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Abstract 9 

This study proposed a method to quantify direct and indirect effects of the joint torque inputs in the speed-generating 10 

mechanism of a swinging motion. Linear and angular accelerations of all segments within a multi-linked system can 11 

be expressed as the sum of contributions from a joint torque term, gravitational force term and motion-dependent term 12 

(MDT), where the MDT is a nonlinear term consisting of centrifugal force, Coriolis force and a gyroscopic effect 13 

moment. Direct effects result from angular accelerations induced by a joint torque at a given instant, whereas indirect 14 

effects arise through the MDT induced by joint torques exerted in the past. These two effects were quantified for the 15 

kicking-side leg during a rugby place kick. The MDT was the largest contributor to the foot centre of gravity (CG)’s 16 

speed at ball contact. Of the factors responsible for generating the MDT, the direct and indirect effects of the hip 17 

flexion-extension torque during both the flight phase (from the final kicking foot take-off to support foot contact) and 18 

the subsequent support phase (from support foot contact to ball contact) were important contributors to the foot CG’s 19 

speed at ball contact. The indirect effect of the ankle plantar-dorsal flexion torque and the direct effect of the knee 20 

flexion-extension torque during the support phase showed the largest positive and negative contributions to the foot 21 

CG’s speed at ball contact, respectively. The proposed method allows the identification of which individual joint 22 

torque axes are crucial and the timings of joint torque exertion that are used to generate a high speed of the distal point 23 

of a multi-linked system.   24 
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NOMENCLATURE 25 

𝑽  generalised velocity vector consisting of linear and angular velocity vectors for all the segments 26 

𝑽̇ generalised acceleration vector 27 

𝑨𝑽,𝑻a coefficient matrix for the joint torque vector 28 

𝑻a joint torque vector consisting of active torques 29 

𝑨̅𝑽,MDT(𝑽) coefficient matrix for the motion-dependent term, which is a function of the generalised velocity vector 30 

𝑨𝑽,𝑮 coefficient matrix for gravitational force 31 

𝑮 gravitational force vector 32 

𝑩𝑽,other vector consisting of the hip-joint acceleration, segment length fluctuation, and constraint joint axial angle 33 

fluctuation terms 34 

𝑨𝑽,Hip coefficient matrix for the hip joint acceleration vector 35 

𝒙̈Hip hip joint acceleration 36 

𝑨𝑽,𝜼 coefficient matrix for the double derivation of segment length fluctuation vector 37 

𝜼 vector of segment length fluctuation 38 

𝑨𝑽,𝝋 coefficient matrix for the double derivation of constraint joint axial angle fluctuation 39 

𝝋 vector of constraint joint axial angle fluctuation 40 

𝑽̇Dir generalised acceleration vector due to the direct effect of joint torque, gravity and other inputs 41 

𝑽̇Indir generalised acceleration vector due to the indirect effect of joint torque, gravity and other inputs 42 

k k-th time instant in the discrete-time system 43 

h any given instant in time between swing start to time k 44 
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Δ𝑡 time interval in the discrete-time system 45 

𝜳𝑽 coefficient matrix for the generalised velocity vector defined as 𝑬18 + Δ𝑡𝑨̅𝑽,MDT(𝑽) 46 

𝑬18 unit matrix with eighteen rows and columns 47 

𝑽̃ measured generalised velocity vector 48 

𝜳̃𝑽 coefficient matrix for the generalised velocity vector defined as 𝑬18 + Δ𝑡𝑨̅𝑽,MDT(𝑽̃) 49 

𝑽(0) initial value of the generalised velocity vector 50 

i subscript expressing segment number (i.e. i=1, thigh; i=2, shank; i=3, foot) 51 

𝑺𝑖 selective matrix extracting the linear velocity vector of segment i from the generalised velocity vector 52 

𝒙̇𝑖 linear velocity vector for the centre of gravity of segment i 53 

𝒆𝑖 unit vector for the linear velocity vector for the centre of gravity of segment i 54 

𝑠Dir speed of segment’s centre of gravity induced by direct effect of joint torque inputs 55 

𝑠Indir speed of segment’s centre of gravity induced by indirect effect of joint torque inputs 56 

𝑠𝑖 contribution to the speed of segment i’s centre of gravity induced by both direct and indirect effects of joint 57 

torque inputs  58 
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1. Introduction 59 

Quantification of the kinetics underpinning the generation of high distal-point speed in swinging motions has provided 60 

knowledge regarding how players exert joint torques to produce distinctive patterns of motion within a multi-linked 61 

system. Numerous studies have analysed high-speed swinging motions such as baseball pitching (e.g. Feltner and 62 

Dapena, 1986; Feltner, 1989; Fleisig et al., 1995; Fleisig et al., 1996a; Fleisig et al., 1996b), tennis serving (e.g. Elliott 63 

et al., 2003; Reid et al., 2007), and soccer kicking (e.g. Lees and Rahnama, 2013; Nunome et al., 2002). Although 64 

these studies reveal how players exert joint torques during these motions, it remains unclear exactly how and when the 65 

individual joint torques exerted affect the speed of the multi-linked system at ball release or ball contact, because such 66 

kinetic analyses have limitations in dealing with the cause-and-effect relationship between joint torque inputs and 67 

motion outputs. 68 

Since the human body consists of numerous segments connected via joints which are typically assumed to move 69 

with only rotational displacements, human movements are performed through angular displacements at joints to 70 

achieve coordinated multiple segment motion. The equation of motion for a multi-linked system (e.g. human body) 71 

can be expressed generally in the following form (e.g. Kepple et al., 1997; Koike et al., 2017; Zajac et al., 2002) when 72 

ignoring modelling errors: 73 

(Linear and angular accelerations of all segments) or (Angular accelerations of all joints) 

  = (Joint torque term) + (Gravitational term) + (Motion-dependent term), 

(1) 

where the motion-dependent term (MDT) is a nonlinear term consisting of centrifugal forces, Coriolis forces and 74 

gyroscopic effect moments. Equation 1 indicates that segmental motion (i.e. linear and angular accelerations) is 75 

induced not only by the joint torque inputs and gravitational force but also by the MDT. Motion can be induced by the 76 
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joint forces exerted at individual joints through motion-dependent mechanisms, even when the inputted joint torques 77 

are small. These joint forces do not appear directly as a separate term in Equation 1 because they are not a primary 78 

source like joint torques or gravity but are a secondary source included in the motion-dependent effects arising from 79 

the primary sources. 80 

The MDT plays a crucial role in the generation of angular accelerations that influence distal-point speed in 81 

high-speed swinging motions (Hirashima, 2008; Hirashima et al., 2008; Koike and Harada, 2014; Koike and Mimura, 82 

2016a, 2016b; Naito and Maruyama, 2008; Naito et al., 2017; Putnam, 1991). Since the MDT is caused by product 83 

sums of angular velocities of individual segments, the MDT contribution will be relatively large when angular 84 

velocities of several segments increase before ball release or ball contact. The angular velocities of individual 85 

segments, caused by earlier joint torques, produce centrifugal and Coriolis forces, and thus the entire joint torque 86 

time-histories must be considered when investigating the MDT. At any given instant, previously applied joint torques 87 

can still exert an indirect effect on system behaviour through a mechanism sometimes called the “cumulative effect” 88 

of joint torque inputs (Zajac et al., 2003; Hirashima et al., 2008; Hirashima, 2008) or “whip-like effect” (Atwater, 89 

1979; Feltner, 1989; Fleisig et al., 1996; Kibler, 1995; Kindall, 1992; Putnam, 1991). However, the contributions of 90 

these indirect effects to the generation of segmental speeds have not previously been quantified during any swinging 91 

motions. In place of quantifying these indirect effects of joint torque inputs, an analysis decomposing the MDT into 92 

kinematic sources (Hirashima et al., 2008; Naito et al., 2010; Naito et al., 2017) has been implemented to explain how 93 

the components generate speed. However, this analysis does not reveal which axis of each joint torque is crucial, or 94 

the time(s) at which a given joint torque is effective in contributing to the generation of a high distal-point speed. 95 

Greater understanding of how each joint torque contributes to speed generation through these indirect effects is still 96 
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needed. A conversion algorithm that quantifies the generating factors of the MDT has been introduced briefly (Koike 97 

and Harada, 2014), but without detailed methods, and was applied to high-speed swinging motions including the 98 

tennis serve (Koike and Harada, 2014), baseball batting (Koike and Mimura, 2016b), rugby place kicking (Koike and 99 

Bezodis, 2017), and baseball pitching (Koike, Uzawa and Hirayama, 2018). Although the factors contributing to the 100 

generation of the distal-point speed were examined for these motions, the direct and indirect effects of the joint torque 101 

inputs were not separately quantified. 102 

The objectives of this study were to: (1) propose and describe a method which separately quantifies the direct and 103 

indirect effects of joint torques to the generation of distal-point speed in a multi-linked system; and (2) illustrate how 104 

the direct and indirect contributions differ in an example high-speed swinging motion: a rugby place kick. 105 

 106 

2. Methods 107 

2.1. Equation of motion for a multi-linked system 108 

Since the equation of motion for a multi-linked system includes a cause-and-effect relationship between joint torque 109 

inputs and motion outputs, the general equation of motion (Equation 1) was used to derive a recurrence formula which 110 

can take the indirect effect of joint torque inputs into account. The proposed method was applied to the kicking-side 111 

lower limb segments during a rugby place kick.  112 

The dynamical equation for the kicking-side leg, consisting of thigh, shank and foot segments, can be expressed 113 

as follows (see Appendix 1 for details):
 

