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Abstract

For a contraction Cy-semigroup on a separable Hilbert space, the decay rate is es-
timated by using the weak Poincaré inequalities for the symmetric and anti-symmetric
part of the generator. As applications, non-exponential convergence rate is character-
ized for a class of degenerate diffusion processes, so that the study of hypocoercivity is
extended. Concrete examples are presented.
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1 Introduction

Let (E,.#,u) be a probability space and let (&, 2(&)) be the quadratic form associated
with a Markov semigroup P; on L?(u). The weak Poincaré inequality

(L1 Var,(f) = u(f*) = u(f)* < a(r)E(f, ) + o) f e 7> 0,f € D(&)

with rate function a : (0,00) — (0,00) was introduced in [20] to describe the following
convergence rate of P, to u:

£(t) == sup Var,(Pf), t>0.
[l Fllosc<1
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Explicit correspondence between « and & has been presented in [20]. In particular, the
weak Poincaré inequality (1.1) is always available for elliptic diffusion processes. However,
it does not hold when the Dirichlet form is reducible. A typical example is the stochastic
Hamiltonian system on R? x R¢:

dX; =Y,dt
(12) { t tUl,

dY; = vV2dB, — (VOV(X,) + Y;)dt,

where B, is the Brownian motion on R%, V(Y is the gradient operator in the first component
r € RY and V € C?(RY) satisfies

(1.3) V2V || < M(14|VV])

for some constant M > 0 and Z(V) := [r.e”V®@dz < oo. In this case the invariant
probability measure of the diffusion process is jt = iy X pig, where py(dz) = Z(V) le V@ dy
and /15 is the standard Gaussian measure on R%. Let V® be the gradient operator in the
second component y € R?. Then the associated energy form satisfies &(f, f) = u(|V® f[?),
and is thus reducible.

On the other hand, according to C. Villani [24], if the Poincaré inequality

(1.4) Vary, (f) = p(f*) = (f)? < cm(IVFF), feCpRY)

holds for some constant ¢; > 0, then the Markov semigroup P, associated with (1.2) converges
exponentially to p in the sense that

p(|Pof = pn(f)P + IVBRSP) < coe™u(|f — w(HIP+ V), t>0,f€ChRY

holds for some constants ¢z, A > 0, where and in the following, u(f) := [ fdu for f € L*(p).
If the gradient estimate |V P, f|? < K(t)P,f? holds for some function K : (0,00) — (0, 00),
see [15, 26] for concrete estimates, we obtain the L*-exponential convergence

(1.5) Var,(Pif) < ce MVar,(f), t>0,f¢€ L*(u)

for some constants ¢, A > 0, which has been derived in [12] using the idea of [8]. See
e.g. [1, 8,10, 11, 12, 15, 25, 26] and references within for further results on exponential
convergence and regularity estimates of P;.

Recently, Hu and Wang [16] prove the sub-exponential convergence by using the weak
Poincaré inequality

(1.6) Vary, (f) < a()m (V) + 7 f ke f € Cp(RY)

for some decreasing function « : (0,00) — (0,00), where || f|losc := ess,sup f — ess, inf f.
According to [16, Theorem 3.6], (1.6) implies

(1.7) p(1Pf = (P +IVESP) < c€@)(Ifl5 + n(VFP)), t=0,f € R
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for some constant cs > 0 and

E(t):=inf{s>0: t > —a(s)logs}, t>0.
Again, if the gradient estimate |V P, f|* < K(t)P,f* holds then this implies
(18) Var,(Pf) < e €02 120, f € I2(n)

for some constant ¢; > 0. In particular, if « is bounded so that (1.6) reduces to (1.4) with
¢1 = |||, We obtain the exponential convergence as in the previous case.

In this paper we aim to introduce weak Poincaré inequalities to estimate the convergence
rate for more general degenerate diffusion semigroups where p5 is not necessarily a Gaussian
measure. Consider the following degenerate SDE for (X;,Y;) on R%1F4 = R4 x R% where
di,ds > 1 may be different:

{dxt = Q(VOV,)(Yy)dt,

(1.9) dY; = v2dB, — (Q*(VWW1)(X,) + (VOV,)(Yy))dt,

where @ is a d; x dy-matrix, V; € C?(R%) such that Z(V;) < oc0,i = 1,2, and V), V®
are the gradient operators in components x € R% and y € R% respectively. It is easy to
see that the generator of solutions to (1.9) is dissipative in L*(p), where p := p; X py for
probability measures p;(dz) := Z(V;)"'e™"i®)dz on R%,i = 1,2; see the beginning of Section
3 for details.

Since the coefficients of the SDE (1.9) are locally Lipschitz continuous, for any initial
point z = (z,y) € R“T¥% the SDE has a unique solution (X7, Y;?) up to life time ¢*. Let P,
be the associated (sub-) Markov semigroup, i.e.

Pof(2) = E[f(X7, Y ) lyecsy], f € B(RMT2), 2 e R ¢ > 0.

To ensure the non-explosion of the solution and the convergence of the L?-Markov semi-
group P; to u, we make the following assumption.

