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Abstract
By methods of stochastic analysis on Riemannian manifolds, we derive explicit constants
c1(D) and eo(D) for a d-dimensional compact Riemannian manifold D with boundary such that

1 (D)VA|8]loo < IV6]|oo < e2(D)VA16]|0o

holds for any Dirichlet eigenfunction ¢ of —A with eigenvalue A. In particular, when D is convex
with non-negative Ricci curvature, the estimate holds for

01(D):$7 CQ(D):\/6<\\5;2?+4\\//7?§>.

Corresponding two-sided gradient estimates for Neumann eigenfunctions are derived in the sec-
ond part of the paper.

AMS subject Classification: 35P20, 60H30, 58J65
Keywords: Eigenfunction, gradient estimate, diffusion process, curvature, second fundamental

form.

1 Introduction

Let D be a d-dimensional compact Riemannian manifold with boundary 0D. We write (¢, \) €
Eig(A) if ¢ is a Dirichlet eigenfunction of —A in D with eigenvalue A > 0. According to [7], there
exist two constants ¢1 (D), c2(D) > 0 such that

(1.1) 1 (D)VM|¢llo < [Volloo < c2(D)VA|$lloos  ($,X) € Eig(A).
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FW is supported in part by NNSFC (11771326, 11431014).




An analogous statement for Neumann eigenfunctions has been derived in [5].

Concerning Dirichlet eigenfunctions, an explicit upper constant ¢o(D) can be derived from the
uniform gradient estimate of the Dirichlet semigroup in an earlier paper [10] of the third named
author. More precisely, let K, 0 > 0 be two constants such that

(1.2) Ricp > —K, Hap > —0,

where Ricp is the Ricci curvature on D and Hgp the mean curvature of 0D. Let

(1.3) ap = %max {6, V/(d—1)K}.

Consider the semigroup P; = e*® for the Dirichlet Laplacian A. According to [10, Theorem 1.1]
where ¢ = 2y, for any nontrivial f € %,(D) and ¢ > 0, the following estimate holds:

2 14+ 4234 (145 x271/3) /1 4+ 21/3 (1 + 42/3
< 9.5ap + vao(l £ )L (145 )—i- * (1+ )::c(t).

(tm)L/4 2Vt

IVPf
1/ lloo

Consequently, for any (¢, \) € Eig(A),

960100 < Il inf e(t)e.
In particular, when Ricp > 0, Hyp = 0,

Ve (14 2173) (1 4 4%/3)
(1.4) Voo < Jon VA18loos

In this paper, by using stochastic analysis of the Brownian motion on D, we develop two-sided
gradient estimates; the upper bound given below in (1.8) improves the one in (1.4). Our result will
also be valid for ag € R satisfying

(¢, A) € Eig(A).

1
(1.5) §Apap < g outside the focal set,

where pap is the distance to boundary. The case ag < 0 appears naturally in many situations, for
instance when D is a closed ball with convex distance to the origin. Note that by [10, Lemma 2.3],
if under (1.2) we define ag by (1.3) then condition (1.5) holds as a consequence.

For £ > 0, in what follows in the limiting case £ = 0 we use the convention

1 1/z . 1 1/r 1
( ) :zhm( ) = —.
14z rlo \1+7r e

Theorem 1.1. Let K,0 > 0 be two constants such that (1.2) holds and let o be given by (1.3) or
more generally satisfy (1.5). Then, for any nontrivial (¢, ) € Eig(A),

(16) LA (A yen Ve
VIO K S VAD TR\ K S Tl

and

(1 7) ||V¢||oo < e(>\+K) if A+ K >2A

' Iplloe | ve (A+2E) if VAT K <24,



where

. 200+ K) a?
A= 204(‘)'r + T exp <_2(>\+K)> .

In particular, when Ricp > 0, Hap = 0,

VA _ Vo V2e | /me
Ve S Tl <ﬁ<ﬁ+4ﬁ

Proof. This result follows from Theorem 2.1 and Theorem 2.2 below in the special case V = 0. In
this case, Ricy, = Ricp > —K is equivalent to (2.1) with n = d. Sharper upper bounds are given
below in Theorem 2.2. O

(1.8) ) , (¢, A) € Eig(A).

