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Abstract

By methods of stochastic analysis on Riemannian manifolds, we derive explicit constants
c1(D) and c2(D) for a d-dimensional compact Riemannian manifold D with boundary such that

c1(D)
p
�k�k1 6 kr�k1 6 c2(D)

p
�k�k1

holds for any Dirichlet eigenfunction � of �� with eigenvalue �. In particular, when D is convex
with non-negative Ricci curvature, the estimate holds for

c1(D) =
1

de
; c2(D) =

p
e

 p
2p
�
+

p
�

4
p
2

!
:

Corresponding two-sided gradient estimates for Neumann eigenfunctions are derived in the sec-
ond part of the paper.

AMS subject Classi�cation: 35P20, 60H30, 58J65
Keywords: Eigenfunction, gradient estimate, di�usion process, curvature, second fundamental
form.

1 Introduction

Let D be a d-dimensional compact Riemannian manifold with boundary @D. We write (�; �) 2
Eig(�) if � is a Dirichlet eigenfunction of �� in D with eigenvalue � > 0. According to [7], there
exist two constants c1(D); c2(D) > 0 such that

(1.1) c1(D)
p
�k�k1 6 kr�k1 6 c2(D)

p
�k�k1; (�; �) 2 Eig(�):

AT is supported by FNR Luxembourg: OPEN scheme (project GEOMREV O14/7628746).
FW is supported in part by NNSFC (11771326, 11431014).
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An analogous statement for Neumann eigenfunctions has been derived in [5].
Concerning Dirichlet eigenfunctions, an explicit upper constant c2(D) can be derived from the

uniform gradient estimate of the Dirichlet semigroup in an earlier paper [10] of the third named
author. More precisely, let K; � > 0 be two constants such that

(1.2) RicD > �K; H@D > ��;

where RicD is the Ricci curvature on D and H@D the mean curvature of @D. Let

(1.3) �0 =
1

2
max

�
�;
p
(d� 1)K

	
:

Consider the semigroup Pt = et� for the Dirichlet Laplacian �. According to [10, Theorem 1.1]
where c = 2�0, for any nontrivial f 2 Bb(D) and t > 0, the following estimate holds:

krPtfk1
kfk1 6 9:5�0 +

2
p
�0(1 + 42=3)1=4 (1 + 5� 2�1=3)

(t�)1=4
+

p
1 + 21=3 (1 + 42=3)

2
p
t�

=: c(t):

Consequently, for any (�; �) 2 Eig(�),

kr�k1 6 k�k1 inf
t>0

c(t)e�t:

In particular, when RicD > 0, H@D > 0,

(1.4) kr�k1 6

p
e (1 + 21=3) (1 + 42=3)p

2�

p
� k�k1; (�; �) 2 Eig(�):

In this paper, by using stochastic analysis of the Brownian motion on D, we develop two-sided
gradient estimates; the upper bound given below in (1.8) improves the one in (1.4). Our result will
also be valid for �0 2 R satisfying

(1.5)
1

2
��@D 6 �0 outside the focal set,

where �@D is the distance to boundary. The case �0 < 0 appears naturally in many situations, for
instance when D is a closed ball with convex distance to the origin. Note that by [10, Lemma 2.3],
if under (1.2) we de�ne �0 by (1.3) then condition (1.5) holds as a consequence.

For x > 0, in what follows in the limiting case x = 0 we use the convention

� 1

1 + x

�1=x
:= lim

r#0

� 1

1 + r

�1=r
=

1

e
:

Theorem 1.1. Let K; � > 0 be two constants such that (1.2) holds and let �0 be given by (1.3) or
more generally satisfy (1.5). Then, for any nontrivial (�; �) 2 Eig(�),

(1.6)
�p

de(�+K)
6

�p
d(�+K)

� �

�+K

��=(2K)
6
kr�k1
k�k1

and

(1.7)
kr�k1
k�k1 6

(p
e(�+K) if

p
�+K > 2Ap

e
�
A+ �+K

4A

�
if

p
�+K 6 2A;
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where

A := 2�+0 +

p
2(�+K)p

�
exp

�
� �2

2(�+K)

�
:

In particular, when RicD > 0, H@D > 0,

(1.8)

p
�p
de
6
kr�k1
k�k1 6

p
�

 p
2ep
�

+

p
�e

4
p
2

!
; (�; �) 2 Eig(�):

Proof. This result follows from Theorem 2.1 and Theorem 2.2 below in the special case V = 0. In
this case, RicVD = RicD > �K is equivalent to (2.1) with n = d. Sharper upper bounds are given
below in Theorem 2.2.

By (1.8), if D is convex with non-negative Ricci curvature then (1.1) holds with

c1(D) =
1p
de
; c2(D) =

p
2ep
�

+

p
�e

4
p
2
:

To give explicit values of c1(D) and c2(D) for positive K or �, let �1 > 0 be the �rst Dirichlet
eigenvalue of �� on D. Then Theorem 1.1 implies that (1.1) holds for

c1(D) =

p
�1p

de(�1 +K)
;

c2(D) =

p
e(�1 +K)p

�1
1fB>2Ag +

p
ep
�1

 
2�+0 +

r
2(�1 +K)

�
+

�1 +K

4
�
2�+0 +

p
2(�1 +K)=�

�
!
1fB62Ag

with

B =
p
�1 +K and A = 2�+0 +

r
2(�1 +K)

�
:

This is due to the fact that the expression for c1(D) is an increasing function of � and the expression
for c2(D) a decreasing function of �. Since there exist explicit lower bound estimates on �1 (see [9]
and references within), this gives explicit lower bounds of c1(D) and explicit upper bounds of c2(D).

