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Abstract

This paper presents new equity valuation formulae in closed form that
extend the abnormal earnings growth (AEG) valuation of Ohlson and
Juettner-Nauroth (2005) to the cases of time-varying or stochastic cost
of capital as in Ang and Liu (2004) or to cases of stochastic interest
rates as in Ang and Liu (2001). Interest rates are modeled by quadratic
term structure models, which are not hindered by restrictions to factors
correlation or by other shortcomings of affi ne term structure models in
discounting long term earnings. This is crucial since valuation can be
very sensitive to the correlation between the factors driving earnings and
interest rates. Positive correlation reduces price-earnings ratios according
to US data. Valuation is also sensitive to the "volatility" of abnormal
earnings growth. The residual earnings risk-neutral valuation of Ang and
Liu (2001) is adapted to quadratic term structure models.

Key words: abnormal earnings growth valuation, discounted dividends
valuation, risk-neutral valuation, discrete time quadratic term structure
models.

JEL classification: G12.

1 Introduction and literature review

Much of industry practice bases equity valuation on discounting earnings and
also the accounting academic literature on valuation concentrates on discounting
earnings, as for example in Ohlson and Juettner-Nauroth (2005), Ohlson (2005),
Ohlson and Gao (2006). These accounting based valuations have several mer-
its. These valuations focus on earnings, which analysts forecast. These val-
uations are independent of dividend policies despite being consistent with
discounted dividends valuations, and are also independent of accounting
policies despite being based on accounting numbers (so called "value conserva-
tion principle"). These accounting based valuations are also applicable
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on a per-share basis and require minimal assumptions, in particular they
do not assume the clean surplus relation or knowledge of equity book value,
as explained by Ohlson (2005). However these accounting based valuations
make the restrictive assumption of using one single discount rate for all future
earnings, as if the discount rate were constant over time. A notable exception
is Ohlson and Gode (2004), who provide a valuation model that discounts earn-
ings under stochastic interest rates while requiring no assumption about the
dynamics of interest rates, but their model relies on a specific assumption of
dividend irrelevance.
A more finance-oriented literature provides tractable equity valuations under

realistic stochastic discount rates, as in Ang and Liu (2004) or in Hughes, Liu
and Liu (2009), who show how valuation should reflect the term structure of
expected stock returns. However these valuations discount dividends or other
cash flows, not earnings, and do not share important merits of accounting based
valuations. One notable exception is Ang and Liu (2001) who discount residual
earnings.
Pure earnings-based valuations under stochastic discount rates seem to be

missing in the literature. When discount rates change over time or are stochas-
tic, as is the case in reality, we do not yet have a valuation with the merits of the
abnormal earnings growth (AEG) valuation of Ohlson and Juettner-Nauroth
(2005) and of Ohlson (2005). This paper addresses this issue by providing
valuation formulae that discount a type of abnormal earnings growth under
time-varying or stochastic discount rates. These formulae seem to be practical
valuation tools and to provide insight.
The valuations, unlike AEG valuation, are not constrained to a single dis-

count rate for earnings of all future maturities and can be "reverse engineered"
for estimating the implied equity-risk premium even when the term structure of
interest rates is not flat, as is typically the case. The valuations, unlike AEG val-
uation, need not capitalise infinite streams of earnings and are not constrained
by specific assumptions about continuation value at the end of the forecast
horizon. The valuations require an adjustment to the definition of abnormal
earnings growth to account for changes in the discount rate over time. The
valuation formulae are in closed form even under the realistic assumptions that
risk premia are stochastic and that quadratic term structure models describe
interest rates. Risk-neutral valuation reveals that price-earnings ratios can be
very sensitive to the "volatility" of, and correlation between, the factors driving
interest rates and earnings, despite the fact that equity value is a linear function
of the factors driving earnings. The valuation effect of growth in AEG interacts
with the valuation effect of the correlation between interest rates and earnings.
Also Ang and Liu (2001) provide equity risk-neutral valuation formulae un-

der stochastic interest rates and show that the interest rate model can materially
impact equity valuation, but they discount residual earnings and assume a dis-
crete time "square root" affi ne term structure model similar to Sun (1992).
Instead this paper focuses on discounting abnormal earnings growth and uses
quadratic term structure models. While the "square root" affi ne models in Ang
and Liu (2001) require severe restrictions to the correlation between factors
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driving interest rates and earnings, quadratic models require no such restriction.
This seems crucial, since the evidence in this paper shows that US interest
rates imply that price-earnings ratios can materially decrease as the correlation
between earnings and interest rate factors increases. Moreover earnings and
interest rates are both linked to the macroeconomic cycle and the earnings of
firms such as banks are directly linked to interest rates. Assuming that earnings
be independent of interest rates seems too restrictive.
Quadratic term models can not only model the said correlation, but also

rule out negative interest rates, unlike affi ne Gaussian models. While affi ne
Gaussian models too require no restriction to the correlation between earnings
and interest rates, they predict too high chances of negative yields, which is an
issue especially when discounting long term earnings and interest rates are low.
For these reasons, and also because of their tractability, quadratic models seem
preferable for equity valuation. This paper also adapts the residual earnings
risk-neutral valuation of Ang and Liu (2001) to quadratic term structure models.
This paper is close in spirit to Bakshi and Chen (2005). They propose

equity risk-neutral valuations in continuous time, which is not a natural setting
for accounting variables, whose observations are well spaced in time. Instead
the valuations of this paper are in discrete time. Bakshi and Chen assume a
Vasicek interest rate term structure model and find that "modeling the discount-
ing dynamics properly also makes a significant difference". This paper builds on
quadratic term structure models, which seem preferable to Vasicek-like models.
Bakshi and Chen (2005) assume that earnings and dividends are strictly pro-
portional at all times. The valuations in this paper make no such assumption
as they are independent of dividend policy, much like the AEG valuation of
Ohlson and Juettner-Nauroth (2005).
An Appendix also shows that the valuation model in this paper

is in closed form even when we assume the stochastic equity risk
premium of Ang and Liu (2004).

2 Discounted earnings valuation under time-varying
discount rates

We employ the following notation: V et is the intrinsic value of equity at time
t; we assume that all intrinsic values coincide with market prices; re,t is the
equity cost of capital during the period [t, t+ 1]; dt+1 are the net dividends
paid during [t, t+ 1]; even if net dividends are paid during the period [t, t+ 1],
we simply assume they are paid at t+1; net dividends are distributions to equity
holders minus new capital contributions made by equity holders; xt+1 denotes
comprehensive net earnings produced during [t, t+ 1]. We can re-write dividend

3



discount valuation through some algebraic manipulations as

V e0 =
V e1 + d1

1 + re,0
=
x1 + V e1 − x1 + d1

1 + re,0
=
x1 − (x1 − d1)

1 + re,0
+
x2 + V e2 − (x2 − d2)

(1 + re,0) (1 + re,1)

=
x1

1 + re,0
+
x2 − (x1 − d1) · re,1 + V e2 −

∑2
i=1 (xi − di)

(1 + re,0) (1 + re,1)

=
x1

1 + re,0
+
x2 − (x1 − d1) · re,1
(1 + re,0) (1 + re,1)

+
x3 − re,2 ·

∑2
i=1 (xi − di) + V e3 −

∑3
i=1 (xi − di)

(1 + re,0) (1 + re,1) (1 + re,2)

an so forth. Inserting the time 0 conditional expectation operator and repeating
the algebraic manipulations up to the end of period T , we obtain the following
proposition.

Proposition 1 When the discount rate varies over time, the discounted div-
idends valuation of equity can re-written as the following discounted earnings
valuation

V e0 = E0

[∑T
t=1

xt∏t−1
i=0 (1 + re,i)

−
∑T
t=2

re,t−1 ·
∑t−1
i=1 (xi − di)∏t−1

i=0 (1 + re,i)
+
V eT −

∑T
i=1 (xi − di)∏T−1

i=0 (1 + re,i)

]
(1)

= E0

[∑∞
t=1

xt∏t−1
i=0 (1 + re,i)

−
∑∞
t=2

re,t−1 ·
∑t−1
i=1 (xi − di)∏t−1

i=0 (1 + re,i)

]
.

The first line of equation 1 assumes a forecast horizon of T years, while the
second line assumes an infinite forecast horizon. Equation 1 makes no assump-
tion other than discounted dividends valuation. However the formula relies on
forecasting earnings rather than dividends, which is helpful since forecasting
earnings seems more natural than forecasting dividends. Equation 1 is also
valid on a per-share basis as it assumes no clean surplus relation, which may
not hold on a per share basis as Juettner-Nauroth and Ohlson (2005) point out.
By clean surplus relation we mean the accounting identity

bt + xt+1 − dt+1 = bt+1

where bt and bt+1 are the book values of equity at times t and t+ 1. The clean
surplus relation may not hold on a per share basis for example when the issuer
buys back some of its shares and only some of the shareholders sell their shares
to the issuer.
Equation 1 abides by the value conservation principle, according to which the

valuation is unaffected by accounting policies that do not alter (the amount or
timing of) cash flows. Discounted dividends valuation is unaffected by account-
ing policies and equally unaffected by the accounting must be all valuations that
are equivalent to discounted dividends valuation, even though such valuations
may be based on accounting data.
The term V eT −

∑T
i=1 (xi − di) in equation 1 is "continuation value" at T ,

i.e. the part of equity value V e0 that is due to the firm’s continuation as a
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going concern even after T . Thus continuation value at time T is V eT minus the
cumulated retained earnings of periods 1 to T . No forecast beyond time T is
needed when V eT =

∑T
i=1 (xi − di). To compute V eT we can employ any valuation

model that is consistent with discounted dividends valuation. This freedom in
computing continuation value is absent in the abnormal earnings growth (AEG)
valuation of Ohlson and Juettner-Nauroth (2005) and of Ohlson (2005), which
discounts infinite streams of earnings or abnormal earnings increments at the
constant cost of capital re. Freedom in computing continuation value seems
welcome because Jorgensen, Lee and Yoo (2011) found that the assumptions
about earnings growth after the forecast horizon hamper the accuracy of AEG
valuation.
If V eT = bT no forecasting beyond time T is needed. If, moreover, the clean

surplus relation holds so that bT =
∑T
i=1 (xi − di) + b0, it follows that V eT −∑T

i=1 (xi − di) = b0, which means that time T continuation value equals b0; in
this case continuation value requires no forecast, because b0 can be observed at
the time of the valuation. However this result only holds on a per share basis if
the clean surplus relation holds on a per share basis.
Appendix A.1 shows that the AEG valuation of Ohlson and Juettner-Nauroth

(2005) and Ohlson (2005) is a special case of equation 1 when re,t = re for all
t, since

V e0 =
∑∞
t=1

x1 + (xt − x1)

(1 + re)
t −

∑∞
t=2

re ·
∑t−1
i=1 (xi − di)

(1 + re)
t

=
x1

re
+

1

re

∑∞
t=1

(xt+1 − xt − re · (xt − dt))
(1 + re)

t .

