2
�PtT =

1

2
Pt�T ; T 2 C1

0 :

For later use, we present the following exponential estimate of the Brownian motion
under condition (3.4).

Proposition 3.1. Assume (3.4). Then there exist constants r; c(r) > 0 such that

(3.8) E exp[e�rt�2(Xt)] � exp
h
�2(x) +

c(r)(1� e�rt)

r

i
; t � 0; x 2M:

Consequently, if

(3.9) lim
�!1

log krRick
�2

= 0;

then for any " 2 (0; 1) and p � 1, there exists a positive function C";p 2 C([0;1)) such that

(3.10) EkrRickp(Xt(x)) � e"�
2(x)+C";p(t); t � 0; x 2M:

Proof. Let � be the Riemannian distance to a �xed point o 2M . By the Laplacian compar-
ison theorem, (3.4) implies

�� � c1(�+ ��1)

outside fog [ cut(o) for some constant c1 > 0, where cut(o) is the cut-locus of o. By Itô's
formula of �(Xt) given in [12], this gives

d�(Xt)
2 � c2f1 + �(Xt)

2gdt+ 2�(Xt)dbt

for some constant c2 > 0 and an one-dimensional Brownian motion bt. By Itô's formula, for
any r > 2 + c2 there exists a constant c(r) > 0 such that

d exp[e�rt�2(Xt)] � exp[e�rt�2(Xt)]
��

(c2 + c2�
2(Xt))e

�rt � re�rt�2(Xt)
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+ 2e�2rt�2(Xt)
	
dt+ 2e�rt�(Xt)dbt

�
� exp[e�rt�2(Xt)]

�
c(r)e�rtdt+ 2e�rt�(Xt)dbt

	
:

Therefore, (3.8) holds.
On the other hand, by (3.9) we may �nd a positive function cp=" 2 C([0;1)) such that

krRic#kp=" � exp
�
e�t�2 + cp="(t)

�
; t � 0:

Combining this with (3.8) for r = 1, we obtain

EkrRickp(Xt(x)) �
�
EkrRickp="(Xt)

�"
� �

e�
2(x)+c(1)+c"=p(t)

�" � e"�
2(x)+"c(1)+"cp="(t):

Therefore, (3.10) holds for C";p(t) := "[c(1) + cp="(t)]:

3.2 Derivative formula of Pt

In this subsection, we assume

(3.11) Ric � �h(�) for some positive h 2 C([0;1)) with lim
r!1

h(r)

r2
= 0:

Let Wt : TxM ! TXtM be de�ned in (1.2). By (3.11) and Proposition 3.1, we have

(3.12) E sup
s2[0;t]

kWskp <1; t > 0:

We have (see e.g. [8, 10])

(3.13) rvPtf(x) = Ehrf(Xt(x));Wt(v)i; t � 0; f 2 C1
b (M):

Following the idea of [8, 17], it is standard to establish the Bismut type formula using
(3.13). By @tPtf = 1

2
�Ptf , (3.5) and Itô's formula, we have

dPt�sf(Xs) = hrPt�sf(Xs);�sdBsi;

so that

(3.14) f(Xt(x)) = Ptf(x) +

Z t

0

hrPt�sf(Xs(x));�s(x)dBsi:

In particular, Pt�sf(Xs) is a martingale. Next, by (3.13) and the Markov property, we have


rPt�sf(Xs);Ws(v)
�
= E

�
rf(Xt);Wt(v)
���FB

s

�
; s 2 [0; t];

which is again a martingale. Indeed, according to e.g. [22, (2.2.7)], we have

(3.15) dhrPt�sf(Xs);Ws(v)i = HessPt�sf (�sdBs;Ws(v)); s 2 [0; t]:
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So, for any adapted process h 2 C1([0; t]) such that h0 = 0; ht = 1, (3.13), (3.14) and (3.15)
imply

E

�
f(Xt(x))

Z t

0

_hshWs(v);�s(x)dBsi
�
= E

Z t

0

_hshWs(v);rPt�sf(Xs(x))ids

= E

�
hshWs(v);rPt�sf(Xs(x))i

��t
0
�
Z t

0

hsdhWs(v);rPt�sf(Xs(x))i
�

= EhWt(v);rf(Xt(x))i = rvPtf(x):

Therefore,

(3.16) rvPtf(x) = E

�
f(Xt(x))

Z t

0

_hshWs(v);�s(x)dBsi
�
; t > 0; x 2M; f 2 C1

b (M):

This type formula is named after J.-M. Bismut, K.D. Elworthy and X.-M. Li because of their
pioneering work [5] and [8]. The present version is due to [17] and has been applied in [2, 18]
to derive gradient estimates using local curvature conditions.

3.3 Hessian formula of Pt

To calculate HessPtf , we introduce the following doubled damped parallel transportWt(v1; v2)
for v1; v2 2 TxM :

�t(x)
�1W

(2)
t (v1; v2) =

1

2

Z t

0

��1
s

�
( ~rRic#)(Ws(v2))Ws(v1)�Ric#(W (2)

s (v1; v2))
	
ds

+

Z t

0

�s(x)
�1R(�s(x)dBs;Ws(v2))Ws(v1); t � 0;

(3.17)

where the cycle derivative ~rRic# is de�ned by

(3.18) h( ~rRic#)(u2)u1; u3i := (rv3Ric)(u1; u2)� (ru1Ric)(u2; u3)� (ru2Ric)(u1; u3)

for u1; u2; u3 2 TyM; y 2 M: According to Proposition 3.1 and (3.12), conditions (3.9) and
(3.11) imply

E sup
s2[0;t]

kW (2)
s kp <1; p � 1; t > 0:

Proposition 3.2 ([1, 14]). Assume (3.9) and (3.11). Then for any f 2 C2
b (M) and v1; v2 2

TxM ,

(3.19) HessPtf (v1; v2) = E
�
Hessf (Wt(v1);Wt(v2)) + hrf(Xt(x));W

(2)
t (v1; v2)i

	
:

Proof. Let v2(s) be the parallel transport of v2 along the geodesic s 7! exp[sv1]; s � 0.
According to (3.10), we de�ne the following covariant derivative of Wt:

W
(2)
t (v1; v2) := rv1Wt(v2) =

d

ds
Wt(vs(s))

��
s=0

:
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By (3.13),

HessPtf (v1; v2) = E
�
Hessf (Wt(v1);Wt(v2)) + hrf(Xt(x));W

(2)
t (v1; v2)i

	
:

It remains to prove that W
(2)
t satis�es (3.17). Since in the present setting FX

t = FB
t , this

follows from formula (7) in [1], see also (3.1) in [14].

