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Abstract 

 

A locking-free unsymmetric 8-node solid-shell element with high distortion tolerance is proposed for 

general shell analysis, which is equipped with translational dofs only. The prototype of this new model 

is a recent solid element US-ATFH8 developed by combining the unsymmetric finite element method 

and the analytical solutions in 3D local oblique coordinates. By introducing proper shell assumptions 

and assumed natural strain modifications for transverse strains, the new solid-shell element US-

ATFHS8 is successfully formulated. This element is able to give highly accurate predictions for shells 

with different geometric features and loading conditions, and quite insensitive to mesh distortions. 

Especially, the excellent performance of US-ATFH8 under membrane load is well inherited, which is 

an outstanding advantage over other shell elements.  
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1. Introduction 

 

Although the finite element method (FEM) is one significant tool and has been widely applied in 

various engineering and scientific fields, some key technical challenges remain outstanding. To date, 

many researchers are still making great efforts in developing novel high-performance models that can 

overcome the drawbacks existing in the traditional FEM [1]. This article is mainly about an application 

of the unsymmetric finite element method [2] together with the analytical trial function method [3] in 

shell analysis. The unsymmetric finite element method can effectively reduce the sensitivity problems 

to mesh distortions by successfully eliminating the Jacobian determinant after employing two different 

sets of interpolation for displacement fields. The analytical trial function method makes use of the 

solutions of governing equations of elasticity as trial functions for finite element discretization, which 

is similar to the Trefftz methods [4]. Because of these merits, the resulting models can achieve high 

accuracy and naturally avoid many locking problems caused by traditional isoparametric interpolation 

techniques [5].  

Recently, the above strategy brought some interesting breakthroughs in low-order finite elements. 

It is well known that, MacNeal proved an important theorem about 30 years ago [6], which claims that 

any 4-node, 8-dof quadrilateral membrane element must either present trapezoidal locking results for 

MacNeal’s thin beam problem or fail to guarantee its convergence. This theorem frustrates many 

scholars who devote themselves to developing low-order finite element models. In 2015, Cen et al. [7] 

proposed an unsymmetric 4-node, 8-dof membrane element US-ATFQ4 that can circumvent this issue. 

A similar scheme has been already generalized to the three-dimensional case, and an 8-node, 24-dof 

hexahedral element US-ATFH8 was successfully formulated [8]. Both elements are verified to be not 

only accurate for most standard benchmark problems, but also insensitive to severe mesh distortions. 
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Similar models that can only deal with isotropic cases were also proposed by Xie et al. [9]. However, 

it is found that, when the 3D element US-ATFH8 is used for analysis of shell structures, locking 

phenomena will still appear. Therefore, the purpose of this article is to eliminate this weakness and 

develop a high-performance solid-shell finite element model based on the original 3D element US-

ATFH8.  

The FEM is an effective way to simulate the complicated behaviors of shell, one kind of complex 

and important engineering structure forms in 3D space. Among all the shell element categories, 

degenerated shell elements are usually considered as the most popular models for their simplicity in 

kinematic and geometric description, and validity in locking elimination techniques [10, 20]. The 

Assumed Natural Strain (ANS) interpolation plays a significant role in the formulation of applicable 

degenerated shell elements. The Mixed Interpolated Tensorial Components (MITC) technique is an 

outstanding representative in the ANS schemes [11-19], and many MITC-based degenerated shell 

elements are widely applied in engineering practice. However, the general 3D constitutive laws have 

to be modified in degenerated shell applications, and special transition elements or extra constraints 

are needed when solid elements are used together with shell elements. In geometric nonlinear problems, 

extra difficulty is also found in the update of finite rotations [21]. Meanwhile, solid-shell model 

demonstrates its advantage by using translational dofs only, so that it can be directly used together with 

solid elements. 

A prototype of the kinematic description in solid-shell models was proposed by Schoop in 1986 

[36], which is also called the “double-node-model”. Another early work regarding the development of 

solid-shell concept is Sansour’s work [22] in constructing shell element without rotational dofs. 

General 3D constitutive laws can be applied in his models, but the dofs of the resulting models differ 
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from those of solid elements and extra transition to solid elements is needed. General 3D constitutive 

laws are also considered in the work of Büchter et al. [23], in which a 7-parameter degenerated shell 

model is developed based upon the Enhanced Assumed Strain (EAS) method [24], and has been 

successfully applied in problems with hyperelasticity and large strain plasticity. Some other recent 

efforts in solid-shell elements include the work of Klinkel et al. [38], in which the EAS method is 

adopted based on Hu-Washizu variational principle, and the solid-shell model with very effective 

reduced integration proposed by Reese [39], etc.  

Although the solid-shell model possesses some advantages over the degenerated shell model, it 

suffers from new locking problem, i.e., the thickness locking. The thickness locking is caused by the 

linear displacement interpolation in the thickness direction and the coupling between in-plane and 

transverse strains [21], which is critical in solid-shell formulations. This problem may be handled by 

adding quadratic terms in the transverse displacement field [21, 25], decoupling the in-plane and 

normal strains in the constitutive laws [26], or using hybrid-stress formulations [27, 28]. The presented 

work will demonstrate that the unsymmetric formulations and the analytical trial function method are 

also useful for eliminating this locking problem. 

