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This paper presents a novel Ensemble Kalman Filter (EnKF) data assimilation method based on a parame-
terised non-intrusive reduced order model {P-NIROM) which is independent of the original computational
code. EnKF techniques involve the expensive calculations of ensembles. In this work, the recently devel-
oped P-NIROM Xiao et al. [40] is incorporated into EnKF to speed up the ensemble simulations. A reduced
order flow dynamical model is generated from the solution snapshots, which are obtained from a num-
ber of the high fidelity full simulations over the specific parametric space R. The varying parameter is
the background error covariance o R". Using the Smolyak sparse grid method, a set of parameters in
the Gaussian probability density function is selected as the training points. The proposed method uses
a two-level interpolation method for constructing the P-NIROM using a Radial Basis Function (RBF) in-
terpolation method. The first level interpolation approach is used for generating the solution snapshots
and POD basis functions for any given background error covariance while the second level interpolation
approach for forming a set of hyper-surfaces representing the reduced system.

The EnKF in combination with P-NIROM (P-NIROM-EnKF) has been implemented within an unstructured
mesh finite element ocean model and applied to a three dimensional wind driven circulation gyre case.
The numerical results show that the accuracy of ensembles and updated solutions using the P-NIROM-
EnKF is maintained while the computational cost is significantly reduced by several orders of magnitude
in comparison to the full-EnKFE.

Crown Copyright © 2018 Published by Elsevier Ltd.
This is an open access article under the CC BY license. (http://creativecommons.orgflicenses/by/4.0f)

1. Introduction

alisations to ensure its convergence. This limits its application to
complex problems since the computational cost of each realisation

Data assimilation is a procedure that incorporates the observa-
tion data into numerical models in an optimal way, thus improv-
ing the accuracy of numerical results. The ensemble Kalman filter
(EnKF) is one commonly used data assimilation method since it
has relatively simpler conception and implementation in compar-
ison to 4DVAR data assimilation methods [2]. It was firstly intro-
duced by Evensen [11], and then became popular in a number of
geosciences research fields, such as fluids [27], atmosphere [21],
ocean [20], reservoir modelling [12], multiphase flows [7], biogeo-
chemical model [32], wave simulation [23] and subsurface contam-
inant model [25]. However, EnKF requires a large number of re-
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is expensive in high fidelity full simulations. The approach to tack-
ling this issue is to reduce the dimensional size of the original high
fidelity model using reduced order modelling (ROM) techniques.
ROM is a rapidly growing discipline, with significant potential
advantages in: interactive use, emergency response, ensemble cal-
culations, and data assimilation [1,8,9,17,29]. ROM is expected to
play a major role in facilitating real-time predictions. Proper Or-
thogonal Decomposition (POD) is a widely used method to con-
struct a ROM. Using the POD method, a set of optimal POD bases
(orthogonal vectors) is constructed via a truncated singular value
decomposition (SVD) method. Then it is used to formulate a re-
duced dynamical system that describes the main flow features.
Due to the optimality of convergence in terms of the kinetic en-
ergy of the POD basis functions, the dominant components of a
large dimensional process can be captured with only a small num-

0045-7930/Crown Copyright © 2018 Published by Elsevier Ltd. This is an open access article under the CC BY license. (http:ffcreativecommons.orgflicenses by 4.0/)
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ber of POD basis functions, thus reducing the CPU time by several
orders of magnitude.

Recently, ROM has been used to perform data assimilation.
There are a number of work combining ROM and data assimilation
methods. He et al. applied ROMs for improving data assimilation
under the framework of an EnKF [19]. In the work of [14], Etros
et al. used the balanced truncation based ROM to obtain the state
estimators. Lin et al. used the truncated discrete cosine transform
and non-linear extension of POD to reduce the spatial parameters
and the dynamic states [24]. Tian et al. presented an ensemble 4D-
VAR data assimilation method based on POD [21]. Pagani et al.
proposed a reduced basis EnKF method for state identification in
large-scale dynamical systems [30].