Similarly to the Bismut type derivative formula (3.16) deduced from (3.13), Bismut type
Hessian formulas of Ptf have been presented in [1, 8, 14] by using (3.19). In Section 4 we
will use the following local version of Hessian formula, which follows from [1, Theorem 2.1]
and [1, Proof of Theorem 3.1] for e.g. D1 = B(x; 1); D2 = B(x; 2), where B(x; r) is the open
geodesic ball at x with radius r.

Proposition 3.3 ([1]). Let M be a complete noncompact Riemannian manifold. Let

�i(x) = infft � 0 : Xt(x) 2 @B(x; i)g; i = 1; 2:

There exists a positive function C 2 C(M) such that for any x 2 M , v1; v2 2 TxM with
jv1; jv2j � 1, and f 2 Bb(M),

(3.20) HessPtf (v1; v2) = E
�
Pt�t^�1(x)f(Xt^�1(x)(x))Mt + Pt�t^�2(x)f(Xt^�2(x)(x))Nt

�
; t > 0:

holds for some adapted continuous processes (Mt; Nt)t�0 determined by (Xt(x))0�t��2(x) such
that

(3.21) E
�jNtj+ jMtj

� � C(x)

t ^ 1
; t > 0:

4 Hessian estimates and applications

In this section, we �rst present Hessian estimates of Pt for Einstein and Ricci parallel mani-
folds, then apply these results to describe the lower and upper bounds of the Ricci curvature.

Recall that for any x 2M and f 2 C2(M),

kHessfk(x) := supfjHessf (u; v)j : u; v 2 TxM; juj; jvj � 1g;

kHessfk2HS(x) :=
dX

i;j=1

Hessf (�
i;�j)2; � = (�i)1�i�d 2 Ox(M):

Theorem 4.1. Let M be a Ricci parallel manifold with kRk1 < 1. Then for any x 2
M; t � 0, f 2 C0(M) and v1; v2 2 TxM ,

HessPtf (v1; v2)� E
�
Hessf (Wt(v1);Wt(v2))

�

= E

Z t

0

�RHessPt�sf
��
Ws(v1);Ws(v2)

�
ds;

(4.1)

where RHessPt�sf is de�ned in (1.1) for T = HessPt�sf . Consequently:
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(1) If Ric � K, then for any f 2 C2
b (M),

(4.2) kHessPtfk � e(kRk1�K)tPtkHessfk; t � 0:

(2) If Ric = K, then

(4.3) kHessPtfk2HS � e2(kRk1�K)tPtkHessfk2HS; t � 0:

Proof. We �x t > 0 and f 2 C2
b (M). Let d be the exterior di�erential. By e.g. [22, (2.2.6)]

we have

(4.4) d(dPt�sf)(Xs) = r�sdBs(dPt�sf)(Xs) +
1

2
Ric(�;rPt�sf(Xs))ds; s 2 [0; t]:

Equivalently,

(4.5) ��1
t rf(Xt) = ��1

0 rPtf + 1

2

Z t

0

��1
s Ric#(rPt�sf(Xs))ds+

Z t

0

Hess#Pt�sf (�sdBs):

On the other hand, since ~rRic# = 0, (3.17) becomes

��1
t W

(2)
t (v1; v2) =

Z t

0

��1
s R(�sdBs;Ws(v2))Ws(v1)� 1

2

Z t

0

��1
s Ric#(W (2)

s (v1; v2))ds:

Combining this with (4.5), we obtain

(4.6) Ehrf(Xt);W
(2)
t (v1; v2)i = E

Z t

0

tr
n
HessPt�sf (�;R(�;Ws(v2))Ws(vs))

o
:

Plugging (4.6) into (3.19) gives

HessPtf (v1; v2)� E
�
Hessf (Wt(v1);Wt(v2))

�

= E

Z t

0

tr
�
R(�;Ws(v2))Ws(v1);Hess

#
Pt�sf

(�)��ds
= E

Z t

0

�RHessPt�sf
�
(Ws(v1);Ws(v2))ds:

Therefore, (4.1) holds.
Below we prove (4.2) and (4.3) for Ricci parallel and Einstein manifolds respectively.
(a) (4.1) and Ric � K imply (4.2). If Ric � K, then (1.2) implies

jWt(v)j � e�
1

2
Ktjvj:

So, according to (4.1), for any s > 0 we have

kHessPsfk � e�KsPskHessfk+ kRk1
Z s

0

e�KrPrkHessPs�rfkdr:
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Letting
�(s) = e�K(t�s)Pt�skHessPsfk; s 2 [0; t];

we obtain

�(s) � e�K(t�s)Pt�s

�
e�sKPskHessfk+ kRk1

Z s

0

e�rKPrkHessPs�rfkdr
�

� e�KtPtkHessfk+ kRk1
Z t

0

e�K(t+r�s)Pt+r�skHessPs�rfkdr:

Using the change of variable � = s� r, we arrive at

�(s) � �(0) + kRk1
Z s

0

�(�)d�; s 2 [0; t]:

By Gronwall's lemma, this implies

�(t) � �(0)ekRk1t;

which is equivalent to (4.2).