In this article, a locking-free unsymmetric solid-shell element with high distortion tolerance is 

proposed for general shell analysis. First, we briefly review the 8-node, 24-dof hexahedral element 

US-ATFH8 [8], which was constructed by combining the unsymmetric finite element method and the 

analytical solutions in 3D local oblique coordinate system. Then, based on the element US-ATFH8, 

proper shell assumptions and assumed natural strain modifications for transverse strains are introduced 

to formulate an unsymmetric solid-shell element US-ATFHS8, which presents locking-free results for 

many shell benchmark problems. The proposed element is able to provide highly accurate predictions 
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for shells with different geometric features and loading conditions, and quite insensitive to mesh 

distortions. Especially, the excellent performance of US-ATFH8 under membrane forces is well 

inherited, which is an outstanding advantage over other existing solid-shell models. 

 

2. Element Formulations 

 

2.1 The unsymmetric solid element based on analytical solutions [8] 

2.1.1 Three-dimensional local oblique coordinates and the corresponding analytical solutions 

To construct elements that are invariant to coordinate directions, local coordinates should be used. 

In presented models, the oblique coordinate system proposed by Yuan et al. [29, 30] is utilized due to 

its simple linear relationship with the global Cartesian coordinate system. As shown in Figure 1, the 

3D oblique coordinates are briefly depicted. 

The relationship between the global Cartesian coordinates and natural coordinates is given by 
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are the shape functions of the 8-node tri-linear isoparametric element, and 
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where ξi, ηi, ζi, xi, yi, and zi are the natural coordinates and global coordinates at each node, respectively.  
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The linear relationship between oblique coordinates and Cartesian coordinates is determined by 

the Jacobian matrix J0 at the origin of the natural coordinate system [29, 30]: 
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It can be found that the linear relationship between the Cartesian coordinates and the natural 

coordinates at the natural origin is inherited by the oblique coordinates. So, this local coordinate system 

has several advantages over natural coordinates: only linear transform is needed, and important 

element geometrical features are also easily retained. 

The three coordinate axes and corresponding base vectors are also introduced in Equation (4): the 

base vector of R-coordinate points from the natural origin to the middle point of the 2-3-7-6 surface; 

the base vector of S-coordinate points from the natural origin to the middle point of the 3-4-8-7 surface; 

and the base vector of T-coordinate points from the natural origin to the middle point of the 5-6-7-8 

surface. These base vectors are denoted by gR, gS, and gT, respectively, which means that these vectors 

are considered as contravariant base vectors in following formulae, while the consideration of 

covariant vectors yields the same formulation. 
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The equilibrium equations of the covariant stress components are 
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in which f=fRgR+fSg
S+fTgT is the body force (Einstein summation convention is not used unless it is 

explicitly stated). The compatibility equations expressed by stress components under constant body 

load are the second order partial differential equations (B-M equations) as follows: 
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Thus, linear stress fields will automatically satisfy the B-M equations, and the linear analytical 

solutions of stress which satisfy all governing equations may be obtained if the constraints in Equation 

(7) are imposed. 

The solutions of Equation (7) may be divided into the general solution part and the particular 

solution part, and one set of the particular solutions for constant body force can be written as 
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Constant general solutions for stress components are trivial and will not be detailed. Fifteen linear 

general solutions are listed together with constant general solutions in Table 1, in which the 13th~21st 

solutions describe the conditions of pure bending and twisting.  

Then the solutions for stress components in Cartesian coordinates can be obtained with the 

following transform: 
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For linear-elastic material, corresponding strain solutions and displacement solutions can be easily 

derived. In shell analysis, body forces are usually replaced by surface tractions, so the particular 

solution in Equation (9) is not considered in the following discussion. Detailed strain and displacement 

solutions for isotropic linear-elastic material are given in Appendix. 

 

2.1.2 Formulation of the unsymmetric 8-node, 24-dof hexahedral solid element 

The unsymmetric finite element method belongs to the Petrov-Galerkin finite element method 

family [31], and its concept originates from the virtual work principle for a single element: 

 
T T T T

c c
ˆδ d δ d δ d δ 0

e e eS
V V S

 
− − − =  ε σ u b u T u f  (11) 

in which δε  and δu  are the virtual strain and virtual displacement fields, respectively, and they are 

the test functions. The trial function part, σ̂ , is interpolated by the analytical solutions introduced in 

the last section. b, T, and fc are the body force, boundary distributed force, and concentrated force, 
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respectively. 

In the unsymmetric finite element method, the element stiffness matrix is not symmetric because 

two different interpolation schemes are employed for test functions and trial functions, respectively. 

The test functions must meet the inter-element compatibility requirement [2], so that the traditional 

isoparametric interpolation is adopted: 

 δ δ e=u N q  (12) 
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where the shape functions are the same as given in Equation (2), B  is the corresponding strain matrix, 

and 
e

q  is the nodal displacement vector with the numbering depicted in Figure 1: 
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in which J is the Jacobian matrix, and the Jacobian determinant J   will be cancelled out by its 

counterpart in the volume element. 

The trial function part (stress) in Equation (11) is usually required to satisfy the equilibrium 

conditions, with the force boundary conditions and body forces neglected. In practical implementation, 

trial functions are interpolated by the analytical solutions given in Table 1, but as non-analytical high 
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order terms are inevitable in presented scheme as can be seen in Equation (17) (the RST terms do not 

satisfy the equilibrium equations), only quasi-equilibrium is achieved.  

The corresponding trial functions for displacement fields are 
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in which the first twelve terms in this interpolation are related to 3 translational motions and 9 linear 

displacement fields, and the 13th~21st terms (see Appendix) are displacement solutions related to the 

13th~21st stress solutions listed in Table 1. The last three RST-terms are non-analytical high-order 

terms which are employed to ensure the feasibility of the presented model, so that the unknown 

parameters αi can be fully determined by 24 nodal dofs. As all interpolation terms are complete or 

expressed by local coordinates, this model is able to present unique solution independent of the global 

coordinate directions.   

