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mechanics

Emilio Garcia-Blanco† , Rogelio Ortigosa†1, Antonio J. Gil†2, Chun Hean Lee† , Javier Bonet‡

†Zienkiewicz Centre for Computational Engineering, College of Engineering
Swansea University, Bay Campus, SA1 8EN, United Kingdom

‡University of Greenwich, London, SE10 9LS, United Kingdom

Abstract

This paper presents a novel computational framework for the numerical simulation of the
electromechanical response of the myocardium during the cardiac cycle. The paper presents the
following main novelties. (1) Two new mixed formulations, tailor-made for active stress and ac-
tive strain coupling approaches, have been developed and used in conjunction with two different
ionic models, namely Bueno-Orovio [1] and Ten Tusscher [2]. Taking as a reference the mixed
formulations introduced by Bonet et al. [3] in the context of nonlinear elasticity, the proposed for-
mulations include as unknown fields the geometry and the transmembrane potential (and possibly
a Lagrange multiplier enforcing weakly the incompressibility constraint) as well as the deforma-
tion gradient tensor, its cofactor, its determinant, the gradient of the transmembrane potential
and their respective work conjugates. The Finite Element implementation of these formulations
is shown in this paper, where a static condensation procedure is presented in order to yield an
extremely competitive computational approach. (2) A comprehensive and rigorous study of differ-
ent ionic models (i.e Bueno-Orovio and Ten Tusscher) and electromechanical activation couplings
(i.e active strain and active stress) has been carried out. (3) An analytical and numerical analysis
of the possible loss of ellipticity and polyconvexity of one of the most widely used constitutive
models in the context of cardiac mechanics is carried out in this paper, putting forward possible
polyconvexifications of the existing model. (4) In addition, an invariant representation of Guc-
cione’s constitutive model is proposed. Finally, a series of numerical examples are included in
order to demonstrate the applicability and robustness of the proposed formulations.

Keywords: Cardiac electromechanics, Mixed Formulations, Polyconvexity, Finite Elements.

1. Introduction

Cardiovascular diseases, such as heart infarction or dysrhythmia, represent the main cause
of death in the world [4–6]. Over the last decade, the computational modelling of the complex
physical phenomena occurring in the human heart have become an area of increasing scientific
interest as this can aid by: (a) providing augmented simulation-based diagnosis tools for patients
or innovative surgery techniques for clinicians; (b) gaining better understanding of the mecha-
nisms driving the behaviour of the cardiac muscle both from the physiological and pathological
standpoints.

Three aspects are crucial in order to correctly characterise the response of the heart, namely:
(a) its passive or purely mechanical behaviour; (b) its electrophysiology; (c) its electric activation,
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responsible for the electrically driven contraction of the heart. Regarding the first aspect, namely
the passive behaviour of the heart, it must be emphasised that the cardiac myocardium is an
extremely complex and heterogeneous material with a strongly anisotropic behaviour which can
be described via a set of collagen sheets and fibres [7]. To this aim, Diffusion Tensor Magnetic
Resonance Imaging (DT-MRI) constitutes a very promising approach [8], although uncertainties
related to in vivo measures may lead to unphysiological stress fields [9, 10]. Instead, the use of
rule-based models or human atlases obtained through statistical treatment of ex vivo DT-MRI
scans is preferred [11–13]. In addition, as experimentally reported by Vossoughi et al. [14], the
cardiac muscle (or myocardium) is traditionally modelled as a nearly or truly incompressible
hyperelastic material although recent investigations [15–17] question these assumptions.

A suitable invariant-based definition of the strain energy encapsulating the passive response of
the myocardium must be chosen to describe its passive response, replicating both its anisotropic
and incompressible behaviour. Since the pioneering work of Demiray [18], several constitutive
models have been proposed [19–24]. In order to ensure a physically admissible behaviour of
a constitutive model, this must satisfy the ellipticity condition [25]. A class of functions that
satisfy ellipticity is that of polyconvexity [3, 26–33], where the strain energy is defined as a
convex multivariable function of the deformation gradient tensor, its cofactor and its determinant.
However, to the best of the authors’ knowledge, polyconvex constitutive models have not been
defined yet for the characterisation of the myocardium.

The second of the three aspects mentioned, namely the electrophysiology of the heart, has
also been an intensive area of research [34, 35]. The heart fibres contract as a result of electrical
stimuli (pulse) initiated in the sinoatrial node, located in the right atrium, and propagated over
the heart tissue. This electric pulse produces a sharp rise (depolarisation) followed by a sudden
fall (repolarisation) of the transmembrane electric potential in a process known as cardiac action
potential [7]. As a result of the depolarisation, a wide range of ion interchanges (electric fluxes)
take place across the cell membrane, triggering the cross-bridge cycle [7] in the muscle fibres and
leading to the repolarisation of the cell membrane.

The resemblance of the cardiac action potential with propagation of waves enables this phe-
nomenon to be mathematically modelled by means of a convection-diffusion-reaction equation
where the source term encapsulates the cellular ion exchange (electric fluxes). For this purpose,
a mathematical model named as bidomain model [36–38], was conceived to describe the cardiac
action potential by considering two independent electric potentials, namely those in the inner
and outer parts of the cell. However, an alternative and simpler approach known as monodomain
model [39], where only the transmembrane potential is considered, is usually preferred [10, 40–42].

In the Nobel-price winning contributions of Hodgkin and Huxley, the electric fluxes (embedded
in the aforementioned source term) were described via a set of ordinary differential equations
linking the transmembrane potential with a set of gating variables representing the opening state
of the ion channels [34]. Since then, a wide spectrum of more advanced models were developed [43–
47]. Priebe and Beuckelmann [48] developed the first human ventricular model able to reproduce
physiological and pathological behaviour. In this model, ion concentrations were, in addition to
the gating variables in the original model of Hodgkin and Huxley, linked to the transmembrane
potential. Moreover, Ten Tusscher et al. [2, 49] improved the previous model by considering
additional experimental data performed in human ventricular myocytes. Finally, Bueno-Orovio
et al. [1] proposed a more simplified model, known as the minimal model, convenient from the
computational standpoint. Only the Ten Tusscher and Bueno-Orovio models will be considered
in this paper.

The third aspect mentioned, namely the electro-mechanical activation of the heart, occurs
as a result of the interaction of calcium ions with Troponin-C during the cross-bridge dynamics
[7]. This can be phenomenologically described by means of the so called activation models. Two
possible approaches can be followed for the definition of activation models, namely active stress
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[20] or active strain approaches [50]. Within the first approach, Nash and Panfilov proposed
an evolution equation for active cardiomyocite concentration stress [51, 52]. Within the second
approach, Rossi et al. [10] proposed an evolution equation for the electric stretches of the active
part of the multiplicatively decomposed deformation gradient tensor.

The computational modelling of the human heart is intrinsically challenging. Even if the three
critical aspects described above, namely the passive and active responses of the heart as well as its
electrical activation, are perfectly characterised, reliability of the results obtained via numerical
simulation can be seriously compromised. Specifically, a computational implementation in terms
of displacements and electric potential based on low order Finite Elements, very commonly used
among researchers in this area [10, 53], are prone to exhibit parasitic behaviour characterised by
shear locking and volumetric locking [32, 54–57], the latter arising in incompressible scenarios.

In order to circumvent these shortcomings of low order Finite Element implementations, a
new mixed formulation is presented in this paper based on a series of recent publications by Gil
and Ortigosa in the context of nonlinear elasticity and electro-mechanics [31, 58–60]. In this for-
mulation, not only displacements and electric potential (and potentially a pressure-type Lagrange
multiplier) are included as unknown fields. In addition, the deformation gradient tensor, its co-
factor and its determinant and their respective work conjugates (stress variables) in conjunction
with the electric potential gradient and its work conjugate are considered as unknown variables,
adding more flexibility into the formulation. In order not to compromise the computational ef-
ficiency of the formulation, discontinuous functional spaces across elements are chosen for the
extra fields, which enable to condense them out via a static condensation procedure, resulting in
an extremely competitive computational approach.

The paper is organised as follows. Section 2 introduces some basic principles of kinematics.
Section 3 presents the governing equations describing the motion of the heart and the evolution
of the transmembrane potential. In Section 4, relevant aspects concerning the passive response of
the myocardium, its electrophysiology and the coupling between the mechanics and the electric
physics are presented. Based on the work of Gil and Ortigosa [31, 58–60], Section 5 introduces a
new mixed formulation in the context of cardiac mechanics and its Finite Element implementation
is described in Section 6. A series of examples are included in Section 7 in order to assess the
robustness and accuracy of the proposed formulation. Finally, Section 8 provides some concluding
remarks and a summary of the key contributions of this paper.

2. Kinematics

Let us consider the motion of a continuum (in this context representing the human my-
ocardium) defined by a volume Ω0 with boundary ∂Ω0 in its initial configuration with outward
normal N . After the motion, the continuum occupies a final configuration defined by a domain
Ω with boundary ∂Ω with outward normal n. The pseudo-time (t) dependent mapping field φ
links a material particle from initial configuration X ∈ Ω0 to final configuration x ∈ Ω according
to x = φ (X, t). The deformation gradient tensor F x, its cofactor Hx (Hx := CofF x) and its
determinant Jx (Jx := detF x) can be defined as

F x = ∇0x; Hx =
1

2
F x F x; Jx =

1

3
Hx : F x, (1)

where ∇0 (•) denotes the Lagrangian (initial configuration) gradient operator. For any two
second order tensors A and B, in (1)b denotes the tensor cross product operation introduced
in de Boer [61] and latter used in the context of nonlinear continuum mechanics [3, 33], defined
as (A B)iI = EijkEIJKAjJBkK .

As shown in Figure 1, {F x,Hx, Jx} represent the kinematic measures relating the differential
fibre, area and volume elements from initial {dX, dA, dV } to final {dx, da, dv} configuration.
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Figure 1: Motion map of the continuum Ω0 and the kinematic measures F x,Hx, Jx.

For virtual and incremental variations of x, namely δx and ∆x, use of equation (1) allows to
evaluate the first and second directional derivatives of {F x,Hx, Jx} as

DF x[δx] = ∇0δx; DHx[δx] = F x ∇0δx; DJx[δx] = Hx : ∇0δx;

D2F x[δx; ∆x] = 0; D2Hx[δx; ∆x] = ∇0δx ∇0∆x; D2Jx[δx; ∆x] = F x : (∇0δx ∇0∆x) .
(2)

3. Governing equations

In this section, the coupled system of partial differential equations governing the motion x and
the evolution of transmembrane potential φ in the heart will be described. The first corresponds
to the conservation of linear momentum (mechanics)3, which can be expressed in a Lagrangian
setting as

DIVP + b0 = 0 in Ω0 × [ 0 , T ]

PN = t0 on ∂tΩ0 × [ 0 , T ]

x = φx on ∂xΩ0 × [ 0 , T ]

 (3)

with ∂Ω0 = ∂xΩ0 ∪ ∂tΩ0. In equation (3), P represents the first Piola-Kirchhoff stress tensor b0,
a body force per unit undeformed volume and t0, a surface force per unit of undeformed area.
In addition, the satisfaction of rotational equilibrium leads to the condition PF T

x = F xP
T . The

second governing equation represents the time-dependent evolution of the transmembrane poten-
tial φ (electric). When considering a monodomain approach [39, 40, 62], this can be expressed in
a Lagrangian setting as

DIVQ+ fφ = φ̇ in Ω0 × [ 0 , T ]

Q ·N = 0 on ∂Ω0 × [ 0 , T ]

φ = φ0 (X) in Ω0

 (4)

where φ0 (X) denotes the resting potential (initial conditions) and zero Neumann boundary con-
dition are applied on the boundary ∂Ω0. Moreover, the vectorQ represents the electric flux across
the cell membrane [53] and fφ, the electrical source term.

3It is customary to neglect inertial effects in equation (3) (quasi-statics).
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4. Constitutive equations

For the closure of the governing equations defined by (3) and (4), constitutive laws are needed
for the definition of the first Piola-Kirchhoff stress tensor P (3), the electric flux Q (4) and the
electrical source term fφ (4).

4.1. Passive response of the heart

The passive response of the heart, encapsulated in the strain energy Ψ (∇0x), can be math-
ematically described by means of an invariant representation of Ψ (∇0x) in terms of the main
kinematic entities {Fx,Hx, Jx}, namely

Ψ (∇0x) = W (F x,Hx, Jx) . (5)

The energy functional Ψ (∇0x) in (5) has to describe the underlying anisotropic structure of
the cardiac tissue, characterised by a spatially varying set of muscle fibres defined by the unitary
direction f 0 in the initial configuration. These muscle fibres are embedded into the collagen sheets,
characterised by the perpendicular unitary normal s0 in the initial configuration. This enables to
define the triad {f 0, s0,n0} at each Lagrangian particle X ∈ Ω0 (refer to Figure 2). Furthermore,
the functional Ψ (∇0x) needs to account for the incompressible or nearly incompressible nature
of the heart tissue [14, 62, 63].

Figure 2: Anisotropic structure of the cardiac tissue. Representation of the triad {f0, s0,n0} in the Lagrangian
setting (left), accounting for their spatial variability (centre). Idealised set of ventricles (right).

Anisotropy and incompressibility can be embedded into the extended representation of Ψ,
namely W (5), by means of an additive decomposition into its isotropic-deviatoric, volumetric
and anisotropic contributions, denoted as Ŵ , U and W ani respectively, as

W (F x,Hx, Jx,f 0, s0) = Ŵ (F x,Hx, Jx) + U (Jx) +W ani (F x,Hx, Jx,f 0, s0) , (6)

where only Ŵ depends on the isochoric components of {F x,Hx, Jx} [64–67] namely

Ŵ (F x,Hx, Jx) = W
(
F̂ x, Ĥx, 1

)
; F̂ x = J−1/3

x F x; Ĥx = J−2/3
x Hx. (7)

For the purely mechanical physics (no coupling with the transmembrane potential φ), the first
Piola-Kirchhoff stress tensor P is obtained as

P = ∂∇0xΨ (∇0x) . (8)

Alternatively, the extended representation W enables to obtain

P : ∇0δx = DW [δx] = (∂FxW + ∂HxW Fx + ∂JxWHx) : ∇0δx, (9)

5



where use of equation (1) has been made in above equation (9). Comparison of equations (8) and
(9) enables to obtain an alternative expression for the first Piola-Kirchhoff stress tensor as

P = ∂FxW + ∂HxW F x + ∂JxWHx, (10)

The ellipticity (rank-one convexity) or material stability of the strain energy Ψ (∇0x) guaran-
tees the well-posedness of equation (3). This condition is directly related to the tangent operator
of the strain energy Ψ (∇0x), i.e.

