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Abstract
Until now, the theories about the convergence analysis, the almost surely and mean
square exponential stability of the numerical solution for neutral stochastic functional
differential equations with Markovian switching (NSFDEwMSs) have been well
established, but there are very few research works concentrating on the stability in
distribution of numerical solution. This paper will pay attention to the stability in
distribution of numerical solution of NSFDEwMSs. The strong mean square
convergence analysis is also discussed.

Keywords: Euler–Maruyama method; Stability in distribution; Neutral stochastic
functional differential equations; Markov chain; Strong convergence

1 Introduction
Neutral functional differential equations (NFDEs) are a class of differential equations, in
which the state not only depends on the past and the current values, but also involves
the derivatives with delays [6]. Since NFDEs have their extensive applications in chem-
ical process, the theory of aeroelasticity, Lotka–Volterra systems, steam or water pipes,
heat exchangers, and partial element equivalent circuits [7], many excellent studies (see,
e.g., [15, 18] and the references therein) have presented the basic theory of NFDEs. When
NFDEs are subject to the environmental external disturbances, they can be characterized
by neutral stochastic functional differential equations (NSFDEs) [10, 17]. Such equations
have been applied in science and engineering. The existence-uniqueness theorem and the
asymptotic behavior for NSFDEs have been extensively discussed, see [9, 10] and their
cited references. To our knowledge, it is difficult to obtain the explicit solutions of most
of NSFDEs. So the numerical solutions become a very useful tool. Consequently, studying
the numerical solution of NSFDEs is becoming more and more important. The common
difference scheme is the Euler–Maruyama (EM) method due to its convenient computa-
tions and implementations, for example, see [11, 12] and the references therein. In [21],
influenced by Mao’s work [12], Wu et al. analyzed the EM scheme of NSFDEs and gave
the strong convergence between the exact solution and the numerical solution.

In many practical systems, due to component failures, subsystem interconnection
changes and sudden environmental interferences may cause structural and parameter
abrupt changes. In order to solve this problem, hybrid systems driven by continuous-time
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
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Markov chain have been introduced. All of these systems have a typical feature: the state
has continuous values and the jumping parameters take some discrete values [1, 22], and
thus such systems can be taken as the special case of hybrid systems [20]. By using the
Lyapunov function approach, the exponential stability in moment, the almost surely ex-
ponential stability and the almost surely asymptotic stability for neutral stochastic delay
differential equations with Markovian switching (NSDDEwMSs) were discussed in [5,
13], respectively. Some basic theoretical results and useful approaches on numerical so-
lution for stochastic delay differential equations with Markovian switching (SDDEwMSs)
were systematically introduced in [14]. In [8, 26], the EM method and the convergence of
numerical solutions for NSDDEwMSs on the basis of the local Lipschitz condition were
developed. Recently, the exponential stability of the EM method for NSFDEs with jumps
was analyzed in [16]. The almost surely and mean square exponential stability of numer-
ical solutions for NSFDEs were considered in [23, 27]. In [28], Zong et al. analyzed the
mean square exponential stability of the numerical solutions for NSFDEs.

Most of these papers discussed in [16, 23, 27, 28] are related with the asymptotic sta-
bility in mean square or in probability, which means that the numerical solution will tend
to zero in mean square or in probability as time t approaches infinity. Nevertheless, the
asymptotic behavior sometimes is too strong, and under these circumstances to know
if the numerical solution will converge in distribution or not is very useful. These prop-
erties are referred to as the asymptotic stability in distribution. The asymptotic stability
in distribution of the exact solution and the numerical solution for stochastic functional
differential equations with Markovian switching (SFDEwMSs) was presented in [2, 3, 25]
and their cited references. Some results on the asymptotic stability in distribution of the
exact solution for NSFDEwMSs were analyzed in [4]. In [24], although the stability in dis-
tribution of numerical solution for stochastic differential equations was considered, the
asymptotic stability in distribution of the numerical solution to NSFDEwMSs was not de-
veloped yet, due to the difficulty stemming from the simultaneous presence of the neutral
item and the Markovian switching. This paper will fill this gap.

In this paper, we study the EM numerical solutions of the following NSFDEwMSs:

d
[
y(t) – D

(
yt , r(t)

)]
= f

(
yt , r(t)

)
dt + g

(
yt , r(t)

)
dw(t), t ≥ 0,

with the initial data y0 = ξ ∈ Lp
F0

([–τ , 0];�n) and r(0) = i0 ∈ S, where D(·, ·) and f (·, ·) :
C([–τ , 0];�n) × S → �n, and g(·, ·) : C([–τ , 0];�n) × S → �n×m, y(t) ∈ �n for each t and
yt = y(t + θ ) : –τ ≤ θ ≤ 0. Our primary objective is to extend the method developed in [19,
21], and [24] to NSFDEwMSs and to study the stability in distribution as well as the strong
convergence for numerical approximations when f (·, ·) and g(·, ·) satisfy both the global
Lipschitz condition and the monotonicity condition, and D(·, ·) is a contractive mapping.

We should point out that although the EM method used in this paper is borrowed from
[21], in which the convergence in finite time was studied, in this paper we impose different
conditions from those in [21] and investigate the long-term behavior of the numerical
solutions. Besides, the difficulty stemming from the co-occurrence of the neutral term
and the Markovian switching can be overcome in this paper. For the self-contained result,
the strong mean square convergence analysis of the numerical solution to NSFDEwMSs
is also introduced under our assumptions.

This paper consists of the following sections. In Sect. 2, some necessary results are in-
troduced and the definition of the EM approximate solution to NSFDEwMSs is given. We
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present the main results and give the technique proofs in Sect. 3. We show the relationship
between the invariant measure of the numerical solution and that of the exact solution in
Sect. 4. In Sect. 5, we give an example to illustrate the results. For the self-contained re-
sult, the strong convergence of the approximation solutions for NSFDEwMSs under our
assumptions is discussed as an appendix.

2 Euler–Maruyama method: numerical schemes and preparatory lemmas
Throughout this paper, let (Ω ,F , {Ft}t≥0, P) be a complete probability space with a fil-
tration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right-continuous,
while F0 contains all P-null sets). Let w(t) = (w1(t), w2(t), . . . , wm(t))T , t ≥ 0, be an m-
dimensional Brownian motion defined on the probability space with ṽT denoting the
transpose of a vector ṽ. Let | · | be the Euclidean norm in �n and �n×m. If A is a vec-
tor or matrix, its transpose is denoted by AT . For a matrix A, its trace norm is de-
noted by |A| =

√
trace(AT A). Denote by C = C([–τ , 0];�n) the family of continuous func-

tions ϕ from [–τ , 0] to �n with the norm ‖ϕ‖ = sup–τ≤θ≤0 |ϕ(θ )|. Let Lp
F0

([–τ , 0];�n)
denote the family of F0-measurable C([–τ , 0];�n)-valued random variables ξ such that
E‖ξ‖p := E(sup–τ≤t≤0 |ξ (t)|p) < ∞ (p ≥ 2). If x(t) is an �n-valued stochastic process for any
t ∈ [–τ ,∞), denote xt = {x(t + θ ) : –τ ≤ θ ≤ 0} for any t ≥ 0. Let r(t) (t ≥ 0) be a right-
continuous Markov chain on the probability space taking values in a finite state space
S = {1, 2, . . . , N} with the generator Γ = (γij)n×n given by

P
{

r(t + δ) = j|r(t) = i
}

=

⎧
⎨

⎩
γijδ + o(δ) if i 	= j,

1 + γijδ + o(δ) if i = j,

where δ > 0. Here, γij is the transition rate from i to j and γij > 0 if i 	= j, while

γii = –
∑

j 	=i

γij.

In this paper, it is always assumed that the Markov chain r(·) is independent of the Brown-
ian motion w(·). It is well known that almost every sample path of r(·) is a right-continuous
step function with a finite number of simple jumps in any finite subinterval of �+ := [0,∞).

In this paper, we consider the following n-dimensional NSFDEwMSs:

d
[
y(t) – D

(
yt , r(t)

)]
= f

(
yt , r(t)

)
dt + g

(
yt , r(t)

)
dw(t), t ≥ 0, (1)

with the initial data y0 = ξ ∈ Lp
F0

([–τ , 0];�n) and r(0) = i0 ∈ S , where

D(·, ·) and f (·, ·) : C × S → �n, and g(·, ·) : C × S → �n×m.

