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Climate, human behaviour 
or environment: individual-based modelling 
of Campylobacter seasonality and strategies 
to reduce disease burden
Stephen P. Rushton1, Roy A. Sanderson1* , Peter J. Diggle2, Mark D. F. Shirley1, Alasdair P. Blain1, Iain Lake3, 
James A. Maas4, William D. K. Reid12, Jo Hardstaff5, Nicola Williams6, Natalia R. Jones3, Daniel Rigby7, 
Norval J. C. Strachan8, Ken J. Forbes9, Paul R. Hunter4,10, Thomas J. Humphrey11 and Sarah J. O’Brien6,10

Abstract 

Background: With over 800 million cases globally, campylobacteriosis is a major cause of food borne disease. In tem-
perate climates incidence is highly seasonal but the underlying mechanisms are poorly understood, making human 
disease control difficult. We hypothesised that observed disease patterns reflect complex interactions between 
weather, patterns of human risk behaviour, immune status and level of food contamination. Only by understanding 
these can we find effective interventions.

Methods: We analysed trends in human Campylobacter cases in NE England from 2004 to 2009, investigating the 
associations between different risk factors and disease using time-series models. We then developed an individual-
based (IB) model of risk behaviour, human immunological responses to infection and environmental contamination 
driven by weather and land use. We parameterised the IB model for NE England and compared outputs to observed 
numbers of reported cases each month in the population in 2004–2009. Finally, we used it to investigate different 
community level disease reduction strategies.

Results: Risk behaviours like countryside visits (t = 3.665, P < 0.001 and t = − 2.187, P = 0.029 for temperature and 
rainfall respectively), and consumption of barbecued food were strongly associated with weather, (t = 3.219, P = 0.002 
and t = 2.015, P = 0.045 for weekly average temperature and average maximum temperature respectively) and also 
rain (t = 2.254, P = 0.02527). This suggests that the effect of weather was indirect, acting through changes in risk 
behaviour. The seasonal pattern of cases predicted by the IB model was significantly related to observed patterns 
(r = 0.72, P < 0.001) indicating that simulating risk behaviour could produce the observed seasonal patterns of cases. 
A vaccination strategy providing short-term immunity was more effective than educational interventions to modify 
human risk behaviour. Extending immunity to 1 year from 20 days reduced disease burden by an order of magnitude 
(from 2412–2414 to 203–309 cases per 50,000 person-years).

Conclusions: This is the first interdisciplinary study to integrate environment, risk behaviour, socio-demographics 
and immunology to model Campylobacter infection, including pathways to mitigation. We conclude that vaccination 
is likely to be the best route for intervening against campylobacteriosis despite the technical problems associated 

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Journal of 
Translational Medicine

*Correspondence:  roy.sanderson@newcastle.ac.uk 
1 Modelling, Evidence and Policy Research Group, School of Natural 
and Environmental Science, Newcastle University, Newcastle upon 
Tyne NE1 7RU, UK
Full list of author information is available at the end of the article



Page 2 of 13Rushton et al. J Transl Med           (2019) 17:34 

Background
Campylobacter species are the most important gut path-
ogens in developed countries. Campylobacteriosis occurs 
in 1% of the US population each year [1] and costs the 
European Union alone an estimated €2.4 billion annu-
ally [2]. In developing countries the disease is endemic 
but extensively unrecorded and it is prevalent in infants 
(< 1 year), with isolation rates of 8 to 21% of all diarrhoea 
samples [3]. In developed countries the disease also 
occurs in older age groups. There is considerable pres-
sure to reduce disease burden with government agencies 
having strategies to monitor disease. The public health 
burden, however, continues to rise. Illness is often associ-
ated with consumption of chicken [4–9] but this does not 
account for all cases [10]. In temperate regions Campylo-
bacter incidence is also predictably seasonal [10, 11] but 
the causes of this seasonality are not understood. Campy-
lobacter is found in many animal species and these along 
with environmental exposures have been suggested 
to explain 20–40% of disease burden [12]. The relative 
importance of different exposures to disease remains 
largely unquantified which renders effective interven-
tion to reduce the disease burden difficult. Furthermore, 
understanding of the interaction between human host 
and pathogen is poor as seroconversion rates are variable 
(67–96%) and infections can be asymptomatic [13]. There 
is also a dose–response relationship for infection [14, 15], 
but not symptoms [16].