However, those data assimilation methods are combined with
intrusive ROM (IROM). The intrusive ROM is dependent on origi-
nal partial differential equations (PDEs) and source codes. In most
cases, modifications are required in order to maintain the source
code and extend the applications. These modifications are some-
times impossible in commercial software [18] since the source
code of commercial software is not available. In addition, the IROM
has instability and non-linear inefficiency issues [26,28,33]. Those
instability and non-linear inefficiency issues could affect the accu-
racy and efficiency of generating ensembles although some efforts
have been made to improve the stability and the non-linearity effi-
ciency of ROMs [3,5,6,10,13,15,16,22,34,37,38,41]. In order to tackle
these issues in intrusive ROMSs, recently, non-intrusive reduced or-
der models (NIROMs) have been introduced [35,36,29]. However, to
the best of our knowledge, very little work can be found address-
ing non-intrusive model reduction for data assimilation, especially
the EnKF data assimilation method.

In this paper, we present a EnKF method based on a recently
developed parameterised non-intrusive reduced order model (P-
NIROM) [40] to tackle the computational intensive ensembles cal-
culation of the high fidelity full model. The P-NIROM is an efficient
method for reducing the dimensionality of parameterised partial
differential equations (P-PDEs) in a non-intrusive way. The EnKF
based on P-NIROM (P-NIROM-EnKF) has been developed within an
unstructured mesh finite element ocean model. The performance
of the P-NIROM-EnKF has been evaluated by comparing with the
EnKF based on the high fidelity full model {full-EnKF) using a three
dimensional ocean gyre problem.

The structure of the paper is as follows: Section 2 introduces
the ENKF method; Section 3 describes the general parametric non-
intrusive model reduction methods (P-NIROM) for efficient EnKF;
Section 4 derives the new efficient EnKF method using the P-
NIROM; Section 5 illustrates the performance of the P-NIROM-EnKF
method by applying it into a gyre problem. Finally in Section 6,
summary and conclusions are presented.

2. Ensemble Kalman filter

This section provides a brief description of the EnKF. Given
a parameterised discrete dynamical model and a n— dimensional
vector of the model state u

u =Mz,,.tj(ura-ﬂ}e (1)

where u;, denote the background (initial state) at time level tp,
uy; is the numerical forecast at time level t;, p RP (constructing
a P dimensional parameter space), and M;D.gj is the model opera-
tor from time level ty to t;. Taking into account observational data
at time level f;, the EnKF is used to improve the accuracy of the
model forecast at time level t;. We assume that the model state
has the Gaussian probability distribution. By adding the Gaussian
noise ((j({], Ur.2}.f "= (f e Ne)} to the background u;; and running

the simulations from time level tp to t;, the ensemble matrix (con-

taining N ensemble members) can be obtained:
U, = [Urj.l- U g0 UrJ_N,) e Rt (2)

where U;. is an n x N matrix with N. ensemble members. The
anomaly ensemble matrix is

1 _

U= (u,-T,). (3)
= (T,

where ﬁ,j is the ensemble mean matrix at time level f;. The en-

semble error covariance matrix is therefore written:

Re.tj = U;J U‘_]r-—e (4)

The observation data is d;; at time level f; and has a uncertainty
of &;.. Then the perturbed observation data dr}. can be represented

by t!'lt‘ data vector drj plus a random vector from a normal dis-
tribution §;; = Gay;(O.Ryp). Ryy; = B Jﬁ{j is the observation error
covariance matrix, and

d, —d, +8,. (5)

The analysis ensemble member u?, can be given by:
]

-1 x
uf, = U, +R. H (HR. H'+Ry, ) (d;,—Huy, ), ie (1., Ne),
(6)

where R.; is the background error covariance matrix, H is an
operator which interpolates the model solutions onto the obser-
vation space. The Kalman gain is K;; = lil.‘_.,ﬂ.Hir(HR“}.H]r + Rd.rj)'l.
The analysis ensemble error covariance matrix Urj- is obtained:

U, = (I - K H)Re . (7)

3. Parameterised non-intrusive modelling techniques for
efficient EnKF

This section will introduce a P-NIROM for efficient ensemble
calculations in (2). The reduced order modelling methods based
on POD are popular and powerful techniques for circumventing the
intensive computational burden in large complex numerical simu-
lations. POD is capable of representing large systems using a few
number of optimal basis functions. In POD reduced order mod-
elling, the variable state in (1) can be expressed as an expansion
of the POD basis functions ® = (P4, ..., Ppg):

u=du", (8)
where u" = (u} ... uf,. ..., ul )T (1 =m = M) eRM is the reduced
state variable vector (the superscript r indicates the variable asso-
ciated with the reduced order model) to be determined over the
reduced space. Projecting (1) from the n— dimensional space onto

the M— dimensional reduced space (M < < n), yields:

®Tu,; = o' My, (Pu], ). (9)
The parameterised reduced order model can thus be written as:
u = My (Bul p1). (10)

where M! _ is the model operator over the reduced space from
foui p p

time level fy to f;. Eqgs. (8) and (10) can be used for efficient en-
semble calculations where the CPU time can be reduced by a num-
ber orders of magnitude. In this work, the parameter set p in
(10) is the varying Gaussian noise in inputs (initial state) which
are used to drive the ensemble simulations. A more recently de-
veloped non-intrusive method [40] is proposed to construct the
parameterised reduced order model in (10). The P-NIROM [40] is
capable of predicting problems with unseen or different parame-
ters (for example, boundary conditions and initial conditions). It
is also non-intrusive and independent of the computational source
code.
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Fig. 1. Traditional EnKF VS P-NIROM-EnKFE. The blue represents the same procedure
with traditional EnKF; The green indicates the calculation of ensembles using the
P-NIROM. (For interpretation of the references to colour in this figure legend, the
reader is referred o the web version of this article.).

3.1. P-NIROM For calculation of ensemble covariance matrix

Here, we consider the parameter p in (1) is the state covari-

Algorithm 1: Offline training process: Constructing the hyper-
surface function for calculation snapshot solutions and POD
basis functions over the selected range of error covariances of
background states/inputs.

(1) Select a range of the error covariance of background state
variables or inputs R”:

(2) Choose a set of error covariances ps =02 s (1.....5)
as the training points;

(3) Run the high fidelity full model for the given training inputs,
Uy, + G(0. iu5), a set of training snapshots can be obtained;
for j=1 to N; do

\_ Upsg; = My 1.0, (U 1. 1s)
endfor
(4) Calculate the POD basis functions using SVD:

_ N
cbi-‘! — Zj;l w#s-iuﬂ-s-i

ance i = o2 in the Gaussian noise G(0,a?2). For a given jus € RP
(1=5<S5), by adding the Gaussian noise G(p; :af) to the initial
state/inputs at time level ty, the ensemble Ui in (2) can be ob-
tained by running the full order model (1) from time level ty to
t;. Our aim is to generate a robust P-NIROM (10), an approxima-
tion to the original model (1) with significantly reduced degrees
of freedom. The whole procedure of P-NIROM involves the offline
(training) and online stages. The offline procedure involves calcu-
lation of POD basis functions and snapshots based on the selected
state error covariances. The online procedure involves constructing
the P-NIROM and using it for calculating the ensemble error co-
variance matrix for any given background.