The lower bound for kr�k1 will be derived by using Itô's formula for jr�j2(Xt) where Xt is
a Brownian motion (with drift) on D, see Subsection 2.1 for details. To derive the upper bound
estimate, we will construct some martingales to reduce kr�k1 to kr�k@D;1 := sup@D jr�j, and
to estimate the latter in terms of k�k1, see Subsection 2.2 for details.

Next, we consider the Neumann problem. Let EigN (�) be the set of non-trivial eigenpairs
(�; �) for the Neumann eigenproblem, i.e. � is non-constant, �� = ��� with N�j@D = 0 for the
unit inward normal vector �eld N of @D. Let I@D be the second fundamental form of @D,

I@D(X;Y ) = �hrXN;Y i; X; Y 2 Tx@M; x 2 @M:

With a concrete choice of the function f , the next theorem implies (1.1) for (�; �) 2 EigN (�)
together with explicit constants c1(D); c2(D).

Theorem 1.2. Let K; � 2 R be constants such that

(1.9) RicD > �K; I@D > ��:
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For f 2 C2
b (

�D) with inf
D
f = 1 and N log f j@D > �, let

c"(f) = sup
D

�
4"jr log f j2

1� "
+K � 2� log f

�
; " 2 (0; 1);

K(f) = sup
D

�
2jr log f j2 +K �� log f

	
:

Then for any non-trivial (�; �) 2 EigN (�), we have �+ c"(f) > 0 and

sup
"2(0;1)

"�2

de(�+ c"(f))kfk21
6 sup

"2(0;1)

"�2

d(�+ c"(f))kfk21
� �

�+ c"(f)

��=c"(f)

6
kr�k21
k�k21

6
2kfk21(�+K(f))

�

�
1 +

K(f)

�

��=K(f)

6 2e kfk21
�+K(f)

�
:

Proof. Under the conditions (1.2), Theorem 3.3 below applies with L = �, KV = K and n = d.
The desired estimates are immediate consequences.

When @D is convex, i.e. I@D > 0, we may take f � 1 in Theorem 1.2 to derive the following
result. According to Theorem 3.2 below, this result also holds for @D = ? where Eig(�) is the set
of eigenpairs for the closed eigenproblem.

Corollary 1.3. Let @D be convex or empty. If RicVD > �K for some constant K, then for any

non-trivial (�; �) 2 EigN (�), we have �+K > 0 and

�2

de(�+K+)
6

�2

d(�+K)

� �

�+K

��=K
6
kr�k21
k�k21

6
2(�+K)

�

�
1 +

K

�

��=K
6

2e(�+K+)

�
:

2 Proof of Theorem 1.1

In general, we will consider Dirichlet eigenfunctions for the symmetric operator L := �+rV on D
where V 2 C2(D). We denote by Eig(L) the set of pairs (�; �) where � is a Dirichlet eigenfunction
of �L on D with eigenvalue �.

In the following two subsections, we consider the lower bound and upper bound estimates
respectively.

2.1 Lower bound estimate

In this subsection we will estimate kr�k1 from below using the following Bakry-�Emery curvature-
dimension condition:

(2.1)
1

2
Ljrf j2 � hrLf;rfi > �Kjrf j2 + (Lf)2

n
; f 2 C1(D);

where K 2 R, n > d are two constants. When V = 0, this condition with n = d is equivalent to
RicD > �K.

Theorem 2.1 (Lower bound estimate). Assume that (2.1) holds. Then

(2.2) kr�k21 > k�k21 sup
t>0

�2(eKt � 1)

nKe(�+K)+t
; (�; �) 2 Eig(L):
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Consequently, for K+ := maxf0;Kg there holds

(2.3) kr�k21 >
�2k�k21

n(�+K+)

� �

�+K+

��=K+

>
�2k�k21

ne(�+K+)
; (�; �) 2 Eig(L):

Proof. Let Xt be the di�usion process generated by 1
2L in D, and let

�D := infft > 0 : Xt 2 @Dg:

By Itô's formula, we have

(2.4) djr�j2(Xt) =
1

2
Ljr�j2(Xt) dt+ dMt; t 6 �D;

for some martingale Mt. By the curvature dimension condition (2.1) and L� = ���, we obtain

(2.5)
1

2
Ljr�j2 = 1

2
Ljr�j2 � hrL�;r�i � �jr�j2 > �(K + �)jr�j2 + �2

n
�2:

Therefore, (2.4) gives

djr�j2(Xt) >
��2
n
�2 � (K + �)jr�j2

�
(Xt) dt+ dMt; t 6 �D:

Hence, for any t > 0,

e(K+�)+t kr�k21 > E

h
jr�j2(Xt^�D)e

(K+�)(t^�D)
i

>
�2

n
E

�Z t^�D

0
e(K+�)s�(Xs)

2 ds

�

=
�2

n
E

�Z t

0
1fs<�Dge

(K+�)s�(Xs)
2 ds

�
:

Since �j@D = 0 and L� = ���, by Jensen's inequality we have

E
�
1fs<�Dg�(Xs)