D2Ψ[δx; ∆x] = D (P : ∇0δx) [∆x] = ∇0δx : C : ∇0∆x; C = ∂2
∇0x∇0x

Ψ, (11)

where C represents the fourth order elasticity tensor. Alternatively, the tangent operator can be
equivalently obtained in terms of the extended representation W (Fx,Hx, Jx) as

D2W [δx; ∆x] = D (P : ∇0δx) [∆x] =

 ∇0δx :
Fx ∇0δx :
Hx : ∇0δx

T [HW

]  : ∇0∆x
: Fx ∇0∆x
Hx : ∇0∆x


+ (∂HxW + ∂JxWFx) : (∇0δx ∇0∆x) ,

(12)

where
[
HW

]
represents the Hessian operator of W, namely

[
HW

]
=

∂2
FxFx

W ∂2
FxHx

W ∂2
FxJx

W
∂2
HxFx

W ∂2
HxHx

W ∂2
HxJx

W
∂2
JxFx

W ∂2
JxHx

W ∂2
JxJx

W

 . (13)

Comparison of (11) and (12) enables to additively decompose C into a purely material contri-
bution Cm (depending upon second derivatives of W ) and a geometrical contribution Cg (emerging
from the inherent non-linearity of {Hx, Jx}), namely C = Cm + Cg, with

Cm = ∂2
FxFx

W + Fx ∂2
HxHx

W Fx + ∂2
JxJxWHx ⊗Hx + ∂2

FxHx
W Fx + Fx ∂2

HxFx
W

+ ∂2
FxJxW ⊗Hx +Hx ⊗ ∂2

JxFx
W + Fx ∂2

HxJxW ⊗Hx +Hx ⊗ ∂2
JxHx

W Fx;

Cg = I (∂HxW + ∂JxWFx) ,

(14)

with IiIjJ = δijδIJ and (A A)iIjJ = EjpqEJPQAiIpPAqQ and (A A)iIjJ = EipqEIPQApPAqQjJ ,

for A ∈ R3×3×3×3 and A ∈ R3×3.
The ellipticity condition requires that, for ∇0δx = ∇0∆x = u ⊗ V , with u,V ∈ R3 and

u 6= 0, V 6= 0, the tangent operator in (11) and (12) is positive, namely

IW = (u⊗ V ) : C : (u⊗ V ) =

 u⊗ V :
Fx (u⊗ V ) :
Hx : (u⊗ V )

T [HW

]  : u⊗ V
: Fx (u⊗ V )
Hx : (u⊗ V )

 ≥ 0. (15)

In above equation (15), the contribution from the geometrical component Cg vanishes, i.e.
(u⊗ V ) : Cg : (u⊗ V ) = 0, as shown in References [58]. A sufficient condition for (15) to hold
is the positive definiteness of the acoustic tensor CV V , defined as

(CV V )ij = (C)iIjJ VIVJ ; ∀V ∈ R3; V 6= 0. (16)

Alternatively, a more restrictive sufficient condition for (15) to hold is the positive definite-
ness of

[
HW

]
. This is automatically satisfied if the strain energy functional Ψ (∇0x) (5) is suf-

ficiently differentiable and polyconvex [26, 27, 29, 30, 68], namely if its extended representation
W (F x,Hx, Jx) is convex with respect to its arguments, i.e.

W (A3,B3, C3) ≤ λW (A1,B1, C1) + (1− λ)W (A2,B2, C2) ; ∀λ ∈ [0, 1] , (17)

∀A1,A2,B1,B2 ∈ R3×3 and C1, C2 ∈ R and A3 = λA1 + (1− λ)A2, B3 = λB1 + (1− λ)B2

and C3 = λC1 + (1− λ)C2.
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4.1.1. An example for the passive response

As an example, let us consider the classical invariant-based representation of the strain en-
ergy proposed by Holzapfel-Ogden [24] for the characterisation of the passive response of the
myocardium. In this energy, each one of the terms introduced in equation (6) are

Ŵ (F x, Jx) =
a

2b
eb(ÎIFx−3); U (Jx) =

κ

2
(Jx − 1)2 ;

W ani (F x,f 0, s0) =
af
2bf

(
ebf 〈I4,f0

−1〉2 − 1
)

+
as
2bs

(
ebs〈I4,s0−1〉2 − 1

)
+

afs
2bfs

(
ebfsI

2
8,f0s0 − 1

)
, (18)

where {a, κ, af , as, afs, bf , bs, bfs} are positive material constants and 〈•〉 represents the Macaulay
brackets 〈•〉 = (•+ |•|) /2 to prevent fibres from working in contraction [69, 70], II(•) denotes
the second invariant of (•) and with the anisotropic invariants I4,f0

, I4,s0 , I8,f0s0 defined as

I4,f0
= F xf 0 · F xf 0; I4,s0 = F xs0 · F xs0; I8,f0s0 = F xf 0 · F xs0. (19)

For the specific constitutive model defined in (18), the elements of the set {∂FxW,∂HxW,∂JxW}
featuring in the definition of P in (10) are

∂FxW = aeb(ÎIFx−3)J
− 2

3
x F x + 2afe

bf〈I4,f0
−1〉2 〈I4,f0

− 1
〉
F xf 0 ⊗ f 0+

+ 2ase
bs〈I4,s0−1〉2 〈I4,s0 − 1〉F xs0 ⊗ s0 + afse

bfsI
2
8,f0s0I8,f0s0 (F xf 0 ⊗ s0 + F xs0 ⊗ f 0) ;

∂HxW = 0;

∂JxW = −a
3
J−1
x ÎIFxe

b(ÎIFx−3) + U ′ (Jx) .

(20)
The energy functional in (18) is not elliptic and, hence, not polyconvex. This is shown in

Appendix A, where the following expression for the ellipticity indicator IW (15) has been obtained

IW ≥ −2afse
bfsI

2
8,f0s0I8,f0s0 (u · u) | (V · f 0) (V · s0) |. (21)

From (21), it can be concluded that the only term responsible for the possible loss of ellipticity
of the model in (18) is that associated with the non-elliptic invariant I8,f0s0 . IW (15) might adopt
negative values throughout the deformation due to this term. Negative values of IW (21) for any
given u,V ∈ R3, u,V 6= 0 can induce loss of positive definiteness of the acoustic tensor CV V
in (16), leading to loss of ellipticity and, hence, loss of polyconvexity. A numerical study of the
possible loss of ellipticity and polyconvexity of this model will be carried out in Section 7.6.

Remark 1. Notice that it is possible to (poly)-convexify the invariant I8,f0s0 via its convexified
counterpart I?8,f0s0

defined as

I?8,f0s0
= (αFxf 0 + βFxs0) · (αFxf 0 + βFxs0)−

(
α2 + β2

)
, (22)

where the dimensionless parameters {α, β} would have to be defined via material characterisation.
Replacing I8,f0s0 with I?8,f0s0

in (18) yields a polyconvexification of this constitutive model. The
specific choice of α = 1 and β = −1 is of special interest as the resulting invariant represents the
stretch or shortening of the hypotenuse of the right-angled triangle with adjacent sides defined
by the unit vectors f 0 and s0.

In the following sections, two well-known approaches describing the coupling of the strain
energy W in equation (18) with the electro-activation will be presented.
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4.1.2. Coupling of first Piola-Kirchhoff stress tensor with the transmembrane potential φ: active
stress approach

In the active stress approach [20, 51, 52], an additive decomposition of P is defined in terms
of a coupled (active) P Active contribution and a purely mechanical (passive) P Passive contribution
as

P = P Active + P Passive; P Active = TaF xf 0 ⊗ f 0; P Passive = ∂FxW + ∂HxW F x + ∂JxWHx,
(23)

where Ta repressents the active cardiomyocite contraction stress and the passive term P Passive

adopts an identical representation to that in (10). Evolution equations relating Ta with the
transmembrane potential φ will be presented in section 4.3.1.

In this approach, the tangent operator of the active contribution P Active can be written as

D (P Active : ∇0δx) [∆x] = ∇0δx :
[
TaT f0f0

]
: ∇0∆x;

(
T f0f0

)
iIjJ

= δij (f 0)I (f 0)J . (24)

Therefore, in addition to the material and geometrical components Cm and Cg, the elasticity
tensor includes an additional active contribution CTa as

C = Cm + Cg + CTa ; CTa = TaT f0f0
. (25)

The ellipticity condition for the active stress approach4 can then be written as

(u⊗ V ) : C : (u⊗ V ) =

 u⊗ V :
Fx (u⊗ V ) :
Hx : (u⊗ V )

T [H̃W

] : u⊗ V
: Fx (u⊗ V )
Hx : (u⊗ V )

 ≥ 0, (26)

with [
H̃W

]
=
[
HW

]
+

Taf 0 ⊗ f 0 03×3 03×1

03×3 03×3 03×1

01×3 01×3 0

 . (27)

Crucially, positive values of Ta (associated with contractions along the fibre f 0) guarantee
the ellipticity of the active contribution P Active in (23)b. Furthermore, positive values of Ta can
help stabilising the loss of ellipticity induced by the energetic contribution associated with the
invariant I8,f0s0 in (18) (refer to end of Section 4.1.1).

4.1.3. Coupling of stresses with the transmembrane potential φ: active strain approach

The second approach for the coupling of the mechanical and electrical physics, known as active
strain [10, 50, 62], is based on a multiplicative decomposition of the deformation gradient tensor
F x into its elastic (passive) F E

x and coupled (active) F A contributions (refer to Figure 3), namely

F x = F E
xF

A. (28)

In this approach, the coupling is embedded into the active component F A, related to the
electrically activated stretches

{
γf0

, γs0 , γn0

}
along the fibres {f 0, s0,n0}, defined as

F A = I + γf0
f 0 ⊗ f 0 + γs0s0 ⊗ s0 + γn0n0 ⊗ n0. (29)

Evolution equations relating γf0
with the transmembrane potential φ will be presented in

Section 4.3.2. The {γs0 , γn0} are usually related to γf0
(see Remark 2).

4Taking ∇0δx = ∇0∆x = u⊗ V .
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Figure 3: Multiplicative decomposition of the deformation gradient tensor F x for the active strain approach.

Remark 2. It is customary [62, 71] to assume that detF A = 1. Therefore, the widely used
assumption of equal values for {γf0

, γs0} enables to relate both to γf0
as

γs0 = γn0 =
1√

1 + γf0

− 1. (30)

Nevertheless, the latter assumption fails to correctly reproduce the heart wall thickness reduc-
tion during a heartbeat [16]. In order to circumvent this shortcoming, Rossi et al. [10] proposed
an alternative definition of {γf0

, γs0} (compatible with detF A = 1) as

γn0 = 4γf0
; γs0 =

1(
1 + γf0

)
(1 + γn0)

− 1. (31)

In the active strain approach, the coupling is achieved after a redefinition of the strain energy
Ψ, which must depend on the elastic components of F x, namely

Ψ
(
∇0x,F

A
)

= W
(
F E
x ,H

E
x , J

E
x

)
, (32)

with {F E
x ,H

E
x , J

E
x } defined as

F E
x = FxF

A−1
; HE

x = HxH
A−1

; JEx = JxJ
A−1

, (33)

and

HA =
1

2
F A F A; JA =

1

3
HA : F A. (34)

This enables to re-express the strain energy in (32) in terms of the strain measures {Fx,Hx, Jx}
and its active counterparts {F A,HA, JA} as

Ψ (∇0x) = W
(
F E
x ,H

E
x , J

E
x

)
= WE

(
F x,Hx, Jx,F

A−1
,HA−1

, JA
−1
)
. (35)

The re-expression of the strain energy in terms of {Fx,Hx, Jx} leads to an expression for P
as

P = ∂FxW
E + ∂HxW

E F x + ∂JxW
EHx. (36)

The tangent operator of WE is

D2W [δx; ∆x] = D2WE[δx; ∆x] =

 ∇0δx :
Fx ∇0δx :
Hx : ∇0δx

T [HWE

]  : ∇0∆x
: Fx ∇0∆x
Hx : ∇0∆x


+
(
∂HxW

E + ∂JxW
EFx

)
: (∇0δx ∇0∆x) ,

(37)
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where
[
HWE

]
represents the Hessian operator of WE. The ellipticity indicator IW can now be

expressed as

IW = (u⊗ V ) : CWE : (u⊗ V ) =

 u⊗ V :
Fx (u⊗ V ) :
Hx : (u⊗ V )

T [HWE

]  : u⊗ V
: Fx (u⊗ V )
Hx : (u⊗ V )

 ≥ 0. (38)

In this approach, the consideration of the strain energy WE as in (35) leads to re-expression
of the model in equation (18) as

ŴE(F x, Jx,F
A−1

) =
a

2b
e
b
(
ÎI
E
Fx
−3

)
; UE

(
JxJ

A−1
)

=
κ

2

(
JxJ

A−1 − 1
)2

;

WE ani
(
F x,F

A−1
,f 0, s0

)
=

af
2bf

(
ebf 〈I

E
4,f0
−1〉2 − 1

)
+

as
2bs

(
ebs〈I

E
4,s0
−1〉2 − 1

)
+

afs
2bfs

(
ebfsI

E 2
8,f0s0 − 1

)
,

(39)

with

ÎI
E

Fx
= J−2/3

x JA
2/3 (

FxF
A
)

:
(
FxF

A−1
)

; IE4,f0
=
(
F xF

A−1
f 0

)
·
(
F xF

A−1
f 0

)
;

IE4,s0 =
(
F xF

A−1
s0

)
·
(
F xF

A−1
s0

)
; IE8,f0s0

=
(
F xF

A−1
f 0

)
·
(
F xF

A−1
s0

)
.