(b) Let Ric = K. Then (1.2) implies Ws(v) = e�
K
2
sv. So, for x 2 M; v 2 TxM and

�0 2 Ox(M), (4.1) implies

HessPtf (v;�
k
0) = e�Kt

E
�
Hessf (ktv;�k

t )
�

+ E

Z t

0

e�sK
�RHessPt�sf

�
(�k

s ; ksv)ds:
(4.7)

Let
�k(s) = e�K(t�s)

EkHess#Psf (�k
t�s)k; s 2 [0; t]; 1 � k � d:

By (4.7) and the Markov property, for any 0 � s2 < s1 � t we have

HessPs1f (kt�s1v;�k
t�s1

) = e�K(s1�s2) E
�
HessPs2f (kt�s2v;�k

t�s2
)
��F x

t�s1

�

+

Z s1�s2

0

e�rKE
��RHessPs1�rf

�
(�k

t�s1+r
; kt�s1+rv)

���F x
t�s1

�
dr:

So,

Ik;v(s1; s2)

:= E

���e�(t�s1)KHessPs1f (kt�s1v;�k
t�s1

)� e�K(t�s2)E
�
HessPs2f (kt�s2v;�k

t�s2
)
��F x

t�s1

����
� jvje�(t�s1)KkRk1E

Z s1�s2

0

e�rK jHess#Ps1�rf (�
k
t�s1+r

)jdr

= jvjkRk1
Z s1

s2

e�K(t��)
EjHess#P�f (�k

t��)jd�

= jvjkRk1
Z s2

s1

�k(�)d�;
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where we have used the change of variable � = s1 � r. Then

�k(s1)� �k(s2) � sup
jvj�1

Ik;v(s1; s2)

� kRk1
Z s2

s1

�k(�)d�; 0 � s2 � s1 � t:

By Gronwall's lemma, this implies

jHess#Ptf (�k
0)j = �k(t) � ekRk1t�k(0) = e(kRk1�K)t

EjHess#f (�k
t )j; 1 � k � d:

Therefore,

kHessPtfk2HS =
dX

k=1

jHess#Ptf (�k
0)j2 � e2(kRk1�K)t

dX
k=1

�
EjHess#f (�k

t )j
�2

� e2(kRk1�K)tPtkHessfk2HS:

Next, we apply the above results to characterize the lower and upper bounds of Ric for
Ricci parallel manifolds.

Theorem 4.2. Let M be a Ricci parallel manifold. Then for any constant K 2 R, the
following statements are equivalent each other:

(1) Ric � K:

(2) For any f 2 C1
0 (M) and t � 0,

eKt � e2(K�kRk1)t

2kRk1 �K
kHessPtfk2 � Ptjrf j2 � eKtjrPtf j2:

(3) For any f 2 C1
0 (M) and t � 0,

kHessPtfk2
Z t

0

eKs � e2(K�kRk1)s

2kRk1 �K
ds � Ptf

2 � (Ptf)
2 � eKt � 1

K
jrPtf j2:

(4) For any f 2 C1
0 (M) and t � 0,

Ptf
2 � (Ptf)

2 � 1� e�Kt

K
Ptjrf j2

� �kHessPtfk2 e2(K�kRk1)t

Z t

0

e2(kRk1�K)s � e�Ks

2kRk1 �K
ds:
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Proof. (a) (1)) (2). Let t > 0 and f 2 C2
b (M). By (3.5) and Itô's formula, we have

djrPt�sf j2(Xs) =

�
1

2
�jrPt�sf j2(Xs)� hrPt�sf;r�Pt�sfi(Xs)

�
ds

+ 2hrjrPt�sf j2(Xs);�sdBsi; s 2 [0; t]:

(4.8)

By the Bochner-Weitzenb�ock formula and Ric � K, we obtain

1

2
�jrPt�sf j2(Xs)� hrPt�sf;r�Pt�sfi(Xs)

= Ric(rPt�sf;rPt�sf)(Xs) + kHessPt�sfk2HS(Xs)

� KjrPt�sf j2(Xs) + kHessPt�sfk2HS(Xs):

Then (4.8) implies

djrPt�sf j2(Xs) �
�
KjrPt�sf j2 + kHessPt�sfk2HS

�
(Xs)ds+ 2hrjrPt�sf j2(Xs);�sdBsi

for s 2 [0; t]: Combining this with (4.2), we arrive at

Ptjrf j2 � eKtjrPtf j2 �
Z t

0

eK(t�s)PskHessPt�sfk2HSds

�
Z t

0

eK(t�s)e�2(kRk1�K)skHessPtfk2ds

=
eKt � e2(K�kRk1)t

2kRk1 �K
kHessPtfk2:

(b) (2) implies (3) and (4): By (3.5) and Itô's formula, we have

d(Pt�sf)
2(Xs) = jrPt�sf j2(Xs)ds+ hrjPt�sf j2(Xs);�sdBsi; s 2 [0; t]:

So,

(4.9) Ptf
2 � (Ptf)

2 =

Z t

0

PsjrPt�sf j2ds:

Combining this with (2) and (4.2), we obtain

Ptf
2 � (Ptf)

2

�
Z t

0

n
jrPtf j2eKs +

eKs � e2(K�kRk1)s

2kRk1 �K
kHessPtfk2

o
ds:

Then (3) is proved.
Similarly, (4.2) and (2) imply

e�KsPtjrf j2 � Pt�sjrPsf j2

� 1� e(K�2kRk1)s

2kRk1 �K
Pt�skHessPsfk2
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� e2(K�kRk1)tkHessPtfk2 �
e2(kRk1�K)s � e�Ks

2kRk1 �K
;

which together with (4.9) gives (4).
(c) Each of (3) and (4) implies (1). For v 2 TxM with jvj = 1, take f 2 C1