2
�
>
�
E[�(Xs^�D)]

�2
= e��s�(x)2;

where x = X0 2 D is the starting point of Xt. Then, by taking x such that �(x)2 = k�k21, we
arrive at

e(K+�)+t kr�k21 >
�2

n

Z t

0
e(K+�)se��s�(x)2 ds

=
�2k�k21

n

Z t

0
eKs ds =

�2(eKt � 1)

nK
k�k21:

This completes the proof of (2.2).
Since (2.1) holds for K+ replacing K, we may and do assume that K > 0. By taking the

optimal choice t = 1
K log(1 + K

� ) (by convention t = ��1 if K = 0) in (2.2), we obtain

kr�k21 >
�2k�k21
�+K

� �

�+K

��=K
>

�2k�k21
ne(�+K)

:

Hence (2.3) holds.
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2.2 Upper bound estimate

Let RicVD = RicD �HessV . For K0; � > 0 such that RicD > �K0 and H@D > ��, let

(2.6) � =
1

2

�
max

�
�;
p
(d� 1)K0

	
+ krV k1

�
We note that 1

2L�@D 6 � by [10, Lemma 2.3].

Theorem 2.2 (Upper bound estimate). Let KV ; � > 0 be constants such that

RicVD > �KV ; H@D > ��:
Let � 2 R be such that

(2.7)
1

2
L�@D 6 �:

1. Assume � > 0. Then, for any nontrivial (�; �) 2 Eig(L),

(2.8)
kr�k1
k�k1 6

(p
e(�+KV ) if

p
�+KV > 2A

e
�
A+ �+KV

4A

�
if

p
�+KV 6 2A;

where

(2.9) A := �+

p
2(�+KV )p

�
exp

�
� �2

2(�+KV )

�
+ a ^

p
2�2p

�(�+KV )
:

In particular, (2.8) holds with A replaced by

(2.10) A0 := 2�+

p
2(�+KV )p

�
exp

�
� �2

2(�+KV )

�
:

We also have

(2.11)
kr�k1
k�k1 6

p
e

 
2�+

p
2(�+KV )p
�

+
�+KV

4

p
�

2�+
p
2(�+KV )

!
:

2. Assume � 6 0. Then, for any nontrivial (�; �) 2 Eig(L),

(2.12)
kr�k1
k�k1 6

p
�+KV

 r
2

�
+

1

4

r
�

2

!
p
e:

The strategy to prove Theorem 2.2 will be to �rst estimate kr�k1 in terms of k�k1 and
kr�k@D;1 (see estimate (2.20) below) where kfk@D;1 := k1@Dfk1 for a function f on D. The
this end we construct appropriate martingales in terms of � and r�.

We start by recalling the necessary facts about the di�usion process generated by 1
2L, see for

instance [1, 3]. For any x 2 D, the di�usion Xt solves the SDE

(2.13) dXt =
1

2
rV (Xt) dt+ ut � dBt; X0 = x; t 6 �D;

where Bt is a d-dimensional Brownian motion, ut is the horizontal lift of Xt onto the orthonormal
frame bundle O(D) with initial value u0 2 Ox(D); and

�D := infft > 0 : Xt 2 @Dg

6



is the hitting time of Xt to the boundary @D. Setting Z := rV , we have

(2.14) dut =
1

2
Z�(ut) dt+

dX
i=1

Hi(ut) � dBi
t

where Z�(u) := hu(Z�(u)) and Hi(u) := hu(uei) are de�ned by means of the horizontal lift
hu : T�(u)D ! TuO(D) at u 2 O(D). Note that formally hut(ut � dBt) =

P
i hut(utei) � dBi

t =P
iHi(ut) � dBi

t.
For f 2 C1(D), let a := df 2 �(T �D). Setting mt := u�1t a(Xt), we see by Itô's formula that

(2.15) dmt
m
=

1

2
u�1t (�a+rZa)(Xt) dt

where �a = trr2a denotes the so-called connection (or rough) Laplacian on 1-forms and
m
= equality

modulo the di�erential of a local martingale.
Denote by Qt : TxD ! TXtD the solution, along the paths of Xt, to the covariant ordinary

di�erential equation

DQt = �1

2
(RicVD)

]Qt dt; Q0 = idTxD; t 6 �D;

where D := utdu
�1
t and where by de�nition

(RicVD)
]v = RicVD(�; v)]; v 2 TxD:

Thus, condition RicVD > �KV implies

(2.16) jQtvj 6 e
KV
2
t jvj; t 6 �D:

Finally, note that for any smooth function f on D, we have by the Weitzenb�ock formula:

d
�
�+ Z

�
f = d

�� d�df + (df)Z
�

= �(1)df +rZdf + hr.Z;rfi
= (�+rZ)(df)� RicVD(�;rf)
=
�
�� RicVD +rZ

�
(df)(2.17)

where �(1) denotes the Hodge-deRham Laplacian on 1-forms.
Now let (�; �) 2 Eig(L), i.e. L� = ���, where L = �+ Z. For v 2 TxD, consider the process

nt(v) := (d�)(Qtv):

Then
nt(v) = hr�(Xt); Qtvi = hu�1t (r�)(Xt); u

�1
t Qtvi:

Using (2.15), we see by Itô's formula and formula (2.17) that

dnt(v)
m
=

1

2
(�d�+rZd�)(Xt)Qtv dt+ d�(Xt)(DQtv) dt = ��

2
nt(v) dt:

