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1  | INTRODUC TION

Non-native species are often vehicles for the introduction of novel 
pathogens (Miaud et al., 2016; Randolph & Rogers, 2010) which, as 
important drivers of evolution, can impact the structure and com-
position of native communities (Altizer, Harvell, & Friedle, 2003) 
and facilitate invasion success (Andreou, Arkush, Guégan, & Gozlan, 
2012; Vilcinskas, 2015). Pathogens carried by non-native species 

can act as novel weapons on invaded communities (Price et al., 
1986) and cause host-switching (Lymbery, Morine, Kanani, Beatty, 
& Morgan, 2014; Peeler, Oidtmann, Midtlyng, Miossec, & Gozlan, 
2011). The squirrelpox virus, for example, has facilitated the invasion 
of the North American gray squirrel (Sciurus carolinensis) in Europe 
(Collins et al., 2014), while the crayfish plague (caused by the oomy-
cete Aphanomyces astaci) is expected to have played a similar role 
with the North American signal crayfish (Pacifastacus leniusculus; 
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Abstract
Successful establishment of non-native species is strongly influenced, among other 
factors, by the genetic variation of founding populations, which can be enhanced by 
multiple introductions through admixture. Coexisting pathogens can also facilitate 
the establishment of non-native species by detrimentally impacting on the native 
fauna acting as novel weapons. The signal crayfish (Pacifastacus leniusculus) is a highly 
invasive species, which has caused mass declines of native crayfish in Europe through 
displacement and transmission of the oomycete Aphanomyces astaci (crayfish plague), 
which is typically lethal to native European crayfish. However, whether Aphanomyces 
astaci may have facilitated the invasion of the signal crayfish is not known. We esti-
mated the genetic diversity at microsatellite DNA loci, effective population size, and 
potential origins of seven infected and noninfected signal crayfish populations in 
Europe and one founder population in North America. Approximate Bayesian com-
putation analysis and population structuring suggested multiple host introductions 
from diverse source populations, as well as higher heterozygosity among infected 
than uninfected populations, which could reflect a fitness advantage. Low effective 
population size, moderate heterozygosity, and lack of isolation by distance suggest 
that some invasive signal crayfish populations may not be fully established or that 
their genetic diversity may have been reduced by eradication attempts.
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signal crayfish
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see Edgerton et al., 2004; Kaldre, Paaver, Hurt, & Grandjean, 2017). 
In both cases, these novel pathogens threaten the survival of phy-
logenetically close indigenous species, like the red squirrel (Sciurus 
vulgaris) and two native crayfishes, the white-clawed crayfish, 
Austropotamobius pallipes and the noble crayfish, Astacus astacus, 
respectively. Yet, the extent to which novel pathogens drive inva-
sion success is controversial (Blackburn & Ewen, 2017) and under-
standing why some species become established while others fail 
to do so remains a key question in invasion biology (Davis, 2009). 
Propagule pressure, phenotypic plasticity, and standing genetic di-
versity of founder populations are some of the most crucial factors 
that determine invasion success (Kolar & Lodge, 2001; Lee, 2002; 
Souty-Grosset, Grandjean, & Renault, 2015; Vanhaecke et al., 
2015). In general, newly introduced populations tend to lose genetic 
diversity due to founder effects (Dlugosch & Parker, 2008). Some of 
these bottlenecked populations successfully disperse and establish 
despite their low genetic diversity. For example, the spiny-cheek 
crayfish (Orconectes limosus) is currently widespread across Europe 
despite having gone through a large bottleneck following a single 
introduction event of 90 individuals in 1890 (Filipová, Grandjean, 
Lieb, & Petrusek, 2011). In some cases, multiple introductions from 
different sources increase genetic diversity through admixture and 
facilitate establishment and dispersal (Allendorf & Lundquist, 2003; 
Consuegra, Phillips, Gajardo, & Garcia de Leaniz, 2011; Prentis, 
Wilson, Dormontt, Richardson, & Lowe, 2008).