Why is the disease seasonal in developed countries? 
Understanding the causes of seasonality could help 
identify methods for mitigating against disease when 
it is most prevalent. Exposure to Campylobacter is 
multifactorial, in that the pathogen is probably ubiqui-
tous in the environment and in much raw chicken. To 
understand how the disease spreads requires under-
standing of human risk behaviours, social demogra-
phy; consideration of how contact with the pathogen 
comes about and how it leads to disease. In effect we 
need to integrate across a range of ‘epidemiologi-
cal’ processes that operate at different scales. Here we 
use an interdisciplinary approach to investigate dif-
ferent pathways of exposure to Campylobacter strains 
via the rural environment and diets, and link these to 
potential seasonality in human risk-behaviours. We 
then attempt to determine the most effective interven-
tions to mitigate disease. We used a combined biosta-
tistical and individual-based (IB) modelling approach. 

We used time-series analyses to investigate the role 
of weather in disease and in mediating those human 
risk-behaviours that increase exposure to the pathogen 
and hence disease. We sought to identify the extent to 
which disease is related to weather after adjusting for 
seasonality numerically for a real population where 
the disease burden was known. One issue with analys-
ing data that show seasonality is that apparent associa-
tions may occur between two or more variables, but 
the correlation does not reflect a causal link between 
the variable as there is another (often unmeasured 
variable) driving both processes. We used harmonic 
regression to model the relationship between the pat-
tern of cases and human risk behaviours and month. 
This approach allowed us to adjust for seasonality and 
identify the direct and indirect roles of weather that 
determine exposure to Campylobacter associated with 
eating chicken, cooking activities and countryside vis-
its. However, this approach did not allow us to quantify 
the relative importance of each risk behaviour in caus-
ing disease, a key outcome if we are to identify methods 
to intervene to mitigate against disease. To evaluate the 
contribution of these different exposure pathways to 
disease we developed an IB model which models sto-
chastically the daily experience of human individuals, 
their risk-behaviours and immunity, and integrates with 
weather and exposure, to predict disease. We tested 
this model by predicting temporal disease patterns in 
a large population of individuals in North East Eng-
land, UK. The region has a population of 910,000 with 
an area in excess of 2500 km2, at 55° latitude N. Finally, 
we used the IB model to investigate how interventions 
to extend the duration of immunity and to reduce risk 
behaviours might reduce the burden of disease.

Methods
Time‑series analyses of cases of disease, human risk 
behaviours and weather
We investigated the effects of seasonality in temperature 
and rainfall on three human risk behaviours: visits to the 
countryside, potential barbecue activity and purchase of 
chicken products for barbecue. Completely coterminous 
data were not available for all variables, so we assumed 
that patterns observed over all periods were consistent: it 
is well-established that seasonality in cases is consistent 
over long periods of time in the UK [17].

with understanding both the underlying human immunology and genetic variation in the pathogen, and the likely 
cost of vaccine development.

Keywords: Campylobacter, Individual-based modelling, Risk behaviours, Food, Weather, Vaccination
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Data collation
Monthly occurrence of Campylobacter cases, daily tem-
perature and rainfall from 2005 to 2009 and 2010 to 2015 
were collated for NE England [18]. Visits to the coun-
tryside by the public were obtained from the Monitor 
of Engagement with the Natural Environment survey 
(MENE) [19] based on interviews of 800+ participants/
week across NE England from 2009 to 2015. A proxy 
variable of barbecue activity in the region was con-
structed from the internet queries per month for bar-
becue charcoal in England on Google Trends from 2012 
to 2015. Weekly sales of all fresh chicken products were 
obtained for 2013 to 2015 from one of the UK’s largest 
UK supermarkets.