It follows that

(2.18) e�t=2 nt(v) = e�t=2 hr�(Xt); Qtvi; t 6 �D;

is a martingale.
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Lemma 2.1. Let (�; �) 2 Eig(L). We keep the notation from above. Then, for any function
h 2 C1([0;1);R), the process

Nt(v) := ht e
�t=2 hr�(Xt); Qtvi � e�t=2 �(Xt)

Z t

0
h _hsQsv; usdBsi; t 6 �D;(2.19)

is a martingale. In particular, for �xed t > 0 and h 2 C1([0; t]; [0; 1]) monotone such that h0 = 1
and ht = 0, we have

kr�k1 6 kr�k@D;1 Pft > �Dg e(�+KV )
+t=2

+ k�k1 e�t=2 Pft 6 �Dg1=2
�Z t

0
j _hsj2eKV s ds

�1=2

:(2.20)

Proof. Indeed, from (2.18) we deduce that

ht e
�t=2 hr�(Xt); Qtvi �

Z t

0

_hs e
�s=2 hr�(Xs); Qsvi ds; t 6 �D;

is a martingale as well. By the formula

e�t=2 �(Xt) = �(X0) +

Z t

0
e�s=2 hr�(Xs); usdBsi

we see then that Nt(v) is a martingale. To check inequality (2.20), we deduce from the martingale
property of fNs^�D(v)gs2[0;t] that

kr�k1 6 kr�k@D;1 E

h
1ft>�Dg e

��D=2 jh�D j jQ�D j
i

+ k�k1 e�t=2 E

"
1ft6�Dg sup

jvj61

�Z t

0
h _hsQsv; usdBsi

�2
#1=2

:

The claim follows by using (2.16).

To estimate the boundary norm kr�k@D;1, we shall compare �(x) and

 (t; x) := P(�xD > t); t > 0;

for small �@D(x) := dist(x; @D). Let PD
t be the Dirichlet semigroup generated by 1

2L. Then

 (t; x) = PD
t 1D(x);

so that

(2.21) @t (t; x) =
1

2
L (t; �)(x); t > 0:

Lemma 2.3. For any (�; �) 2 Eig(L),

(2.22) kr�k@D;1 6 k�k1 inf
t>0

e�t=2 kr (t; �)k@D;1:

8



Proof. To prove (2.22), we �x x 2 @D. For small " > 0, let x" = expx("N), where N is the inward
unit normal vector �eld of @D. Since �j@D = 0 and  (t; �)j@D = 0, we have

(2.23) jr�(x)j = jN�(x)j = lim
"!0

j�(x")j
"

; jr (t; �)(x)j = lim
"!0

j (t; x")j
"

:

Let X"
t be the L-di�usion starting at x" and � "D its �rst hitting time of @D. Note that

Nt := �(X"
t^�"

D
) e�(t^�

"
D
)=2; t > 0;

is a martingale. Thus, for each �xed t > 0, we can estimate as follows:

jr�(x)j = lim
"!0

j�(x")j
"

= lim
"!0

���E[�(X"
t ) 1ft<�"Dg] e

�(t^�"
D
)=2
���

"

6 k�k1 e�t=2 lim
"!0

E[1ft<�"
D
g]

"

6 k�k1 e�t=2 lim
"!0

 (t; x")

"

= k�k1 e�t=2 jr (t; �)j(x):

Taking the in�mum over t gives the claim.

We now work out an explicit estimate for kr (t; �)k@D;1. Let cut(D) be the cut-locus of @D,
which is a zero-volume closed subset of D such that �@D := dist(�; @D) is smooth in D n cut(D).

Proposition 2.4. Let � 2 R such that

(2.24)
1

2
L�@D 6 �:

Then

kr (t; �)k@D;1 6 �+

p
2p
�t

+

Z t

0

1� e�
�2s
2p

2�s3
ds

6 �+

p
2p
�t
e�

�2t
2 +min

�
j�j; �

2
p
2tp
�

�
;(2.25)

and

(2.26) kr (t; �)k@D;1 6

p
2p
�t

+ �+

p
tp
2�
�2

Notice that by [10, Lemma 2.3] the condition 1
2L�@D 6 � holds for � de�ned by (2.6).

Proof. Let x 2 D and let Xt solve SDE (2.13). As shown in [6], (�@D(Xt))t6�D is a semimartingale
satisfying

(2.27) �@D(Xt) = �@D(x) + bt +
1

2

Z t

0
L�@D(Xs) ds� lt; t 6 �D;

9



where bt is a real-valued Brownian motion starting at 0, and lt a non-decreasing process which
increases only when Xx

t 2 cut(D). Setting " = �@D(x), we deduce from (2.27) together with
1

2
L�@D 6 �; that

(2.28) �@D(Xt(x)) 6 Y �
t (") := "+ bt + �t; t 6 �D:

Consequently, letting T�(") be the �rst hitting time of 0 by Y �
t ("), we obtain

(2.29)  (t; x) 6 P(t < T�(")):

On the other hand, since  (t; �) vanishes on the boundary and is positive in D, we have for all
y 2 @D

(2.30) jr (t; y)j = lim
x2D; x!y

 (t; x)

�@D(x)
:

Hence, by (2.29), to prove the �rst inequality in (2.25) it is enough to establish that

(2.31) lim sup
"#0

P(t < T�("))