(40)

For the specific constitutive model defined in (18), the elements of the set {∂FxW,∂HxW,∂JxW}
featuring in the definition of P in (36) are

∂FxW
E = aeb(II

E
Fx
−3)J

− 2
3

x JA
2
3

(
F xF

A−1
F A−T

)
+ 2afe

bf〈IE4,f0
−1〉2 〈I4,f0

− 1
〉 (
F xF

A−1
f 0 ⊗ F A−1

f 0

)
+

+ 2ase
bs〈IE4,s0−1〉2 〈IE4,s0 − 1

〉 (
F xF

A−1
s0 ⊗ F A−1

s0

)
+ afse

bfsI
E 2
8,f0s0IE8,f0s0

(
F xF

A−1
f 0 ⊗ s0 + F xF

A−1
s0 ⊗ f 0

)
;

∂HxW
E = 0;

∂JxW
E = −a

3
J−1
x ÎI

E

Fx
e
b
(
ÎI
E
Fx−3

)
+ JA

−1
U ′
(
J−1
x

)
.

(41)

Remark 3. The isotropic invariant isochoric contribution Ŵ in (18) has been replaced in (39) by

its elastic counterpart ŴE. Notice that ŴE depends upon invariant ÎI
E

Fx
in (40), which can be

written as

ÎI
E

Fx
= J−2/3

x JA
2/3
(
FxF

A−1
)

:
(
FxF

A−1
)

= J−2/3
x JA

2/3
(
CA−1

: F T
xF x

)
, (42)

with CA−1
= F A−1

F A−T . In this case, CA−1
plays a similar role to that of a structured tensor

used to embed anisotropy.

4.2. Electrophysiology of the heart

The objective of this section is to briefly describe the phenomenological aspects underlying
the governing equation (4). Specifically, the definition of the flux vector Q and the source term
fφ will be presented. In analogy with the Fick’s Law, it is customary [1, 2, 10, 48, 49, 51, 53, 62]
to relate Q with the material gradient of the transmembrane potential φ as

Q = D∇0φ, (43)
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where D represents the second order conductivity tensor [53], defined in terms of the electrical
conductivities diso and dani [10, 53, 62] as

D = disoJ
−2HT

xHx + danif 0 ⊗ f 0. (44)

The source term fφ depends on the transmembrane potential φ, gating variables5 and ion
concentrations [34, 43–45]. Both sets of (scalar) gate and ion concentration variables are repre-
sented by the vector q ∈ Rnq , with nq the total number of gate numbers and ion concentrations.
The evolution equations for q can be mathematically modelled via a set of first order differential
equations [1, 2, 34, 48, 49], allowing them to be treated as internal variables, as

q̇ (φ) = g (φ, q (φ)) , (45)

with g : Rnq+1 → Rnq . It is customary to assume an additive decomposition of the source term
as

fφ (φ) = f̃φ (φ, q (φ)) ; f̃φ (φ, q (φ)) = Istim + Isum (φ, q (φ)) , (46)

with Isum : Rnq+1 → R. The first term Istim in (46)b enables the initial propagation of the electrical
wave (4). The choice of the ionic model dictates the form of the nonlinear term Isum in (46)b.
Two ionic models are considered in this paper. In the first, known as Bueno-Orovio model [1],
Isum is defined as

Isum = Ifi + Isi + Iso, (47)

where Ifi, Isi and Iso represent three electrical currents which depend linearly on three gating
variables6. The reader is referred to [1] for the expressions of each of the current contributions of
Isum in (47). Finally, the evolution equations for q (45)b, also linear in this case, can be found in
[1]. The second model considered, namely the Ten Tusscher model [2, 49], incorporates a more
complex representation of Isum, additively decomposed as

Isum = INa + IbNa + INaK + INaCa + IK1 + IKr + IKs + IpK + It0 + ICaL + IbCa + IpCa, (48)

where each electrical current is nonlinearly related to thirteen gating variables and four ion con-
centrations. The reader is referred to [2, 49] for the expressions of each of the current contributions
of Isum in (48). In addition, the evolution equations for q (45)b, can be found in [49].

4.3. Electro-Mechanical activation of the heart

This section presents the mechanism responsible for the coupling between the mechanical
physics with the transmembrane potential φ. Specifically, evolution equations for Ta and γf0

for
both active stress and active strain approaches in Sections 4.1.2 and 4.1.3 will be presented.

4.3.1. Active stress approach

In the case of active stress, the evolution equations for Ta can be expressed as

Ṫa = hTa (φ, q (φ)) , (49)

with hTa : Rnq+1 → R. The model proposed by Nash and Panfilov [51] considers the following
expression for hTa (49)

hTa = ε (u) (kTau− Ta) ; ε (u) =

{
1 if u > 0
10 if u < 0

; u =
(φ+ 84)

85.7
(mV), (50)

5Gate variables represent the probability of a gate in the cell membrane associated with a specific ion to be
open.

6Therefore, the vector q exclusively includes these three gating variables.
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where kTa is a constant with dimensions of stress [51]. Alternatively, Wong et al. [53] adapted
the model in (50) to be used in conjunction with the Ten Tusscher model in (48). In this case,
the evolution equation for Ta depends on the calcium concentration cCa as

hTa = ε (cCa) (η (cCa − cCa,0)− Ta) ; ε (cCa) = ε0+(ε∞ − ε0) eA; A = −e−ξ(cCa−ccritCa ), (51)

where {ε0, ε∞, ξ, η} constants and {cCa,0, c
crit
Ca }, the resting and critical calcium concentrations

respectively (refer to [53]).

4.3.2. Active strain approach

In the case of active strain, the evolution equations for γf0
can be expressed as

γ̇f0
= hγf0

(φ, q (φ)) , (52)

with = hγf0
: Rnq+1 → R. In reference [10], Rossi et al. proposed the following thermodynamically

consistent expression for the function hγf0
in (52)

hγf0
=

1

µ̂Ac2
Ca

(
FA +

2I4,f0(
1 + γf0

)3 − 2I4,f0

)
, (53)

where µ̂A represents a viscous-type term, cCa denotes the calcium concentration and FA is the
dimensionless active force along the fibre direction f 0, defined as

FA = α (cCa − cCa,0)2 χ[lmin,lmax] (F (l)) ; χ[lmin,lmax] (F (l)) =

{
F (l) if l ∈ [lmin, lmax]
0 if l 6∈ [lmin, lmax]

;

l = I4,f0
l0; F (l) =

d0

2
+

3∑
n=1

dn cos (nl) + en sin (nl) . (54)

In (54), α represents the active force of a sarcomere, cCa,0, the resting calcium concentration,
{lmin, lmax}, the minimum and maximum measured sarcomere lengths and {d0, dn, en}, constants
calibrated to match the experimental data reported in reference [72].

Remark 4. Notice in equations (53) and (54)a that both γ̇f0
and FA depend on the calcium

concentration cCa. In principle, this precludes the use of the Bueno-Orovio model in (47) as
this model does not incorporate ionic concentrations as part of the internal variables q (45). In
order to circumvent this drawback, some authors [10] use a simplified approach where the calcium
concentration cCa is assumed to be equivalent to the internal variable s in [1]. This simplification
allows the use of the Bueno-Orovio model in conjunction with the active strain approach.

5. Variational formulation for cardiac electro-mechanics

5.1. Standard three-field x-φ-p formulation

In this section, the weak forms associated with the governing equations in Section 3 will be
presented for the case of truly incompressibility. These include the conservation of linear momen-
tum equation (3), denoted asWx; the monodomain model for the evolution of the transmembrane
potential (4), denoted as Wφ; and the incompressibility constraint (i.e. J = 1), denoted as Wp.
In this formulation, the unknown fields are {x, φ, p} ∈ Vx × Vφ × Vp, as

Vx =
{
x : Ω0 → R3; (x)i ∈ H1 (Ω0)

}
;

Vφ =
{
φ : Ω0 → R; φ ∈ H1 (Ω0)

}
;

Vp = {p : Ω0 → R; p ∈ L2 (Ω0)} ,
(55)

12



where p represents the Lagrange multiplier field for the weak enforcement of the incompressibility
constraint. Let the virtual variations of {x, φ, p} be defined as {δx, δφ, δp} ∈ Vx0 ×Vφ×Vp, with

Vx0 = {x ∈ Vx, x = 0 on ∂xΩ0} . (56)

The weak forms {Wx,Wφ,Wp} can then be written as

Wx (x, φ, p) =

∫
Ω0

(P + pHx) : ∇0δx dΩ0 −
∫

Ω0

δx · b0 dΩ0 −
∫
∂Ω0

δx · t0 dΓ = 0;

Wφ (x, φ) =

∫
Ω0

δφ
∂φ

∂t
dΩ0 +

∫
Ω0

∇0δφ ·Q dΩ0 −
∫

Ω0

δφfφ dΩ0 = 0;

Wp (x) =

∫
Ω0

δp (Jx − 1) dΩ0 = 0,

(57)

with P as in (23) for active stress or as in (10) for active strain and with Q defined as in (43)-(44).

5.2. New mixed formulations for cardiac electro-mechanics

Following the work by the authors in [3, 58, 73, 74] in the context of nonlinear elasticity and
electro-elasticity, new tailor-made mixed variational formulations will be presented for cardiac
electro-mechanics.

5.2.1. Mixed formulation for active stress approach

A new mixed formulation is presented for the active stress approach, named MFA-Ta. In this
formulation, the unknown fields are {x, φ, p} ∈ Vx×Vφ×Vp (as in the three-field formulation in
Section 5.1) and an additional set of fields denoted as {F ,H , J,A} ∈ VF × VH × VJ × VA and
their work conjugates {ΣF ,ΣH ,ΣJ ,ΣA} ∈ VF × VH × VJ × VA, with

VF =
{
F : Ω0 → R3×3; (F )iI ∈ L2 (Ω0)

}
;

VH =
{
H : Ω0 → R3×3; (H)iI ∈ L2 (Ω0)

}
;

VJ = {J : Ω0 → R; J ∈ L2 (Ω0)} ;

VA =
{
H : Ω0 → R3; (A)I ∈ L2 (Ω0)

}
,

(58)

where both set of fields are forced to converge weakly to the following set of fields

{F ,H , J,A}⇀ {F x,Hx, Jx,∇0φ}; {ΣF ,ΣH ,ΣJ ,ΣA}⇀ {∂FW,∂HW,∂JW,DA} . (59)

Notice that equation (59)a represents the compatibility conditions whereas (59)b represents
the constitutive equations. In this formulation, the weak forms {Wx,Wφ,Wp} are expressed as

Wx (x, φ, p,F ,ΣF ,ΣH ,ΣJ) =

∫
Ω0

(P + pHx) : ∇0δx dΩ0 +

∫
Ω0

δx · b0 dΩ0 −
∫
∂Ω0

δx · t0 dΓ;

Wφ (φ,ΣA) =

∫
Ω0

δφ
∂φ

∂t
dΩ0 +

∫
Ω0

∇0δφ ·ΣA dΩ0 −
∫

Ω0

δφfφ dΩ0;

Wp (x) =

∫
Ω0

δp (Jx − 1) dΩ0,

(60)
where P (60)a adopts a similar expression to that in (23) but now in terms of the unknown fields
{ΣF ,ΣH ,ΣJ ,F ,H , J} as

P = ΣF + ΣH F x + ΣJHx + Ta (φ)Ff 0 ⊗ f 0. (61)
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Eight additional weak forms denoted as {WΣF
,WΣH

,WΣJ ,WΣA
} and {WF ,WH ,WJ ,WF }

enforcing equation (59) are part of this formulation and are defined as

WΣF
(x,F ) =

∫
Ω0

δΣF : (F x − F ) dΩ0; WF (F ,H , J,ΣF ) =

∫
Ω0

δF : (∂FW −ΣF ) dΩ0;

WΣH
(x,H) =

∫
Ω0

δΣH : (Hx −H) dΩ0; WH (F ,H , J,ΣH) =

∫
Ω0

δH : (∂HW −ΣH) dΩ0;

WΣJ (x, J) =

∫
Ω0

δΣJ (Jx − J) dΩ0; WJ (F ,H , J,ΣJ) =

∫
Ω0

δJ (∂JW − ΣJ) dΩ0;

WΣA
(φ,A) =

∫
Ω0

δΣA · (∇0φ−A) dΩ0; WA (H , J,A,ΣA) =

∫
Ω0

δA · (DA−ΣA) dΩ0,

(62)
where the strain energy W depends on the fields {F ,H , J} and not on {Fx,Hx, Jx} as in (5).
Moreover, {δF , δH , δJ, δA} ∈ VF × VH × VJ × VA and {δΣF , δΣH , δΣJ , δΣA} ∈ VF × VH ×
VJ × VA in (62). Finally, D in (62)i adopts an equivalent expression to that in (44) in terms of
{H , J} as

D (H , J) = disoJ
−2HTH + danif 0 ⊗ f 0. (63)

5.2.2. Mixed formulation for active strain approach

The mixed formulation presented in Section 5.2.1 will be adapted to the active strain approach
in this section. In this formulation, named as MFA-γ, the weak formsWφ andWp are completely
equivalent to those in (60). However, the multiplicative nature of the deformation gradient tensor
in (28) introduces a different dependence of the weak form Wx which, on the contrary to its
counterpart in (60), does not depend on the fields {φ,F }, i.e.