Assumption 1 For any ϕ,φ ∈ C , there exist λ1 > 0, λ2 > 0, λ3 > 0, κ ∈ (0, 1), and a proba-
bility measure ρ(·) on [–τ , 0] such that

2
〈(
ϕ(0) – φ(0)

)
–

(
D(ϕ, i) – D(φ, i)

)
, f (ϕ, i) – f (φ, i)

〉
+

∣∣g(ϕ, i) – g(φ, i)
∣∣2

≤ –λ1
∣∣ϕ(0) – φ(0)

∣∣2 + λ2

∫ 0

–τ

∣∣ϕ(θ ) – φ(θ )
∣∣2

ρ(dθ ), (2)
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∣
∣f (ϕ, i) – f (φ, i)

∣
∣2 ∨ ∣

∣g(ϕ, i) – g(φ, i)
∣
∣2

≤ λ3

(∣∣ϕ(0) – φ(0)
∣∣2 +

∫ 0

–τ

∣∣ϕ(θ ) – φ(θ )
∣∣2

ρ(dθ )
)

, (3)

and

∣∣D(ϕ, i) – D(φ, i)
∣∣ ≤ κ

∫ 0

–τ

∣∣ϕ(θ ) – φ(θ )
∣∣ρ(dθ ), D(0, i) = 0. (4)

Assumption 1 can guarantee the existence and uniqueness of the solution for (1). It is
seen from (4) that

∣∣D(ϕ, i)
∣∣2 ≤ κ2

∫ 0

–τ

∣∣ϕ(θ )
∣∣2

ρ(dθ ). (5)

By (3), we have

∣∣f (ϕ, i)
∣∣2 ∨ ∣∣g(ϕ, i)

∣∣2 ≤ 2λ3

(∣∣ϕ(0)
∣∣2 +

∫ 0

–τ

∣∣ϕ(θ )
∣∣2

ρ(dθ )
)

+ a, (6)

where a = 2|f (0, i)|2 ∨ 2|g(0, i)|2.
For any ε > 0, from (2), (3), and (4), we have

2
〈
ϕ(0) – D(ϕ, i), f (ϕ, i)

〉
+

∣∣g(ϕ, i)
∣∣2

≤ (–λ1 + 2ε + ελ3)
∣
∣ϕ(0)

∣
∣2 +

(
λ2 + 2εκ2 + ελ3

)∫ 0

–τ

∣
∣ϕ(θ )

∣
∣2

ρ(dθ ) +
(2 + ε)a

2ε
. (7)

Assumption 2 For any ξ ∈ Lp
F0

([–τ , 0];�n), there exists a nondecreasing function α(·)
such that, for any p ≥ 2,

E
(

sup
–τ≤s≤t≤0

∣
∣ξ (t) – ξ (s)

∣
∣p

)
≤ α(t – s) (8)

with the property α(u) → 0 as u → 0+.

Theorem 2.1 Under Assumptions 1 and 2, NSFDEwMSs (1) have a unique continuous
solution y(t) on t ≥ –τ . Moreover, the solution has the property that

E
(

sup
–τ≤t≤T

∣∣y(t)
∣∣p

)
≤ (C̄ + 1)

(
1 + E‖ξ‖p)eC̄T

for any T > 0, where C̄ is a positive constant only dependent on τ , κ , T , and λ3. In other
words, the pth (p ≥ 2) moment of the solution is finite.

Proof The proof is almost similar to Theorem 2.4 of [5], so it is omitted here. �

Let r�
k = r(k�) for k ≥ 0. We can use the one-step transition probability matrix

P(�) = (Pij(�))n×n = e�Γ to simulate the discrete Markov chain {r�
k , k = 0, 1, 2, . . .}, where

the details can be found in [14]. We can now define the EM approximate solution to
NSFDEwMSs (1). Let the step size � ∈ (0, 1) be a fraction of T and τ (T > 0), namely,
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� = T
N = τ

M for some integer N > T and M > τ . The discrete EM approximate solution
X̄(k�), –M ≤ k ≤ N is defined as follows:

⎧
⎪⎪⎨

⎪⎪⎩

X̄(k�) = ξ (k�), –M ≤ k ≤ 0,

X̄((k + 1)�) = X̄(k�) + D(X̄k�, r�
k ) – D(X̄(k–1)�, r�

k–1)

+ f (X̄k�, r�
k )� + g(X̄k�, r�

k )�wk , 0 ≤ k ≤ N – 1,

(9)

where �wk = w((k + 1)�) – w(k�) and X̄k� = {X̄k�(θ ) : –τ ≤ θ ≤ 0} is a C-valued random
variable defined as follows:

X̄k�(θ ) = X̄
(
(k + i)�

)
+

θ – i�
�

[
X̄

(
(k + i + 1)�

)
– X̄

(
(k + i)�

)]
(10)

for i� ≤ θ ≤ (i + 1)�, i = –M, . . . , –1, where in order for X̄–� to be well defined, we set
X̄(–(M + 1)�) = ξ (–M�). Let tk = k�, k = 0, 1, . . . , N – 1, and define

X̄t = X̄k�, r̄(t) = r�
k for t ∈ [tk , tk+1).

In our analysis, it will be more convenient to use continuous-time approximations. We
first introduce the C-valued step process

X̄t =
∞∑

k=0

X̄k�1[k�,(k+1)�)(t), ∀k ≥ 0,

and then we define the continuous EM approximate solution as follows: let X(t) = ξ (t) for
–τ ≤ t ≤ 0, and let [ t

�
] be the integer part of t

�
, while for t ∈ [[ t

�
]�, ([ t

�
] + 1)�),

X(t) = ξ (0) +
∫ t

0
f
(
X̄s, r̄(s)

)
ds +

∫ t

0
g
(
X̄s, r̄(s)

)
dw(s)

+ D̄(t) – D
(
X̄–�, r̄(0)

)
, (11)

where D̄(t) = D(X̄([ t
�

]–1)� + t–[ t
�

]�
�

(X̄[ t
�

]� – X̄([ t
�

]–1)�), r̄(t)).
Obviously, (11) can be written as

X(t) = X̄(t[ t
�

]) +
∫ t

t[ t
�

]

f
(
X̄s, r̄(s)

)
ds +

∫ t

t[ t
�

]

g
(
X̄s, r̄(s)

)
dw(s)

+ D̄(t) – D
(

X̄([ t
�

]–1)�, r̄
(([

t
�

]
– 1

)
�

))
. (12)

Observe that X(t[ t
�

]) = X̄(t[ t
�

]), that is, the discrete and continuous EM approximate solu-
tions coincide at the gridpoints.

Rewriting (10), we have

X̄[ t
�

]�(θ ) =
� – (θ – i�)

�
X̄

(([
t
�

]
+ i

)
�

)
+

θ – i�
�

X̄
(([

t
�

]
+ i + 1

)
�

)
, (13)
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which yields

∣
∣X̄[ t

�
]�(θ )

∣
∣ ≤

∣∣
∣∣X̄

(([
t
�

]
+ i

)
�

)∣∣
∣∣ ∨

∣∣
∣∣X̄

(([
t
�

]
+ i + 1

)
�

)∣∣
∣∣.

Moreover, by [21], we have

‖X̄[ t
�

]�‖ = max
–M≤i≤0

∣
∣∣∣X̄

(([
t
�

]
+ i

)
�

)∣
∣∣∣, ‖X̄–�‖ ≤ ‖X̄0‖, ‖X̄[ t

�
]�‖ ≤ ‖X[ t

�
]�‖,

where

X[ t
�

]� = X(t) :
[

t
�

]
� – τ ≤ t ≤

[
t
�

]
� and sup

0≤t≤T
‖X̄t‖ ≤ sup

–τ≤s≤T

∣
∣X(s)

∣
∣.

Moreover, the same way as [2, Lemma 5.1], we have the following result.

Proposition 2.2 (Xk�, r�
k ), k ≥ 0, is a homogeneous Markov chain, that is,

P
(
(X(k+1)�, r�

(k+1)) ∈ A × {j}|(Xk�, r�
k
)

= (ξ , i)
)

=
((

X�, r�
1
) ∈ A × {j}|(X0, r�

0
)

= (ξ , i)
)
.

3 Stability in distribution
In this section, we will establish two sufficient criteria on the stability in distribution for
the Markov chain (Xk�, r�

k ) with the initial data (ξ , i). It should be pointed out that the
continuous EM approximate solutions X(t) is a point, whereas Xt is a continuous function
on the interval [–τ , 0]. For the Markov chain (Xk�, r�

k ), we define the k-step transition
probability for any Borel set A in C , ξ ∈ C and i, j ∈ S such that

P�
k
(
(ξ , i); A × {j}) = P

((
Xk�, r�

k
) ∈ A × {j}|(X0, r�

0
)

= (ξ , i)
)
.

Let P (C×S) denote all probability measures on C×S . In order to characterize the stability
in distribution, we need to introduce the following metric on the space P (C ×S). For any
P1, P2 ∈ P (C × S), define metric dL

dL(P1, P2) = sup
f ∈L

∣
∣∣∣
∣

N∑

i=1

∫

C
f (ξ , i)P1(dx, i) –

N∑

i=1

∫

C
f (ξ , i)P2(dξ , i)

∣
∣∣∣
∣

and

L =
{

f : C × S → R :
∣
∣f (ξ , i) – f (η, j)

∣
∣ ≤ ‖ξ – η‖ + |i – j|, ∣∣f (·, ·)∣∣ ≤ 1

}
.