"
6 �+

p
2p
�t

+

Z t

0

1� e�
�2s
2p

2�s3
ds:

It is well known that the (sub-probability) density f�;" of T
�(") is

(2.32) f�;"(s) =
" exp

��("+ �s)2=(2s)
�

p
2�s3

;

which can be obtained by the re
ection principle for � = 0 and the Girsanov transform for � 6= 0.
Thus

P(t > T�(")) = "

Z t

0

exp
��("+ �s)2=(2s)

�
p
2�s3

ds

= " exp(��")
Z t

0

e��
2s=2

p
2�s3

exp

�
� "

2

2s

�
ds

= exp(��")
Z 2t="2

0

e�1=rp
�r3

exp

�
��

2"2r

4

�
dr;

(2.33)

where we have made the change of variable r = 2s="2. With the change of variable v = 1=r we
easily check that

(2.34)

Z 1

0
r�3=2e�1=r dr = �(1=2) =

p
�;

and this allows to write

(2.35) P(t > T�(")) = exp(��")
 
1�

Z 1

2t="2

e�1=rp
�r3

dr �
Z 2t="2

0

e�1=rp
�r3

�
1� e��

2"2r=4
�
dr

!
:

As "! 0, Z 1

2t="2

e�1=rp
r3

dr =

Z 1

2t="2

1p
r3

dr + o(") =
"
p
2p
t
+ o(");

10



and with change of variable s = 1
2"

2r

Z 2t="2

0

e�1=rp
�r3

�
1� e�

�2"2r
4

�
dr = "

Z t

0

e�
"2

2sp
2�s3

�
1� e�

�2s
2

�
ds

= "

Z t

0

1� e�
�2s
2p

2�s3
ds+ o(")

by monotone convergence. Combining these with e��" = 1��"+o("), we deduce from (2.35) that

(2.36) P(t > T�(")) = 1� "

0
@�+

p
2p
�t

+

Z t

0

1� e�
�2s
2p

2�s3
ds

1
A+ o(")

which yields (2.31).
Next, an integration by parts yields

(2.37)

Z t

0

1� e�
�2s
2p

2�s3
ds =

�2p
2�

Z t

0

1p
u
e�

�2u
2 du�

p
2p
�t

�
1� e�

�2t
2

�
:

With the change of variable s = j�j
r
u

t
in the �rst term in the right we obtain

(2.38)
�2p
2�

Z t

0

1p
u
e�

�2u
2 du = j�j

r
2t

�

Z j�j

0
e�

s2t
2 ds:

We arrive at

(2.39) f(�) := �+

p
2p
�t

+

Z t

0

1� e�
�2s
2p

2�s3
ds =

p
2p
�t
e�

�2t
2 + �+ j�j

r
2t

�

Z j�j

0
e�

s2t
2 ds:

Bounding

r
2t

�

Z j�j

0
e�

s2t
2 ds by

r
2t

�

Z 1

0
e�

s2t
2 ds = 1, respectively bounding e�

s2t
2 by 1 in the

integral yield (2.25).
The function

f(�) =

p
2p
�t
e�

�2t
2 + �+ j�j

r
2t

�

Z j�j

0
e�

s2t
2 ds

is smooth and an easy computation shows that

(2.40) f(0) =

p
2p
�t
; f 0(0) = 1; f 00(�) =

p
2tp
�
e�

�2t
2

Using the fact that f(�)� � is even, we also get

(2.41) f(�) =

p
2p
�t

+ �+

Z j�j

0

p
2tp
�
e�

s2t
2 s ds 6

p
2p
�t

+ �+

p
tp
2�
�2:

which yields (2.26).

Remark 2.2. One could use estimate (2.20) (optimizing the right-hand side with respect to t)
together with Lemma 2.3 (again optimizing with respect to t) to estimate kr�k1 in terms of
k�k1. We prefer to combine the two steps.

11



Lemma 2.5. Assume RicVD > �KV for some constant KV 2 R. Let � be determined by (2.24).

(a) If � > 0, then for any (�; �) 2 Eig(L),

kr�k1 6 inf
t>0

max
"2[0;1]

e
(�+KV )t

2

(
"

 
�+

p
2p
�t
e�

�2t
2 +min

�
j�j; �

2
p
2tp
�

�!
+

r
1� "

t

)
k�k1;

as well as

kr�k1 6 inf
t>0

max
"2[0;1]

e(�+KV )t=2

(
"

 
�+

r
2

�t
+

p
tp
2�
�2

!
+

r
1� "

t

)
k�k1

and

kr�k1 6 inf
t>0

max
"2[0;1]

e(�+KV )t=2

(
"

 
2�+

r
2

�t

!
+

r
1� "

t

)
k�k1:

(b) If � 6 0, then

kr�k1 6 inf
t>0

max
"2[0;1]

e(�+KV )t=2

(
"

r
2

�t
+

r
1� "

t

)
k�k1:

Proof. For �xed t > 0 in (2.19), we take h 2 C1([0; t]; [0; 1]) such that h0 = 1 and ht = 0. Then, by
the martingale property of fNs^�D(v)gs2[0;t], we obtain

jrv�j(x) = jN0(v)j = jENt^�D(v)j

=

����E
�
1ft>�Dg e

��D=2 h�Dhr�(X�D); Q�Dvi � 1ft6�Dge
�t=2�(Xt)