Time‑series analyses
To investigate the relationships between Campylobacter 
cases, weather and the three risk-behaviours we de-sea-
sonalised each variable using six sine-cosine harmonic 
regressions [18]:

a. Mean temperature/month,
b. Total rainfall/month,
c. Campylobacter cases/month,
d. Barbecue charcoal queries/month,
e. Sales of broiler chicken/month,
f. Number of visits to the countryside/day,
g. Sales of barbecue chicken/month.

Temperature, rainfall, Campylobacter cases, charcoal 
queries and chicken sales were de-seasonalised with an 
annual cycle whereas visits to the countryside, where 

more fine-grained data were available, were de-seasonal-
ised for weekly and annual periods.

The residuals of each temporal model were used as 
de-seasonalised representations of the original response 
variable. Linear regressions were used to determine the 
relationships between de-seasonalised temperature and 
rainfall (independent weather predictors) versus de-sea-
sonalised Campylobacter cases and the three risk-behav-
iours (dependent variables). Likewise de-seasonalised 
broiler chicken and barbecue chicken sales were com-
pared with de-seasonalised Campylobacter cases. Non-
significant relationships between a de-seasonalised 
predictor and a de-seasonalised dependent variable were 
assumed to indicate that the two variables were inde-
pendent of each other.

IB model of impacts of risk behaviours, exposure 
and immunology on Campylobacter disease
The IB model simulates temporal patterns of risk-behav-
iours, exposure pathways, immune response, and sub-
sequent probability of disease in relation to seasonal 
variation in weather, age and socio-economic status for 
individuals (Fig. 1). The processes considered were:

a. Consumption of barbecued food as a source of 
Campylobacter,

b. Infection from chicken preparation and consumption 
in the home,

c. Presence of Campylobacter in the countryside as 
determined by livestock land use,

d. Visits to the countryside as determined by weather, 
day of week, age and socio-economic status,

Crop growth

Weather

Visits to 
countryside

Barbecue

Livestock out

Rural 
exposure

Barbecue 
exposure

Domes�c 
food

Strain

Dose

Illness?

Immune 
status

Cohort (age, 
socio-economics, 

immunity)

Fig. 1 Flow diagram of the IB modelling model
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e. Human exposure to Campylobacter in the country-
side,

f. Strains encountered when individuals were exposed,
g. Immune response of an individual after exposure to 

Campylobacter.

Parameters used in the IB model are summarized in 
Appendix Table 1.

a. Consumption of barbecued food as a source of 
Campylobacter.

 The relationship between charcoal queries and 
weather, from the time-series analysis (above), was 
used to predict barbecue occurrence on a scale of 0 
to 100. Idealo Survey data [20] were used to quan-
tify the frequency of barbecues and their distribution 
across the days of the week. Frequency of barbecue 
was assigned to each individual and also the prob-
ability that they would have a barbecue on a specific 
day of the week. Campylobacter exposure was then 
predicted as the product of two probabilities: first 
that meat was contaminated [21] and second that the 
meat was undercooked [21].

b. Infection from chicken preparation and consumption 
in the home.

 We estimated daily consumption of chicken based on 
the population known to consume this meat [22] and 
amount of chicken consumed. Surface contamination 
was calculated from: the probability that a purchased 
chicken was contaminated [23]; the proportion of the 
chicken that was skin [24]; and the frequency distri-
bution of Campylobacter found on chicken skin pur-
chased from UK retailers [23]. This procedure could 
not distinguish between barbecue cooking and other 
forms of chicken consumption, so may have led to an 
over-estimate of the contribution of chicken. Expo-
sure to cross-contamination and likely transmission 
were modelled after Nauta et al. [25].