By (1.8), if D is convex with non-negative Ricci curvature then (1.1) holds with

_ L _ V2e Ve
Ve’ VT

To give explicit values of ¢1(D) and co(D) for positive K or 6, let A\; > 0 be the first Dirichlet
eigenvalue of —A on D. Then Theorem 1.1 implies that (1.1) holds for

VA

—_

C1 (D) CQ(D)

(D)= ———,
(D) Jde(n + K)
e()\1+K) \/é + 2(>\1+K) M+ K
co(D)=+———"1 + —= 1| 20y + +
2( ) \/)\»1 {B>2A} \/)\71 0 T 4(20{3-{— 2(A1+K)/7T) {B<2A}
with
2(M + K
B=+vMAM+K and A:2a8'—|— w
T

This is due to the fact that the expression for ¢; (D) is an increasing function of A and the expression
for co(D) a decreasing function of A. Since there exist explicit lower bound estimates on \; (see [9]
and references within), this gives explicit lower bounds of ¢1 (D) and explicit upper bounds of ¢y(D).

The lower bound for ||V¢||s will be derived by using It&’s formula for |V$|?(X;) where X, is
a Brownian motion (with drift) on D, see Subsection 2.1 for details. To derive the upper bound
estimate, we will construct some martingales to reduce |V¢|w to [[Vll5p o 1= supsp |V¢|, and
to estimate the latter in terms of ||¢}||~, see Subsection 2.2 for details. ,

Next, we consider the Neumann problem. Let Eigy(A) be the set of non-trivial eigenpairs
(¢, A) for the Neumann eigenproblem, i.e. ¢ is non-constant, A¢ = —A¢ with N¢|sp = 0 for the
unit inward normal vector field N of dD. Let Igp be the second fundamental form of 0D,

Top(X,Y) = —(VxN,Y), X,Y €T,0M, z € OM.

With a concrete choice of the function f, the next theorem implies (1.1) for (¢, A) € Eigy(A)
together with explicit constants ¢y (D), c2(D).

Theorem 1.2. Let K,§ € R be constants such that

(1.9) Ricp > —K, lgp > —0.



For f € CZ(D) with i%ff =1 and Nlog flap = 0, let

4 1 2
ce(f) :sup{W+K—2Alogf}, e €(0,1),
D _

K(f) :s%p{2\V10gf|2+K—Alogf}.

Then for any non-trivial (¢, \) € Eigy(A), we have A+ c.(f) > 0 and

“u eN2 < swp eN2 ( by )A/cs(f)
S GOt DA S 0 a0+ (DI Nt e (/)
IVOIZ 20120+ K(F) 1 K(F)\MED)
STl S . (1+57)
<oe) R AL

Proof. Under the conditions (1.2), Theorem 3.3 below applies with L = A, Ky = K and n = d.
The desired estimates are immediate consequences. O

When 9D is convex, i.e. [gp > 0, we may take f = 1 in Theorem 1.2 to derive the following
result. According to Theorem 3.2 below, this result also holds for 9D = @ where Eig(A) is the set
of eigenpairs for the closed eigenproblem.

Corollary 1.3. Let 9D be convex or empty. If Ric% > —K for some constant K, then for any
non-trivial (¢, ) € Eigy(A), we have A+ K > 0 and

X

A2 A2 ( A )A/K<||V¢||go<2(A+K)<1 :

< K)*/K<2€’(A+K+)
deA+ K SdA+ K) W+ K gz, =~ o« '

™

2 Proof of Theorem 1.1

In general, we will consider Dirichlet eigenfunctions for the symmetric operator L := A+VV on D
where V € C?(D). We denote by Eig(L) the set of pairs (¢, A) where ¢ is a Dirichlet eigenfunction
of —L on D with eigenvalue \.

In the following two subsections, we consider the lower bound and upper bound estimates
respectively.

2.1 Lower bound estimate

In this subsection we will estimate || V¢||oo from below using the following Bakry-Emery curvature-
dimension condition:

2
(2.1) A P S L )

where K € R, n > d are two constants. When V' = 0, this condition with n = d is equivalent to
Ric D 2 -K.

Theorem 2.1 (Lower bound estimate). Assume that (2.1) holds. Then

A2(eft — 1 .
22 VoI > Il sup T, (900 € FiglL).



Consequently, for KT := max{0, K} there holds

A2H¢H§o< A )A/K*> X113
A+ KT)\ X+ K+ ~ ne(A+ Kt)’

(2.3) IVelZ, > ” (¢,A) € Eig(L).

Proof. Let X; be the diffusion process generated by %L in D, and let
Tp:=inf{t > 0: X; € dD}.