Wx (x, p,ΣF ,ΣH ,ΣJ) =

∫
Ω0

(P + pHx) : ∇0δx dΩ0 +

∫
Ω0

δx · b0 dΩ0 −
∫
∂Ω0

δx · t0 dΓ, (64)

where P is now expressed similarly to (10) as

P = ΣF + ΣH F x + ΣJHx. (65)

For this formulation, the weak forms (and their dependence) associated with the compatibility
equations, namely {WΣF

,WΣH
,WΣJ ,WΣA

}, are equivalent to those in the active stress approach
in (62). However, the multiplicative nature of the deformation gradient tensor in (28) introduces
a different dependence of the weak forms associated with the constitutive equations, namely

WF (φ,F ,H , J,ΣF ) =

∫
Ω0

δF :
(
∂FW

E −ΣF

)
dΩ0;

WH (φ,F ,H , J,ΣH) =

∫
Ω0

δH :
(
∂HW

E −ΣH

)
dΩ0;

WJ (φ,F ,H , J,ΣJ) =

∫
Ω0

δJ
(
∂JW

E − ΣJ

)
dΩ0,

(66)

where WE depends on the fields {F ,H , J,F A,HA, JA} and not on {Fx,Hx, Jx,F
A,HA, JA} as

in (35). Notice in above equation (66) the extra dependence with respect to the field φ (due to
the dependence of W with respect to the active contribution of the deformation gradient tensor
F A, see equation (28)) in contrast to those in (60).
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6. Computational implementation

6.1. General remarks

As standard in Finite Elements, the domain Ω0 described in Section 2 and representing the
myocardium is sub-divided into a finite of non-overlapping elements e ∈ E such that

Ω0 ≈ Ωh
0 =

⋃
e∈E

Ωe
0. (67)

The unknown fields in the mixed formulations in Sections 5.2.1 band 5.2.2 are discretised using
the following functional spaces {x, φ, p} ∈ Vxh × Vφh × Vph and {F ,H , J,A} ∈ VF h × VHh ×
VJh × VAh and {ΣF ,ΣH ,ΣJ ,ΣA} ∈ VF h × VHh × VJh × VAh , with

Vxh = {x ∈ Vx; x =
nx∑
a=1

xaN
x
a }; Vφh = {φh ∈ Vφ; φ =

nφ∑
a=1

φaN
φ
a };

Vph = {ph ∈ Vp; p =

np∑
a=1

paN
p
a}; VF h = {F h ∈ VF ; F =

nF∑
a=1

F aN
F
a };

VHh

= {Hh ∈ VH ; H =

nH∑
a=1

HaN
H
a }; VJh = {Jh ∈ VJ ; J =

nJ∑
a=1

JaN
J
a };

VAh = {Ah ∈ VA; A =

nA∑
a=1

AaN
A
a },

(68)

where a denotes the nodes used for the interpolation of the above variables and n(•), the number of
nodes associated with the variable (•). The functional spaces used for the virtual (and incremen-
tal) variations of the unknown fields are {δx, δφ, δp} ∈ Vxh0 ×Vφh ×Vph and {δF , δH , δJ, δA} ∈
VF h × VHh × VJh × VAh and {δΣF , δΣH , δΣJ , δΣA} ∈ VF h × VHh × VJh × VAh , with

Vxh0 = {x ∈ Vxh ; x = 0; on ∂tΩ0}. (69)

In order to avoid an excessive computational cost associated with the large number of unknown
fields in this mixed formulation, a piecewise discontinuous interpolation of the fields {F ,H , J,A}
and {ΣF ,ΣH ,ΣJ ,ΣA} is carried out in this work, which enables to condense out these fields us-
ing standard static condensation procedure. Specifically, two new Finite Elements have been used
in this work, denoted as ELEM1 and ELEM2. In the first, a quadratic tetrahedral element for
x and φ is used in conjunction with a discontinuous linear interpolation for the fields {F ,H ,A}
and their work conjugates and a constant interpolation for {J,ΣJ , p}. In the second, a quadratic
tetrahedral element for x and φ where only the interpolation of x is enhanced with five bub-
ble functions in analogy to the P+

2 P
D
1 Crouzeix-Raviart [75, 76]. Additionaly, a discontinuous

quadratic interpolation is used for the fields {F ,H} and their work conjugates and a linear in-
terpolation for all the remaining fields. Notice that the superscript D in the definition of both
elements is associated with the discontinuous nature of a particular field. Figure 4 summarises
the different Finite Element spaces employed for both elements.

6.2. Finite Element semi-discretisation

In this section, the Finite Element implementation of the set of weak forms associated with
the mixed formulation MFA-γ in Section 5.2.2 will be presented. Standard Finite Element
discretisation enables the discrete form of the weak forms {Wx,Wφ,Wp} in (60) to be expressed
as

Wx =
nx∑
a=1

Ra
x · δxa; Wφ =

nφ∑
a=1

Ra
φδφ

a; Wp =

np∑
a=1

Ra
pδp

a; (70)
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ELEM1

x P2

φ P2

p P0

{F ,ΣF } PD
1

{H,ΣH} PD
1

{J,ΣJ} P0

{A,ΣA} PD
1

ELEM2

x P+
2

φ P2

p PD
1

{F ,ΣF } PD
2

{H,ΣH} PD
2

{J,ΣJ} PD
1

{A,ΣA} PD
1

Figure 4: Summary of the interpolation types for each variable in the different mixed variables formulations
assessed in this manuscript. The superscript + denotes the use of a Crouzeix-Raviart element type [75].

with the associated residuals Ra
x, Ra

φ and Ra
p defined as

Ra
x =

∫
Ω0

(P + pHx)∇0N
a
x dΩ0 +

∫
Ω0

Na
xb0 dΩ0 −

∫
∂Ω0

Na
xt0 dΓ;

Ra
φ =

∫
Ω0

Na
φ

∂φ

∂t
dΩ0 +

∫
Ω0

∇0N
a
φ ·ΣA dΩ0 −

∫
Ω0

Na
φfφ dΩ0;

Ra
p =

∫
Ω0

Na
p (Jx − 1) dΩ0.

(71)

Similarly, the discrete form of the compatibility equations and the constitutive equations
enables their associated residuals {RΣF

,RΣH
, RΣJ ,RΣA

} and {RF ,RH , RJ ,RA} to be defined
as

Ra
ΣF

=

∫
Ω0

Na
F (F x − F ) dΩ0; Ra

F =

∫
Ω0

Na
F (∂FW −ΣF ) dΩ0;

Ra
ΣH

=

∫
Ω0

Na
H (Hx −H) dΩ0; Ra

H =

∫
Ω0

Na
H (∂HW −ΣH) dΩ0;

Ra
ΣJ

=

∫
Ω0

Na
J (Jx − J) dΩ0; Ra

J =

∫
Ω0

Na
J (∂JW − ΣJ) dΩ0;

Ra
ΣA

=

∫
Ω0

Na
A (∇0φ−A) dΩ0; Ra

A =

∫
Ω0

Na
A (DA−ΣA) dΩ0.

(72)

Let us denote U = {x, φ, p,Y ,ΣY}, with Y = {F ,H , J,A} and ΣY = {ΣF ,ΣH ,ΣJ ,ΣA}.
Consistent linearisation of the above residuals with respect to the incremental variations ∆U
leads to the following Newton-Raphson-based update algorithm

K (Uk) ∆U = −R (Uk) ; Uk+1 = Uk + ∆U , (73)

where the stiffness matrix K, emerging as a result of the consistent linearisation of the residuals
in equations (71) and (72), before static condensation is carried out can be expressed as

K =


Kxx 0 Kxp 0 KxΣY

0 Kφφ 0 0 KφΣY

KT
xp 0 0 0 0

0 KYφ 0 KYY KYΣY

KT
xΣY

KT
φΣY

0 KT
YΣY

0

 . (74)

The expression of each of the components of K in above equation (74) will be presented in
the following derivations. As shown in reference [60], the stiffness matrix Kxx, corresponding to
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the linearisation of Ra
x in (71)a with respect to ∆x is obtained as

Kab
xx = E :

∫
Ω0

(ΣH + (ΣJ + p)F x)
(
∇0N

a
x ×∇0N

b
x

)
dΩ0. (75)

In addition, the linearisation ofRx with respect to ∆p leads to the stiffness matrix contribution
Kxp, obtained as

Kab
xp =

∫
Ω0

N b
p (Hx∇0N

a
x) dΩ0. (76)

Moreover, the linearisation of this residual, namely Rx, with respect to the set ΣY leads to
the stiffness contribution KxΣY defined as

Kab
xΣY

=

∫
Ω0

[
(I ⊗∇0N

a
x)N b

F Eijk
[
(F x ∇0N

a
x)N b

H

]
kI

N b
J (Hx∇0N

a
x) 0

]
dΩ0. (77)

The linearisation of the residual Rφ in equation (71)b leads to the stiffness contribution Kφφ.
In the case of using a backward-Euler time integrator for the (time dependent) first term on the
right hand side of this equation, Kφφ can be obtained as

Kab
φφ =

∫
Ω0

Na
φN

b
φ

1

∆t
dΩ0 +

∫
Ω0

Na
φN

b
φ

Dfφ
Dφ

dΩ0, (78)

where the derivation of
Dfφ
Dφ

can be found in Remark 4. . In addition, the linearisation of residual
Rφ respect to to the work conjugate ΣA leads to the following expression

Kab
φΣA

=

∫
Ω0

∇0N
a
φN

b
AdΩ0. (79)

Linearisation of the residual RY with respect to ΣY leads to the stiffness KYΣY , defined as

Kab
YΣY

= −
∫

Ω0


Na
FN

b
FI 0 0 0

0 Na
HN

b
HI 0 0

0 0 Na
JN

b
J 0

0 0 0 Na
AN

b
AI

 dΩ0, (80)

where I represents the fourth order identity tensor IiIjJ = δijδIJ and I, the second order identity
tensor. Linearisation of the residual RY with respect to Y leads to the stiffness KYY , defined as

Kab
YY = −

∫
Ω0


Na
FN

b
FWFF Na

FN
b
HWFH Na

FN
b
JWFJ 0

Na
HN

b
FWHF Na

HN
b
HWHH Na

HN
b
JWHJ 0

Na
JN

b
FWJF Na

JN
b
HWJH Na

JN
b
JWJJ 0

0 kAH kAJ Na
AN

b
AQ

 dΩ0, (81)

where WBC = ∂2W
∂B∂C

with B and C any of the fields of the set {F ,H , J}. Moreover, kAH and
kAJ in above equation are obtained as

[kAH ]IjJ = disoJ
−2Na

AN
b
H

(
HjIAJ + δIJ [HA]j

)
; kAJ = −2disoJ

−3Na
AN

b
J

(
HTHA

)
. (82)

Finally, the non-vanishing (KAφ = 0) contributions of the stiffness KYφ are obtained as

Kab
Fφ =

∫
Ω0

Na
FN

b
φWFFA : UdΩ0; Kab

Hφ =

∫
Ω0

Na
HN

b
φWHFA : UdΩ0; Kab

Jφ =

∫
Ω0

Na
JN

b
φWJFA : UdΩ0,

(83)

17



where the second order tensor U is expressed as

U =
DF A

Dγf0

Dγf0

Dφ
, (84)

where the derivation of
Dγf0

Dφ
can be found in Remark 5.

Remark 5. Time integration of equation (52) via the implicit first order in time Backward Euler
scheme enables to γf0

at current time step tn+1 as

γf0
(tn+1) = γf0

(tn) + ∆thγf0
(φ (tn+1) , q (φ (tn+1))) , (85)

where ∆t represents the magnitude of the time step used. The total derivative of both the source
term fφ in (46) and γf0

in (52) in (85) leads to

Dfφ
Dφ

=
∂fφ
∂φ

+
∂fφ
∂q
· ∂q
∂φ

;
Dγf0

Dφ
=
∂hγf0

∂φ
+
∂hγf0

∂q
· ∂q
∂φ
. (86)

The only field that remains to be determined in (86) is ∂q
∂φ

. Time integration of (45) via the
implicit first order in time Backward Euler scheme enables to obtain q at tn+1 as

q (tn+1) = q (tn) + ∆tg (φ (tn+1) , q (tn+1)) . (87)

Differentiation with respect to φ in (87) enables to obtain ∂q
∂φ

as

∂q

∂φ
= ∆t

(
∂g

∂φ
+
∂g

∂q

∂q

∂φ

)
→ ∂q

∂φ
= ∆t

(
Inq×nq −

∂g

∂q

)−1
∂g

∂φ
. (88)

6.2.1. Static condensation

In order to use the static condensation procedure for a given element e, the system of equations
can be expressed as

Ke
xx 0 Ke

xp 0 Ke
xΣY

0 Ke
φφ 0 0 Ke

φΣY[
Ke
xp

]T
0 0 0 0

0 Ke
Yφ 0 Ke

YY Ke
YΣY[

Ke
xΣY

]T
Ke

ΣYφ
0

[
Ke

YΣY

]T
0




∆xe

∆φe

∆pe

∆Ye

∆Σe
Y

 = −


Re
x

Re
φ

Re
p

Re
Y

Re
ΣY

 . (89)

Replacing the values of ∆Ye and ∆Σe
Y from the fourth and fifth rows in above equation (89),

enables to rewrite the element system of equations as K̄
e
xx K̄

e
xφ Ke

xp

K̄
e
φx K̄

e
φφ 0[

Ke
xp

]T
0 0

 ∆xe

∆φe

∆pe

 = −

 R̄e
x

R̄
e
φ

Re
p

 . (90)

where the modified matrices K̄
e
xx, K̄

e
xφ, K̄

e
φx, K̄

e
φφ, R̄

e
x and R̄

e
φ are defined as

K̄
e
xx = Ke

xΣY

[
Ke

YΣY

]−1
Ke

YY
[
Ke

YΣY

]−T [
Ke
xΣY

]T
+Ke

xx

K̄
e
xφ = Ke

xΣY

[
Ke

YΣY

]−1
(
Ke

YY
[
Ke

YΣY

]−T
Ke

ΣYφ
−Ke

Yφ

)
K̄

e
φx = Ke

φΣY

[
Ke

YΣY

]−1
Ke

YY
[
Ke

YΣY

]−T [
Ke
xΣY

]T
K̄

e
φφ = Ke

φΣY

[
Ke

YΣY

]−1
(
Ke

YY
[
Ke

YΣY

]−T
Ke

ΣYφ
−Ke

Yφ

)
+Ke

φφ

R̄
e
x = Ke

xΣY

[
Ke

YΣY

]−1
(
Ke

YY
[
Ke

YΣY

]−T
Re

Y −Re
ΣY

)
+Re

x

R̄
e
φ = Ke

φΣY

[
Ke

YΣY

]−1
(
Ke

YY
[
Ke

YΣY

]−T
Re

Y −Re
ΣY

)
+Re

φ, (91)
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where nY denotes the total number of nodes within an element for the set Y .