c. Presence of Campylobacter in the countryside.
 Campylobacter strains in the countryside were pre-

dicted to arise from sheep, wild birds and cattle. 
Sheep and wild bird contamination was assumed to 
be constant throughout the year, whilst that of bovine 
contamination was seasonal, occurring only after 
grass growth was sufficient to maintain stock for 
10 days. We predicted grass growth using a modified 
Gompertz model [26]: 

 where: yt = herbage biomass after t day-degrees; a1, 
a2, b, c = estimated model parameters.

yt = a1 + (a2 − a1)e
−be−ct

 Scale parameters a1 and a2 were determined by the 
minimum and maximum values respectively of herb-
age biomass typical in UK farms. Pastures were pre-
dicted to be contaminated by bovine sources if the 
increase in herbage mass was sufficient to support 
10 days of consumption by cows at an average stock-
ing density of 2.4 cows ha−1.

d. Visits to the countryside.
 Generalized estimating equations (GEE with Wald 

tests) [27] were used to predict the probability that 
an individual would visit the countryside from the 
MENE data. We modelled visit on each day of the 
week as a logistic response and included an autore-
gressive correlation structure to account for serial 
dependency between days using temperature, rain-
fall, day of the week, age and socioeconomic class as 
predictors.

e. Exposure to Campylobacter in the countryside.
 Exposure to Campylobacter was assumed to be via 

footwear. We assumed that on handling foot-ware 
Campylobacter would be transmitted to hands and 
the relationships of Nauta et  al. [25] were used to 
model the transmission of Campylobacter to hands 
and food.

f. Strains encountered when individuals were exposed.
 Pathogen strain-type was derived from the frequency 

distribution of strain-types recorded in the field [28]. 
The dose was set arbitrarily at 0.1  g to provide an 
invisible and conservative estimate of contamination. 
Campylobacter counts in sheep, cattle and wild bird 
faeces were derived from Stanley et al. [29].

g. Immune response of an individual after exposure to 
Campylobacter.

 We assumed that the dose consumed affected the 
likelihood of becoming ill [30]. Exposure may or 
may not result in illness [14, 15] but only cases with 
moderate or severe illness will be reported. Illness 
depends on both dose [14, 15] and extent of previ-
ous exposure and immunity. We modelled the illness 
response of humans to exposure using data derived 
from human dose response experiments [14] and 
assumed that cooking on a barbecue would result 
in a 2.5-fold reduction in the dose of colony form-
ing units (CFU) [23]. The modelled dose was used 
to predict the likelihood of illness subject to the 
predicted level of immunity at the time of exposure. 
Immunity was assumed to decline exponentially 
from time of exposure to zero at a pre-defined time, 
which could be set as a model input variable. Whilst 
exposure to Campylobacter may not cause illness, the 
antigens present may still initiate a response from the 
host immune system, so any exposure to Campylo-
bacter which did not lead to illness was assumed to 



Page 5 of 13Rushton et al. J Transl Med           (2019) 17:34 

affect immunity and return it to 100% as would occur 
immediately after illness. We did not simulate differ-
ent immune responses for different strains.

Validation of the IB model
The model was run for NE England using weather 
data from January 2005 to November 2009. A cohort 
population of 10,000 individuals was created for each 
simulation. Individuals were assigned age, gender and 
socio-economic class based on the socio-economic 
structure in NE England. The initial immune status of 
individuals was a normal random deviate (mean 0.5, SD 
0.2). We predicted cases for the whole population and 
compared with the log-transformed monthly number 
of cases using generalized linear models (GLM). We 
ran the model 10 times from the same starting condi-
tions and produced a mean number of cases per month 
and associated standard errors on our predictions.

Modifying human risk behaviours and immunity 
to mitigate against disease
We varied parameter estimates for risk behaviours, 
weather and immunity.

The following input parameters were used:

• Extending the period of immunity leading to pro-
tection from developing disease (21 to 1095  days) 
as might be undertaken following an intervention 
to enhance immunity following infection, such as 
vaccination with a hypothetical polysaccharide vac-
cine that produced short-term immunity.

• Probability of chicken being undercooked (con-
tamination reduction per cooking event) as would 
occur following implementation of an education 
program to reduce risk of exposure in domestic set-
tings.