By It6’s formula, we have

1
(2.4) d|Ve|* (X)) = §L|V¢|2(Xt) dt +dM;, t<p,
for some martingale M;. By the curvature dimension condition (2.1) and L¢$ = —A¢p, we obtain
1 2 _ 1 2 2 2 N
(25) LIV = LIV~ (VIg V)~ AV > —(K + NVe+ g2

Therefore, (2.4) gives

)\2
dVe|*(X;) > (;gb? — (K + A)\Vqsy?) (X,)dt +dM,, < 7.
Hence, for any ¢ > 0,
oK+ T IVo|2 > E|:|V¢|2(Xt/\TD)e(KJr)\)(t/\TD)]

AQ tATD
>R [ / oEHNs g X )2 ds]
n 0

X2 ! (K4+M)s 2
= —FK /01{S<TD}6 gb(XS) ds| .

n

Since ¢logp = 0 and Lo = —A¢, by Jensen’s inequality we have

E [Liserpy$(Xs)?] > (E[$(Xonry)])” = e ¥ (2)2,

where © = X € D is the starting point of X;. Then, by taking z such that ¢(z)? = ||¢[|%,, we
arrive at

5 A2 ! ,
TG, 2 T [ e g ds

NI [ g, 2
0

2
£ gl

This completes the proof of (2.2).
Since (2.1) holds for K* replacing K, we may and do assume that K > 0. By taking the
optimal choice t = + log(1 + %) (by convention t = A~! if K = 0) in (2.2), we obtain

Mgl A \VE X413
2 > 0 > o
Vel > ST (HK) ~ ne(A + K)

Hence (2.3) holds. O



2.2 Upper bound estimate
Let Ricg = Ricp — Hessy. For Ky, 0 > 0 such that Ricp > —Kg and Hygp > —0, let

(2.6) o= % (max {6, /(4= DKo} + [VV )

We note that 1 Lpyp < a by [10, Lemma 2.3].

Theorem 2.2 (Upper bound estimate). Let Ky ,0 > 0 be constants such that
Ric¥, > —Ky, Hyp > —0.

Let a € R be such that

(2.7) %Lpap <a

1. Assume a > 0. Then, for any nontrivial (¢, \) € Eig(L),

| [#lleo e(A+A+Kv) if VAT Ry <24,
where
2(A+ Kv) ( a? ) V2a?
2.9 A=a+F——F—exp| ———— )|+t a0 N —
(29) NG PL20v+ Ky) (A + Ky)
In particular, (2.8) holds with A replaced by
2(A+ Ky) a?
2.10 A =2 _— —_—— .
(2.10) RN eXp( 2(A + Kv/)

We also have

HV¢||OO o 204+\/m >‘+KV \/7»1_
(2.11) [[6lloo <\/< e T 2“*@)'

2. Assume a < 0. Then, for any nontrivial (¢, \) € Eig(L),

IVello _
(2.12) ol S VA + Ky <\/> \/>>

The strategy to prove Theorem 2.2 will be to first estimate [|[V||w in terms of ||¢]l and
IVollap o (see estimate (2.20) below) where ||f|5p o = l[lapflle for a function f on D. The
this end we construct appropriate martingales in terms of ¢ and V.

We start by recalling the necessary facts about the diffusion process generated by %L7 see for
instance [1, 3]. For any z € D, the diffusion X; solves the SDE

1
(213) dXt = §VV(Xt) dt+UtOdBt, X(] =z, 1 < TD,

where By is a d-dimensional Brownian motion, u; is the horizontal lift of X; onto the orthonormal
frame bundle O(D) with initial value ug € O (D), and

=inf{t >0: X; € 0D}



is the hitting time of X; to the boundary 0D. Setting Z := VV, we have

d

1 .

(2.14) duy = 52" (w) dt + Y Hi(u) o dB]
=1

where Z*(u) := hy(Zy)) and H;(u) = hy(ue;) are defined by means of the horizontal lift
by TrwyD — T, O(D) at u € O(D). Note that formally Ay, (up 0 dBy) = 37, by, (ue;) o dBy =
S Hi(ug) o dBI.

For f € C®°(D), let a := df € T(T*D). Setting m; := u; 'a(X;), we see by Tt6’s formula that

m

1
(2.15) dm; = §ut_1(Da + Vza)(Xy) dt

where (a = tr V2a denotes the so-called connection (or rough) Laplacian on 1-forms and = equality
modulo the differential of a local martingale.