(H) QQ* is invertible, there exists a constant M > 0 such that
(1.10) (VOV| < M(14 |VOV™), i=1,2,

for 7y = 1 and some 1 < 75 < 2. Moreover, jo(|VPV3|?) < 0o and Va(y) = ®(|oy —b|?)
for some invertible dy x dy-matrix o, b € R and increasing function ® € C3([0, o))
such that

(L11) sup |@'(r) + 20/ (r) — 272 () (da 1+ 2)27(r)

< .
>0 '(r)

According to [20, Theorem 3.1], there exist two decreasing functions oy, as : (0,00) —
[1,00) such that the weak Poincaré inequality

(1.12) Var,, (f) < amm(IVOFP) + 7l f e £ € C(RY),r >0,

holds for © = 1,2. We have the following result on the convergence rate of P; to u.
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Theorem 1.1. Let V; and V; satisfy (H). Then the solution to (1.9) is non-explosive and p
15 an invariant probability measure of the associated Markov semigroup P;. Moreover, there
exist constants c1,co > 0 such that (1.8) holds for

(1.13) £(t) :== cyinf {7“ >0: cot > al(r)2a2<oz1(r)2> log%},

which goes to 0 as t — oo.

Remark 1.2. (1) When Vs(y) = 1|y|* the measure ps reduces to the standard Gaussian
measure as in [16]. In this case, we may repeat the argument in the proof of [16, Theorem

3.6] to prove (1.7) for
1
(1.14) §(t):inf{r>01 cgtzal(r)log;}, t>0,

and thus extend the main result in [16] to the case that dy # ds. Since in this case we have
as = 1, the convergence rate in Theorem 1.1 becomes

1
£(t) = inf {7’ >0: cot > oq(r)*log ;}, t >0,

which is in general worse than that in (1.14). However, the argument in [16] heavily depends
on the specific Va(y) = 3|y|*> (or by linear change of variables Va(y) = |oy — b|* for some
invertible dy x dy-matrix o and b € R%), and is hard to extend to a general setting as in
(H). Nevertheless, we would hope to improve the convergence rate in Theorem 1.1 such that
(1.14) is covered for bounded as.

(2) Theorem 1.1 also applies to the following SDE for (X, ;) on R4+ for some invertible
dy % dy-matrix o and invertible d; x dj-matrix QQ*:

(1.15) {dXt = Q(VV,)(Yy)dt,

dY, = V20dB, — (Q*(VIVL)(X;) + 00 (VAV,)(Y;))dt.
Indeed, let (Xy,Y;) solve (1.9) and let V; = oV}, Va(y) = Va(o~ty). We have
(VOV)(y) = () (VIVe) (o7 ly), y € R®,

so that o
dX; = Q(VOW)(V)dt = Qo* (V@TR)(V)),

and
d¥; = V30dB, — (cQ" (TOV)(X,) + 00" (VOT)(Vo))dt.

Letting Q = Qo*, we see that the SDE (1.9) is equivalent to (1.15).

To illustrate Theorem 1.1, we consider the following example with some concrete conver-
gence rates of P,.



Example 1.3. We write f ~ g for real functions f and g on R? if f — g € CZ(R?).

(A) Let Vi(z) ~ k(1 + |z[2)% for some constants k, § > 0.

(A1) When Vi(y) = k(1 + |y|?)= for some constants #,e > 0, (1.8) holds with

ed

E(t) = ¢y exp ( — Cpt == T s (o) ), t >0,

for some constants ¢y, co > 0. If, in particular, 6, > 1 then P; converges to u expo-
nentially fast.

(A2) When Vi(y) = % log(1 + |y|?) for some constant p > 0, (1.8) holds with

8(0(P)+1)(1-6)T+5

E(t) = c(1+1) @ (log(e +1)) o)

for some constant ¢ > 0 and

o) e P2 Ap +4+2d

P (p* —4—2d—2p)*

(A3) When Va(y) = 21og(1 + |y|?) + ploglog(e + |y|?) for some constants p > 1, (1.8) holds
with

s(1-5)*t

&(t) = c1(log(e + t))l_p - (loglog(e” +1t)) °

for some constants ¢ > 0.

(B) Let Vi(z) ~ %4 log(1 + |z[?) for some ¢ > 0.
(B1) When Vi(y) = k(1 + |y|?)> for some constants k,& > 0, (1.8) holds with

4(175)++8

§(t) = (1 + t)_#(q) (log(e +1t)) *@

for some constant ¢ > 0.

(B2) When V5(y) = ’%1 log(1 + |y|?) for some constant p > 0, (1.8) holds with

£(t) = ¢(1 + t)” m@rm =1 (log(e + t)) W@ I
for some constant ¢ > 0.

(B3) When Va(y) = $log(1 + |y|?) + ploglog(e + |y|?) for some constant p > 1, (1.8) holds
with
p—1

E(t) = C( log(e 4+ t))_m

for some constant ¢ > 0.



(C) Let Vi(z) ~ Llog(1 + |z|?) + qloglog(e + |z|?) for some g > 0.

(C1) When Va(y) = k(1 + |y|?)2 for some constant & > 0 and € > 0, or
Va(y) = 2% log(1 + |y|?) for some constant p > 0, (1.8) holds with

§(t) = c(log(e + 1))

for some constant ¢ > 0.

(Cy) When Va(y) = $log(1 + |y[*) + ploglog(e + |y|?) for some constant p > 1, (1.8) holds
with
£(t) = c(loglog(e® + t))_(q_l)

for some constant ¢ > 0.