The first line is equation 1, while the second line is AEG valuation. AEG
valuation assumes an infinite forecast horizon, in that it capitalises streams of
earnings that stretch into the infinite future at a constant discount rate. On the
other hand Hughes, Liu and Liu (2009) highlight that expected returns are
time varying, stochastic, depend on leverage and are correlated with the firm’s
cash flows. Therefore a constant discount rate seems too restrictive and
may at times lead to gross valuation errors, as shown for example in
Ang and Liu (2004). Ang and Liu (2004) conclude that "practical valuation"
should use "an analytic term structure of discount rates, with different discount
rates applied to expected cash flows at different horizons".
Equation 1 can also be used for reverse engineering the equity risk premium

when the default-free term structure of interest rates is not flat.

2.1 Implied cost of equity capital and implied equity risk
premium

A vast literature has attempted to determine the implied cost of equity capital
form observed stock prices. The cost of capital is the sum of a Government
bond yield, one for each maturity, and a risk premium. Implying the cost of
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equity capital requires an equity valuation model that discounts earnings or
cash flows over future decades, while the term structure of Government bond
yields can be far from flat. Then assuming, as is often done, that the cost
of equity capital implied from stock prices is the same for all future earnings
seems questionable. For example Ang and Liu (2004, page 2775) conclude that
"investors should be most concerned with the impact of time-varying interest
rates and risk premiums for discounting cash flows. At long horizons, the time
variation of risk-free interest rates or beta is more important". Therefore a
first step in the direction of the results of Ang and Liu is to assume that only
the equity risk premium be constant over time, rather than the entire cost of
equity capital. Under this less restrictive assumption, equation 1 can be used
to determine the implied equity risk premium, even while the term structure
of Government bond yields is not flat. For example, let G0,t denote the time
0 price of a default-free Government discount bond that pays 1 at time t such
that

G0,t =
∏t−1
i=0

1

1 + rg,i
.

rg,i is the forward interest rate over the period [i, i+ 1]. Given G0,t for all t, we
can "bootstrap" rg,i for i = 0, 1, .., t− 1, and in equation 1 we can substitute

re,i = p+ rg,i

where p is the equity risk premium assumed constant over time. Then, once
we observe the stock price in the market, we can reverse engineer
equation 1 to determine p.

2.2 Abnormal earnings growth (AEG) when the cost of
capital is not constant over time

The definition of AEG is different when the cost of equity capital is not constant
over time. When the cost of capital is constant

zt+1 = xt+1 − xt − re · (xt − dt)

where zt+1 denotes abnormal earnings growth over the period [t, t+ 1] and
re · (xt − dt) denotes the change in "required" earnings for the same period
[t, t+ 1] to remunerate the change in equity (xt − dt) of the previous period
[t− 1, t]. However when the cost of capital is not constant over time, the change
in "required" earnings for the period [t, t+ 1] becomes

re,t · (xt − dt) + (re,t − re,t−1) ·
∑t−1
i=0 (xi − di) · 1t≥1

where again t = 0 is the time of the valuation. 1t≥1 is the indicator function
of the condition t ≥ 1. The change in required earnings for the period [0, 1] is
re,0 ·(x0 − d0). The term (re,t − re,t−1) ·

∑t−1
i=0 (xi − di) is the change in required

earnings that is due to the change in the cost of equity capital from re,t−1 to
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re,t. Such change in the cost of capital is multiplied by the total change
in equity over the period [0, t− 1] as measured by

∑t−1
i=0 (xi − di). Therefore

when the cost of capital varies over time, AEG over the period [t, t+ 1] can be
defined as

zt+1 = xt+1−xt−
(
re,t · (xt − dt) + (re,t − re,t−1) ·

∑t−1
i=0 (xi − di) · 1t≥1

)
. (2)

Here AEG is defined as the difference between the actual change in earnings
during [t, t+ 1] and the change in required earnings for the same period [t, t+ 1].
We notice that z1 = x1 − x0 − re,0 · (x0 − d0). Then Appendix A.2 shows that
equation 1 can be re-written as

V e0 = E0

[∑T
t=1

vt∏t−1
i=0 (1 + re,i)

]
vt = vt−1 + zt with v0 = x0.

Later we refer to this formula. Appendix A.3 shows that

ret = xt − re,t−1 · bt−1 = vt − re,t−1 · b−1 (3)

where ret are residual earnings produced over the period [t− 1, t] and b−1 is the
book value of equity at time t = −1, which is one period before the valuation
date t = 0. It follows that

ret − ret−1 = zt − (re,t−1 − re,t−2) · b−1.

Therefore abnormal earnings growth zt, defined in equation 2 as the difference
between the actual change in earnings and the change in required earnings for
the same period, differs from the change in residual earnings ret−ret−1 whenever
re,t−1 6= re,t−2. We recall that instead, when the cost of capital is constant over
time, abnormal earnings growth coincides with the change in residual earnings.
Appendix A.4 presents a firm valuation model similar to the equity
valuation so far presented.

3 Discounting earnings under risk-neutral valu-
ation (RNV) and stochastic interest rates

So far we have relied on "classic" valuation under the real probability measure.
Hereafter we reconsider the above valuationmodel under risk-neutral valuation
(RNV). RNV discounts expected payoffs under the risk-neutral probability
measure at the default-free short interest rate. RNV and "classic" valuation
under the real measure are equivalent. We switch to RNV to focus on the
link between equity valuation and the term structure of interest rates, and
also because the default-free short interest rate is independent of the firm’s
financial leverage, a welcome simplification. Instead in valuations under the
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real probability the discount rate is the cost of equity capital, which depends
on leverage, as for example in the models of Hughes, Liu and Liu (2009) or of
Jennergren and Skogsvik (2011) or in the model presented above.

Let rt be the continuously compounded short interest rate at time t for
the period [t, t+ 1], i.e. rt = − lnPt,1, where 1 is the length of one time period
and Pt,1 is the time t price of a default-free discount bond that matures at time
t+ 1. RNV applied to discounted dividends valuation implies that

V et = EQt
[
exp (−rt) ·

(
V et+1 + dt+1

)]
. (4)

EQt [..] denotes time t conditional expectation under the risk-neutral measure
Q. Then we can re-write the valuation of Proposition 1 under RNV and
continuously compounded interest rates as

V e0 = EQ0

[∑T
t=1

xt

e
∑t−1

i=0 ri
−
∑T
t=2

(ert−1 − 1) ·
∑t−1
i=1 (xi − di)

e
∑t−1

i=0 ri
+
V eT −

∑T
i=1 (xi − di)

e
∑T−1

i=0 ri

]
.

(5)
Equation 5 can accommodate a non-flat term structure of interest rates. If the
future short interest rate is a deterministic function of time, effectively equal to
the current set of forward rates, RNV reduces to discounting expected payoffs
using today’s term structure of interest rates.
With a slight abuse of notation, hereafter we redefine zt+1, i.e. the abnormal

earnings growth produced over the period [t, t+ 1], under RNV and continuous
discounting as

zt+1 = xt+1−xt−(exp(rt)− 1)·(xt − dt)−(exp(rt)− exp(rt−1))·
∑t−1
i=0 (xi − di)·1t≥1.

(6)
Hereafter we assume that V eT −

∑T
i=1 (xi − di) = 0 in equation 5. It follows

that

V e0 = EQ0

[∑T
t=1

xt

e
∑t−1

i=0 ri
−
∑T
t=2

(ert−1 − 1) ·
∑t−1
i=1 (xi − di)

e
∑t−1

i=0 ri

]
=
∑T
t=1 V

v
0,t

V v0,t = EQ0

[
vt · e−

∑t−1
i=0 ri·1t≥1

]
(7)

vt+1 = vt + zt+1 with v0 = x0.

We now introduce a parametric model to compute V v0,t in equation
7. As in Jennergren and Skogsvik (2011) among others, we assume a stochastic
process for abnormal earnings growth. The time of the valuation is t = 0. For
t ≥ 0 we assume the following Gaussian vector autoregressive process under the
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risk-neutral measure Q

vt+1 = vt + zt+1 (8)

zt+1 = g (m′zht) + (1− g) zt + σzξz,t+1, ξz,t+1 v N (0, 1) (9)

ht+1 = Ghmh + (In −Gh) ht + Σhξh,t+1, ξh,t+1 v N (0n×1,Υ) , Σh = diag (σh1 , .., σhn)

(10)

Υ =

 1 .. un
.. .. ..
un .. 1


where: g, σz are scalar parameters; as z denotes (adjusted) abnormal earn-
ings growth, σz is the volatility of abnormal earnings growth; mz and
mh are n× 1 vectors of parameters; Σh and Gh are n× n matrixes of parame-
ters; diag (σh1 , .., σhn) is the diagonal matrix with elements σh1 , .., σhn on the
diagonal, which are volatility parameters; the modulus of all eigenvalues of
(In −Gh) should be less than 1 in order for the factors ht to follow stationary
processes; ht = (h1,t, .., hn,t)

′ is a vector of n factors driving the conditional
expectation of zt+1 and may be interpreted as (latent) factors that drive mar-
ket expectations about future abnormal earnings growth and that therefore also
drive stock price changes; ht may also be observable macroeconomic variables,
such as inflation or output gap, which may drive both the default-free term
structure of interest rates as well as expectations of future abnormal earnings
growth; ξz,t+1 is a scalar Gaussian shock under Q with mean 0 and variance

1, which is the meaning of the symbol N (0, 1). ξh,t+1 =
(
ξh1,t+1, .., ξhn,t+1

)′
is an n × 1 vector of Gaussian shocks under Q with mean 0n×1 and with co-
variance matrix Υ. The diagonal elements of Υ are all equal to 1 and the
off-diagonal elements are unspecified; "un" stands for "unspecified" and signifies
that we need not specify those matrix elements. When 0 < g < 1, zt+1 tends to
revert to the level m′zht, which is itself driven by the factors ht. g determines
the speed of such mean-reversion.The factors ht determine the expected
long term level of abnormal earnings. The dynamics of earnings xt implied by
this parametric model are compatible with dividend policy irrelevance provided
dividend distributions are zero-net-present-value transactions.