Signal crayfish have been farmed across Great Britain since 
the 1970s (EA 2002) and accidental escapes, as well as deliberate 
stocking, have resulted in a number of populations becoming es-
tablished in the wild (Alderman & Wickins, 1996; Griffiths, Collen, 
& Armstrong, 2004; Holdich 2003). Signal crayfish are much larger 
and more aggressive than their native counterparts, the white-
clawed crayfish, which they typically displace (Alderman & Wickins, 
1996; Dunn et al., 2012; Griffiths et al., 2004; Peay, Guthrie, Spees, 
Nilsson, & Bradley, 2009). In addition to being displaced through 
competitive interactions, the white-clawed crayfish is highly suscep-
tible to crayfish plague infection, which is asymptomatically carried 
predominately by the signal crayfish (Bubb, Thom, and Lucas 2006; 
Dunn et al., 2012; Grandjean et al., 2017; Maguire et al., 2016) and is 
often 100% lethal to infected native crayfish (Edgerton et al. 2004).

Signal crayfish appears to have dispersed rapidly across 
Great Britain over the last 30 years (James, Slater, & Cable, 2014; 
James et al., 2017) and carry a particularly virulent strain of 
A. astaci, which has caused mass mortalities of A. pallipes in sev-
eral European populations (Collas et al., 2016; Grandjean et al., 
2014, 2017). However, the extent to which its current distribution 
has been facilitated by multiple introductions (Filipová, Holdich, 
Lesobre, Grandjean, & Petrusek, 2009) and/or by the presence 
of A. astaci is unclear. In addition, some populations have been 
subjected to control measures, mainly through the mechanical re-
moval of thousands of crayfish, but the impact of these control 

F IGURE  1 Map of UK sampling sites for Pacifastacus leniusculus, infection status, and the three highly significant breaks in genetic 
continuity generated by BARRIER in relation to sample sites (1 = Sirhowy, 2 = Lugg, 3 = Dderw, 4 = Lea, 5 = Bachowey, 6 = Mochdre, 
7 = Gavenny, 8 = Pant-y-Llyn)
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measures is difficult to assess (Freeman, Turnbull, Yeomans, & 
Bean, 2010). Here, we compared the genetic diversity, effective 
population size, and potential origin of seven signal crayfish popu-
lations with different plague infection status and assessed the rel-
ative roles of the crayfish plague and multiple introductions in the 
establishment and dispersal of invasive crayfish in Great Britain.

2  | METHODS

2.1 | Study sites and sample collection

American signal crayfish were collected using baited crayfish traps 
(checked every 24 hrs) and hand netting (James et al., 2017), from 
five sites in Wales (Sirhowy, Dderw, Bachowey, Mochdre, and 
Gavenny) and two sites in England (Lugg and Lea) between May and 
September 2014 and one site (Pant-y-Llyn) in 2016 (Figure 1; Table 1). 
In addition, 30 crayfish were collected from a native population with 
unknown infection status in Oregon (US) as a reference for genetic 
diversity. The crayfish plague pathogen had not been detected at 
sites 1 (Sirhowy), 2 (Lugg) and 3 (Dderw), but had been isolated from 
crayfish at the remaining sites (James et al., 2017). Crayfish were 
collected under NRW Permits NT/CW065-C-652/5706/01 and NT/
CW081-B-797/3888/02.

2.2 | DNA extraction and amplification

Total genomic DNA was extracted from each crayfish from a sec-
tion of tail fan, soft abdominal cuticle and walking leg tissue using 
the DNeasy Tissue Kit (Qiagen, Sussex, UK) following the manu-
facturer’s instructions (James et al., 2017). A total of 214 crayfish 
were analyzed using nine microsatellites (Table 2), in three separate 
multiplex reactions (Azuma, Usio, Korenaga, Koizum, & Takamura, 
2011; Froufe et al., 2015). Extracted DNA was analyzed for quan-
tity and quality using a Nanodrop 2000 (Thermo Fisher Scientific 
Inc., USA) and approximately 8 μg were used for amplification 
using the Qiagen Multiplex PCR kit, following the Qiagen multiplex 
reaction protocol (Qiagen) in a total volume of 12 μl. Each reac-
tion consisted of the concentrations of primers detailed in (Froufe 
et al., 2015; Supporting InformationTable S1), with the exception 
of Scop31 (forward and reverse), which was reoptimized at 1 μM.

