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Abstract

In this paper, we are interested in least squares estimator for a class of path-dependent
McKean-Vlasov stochastic differential equations (SDEs). More precisely, we investigate the
consistency and asymptotic distribution of the least squares estimator for the unknown pa-
rameters involved by establishing an appropriate contrast function. Comparing to the existing
results in the literature, the innovations of our paper lie in three aspects: (i) We adopt a tamed
Euler-Maruyama algorithm to establish the contrast function under the monotone condition,
under which the Euler-Maruyama scheme no longer works; (ii) We take the advantage of linear
interpolation with respect to the discrete-time observations to approximate the functional solu-
tion; (iii) Our model is more applicable and practice as we are dealing with SDEs with irregular
coefficients (e.g., Holder continuous) and path-distribution dependent.

AMS subject Classification: 62F12, 62M05, 60G52, 60J75
Keywords: McKean-Vlasov stochastic differential equation, tamed Euler-Maruyama scheme, weak
monotonicity, least squares estimator, consistency, asymptotic distribution.

1 Introduction and main results

We start with some notation and terminology. Let (R%,(-,-),|-|) be the d-dimensional Euclidean
space, and R% ® R™ the collection of all d x m matrices endowed with the Hilbert-Schmidt norm
| - ||. For fixed 79 > 0, € := C([~ro,0];RY) stands for the family of all continuous functions
f ¢ [~70,0] = R? which is a Banach space with the uniform norm ||f||s = sup_,,<y<o [f(v)].
Given any integer p > 1, we use © to denote a bounded, open and convex subset of RP whose
closure is written as ©. Let P(%) be the totality of all probability measures on €. Set Py(%¥) :=
{neP(@) : u(ll-12) = [ lI€]2n(dE) < oo}, (P2(€), Wy) is a Polish space under the Warsserstein
distance Wy on P(%) defined by

2
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where €' (u,v) is the set of couplings for x4 and v. As usual, we use |a] to denote the integer part
of a > 0.
The time evolution for most of stochastic dynamical systems depends not only on the present
state but also on the past path. So, path-dependent (i.e., functional) SDEs are much more desirable;



see, e.g., the monograph [27]. Since the pioneer work [14] due to It6 and Nisio, path-dependent
SDEs have been investigated considerably owing to their theoretical and practical importance; see,
e.g., Hairer et al. [9], Wang [37] and the references within.

McKean-Vlasov SDEs, which are SDEs with coefficients dependent on the law, were initiated
by [25] inspired by Kac’s programme in Kinetic theory. An excellent and thorough account of the
general theory of McKean-Vlasov SDEs and their particle approximations can be found in [32].
McKean-Vlasov SDEs are alternatively referred to as mean-field SDEs in the literature, which have
wide applications in interacting particle systems, optimal control problems, differential games, just
to mention but a few. Recently, McKean-Vlasov SDEs have been extensively investigated on, e.g.,
wellposedness of strong/weak solutions (cf. [5, 8, 16, 26, 38]), Freidlin-Wentzell large deviation
principles (cf. [5]), ergodicity (cf. [3, 4, 36]), links with nonlinear partial differential equations (cf.
[2, 12, 12]), and distribution properties (cf.[11, 37]).

On the other hand, from stochastic and/or statistical aspects, there exist unknown parameters
in various type SDEs arising in mathematical modeling (cf. [1]). Hence, there are vast of investiga-
tions paying attention to parameter estimations for SDEs via maximum likelihood estimator, least
squares estimator (LSE for short), trajectory-fitting estimator, among others. See, for instance, [15,
17, 24, 28, 30]. In the same vein, the parameter estimations for SDEs (without path-dependence)
with small noises have been developed very well; see, e.g., [7, 10, 19, 18, 20, 21, 23, 31, 33, 34], and
references therein.

From above discussion, it is very natural to consider SDEs together with all four features of
path dependence, distribution dependence, small noises and unknown parameter. So, in the present
work, we focus on the following path-distribution SDE

(11) dXE(t) = b(XtE’nga H)dt + so(Xfang)dB(t)a t>0, XS ={ € %,

Herein, ¢ € (0,1) is the scale parameter; for fixed ¢, X;(v) := X¢(t + v),v € [—r0,0], is called
the segment (or window) process generated by X°(t); Zx: stands for the distribution of Xj;
b: 6 xPa() xO = R%and 0 : € x Po(€) — RE@R™ are continuous w.r.t. the first variable and
the second variable; ©® > 6 is an unknown parameter whose true value is written as 6y € ©; and
(B(t))t>0 is an m-dimensional Brownian motion on a filtered probability space (§2,.%, (%¢)i>0, P)
satisfying the usual conditions, that is, .%; is non-decreasing (i.e., .#s C %, s < t), .%p contains all
P-null sets and .%; is right continuous (i.e., % = Fq := ﬂsﬁ Fs).

To guarantee the existence and uniqueness of solutions to (1.1), we assume that, for any (i, 2 €
C, u,v € Py(¥), and 6 € O,

(A1) There exist ag, @z > 0 such that
<€1 (0) - CQ(O)a b(Cla H, 0) - b(C27 v, 9)> < angl - CQHgo + aQW?(:u‘v V)z;
(A2) There exist 81, S2 > 0 such that

lo (G, 1) = oG )P < Biliér — Gl + BoWa(u, v).

From [12, Theorem 3.1], (1.1) has a unique strong solution (X¢(t))¢>—r, under the assumptions
(A1) and (A2). For any (1,(2 € €, pu,v € Po(%), and 0 € O, if there exist «, 5 > 0 such that

(€1(0) = ¢2(0), b(C1, 1, 0) — b(Ga, 1, 6)) < |1 — Cal|Z,



and
‘b(€2’1u’7 9) - b(CQv v, 9)’ < /BWQ(IU’a V)a

then (A1) holds.

Without loss of generality, we arbitrarily fix the time horizontal 7" > 0 and assume that there

exist positive integers n, M sufficiently large such that § := % = 717 Now we define the continuous-

time tamed Euler-Maruyama (EM) scheme (see, e.g., [13]) associated with (1.1)
(1.2) dYe(t) = 0OV, L= ,0)dt + e 0 (Y, L= )AB(1), >0
3 é

with the initial value Y¢(t) = X¢(¢) = £(t) for any ¢ € [—ro, 0], where
o t5:=[t/0]d for t > 0;
e For any ( € ¥ and p € P2(%),

b 0
(1.3 G 0) = gt € (0,172

e Fork=0,1,---,n, Yis = {Ys(5) : =10 < s < 0}, a €-valued random variable, is defined by

s+ 10
)

(1.4) Vis(s) = Yo((k —)0) + {Yo((k =)o) = Y*((k —i - 1))}
for any s € [—(i+ 1), —id], i = 0,1,--- , M — 1, that is, Y4 is the linear interpolation of the
points (Ys(lé))l:k_M7.‘.7k.

We denote (Y):>0 by the segment process generated by (Y*(t))¢>—_r,. It is worthy to point out

that Y; € % is defined by (1.4) rather than by 7;(5) =Y (ts+ s) for any s € [—ro, 0].Based on
the continuous-time tamed EM algorithm (1.2), we design the following contrast function

(1.5) Une() =261 PL(O)F(Y (k-1)s) Pi(6),
k=1

in which, for k =1,--- ,n,

(1.6) P(0) == Y=(ko) — Y= ((k —1)8) — b (Y _1)5, L

7(€k—1)5’0)5’ 8(?26) = (UU*)_I(?Z&XYZ(;)-

For more motivations on the construction of constrast function above, we refer to Ren-Wu [29]. To
obtain the LSE of 6 € O, it is sufficient to choose an element 60, . € © satisfying

~

U, (0pe) =minV, -(0).