3.1 Valuation with quadratic models

Now the term structure of interest rates is stochastic and described by quadratic
term structure models. Here we first introduce the one factor discrete time
quadratic model and then extend it to multiple factors. According to the one
factor quadratic model

rt = y2
t

y1,t+1 = (1− Φy) y1,t + Φyµy + Σyξy,t+1, ξy,t+1 v N (0, 1)

Pt,m = EQt

[
e−
∑m−1

i=0
rt+i
]

= eAm+Bmyt+ytCmyt

9



where y is a scalar latent stochastic factor following an AR(1) Gaussian process
under the risk-neutral measure Q. Φy, µy,Σy are scalar parameters. The ran-
dom shocks ξy,t+1 are serially independent and independent of other shocks in
the model. N (0, 1) denotes the Gaussian density with mean 0 and variance 1.
Pt,m is the time t price of a discount bond with face value 1 and maturity at
time t+m. Am, Bm, Cm are scalar functions of m, i.e. of number of time steps
to the bond maturity, and satisfy Riccati difference equations presented below.
The quadratic model has the merits that rt ≥ 0, that it has simple formulae
for Pt,m, it has heteroschedastic bond yields and especially it requires no re-
striction to the correlation between the random shocks ξy,t+1 and the random
shocks that affect a firm’s earnings. Such correlation is crucial to valuation.
Now we turn to equity valuation when the term structure of interest

rates is driven by multi-factor quadratic term structure models, which are much
more realistic than the one factor model. We then assume that under
the risk-neutral measure Q

rt = α+ β′yt + y′tΨyt (11)

yt+1 = (I3 −Φy) yt + Φyµy + Σyξy,t+1, ξy,t+1 v N (03×1, I3) (12)

yt = (y1,t, y2,t, y3,t)
′

xt+1 = (IN −Φ) xt + η + Σξt+1, ξt+1 v N (0N×1, IN )

xt = (y1,t, y2,t, y3,t, vt, zt,h
′
t)
′

V v0,m = (dm + D′mx0) · eAm+B′my0+y′0Cmy0 (13)

η =


Φyµy

0
0

Ghmh

 , x0 =


y0

v0

z0

h0

 , ξt+1 =


ξy,t+1

0
ξz,t+1

ξh,t+1

 , ξy,t+1 =

 ξ1,t+1

ξ2,t+1

ξ3,t+1

 ,

Dm =


Dy
m

Dv
m

Dz
m

Dh
m

 , Φ =


Φy 03×1 03×1 03×n

01×3 0 − (1− g) −gm′z
01×3 0 g −gm′z
0n×3 0n×1 0n×1 Gh

 , Σ =

[
Σy 03×(n+2)

H Υ

]
,

H = EQt

 0
σzξz,t+1

Σhξh,t+1

 · ξ′y,t+1

 =


0 0 0

σzρz,1 σzρz,2 σzρz,3
σh1ρh1,1 σh1ρh1,2 σh1ρh1,3

.. .. ..
σhnρhn,1 σhnρhn,2 σhnρhn,3

 ,
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Υ =



0 0 0 .. 0

0 σz

√√√√1−
3∑
i=1

ρ2
z,i un .. un

0 un σh1

√√√√1−
3∑
i=1

ρ2
h1,i

.. un

.. .. .. .. ..

0 un un .. σhn

√√√√1−
3∑
i=1

ρ2
hn,i


.

Again "un" stands for "unspecified" and signifies that we need not specify those
matrix elements, IN is the N × N identity matrix, Υ is an (n+ 2) × (n+ 2)
matrix, H is an (n+ 2) × 3 matrix, Dv

m and Dz
m are scalars, Dh

m is an n × 1
vector and

α = 0, β = 03×1, Ψ =

 0 0 0
0 0 0
0 0 1

 .
x collects all stochastic factors in the model and ξ collects all Gaussian random
shocks in the model under the risk-neutral measure Q. All shocks are serially
and mutually independent. y are latent factors driving interest rates and follow
Gaussian vector autoregressive processes with shocks ξy. Under the risk-
neutral measure Q the shocks ξt+1 and ξy,t+1 are distributed according
to Gaussian densities with zero expected values and covariance matrix
equal to the identity matrix. 0N×1 denotes an N × 1 vector whose
elements are all equal to 0. IN is the N × N identity matrix. Dm,
Bm, Cm, Am, dm are functions of m that are determined later and that
drive equity value through equation 13. Without loss in generality Cm is
symmetric. xt, ξt+1, Dm, Bm are N × 1 vectors with N = n + 5; yt, β, η,
ξy,t+1 are 3 × 1 vectors; Ψ, Cm, Σy, Φy are 3 × 3 matrixes; Φ, Σ are N ×N
matrixes; rt, Am, α, dm, y1,t, y2,t, y3,t, vt, zt are scalars. β, η, Σy, Φy,Φ, Σ,
ρz,1, ρz,2, ρz,3 and ρhj ,1,ρhj ,2, ρhj ,3, σhj for j = 1, .., n are parameters.

3.2 The stochastic discount factor (SDF) and the valua-
tion formulae

To complete the equity valuation model and rule out arbitrage, this
section formulates the SDF of the valuation model. We assume that under the
real measure P

xt+1 =
(
IN −ΦP)xt + ηP + ΣξPt+1

where ηP is an n × 1 vector and ΦP an n × n matrix of parameters. ξPt+1 v
N (0N×1, IN ) are N independent Gaussian shocks under the real measure P.

11



The time t stochastic discount factor Mt is such that

Mt+1 = Mt · e−rt · e−
1
2Λ′tΛt−Λ′tξ

P
t+1

Λt = Λ0 + Λ1xt

where e−
1
2Λ′tΛt−Λ′tξ

P
t+1 denotes the Radon-Nykodim derivative andΛt is anN×1

vector of the market prices of risk. Λ0 is an N × 1 vector of parameters and
Λ1 an N ×N matrix of parameters. Then it can be shown that

lnEt

[
e−Λ′tξ

P
t+1

]
=

1

2
Λ′tΛt, Et

[
Mt+1

Mt

]
= e−rt , ξt+1 = ξPt+1 + Λt.

Et [..] is the time t conditional expectation under the P measure. ξt+1 v
N (0N×1, IN ) are the N independent Gaussian shocks under the Q measure
that we assumed above. Then it can be shown that xt+1 = (IN −Φ) xt+η+
Σξt+1 underQ, as we assumed above, and that η = ηP−ΣΛ0 andΦ = ΦP+ΣΛ1.
Therefore Λt entails that x follow Gaussian autoregressive processes under
both the real measure P and the risk-neutral measure Q. Under Q the process
x is stationary as long as all the eigenvalues of (IN −Φ) are smaller than 1
in absolute value, which we assume. This implies that all factors x are mean-
reverting and stationary. The empirical application below estimates the
quadratic term structure model using US Treasury bond yields, with
no constraint to ensure the mean reversion of y, and finds that the un-
constrained parameter estimates indicate that indeed the three latent factors
y mean revert under the risk-neutral measure. Mean-reversion in y implies
that the term (exp(rt)− exp(rt−1)) in equation 6 is stationary, which is con-
sistent with the assumption of a mean-reverting autoregressive process for z
as per equation 9. If y were mean averting, the term (exp(rt)− exp(rt−1)) in
equation 6 would be non-stationary, which would be diffi cult to reconcile with
the assumption of equation 9 for z. For simplicity we also assume that Φ is
block-diagonal, in the sense that the factors yt do not affect the conditional
mean of

(
vt+1, zt+1,h

′
t+1

)
and vice versa the factors (vt, zt,h

′
t) do not affect the

conditional mean of yt+1.
Appendix A.7 shows that, under the above assumptions, to com-

pute V v0,m in equation 13 we solve the following system of Riccati
equations

dm = dm−1 + Dy′
m−1Φyµy + Dh′

m−1Ghmh + K′m−1γγ
′ (Bm−1 + 2C′m−1Φyµy

)
Dy′
m = Dy′

m−1 (I3 −Φy) + 2 ·K′m−1γγ
′C′m−1 (I3 −Φy)

Dv
m = Dv

m−1

Dz
m =

(
Dz
m−1 +Dv

m−1

)
(1− g)

Dh′
m =

(
Dh′
m−1 (In −Gh) +

(
Dv
m−1 +Dz

m−1

)
g ·m′z

)

K′m−1 = Dy′
m−1+

(
Dz
m−1σz

(
ρz,1, ρz,2, ρz,3

)
+
∑n
j=1D

hj
m−1σhj

(
ρhj ,1, ρhj ,2, ρhj ,3

))
Σ−1
y

12



Am = −α+Am−1 + B′m−1Φyµy +
(
Φyµy

)′
Cm−1Φyµy + ln

|γ|
abs |Σy|

+ (14)

+
1

2

(
B′m−1 + 2

(
Φyµy

)′
Cm−1

)
γγ′

(
Bm−1 + 2C′m−1Φyµy

)

B′m = −β′ +
(
B′m−1 + 2

(
Φyµy

)′
Cm−1

)
(I3 + 2γγ′Cm−1) (I3 −Φy) (15)

Cm = −Ψ + (I3 −Φy)
′
Cm−1

(
I3 + 2γγ′C′m−1

)
(I3 −Φy) (16)

subject to the terminal conditions d0 = A0 = 0,B0 = 03×1,D′0 =
(
0′3×1, 1,0

′
n+1×1

)
and C0 = 03×3, where 03×3 is an 3× 3 matrix of zeros. These terminal condi-
tions imply that V vt,0 = vt. Dv

m = 1 for all m. rt ≥ 0 as long as α ≥ 1
4β
′Ψ−1β.

Equations 14, 15 and 16 had already appeared in Realdon (2006) for pricing
discount bonds according to the formula P0,m = eAm+B′my0+y′0Cmy0 . As yt is
not observable, parameter identification requires that:
- µy ≥ 03×1, α ≥ 0, β = 03×1;
- Σy be diagonal (triangular) and Φy be triangular (diagonal).
We can summarise the formulae in this section as follows.

Proposition 2 Under risk-neutral valuation, continuous discounting, stochas-
tic interest rates and assumptions 8, 9, 10, 11, 12, equation 1 for equity value
becomes

V e0 =
∑T
m=1 V

v
0,m

where V v0,m is given by 13.

Equity value depends on the correlation between factors driving
earnings and factors driving interest rates, but not on the correlation
between factors driving earnings, because V v0,m is linear in these latter

factors. Therefore the covariances EQt
[
ξhj ,t+1ξhl,t+1

]
for j 6= l or the co-

variances EQt
[
ξhj ,t+1ξz,t+1

]
are irrelevant to this valuation model. This

is a convenient simplification that is not possible when the payoffs to
be discounted, be they earnings or dividends or free cash flows, are
specified as exponential affi ne functions of the factors, as in Ang and
Liu (2004), D’Addona and Kind (2006) or Hughes, Liu and Liu (2009)
among others.
Another simplification occurs when ξh,t+1 and ξz,t+1 are indepen-

dent of ξy,t+1, in which case ρz,1 = ρz,2 = ρz,3 = ρhj ,1 = ρhj ,2 = ρhj ,3 = 0
for j = 1, .., n. In this case equity value no longer depends on σz and
σhj for j = 1, ..n and Dy′

m = K′m−1 = 01×3. This means that, absent any
correlation between factors driving earnings and factors driving in-
terest rates, the valuation becomes independent of the volatility of
factors driving earnings.