Amplification conditions consisted of a single-cycle initial ac-
tivation step of 15 min at 95°C followed by a touchdown PCR of 
eight cycles with a 30 s denaturation step at 94°C, a 90 s annealing 
step starting at 64°C and descending in 2-cycle steps of 2°C (64, 
62, 60, 58 and 56°C) and 90 s of extension at 72°C. Twenty-four 
additional cycles of PCR were then run as above at an annealing 
temperature of 56°C followed by a single final extension cycle 
of 30 min at 60°C. Microsatellites were resolved on an Applied 
Biosystems ABI3130xl Genetic Analyser (Applied Biosystems, 
Sussex, UK), and fragment length was determined using the 
GeneScan 500–LIZ size standard and scored using GeneMapper 
v45.0 (Applied Biosystems).

2.3 | Genetic analyses

MICRO-CHECKER v2.2.3 (Van Oosterhout, William, Hutchinson, 
Wills, & Shipley, 2004) was used to assess presence of null al-
leles, large allele drop-outs and scoring errors due to stuttering. 
GENALEX v6.5 (Peakall & Smouse, 2006) was used to estimate ef-
fective number of alleles (NEF) and the populations’ expected (HE) 
and observed heterozygosities (HO) respectively. Deviations from 
Hardy–Weinberg equilibrium and tests for linkage disequilibrium 
were investigated using GENEPOP online v4.0.10 (Rousset, 2008). 
Pairwise FST values and heterozygosity per locus were calculated 
using FSTAT v1.2 (Goudet, 1995). Analysis of Molecular Variance 
(AMOVA) among populations, among individuals and within in-
dividuals was calculated in ARLEQUIN v3.1 (Excoffier, Laval, & 
Schneider, 2005). Homozygosity by locus (HL), which weighs the 
contribution of each locus to the homozygosity index depend-
ing on their allelic variability, was estimated for each individual 
in Cernicalin v1.0 (Aparicio, Ortego, & Cordero, 2006). Effective 
population size was estimated using NeEstimator v2.01 (Do et al., 
2014) for samples with a minimum of 19 individuals using the 
Linkage Disequilibrium method with allele frequencies larger than 
0.02. For HL analyses, both the Oregon and Pant-y-Llyn popula-
tions were excluded, as crayfish plague infection status and there-
fore PCR forming units (PFU) values for these individuals were 
unknown.

STRUCTURE v2.3.4 (Pritchard, Stephens, & Donnelly, 2000), 
was used to estimate the most likely number of genetic clusters in 
the data. The analysis was run under the admixture ancestry model, 
computing the proportion of the genome of each individual originat-
ing from each cluster (K). The number of clusters tested ranged from 
K = 1 to 9, with 20 repetitions for each K value, and 60,000 MCMC 
steps discarding the first 10,000 as burn-in (Pritchard et al., 2000). 
The best fitting K value was estimated using StructureSelector (Li 
& Liu, 2017), which utilizes four alternative statistics (MEDMEDK, 
MEDMEAK, MAXMEDK, and MAXMEAK) to produce more accu-
rate results for populations with uneven sample size.

BARRIER v2.2 (Manni, Guérard, & Heyer, 2004) was used to de-
tect discontinuities in allelic frequencies between British crayfish pop-
ulations based on genetic distance and geographical distance values 
using the Monmonier’s maximum difference algorithm (Monmonier, 
1973). Initially one data matrix containing pairwise FST values was im-
ported in BARRIER to detect genetic barriers across all populations. 
Eight data matrices were then imported into BARRIER containing pair-
wise FST values per locus to assess the number of loci supporting each 
barrier and test for barrier robustness’ (Manni et al., 2004).