Denote by Q:: T, D — Tx,D the solution, along the paths of X;, to the covariant ordinary
differential equation

D@ =~y (Rich)'Quett, Qo =idr,p, + <,
where D := uidu; ! and where by definition
(Rich)fv = Rich(-,v)*, v e T,D.
Thus, condition Ricy, > — Ky implies

Ky,

(2.16) Q| <e2 '], t<7p.
Finally, note that for any smooth function f on D, we have by the Weitzenbock formula:

d(A+2)f =d(—d*df + (df)Z)
= AWAf + Vzdf + (V.Z,V])
= (0 + Vz)(df) = Ricp (-, Vf)
(2.17) = (O - Ric}) + Vz)(df)

where A denotes the Hodge-deRham Laplacian on 1-forms.
Now let (¢, A) € Eig(L), i.e. Lp = —A¢p, where L = A+ Z. For v € T, D, consider the process

ni(v) = (dg)(Qv).

Then
nu(v) = (VE(Xr), Quo) = (u, (V) (Xe), g ' Quv)-
Using (2.15), we see by It6’s formula and formula (2.17) that

m

(Odé + V2dd)(X) Qo dt + dd(X:)(DQuo) dt = — 2my(v) dt.

dny(v) 5

DN | =

It follows that
(2.18) M2 ny(v) = M2(VH(Xy), Qu), t < T,

is a martingale.



Lemma 2.1. Let (¢, A) € Eig(L). We keep the notation from above. Then, for any function
h € C'([0,00); R), the process

(2.19) Ny(v) := by M2 (Vh(Xy), Q) — M2 p(Xy) / t(hSst,usst), t < 7p,
0

is a martingale. In particular, for fixed ¢ > 0 and h € C1([0,]; [0, 1]) monotone such that hg = 1
and h; = 0, we have

IVlloo < Vllop oo PLE > Tp} ePHEV)TE2
t 1/2
0

Proof. Indeed, from (2.18) we deduce that

t
M (VO Qo) = [ B (T9(X), Quobds, ¢ <,
0

is a martingale as well. By the formula

t
M (X) = GX0) + [ oM (V) und B
0
we see then that NV;(v) is a martingale. To check inequality (2.20), we deduce from the martingale
property of { Nsar, (v) }sepo,q that

IV¢llo0 < 19600000 B [Litsrp €772 hry | Qs |

27 1/2

t -
gl 2 E |111ryy sup ( [t st,usd35>)
0

lwl<1

The claim follows by using (2.16). O

To estimate the boundary norm [|V¢||,p, ,, we shall compare ¢(z) and
P(t,z) =P(rH >t), t>0,
for small p,,(z) := dist(z, dD). Let P” be the Dirichlet semigroup generated by ;L. Then
bit,3) = PP1p (o),
so that
(2.21) Oub(t, ) = %sz(t, V@), >0,
Lemma 2.3. For any (¢, ) € Eig(L),

(2.22) IVellop,co < ¢l gggewg IV (t, )l oD co-



Proof. To prove (2.22), we fix x € dD. For small € > 0, let 2° = exp,(¢N), where N is the inward
unit normal vector field of 9D. Since ¢|lsgp = 0 and (¢, -)|sp = 0, we have
¢ (=) (¢, )|

(2.23) V()| = [No(@)| = lim DL (9t ()] = lim

Let X; be the L-diffusion starting at z° and 7}, its first hitting time of dD. Note that
Nt = ¢(Xt€/\TE) e)\(t/\TB)/Qa [ Oa

is a martingale. Thus, for each fixed ¢ > 0, we can estimate as follows:

V()| = tim 1)

E[$(X5) Vparsy] ATD)/2
= lim
e—0 £

B[l
< e 2ty 7]
e—=0 £

£
< [16llo0 €2 Tim LET)
e—=0 £

= [|plloo /2 |Vap(2, -)| ().

Taking the infimum over ¢ gives the claim. O

We now work out an explicit estimate for [V (¢, -)||ap,co- Let cut(D) be the cut-locus of 9D,
which is a zero-volume closed subset of D such that p,,, := dist(-,0D) is smooth in D \ cut(D).

Proposition 2.4. Let o € R such that
1
(2.24) §L,03D < a.

Then

(2.25) <a+ e” 2 + min ~r
and
V2 Vi,
2.26 Vab(t, - <22 ta+ ——a
(2.26) T

Notice that by [10, Lemma 2.3] the condition £ Lpsp < « holds for o defined by (2.6).

Proof. Let z € D and let X; solve SDE (2.13). As shown in [6], (p5,(Xt))i<r, is @ semimartingale
satisfying

1 t
(2.27) palX0) = pap(@) + bi-+ 5 [ Loop(X)ds—1iy <1,
0



where b; is a real-valued Brownian motion starting at 0, and /; a non-decreasing process which
increases only when X[ € cut(D). Setting ¢ = pyp(z), we deduce from (2.27) together with

%LpaD < «, that

(2.28) pop(Xi(z)) <Y *(e) =e+b+at, t<Tp.
Consequently, letting T%(e) be the first hitting time of 0 by Y,*(¢), we obtain
(2.29) P(t,z) <Pt < Te)).