Definition 3.1 The Markov chain (Xk�, r�
k ) is said to be stable in distribution if there

exists a probability measure π� ∈ P (C × S) such that P�
k ((ξ , i); · × ·) converges weakly to

π�(· × ·) as k −→ ∞, for any ξ ∈ C , i ∈ S , that is,

lim
k−→∞

dL

(
P�

k
(
(ξ , i); · × ·),π�(· × ·)) = 0, ∀ξ ∈ C, i ∈ S .
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In order to highlight the initial value ξ , we may write y(t) and X(t) by yξ (t) and Xξ (t),
respectively.

Definition 3.2 Let p ≥ 2. The segment process Xk� is said to have Property (P1) if, for
any ξ ∈ C ,

sup
k≥0

sup
ξ∈K

E
∥∥Xξ

k�

∥∥p < ∞. (14)

Moreover, the segment process Xt is said to have Property (P2) if

lim
k→∞

sup
ξ ,η∈K

E
∥
∥Xξ

k� – Xη

k�

∥
∥p = 0 (15)

uniformly in (ξ ,η) ∈ K × K , where K in (14) and (15) denotes any compact subset of C .

Theorem 3.1 If Xk� has Properties (P1) and (P2), then (Xk�, r�
k ) is stable in distribution.

Since the proof of Theorem 3.1 is similar to [14, Theorem 5.43], we omit it here to save
the space. Next, we will show that under Assumption 1, Xk� has Properties (P1) and (P2)
as long as the stepsize � is sufficiently small. The following result is therefore immediate.

Theorem 3.2 Assume that Assumption 1 holds. If

λ1 > 4λ3 + λ2 + 4κ2,

then (Xk�, r�
k ) is stable in distribution when the stepsize � is sufficiently small.

Therefore, in order to show that (Xk�, r�
k ) is stable in distribution, we only need to prove

that Xk� satisfies properties (P1) and (P2).

Lemma 3.3 Under Assumptions 1 and 2, if

λ1 > 4λ3 + λ2 + 2κ2, (16)

and � is sufficiently small, then there exists a constant C > 0, which may be dependent on
the initial value ξ such that the EM approximate solution has the property

sup
t≥0

sup
ξ∈K

E
[∥∥Xξ

t
∥
∥2] ≤ C,

where K is a compact set in C . In other words, Xk� has Property (P1) provided the stepsize
� is sufficiently small.

Proof Recall the inequality that, for any p ≥ 2, β > 0,

|x + y|p ≤ (1 + β)p–1(|x|p + β1–p|y|p), (17)
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which yields

E
∣
∣X(t)

∣
∣2 ≤ (1 + β)E

∣
∣X(t) – D̄(t)

∣
∣2 +

1 + β

β
E
∣
∣D̄(t)

∣
∣2. (18)

From (5), (13), and ‖X̄–�‖ ≤ ‖X̄0‖, we can see that

∥
∥∥
∥X̄([ t

�
]–1)� +

t – [ t
�

]�
�

(X̄[ t
�

]� – X̄([ t
�

]–1)�)
∥
∥∥
∥

2

≤ sup
–τ≤s≤t

∣∣X(s)
∣∣2,

E
∣
∣D̄(t)

∣
∣2 ≤ κ2E‖ξ‖2 + κ2E

(
sup

0≤s≤t

∣
∣X(s)

∣
∣2

)
. (19)

Application of the Itô formula yields

eλtE
∣
∣X(t) – D̄(t)

∣
∣2

= E
∣
∣ξ – D

(
X̄–�, r̄(0)

)∣∣2 + λE
∫ t

0
eλs∣∣X(s) – D̄(s)

∣
∣2 ds

+ E
∫ t

0
eλs[2

〈
X(s) – D̄(s), f

(
X̄s, r̄(s)

)〉
+

∣∣g
(
X̄s, r̄(s)

)∣∣2]ds

= E
∣
∣ξ – D

(
X̄–�, r̄(0)

)∣∣2 + λE
∫ t

0
eλs∣∣X(s) – D̄(s)

∣
∣2 ds

+ E
∫ t

0
eλs[2

〈
X(s) – X̄s(0), f

(
X̄s, r̄(s)

)〉]
ds

+ E
∫ t

0
eλs[2

〈
X̄s(0) – D

(
X̄s, r̄(s)

)
, f

(
X̄s, r̄(s)

)〉
+

∣
∣g

(
X̄s, r̄(s)

)∣∣2]ds

+ E
∫ t

0
eλs[2

〈
D

(
X̄s, r̄(s)

)
– D̄(s), f

(
X̄s, r̄(s)

)〉]
ds

=: I1 + I2 + I3 + I4 + I5. (20)

It is obviously seen that I1 is only dependent on the initial data ξ . Now, we will give the es-
timations of Ii (i = 2, . . . , 5), respectively. Before estimating them, one important inequality
can be computed as follows:

∫ t

0
eγ s

∫ 0

–τ

∣
∣X̄s(θ )

∣
∣2

ρ(dθ ) ds =
∫ 0

–τ

(∫ t

0
eγ s∣∣X̄s(θ )

∣
∣2 ds

)
ρ(dθ )

≤ eγ τ

∫ 0

–τ

(∫ t

–τ

eγ s∣∣X̄(s)
∣∣2 ds

)
ρ(dθ )

≤ eγ τ

γ
‖ξ‖2 + eγ τ

∫ t

0
eγ s∣∣X̄(s)

∣
∣2 ds. (21)

From Assumption 1 and (21), we have

I2 ≤ λE
∫ t

0
eλs∣∣X(s)

∣
∣2 ds + 2λE

∫ t

0
eλs∣∣X(s)

∣
∣
∣
∣D̄(s)

∣
∣ds + λE

∫ t

0
eλs∣∣D̄(s)

∣
∣2 ds

≤ (
2κ + κ2)E‖ξ‖2eλτ +

[
λ +

(
2λκ + λκ2)eλτ

] ∫ t

0
eλsE

(
sup

0≤u≤s

∣∣X(u)
∣∣2

)
ds (22)
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and

I3 ≤ �– 1
2 E

∫ t

0
eλs∣∣X(s) – X̄(s)

∣∣2 ds + �
1
2 E

∫ t

0
eλs∣∣f

(
X̄s, r̄(s)

)∣∣2 ds

≤ �– 1
2 E

∫ t

0
eλs∣∣X(s) – X̄(s)

∣∣2 ds +
λ3�

1
2 eλτ

λ
E‖ξ‖2 + a�

1
2 E

∫ t

0
eλs ds

+ �
1
2 λ3

(
1 + eλτ

)∫ t

0
eλsE

(
sup

0≤u≤s

∣
∣X(u)

∣
∣2

)
ds. (23)

It follows from (12) that, for any t ∈ [t[ t
�

], t[ t
�

]+1) (t ≥ 0),

E
∣
∣X(t) – X̄(t)

∣
∣2

≤ 3E
(∣∣

∣∣

∫ t

t[ t
�

]

f
(
X̄s, r̄(s)

)
ds

∣∣
∣∣

2)
+ 3E

(∣∣
∣∣

∫ t

t[ t
�

]

g
(
X̄s, r̄(s)

)
dB(s)

∣∣
∣∣

2)

+ 3E
(∣∣

∣∣D̄(t) – D
(

X̄([ t
�

]–1)�, r̄
(([

t
�

]
– 1

)
�

))∣∣
∣∣

2)

≤ [
12λ3(M + 2)E

(∣∣X̄(t)
∣∣2) + 6a

]
�

+ 6E
(∣

∣∣∣D̄(t)

– D
(

X̄([ t
�

]–1)� +
t – [ t

�
]�

�
(X̄[ t

�
]� – X̄([ t

�
]–1)�), r̄

(([
t
�

]
– 1

)
�

))∣∣
∣∣

2)

+ 6E
(∣∣∣

∣D
(

X̄([ t
�

]–1)� +
t – [ t

�
]�

�
(X̄[ t

�
]� – X̄([ t

�
]–1)�), r̄

(([
t
�

]
– 1

)
�

))

– D
(

X̄([ t
�

]–1)�, r̄
(([

t
�

]
– 1

)
�

))∣
∣∣
∣

2)

=: I31 + I32 + I33, (24)

where I31 = [12λ3(M + 2)E(|X̄(t)|2) + 6a]�.
We now compute I32 and I33, respectively. From Assumptions 1 and 2, we have

I32 ≤ 12E
(∣∣

∣∣D̄(t)

– D
(

X̄([ t
�

]–1)� +
t – [ t

�
]�

�
(X̄[ t

�
]� – X̄([ t

�
]–1)�), r̄

(([
t
�

]
– 1

)
�

))∣∣
∣∣

2

× I{r̄(t) 	=r̄(([ t
�

]–1)�)}

)

≤ 24κ2E
(∫ 0

–τ

∣∣
∣∣X̄([ t

�
]–1)�(θ ) +

t – [ t
�

]�
�

(
X̄[ t

�
]�(θ ) – X̄([ t

�
]–1)�(θ )

)
∣∣
∣∣

2

ρ(dθ )
)

× E[I{r̄(t) 	=r̄(([ t
�

]–1)�)}]