The most likely scenario of colonization for UK populations was 
estimated using and Approximate Bayesian Computation approach 
implemented in the software DIYABC v2.1.0 (Cornuet et al., 2014). 
For this analysis the Lea, Mochdre, and Gavenny populations were 
grouped into one genetic group (pool 1) based on FST values and 
similarity of genetic clusters from the STRUCTURE analysis and 
the remaining populations were analyzed as separate populations. 
Three scenarios of colonization were tested (Figure 3): Scenario 1 



9184  |     ROBINSON et al.

– simultaneous divergence (null hypothesis), Scenario 2 – simulta-
neous divergence of Sirhowy, pool 1, Lugg, Bachowey and Dderw 
followed by divergence of Pant-y-Llyn from Bachowey, Scenario 3 
– simultaneous divergence of Sirhowy, pool 1, Lugg, Bachowey and 
Dderw followed by admixture of pool 1 with Bachowey to produce 
the Pant-y-Llyn population. Default settings were used for muta-
tion rates (generalized stepwise mutation model (Estoup, Jarne, & 
Cornuet, 2002) with a uniform prior distribution of mean mutation 
rate between 10−4 and 10−3, priors were set uniformly distributed, 
prior distribution of individual locus mutation rates were set be-
tween 10−5 and 10−2 following a Gamma distribution with mean de-
termined by the mean mutation rate across loci. Effective population 
sizes were set between 10 and 2,500 for all populations. A total of 
1,000,000 simulations per scenario (1,2,3) were generated from the 
parameters prior distributions. Mean gene diversity across loci and 
mean M index diversity across loci (one sample summary statistics) 
were calculated for each population. Pre-evaluation of each scenario 
was carried out by generating Principal Component Analysis (PCA) 
plots based on summary statistics using 30,000 (1%) simulated data 
sets and the posterior distribution of the parameters was estimated 
using the logit function (Cornuet et al., 2014). For model checking, 
we performed a PCA using new simulated datasets (1,000,000 
per scenario) drawn from the posterior distribution of parameters, 
which are also represented on the PCA. Two sample summary sta-
tistics were used in model checking (mean number of alleles, mean 
genic diversity, mean size variance, FST, classification index, shared 
allele distance and (dμ)2 distance) to assess whether the observed 
data was included within the distribution of the predictive posterior 
parameters of the simulated data. Confidence in each scenario was 
obtained from the highest posterior probability using logistic regres-
sion, estimated by comparing the summary statistics from simulated 
and observed results, and from calculating type I and type II errors 
using 1000 simulated datasets (Cornuet et al., 2014).

Population heterozygosity and effective population size were 
compared between infected and noninfected populations using a 
Welch t test for unequal variances. We also modeled infection status 
(yes/no) and plague intensity (measured as density of plaque-forming 
units, PFU) in individual crayfish using population of origin as a random 
factor and individual homozygosity (HL) as a predictor with either a 
binomial logit link (infection status) or a Gaussian link (plague intensity, 
measured as log(PFU+0.5) with the lme4 package in R, version 3.3.2.

3  | RESULTS

3.1 | Host genetic diversity and population 
structuring

MICRO-CHECKER results indicated that four microsatellites had 
significant evidence of null alleles (p = 0.001), however results of 
repeated analyses (FST, STRUCTURE) removing the affected micro-
satellites showed no obvious deviations from the results including 
all nine microsatellites (Supporting Information Table S2; Figure S1), 
therefore we carried out all subsequent analyses with all of them 

(Van Oosterhout et al., 2004). The nine microsatellite loci displayed 
moderate to high levels of polymorphism (HE between 0.5 and 0.7) 
across all the sites. All populations displayed a degree of deviation 
from Hardy–Weinberg equilibrium (HWE) across various loci due 
to lower than expected HE. Of 81 Chi-square tests conducted (one 
per locus) 37 showed a significant deviation from HWE (Supporting 
Information Table S3) after sequential Bonferroni correction. The 
across loci population tests of HWE showed that all populations 
deviated significantly from HWE, displaying a deficiency of het-
erozygosity (p < 0.0001). Tests for linkage disequilibrium (LD) for 
each locus pair across all populations (Fisher’s method) revealed 
only three significant associations of 36 pairwise comparisons after 
Bonferroni corrections, these were between LPL26 and LPL40, LPL6 
and LPL45 and LPL26 and Scop9.