0 (M) such
that

rf(x) = v; Hessf (x) = 0:

We have

(4.10) lim
t#0
kHessPtfk2

Z t

0

eKs � e2(K�kRk1)s

2kRk1 �K
ds = 0:

On the other hand, by the Bochner-Weitzenb�ock formula we have (see [22, Theorem 2.2.4]),

(4.11)
1

2
Ric(v; v) = lim

t#0

Ptjrf jp(x)� jrPtf jp(x)
pt

; p > 0:

Combining this with (3), (4.9) and (4.10), we obtain

0 � 2 lim
t#0

Ptf
2 � (Ptf)

2 � eKt�1
K

jrPtf j2
t2

= lim
t#0

2

t2

Z t

0

�
PsjrPt�sf j2 � eKsjrPtf j2

	
(x)ds = Ric(v; v)�K;

Therefore, (3) implies (1). Similarly, (4) also implies (1).

The following result provides corresponding characterizations for the Ricci upper bound.

Theorem 4.3. Let M be a Ricci parallel manifold. Then for any constant K 2 R, the
following are equivalent each other:

(1) Ric � K:

(2) For any f 2 C1
0 (M) and t � 0,

e(2kRk1�K)t � 1

2kRk1 �K
dPtkHessfk2 � Ptjrf j2 � eKtjrPtf j2:

(3) For any f 2 C1
0 (M) and t � 0,

dPtkHessfk2
Z t

0

e(2kRk1�K)t�Ks � e2(kRk1�K)s

2kRk1 �K
ds

� Ptf
2 � (Ptf)

2 � eKt � 1

K
jrPtf j2:

(4) For any f 2 C1
0 (M) and t � 0,

Ptf
2 � (Ptf)

2 � 1� e�Kt

K
Ptjrf j2 � �dPtkHessfk2

Z t

0

e2(kRk1�K)s � e�Ks

2kRk1 �K
ds:
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Proof. By using

(4.12) kHessfk2HS � dkHessfk2;

the proof is completely similar to that of Theorem 4.2. For instance, below we only show
the proof of (1) implying (2).

By Ric � K and (4.8), we have

djrPt�sf j2(Xs) �
�
KjrPt�sf j2 + kHessPt�sfk2HS

�
(Xs)ds+ 2hrjrPt�sf j2(Xs);�sdBsi

for s 2 [0; t]: Combining this with (4.2) and (4.12), we arrive at

Ptjrf j2 � eKtjrPtf j2 � d

Z t

0

eK(t�s)PskHessPt�sfk2ds

� d

Z t

0

eK(t�s)e2(kRk1�K)(t�s)PtkHessfk2ds

=
e(2kRk1�K)t � 1

2kRk1 �K
PtkHessfk2:

Then (1) implies (2). We therefore omit other proofs.

5 Formula of rRic

Theorem 5.1. For any x 2M , v1; v2 2 TxM and f 2 C4
b (M) with rf(x) = v1;Hessf (x) =

0, there holds

(5.1) (rv2Ric)(v1; v1) = 2 lim
t#0

(PtHessf � HessPtf )(v1; v2)

t
=
�
�Hessf � Hess�f

�
(v1; v2):

Consequently, M is Ricci parallel if and only if �Hessf = Hess�f holds at any point x 2M
and f 2 C1

0 (M) with Hessf (x) = 0.

When f 2 C1
0 (M), the second equation in (5.1) follows from (3.7). By a standard

approximation argument, this equation holds for all f 2 C2
b (M): So, it su�ces to prove the

�rst equation or the formula (5.2) below for x 2 M and f 2 C1
0 (M) with Hessf (x) = 0.

Here, we prove both of them by using analytic and probabilitstic arguments respectively,
since each proof has its own interest.

Analytic Proof. For any x 2M and f 2 C1
0 (M) with Hessf (x) = 0; we intend to prove

(5.2) (rvRic)(rf;rf) = (�Hessf )(rf; v)� Hess�f (rf; v); v 2 TxM:

According to the Bochner-Weizenb�ock formula, we have

(5.3) Ric#(rf) = �rf �r�f;
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where �rf := �(�O(M)rO(M)
f )(�) is independent of � 2 O(M): Consequently,

(5.4) Ric(rf;rf) = 1

2
�jrf j2 � hr�f;rfi � kHessfk2HS:

Since Hessf (x) = 0, (5.4) and (5.3) imply that at point x,

(rRic)(rf;rf) = rfRic(rf;rf)g
=

1

2
r�jrf j2 � Hess#�f (rf)� Hess#f (r�f)� 2kHessfkHSrkHessfk

=
1

2
�frjrf j2g � 1

2
Ric#(rjrf j2)� Hess#�f (rf)

= �fHess#f (rf)g � Hess#�f (rf)
= (�Hessf )

#(rf) + Hess#f (�rf) + 2tr
�
(r�Hess

#
f )(Hess

#
f (�))

	� Hess#�f (rf)
= (�Hessf )

#(rf)� Hess#�f (rf):
Therefore, (5.2) holds.

Probabilistic Proof. We �rst consider bounded rRic and R, then extend to the general case
by using Proposition 3.3.