In the next section we present a general result on the weak hypocoercivity for Cjy-
semigroups on Hilbert spaces, see Theorem 2.1, below. In Section 3 this result is used
to prove Theorem 1.1 and Example 1.3. Theorem 2.1 is the main result of this article. It
applies to a much larger class of degenerate SDEs as given in (1.9). The state space of the
Markov process associated to the semigroup can be very general. For example it could be a
manifold or an infinite dimensional space. In particular it also applies to degenerate spheri-
cal velocity Langevin equations as treated in [12]. Those are prescribed by manifold-valued
Stratonovich stochastic differential equations with state space M = R? x S of the form

dw; = —ﬁ([ —wQuwy) VV(zy)dt+ o0 (I —w ® wy) odBy.

Here d € N with d > 2. B is a standard d-dimensional Brownian motion, z ® y = 2y’ for
z,y € R and y” is the transpose of y. S = S9! denotes the unit sphere with respect to
the euclidean norm in R%. Moreover = denotes the space variable in R? and w the velocity
component in S C R? and all vectors in euclidean space are understood as column vectors.
For a specified class of potentials V : R? — R and ¢ > 0 a finite constant, in [12] all
assumptions of Theorem 2.1 are checked for the equations as in (1.16). But due to Theorem
2.1, in comparison with [12] we now can weaken the growth condition on V, since we need
the space component of the corresponding invariant measure only to fulfill a weak Poincaré
inequality. Hence, V may be chosen as any potential V; from Example 1.3. Solutions to
SDEs as in (1.16) e.g. also appear in industrial mathematics as so-called fiber lay-down
processes, see [12] and the references therein. They are used as surrogate models for the
production process of non-wovens. For those models the rate of convergence to equilibrium
is very much of interest, because this rate is related to the quality of non-wovens. Hence,
cases in which empirical measurements indicate slow growing potentials, by our main result,
now may be covered also.



2 A general framework

Let (H, (-,-),|| - ||) be a separable Hilbert space, let (L, Z(L)) be a densely defined linear
operator generating a Cy- contraction semigroup P, = e**. We aim to investigate the decay
rate of P, of type

(2.1) 1P < €@ IFI*+2(f), t=0,feD(L),

where £ is a decreasing function with £(oc0) := limy_,» &(t) = 0, and ¥ : H — [0, 00] is a
functional such that the set {f € H: U(f) < oo} is dense in H.

2.1 Main result

Following the line of e.g. [8, 12], we assume that L decomposes into symmetric and anti-

symmetric part:
L=S—-—A on2,

where 9 is a core of (L, Z(L)), S is symmetric and A is antisymmetric. Then both (S, 2) and
(A, ) are closable in H. Let (S, 2(95)) and (A, Z(A)) be their closures. These two operators
are linked to the orthogonal decomposition H = H; @ Hj in the following assumptions, where

o H—H;, =12,
are the orthogonal projections.

(H1) Hy Cc N(S) :={f € 2(S): Sf =0}; that is, Hy C 2(S) (hence, m2 C 2(S) due to
2 C 2(5)) and S = 0.

(H2) m2 C 2(A) (hence, also mZ C Z(A) due to Z C Z(A)) and m Am|y = 0.

Since (A, Z(A)) is closed, antisymmetric and m 2 C 2(A), (mA, Z(A)) is closable.
Denote the closure by (m A, 2(mA)). By (H2), Am is well defined on 2, and by the

antisymmetry of A,

(Am)* = mA® = —m A holds on 2.

Then Am; with domain Z(Am) = {f € H: mf € Z(A)} is a densely defined closed
operator with adjoint (—m A, Z(mA)). By von Neumann’s theorem, see e.g. [18, Theorem
5.1.9], the operators G := (Am)*Am; and I + (Am)*Am with domain

2(G) == 2((Am)*(Amy)) = {f € 9(Am): Amf € .@((Am)*)}

are are self-adjoint. Furthermore, the latter one is injective and surjective (with range
equal to H) and admits a bounded linear inverse. We define the operator B with domain

P (B) = Z((Am)*) via

(2.2) B = (I + (Am)*An)) Y (Am))*.



Then B* = Am (I + (Am)*Am )=t defined on 2(B*) = H is closed and bounded. Con-
sequently, (B, D((Am)*)) is also bounded and has a unique extension to a bounded linear
operator (B,H). By e.g. [18, Theorem 5.1.9], we have

B = (A7T1)*(I+A7T1(A7T1)*)_1.

Consequently, ||B]| <1 and mB = B.
We shall need the following two more assumptions.

(H3) We assume 2 C 2(G). Furthermore, there exists a constant N > 1 such that
N N
(BSmaf. i) < Ml fl - [mafll. ~(BAmaf.mf) < Ymfll - Imafl. 1€ 2.

(H4) For any f € 2(L) there exists a sequence {f,},>1 C Z such that f,, — f in H and
limsup(—Lfn, fu) < (=Lf, f), limsup ¥(f,) < ¥(f).

n—o0 n—oo

Theorem 2.1. Assume (H1)-(H4) and let ¥ satisfy

(2.3) U(Pf) <U(f), W(ef) <U(f), W(mf)<WV(f), feH
If the weak Poincaré inequalities

(2.4) ImifII? < an(r)[|[AmifIP +r¥(mif), >0, f € D(Am),
and

(2.5) Imafl|* < as(r)(=Sf, f) +79(f), 7>0,f€P

hold for some decreasing functions a; : (0,00) — [1,00),i = 1,2, then there exist constants
1,9 > 0 such that (2.1) holds for

(2.6) £(t) := cyinf {r >0: cot > al(r)2a2<alzr>2) log %},

which goes to 0 as t — oo.