• Fold-reduction in CFU dose in food from either 
cooking or reducing the burden in raw chicken (1.5 
to 2.5) as would occur following implementation of 
an education program or a scheme to reduce the cfu 
on raw chicken during production.

• Temperature (± 2.5  °C) and rainfall (± 10 mm). 
These assess impacts of weather on visits to the 
countryside and barbecue behaviour.

We used Latin Hypercube Sampling [31] to create 
ranges for input parameters and used GLMs to quantify 
the contribution of each variable to the predicted num-
ber of cases.

Results
Impacts of temperature and rainfall on Campylobacter 
cases in NE England
The number of reported cases was highly seasonal ris-
ing to a peak in early summer (June) each year and 
closely matched the seasonality in temperature and 
rainfall (Fig.  2). The seasonality was well-described 
with harmonic regression models which were signifi-
cant for Campylobacter cases (t = − 7.448, P < 0.001 and 
t = − 7.436, P < 0.001 for cosine and sine variables of time 
with a 365  day period) and monthly mean temperature 
(t = − 18.710, P < 0.001; t = − 25.300, P < 0.001). There 
was evidence for periodicity in the rainfall (t = 3.634, 
P < 0.001 for cosine variable). We used the residuals from 
these models as de-seasonalised measures of each vari-
able to investigate links between variables and disease. 
De-seasonalised counts of Campylobacter cases were not 
significantly related to de-seasonalised temperature after 
also adjusting for autocorrelation (t = 0.212, P = 0.230) 
or rainfall (t = − 0.119, P = 0.906). This suggests that the 
simple seasonal relationship between monthly number of 
cases of Campylobacter and mean monthly temperature 
and rainfall is not a true one and was in fact related to 
other unmeasured seasonally-varying phenomena.

Impacts of temperature and rainfall on visits 
to the countryside of NE England
Total visits to the countryside and daily mean tem-
perature showed seasonal variation across the study 
period (Fig.  3). Temperature was highly seasonal with 
the harmonic regression for temperature significant 
(t = − 65.950, P < 0.001 and t = 45.830, P < 0.001 for cosine 
and sine variables). There was evidence of seasonal vari-
ation in the rainfall (t = − 5.266, P < 0.001 for cosine 
variable). The log-transformed count of visits to the 
countryside per day showed marked annual (t = − 4.157, 
P < 0.001; t = 5.328, P < 0.001) and weekly (t = − 3.220, 
P = 0.001; t = 5.736, P < 0.001) periodicities, reflecting 
the seasonal weather and periodicity associated with the 
working week. There was a significant linear relationship 
between the de-seasonalised visits and that for tempera-
ture and rainfall data (t = 3.665, P < 0.001 and t = − 2.187, 
P = 0.029 for temperature and rainfall respectively). This 
suggests that in contrast with the occurrence of cases of 
disease, weather variables were important drivers of peo-
ple visiting the countryside. Furthermore, there was a sig-
nificant relationship between probability of an individual 
undertaking a visit to the countryside and weather, socio-
economics status and age. GEE Wald test statistics (W) 
indicated that visits to the countryside were positively 
associated with increased temperature (W = 16.343, 
P < 0.001), weekends (Saturday: W = 53.370, P < 0.001; 
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Sunday: W = 107.679, P < 0.001), tending to increase with 
age (W = 22.691, P < 0.001) and higher socio-economic 
class (W = 47.283, P < 0.001).

Impact of temperature and rainfall on Internet queries 
for barbecue charcoal
Web queries for barbecue charcoal for England over 
the study period were used as a surrogate for pursuit 
of barbecue activities. Queries for information on bar-
becue charcoal material were highly seasonal (Fig.  4) 
with significant harmonic regression coefficients (sine 
t = − 2.606, P = 0.010; cosine t = 2.457, P = 0.015). De-
seasonalised query data were significantly related to 
temperature and rainfall in the week of the queries, sug-
gesting that queries were related to weather rather than 
other unmeasured seasonal trends. De-seasonalised que-
ries were positively associated with maximum weekly 
temperature (t = 11.014, P < 0.001) but were negatively 

associated with the minimum average weekly tempera-
ture (t = − 3.626, P < 0.001). This also suggests that, in 
contrast with the patterns of disease (and perhaps not 
surprisingly) interest in barbecue charcoal was driven by 
weather.