(a) Assume that kRk1 + krRick1 < 1: Let x 2 M and v1; v2 2 TxM . We take f 2
C4
b (M) such that rf(x) = v1 and Hessf (x) = 0. Below we only consider functions taking

value at point x. Since Hessf (x) = 0, there exists a constant c > 0 such that

(5.5) PtkHessfk2HS(x) =
1

2

Z t

0

Ps�kHessfk2HS(x)ds � ct; t � 0:

Then there exists a constant c1 > 0 such that

(5.6) PskHessfk �
q
PskHessfk2 � c1

p
s; s 2 [0; 1]:

Since rf(x) = v1 and rPsf(x) is smooth in s, this together with (4.5) yields

(5.7) Ejrf(Xs)� ksv1j � c2s; s 2 [0; 1]

for some constant c2 > 0. Moreover, by (1.2) there exists a constant c3 > 0 such that

(5.8) jWs(vi)� ksvij � c3s; s 2 [0; 1]; i = 1; 2:

Combining (5.6)-(5.8) with (3.10), (3.17) and (4.5), for small t > 0 we arrive at

Ehrf(Xt);W
(2)
t (v1; v2)i =1

2
E

Z t

0



( ~rRic#)(Ws(v2))Ws(v1);rf(Xs)ids

+
dX
i=1

E

Z t

0

HessPt�sf
�
�i
s;R(�i

s;Ws(v2))Ws(v1)
�
ds

=o(t) +
1

2
h( ~rRic#)(v2)v1; v1it = o(t)� 1

2
(rv2Ric)(v1; v1)t;

(5.9)
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where the last step follows from (3.18).
On the other hand, by (3.19), (5.6) and (5.8), there exist a constant c4 > 0 such that for

small t > 0,

Ehrf(Xt);W
(2)
t (v1; v2)i = HessPtf (v1; v2)� EHessf (Wt(v1);Wt(v2))

= HessPtf (v1; v2)� PtHessf (v1; v2) + O(t)PtkHessfk
= HessPtf (v1; v2)� PtHessf (v1; v2) + o(t):

Combining this with (5.9) we derive the desired the �rst equation in (5.1).

(b) In general, let M be a complete non-compact Riemannian manifold. For �xed x 2M
we take D = B(x; 4). Let f 2 C1( �D) with f j@D = 0; f jB(x;3) = 1, jrf j = 1 on @D and
f > 0 in D. Then (D; f�2g) is a complete Riemannian manifold. We use superscript D to
denote quantities on this manifold, for instance, RD is the Riemannian tensor on (D; f�2g).
Then both RD and rDRicD are bounded. So, by (a), for PD

t the heat semigroup on D,

(5.10) (rv2Ric)(v1; v1) = lim
t#0

(PD
t HessDf � HessDPD

t f )(v1; v2)

t
:

Since f = 1 in B(x; 3), we may construct the horizontal Brownian motion �D
t (y) on D with

�D
0 (y) = �0 2 Oy(M) such that

�D
t (y) = �t(y); t � �3(y); XD

t (y) = Xt(y); t � �3(y);

where
�3(y) = infft � 0 : Xt(y) 2 @B(x; 3)g:

Noting that

Ptf(y) = E[f(Xt(y))1ft<�g]; PD
t f(y) = E[f(XD

t (y))]; f 2 Bb(M);

where � is the life time of Xt, we obtain

jPtf(y)� PD
t (y)j � kfk1P(�3(y) � t); t � 0; f 2 Bb(M):

Combining this with [3, Lemma 2.3], we may �nd constants c1; c2 > 0 such that

(5.11) jPtf(y)� PD
t f(y)j � c1kfk1e�c2=t; t 2 (0; 1]; y 2 B(x; 2):

Consequently,

(5.12) jPtHessf (v1; v2)� PD
t Hessf (v1; v2)j � c1kHessfk1e�c2=t; t 2 (0; 1]:

Moreover, since Xt = XD
t 2 B(x; 2) before time �2, Proposition 3.3 and (5.11) imply that at

point x,

jHessPtf (v1; v2)� HessDPD
t f (v1; v2)j

� E
�
(jPt�t^�1f(Xt^�1)� PD

t�t^�1
f(XD

t^�1
)j � jMtj

�
+ E

�jPt�t^�2f(Xt^�2)� PD
t�t^�2

f(XD
t^�2

)j)jNtj
�

� c1e
�c2=tkfk1C(x)

t
; t 2 (0; 1]:

Combining this with (5.10) and (5.12), we prove the �rst equation in (5.1).
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6 Identi�cation of constant curvature

Theorem 6.1. Let k 2 R. Then each of the following assertions is equivalent to Sec = k:

(1) For any t � 0 and f 2 C1
0 (M);

(6.1) HessPtf = e�dktPtHessf +
1

d
(1� e�dkt)(Pt�f)g:

(2) For any f 2 C1
0 (M);

(6.2) Hess�f ��Hessf = 2k(�f)g � 2dkHessf :

(3) For any x 2M;u 2 TxM and f 2 C1
0 (M) with Hessf (x) = u
 u (i.e. Hessf (v1; v2) =

hu; v1ihu; v2i; v1; v2 2 TxM),

(6.3)
�
Hess�f ��Hessf

�
(v; v) = 2k

�juj2jvj2 � hu; vi2�; v 2 TxM:

(4) For any f 2 C1
0 (M);

(6.4)
1

2
�kHessfk2HS �hHess�f ;HessfiHS �krHessfk2HS = 2k

�
dkHessfk2HS � (�f)2

�
:

To prove this result, we need the following lemma where RT is de�ned in (1.1).

Lemma 6.2. If the sectional curvature Sec = k for some constant k, then for any symmetric
2-tensor T ,

RT = ktr(T )g � kT:

Proof. Let ~T = ktr(T )g � kT: Since both RT and ~T are symmetric, it su�ces to prove

(6.5) (RT )(v; v) = ~T (v; v); v 2 Tx; jvj = 1; x 2M:

Let v 2 TxM with jvj = 1. By the symmetry of T , there exists � = (�i)1�i�d 2 Ox(M) such
that

T#(�i) = �i�
i; 1 � i � d

holds for some constants �i; 1 � i � d: Then Sec = k implies

(RT )(v; v) =
dX
i=1


R(�i; v)v; T#(�i)
�
=

dX
i=1

�i

R(�i; v)v;�i

�

= k

dX
i=1

�i
�
1� h�i; vi2� = ktr(T )� kT (v; v) = ~T (v; v):

Therefore, (6.5) holds.
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Proof of Theorem 6.1. Obviously, (3) follows from (2). Next, by (??) and taking derivative
of (6.1) with respect to t at t = 0, we obtain (6.2). So, (1) implies (2). Moreover, by chain
rule we have

(6.6)
1

2
�kHessfk2HS = h�Hessf ;HessfiHS + krHessfk2HS:

Then (4) follows from (2) and the identity h(�f)g;HessfiHS = (�f)2: To complete the proof,
below we prove \Sec = k ) (1)", \(3)) Sec = k " and \(4)) Sec = k " respectively.