Across all populations, the mean number of alleles ranged from 
4.11 to 8.56, with the Gavenny site having the highest mean num-
ber of alleles and the Sirhowy site the lowest across all populations 
sampled (Table 2). The mean expected heterozygosity (HE) across all 
populations ranged from 0.46 to 0.69 respectively. The mean effec-
tive number of alleles ranged from 2.25 in the Dderw site to 5.45 in 
the Gavenny site and for Lea the mean was 4.55. Across all loci, there 
was no significant difference in number of effective alleles (NEF) be-
tween populations (One-way ANOVA, F8,72 = 1.496, p = 0.1739). 
Effective population size (Ne;) ranged between 12.9 (Sirhowy) and 
90.4 (Gavenny; Supporting Information Table S2) and, probably 
due to small sample size, confidence intervals were relatively large 
(3.9–28.6).

The STRUCTURE and StructureSelector analyses indicated that 
K = 4 (Supporting Information Figure S2; Table S6) is the most likely 
number of clusters in the dataset for British populations only and 
K = 5 (Supporting Information Figure S3; Table S7) for the British 
populations plus Oregon (Figure 2a and b).

Pairwise population FST values were highly significant (after 
Bonferroni correction, p < 0.00138), with the exception of the 
Mochdre and Gavenny sites, and the Mochdre and Lea sites 
(Table 3). Among the UK populations, the Dderw displayed the 
highest divergence, with the highest pairwise FST observed 
between the Dderw and Sirhowy populations (FST = 0.294, 
p < 0.001). The AMOVA results for all sites indicated that vari-
ation among populations accounted for 15% of the genetic dif-
ferentiation, while variance among individuals within populations 
accounted for 31% and the remaining 54% was due to intraindi-
vidual variation (Table 4). Most populations displayed a relatively 
high degree of admixture (average Q value 69%), apart from 
Sirhowy and Dderw (average Q value of 91%). Geographically 
distant populations (e.g., Lea and Mochdre) displayed high lev-
els of genetic similarity despite distance, which was reflected in 
lack of IBD in the Mantel test for UK populations (y = 0.0009x + 
17.053, R2 = 0.0003, p > 0.05).

Analysis of the most likely scenario of colonization suggested the 
simultaneous divergence of populations (Scenario 1), based on logistic 
regression and PCA results (Figure 3; Supporting Information Figure S5). 
Observed summary statistics did not deviate significantly from simulated 
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statistics and scaled posteriors aligned well with priors (Supporting 
Information Table S4). According to this scenario, six main colonization 
events could have taken place; (1) Sirhowy; (2) Dderw; (3) Bachowey; (4) 
pool 1 (Lea, Mochdre, and Gavenny), (5) Lugg, (6) Pant-y-Llyn.

Populations with the lowest degree of admixture (Sirhowy, 
Bachowey and Dderw) did not have a significantly lower heterozygos-
ity (HE = 0.527) compared to populations which were more admixed 
(Lugg, Lea, Mochdre, Gavenny, Pant-y-Llyn; average HE = 0.617; 
df = 4.4; Welch t test; p = 0.098). Results from BARRIER suggested 
that the most likely number of discontinuities in genetic connectiv-
ity was due to three barriers (Supporting Information Figure S4), the 

strongest division occurring between Sirhowy and all the other sites 
(Barrier a; Figure 1). The next largest discontinuity was observed be-
tween Dderw and surrounding populations (Barrier b; Figure 1), while 
the third barrier separated Lugg from the Welsh populations (Barrier 
c; Figure 1; site 2). All barriers were supported by seven of nine loci.