≤ 24κ2E
(

sup
–τ≤s≤t

∣∣X(s)
∣∣2

)
E[I{r̄(t) 	=r̄(([ t

�
]–1)�)}]
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≤ 24κ2
(

N max
0≤i≤n

(–γii�) + o(�)
)

E
(

sup
–τ≤s≤t

∣∣X(s)
∣∣2

)

≤ C1�E‖ξ‖2 + C1�E
(

sup
0≤s≤t

∣
∣X(s)

∣
∣2

)
+ o(�)

and

I33 ≤ 6κ2E
(∫ 0

–τ

t – [ t
�

]�
�

(
X̄[ t

�
]�(θ ) – X̄([ t

�
]–1)�(θ )

)
ρ(dθ )

)

≤ 6κ2E
(

sup
t–τ≤s≤t

∣∣
∣∣X̄

([
s
�

]
�

)
– X̄

(([
s
�

]
– 1

)
�

)∣∣
∣∣

2)

≤ 6κ2E
(

sup
–τ≤s≤t

∣
∣∣∣X̄

([
s
�

]
�

)
– X̄

(([
s
�

]
– 1

)
�

)∣
∣∣∣

2)

≤ 6κ2
[[

C1� + D(l)�
l–1

l +
8λ3�

2

1 – κ

]
E‖ξ‖2

1 – 2κ
+

α(�)
1 – 2κ

+
2a�2 + 4aD(l)�

l–1
l

(1 – κ)(1 – 2κ)

+ o(�) +
1

1 – 2κ

[
C1� + D(l)�

l–1
l +

8λ3�
2

1 – κ

]
E
(

sup
0≤s≤t

∣
∣X(s)

∣
∣2

)]
, (25)

where (4), (8), and the proof of Lemma 3.2 in [21] are used, D(l) = 8λ3
1–κ

[(2l – 1)!!N]
1
l , and

l > 1 is an arbitrary integer.
In particular, when l = 3, (25) can be rewritten as

I33 ≤
[

C1 + D(3) +
8λ3

1 – κ

]
6κ2E‖ξ‖2�

2
3

1 – 2κ
+

6κ2α(�)
1 – 2κ

+
6κ2[2a + 4aD(3)]

(1 – κ)(1 – 2κ)
�

2
3

+ o(�) +
[

C1 + D(3) +
8λ3

1 – κ

]
6κ2�

2
3

1 – 2κ
E
(

sup
0≤s≤t

∣
∣X(s)

∣
∣2

)

≤ C2
[
E‖ξ‖2�

2
3 + �

2
3 + α

(
�

2
3
)]

+ o(�) + C2�
2
3 E

(
sup

0≤s≤t

∣
∣X(s)

∣
∣2

)
, (26)

where C2 = max{[C1 + D(3) + 8λ3
1–κ

] 6κ2

1–2κ
, 6κ2

1–2κ
, 6κ2[2a+4aD(3)]

(1–κ)(1–2κ) }.
From (24) and (26), we have

E
∣
∣X(t) – X̄(t)

∣
∣2

≤ 12λ3(M + 2)�E
(∣∣X̄(t)

∣∣2) + 6a�

+ C1�E‖ξ‖2 + C1�E
(

sup
0≤s≤t

∣∣X(s)
∣∣2

)
+ o(�)

+ C2
[
E‖ξ‖2�

2
3 + �

2
3 + α

(
�

2
3
)]

+ o(�) + C2�
2
3 E

(
sup

0≤s≤t

∣∣X(s)
∣∣2

)

≤ (C1 + C2)E‖ξ‖2�
2
3 + (6a + C2)�

2
3 + C2α

(
�

2
3
)

+ o(�)

+
[
12λ3(M + 2) + C1 + C2

]
�

2
3 E

(
sup

0≤s≤t

∣∣X(s)
∣∣2

)

≤ C3
[
E‖ξ‖2�

2
3 + �

2
3 + α

(
�

2
3
)]

+ o(�) + C3�
2
3 E

(
sup

0≤s≤t

∣∣X(s)
∣∣2

)
, (27)

where C3 = max{6a + C2, 12λ3(M + 2) + C1 + C2}.
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Substituting (27) into (23) yields

I3 ≤ C3
[
E‖ξ‖2�

1
6 + �

1
6 + α

(
�

1
6
)]

E
∫ t

0
eλs ds + C3�

1
6

∫ t

0
eλsE

(
sup

0≤u≤s

∣
∣X(u)

∣
∣2

)
ds

+ o(�) +
λ3eλτ

λ
E‖ξ‖2�

1
6 + a�

1
6 E

∫ t

0
eλs ds

+ λ3
(
1 + eλτ

)
�

1
6 E

∫ t

0
eλs sup

0≤u≤s

∣∣X(u)
∣∣2 ds

≤ o(�) +
[
C3E‖ξ‖2�

1
6 + (a + C3)�

1
6 + C3α

(
�

1
6
)]eλt

λ
+

λ3eλτ – C3

λ
E‖ξ‖2�

1
6

–
C3 + a

λ
�

1
6 –

C3

λ
α
(
�

1
6
)

+
[
C3 + λ3

(
1 + eλτ

)]
�

1
6 E

∫ t

0
eλs sup

0≤u≤s

∣∣X(u)
∣∣2 ds

≤ o(�) + C4
[
E‖ξ‖2�

1
6 + �

1
6 + α

(
�

1
6
)]

eλt + C4E‖ξ‖2�
1
6

+ C4�
1
6

∫ t

0
eλsE

(
sup

0≤u≤s

∣
∣X(u)

∣
∣2

)
ds, (28)

where C4 = max{ a+C3
λ

, λ3eλτ –C3
λ

, C3 + λ3(1 + eλτ )}.
From Assumption 1 and (21), we obtain

I4 ≤ (λ2 + 2εκ2 + ελ3)E‖ξ‖2eλτ

λ
+

(2 + ε)a
2ε

E
∫ t

0
eλs ds

+
[
(–λ1 + 2ε + ελ3) +

(
λ2 + 2εκ2 + ελ3

)
eλτ

] ∫ t

0
eλsE

(
sup

0≤u≤s

∣
∣X(u)

∣
∣2

)
ds (29)

and

I5 ≤ E
∫ t

0
eλs∣∣D

(
X̄s, r̄(s)

)
– D̄(s)

∣∣2 ds + E
∫ t

0
eλs∣∣f

(
X̄s, r̄(s)

)∣∣2 ds

≤ 2(κ2 + λ3)E‖ξ‖2eλτ

λ
+ 2λ3aE

∫ t

0
eλs ds

+
[
2κ2eλτ + 2λ3 + 2λ3eλτ

] ∫ t

0
eλsE

(
sup

0≤u≤s

∣
∣X(u)

∣
∣2

)
ds. (30)

Substituting (22), (28)–(30) into (20) gives

eλtE
∣
∣X(t) – D̄(t)

∣
∣2

≤ E
∣
∣ξ – D

(
X̄–�, r̄(0)

)∣∣2

+
(
2κ + κ2)E‖ξ‖2eλτ +

[
λ +

(
2λκ + λκ2)eλτ

] ∫ t

0
eλsE

(
sup

0≤u≤s

∣
∣X(u)

∣
∣2

)
ds

+ o(�) + C4
[
E‖ξ‖2�

1
6 + �

1
6 + α

(
�

1
6
)]

eλt + C4E‖ξ‖2�
1
6

+ C4�
1
6

∫ t

0
eλsE

(
sup

0≤u≤s

∣
∣X(u)

∣
∣2

)
ds

+
(λ2 + 2εκ2 + ελ3)E‖ξ‖2eλτ

λ
+

(2 + ε)a
2ε

E
∫ t

0
eλs ds
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+
[
(–λ1 + 2ε + ελ3) +

(
λ2 + 2εκ2 + ελ3

)
eλτ

]
E

∫ t

0
eλs sup

0≤u≤s

∣∣X(u)
∣∣2 ds

+
2(κ2 + λ3)E‖ξ‖2eλτ

λ
+ 2λ3aE

∫ t

0
eλs ds

+
[
2κ2eλτ + 2λ3 + 2λ3eλτ

] ∫ t

0
eλsE

(
sup

0≤u≤s

∣∣X(u)
∣∣2

)
ds

≤ E
∣
∣ξ – D

(
X̄–�, r̄(0)

)∣∣2 +
λ(2κ + κ2) + (λ2 + 2κ2 + 2λ3)

λ
E‖ξ‖2eλτ

+ C4
[
E‖ξ‖2�

1
6 + �

1
6 + α

(
�

1
6
)]

eλt + 2λ3aeλt

+ λ̄

∫ t

0
eλsE

(
sup

0≤u≤s

∣∣X(u)
∣∣2

)
ds,

where λ̄ = –λ1 + λ + C4�
1
6 + 2ε + ελ3 + 2λ3 + (2λκ + λκ2 + λ2 + 2εκ2 + ελ3 + 2κ2 + 2λ3)eλτ .

