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Abstract

We consider multiple threshold value-at-risk (VaRt) estimation and density fore-

casting for financial data following a threshold GARCH model. We develop an α-

quantile quasi-maximum likelihood estimation (QMLE) method for VaRt by showing

that the associated density function is an α-quantile density and belongs to the tick-

exponential family. This establishes that our estimator is consistent for the parameters

of VaRt. We propose a density forecasting method for quantile models based on VaRt

at a single non-extreme level, which overcomes some limitations of existing forecast-

ing methods with quantile models. We find that for heavy-tailed financial data our

α-quantile QMLE method for VaRt outperms the Gaussian QMLE method for volatil-

ity. We also find that density forecasts based on VaRt outperform those based on the

volatility of financial data. Empirical work on market returns shows that our approach

also outperforms some benchmark models for density forecasting of financial returns.

Key words: α-quantile density, density forecasting, QMLE, threshold, value-at-risk (VaR).

JEL classification numbers: C1, C5

1 Introduction

This paper is motivated by the need to produce forecasts in the form of probability density

functions for financial time series. We focus on threshold GARCH (TGARCH) models due

to their popularity and usefulness in financial analysis. TGARCH models have been studied

by many researchers, including Glosten et al. (1993) who developed a TGARCH model,

the so called GJR-GARCH model, to study the impact of negative and positive returns

on conditional volatility dynamics. Zakoian (1994) also proposed a TGARCH model for

similar purposes. Park et al. (2009) studied persistent TGARCH processes, Yang and

Chang (2008) considered a double-threshold GARCH model with applications to stock and

currency markets, and Yu et al. (2010) extended the CAViaR idea (Engle and Manganelli,
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2004) to TGARCH and mixture-GARCH models in order to take into account possible

nonlinearity and structural changes in the value-at-risk (VaR) process.

We work with a general TGARCH model with k-regimes (see, e.g., Yu et al., 2010)

defined by

xt = εt
√
ht,

ht =
∑k

j=1

(
αj0 +

∑pj
p=1 αjpx

2
t−p +

∑qj
q=1 βjqht−q

)
I [xt−d ∈ Ωj] ,

(1)

where εts are independently and identically distributed (iid) random variables with mean 0

and variance 1, the so-called delay parameter d is a positive integer, Ωj = [γj−1 γj) in

which the γjs are real-valued thresholds such that −∞ = γ0 < γ1 < · · · < γk−1 <

γk = ∞, and pj ≥ 0 and qj ≥ 0 define the order of the volatility dynamics in regime j.

Moreover, αj0 > 0, αjp ≥ 0, βjq ≥ 0, and I[·] is the standard indicator function. Liu et

al. (1997) proved that, under some regularity conditions, there exist stationary and ergodic

solutions satisfying model (1).

The TGARCH model (1) is different from that studied by Zakoian (1994), which is

defined by xt = σtεt and σt = α0+
∑p

i=1

(
α+
i x

+
t−i − α−i x−t−i

)
+
∑q

j=1 βjσt−j , where α0, α+
i ,

α−i and βj for i = 1, . . . , p and j = 1, . . . , q are model parameters, and x+
t = max (xt, 0)

and x−t = min (xt, 0). Here, the dynamics are defined through σt (the volatility) rather

than ht (the variance), and the positive and negative parts of xt−i are used rather than

squared values.

Model (1) is also different from the GJR-GARCH model which is defined as xt = σtεt

and σ2
t = ω +

∑p
i=1 (αi + ξiI[xt−i < 0])x2

t−i +
∑q

j=1 βjσ
2
t−j, where ω, αi, ξi and βj for

i = 1, . . . , p and j = 1, . . . , q are the model parameters. Here, the dynamics are defined for

the variance as ht = σ2
t , but σ2

t follows different expressions according to the sign of xt−i

for i = 1, . . . , p. These two models do not involve a delay parameter d or any thresholds.

Let VaRt be the one step ahead τ th quanitle of xt|xt−1, where 0 < τ < 1, and xt−1 =

(x1, . . . ,xt−1). Yu et al. (2010) further showed that if xt follows model (1), then VaRt
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satisfies

VaRt = sQ

√∑k
j=1

(
aj0 +

∑pj
p=1 ajpx

2
t−p +

∑qj
q=1 bjqVaR2

t−q
)
I [xt−d ∈ Ωj] , (2)

where ajp = Q2(τ)αjp , in which Q(τ) is the τ th quantile of εt , bjq = βjq and sQ =

sign(Q(τ)), that is, sQ = 1 (−1) if Q(τ) > (<) 0. We further define sQ = 0 for Q(τ) = 0,

but we will not consider this case as this leads to a model that is not well defined. Since Yu

et al. (2010) did not provide an explicit proof for this result, we provide one in Appendix I.

Note that VaRt defined by (2) depends on τ , but we have dropped τ to simplify the notation.

For model (1), the Gaussian quasi-maximum likelihood estimation (QMLE) method

guarantees that the estimator is consistent for the parameters of ht. However, Komunjer

(2005a, b) showed that it is not appropriate to use the Gaussian QMLE for ht to obtain

quantile estimate for VaRt in (2) because the corresponding conditional quantile estimator

obtained in this way is generally biased.

Hence, in this paper we do not use the Gaussian QMLE method for ht, but instead,

we propose an α-quantile QMLE method for the estimation of VaRt of financial data that

follow (1). More specifically, we showed that model (1) can be expressed by xt = VaRt +

√
gt vt, where vt and gt are given in Proposition 1 below. Then for this equivelent model,

we developed a density function for vt and showed in Proposition 2 below that this density

function is an α-quantile density and belongs to the tick-exponential family, defined by

Komunjer (2005a, b). This ensures that the α-quantile QMLE method delivers consistent

parameter estimates for VaRt using results in Komunjer (2005a, b).

It is worth noting that our α-quantile density for vt is different from the skewed-Laplace

density used by the standard quantile regression method, see Koenker & Bassett (1978) and

Koenker (2005), although this skewed-Laplace density also belongs to the tick-exponential

family (Komunjer, 2005b). The difference between the two densities is that our α-quantile

density for vt has a unit variance, which allows us to take account of the effect of hetero-

geneity when estimating VaRt.
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Although both Gaussian QMLE for ht and α-quantile QMLE for VaRt deliver consis-

tent estimates, we prefer the latter one. This is because existing results suggest that the

Gaussian QMLE for ht may not perform well for financial data with heavy-tails, see e.g.