3.1.1. Calculation of POD basis functions and snapshots based on the
selected state error covariances

At the training stage, a set of error covariances (training points)
of the initial statefinputs, s = 02.5 € (1.....5), is chosen. By run-
ning the high fidelity full model (1) from time level fy to ty,. a
set of solution snapshots (U(,)), depending on the selected error
covariance of the initial state or inputs (j2;), can be obtained:

U(s) = (Wpsy - » Wt - Upgry ). 1SS, 1<j<N;
(11)

subject to

Uy = Miyr, (Ugg, [Ls). (12)

For any training point (g;), using the singular value decom-
position for Cu, = () U(s). one obtains the singular vectors

Algorithm 2: Constructing the P-NIROM and calculating the
ensemble covariances.

(1) Choose the error covariances p:, 1 =5 <5;
(2) Generate the initial ensembles by adding the error noise to
the basic background ug, or inputs (uy, + G(0. tt5));
(3) Construct a P-NIROM for the given inputs (uy, +G(0, i5))
fors=1toSdo
(i) Calculate the snapshot solutions U,,; for the given
inputs Uy, + jis using the RBF interpolation (16);
(ii) Calculate the POD basis functions from the snapshots
U,,; using SVD;
(iii) Construct the P-NIROM:

r

ey r T
u,u,g.m.rj - fu:.m.tf (u,us_l_tf-—I‘ un up,,m,rj—‘l‘

‘,.,u[(s‘M‘rJ_I),me{],,.,1M] (23)

L endfor
(4) Calculate the ensembles Uy, : in (2) using the P-NIROM:
for j=1 to N do
(a) Initialisation: Uy, + 1;
(b) Calculate the ensembles U] at time level t; over the
reduced space by running (23) from time level
to fj:
fort =t to(; do
form=1 to M do
(i) Assign a complete set of the reduced
solution uLJ__ij = (“;rxj.l.z_,-—l' SRR uleM_tj_IJ
at previous time level t; — 1 into the hyper
-surface fy;m:

Fujma; < (W, 1 qeee s Wl s
coo Uy Mg—1)
(i) Calculate u:f'j-m-i_ft at the current time level
t; using (23):
endfor

endfor
(c) Obtain the approximation of ensembles at the current
time level t; by projecting uLj onto the full space

I
using:

M
- r
uﬂ'-_;-f_j = E up{j.m.i_r—1¢)ﬂj-m
m=1

L endfor

(Vs 10+ Ypen, ) with the singular values (4, 4..... Aus N )- An
optimal set of POD basis functions can be written as a linear com-
binations of the snapshots:

N;
(DU-: = Z W#s‘fuﬂs.j: 1= Ji = N, '“3]'

P

where the POD basis functions &y, = (P q...., Py, ) are opti-
mised to maximise:

N,

- 2

N Y |< s @i | (14)
j=1

subject to

N,

Y < ®p Oy >0 P =1, (15)

i
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Fig. 2. Singular values and logarithmic scale of singular values for free surface and velocity.

where < -,- =, is the canonical inner product in L2 norm. The j&
eigenvalue is a measure of the kinetic energy transferred within
the N, basis functions. The offline training process of snapshot so-
lutions and POD basis functions is summarised in Algorithm (1).

From the training data in (11) and (13), one can now calculate
the snapshots and POD basis functions for any given background
or inputs Uy, +G(0.02) using an interpolation function described
below.

3.1.2. Construction of P-NIROM and calculation of ensembles and
erTor covariances

After constructing the P-NIROM, one can use it for any new
background error covariances, which is treated as the online pro-
cess. During this online process, the P-NIROM constructs a set of
interpolation functions for calculating snapshot solutions and POD
basis functions for any new background error covariances.