2.2 Preparations

Lemma 2.2. Under (H1)-(H3), we have

(2.7 1BS < glmfl, e

2.8) 1AB) < Imfll. fe2.

(29) (BE LA < Imaf - Ifll, f € 2(D),

210)  (BLA.S) < NSl Il (0 +G)Gmfmf), fea(L)



Proof. Let f € & and g = Bf. By (2.2), mA*mf = —mAmf =0 and myf € Z(A) (see
(H2)), we have

gl + [[Amg||* = (g + (Am)*Amg, g) = ((Am)* f, 9)

= ((Am)'mof, g) = (m2f, Amig) < ||mof]] - | Amig]].

Combining this with

(2.11)

1
lmafll - [Amigll < ZllmafI* + [ Amigl?,
4

we obtain (2.7) for f € &, and hence for all f € H since & is dense in H and the operators
B,y are bounded.
Next, combining (2.11) with m B = B and

1 1
[mafl - [|Amrgl| < §H7T2f\|2 + §HA7T19H2,
we obtain
IABf|]” = [[AmBf|]” = [[Amg|* < |ImafI?, f € 2,

which is equivalent to (2.8).
Moreover, by the symmetry of .S, antisymmetry of A, S7; = 0, and B = 7 B, we obtain
from (2.8) that for any f € 2,

(B, L = (Bf, —Af)| = [{ABf, /)| < [lmafIl - I/}
Since Z is dense in Z(L) and B is bounded, this implies (2.9).
Finally, by m B = B, Sm = 0, the definition of B and (H3), for f € & we have
(BLf, [) = (BLf,mf) = (BSf,m[) = (BAf,m[)
= (BSmaf, m[)
—(BAm f,m1f) — (BAmof, w1 f)
< Nlimfll - llmafll = (1 + G) "G f, mf).
By the boundedness of (1 + G)7!'G and that Z is dense in Z(L), this implies (2.10). O

Next, we need the following result on weak Poincaré inequality for subordinated opera-
tors. Let v be a Lévy measure on [0, 00) such that [;~(r A 1)r(dr) < oo, then

o9)i= [ (1= ptan), 520

is a Bernstein function. Let (Sp, Z(S))) be a non-negative definite self-adjoint operator. We
intend to establish the weak Poincaré inequality for the form (¢,(So)f, f) in terms of that
for (Sof, f). The Nash type and super Poincaré inequalities have already been investigated
in [2, 21]. Recently, sub-exponential decay for subordinated semigroups was studied in [6],
where ¢, is assumed to satisfy

e

im inf ——=

S§—00 og s

> 0.

However, this condition excludes ¢, (s) := 3 which is indeed what we need in the proof of
Theorem 2.1.



Lemma 2.3. Let (Ag, Z2(Ap)) be a densely defined closed linear operator on a separable
Hilbert space Hy. Let PP be the Cy-contraction semigroup generated by the self-adjoint op-
erator —A Ay with domain P(AjAg) :=={f € Z(Ao) : Aof € Z(A})}. If the weak Poincaré
inequality

(2.12) LA < a(r)[AofII? +rTo(f), >0, f € P(A)

holds for some decreasing a : (0,00) — (0,00), where Wy : Hy — [0, 00] satisfies
(2.13) Wo(P f) < Wo(f), t>0,f€ P(A),

then

IfI2 < (/OOO (1- e_a<sr))1/(ds)>_ (6 (A5 A 21|12 + 10 (f), +> 0, f € D(Ag).

In particular, for v(ds) = e~*ds such that ¢,(s) = i, we have

1A < (14 a(r) (L + AgAo) T AGAof, ) +1U(f), >0, f € D(A).

Proof. Since 2((A5A0)Y?) = 2(Ap), we have 2({6,(A;A0)}/?) D 2(4,). By (2.12) and
(2.13), for any f € Z(A),

GIPLEIE = =2 AuPEAE < —ZS | PSP+ W), 02 00 >0,
because P leaves Z(Ap) invariant. Then Gronwall’s lemma gives
(2.14) IB2FI < e = | £ + rU(f)(1 — e 07), > 0,¢>0.
Therefore,
@) | = [t = p2tpwtas) = [ (712 = 1P 1))

> [ (W1 = A = 90— ) Yot
= ([IfI? = r¥(r)) /0 (1- efﬁ)u(ds), r > 0.

This implies the desired inequality. 0

In the proof of Theorem 1.1 (see Section 3 below), to verify (H3) we check the following
two inequalities:

(BSmof.mf) < Nlmf] - Imafll,
(BAmof.m1f) < Nlmifl - Imafll, f€ 2.

The first inequality is easy to check there, see Section 3, the first part in the proof of (H3).
To verify the second, we present below a sufficient condition provided in [12, Prop. 2.15].

(2.15)
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Proposition 2.4. Assume that (—G, 2) is essentially m-dissipative (equivalently, essentially
self-adjoint). If there exists constant N € (0,00) such that

(2.16) (BA)*gll < Nllgll for all g=(I+G)f, feZ,

then
[(BAmof, mf)| < N|mfll - |mafll, fe2.