13



The term K′m−1 in the equations for dm and Dy′
m entails that equity valu-

ation depends on the correlation between the shocks to factors driving interest
rates ξy,t+1 and the shocks to factors driving earnings, which are ξz,t+1 and
ξh,t+1. K′m−1 and equity valuation also depend on the "volatilities" of the fac-
tors driving interest rates (Σy) and earnings (σz and σhj ). Moreover Dy′

m

depends on Φy and Φy determines the unconditional variance of interest
rates. The volatilities and correlations may increase or decrease equity
value. This ambivalence is absent when the term structure model is an affi ne
one and is due to the fact that Dy′

myt may be positive or negative, because yt
may be positive or negative. When yields are close to zero, as they have been
in many countries, it is particularly likely that yt may switch from positive to
negative and vice versa.
On the other hand when α = 0, Ψ = 03×3 and β 6= 03×1, then Cm =

03×3, Dy′
m = 01×3 and the term structure model becomes an affi ne Gaussian

model since rt = β′ · yt. Appendix A.8 discusses this special case. Then
higher factor correlations and volatilities do not affect Dy′

m, but reduce dm and
equity value, since Dm > 0(n+2)×1 (at least when Ghmh > 0n×1 and g ·mz >
0n×1) and since Bm−1 < 03×1 for realistic parameters of the affi ne Gaussian
term structure model. The intuition is that when earnings tend to rise, the
affi ne yield curve (i.e. −Am+B′my0

m ) tends to rise. Therefore it is the higher
earnings that are discounted at higher interest rates, which reduces the expected
present value of earnings. This point was already made in the residual earnings
valuation of Pope and Wang (2000), among others. When rt = β′ · yt, rt may
turn negative and has no lower bound. This shortcoming is non-negligible when
interest rates are close to zero and when we discount earnings expected in ten,
twenty or thirty years.

3.3 The shortcomings of "square root" affi ne term struc-
ture models

The valuation model of Proposition 2 is close in spirit to Ang and Liu
(2001), but their model discounts residual earnings and assumes a discrete
time "square root" affi ne term structure model similar to Sun’s (1992). The
quadratic term structure model seems preferable to Sun’s term struc-
ture model for the following reasons. "Square root" affi ne models suffer from
the admissibility restrictions illustrated in Dai and Singleton (2000), which re-
strict the correlation between factors. For example if, other things as above,
under the measure Q

rt = y1,t + y2,t

y1,t+1 = y1,t

(
1− φy1

)
+ φy1µy1 + σ2

y1

√
y1,tξ1,t+1, ξ1,t+1 v N (0, 1)

y2,t+1 = y2,t

(
1− φy2

)
+ φy2µy2 + σ2

y2

√
y2,tξ2,t+1, ξ2,t+1 v N (0, 1)

zt+1 = g (m′zht) + (1− g) zt + σzξz,t+1, ξz,t+1 v N (0, 1)
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where φy1 , φy2 , σ
2
y1 , σ

2
y2 , µy1µy2 are scalar parameters, then closed form val-

uations are possible only if

EQt
[
ξ1,t+1ξ2,t+1

]
= EQt

[
ξ1,t+1ξz,t+1

]
= EQt

[
ξ2,t+1ξz,t+1

]
= 0

EQt
[
ξ1,t+1 · ξh,t+1

]
= 0n×1.

These are severe restrictions to factors correlation. Moreover, especially when
interest rates are close to zero, rt, y1,t and y2,t may turn negative, so that√
y1,t and

√
y2,t may be complex numbers. Instead quadratic models rule

out negative interest rates, imply heteroschedastic yields as do "square root"
affi ne models, and need no admissibility restrictions, so that factors correlation
is unrestricted as explained in Ahn, Dittmar and Gallant (2002). Therefore
for equity risk-neutral valuation based on discounting earnings, discrete time
quadratic models seem preferable to both discrete time affi ne Gaussian models
and affi ne "square root" term structure models. This is no minor detail, as the
correlation between factors driving earnings and factors driving interest rates
can materially affect equity valuation, as shown below. Moreover also
the term structure model and its parameters can materially affect
valuation, as shown by Ang and Liu (2001).

3.4 Special case under constant interest rates

To gain insight into the model of Proposition 2, we now focus on the special
case where rt is constant over time and equal to r. Then we define

r = exp (r)− 1

xt = (vt, zt,h
′
t)
′
.

Under these assumptions, Appendix A.9 shows that V et in Proposition 2 becomes

V et = d+D′xt = EQt

[
vt+1 + V et+1

1 + r

]
=
EQt
[
vt+1 + d+D′xt+1

]
1 + r

D =
(
Dv,Dz,Dh′

)′
d =

Dh′Ghmh

r

Dv =
1

r

Dz =
1− g
r+ g

(1 +Dv)

Dh′ = (1 +Dv +Dz) · g ·m′z (rIn×n + Gh)
−1

where d, Dv and Dz are scalar constants and Dh is a n× 1 vector of constants.
If g = 0 then zt+1 = zt + σzξz,t+1 so that there is no expected change in
abnormal earnings growth and equity value becomes V e0 = v0

r
+ 1

r
r+1
r
z0. In
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this case equity value is independent of ht. Similarly, if mz = 0n×1 then
zt+1 = (1− g) zt + σzξz,t+1 and V e0 = v0

r
+ 1−g

r+g
r+1
r
z0, so that equity value

is again independent of ht and −g can be interpreted as the expected growth
rate in abnormal earnings growth. m′zht is the central tendency of zt+1 when
g > 0. Fluctuations of ht over time can drive price changes even as accounting
information, summarised by vt, does not change. When mh = 0n×1, abnormal
earnings growth in the long term tends to zero, which may often be a reasonable
assumption, and d = 0.
Changes in ht and zt over time can explain changes in price-earnings ratios

over time. Note that, as v0 = x0, the value-to-earnings ratio is

V e0
v0

=
1

r

Dh′Ghmh + r+1
r+g

(
(1− g) z0 + (r+ 1) g ·m′z (rIn×n + Gh)

−1
h0

)
v0

+ 1

 .

(17)
According to this formula the ratio V e

0

v0
is driven by the ratios z0

v0
and h0

v0
, i.e.

by the ratio between current abnormal earnings growth and current earnings
and by the ratio between the drivers h0 of expected future abnormal earnings
growth and current earnings.

3.5 Residual earnings valuation with quadratic term struc-
ture models

The main focus of this paper is on AEG valuation, but to complete the analy-
sis this section also provides formulae for residual earnings valuation under
quadratic term structure models. These formulae are later applied and
their predictions are compared with those of the valuation of Proposi-
tion 2. ret+1 denotes the residual earnings produced over the period [t, t+ 1],
which we defined above as ret+1 = xt+1 − re,t · bt, where bt denotes the book
value of equity at time t. Then under risk-neutral valuation and continuous dis-
counting we can re-define residual earnings as ret+1 = xt+1 − (exp (rt)− 1) · bt.
According to residual earnings risk-neutral valuation under continuous discount-
ing and stochastic interest rates

V e0 = b0 +
∑∞
t=1E

Q
0

[
ret · e−

∑t−1
i=0 ri

]
.

Then we assume the following parametric process for residual earnings under
the risk-neutral measure

ret+1 = gre (m′reht) + (1− gre) ret + σreξre,t+1

where gre, σre, ρre,1, ρre,2, ρre,3 are scalar constants, mre is an n×1 vector of pa-
rameters and EQt

[
ξre,t+1ξ1,t+1

]
= ρre,1, E

Q
t

[
ξre,t+1ξ2,t+1

]
= ρre,2, E

Q
t

[
ξre,t+1ξ3,t+1

]
=

ρre,3. Moreover under the additional assumptions of equations 10 and 11 resid-
ual earnings valuation becomes

V e0 = b0 +
∑∞
m=1E

Q
0

[
rem · e−

∑m−1
i=0 ri

]
= b0 +

∑∞
m=1 V

re
0,m (18)
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where V re0,m is the same as V v0,m in equation 13 if only we make the following
substitutions: gre replaces g, m′re replaces m′z, σre replaces σz, ρre,1 re-

places ρz,1, ρre,2 replaces ρz,2, ρre,3 replaces ρz,3, D′0 =
(
0′3×1, 1,0

′
(n+1)×1

)
replaces D′0 =

(
0′4×1, 1,0

′
n×1

)
. This last substitution means that V ret,0 = ret

replaces the terminal condition V vt,0 = vt. The advantages of quadratic term
structure models are retained also when discounting residual earnings.

3.6 Comparison with Bakshi and Chen (2005) and with
Ang and Liu (2004), the normality assumption and
the time step

The spirit of the equity risk-neutral valuation of Proposition 2 is also similar
to Bakshi and Chen (2005). Inspired by the literature on derivatives valuation,
their paper presents a risk-neutral valuation model for equities that avoids the
problem of estimating the cost of equity capital and that discounts expected
earnings under the risk-neutral probability measure. However their model is in
continuous time, which is not a natural setting for earnings and other accounting
variables. The above discrete time setting seems more suitable for accounting
based valuations.
Bakshi and Chen discount expected earnings under the assumption that

dividends equal a fixed fraction of earnings. However, when this assumption
does not hold, the analysis of Ohlson and Juettner-Nauroth (2005) and Ohlson
(2005) implies that simply discounting expected earnings may lead to incorrect
valuations, because discounting earnings is generally not equivalent to discount-
ing dividends. Instead discounting earnings and abnormal earnings growth is
equivalent to discounting dividends. Propositions 1 and 2 build on this
insight.
Bakshi and Chen assume that the earnings growth rate follows a stochas-

tic mean reverting process and find that "modeling earnings growth dynamics
properly is the most crucial" for equity valuation. The model presented above
captures this insight through the auto-regressive mean-reverting processes of z
and of the h factors.
Bakshi and Chen assume a Vasicek model for the term structure of inter-

est rates. Various studies report that quadratic term structure models such
as that proposed above seem to describe the dynamics of the term structure
better than affi ne Vasicek-like Gaussian models. Moreover quadratic models
encompass affi ne Gaussian models.
Bakshi and Chen calibrate the parameters of the risk-neutral factor processes

in their valuation model by minimising the sum of squared differences between
observed price-earnings (PE) ratios and model predicted PE ratios. The valu-
ation model of Proposition 2 can be calibrated in a similar way, when the h
factors are absent or when they are present and are observable.
Proposition 2 uses risk-neutral valuation. However Appendix A.10

shows that the equity valuation of Proposition 2 is in closed form even
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under the real probability measure when the equity risk premium is
stochastic as in Ang and Liu (2004).
The valuation formula of Proposition 2 relies on normally distrib-

uted random shocks. Alternatively we may approximate the empir-
ical distribution of the random shocks using a mixture of Gaussian
densities and we would still have tractable valuation formulae.
The valuation in Proposition 2 assumes that the short interest rate

only changes at the end of the accounting period, e.g. every quarter.
The accounting period is also the time step of all stochastic processes
in the model. This assumption simplifies the illustration of the model.
In some practical applications we may have daily interest rate obser-
vations, while the h factors may drive daily price changes. Then we
can assume daily time steps for the short rate and for the h factors,
while the accounting periods can be quarterly. The coexistence of
different time steps, daily and quarterly, only requires minor changes
to the above valuation formulae.