114 

𝑽̇ = 𝑨𝑽,𝑻a𝑻a + 𝑨̅𝑽,MDT(𝑽)𝑽 + 𝑨𝑽,𝑮𝑮+𝑩𝑽,other (2) 

where the vector 𝑽 denotes the generalised velocity vector 𝑽 =  [𝒙̇1
T   𝝎1

T   𝒙̇2
T   𝝎2

T   𝒙̇3
T   𝝎3

T]
T

, which consists of the 115 
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linear velocity vector 𝒙̇𝑖 and angular velocity vector 𝝎𝑖 of all segments (where subscript i denotes segment number: 116 

i=1, thigh; i=2, shank; i=3, foot). The terms on the right-hand-side of Equation 2 represent the respective contributions 117 

to the generation of the generalised velocity vector of the joint torque term, motion-dependent term, gravitational term, 118 

and a term consisting of all the remaining sources with the matrices AV,Ta and AV,G indicating the coefficient matrices 119 

for the joint torque vector Ta and gravitational force vector G, 𝑨̅𝑽,MDT(𝑽) being the coefficient matrix associated 120 

with the MDT and BV,other indicating the vector consisting of the remaining terms: 121 

𝑩𝑽,other = 𝑨𝑽,Hip𝒙̈Hip + 𝑨𝑽,𝜼𝜼̈ + 𝑨𝑽,𝝋𝝋̈ (3) 

where the matrix AV,Hip is the coefficient matrix for hip joint acceleration 𝒙̈Hip, the matrices AV, and AV, are 122 

coefficient matrices for the vectors 𝜼̈ and 𝝋̈, respectively (see Appendix 1 for more detail). These three terms on the 123 

right-hand side correspond to the hip joint acceleration, segment length fluctuation and anatomical constraint joint 124 

axial angle fluctuation terms, respectively. 125 

Similarly to the combination of “instantaneous and cumulative acceleration vectors” in previous studies 126 

(Hirashima et al., 2008; Zajac et al, 2003), the generalised acceleration vector 𝑽̇ can be expressed as the sum of two 127 

types of acceleration vector: 128 

𝑽̇ = 𝑽̇Dir + 𝑽̇Indir, (4) 

where 𝑽̇Dir denotes the acceleration vector due to the direct effect of joint torque, gravity and other inputs:  129 

𝑽̇Dir = 𝑨𝑽,𝑻a𝑻a + 𝑨𝑽,𝑮𝑮+ 𝑩𝑽,other, (5) 

and 𝑽̇Indir denotes the acceleration vector due to the indirect effect of these inputs, mediated through 130 

motion-dependent processes arising from earlier direct effects: 131 

𝑽̇Indir = 𝑨̅𝑽,MDT(𝑽)𝑽 (6) 
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These relationships, expressed for a continuous-time system, can be represented with a block diagram (Figure 1). 132 

** Figure 1 near here ** 133 

 134 

2.2. Derivation of a recurrence formula with respect to the generalised velocity vector  135 

The generalised acceleration vector can be expressed by difference approximation using the time interval Δ𝑡 of the 136 

discrete-time system shown as: 137 

𝑽̇(𝑘) =
𝑽(𝑘 + 1) −  𝑽(𝑘)

Δ𝑡
 (7) 

After discretising Equations 4 to 6, combining Equations 4 to 7 yields a recurrence formula for the generalised 138 

velocity vector V as follows: 139 

𝑽(𝑘 + 1) = Δ𝑡𝑽̇Dir(𝑘) +𝜳𝑽(𝑘)𝑽(𝑘), 𝜳𝑽(𝑘) = 𝑬18 + Δ𝑡𝑨̅𝑽,MDT(𝑽(𝑘)) (8) 

where E18 is the unit matrix with eighteen rows and columns. 140 

Since the coefficient matrix 𝑨̅𝑽,MDT(𝑽(𝑘)) contains the angular velocity of the generalised velocity vector V(k) 141 

in its elements, the coefficient matrix 𝜳𝑽(𝑘) also contains the elements V(k). Although it is possible to numerically 142 

obtain the states of the individual segments (e.g. linear and angular velocity vectors) for the individual input terms 143 

using discretised Equations 5, 6 and 8, it would be impossible to calculate the indirect effect of the input terms using 144 

these equations because Equation 8 is not a form of primary expression with respect to the vector V(k). 145 

Thus, in order to quantify the indirect effect of the individual input terms, the generalised velocity vector V(k) in 146 

the matrix 𝑨̅𝑽,MDT(𝑽(𝑘)) in Equation 8 must be replaced with the generalised velocity vector 𝑽̃(𝑘) measured at the 147 

k-th time instant: 148 

𝑽(𝑘 + 1) = Δ𝑡𝑽̇Dir(𝑘) + 𝜳̃𝑽(𝑘)𝑽(𝑘), 𝜳̃𝑽(𝑘) = 𝑬18 + Δ𝑡𝑨̅𝑽,MDT(𝑽̃(𝑘)) (9) 
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Since the vector 𝜳̃𝑽(𝑘)𝑽(𝑘) has a form of primary expression with respect to the velocity vector V(k), the recurrence 149 

formula, Equation 9, can be expressed from the beginning of the motion to the k-th time instant of analysis (Figure 150 

2a), and reshaped as shown in Figure 2b, where it becomes possible to quantify the total effect (i.e. direct and indirect 151 

effects) of individual torque inputs to the generation of the generalised velocity vector. 152 

Equations 5 and 9 can quantify the contributions of the individual input terms (i.e. the joint torque term, the 153 

gravitational term, the hip-joint acceleration term, the segment length fluctuation term, and the anatomical constraint 154 

joint axial angle fluctuation term) at time k to the generation of the generalised velocity vector at time k+1 considering 155 

the generating factors of the MDT. 156 

** Figure 2 near here ** 157 

The total effects of joint torque inputs on the generation of the foot centre of gravity (CG) speed are expressed by a 158 

block diagram (Figure 3a) consisting of the direct effect component (Figure 3b) and indirect effect component (Figure 159 

3c).  160 

  161 
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 162 

** Figure 3 near here ** 163 

 164 

The direct and indirect effects of the individual joint torque inputs in generating the MDT can be quantified from 165 

Figure 3 (see Appendix 2 for details). The MDT contribution can be decomposed into kinematic components arising 166 

from centrifugal forces, Coriolis forces, gyroscopic effect moments and segmental length fluctuations (see Appendix 3 167 

for details). 168 

 169 

2.3. Data collection 170 

Six male rugby players (two professional and four university-level; mean ± SD of age: 21.9±1.8 years; height: 171 

1.77±0.06 m; body mass: 81.8±4.4 kg) performed 5 - 8 place kicks. Each provided written informed consent, and 172 

study approval was obtained from the lead author’s institution’s ethics committee. The ball was placed on their 173 

preferred tee and kicked into a net approximately 4 m away. The kickers were instructed to kick as far and as straight 174 

(towards the centre of the net) as possible. Kinematic data (47 markers on the body, 6 on the ball) were recorded with 175 

a 14-camera motion capture system (VICON-MX, Vicon Motion Systems Ltd., Oxford, UK; 500 Hz). Kinetic data 176 

under the support leg were measured with a force platform (9287C, Kistler Inst.; 1000Hz). The kicking action was 177 

divided into two phases: flight and support. These were, respectively, the period from the final take-off of the kicking 178 

foot (KFO) to ground contact with the support foot (SFC), and the period from SFC to ball contact (BC). KFO was 179 

defined as when the kicking foot’s 5
th
 MTP marker first reached a vertical displacement of 0.10 m after its final 180 

ground contact prior to ball contact (Lees et al., 2009); SFC was based on a vertical ground reaction force threshold of 181 
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10 N, and BC was defined as the frame of peak anterior toe velocity (Shinkai et al., 2009). All data were 182 

time-normalised to phase durations as -200% to -100% (flight, KFO to SFC) and -100% to 0% (support, SFC to BC). 183 

Anatomical constraint axes (e.g. varus-valgus axis at knee joint; internal-external rotation axis at ankle joint) were also 184 

considered in the modelling (Koike et al., 2017). The coordinate data were smoothed with a fourth-order 185 

zero-phase-shift Butterworth low-pass digital filter whose optimal cut-off frequencies (5 - 15 Hz) were determined by 186 

residual analysis (Wells and Winter, 1980). Three trials per participant were selected based on the participants’ highest 187 

subjective ratings, and the mean data across these trials were used for each participant. 188 

 189 

3. Results 190 

The flight and support phases lasted 0.11±0.01 and 0.13±0.01 seconds, respectively. The directly measured kicking 191 

foot CG speed gradually increased until -60% (normalised) time, then increased rapidly toward BC, reaching 192 

21.34±0.70 m/s at BC (Figure 4a). The sum of the MDT and the contributions induced by the direct effect of 193 

individual terms matched the measured foot CG’s speed to within 0.19 m/s throughout the movement (Figures 4a to h). 194 

Similarly, the total of the contributions induced by both the direct and indirect effects of individual terms, following 195 

the partition of the MDT into its component indirect terms, also matched the measured foot CG’s speed to within 0.14 196 

m/s (Figures 4a, c to h).  197 

The MDT was the dominant contributor to the foot CG’s speed. The centrifugal force component accounted for 198 

most of this MDT contribution (Figure 4b), but the Coriolis force component was also appreciable during the support 199 

phase; the components relating to the gyroscopic effect moment and the segment length fluctuations were very small 200 

throughout. The MDT’s dynamic contribution increased gradually toward -95% time, then decreased until -50%, 201 
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before increasing rapidly toward BC where it reached 20.84±3.67 m/s, or 98% of the foot CG’s speed at this instant 202 