Hall and Yao (2003), which could lead to incorrect forecasts. In fact, we have conducted

extensive simulation studies for both estimation and forecasting. The results show that

for heavy-tailed financial data the α-quantile QMLE for VaRt outperforms the Gaussian

QMLE for ht in both estimation and forecasting.

Parameters can be estimated by using frequentist methods, which usually involve a grid

search for thresholds and the delay parameter. See, e.g. Yu et al. (2010). In this paper, we

present a Markov chain Monte Carlo (MCMC) method to illustrate an alternative way for

parameter estimation in this case.

Density forecasting has become an important area of research in the analysis of financial

data, see e.g. Timmermann (2000). For model (1), density forecasts can be obtained easily

if we know ht and the distribution of εt. However, without knowing the distribution of εt,

little discussion about density forecasting using only ht can be found in the literature.

On the other hand, there is some work in the literature that allows us to obtain density

forecasts for financial returns without using the distribution of εt but by using quantiles,

which correspond to VaRt. For example, Taylor (2005) proposed a method for construct-

ing financial volatility forecasts from VaR estimates. Cai (2010) presented a forecasting

method for quantile SETAR time series models, while Cai et al. (2012) combined density

forecasts from different quantile AR models. All these forecasting methods require many

quantile models to be estimated, corresponding to a sequence of quantile levels that cover

the entire distributional range of the underlying process. Consequently, models at extreme

quantile levels also need to be estimated. However, due to the lack of information at ex-

treme levels, these models can perform poorly compared to those at non-extreme levels,

leading to unsatisfactory forecasting results. Moreover, if no monotonic restrictions are

applied, the estimated quantiles at different levels may cross, resulting in invalid estimates.

Hence, the above density forecasting methods can lead to incorrect density forecasts due to
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these limitations.

To overcome the limitations of the existing methods discussed above, we also propose

a simple density forecasting method. The method can use the Gaussian QMLE for ht

or use the α-quantile QMLE for VaRt to produce density forecasts for financial returns

that follow a TGARCH model. We will focus on density forecasts based on VaRt in this

paper in order to provide methodology for density forecasting with quantile models. We

show that our method is able to deliver density forecasts by using VaRt at a single non-

extreme level for financial returns that follow a TGARCH model. This explains how our

density forecasting method overcomes the limitations of existing methods discussed above.

We conduct extensive simulation studies to compare the performance of density forecasts

obtained using ht with those obtained using VaRt. The results show that density forecasts

obtained using VaRt outperform those obtained using ht for TGARCH models.

The rest of the paper is organized as follows. Our estimation and forecasting meth-

ods are presented in Sections 2 and 3 respectively. In Section 4 we discuss the results of

simulation studies. In Section 5 we illustrate our method by conducting empirical work

on Hang Seng and S&P500 daily closing returns over a five year period. We compare our

results with those obtained from ARMA-GARCH and GJR-GARCH models. Some further

discussion and suggestions for future research are given in Section 6.

2 Parameter estimation

2.1 Quasi-likelihood estimation of the parameters of VaRt process

In this section we consider the estimation of the parameters ajp , bjq , γj , d and sQ that

appear in (2), conditional on the values of k, pj and qj for all possible values of j. We do

not consider the estimation of k, pj and qj in detail, but provide a brief discussion about

this in Section 6.
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The conventional maximum likelihood approach to parameter estimation specifies a

density function for xt|xt−1, assuming it to be the true density function of the underly-

ing process. Unfortunately, the consequences of model mis-specification can be serious.

The QMLE method is a common approach aimed at overcoming problems associated with

model mis-specification. As explained by White (1982, 1994), the QMLE method may

be defined by minimizing the Kullback-Leibler Information Criterion (KLIC) of the true

density function of xt|xt−1 relative to the specified density function. The KLIC reaches

its minimum value 0 if and only if the specified density function is the correct one. In

practice, the Gaussian distribution is commonly used as the specified density function for

the QMLE. As well as White (1982, 1994), we refer to Wedderburn (1974), McCullagh

and Nelder (1989), McCullagh (1991), Firth (1993), Heyde (1997), Davidson (2001), Paw-

itan (2001), Davison (2003) and Kuan (2004) for detailed discussions about the QMLE

method.

The classical Gaussian QMLE approach focuses on the mean and the scale of xt|xt−1

with respect to the mean; see Section 3.5 of Faraway (2016), for example. Unfortunately,

it is not appropriate to use the Gaussian QMLE for ht to obtain quantile estimate for VaRt

because, as Komunjer (2005a, b) pointed out, the corresponding conditional quantile esti-

mator obtained in this way is generally biased. Hence, we estimate process (2) by using

the quantile QMLE framework of Komunjer (2005a, b), which requires us to work with a

density that is an α-quantile density or belongs to the tick-exponential family. Definition

of these concepts appear in Appendix III.

As a first step in achieving this, we consider ut = xt−VaRt, which we model as
√
gt vt,

where vt are iid random variables with τ th quantile 0 and variance 1. This modelling

assumption implies that

xt = VaRt +
√
gt vt. (3)

That the τ th quantile of xt|xt−1 is VaRt follows from the fact that the τ th quantile of vt

is 0. It is worth reemphasizing that, in the following, we do not do Gaussian QMLE on
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model (1), but instead, we do α-quantile QMLE on model (3), where gt is given below in

the Proposition 1.

Proposition 1 If xt satisfies both models (1) and (3), then gt = (ht + VaR2
t )/E[v2

t ]. Fur-

thermore,

gt =
k∑
j=1

(
φj0 +

pj∑
p=1

φjpx
2
t−p +

qj∑
q=1

bjqgt−q

)
I [xt−d ∈ Ωj] , (4)

where φjp = (αjp + ajp)/E[v2
t ] for j = 1, . . . , k and p = 0, 1, . . . , pj .

See Appendix II for a proof. It follows from the positivity assumptions made about the αjps

that φj0 > 0 and φjp ≥ 0 for j = 1, . . . , k and p = 1, . . . , pj . It follows from Proposition 1

that gt depends on τ as VaRt is the τ th quantile of xt|xt−1, but by definition ht does not

depend on τ .