Using (16), we can choose a suitable positive constant λ such that –λ1 + λ + 2λ3 + (2λκ +
λκ2 +λ2 + 2κ2 + 2λ3)eλτ < 0. Then, when � > 0 and ε > 0 are sufficiently small, it yields that
λ̄ < 0. Hence

E
∣
∣X(t) – D̄(t)

∣
∣2

≤ 2λ3a +
[

E
∣∣ξ – D

(
X̄–�, r̄(0)

)∣∣2

+
(κ2λ + 2κλ + λ2 + 2κ2 + 2λ3)E‖ξ‖2eλτ

λ

]
e–λt . (31)

Substituting (31) into (18), we have

E sup
0≤s≤t

∣
∣X(s)

∣
∣2

≤ (1 + β)(2λ3aβ + κ2E‖ξ‖2)
β – (1 + β)κ2 + e–λt β(1 + β)

β – (1 + β)κ2

[
E
∣∣ξ – D

(
X̄–�, r̄(0)

)∣∣2

+
(κ2λ + 2κλ + λ2 + 2κ2 + 2λ3)E‖ξ‖2eλτ

λ

]
.

Choosing an appropriate positive constant β such that β – (1 + β)k2 > 0, then for all
t ≥ –τ , we have

E
∣∣X(t)

∣∣2 ≤ cE‖ξ‖2 + ce–λtE‖ξ‖2 < ∞. (32)

We now estimate the moment of the segment process Xt . According to the Itô formula,
for any t ≥ τ and –τ ≤ θ ≤ 0, we have

∣
∣Xt – D̄(t + θ )

∣
∣2

=
∣∣X(t – τ ) – D̄(t – τ )

∣∣2 + M(t, θ )

+
∫ t+θ

t–τ

[
2
〈
X(s) – D̄(s), f

(
X̄s, r̄(s)

)〉
+

∣∣g
(
X̄s, r̄(s)

)∣∣2]ds

≤ ∣∣X(t – τ ) – D̄(t – τ )
∣∣2 + M(t, θ ) + λ2

∫ t+θ

t–τ

∫ 0

–τ

sup
–τ≤r≤s

∣∣X(r + θ )
∣∣2

ρ(dθ ) ds, (33)
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where

M(t, θ ) =
∫ t+θ

t–τ

2
〈
X(s) – D̄(s), g

(
X̄s, r̄(s)

)
dB(s)

〉
.

By the Burkholder–Davis–Gundy inequality (see [10]), one obtains

E
(

sup
–τ≤θ≤0

∣
∣M(t, θ )

∣
∣
)

≤ cE
(

sup
t–τ≤s≤t

∣∣X(s) – D̄(s)
∣∣2

∫ t

t–τ

∥∥g
(
X̄s, r̄(s)

)∥∥2 ds
) 1

2

≤ 1
2

E
(

sup
–τ≤θ≤0

∣
∣X(t + θ ) – D̄(t + θ )

∣
∣2

)
+ cE

∫ t

t–τ

∣
∣g

(
X̄s, r̄(s)

)∣∣2 ds

≤ 1
2

E
(

sup
–τ≤θ≤0

∣∣X(t + θ ) – D̄(t + θ )
∣∣2

)
+ cE

∫ t

t–τ

∣∣X(s)
∣∣2 ds

+ cE
∫ t

t–τ

∫ 0

–τ

∣
∣X(s + θ )

∣
∣2

ρ(dθ ) ds. (34)

Substituting (34) into (33), we have

E
(

sup
–τ≤θ≤0

∣∣Xξ
t – D̄(t + θ )

∣∣2
)

≤ 2E
∣
∣X(t – τ ) – D̄(t – τ )

∣
∣2 + cE

∫ t

t–τ

∣
∣X(s)

∣
∣2 ds

+ cE
∫ t

t–τ

∫ 0

–τ

∣∣X(s + θ )
∣∣2

ρ(dθ ) ds

≤ 4E
∣
∣X(t – τ )

∣
∣2 + 4κ2 + cE

∫ t

t–2τ

∣
∣X(s)

∣
∣2 ds

+ 4κ2E
∫ 0

–τ

sup
–τ≤s≤t

∣∣X(s – τ + θ )
∣∣2

ρ(dθ ). (35)

Therefore, (32) and (35) lead to

E
∥∥Xξ

t
∥∥2 = E

(
sup

–τ≤θ≤0

∣∣X(t + θ )
∣∣2

)

≤ (1 + β)E
(

sup
–τ≤θ≤0

∣∣X(t + θ ) – D̄(t + θ )
∣∣2

)

+
(1 + β)κ2

β
E

∫ 0

–τ

sup
–τ≤θ≤0

∣
∣X(t + 2θ )

∣
∣2

ρ(dθ )

≤ cE‖ξ‖2 + ce–λtE‖ξ‖2, t ≥ τ . (36)

Hence, the required assertion follows. The proof is therefore completed. �

Lemma 3.4 Under Assumptions 1 and 2, if

λ1 > λ2 + 2λ3 + 4κ2 (37)



Hu et al. Advances in Difference Equations         (2019) 2019:81 Page 14 of 25

and � is sufficiently small, then the EM approximate solution has Property (P2), that is,

lim
t→∞ sup

ξ ,η∈K
E
[∥∥Xξ

t – Xη
t
∥∥2] = 0,

where K is a compact subset in C .

Proof Considering the difference between two different approximate solutions starting
from two different initial values, it follows from (12) that

X(t; ξ ) – X(t;η) –
[
D̄(t; ξ ) – D̄(t;η)

]

= ξ (0) – η(0) –
[
D

(
X̄ξ

–�, r̄(0)
)

– D
(
X̄η

–�, r̄(0)
)]

+
∫ t

0

[
f
(
X̄ξ

s , r̄(s)
)

– f
(
X̄η

s , r̄(s)
)]

ds

+
∫ t

0

[
g
(
X̄ξ

s , r̄(s)
)

– g
(
X̄η

s , r̄(s)
)]

dB(s).

By using the Itô formula, for any λ > 0,

eλtE
∣
∣X(t; ξ ) – X(t;η) –

[
D̄(t; ξ ) – D̄(t;η)

]∣∣2

= E
∣
∣ξ (0) – η(0) –

[
D

(
X̄ξ

–�, r̄(0)
)

– D
(
X̄η

–�, r̄(0)
)]∣∣2

+ λE
∫ t

0
eλs∣∣X(s; ξ ) – X(s;η) –

[
D̄(s; ξ ) – D̄(s;η)

]∣∣2 ds

+ E
∫ t

0
eλs[2

〈
X(s; ξ ) – X(s;η) –

[
D̄(s; ξ ) – D̄(s;η)

]
, f

(
X̄ξ

s , r̄(s)
)

– f
(
X̄η

s , r̄(s)
)〉

+
∣∣g

(
X̄ξ

s , r̄(s)
)

– g
(
X̄η

s , r̄(s)
)∣∣2]ds

≤ E
∣∣ξ (0) – η(0) –

[
D

(
X̄ξ

–�, r̄(0)
)

– D
(
X̄η

–�, r̄(0)
)]∣∣2

+ λE
∫ t

0
eλs∣∣X(s; ξ ) – X(s;η) –

[
D̄(s; ξ ) – D̄(s;η)

]∣∣2 ds

+ E
∫ t

0
eλs[2

〈
X̄ξ (s) – X̄η(s) –

[
D

(
X̄ξ

s , s
)

– D
(
X̄η

s , s
)]

, f
(
X̄ξ

s , r̄(s)
)

– f
(
X̄η

s , r̄(s)
)〉

+
∣∣g

(
X̄ξ

s , r̄(s)
)

– g
(
X̄η

s , r̄(s)
)∣∣2]ds

+ E
∫ t

0
eλs[2

〈
X(s; ξ ) – X(s;η) –

[
X̄ξ (s) – X̄η(s)

]
, f

(
X̄ξ

s , r̄(s)
)

– f
(
X̄η

s , r̄(s)
)〉]

ds

+ E
∫ t

0
eλs[2

〈
D

(
X̄ξ

s , r̄(s)
)

– D
(
X̄η

s , r̄(s)
)

–
[
D̄(s; ξ ) – D̄(s;η)

]
,

f
(
X̄ξ

s , r̄(s)
)

– f
(
X̄η

s , r̄(s)
)〉]

ds

=: J1 + J2 + J3 + J4 + J5. (38)

Before estimating Ji (i = 1, 2, . . . , 5), we note that

∥∥
∥∥X̄ξ

([ t
�

]–1)� –
t – [ t

�
]�

�

(
X̄ξ

[ t
�

]� – X̄ξ

([ t
�

]–1)�

)

–
[

X̄η

([ t
�

]–1)� –
t – [ t

�
]�

�

(
X̄η

[ t
�

]� – X̄η

([ t
�

]–1)�

)]
∥∥
∥∥

2
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≤
∣
∣∣∣
([ t

�
] + 1)� – t

�

∥
∥∥∥X̄ξ

([ t
�

]–1)� – X̄η

([ t
�

]–1)�)
∥
∥∥∥

+
t – [ t

�
]�

�

∥∥
∥∥X̄ξ

[ t
�

]� – X̄η

[ t
�

]�

∥∥
∥∥

∣∣
∣∣

2

≤
[ ([ t

�
] + 1)� – t

�

(
sup

–τ≤s≤t

∣∣X(s; ξ ) – X(s;η)
∣∣
)

+
t – [ t

�
]�

�

(
sup

–τ≤s≤t

∣
∣X(s; ξ ) – X(s;η)

∣
∣
)]2

≤ sup
–τ≤s≤t

∣∣X(s; ξ ) – X(s;η)
∣∣2

and

E
∣
∣X(t; ξ ) – X(t;η) –

[
X̄ξ (t) – X̄η(t)

]∣∣2

≤ C5
[
�

2
3 + α

(
�

2
3
)

+ �
2
3 e–λt] + o(�) + 12λ3�E

(
sup

0≤s≤t

∣
∣X(s; ξ ) – X(s;η)

∣
∣2

)
, (39)

where the derivation process of (39) is similar to the one in (27), and C5 = max{(C1 +C2)(1+
c)(E‖ξ‖2 + E‖η‖2), 12λ3E‖ξ – η‖2, 2C2, c(C1 + C2)(E‖ξ‖2 + E‖η‖2)}.