On the other hand, since 1 (t, -) vanishes on the boundary and is positive in D, we have for all
y € 0D

o Y(ta)

Hence, by (2.29), to prove the first inequality in (2.25) it is enough to establish that

2
P(t < T® 2 b1—e %%
(2.31) lmsup FE<THE) V2 ¢

o+ —+ ———ds.
10 € vt 0 V2ms3

It is well known that the (sub-probability) density fo . of T%(¢) is

eexp (—(e + as)?/(2s))
(2.32) fae(s) = NGy )

which can be obtained by the reflection principle for @ = 0 and the Girsanov transform for a # 0.
Thus

N

texp (—(e + as)?/(2s
IP’(tZTO‘(e)):e/O P (\/—;ﬂ?) /25)) ds

( ) t efazs/Q 2
2.33 = cexp(—ase / ex (—) ds
p(—ae) Vo P o

2t/e? e L/r a2e2r
= exp(—aa)/ exp (— ) dr,
0 3 4

wr

where we have made the change of variable r = 2s/¢2. With the change of variable v = 1/r we
easily check that

(2.34) /OO r32e7 1T dr = D(1/2) = /7,

0

and this allows to write

00 e—l/r 2t/e? e—l/r ) s
9.35)  P(t>TOe)) = exp(—ae 1_/ dr_/ EEEEANRY
(235)  B(t>T°(e)) = exp(—ae) ( =Ll 1 )

Ase — 0,

00 e—l/r (o) 1 8\/§
dr:/ ——dr +o(e) = — + o(e),
/215/52 \/’TT)’ 215/52\/’l">3 () ()

10



and with change of variable s = %827‘

2t/52 e—l/r w22, t e*% oZs
1—e 14 drza/ <1—e_2>d3
/o w3 ( ) 0 V2mws3

a25

tl_ — =
:e/ Lds—i—o(e)
0

2rs

by monotone convergence. Combining these with e~ =1 — «e + o(e), we deduce from (2.35) that

2 fl-e "2 “53
+£+
vVt 0 27rs

(2.36) P(t>T%e)) =1—¢ +o(e)

which yields (2.31).
Next, an integration by parts yields

(2.37)

]. — eiT 0[2 t 1 704211, \/§ (1 c>¢2t)
_ — e 2 _ — —€e 2 .
\/27Ts \/27‘(‘ 0 Vu vt

With the change of variable s = |«| \/f in the first term in the right we obtain

a2 ¢ 1 a2y 2t |O¢‘ s2t
2.38 — —e¢” 2 du=|a|x/— e 2 ds
(2.38) = = iy~ |

We arrive at

V2 [fl—e NG ol
(2.39) fla): —a+?+ ; ? \/Te +04—|—]oz]\/7/ 7 ds.

273
‘Oﬁ| 321‘ st t .
Bounding / ~ 2 ds by / ds = 1, respectively bounding e~ 2 by 1 in the

integral yield ( 2 25).
The function

\/§ |Oé‘ \Y4 2t 3215 \/§ \/E 92
2.41 = + _|_/ T e 2 sds < — 4+ o+ —a.
(2.41) fla) N a i ﬁe sds i a \/ﬂa
which yields (2.26). O

Remark 2.2. One could use estimate (2.20) (optimizing the right-hand side with respect to %)
together with Lemma 2.3 (again optimizing with respect to t) to estimate ||V, in terms of
||l oo- We prefer to combine the two steps.

11



Lemma 2.5. Assume Ric), > —Ky for some constant Ky € R. Let a be determined by (2.24).
(a) If @ > 0, then for any ($, A) € Eig(L),

. (A+Ky)t \/§ _a?t . 2\/
< G G
Voo < %Qggé‘[%fﬁe 2 {5 (a + Tﬁe 2+ min (|oz| T )) + \/ |Pl oo s

as well as

2 Vi 1—¢
< (A+EKv)t/2 2y V2 B
||V¢Ilm\;r>lgrg[g§]e ela+ Wt+ma +1/ . 1Al 0
2 1—
IV¢lloc < inf max eO+Hv)1/2 { (2a+ \/) +4/ } 161 so-
£€[0,1] Tt [

(b) If a« <0, then
IV¢lloo < inf f max e (kv )i/2 { e\ } 18]l co-

Proof. For fixed t > 0 in (2.19), we take h € C*([0,%];[0,1]) such that hg = 1 and h; = 0. Then, by
the martingale property of {Nsar, (v)}seo,], We obtain