(Figure 4b). After partitioning the MDT into its components, the total contribution from the direct effects of the 203 

individual joint torque inputs increased until -35% time and then decreased toward BC, while the total indirect effects 204 

of these inputs increased after -60% time toward BC (Figure 4c). The direct effect of the initial velocity term was 205 

positive until -120% time and then became negative toward BC, whereas the indirect effect of the velocity term was 206 

positive throughout, increasing until -90% time and then decreasing toward BC (Figure 4d). The contributions from 207 

the direct and indirect effects of the gravitational force term, the hip joint acceleration term, the segment length 208 

fluctuation term and the joint anatomical constraint axes fluctuation term were small (Figure 4e-h).  209 

Consideration of the time derivatives of the direct and indirect effects associated with the torques for individual 210 

joint rotations allows identification of the times when, and the specific axes about which, key contributions to the 211 

kicking foot CG’s speed at BC (𝑠3(𝑘BC); Figure 5) occurred. Peak positive contributions from the direct and indirect 212 

effects of the hip flexion-extension torque occurred around -110 and -90% time, respectively (Figure 5a). The indirect 213 

contributions from knee flexion-extension and ankle plantar-dorsiflexion torques were also positive (Figure 5d and f) 214 

but these peaked slightly later (around -70% time). At this time, the direct effects of these knee and ankle torques were 215 

large and negative (Figure 5d and f). Aside from the indirect effect of the ankle eversion-inversion torque, particularly 216 

after SFC, the other non-sagittal plane torques made only small contributions throughout the entire movement (Figure 217 

5b, c, e and g). 218 

The integrated contribution across each phase to the foot CG’s speed at BC was also determined for both the 219 

direct and indirect effects of each individual axial torque (Figure 6a and b). The direct and indirect effects of the hip 220 

flexion-extension torque contributed positively to the foot CG’s speed at BC across both the flight phase and the 221 
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subsequent support phase. The indirect effects of the ankle plantar-dorsal flexion torques and the direct effects of the 222 

knee flexion-extension torques, both across the support phase, showed the largest positive and negative contributions, 223 

respectively.  224 

 225 

** Figure 4 near here ** 226 

  227 
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 228 

** Figure 5 near here ** 229 

 230 

** Figure 6 near here ** 231 

 232 

 233 

4. Discussion 234 

This study firstly aimed to propose and describe a method which separately quantifies the direct and indirect effects of 235 

joint torque inputs in the distal-point speed generation of a high-speed swinging motion. Secondly, we aimed to 236 

illustrate how the model outputs differ between these direct and indirect effects, using a rugby place kick as an 237 

example motion. The indirect effects of the joint torques, which are generated through motion-dependent processes as 238 

a result of previously-exerted joint torques, were the largest contributor to the foot CG’s speed at BC in this rugby 239 

kicking motion (Figure 4c). Although the overall sum of the direct effects of joint torques showed only a small 240 

contribution to the foot CG’s speed at BC (Figure 4c), the direct effect of the hip flexion-extension torque (flexor 241 

dominant throughout) was the major positive contributor to the foot CG’s speed at BC, and this contributed during 242 

both flight and support (Figures 6a and b). Interestingly, the indirect effects of the knee flexion-extension torque 243 

(extensor dominant until -20%, then flexor dominant) and ankle plantar-dorsal flexion torque (dorsiflexor dominant 244 

throughout) showed positive contributions, whereas the direct effects of those torques contributed negatively (Figures 245 

5d and f, Figures 6a and b). Although exerting a knee extension torque would induce knee extension and therefore 246 

contribute geometrically to the foot CG’s speed, a negative direct contribution of knee extension torque to the foot 247 
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CG’s speed was observed in this study. This non-intuitive phenomenon may be caused by the dynamic coupling (Kane 248 

and Levinson, 1985) of the leg segments in which the knee extension torque would induce extension of hip joint, and 249 

this hip extension would reduce the foot CG’s speed, where dynamic coupling means that a torque input about one 250 

joint axis can cause multi-axial angular accelerations of the body due to the non-diagonal inertial matrix of the 251 

equation of motion for the system (Hirashima et al., 2007, 2008; Koike et al., 2017; Zajac et al., 2002, 2003). Further 252 

investigation, using an induced joint angular velocity analysis, would be needed to verify this explanation. Since a 253 

flexion torque was exerted about the hip joint throughout the movement and contributed positively to the foot CG’s 254 

speed via both direct and indirect effects, torque reversal – as found to be effective in Herring and Chapman’s (1992) 255 

simulation of a throwing motion – was not observed in this kicking motion. The relatively small effects of the hip joint 256 

torques about the other axes (Figure 5b and 5c) support previous kinematic data which suggested that the contributions 257 

of the hip adduction-abduction and internal-external rotation angular velocities to foot speed in rugby place kicking 258 

are small (Zhang et al., 2012). Finally, the large contribution of the indirect effect of ankle plantar-dorsiflexion torques 259 

to the foot CG’s speed (Figures 5f and 6b) may be because the foot is swung with high speed around the shank and 260 

thigh segments, and therefore this torque assists in effective orientation of the foot segment. This would help to control 261 

the impact location between the foot and ball, which is an important feature for determining the ball flight 262 

characteristics (Peacock and Ball, 2017). A similar effect was also evident in the ankle eversion-inversion torque 263 

(Figure 5g and Figure 6b).  264 

The method proposed in this study quantifies both the direct and indirect effects of individual joint torque inputs 265 

in the generation of distal-point speed, and their use for evaluating performance, whereas previous studies showed 266 

only the direct effect of joint torques in actions such as the generation of elbow extension angular velocity (Hirashima 267 
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et al., 2008; Naito and Maruyama, 2008), of distal-point speed (Naito et al., 2017), and of angular velocities about the 268 

longitudinal axes of the upper arm and forearm segments (Naito et al., 2014) during overarm throwing and baseball 269 

pitching, and in the generation of knee extension angular velocity during soccer kicking motion (Naito et al., 2010). 270 

Although previous studies decompose the MDT into several components in order to describe how particular kinematic 271 

features of segmental and joint movements affect the MDT contributions (e.g. Hirashima et al., 2008; Naito and 272 

Maruyama, 2008; Naito et al., 2010; Naito et al., 2017; Putnam, 1991, 1993), kinematic analyses alone cannot reveal 273 

the mechanisms by which these movements induce effective joint torques. 274 

The capability of the algorithm to calculate the direct and indirect effects separately during the analysis of 275 

high-speed swinging motions has been demonstrated. This approach can aid in the understanding of the specific 276 

effects of individual joint torques exerted during swinging motions. For example, in rugby place kicking, high foot 277 

speed at BC is required to achieve high ball launch velocities. In our analysis of the rugby place kick, the hip 278 

flexion-extension torque exerted at around -110% time caused large foot CG speed at BC via the direct effect of the 279 

torque, and the same axial torque exerted at around -90% time induced large foot CG speed at BC via the indirect 280 

effect. Since the foot CG’s speed induced solely by the direct effect of joint torques is limited by the force-producing 281 

capacity of muscles crossing the joint, utilisation of the motion-dependent mechanisms is an effective strategy for 282 

producing higher distal-point speeds during such a high-speed motion. Because the indirect effect of the hip 283 

flexion-extension torque exerted around -90% time plays a significant role in the speed generation of the foot’s CG at 284 

BC by enhancing the contributions of the MDT prior to BC (Figures 5a and 6b), it is necessary to examine the direct 285 

and indirect effects separately. The indirect effects of the knee flexion-extension and ankle plantar-dorsiflexion torques 286 

peaked after the indirect effect of the hip flexion-extension torque, and the timing of these peaks (at approximately 287 
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-70% time) occurred close to where the centrifugal and Coriolis force components of the MDT inflected (Figure 4b). 288 

While the ankle joint torque also plays a role via the indirect effect in the foot CG’s speed generating mechanism 289 

(Figure 5f), the role of the knee joint extension-flexion torque via the direct effect would be to prevent knee-joint 290 

hyperextension (Apriantono et al., 2006; Dörge et al., 2002) and the role of the ankle plantar-dorsiflexion torque via 291 

the direct effect may be to control the foot for accurate contact with the ball.  292 