In this work, the radial basis functions (RBF) interpolation
method [4] is used for constructing a set of interpolation func-
tions for the snapshot solutions (U(u:)). In the work of [40], we
presented a general P-NIROM. In that work, we construct a set of
interpolation functions for the parameter space using the RBF in-
terpolation method. The RBF is a function that its value depends
on the distance from some other scatter sample data points or
origin. The RBF interpolation method constructs an interpolation
function through a number of random sample data points. For any

given new background error covariance p = RF, the snapshot solu-
tions U(p) = (Uy, p. - .. Ugj pasens qu,-H) can be obtained:

U() = Zggr (U(1 ), - o, U(ts), . .., U(ps)), (16)

where Tgpr is the RBF interpolation function and has the form of,

P
Trer = ) Wpd(llt — m,ll), (17)

p=1

where Zgpr can be approximated by a summation of P REFs ¢. Each
RBF is associated with a different centre point pp, and weighted
by a coefficient wy,. P denotes the number of sample data points.
There are a number of RBFs that can be chosen such as inverse
quadratic, multi-quadric, Gaussian, inverse multi-quadric or plate
spline. The Gaussian RBF (¢(r) = e~/2)*_ r being a radius and o
being a shape parameter) is chosen in this work. The weights w =
(WieoooaWpoooo, wp)T can be calculated by solving Eq. (18),
Aw = Db, (18)
where b is a vector containing target functional values (snapshots
values here) associated with the parameter p, and matrix A has a
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Velocily Mognitude Velocily Magniiude
0.000&+00 0078 0.18 0228 3.0008-01 [0.000e+00 0.078 018 0.228 3.0008-01
— SRS e — Sy S R

Fig. 3. The ensemble mean of velocity solutions using the (a) full-EnKF and (b) P-NIROM-EnKF at day 10.
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Fig. 4. The error of the ensemble mean of free surface and velocity solutions {at day 10) using P-NIROM-EnKE.
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Fig. 5. The ensemble mean of velocity solutions using the (a) full-EnKF and (b) P-NIROM-EnKF at day 20.
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Table 1

CPU cost comparison between full-EnKF and P-NIROM-EnKF required for one time level

Cases Model Assembling and solving  Projection  Interpolation  Total
Ocean Full model 290120 ] 0 290120
gyre P-NIROM o 0.0003 0.0001 0.00040

ree5urface
0.01 002 003 0.04

e
() Ervoe of the easemble mi |...lrrn surface solutions

(b) Error of the ensemsble mean « |{\-.]|-<|:\ ||!|\||.

Fig. 6. The error of the ensemble mean of the free surface and velocity solutions
{at day 20) using P-NIROM-EnKE

form of,
Sl — il DUl —pesll) @l — pell)
s — gl AUy —isll) -l — ppl)
Lf’(”ﬂp.—ﬂlﬂﬁ P (|| ep — p2l) --¢rJIﬂ}v—ﬂ-pll}J

(19)

More details can be founded in the work of [40].

A set of POD basis functions ®, = (P, ;..... Dym..... DM
(M is the number of POD basis function to be chosen) can be ob-
tained by SVD . By projecting the high fidelity model (1) onto the
reduced space, one can obtain the P-NIROM (10). In general, for
any given background error covariance u eRP, the ROM in (10) at
one time level t; ; — t; can be re-written:

0= = fu(u {HH)‘ je(l. ..., Ny). (20)

In the work of [39], a new ROM that uses a set of hyper-surfaces
to replace the traditional ROM's formulation is presented: Non-
intrusive reduced order model (NIROM) based on RBFE. In the new

(@) Updated ensemble mean of & from full-EnkKF
Vetocity Magniiude

0 Oihe+00 aors (§1.1 0225
— i |

3 00 be-01

"8:0. ace
0.004 coos O DDI 0.0z 002
hoiaee N

004 008 0.1 02 02 02 03

—_—
() Error of updated crsemble mean of froe surfbee () Frror of updited cnsembie mean of

Fig. 8. The difference between the full EnKF ensemble mean and the P-NIROM en-
semble mean of the free surface(a) and velocity(b) solutions respectively after per-
forming data assimilation.

NIROM presented in [39], the reduced dynamic system f, in Eq.
(20) has been replaced by a new formulation,

5
fH_m_r__,(uL)=Ewsqb(|lu;—u“if_j||) (. 8) (@1
5=1

where w; denote the weights, and uui = (“L.l,rj--'l‘ — “L.M.:Jq)
are the reduced numerical solution for any given background error
covariance i = o2 € RF at time level tj— 1. The RBF ¢ is chosen
to be Gaussian RBF, ¢ (r) = e~27 in this formulation. For more
details, see the work of [39].