Substitution of nodal coordinates into Equation (17) yields 

 ˆ e=d α q  (18) 
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The invertibility of matrix d̂  is guaranteed by the linear independence between the trial functions, 

then αi can be solved and the trial displacement fields are completely determined: 
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And the trial strain fields are given by 
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These related expressions can be detailed in Appendix. 

Considering the arbitrariness of the virtual displacement, substitution of test functions and trial 

functions into the virtual work principle Equation (11) yields the expressions of element stiffness 

matrix and element equivalent nodal load: 

 

T
1 1 1

T

1 1 1

1 1 1
T

1 1 1

ˆ ˆd d d d

ˆ d d d

e

e V   

  



 − − −



− − −

= =

=

   

  

B
K B DB DB J

J

B DB

 (22) 

 
T T T

c cd d
e e

e

S
V S= + + Ω

F N b N T N f  (23) 

where D is the elasticity matrix. It can be found from Equation (22) that the inversion of Jacobian 

determinant, which is the reason leading to many numerical problems when the mesh is distorted, is 

avoided. The element stiffness matrix is evaluated with 2×2×2 Gauss quadrature rule, and resulting 

solid element is denoted by US-ATFH8. 

The results of general 3D elastic problems show that element US-ATFH8 presents highly accurate 

solutions, and is insensitive to severe mesh distortion, especially for low-order problems such as beam 

loaded by pure bending, in which exact solutions are reached regardless of the mesh conditions [8]. 

However, inevitable locking problems are observed when this element is applied for thin shell structure 

analysis, so the main work in this article is to eliminate this weakness of US-ATFH8 and formulate a 

locking-free solid-shell element which can also retain the mesh distortion tolerance of the unsymmetric 

finite element models.  
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2.2 The unsymmetric solid-shell element based on analytical solutions and ANS 

interpolations 

In order to avoid the locking phenomena for thin shell problems, extra modifications are needed 

for the transverse strains of the solid element. Although locking-free solutions of standard 3D problems 

are obtained by US-ATFH8 under different loading and mesh conditions, the coupling between 

membrane stress and bending stress and the complexity of geometry in thin shell structures lead to 

severe shear, trapezoidal and thickness locking problems. 

A systematic study shows that the source of locking problems in US-ATFH8 comes from the test 

function part (isoparametric interpolation). Therefore, the assumed natural strain interpolations are 

employed in this section to eliminate the existing locking problems, and an effective solid-shell 

element US-ATFHS8 is formulated. 

The natural coordinates and element nodal numbering are depicted in Figure 2, in which ζ denotes 

the thickness direction. The 1-2-3-4 and 5-6-7-8 surfaces are the bottom surface and top surface of the 

shell, respectively. For description convenience, the isoparametric interpolation is rewritten as follows: 

 0 n= +u Nq Nq  (24) 

where 

  1 3 2 3 3 3 4 3N N N N=N I I I I  (25) 
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The geometric description is similar: 
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 (28) 

in which X is the coordinate vector, and Xi is the coordinate vector of the i-th node.  

The strain tensor is given as follows: 

 ( )
1 1 1

2 2 2

i j i i i j j i

ij j ji i i i


   

         
=  +   = + =  +      

         

u u u u
ε u u g g g g g g g g g g  (29) 

in which Einstein summation convention is employed, and ξ1, ξ2, and ξ3 denote ξ, η, and ζ, respectively. 

So the covariant strain components are 

 

T T

1 1

2 2
ij i j j i i j j i


       

             
=  +  = +      

              

X u X u X u X u
 (30) 

Substitution of Equation (24) into Equation (30) yields: 
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Following the fiber assumption in practical shell element formulation, the transverse shear strains 

(εξζ and εηζ) should be constant and the membrane strains (εξξ, εηη, and εξη) should be linear with respect 

to the thickness coordinate ζ. Thus, the higher order terms are removed. 
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 (32) 

According to the MITC interpolation technique [11-19], the modification of transverse shear 

strains is given as follows: 
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Due to the geometric complexity of shell structures, “trapezoidal” elements may not be avoided, 

e.g., in cylindrical and spherical shell cases. By analyzing a beam problem meshed with trapezoidal 

elements, a substituted strain interpolation scheme was suggested by Sze et al. [28]. The transverse 

normal strain is given by: 

 1 2 3 41, 1 1, 1 1, 1 1, 1
N N N N           

    
=− =− =+ =− =+ =+ =− =+

= + + +  (34) 

where the shape function Ni (i=1,…,4) are the isoparametric interpolation functions given in Equation 

(26). Although trapezoidal locking can be overcome by US-ATFH8 in simple benchmark problems, 

such as MacNeal’s thin beam under pure bending and linear bending load, the modification given in 

Equation (34) is of great importance for constructing locking-free solid-shell element for general shell 

structures.   

The strains in global Cartesian coordinates can be obtained by tensor transformation:  

 
1 T

xx xy xz

xy yy yz

xz yz zz

  

  

  

     

     

     

− −

   
   

=   
   

  

J J   (35) 

in which J is the Jacobian matrix: 

 

x y z

x y z

x y z

  

  

  

   
 
  
 
   

=  
  
 
   
 
   

J  (36) 

Thus, the virtual strain interpolation for unsymmetric solid-shell element can be written in the 

following matrix form: 

 
e =ε B q  (37) 

The test function part in Equation (22) is replaced by the modified formulae, and the trial function part 

(stress interpolation) remains the same. Hence, the element stiffness matrix of solid-shell element 
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(denoted by US-ATFHS8) is obtained: 

 
1 1 1

T T

1 1 1

ˆ ˆd d d d
e

e V   
 − − −

= =   K B DB B DB J  (38) 

It should be noted that a 
2

1/ J  term is contained in the B  matrix, so that inversion of Jacobian 

determinant is needed in computing the element stiffness matrix, which will weaken the mesh 

distortion tolerance of the unsymmetric finite elements. Such imperfection cannot be overcome unless 

the modification is conducted without the help of natural coordinates. Despite of this weakness, 

remarkable mesh distortion tolerance is still presented by this locking-free solid-shell model, and this 

will be shown in the next section. 