This study has presented the contributions to the kicking foot CG’s speed using a model consisting only of the 293 

kicking-side thigh, shank and foot segments. Since the current model consists of only these segments, the 294 

contributions of joint torques other than the kicking-leg joint torques were not quantified. Thus, an analysis using a 295 

whole-body model would be necessary to fully clarify the roles of all joint torques during rugby place kicking. A more 296 

complete investigation of the whole-body kicking motion would require investigation of the contributions to the 297 

angular velocities such as joint angular velocities and foot angular velocity using a whole-body model. However, 298 

focusing on just the kicking leg is an appropriate starting point in understanding such complex high-speed swinging 299 

motions, particularly given the primary aim of our study was to detail the model and demonstrate its potential. This 300 

method can now be applied to any swinging motion, in a whole-body or part-body way, for a more complete 301 

understanding of the distal-point speed generating mechanisms. Since this approach enables the effects of joint torque 302 

inputs to be obtained even when the MDT plays a crucial role in the distal-point speed generation, estimation of 303 

muscle force contributions can be performed by solving the load distribution problem with use of musculoskeletal 304 

models (e.g. Delp et al., 2007).  305 

 306 

5. Conclusion 307 
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A method for quantifying direct and indirect effects of joint torque inputs in the speed generating mechanism of a 308 

swinging motion has been introduced, in which a direct effect is generated by angular accelerations induced by a joint 309 

torque at a given instant, whereas an indirect effect is generated through a motion-dependent term (MDT: a nonlinear 310 

term consisting of centrifugal force, Coriolis force and a gyroscopic effect moment) induced by earlier application of a 311 

joint torque. The method allows identification of the individual joint torque axes and timings of joint torque exertion 312 

that are used to generate a high speed of the distal point of a multi-linked system. The two types of effect were 313 

quantified for joint torque inputs through a recurrence formula with respect to the generalised velocity vector of a 314 

multi-linked system based on the equation of the system’s motion including a cause-and-effect relationship between 315 

joint torque inputs and motion outputs. The practical potential of this approach has been demonstrated through its 316 

application to modelling the role of the kicking-side leg in generating foot speed during a rugby place kick. Important 317 

contributions to foot CG speed, for example from the direct and indirect effects of the hip flexion-extension torque 318 

during the flight phase and the subsequent support phase, were identified by considering the factors responsible for 319 

generating the MDT. Further investigation will be needed to determine both direct and indirect effects for whole-body 320 

joint torque inputs in the generation of distal-point speed in swinging motions. 321 
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Figure 1. A block diagram representing the relationships between accelerations arising from the direct and indirect 413 

effects of inputs (e.g. joint torques, gravity and other terms) and the generalised acceleration and velocity vectors. 414 

Plain arrows indicate multiplication of the input vector with the matrix inside the box to which the arrow is pointing, 415 

with the exception of boxes including ∫ ,which correspond to a time-integral operation. 416 

 417 

  418 
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Figure 2. A block diagram representing the recurrence formula with respect to the generalised velocity vector. Plain 419 

arrows correspond to multiplication of the input vector with the matrix inside the box to which the arrow is pointing. 420 

Reshaping Figure 2a into b identifies the contributions due to individual terms 𝑽̇Dir , as expressed in Equation 5, at 421 

each time instant to the generation of the generalized velocity vector including the motion-dependent processes of the 422 

torque inputs arising at any later time. 423 

 424 

  425 
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Figure 3. A block diagram representing the direct and indirect effects of joint torque inputs to the generation of foot 426 

segment speed s3 at time k. Plain arrows correspond to multiplication of the input vector with the matrix inside the box 427 

to which the arrow is pointing. The highlighted part of individual block diagrams in the direct effect (Figure 3b) and 428 

the indirect effect (Figure 3c) show respectively the contributions of the direct and indirect effects of joint torque 429 

inputs at time instant h to the generation of the foot CG’s speed at BC. 430 

 431 

  432 
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Figure 4. Time-curve contributions of the direct and indirect effects of individual terms to the generation of the 433 

kicking foot CG’s speed 𝑠3(𝑘) for k=-200% to 0% (normalised) time. The values shown are the integrated 434 

contributions due to the direct and indirect effects of each source from t=-200% to k. Each line represents the mean 435 

across the participants at each normalised time, and the white-coloured and shaded regions indicate one standard 436 

deviation either side of the mean. Note: the scale in Figures e to h differs from the one in Figures a to d for visual 437 

purposes. For clarity, the contributions from gyroscopic effect moments and segment length fluctuations have been 438 

omitted from Figure b because the magnitudes of their mean values across the participants were less than 0.14 m/s and 439 

0.4 m/s, respectively, throughout. 440 

 441 

  442 



29 

 

Figure 5. Time-curve contribution rates of the direct and indirect effects of joint torque inputs at each instant during 443 

the flight and support phases to the generation of kicking-side foot CG’s speed at ball contact 𝑠3(𝑘BC). The units of 444 

the vertical axis for each graph are m/s per millisecond. These contribution rates indicate the time when, and the 445 

specific axis about which, each of the analysed torques induced the foot CG’s speed at BC. The white-coloured and 446 

shaded regions indicate one standard deviation either side of the mean. 447 

 448 

  449 



30 

 

Figure 6. Mean and standard deviation for the integrated contributions from the direct and indirect effects of joint 450 

torque inputs during the flight and support phases to the generation of foot CG’s speed at ball contact; these 451 

correspond to the areas under the respective curves in Figure 5 (pre- and post-SFC, 100%). 452 

 453 

  
454 
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Appendices 
455 

 456 

Appendix 1 
457 

Figure A1 shows a schematic diagram of a kicking-leg model containing three rigid segments – the thigh, shank and 458 

foot – with the lower trunk segment also described but not included in the model. Under the assumption that the 459 

human body can be modelled as a multi-linked system of rigid segments, the dynamical equations for individual 460 

segments can be expressed in a matrix form with respect to all segments as follows (Koike et al., 2017): 461 

𝑴𝑽̇ = 𝑷𝑭+ 𝑸𝑵+𝑯+ 𝑮 (A1) 

where M is the inertia matrix, and V is the generalised velocity vector consisting of linear velocity vectors and angular 462 

velocity vectors for all the segments. P is the coefficient matrix for vector F which contains all joint force vectors. Q 463 

is the coefficient matrix for vector N which contains all joint moment vectors. H is the gyroscopic effect moment 464 

vector, and G is the vector due to the gravitational force.  465 

Details of the matrices identified in the dynamical equations in Equation A1 are as follows: matrices O and E, without 
466 

a subscript, denote the zero and unit matrices with three rows and three columns, and matrix O with a subscript mxn 
467 

denotes the zero matrix with m rows and n columns. 
468 

𝑽 =   [𝒙̇1
T   𝝎1

T   𝒙̇2
T   𝝎2

T   𝒙̇3
T   𝝎3

T]
T
, 𝑭 = [𝒇1

T   𝒇2
T   𝒇𝟑

T]
T
, 𝑵 = [𝒏1

T   𝒏2
T   𝒏3

T]
T
   (A2) 

 
469 

𝑴 = block diag{𝑚1𝑬, 𝑰̂1,𝑚2𝑬, 𝑰̂2, 𝑚3𝑬, 𝑰̂3} (A3) 

 
470 
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𝑷 =

[
 
 
 
 
 
 

𝑬 −𝑬 𝑶
[𝒓1,cg−P̅̅ ̅̅ ̅̅ ̅ ×] −[𝒓1,cg−D̅̅ ̅̅ ̅̅ ̅̅ ×] 𝑶

𝑶 𝑬 −𝑬
𝑶 [𝒓2,cg−P̅̅ ̅̅ ̅̅ ̅ ×] −[𝒓2,cg−D̅̅ ̅̅ ̅̅ ̅̅ ×]

𝑶 𝑶 𝑬
𝑶 𝑶 [𝒓3,cg−P̅̅ ̅̅ ̅̅ ̅ ×] ]

 
 
 
 
 
 

, 𝑸 =

[
 
 
 
 
 
𝑶 𝑶 𝑶
𝑬 −𝑬 𝑶
𝑶 𝑶 𝑶
𝑶 𝑬 −𝑬
𝑶 𝑶 𝑶
𝑶 𝑶 𝑬 ]

 
 
 
 
 

, 𝑯 =

[
 
 
 
 
 
 

𝑶3×1
−𝝎1 × (𝑰̂1𝝎1)

𝑶3×1
−𝝎2 × (𝑰̂2𝝎𝟐)

𝑶3×1
−𝝎3 × (𝑰̂3𝝎3)]

 
 
 
 
 
 

, 𝑮 =

[
 
 
 
 
 
𝑚1𝒈
𝑶3×1
𝑚2𝒈
𝑶3×1
𝑚3𝒈
𝑶3×1]

 
 
 
 
 

 (A4) 

 
471 

** Figure A1 near here ** 472 

 473 

Assuming that every segment is connected to its adjacent segment at a joint, the geometric constraint for linked 474 

segments for all joints can be represented in matrix form as: 475 

𝑪𝑽̇ + 𝑪̇𝑽 = 𝜼̈ + 𝑩𝒙̈Hip (A5) 

where C is the coefficient matrix for vector V, and 𝜼̇ is the vector consisting of the differences between the distal and 476 

proximal point velocity vectors at individual joints (Koike et al., 2017). The matrix B is the coefficient matrix of hip 477 

joint acceleration 𝒙̈Hip. 478 

 
479 

𝑪 = [

−𝑬 [𝒓1,cg−P̅̅ ̅̅ ̅̅ ̅ ×] 𝑶 𝑶 𝑶 𝑶

𝑬 −[𝒓1,cg−D̅̅ ̅̅ ̅̅ ̅̅ ×] −𝑬 [𝒓2,cg−P̅̅ ̅̅ ̅̅ ̅ ×] 𝑶 𝑶

𝑶 𝑶 𝑬 −[𝒓2,cg−D̅̅ ̅̅ ̅̅ ̅̅ ×] −𝑬 [𝒓3,cg−P̅̅ ̅̅ ̅̅ ̅ ×]

] , 𝜼 = [

𝒓̈1,cg−P̅̅ ̅̅ ̅̅ ̅
∗

𝒓̈2,cg−P̅̅ ̅̅ ̅̅ ̅
∗ − 𝒓̈1,cg−D̅̅ ̅̅ ̅̅ ̅̅

∗

𝒓̈3,cg−P̅̅ ̅̅ ̅̅ ̅
∗ − 𝒓̈2,cg−D̅̅ ̅̅ ̅̅ ̅̅

∗

] , 𝑩 = [
−𝑬
𝑶
𝑶
] (A6) 