After obtaining the hyper-surfaces, one can use them to cal-
culate the solutions of the ROM at current time level just by in-
putting the solutions at previous time level,

r r
;r m.tj f# m, [I( w1017 == u,t(.l'.ﬂ.ij—l‘- iy u;a.M.I}—l)‘

(22)

(b} Updated ensemble mean of u from P-NIROM-EnKF

Welocity Maognitude
0.000e+00 0075 oS 0325 3.000e-01
fibiiaiiihabdedid R

Fig. 7. The updated velocity solutions at day 20 after performing data assimilation using the {a} full-EnKF and (b} P-NIROM-EnKE
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Fig. 9. The RMSE of free surface and velocity solutions before and after performing P-NIROM-EnKE.

3.2. Summary of using P-NIROM for calculating the ensemble
covariance matrix

The procedure of constructing the P-NIROM and uwsing it for
obtaining the ensemble covariance matrix can be summarised in
Algorithm (2). In Algorithm (2), it includes two procedures: online
and offline procedures. The offline involves generating a number of
different simulations with different inputs Uy, + s and construct-
ing the P-NIROM, see steps 1-3 in Algorithm (2). The online pro-
cedure involves using the P-NIROM to generate ensembles U,.. see
step 4. When using the P-NIROM, one only need to assign reéuced
solutions at previous time level into the hyper-surface.

4. EnKF framework based on P-NIROM

The general framework of P-NIROM-EnKF is described in Fig. 1.
In this figure, the procedures in blue represent the same procedure
with the traditional EnKF method. The procedures in green indicate
the calculation of ensembles using the P-NIROM.

(1) Given a set of background error covariances R . generate
the initial ensemble matrix Uy,;

(2) Using the P-NIROM, propagate each initial ensemble mem-
ber from time level tg to ¢; over the reduced space, one ob-

tains:
T - r r r
Uiy = (W00 Wissaln ) (23)
(3) Calculate the anomaly ensemble matrix over the reduced

I o 1 r_m -
space Uy = ~7abers (U7, U ):
(4) Calculate the ensemble error covariance matrix:

T T
Res, = ®U/U T @7, (24)

(5) Update the ensemble matrix and its error covariance matrix
at time level t; using (6) and (7) respectively:

5. Numerical examples

The non-intrusive reduced order ensemble Kalman filter
method is tested by comparing it with the high fidelity full EnKF
using a three dimensional wind driven circulation gyre case. The
computational domain of the gyre case is 1500 km x 1500 km
in the vertical direction. The wind forcing boundary condition is

set to be the ocean surface. The beta-plane approximation consid-
ers the Coriolis terms. The wind stress uses the cosine function in
the horizontal x direction. The velocity and ocean surface height
solutions are used to construct the ensemble matrix. The geome-
try of the gyre case is a 2D unstructured triangle elements with
an extrusion in the vertical direction. The resolution of the model
has a horizontal length of five kilo meters and biased wind stress.
There are 41 observation locations designed as the intersections
of several tracks over the whole domain. The twin experiment
scheme is employed in the data assimilation framework. Pseudo-
observational data (surface height) is obtained from the high fi-
delity simulation. The EnKF data assimilation occurs every 10 days
and the simulation period is 800 days. The mesh in the simula-
tion has 187,884 nodes. The varying input parameter is the back-
ground error covariance o [0, 1]. Given the training background
state (U, +G(0, j5)). the snapshots and corresponding POD basis
functions are generated at the training stage. The P-NIROM is then
constructed and used to calculate the ensemble covariance matrix
for any given o [0, 1]. For details of P-NIRODM-EnKF, see Fig. 1.