3.2 | Aphanomyces astaci infection levels and 
population genetic diversity

Infected crayfish populations had a significantly higher mean ex-
pected heterozygosity than uninfected ones (HE infected = 0.64, 

TABLE  2 Summary statistics for each population of Pacifastacus leniusculus. N = number of individuals, NA = mean number of alleles, 
NEF = mean number of effective alleles, Ne = effective population size, NPA= mean number of private alleles, HO = mean observed 
heterozygosity, HE = mean expected heterozygosity, HL = mean homozygosity by locus, FIS = mean fixation index

Population N NA NEF Ne NPA HO HE HL FIS

Sirhowy Mean 30 4.222 2.460 12.300 0.000 0.397 0.569 0.607 0.309

SE ± 0.795 0.195 8.000 0.000 0.076 0.041 0.030 0.121

Lugg Mean 30 5.667 3.703 26.400 0.111 0.364 0.541 0.564 0.381

SE ± 1.280 0.890 17.000 0.111 0.112 0.117 0.032 0.105

Dderw Mean 30 4.111 2.248 19.900 0.111 0.273 0.464 0.676 0.349

SE ± 0.790 0.301 11.200 0.111 0.079 0.090 0.030 0.116

Lea Mean 37 7.778 4.552 76.500 0.444 0.426 0.628 0.516 0.328

SE ± 1.392 1.054 47.000 0.242 0.099 0.092 0.022 0.103

Bachowey Mean 19 5.000 3.090 29.900 0.222 0.398 0.577 0.552 0.307

SE ± 0.772 0.527 14.600 0.147 0.080 0.079 0.036 0.087

Mochdre Mean 19 6.778 4.108 42.800 0.111 0.427 0.653 0.525 0.367

SE ± 1.222 0.773 22.100 0.111 0.104 0.072 0.040 0.117

Gavenny Mean 30 8.556 5.445 90.400 0.389 0.441 0.687 0.519 0.350

SE ± 1.730 1.430 49.500 0.564 0.073 0.073 0.035 0.081

Pant-y-Llyn Mean 32 5.444 3.449 14.200 0.556 0.350 0.574 0.594 0.428

SE ± 1.029 0.729 10.000 0.338 0.089 0.089 0.037 0.104

Oregon Mean 19 7.222 4.191 32.600 1.556 0.374 0.588 0.502 0.404

SE ± 1.623 8.972 18.700 0.580 0.118 0.103 0.050 0.137

TABLE  1 Sample site information for all nine populations of Pacifastacus leniusculus sampled in Great Britain, including site name, latitude 
and longitude, site type and origin, catchment, crayfish plague infection status, and number of crayfish collected per site

Site No.
Site name 
(Country) Latitude Longitude Site type (Origin) Catchment Infection status

No. of 
crayfish 
collected

1 Sirhowy (GB) 51.61628 −3.138935 Stream (Natural) Usk Noninfected 30

2 Lugg (GB) 52.10007 −2.420102 River (Natural) Wye Noninfected 30

3 Dderw (GB) 52.01450 −3.152826 Pond (Manmade) Wye Noninfected 30

4 Lea (GB) 51.47595 −0.043186 River (Natural) Thames Infected 37

5 Bachowey (GB) 52.06341 −3.135126 River (Natural) Wye Infected 19

6 Mochdre (GB) 52.30137 −3.520527 Stream (Natural) Wye Infected 19

7 Gavenny (GB) 51.82175 −3.012968 River (Natural) Usk Infected 30

8 Pant-y-Llyn (GB) 52.10932 −3.405192 Pond (Manmade) Wye Unknown 32

9 Oregon (USA) 44.55362 −123.2539 Stream (Natural) Willamette Unknown 19
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SE = 0.02; HE uninfected = 0.52, SE = 0.02; Welch two sample 
t test = 3.509, df = 4.5, p = 0.019), while their effective popula-
tion size did not differ significantly between them (average Ne in-
fected = 59.90 SE = 24.48; average Ne uninfected = 19.73 SE = 5.51; 
Welch two sample t test = 2.36, df = 3.4, p = 0.06).

Mean HL for each population ranged from 0.50 to 0.68 (0 being 
heterozygous and 1 being completely homozygous). Crayfish pop-
ulations differed significantly in individual homozygosity (Figure 4; 
F6,187 = 3.71, p = 0.002), with infected populations having a sig-
nificantly lower homozygosity by locus. Crayfish populations 
also differed significantly in plague infection loads (F6,187 = 38.27, 
p < 0.001), but homozygosity did not explain the probability that 
an individual would be infected (z = 1.337, p = 0.181) or the inten-
sity of infection (t186.94 = 0.874, p = 0.383) when controlling for 
population of origin (Supporting Information Table S5).