 
480 

𝑪̇ =

[
 
 
 
 𝑶 [(𝟐𝒓̇1,cg−P̅̅ ̅̅ ̅̅ ̅

∗ +𝝎𝟏 × 𝒓1,cg−P̅̅ ̅̅ ̅̅ ̅) ×] 𝑶 𝑶 𝑶 𝑶

𝑶 −[(𝟐𝒓̇1,cg−D̅̅ ̅̅ ̅̅ ̅̅
∗ +𝝎𝟏 × 𝒓1,cg−D̅̅ ̅̅ ̅̅ ̅̅ ) ×] 𝑶 [(𝟐𝒓̇2,cg−P̅̅ ̅̅ ̅̅ ̅

∗ +𝝎𝟐 × 𝒓2,cg−P̅̅ ̅̅ ̅̅ ̅) ×] 𝑶 𝑶

𝑶 𝑶 𝑶 −[(𝟐𝒓̇2,cg−D̅̅ ̅̅ ̅̅ ̅̅
∗ +𝝎𝟐 × 𝒓2,cg−D̅̅ ̅̅ ̅̅ ̅̅ ) ×] 𝑶 [(𝟐𝒓̇3,cg−P̅̅ ̅̅ ̅̅ ̅

∗ +𝝎𝟑 × 𝒓3,cg−P̅̅ ̅̅ ̅̅ ̅) ×]]
 
 
 
 

 (A7) 

 
481 

The equations for the anatomical constraint axes (e.g. varus/valgus axis at the knee joint), about which the joints 482 

cannot rotate freely, can be characterised as follows (Koike et al., 2017): 483 
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𝑨𝑽̇ + 𝑨̇𝑽 = 𝝋̈ (A8) 

where A is the coefficient matrix for the vector V, and 𝝋̈ is the vector consisting of double differentiated values of 484 

the two-set of inner products (i.e. 𝒆1,𝑥
T 𝒆2,𝑧 = 𝜑2 at knee joint; 𝒆2,𝑥

T 𝒆3,𝑧 = 𝜑3 at ankle joint) of unit vectors of 485 

adjacent segments, expressing anatomical constraints. 486 

Details of the matrices identified in the anatomical constraint equations in Equation A8 are as follows: 
487 

 488 

𝝋 = [
𝜑𝟐(𝑡)
𝜑𝟑(𝑡)

] , 𝑨 = [
𝑶1×3 −𝒆𝟐,𝑧

T [𝒆𝟏,𝑥 ×] 𝑶1×3 −𝒆𝟏,𝑥
T [𝒆𝟐,𝑧 ×] 𝑶1×3 𝑶1×3

𝑶1×3 𝑶1×3 𝑶1×3 −𝒆𝟑,𝑧
T [𝒆𝟐,𝑥 ×] 𝑶1×3 −𝒆𝟐,𝑥

T [𝒆𝟑,𝑧 ×]
] (A9) 

 489 

𝑨̇ = [
𝑶1×3 𝑨̇1,2 𝑶1×3 𝑨̇1,4 𝑶1×3 𝑶1×3

𝑶1×3 𝑶1×3 𝑶1×3 𝑨̇2,4 𝑶1×3 𝑨̇2,6
] 

{
 
 

 
 𝑨̇1,2 = −(𝝎2 × 𝒆2,𝑧)

T
[𝒆1,𝑥 ×]−𝒆2,𝑧

T [(𝝎1 × 𝒆1,𝑥) ×],

𝑨̇1,4 = −(𝝎1 × 𝒆1,𝑥)
T
[𝒆𝟐,𝑧 ×]−𝒆1,𝑥

T [(𝝎2 × 𝒆2,𝑧) ×],

𝑨̇2,4 = −(𝝎3 × 𝒆3,𝑧)
T
[𝒆𝟐,𝑥 ×]−𝒆3,𝑧

T [(𝝎2 × 𝒆2,𝑥) ×],

𝑨̇2,6 = −(𝝎2 × 𝒆2,𝑥)
T
[𝒆𝟑,𝑧 ×]−𝒆2,𝑥

T [(𝝎3 × 𝒆3,𝑧) ×]

 

(A10) 

 490 

The joint moment vector N is considered to be the sum of an active joint torque vector Ta and a constraint joint torque 491 

vector Tp: 492 

𝑵 = 𝑺a𝑻a + 𝑺p𝑻p (A11) 

where the matrices Sa and Sp are the coefficient matrices for Ta and Tp, respectively. 493 

 
494 

𝑺𝑎 =

[
 
 
 
 
𝑲1
−1 𝑶3×2 𝑶3×2

𝑶3×3 𝑲2
−1 [

1 0 0
0 0 1

]
T

𝑶3×2

𝑶3×3 𝑶3×2 𝑲3
−1 [

1 0 0
0 0 1

]
T

]
 
 
 
 

, 𝑺𝑝 = [

𝑶3×1 𝑶3×1
𝑲2
−1[0 1 0]T 𝑶3×2

𝑶3×1 𝑲3
−1[0 1 0]T

] (A12) 

 
495 
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𝑲1 = [𝒆0,𝑥 𝒆1,𝑦
′ 𝒆1,𝑧],   𝒆1,𝑦

′ = (𝒆1,𝑧 × 𝒆0,𝑥)/‖𝒆1,𝑧 × 𝒆0,𝑥‖  

𝑲𝑗 = [𝒆𝑗−1,𝑥 𝒆𝑗,𝑦 𝒆𝑗,𝑧], (𝑗 = 2, 3)
} (A13) 

 
496 

where the unit vector ej,i denotes the i-th axial vector of the j-th joint. 
497 

 
498 

𝑻𝑎 = [𝜏1,𝑥 𝜏1,𝑦 𝜏1,𝑧 𝜏2,𝑥 𝜏2,𝑧 𝜏3,𝑥 𝜏3,𝑧]T,   𝑻𝑝 = [𝜏2,𝑦 𝜏3,𝑦]T (A14) 

 499 

The gyroscopic effect moment vector H in Equation A1, which is also a function of the generalised velocity vector, 500 

can be expressed in the form of the product of the coefficient matrix 𝑯̅ and the generalised velocity vector V such 501 

that: 502 

𝑯(𝑽) = 𝑯̅(𝑽)𝑽 (A15) 

Detail of the matrices identified in Equation A15 is as follows:
 503 

𝑯̅(𝑽) = block diag{𝑶, [(𝑰̂𝟏𝝎𝟏) ×], 𝑶, [(𝑰̂𝟐𝝎𝟐) ×], 𝑶, [(𝑰̂𝟑𝝎𝟑) ×]} (A16) 

Substituting Equations A5, A8 and A11 into Equation A1 yields a dynamic equation for the system as follows: 504 

[
𝑽̇
𝑭
𝑻p

] = [

𝑴 −𝑷 −𝑸𝑺𝑝
𝑪 𝑶9×9 𝑶9×2
𝑨 𝑶2×9 𝑶2×2

]

−1

{[

𝑸𝑺𝑝
𝑶9×7
𝑶2×7

] 𝑻a + [
𝑯̅
−𝑪̇
−𝑨̇

] 𝑽 + [

𝑬18
𝑶9×18
𝑶2×18

] 𝑮 + [
𝑶18×3
𝑩

𝑶2×3

] 𝒙̈Hip + [

𝑶18×9
𝑬9
𝑶2×9

] 𝜼̈ + [

𝑶18×2
𝑶9×2
𝑬2

] 𝝋̈} (A17) 

where the matrices En and Omxn denote a unit matrix with n rows and columns, and the zero matrix with m rows and n 
505 

columns, respectively. 
506 

Details of the matrices identified in the dynamical equations in Equations 2 and 3 are as follows. 
507 
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𝑨𝑽,𝑻𝑎 = 𝑴
−1𝑾𝑸𝑎,

𝑨̅𝑽,MDT = 𝑴
−1𝑾𝑯̅+𝑴−1 {𝑷𝑯̅𝑭𝑽 −𝑸𝑝(𝜞𝑸𝑝)

−1
𝑯̅𝑻𝑽} ,

𝑨𝑽,𝑮 = 𝑴
−1𝑾,

𝑨𝑽,Hip = 𝑴
−1 {𝑷𝑯̅𝑭𝜼 −𝑸𝑝(𝜞𝑸𝑝)

−1
𝑯̅𝑻𝜼}𝑩,

𝑨𝑽,𝜼 = 𝑴
−1 {𝑷𝑯̅𝑭𝜼 −𝑸𝑝(𝜞𝑸𝑝)

−1
𝑯̅𝑻𝜼} ,

𝑨𝑽,𝝋 = 𝑴
−1 {𝑷𝑯̅𝑭𝝋 −𝑸𝑝(𝜞𝑸𝑝)

−1
} }

 
 
 
 

 
 
 
 

 (A18) 

where the temporary matrices W, , Qa, Qb, 𝑯̅𝑭𝑽, , 𝑯̅𝑻𝑽, 𝑯̅𝑭𝜼, 𝑯̅𝑻𝜼, 𝑯̅𝑭𝝋 and B are shown as follows: 508 