4 Empirical application

This section uses US Treasury bond yield curves during the 1995 to 2017 period
to show the valuation errors due to using one single discount rate instead of the
whole yield curve. This section also shows how the correlation between earnings
and interest rate factors drives the PE ratio predicted by the valuation model
of Proposition 2.
We use a panel of US Treasury continuously compounded discount bond

yields for maturities from one year to twenty years observed on the last trad-
ing day of each month included in the period from 3/1/1995 to 29/11/2017.
Therefore we use yields for twenty different maturities for every month in the
sample. The yields are computed from discount factors for each maturity and
date provided by Thompson-Reuters Eikon.
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Figure 1: Percentage valuation errors every month

Annuity for 20 years
Perpetuity

The black line in Figure 1 shows the percentage valuation error for each month
τ of the 276 months in the sample, which is computed as

(
Q20
avg,τ −Q20

τ

)
/Q20

τ .

Q20
τ =

∑20
m=1 exp (−m · iτ,m) is the present value of an annuity that pays one

dollar each year end for twenty years, discounted using the continuously com-
pounded Treasury bond yields iτ,m in month τ for each maturity m. Q20

avg,τ =∑20
m=1 exp (−m · iτ,avg) is an approximation to Q20

τ where every annuity pay-
ment is discounted using the average yield iτ,avg = 1

20

∑20
m=1 iτ,m. The valuation

errors, often exceeding 3%, are due to using the single discount rate iτ,avg for
all maturities. The grey line in Figure 1 is the percentage valuation error for
each month computed as

(
Qp20,τ −Qpτ

)
/Qpτ . Q

p
20,τ = 1/ (exp (iτ,20)− 1) is the

present value of a perpetuity that pays one dollar each year end, and each
payment is discounted using the twenty year continuously compounded yield
iτ,20 observed in month τ . Qpτ = Q20

τ + exp (−20 · iτ,20) / (exp (iτ,20)− 1) is the
present value of the same perpetuity where the present value of the payments of
the first twenty years is again Q20

τ and the payments thereafter are discounted
at the constant rate iτ,20. The valuation error, often more than 3% in absolute
value, is now due to discounting the payments in the first twenty years at the
single rate iτ,20. Figure 1 highlights the valuation errors due to using one single
discount rate for earnings at different maturities as per "classic" AEG valuation,
as opposed to valuation as per Proposition 1. However it is Proposition 2 that
shows the valuation effects of factors volatilities and correlation. Therefore we
now turn to valuation under stochastic interest rates as per Proposition 2.
First we follow the quasi-maximum-likelihood approach of Realdon (2017)

in estimating the three factor quadratic term structure model using the sample
of US Treasury yields. This approach provides the latent factors yτ for every
month τ , which we need for valuation. We assume that the one year, ten year
and twenty year yields are observed without error. Table 1 provides summary
statistics of the yields in the sample. The quadratic model assumes rt = y2

3,t,
while y2

1,t and y
2
2,t drive the central tendency of y

2
3,t. The model has monthly
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time steps and its estimated parameters under the risk-neutral measure Q are

Φy =

 0.279 0 0
0 2.720 0

−0.198 −0.198 0.198

 , µy = (0, 0, 0.58)
′
, Σy =

 0.135 0 0
3. 3 · 10−6 0.033 0
−0.04078 −0.016 7 0.06

 .

Then we assume for simplicity thatmz is a vector of zeros, so thatm′zht = 0 for
all t. Therefore the valuation is independent of the factors h and the valuation
model of Proposition 2 simplifies to

zt+1 = (1− g) zt + σzξz,t+1

dm = dm−1 + Dy′
m−1Φyµy + K′m−1γγ

′ (Bm−1 + 2C′m−1Φyµy
)

Dy′
m = Dy′

m−1 (I3 −Φy) + 2 ·K′m−1γγ
′C′m−1 (I3 −Φy)

Dv
m = 1

Dz
m =

(
Dz
m−1 + 1

)
(1− g)

K′m−1 = Dy′
m−1 +Dz

m−1σz
(
ρz,1, ρz,2, ρz,3

)
Σ−1
y

while the model-implied PE ratio is

V e0
v0

=
∑T
m=1

(
dm + Dy′

my0 +Dz
mz0

v0
+ 1

)
eAm+B′my0+y′0Cmy0 . (19)

We recall that z0 = x0 − x−1 − (exp(r−1)− 1) (x−1 − d−1) and v0 = x0. For
simplicity and with little loss in accuracy, we assume monthly time steps in the
valuation model of Proposition 2, even through earnings in the US market are
reported quarterly, because we have monthly yield curve observations. Therefore
x0 are monthly earnings, z0 is monthly abnormal earnings growth and rt is the
one month interest rate at time t. The valuation horizon is very long since T
is 12.000 months (1.000 years times 12 months) so that continuation value is of
negligible importance. Such long streams of earnings are meant to approximate
the infinite streams of earning of "classic" AEG valuation. When T is halved
to 6.000 months (i.e. 500 years) the valuation results are virtually the same.
When rt = r for all t the discount rate is constant over time and, since mz is a
vector of zeros, equation 17 reduces to

V e0
v0

=
1

r
+

1− g
r+ g

(
1 +

1

r

)
z0

v0
(20)

with r = exp (r) − 1. We consider a base case with v0 = 1/12, z0 = 0,
ρz,1 = ρz,2 = ρz,3 = 0, which effectively assumes a perpetual stream of expected
risk-neutral earnings of 1 dollar every year, more precisely 1/12 dollars every
month, that are independent of interest rates. In the base case the valuation is
independent of the parameters g and σz.
Figure 2 shows how yield curve changes in the sample period drive changes

in the model predicted PE ratio, even as fundamentals, namely v0 = 1/12 and
z0 = 0, do not change from month to month. Figure 2 shows six time series
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of PE ratios computed as per equation 19 each month from February 1995 to
November 2017. In all months all six valuations assume the same stream of
expected risk-neutral earnings. The thick black line is the base case, which
assumes independence between earnings and interest rate factors. Every month
the predicted PE ratio changes only because of changes in bond yields. The
other cases are like the base case except for: σz = 0.01, ρz,1 = 0.01 in case 2;
σz = 0.02, ρz,1 = 0.01 in case 3; σz = 0.01, ρz,1 = 0.01, ρz,2 = 0.01 in case
4; σz = 0.01, ρz,1 = 0.01, ρz,2 = 0.01, ρz,3 = 0.01 in case 5; the PE ratio in
the constant discount rate case is computed as in 20 with r = iτ,20/12 every
month τ in the sample. The difference in PE between the constant discount
rate case and the base case is significant. Moreover a constant discount rate is
inconsistent with the data, as model implied PE’s are not constant over time,
even as the stream of expected risk-neutral earnings is the same all months.
The upward trend in PE ratios is mainly due to the lower interest rates of the
more recent past. The dominant effect of a rise in ρz,1, ρz,2, ρz,3 in our sample
is to decrease dm, while the change in Dy′

my0 is of lesser importance. This
is why, irrespective of y0, the PE ratio decreases every month in the sample
as ρz,1, ρz,2, ρz,3 increase. Cases 2 and 3 show that a rise in AEG volatility
σz decreases the PE ratio when correlations are positive, and it can be shown
that it increases the PE ratio when correlations are negative. This is due to
the term σz

(
ρz,1, ρz,2, ρz,3

)
Σ−1
y in the formula for K′m−1. σz multiplies the

the correlation parameters and its valuation effect depends on the sign of such
parameters. The PE ratio is very sensitive to correlations and to AEG volatility
(i.e. σz) and this is due to the discounting of long term earnings.
Figure 3 shows the PB ratio predicted by residual earnings risk-neutral

valuation equation 18 for essentially the same cases as Figure 2. Figure 3
assumes b0 = 100, gre = 0 and re0 = 2. In the base case σre = ρre,1 = ρre,2 =
ρre,3 = 0. The other cases are like the base case, except for σre = 0.01, ρre,1 =
0.01 in case 2, σre = 0.02, ρre,1 = 0.01 in case 3, σre = 0.01, ρre,1 = 0.01, ρre,2 =
0.01 in case 4, σre = 0.01, ρre,1 = 0.01, ρre,2 = 0.01, ρre,3 = 0.01 in case 5. The
PB ratio in the constant discount rate case is computed assuming r = iτ,20/12
every month τ in the sample. Figure 3 is effectively a re-scaling of Figure 2 and
confirms the intuition in Figure 2.
Figure 4 shows the yearly yields predicted by the quadratic model for ma-

turities up to one thousand years in every December in the sample, i.e. from
December 1995 to December 2016. Figure 4 shows that during these more than
twenty years yields for maturities longer than two hundred years tend to con-
verge to levels around 3%. In this sense the estimated quadratic model seems
"well-behaved" in discounting perpetual streams of earnings.
Overall PE ratios tend to drop when the correlation between AEG (i.e. zt)

and US term structure factors increases. PE ratios are very sensitive to such
correlation and also to the conditional variance of AEG. Such conditional
variance amplifies the valuation impact of the correlations. Other comparative
statics can show that also the quadratic model parameters Φy, µ3,Σy affect the
predicted PE ratio by altering the interest rates used to discount earnings.
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Table 1: Descriptive statistics of monthly continuously compounded yields implied by US Treasury bonds (1995­2017)
Yield maturity  1 year  2 years  3 years  4 years  5 years  6 years  7 years  8 years  9 years  10 years
Average 2.64% 2.86% 3.09% 3.30% 3.50% 3.68% 3.84% 3.97% 4.08% 4.18%
Std deviation 6.26% 12.02% 17.93% 23.87% 29.84% 35.81% 41.79% 47.77% 53.76% 59.74%
Max 7.20% 7.59% 7.72% 7.74% 7.72% 7.71% 7.72% 7.74% 7.76% 7.79%
Min 0.10% 0.19% 0.31% 0.45% 0.63% 0.82% 1.02% 1.22% 1.41% 1.50%
Yield maturity  11 years  12 years  13 years  14 years  15 years  16 years  17 years  18 years  19 years  20 years
Average 4.29% 4.39% 4.49% 4.58% 4.65% 4.71% 4.75% 4.78% 4.80% 4.81%
Std deviation 65.73% 71.72% 77.71% 83.70% 89.70% 95.69% 101.69% 107.68% 113.68% 119.67%
Max 7.83% 7.88% 7.93% 7.98% 8.02% 8.03% 8.04% 8.02% 8.00% 7.97%
Min 1.54% 1.58% 1.61% 1.64% 1.68% 1.72% 1.76% 1.81% 1.87% 1.92%

Figure 5 plots V
e
0

v0
as per equation 20, which refers to the constant discount

rate case. The thick black line is a base case, which assumes z0
v0

= 0.01 and
r = 0.03. The thick black line shows that PE decreases with g, since higher
g entails that AEG (i.e. z0) reverts from 0.01 to zero more quickly. The bright
line assumes z0v0 = −0.01 and r = 0.03 and shows that PE increases with g, since
higher g entails that AEG reverts from −0.01 to zero more quickly. The thin
black line assumes z0

v0
= 0.01 and r = 0.04 and shows that PE decreases with

r as earnings are discounted at a higher rate. The dashed line assumes z0 = 0
and r = 0.03. Equation 20 implies that we have to impose r > −g to prevent
negative equity prices and that limg→(−r)+

(
1
r
+ 1−g
r+g

(
1 + 1

r

)
z0
v0

)
→ ±∞; in this

right limit the PE ratio explodes to +∞ if z0v0 > 0 and to −∞ if z0v0 < 0.
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Figure 5: PE ratio and the growth rate g

This Figure shows the model predicted PE ratio under constant discount rate r as a function
of the growth rate g.