2.3 Proof of Theorem 2.1
Proof. For any ¢ € [0,1), let

L) = SIfIP + (B, ), feH

By (2.7), we have

(2.17) I S L) < TSNS fem
Now, let f € Z and f; = P.f for t > 0. We have

d
(2.18) Efs(ft) = (Lfe, fr) +e(BLf4, fr) + e(Bfe, Lfy).

By (2.5) and (—Lg, g) = (—Sg,g) for g € 2, we obtain

Imagl® | r2¥(g)
042(7”2) 042(7"2)

(Lg,g) < — . g€ D,ry > 0.

Since f; € Z(L), combining this with (H4) and (2.3), we arrive at

(2.19) (Lfi, f) < — H772ftH2 + 2V (f) < _ H7T2ftH2 4 702\11(10)’ £y > 0.

as(ra)  ao(ra) T aalra)  as(rs)

Next, applying Lemma 2.3 with Hy = Hy, Ay = ((Am)*(Am))Y?|g, and ¥y = |y, such
that condition (2.13) follows from (2.3), we see that (2.4) implies

I fI1? r¥(mf)
ar(r) +1  aq(r) +17

Since the operator (I + (Am)*(Amy)) (A )*Am; is bounded, 2(Am) D 2 due to (H2),
and by (H4) for any g € Z(L) we may find a sequence g, € & such that g, — ¢ in H and
limsup,,_,, ¥(g,) < ¥(g), this inequality holds for all g € Z(L). Combining this with (2.10)
and (2.3), we obtain

(BLfe, fr) < Nllmofell - [|mafell = (I + (Amy)*(Am)) " (Am)* Am fo, mfi)

2.20 il v
(2:20) < Mimfl- sl - s o T

—((I + (Am)"(Am)) " (Am)* Am f,m f) < — r>0,f€Z(Am).

t,?”l > 0.
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Substituting (2.9), (2.19) and (2.20) into (2.18), we arrive at

d Imafell® | ellmfill®
T <= (o e t) eIl mfll + ool - 1)
T9 ET1
+‘Ij(f)(0é2(7”2) 041<T1>—|—1>7 tZO,fe.@

Combining this with

ellmfell? eN?(an(ry) + 1| il

eNllmfell - Imefell < 5

(c1(ry) + 1) 2 ’
2 2 2
clmafl -1 < el o o2
we obtain
d 1 eN?(ay(ry) + 1) 2 ellmfill?
. ZL(f) < —(MM - ; il - a4
' e2ay(ra) || fill? T2 £r
P v (s ey 1) 1200 €?
Taking
2.22 = ! < =
(2.22) = N (o (1) + Do) = 2

since N, ap > 1, we have

1 B €N2(OZ1(’I“1) + 1) 1
205(12) 2 ~ day(ry)’
1
VAN c > 62062(7”2)

Then (2.21) implies

B Lfel? ra 1
SNiag(r) (e () + 12 T Y (agm) T O N as(r) (e () + 1)2)'

d
Ejs(ft) S

Since £ < £, by (2.17) we have || f||* > 3I.(f;), so that

B I(fy) ra r
Ny o) 712 T Y )<a2(7‘2) O N an(ra) () + 1)2)'

d
ala(ft) S

By Gronwall’s lemma and (2.22), we arrive at

t
6N4062<7“2> (041(7”1) + ].)

L(f) <exp| — 2]I€(f) () (3N2r1 4 6Ny (an () + 1)2).
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Taking r| = 7,1y = using (2.17) for € € (0, 3) and that ay(r) > 1, obtain

_r
ar(r)2”
Cgt

a (T)%@(W

Consequently, for any 7 > 0 such that cot > ay(r)%as(

1Al < erexp [ - I+ (), r>o0fezizo

m) log , we have

1Fll* < e (ILFI7 + 2 (F)).-

Therefore, (2.1) with £(¢) in (2.6) holds for f € 2. By (H4), it holds for all f € Z(L). Then
the proof is finished. O

3 Proof of Theorem 1.1

We first embed P, in the framework of Section 2. Since ¢ is invertible, we have oy —b =
o(y — o~ 'b). So, with the shift y — y + c~'b for the second variable y, in (H) we
may and do take b = 0, i.e. Vi(y) = ®(|oy|?). Since we may move o from the potential
V5 to the symmetric part of the generator L corresponding to the solution of (1.9) and the
matrix @ as described in Remark 1.1(2), we only have to consider the case Va(y) = @(|y|*).
Thus

(3.1) VOV, (y) = 20'(jyl*) v
Let
(3.2) =g X fo, where p;(dz;) == Z(Vi)*le*%(”)dxi on R", i=1,2.

By It6’s formula, the generator L for the solution to (1.9) has the decomposition
L=5-A,

where

5 =A% — (V" 2= Z ~ (9,12)dy,).
A =(Q (VW 1>,v<2>->—<@<v Vo), V)

di  da

- Z Z Qij ((axi‘/l)ayj - <aij2>a“)'

i=1 j=1

Since above we moved o from the potential V5 to the symmetric part of L and to the matrix
@, instead of S and @) we should consider

da

Z(JU*)”(({)%@ — (0y,V2)0,,) and Qo

ij=1

13



respectively. But, because oo™ is a constant, symmetric, invertible matrix, without loss of
generality we may take o equal to the identity matrix. The considerations below easily
generalize to general o, but are easier to follow for ¢ being the identity matrix.

Let V = (V). V®) be the gradient operator on R+ and denote

C° (R4 Fd2) — {f € C®°(R“*%) . V f has compact support}.