Impact of temperature and rainfall on sales of chicken 
products
There was a seasonal pattern to the sales of raw chicken 
products and the harmonic regression for chicken con-
sumption was significant (cosine t = 16.300, P < 0.001; 
sine t = 15.560, P < 0.001). However, after subsequent de-
seasonalising the relationships between chicken sales and 
temperature and rainfall were not significant (t = − 0.903, 
P = 0.368 and t = 0.897, P = 0.372, respectively). This sug-
gests that temperature and rainfall were not drivers of 
chicken purchases.

Fig. 2 Monthly recorded cases of Campylobacter in NE England 2005 to 2009 in relation to temperature
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Impact of chicken product sales on Campylobacter cases
There were no significant relationships between de-
seasonalised sales of all raw chicken or barbecue 
chicken products, and the equivalent de-seasonalised 
Campylobacter cases (t = 0.070, P = 0.945 and t = 1.222, 
P = 0.234, respectively). This suggests that sales of both 
all raw chicken and raw “barbecue” chicken alone did 
not have a direct effect on the numbers of Campylobac-
ter cases.

Impact of monthly total of countryside visits 
on Campylobacter cases
There were no significant relationships between de-
seasonalised total monthly visits to the countryside and 
Campylobacter cases (t = − 0.541, P = 0.59). This sug-
gests that monthly visits to the countryside had little 
influence on numbers of cases.

In summary, the time series analyses suggest that 
weather appeared to influence visits to the countryside 
and also the pursuit of barbecues, but was not itself a 
driver of cases of disease. However the number of cases 
was associated with our measure of barbecue activity 
and hence indirectly with weather.

Results of the IB model
The predicted number of Campylobacter cases from the 
IB model, using weather and socio-demographic data 
as inputs, followed a cyclic pattern, with cases lowest in 
winter but rising to a peak in early summer. The observed 
numbers of cases fitted reasonably well within the 95% 
confidence intervals for our model predictions. There 
was a significant positive correlation between the mean 
numbers of observed and predicted cases per month 
for NE England over the study period. Mean number of 
predicted and observed cases per month were compared 
using generalized linear models, and predictions were 

Fig. 3 Daily counts of visits to the countryside in the NE England and mean daily temperature, 2009–2015



Page 8 of 13Rushton et al. J Transl Med           (2019) 17:34 

significantly related to observations (r = 0.728; t = 8.210, 
P < 0.001). The regression coefficient was 6.12 (95% CI 
4.95 to 8.01); the model over-predicting cases by a fac-
tor of 6.12. When the observed data were scaled by a 
multiplier of seven the match between the predicted and 
observed cases is clear (Fig.  5). The predicted propor-
tion of Campylobacter cases derived from chicken (mean 
88.1%, SD 25.9) declined slightly in winter when other 
strains formed a greater proportion of predicted cases.

Interventions to mitigate against disease
We altered immunity, daily temperature and rainfall 
(which affect both barbecue activity and visits to the 
countryside), probability of under-cooking chicken, 
and the effectiveness of cooking/reduced cfu load on 
chicken, and re-ran the IB model to predict number of 
cases of disease. All interventions significantly reduced 

the predicted total number of Campylobacter cases, but 
the effectiveness of the interventions differed greatly. 
Extending the duration of immunity through vaccina-
tion of the population had the largest effect on level of 
disease (t = 56.072, P < 0.001), explaining more than 95% 
of the variation in predicted number of cases relative 
to the other interventions. Extending immunity from 
20 days to 1 year reduced predicted number of cases by 
an order of magnitude (95% CI 2412–2414 to 203–309 
per 50,000 person-years). There were lower impacts from 
changes in daily temperature (t = 6.801, P < 0.001) and 
rainfall (t = 9.538, P < 0.001) which would affect visits to 
the country as well as the adoption of barbecue activity. 
Educational interventions to change the probability of 
under-cooking (t = − 5.963, P < 0.001) and the fold-reduc-
tion in Campylobacter dose on raw meat before cooking 
or the effectiveness of the cooking process (t = − 5.540, 