[Vudl(2) = [No(v)| = [ENiarp (0)]

t
(2.42) = |E [1{t>TD}e)‘TD/2 hep (VO(Xrp), Qrpt) — Lypery /2 6(Xy) /0 (hs st,usst)H.

and

Note that using (2.16) along with Lemma 2.3 we may estimate

B [1imr) €77 B (VO(X ), Q)|
B [ Lo @772 [y | IV Bl 0 €V 722 0]
< E Lz} @72 oy |8l [V8(E = 7, ) o 00 X072/ V212 o]
= 2 [z Trrpl Il V002 = 7, o €2 V7072 o]

<RI g1l B (L o IV = 7, ) o 01]

as well as

t t 1/2
E[l{t@}e“”th) / <hsczsv7usd35>] < M2 qunoow{t@p}”?( / |hs|2eKVSds) .
0 0

Taking
t—s

t ?

hs = € [07t]7

we obtain thus from (2.42)

oO+EY)/2

V(@) € ———Idllo B [1(z>rpy (= 70) [V (t = 7D, )llop,cc]

1 Kyt _ 1 1/2
R N e e e B
3 Ky

12



Note that .
Vi_l < teEvit
Ky
(i) By (2.25), assuming that o > 0, we have on {t > 7p}:

(123

t—7p t—1p  V2E—1p t—TD/tTDl—e 5
Vip(t — . < - B |
n H 1/}( TD; )HaD,oo\a n +ﬁ n + n o omsd $
V2 /tl—e 2
at+—=+ | ——ds
vt Jo o V2ms?
\/Q a?t { Qf2 Qt}
L<a+ ——e 2 +min| q,
7t NG

Thus, letting e = P(¢ > 7p), we obtain

2 _a? 22t 1-—
\[te_2 —l—min{oz, 04}) + 8] .
i

V(@) < OO g [ (a . o t
(ii) Still under the assumption « > 0, this time using estimate (2.26), we have on {t > 7p}:
\/§ VE—=Tp o
Vip(t — 7p, - <t a+ 202
H ¢( D )H&D,oo 7T(t — TD) \/ﬁ

and thus letting ¢ = P(t > 7p), we get

e(/\+KV) /2

Vo(e)] « ———— ¢l E

— )3/
{t>TD} ([m-i-a(t—n))-i-(t \/227332012)]

1 Kyt _ 1 1/2
+ M2 loo Bt < 0} S S
t\ Ky

2 N 1—¢
a( —I—oa—l—r >+ t].

(iii) In the case oo < 0, we get from (2.25) in a similar way:

V()] < AT gl { e } .

This concludes the proof of Lemma 2.5.

< ATV g

Proposition 2.3. We keep the assumptions of Lemma 2.5.
(a) If @ > 0, then for any (¢, A) € Eig(L),

2()\ —|—KV)+ 042 . \/i()dz
Vol < \/égrél[%ﬁ] {5 <04 +———F~=—¢xp —m + min { [af, NN A

NG
+ VT VO K0) 1l
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as well as

200+ Ky)*t 2
( V) N a

Vv < ve ma e |la+
[V&leo \[se[o,)ﬁ{ ( NG 2r(A + Ky

+> +VI—e V(A +Kv)+} 1]l

and

200+ Kv) T

IVélloo < \/égrg[%ﬁ] {6 (204 + NG

) +\/1—6\/(A+Kv)+} 18]l oo

(b) If < 0, then

200+ Kv)T
\/7?

Proof. Take t =1/(A+ Ky)' in Lemma 2.5.

IVl < Ve max { VI —6\/(A+Kv)+} 1]

We are now ready to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. The claims of Theorem 2.2 follow from the inequalities in Proposition 2.3
together with the fact that for any A, B > 0,

2

B
EIél[%ﬁ]{é‘A—l—\/l—&B}—B]I{B>2A}+(A—FM) ]I{ngA}. O

3 Proof of Theorem 1.2

As in Section 2, we consider L = A 4+ VV and let Eigy (L) be the set of corresponding non-
trivial eigenpairs for the Neumann problem of L. We also allow dD = &, then we consider the
eigenproblem without boundary. We first consider the convex case, then extend to the general
situation. In this section, P, denotes the (Neumann if 9D # &) semigroup generated by L/2 on
D. Let X; be the corresponding (reflecting) diffusion process which solves the SDE

1
(31) dX; =usodB; + §VV(Xt) dt + N(Xt) d4y,
where B, is a d-dimensional Euclidean Brownian motion, u; the horizontal lift of X; onto the
orthonormal frame bundle, and #¢; the local time of Xy on 0D.