𝑾 = 𝑷𝜱−𝑸𝑝(𝜞𝑸𝑝)
−1
𝜞 + 𝑬,

𝜱 = (𝑪𝑴−1𝑷)−1𝑪𝑴−1 {𝑸𝑝(𝜞𝑸𝑝)
−1
𝜞 − 𝑬} ,

𝑸𝑎 = 𝑸𝑺𝑎 ,
𝑸𝑝 = 𝑸𝑺𝑝,

𝑯̅𝑭𝑽 = (𝑪𝑴
−1𝑷)−1{𝑪𝑴−1𝑸𝑝(𝜞𝑸𝑝)

−1
𝑯̅𝑻𝑽 − 𝑪̇},

𝜞 = 𝑨𝑴−1{𝑬 − 𝑷(𝑪𝑴−1𝑷)−1𝑪𝑴−1},

𝑯̅𝑻𝑽 = 𝑨̇ − 𝑨𝑴
−1𝑷(𝑪𝑴−1𝑷)−1𝑪̇,

𝑯̅𝑭𝜼 = (𝑪𝑴
−1𝑷)−1 {𝑪𝑴−1𝑸𝑝(𝜞𝑸𝑝)

−1
𝑯̅𝑻𝜼 + 𝑬} ,

𝑯̅𝑻𝜼 = 𝑨𝑴
−1𝑷(𝑪𝑴−1𝑷)−1,

𝑯̅𝑭𝝋 = (𝑪𝑴
−1𝑷)−1𝑪𝑴−1𝑸𝑝(𝜞𝑸𝑝)

−1
,

𝑩 = [𝑬3 𝑶3×3 𝑶3×3]
𝑇 }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 (A19) 

 509 

Appendix 2 
510 

The contribution of each term at every instant to the generation of the generalised velocity vector can be derived from 511 

Figure 2b which represents Equation 9. For example, the generalised velocity vector at time k can be calculated from 512 

the time history of the input vector 𝑽̇Dir(𝑘) as follows: 513 

𝑽(𝑘) = Δ𝑡𝑽̇Dir(𝑘 − 1) + Δ𝑡∑ [{∏𝜳̃𝑽(𝑗)

𝑘−1

𝑗=ℎ

} 𝑽̇Dir(ℎ − 1)]

𝑘−1

ℎ=1

+ {∏𝜳̃𝑽(𝑗)

𝑘−1

𝑗=0

}𝑽(0) (A20) 

where the function  denotes the factorial function shown as 514 

∏𝜳̃𝑽(𝑗)

𝑘

𝑗=ℎ

= 𝜳̃𝑽(𝑘)𝜳̃𝑽(𝑘 − 1)𝜳̃𝑽(𝑘 − 2)⋯ 𝜳̃𝑽(ℎ) (A21) 
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The generalised velocity vector at time k can be obtained from Equations A20 and A21 as the sums of individual 515 

contributions as follows: 516 

𝑽(𝑘) = 𝑪𝑽,𝑻a(𝑘) + 𝑪𝑽,𝑮(𝑘) + 𝑪𝑽,𝑽𝟎(𝑘) + 𝑪𝑽,other(𝑘), 

{
 
 
 
 

 
 
 
 
𝑪𝑽,𝑻a(𝑘) = Δ𝑡𝑨𝑽,𝑻𝑎(𝑘 − 1)𝑻𝑎(𝑘 − 1) + Δ𝑡∑[{∏𝜳̃𝑽(𝑗)

𝑘−1

𝑗=ℎ

}𝑨𝑽,𝑻𝑎(ℎ − 1)𝑻𝑎(ℎ − 1)] ,

𝑘−1

ℎ=1

𝑪𝑽,𝑮(𝑘) = Δ𝑡𝑨𝑽,𝑮(𝑘 − 1)𝑮 + Δ𝑡∑[{∏𝜳̃𝑽(𝑗)

𝑘−1

𝑗=ℎ

}𝑨𝑽,𝑮(ℎ − 1)𝑮]

𝑘−1

ℎ=0

,

𝑪𝑽,𝑽𝟎(𝑘) = {∏𝜳̃𝑽(𝑗)

𝑘−1

𝑗=0

}𝑽(0)

 

(A22) 

where the vectors CV,Ta, CV,G, 𝑪𝑽,𝑽𝟎 and CV,other respectively denote total contributions of the active joint torque, 517 

gravity, the initial velocity term, and other terms (as expressed in Equation A23) to the generation of the generalised 518 

velocity vector V(k) in consideration of the generating factors of the MDT. 519 

The vectors CV,Hip, CV, and CV, denote total contributions of the hip-joint acceleration term, segment length 520 

fluctuation term, and constraint joint axial angle fluctuation term, respectively. 521 

𝑪𝑽,other(𝑘) = 𝑪𝑽,Hip(𝑘) + 𝑪𝑽,𝜼(𝑘) + 𝑪𝑽,𝝋(𝑘), 

{
 
 
 
 

 
 
 
 
𝑪𝑽,Hip(𝑘) = Δ𝑡𝑨𝑽,Hip(𝑘 − 1)𝒙̈Hip(𝑘 − 1) + Δ𝑡∑[{∏𝜳̃𝑽(𝑗)

𝑘−1

𝑗=ℎ

}𝑨𝑽,Hip(ℎ − 1)𝒙̈Hip(ℎ − 1)] ,

𝑘−1

ℎ=1

𝑪𝑽,𝜼(𝑘) = Δ𝑡𝑨𝑽,𝜼(𝑘 − 1)𝜼̈(𝑘 − 1) + Δ𝑡∑[{∏𝜳̃𝑽(𝑗)

𝑘−1

𝑗=ℎ

}𝑨𝑽,𝜼(ℎ − 1)𝜼̈(ℎ − 1)]

𝑘−1

ℎ=1

,

𝑪𝑽,𝝋(𝑘) = Δ𝑡𝑨𝑽,𝝋(𝑘 − 1)𝝋̈(𝑘 − 1) + Δ𝑡∑[{∏𝜳̃𝑽(𝑗)

𝑘−1

𝑗=ℎ

}𝑨𝑽,𝝋(ℎ − 1)𝝋̈(ℎ − 1)]

𝑘−1

ℎ=1

 

(A23) 

 522 

The generalised velocity vector at time k can be obtained from Equations 4, 5 and 7 as the sums of individual 523 

contributions as follows: 524 
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𝑽(𝑘) = 𝑪Dir,𝑽,𝑻a(𝑘) + 𝑪Dir,𝑽,MDT(𝑘) + 𝑪Dir,𝑽,𝑮(𝑘) + 𝑪Dir,𝑽,other(𝑘) + 𝑽(0), 

{
 
 

 
 
𝑪Dir,𝑽,𝑻a(𝑘) = Δ𝑡∑𝑨𝑽,𝑻a(ℎ)𝑻a(ℎ), 𝑪Dir,𝑽,MDT(𝑘) = Δ𝑡∑ 𝑨̅𝑽,MDT(𝑽(ℎ))𝑽(ℎ),   

𝑘−1

ℎ=0

 

𝑘−1

ℎ=0

𝑪Dir,𝑽,𝑮(𝑘) = Δ𝑡∑𝑨𝑽,𝑮(ℎ)𝑮, 𝑪Dir,𝑽,other(𝑘) = Δ𝑡∑𝑨𝑽,other(ℎ)   

𝑘−1

ℎ=0

 

𝑘−1

ℎ=0

 

(A24) 

where the contribution vectors CDir,V,Ta, CDir,V,MDT, CDir,V,G and CDir,V,other respectively denote direct effects of the active 525 

joint torque, the motion-dependent term, the gravitational term, and other terms to the generation of the generalised 526 

velocity vector V(k). 527 

Furthermore, the direct effect of active joint torque input can be distributed into the sums of the direct effects of the 528 

individual joint torque inputs as: 529 

𝑪Dir,𝑽,𝑻a(𝑘) = ∑ 𝑪Dir,𝑽,𝑻a,𝑗Axis

𝑛𝐴xis

𝑗Axis=1

(𝑘), 

𝑪Dir,𝑽,𝑻a,𝑗Axis(𝑘) = Δ𝑡∑𝑨𝑽,𝑻a,𝑗Axis(ℎ)𝑻a,𝑗Axis(ℎ) 

𝑘−1

ℎ=0

 

(A25) 

where nAxis denotes the number of the active joint axes. 530 

 531 

The total contribution is the sum of the direct and indirect effects of joint torque inputs: 532 

𝑪𝑽,𝑻a(𝑘) = 𝑪Dir,𝑽,𝑻a(𝑘) + 𝑪Indir,𝑽,𝑻a(𝑘) (A26) 

 533 

The indirect effect of the joint torque inputs is obtained from the difference between the total contribution and the 534 

direct effect of joint torque inputs from Equation A26 as: 535 

𝑪Indir,𝑽,𝑻a(𝑘) = 𝑪𝑽,𝑻a(𝑘) − 𝑪Dir,𝑽,𝑻a(𝑘) (A27) 

 536 
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Contributions to the kicking foot CG’s speed 537 

As described in Equation A2, the linear velocity vector of the CG of the kicking foot 𝒙̇3(𝑘) can be expressed as 538 

follows: 539 

 540 

𝒙̇3(𝑘) = 𝑺3𝑽(𝑘), 𝑺3 = [𝑶3×12 𝑬 𝑶3×3] (A28) 

where the matrix S3 (k) indicates the selective matrix which extracts the components of the linear velocity vector 541 

regarding the foot segment from the generalised velocity vector. 542 

The unit vector, expressing the direction of the foot CG’s velocity vector, is obtained by dividing the velocity vector 543 

by its magnitude as: 544 

𝒆3(𝑘) =
𝒙̇3(𝑘)

|𝒙̇3(𝑘)|
 (A29) 