7. Numerical examples

A series of examples are included in this section in order to verify the robustness and appli-
cability of the mixed formulations MFA-Ta and MFA-γ presented in Sections 5.2.1 and 5.2.2,
respectively. One important aspect which is common to both formulations needs to be high-
lighted. Specifically, the reader must notice that the strain energy in (18) does not depend on
the cofactor H . Therefore, in this particular case, the weak form WH in (62) and its associated
residual vector Ra

H (72) are unnecessary, and so is the field ΣH . Therefore, in the forthcom-
ing numerical examples, the unknown fields for both MFA-Ta and MFA-γ formulations when
considering the model in (18) will include {x, φ, p}, {F ,H , J,A} and {ΣF ,ΣJ ,ΣA}. On the
contrary, for those examples where the strain energy depends on the cofactor (see Section 7.3.3),
the field ΣH is included as part of the set of unknowns.
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7.1. Numerical example 1: patch test

The objective of this example is:

• O1.I Assesment of the correctness of the computational implementation of the mixed for-
mulations MFA-Ta and MFA-γ introduced in Sections 5.2.1 and 5.2.2 when using both
Finite Elements ELEM1 and ELEM2 in Table 4.

In this example, we consider a portion of the myocardium defined by a cubic shaped domain
of unit length. This domain is discretised using two (3 × 3 × 3) × 6 tetrahedral discretisations
characterised by: (a) structured mesh (refer to Figure 5(a)) and (b) unstructured mesh (refer
to Figure 5(b)) where an arbitrary displacement of the interior nodes of the structured mesh is
applied.

(a) (b)

Figure 5: Numerical example 1. (3×3×3)×6 tetrahedral discretisation with (a) structured and (b) unstructured
mesh.

The constitutive model describing the passive response of the myocardium in this example is
that in (18), and all the material parameters chosen can be found in Figure 6. In this example,
the fibres {n0, s0,f 0} are chosen parallel to the axes {OX,OY,OZ}, respectively.

Parameters for the Holzapfel-Odgen constitutive law

a = 0.059 kPa af = 0 kPa as = 0 kPa afs = 0 kPa
b = 8.023 bf = 0 bs = 0 bfs = 0

Figure 6: Numerical example 1. Material parameters chosen for the constitutive model in equation [24].

With regards to boundary conditions for the transmembrane potential φ, this is prescribed as
φ = 0 mV and φ = 30 mV on the faces perpendicular to the OZ axis whilst homogeneous Neu-
mann boundary conditions are applied elsewhere. Furthermore, homogeneous normal Dirichlet
boundary conditions for the displacements are applied on the base perpendicular to the OZ axis
whilst homogeneous Neumann boundary conditions are applied elsewhere.

In order to focus strictly on above objective O1.I, the physics of the problem has been sim-
plified. Specifically, the time derivative of the electric potential, i.e. φ̇ and the source term fφ in
(4) have been neglected. Furthermore, ad-hoc activation laws for both active stress and active
strain approaches have been defined as

Ta = αφ; γf0
= βφ; γs0 = 0; γn0 = 0, (92)
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with α = −0.5 and β = 0.05.
As it can be seen from Figures 7, a linear distribution for both the deformation gradient

tensor F and the transmembrane potential φ are obtained along the OZ axis, as expected. This
distribution is identical for both structured and unstructured meshes and for both formulations
MFA-Ta, MFA-γ, when using the Finite Elements ELEM1 and ELEM2 in Table 4. Therefore,
both Finite Elements pass the patch test in both mixed formulations. For completeness, the
quadratic convergence of the Newton-Raphson algorithm is shown in Figure 8.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Numerical example 1. Contour plot of φ on unstructured mesh for: (a) ELEM1-MFA-Ta; (b) ELEM1-
MFA-γ; (c) ELEM2-MFA-Ta; (d) ELEM2-MFA-γ. Contour plot of FzZ on unstructured mesh for: (e) ELEM1-
MFA-Ta; (f) ELEM1-MFA-γ; (g) ELEM2-MFA-Ta; (h) ELEM2-MFA-γ.

(a) (b) (c)

Figure 8: Numerical example 1. Quadratic convergence of the Newton-Raphson algorithm for: (a) ELEM1-MFA-
γ; (b) ELEM2-MFA-γ; (c) MFA-Ta. All the results correspond to the unstructured mesh in Figure 5b.
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7.2. Numerical example 2: convergence of new mixed formulations
The objective of this example is:

• O2.I Demonstrate the p-order of accuracy of the mixed formulations MFA-γ presented in
Section 5.2.2 when using both Finite Elements ELEM1 and ELEM2.

The same cubic domain of unit length as in the previous example is considered. The constitu-
tive model describing the passive response in this example is that in equation (18), with material
parameters chosen as in Figure 6. Furthermore, the directions of the fibres {f 0, s0,n0} are chosen
parallel to the axes {OX,OY,OZ}, respectively.

In order to study objective O2.I, the analysis of an ad hoc manufactured problem is carried
out following a similar procedure as that described in reference [60]. For that, the following exact
fields associated with the deformed configuration x and the transmembrane potential φ are chosen

xexact = X +

 AX3
1

BX3
2

CX3
3

 ; φexact = DX4
1 , (93)

with {A,B,C,D} = {0.01, 0.01, 0.01, 100}. The exact deformation gradient tensor F exact associ-
ated with xexact and the material gradient of φexact can be computed as

F exact =

 1 + 3AX2
1 0 0

0 1 + 3BX2
2 0

0 0 1 + 3CX2
3

 ; Aexact =

 4DX3
1

0
0

 , (94)

This enables to obtain the exact fields {Hexact, Jexact,Dexact} using equations (1) and (44) as

Hexact =
1

2
F exact F exact; Jexact =

1

3
Hexact : F exact; Dexact = diso

(
Hexact

)T
Hexact

(Jexact)2 . (95)

The following ad-hoc activation law for the active strain approach is considered

γexact
f0

=
β (φexact)

2

(φexact)2 + 1
; γexact

s0
= γexact

n0
=

1√
γexact
f0
− 1

, (96)

with β = −0.1. This enables us to compute the active component of the deformation tensor
F A,exact from (29) and its elastic counterpart F E,exact from (28). With this, the first exact first
Piola-Kichhoff stress tensor P exact can be obtained as in (36). In addition, using diso = 10−4 and
dani = 0 it is possible to compute Qexact from (43)-(44). The computation of both {P exact,Qexact},
allows to obtain the associated volumetric force b0 in (3) and the source term fφ in (4) as

b0 = DIVP exact; fφ = −DIVQexact, (97)

where the time dependent term φ̇ (refer to (4)) vanishes from the definition of φexact in (93).
Dirichlet boundary conditions compatible with the exact fields {xexact, φexact} in (93) are applied
on the boundary of the domain. Finally, as it can be seen from the definition of F exact in (94), the
exact displacement field is not incompressible. Therefore, the pressure field p will not be included
as an unknown field for this specific example.

It can be seen from Figure 9 that the convergence of the fields {x,F ,H ,ΣF ,ΣH} is decreased
by 1 due to the constant interpolation of the fields {J,ΣJ}. This has already been shown in
Reference [60]. The remaining fields converge at the expected rate. On the contrary, for the
Finite Element ELEM2, all the fields converge at the expected rate. Nonetheless, it has been
shown (in the context of nonlinear elasticity, where no electrical coupling is present) [60, 77] that
the equivalent to ELEM1 outperforms the classical P2 (tetrahedral) element in bending dominated
problems. Moreover, ELEM1 is computationally more effective than ELEM2 as the inclusion of
bubble functions in the latter requires an increased order of quadrature with respect to ELEM1.
Therefore, ELEM1 will be used for the remaining examples of this paper.
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(a) (b)

(c) (d)

Figure 9: Numerical example 2. p-order of accuracy for: {x, φ,F ,H, J,A} for: (a) ELEM1-MFA-γ and (b)
ELEM2-MFA-γ. p-order of accuracy for: {ΣF ,ΣJ ,ΣA} for: (c) ELEM1-MFA-γ and (d) ELEM2-MFA-γ.
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7.3. Numerical example 3: benchmark problems

The objective of this example is:

• O3.I Compare the accuracy of the new formulations presented in Sections 5.2.1 and 5.2.2
against available computer codes in the context of cardiac mechanics in a series of tailor-
made benchmark examples reported in [78].

With the aim of aiding in the verification of current and future cardiac mechanics solvers,
the authors in [78] proposed three benchmark problems for cardiac mechanics. In these, the
constitutive model chosen for the passive response of the myocardium was that proposed by
Guccione [22], defined as

Ψ (E?) =
K

2

(
eQ(E?) − 1

)
, (98)

The exponent Q (E?) in (98) is defined in terms of the local Green-Lagrange strain tensor7 as

Q (E?) = cfE
?2

11 + ct
(
E?2

22 + E?2
33 + E?2

23 + E?2
32

)
+ cfs

(
E?2

12 + E?2
21 + E?2

13 + E?2
31

)
, (99)

where {K, cf , ct, cfs} represent material parameters. Alternatively, we have derived in Appendix
B an invariant representation of Q (E?) and an additional representation in terms of the (global)
strain measures {Fx,Hx, Jx} as

Q (E?) = Q̃ (F x,Hx, Jx) = A Q̃aniso,1 (F x) +B Q̃aniso,2 (F x,Hx) + C Q̃iso (F x,Hx, Jx) , (100)

with {A,B,C} and {Q̃aniso,1, Q̃aniso,2, Q̃iso} presented in Appendix B. Notice that above represen-
tation in (100) is more amenable for Finite Element implementation as it does not depend on the
local axis of choice. Specifically, this representation permits the use of both mixed formulations
presented in this paper, namely MFA-Ta and MFA-γ in Sections 5.2.1 and 5.2.2 in conjunction
with Guccione’s model, as these formulations are tailor-made for constitutive models expressed
in terms of the strain measures {F x,Hx, Jx}.

7.3.1. Numerical example 3.1: cantilever beam

The first benchmark problem considers the beam with geometry and boundary conditions
in Figure 10. The beam is subjected to a follower load of q = 4 Pa. The material parameters
of Guccione’s model in (98) are defined by {K, cf , ct, cfs} = {2 kPa, 8, 2, 4} where the local axis
{f 0, s0,n0} are chosen to be coincident with the global axis.

Figure 10: Numerical example 3.1. Geometry and boundary conditions.

The four meshes in Figure 11 will be used. Each mesh will be solved using the mixed formula-
tion MFA-Ta in Section 4.1.2 in conjunction with the Finite Element ELEM1 in Table 4. Notice

7Let R be the rotation matrix from a local system of coordinates parallel to {f0, s0,n0} to the global system

of coordinates. E? can be related to its global counterpart E = 1
2

(
F TxF x − I

)
as E? = RTER.
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that in this problem, electro-activation effects are neglected. Therefore, MFA-Ta and MFA-γ in
Section 4.1.3 are identical in this specific scenario.

The results obtained with the ELEM1-MFA-Ta formulation will be studied for two variables
of interest: (a) the maximum Z-displacement for the four meshes in Figure 11 will be compared
against the results from authors in [78]; (b) the engineering strain measure along the three
Cartesian directions for the finest mesh in Figure 11 will be compared with other approaches. The
engineering strain measures with respect to the axis {OX,OY,OZ} are defined at the material
points {X̄Xi , X̄Yi , X̄Zi} as

εX
(
X̄Xi

)
=
‖x̂i − x̄Xi‖∥∥∥X̂ i − X̄Xi

∥∥∥ − 1; εY
(
X̄Yi

)
=
‖x̂i − x̄Yi‖∥∥∥X̂ i − X̄Yi

∥∥∥ − 1; εZ
(
X̄Zi

)
=
‖x̂i − x̄Zi‖∥∥∥X̂ i − X̄Zi

∥∥∥ − 1,

(101)
where the points {X̂ i, X̄Xi , X̄Yi , X̄Zi} in the reference configuration are defined as

X̂ i = (i, 0.5, 0.5); X̄Xi = (i+ 1, 0.5, 0.5); i = {0, 1, ...9};
X̄Yi = (i, 0.9, 0.5); X̄Zi = (i, 0.5, 0.9); i = {0, 1, ...9}, (102)

and with {x̂i, x̄Xi , x̄Yi , x̄Zi} their respective counterparts in the deformed configuration.

Figure 11: Numerical example 3.1. Increasingly finer Finite Element discretisations for cantilever beam example.
From left to right: (1× 1× 3)× 6, (2× 2× 8)× 6, (4× 4× 16)× 6 and (8× 8× 32)× 6 tetrahedral elements.

It can be seen from Figure 12 that the maximum Z-coordinate obtained for the four discreti-
sations is very similar. In fact, for the coarsest mesh, the results are considerably better than
those obtained by the code Simula-FEniCS. In addition, Figure 13 shows a good agreement of
the results obtained by the ELEM1-MFA-γ formulation with respect to those reported in [78]
for the finest mesh in Figure 11.

For the sake of completeness, the contour plot for the first Piola Kirchhoff stress tensor PzX
and the Lagrange multiplier p enforcing the incompressibility constraint is shown in Figure 14.
A reasonable agreement for these variables is obtained for the four discretisations considered in
this paper.

7.3.2. Numerical example 3.2: inflation of a ventricle

The second benchmark problem considers the idealised ventricle represented by an intersected
set of ellipsoids with semiaxes {10, 10, 20} mm and {7, 7, 17} mm centred in the origin and trun-
cated by the plane Z = 5 mm (see Figure 15a). The material parameters of Guccione’s model (98)
are {K, cf , cs, cfs} = {10 kPa, 1, 1, 1}. Homogeneous Dirichlet boundary conditions are applied
on the plane Z = 5 mm for all directions and a pressure (follower load) of 10 kPa is applied on
the inner face (endocardium), leading to the inflation of the ventricle (see Figure 15c).

The engineering strain is defined now with respect to the ellipsoidal coordinates {ϕ, θ, R} of
the ventricle (refer to Figure 15). The engineering strains with respect to the axis {Oϕ,Oθ,OR}
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Figure 12: Numerical example 3.1. Maximum Z-coordinate in the deformed configuration for the four discretisa-
tions in Figure 11. Results obtained with ELEM1-MFA-Ta formulation and by authors in Reference [78].
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Figure 13: Numerical example 3.1. Engineering strain εX (left), εY (centre) and εZ (right) for finest mesh in
Figure 11. {p1, ..., p9} correspond to: {X̄X1 , ..., X̄X9} in left figure (refer to (102)); {X̄Y1 , ..., Ȳ X9

} in centre
figure; {X̄Z1

, ..., X̄Z9
} in right figure. Results obtained with ELEM1-MFA-Ta formulation and by authors in [78].