2×2×2 Gauss quadrature rule for Equation (38) is still proved to be sufficient in computer coding. 

Although remarkable mesh distortion tolerance is inherited from US-ATFH8, US-ATFHS8 is not 

recommended for the elements of which the top and bottom surfaces are degenerated triangles or 

concave quadrilaterals to prevent the Jacobian determinant from vanishing. 

 

3. Numerical Examples 

 

Nine numerical tests are presented in this section to demonstrate the performance of the proposed 

element US-ATFHS8. And results obtained by some other elements are also given for comparison. 

These elements referred to are as follows: 

ANSγε: A displacement-based solid-shell model using assumed natural strain techniques 

introduced by Sze et al. [28]. 

ANSγε-HS: A hybrid-stress solid-shell model based on the ANSγε model proposed by Sze et al. 

[28]. 

SC8R: A (reduced integration) solid-shell element assembled in commercial software Abaqus 
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[32]. 

It should be noted that the displacement solutions solved by ANSγε and ANSγε-HS are calculated 

by the authors using the formulation in reference [28]. Due to some distinctions in modeling and 

programming, for example, the number of Gaussian points employed in one element (2×2 points for 

presented results), the presented data are not completely identical to those given by Sze et al. [28], but 

these differences are negligible and reasonable (and these two elements are also verified by patch tests). 

 

3.1 Patch tests 

As shown in Figure 3, a square shell is meshed into five elements. Proper constraints are imposed 

on the left-side boundary to eliminate rigid body motions. Membrane tests, bending/twisting tests, and 

transverse shear test are performed for both thin and moderately thick shells. The geometry and 

material parameters can be found in Figure 3. 

Membrane tests: Boundary tractions corresponding to constant membrane stress conditions are 

imposed on the boundaries. For the fact that US-ATFHS8 is formulated by modifying transverse strain 

components of a solid element US-ATFH8, and the membrane strains are not changed, such tests are 

passed without any problem. 

Bending/twisting tests: As used for Mindlin-Reissner plate elements, pure bending/twisting 

boundary stresses are imposed and the numerical solutions are compared with corresponding analytical 

solutions. The proposed element fulfills the requirement as well. 

Transverse shear test: Such test aims to reveal that the present element can exactly reproduce 

constant transverse shear deformations. In this test, all x, y-dofs are constrained, and a constant shear 

stress state is imposed on the right side of the patch. Linear z-displacement distribution can be obtained, 

so this test is also satisfied. 



18 

 

All above tests demonstrate that the validity of the coding, i.e., the present element converges to 

right answers. 

 

3.2 Mesh distortion sensitivity study for in-plane bending 

Membrane-dominated problems are of great importance in engineering practice. As an example, 

shear walls are applied in many civil structures, which are mainly loaded by membrane forces. So it is 

a critical indicator to evaluate shell element models under membrane loading conditions. 

As shown in Figure 4, a beam is loading by a moment M=40. This numerical test is suggested by 

Pian et al. to study the mesh distortion sensitivity of finite elements [40]. In this problem, material 

parameters are: 

E=1500, µ=0 

The exact tip deflection is 1, and the numerical solutions obtained with different elements are listed in 

Table 2. In this particular problem, we also compare the results with the HSEE element, which is an 

EAS solid-shell model proposed by Klinkel et al. [38]. A direct comparison can also be seen in Figure 

5. 

It can be found that the proposed model gives exact results even when the mesh is severely 

distorted, which is much superior over other models. 

 

3.3 MacNeal’s thin beam test 

A thin beam problem is presented here with the geometric parameters, mesh descriptions, loading 

conditions, and material parameters plotted in Figure 6. To evaluate the membrane features, the 

thickness direction is set to be parallel to the z-axis. Under pure bending load M and linearly bending 

load P, the deflection results of point A at the free end are listed in Table 3, with the reference solution 
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proposed by MacNeal et al. [34].  

The numerical results demonstrate that the US-ATFHS8 element is able to present highly accurate 

solutions using regular, parallelogram, and trapezoidal meshes. Such feature is inherited from the 3D 

element US-ATFH8, which presents excellent membrane solutions for many problems [8]. As 

corresponding analytical solutions are included in the trial functions, exact solution can be achieved 

for pure bending case using US-ATFHS8 and US-ATFH8 elements. Whereas other solid-shell models 

give poor results for these problems, especially when the meshes are distorted. The reduced integration 

element SC8R suffers from serious “hourglass” problem, which causes the membrane stiffness much 

too underestimated. 

It should also be noted that the solid-shell element US-ATFHS8 almost presents the same 

solutions as the 3D element US-ATFH8, which is due to the fact that the solid-shell model is 

successfully formulated by modifying the transverse strain components, while the membrane part 

remains untouched. 

We here only give two membrane examples because US-ATFHS8 and US-ATFH8 present almost 

the same solutions for in-plane loading problems, and the excellent membrane behavior of US-ATFH8 

has been fully studied in our previous paper [8]. 