Fig. 4 Proportional of queries (index 0 to 100) relating to purchase of barbecue charcoal 2012–2015, and mean monthly temperature
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P < 0.001) had significant effects, but their relative contri-
bution to overall number of cases was small.

Discussion
To our knowledge our research is the first interdiscipli-
nary study that integrates different and disparate human 
risk-behaviours, with immunology, demography of the at-
risk population, sources of contamination, and weather 
to predict disease. The models suggest that behaviours 
driven by weather that lead to consumption of barbecued 
chicken, and to a lesser extent visits to the countryside, 
lead to exposure and disease. More importantly, they 
indicate that consideration of the immune-dynamics of 
the host–pathogen interaction is necessary to understand 
the relative role of different exposure pathways to disease.

There are obvious limitations of the modelling. Data 
were derived from different studies with overlapping time 

periods. We hypothesised that the processes investigated 
were both causal and also consistent through time. We 
cannot assess the impacts of these assumptions on the 
model formally, but note that the patterns of disease in 
the UK are predictably consistent year-on-year [17]. We 
did not model all processes identified as risk factors. We 
excluded exposure at non-domestic food establishments 
[32] and cases associated with foreign travel [10, 33, 34]. 
Strachan et al. [10] suggested national and international 
travel accounted for 18% and 17% of cases respectively. 
We note that both of these risk behaviours are likely to 
be seasonal in themselves. It is difficult to quantify the 
contribution of cases arising from travel because of poor 
ascertainment. However, travel in its own right is unlikely 
to be a mechanism leading to disease, but rather it could 
lead to changes in human behaviours or in exposure to 
new strains or both. We also did not model variation in 

Fig. 5 Predicted number of Campylobacter cases (rescaled by ×7; see text) in NE England (± sd) attributed to chicken strains 2005 to 2009 and the 
observed number of cases over the same period
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immune response to different Campylobacter strains, 
treating all as homologous in their impacts on develop-
ment of disease. However, in reality, C. jejuni exhibits 
significant genetic diversity [35]. Furthermore, recent 
evidence shows that C. jejuni undergoes transcriptional 
and genetic adaptation during human infection [36].

Our analyses of countryside visits and barbecue behav-
iour suggested that there were significant relationships 
between both activities and the weather immediately 
prior to adoption of the behaviour. Thus, there is a mis-
match in the time scales of recording of disease and the 
risk behaviours that lead to exposure to the pathogen. 
The time-series analyses suggest our proxy for barbecue 
activity and visits to the countryside were directly related 
to temperature and rainfall. The former activity has been 
cited as a risk factor for disease [6, 7, 37] but our results 
indicate that this risk factor for exposure to the pathogen 
was mediated by weather. Thus, the seasonal pattern in 
human Campylobacter cases in NE England is probably 
not directly influenced by weather, but rather by an indi-
rect effect through changing the human behaviours that 
lead to exposure. The IB model operated at a more short-
term timescale than the time-series analyses and allowed 
for variation in reporting and case ascertainment spe-
cifically. The IB modelling results therefore provide more 
insights into the disease mechanisms than the time-series 
analyses and allows more scope in an assessing poten-
tial intervention strategies. In effect the model predicted 
population-level patterns of disease based on simulating 
human behaviour and exposure events for individuals on 
a daily basis. This more fine-scale modelling showed that 
weather-driven variations in barbecue activity, country-
side visits and domestic cooking provided a reasonable 
explanation for the broad pattern of observed monthly 
cases of disease.