0cO
Whence, for
D, .(0) = 52(\117175(9) — U, :(60)),
one has
(17) (I)n,a(é\n,e) = min q)nﬁ (0)

0cO



We shall rewrite 6, . € © such that (1.7) holds true as

-~

O = arg Ieréiél D, (),

which is called the LSE of the unknown parameter 6 € ©.
To discuss the consistency of LSE (see Theorem 1.1 below), we further suppose that, for any

C7Clu€2 S ig’ v S 7)2((5)7 and ¢ S 97

(B1) There exist gi, L1 > 0 such that
(1 10.0) = b{Go, 1, 0)] < L {1+ 1% + 1G22 61 = Gelle + W, )}
(B2) There exist g2, Lo > 0 such that

Sup | (Vb) (C1, 1 0) — (VD) (G2, 0)]| < Lo{ (1 + 112 + IGaII2) 161 — Gallow + W)},
0cO

where (Vyb) is the gradient operator w.r.t. the third spatial variable;

(B3) (00™)(¢, i) is invertible, and there exist g3, Lz > 0 such that
(00" (G ) — (00) ™ (o) < La{ (1 + 1A + 1) — Galloo + W)

(B4) There exists a constant K > 0 such that
£(t) —&(s)] < Kt —s[, ¢, s €[=ro,0],
where £(+) stands for the initial value of (1.1).
(B5) There exists a constant Ko, pp > 0 such that
(¢, 1, 01) = b(C, 1, 02)] < Ko(1 + [[Clloo + Wa(p, 0¢y))° |01 — 02|, 61,05 € O,
where ((s) = 0 € R? for any s € [~70,0].

In order to reveal the asymptotic distribution of LSE (see Theorem 1.2 below), we in addition
assume that

(C) There exist g4, Ly > 0 such that

sup 1(Vo(Veb™))(C1s 1, 0) = (Vo (V™)) (G2, v, 0]

< La{(1+ 1612 + IGIZ)IG — Gollos + W)},

where b* means the transpose of b.



Next we consider the following deterministic path-dependent ordinary equation
(1.8) AXO(t) = b(X}, ZLxo,00)dt, >0, XJ=¢(€C,

Under the assumption (A1), (1.8) is wellposed. In (1.8), Lo is indeed a Dirac’s delta measure at
the point X? as X} is deterministic. To unify the notation, we keep the notation ‘”gX? in lieu of

dx0. We remark that (B4) is imposed to guarantee that the linear interpolation ?; tends to X}
in the moment sense, see Lemma 2.2 below.
For any random variable ( € ¢ with % € P2(¥), set

(1.9)  T(C,0,600) := b(C, %, 00) — b(C, Z:,0), T, 0,00) =%, Z,00) — bO(¢, £, 0),

and, for any 6 € ©,

T
=(6) = / I*(X?, 0, 60)3 (XO)T (XY, 6, 60)dt,
0

where (X7)¢>0 is the functional solution to (1.8).
The theorem below is concerned with the consistency of the LSE for the parameter § € ©,
which is the first contribution of our work.

Theorem 1.1. Let (Al) — (A2) and (B1) — (B4) hold and assume further that Z(0) > 0 for
0 # 0y. Then

-~

On.e — o in probability ase — 0 and n — oo.

For A := (Ay, A, ,A,) € RP @R with A, e RPQRY, k =1,---,p, and B € RY, define
Ao B eRPQRP by
AoB = (A1B,A3B, - ,A,B).

For any 6 € O, set

(110 10) = [ (V) (XD, 20, 05X T (XD, L. 00,

T
(1.11) K(0):= -2 / (VB (XD, Lxp.0) o (FXIT(XP,6,00) ),
0
where (VgQ)b*) = (Vg(Vpb*)), and, for any random variable ¢ € € with % € Pa(%),

(1.12) T(¢,00) = (Vob)"(C, 2, 00)7 (C)o(C, £ ).

Another main result in this paper is presented as below, which reveals the asymptotic distribu-
tion of 6,, ..

Theorem 1.2. Let the assumptions of Theorem 1.1 hold and suppose further that (C) holds and
that I1(-) and K(-) defined in (1.10) and (1.11), respectively, are continuous. Then,

T
e (One — b0) — Il(QO)/ Y(XP,00)dB(t)  in probability
0

as € — 0 and n — oo, where Y(-) is given in (1.12).



With contrast to the existing literature, the innovations of this paper lie in:

(i) The classical contrast function for LSE is based on EM algorithm. Whereas, under the
monotone condition, the EM scheme no longer works. Hence in the present work we adopt
a tamed EM method to establish the corresponding contrast function. The above is our first
innovation.

(ii) For the classical setup, the discrete-time observations at the gridpoints are sufficient to con-
struct the contrast function. Nevertheless, for our present model, the discrete-time obser-
vations are insufficient to establish the contrast function since the SDEs involved are path-
dependent. In this paper, we overcome the difficulty mentioned by linear interpolation w.r.t.
the discrete-time observations. The above is our second innovation.

(iii) Our model is much more applicable, which allow the coefficients to be distribution-dependent
and weakly monotone. In particular, the drift terms are allowed to be singular (e.g., Holder
continuous). The above is our third innovation.

Now, we provide a concrete example to demonstrate Theorems 1.1 and 1.2.

Example 1.3. For any € € (0,1), consider the following scalar path-distribution dependent SDE
(1.13)

AXE(t) = {9“) + 9(2>/ (— (X)) + X°(t) + ’
€

XE(t + 0)do + /g C(H)dﬂ)fxte(d@}dt

—ro
0
te (1 v X+ 0)yd0> dB(t), t>0
—ro
with the initial value X5 = £ € € which is Lipschitz, where, for some c¢i < cz and c3 < c4,
0 = (01, 02) € Oy := (c1,c2) x (e3,¢4) C R2 is an unknown parameter with the true value
0y = (9(()1),982))* € Og. Let é\mg be the LSE for the unknown parameter 6 = (9(1),9(2))* € Og.
Then, R
One — 0o in probability ase — 0 and n — oo,

and .
e (Bne — 00) — I(6p) / Y(X?,00)dB(t)  in probability
0

as € — 0 and n — oo, where

Jo wrpxoeds o wiprds
T bo(X],X T b5 (Xg,X ’
0( 570 s2)ds 0( 8082)d8
o xS Jo TR

I(6p) =

and, for ¢ € €,
1 1
Y(¢,00) = m < bo(¢,¢) ) .

The rest of the paper is organised as follows. In Section 2, we prove Theorem 1.1 on the basis of
several auxiliary lemmas; Section 3 is devoted to show Theorem 1.2; Section 4, the final section, is
for the proof of Example 1.3. Throughout this paper, we emphasise that ¢ > 0 is a generic constant
whose value may change from line to line.



2 Proof of Theorem 1.1

To complete the proof of Theorem 1.1, we provide some technical lemmas. The lemma below
expounds that the path associated with (1.2) is uniformly bounded in the p-th moment sense.