4  | DISCUSSION

Signal crayfish represents an ideal species to test the roles of genetic 
diversity and pathogens as novel weapons on invasion success, as 
the species is highly invasive throughout most of Europe, and Great 

Britain in particular. Its success has been attributed to preadapta-
tion, aggressive behavior, niche plasticity, and the presence of the 
highly infectious A. astaci (Becking et al., 2015; Holdich, James, 
Jackson, & Peay, 2014; Hudina, Galić, Roessink, & Hock, 2011; James 
et al., 2014). Admixture between lineages could have also facilitated 
the establishment of this species, allowing populations to overcome 
founder effects and loss of genetic diversity (Kolbe et al., 2004; Rius 
& Darling, 2014), particularly when combined with high propagule 
pressure (Consuegra et al., 2011), but this had not been considered 
before. In Britain, the species has continued to spread despite man-
agement and control measures (Holdich et al., 2014).

The invasive signal crayfish populations we studied had small 
effective population sizes and low to moderate genetic diversity, 
despite having been established for more than 25 years (c. 25 gen-
erations), which is similar to what is observed in other invasive cray-
fish species populations, (e.g., the red swamp crayfish (Procambarus 
clarkii) in China (Yue, Li, Bai, Wang, & Feng, 2010), Mexico and Costa 
Rica (Belfiore & May, 2000; NBN 2009; Torres & Álvarez, 2012). It is 
possible that the low levels of heterozygosity observed are the result 
of recurrent translocations of small numbers of signal crayfish which 
may have resulted in founder effects (Gouin, Grandjean, & Souty-
Grosset, 2006). None of the populations were in Hardy–Weinberg 

F IGURE  2  (a) STRUCTURE analysis for UK Pacifastacus leniusculus populations at K = 4 clusters; each bar represents an individual 
crayfish, the different colors represent different clusters and therefore indicate the proportion of each crayfish attributed to each cluster. 
Infection status is stated above the output and corresponding population names stated below for each population. (b) STRUCTURE analysis 
for all nine P. leniusculus populations at K = 5 clusters
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equilibrium and all had lower than expected heterozygosity, which 
is consistent with founder effects. In addition, lack of isolation by 
distance and strong population structuring could be the result of 
multiple introductions from different sources (Le Roux & Wieczorek, 
2008; Roman & Darling, 2007) or of small founder sizes followed 
by genetic drift and isolation. Eradication efforts over the last 
10 years, such as the removal of c. 56,000 crayfish in the Bachowey 
(Abdelkrim, Pascal, & Samadi, 2007; WUF, 2012), could have also 
contributed to decreasing genetic diversity and increasing popula-
tion structuring, but the documentation of these events is too scarce 
to draw any conclusions.

Evidence of four main genetic clusters in the introduced sig-
nal crayfish populations, the strong differentiation (FST) values 
and the most likely colonization scenario support the assumption 
that current crayfish populations in Britain are not genetically ho-
mogenous, a phenomenon common in invasive species originating 
from different origins (Zalewski, Michalska-Parda, Bartoszewicz, 
Kozakiewicz, & Brzeziński, 2010). The most likely colonization sce-
nario for signal crayfish in the sites sampled in Britain suggested 
that populations most likely originated from six source populations 
with varying levels of genetic diversity, although some caution is 
warranted in the interpretation of the results due to the deviations 
from Hardy–Weinberg equilibrium. The observed spatial pattern 
of infected crayfish populations is best explained by consider-
ing numerous founder events and further colonization helped by 
human-mediated dispersal. This corresponds well to the diversity of 
mitochondrial DNA previously observed for this species in Europe 