The integration by parts formula implies that (S, C°(R%%92)) is symmetric and non-positive
definite in L?*(p) while (A, C°(R%%492)) is antisymmetric in L?*(u). Consequently, L* :=
L +2A = S+ A satisfies

u(fLg) = (gL' f), f,g € CZ(RNTE),

Therefore, (L, C°(R%4%42) is dissipative and, in particular, closable in L?(u). Let (L, 2(L))
denote the closure. For our analysis, however, we need more than closability. We need
that the closure (L, Z(L)) is m-dissipative, i.e. the operator (L, Z(L)) is dissipative and the
operator (I — L) : (L)) — L*(p) is surjective. This is implied by (L, C2°(R%%42) being
essentially m-dissipative, i.e. (L, C%°(R%+4%2) is dissipative and (I — L)(2(L)) C L?*(u) is
dense. For a densely defined operator being m-dissipative is equivalent to be the generator
of a Cy-contraction semigroup. Essential m-dissipativity is a uniqueness result. It implies
that the generator of the semigroup is uniquely determined on a given dense set of nice
functions. This is of crucial importance for the present approach, because the conditions of
Theorem 2.1 usually can only be checked on nice functions. Essential m-dissipativity is also
a useful tool to related a Cy-contraction semigroup uniquely to the solution of an SDE. This,
and moreover the first assertion of Theorem 1.1, we show in the following proposition.

Proposition 3.1. Under assumption (H), the operator (L, C>®°(R4“%42)) s essentially m-
dissipative in L?(u), and the Cy-contraction semigroup Ty generated by the closure coincides
with Py in L*(n). Consequently, the solution to (1.9) is non-explosive and u is an invariant
probability measure of P;.

Proof. In [17, Theorem 3.10] under even weaker assumptions as in (H), essential m-dissipati-
vity of (L, C°(R®+92)) in L[?(u) is shown. In the proof condition (1.10) for i = 2 is used.
Hence the closure (L, Z(L)) generates a Cp-contraction semigroup 7;. Then p(Lf) = 0 for
f € 2(L) implies that

3tM(th) = M(Lﬂf> =0, t>20,f¢€ @(L)>

so that g is an invariant probability measure of T;. On the other hand, according to [3,
Theorem 1.1 and Proposition 1.4] (see also [5, Theorem 3.17 and Remark 3.18]), for pu-
a.e. starting point z = (z,y) € RU*% there is a law P* on the space of R4+%_valued
continuous functions such that (X3, Y;):>o is a weak solution to (1.9) and for any distribution
v(dz) = p(z)p(dz) with a probability density p,

wpTef) = /]Rd » E*[f(X:, Yy)|v(dz), t>0,f € B(RTT®).

14



By the uniqueness of the SDE (1.9), we have for p-a.e. z € Ré17d2;
Pif(z,y) = E*[f(X, V)], t>0,f € B(RIT®).

Therefore, u(pPif) = u(pTif) holds for any p € L'(u),t > 0 and f € %B,(R4*9%2), and
hence, P; is a p-version of T;. Consequently, p is an invariant probability measure of P;.
Since F;1 < 1, this implies that P,1 = 1, p-a.e. Since the coefficients of the SDE is at least
C'-smooth, the semigroup P, is Feller so that P1 is continuous. Therefore, P,1(z) = 1 holds
for all z € R1+42 je. the solution to (1.9) is non-explosive. O

Now, to prove the second assertion in Theorem 1.1 using Theorem 2.1, we take
H={fecL*u): pu(f)=0}, Hy={f €H: f(z,y) does not depend on y}.
Then

(3.3) (mf)(z,y) = mf(x) = » [z, y)pa(dy), feH.
Let
7 =HNCERY™) = {f € CZR™): p(f) =0},

Let (L,2(L)),(S,2(5)) and (A, Z(A)) be the closures in H of (L, Z), (S, 2) and (A, 2)
respectively. Since the closure of (L, C°(R%%92)) in L?(u) generates a strongly continuous
contraction semigroup, see Proposition 3.1, we have L?(u) = R(L)®N (L), see [14, Theorem
8.20]. Hence, because the constant functions are in N (L), the operator (L, Z) is essentially
m-dissipative in H.

We verify assumptions (H1)-(H4) as follows.

Proof of (H1): Let f € H. Then mf € L*(uy) with py(mif) = 0. Let {gn}tnso C
C>®(R%) such that p1(g,) = 0 and p1(|g, — 71 f]?) = 0. Let §,(x,y) = gn(z). Then g, € 2,
1(1Gn — 71 f1?) = pa(|gn — 71f]?) = 0 and

tim (1 = Gonl* 1890 = Sgmf*) = lim_ (|G = Gm]*) = 0.

n

Thus, {gn}n>1 is a Cauchy sequence in Z(S) with Sg,, = 0, and converges to 71 f in L?(u).
Therefore, m f € 2(S) and Sm f = 0 since the operator is closed.