Next, we propose a suitable distribution for vt. If a random variable W follows the

skewed-Laplace distribution, it has probability density function f(w) = τ(1− τ) exp {−w

(τ − I [w < 0])}. It can be shown that Pr (W ≤ 0) = τ , so that the τ th quantile of W

is 0, and that Var[W ] = (1− 2τ + 2τ 2) /
{

(1− τ)2 τ 2
}

. Let the random variable V =

(1− τ) τ W/
√

1− 2τ + 2τ 2 so that Var [V ] = 1. The change of variable formula yields

that the probability density function of V takes the form

f(v) =
√

1− 2τ + 2τ 2 exp
{
v
√

1− 2τ + 2τ 2/(τ − I [v ≥ 0])
}
, (5)

while 0 remains the τ th quantile of V ; see Chen et al. (2009).

To justify the use of (5) in the estimation of VaRt, we need to establish the relation be-

tween the density function defined by (5) and the α-quantile density and/or tick-exponential

family defined by Komunjer (2005a, b). Doing this ensures that we can estimate the pa-

rameters of VaRt in a consistent way.

Proposition 2 The density function defined by (5) is an α-quantile density, as defined by

Komunjer (2005a). It also belongs to the tick-exponential family of Komunjer (2005b).
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See Appendix III for a proof. Therefore, we can use the density function (5) for vt in

the α-quantile QMLE method for the estimation of VaRt. It is worth noting that Ko-

munjer (2005a, b) pointed out that the skewed-Laplace distribution also belongs to the

tick-exponential family, hence the standard quantile regression approach of Koenker &

Bassett (1978) is a special case of the quantile QMLE of Komunjer (2005a, b). The differ-

ence between our α-quantile density and the skewed-Laplace distribution used by Koenker

& Bassett (1978) is that our density has a unit variance, which allows us to take into account

the heterogeneity in financial data when estimating VaRt.

Since xt − VaRt =
√
gtvt, it follows again from the change of variable formula that

fxt|xt−1(VaRt,
√
gt | xt−1,θ) =

√
1− 2τ + 2τ 2

√
gt

exp

{
(xt − VaRt)

√
1− 2τ + 2τ 2

√
gt (τ − I [xt ≥ VaRt])

}
,

(6)

where θ represents the parameter vector of the density function. Because xt − VaRt =

√
gt vt, then the scale of xt|xt−1 with respect to VaRt is

√
gt. The different roles of gt and

ht may be explained as follows: gt allows us to take into account the heterogeneity in xt

when estimating VaRt, while ht in GARCH type models such as model (1) allows us to

take into account the heterogeneity in xt when estimating the conditional mean of xt.

Now let t0 = max1≤j≤k (pj, qj, d), Vt = (VaR2
1,VaR2

2, . . . ,VaR2
t ) and gt = (g1, . . . , gt).

Then conditional on the initial values Vt0 , xt0 , gt0 and the values of k, pj and qj for all pos-

sible j, the quasi-likelihood function of the parameters is given by

L(β,γ, d, sQ | xT , k,p,q,xt0 ,Vt0 ,gt0) =
T∏

t=t0+1

fxt|xt−1(VaRt,
√
gt | xt−1,θ)

= M̃

T∏
t=t0+1

1
√
gt

exp

{
(xt − VaRt)

√
1− 2τ + 2τ 2

√
gt (τ − I [xt ≥ VaRt])

}
, (7)

where θ = (β,γ, d, sQ)′, β is a vector containing all the a’s, b’s and φ’s parameters,

γ contains thresholds, p and q contain all p’s and q’s respectively, and M̃ = (1 − 2τ +
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2τ 2)(T−t0)/2 is a constant.

Therefore, it follows from the theory of the quantile QMLE developed by Komunjer

(2005a, b) that, if θ̂ is the QMLE obtained from the above quasi-likelihood function, then

θ̂ is consistent for the parameters of the conditional quantile VaRt.

The parameters can now be estimated by maximizing the quasi-likelihood function (7).

In the next section, we discuss an alternative method for parameter estimations, i.e. a

Bayesian approach to parameter estimation implemented using an MCMC algorithm.

2.2 Posterior distribution of the parameters θ

We propose a Bayesian approach to parameter estimation and inference implemented using

an MCMC algorithm. Our Bayesian approach requires that the posterior distribution of the

model parameters θ has a finite integral over its parameter space. For this purpose, we

slightly modify the parameter space by requiring that φj0 ≥ φ0 > 0 for all j, where φ0 is

a fixed, very small positive number, and still denote the modified space by Ω. We set φ0

to be 10−30 in order to allow the parameter space to be as wide as possible. Hence this

requirement has little impact on parameter estimation.

Let πθ(β,γ, d, sQ | k,p,q,xt0 ,Vt0 ,gt0) be the prior density function of the param-

eters. By following the work of McCulloch and Tsay (1993, 1994) and Rosenberg and

Young (1999), we assume that the prior distribution does not depend on xt0 ,Vt0 and gt0 .

We also assume that the prior distribution takes the form πθ(β,γ, d, sQ | k,p,q,xt0 ,Vt0 ,gt0)

= πβ(β)πγ(γ)πd(d)πs(sQ). Therefore, the posterior density function of θ is given by

π(β,γ, d, sQ | xT , k,p,q,xt0 ,Vt0 ,gt0)

∝ L(β,γ, d, sQ | xT , k,p,q,xt0 ,Vt0 ,gt0)πβ(β)πγ(γ)πd(d)πs(sQ).
(8)

Proposition 3 If the prior density function

πθ(β,γ, d, sQ | k,p,q,xt0 ,Vt0 ,gt0) = πβ(β)πγ(γ)πd(d)πs(sQ)
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is well defined on Ω, i.e.
∫

Ω
πθ(β,γ, d, sQ | k,p,q,xt0 ,Vt0 ,gt0)dθ < ∞, then the

posterior distribution defined by (8) is also well defined on Ω, i.e.
∫

Ω
π(β,γ, d, sQ |

xT , k,p,q,xt0 ,Vt0 ,gt0)dθ <∞, where θ represents the vector of all model parameters.

See Appendix IV for a proof. It follows from Proposition 3 that for the posterior distribution

function to be well defined, we only need to ensure that the prior density function is well

defined on Ω. To achieve this, we used a log-normal distribution as the prior distribution

for each of the parameters ajp, bjq and φjp as they should be non-negative, and a normal

distribution for each of the thresholds γj since they may take any real numbers. We let

the prior distribution of sQ be uniform on its two parameters {−1,+1}, and we let the

prior distribution of d be uniform on {1, . . . , d0}, where d0 is the largest value of d that we

would like to consider; following Yu et al. (2010), we set d0 = 3. An explicit expression

of the prior density function πθ(β,γ, d, sQ | k,p,q,xt0 ,Vt0 ,gt0) is given in Appendix V.