Similar comparative statics with respect to g and z0 are possible for equation
19 under stochastic interest rates and confirm that large positive or negative
values of g can cause the valuation to "explode" to plus or minus infinity.
These comparative statics concern the effect of g on PE when z0 6= 0. How-
ever equation 19 implies that g affects PE even when AEG is zero, i.e. even
when z0 = 0. The reason is that g still affects Dz

m and K′m−1 through the
term Dz

m−1σz
(
ρz,1, ρz,2, ρz,3

)
Σ−1
y , and therefore g still affects dm and Dy′

m.
When z0 = 0 and g rises and the correlation parameters (ρz,1, ρz,2, ρz,3) are
positive (negative), then PE rises (decreases). These effects are amplified by
the volatility of AEG σz. The intuition is that, after future random shocks
will have driven z away from its mean, as g rises, z will revert to its mean
more quickly and the unconditional variance of z therefore decreases, which
dampens the effect on PE of positive (negative) correlation between interest rate
factors and earnings. We recall that such positive (negative) correlation
reduces (increase) PE, as seen above, and it is the dampening of such
reduction (increase) in PE that explains the rise (decrease) in PE as g rises.
For example in February 1995 in case 5 of Figure 2 the model predicts PE of
7.26. Case 5 assumes z0 = 0 and g = 0, but when, other things as in case 5,
g = 0.01 then PE is 13.24, when g = 0.02 then PE is 13.92, when g = 0.03 then
PE is 14.17. Similarly in November 2017 in case 5 of Figure 2 the model predicts
PE of 17.5, but when, other things as in case 5, g = 0.01 then PE is 31.7, when
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g = 0.02 then PE is 33.13, when g = 0.03 then PE is 33.65. The valuation effect
of growth in AEG interacts with the valuation effect of the correlation between
interest rate factors and earnings.

5 Conclusion

This paper has presented earnings based equity valuations in closed form that ex-
tend the popular AEG valuation to cases of time-varying or stochastic discount
rates. These valuations do no rely on specific assumptions about continuation
value and can be used to reverse engineer the equity risk premium when the
term structure of interest rates is not flat.
Some of the valuation formulae use discrete time quadratic Gaussian term

structure models, which overcome the limitations of "square root" affi ne term
structure models and can rule out negative yields. Quadratic models require no
restriction to the correlation between stochastic factors, which seems crucial, as
valuation can be very sensitive to the correlation between factors driving interest
rates and factors driving earnings, as well as to the "volatility" of these factors.
Also the residual earnings valuation of Ang and Liu (2001) has been adapted
to quadratic term structure models. The valuation formulae seem capable of
explaining complex links between stock value and interest rates, while providing
consistent valuations of stocks and bonds.

A Appendix

A.1 Proof that AEG valuation is a special case of equation
1

We notice that

V e0 =
∑∞
t=1

x1 + (xt − x1)

(1 + re)
t −

∑∞
t=2

re ·
∑t−1
i=1 (xi − di)

(1 + re)
t

=
∑∞
t=1

x1

(1 + re)
t +

∑∞
t=2

xt − x1

(1 + re)
t −

∑∞
t=2

re ·
∑t−1
i=1 (xi − di)

(1 + re)
t

=
∑∞
t=1

x1

(1 + re)
t +

∑∞
t=2

∑t−1
i=1 (xi+1 − xi)

(1 + re)
t −

∑∞
t=2

re ·
∑t−1
i=1 (xi − di)

(1 + re)
t

=
x1

re
+
∑∞
t=2

∑t−1
i=1 (xi+1 − xi − re · (xi − di))

(1 + re)
t

=
x1

re
+

1

re

∑∞
t=1

(xt+1 − xt − re · (xt − dt))
(1 + re)

t .

The first line is equation 1, while the last line is AEG valuation.
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A.2 Re-writing equation 1 in terms of AEG under time-
varying discount rate

Since from the definition of AEG with time-varying cost of capital we know that
xt+1 = xt + zt+1 + re,t (xt − dt) + (re,t − re,t−1)

∑t−1
i=0 (xi − di) · 1t≥1, it follows

that

x1 = x0 + z1 + re,0 (x0 − d0)

x2 = x1 + z2 + re,1 (x1 − d1) + (re,1 − re,0) (x0 − d0)

and so on. Then substituting into equation 1, we obtain

V e0 = E0

 re,0(x0−d0)+x0+z1−re,0(x0−d0)
1+re,0

+

+
re,1(x1−d1)+(re,1−re,0)(x0−d0)+x0+z1+re,0(x0−d0)+z2−re,1

∑1

i=0
(xi−di)

(1+re,0)(1+re,1) + ..


= E0

[
x0 + z1

1 + re,0
+

x0 + z1 + z2

(1 + re,0) (1 + re,1)
+ ..

]
.

This gives the result in the text.

A.3 Proof of the link between residual earnings and ab-
normal earnings growth under time-varying discount
rate

This section proves that ret = vt−re,t−1·b−1 where ret are residual earnings pro-
duced over the period [t− 1, t] and b−1 is the book value of equity at time t = −1.

Given that zt+1 = xt+1−xt−
(
re,t · (xt − dt) + (re,t − re,t−1) ·

∑t−1
i=0 (xi − di) · 1t≥1

)
,

given the definition of residual earnings ret = xt+1 − re,t · bt and given that
vt+1 = vt + zt+1 with v0 = x0, it follows that

z1 = x1 − x0 − re,0 · (x0 − d0)

z2 = x2 − x1 − re,1 · (x1 − d1)− (re,1 − re,0) · (x0 − d0)

z3 = x3 − x2 − (re,2 · (x2 − d2) + (re,2 − re,1) · (x0 + x1 − d0 − d1))

v1 = x0 + x1 − x0 − re,0 · (x0 − d0)

v1 − re,0 · b−1 = x0 + x1 − x0 − re,0 · (x0 − d0)− re,0 · b−1 = x1 − re,0 · b0 = re1

v2 = x1 − re,0 · (x0 − d0) + x2 − x1 − re,1 · (x1 − d1)− (re,1 − re,0) · (x0 − d0) =

= x2 − re,1 · (x0 + x1 − d0 − d1)

v2 − re,1 · b−1 = x2 − re,1 · (x0 + x1 − d0 − d1)− re,1 · b−1 = x2 − re,1 · b1 = re2

v3 = x2 − re,1 · (x0 + x1 − d0 − d1) + x3 − x2 − re,2 · (x2 − d2) +

− (re,2 − re,1) · (x0 + x1 − d0 − d1) = x3 − re,2 · (x0 + x1 + x2 − d0 − d1 − d2)

v3 − re,2 · b−1 = x3 − re,2 · (x0 + x1 + x2 − d0 − d1 − d2)− re,2 · b−1 = x3 − re,2 · b2 = re3

and so on for later time periods. This proves that ret = vt − re,t−1 · b−1.
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A.4 Discounting operating income under time-varying dis-
count rates

This Appendix presents a firm valuation model that parallels the equity val-
uation above. We employ the following notation: V noat is the intrinsic value of
net operating assets, assumed to coincide with the fair value of the firm; rf,t
is the cost of capital of the firm during [t, t+ 1]; ct+1 and it+1 are respectively
net cash flow from operations and net cash investment in fixed operating assets
during the period [t, t+ 1], so that ct+1− it+1 summarises free cash flows; oit+1

is operating income produced during the period [t, t+ 1]. Absent arbitrage, ac-
cording to discounted free cash flow valuation the value of firm’s net operating
assets can be written as

V noat = Et

[
V noat+1 + ct+1 − it+1

1 + rf,t

]
= Et

[
oit+1 + V noat+1 − oit+1 + ct+1 − it+1

1 + rf,t

]
for all t. Then manipulations of this formula similar to those that led to Propo-
sition 1 above give in the following corollary.

Corollary 3 When the discount rate varies over time, discounted free cash flow
valuation of the firm can re-written as the following discounted operating income
valuation

V noa0 = E0

[∑T
t=1

oit∏t−1
i=0 (1 + rf,i)

−
∑T
t=2

rf,t−1 ·
∑t−1
i=1 (oii − (ci − ii))∏t−1
i=0 (1 + rf,i)

+
V noaT −

∑T
i=1 (oii − (ci − ii))∏T−1

i=0 (1 + rf,i)

]
(21)

= E0

[∑∞
t=1

oit∏t−1
i=0 (1 + rf,i)

−
∑∞
t=2

rf,t−1 ·
∑t−1
i=1 (oii − (ci − ii))∏t−1
i=0 (1 + rf,i)

]
.

As before E0 [..] is the time 0 conditional expectation operator. The intuition
of this formula is that the operating income oit to be produced by the firm adds
value to the firm only after it has rewarded, according to the cost of capital
rf,t−1, the investment in net operating assets measured by

∑t−1
i=1 (oii − (ci − ii))

to be made by re-investing operating income. oii − (ci − ii) is the part of
operating income that is re-invested in the firm’s operations, while (ci − ii) is
"free" cash flow to be paid out to the firm’s financing activities. Proposition
1 does not rely on any accounting identity such as the clean surplus relation.
Similarly Corollary 3 does not rely on any accounting identity. Proposition 1 is
applicable on a per share basis. Also Corollary 3 is applicable on a per-share
basis to determine firm value per share. No forecast beyond time T is needed
when V noaT =

∑T
i=1 (oii − (ci − ii)). Again T is the end of the forecast horizon.