 

3.4 Curved beam 

Necessary parameters and the problem description can be seen in Figure 7, the deflection of the 

free end along the loading direction is evaluated. A reference solution is derived using the Euler-

Bernoulli beam theory for this bending-dominated problem:  

 
3

3
3

FR

Ebh
 =  (39) 
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Numerical solutions with 10 elements are listed in Table 4. As Sze et al. [28] claimed, thickness 

locking is observed when the given solution is about (1−μ2) times the exact solution. So it can be found 

in this problem that US-ATFH8 and ANSγε suffer from the thickness locking, and other models, 

including the new element US-ATFHS8, can give locking-free solutions. 

 

3.5 Twisted beam 

A 90° pre-twisted thin beam with a fixed end is plotted in Figure 8. Two loading cases, in-plane 

loading P1 and out-of-plane loading P2, are considered. The deflections of the free end along the 

loading direction are evaluated and compared to the reference solutions suggested by Belytschko et al. 

[33]. Most solid elements will suffer from severe locking due to the geometric complexity and 

inevitable distortions. Normalized solutions are given in Table 5, where it can be seen that the 3D 

element US-ATFH8 presents negative numbers due to locking problems, while the new solid-shell 

element US-ATFHS8 gives relatively accurate results. 

 

3.6 Hemispherical shell with an 18° circular cut 

A hemispherical shell with an 18° circular cut under concentrated loads is described in Figure 9. 

Only 1/8 of a spherical shell is modeled due to symmetry. For the deflection at the loading points, 

MacNeal et al. suggested a reference solution 0.094 [34], but another reference solution 0.093 

proposed by Simo et al. [35] gives better prediction as compared with several finite element models, 

so the latter is chosen as the reference solution here. Normalized results calculated by different 

elements are listed in Table 6, and it can be seen that the shell element SC8R converges slowly and the 

3D element US-ATFH8 gives poor results with coarse meshes. 

The strain energy results are also listed in Table 7 and plotted in Figure 10. It can be seen that the 
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presented model also gives good energy predictions. 

 

3.7 Scordelis-Lo roof 

A roof under self-weight is described in Figure 11. On the supported boundaries, x, y-dofs are 

constrained, and the vertical deflection of the mid-point of a free edge is evaluated with the reference 

solution 0.3024 [34]. Numerical results obtained with regular meshes are listed in Table 8. 

Distorted mesh cases are also considered for this problem, and two distortion modes are employed. 

In these distorted meshes, z-coordinates of a pair of top and bottom nodes are kept the same. The first 

kind of distortion is generated by randomly changing the z-coordinates of top (bottom) nodes: 

 0.5z z z= +   (40) 

where z is the z-coordinate in the initial regular mesh, α is a random number between −1 and 1, and Δz 

is the regular element size. 

The second kind of distortion changes the random number α to be an assigned value for each top 

(bottom) node. For different nodes with the same x and y coordinates (they are in a row), the values of 

α are also same. For different nodes in two adjacent rows, the values of α are taken to be 1 and −1, 

respectively. Regular mesh and two kinds of distorted meshes discretized with 4×4 elements are also 

plotted in Figure 12, and the numerical results using distorted meshes are given in Table 9. To better 

understand the convergence, the corresponding strain energy results are presented in Table 10 and 

visualized in Figure 13. 

It is clear that the proposed solid-shell element US-ATFHS8 gives remarkable (local and global) 

results under both regular and distorted meshes, and these solutions are not sensitive to mesh 

distortions. Rapid energy convergence is always achieved by the proposed model under various mesh 

conditions. 
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3.8 Partly clamped hyperbolic paraboloid shell 

The geometric and material parameters of a partly clamped hyperbolic paraboloid shell loaded by 

its self-weight are plotted in Figure 14. The reference solution for this problem is given by Bathe et al. 

using high-order MITC model [15]. The vertical deflection at point O is evaluated and the numerical 

results are given in Table 11. It can be seen that SC8R model gives much larger solutions in coarse 

meshes, which is due to the reduced integration. 

 

3.9 A beam with L-shaped cross-section 

As depicted in Figure 15, an L-shaped section beam is loaded by two bending moments at its free 

end. To illustrate the mesh and thickness directions of shell elements, this beam is divided into three 

parts (two plates and one ridge). The material parameters are as follows: 

E=107, μ=0.3 

The geometrical data are all given in the figure, and the assigned moment is implemented by using 

concentrated forces. The x-, y-deflections at the outer angular point, where the largest displacement 

should be observed, are evaluated in this test. 

Four meshes are considered, of which three are coarse meshes discretized with 30 elements, and 

one is a fine mesh for convergence analysis. Both parallelogram mesh and trapezoidal mesh are used 

to check the mesh distortion sensitivity.  

The reference solution is obtained by using over 120 thousand SC8R elements (4×36×400 

elements for part II and part III, and 4×4×400 elements for part I). It is observed in Table 12 that 

although so many elements are used, the x-, y-deflections at the sample point are clearly different, 

while they are analytically identical due to the symmetry. 
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Known by other numerical tests, the bending property of SC8R is pretty reasonable, while its 

membrane part gives poor results, so the reference solution is suggested to be 0.69×10-4, and it can 

also be found that the numerical solutions obtained with other elements converge to this reference 

solution. 

The normalized numerical results given by different models are listed in Table 13, and similar 

conclusions can be drawn as in MacNeal’s beam test. US-ATFHS8 and US-ATFH8 present highly 

accurate solutions that are insensitive to mesh distortions. Other finite element models show non-

negligible sensitivity to, especially, the trapezoidal mesh distortion. The reduced integration element 

SC8R suffers from “hourglass” problem in its membrane part, especially when coarse meshes are used. 