(a) Sec = k ) (1). Let Sec = k. Then Ric = (d � 1)k. By (1.2), (4.1), we have

Ws(v) = e�
K
2
s ks v; s � 0; v 2 TM , and for any x 2M; v1; v2 2 TxM ,

HessPtf (v1; v2) = e�KtPtHessf (v1; v2) +

Z t

0

e�KsPs(RHessPt�sf )(v1; v2)ds:

Noting that �Pt�sf = Pt�s�f and hks v1; ks v2i = hv1; v2i, this together with Lemma 6.2
gives

HessPtf (v1; v2)� e�KtPtHessf (v1; v2)

=

Z t

0

e�Ks
�
Ps
�
khv1; v2iPt�s�f

	� kPs(HessPt�sf )(v1; v2)
�
ds; t � 0:

Therefore,

HessPtf (v1; v2) = e�(K+k)tPtHessf (v1; v2) + khv1; v2i
Z t

0

e�(K+k)sPt�fds

= e�dktPtHessf (v1; v2) +
1� e�dkt

d
(Pt�f)hv1; v2i:

So, (6.1) holds.
(b) (3) ) Sec = k. By taking u = 0, (3) implies that for any f 2 C1

0 (M) with
Hessf (x) = 0,

(�Hessf � Hess�f )(v; v) = 0; v 2 TxM:

By the symmetry of �Hessf � Hess�f , this is equivalent to

(�Hessf � Hess�f )(v1; v2) = 0; v1; v2 2 TxM:

So, for any v1; v2 2 TxM , by taking f 2 C1
0 (M) such that rf(x) = v1 and Hessf (x) = 0,

we deduce from Theorem 5.1 that

(rv2Ric)(v1; v1) =
�
�Hessf � Hess�f

�
(v1; v2) = 0:

Thus, M is Ricci parallel. By Theorem 4.1, (4.1) holds. Due to (1.2) and Itô's formula, by
taking derivative of (4.1) with respect to t at t = 0, we obtain

1

2
Hess�f (v1; v2)

=
1

2
(�Hessf )(v1; v2)�Ric(v1;Hess#f (v2)) + trhR(�; v2)v1;Hess#f (�)i; f 2 C1

0 (M):
(6.7)
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Now, letting u; v 2 TxM with juj = jvj = 1 and hu; vi = 0, and combining (6.7) with (6.3)
for v1 = v2 = v, and f 2 C1

0 (M) with Hessf (x) = u
 u, we arrive at

k = k(juj2jvj2 � hu; vi2) = 1

2
(Hess�f ��Hessf )(v; v)

= �Ric(v;Hess#f (v)) + trhR(�; v)v;Hess#f (�)i = Sec(u; v):

Therefore, Sec = k:

(c) (4)) Sec = k. By (6.6), (6.4) is equivalent to

(6.8)
1

2



�Hessf � Hess�f ;Hessf

�
HS

= k
�
dkHessfk2HS � (�f)2

�
:

We �rst prove that (6.8) implies rRic = 0. Let f 2 C1
0 (M) with Hessf (x) = 0. For any

u 2 TxM , let h 2 C1
0 (M) with Hessh(x) = u
 u. Applying (6.8) to fs := f + sh; s � 0, we

obtain at point x that

s

2
(�Hessf � Hess�f )(u; u) +

s2

2
(�Hessh � Hess�h)(u; u)

= k
�
ds2kHesshk2HS � s2(�h)2

�
; s > 0:

Multiplying by s�1 and letting s! 0, we arrive at (�Hessf � Hess�f )(u; u) = 0: As shown
above, this implies rRic = 0.

Next, we prove Sec = k. Since rRic = 0, (6.7) holds. For x 2 TxM and u; v 2 TxM

with juj = jvj = 1 and hu; vi = 0, take f 2 C1
0 (M) such that

Hessf (x) = u
 v + v 
 u:

Then at point x,
Hess#f (�) = hu; �iv + hv; �iu:

So, by (6.7) and (6.8) we obtain

2kd = k
�
dkHessfk2HS � (�f)2

�
(x)

=
1

2
h�Hessf � Hess�f ;HessfiHS(x) = (�Hessf � Hess�f )(u; v)

= 2Ric(u;Hess#f (v))� 2trhR(�; v)u;Hess#f (�)i = 2Ric(u; u) + 2Sec(u; v):
(6.9)

Letting fv1g1�i�d�1 be orthonormal and orthogonal to u, replacing v by vi and sum over i
leads to

2kd(d� 1) = 2(d� 1)Ric(u; u) + 2Ric(u; u) = 2dRic(u; u):
Thus, Ric(u; u) = (d� 1)k, and (6.9) implies Sec(u; v) = k:
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7 Identi�cations of Einstein manifolds

Theorem 7.1. For any constant K 2 R, the following statements are equivalent each other:

(1) M is an Einstein manifold with Ric = K.