Lemma 2.1. Let (A1) and (A2) hold. Then, for any p > 0 there is a constant Cp, 7 > 0 such that

(2.1) sup [ X715 < Cpur(1+ [€1%),
0<t<T
and
(2.2) sup B sup_ [Y(s)[P) < Cpr(1 + J11%).
0<t<T —ro<s<t

Proof. With the assumption (A1) in hand, the proof of (2.1) can be achieved by the chain rule
and the Gronwall inequality. We herein omit the details since it is standard. Now we turn to show
the argument of (2.2). By Holder’s inequality, it suffices to verify that (2.2) holds for any p > 4.
By It6’s formula, we deduce that

Yo" = \Y€(0)|p+/ {pIYE(S)Ip’2<Y€(S)7b( )(Yséa-i” 9)) +§|Y€(8)Ip’2\|0 (Vs L= I?
0

857

4 PO e )40 (V7 e Y2 () Jas

[ V2,01V, 2z )ABE)

<p [ IO o0 00T B0
/tm( - W(s(s),b()(na,z 0)as

NP2 (V:

2
. d
st)H S

857

+p/0 IYg(S)I”_2<Y€() o (Vi Lye )AB(s))

4
= TL(t), tel[0,T).

Whence, for any ¢ > 0 one has

(2:3) T(0):=E( sup_[Vi(s)P) < [l +ZE( sup TIi(s)).

—ro<s< 0<s<t

In the sequel, we are going to claim that
¢

(2.4) T(t) < 20|, +ct+c/ T(s)ds.
0

If (2.4) was true, thus (2.2) follows directly from Gronwall’s inequality. So, it remains to verify
that (2.4) holds true.



Let (p(s) = 0 € RY for any s € [~70,0]. For ¢ € € and u € Po(%), we deduce from (A1) that

(€(0),b(¢, 1, 0)) = (¢(0) = Co, b(C, 1, 0) — b(Co5 b¢y» 0)) + (€(0),b(Co, ¢y, 0))
< on|[¢11Z, + aaWa(p, 8¢,)* + [C(0)]* + [b(Co, Oy, 0)]
S C(l + ”CH%O +W2(M76C0)2)7

—~

(2.5)

e

and from (A2) that

lo(C, P < 2B4I¢11%, + 282Wa (1, 6¢)? + 2|0 (Co, 6¢y) 1|

(29) < e (11 KR + Wil 5)%).

According to (1.4), we obtain that

1V 54l
I -€
= max sup Y, (9)]
k=0, . M=1_(k41)6<s<—ks | &
2.7 k+1)0 ko
27) = max sup MYE(U — k) — ot Ye(ts — (k+1)0)
k=0, .M =1 _(k11)§<s<—ké 0
<2 sup [Y¥(s)].
—ro<s<t

Furthermore, recall the Young inequality:

(2.8) ab' " <aa+(1—-a), a,b>0, acl01],
and the fundamental fact that: for any ¢ > 0,

(2.9) E|B(t)|7 < ct?/?.

By virtue of (1.4), we notice that

(2.10) Y, (0) = Yo(t5).

Then, by exploiting (2.5), (2.7) as well as (2.10), it follows from (2.8) and Holder’s inequality that

E ( osgggt IT, (s))

° Ve () [P~ e
=pE( su — Y¥(us),b(Y,, , % ,0))du

P <0§52t/0 1+ 60(b(Y,,, Lo 79)\< (), b w5, 2y, 6)) )
ug

ug?

£

’ Y (u)["2 - e

= pE _ Yo (0),6(Y,, , L ,0))d

p (Oiligt/o TS oo, 7 79)‘< u; (0),6(Y s, L2 0)) u)
ugs

us?

(2.11)

S Ol . 2
<cE( su — 1+ |V |5 + Wa (L5 L6 ds
- <0§82t/0 1+5a|b(y5 376 ,9)|{ H 5” 2( Y56 CO) }
ug

ugs?

t
<c [ {1+EV: P+ EIT I }ds
0

< c/o {1+ 7Y(s)}ds.



It is straightforward to see that, for any ¢ € €, pu € Po(%), and 6 € O,

16(C, 1, 0)] .
T oo p(Cp )] =0

(2.12) 69(¢, 1, 0)] =

Taking (2.6) and (2.12) into consideration and making use of (2.9) and « € (0,1/2], for any g > 2,
we derive that

E|Y®(t) = Y¥(ts)|? < {070~ + Ello (Y}, Zy: ) I"EIB() — B(ts)|"}
(1—a) /2 2

{6q + 09°E|lo (T, Yt6>||}

e 1+ E||V, 17 + Wa(Zy: ,0c,)7 |

< céq/2{1 +E< sup IYE(S)Iq)},

—ro<s<t

| /\

(2.13)

where in the last procedure we have used Holder’s inequality and (2.7). Thus, taking advantage of
(2.12) and (2.13) and employing Hélder’s inequality yields that

E( sup [Ty(s)) < pE /0 YE(s)P2Y=(s) = Y¥(s5)| - o) (V7 L L O)]dls

0<s<t

Spé‘a/o E([Y*(s)P2[Y5(s) — Y*(s6)])ds

t 2
(214) <p [ (5Qvom) T (B - v(lE) s
0
1 t p—2 » 2
< 52a/ E(YE(s)[P)) " 1 +E( sup [Yo(s)|2)+"ds
patee [ (BQe@P) T {1+E(_sw_ i)}
t
c/ {1+ T (s)}ds,
0
where in the last display we used a € (0,1/2] and (2.8). Next, we observe that
p(p_ 1) ¢ € p—2 2
(2.15) E( sup Ta(s)) < 2= [ BV ()2 0(VS,, Ly )[)ds
0<s<t 0 5

Using Burkhold-Davis-Gundy’s (BDG’s for short) inequality and (2.8), we infer that

o g, m) <o | [0 o7 2 5]

Ss7

1/2
< aVapE( [V Rrlo" (7, 2 e (o)Pas)”
0
(2.16) 1/2
< 4v2pE( swp VP [ VP oV L)1)

0<s<t

< ST + 167 / B(Y ()P 20(VS, Z- )[)ds



Subsequently, one gets from (2.15) and (2.16) that

E( sup Hg(S)) +]E< sup H4(5)>

0<s<t 0<s<t

1 t o
<3O+ [ BV P2V, L IP)as

1 t .
(2.17) < iT(t) + c/ {E|Y*(s)P +E|]U(Y56,$756)Hp}ds
0 S

1 t —
< ST +c/ {1+ EIY ()P + BV, 1% + Wa(Lp: ,3,)" fds
0 S

< ;T(t)—i—c/o {14 (s)}ds,

where we have adopted (2.8) in the second inequality, used (2.6) in the last two step, and utilized
Holder’s inequality, in addition to (2.7), in the last procedure. Substituting (2.11), (2.14), and
(2.17) into (2.3) gives that

(1) < lell% + 570 + e / {1+ 7 (s)}ds.

As a consequence, (2.4) is now available. O

The following lemma shows that the linear interpolation ?; approaches X} in the mean square
sense as € and d go to zero.

Lemma 2.2. Assume (Al),(A2),(B1) and (B4). Then, for any p > 2, there exists ¢, > 0

(2.18) OiltlgTEH?; — XP|By < cp(6P/27E 4 €2 + 577,

where a € (0,1/2] is introduced in (1.3).