We will apply the following Bismut type formula for the Neumann semigroup P, see [15,
Theorem 3.2.1], where the multiplicative functional process @5 was introduced in [4].

Theorem 3.1 ([15]). Let Rich > —Ky andIsp > —3 for some Ky € C(D) and § € C(OD). Then
there exists a RY @ R%-valued adapted continuous process Qs with

1 t t
(3.2) 1Q:]l < exp (2/ KV(Xs)der/ 5(X5)d€5>, s3>0,
0 0

such that for any t >0 and h € C*([0,]) with h(0) = 0, h(t) = 1, there holds

(3.3) vptf:E[ﬂXt) / h'(S)Qsst], 7 € By(D).

14



3.1 The case with convex or empty boundary

In this part we assume that 9D is either convex or empty. When 9D is empty, D is a Riemannian
manifold without boundary and Eig (L) denotes the set of eigenpairs for the eigenproblem without
boundary. In this case, if RicV > Ky for some constant Ky € R, then A + Ky > 0 for (¢, \) €
Eign (L), see for instance [8].

Theorem 3.2. Assume that 0D s either convex or empty.

(1) If the curvature-dimension condition (2.1) holds, then for any (¢, A) € Eign (L),

2 2 MK 2 2
>\||¢||oo( A )/ 5 Mol

2
> ——e
IVélle > nA+ K)\\+ K ~ ne(A+ KT)

(2) If Ricy > —Ky for some constant Ky € R, then for any (¢, \) € Eigy(L),

2 A K +
HHV(;:T‘!OO < 2(A + Kv) (1 N %) /Kv < 2e()\—|—Kv).
0o i

™

Proof. (a) We start establishing the lower bound estimate. By It6’s formula, for any (¢, A) €
Eign (L) we have

(3.4) d|Ve|*(Xy) = %L!V@Q(Xt) dt +2T5p(Vo, V) (X)) dly + dM;, ¢ >0,

where /4 is the local time of X; at @D, which is an increasing process. Since lyp > 0, and since
(2.1) and L¢ = —A¢ imply

SLIVO > ~(K 4 NIVO + g,
we obtain
AV > (Xt (o KVl (Xt +au, 130
Noting that for Xo = 2 € D we have
E[(X.)%] > (BIp(X))? = ¢ g(x)?

we arrive at
2 t
e()\+K)t HV¢Hc2>o > e()HrK)t E[|v¢|2(Xt)] > A/ e()\+K)s E[¢2(Xs)] ds
n Jo

)\2 t K 5 )\Q(GKt _ 1)
- s ds =2~ =/
A P(x)” ds K

p(z).

>
Multiplying by e~ 5 choosing ¢ = +log(1 + %) (noting that A+ K > 0, in case A+ K =0

taking ¢ — o0), and taking the supremum over x € D, we finish the proof of (1).
(b) Let D be convex and Ric}, > —Ky for some constant Ky-. Then Theorem 3.1 holds for

0 =0, so that
t 1/2 t 1/2
oy = (E/ ]h’(s)]2||Qs||2ds) < (/ ]h'(s)\QeK‘/sds) .
0 0

15



Taking

IN e Kvr qr
M) = R ar
o€ r
we obtain K 12
v
Tt S (1 — e*KVt) '
Therefore,
¢
IVEf o < HfHooE‘ | mauas.
9 o) 32
(3-5) < ||f||oor/0 S exp (_%‘tg) ds
otV?2
= |Iflloo \tf , t>0, feZ(D).

Applying this to (¢, A) € Eigy (L), we obtain

Consequently, A + Ky > 0. Taking ¢t = log( ) as above, we arrive at

N o2 _ 2Ky 12
R e B
+ Kv
A

IVel2, _ 2(A+ Kv) Ky\MEv
< - N
P2 S (1+ /\)

[u—

3.2 The non-convex case

When 9D is non-convex, a conformal change of metric may be performed to make OM convex
under the new metric; this strategy has been used in [2, 12, 13, 14] for the study of functional
inequalities on non-convex manifolds. According to [15, Theorem 1.2.5], for a strictly positive
function f € C*(D) with Isp +Nlog flop = 0, the boundary D is convex under the metric
f2(-,-). For simplicity, we will assume that f > 1. Hence, we take as class of reference functions

D = {fECz(D): inf f =1, Iyp +Nlog f > 0}.