 

4. Conclusion 

 

An unsymmetric 8-node hexahedral solid-shell element US-ATFHS8 with high distortion 

tolerance is formulated by consolidating the unsymmetric finite element method, the analytical trial 

function method, and the assumed natural strain modifications. The cause of the locking phenomena 

in unsymmetric elements, in which analytical solutions are employed as trial functions, is the 

isoparametric interpolation in the test function part. 

The numerical examples demonstrate that the proposed element US-ATFHS8 presents locking-

free and highly accurate numerical solutions for shell problems of different geometric features, mesh 

conditions, and loading conditions. Some classical elements give remarkable numerical solutions for 

bending-dominated problems, while they lose reliability for the trapezoidal locking and hourglass 

modes under in-plane loading cases. Thus, the proposed element is more reliable in engineering 

practice.  
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Although part of the distortion tolerance is inherited from US-ATFH8, inversion of Jacobian 

determinant is inevitable in the new solid-shell formulation, which causes numerical dangers and 

reduces the accuracy when the top and bottom surfaces of solid-shell element are distorted into 

degenerated triangles or concave quadrilaterals. This weakness originates from the modification of 

strain components in natural coordinates, and finding a better scheme is still an interesting topic.  

Mesh distortion tolerance is significant in nonlinear analysis. Recently, excellent geometric 

nonlinear model for 2D problems has been formulated based on the unsymmetric finite element 

method and the analytical trial function method [37]. It is clearly evident that the proposed 

formulations can be extended into nonlinear problems, and the resulting models will be both accurate 

under even coarse meshes and insensitive to mesh distortions. Some progress for 3D solids and shells 

will be reported in the near future. 

 

Appendix: Analytical general solutions for linear stresses, strains, and 

quadratic displacements in terms of oblique coordinates 

 

Reference [8] has provided related solutions for both isotropic and anisotropic materials. Here, 

only the isotropic solutions are listed. 

Denote 
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 (A.1) 

A1. Analytical general solutions for global linear stresses and strains in terms of R, S and T  

(1) The 13th set of solutions for global stresses and strains 

Stresses: 

 
2 2 2

13 2 13 2 13 2 13 2 2 13 2 2 13 2 2, , , , ,x y z xy yz zxa R b R c R a b R b c R a c R     = = = = = =  (A.2) 
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Strains: 
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     


   

 
 


= − − = = − − =


+

= − − = = =


+ +
= = = =



 (A.3) 

(2) The 14th set of solutions for global stresses and strains 

Stresses: 

 
2 2 2

14 3 14 3 14 3 14 3 3 14 3 3 14 3 3, , , , ,x y z xy yz zxa R b R c R a b R b c R a c R     = = = = = =  (A.4) 

Strains: 

 

2 2 2 2 2 2

14 3 3 3 14 14 3 3 3 14

2 2 2

14 3 3 3 14 14 3 3 14

14 3 3 14 14 3 3 14

1 1
( ) , ( )

1 2(1 )
( ) ,

2(1 ) 2(1 )
,

x x y y

z z xy xy

yz yz zx zx

a b c R A R b a c R A R
E E

c a b R A R a b R A R
E E

b c R A R a c R A R
E E

     


   

 
 


= − − = = − − =


+

= − − = = =


+ +
= = = =



    (A.5) 

(3) The 15th set of solutions for global stresses and strains 

Stresses: 

 15 2 3 15 2 3 15 2 3 15 3 15 1 15 22 , 2 , 2 , , ,x y z xy yz zxa a R b b R c c R h R h R h R     = = = = = =  (A.6) 

Strains: 

 

15 2 3 2 3 2 3 15 15 2 3 2 3 2 3 15

15 2 3 2 3 2 3 15 15 2 3 3 2 15

15 2 3 3 2 15 15 2 3 3 2 15

2 2
( ) , ( )

2 2(1 )
( ) , ( )

2(1 ) 2(1 )
( ) , ( )

x x y y

z z xy xy

yz yz zx zx

a a b b c c R A R b b a a c c R A R
E E

c c a a b b R A R a b a b R A R
E E

b c b c R A R a c a c R A R
E E

     


   

 
 


= − − = = − − =


+

= − − = = + =

+ +
= + = = + =






 (A.7) 

(4) The 16th set of solutions for global stresses and strains 

Stresses: 

 
2 2 2

16 1 16 1 16 1 16 1 1 16 1 1 16 1 1, , , , ,x y z xy yz zxa S b S c S a b S b c S a c S     = = = = = =   (A.8) 
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Strains: 

 

2 2 2 2 2 2

16 1 1 1 16 16 1 1 1 16

2 2 2

16 1 1 1 16 16 1 1 16

16 1 1 16 16 1 1 16

1 1
( ) , ( )

1 2(1 )
( ) ,

2(1 ) 2(1 )
,

x x y y

z z xy xy

yz yz zx zx

a b c S A S b a c S A S
E E

c a b S A S a b S A S
E E

b c S A S a c S A S
E E

     


   

 
 


= − − = = − − =


+

= − − = = =


+ +
= = = =



  (A.9) 

(5) The 17th set of solutions for global stresses and strains 

Stresses: 

 
2 2 2

17 3 17 3 17 3 17 3 3 17 3 3 17 3 3, , , , ,x y z xy yz zxa S b S c S a b S b c S a c S     = = = = = = (A.10) 

Strains: 

 

2 2 2 2 2 2

17 3 3 3 17 17 3 3 3 17

2 2 2

17 3 3 3 17 17 3 3 17

17 3 3 17 17 3 3 17

1 1
( ) , ( )