Proof. For any p > 2 and t € [0,T], by Holder’s inequality and Y = X = &, we find that
E|Y7, — X115
< BTUENYS - Vi |k + 3 EIYE - X715 + 3P EIXT - XPIIE

<3 'M max IE( sup Ye(t+0v) =Y. (v p)
k=0,--.M~1 f(k+1)6§v§fk6’ ( ) ts (V)]

+ 3p*1E< sup |Y*°(s) — X€(8)|p> + 3p*1E( sup |X°(s) — Xo(s)\p)
0<s<t 0<s<t

=: Ai(t,e,9) + Aa(t,e,0) + As(t,g,0),

(2.19)

where M > 0 such that Mo = ry. Hereinafter, we intend to estimate A;(t,e,0), i = 1,2, 3, respec-
tively. In the first place, we shall show that

(2.20) Ai(t,e,8) < coP>71 te0,T)].

10



For t € [0,T), there is an integer ko > 0 such that ¢ € [kod, (ko + 1)J). From (1.4), it follows that

Ai(t,e,6)

< CMk:OIP-aﬁ\(/[—l E( (ko_k_l)(ss;slg(ko“_k)& [Ve(s) — YE((ko — k)d) ’p)
(2.21) + CMk:OT?:}J\{/[—l E((ko_k_1)5§;2(ko+1_k)a [Y¥(s) = Yo((ko =k = 1)6)|p)

< CMk:OIf-l-aﬁ\(/[—l IE( (ko—k—l)asggg(koﬂ_k)(; [Ye(s) = Y((ko — k — 1)5)|P>

€ _ _ € _ _ p
+eM _max E|YZ((ko— k)d) = Y¥((ko — k — D3P

3

In case of k > ko + 1, by virtue of (B4), one has
Ai(t,e,8) < e M < crosP™ 1.

In terms of (B1), for any ¢ € ¢ and p € P2(%),

(2:22) 56,1 00)] < L { (1 ICIZ) oo + Walpt, 850) |+ [B(Go, 8o, B0)1

Let &' > 0 be an arbitrary integer. For any ¢ € [k'd, (K’ 4 2)d], note from BDG’s inequality followed
by Holder’s inequality that

E( sup \Ye(t)—YE(k:’é)P)
K 6<t<(k'+2)6
(K'+2)6

(K'+2)6 () 7 p 7 o 2
< L e ?—¢
<cB([ O L olas) B ([ (Vi IPas)

[M4S)

P_q (k'+2)8 € Ve
< 6t /k {EIb(7 3?25,90)!”+E!\0(Ys5v$?§5)”p}d5’

Cr Rl
6
where in the last display we have used the fact that

(2.23) 6O(C, 1, 00) < b(C, 11 00)|,  CEE, peEPAF).

Subsequently, taking (2.2), (2.6) and (2.22) into account and making use of Holder’s inequality
yields that

(K'+2)5

(2.24) IE( sup |Y€(t)—Y5(k’5)|p) gcaé—l/
E§<t<(k'4+2)8 k'S

{1 n E||?§6H§gl+ql)}ds < o8,
Hence, it follows from (2.21) and (2.24) with k' = kg — k — 1 that
Ay(t,e,8) < cMsz <cé2!

provided that k < kg — 1. Whenever k = ko, we deduce from (2.21), (2.24) with ¥’ = 0 as well as
(B4) that

Ai(t,e,8) < cMIE( sup |Ye(s) — Y‘E(O)]f”) —|—cMIE< sup  [VE(s) — Ya(—5)|p) < cop/2 1,

0<s<§ —0<s<0

11



Next, we are going to claim that
(2.25) Asz(t,e,6) <ce?,  tel0,T).
Following the argument to derive (2.2), we deduce that, for some constant C, 7 > 0,

(2.26) S E[ X718 < Cor(1+ [I€]1%)-

By the It formula and X§ = X = £, we observe that

X0 - X0
/ | X(s) O(s)|P~ 2{ (X°(s) —Xo(s),b(Xg,D?Xg,Qg) —b(XS,O?XQ,GO»
+”<1;)||o< X5 L) s 4 pe [ 1X() = XOP X~ X0 0(XF, L) AB(S),

Thus, by using BDG’s inequality, Young’s inequality and (2.8) and noting that X§ = X = &, we
infer from (A1) and (2.6) that

As(t,e,6) /A3355d5+c€ /{1+E||X€H tds

1/2

+eeB( sup |X¥(s) - X0 / X4(5) = XO(s)|P 20X, o )|12ds)
0<s<t

1

< —As(t,e 5)+C/ A3(s,e,6)ds 4 ce? /{1+E||X5H }ds.

0

\V)

So, one has

As(t,e,d) < c/t As3(s,e,0)ds 4 ce? /t{l + E|| X5, }ds.
Thus, (2.25) follows from (2.26) anc{) Gronwall’s inequality(.) Finally, we intend to verify that
(2.27) Aa(t,e,8) < c(P*71 4+ 6%), telo,T).

Also, by It6’s formula, we derive from X§ = Yy = £ that

[X5(t) = Y= (@)

<p/ | X€(s) S(s)[PTHXE(s) — YE(8),b(XE, Lxz, 00) — b(YE, Lye,0p))ds
+p/ | X5 (s (5)P72(X(s) = Y=(s), b(YS, Zye, bo) — (sti” 0o))ds
+p/ | X5 (s (5)P72(X(s) = Y=(s), (Y55,$ bo) — b()(Ysé,cg 00))ds

+(21)/0 |X5( ) Y6(8)|p_2”0(X§a$X§)_ (Ys(s’g )H2dS

+p6/0 [X5(5) = YE()IP (X (s) = Y¥(5), (0(X5, Zx5) = o(V,, L= ))dB(s))

=: Z1(t) + Z2(t) + Z3(t) + Ea(t) + Es ().

12



In view of (A1), we deduce from Young’s inequality that

t
E( sup 51(8)) < C/ E{|X(s) = Y°(s) P2 (| XS — YE2, + Wa(Lxe, Lye)®) s
(2.28) 0ssst 0

t
< c/ As(s,e,9)ds.
0

Carrying out a similar argument to derive (2.20), for any p > 2, we have

(2.29) sup E[Y7 — Y5 |2, < co2
0<t<T

Taking (A1), (2.2) and (2.29) into consideration and applying Holder’s inequality that

IE( sup \Eg(s)|>

0<s<t

<e /0 E|X(s) — V*(s)|Pds

t
+ C/ E{(1 + ||YZ|228 + V5 1501V = Y5, 115 + Wo(Lye, Ly )P}ds
(2.30) L : B
< c/ Ag(S,@,(S)dS—&—C/ E|YF — Y, [%.ds
0 0

! €112 ¢ |12 1/2 e _ V¢ |2 1/2
b [ (e myem vy ) (B - 75 ) s
0

t
<ozt —|—c/ Ao(s,e,d)ds.
0

According to (1.3) and in view of (2.2) and (2.22), it follows from Hélder’s inequality that

]E( sup |Z3(s) |>
0<s<t
£

Pb(Y 5 Ly, 00)|*
S8

— ds
(14 66V, Z=_ 007

<c tE | X5(s) = Ye(s)|P +
(2.31) /0 {

t
<o [ {BIXG) - Yo P + 80+ EIVE 040 + Wa( 2 60} s
0 %
t
<o+ c/ Aa(s,e,0)ds.
0
Next, owing to € € (0,1), (A2), and (2.20), one gets that
t
B( sup Zu(9)) < ¢ [ BUX(s) — V(P 20X T [ + Wal iz, L))}
0<s<t 0 55
t
(232 < [ {BIX: - il + EIYS - V5% )ds
0

t
< edPP 4 c/ As(s,e,0)ds.
0

13



Next, for € € (0,1), BDG’s inequality and Young’s inequality (2.8), besides (2.32), give that