Because it is the product of proper densities, the prior density function is well defined on

Ω as required.

2.3 MCMC method for sampling from the posterior distribution

The basic idea of an MCMC method is to generate a sequence of model parameters tak-

ing values in the parameter space Ω such that they form a Markov chain, the equilibrium

distribution of which is the posterior distribution of the parameters; see Brooks (1998) for

details. Often, this is achieved by using the Metropolis-Hastings algorithm in which a can-

didate parameter value is simulated from a chosen distribution and this proposed value is

accepted as the next in the sequence with a known probability; see Gamerman and Lopes,

2002, Ch. 6, and Geyer, 2011, for example.

Let β, γ, d and sQ be the current values of the Markov chain on Ω. We will use the

notation β′, γ ′, d′ and s′Q for the proposed values. Our MCMC method consists of the

following steps.
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Step 1. Propose d′ and s′Q by simulating d′ ∼ {1, . . . , d0} and s′Q ∼ {−1, 1} uniformly.

Step 2. Propose β′ by simulating its components from the following log-normal or truncated

log-normal distributions:

ln a′jp ∼ N(ln ajp, σ̃
2
jp), ln b′jq ∼ N(ln bjq, s̃

2
jq), for all j, p, q

lnφ′jp ∼ N(lnφjp, λ̃
2
jp), for all j, p 6= 0

lnφ′j0 ∼ N(lnφj0, λ̃
2
j0), for all j such that φ′j0 ≥ φ0

where σ̃jp, s̃jq and λ̃jp are the scales of the respective log-normal distributions.

Step 3. Propose γ ′ by using the following truncated normal distributions:

For j = 1, . . . , k − 1, simulate γ′j ∼ N(γj, ξ̃
2
j ) such that γ′j ∈ (aj, b), where a1 = γ

and aj = γ′j−1 for j > 1, b = γ̄, and γ and γ̄ are two proper values that define a range

of possible threshold values. Hence we have γ < γ′1 < γ′2 < · · · < γ′k−1 < γ̄. In this

paper we take γ and γ̄ as the 25% and 75% sample quantiles of xt respectively. Of

course other values within the range of the samples could also be used.

Step 4. Define Ω′j = [γ′j−1, γ
′
j) and calculate VaR′t and g′t for t = t0 + 1, . . . , T :

VaR′t = s′Q

√∑k
j=1

(
a′j0 +

∑pj
p=1 a

′
jpx

2
t−p +

∑qj
q=1 b

′
jqVaR′2t−q

)
I
[
xt−d′ ∈ Ω′j

]
g′t =

∑k
j=1

(
φ′j0 +

∑pj
p=1 φ

′
jpx

2
t−p +

∑qj
q=1 b

′
jqg
′
t−q
)
I
[
xt−d′ ∈ Ω′j

]
.

Step 5. Accept the proposed values with probability min{ABC, 1}, where A,B and C are

given in Appendix VI.

Step 6. If the proposed values are accepted, let (β,γ, d, sQ) = (β′,γ ′, d′, s′Q); otherwise,

discard the proposed values. Go to Step 1.

The Metropolis-Hastings algorithm construction guarantees that the equilibrium distri-

bution of the Markov chain is the posterior distribution of the model parameters. Hence,
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after a burn-in period, the posterior sample of the model parameters can be used to esti-

mate the model parameters. In this paper, the estimates for d and sQ were taken as the

mode of the respective posterior samples because these two parameters take integer values.

For all the other parameters, the estimates were taken as the average value of the respective

posterior samples.

3 Density forecasting

3.1 Method of density forecasting

Let V̂aRt be the value of VaRt evaluated at the α-quantile QMLE of the parameters. Our

task now is to use V̂aRt to obtain an m-step ahead density forecast for xt that follows the

TGARCH model (1), given the information available up to time T , where m = 1, . . . ,M .

Since xt = εt
√
ht by model (1), the τ th conditional quantile of xt is given by VaRt =

Q(τ)
√
ht. This gives et = xt/VaRt = εt/Q(τ). So, if xt follows the TGARCH model (1),

then et should be iid. This result leads to the following non-parametric forecasting method.

Step 1. Calculate êt = xt/V̂aRt for t = t0, . . . , T .

Step 2. Estimate the distribution of et, denoted by g(e), by using êt with a non-parametric

method such as kernel density estimation (see, e.g. Silverman, 1986). As the α-

quantile QMLE method does not depend on the distribution of εt, the estimation of

g(e) does not require any further information about εt.

Step 3. Given xT , set m = 1:

(a) Calculate V̂aRT+m

(b) Simulate e ∼ g(e)

(c) Calculate x̂T+m = e V̂aRT+m
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(d) If m < M , let m = m+ 1 and go to (a).

By repeating Step 3 multiple times, a random sample of xT+m values can be produced

and this sample can be used to obtain density forecasts and any other predictive quantity

of interest about the returns. This explains why our forecasting method differs from other

quantile regression based methods in the literature, and why we need VaRt at a single

quantile level τ only. In Section 4, we will study the effects of τ on the performance of the

forecasting method.

Although this paper focuses on density forecasting with VaRt at a single quantile level,

it is worth noting that the above method can be modified so that ht can be used to obtain

density forecasts as well. This can be done by replacing V̂aRt in the above method by
√
ĥt ,

where ĥt may be estimated by using the Gaussian QMLE method. However, our results

in Section 4 suggest that density forecasts obtained using VaRt outperform those obtained

using ht.

3.2 Evaluation of density forecasts

We have seen that the forecasting method for xt following the TGARCH model (1) depends

on the assumption that the et = xt/VaRt are iid. This implies that it is important to check

the autocorrelation structure of the êts before using the forecasting method.

In addition, as V̂aRt is the estimated τ th quantile of xt|xt−1, the τ th empirical quantile

of the êts should be close to 1, which is equivalent to the τ th empirical quantile of ût =

xt − V̂aRt being 0. This can also be checked based on either overall or local coverage

probabilities.

To perform this check using local coverage probabilities, we may use the moving win-

dow method proposed by Cai et al. (2012). Specifically, first a window width W0 is

selected, and then for i = 1, . . . , T − W0 + 1, the τ th empirical quantile of {êt, t =

i, . . . , i + W0 − 1} and of {ût, t = i, . . . , i + W0 − 1} are calculated respectively. Finally

14



these local empirical quantiles can be checked against 0 or 1. Any value of W0 can be used

provided that it is large enough to obtain proper empirical estimates of the local quantiles.