Z t

0
h _hsQsv; usdBsi

����� :(2.42)

Note that using (2.16) along with Lemma 2.3 we may estimate���E h1ft>�Dg e��D=2 h�Dhr�(X�D); Q�Dvi
i���

6 E

h
1ft>�Dg e

��D=2 jh�D j kr�k@D;1 eKV �D=2jvj
i

6 E

h
1ft>�Dg e

��D=2 jh�D j k�k1 kr (t� �D; �)k@D;1 e�(t��D)=2 eKV �D=2 jvj
i

= E

h
1ft>�Dg jh�D j k�k1 kr (t� �D; �)k@D;1 e�t=2 eKV �D=2 jvj

i
6 e(�+KV )t=2 k�k1 E

�
1ft>�Dg jh�D j kr (t� �D; �)k@D;1 jvj� ;

as well as

E

�
1ft6�Dg e

�t=2�(Xt)

Z t

0
h _hsQsv; usdBsi

�
6 e�t=2 k�k1 Pft 6 �Dg1=2

�Z t

0
j _hsj2eKV s ds

�1=2

:

Taking

hs =
t� s

t
; s 2 [0; t];

we obtain thus from (2.42)

jr�(x)j 6 e(�+KV )t=2

t
k�k1 E

�
1ft>�Dg (t� �D) kr (t� �D; �)k@D;1

�
+ e�t=2 k�k1 Pft 6 �Dg1=2 1

t

�
eKV t � 1

KV

�1=2

:

12



Note that
eKV t � 1

KV
6 teKV t:

(i) By (2.25), assuming that � > 0, we have on ft > �Dg:

t� �D
t

kr (t� �D; �)k@D;1 6 �
t� �D
t

+

p
2p
�

p
t� �D
t

+
t� �D
t

Z t��D

0

1� e�
�2s
2p

2�s3
ds

6 �+

p
2p
�t

+

Z t

0

1� e�
�2s
2p

2�s3
ds

6 �+

p
2p
�t
e�

�2t
2 +min

�
�;

�2
p
2tp
�

�
:

Thus, letting " = P(t > �D), we obtain

jr�(x)j 6 e(�+KV )t=2 k�k1
"
"

 
�+

p
2p
�t
e�

�2t
2 +min

�
�;

�2
p
2tp
�

�!
+

r
1� "

t

#
:

(ii) Still under the assumption � > 0, this time using estimate (2.26), we have on ft > �Dg:

kr (t� �D; �)k@D;1 6

p
2p

�(t� �D)
+ �+

p
t� �Dp
2�

�2;

and thus letting " = P(t > �D), we get

jr�(x)j 6 e(�+KV )t=2

t
k�k1 E

"
1ft>�Dg

 r
2

�

p
t� �D + �(t� �D) +

(t� �D)
3=2

p
2�

�2

!#

+ e�t=2 k�k1 Pft 6 �Dg1=2 1
t

�
eKV t � 1

KV

�1=2

6 e(�+KV )t=2 k�k1
"
"

 r
2

�t
+ �+

p
tp
2�
�2

!
+

r
1� "

t

#
:

(iii) In the case � 6 0, we get from (2.25) in a similar way:

jr�(x)j 6 e(�+KV )t=2 k�k1
(
"

p
2p
�t

+

r
1� "

t

)
:

This concludes the proof of Lemma 2.5.

Proposition 2.3. We keep the assumptions of Lemma 2.5.

(a) If � > 0, then for any (�; �) 2 Eig(L),

kr�k1 6
p
e max
"2[0;1]

(
"

 
�+

p
2(�+KV )+p

�
exp

�
� �2

2(�+KV )+

�
+min

�
j�j;

p
2�2p

�(�+KV )+

�!

+
p
1� "

p
(�+KV )+

o
k�k1;
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as well as

kr�k1 6
p
e max
"2[0;1]

(
"

 
�+

p
2(�+KV )+p

�
+

�2p
2�(�+KV )+

!
+
p
1� "

p
(�+KV )+

)
k�k1

and

kr�k1 6
p
e max
"2[0;1]

(
"

 
2�+

p
2(�+KV )+p

�

!
+
p
1� "

p
(�+KV )+

)
k�k1

(b) If � 6 0, then

kr�k1 6
p
e max
"2[0;1]

(
"

p
2(�+KV )+p

�
+
p
1� "

p
(�+KV )+

)
k�k1:

Proof. Take t = 1=(�+KV )
+ in Lemma 2.5.

We are now ready to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. The claims of Theorem 2.2 follow from the inequalities in Proposition 2.3
together with the fact that for any A;B > 0,

max
"2[0;1]

�
"A+

p
1� "B

	
= B1fB>2Ag +

�
A+

B2

4A

�
1fB62Ag:

3 Proof of Theorem 1.2

As in Section 2, we consider L = � + rV and let EigN (L) be the set of corresponding non-
trivial eigenpairs for the Neumann problem of L. We also allow @D = ?, then we consider the
eigenproblem without boundary. We �rst consider the convex case, then extend to the general
situation. In this section, Pt denotes the (Neumann if @D 6= ?) semigroup generated by L=2 on
D. Let Xt be the corresponding (re
ecting) di�usion process which solves the SDE

(3.1) dXt = ut � dBt +
1

2
rV (Xt) dt+N(Xt) d`t;

where Bt is a d-dimensional Euclidean Brownian motion, ut the horizontal lift of Xt onto the
orthonormal frame bundle, and `t the local time of Xt on @D.