(including six different haplotypes in the British Isles), which lacks 
a geographical pattern and has been attributed to different intro-
ductions and secondary human-mediated translocations (Petrusek, 
Filipova, Kozubíková-Balcarová, & Grandjean, 2017), and would ex-
plain why some infected populations (Lea, Mochdre, and Gavenny) 
have a common genetic background, similar to what has been ob-
served in the Czech Republic (Kozubíková et al., 2008). Infected 
crayfish populations had higher heterozygosity than uninfected 
populations which, if representative of whole genome hetero-
zygosity, could represent higher fitness (Forstmeier, Schielzeth, 
Mueller, Ellegren, & Kempenaers, 2012; Reed & Frankham, 2003). 
The presence of infected and uninfected signal crayfish in close 
proximity (i.e., Dderw and Bachowey) could be a consequence of 
physical barriers and is important in relation to the conservation of 
endangered native crayfish populations, as invasive signal crayfish 
and native European crayfish can coexist in the absence of plague 
(Bubb, Thom, & Lucas, 2005; Diéguez-Uribeondo, 2006; Filipová, 
Petrusek, Matasová, Delaunay, & Grandjean, 2013). Native crayfish 
tend to inhabit refugia in the headwaters of numerous catchments 
within Britain, some of which have tested positive for A. astaci 
downstream (Bubb et al., 2005; Filipová et al., 2013).

In summary, it is likely that human-mediated dispersal has con-
tributed to the numerous colonization events from a minimum of 
four genetic origins and further facilitated population expansion 
and succession of signal crayfish. Populations with A. astaci dis-
played higher heterozygosity, which could potentially be an in-
dication of fitness benefits or a consequence of the absence of 

TABLE  3 Pairwise FST values (below diagonal) and significance (above diagonal) for nine populations of invasive Pacifastacus leniusculus 
sampled in Great Britain

Sirhowy Lugg Dderw Lea Bachowey Mochdre Gavenny Pant-y-Llyn Oregon

Sirhowy 0.000 * * * * * * * *

Lugg 0.206 0.000 * * * * * * *

Dderw 0.294 0.138 0.000 * * * * * *

Lea 0.162 0.041 0.139 0.000 * NS * * *

Bachowey 0.195 0.085 0.145 0.056 0.000 * * * *

Mochdre 0.150 0.053 0.148 0.026 0.050 0.000 NS * *

Gavenny 0.155 0.056 0.129 0.029 0.063 0.017 0.000 * *

Pant-y-Llyn 0.199 0.064 0.100 0.037 0.017 0.052 0.052 0.000 *

Oregon 0.334 0.337 0.410 0.273 0.312 0.253 0.258 0.315 0.000

Notes. Significance values for each pairwise comparison adjusted by sequential Bonferroni’s corrections.
*p < 0.00138.

TABLE  4 Results of analysis of molecular variance (AMOVA) for all nine populations of invasive Pacifastacus leniusculus, presenting the 
different sources of variation (among populations, among individuals, within individuals), degrees of freedom (df), sum of squared differences 
(SSD), variance components, percentage variation, and p value for each source

Source of variance df SSD Variance components Percentage variation p Value

Among populations 8 235.163 0.475 14.892 <0.001

Among individuals 236 876.566 1.001 31.400 <0.001

Within individuals 245 419.500 1.712 53.708 <0.001
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competition with native crayfish; however, physical and/or envi-
ronmental barriers to dispersal may have additionally contributed 
to differences in A. astaci infection levels between populations as 
opposed to the varying genetic diversity of individual crayfish. 
Despite this species’ invasion success, low effective population 
size and levels of genetic diversity observed suggest that popu-
lations are either still establishing in Great Britain and have not 
yet overcome the effects of founder effects or have suffered a 
decrease in local genetic diversity as a result of invasive crayfish 
removal programs. The success of local management programs 
is difficult to assess, as crayfish populations are very difficult to 
eradicate by mechanical means (Freeman et al., 2010), and neg-
ative density dependence can improve the body condition of 
survivors (Moorhouse & Macdonald, 2011). However, our study 

suggests that genetic monitoring before and after physical re-
moval of crayfish can provide measures of genetic diversity and 
effective population size that could be used to assess the popula-
tion consequences of removal actions.
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