 545 

Finally, operating the inner product of Equation A29 with Equations A24 through A28 yields the dynamic 546 

contributions of individual terms to the generation of the point’s speed at time k, s3(k), shown as: 547 

𝑠3(𝑘) = 𝐶𝑠3,𝑇𝑎(𝑘) + 𝐶𝑠3,𝐺(𝑘) + 𝐶𝑠3,other(𝑘) + 𝐶𝑠3,𝑉0(𝑘) (A30) 

where the terms Cs3,Ta(k), Cs3,G(k) and Cs3,other(k) respectively denote the contributions of the joint torque term, 548 

gravitational term and other terms to the foot CG’s speed. The term 𝐶s3,𝑉0(𝑘) denotes the contribution of the initial 549 

velocity term, i.e. the velocity of the system at the start of the analysis.  550 

For example, the contribution of the active joint torque to the generation of the foot CG’s speed at time k is expressed 551 

as follows: 552 
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𝐶𝑠3,𝑻a(𝑘) =  𝒆3
T(𝑘)𝑺̅3 (Δ𝑡𝑨𝑽,𝑻𝑎(𝑘 − 1)𝑻𝑎(𝑘 − 1) + Δ𝑡∑ [{∏𝜳̃𝑽(𝑗)

𝑘−1

𝑗=ℎ

}𝑨𝑽,𝑻𝑎(ℎ − 1)𝑻𝑎(ℎ − 1)]

𝑘−1

ℎ=1

) (A31) 

 553 

𝐶Dir,𝑠3,𝑻a(𝑘) = 𝒆3
T(𝑘)𝑺̅3Δ𝑡∑𝑨𝑽,𝑻a(ℎ)𝑻a(ℎ),

𝑘−1

ℎ=0

 (A32) 

 554 

𝐶Indir,𝑠3,𝑻a(𝑘) = 𝐶s3,𝑻a(𝑘) − 𝐶Dir,𝑠3,𝑻a(𝑘) 

= 𝒆3
T(𝑘)𝑺̅3Δ𝑡∑({∏𝜳̃𝑽(𝑗)

𝑘−1

𝑗=ℎ

} − 𝑬18)𝑨𝑽,𝑻a(ℎ − 1)𝑻a(ℎ − 1)

𝑘−1

ℎ=1

 

(A33) 

According to Equations A31 and A32, the direct and indirect effects of a joint torque inputted at time h (any given 555 

instant in time between swing start and time k), CInst,s3,BC,Ta(h) and CCumul,s3,BC,Ta(h) to the generation of the foot CG’s 556 

speed at BC are expressed as follows: 557 

𝐶Dir,𝑠3,BC,𝑻a(ℎ) = 𝒆3
T(𝑘BC)𝑺̅3Δ𝑡𝑨𝑽,𝑻a(ℎ)𝑻a(ℎ), (A34) 

 558 

𝐶Indir,𝑠3,BC,𝑻a(ℎ) =  𝒆3
T(𝑘BC)𝑺̅3Δ𝑡({ ∏ 𝜳̃𝑽(𝑗)

𝑘BC−1

𝑗=ℎ+1

} − 𝑬18)𝑨𝑽,𝑻a(ℎ)𝑻a(ℎ) (A35) 

The individual contributions of the active joint torques, expressed by Equations A31 through A35, can be furthermore 559 

divided into the contributions of the individual active joint torques about each individual axis of a joint (not shown). 560 

 561 

Appendix 3 
562 

Decomposition of the MDT into kinematic components 563 

The contribution of the MDT to the generalised acceleration vector can be expressed in the following form when using 564 
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Equation A17: 565 

𝑪𝑽̇,MDT = 𝑨̅𝑽,MDT(𝑽)𝑽 = 𝑺𝑽̇𝑩sys [
𝑯̅
−𝑪̇
−𝑨̇

]𝑽, 

𝑺𝑽̇ = [𝑬18 𝑶18×9 𝑶18×2], 𝑩sys = [

𝑴 −𝑷 −𝑸𝑺𝑝
𝑪 𝑶9×9 𝑶9×2
𝑨 𝑶2×9 𝑶2×2

]

−1

 

(A36) 

where matrix 𝑺𝑽̇ denotes the selective matrix extracting the generalised acceleration components from Equation A17, 566 

and matrix 𝑩sys indicates the coefficient matrix of the target system shown in Equation A17. This equation can be 567 

expressed as the sum of three terms, as shown in the following equation: 568 

𝑪𝑽̇,MDT = 𝑺𝑽̇𝑩sys [
𝑯̅𝑽
𝑶9×1
𝑶2×1

] − 𝑺𝑽̇𝑩sys [

𝑶18×1
𝑪̇𝑩𝑽
𝑶2×1

] − 𝑺𝑽̇𝑩sys [

𝑶18×1
𝑪̇𝑪𝑽

𝑨̇𝑽

], 

{
 
 
 

 
 
 
𝑪̇𝑩 = [

𝑶 [𝟐𝒓̇1,cg−P̅̅ ̅̅ ̅̅ ̅
∗ ×] 𝑶 𝑶 𝑶 𝑶

𝑶 −[𝟐𝒓̇1,cg−D̅̅ ̅̅ ̅̅ ̅̅
∗ ×] 𝑶 [𝟐𝒓̇2,cg−P̅̅ ̅̅ ̅̅ ̅

∗ ×] 𝑶 𝑶

𝑶 𝑶 𝑶 −[𝟐𝒓̇2,cg−D̅̅ ̅̅ ̅̅ ̅̅
∗ ×] 𝑶 [𝟐𝒓̇3,cg−P̅̅ ̅̅ ̅̅ ̅

∗ ×]

] ,

𝑪̇𝑪 = [

𝑶 [(𝝎𝟏 × 𝒓1,cg−P̅̅ ̅̅ ̅̅ ̅) ×] 𝑶 𝑶 𝑶 𝑶

𝑶 −[(𝝎𝟏 × 𝒓1,cg−D̅̅ ̅̅ ̅̅ ̅̅ ) ×] 𝑶 [(𝝎𝟐 × 𝒓2,cg−P̅̅ ̅̅ ̅̅ ̅) ×] 𝑶 𝑶

𝑶 𝑶 𝑶 −[(𝝎𝟐 × 𝒓2,cg−D̅̅ ̅̅ ̅̅ ̅̅ ) ×] 𝑶 [(𝝎𝟑 × 𝒓3,cg−P̅̅ ̅̅ ̅̅ ̅) ×]

]

 

(A37) 

where the terms on the right side of this equation represent, in turn, the gyroscopic effect moment component, the 569 

segment length fluctuation component, and the centrifugal and Coriolis forces component of the contribution of the 570 

MDT to the generalised acceleration vector. Matrices 𝑪̇𝑩 and 𝑪̇𝑪 denote the coefficient matrices with respect to the 571 

generalised velocity vector and their sum is equal to 𝑪̇ in Equation A7.  572 

 573 

The angular velocity vector of the i-th segment is expressed as the sum of 𝝎0 and the summation of the products of 574 

multiplying the joint angular velocity 𝜃̇𝑖c,𝑙c  by the unit vector of the joint axial vector 𝒆𝑖c,𝑙c  as: 575 

𝝎𝑖 = 𝝎0 + ∑ ∑ 𝜃̇𝑖c,𝑙c𝒆𝑖c,𝑙c ,   𝑛 = [3, 2, 2],   𝑖 = 1, 2, 3

𝑛(𝑖𝑐)

𝑙c=1

𝑖

𝑖c=1

 (A38) 
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{

𝒆1,1 = 𝒆0,𝑥, 𝒆1,2 = 𝒆1,𝑦
′ , 𝒆1,3 = 𝒆1,𝑧,

𝒆2,1 = 𝒆1,𝑥, 𝒆2,2 = 𝒆2,𝑧,

𝒆3,1 = 𝒆2,𝑥, 𝒆3,2 = 𝒆3,𝒛

 

where the vector 𝒆1,𝑦
′  is the unit vector defined in Equation A13, and ic and lc are dummy variables used in the 576 

summation. 577 

The components of the vector 𝑨̇𝑽, which is in the third term of the right-side of Equation A37, are expressed by the 578 

following equation from Equation A10: 579 

𝑨̇𝑽 = [
−2(𝝎2 × 𝒆2,𝑧)

T
(𝒆1,𝑥 ×𝝎1) − 𝒆2,𝑧

T [(𝝎1 × 𝒆1,𝑥) × 𝝎1]−𝒆1,𝑥
T [(𝝎2 × 𝒆2,𝑧) × 𝝎2]

−2(𝝎3 × 𝒆3,𝑧)
T
(𝒆𝟐,𝑥 ×𝝎2)−𝒆3,𝑧

T [(𝝎2 × 𝒆2,𝑥) × 𝝎2]−𝒆2,𝑥
T [(𝝎3 × 𝒆3,𝑧) × 𝝎3]

] (A39) 

The components of the vector 𝑪̇𝑪𝑽 are expressed by the following equation: 580 

𝑪̇𝑪𝑽 = [

(𝝎1 × 𝒓1,cg−P̅̅ ̅̅ ̅̅ ̅) × 𝝎𝟏

−(𝝎1 × 𝒓1,cg−D̅̅ ̅̅ ̅̅ ̅̅ ) × 𝝎1 + (𝝎2 × 𝒓2,cg−P̅̅ ̅̅ ̅̅ ̅) × 𝝎2

−(𝝎𝟐 × 𝒓2,cg−D̅̅ ̅̅ ̅̅ ̅̅ ) × 𝝎𝟐 + (𝝎3 × 𝒓3,cg−P̅̅ ̅̅ ̅̅ ̅) × 𝝎3

] (A40) 