To evaluate and compare density forecasts in practice we propose using the approach of

Diebold et al. (1998) . We do this because their approach does not depend on the methods

that were used to obtain the density forecasts. We will now outline the basic idea. Let

f̂(xT+m) be the density forecast of xT+m, and let the probability integral transform of xT+m

be defined by zm =
∫ xT+m

−∞ f̂(u)du, where m = 1, . . . ,M . Diebold et al. (1998) showed

that density forecasts could be checked by testing if the probability integral transforms

obtained from the density forecasts are iid U(0, 1). If they are, then good density forecasts

have been obtained.

Diebold et al. (1998) further suggested that the Kolmogorov-Smirnov test (KS-test)

could be used to check the probability integral transforms, but also pointed out that this

test is not constructive in that, if rejection occurs, the test itself provides no guidance as to

why. Because of this, Diebold et al. (1998) also suggested using graphical methods such

as plotting the empirical distribution of the probability integral transforms together with

an associated 95% confidence interval, and then comparing it with the U(0, 1) cumulative

distribution function. They also suggested using the autocorrelation function (ACF) plot

of wm = zm − z̄ to check the dependence between these probability integral transforms,

where z̄ is the mean of zm.

In our cases, we do not have a mathematical expression for the density forecast at

time T + m. However, the density forecast can be estimated by using the random sample

obtained from the forecasting method. Hence, the probability integral transforms can be

easily obtained.
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4 Simulation studies

4.1 Simulation study about estimation and forecasting: Single thresh-

old model

Let us consider the following model with one threshold:

xt = εt
√
ht, ht =

 0.2 + 0.25x2
t−1 + 0.7ht−1, xt−1 < 0,

0.1 + 0.15x2
t−1 + 0.85ht−1, xt−1 ≥ 0,

(9)

where εt ∼ N(0, 1). So, d = 1, p1 = 1, q1 = 1, k = 2, γ1 = 0, Ω0 = (−∞, 0) and

Ω1 = (0,∞). For model (9), the one-step ahead VaRt at a level τ is given by

VaRt =

 sQ

√
0.2Q(τ)2 + 0.25Q(τ)2x2

t−1 + 0.7 VaR2
t−1 , xt−1 < 0,

sQ

√
0.1Q(τ)2 + 0.15Q(τ)2x2

t−1 + 0.85 VaR2
t−1 , xt−1 ≥ 0.

(10)

where Q(τ) is the τ th quantile of εt. So, the true parameter values of expression (10) and

the values of the φjps that appear in expression (4) for gt are known once τ is fixed. Table 1

shows the true parameter values at four different levels of τ .

Table 1: True parameter values at four levels of τ
τ 0.05 0.25 0.75 0.95
a10 0.541 0.091 0.091 0.541
a11 0.676 0.114 0.114 0.676
a20 0.271 0.045 0.045 0.271
a21 0.406 0.068 0.068 0.406
b11 0.700 0.700 0.700 0.700
b21 0.850 0.850 0.850 0.850
sQ −1 −1 1 1
φ10 0.391 0.208 0.208 0.391
φ11 0.489 0.260 0.260 0.489
φ20 0.196 0.104 0.104 0.196
φ21 0.293 0.156 0.156 0.293

We simulated a time series from model (9) of length 500, shown in Figure 1(a), which
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we treat as the observed data.
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Figure 1: Plots of the simulated time series.

To check the performance of our method, we will (i) estimate the one-step ahead VaRt

at levels τ = 0.05, 0.25, 0.75 and 0.95 where these values have been chosen to cover a

broad range; (ii) discuss multiple step ahead density forecasts; and (iii) explore multiple

step ahead VaR forecasts at different quantile levels based on these density forecasts.

4.1.1 Model estimation

Let us first estimate the one-step ahead VaRt defined by (10) at the four τ levels. All initial

parameter values required by the MCMC method were chosen by randomly simulating a

number between 0 and 1, except for d that was randomly chosen from 1, 2 and 3. The

Markov chain was run for 5 × 106 steps and the first 105 values were removed as burn-in.

Time series plots of the saved parameter values show that the Markov chain has converged

for all four values of τ , as illustrated in Figure 2 for τ = 0.25; plots for the other τ values

are similar. Table 2 shows the 95% confidence interval of the average estimated parameters
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Figure 2: The posterior samples of the model parameters when τ = 0.25.

Table 2: 95% confidence interval of the average estimated parameters over 100 simulations
TRUE Lower bound Upper bound MSE

a10 0.091 0.074 0.300 0.013
a11 0.114 0.059 0.202 0.002
a20 0.046 0.000 0.259 0.010
a21 0.068 0.007 0.134 0.001
b11 0.700 0.621 0.775 0.002
b21 0.850 0.684 0.866 0.008
γ1 0.000 −0.181 0.170 0.008

over 100 simulations for τ = 0.25, together with the MSE between each estimate and the

true parameter values in model (10). Note that over the 100 simulations the estimated delay

parameter d and the sign parameter sQ were always the same as the true values, i.e. 1 and

−1 respectively, and hence are not shown in Table 2. It can be seen from Table 2 that, on

average, the true parameters of model (10) are well within the corresponding 95% confi-

dence intervals, and the MSE values further confirm that the true and estimated parameters

of model (10) are very close.

For comparison purposes, let ẽt = xt/VaRt be the value of et evaluated at the true
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Figure 3: Probability density functions of εt/Q(τ) (black continuous curve), ẽt (grey) and
êt (dashed) for τ = 0.05, 0.25, 0.75 and 0.95.

parameter values given in Table 1, so that the distribution of ẽt should be very similar to

the theoretical distribution of εt/Q(τ). Figure 3 shows the density function plots of êt, ẽt

and εt/Q(τ). It can be seen that all these density functions are very similar. Indeed, when

the KS-test was used to compare these distributions, the p-values were found to be at least

0.0492, which confirmed that the distributions are not different from each other at a 1%

level of significance. We also conducted the Ljung-Box test to check the independence

between êt. The results show that all p-values of the test are greater than 0.77, strongly

supporting that êt are iid. These results suggest that the method performs well.