The UK-based IID2 study [38] concluded that only 
around one in seven people with Campylobacter symp-
toms sought medical help. Our model predicted an 
approximately six-fold difference between predicted 
infections and observed cases, which whilst possibly for-
tuitous may reflect this under-reporting to health ser-
vices. In addition, we predicted that 88% of cases were 
from strains associated with chicken, similar to findings 
of Kramer et al. [39] although this is higher than the 40% 
to 50% reported elsewhere [32]. These results suggest that 
there is a smaller role for countryside exposure in caus-
ing disease in this population, which matches the conclu-
sion we drew from the time-series analyses where it was 
not a significant predictor at all. Whilst we have outlined 
the limitations to our model, it should also be stressed 
that the epidemiological processes that we have omitted 

or over-simplified could all be readily incorporated with 
suitable data. The model generates confidence intervals 
on predictions, which give it inferential power. In addi-
tion, notwithstanding social-demographic features of the 
population which might predispose UK citizens to par-
ticular risk behaviours, this modelling approach could be 
extended to any country where equivalent risk behaviour, 
consumer and climate data exist.

Our results indicate that the dynamics of a person’s 
immune response after exposure affect the cyclic pat-
tern of disease in the population and the overall burden 
of disease. Vaccination to extend short-term immunity 
was the most important factor determining number of 
cases. However, the modelled interaction between host 
and pathogen was probably over-simplistic. Resistance to 
Campylobacter infection is assumed to change with age 
[40]. This could reflect progressive acquisition of immu-
nity from repeated exposure. In effect, the pool of strains 
that could initiate disease might decline with repeated 
exposure. Strains can also have an homologous effect on 
the immune system, with exposure to one strain leading 
to immunity to others [41], and protection from subse-
quent illness [16, 42]. Analyses of strains causing illness 
in Scotland [43] showed that rare strains appeared more 
frequently in older patients. However, a small proportion 
of individuals can shed Campylobacter without show-
ing disease [44] or people may have symptoms not suf-
ficiently severe to make them seek medical attention. 
There has been considerable effort to develop vaccines 
against Campylobacter particularly for livestock [45] and 
the immunological evidence from animal models sug-
gests that repeated vaccination can lead to medium-term 
immunity (> 26 weeks).

Vaccines research has mainly focussed on identifying 
target antigens, particularly proteins and polysaccharides 
[46]. A conjugate vaccine for enterotoxic bacteria includ-
ing Campylobacter has been shown to lead to functional 
antibodies to disease in mice [47]. However, developing a 
vaccine for humans is more complicated because of the 
poor understanding of the underlying immunology and 
the potential for interactions with post-infection immu-
nological syndromes like Guillain Barré syndrome [45]. 
There is also the problem of development costs. It has 
been estimated that development to the point of drug 
approval would cost $2.8–3.7 billion [48, 49]. However, 
the huge expense of vaccine development has to be con-
sidered in the context of the cost of the disease burden, 
which annually in the EU alone has been estimated as of 
the same order as that of the cost for developing vaccines 
(€2.4 billion~ €2.7 billion). Equivalent analyses of the cost 
effectiveness of behavioural interventions to mitigate 
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food-borne disease have been less frequent. One study 
in the US, with a budget of $300 K, led to a program in 
which 14,062 people participated with a reduction in dis-
ease risk of 12.8% [49]. The benefits of this level of pre-
vention were considered sufficient to outweigh the costs. 
However, the practicality of behavioural interventions at 
anything other than the small scale probably means they 
are impractical given the sizeable disease burden and the 
lack of efficacy suggested by our analyses.

Conclusion
This is the first inter-disciplinary study to integrate envi-
ronment, risk behaviour, socio-demographics and immu-
nology to model infectious disease and identify pathways 
to mitigation. We conclude that vaccination is likely to be 
the best route for intervening against campylobacteriosis 
despite the technical problems associated with under-
standing both the underlying human immunology and 
genetic variation in the pathogen, and the likely cost of 
vaccine development.
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