1 2(1 )
( ) ,

2(1 ) 2(1 )
,

x x y y

z z xy xy

yz yz zx zx

a b c S A S b a c S A S
E E

c a b S A S a b S A S
E E

b c S A S a c S A S
E E

     


   

 
 


= − − = = − − =


+

= − − = = =


+ +
= = = =



  (A.11) 

(6) The 18th set of solutions for global stresses and strains 

Stresses: 

 18 1 3 18 1 3 18 1 3 18 6 18 4 18 52 , 2 , 2 , , ,x y z xy yz zxa a S b b S c c S h S h S h S     = = = = = =   (A.12) 

Strains: 

 

18 1 3 1 3 1 3 18 18 1 3 1 3 1 3 18

18 1 3 1 3 1 3 18 18 1 3 3 1 18

18 1 3 3 1 18 18 1 3 3 1 18

2 2
( ) , ( )

2 2(1 )
( ) , ( )

2(1 ) 2(1 )
( ) , ( )

x x y y

z z xy xy

yz yz zx zx

a a b b c c S A S b b a a c c S A S
E E

c c a a b b S A S a b a b S A S
E E

b c b c S A S a c a c S A S
E E

     


   

 
 


= − − = = − − =


+

= − − = = + =

+ +
= + = = + =






  (A.13) 

(7) The 19th set of solutions for global stresses and strains 

Stresses: 

 
2 2 2

19 1 19 1 19 1 19 1 1 19 1 1 19 1 1, , , , ,x y z xy yz zxa T b T c T a bT b c T a c T     = = = = = =  (A.14) 
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Strains: 

 

2 2 2 2 2 2

19 1 1 1 19 19 1 1 1 19

2 2 2

19 1 1 1 19 19 1 1 19

19 1 1 19 19 1 1 19

1 1
( ) , ( )

1 2(1 )
( ) ,

2(1 ) 2(1 )
,

x x y y

z z xy xy

yz yz zx zx

a b c T A T b a c T A T
E E

c a b T A T a bT A T
E E

b c T A T a c T A T
E E

     


   

 
 


= − − = = − − =


+

= − − = = =


+ +
= = = =



  (A.15) 

(8) The 20th set of solutions for global stresses and strains 

Stresses: 

 
2 2 2

20 2 20 2 20 2 20 2 2 20 2 2 20 2 2, , , , ,x y z xy yz zxa T b T c T a b T b c T a c T     = = = = = = (A.16) 

Strains: 

 

2 2 2 2 2 2

20 2 2 2 20 20 2 2 2 20

2 2 2

20 2 2 2 20 20 2 2 20

20 2 2 20 20 2 2 20

1 1
( ) , ( )

1 2(1 )
( ) ,

2(1 ) 2(1 )
,

x x y y

z z xy xy

yz yz zx zx

a b c T A T b a c T A T
E E

c a b T A T a b T A T
E E

b c T A T a c T A T
E E

     


   

 
 


= − − = = − − =


+

= − − = = =


+ +
= = = =



  (A.17) 

(9) The 21st set of solutions for global stresses and strains 

Stresses: 

 21 1 2 21 1 2 21 1 2 21 9 21 7 21 82 , 2 , 2 , , ,x y z xy yz zxa a T b b T c c T h T h T h T     = = = = = =  (A.18) 

Strains: 

 

21 1 2 1 2 1 2 21 21 1 2 1 2 1 2 21

21 1 2 1 2 1 2 21 21 1 2 2 1 21

21 1 2 2 1 21 21 1 2 2 1 21

2 2
( ) , ( )

2 2(1 )
( ) , ( )

2(1 ) 2(1 )
( ) , ( )

x x y y

z z xy xy

yz yz zx zx

a a b b c c T A T b b a a c c T A T
E E

c c a a b b T A T a b a b T A T
E E

b c b c T A T a c a c T A T
E E

     


   

 
 


= − − = = − − =


+

= − − = = + =

+ +
= + = = + =






  (A.19) 

A2. Analytical general solutions for quadratic displacements in terms of R, S and T  

(1) The 13th~15th sets of solutions for displacements (i=13~15) 
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2 2 2 2

1 0 0 1 1 1 1 1 1 1 1 1 1 1 2

0

2 2 2 2 2 2

2 2 2 2 2 2 2 2 1 3 3 3 3 3 3 3

2

3 3 0 2 2

1
{[ ( )( ) ( )] (

2

) (

) [ (2

i xi xi xyi zxi yi zi yzi xi

yi zi xyi yzi zxi xi yi zi xyi yzi

zxi xi

U a J A J a a a A b A c A a b A c A b c A R a a A
J

b A c A a b A b c A a c A S a a A b A c A a b A b c A

a c A T J a A b A

= + − + + − + + −

+ + + + + − + + + +

+ + + 2 1 1 2 1 2 1 2 1 9 7

8 0 3 3 3 1 1 3 1 3 1 3 1 6 4

5 1 2 3 2 3 2 3 3 1 2

) 2 ( ) (

)] [ (2 ) 2 ( ) (

)] (2 2 2

xyi zxi xi yi zi xyi yzi

zxi xi xyi zxi xi yi zi xyi yzi

zxi xi yi zi xyi yzi z

c A a a a A b b A c c A a h A h A

h A RS J a A b A c A a a a A b b A c c A a h A h A

h A RT a a a A b b A c c A h A h A h A

+ − + + − +

+ + + + − + + − +

+ − + + + + + ) }xi ST

  

  (A.20a) 

 