 581 

When considering the angular velocity vector of the i-th segment as given in Equation A38, any element expressed as 582 

(𝝎𝑖 × 𝒓𝑖,𝑠 ) × 𝝎𝑖 can be divided into five components that arise from either centrifugal forces or Coriolis forces: 583 

(𝝎𝑖 × 𝒓𝑖,𝑠 ) × 𝝎𝑖 =    (𝝎0 × 𝒓𝑖,𝑠 ) × 𝝎0                                         ∶ Centrifugal force term

+∑ ∑ 𝜃̇𝑖c,𝑙c
2
(𝒆𝑖c,𝑙c × 𝒓𝑖,𝑠 ) × 𝒆𝑖c,𝑙c 

𝑛(𝑖𝑐)

𝑙c=1

𝑖

𝑖c=1

      ∶ Centrifugal force term

+{(∑ ∑ 𝜃̇𝑖c,𝑙c𝒆𝑖c,𝑙c 

𝑛(𝑖𝑐)

𝑙c=1

𝑖

𝑖c=1

) × 𝒓𝑖,𝑠 } × 𝝎0     ∶ Coriolis force term

+(𝝎0 × 𝒓𝑖,𝑠 ) × (∑ ∑ 𝜃̇𝑖c,𝑙c𝒆𝑖c,𝑙c 

𝑛(𝑖𝑐)

𝑙c=1

𝑖

𝑖c=1

)       ∶ Coriolis force term

+∑ ∑ ∑ ∑{𝛼𝑗c,ℎc,𝑖c ,𝑙c𝜃̇𝑖c,𝑙c𝜃̇𝑗c,ℎc(𝒆𝑖c,𝑙c × 𝒓𝑖,𝑠 ) × 𝒆𝑗c,ℎc } ,   ∶ Coriolis force term

𝑛(𝑖𝑐)

𝑙c=1

𝑖

𝑖c=1

𝑛(𝑗c)

ℎc=1

𝑗

𝑗c=1

 𝑛 = [3, 2, 2]

 (A41) 

where jc and hc are additional dummy variables used in the summations, and the coefficient in the fifth term in the 584 

right side of Equation A41 𝛼𝑗c,ℎc,𝑖c,𝑙c is given as: 585 
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𝛼𝑗c,ℎc,𝑖c,𝑙c = {
0 ∶ if 𝑗c = 𝑖c and ℎc = 𝑙c
1 ∶ else

 (A42) 

and the subscript s of the position vector 𝒓𝑖,𝑠  denotes cg − D̅̅ ̅̅ ̅̅ ̅̅ ̅ or cg − P̅̅ ̅̅ ̅̅ ̅̅ . 586 

Any element expressed as (𝝎𝑖 × 𝒆𝑖,𝑧 )
T
(𝒆𝑗,𝑥 ×𝝎𝑗 )  in Equation A39 can be divided into five components 587 

representing either centrifugal force terms or Coriolis force terms: 588 

(𝝎𝑖 × 𝒆𝑖,𝑧 )
T
(𝒆𝑗,𝑥 ×𝝎𝑗 ) =    (𝝎0 × 𝒆𝑖,𝑧 )

T
(𝒆𝑗,𝑥 ×𝝎0 )                                        : Centrifugal force term

+∑ ∑ 𝜃̇𝑗c,ℎc
2

𝑛(𝑗𝑐)

ℎc=1

𝑗

𝑗c=1

(𝒆𝑗c,ℎc × 𝒆𝑖,𝑧 )
T
(𝒆𝑗,𝑥 × 𝒆𝑗c,ℎc )  : Centrifugal force term

+(𝝎0 × 𝒆𝑖,𝑧 )
T
{𝒆𝑗,𝑥 × (∑ ∑ 𝜃̇𝑗c,ℎc𝒆𝑗c,ℎc 

𝑛(𝑗𝑐)

ℎc=1

𝑗

𝑗c=1

)}   : Coriolis force term

+(𝝎0 × 𝒆𝑗,𝑥 )
T
{𝒆𝑖,𝑧 × (∑ ∑ 𝜃̇𝑖c,𝑙c𝒆𝑖c,𝑙c 

𝑛(𝑖𝑐)

𝑙c=1

𝑖

𝑖c=1

)}     : Coriolis force term

+∑ ∑ ∑ ∑ {𝛼𝑗c,ℎc,𝑖c,𝑙c𝜃̇𝑖c,𝑙c𝜃̇𝑗c,ℎc(𝒆𝑖c,𝑙c × 𝒆𝑖,𝑧 )
T
(𝒆𝑗,𝑥 × 𝒆𝑗c,ℎc )}

𝑛(𝑖𝑐)

𝑙c=1

𝑖

𝑖c=1

𝑛(𝑗𝑐)

ℎc=1

𝑗

𝑗c=1

  

                                                      ∶ Coriolis force term  , (𝑗 < 𝑖),  𝑛 = [3, 2, 2]  

 (A43) 

 589 

From Equations A40, A41 and A43, the vector 𝑪̇𝑪𝑽 can be divided into a centrifugal force component 𝑫𝑪̇𝑽,CNT and 590 

a Coriolis force component 𝑫𝑪̇𝑽,COR: 591 

𝑪̇𝑪𝑽 = 𝑫𝑪̇𝑽,CNT +𝑫𝑪̇𝑽,COR (A44) 

Similarly, the vector 𝑨̇𝑽 can be decomposed into a centrifugal force component 𝑫𝑨̇𝑽,CNT and a Coriolis force 592 

component 𝑫𝑨̇𝑽,COR: 593 

𝑨̇𝑽 = 𝑫𝑨̇𝑽,CNT +𝑫𝑨̇𝑽,COR (A45) 

The MDT contribution to the generalised acceleration vector is expressed as the sum of individual components 594 

including the gyroscopic effect moment component 𝑫𝑽̇,MDT,GYRO , the segment length fluctuation component 595 

𝑫𝑽̇,MDT,SG−FLCT, the centrifugal force component 𝑫𝑽̇,MDT,CNT and the Coriolis force component 𝑫𝑽̇,MDT,COR: 596 



43 

 

𝑫𝑽̇,MDT = 𝑫𝑽̇,MDT,GYRO +𝑫𝑽̇,MDT,SG−FLCT +𝑫𝑽̇,MDT,CNT +𝑫𝑽̇,MDT,COR, 

{
  
 

  
 
𝑫𝑽̇,MDT,GYRO = 𝑺𝑽̇𝑩sys [

𝑯̅𝑽
𝑶9×1
𝑶2×1

] , 𝑫𝑽̇,MDT,SG−FLCT = −𝑺𝑽̇𝑩sys [
𝑶18×1
𝑪̇𝑩𝑽
𝑶2×1

] ,

𝑫𝑽̇,MDT,CNT = −𝑺𝑽̇𝑩sys [
𝑶18×1
𝑫𝑪̇𝑽,CNT
𝑫𝑨̇𝑽,CNT

] , 𝑫𝑽̇,MDT,COR = −𝑺𝑽̇𝑩sys [
𝑶18×1
𝑫𝑪̇𝑽,COR
𝑫𝑨̇𝑽,COR

]

 

(A46) 

Finally, the foot CG’s speed can be obtained as the sum of the kinematically-decomposed components as follows: 597 

𝑠3,MDT(𝑘) = 𝐷𝑠3,MDT,GYRO(𝑘) + 𝐷𝑠3,MDT,SG−FLCT(𝑘) + 𝐷𝑠3,MDT,CNT(𝑘) + 𝐷𝑠3,MDT,COR(𝑘), 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝐷𝑠3,MDT,GYRO(𝑘) = 𝒆3

T(𝑘)𝑺̅3Δ𝑡∑ 𝑫𝑽̇,MDT,GYRO(ℎ),

𝑘−1

ℎ=0

𝐷𝑠3,MDT,SG−FLCT(𝑘) = 𝒆3
T(𝑘)𝑺̅3Δ𝑡∑ 𝑫𝑽̇,MDT,SG−FLCT(ℎ),

𝑘−1

ℎ=0

𝐷𝑠3,MDT,CNT(𝑘) = 𝒆3
T(𝑘)𝑺̅3Δ𝑡∑ 𝑫𝑽̇,MDT,CNT(ℎ),

𝑘−1

ℎ=0

𝐷𝑠3,MDT,COR(𝑘) = 𝒆3
T(𝑘)𝑺̅3Δ𝑡∑ 𝑫𝑽̇,MDT,COR(ℎ) 

𝑘−1

ℎ=0

 

(A47) 

where 𝐷𝑠3,MDT,GYRO(𝑘) , 𝐷𝑠3,MDT,SG−FLCT(𝑘) , 𝐷𝑠3,MDT,CNT(𝑘)  and 𝐷𝑠3,MDT,COR(𝑘)  denote, respectively, the 598 

components of the foot CG’s speed at time k that arise from the gyroscopic effect moment, segment length 599 

fluctuations, centrifugal forces and Coriolis forces. 600 

 601 

  602 
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Figure A1. A schematic representation of the modelled kicking leg introducing the numbering of the segments (i=0 to 603 

3) and joints (j= 1 to 3), as well as the segmental coordinate systems. 604 

 605 