For two different given initial values ξ and η, it is easily seen that J1 is a constant. By
Assumption 1,

J2 ≤ λE
∫ t

0
eλs∣∣X(s; ξ ) – X(s;η)

∣
∣2 ds + λE

∫ t

0
eλs∣∣D̄(s; ξ ) – D̄(s;η)

∣
∣2 ds

≤ λE
∫ t

0
eλs∣∣X(s; ξ ) – X(s;η)

∣∣2 ds + κ2eλτ E‖ξ – η‖2

+ λκ2eλτ

∫ t

0
eλsE

(
sup

0≤u≤s

∣
∣X(u; ξ ) – X(u;η)

∣
∣2

)
ds

≤ κ2eλτ E‖ξ – η‖2 +
[
λ + λκ2eλτ

] ∫ t

0
eλsE

(
sup

0≤u≤s

∣
∣X(u; ξ ) – X(u;η)

∣
∣2

)
ds (40)

and

J3 ≤ –λ1E
∫ t

0
eλs∣∣X̄(s; ξ ) – X̄(s;η)

∣∣2 ds + λ2E
∫ t

0
eλs

∫ 0

–τ

∣∣X̄ξ
s – X̄η

s
∣∣2

ρ(dθ ) ds

≤ λ2E‖ξ – η‖2eλτ

λ
+

[
–λ1 + λ2eλτ

] ∫ t

0
eλsE

(
sup

0≤u≤s

∣
∣X(u; ξ ) – X(u;η)

∣
∣2

)
ds. (41)

From (39), we have

J4 ≤ �– 1
2 E

∫ t

0
eλs∣∣X(s; ξ ) – X(s;η) –

[
X̄ξ (s) – X̄η(s)

]∣∣2 ds

+ �
1
2 E

∫ t

0
eλs∣∣f

(
X̄ξ

s , r̄(s)
)

– f
(
X̄η

s , r̄(s)
)∣∣2 ds
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≤ �
1
2 λ3eλτ

λ
+ C5

[
�

1
6 + α

(
�

1
6
)]eλt

λ
+ C5�

1
6 t + o(�)

+
(
13 + eλτ

)
λ3�

1
6

∫ t

0
eλsE

(
sup

0≤u≤s

∣∣X(u; ξ ) – X(u;η)
∣∣2

)
ds (42)

and

J5 ≤ E
∫ t

0
eλs∣∣D

(
X̄ξ

s , r̄(s)
)

– D
(
X̄η

s , r̄(s)
)

–
[
D̄(s; ξ ) – D̄(s;η)

]∣∣2 ds

+ E
∫ t

0
eλs∣∣f

(
X̄ξ

s , r̄(s)
)

– f
(
X̄η

s , r̄(s)
)∣∣2 ds

≤ 4κ2eλτ

λ
E‖ξ – η‖2 + 4κ2eλτ

∫ t

0
eλsE

(
sup

0≤u≤s

∣∣X(u; ξ ) – X(u;η)
∣∣2

)
ds

+
λ3eλτ

λ
E‖ξ – η‖2 + λ3

(
1 + eλτ

)∫ t

0
eλsE

(
sup

0≤u≤s

∣
∣X(u; ξ ) – X(u;η)

∣
∣2

)
ds

=
(
λ3 + 4κ2eλτ + λ3eλτ

)∫ t

0
eλsE

(
sup

0≤u≤s

∣∣X(u; ξ ) – X(u;η)
∣∣2

)
ds

+
(4κ2 + λ3)eλτ

λ
E‖ξ – η‖2. (43)

Then, substituting (40)–(43) into (38), we have

eλtE
∣∣X(t; ξ ) – X(t;η) –

[
D̄(t; ξ ) – D̄(t;η)

]∣∣2

≤ E
∣∣ξ – η –

[
D

(
X̄ξ

–�, r̄(0)
)

– D
(
X̄η

–�, r̄(0)
)]∣∣2

+ κ2eλτ E‖ξ – η‖2 +
[
λ + λκ2eλτ

] ∫ t

0
eλsE

(
sup

0≤u≤s

∣
∣X(u; ξ ) – X(u;η)

∣
∣2

)
ds

+
λ2E‖ξ – η‖2eλτ

λ
+

[
–λ1 + λ2eλτ

] ∫ t

0
eλsE

(
sup

0≤u≤s

∣∣X(u; ξ ) – X(u;η)
∣∣2

)
ds

+
�

1
2 λ3eλτ

λ
+ C5

[
�

1
6 + α

(
�

1
6
)]eλt

λ
+ C5�

1
6 t + o(�)

+
(
13 + eλτ

)
λ3�

1
6

∫ t

0
eλsE

(
sup

0≤u≤s

∣
∣X(u; ξ ) – X(u;η)

∣
∣2

)
ds

+
(
λ3 + 4κ2eλτ + λ3eλτ

)∫ t

0
eλsE

(
sup

0≤u≤s

∣∣X(u; ξ ) – X(u;η)
∣∣2

)
ds

+
(4κ2 + λ3)eλτ

λ
E‖ξ – η‖2

=: E
∣
∣ξ – η –

[
D

(
X̄ξ

–�, r̄(0)
)

– D
(
X̄η

–�, r̄(0)
)]∣∣2

+ κ2eλτ E‖ξ – η‖2 +
λ2E‖ξ – η‖2eλτ

λ
+

(4κ2 + λ3)eλτ

λ
E‖ξ – η‖2

+
�

1
2 λ3eλτ

λ
+ C5

[
�

1
6 + α

(
�

1
6
)]eλt

λ
+ C5�

1
6 t + o(�)

+ λ̃

∫ t

0
eλsE

(
sup

0≤u≤s

∣
∣X(u; ξ ) – X(u;η)

∣
∣2

)
ds,

where λ̃ = –λ1 + λ + λ3 + 13λ3�
1
6 + (λκ2 + λ2 + λ3�

1
6 + 4κ2 + λ3)eλτ .
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When � is sufficiently small such that λ̃ < 0, using (37), we obtain

E
∣∣X(t; ξ ) – X(t;η) –

[
D̄(t; ξ ) – D̄(t;η)

]∣∣2

≤ E
∣∣ξ – η –

[
D

(
X̄ξ

–�, r̄(0)
)

– D
(
X̄η

–�, r̄(0)
)]∣∣2e–λt

+
[
κ2 +

λ2 + 4κ2 + λ3

λ

]
eλτ e–λtE‖ξ – η‖2 + e–λto(�)

≤ ce–λt(E‖ξ – η‖2 + o(�)
)
. (44)

Then, from (44), (17), and (4), it yields

E
[

sup
–τ≤s≤t

∣
∣X(s; ξ ) – X(s;η)

∣
∣2

]
≤ β(1 + β)

β – (1 + β)κ2 ce–λtE‖ξ – η‖2

≤ ce–λtE‖ξ – η‖2,

which implies

lim
t→∞ sup

ξ ,η∈K
E
[∥∥Xξ

t – Xη
t
∥
∥2] = 0,

as required. �

Note that combining Lemma 3.3 and Lemma 3.4 with Theorem 3.2 can yield Theo-
rem 3.1. In fact, π� is the invariant measure of the Markov chain (Xk�, r�

k ) when � is
sufficiently small.

4 Convergence of the numerical invariant measures
The previous section shows that {(Xk�, r�

k )}k≥0 has a unique invariant measure sequence
π�(· × ·). In this section we will show that if the invariant measure sequence π�(· × ·)
converges weakly to a probability measure in P (C × S), then this probability measure is
the invariant measure of the exact solution π (· × ·) of Eq. (1).

Let y(t) be the (exact) solution of Eq. (1), and let Y (t) = (y(t), r(t)). Then Y (t) is a time
homogeneous Markov process. If the process starts from (ξ , i) ∈ C × S , we denote the
process by Y ξ ,i(t) = (yξ ,i(t), ri(t)). Let Pt((ξ , i), · × ·) be the probability measure induced by
Y ξ ,i(t), namely

Pt
(
(ξ , i), A × B

)
= P

{
Y ξ ,i(t) ∈ A × B

}
, ∀A × B ⊂ C × S .