We will apply the following Bismut type formula for the Neumann semigroup Pt, see [15,
Theorem 3.2.1], where the multiplicative functional process Qs was introduced in [4].

Theorem 3.1 ([15]). Let RicVD > �KV and I@D > �� for some KV 2 C( �D) and � 2 C(@D). Then
there exists a Rd 
 R

d-valued adapted continuous process Qs with

(3.2) kQtk 6 exp

�
1

2

Z t

0
KV (Xs)ds+

Z t

0
�(Xs)d`s

�
; s > 0;

such that for any t > 0 and h 2 C1([0; t]) with h(0) = 0, h(t) = 1, there holds

(3.3) rPtf = E

�
f(Xt)

Z t

0
h0(s)QsdBs

�
; f 2 Bb(D):

14



3.1 The case with convex or empty boundary

In this part we assume that @D is either convex or empty. When @D is empty, D is a Riemannian
manifold without boundary and EigN (L) denotes the set of eigenpairs for the eigenproblem without
boundary. In this case, if RicV > KV for some constant KV 2 R, then � + KV > 0 for (�; �) 2
EigN (L), see for instance [8].

Theorem 3.2. Assume that @D is either convex or empty.

(1) If the curvature-dimension condition (2.1) holds, then for any (�; �) 2 EigN (L),

kr�k21 >
�2k�k21
n(�+K)

� �

�+K

��=K
>

�2k�k21
ne(�+K+)

:

(2) If RicVD > �KV for some constant KV 2 R, then for any (�; �) 2 EigN (L),

kr�k21
k�k21

6
2(�+KV )

�

�
1 +

KV

�

��=KV

6
2e(�+K+

V )

�
:

Proof. (a) We start establishing the lower bound estimate. By Itô's formula, for any (�; �) 2
EigN (L) we have

(3.4) djr�j2(Xt) =
1

2
Ljr�j2(Xt) dt+ 2 I@D(r�;r�)(Xt) d`t + dMt; t > 0;

where `t is the local time of Xt at @D, which is an increasing process. Since I@D > 0, and since
(2.1) and L� = ��� imply

1

2
Ljr�j2 > �(K + �)jr�j2 + �2

n
�2;

we obtain

djr�j2(Xt) >
��2
n
�2 � (�+K)jr�j2

�
(Xt) dt+ dMt; t > 0:

Noting that for X0 = x 2 D we have

E[�(Xs)
2] > (E[�(Xs)])

2 = e��s�(x)2;

we arrive at

e(�+K)t kr�k21 > e(�+K)t
E[jr�j2(Xt)] >

�2

n

Z t

0
e(�+K)s

E[�2(Xs)] ds

>
�2

n

Z t

0
eKs�(x)2 ds =

�2(eKt � 1)

nK
�(x)2:

Multiplying by e�(�+K)t, choosing t = 1
K log(1 + K

� ) (noting that � +K > 0, in case � +K = 0
taking t!1), and taking the supremum over x 2 D, we �nish the proof of (1).

(b) Let @D be convex and RicVD > �KV for some constant KV . Then Theorem 3.1 holds for
� = 0, so that

�t :=

�
E

Z t

0
jh0(s)j2kQsk2 ds

�1=2

6

�Z t

0
jh0(s)j2 eKV s ds

�1=2

:

15



Taking

h(s) =

R s
0 e

�KV r drR t
0 e

�KV r dr

we obtain

�t 6
� KV

1� e�KV t

�1=2
:

Therefore,

krPtfk1 6 kfk1 E

����
Z t

0
h0(s)QsdBs

����
6 kfk1 2p

2� �t

Z 1

0
s exp

�
� s2

2�2t

�
ds

= kfk1�t
p
2p
�
; t > 0; f 2 Bb(D):

(3.5)

Applying this to (�; �) 2 EigN (L), we obtain

e��t=2jr�j 6 k�k1�t
p
2p
�
6 k�k1

�
2KV

�(1� e�2KV t)

�1=2

; t > 0:

Consequently, �+KV > 0. Taking t = 1
KV

log(1 + KV

� ) as above, we arrive at

kr�k21
k�k21

6
2(�+KV )

�

�
1 +

KV

�

��=KV

:

3.2 The non-convex case

When @D is non-convex, a conformal change of metric may be performed to make @M convex
under the new metric; this strategy has been used in [2, 12, 13, 14] for the study of functional
inequalities on non-convex manifolds. According to [15, Theorem 1.2.5], for a strictly positive
function f 2 C1( �D) with I@D +N log f j@D > 0, the boundary @D is convex under the metric
f�2h�; �i. For simplicity, we will assume that f > 1. Hence, we take as class of reference functions

D :=
�
f 2 C2( �D) : inf f = 1; I@D +N log f > 0

	
:

Assume (2.1) and RicVD > �KV for some constants n > d and K;KV 2 R. For any f 2 D and
" 2 (0; 1), de�ne

c"(f) := sup
D

�
4"jr log f j2

1� "
+ "K + (1� ")KV � 2L log f

�
:

We let �N1 be the smallest non-trivial Neumann eigenvalue of �L. The following result implies
�1 > �c"(f).
Theorem 3.3. Let f 2 D .
(1) If (2.1) and RicVD > �KV hold for some constants n > d and K;KV 2 R. Then for any

non-trivial (�; �) 2 EigN (L), we have �+ c"(f) > 0 and

kfk21kr�k21
k�k21

> sup
"2(0;1)