The abnormal operating income growth (AOIG) valuation of Ohlson and
Gao (2006) is a special case of formula 21 when rf,t = rf for all t, since

V noa0 =
∑∞
t=1

oi1 + (oit − oi1)

(1 + rf )
t −

∑∞
t=2

rf ·
∑t−1
i=1 (oii − (ci − ii))

(1 + rf )
t

=
oi1
rf

+
1

rf

∑∞
t=1

oit+1 − oit − rf · (oit − (ct − it))
(1 + rf )

t .
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The first line of this equation is equation 21, while the second line is AOIG val-
uation. AOIG valuation discounts, at the constant cost of capital rf , streams of
operating income and operating income increments that stretch into the infinite
future. Instead Corollary 3 only requires a finite forecast horizon, provides full
freedom in computing continuation value at time T and accommodates discount
rates that change over time. To compute V noaT we can employ any valuation
model that is consistent with discounted free cash flow valuation.
Formula 21 only depends on operating income and free cash flow. In partic-

ular this formula does not even depend on the accounting identity

ct+1 − it+1 = oit+1 − (noat+1 − noat) , (22)

which is the clean surplus relation for a firm with no financial assets and no
financial liabilities. noat denotes the book value of net operating assets at time
t, with noat = oat−olt where oat and olt are respectively the time t book values
of operating assets and operating liabilities. Identity 22 may not always hold,
for example when the accounting standards envisage that fixed assets may be
revalued without affecting the income statement, but only the balance sheet.
When identity 22 holds for all t, so that noaT =

∑T
i=1 (oii − (ci − ii)) + noa0,

and when V noaT = noaT , then

V noaT −
T∑
i=1

(oii − (ci − ii)) = noa0.

In this case continuation value equals noa0 and requires no forecast, because
noa0 can be observed at the time of the valuation. For this result to hold on a
per share basis, identity 22 needs to hold on a per share basis.
The advantages of valuation as per Corollary 3 over AOIG valuation mirror

those of valuation as per Proposition 1 over AEG valuation. Appendix A.5
discusses the definition of abnormal operating income growth (AOIG) when
the cost of capital is not constant over time. Appendix A.6 discusses how
Proposition 1 and Corollary 3 are linked.

A.5 The definition of abnormal operating income growth
(AOIG) when the cost of capital is not constant over
time

When the cost of capital for the firm is constant over time

zo,t+1 = oit+1 − oit − rf · (oit − (ct − it))

where zo,t+1 denotes abnormal operating income growth over the period [t, t+ 1]
and where rf · (oit − (ct − it)) denotes the change in "required" operating in-
come for the same period [t, t+ 1] to remunerate the change of investment in
operations (oit − (ct − it)) of the previous period [t− 1, t]. However when the
cost of capital is not constant over time, the change in "required" operating
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income over the period [t, t+ 1] becomes

rf,t · (oit − (ct − it)) + (rf,t − rf,t−1) ·
∑t−1
i=0 (oii − (ci − ii)) · 1t≥1

where again t = 0 is the time of the valuation. 1t≥1 is the indicator function
of the condition t ≥ 1. The term (rf,t − rf,t−1) ·

∑t−1
i=0 (oii − (ci − ii)) · 1t≥1 is

the change in required operating income due to the change in the cost of capital
from rf,t−1 to rf,t multiplied by the total increase in capital invested in the
operations over the period [0, t− 1] as measured by

∑t−1
i=0 (oii − (ci − ii)) · 1t≥1.

Then when the cost of capital varies over time, AOIG over the period [t, t+ 1]
can be defined as

zo,t+1 = oit+1−oit−rf,t·(oit − (ct − it))+(rf,t − rf,t−1)·
∑t−1
i=0 (oii − (ci − ii))·1t≥1.

(23)
This equation defines AOIG as the difference between the actual change in
operating income and the change in required operating income during [t, t+ 1].
Note that zo,1 = oi1 − oi0 − rf,0 · (oi0 − (c0 − i0)). Then equation 21 can be
re-written as

V noa0 = E0

[∑∞
t=1

oi0 +
∑t
i=1 zo,i∏t−1

i=0 (1 + rf,i)

]
= E0

[∑∞
t=1

vo,t∏t−1
i=0 (1 + rf,i)

]

with vo,t = vo,t−1 + zo,t and vo,0 = oi0. It can be shown that

rot = oit − rf,t−1 · noat−1 = vo,t − rf,t−1 · noa−1 (24)

where rot is residual operating income produced over the period [t− 1, t] and
noa−1 is the book value of equity at time t = −1. Equation 24 implies that

rot − rot−1 = zo,t − (rf,t−1 − rf,t−2) · noa−1.

Therefore abnormal operating income growth zo,t, defined in equation 23 as
the difference between the actual change in operating income and the change
in required operating income for the same period, differs from the change in
residual operating income rot − rot−1 whenever rf,t−1 6= rf,t−2. Instead when
the cost of capital is constant over time abnormal operating income growth
coincides with the change in residual operating income.

A.6 Articulating Proposition 1 and Corollary 3

We have derived Proposition 1 as a re-writing of dividend discount valuation,
with no additional assumptions. We have also derived Corollary 3 as a re-
writing of discounted free cash flow valuation, with no additional assumptions.
Therefore, in order for both Proposition 1 and Corollary 3 to be true at the same
time, we only need to impose the necessary assumptions for dividend discount
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valuation and discounted free cash flow valuation to be true at the same time
in such a way that

V et = V noat − V nfot

where V nfot is the fair value value of net financial obligations. These necessary
assumptions are the cash flow statement identity

ct+1 − it+1 = Ft+1 + dt+1

and a "time-dependent" version of Modigliani and Miller’s Proposition II, i.e.

re,t = rf,t +
V nfot

V noat − V nfot

(rf,t − rd,t) . (25)

Ft+1 is the net cash flow to and from borrowers and lenders during [t, t+ 1] and
rd,t is the cost of capital of net financial obligations during [t, t+ 1]. Ft+1 =
− (nfot+1 − nfot) + nfet+1 if additionally we assume that the reformulated
financial statements articulate for all t so that

bt = noat − nfot
noat = oat − olt, nfot = fot − fat
oit+1 − nfet+1 = xt+1

where: oat and olt are the time t book values of operating assets and operat-
ing liabilities, fat and fot are the time t book values of financial assets and
financial obligations, noat and nfot are net operating assets and net financial
obligations at time t on the balance sheet, bt is the time t book value of common
shareholders’equity, nfet+1 is net financial expense incurred during [t, t+ 1].
In passing we notice that these assumptions also imply that

V nfot = Et

[
nfet+1 − nfot+1 + nfot + V nfot+1

1 + rd,t

]

= E0

[∑∞
t=1

nfet∏t−1
i=0 (1 + rd,i)

−
∑∞
t=2

rd,t−1 ·
∑t−1
i=1 (nfei − Fi)∏t−1

i=0 (1 + rd,i)

]
.

The first line is a way to write the discounted cash flows valuation of net finan-
cial obligations, while second line is just a re-writing of the first line, which is
similar in spirit to Proposition 1, but is applied to the valuation of net financial
obligations. However in this paper we assume that V nfot = nfot for all t, which
is also a common assumption in practice.
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A.7 Valuation under multi-factor quadratic term struc-
ture models

V v0,m is given by equations 7 and 13 and therefore it can be shown to
satisfy

(dm + D′mx0) eAm+B′my0+y′0Cmy0 = EQ0

[
e−α−β

′y0−y′0Ψy0
(
dm−1 + D′m−1x1

)
eAm−1+B′m−1y1+y′1Cm−1y1

]
.

(26)
Then we can rewrite equation 26 as

ln (dm + D′mx0) +Am + B′my0 + y′0Cmy0 = −α− β′y0 − y′0Ψy0 +Am−1+

(27)

+ B′m−1

(
(I3 −Φy) y0 + Φyµy

)
+
(
(I3 −Φy) y0 + Φyµy

)′
Cm−1

(
(I3 −Φy) y0 + Φyµy

)
+ lnEQ0

[(
dm−1 + D′m−1x1

)
· e(Bm−1+U)′Σyξy,1+ξ′y,1Σ

′
yCm−1Σyξy,1

]
where sub-Appendix A.7.1 shows that

lnEQ0

[(
dm−1 + D′m−1 ((IN −Φ) x0 + η + Σξ1)

)
e(Bm−1+U)′Σyξy,1+ξ′y,1Σ

′
yCm−1Σyξy,1

]
=

(28)

= ln
((
dm−1 + D′m−1 ((IN −Φ) x0 + η)

)
+ Σ3

i=1K
′
m−1γi (Bm−1 + U)

′
γi
)

+

+ ln
|γ|

abs |Σy|
+

1

2

∑3
i=1

(
(Bm−1 + U)

′
γi
)2

with γi being the i-th column of the 3×3matrix γ=
((

ΣyΣ
′
y

)−1 − 2Cm−1

)−1/2

and with

K′m−1 = Dy′
m−1 +

(
Dz
m−1σz

(
ρz,1, ρz,2, ρz,3

)
+
∑n
j=1D

hj
m−1σhj

(
ρhj ,1, ρhj ,2, ρhj ,3

))
Σ−1
y

U′ = 2y′0 (I3 −Φy)
′
Cm−1 + 2

(
Φyµy

)′
Cm−1.

A.7.1 Intermediate result

Equation 28 is derived as follows. We define w =Σyξy,t+1 and notice that
w ∼ N

(
03×1,ΣyΣ

′
y

)
, where w is a 3 × 1 vector. Then we set a = Bm−1 + U,

km−1 = dm−1 + D′m−1 ((IN − φ) x0 + η) and notice that

D′m−1Σξt+1 = Dy′
m−1w +

(
Dz
m−1σz

(
ρz,1, ρz,2, ρz,3

)
+
∑n
j=1D

hj
m−1σhj

(
ρhj ,1, ρhj ,2, ρhj ,3

))
ξy,t+1 + ..

= K′m−1w + ..

where the dots .. denote elements we need not consider to our purposes and
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K′m−1 = Dy′
m−1+

(
Dz
m−1σz

(
ρz,1, ρz,2, ρz,3

)
+
∑n
j=1D

hj
m−1σhj

(
ρhj ,1, ρhj ,2, ρhj ,3

))
Σ−1
y .

Then

EQt

[(
km−1 + D′m−1Σξt+1

)
· e(Bm−1+U)′Σyξy,t+1+ξ′y,t+1Σ

′
yCm−1Σyξy,t+1

]
=

1√
(2π)

3

∫ (
km−1 + K′m−1w

)
e−

1
2ξ
′
y,t+1ξy,t+1+a′w+w′Cm−1wdξy,t+1

=
1√

(2π)
3
abs |Σy|

∫ (
km−1 + K′m−1w

)
e−

1
2w
′(ΣyΣ′y)

−1
w+a′w+w′Cm−1wdw

= EQt

[(
km−1 + K′m−1w

)
ea
′w+w′Cm−1w

]
where we have made the substitutions ξy,t+1 =Σ−1

y w and dξy,t+1 = abs
∣∣Σ−1

y

∣∣ dw
and where abs

∣∣Σ−1
y

∣∣ denotes the absolute value of the determinant of Σ−1
y . Then((

ΣyΣ
′
y

)−1 − 2Cm−1

)
is positive semi-definite and symmetric. This is the case

since ΣyΣ′y is symmetric and positive semi-definite and so is
(
ΣyΣ

′
y

)−1
. Then

Cm−1 is assumed symmetric and negative definite for our purposes without

loss in generality; then γ=
((

ΣyΣ
′
y

)−1 − 2Cm−1

)−1/2

exists and is symmetric.