(2) kRk1 <1, and for any x 2M; t � 0, f 2 C0(M) and v1; v2 2 TxM ,

(7.1) HessPtf (v1; v2)� e�KtPtHessf (v1; v2) =

Z t

0

e�KsPs
�RHessPt�sf

�
(v1; v2)ds:

(3) kRk1 <1; and

eKt � e2(K�kRk1)t

2kRk1 �K
kHessPtfk2HS � Ptjrf j2 � eKtjrPtf j2

� e(2kRk1�K)t � 1

2(d� 1)kRk1 �K
PtkHessfk2HS; f 2 C2

b (M); t � 0:

(4) There exists h : [0;1)�M ! [0;1) with limt!0 h(t; �) = 0 such that��Ptjrf j2 � eKtjrPtf j2
�� � h(t; �)�kHessPtfk2HS + PtkHessfk2HS

�
; t � 0; f 2 C1

0 (M):

(5) kRk1 <1; and

kHessPtfk2HS

Z t

0

eKs � e2(K�kRk1)s

2kRk1 �K
ds � Ptf

2 � (Ptf)
2 � eKt � 1

K
jrPtf j2

� �
PtkHessfk2HS

� Z t

0

e(2kRk1�K)t�Ks � e2(kRk1�K)s

2kRk1 �K
ds; f 2 C2

b (M); t � 0:

(6) kRk1 <1; and

� �
PtkHessfk2HS

� Z t

0

e2(kRk1�K)s � e�Ks)

2kRk1 �K
ds � Ptf

2 � (Ptf)
2 � 1� e�Kt

K
Ptjrf j2

� �kHessPtfk2HS e
2(K�kRk1)t

Z t

0

e2(kRk1�K)s � e�Ks

2kRk1 �K
ds; f 2 C2

b (M); t � 0:

(7) There exists ~h : [0;1)�M ! [0;1) with limt!0 t
�1~h(t; �) = 0 such that

min

����Ptf 2 � (Ptf)
2 � eKt � 1

K
jrPtf j2

���;
���Ptf 2 � (Ptf)

2 � 1� e�Kt

K
Ptjrf j2

���
�

� ~h(t; �)�kHessPtfk2HS + PtkHessfk2HS

�
; t � 0; f 2 C1

0 (M):

(8) For any f 2 C1
0 (M),

1

2

�
Hess�f ��Hessf

	
= (RHessf )�KHessf :

Proof. Obviously, (3) implies (4), each of (5) and (6) implies (7). According to Theorem 4.1
for Ric = K, (1) implies (2). Moreover, by taking derivative of (7.1) with respect to t at
t = 0, we obtain (8). So, it su�ces to prove that (1) implies (3); (3) implies (5) and (6); and
each of (4), (7) and (8) implies (1).
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(a) (1)) (3). By the Bochner-Weitzenb�ock formula and using Ric = K, we obtain

1

2
�jrPt�sf j2(Xs)� hrPt�sf;r�Pt�sfi(Xs)

= Ric(rPt�sf;rPt�sf)(Xs) + kHessPt�sfk2HS(Xs)

= KjrPt�sf j2(Xs) + kHessPt�sfk2HS(Xs):

Then (4.8) implies

djrPt�sf j2(Xs) =
�
KjrPt�sf j2 + kHessPt�sfk2HS

�
(Xs)ds+ 2hrjrPt�sf j2(Xs);�sdBsi

for s 2 [0; t]: Thus,

(7.2) Ptjrf j2 � eKtPtjrf j2 =
Z t

0

eK(t�s)PskHessPt�sfk2HSds:

Since by (4.3)
kHessPt�sfk2HS � e2(kRk1�K)(t�s)Pt�skHessfk2HS;

it follows from (7.2) that

Ptjrf j2 � eKtPtjrf j2 �
Z t

0

eK(t�s)+2(kRk1�K)(t�s)PtkHessfk2HSds

=
e(2kRk1�K)t � 1

2kRk1 �K
PtkHessfk2:

So, the second inequality in (3) holds. Similarly, (4.3) implies

PskHessPt�sfk2HS � e�2(kRk1�K)skHessPsPt�sfk2HS = e�2(kRk1�K)skHessPtfk2HS;

the �rst inequality in (3) also follows from (7.2).

(b) (3)) (5) and (6). By (3) and (4.3) we have

eKs � e2(K�kRk1)s

2kRk1 �K
kHessPtfk2HS � PsjrPt�sf j2 � eKsjrPtf j2

� e(2kRk1�K)s � 1

2kRk1 �K
PskHessPt�sfk2HS

� e((2kRk1�K)t�K(t�s) � e2(kRk1�K)(t�s)

2kRk1 �K
PtkHessfk2HS:

This together with (4.9) ensures (5).
Similarly, (4.3) and (3) imply

e�Ks(e(2kRk1�K)s � 1)

2kRk1 �K
PtkHessfk2HS � e�KsPtjrf j2 � Pt�sjrPsf j2

� 1� e(K�2kRk1)s

2kRk1 �K
Pt�skHessPsfk2HS

� e2(K�kRk1)tkHessPtfk2HS �
e2(kRk1�K)s � e�Ks

2kRk1 �K
;

which together with (4.9) gives (6).
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(c) (4)) (1). For v 2 TxM with jvj = 1, take f 2 C1
0 (M) such that

rf(x) = v; Hessf (x) = 0:

Then (4.11) holds. Moreover, since HessPtf (x) is smooth in t, Hessf (x) = 0 implies

kHessPtf (x)k � c(x)t; t 2 [0; 1]

for some constant c(x) > 0. Combining this with (4.11), (5.5) and (4), we obtain

0 = lim
t#0

Ptjrf j2(x)� eKtjrPtf j2(x)
t

= lim
t#0

�
Ric(v; v) + 1� eKt

t
Ptjrf j2(x)

�
= Ric(v; v)�K:

Therefore, Ric(v; v) = Kjvj2 holds for all v 2 TM . By the symmetry of Ric and g, this is
equivalent to Ric = K.