Figure 14: Numerical example 3.1. Contour plot distribution of PzX and the Lagrange multiplier for incompress-
ibility p for the four discretisations considered and for the ELEM1-MFA-Ta formulation.
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(a) (b) (c)

Figure 15: Numerical example 3.2. (a) Geometry of the idealised ventricle. (b) Ellipsoidal coordinates of the
idealised ventricle. (c) Initial configuration (grey) and final configuration (black) after inflation of the ventricle.

at material points {X̄ϕi , X̄θi , X̄Ri} are defined in a similar fashion to equation (101) as

εϕ
(
X̄ϕi

)
=
‖x̂i − x̄ϕi‖∥∥∥X̂ i − X̄ϕi

∥∥∥ − 1; εθ
(
X̄θi

)
=
‖x̂i − x̄θi‖∥∥∥X̂ i − X̄θi

∥∥∥ − 1; εR
(
X̄Ri

)
=
‖x̂i − x̄Ri‖∥∥∥X̂ i − X̄Ri

∥∥∥ − 1,

(103)
where the points {X̂ i, X̄ϕi , X̄θi , X̄Ri} can be found in Reference [78]. Table 1 shows a good
agreement of the results obtained by the ELEM1-MFA-Ta formulation with respect to those re-
ported in [78] for the three engineering strains {εϕ, εθ, εR} for all the points described in Reference
[78] located at the endocardium, midmyocardium and epicardium. Finally, Figure 16 displays the
contour plot of {FxY , HzY , PzX , p,ΣFzY ,ΣJ} by means of the ELEM1-MFA-Ta formulation.
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Table 1: Numerical example 3.2. Engineering strain εθ (left), εφ (centre) and εR (right). {p1, ..., p9} corresponds
to: {X̄θ1 , ..., X̄θ9} in left figure (refer to [78]); {X̄ϕ1

, ..., Ȳ ϕ9
} in centre figure; {X̄R1

, ..., X̄R9
} in right figure.

Results obtained with ELEM1-MFA-Ta formulation and by authors in [78].
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(a) (b) (c)

(d) (e) (f)

Figure 16: Numerical example 3.2. Contour plot distribution of: (a) FxY , (b) HzY , (c) PzX , (d) p, (e) ΣFzY

and (f) ΣJ . Results obtained with ELEM1-MFA-Ta formulation.

7.3.3. Numerical example 3.3: inflation and active contraction of a ventricle

The geometry of the third example can be seen in Figure 17a. The Dirichlet boundary condi-
tions are identical to those in Section 7.3.2. In this case, there is a combined effect of a follower
load of value 15 kPa and a contraction along a set of fibres f 0 whose parametrisation can be
found in [78]. This contraction is imposed by considering a value of 60 kPa for the cardiomyocite
stress Ta in the active stress approach. The proposed mathematical description of the fibres f 0

is singular in the apex of the ventricle, leading to stress concentration in this region.

Figure 17: Numerical example 3.3. (a) Geometry of the idealised ventricle. (b) Orientation of f0 in Guccione’s
model (B.1). (c) Undeformed (transparent) and deformed (grey) configurations after activation of the ventricle.

The material parameters of Guccione’s constitutive law (98) are chosen as {K, cf , cs, cfs} =
{10 kPa, 8, 2, 4}. Table 2 shows a good agreement of the results obtained by the ELEM1-MFA-Ta
formulation with respect to those reported in [78] for the three engineering strains {εϕ, εθ, εR}
for all the points described in Reference [78] located at the endocardium, midmyocardium and
epicardium. Finally, Figure 18 displays the contour plot of {FzY , HzY , PzX , p,ΣFzY ,ΣJ} by means
of the ELEM1-MFA-Ta formulation.
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Table 2: Numerical example 3.3. Engineering strain εθ (left), εφ (centre) and εR (right). {p1, ..., p9} corresponds
to: {X̄θ1 , ..., X̄θ9} in left figure (refer to [78]); {X̄ϕ1

, ..., Ȳ ϕ9
} in centre figure; {X̄R1

, ..., X̄R9
} in right figure.

Results obtained with ELEM1-MFA-Ta formulation and by authors in [78].

(a) (b) (c)

(d) (e) (f)

Figure 18: Numerical example 3.3. Contour plot distribution of: (a) FxY , (b) HzY , (c) PzX , (d) p, (e) ΣFzY

and (f) ΣJ . Results obtained with the ELEM1-MFA-Ta formulation.
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7.4. Numerical example 4: coupled electro-mechanical simulation of a pair of idealised ventricles

The objectives of this example are:

• O4.I Demonstrate the applicability of formulations MFA-Ta in Section 5.2.1 and MFA-γ
in Section 5.2.2 for the simulation of the cardiac cycle under different: (a) coupling type
approaches (active stress/active strain); (b) activation laws (see Section 4.3) and (c) ionic
models (see Section 4.2).

• O4.II Demonstrate the shortcomings of conventional Finite Element approaches for the
modelling of cardiac mechanics.

• O4.III Study the susceptibility for loss of ellipticity of the constitutive model proposed by
Holzapfel-Ogden in [24] (refer to (18)) for both active strain and active stress approaches
during the cardiac cycle.

The main features of this example are:

Geometry: we consider in this example an idealised geometry of two ventricles defined by four
ellipsoids. The two outermost ellipsoids are centred in the origin, i.e {X, Y, Z} = {0, 0, 0} and the
length of their semi-axes is {50, 50, 70} mm and {45, 45, 65} mm. The two innermost ellipsoids
are centred at {X, Y, Z} = {0,−10, 0} and the length of their semi-axes is {40, 40, 63} mm and
{35, 35, 60} mm. The four ellipsoids are truncated by the plane Z = 0.

(a) (b) (c)

Figure 19: Numerical example 4. (a) Geometry of the two ventricles. (b) Representation of the fibre f0. (c)
Contour plot of η for the interpolation of f0. Blue and red regions correspond to η = 1 and η = 0, respectively.

Fibres direction: we consider the surfaces described by the four ellipsoids of the ventricle. For
each point of these surfaces, the unitary vector f 0 will be considered to be tangential to them.
Specifically, at each point of them, f 0 forms an angle of +60 or −60 degrees with respect to its
local circumferential axis. The angle is +60 in the first (outermost ellipsoid) and third ellipsoids,
whereas the angle is −60 in the remaining ellipsoids (refer to Figure 19b). A Poisson problem
is solved in order to obtain the orientation of f 0 in the interior of the ventricles [13] (at Gauss
point level). This is done by introducing the intermediate field η, satisfying ∇0 · (∇0η) = 0 in Ω0,
where η = 1 in the ellipsoidal surfaces associated with a +60 orientation of f 0 and η = 0 in the
remaining ellipsoidal surfaces (refer to Figure 19c). In addition, this intermediate field helps to
compute the normal unit vector s0 as ∇0η/‖∇0η‖. With all this information, the direction f 0 is
then calculated by means of Rodrigues’ rotation formula as explained in Reference [10]. Finally,
the remaining direction n0 is computed as n0 = f 0 × s0.

Boundary conditions: homogeneous Dirichlet boundary conditions are applied on the coloured
regions in Figure 20a. Homogeneous Neumann boundary conditions are applied elsewhere.
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Initial conditions: the cardiac action potential is triggered by means of an arbitrary stimulation
intensity Istim applied on the coloured region in Figure 20b.

(a) (b)

Figure 20: Numerical example 4. (a) Regions for the application of homogeneous Dirichlet boundary conditions
for displacements. In red: restriction displacement in OZ direction; in white: restriction in all directions. (b)
Region where the initial electrical stimulation occurs.

Time integration: an adaptive time step strategy is used for the time integration of equation
(4). A small time step ∆t is required in order to correctly capture the rapid initial depolarisation
and can then be gradually increased without compromising the accuracy of the simulation. The
time step ∆t at a given time t is automatically chosen by measuring the rate of change in absolute
value of the internal variables in the ionic models (see Sections 4.2). The minimum and maximum
values for ∆t are 0.3 ms and 50 ms, respectively. Furthermore, the time integration of equation
(4), the evolution equations for the activation laws for Ta (49) and γf0

(52) and the ODE for the
internal variables q in (45) is carried out by means of the (implicit) Backward-Euler scheme.

Material parameters: Table 22 contains the values for the relevant material parameters for:
(a) Holzapfel-Ogden model [24] in (18); (b) activation model proposed by Nash and Panfilov
[51]; (c) activation model proposed by Wong et al. [52]. (d) activation model proposed by Rossi
et al. [10]; (e) ionic model proposed by Bueno-Orovio et al. [1]; (f) ionic model proposed by Ten
Tusscher et al. [49]; (g) parameters controlling diffusion in (63).

7.4.1. Comprehensive simulation using the new mixed formulations in Sections 5.2.1 and 5.2.1

In order to address objective O4.I, four different simulations will be carried out in this ex-
ample. For the four simulations, the passive response is that proposed by Holzapfel-Ogden [24]
in (18). The material parameters for this model can be found in Figure 22a. The values of the
parameters controlling diffusion in equation (63) are in Figure 22g. The remaining details of the
simulations can be found below and also in Figure 21.

Simulation-I: the coupling type considered is active stress. The mixed formulation ELEM1-
MFA-Ta is used. The activation law is that of Nash & Panfilov [63] (see Figure 22b). The
ionic model chosen is the Bueno-Orovio model [1] (see Figure 22e).

Simulation-II: the coupling type considered is active stress. The mixed formulation ELEM1-
MFA-Ta is used in this case. The activation law is that of Wong & Kuhl [52] (see Figure 22c).
The ionic model chosen is the Ten Tusscher model [2] (see Figure 22f ).

Simulation-III: the coupling type considered is active strain. The mixed formulation ELEM1-
MFA-γ is used in this case. The activation law is that of Rossi et al. [10] (see Figure 22d). The
ionic model chosen is the Bueno-Orovio model [1] (see Figure 22e).

Simulation-IV: the coupling type considered is active strain. The mixed formulation ELEM1-
MFA-γ is used in this case. The activation law is that of Rossi et al. [10] (see Figure 22d). The
ionic model chosen is the Ten Tusscher model [2] (see Figure 22f ).
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Summary of details for the four simulation
Simulation name Coupling type Activation Law Ionic Model Passive response Mixed Formulation

Simulation-I Active Stress Nash & Panfilov Bueno-Orovio Holzapfel-Ogden ELEM1-MFA-Ta
Simulation-II Active Stress Wong & Kuhl Ten Tusscher Holzapfel-Ogden ELEM1-MFA-Ta
Simulation-III Active Strain Rossi et al. Bueno-Orovio Holzapfel-Ogden ELEM1-MFA-γ
Simulation-IV Active Strain Rossi et al. Ten Tusscher Holzapfel-Ogden ELEM1-MFA-γ

Figure 21: Numerical example 4.1. Description of the four simulations considered.

The number of degrees of freedom for the various simulations is: {525705, 175235, 112088}
for {x, φ, p} and {4035168, 4035168, 112088, 1345056} for {F ,H , J,A} and {ΣF ,ΣH ,ΣJ ,ΣA},
where the static condensation procedure in Section 6.2.1 is used in order to condense out the
fields {F ,H , J,A} and {ΣF ,ΣH ,ΣJ ,ΣA}.

Tables 3-4, 5-6, 7-8 and 9-10 display the results obtained for: Simulation-I, Simulation-II,
Simulation-III and Simulation-IV (refer to Figure 21), respectively. The contour plot distribution
of relevant variables of interest are plotted for different snapshots of the cardiac cycle. From
these pictures it is worth emphasising the similarities in the mechanical contraction obtained
from Simulation-I and Simulation-II (Tables 3-4, 5-6). Moreover, the mechanical contraction
from Simulation-III and Simulation-IV are very similar (Tables 7-8, 9-10). These similarities are
due to the use of the same coupling type in Simulation-I and Simulation-II (active stress in both)
and in Simulation-III and Simulation-IV (active strain in both). Even though the ionic model used
in Simulation-I and Simulation-II were different (Bueno-Orovio and Ten Tusscher, respectively),
there is a very good agreement between the results of both simulations. The same can be said
regarding Simulation-III and Simulation-IV. This similarity is due to fact that both ionic models
(Bueno-Orovio and Ten Tusscher) have been calibrated to reproduce the cardiac cycle. Hence,
provided that the activation type and the activation law are the same, the electrically induced
contraction should be reasonably similar.

However, the activation laws for Ta (49) (active stress) or γf0
(52) (active strain) have not

been calibrated to obtain a similar electrically induced mechanical response to the best of the
authors’ knowledge. In our study, we have limited to use the material parameters reported in the
available literature for the three activation laws in Figures 22b-22d considered. This explains the
dissimilarities between Simulation-I (or Simulation-II) and Simulation-III (or Simulation-IV).

7.5. Numerical example 4.2: comparison against P1-P1 element

This example addresses objective O4.II. We model in this example the cardiac cycle consider-
ing an active stress approach, the Nash & Panfilov [63] activation law for Ta and the Bueno-Orovio
[1] ionic model. For the passive response we use Holzapfel-Ogden model (18). The relevant ma-
terial parameters can be found in Figure 22.

We then compare the ELEM1-MFA-Ta formulation against a conventional formulation where
the unknown fields are the geometry x and the transmembrane potential φ. Truly incompress-
ibility is not enforced in this formulation. Instead, nearly incompressibility is enforced by means
of high value for κ in the volumetric functional U(Jx) in (18). In this formulation, {x − φ} are
interpolated using linear tetrahedral Finite Elements. We denote this formulation as P1-P1.