Fig. 2 shows the singular values and logarithmic scale of sin-
gular values resulting from the SVD of the solution snapshots of
free surface and velocity. The singular values decrease drastically
by nearly three orders of magnitude within the first 3 POD basis
functions. In this work, 12 POD basis functions are chosen for the
free surface height and all the components of velocity (u, v, w),
which can capture above 99.5% of the dynamical energy of solu-
tion snapshots, thus ensuring the accuracy of predicted solutions
using the P-NIROM.

A comparison of solutions between the full-EnKF and P-NIROM-
EnKF has been carried out. Figs. 3 and 5 illustrate the ensemble
mean of velocity solutions using the full-EnKF and P-NIROM-EnKF
at days 10 and 20 respectively. As shown in the figure, the veloc-
ity solutions with the P-NIROM-EnKF are visually close to those of
the full-EnKF. Furthermore, the error of the ensemble mean w.r.t.
the observations from the P-NIROM-EnKF is given in Figs. 4 and
6. As we can see, the errors of the ensemble mean of solutions in
P-NIROM-EnKF are small, which suggests that the accuracy of en-
sembles obtained from the P-NIROM is maintained whilst the CPU
cost is reduced by several orders of magnitude in comparison to
the high fidelity model.

Fig. 7 shows the updated velocity solutions after performing
data assimilation with the full-EnKF and P-NIROM-EnKE. The up-
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dated velocity solutions using the P-NIROM-EnKF exhibit in agree-
ment with those using the full-EnKF. The errors of updated free
surface and velocity solutions between the full-EnKF and P-NIROM-
EnKF are given in Fig. 8. The figure again shows that the solu-
tions using the P-NIROM-EnKF have roughly the same accuracy of
those using the full-EnKF. Fig. 9 shows the root-mean-square error
(RMSE) of free surface and velocity before and after ENKF method
respectively. It is evident that using P-NIROM-EnKF, the results of
free surface and velocity solutions have been improved.

Table 1 shows a comparison of the CPU time required for run-
ning the high fidelity full model and P-NIROM. The simulations
were performed on 12 cores machine of an Intel®Xeon®X5680
processor with 3.3GHz and 48GB RAM. The test cases were run
in serial, therefore, only one core was used when running the test
case. It can be seen that the CPU time required for the P-NIROM is
considerably less than that for the high fidelity full model and is
reduced by a factor of 7000. It is worth noting that the P-NIROM
improves the computational efficiency drastically when the num-
ber of ensembles is large. In addition, the computational cost of
the high fidelity full model is dependent on the number of nodes
in the mesh, which means the computation time increases when
finer mesh is used.

6. Conclusion

In this paper, a new P-NIROM-EnKF data assimilation method
is presented for efficient calculation of ensembles. The derivation
of P-NIROM-EnKF is given in details. In the P-NIROM-EnKF, the
Smolyak sparse grid method is used to select the distributions of
the varying parameters (here, the background error covariance). In
addition, the RBF interpolation method to construct a set of re-
sponse functions (hyper-surfaces or surfaces) to represent the pa-
rameter space and reduced fluid dynamics space. Compared to ex-
isting EnKF approaches based on ROM, this P-NIROM-EnKF pre-
sented here does not need to modify the source code. In addition,
it is easy to extend into more complicated applications.

The P-NIROM-EnKF has been implemented under the frame-
work of an unstructured mesh finite element advanced ocean
model (Fluidity). The performance of the P-NIROM-EnKF has been
evaluated using a 3D wind driven circulation gyre case and com-
pared with full-EnKF. An accuracy assessment is carried out by
RMSE. It is demonstrated that accuracy of ensembles from the P-
NIROM-EnKF is maintained whilst the size of the ensemble error
covariance matrix is significantly decreased, thus reducing the CPU
cost by several orders of magnitude. Future work will apply this
method to more complicated cases such as city's air pollution or
urban flows realistic cases.
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