(d) (7)) (1). Let v and f be in (c). In the spirit of (4.11) and using (4.9), we have

2 lim
t#0

Ptf
2 � (Ptf)

2 � eKt�1
K

jrPtf j2
t2

= lim
t#0

2

t2

Z t

0

�
PsjrPt�sf j2 � eKsjrPtf j2

	
(x)ds = Ric(v; v)�K;

and

2 lim
t#0

Ptf
2 � (Ptf)

2 � 1�e�Kt

K
Ptjrf j2

t2

= lim
t#0

2

t2

Z t

0

�
PsjrPt�sf j2 � e�KsPtjrf j2

	
(x)ds = K �Ric(v; v):

Thus, multiplying the inequality in (7) by t�2 and letting t! 0, we prove Ric(v; v)�K = 0:
That is, (1) holds.

(e) (8)) (1). For any v1; v2 2 TxM , take f 2 C1
0 (M) such thatrf(x) = v1;Hessf (x) = 0.

According to Theorem 5.1, (8) implies

(rv2Ric)(v1; v1) = 0:

So, M is Ricci parallel, and as shown in the proof of Theorem 4.1 that (6.7) holds. Taking
v1 = v2 = v for v 2 TxM with jvj = 1, and letting f 2 C1

0 (M) such that Hessf (x) = v 
 v;

(6.7) implies

1

2

�
Hess�f ��Hessf

	
(v; v) = �Ric(v; v) + trhR(�; v)v;Hess#f (�)i = �Ric(v; v):

Combining this with (8) we obtain

�Ric(v; v) = �KHessf (v; v) = �K:
So, (1) holds.
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8 Identi�cations of Ricci Parallel manifolds

Theorem 8.1. The following assertions are equivalent each other:

(1) M is a Ricci parallel manifold.

(2) kRk1 <1, and (4.1) holds for any x 2M; t � 0, f 2 C0(M); v1; v2 2 TxM .

(3) kRk1 <1, and for any constant K 2 R with Ric � K, t � 0; f 2 C2
b (M),

(8.1) kHessPtf � PtHessfk �
�kRick1(1� e�Kt)

K
+ e(kRk1�K)t � e�Kt

�
PtkHessfk:

(4) There exists a function h : [0;1)�M ! [0;1) with limt#0 t
� 1

2h(t; �) = 0 such that

(8.2) kHessPtf � PtHessfk � h(t; �)�PtkHessfk+ kHessPtfk
�
; t � 0; f 2 C1

0 (M):

(5) For any f 2 C1
0 (M) and x 2M ,�

Hess�f ��Hessf
�
(v1; v2) = 2

�RHessf
�
(v1; v2)� 2Ric(v1;Hess#f (v2)); v1; v2 2 TxM:

(6) For any x 2M and f 2 C1
0 (M) with Hessf (x) = 0,

(�Hessf )(v1; v2) = Hess�f (v1; v2); v1; v2 2 TxM:

Proof. The equivalence of (1) and (6) follows from Theorem 5.1, (1) implying (2) is included
in Theorem 4.1, (5) follows from (2) by taking derivative of (4.1) with respect to t at t = 0,
and it is obvious that (3) implies (4) while (6) follows from (5). So, it remains to prove that
(1) implies (3), and (4) implies (1).

(a) (1) implies (3). Let M be Ricci parallel with Ric � K. By (1.2) we have

(8.3) jWs(v)j � e�
K
2
sjvj; v 2 TxM;

and

djWt(v)� ktvj2 = dj��1
t Wt(v)� ��1

0 vj2
= hWt(v)� ktv;Ric#(Wt(v))idt � jWt(v)� ktvj � kRick1e�

K
2
tjvj:

So,

jWt(v)� vj � kRick1
2

Z t

0

e�
K
2
sds =

kRick1(1� e�
K
2
t)

K
; jvj � 1:

Thus, for jv1j; jv2j = 1,��Hessf (Wt(v1);Wt(v2))� Hessf (ktv1; ktv2)
��

� kHessfk
�jWt(v1)j � jWt(v2)� ktv2)j+ jWt(v1)� ktv1j

�

� kHessfk
�
e�

K
2
t + 1

��
1� e�

K
2
t
�kRick1

K
= kHessfkkRick1(1� e�Kt)

K
:

(8.4)
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Combining (4.1) with the �rst formula in (??) for � =1, (4.2), (8.3) and (8.4), we obtain

kHessPtf � PtHessfk

� sup
jv1j;jv2j�1

��HessPtf (v1; v2)� EHessf (Wt(v1);Wt(v2))
��+ kRick1(1� e�Kt)

K
PtkHessfk

� kRick1(1� e�Kt)

K
PtkHessfk+ kRk1

Z t

0

e�Ks
EkHessPt�sfk(Xs)ds

� kRick1(1� e�Kt)

K
PtkHessfk+ kRk1

Z t

0

e�KsPskHessPt�sfkds

� PtkHessfk
�kRick1(1� e�Kt)

K
+ kRk1

Z t

0

e�Ks+(kRk1�K)(t�s)ds

�

=
�kRick1(1� e�Kt)

K
+ e(kRk1�K)t � e�Kt

�
PtkHessfk:

So, (8.1) holds.

(b) (4) ) (1). For any x 2 M and v1; v2 2 TxM , let f 2 C1
0 (M) such that rf(x) = v1

and Hessf (x) = 0. Since Hessf (x) = 0 and HessPtf (x) is smooth in t � 0,

kHessPtfk(x) � ct; t 2 [0; 1]

holds for some constant c > 0. Combining this with Theorem 5.1, (8.2) and (5.5), we obtain

��(rv2Ric)(v1; v1)
�� = lim

t#0

jPtHessf � HessPtf j(v1; v2)
t

� lim
t#0

h(t; x)

t

�
PtHessfk(x) + kHessPtfk(x)

� � lim
t#0

h(t; x)(c1
p
t+ ct)

t
= 0:

By the symmetry of (rv2Ric), this implies rRic = 0. Thus, (4) implies (1).
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