The number of degrees of freedom for the ELEM1-MFA-Ta is: {525705, 175235, 112088}
for {x, φ, p} and {4035168, 4035168, 112088, 1345056} for {F ,H , J,A} and {ΣF ,ΣH ,ΣJ ,ΣA},
where the static condensation procedure in Section 6.2.1 is used in order to condense out the fields
{F ,H , J,A} and {ΣF ,ΣH ,ΣJ ,ΣA}. For the P1-P1 formulation we use a discretisation with a
number of degrees of freedom of {775668, 258556} for {x, φ}. Our objective is to compare both
formulations for a similar number of degrees of freedom for {x, φ} for both ELEM1-MFA-Ta and
P1-P1 formulations.
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Parameters for the Holzapfel-Ogden constitutive law
a = 0.496 kPa af = 15.196 kPa as = 3.283 kPa afs = 0.662 kPa
b = 7.209 bf = 20.417 bs = 11.176 bfs = 9.466

Parameters for the activation model proposed by Nash and Panfilov
kTa

= 12.5 kPa/µM - - - -

Parameters for the activation model proposed by Wong et al.
η = 12.5 kPa/µM ccrit

Ca = 0.8 µM cCa,0 = 0.08 µM ε0 = 0.1 ms−1 ε∞ = 1 ms−1 ξ = 4 µM−1

Parameters for the activation law proposed by Rossi et al.
d1 = 2570.395355352195 e2 = 302.216784558222 d0 = - 4333.618335582119
e1 = - 2051.827278991976 d3 = 104.943770305116 µ̂A = 5000 ms µM−2

d2 = 1329.536116891330 e3 = 218.375174229422 l0 = 1.95 mm α = - 4 µM−2

Parameters for the Bueno-Orovio ionic model
uo = 0.0 θv = 0.3 τo1 = 400 τ−v1 = 60 w∗∞ = 0.94 τs1 = 2.7342 k−w = 65
uu = 1.55 θw = 0.13 τo2 = 6 τ−v2 = 1150 τ−w1 = 60 τs2 = 16 ks = 2.0994
us = 0.9087 θo = 0.006 τso1 = 30.0181 τ+w = 200 τ−w2 = 15 τsi = 1.8875 kso = 2.0458
u−w = 0.03 θ−v = 0.006 τso2 = 0.9957 τ+v = 1.4506 τfi = 0.11 τ∞w = 0.07 Istim = 0.9

Parameters for the Ten Tusscher ionic model
α = 2.5 GNa = 14.838 nS/pF KBufsr = 0.3 mM VC = 0.016404 cm3

γ = 0.35 GK1 = 5.405 nS/pF Kup = 0.00025 mM VSR = 0.001094 cm3

T = 310 K Gto = 0.245 nS/pF KmNai = 87.5 mM Vleak = 0.00008 ms−1

ksat = 0.1 GKr = 0.0096 nS/pF KpCa = 0.0005 mM arel = 0.016464 mM/ms
pKNa = 0.03 GKs = 0.245 nS/pF KmK = 1 mM brel = 0.25 mM
CaO = 2 mM Gpk = 0.0146 nS/pF KmNa = 40 mM crel = 0.008232 mM/ms
KO = 5.4 mM GpCa = 0.825 nS/pF KmCa = 1.38 mM Vmax,up = 0.000425 mM/ms

NaO = 140 mM GbCa = 0.000592 nS/pF KBufc = 0.001 mM R = 8.3143 mJ K/mM
Bufc = 0.15 mM GbNa = 0.00029 nS/pF PNaK = 1.362 pA/pF F = 96.4867 C/mM
Bufsr = 10 mM GCaL = 0.175 mm3/µF/s kNaCa = 1000 pA/pF Cm = 0.000185 µF/cm2

Additional parameters
diso = 8 · 10−4 m2/s dani = 12 · 10−4 m2/s

Figure 22: Numerical example 4. Parameters for: (a) Holzapfel-Ogden model [24] for passive response of the
myocardium. Values provided in Göktepe et al. [40]; (b) Activation model proposed by Nash and Panfilov [51]
(activation type: active stress; ionic model : Bueno-Orovio). (c) Activation model proposed by Wong et al. [52]
(activation type: active stress; ionic model : Ten Tusscher). (d) Activation model proposed by Rossi et al. [10]
(activation type: active strain; ionic model : both Bueno-Orovio and Ten Tusscher). (e) Ionic model proposed by
Bueno-Orovio et al. [1]; (f) Ionic model proposed by Ten Tusscher et al. [49]. (g) Electrical conductivities in
(63).
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5 ms 20 ms 40 ms 100 ms

φ

Ta

Cxx

v

w

s

Table 3: Numerical example 4.1. Simulation-I (activation type: active stress; ionic model : Bueno-Ovorio; acti-
vation law : Nash & Panfilov; mixed formulation: ELEM1-MFA-Ta). Snapshots for time t = {5, 20, 40, 100} (ms)
of the cardiac cycle. Contour plot of φ (mV), cardiomyocite stress Ta (Pa), right Cauchy-Green tensor component
CXX and three internal variables, namely {v, w, s}.
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150 ms 200 ms 320 ms 1000 ms

φ

Ta

CXX

v

w

s

Table 4: Numerical example 4.1. Simulation-I (activation type: active stress; ionic model : Bueno-
Ovorio; activation law : Nash & Panfilov; mixed formulation: ELEM1-MFA-Ta). Snapshots for time t =
{150, 200, 320, 1000} (ms) of the cardiac cycle. Contour plot of φ (mV), cardiomyocite stress Ta (Pa), right Cauchy-
Green tensor component CXX and three internal variables, namely {v, w, s}.
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5 ms 20 ms 40 ms 100 ms

φ

Ta

CXX

cCa++

cNa+

cK+

Table 5: Numerical example 4.1. Results for Simulation-II (activation type: active stress; ionic model :
Ten Tusscher; activation law : Wong & Kuhl; mixed formulation: ELEM1-MFA-Ta). Snapshots for time
t = {5, 20, 40, 100} (ms) of the cardiac cycle. Contour plot of φ (mV), cardiomyocite stress Ta (Pa), right Cauchy-
Green tensor component CXX and three ionic concentrations, namely, {Ca++,Na+,K+} (units of mM).
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150 ms 200 ms 320 ms 1000 ms

φ

Ta

CXX

cCa++

cNa+

cK+

Table 6: Numerical example 4.1. Results for Simulation-II (activation type: active stress; ionic model :
Ten Tusscher; activation law : Wong & Kuhl; mixed formulation: ELEM1-MFA-Ta). Snapshots for time
t = {150, 200, 320, 1000} (ms) of the cardiac cycle. Contour plot of φ (mV), cardiomyocite stress Ta (Pa), right
Cauchy-Green tensor component CXX and three ionic concentrations, namely, {Ca++,Na+,K+} (units of mM).
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5 ms 20 ms 40 ms 100 ms

φ

γf0

CXX

v

w

s

Table 7: Numerical example 4.1. Simulation-III (activation type: active strain; ionic model : Bueno-Ovorio;
activation law : Rossi et al.; mixed formulation: ELEM1-MFA-γ). Snapshots for time t = {5, 20, 40, 100} (ms) of
the cardiac cycle. Contour plot of φ (mV), electrical stretch γf0

, right Cauchy-Green tensor component CXX and
three internal variables, namely {v, w, s}.
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150 ms 200 ms 320 ms 1000 ms

φ

γf0

CXX

v

w

s

Table 8: Numerical example 4.1. Simulation-III (activation type: active strain; ionic model : Bueno-Ovorio; ac-
tivation law : Rossi et al.; mixed formulation: ELEM1-MFA-γ). Snapshots for time t = {150, 200, 320, 1000} (ms)
of the cardiac cycle. Contour plot of φ (mV), electrical stretch γf0

(Pa), right Cauchy-Green tensor component
CXX and three internal variables, namely {v, w, s}.
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5 ms 20 ms 40 ms 100 ms

φ

γf0

CXX

cCa++

cNa+

cK+

Table 9: Numerical example 4.1. Results for Simulation-IV (activation type: active strain; ionic model :
Ten Tusscher; activation law : Rossi et al.; mixed formulation: ELEM1-MFA-γ). Snapshots for time t =
{5, 20, 40, 100} (ms) of the cardiac cycle. Contour plot of φ (mV), electrical stretch γf0

, right Cauchy-Green

tensor component CXX and three ionic concentrations, namely, {Ca++,Na+,K+} (units of mM).
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150 ms 200 ms 320 ms 1000 ms

φ

γf0

CXX

cCa++

cNa+

cK+

Table 10: Numerical example 4.1. Results for Simulation-IV (activation type: active strain; ionic model :
Ten Tusscher; activation law : Rossi et al.; mixed formulation: ELEM1-MFA-γ). Snapshots for time t =
{150, 200, 320, 1000} (ms) of the cardiac cycle. Contour plot of φ (mV), electrical stretch γf0

, right Cauchy-Green

tensor component CXX and three ionic concentrations, namely, {Ca++,Na+,K+} (units of mM).
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Table 11 shows the severe locking obtained with the P1-P1 formulation. A considerably smaller
electrically induced contraction of the ventricles is obtained with this formulation in comparison to
the ELEM1-MFA-Ta formulation. These results enable to conclude that the electrically induced
deformation obtained by means of the P1-P1 is not reliable and hence, this formulation should
not be used in this context.

P1 − P1 MFA-Ta P1 − P1 MFA-Ta

5 ms

20 ms

40 ms

100 ms

200 ms

Table 11: Numerical example 4.2. Activation type: active stress; ionic model : Bueno-Orovio; activation law : Nash
& Panfilov. Snapshots for time t = {20, 40, 100, 200} (ms) of the cardiac cycle. Contour plot of right Cauchy-Green
tensor component CXX . Results for ELEM1-MFA-Ta and P1-P1 formulations.
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7.6. Numerical example 4.3: analysis of possible loss of ellipticity of passive response

This example addresses objective O4.III. The susceptibility of Holzapfel-Ogden model (18)
for the passive response of the myocardium is analysed when considering both active strain and
active stress approaches. In addition, the influence of the consideration of the Macauly brackets
in equation (18) upon the possible loss of ellipticity of this model is also studied. Mathematically,
the consideration of these brackets implies that the energetic contributions in W ani associated
with the fibres {f 0, s0} are only active when the invariants I4,f0

and I4,s0 are positive. Physically,
this means that the fibres contribute to the overall passive response when they are tractioned. On
the contrary, not considering the Macaulay brackets implies assuming that these fibres contribute
to the overall response even when they are compressed (i.e. when I4,f0

and I4,s0 are negative).
In order to analyse the possible loss of ellipticity, we study the positive definiteness of the

acoustic tensor tensor QV V in equation (16) for any direction V . For any direction V , spherically
parametrised in terms of the angles 0 ≤ α ≤ π and 0 ≤ β ≤ 2π, i.e. V =

[
sinα cos β sinα sin β cosα

]
,

the ellipticity indicator q is defined as q = min (q1, q2, q3), with {q1, q2, q3} the leading minors of
QV V . Negative values of q are associated with loss of ellipticity. Figures 12 and 13 show the
distribution of q for different snapshots of the cardiac cycle for Simulation-I (active stress) and
Simulation-III (active strain) when considering or when disregarding the Macaulay brackets at a
given Gauss point of the idealised set of ventricles in 19. It can be observed that no loss of ellip-
ticity was obtained at the given Gauss point when the Macaulay brackets are activated. However,
when these are disabled, loss of ellipticity can be observed for both active stress and active strain
approaches. Notice that negative values of q have been truncated to zero in both figures.

Figures 14 and 15 show the contour plot of the ellipticity indicator q over the entire domain
when the Macaulay brackets in Holzapfel-Ogden model (18) are not considered for: (a) different
snapshots of the cardiac circle and for (b) active stress and active strain approaches. In these
figures, loss of ellipticity is associated with orange regions. Furthermore, both figures include
the contour plot of an alternative instability indicator associated with loss of polyconvexity.
Specifically, red areas in these figures are associated with the loss of positve definiteness of the
Hessian operator HW (12). Although polyconvexity and ellipticity are not equivalent concepts,
an extremely good agreement between loss of ellipticity and loss of polyconvexity is obtained for
the constitutive model considered. When considering the Macaulay brackets, loss of ellipticity
was rarely detected.

This study is in good agreement with the derivations in Appendix A. Specifically, it demon-
strates numerically that the strain energy in (18) is very prone to exhibit loss of ellipticity and
hence, polyconvexity when the Macauly brackets are not considered in both active stress and
active strain approaches.
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Table 12: Numerical example 4.3. Simulation details: activation type: active stress; ionic model : Bueno-Orovio;
activation law : Nash & Panfilov; mixed formulation: ELEM1-MFA-Ta. Snapshots for time t = {2, 20, 40} (ms)
of the cardiac cycle. Ellipticity indicator q at a fixed Gauss point for angles α and β when considering Holzapfel-
Ogden law in the case of: (upper row) with Macaulay brackets and (lower row) without Macaulay brackets. Loss
of ellipticity in the later case.

Table 13: Numerical example 4.3. Simulation details: activation type: active strain; ionic model : Bueno-Orovio;
activation law : Rossi et al.; mixed formulation: ELEM1-MFA-Ta. Snapshots for time t = {2, 20, 40} (ms) of the
cardiac cycle. Ellipticity indicator q at a fixed Gauss point for angles α and β when considering Holzapfel-Ogden
law in the case of: (upper row) with Macaulay brackets and (lower row) without Macaulay brackets. Loss of
ellipticity in the later case.
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Ellipticity Polyconvexity Ellipticity Polyconvexity

20 ms 150 ms

40 ms 250 ms

80 ms 290 ms

Table 14: Numerical example 4.3. Simulation details: activation type: active stress; ionic model : Bueno-
Orovio; activation law : Nash & Panfilov; mixed formulation: ELEM1-MFA-Ta. Snapshots for time t =
{20, 40, 80, 150, 250, 290} (ms) of the cardiac cycle. Loss of ellipticity (orange regions) and loss of polyconvex-
ity (red regions) when the Macaulay brackets are not considered in Holzapfel-Ogden model (18).