Two sets of empirical coverage probabilities were calculated by using one-step ahead

VaRt (using the true parameter values) and V̂aRt. Table 3 shows that V̂aRt’s do have good

coverage probabilities at all the quantile levels considered. This is quantified further us-

ing RMSE, the square root of the mean squared errors between the τ ’s and the empirical

coverage probabilities.
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Table 3: Empirical coverage probabilities at different levels
Using VaRt

True probability τ 0.05 0.25 0.75 0.95 RMSE
Count 20 136 397 474

Estimated probability 0.04 0.272 0.794 0.948 0.01350

Using V̂aRt

True probability τ 0.05 0.25 0.75 0.95 RMSE
Count 28 116 387 477

Estimated probability 0.056 0.240 0.774 0.954 0.01349

4.1.2 Density forecasts

The following simulation steps were used to obtain a random sample of xT+m, condi-

tional on xT , as the true conditional density function of xT+m|xT is not analytically avail-

able: (i) Start from h′T+m−1, x′T+m−1 and ε′T+m−1 ∼ N(0, 1), where h′T+m−1 = hT+m−1,

x′T+m−1 = xT+m−1, if T + m − 1 ≤ T , and m = 1, . . . ,M . We let M = 25 in this simu-

lation study, but any other value of M can also be used. (ii) Let ε′T+m ∼ N(0, 1), use (9)

to calculate h′T+m, and let x′T+m = ε′T+m

√
h′T+m . By repeating these steps multiple times,

a random sample of xT+m can be obtained. These samples can be used to estimate the

conditional density function of xT+m, denoted by fm(x | xT ). As fm(x | xT ) should be

very close to the theoretical density, we compare our density forecasts with it.

Now let f̂m,τ (x | xT ) be the density forecast obtained from our forecasting method by

using the estimated parameters values, where m = 1, . . . , 25 and τ = 0.05, 0.25, 0.75 and

0.95. Figure 4 shows the density forecasts for m = 1, 5, 10, 15, 20 and 25. Each panel

presents nine curves. For example, for m = 10, the darker continuous curve corresponds

to f10(x | xT ), while the grey curves correspond to f10,τ (x | xT ) and f̂10,τ (x | xT ) for

τ = 0.05, 0.25, 0.75 and 0.95. Figure 4 suggests that these density forecasts are close to

the required fm(x | xT ). The results of the KS-test show that both fm,τ (x | xT ) and

f̂m,τ (x | xT ) are not different from fm(x | xT ) at the 1% level of significance for all values

of m and τ except for (m, τ) = (1, 0.75). These results suggest that the effect of τ on the

density forecasts is not important.
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Figure 4: Plots of the predictive density functions fm(x | xT ) (darker curves), and density
forecasts fm,τ (x | xT ) and f̂m,τ (x | xT ) (grey curves), where m = 1, 5, 10, 15, 20, 25 and
τ = 0.05, 0.25, 0.75, 0.95. fm(x | xT ) represents the theoretical m-step ahead predictive
density function of xt|xt−1, while fm,τ (x | xT ) and f̂m,τ (x | xT ) represent the density
forecasts obtained from the forecasting method by using the true and estimated parameter
values respectively.
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4.1.3 VaR forecasts

Any predictive quantity of interest about xT+m given xT can be obtained from our density

forecasts. For illustration purposes, we consider m-step ahead VaR forecasts in this sim-

ulation study due to their importance in finance. We obtained two sets of VaR forecasts,

denoted by VaRT+m,τ,τ ′ and ṼaRT+m,τ,τ ′ , where VaRT+m,τ,τ ′ is the m-step ahead τ ′th VaR

forecast obtained from fm,τ (x | xT ), and ṼaRT+m,τ,τ ′ is the same quantity obtained from

f̂m,τ (x | xT ), where m = 1, . . . , 25, τ = 0.05, 0.25, 0.75, 0.95 and τ ′ = 0.001, 0.005, 0.01,

0.05, 0.25, 0.5, 0.75, 0.95, 0.99, 0.995, 0.999.

We compare these two sets of VaR forecasts by calculating the value of RMSE between

VaRT+m,τ,τ ′ and ṼaRT+m,τ,τ ′ . The results are shown in Table 4. We can see that the VaR

forecasts ṼaRT+m,τ,τ ′ are similar for different τ values in this simulation study, which fur-

ther confirms that a VaRt process at a single quantile level is sufficient for us to obtain

density forecasts for market returns that follow TGARCH model (1). However, to avoid

potential problems associated with the estimation of VaRt at extreme levels due to lack of

information, we suggest using VaRt at a non-extreme level for density forecasting and for

predicting other quantities of interest about the process under study.

Table 4: RMSE values between m-step ahead VaR forecasts VaRT+m,τ,τ ′ and ṼaRT+m,τ,τ ′

for m = 1, . . . , 25

τ \ τ ′ 0.001 0.005 0.01 0.05 0.25 0.50 0.75 0.95 0.99 0.995 0.999
0.05 0.52 0.38 0.35 0.29 0.12 0.03 0.10 0.37 0.75 0.71 0.73
0.25 1.72 1.31 0.99 0.39 0.19 0.04 0.11 0.30 0.94 1.10 1.40
0.75 0.58 0.54 0.67 0.20 0.06 0.02 0.04 0.22 0.36 0.54 0.79
0.95 0.87 0.66 0.59 0.25 0.15 0.04 0.11 0.32 0.73 0.80 1.12

Note that we have also repeated the above simulation study 100 times. The results

obtained were consistent with those shown above, and hence are not discussed further.
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4.2 Simulation study comparing estimation and forecasting: Double

threshold model

This simulation study highlights the advantage of the α-quantile QMLE approach for model

estimation and density forecasting for heavy-tailed financial returns that follow TGARCH

models. As discussed in Section 1, the variance process ht of a TGARCH model may

be estimated by using the Gaussian QMLE method. Hall and Yao (2003) observed that,

for the Gaussian QMLE method with GARCH models, standard asymptotic theory breaks

down for financial data with heavy-tails. Although Mikosch & Straumann (2006) provided

a new limit theory for parameter estimation in this case, it is still not clear how the Gaussian

QMLE method performs for volatility estimation and density forecasting with heavy-tailed

financial data compared with the α-quantile QMLE for VaRt estimation and density fore-

casting.

Models with more than two regimes have been proven to be very useful in finance. For

example, Li and Ling (2012) analyzed real GNP data over the period 1947-2009 and found

that a model with three regimes (i.e. two thresholds) explains the data well. Chen et al.

(2014) also used a three-regime threshold model to study the process of pair return spread,

where the upper and lower regimes in the model are used for trading entry and exit signals.