Clearly, Pt((ξ , i), ·×·) is also the transition probability measure of the Markov process Y (t).
The process Y (t) is said to be stable in distribution if there exists π (·× ·) ∈ P (C ×S) such
that the probability measure Pt((ξ , i), ·× ·) converges weakly to π (·× ·) as t → ∞ for every
(ξ , i) ∈ C × S , that is,

lim
t→∞ dL

(
Pt

(
(ξ , i), · × ·),π (· × ·)) = 0.

It is easily seen that if Y (t) is stable in distribution, then π (· × ·) is the unique invariant
measure of Y (t). Similar to the proof of [2, 19], we have the following.
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Theorem 4.1 If Assumptions 1 and 2 hold, then the Markov process Y (t) is stable in dis-
tribution.

To reveal the important relationship between π� and π , let us establish another lemma.

Lemma 4.2 Let Assumptions 1 and 2 hold and any fixed (ξ , i) ∈ C×S . Then, for any given
T > 0 and χ > 0, there exists a sufficiently small scalar �∗ > 0 such that

dL

(
P�

k
(
(ξ , i), · × ·), Pk�

(
(ξ , i), · × ·)) < χ (45)

provided � < �∗ and k� ≤ T .

Proof Let X(ξ ,i),�(t) be the continuous EM approximate solution. Under Assumptions 1
and 2, in the Appendix, we can show that

lim
�→0

E
[

sup
0≤t≤T

∣
∣X(ξ ,i),�(t) – y(ξ ,i)(t)

∣
∣2

]
= 0. (46)

Hence, there exists a sufficiently small scalar �∗ > 0 such that

E
(∣∣X(ξ ,i),�

k – y(ξ ,i)(k�)
∣∣) < χ (47)

provided � < �∗ and k� ≤ T .
Therefore, for any f ∈ L,

∣∣Ef
(
X(ξ ,i),�

k , ri,�
k

)
– Ef

(
y(ξ ,i)(k�), ri(k�)

)∣∣

≤ E
(∣∣X(ξ ,i),�

k – y(ξ ,i)(k�)
∣
∣) < χ . (48)

The required assertion follows. �

We can now show that the numerical invariant measure sequence will weakly converge
to the invariant measure of the exact solution.

Theorem 4.3 Under Assumptions 1 and 2, we have

lim
�→0

dL

(
π�(· × ·),π (· × ·)) = 0. (49)

Proof Fix any (ξ , i) ∈ C ×S , and let χ > 0 be arbitrary. By Theorem 4.1, there exists T1 > 0
such that

dL

(
PT1

(
(ξ , i), · × ·),π (· × ·)) ≤ χ

3
. (50)

By Theorem 3.2, there exists a pair of �0 > 0 and T2 > 0 such that, for any � < �0 and
k� ≥ T2,

dL

(
P�

k
(
(ξ , i), · × ·),π�(· × ·)) ≤ χ

3
. (51)
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Setting T = T1 ∨ T2. By Lemma 4.2, there exists a constant �∗ > 0 such that

dL

(
P�

k
(
(ξ , i), · × ·), Pk�

(
(ξ , i), · × ·)) <

χ

3
(52)

provided � < �∗ and k� ≤ T + 1. Now, for any � < �0 ∧ �∗, letting k = [T/�] + 1 and
using (50), (51), and (52), we derive

dL

(
π�(· × ·),π (· × ·))

≤ dL

(
P�

k
(
(ξ , i), · × ·),π�(· × ·)) + dL

(
Pk�

(
(ξ , i), · × ·),π (· × ·))

+ dL

(
P�

k
(
(ξ , i), · × ·), Pk�

(
(ξ , i), · × ·))

<
χ

3
+

χ

3
+

χ

3
= χ ,

as required. �

Let us make a remark to close this section. Theorem 4.3 only gives the existence of in-
variant measure of the numerical solution to Eq. (1). The method to obtain the invariant
measure has been provided. In addition, we can find from Theorem 4.3 that the numer-
ical invariant measure sequence π� will weakly converge to the invariant measure π of
the exact solution. That is to say, this theorem gives us a numerical method to get the
approximate invariant measure π for NSFDEwMSs (1).

5 Example
In this section, a numerical example is provided to illustrate the theoretical results estab-
lished in the previous sections.

Example 5.1 Let w(t) be a scalar Brownian motion. Let r(t) be a right-continuous Markov
chain taking values in S = {1, 2} with generator

Γ =

[
–a a
b –b

]

,

where a, b are positive numbers such that π = ( 1
2 , 1

2 ) is the stationary distribution of
the Markov chain. Assume that w(t) and r(t) are independent. Consider a scalar neutral
stochastic functional differential equation

d
[
x(t) – D

(
xt , r(t)

)]
= f

(
xt , r(t)

)
dt + g

(
xt , r(t)

)
dw(t), (53)

where

D
(
xt , r(t)

)
=

⎧
⎨

⎩
0.025

∫ 0
–τ

x(t + θ ) dθ , r(t) = 1,

0.05
∫ 0

–τ
x(t + θ ) dθ , r(t) = 2,

f
(
xt , r(t)

)
=

⎧
⎨

⎩
–0.1x(t) + 0.05

∫ 0
–τ

x(t + θ ) dθ , r(t) = 1,

–0.2x(t) + 0.1
∫ 0

–τ
x(t + θ ) dθ , r(t) = 2,
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and

g
(
xt , r(t)

)
=

⎧
⎨

⎩
0.025

∫ 0
–τ

x(t + θ ) dθ , r(t) = 1,

0.05
∫ 0

–τ
x(t + θ ) dθ , r(t) = 2.

It is easy to obtain that, when r(t) = 1,

2
〈(
ϕ(0) – ψ(0)

)
–

[
D(ϕ, 1) – D(ψ , 1)

]
, f (ϕ, 1) – f (ψ , 1)

〉
+

∣∣g(ϕ, 1) – g(ψ , 1)
∣∣2

≤ –0.2
∣∣ϕ(0) – ψ(0)

∣∣2 + 0.1
∫ 0

–τ

∣∣ϕ(θ ) – ψ(θ )
∣∣2

ρ(dθ ),

∣∣f (ϕ, 1) – f (ψ , 1)
∣∣2 ∨ ∣∣g(ϕ, 1) – g(ψ , 1)

∣∣2

≤ 0.01
(∣∣ϕ(0) – ψ(0)

∣∣2 +
∫ 0

–τ

∣∣ϕ(θ ) – ψ(θ )
∣∣2

ρ(dθ )
)

,

and

∣∣D(ϕ, 1) – D(ψ , 1)
∣∣ ≤ 0.025

∫ 0

–τ

∣∣ϕ(θ ) – ψ(θ )
∣∣ρ(dθ ).

Therefore, λ1 = 0.2, λ2 = 0.1, λ3 = 0.01, and κ = 0.025. Consequently,

λ1 = 0.2 > 4λ3 + λ2 + 2κ2 = 0.14125,

λ1 = 0.2 > λ2 + 2λ3 + 4κ2 = 0.1225.

Thus, for Eq. (53) when r(t) = 1, the conditions in Lemma 3.3 and Lemma 3.4 are fulfilled.
When r(t) = 2, similarly, we have

2
〈(
ϕ(0) – ψ(0)

)
–

[
D(ϕ, 2) – D(ψ , 2)

]
, f (ϕ, 2) – f (ψ , 2)

〉
+

∣∣g(ϕ, 2) – g(ψ , 2)
∣∣2

≤ –0.4
∣
∣ϕ(0) – ψ(0)

∣
∣2 + 0.22

∫ 0

–τ

∣
∣ϕ(θ ) – ψ(θ )

∣
∣2

ρ(dθ ),

∣∣f (ϕ, 2) – f (ψ , 2)
∣∣2 ∨ ∣∣g(ϕ, 2) – g(ψ , 2)

∣∣2

≤ 0.04
(∣∣ϕ(0) – ψ(0)

∣∣2 +
∫ 0

–τ

∣∣ϕ(θ ) – ψ(θ )
∣∣2

ρ(dθ )
)

,

and

∣∣D(ϕ, 2) – D(ψ , 2)
∣∣ ≤ 0.05

∫ 0

–τ

∣∣ϕ(θ ) – ψ(θ )
∣∣ρ(dθ ).

Therefore λ1 = 0.4, λ2 = 0.22, λ3 = 0.04, and κ = 0.05, which implies that

λ1 = 0.4 > 4λ3 + λ2 + 2κ2 = 0.385,

λ1 = 0.4 > λ2 + 2λ3 + 4κ2 = 0.31.