Proof of (H2): For any f € 2, we have m f € Z depending only on the first component.
So, m%2 C 9 C P(A). Since (w1 f)(z,y) = w1 f(z) only depends on z, by the definitions of
A and 71, we have

—(WlAﬂl)f(x,y)=/ (QVOVe(y), VIV f(2))na(dy') = (p2(QVIVR), VW f(2)) = 0,

Rd2

where the last step is due to Va(y) = @(Jy|*) and |VV,| € L'(us) according to (H). Then
(H2) holds.
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Proof of (H3): It suffices to prove (2.15). For the first inequality, we only need to find
out a bounded measurable function K such that

(3.4) SAm f=KAmf, fe€ 9,
since this implies

BS = (I + (Am)*Amy) " H(Am)*S = (I + (Am)*Amy) (S Am)*
= (I + (Am)*Am) (K Am)* = BK,

so that by ||B|| < 1 we have

(BSmaf,mif)| = (BEmf, mi f)| < 1K ||lscllmefll - |7 f]l.

Now for any f € 2, (3.1) implies
(SAm f)(2,y) = S(QVIV, VW f) (, y)

di

= (AP — (VO V1)) Y 7 (20 (Jy) (Qy)i0s,m f (x))

=1

=23~ (9"(y) (2 — 40 (g Pyl +4) — 20'([y*)? + 49" (y)ly ) (Qu)ide,m f )

i=1
= 2H(|y){QV*Valy), VU f(2)) = 2H (|ly[*) (Am. f) (2, ),
where
2r®"(r) + (dy + 2)@" (1)
o'(r)
is bounded according to (H). Then (3.4) holds for some bounded function K.

To prove the second inequality in (2.15), we consider the operator G := —m A*m =
(Am)*Amy on 9. By the definitions of A and 7, we have

H(r):= —®'(r) —2r®"(r), r>0,

s (GF)(x,y) = (Gf)(x) = / . — Hess, 1 (QUEVA(Y), QVEVa(y) ) (2)
Hessy, (QVVi(2), @V f(2) ) (4 ) a(ly).

Then (3.1) implies
/ Hessmf(Qv%(y),Qv%w))(m)m(dy)
R2

Sy L, @0, m @ (0 (@)@l

2]1

—4 Z Z/ (00,00, m1f) (2) @ (|y*)* Qur Qiryipi=(dy)

i,7=1 k=1
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dQZ (QQ")i3 (92,02, w11 ) (@) (y Iz dy)

2|V V)
= Z(@@ )is (0,00, 1 £ ) (2).

ij=1

Similarly,

/ Hessy, (Q*V(l)‘/i (), Q*V(l)mf(x)> (y)p2(dy)
R%2

" 2 2
— @ VOVi(). @ VOm () [ 20l + 2D

D/, v
(@ 1<x>,diz mf (@) / AP V(y)pis(dy)

pi2(dy)

_ pa(IVOVP)

Q@ VIN(@). QT m f(2))

Therefore, letting N(V5) = %?VZ'Q) which is a positive constant according to (H), we
obtain

(36)  (Gf)(x,y) = (Gf)(@) = =N(V2) D _(QQ")i{ 000, — (0:,V1) ()0, }m1 f ()

2,7=1
This enables us to provide the following assertion.

Lemma 3.2. (I +G)(2) is dense in H, so that (—G, D) is essentially m-dissipative (equiv-
alently, essentially self-adjoint) on H.

Proof. First recall that for densely defined, symmetric and dissipative linear operators on
a Hilbert space, the property of being essential m-dissipative is equivalent to essential self-
adjointness. Consider the operator (T, C>°(R%)) on the Hilbert space L?(j;) defined by

d1
(3.7) = > (QQ")i {040, — (02, V1)(2)0, }.

i,j=1

Using integration by parts formula we have
<Th7g>L2(u1) = _M1(<QQ*V(1)h7V(1)g>)7 f € C(?O(Rdl)hg S Coo(Rdl)

By [4, Theorem 7] or [27, Theorem 3.1] our assumptions in (H) imply that (T, C>°(R%))
is essentially self-adjoint (hence, essentially m-dissipative) on L?(u1). Therefore, L?(u;) =
R(T) N (T). By (1.12) the null space N (T') consists of the constant functions only. Hence
(T, C>*(R%)) restricted to Hy = {g € L*(u1) : p1(g) = 0} is also essentially self-adjoint.
Thus, (I + G)(2) is dense in H, because H = H,; & H, and G acts trivial on Hj. O
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Now we continue to prove the second inequality in (2.15). Let f € Z and g = (I +G)f.
As in (3.5), by the definitions of A and m; we have

(A%mof)(,y)
= Hessr, /(QVIVa(y), QVPVa(y)) (x) — Hessy, (Q* VWV (2), VW f(2)) (y).
So,

1471 < QYO 1771

(3:8) (2)y2 *v7(1) *y7(1)
OO g 1@ TV QT

Due to (3.6) and (3.7) we see that m f solves the elliptic equation
mf — NVo)Tr f =mg in L*(u).

By applying the elliptic a priori estimates from [9, (2.2) and Lemma 8] (or see [12, Section
5.1] for corresponding proofs including domain issues) to the right hand side of (3.8) we
conclude

(3.9) I1(BA)* 9|2 < cllmigllzzgn) < cllgllzz

for some constant ¢ € (0,00) only depending on V; and V5. According to Proposition 2.4
and Lemma 3.2, this implies the second inequality in (2.15). In conclusion, assumption (H3)

holds.

Proof of (H4): Let f € 2(L). Since u(f) = 0, we have
v i=ess,inf f <0, 79 :=ess,sup f > 0.