E( sup |E5(s)\)

0<s<t

1/2
< cB( sup [X5(s) = YE(9) / X2(s) = V(DI (X, 2x:) — o (Vi Ly )|Pds)
0<<t

(2.33)

Cr R

< %Ag(t £ 5) + / Ao(s,e, 5)ds+c/ Ello(X3, Zx;) - o(Ve,, Lo )|IPds

< ;Ag(t,s,é)—i-cépml—i—c/o Aa(s, <, 8)ds.
Thus, (2.28), (2.30)-(2.33) yield that

As(t,e,0) < %Ag(t,e, ) + ¢ (67271 4 5Py 4 c/ot As(s,e,0)ds.
Namely,
Ao(t,e,8) < c (67271 4 6P%) + c/ot As(s,e,8)ds.

As a result, we obtain from Gronwall’s inequality that
(2.34) Ag(t,e,8) < c(P/>71 4 57%).

Inserting (2.20), (2.25), and (2.34) back into (2.19) leads to the desired assertion (2.18). O

The lemma below plays a crucial role in revealing the asymptotic behavior of the LSE of the
unknown parameter 6 € ©.

Lemma 2.3. Let (A1) — (A2) and (B1) — (B4) hold. Then,

n

8> (T (V4150 0,00)5(Y (_1ys) TP (Y115, 0, 00)
(2.35) k=1

T
S 2(0) = [ TOE 0,005 OXT(X0.0,60)
0

in L' uniformly w.r.t. 6 €O ase — 0 and § — 0 (i.e., n — o). Moreover,

n

(2.36) > T (Y15, 0, 00)5 (Y (1, —1y5) Pr(60) — 0
k=1

in probability uniformly w.r.t. 6 € © as e — 0.

14



Proof. Observe that

T
62 k 1) 570 00) (Y?kfl)zS)F((S)(Y?kfl)Jv9790) _/0 P*(X?,G,Ho)a(X?)F(X?,e,Qo)dt
/ { “(Y5,,0,00)5 (Y, )TO(V5,,0,00) — (Xf,9,90)3(X$)r(xf,e,eo)}dt
0
T * .
0 (F“S (V5,20 60) — T(X?,6,00) ) 5(V;, )T (V;,,0, 60)at

T
+ [ e 0,600 (3(77,) - 500) IOV, 0.00)d
0

T
/0 D(X0.0,00)"3(X0) (DO (V;,.0,00) — D(X7.0.00) )t
1(8 0, 9) +J2(6 0, 9) +J3(6 0, 9)

From (B1) and (2.22), a direct calculation shows that, for any random variables (1,{ € ¥ with
j{v‘iﬂ@ S 772((5),

I0®)(¢1,6,00) — T(Ca, 0, 60)]
= |69 (C1, Ly, 00) — b(Co, Ly B0) + b(Cas Loy, 0) — B (C1, L, 0)]
< [b(C1, £y, 00) — b(C2, £y, 00)| + [6(C2s L2y, 0) — b(C1, 22,5 0)]
16D (Cry Ly, 00) — b(Cry Ly, 00)| + 16(CL, Z2,, 0) — 6D (Cr, £, 0))
= [b(C1, %5 00) — b(Cay Loy 00)| + |b(Cay L2y, 0) — b(C1y Ly, 0)|

b(Clag 700)‘ ’b(Chg 79)‘
(237) + 5 ‘ S b 73 0 + 5 1
1+ 62b(C1, Z, 5 60)] (G Zars 0)‘ 1+ 62[b(¢1, %6y, 0)]

< 16(C1, 26y, 00) — (G2, Zy, 00)| + [6(C2s L2y, 0) — 0(C1, £, 0)]
+64{|b(C1, Ly, 00)7 + [b(C1, L., 0) %)

< {112 + IGIRIG = Colloo + Wa( 2y Z) |
+ C5a{1 + ||C1||g£1+‘“) + W2($§1,5C0)2}.

b(Cla Zﬁ ) 9)

Next, for a random variable ¢ € € with £ € P2(%), by (2.22) and (2.23), it follows that

(2.38) ITO(C,0,600)| + ID(C, 0, 80)| < e {1+ [CIA™ + Wa( L, b¢,) |

and, due to (B3), that

(2.39) [G(ON < [l5(¢) =) +[[a(0)] < e {1 + ¢ + Wa(Z, 540)}-

15



Consequently, combining (2.37) with (2.38) and(2.39), for ¢ := ¢1 V g3, we deduce from (2.1) that
|‘]1(57 57 0)| + |J3(€a 67 9)‘

T
<e /0 {4 175,12+ IXONL) 1T, — XPIE + Wal e , L)
o (1 + V38 + Wa( L 540)2>}
) {1 IXPIRE® + IV I + W, 0c,) |

L+ XL + 75 15 + Wal L b, bt

T
< C/O {(1 + HY;HZO)HY; - Xz?”oo + \/EHY; — X?Hgo}{l 4 ||Y;||ggl+q)}ds
T
e / {1+ 1751809 b,
0

This, by exploiting (2.2) and (2.19) and using Holder’s inequality, gives that
E(sup|J1(5,5, 9);) +E<suB|J3(5,6, 9)\)

966 0cO
T
<c \/]E Y, — X992 {1_|_[E Y: 8(1+q)}dt
(2.40) /0 Y45 = X715 Vel
T
oo [ {1+ BRIV e
0
—0

as € — 0 and § — 0. Next, making use of (B3) and (2.38), we derive that

T
T, 0 < [+ XU (14 175 I + BT )
x (L I75, 12+ IX22)IVF, — X0l + EITS, - XPIZ. )t
tslloo t lloo ts t 1100 ts t lloo

Again, using (2.1), (2.2) and (2.18) and utilizing Holder’s inequality gives that

T
< \/ﬁ T 114(1+q)
(2.41) E!J2(s,5)|_c/0 E|Y;, — X} Hoo{l +E||Y5, )13 }dt
— 0

as € — 0 and § — 0. Hence, (2.35) follows immediately from (2.40) and (2.41).
In the sequel, we are going to show that (2.36) holds. In terms of (1.2), we obtain that

n

> @O V1500, 00)F(Y (_1)5) Pr(60)
=1

(2.42) = 52 k 1) 5:0,00)7(Y (k 1)5) (?fk—l)&g?fkil)é)(B(ké) — B((k —1)9))

T
=c /O Oy (¥, 0, 90)8(Y;)0(Y;,$7§5 )dB(t)
=:1I(T,¢,0).

16



By the BDG inequality and the Hélder inequality, we derive from (2.6), (2.38), and (2.39) that for
p>2

T @)y (e ~ 2 1.\P/?
BT, 2,0)P < ce?B( [ [(T9)"(V5,,0,00)5(V;,)0 (V. 2 ) Pt)
0

T
<cer [CE(ROT 0008 [0 oV, Ly PP 2

T — p/2
<cer [FB{(1+ IV + Wal i, 5c)?)
0 é

7€ p/2
x (1 175, 120+ W (L, 0c,)?)
. p/2
(1 IV 120090+ W (Zs 0,)?)
T
<cer [ EITE I
< ceP.