Assume (2.1) and Ric% > —Ky for some constants n > d and K, Ky € R. For any f € & and
€ (0,1), define

4e|V log f?
ce(f) :=sup {5|10gf| +eK+(1-e)Ky — 2Llogf} .
D — &
We let /\{V be the smallest non-trivial Neumann eigenvalue of —L. The following result implies
>\1 = _Cs(f)~
Theorem 3.3. Let f € 9.

(1) If (2.1) and Ric), = —Ky hold for some constants n > d and K,Ky € R. Then for any
non-trivial (¢, ) € Eign (L), we have X+ c.(f) >0 and

WVl o o N (=2 )5 sup e
612~ ceom nO+ e (F) \ N+ ec(f) o) neO + ()
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(2) Let Ric), > —Ky for some Ky € C(D), and
K(f)=sup{2|Vlog f|>+ Ky — Llogf}.
D

Then for any non-trivial (¢, \) € Eigyn (L), we have A+ K(f) > 0 and
IVOIE 20+ K(f) (; , EUONVED _ 2e(A + K(f)7)
WEIAL S - UFTN) s |

Proof. Let f € 2 and (¢, A) € Eigy(L).
(1) On 9D we have

N(f2IVel*) = (NFA)IVe* + [NVl
= f2((Nlog f*)|Ve|> +2Lyp(Ve, V)
(3.6) = 2f*((Nlog f)|V¢l* +Tap(V¢, Vb)) > 0.
Next, by the Bochner-Weitzenbock formula, using that Ricg > — Ky and L = —)A¢p, we observe

™

1 1
—LIV|* = SL|IV¢[]> — (VL$, V) — A|V|?
2 2

> |[Hessyl|5s — (Kv + A)[Vo[>.

Combining this with (2.5), for any ¢ € (0,1), we obtain
2

S LIV +(VF2, VIVe)
2 2 &N s
2 —[eK+ A —e)Ky + NV + =~ ¢
+ (1 —€) f?|[Hessy | fis — 2[|Hess lus X [V /2] x [Vh|

2_{|V10gf2|2
1—c¢

Combining this with (3.6) and applying It6’s formula, we obtain

2.

)\2
+eK+(1—-¢)Ky + )\} AV + %

AFIVEPIX) 2 SLIPIVOP) (X0 i + N(F V) (X dl

> _%<f2L|V¢|2 +2(Vf2 VIV + VL) (X0) dt

AP g (VRSP kv - amy 2 127 9o v

eX’ 2 2
> (20— (v ) P19 ()
Hence, for Xg =z € D,

1712 197913 €00 > B [ee- (2| gP) (0|

8)\2 t
n / el RIG(X,)?) ds
0

mn

2 gt
> £A” ecs(f)sq;(x)? ds
n o Jo
e (et 1)

nee(f)

>

$(z)°.
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This implies A + ¢-(f) > 0 and

11311V 115 eX? (e M — e (Ates(N))
16112 ~ 0 ne:(f)

_ eX? ( A >A/Ce(f)
n(A+c(f) \ A+ c(f)

(2) The claim could be derived from [2, inequality (2.12)]. For the sake of completeness we
include a sketch of the proof. For any p > 1, let

Ky(f) = sup {Kv+p/Vieg f|*—Llog f}.

S eN?
T ne(A+c(f)t)

Note that p|Vlog f|> — Llog f =p ' fPLf P. Since f € & implies Iyp > —N log f, we have
t t
@ < esp ([ KvCryas+2 [ Niogs(x)ae)
0 0

< exp (Kp(f)t) exp (—; /Ot(prfp)(Xs) ds + Z/OtNlog f(Xs)dés) .

dfP(Xy) 2 SLfP(Xy) dt + Nf7P(X,) de

1
2
1700 (<P Pt N Tog £ 08

we obtain that
1t !
M = f7P(Xy) exp (—2/0 fp(Xs)Lf”(Xs)d5+P/0 N log f(Xs)dgs)

is a (local) martingale. Proceeding as in the proof of [15, Corollary 3.2.8] or [2, Theorem 2.4], we
get

a 1 t a t
712 [exo (=5 [ recozs roeyas+p [ wiog rx)ae )|

<efr e (- [ oo rxgas+p [ Mg
= [P(x) <1
since f > 1 by assumption. This shows that
1Qel* < PP I fII5,, ¢ > 0.

Combining this for p = 2 with Theorem 3.1 and denoting K(f) = Ka(f), we obtain

t t
o2 =K / W () PIQu 12 ds < [IF1% / 1 (s) 2K ds,

Therefore, repeating step (b) in the proof of Theorem 3.2 with K(f) replacing Ky, we finish the
proof of (2). O
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