Medeiros and Veiga (2009) studied ten financial indices and showed evidence of three

regimes for four out of the ten indices under study. They found that the first, second and

third regimes are associated with very negative shocks, tranquil periods and large positive

shocks respectively. Due to the usefulness of models with three regimes in finance, we

consider TGARCH models with two thresholds in this section.

Specifically, we consider two models, both have two thresholds but with different
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volatility persistence. The two models are given below.

xt = εt
√
ht, ht =


0.1 + 0.2x2

t−1 + 0.09ht−1, xt−2 < −0.2,

0.25 + 0.15x2
t−1 + 0.14ht−1, −0.2 ≤ xt−2 < 0.3,

0.9 + 0.15x2
t−1 + 0.4ht−1, xt−2 ≥ 0.3,

(11)

and

xt = εt
√
ht, ht =


0.1 + 0.2x2

t−1 + 0.55ht−1, xt−2 < −0.2,

0.15 + 0.05x2
t−1 + 0.65ht−1, −0.2 ≤ xt−2 < 0.3,

0.3 + 0.15x2
t−1 + 0.62ht−1, xt−2 ≥ 0.3,

(12)

where εt follows a tν-distribution, where ν represents the degrees of freedom. We let

ν = 3, 5, 7, 10, 20, 50 and 100. Moreover, we set the delay parameter d = 2 and consider

τ = 0.75. Hence sQ = sign(Q(0.75)) = 1.

Therefore, this simulation study allows us to check the impact of ν on the performance

of estimation and forecasting based on the two QMLE methods respectively. It also enables

us to check the impact of volatility persistence since model (12) has stronger volatility

persistence than that of model (11). For each ν, we simulated 100 time series of size 500

from the two models. Figure 1(b) and (c) show the first of these simulated time series from

models (11) and (12) when ν = 3 respectively. For each ν we applied the Gaussian QMLE

method to estimate ht and the α-quantile QMLE method to estimate VaRt to each of the

simulated time series, obtaining 100 estimated values for each of the parameters in ht and

VaRt respectively.

Let ĥt,` and V̂aR
0.75

t,` be the estimates of ht and the 75% VaRt evaluated at the Gaus-

sian and α-quantile QMLEs using the `th simulated time series, respectively. Let ŵt,` =

xt/
√
ĥt,` and v̂t,` = xt/V̂aR

0.75

t,` be the residuals. Note that we do not include a model

indicator and ν in this notation for simplicity.

For each model, let x(`)
T+m,i be the ith sample of xT+m|xT obtained by using the `th sim-
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ulated time series and the true parameter values, where i, ` = 1, . . . , 100. Then
{
x

(`)
T+m,i : i, `

= 1, . . . , 100} is a pooled sample of xT+m|xT , which can be used to obtain the true density

function of xT+m|xT . Here, we let m = 1, . . . ,M , where M = 25. We have experimented

with other values of M and obtained comparable results.

Similarly, let x̂(`)
T+m,i,h and x̂(`)

T+m,i,V be the samples obtained from our forecasting method

based on ĥt,` and V̂aR
0.75

t,` respectively. Then both
{
x̂

(`)
T+m,i,h, i = 1, . . . , 100

}
and

{
x̂

(`)
T+m,i,V ,

i = 1, . . . , 100} can be used to obtain the `th density forecast for xT+m|xT , where ` =

1, . . . , 100 and m = 1, . . . , 25. These density forecasts can then be compared with the true

density functions of xT+m|xT .

To quantify the performance of different methods, we first examined model fitting by

checking whether ŵt,` and v̂t,`Q(0.75) follow a tν distribution by using KS-tests for each

simulated series. The first two columns of Table 5 show the number of KS-test null hy-

pothesis rejections out of 100 tests in this situation. For the performance of forecasting, we

conducted two sets of 2500 KS-tests for each model to compare the true density function

of xT+m|xT with those predicted by using ĥt,` and V̂aR
0.75

t,` respectively. The number of

times when the null hypothesis of the KS-test was rejected for each method is given in the

last two columns of Table 5.

First let us consider the results on model estimations. Although both QMLE methods

deliver consistent estimates, Table 5 shows that for heavy-tailed distributions, i.e. when ν <

10 in our case, the α-quantile QMLE method outperforms the Gaussian QMLE method as

the number of KS-test null hypothesis rejections is much smaller. When ν becomes larger,

it can be seen that the Gaussian QMLE method provides better estimation results, which is

what we should have expected because when ν is large the t-distribution approaches to the

standard normal distribution. In this limiting case, the model is correctly specified. On the

other hand, the performance of model (11) is better than that of model (12) for almost all

values of ν considered here, implying that volatility persistence does have some impact on

model estimations with both Gaussian and quantile QMLE methods.
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Table 5: Number of null hypothesis rejections out of 100 KS-tests for model fitting and out
of 2500 KS-tests for density forecasting.

ŵt,` ∼ tdf v̂t,`Q(0.75) ∼ tdf Forecasting Forecasting
Gaussian QMLE Quantile QMLE Gaussian QMLE Quantile QMLE

ν = 3
Model (11) 100 14 73 52
Model (12) 100 27 217 120

ν = 5
Model (11) 66 8 55 45
Model (12) 81 24 74 71

ν = 7
Model (11) 25 10 67 54
Model (12) 49 29 50 44

ν = 10
Model (11) 9 9 79 75
Model (12) 20 22 45 43

ν = 20
Model (11) 2 6 94 74
Model (12) 5 23 44 34

ν = 50
Model (11) 1 10 98 94
Model (12) 3 23 46 44

ν = 100
Model (11) 3 8 96 89
Model (12) 2 21 39 35
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Now let us consider the results about density forecasting. Table 5 shows that, for all

values of ν considered in this study, density forecasts obtained based on VaRt outperform

those obtained based on ht. On the other hand, compared with model (11), density forecasts

with model (12) are worse when ν < 7 but better when ν ≥ 7, which is true for both

forecasting approaches. This suggests that the impact of volatility persistence on density

forecasting depends on the tail behaviour of the distribution of financial returns.

In summary, our results show that as the number of degrees of freedom ν decreases,

both inference and forecasting using the α-quantile QMLE method with model (3) are

better than inference and forecasting using the Gaussian QMLE method with model (1).

5 Forecasting Hang Seng and S&P500 returns

We now illustrate our method by conducting empirical work on Hang Seng and S&P500

daily closing indices from 3 January 2007 to 13 July 2012. The data are available from

Yahoo, with days on which the market was closed having been removed. We are interested

in the returns of these daily closing indices. Figures 5(a)-(b) show time series plots of

the two indices, while Figures 5(c)-(d) show the associated returns. The autocorrelation

structure of the two return series can be seen from Figure 5(e)-(f).