On the other hand, for any 6,6, € ©, by using the BDG inequality and the Holder inequality, it
follows from (B5), (2.6), and (2.39) that for p > 2

E|I(T,e,6:1) — II(T,¢,02)°

T
<cet [ BP0, 00,00) =TT, 00 00) - (B3I - [V, 2 )PP 2t

<cef /OT E{Ib(Ytéa-i”* ,01) — b(Yt(;,-i”* ,02)% - 5 (VeI - HU(?;’f?fé)IIQ}”/th
< ceP|f; — 6a]P.
As a consequence, we obtain (2.36) from [22, Theorem 20, p378]. O
So far, with Lemma 2.3 in hand, we are in the position to complete the

Proof of Theorem 1.1. A direction calculation shows that

,, ()

n

=5 {Pg(ma(?fk_l)a)m(e) P (60)5 (Y (k15 )Pk(go)}

=53 {(Pelb0) + (TO) (Vo115 0,60)8) GV (-115) (Pe60) + TOV,_,6,60)0)
k
~ P (00)5 (¥ (o1y5) Pi(00) }

=23 M) (V5195 0,00)5 (Y (5_1)5) Pr(60)
k=1

n

+ 0 (TN (Y 1 1)5,0,00)F(Y (1 1)5) T (Y (115, 0, 00).
=1

17



By virtue of Lemma 2.3, we therefore infer that

sup | — ®,.(0) — (—E(0))] = 0  in probability.
0cO

Next, for any « > 0, due to Z(-) > 0,

sup (—E(0)) < —E(6y) = 0.
|0—00|>K

~

Furthermore, one has —®,, (0, ) > —®,,.(6p) = 0. Consequently, we deduce from [35, Theorem
5.9] with My(-) = —=®,.(-) and M(-) = —Z(-) therein that 6, . — 6y in probability as ¢ — 0 and
n — 00. We henceforth complete the proof. O

3 Proof of Theorem 1.2

Before we start to finish the argument of Theorem 1.2, we also need to prepare some auxiliary
lemmas below. For any random variable ¢ € € with £ € P2(%), set

TOC,0) = (Vob) (¢, £, 07 (o (¢, Z).
Lemma 3.1. Let (A1) — (A2) and (B1) — (B4) hold. Then,

T
(3.1) e (VoD ) (0) — —2 / T(X?,0)dB(t)  in probability
0

whenever € — 0 and n — oo, where Y(-,-) is introduced in (1.12).
Proof. By the chain rule, one infers from (1.2) and (2.43) that
e (Vo®n,e)(0)

= 267 Y (VT ) (V15,0 00)5 (V1) { Pi(00) + T (V5115 0,005 |
k=1

=21 (VoI (V{1150 00)5 (Y (1—1)5) P (0)
k=1

(3.2) .
= =2 (Vo))" (Y1_1)s: B )5 (Y (5-1)6)0 (Y (- 1)s» Lo 1s)
X (gz(llfé) — B((k —1)9))
=2 /OT TO(Yy,,0)dB(t),
where in the last two display we used the fact that
(33) (VoI ) (Y135 0: 60) = —(Vob )V (4nys, L, - 0)-

To achieve (3.1), in terms of [6, Theorem 2.6, P.63], it is sufficient to claim that

T
(3.4) /0 ITO(Yy,,0) — T(XP,0)|?dt — 0  in probability

18



as ¢ — 0 and 6 — 0. Observe that
= (Vgb)* (Yt,s,f -, 0)5(Y3,)o(Ys,, Lo )

ts?

(Vob)™ (XY, Lx0,0)5 (X))o (X7, L)
= {(Ve)" (Yt(;vg?iéve) — (Veb)* (Xg,fxo 0)}5 (Y3, )l
+ (Vob)* (X7, Lxo, 0){5(Ye,) = (X))o Ve, L= )

+ (Vob)* (X7, Lxo, 0)5(XP){o(Vy,, Ly ) oy ,-i”xto)}
=: 21(t,&,0) + a(t,€,8) + S3(t, ¢, 9).

Vi Zyz)

ts?

By a straightforward calculation, for any random variable { € € with % € P2(%€), one has

b(C 1,6
(Vob )¢, Z:0) = Vo 5(C§|bl(L< ;)z 9)\)

_ (V) (G, 0) 5 (b)(C, 1, 0) (VD) (€, 11, 6)
1+ 62b(C, p, ) [b(C, 1, O)(1 + 6%(b(C, 1, 0)])*

Next, for any random variables (i, (2 € € with £, %, € P2(¥), it follows from (3.5) that

(3.5)

(Vb)) (¢ Zey,0) = (Vob)* (G2, L, 0)

_ (veb)*(CLfCl,e) B N B 5a(v9b)*(C1,$§1, )(bb* Chg{l,
_H1+5a|b(g1,z<1,9)y (Vob)"(C2, Zc,,0) H

(1+5a|b(gla$§1a )|) |b Clvgclv
= H (v9b>*(417°g<176) - (veb)*(c27°%<276) _ 6a’b(4179g<179)‘(v9b) (C27$C27 )
1+ 5a|b(<‘1’$<1’ )|

L+ 0%[b(C1, Z,,0)|
_ 5a(v0b)*(<17$<1’ )(bb* gl,z{l’ H
(1 +5a‘b(<17°g<1’ )|) (Clagﬁlv
< [(Vob) (€1, 2, 0) — (Vob) (G2, 2 )H

+0%b(C1, Z6, )] - {l[(Vod) (C2s L5, O) | + 11(Vod) (Crs L, O) 1
where in the last step we utilized the facts that || Al

(3.6)

= ||A*|| for a matrix A and that
1(Vob)* (C1r Ly, 0)(06%) (1, Z2y, 0) 1P

= trace(((ng)*(Cl, Loy 0)(06%)(C1, Z,,0))" (Vb) ™ (C1y Ly, 0) (00°) (C1, 22y ))
= trace((Bb")" (G Loy O))(Vob) (Vb)) (C1. L ) (58 (G1. Ze, . 0))

— trace  ((Vob) (Vob)") (C1s Loy, 0)(B67) (C1, Lo 0) (6" (Gt Z5,,0)) )
— [b(C1s Ze, ) (Vob)* (Gt L2, 0) 1

Moreover, from (B2), one has

(3.7) 1(V0b)(Gor o, )| < {1+ 1GalIE™ + WL, 84.) }-
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Now, taking (B2), (3.6), and (3.7), in addition to (2.6) and (2.39), into account yields that
1X1(t,€,0)] < C{(l + [V, 12 + I XPUL)NY, — XD lloo + Wa(Zy; , Zxo)
3 (L IV I + W (s b)) (1+ 175, 15 + Wa(Z; L 0,)) |
<L+ T 5% + Wal B L 0c) b x {1+ T3, oo + WalZs 1 05,) |-

For ¢ :== q1 V q2 V g3, simple calculations and (2.2) give that

121t 2 )l < ef L+ IVE I ITE, = Xl + \/EILZ:. — XPIE}
x {14 75,1249 + BT %}
— . 2
+ e {1+ |75, 12049 + V5 |12}
< o1+ [V, 8875, — X7l
(U [V EF0) B L — XD + 6% (14 [V, [1385)

=: Ay (t,e,6) + Ao(t,2,8) + As(t, e, 0).