Ellipticity Polyconvexity Ellipticity Polyconvexity

20 ms 110 ms

40 ms 250 ms

80 ms 290 ms

Table 15: Numerical example 4.3. Simulation details: activation type: active strain; ionic model : Bueno-
Orovio; activation law : Rossi et al.; mixed formulation: ELEM1-MFA-Ta. Snapshots for time t =
{10, 20, 40, 80, 150, 250, 290, 320} (ms) of the cardiac cycle. Loss of ellipticity (orange regions) and loss of poly-
convexity (red regions) when the Macaulay brackets are not considered in Holzapfel-Ogden model (18).
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8. Concluding remarks

This paper presents a novel computational framework for the numerical simulation of the elec-
tromechanical response of the myocardium during the cardiac cycle. Two new mixed formulations,
tailor-made for active stress and active strain coupling approaches, have been developed and used
in conjunction with two different ionic models, namely Bueno-Orovio [1] and Ten Tusccher [2, 49].
Taking as a reference the mixed formulations introduced by Bonet et al. [3] in the context of
nonlinear elasticity, the proposed formulations include as unknown fields the geometry and the
transmembrane potential (and possibly a Lagrange multiplier enforcing weakly the incompress-
ibility constraint) as well as the deformation gradient tensor, its cofactor and its determinant,
the gradient of the transmembrane potential and their respective work conjugates. The Finite
Element implementation of these formulations is shown in this paper. Crucially, the superiority
of these formulations with respect to classical low order Finite Element implementations is shown
in this paper. A comprehensive and rigorous study of different ionic models (i.e Bueno-Orovio
and Ten Tusscher) and electromechanical activation couplings (i.e active strain and active stress)
has been carried out. An analytical and numerical analysis of the possible loss of ellipticity and
polyconvexity of one of the most widely used constitutive models in the context of cardiac me-
chanics is carried out in this paper, putting forward possible polyconvexifications of the existing
model. (4) In addition, an invariant representation of Guccione’s constitutive model is proposed.
Finally, a series of numerical examples are included in order to demonstrate the applicability and
robustness of the proposed formulations.

The computational framework developed in this manuscript will be used in a follow up pub-
lication with the aim of carrying out a thorough investigation of different solution techniques for
the coupled electromechanical problem. Specifically, the accuracy and computational efficiency
of staggered schemes will be analysed and compared to those of the monolithical approach ad-
vocated for in this paper. The conclusions of this forthcoming study could be very beneficial for
the analysis of more complex and computationally demanding simulations such as those involving
the simulation of cardiac arrhythmias.
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Appendix A. Ellipticity (rank-one convexity) of Holzapfel-Ogden model for passive
response of myocardium

In this Section we study the possible loss of ellipticity of the constitutive model in equation
(18). For this, we introduce an additive decomposition of the ellipticity indicator IW in (15) as

IW = IŴ + IU + IW ani
f0

+ IW ani
s0

+ IW ani
f0s0

(A.1)

with each term defined as

IŴ = D2Ŵ [u⊗ V ;u⊗ V ];

IU = D2U [u⊗ V ;u⊗ V ];

IW ani
f0

= D2

(
af
2bf

(
ebf 〈I4,f0

−1〉2 − 1
))

[u⊗ V ;u⊗ V ];

IW ani
s0

= D2

(
as
2bs

(
ebs〈I4,s0−1〉2 − 1

))
[u⊗ V ;u⊗ V ];

IW ani
f0
s0 = D2

(
afs
2bfs

(
ebfsI

2
8,f0,s0 − 1

))
[u⊗ V ;u⊗ V ].

(A.2)

The ellipticity indicator for the isochoric isotropic term can be expressed as

IŴ = abeb(IIF̂ x
−3)J−10/3

x α2 + aeb(IIF̂ x
−3)J−8/3

x IIA +
a

5
eb(IIF̂ x

−3)J−2/3
x (u · u) (V · V )

≥ a

5
eb(IIF̂ x

−3)J−2/3
x (u · u) (V · V ) ≥ 0.

(A.3)

with

α =
√

2Jx (u · FxV )−
√

2

3
(u ·HxV ) IIFx ; A =

2√
5
Jx (u⊗ V )−

√
5

3
(u ·HxV )Fx

(A.4)
For the volumetric contribution U (Jx), IU is obtained as

I (U) = κ (u ·HxV )2 ≥ 0. (A.5)

The anisotropic contribution IW ani
f0

can be obtained as

IW ani
f0

= 4
(

2bf
〈
I4,f0

− 1
〉2

+ 1
)
afe

bf〈I4,f0
−1〉2 (u · F xf 0)2 (V · f 0)2

+ 2afe
bf〈I4,f0

−1〉2 〈I4,f0
− 1
〉

(u · u) (V · f 0)2 ≥ 0.

(A.6)

Similarly, the anisotropic contribution IW ani
s0

can be obtained as

IW ani
s0

= 4
(
2bs 〈I4,s0 − 1〉2 + 1

)
ase

bs〈I4,s0−1〉2 (u · F xs0)2 (V · s0)2

+ 2ase
bs〈I4,s0−1〉2 〈I4,s0 − 1〉 (u · u) (V · s0)2 ≥ 0.

(A.7)

Finally, the anisotropic contribution IW ani
f0
s0 can be obtained as

IW ani
f0s0

=
(

2bfsI
2
8,f0s0

+ 1
)
afse

bfsI
2
4,f0s0 ((u · F xf 0) (V · s0) + (u · F xs0) (V · f 0))2

+ 2afse
bfsI

2
8,f0s0I8,f0s0 (u · u) (V · f 0) (V · s0)

≥ −2afse
bfsI

2
8,f0s0I8,f0s0 (u · u) | (V · f 0) (V · s0) |.

(A.8)
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As a result, given the unconditional positiveness of IŴ , IU , IW ani
f0

and IW ani
s0

, the total ellipticity

indicator IW can be written as

IW ≥ −2afse
bfsI

2
8,f0s0I8,f0s0 (u · u) | (V · f 0) (V · s0) |. (A.9)

Alternatively, if the Macauly brackets are not considered, the anisotropic contributions IW ani
f0

and IW ani
s0

are

IW ani
f0

= 4
(

2bf
(
I4,f0

− 1
)2

+ 1
)
afe

bf(I4,f0
−1)

2

(u · F xf 0)2 (V · f 0)2

+ 2afe
bf(I4,f0

−1)
2 (
I4,f0

− 1
)

(u · u) (V · f 0)2

≥− 2afe
bf(I4,f0

−1)
2

|
(
I4,f0

− 1
)
| (u · u) (V · f 0)2

IW ani
s0

= 4
(
2bs (I4,s0 − 1)2 + 1

)
ase

bs(I4,s0−1)
2

(u · F xs0)2 (V · s0)2

+ 2ase
bf(I4,s0−1)

2

(I4,s0 − 1) (u · u) (V · s0)2

≥− 2ase
bs(I4,s0−1)

2

| (I4,s0 − 1) | (u · u) (V · s0)2 .

(A.10)

The total contribution IW when not considering the Macauly brackets is

IW = −2afse
bfsI

2
8,f0s0I8,f0s0 (u · u) | (V · f 0) (V · s0) |.

− 2afe
bs(I4,f0

−1)
2

|
(
I4,f0

− 1
)
| (u · u) (V · f 0)2

− 2ase
bs(I4,s0−1)

2

| (I4,s0 − 1) | (u · u) (V · s0)2 .

(A.11)

The larger number of terms in (B.21) as opposed to (B.18) leads therefore in general to a
model which is more prone for loss of ellipticity, specially when fibres f 0 and s0 are contracted,
namely I4,f0

< 0 and I4,s0 < 0.
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Appendix B. Invariant-based representation for Guccione’s law

Guccione et al. modelled the heart tissue as a three-dimensional transverse isotropic material
in [79] using a Fung-type exponential energy law [80] as

Ψ (E?) =
K

2

(
eQ(E?) − 1

)
, (B.1)

where E∗ represents the local Green-Lagrange strain tensor, expressed with respect to the local
basis {f 0, s0,n0}. Let R be the rotation matrix from the local basis to the global system of
coordinates. E? can be related to its global counterpart E = 1

2

(
F T
xF x − I

)
as E? = RTER.

The exponent Q (E?) in (B.1) is defined in terms of the local Green-Lagrange strain tensor as

Q (E?) = cfE
?2

11 + ct
(
E?2

22 + E?2
33 + E?2

23 + E?2
32

)
+ cfs

(
E?2

12 + E?2
21 + E?2

13 + E?2
31

)
, (B.2)

where {K, cf , ct, cfs} represent material parameters. Let {e1, e2, e3} be[
1 0 0

]T
;

[
0 1 0

]T
;

[
0 0 1

]T
. (B.3)

Then Q (E?) can be expressed in terms of {(e1 ·E?e1)2 ,E?e1 ·E?e1,E
? : E?}, as

Q (E∗) = 4A (e1 ·E∗e1)2 + 4B (E∗e1 ·E∗e1) + 4C (E∗ : E∗) , (B.4)

with

A =
cf − 2cfs + ct

2
; B =

cfs − ct
4

; C =
cf
4
. (B.5)

Notice that the three invariants {(e1 ·E?e1)2 ,E?e1 · E?e1,E
? : E?} can be equivalently

expressed with respect to the global system of coordinates as

e1 ·E?e1 = f 0 ·Ef 0; E∗ : E∗ = E : E; E∗e1 ·E∗e1 = Ef 0 ·Ef 0, (B.6)

and hence, an equivalent expression for Q can be obtained in terms of the global Green-Lagrange
strain tensor E as

Q (E) = 4A (f 0 ·Ef 0)2 + 4B (Ef 0 ·Ef 0) + 4C (E : E) , (B.7)

This (objective) invariant representation of Guccione’s model is now very well suited for numer-
ical simulation via Finite Element implementation. Alternatively, it is possible to express the in-
variants {(f 0 ·Ef 0)2 ,Ef 0 ·Ef 0,E : E} in terms of the kinematic strain measures {F x,Hx, Jx}
as

f 0 ·Ef 0 =
I4,f0

− 1

2
;

Ef 0 ·Ef 0 =
IIFxI4,f0

− IIHx + I4,Hx,f0
− 2I4,f0

+ 1

4
; I4,Hx,f0

= Hxf 0 ·Hxf 0;

E : E =
II2
Fx
− 2IIHx − 2IIFx + 3

4
.

(B.8)

Making use of (B.8), Q (E?) can be equivalently expressed as Q (E) = Q̃ (F x,Hx, Jx), with

Q̃ (F x,Hx, Jx) = AQaniso,1 (F x) +B Qaniso,2 (F x,Hx) + C Qiso (F x,Hx, Jx) , (B.9)

where
Qaniso,1 (F x) =

(
I4,f0

− 1
)2

;

Qaniso,2 (F x,Hx) = IIFxI4,f0
− IIHx + I4,Hx,f0

− 2I4,f0
+ 1;

Qiso (F x,Hx, Jx) = II2
Fx
− 2IIHx − 2IIFx + 3.

(B.10)
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In this Section we study the possible loss of ellipticity of the constitutive model in equation
(18). For this, we introduce an additive decomposition of the ellipticity indicator IW in (15) as

IW = IŴ + IU + IW ani
f0

+ IW ani
s0

+ IW ani
f0s0

(B.11)

with each term defined as

IŴ = D2Ŵ [u⊗ V ;u⊗ V ];

IU = D2U [u⊗ V ;u⊗ V ];

IW ani
f0

= D2

(
af
2bf

(
ebf 〈I4,f0

−1〉2 − 1
))

[u⊗ V ;u⊗ V ];

IW ani
s0

= D2

(
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2bs

(
ebs〈I4,s0−1〉2 − 1

))
[u⊗ V ;u⊗ V ];

IW ani
f0
s0 = D2

(
afs
2bfs

(
ebfsI

2
8,f0,s0 − 1

))
[u⊗ V ;u⊗ V ].

(B.12)

The ellipticity indicator for the isochoric isotropic term can be expressed as

IŴ = abeb(IIF̂ x
−3)J−10/3

x α2 + aeb(IIF̂ x
−3)J−8/3

x IIA +
a

5
eb(IIF̂ x

−3)J−2/3
x (u · u) (V · V )

≥ a

5
eb(IIF̂ x

−3)J−2/3
x (u · u) (V · V ) ≥ 0.

(B.13)

with

α =
√

2Jx (u · FxV )−
√

2

3
(u ·HxV ) IIFx ; A =

2√
5
Jx (u⊗ V )−

√
5

3
(u ·HxV )Fx

(B.14)
For the volumetric contribution U (Jx), IU is obtained as

I (U) = κ (u ·HxV )2 ≥ 0. (B.15)

The anisotropic contribution IW ani
f0

can be obtained as

IW ani
f0

= 4
(

2bf
〈
I4,f0

− 1
〉2

+ 1
)
afe

bf〈I4,f0
−1〉2 (u · F xf 0)2 (V · f 0)2

+ 2afe
bf〈I4,f0

−1〉2 〈I4,f0
− 1
〉

(u · u) (V · f 0)2 ≥ 0.

(B.16)

Similarly, the anisotropic contribution IW ani
s0

can be obtained as

IW ani
s0

= 4
(
2bs 〈I4,s0 − 1〉2 + 1

)
ase

bs〈I4,s0−1〉2 (u · F xs0)2 (V · s0)2

+ 2ase
bs〈I4,s0−1〉2 〈I4,s0 − 1〉 (u · u) (V · s0)2 ≥ 0.

(B.17)

Finally, the anisotropic contribution IW ani
f0
s0 can be obtained as

IW ani
f0s0

=
(

2bfsI
2
8,f0s0

+ 1
)
afse

bfsI
2
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(B.18)

As a result, given the unconditional positiveness of IŴ , IU , IW ani
f0

and IW ani
s0

, the total ellipticity

indicator IW can be written as

IW ≥ −2afse
bfsI

2
8,f0s0I8,f0s0 (u · u) | (V · f 0) (V · s0) |. (B.19)
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Alternatively, if the Macauly brackets are not considered, the anisotropic contributions IW ani
f0

and IW ani
s0

are

IW ani
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= 4
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(B.20)

The total contribution IW when not considering the Macauly brackets is

IW = −2afse
bfsI

2
8,f0s0I8,f0s0 (u · u) | (V · f 0) (V · s0) |.

− 2afe
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(B.21)

The larger number of terms in (B.21) as opposed to (B.18) leads therefore in general to a
model which is more prone for loss of ellipticity, specially when fibres f 0 and s0 are contracted,
namely I4,f0

< 0 and I4,s0 < 0.
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