Then we can write the following

− 1

2
w
′ (

ΣyΣ
′
y

)−1
w + a′w + w′Cm−1w

= −1

2
w′
((

ΣyΣ
′
y

)−1 − 2Cm−1

)
w + a′w = −1

2
w′γ−2w + a′w

= −1

2

(
γ−1w

)′
γ−1w + a′w = −1

2
v′v + a′γv

where v =γ−1w. Hence, if γ is of full rank, it follows that the differential dw is
such that

dw = abs |γ| dv = |γ| dv
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where abs |γ| is the absolute value of |γ| and abs |γ| = |γ| since γ is non-negative
definite. At this point we can write

1

abs |Σy|
√

(2π)
3

∫ (
km−1 + K′m−1w

)
e−

1
2w
′(ΣyΣ′y)

−1
w+a′w+w′Cm−1wdw

=
1

abs |Σy|
√

(2π)
3

∫ (
km−1 + K′m−1γv

)
e−

1
2 v
′v+a′γv |γ| dv

=
|γ|

abs |Σy|
√

(2π)
3

∫ (
km−1 + K′m−1γv

)
·
∏3
i=1 e

− v2i
2 +a′γividvi

=
|γ|

abs |Σy|

(
km−1 +

∑3
i=1K

′
m−1γia

′γi

)
·
∏3
i=1 ·e

(a′γi)
2

2

where γi denotes the i-th column of γ, and substituting for a = Bm−1 + U into
the last line we get equation 28. We notice that the last line makes use of the
fact that

1√
2π

∫
e

(
−u2

2 +au
)
du =

1√
2π
e
a2

2

∫
e−

(u−a)2
2 du = e

a2

2

and

1√
(2π)

3

∫
K′m−1 (γ1v1 + γ2v2 + γ3v3) · e−

v21
2 +a′γ1v1−

v22
2 +a′γ2v2−

v23
2 +a′γ3v3dv1dv2dv3 =

= K′m−1 (γ1a
′γ1 + γ2a

′γ2 + γ3a
′γ3) · e

(a′γ1)2+(a′γ2)2+(a′γ3)2

2 .

A.7.2 Final result

Equations 27 and 28 imply the following equation

dm + D′mx0 =
(
dm−1 + D′m−1 ((IN − φ) x0 + η)

)
+

+ΣN
i=1K

′
m−1γi

(
B′m−1 + 2y′0

(
I3 − φy

)′
Cm−1 + 2

(
φyµy

)′
Cm−1

)
γi

which can be re-written as

dm +
(
Dy′
m, D

v
m, D

z
m,D

h′
m

)
(y′0, v0, z0,h

′
0)
′

=

= dm−1 +


Dy′
m−1

Dv
m−1

Dz
m−1

Dh′
m−1


′


I3 − φy 03×1 03×1 03×n
01×3 1 (1− g) gm′z
01×3 0 1− g gm′z
0n×3 0n×1 0n×1 In −Gh




y0

v0

z0

h0

+


φyµy

0
0

Ghmh


+

+Σ3
i=1K

′
m−1γi

(
B′m−1 + 2y′0

(
I3 − φy

)′
Cm−1 + 2

(
φyµy

)′
Cm−1

)
γi
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implying that

dm = dm−1 + Dy′
m−1φyµy + Dh′

m−1Ghmh +
∑3
i=1 K′m−1γi

(
B′m−1 + 2

(
φyµy

)′
Cm−1

)
γi

Dy′
my0 = Dy′

m−1

(
I3 − φy

)
y0 + 2 ·Σ3

i=1K
′
m−1γiy

′
0

(
I3 − φy

)′
Cm−1γi

Dv
mv0 = Dv

m−1v0

Dz
mz0 =

(
Dz
m−1 +Dv

m−1

)
(1− g) z0

Dh′
mh0 =

(
Dh′
m−1 (In −Gh) +

(
Dv
m−1 +Dz

m−1

)
g ·m′z

)
h0.

Recalling the result γγ′ =
∑3
i=1γiγ

′
i gives the Riccati equations in the text.

A.8 Valuation under affi ne Gaussian term structure mod-
els

Other things as above, when α = 0,Ψ = 03×3 in equation 11, then

rt = β′ · yt (29)

and Cm = 03×3 for all m, so that the price of a discount bond reduces to

P0,m = eAm+B′my0 (30)

Am = Am−1 + B′m−1Φyµy +
1

2
·Bm−1ΣyΣ

′
yB
′
m−1

(31)

Bm = −β + (I3 −Φy)
′
Bm−1 (32)

A0 = 0, B0 = 03×1.

Then under assumption 29 equity value in Proposition 2 reduced to

V e0 =
∑∞
m=1

(
dm + D′mx0

)
· eAm+B′my0 (33)

where Am and B′m satisfy equations 31 and 32, Dy
m = 03×1 for all m, and

x0 = (v0, z0,h
′
0)
′

dm = dm−1 + D′m−1HΣ′yBm−1 + Dh′
m−1Ghmh

D′m =
(
Dv
m, D

z
m,D

h′
m

)
Dv
m = Dv

m−1

Dz
m =

(
Dz
m−1 +Dv

m−1

)
(1− g)

Dh′
m = Dh′

m−1 (In −Gh) +
(
Dv
m−1 +Dz

m−1

)
g ·m′z

d0 = 0, Dv
0 = 1, Dz

0 = 0, Dh
0 = 0n×1.

The terms
(
dm + D′mx0

)
eAm+B′my0 in equation 33 are special cases of V v0,m in

equation 13. Again Dv
m = 1 for all m. The term D′m−1HΣ′yBm−1 in the

equation for dm highlights that equity valuation depends on the correlation
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between the shocks to factors driving interest rates ξy,t+1 and the shocks to
factors driving abnormal earnings growth ξz,t+1 and ξh,t+1. dm also depends
on the "volatility" of factors driving interest rates, as determined by the matrix
Σy, and the "volatility" of factors driving abnormal earnings growth, namely
σz, σh1 , .., σhn that appear in matrix H. Since factors are latent, we can im-
pose the following restrictions to identify the parameters for the affi ne Gaussian
term structure model of equations 30, 31, 32

β =

 1
1
1

 , µy=

 µy1
0
0

 , Φy =

 φy1 0 0
0 φy2 0
0 0 φy3


All elements in these matrixes are scalar constants.

A.9 Parametric version of equation 1 with risk-neutral
valuation and constant discount rate

No-arbitrage implies that

V et = d+D′xt = EQt

[
vt+1 + V et+1

1 + r

]
=
EQt
[
vt+1 + d+D′xt+1

]
1 + r

=

(
vt + g (m′zht) + (1− g) zt + d+D′EQ0

[
xt+1

])
1 + r

giving

d+D′

 vt
zt
ht

 =
1

1 + r

vt + g (m′zht) + (1− g) zt + d+D′

 vt + g (m′zht) + (1− g) zt
g (m′zht) + (1− g) zt
Ghmh + (In −Gh) ht

 .

Separating the variables in this equation we obtain

d =
1

1 + r

(
d+Dh′Ghmh

)
Dv · vt =

1 +Dv

1 + r
· vt

Dzzt =
1− g
1 + r

(1 +Dv +Dz) zt

Dh′ · ht =
Dh′ (In −Gh) + (1 +Dv +Dz) g ·m′z

1 + r
· ht.
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The solution to this system is

d =
Dh′Ghmh

r

Dv =
1

r

Dz =
1− g
r+ g

(1 +Dv)

Dh′ = (1 +Dv +Dz) g ·m′z (rIn×n + Gh)
−1

so that

V et =
1

r

(
Dh′Ghmh + vt +

(1− g) (r+ 1)

r+ g
zt +

(r+ 1)
2

r+ g
g ·m′z (rIn×n + Gh)

−1
ht

)
.

A.10 Valuation under the Ang and Liu (2004) assump-
tions for the cost of equity capital

Proposition 2 gives an equity risk-neutral valuation formula, while most of the
literature and practice rely on equity valuation under the real probability mea-
sure. The formula of Proposition 2 can be adapted to valuation under the
real probability measure by dropping the assumption about the risk premia
Λt = Λ0 + Λ1xt and by assuming instead the equity risk premium of Ang and
Liu (2004). Then let rec,t denote the continuously compounded cost of equity
capital, bcapmt the CAPM beta and pmarkett the CAPM market risk premium
over the period [t, t+ 1]. For simplicity of exposition we now assume

rt = y1,t, y2,t = bcapmt , y3,t = pmarkett .

Therefore now the equity risk-premium is determined by CAPM,
while the stock beta and the market risk premium both follow AR(1)
processes. Then, other things equal, under these assumptions and under the
real measure P the equity valuation formula of Proposition 2 becomes

V v0,m = E0

[
vt · e−

∑t−1
i=0 rec,i·1t≥1

]
rec,t = y1,t + y2,t · y3,t = α+ β′yt + y′tΨyt

xt+1 =
(
IN −ΦP)xt + ηP + ΣξPt+1, ξPt+1 v N (0N×1, IN )

xt = (y1,t, y2,t, y3,t, vt, zt,h
′
t)
′

yt+1 =
(
I3 −ΦP

y

)
yt + ΦP

yµ
P
y + Σyξ

P
y,t+1, ξPy,t+1 v N (03×1, I3)

yt = (y1,t, y2,t, y3,t)
′

V v0,m =
(
dPm +

(
DP
m

)′
x0

)
· eA

P
m+(BP

m)
′
y0+y′0C

P
my0

with α = 0,β′ = (1, 0, 0) ,Ψ =

 0 0 0
0 0 1

2
0 1

2 0

. Now rec,t effectively replaces rt

in the valuation of Proposition 2. E0 [..] denotes time 0 conditional expectation
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under the real probability measure. The superscript P denotes parameters and
variables under the real probability measure. dPm,D

P
m, A

P
m,B

P
m,C

P
m can be de-

termined in the same way as dm,Dm, Am,Bm,Cm once we replace Φ,η,Φy,µy
with ΦP,ηP,ΦP

y,µ
P
y. The valuation formula of this Appendix can also

be extended to cases where the equity risk premium is determined by multiple
systematic risk-factors in the spirit of the Arbitrage Pricing Theory, with factor
loadings and factor risk premia following AR(1) processes.
Ang and Liu (2004) showed that valuations should account for stochastic

interest rates and stochastic equity risk premia, but they discounted cash flows,
not earnings. Instead this Appendix uses their stochastic interest rate and
stochastic equity risk premia in valuations that discount earnings and abnormal
earnings growth.
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