For any p > 0, by virtue of Holder’s inequality, together with (2.2) and (2.18), it follows that

T ~
P(/ A1 (t e, 6)[*dt > p)
0
T . .
< IP’(c/ (1+ ’\Yt5!\§1+q))\lYt5 ~ XO|2.dt > p)
0

T

< ]P’(c/ (1+ ”YZH%”‘”)\IY; — X0 dt > p)

0

T

c . —

—0
whenever € — 0 and § — 0. On the other hand, by means of (2.2), and (2.18), it follows that

EA3(t.c.0) + ER3(t.2.0) < (1 + BV, [ )E| Ly — X[l + (1 + B[V, [X149)
(3.9) <o 421
—0

as € — 0 and § — 0. As a consequence, we infer from (3.8) and (3.9) that

T
(3.10) / IS1(t2,0)|2dt = 0 in probability
0
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when € — 0 and § — 0. Next, taking advantage of (A2), (B3), (2.6), and (3.7) leads to

1Sa(t, €, 6)I1% + 1S3 (t, <, 6)|1

<1+ xR}
< { L+ 175,12+ IXPUEITS, - XPI% + Wal L, Zxp)?)
X (1+ 75,2 + Wa(Zy: ,3,)%)
(L + V5 IV, - X0l + BN, — X015}
x {1+ 11775, 1% + EIVE, 1% }
< c(1+ |75, 12379 [V5, — XPlow + c(1 + V5, 2BV, — X712,
=:Z1(t,&,9) + Za(t,e,0),

in which we adopted (2.2) in the last procedure. Via Holder’s inequality, we obtain from (2.2) and
(2.18) that

(3.11) EZi(t,e,8) < c(1 + B[V [ EY,, - XP|% — 0

as € — 0 and § — 0. Also, by (2.2) and (2.18), one has

(3.12) EZs(t,€,0) < c(1+E||Y3,[12)E|Y;, — X212 — 0

provided that e — 0 and 6 — 0. Therefore, (3.11) and (3.12) lead to

(3.13) E[S2(t,e,0)|* + E[[Ss(t,e,6)|* — 0

if e - 0 and § — 0. At last, the desired assertion (3.1) holds from (3.10) and (3.13). O
Lemma 3.2. Let (A1) — (A3),(B1) — (B4), and (C) hold. Then

(3.14) (VP ®,.)(0) — Ko(6) := K(0) + I(0)  in probability

asn — oo and € — 0, where I(-) and K(-) are introduced in (1.10) and (1.11), respectively.

Proof. From (3.2) and (3.3), we deduce that
(V00 (0) = 23 (VD (T ) (V115 0:00) © (F(F (1)) Pe(6) )

+2) (VoI (V_135: 0, 00)F (Y (1_135) (Vo Pr ) (0)
=1

22 V(Q) Y(k 1)6s "g??kfl)é’e) ° (8(??k_1)5)Pk(9))

+25Z(Veb@))*(?fkfmvfm,l)aa9)3(?< 15) (Vab®) (V)5 Lye ).
k=1
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For any random variable ¢ € ¢ with £, € P2(%), by the chain rule, we infer from (3.5) that
@4 (Vob")
(V57007 )¢ 20) = (Vo ({5 ) ) (6 %0

— (V") (¢, %, 0) — 6°01((,.2%, 6).

Next, the chain rule shows that
|b|(Vé2)b*) (b*(a%b)(veb)* b*( b)(VQb)*)
01(¢, Z,0) =
162 6) <1+5a|b\ (1 + 67 o])?
X (G (Vab D). (G (Vab)) 08))
[I(1 + 6%[b])?
((Vob) (Grb)b™ +bggeb®). - (Vab) (b + b b))
[bI(1 + 62(])?

-t (¢ G o (- () o)) c.eo.
Thanks to (3.5), it follows that

(316) (Vo) () (Veb™)) (¢, Z.0) = ((Vob)F(O)(Vab) ) (€, L. 0) = 3°0a(C, ¢, 0),

where

pXpd

+

onc. 20— <<2|b|+5a|b| (Vb5 (C)(Vob) . (Vob")3()(b %) (Vob)
© (1 + 62[b])2 [b](1 + d2b])3
(Vab")BBNG(Q (Vo) o (Tab")(BENF(C) (bD)(Vb)
C R R T F (W A )“"’%‘9)'

Thus, taking (3.16) and (3.15) into consideration yields that

(V5" ®.0)(60) = =26 3 (V) (Vs Ly

Vo0 © (FO DO (Vi 1y5.6.60))

+25) ((vgb*)E(C)(Wb))( k=180 L7755 0)

k=1

=23 (V) Vs L, 00 0 (F(V ) Pi(60) )
k=1

— 250 291 L, 00 (B Pu(0))

5 S Vi B,
k=1

5
=: Zli(n,e).
i=1
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By following the argument to derive (2.35), we deduce from (A3) that
(3.17) Li(n,e) —» K(0) and Is(n,e) — I(f),  in probability

as € — 0 and § — 0. Notice from (A3) and (2.22) that

1©111(6 2. 0) < ([0l + IV578] + (1 + 3 IV bIDIVE 8] ) (¢, 2. 0)

< e(1 4 [ICIRSHY + W2, 6,) )
On the other hand, owing to (3.7), (2.39), and (2.22), one has

(3.18)

10 10216, 2. 0) < 2(16] IVobIPIF(Q)] 1+ 210D} (G 2,0
< e(L+[|CIASTD + Wa( L, 66,)").

Thus, by mimicking the argument of (2.36), we obtain from (3.18) that

(3.20) Is(n,e) -0 and I4(n,e) = 0 in probability

as € — 0 and § — 0. Furthermore, (2.2) and (3.19) enable us to get that

(3.21) I5(n,e) — 0 in probability

whenever ¢ — 0 and 6 — 0. Thus, the desired assertion (3.14) follows from (3.17), (3.20), as well
as (3.21). O

Now, we move forward to complete the

Proof of Theorem 1.2. With Lemmas 3.1 and 3.2 at hand, the proof of Theorem 1.2 is parallel to
that of [29, Theorem 4.1]. Whereas, to make the content self-contained, we give an outline of the
proof. In terms of Theorem 1.1, there exists a sequence 1, . — 0 as € — 0 and n — oo such that

~

One € By, .(0p) C ©, P-a.s. By the Taylor expansion, one has

~ ~ ~

(322) (VG(I)n,E)(Gn,E) = (VGCI)n,E)(GO) + Dma(gn,s - 00)7 en,a S Bnn,e (00)
with .
Dy = / (V2 , )0+ ulBne — 60))du,  Bne € By, (60).
0
Observe that, for §n75 € By, .(0o),
1Dn.e — Ko(B0)|| < D — (V5 ®02) (B0) | + [|(V5 ®r.2) (B0) — Ko(6o)l|
1
< / (V) @) (B + w(Bne — 00)) — (VS D,,.0) (00) | du
0

+ (V@) (60) — Ko(6o) |

< swp [(VP9,0)(0) — (VD) 00) | + (V@) (60) — Ko6o)]
6637771,5(00)

< swp (VP90 - Ko(0)| + sup  [|[Ko(8) — Ko(6o)]|
aeBﬁn,E(go) QGB”]n,E(OO)

+2/|(V§) ®y,.2) (B0) — Ko(6o)]]-

23



This, together with Lemma 3.2 and continuity of Ko(-), gives that
(3.23) D, . — Ko(6y) in probability

as € = 0 and n — oo. By following the exact line of [21, Theorem 2.2], we can deduce that D,, . is
invertible on the set

Duci={ _sup  [(V,.)(6) - Ko(6o)]| <
eeBnn,a(GO)

oo

) é\n,s € Bnn,g (90)}

for some constant o« > 0. Let

~

Dne = {Dn is invertible , 0, . € B, .(6o)}.