Since & is a core of (L, Z(L)), we may take {g,}n>1 C Z such that g, — f and Lg, — Lf
in L?(u). To control ||gn||ose, for any n > 1 we take h, € C°°(R) such that 0 < i/, <1 and

r for r € [’}/1,")/2],
ho(r)=qm—5; forr <~y —1,
Wz—f-%, forrSw—F%.
Then f, := h,(g9,) — f in L*(u),

lim SUP<_Lfn; fn> = lim sup M(h;(gn)2|v(2)gn|2)

< limsup p(|VPg,|?) = limsup(—Lgn, g) = (~Lf, f),
n—oo n—oo

and

) . 1
hmsup an”osc < llmSUp (72 —-—MNn + ﬁ) =% —MN= ||f‘|osc‘

n—oo n—o0

Therefore, we have verified assumption (H4).
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Proof of Theorem 1.1. Tt remains to prove (1.8) for £ in (1.13). Let ¥(f) = ||f||%.. The

osc*

condition (2.3) is obvious by the definition of m and the L*°(u)-contraction of the Markov
semigroups P; and e '“. Since we have verified assumptions (H1)-(H4), by Theorem 2.1 it
suffices to prove the weak Poincaré inequalities

(3.10) I fII? < con(r)||Amif||> + r¥(mf), ©>0,f € 2(Ar),

(3.11) w2 fII* < cas(r){(SF, f) +rT(f), r>0,f €D

for some constant ¢ € (0, c0).
Recall that for any f € 2 we have

(mf)(z,y) = f (@, y)p2(dy).

R42
By Va(y) = ®(|y|*) we obtain

| Am I = / @V, VO 1)l dy)

4 é@) jzzl /Rdl (Orm1.f () (O, mf (2) )1 (d) /Rdg ' (|y[*)*(Qy)i(Qy)ye " dy

di  d2

- Z(Zi/z) Z ZQiijk /Rd1 (O, f () (00,1 f (2)) pr () /Rd2 &' (|y|?)y2 pa(dy)
- M), ot ),

Since QQ* is invertible, 0 < Z(V3) < oo, and

o< [ P lyPn(dy) = palITPP) < o0
by (H), this implies
(3.12) %ul(\v(l)ﬂlfﬁ <l AmfI? < e (IVOmfP), fe

for some constant 1 < ¢ < co. So, f € Z(Am) implies that 7 f € H"?(p), the completion
of C2°(R%) under the Sobolev norm ||g|l12 = /(g% + |[VWg[?). Combining this with
inequality (1.12) for 4 = 1 which naturally extends to f € H%2(u;), we prove (3.10).

Next, for the above f and z € RY, we have f, := f(z,-) — m f(z) € C(RY), po(fy) = 0
and || follose < ||f|lose- Then (1.12) for i = 2 implies

pa(Ifel®) < aa(r)ua(IVP f (@, )7) + 71 f 3es 7> 0.
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Combining this with
[, wallfaPn(aa) = 1f = mf P = Imaf I,
L w19 Bt = [ 9O R gatde.dy) = (LS.,

Rd41+d2
we prove (3.11) for ¢ = 1. O

To prove Example 1.1, we need the following lemma, where the first assertion follows
from [20, Theorem 3.1] and Remark(1) after, and the others are taken from [20, Example
1.4] and its proof.

Lemma 3.3. Let juy(dz) = eV @dx be a probability measure on R?. Then the weak Poincaré
imequality
(3.13) Vary, (f) < rav(r)pv (V) + 7l flloe, 7> 0,f € CH(RY)

holds for some decreasing av : (0,00) — [0,00). In particular:

(1) If V(z) ~ klz|® or V(z) ~ k(1 +|z|?)? for some constants k,d > 0, then (3.13) holds
with

41-5)T

ay(r) =c(log(l+r7") °

for some constant ¢ > 0.

(2) If V(x) ~ % log(1 + |z|?) for some constant p > 0, then (3.13) holds with

ay (r) = er™®

4p+4+2d 1.

for some constant ¢ > 0 and 0(p) := min{wzﬁa 2—4—2d—2p)F

(3) If V(z) ~ £log(1+|z|*) + ploglog(e+ |z|?) for some constant p > 1, then (3.13) holds
with

for some constant ¢y, co > 0.

Proof of Example 1.1. We only consider case (A) and the assertions in the other two cases
can be verified in the same way.
By Lemma 3.3, (2.4) holds for

4(1-5)F

(3.14) a1 (r) = c(logle +771)) 7

for some constant ¢ > 0. Moreover, for case (A;), (2.5) holds for

4(1—e)F

az(r) = (logle+r71)) =
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Then for a constant ¢y > 0, there exists constants k1, ko > 0 such that the inequality

(3.15)

1
Cot > Cl’l(?”)2062<L> log —
r

(03] (7’)2

implies

de
r < K1 exp ( — Kot SRt Fab(1—e) T )

Therefore, the desired assertion follows from (1.13).
For case (As) we may take

as(r) = dr®

for some constant ¢ > 0. Then for a constant ¢, > 0, there exists constants x > 0 such that
the inequality (3.15) implies

80 +1)(1-6)T+5
0(p

r <kt 7 (log(e + 1)) L

so that the desired assertion follows from (1.13).
Finally, for case (A3) we may take

as(r) = exp <c”7“_ﬁ>

for some constants ¢, ¢’ > 0. Then for a constant ¢y > 0, there exists constants x > 0 such
that the inequality (3.15) implies

8(1—8)T

r < k(log(e +t))7(p71) - (loglog(e* +1t)) °

so that the desired assertion follows from (1.13). O
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