Thus, for Eq. (53) when r(t) = 2, the conditions in Lemma 3.3 and Lemma 3.4 are satisfied.
By Theorem 3.2, there exists a sufficiently small � ∈ (0, 1) such that the EM approximate
solution (Xk�, r�

k ) is stable in distribution.
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6 Conclusion
In this paper, the stability in distribution for the numerical solution of neutral stochastic
functional differential equations with Markovian switching has been discussed by using
the Euler–Maruyama method. The theoretical results obtained have been analyzed in de-
tail and some sufficient conditions have been presented. Some existing results, for example
[8, 21, 23–28], have been generalized. Meanwhile, the strong convergence for the theoret-
ical solution and the numerical solution of such equations has been considered.

Appendix
Theorem A.1 Under Assumptions 1 and 2, we have

lim
�→0

E
(

sup
0≤t≤T

∣∣y(t) – X(t)
∣∣2

)
= 0, ∀T > 0.

Proof We first note from Theorem 2.1 and Lemma 3.3 that there exists a positive constant
H̄ such that

E
(

sup
–τ≤t≤T

∣∣y(t)
∣∣2

)
∨ E

(
sup

–τ≤t≤T

∣∣X(t)
∣∣2

)
≤ H̄ . (54)

Let j be a sufficiently large integer, define the stopping times

uj := inf
{

t ≥ 0 : ‖yt‖ ≥ j
}

, vj := inf
{

t ≥ 0 : ‖Xt‖ ≥ j
}

, ρj := uj ∧ vj,

where we set infφ = ∞ as usual. Letting e(t) = y(t) – X(t), it follows

∣∣e(t ∧ ρj)
∣∣2 =

∣∣y(t ∧ ρj) – X(t ∧ ρj)
∣∣2

=
∣
∣∣
∣D

(
yt , r(t)

)
– D̄(t) +

∫ t∧ρj

0

[
f
(
ys, r(s)

)
– f

(
X̄s, r̄(s)

)]
ds

+
∫ t∧ρj

0

[
g
(
ys, r(s)

)
– g

(
X̄s, r̄(s)

)]
dB(s)

∣
∣∣
∣

2

≤ 3
∣
∣D

(
yt , r(t)

)
– D̄(t)

∣
∣2

+ 3T
∫ t∧ρj

0

∣
∣f

(
ys, r(s)

)
– f

(
X̄s, r̄(s)

)∣∣2 ds

+ 3
∣
∣∣
∣

∫ t∧ρj

0

[
g
(
ys, r(s)

)
– g

(
X̄s, r̄(s)

)]
dB(s)

∣
∣∣
∣

2

.

By the Doob martingale inequality (see [10]), it yields that, for any t1 ≤ T ,

E
[

sup
0≤t≤t1

∣∣e(t ∧ ρj)
∣∣2

]

≤ 3E
[

sup
0≤t≤t1

∣∣D
(
yt , r(t)

)
– D̄(t)

∣∣2
]

+ 3TE
∫ t1∧ρj

0

∣∣f
(
ys, r(s)

)
– f

(
X̄s, r̄(s)

)∣∣2 ds

+ 12E
∫ t1∧ρj

0

∣
∣g

(
ys, r(s)

)
– g

(
X̄s, r̄(s)

)∣∣2 ds. (55)
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For any s ∈ (0, t1 ∧ ρj], we derive

∣∣f
(
ys, r(s)

)
– f

(
X̄s, r̄(s)

)∣∣2

≤ 2
∣∣f

(
X̄s, r̄(s)

)
– f

(
X̄s, r(s)

)∣∣2 + 2
∣∣f

(
ys, r(s)

)
– f

(
X̄s, r(s)

)∣∣2.

Let n̄ = [s/�], the integer part of s/�. Then

E
∫ s

0

∣∣f
(
X̄u, r̄(u)

)
– f

(
X̄u, r(u)

)∣∣2 du

=
n̄∑

k=0

E
∫ tk+1

tk

∣∣f
(
X̄tk , r(tk)

)
– f

(
X̄tk , r(u)

)∣∣2 du, (56)

with tn̄+1 being now set to be T .
Let IG be the indicator function for set G. Moreover, in the remainder of the proof, C is

a positive constant dependent on only s, λ3, ξ and max1≤i≤N (–γii) but independent of �.
In particular, it may change line by line. With these notations, we observe that

E
∫ tk+1

tk

|f (X̄tk , r(tk)
)

– f
(
X̄tk , r(u)

)|2 du

≤ 2E
∫ tk+1

tk

[∣∣f
(
X̄tk , r(tk)

)∣∣2 +
∣
∣f

(
X̄tk , r(u)

)∣∣2]I{r(u) 	=r(tk )} du

≤ CE
∫ tk+1

tk

‖X̄tk ‖2I{r(u) 	=r(tk )} du

≤ C
∫ tk+1

tk

E
[
E
[‖X̄tk ‖2I{r(u) 	=r(tk )}|r(tk)

]]
du

= C
∫ tk+1

tk

E
[
E
[‖X̄tk ‖2|r(tk)

]
E
[
I{r(u) 	=r(tk )}|r(tk)

]]
du,

where in the last step we use the fact that X̄tk and I{r(u) 	=r(tk )} are conditionally independent
with respect to the σ -algebra generated by r(tk).

By (54) and Assumption 1, we have

E
∫ tk+1

tk

∣∣f
(
X̄(tk), r(tk)

)
– f

(
X̄(tk), r(u)

)∣∣2 du

≤ (
C� + o(�)

)∫ tk+1

tk

E
∥
∥X̄(tk)

∥
∥2 du

≤ �
(
C� + o(�)

)
, (57)

where C denotes a positive constant independent of t, which may change from line to line.
Substituting (57) into (56) gives

E
∫ s

0

∣
∣f

(
X̄u, r̄(u)

)
– f

(
X̄u, r(u)

)∣∣2 du ≤ C� + o(�). (58)



Hu et al. Advances in Difference Equations         (2019) 2019:81 Page 23 of 25

On the other hand, by using the techniques developed in [12] and Assumption 1, we
have

E
∫ s

0

∣
∣f

(
yu, r(u)

)
– f

(
X̄u, r(u)

)∣∣2 du

≤ 2E
∫ s

0

∣
∣f

(
yu, r(u)

)
– f

(
Xu, r(u)

)∣∣2 du + 2E
∫ s

0

∣
∣f

(
Xu, r(u)

)
– f

(
X̄u, r(u)

)∣∣2 du

≤ CE
∫ s

0

∫ 0

–τ

∣∣y(u + θ ) – X(u + θ )
∣∣2

ρ(dθ ) du

+ CE
∫ s

0

∫ 0

–τ

∣∣X(u + θ ) – X̄u(θ )
∣∣2

ρ(dθ ) du

≤ CE
∫ s

0

[
sup

0≤r≤u

∣
∣y(r) – X(r)

∣
∣2

]
du + CE

∫ s

0

∫ 0

–τ

E
∣
∣X(u + θ ) – X̄u(θ )

∣
∣2

ρ(dθ ) du

≤ CE
∫ s

0

[
sup

0≤r≤u

∣∣y(r) – X(r)
∣∣2

]
du + Cβ(�),

where β(�) is dependent on � as defined in [12].
Therefore,

E
∫ s

0

∣∣f
(
yu, r(u)

)
– f

(
X̄u, r̄(u)

)∣∣2 du

≤ CE
∫ s

0

[
sup

0≤r≤u

∣∣y(r) – X(r)
∣∣2

]
du + Cβ(�) + C� + o(�), (59)

and the estimation about E
∫ s

0 |g(yu, r(u)) – g(X̄u, r̄(u))|2 du can be similarly given. Here, the
detailed process is omitted to save the space.

Then, by (10) and Assumption 1, we have

E
∣∣D

(
ys, r(s)

)
– D̄(s)

∣∣2

≤ 2E
∣∣D

(
ys, r(s)

)
– D

(
X̄s, r̄(s)

)∣∣2 + 2E
∣∣D

(
X̄s, r̄(s)

)
– D̄(s)

∣∣2

≤ 2E
∣∣D

(
ys, r(s)

)
– D

(
X̄s, r̄(s)

)∣∣2 + 2κ2E
∫ 0

–τ

|X̄[ s
�

]� – X̄([ s
�

]–1)�|2ρ(dθ )

≤ 2κ2E
[

sup
0≤r≤s

∣∣y(r) – X(r)
∣∣2

]
+ Cβ(�) + C� + α(�). (60)

Substituting (59) and (60) into (55) yields

E
[

sup
0≤t≤t1

∣∣e(t ∧ ρj)
∣∣2

]

≤ Cβ(�) + C� + α(�) + o(�) + CE
∫ t1

0

[
sup

0≤u≤s

∣∣y(u) – X(u)
∣∣2

]
ds.

By the Gronwall inequality,

E
[

sup
0≤t≤t1

∣∣e(t ∧ ρj)
∣∣2

]
≤ [

Cβ(�) + C� + α(�) + o(�)
]
eCt1 . (61)
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Letting j → ∞, we obtain

E
[

sup
0≤t≤T

∣∣e(t)
∣∣2

]
≤ [

Cβ(�) + C� + α(�) + o(�)
]
eCT , (62)

as required. �
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