By virtue of Lemma 3.2, one has

(3.24) im P( sup (V)00 (0) = Kol0o)| < 5) = 1.

e—0,n—00 GEB”ITL,E (60)

On the other hand, recall that

(3.25) lim P(@L,g € Bnn,e(%)) =1

e—0,n—00

By the fundamental fact: for any events A, B, P(AB) = P(A) +P(B) —P(AU B), we observe that

«
12P(Me) 2P sup (V7 @00)(60) - Ko(o)| < 5)
(3.26) 0€By,, . (6o) 2

+ IP’(@W € Bnn7€(00)> ~1
Thus, taking advantage of (3.24), (3.25) as well as (3.26), we deduce from Sandwich theorem that
(3.27) P(Dye) > P(Tpe) — 1

as ¢ — 0 and n — oco. Set
Une = Dnelg, .+ Ipxploc
where Ipy, is a p X p identity matrix. For S, . 1= Efl(é\n,e —6p), we deduce from (3.22) that
Sne = Snclo. + Suclo
= Up e DneSnclg, . + Snelo,
= e U H (Vo) (One) — (VoPre)(00) g, . + Snelo .
= —€*1U,;;(Ve@n,e)(90)1%,g + Snelgg .

— I71(8) /0 " (X0, 00)4B(s).

~

as ¢ — 0 and n — oo, where in the forth identity we dropped the term (Vy®,.)(6, ) according
to the notion of LSE and Fermat’s lemma, and the last display follows from Lemma 3.1, (3.23) as
well as (3.27) and by noting K¢(6y) = I(0y). We therefore complete the proof. O
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4 Proof of Example 1.3

Proof of Example 1.3. It is sufficient to check all of assumptions in Theorems 1.1 and Theorem 1.2
are fulfilled.
For any (,(' € €, € Po(%) and 6 = (1), 9(2))* € Oy, set

0 0
(4.1) bo(C.¢') = —C3(0) + ¢(0) + / C(w)dv + / ¢'(v)dv,

0
b(¢, 1, 0) =0 + 6 L bo(¢,¢)p(d¢) and o (¢) = o((p) =1+ / ¢ (v)[dv.

Then, (2.24) can be reformulated as (1.1). By (4.1) and Hoélder’s inequality, we find out some
constants cq, co > 0 such that

<C1(0) - CQ(O>7 b(CL s 0) - b(<27 My 0)>

=02 [ (G0) = a(0),bo(61:0) — bl ()
(4.2) ‘ 0
<a{[60) - aOP + [ 160) - G}

—70

<elt-Glk, HEPAE), (1,LET

Next, we deduce from (4.1) that for some constant ¢3 > 0,

(6. 1:0) = (.. 0)] < 02 [ bu(c.lacr) — [ tulc. Gv(dca)
4 4
<@ /% L 1bo(C,C1) — bo(C. Co)lm(dGy, dCo)
< C3W2(;U'a V)7 Ce%v :UHVGIPQ(%)?

in which m € C(u,v). Therefore, (A1) holds true. Next, for any (1,(2 € € and p,v € P2(€), we
obtain that

0
(G = o(ca ) < [ 16(6) = (O)Id8 < 106 = el

So (A2) is satisfied. For any (1, (o, ¢V, ¢ e €, note that

160 (C1, ¢M) = bo(Ca, ¢

0 0

wy  SAO-GOI+60 6O+ [ 1ae) -Gl [0 @)

< ea(1+ ¢ (0) + ¢2(0))1¢1(0) — ¢2(0)] +70[|¢1 — Calloo + 70l[CV — ¢P|oo
< es(14 G112 + 1GI2NG — Galloo + roll¢V — ¢Plng

for some constants ¢4, c5 > 0. Next, we have

@d) TG0 = (1 W) and (To(Tah)(Cp0) = Onen
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where 0242 stands for the 2 x 2-zero matrix. Thus, (4.3) and (4.4) enable us to deduce that (B2)
and (C) hold, respectively. Furthermore, due to (4.3), we find that

(Gro1) = b2 .0)) < 09| [ ol ¢Olac) = [ (e ¢ tac®)
2) My 2 M qc®
<0 [ [ (¢ = [ b ¢Eim(act, ac)

< e(1+ 1Gl% + [1€ll3) 16 = Galloo + c6Wa (i, v).

Therefore, we infer that (B1) holds. Next, observe that

072(Cro 1) = 072 (G, v)] < |G = Golloo

for some c¢7 > 0. Consequently, (B3) is true.
The discrete-time EM scheme associated with (2.24) is given by

(45) Y1) = Y¥(tior) + (0 + 0@ /K bo(VE .02

[
tp—1

(40))d +20(Vi OBy, k=1,

with Ye(t) = X¢(t) = £(¢),t € [—ro,0], where (2‘2) is defined as in (1.4). According to (1.5), the
contrast function admits the form below

el 1 e e
U,.(0) = 2 1; (1+]Y€(t;€_1)l)2‘y (te) — Y= (1)

_(0(1)+9(2)1€50(ﬁi_1,()§f9 ) (dC))(S‘Q.

£
tp—1

Observe that

0 e 1 . .
o e = 2 ; (1+ [Ye(te-1)])? {Ye) =)

_ (9(1) + 63 [gbo(ﬁi“ogﬁil(dc))é}’

and

0 s 1 . _
o (0 =2 ; (14 [Ye(te-1)])? {Y () = ¥*{b)

= (00402 [ (T, 0%, @O)} [ w0, (@),

te—1

Subsequently, solving the equation below

0 0

mq]n7€(9) — man’s(e) — O,

we then obtain the LSE @m = (/0\,(112,@(125)* of the unknown parameter § = (1), 0)* € ©y with
the following
A1As — AsAy

A2A5 — A3A4 ~92
4 g - 4143 T Aol
an =T 5(AAs — A2)’

pl) — 7277 — 73474
¢ 6(A1A5 — Ai) ™

n,
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where

n n Ys(tk 1)
,; 1+ |YE te—1)])?’ ,; 1+ |YE te—1)[)?’
0 (V(0) = Y¥lti) fy b O %5, (40) w by (¥, 0% ()
A= 2 T+ V) B | (SN

and

2
(fsgbO tk laC) s 1(dC))
(1+ |Y€(tk—1)|)

A5 =
k=1

In terms of Theorem 1.1, 5,175 — 6 in probability as ¢ — 0 and n — oco. Next, from (4.4), it follows

that
b wrmmeds Jo %ds
I(6o) = | "1 bo(X0X0) 4 o T BRXOXY Das |
0 HXI? 4 Jo Trxop? 98

/TT(XU 00)dB(s) = < L 1+'XO s o )
0 s Y0 - TboX X))

0 e aB(s)

and, for ( € €,

At last, according to Theorem 1.2, we conclude that
R T
e (One — 00) — I (6p) / T(XY 6y)dB(s)  in probability
0

as ¢ = 0 and n — oo provided that I(-) is positive definite.
O
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