"�2

n(�+ c"(f))

� �

�+ c"(f)

��=c"(f)
> sup

"2(0;1)

"�2

ne(�+ c"(f)+)
:
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(2) Let RicVD > �KV for some KV 2 C( �D), and

K(f) = sup
D

�
2jr log f j2 +KV � L log f

	
:

Then for any non-trivial (�; �) 2 EigN (L), we have �+K(f) > 0 and

kr�k21
k�k21kfk21

6
2(�+K(f))

�

�
1 +

K(f)

�

��=K(f)
6

2e(�+K(f)+)

�
:

Proof. Let f 2 D and (�; �) 2 EigN (L).

(1) On @D we have

N(f2jr�j2) = (Nf2)jr�j2 + f2N jr�j2
= f2

�
(N log f2)jr�j2 + 2 I@D(r�;r�)

�
= 2f2

�
(N log f)jr�j2 + I@D(r�;r�)

�
> 0:(3.6)

Next, by the Bochner-Weitzenb�ock formula, using that RicVD > �KV and L� = ���, we observe
1

2
Ljr�j2 = 1

2
Ljr�j2 � hrL�;r�i � �jr�j2

> kHess�k2HS � (KV + �)jr�j2:
Combining this with (2.5), for any " 2 (0; 1), we obtain

f2

2
Ljr�j2 + hrf2;rjr�j2i

> �f2("K + (1� ")KV + �)jr�j2 + "�2

n
f2�2

+ (1� ")f2kHess�k2HS � 2kHess�kHS � jrf2j � jr�j

> �
� jr log f2j2

1� "
+ "K + (1� ")KV + �

�
f2jr�j2 + "�2

n
f2�2:

Combining this with (3.6) and applying Itô's formula, we obtain

d(f2jr�j2)(Xt)
m
=

1

2
L(f2jr�j2)(Xt) dt+N(f2jr�j2)(Xt) d`t

> �1

2

�
f2Ljr�j2 + 2hrf2;rjr�j2i+ jr�j2Lf2

�
(Xt) dt

>

�
"�2

n
f2�2 �

� jr log f2j2
1� "

+ "K + (1� ")KV + �� f�2Lf2
�
f2jr�j2

�
(Xt) dt

>

�
"�2

n
�2 � ��+ c"(f)

�
f2jr�j2

�
(Xt) dt:

Hence, for X0 = x 2 D,

kfk21 kr�k21 e(�+c"(f))t > E

h
ec"(f)t(f2jr�j2)(Xt)

i
>
"�2

n

Z t

0
e(�+c"(f))s E[�(Xs)

2] ds

>
"�2

n

Z t

0
ec"(f)s�(x)2 ds

=
"�2(ec"(f)t � 1)

nc"(f)
�(x)2:
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This implies �+ c"(f) > 0 and

kfk21kr�k21
k�k21

> sup
t>0

"�2
�
e��t � e�(�+c"(f))t

�
nc"(f)

=
"�2

n(�+ c"(f))

� �

�+ c"(f)

��=c"(f)
>

"�2

ne(�+ c"(f)+)
:

(2) The claim could be derived from [2, inequality (2.12)]. For the sake of completeness we
include a sketch of the proof. For any p > 1, let

Kp(f) = sup
D

�
KV + pjr log f j2 � L log f

	
:

Note that pjr log f j2 � L log f = p�1fpLf�p. Since f 2 D implies I@D > �N log f , we have

kQtk2 6 exp

�Z t

0
KV (Xs) ds+ 2

Z t

0
N log f(Xs) d`s

�

6 exp
�
Kp(f)t

�
exp

�
�1

p

Z t

0
(fpLf�p)(Xs) ds+ 2

Z t

0
N log f(Xs) d`s

�
:

As

df�p(Xt)
m
=

1

2
Lf�p(Xt) dt+Nf�p(Xt) d`t

= �f�p(Xt)

�
�1

2
fpLf�p(Xt) dt+ pN log f(Xt) d`t

�
;

we obtain that

Mt := f�p(Xt) exp

�
�1

2

Z t

0
fp(Xs)Lf

�p(Xs) ds+ p

Z t

0
N log f(Xs) d`s

�

is a (local) martingale. Proceeding as in the proof of [15, Corollary 3.2.8] or [2, Theorem 2.4], we
get

kfk�p1 E

�
exp

�
�1

2

Z t

0
fp(Xs)Lf

�p(Xs) ds+ p

Z t

0
N log f(Xs) d`s

��

6 E

�
f�p(Xt) exp

�
�1

2

Z t

0
fp(Xs)Lf

�p(Xs) ds+ p

Z t

0
N log f(Xs) d`s

��
= f�p(x) 6 1;

since f > 1 by assumption. This shows that

kQtk2 6 epKp(f)t kfkp1; t > 0:

Combining this for p = 2 with Theorem 3.1 and denoting K(f) = K2(f), we obtain

�2t := E

Z t

0
jh0(s)j2kQsk2 ds 6 kfk21

Z t

0
jh0(s)j2eK(f)s ds:

Therefore, repeating step (b) in the proof of Theorem 3.2 with K(f) replacing KV , we �nish the
proof of (2).
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