2 2 2 2

1 0 0 1 1 1 1 1 1 1 1 1 1 1 2

0

2 2 2 2 2 2

2 2 2 2 2 2 2 2 1 3 3 3 3 3 3 3

2

3 3 0 2 2

1
{[ ( )( ) ( )] (

2

) (

) [ ( 2

i yi xyi yi yzi xi zi zxi xi

yi zi xyi yzi zxi xi yi zi xyi yzi

zxi xyi

V b J A J b b a A b A c A b a A c A a c A R b a A
J

b A c A a b A b c A a c A S b a A b A c A a b A b c A

a c A T J a A b

= + − + + − + + −

+ + + + + − + + + +

+ + + 2 1 1 2 1 2 1 2 1 9 7

8 0 3 3 3 1 1 3 1 3 1 3 1 6 4

5 1 2 3 2 3 2 3 3 1 2

) 2 ( ) (

)] [ ( 2 ) 2 ( ) (

)] (2 2 2

yi yzi xi yi zi xyi yzi

zxi xyi yi yzi xi yi zi xyi yzi

zxi xi yi zi xyi yzi z

A c A b a a A b b A c c A b h A h A

h A RS J a A b A c A b a a A b b A c c A b h A h A

h A RT b a a A b b A c c A h A h A h A

+ − + + − +

+ + + + − + + − +

+ − + + + + + ) }xi ST

   

  (A.20b) 

 

2 2 2 2

1 0 0 1 1 1 1 1 1 1 1 1 1 1 2

0

2 2 2 2 2 2

2 2 2 2 2 2 2 2 1 3 3 3 3 3 3 3

2

3 3 0 2 2

1
{[ ( )( ) ( )] (

2

) (

) [ (

i zi zxi yzi zi xi yi xyi xi

yi zi xyi yzi zxi xi yi zi xyi yzi

zxi zxi

W c J A J c c a A b A c A c a A b A a b A R c a A
J

b A c A a b A b c A a c A S c a A b A c A a b A b c A

a c A T J a A b A

= + − + + − + + −

+ + + + + − + + + +

+ + + 2 1 1 2 1 2 1 2 1 9 7

8 0 3 3 3 1 1 3 1 3 1 3 1 6 4

5 1 2 3 2 3 2 3 3 1 2

2 ) 2 ( ) (

)] [ ( 2 ) 2 ( ) (

)] (2 2 2

yzi zi xi yi zi xyi yzi

zxi zxi yzi zi xi yi zi xyi yzi

zxi xi yi zi xyi yzi z

c A c a a A b b A c c A c h A h A

h A RS J a A b A c A c a a A b b A c c A c h A h A

h A RT c a a A b b A c c A h A h A h A

+ − + + − +

+ + + + − + + − +

+ − + + + + + ) }xi ST

  

  (A.20c) 

(2) The 16th~18th sets of solutions for displacements (i=16~18) 

 

2 2 2 2

2 1 1 1 1 1 1 1 1 1 2 0 0 2 2 2

0

2 2 2 2 2 2

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

2

3 3 0 1 1

1
{ ( ) [ ( )(

2

) ( )] (

) [ (2

i xi yi zi xyi yzi zxi xi xi

xyi zxi yi zi yzi xi yi zi xyi yzi

zxi xi

U a a A b A c A a b A b c A a c A R a J A J a a a A
J

b A c A a b A c A b c A S a a A b A c A a b A b c A

a c A T J a A b

= − + + + + + + + −

+ + − + + − + + + +

+ + + 1 2 1 2 1 2 1 2 2 9 7

8 2 1 3 1 3 1 3 6 4 5 0 3 3

3 2 2 3 2 3 2 3 2 3 1 2

) 2 ( ) (

)] (2 2 2 ) [ (2

) 2 ( ) (

xyi zxi xi yi zi xyi yzi

zxi xi yi zi xyi yzi zxi xi xyi

zxi xi yi zi xyi yzi z

A c A a a a A b b A c c A a h A h A

h A RS a a a A b b A c c A h A h A h A RT J a A b A

c A a a a A b b A c c A a h A h A h A

+ − + + − +

+ − + + + + + + +

+ − + + − + + )] }xi ST

   

  (A.21a) 
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2 2 2 2

2 1 1 1 1 1 1 1 1 1 2 0 0 2 2 2

0

2 2 2 2 2 2

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

2

3 3 0 1

1
{ ( ) [ ( )(

2

) ( )] (

) [ ( 2

i xi yi zi xyi yzi zxi yi xyi

yi yzi xi zi zxi xi yi zi xyi yzi

zxi xyi

V b a A b A c A a b A b c A a c A R b J A J b b a A
J

b A c A b a A c A a c A S b a A b A c A a b A b c A

a c A T J a A b

= − + + + + + + + −

+ + − + + − + + + +

+ + + 1 1 2 1 2 1 2 1 2 2 9 7

8 2 1 3 1 3 1 3 6 4 5 0 3 3
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) 2 ( ) (

)] (2 2 2 ) [ ( 2

) 2 ( ) (

yi yzi xi yi zi xyi yzi

zxi xi yi zi xyi yzi zxi xyi yi

yzi xi yi zi xyi yzi z

A c A b a a A b b A c c A b h A h A

h A RS b a a A b b A c c A h A h A h A RT J a A b A

c A b a a A b b A c c A b h A h A h A

+ − + + − +

+ − + + + + + + +

+ − + + − + + )] }xi ST

   

  (A.21b) 
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0
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2
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1
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a c A T J a A b
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c A c a a A b b A c c A c h A h A h A

+ − + + − +

+ − + + + + + + +

+ − + + − + + )] }xi ST

  

  (A.21c) 

(3) The 19th~21st sets of solutions for displacements (i=19~21) 
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  (A.22b) 
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