The last 30 values of the returns were not included in our parameter estimation pro-

cedure, but were used to evaluate our out-of-sample multiple step ahead forecasts. For

each return series, we will (i) estimate the one-step ahead VaRt at the 75% level, (ii) obtain

out-of-sample density forecasts, (iii) compare point forecasts with the actually observed re-

turns, and (iv) make a comparison of our density forecasts with those obtained from other

models.
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Figure 5: (a)(b) Time series plots, (c)(d) the returns and (e)(f) the autocorrelation function
of the returns for the Hang Seng and S&P500 indices from 3 January 2007 to 13 July 2012.
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5.1 Results from our method

5.1.1 Estimated models

For the Hang Seng daily closing indices, let xt be the return value at time t. As Figure 5(e)

shows little autocorrelation structure in the return series, our estimation method was em-

ployed on the return series directly, resulting in the following estimated model at the 75%

level:

VaRt =


√

0.0003 + 0.2311x2
t−1 + 0.1891 VaR2

t−1 , if xt−2 < −0.0090,√
0.00008 + 0.0997x2

t−1 + 0.1627 VaR2
t−1 , if xt−2 ≥ −0.0090.

(13)

For the S&P500 daily closing indices, let yt be the return value at time t. Since Fig-

ure 5(f) shows a strong autocorrelation at lags 1 and 2, we first estimated a sequence of

ARMA models for the returns and concluded that an AR(2) process satisfactorily modelled

the data. Let the residuals of the fitted AR(2) model be xt = yt − ˆ̀
1yt−1 − ˆ̀

2yt−2, where

ˆ̀
1 = −0.1344 (0.0267) and ˆ̀

2 = −0.0777 (0.0267) are the estimated parameter values

with the standard errors in brackets. By applying our estimation method to xt, we obtained

the following estimated model, again at the 75% level:

VaRx
t =


√

0.00018 + 0.2328x2
t−1 + 0.2412 (VaRx

t−1)2 , if xt−2 < −0.0059,√
0.00004 + 0.0881x2

t−1 + 0.1858 (VaRx
t−1)2 , if xt−2 ≥ −0.0059.

(14)

The estimated one-step ahead VaR process for the S&P500 returns is then given by

VaRy
t = VaRx

t + ˆ̀
1yt−1 + ˆ̀

2yt−2 . (15)

Hence, forecasts of yt can be obtained from those of xt by using yt = xt + ˆ̀
1yt−1 + ˆ̀

2yt−2.

Now we use the one-step ahead VaRt processes (13) and (15) to obtain density forecasts

for the Hang Seng and S&P500 return series respectively.
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5.1.2 Forecasting results

Using our forecasting method, we obtained density forecasts up to 30 steps ahead for both

return series. To make the plots clearer, we only show the density forecasts in Figure 6(a)-

(d) for m = 1, 10, 20 and 30, where the grey and black curves are the density forecasts

for the Hang Seng and S&P500 return series respectively. It can be seen that multiple step

ahead conditional density forecasts can be skewed either to the right or left.

Figure 6(e)-(f) show the point forecasts for Hang Seng and S&P500 return series re-

spectively. In each of these plots, the black curve corresponds to the observed returns, the

middle grey curve shows the m-step ahead mean forecasts, and the upper and lower grey

curves provide the m-step ahead VaR forecasts at levels τ = 0.95 and 0.05 respectively,

where m = 1, . . . , 30. The RMSE and the mean absolute difference (MAD) between the

predicted and the observed returns are all less than 0.0981 for both return series, which is

a small value compared with the range of the values that RMSE and MAD can take. The

range between the twom-step ahead VaR forecasts also provides a measure of the volatility

of xT+m|xT . In fact, this is a measure of the variation of the distribution with respect to

its median, and so we suggest using it in practice when the distribution of the returns is

skewed.

5.2 Comparison of forecasts

5.2.1 Comparison with ARMA-GARCH models

For comparison purposes, we fitted an ARMA-GARCH type model to each of the two

return series. For Hang Seng returns, the best fitting model is a GARCH(1,1) given by

yt = εt
√
ht, where ht = 3.305 × 10−6 + 0.087y2

t−1 + 0.905ht−1 and εt follows a skewed

t-distribution with skewness 0.926 and degrees of freedom 10.

For S&P500 returns, the best fitting model was found to be an AR(2)-GARCH(1,1) and

is given by yt = −0.095yt−1−0.057yt−2 +εt
√
ht , where ht = 2.02×10−6 +0.112(yt−1 +
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Figure 6: (a)-(d) Density forecasts for Hang Seng (grey curves) and S&P500 (black curves)
returns respectively. (e)(f) Point forecasts for Hang Seng and S&P500 return series, where
the black curve corresponds to the observed returns, the middle grey curve shows the m-
step ahead mean forecasts, where m = 1, . . . , 30, and the upper and lower grey curves
provide the m-step ahead VaR forecasts at levels τ = 0.95 and 0.05 respectively. The
middle dashed curve shows the m-step ahead mean forecasts from the ARMA-GARCH
models and the upper and lower dashed curves give the corresponding 90% prediction
intervals.
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0.095yt−2 + 0.057yt−3)2 + 0.887ht−1 and εt follows a skewed t-distribution with skewness

0.830 and degrees of freedom just over 6.

For both models we chose to use a skewed t-distribution for εt because this distribution

can deal with more complex data structures. The mean forecasts for the next 30 days were

obtained and are shown as the middle dashed curves in Figure 6(e)-(f), where the upper and

lower dashed curves form a 90% prediction interval. It is seen that the mean forecasts from

the ARMA-GARCH models decrease to 0 very quickly as expected. Note that the range of

the prediction intervals do not provide a good measure for the volatility of the underlying

processes.

To obtain density forecasts from the fitted ARMA-GARCH models, a conventional

simulation method was used, which provides us with a random sample from the m-step

ahead predictive distribution function, where m = 1, . . . , 30. Hence, for each financial

return series, we obtained two sets of density forecasts: one from our method and the

other from the ARMA-GARCH model. We now test the differences between these density

forecasts by using the method of Diebold et al. (1998) discussed in Section 3.2.

Figure 7 shows the ACF of wm = zm − z̄, where z̄ is the mean of the probability

integral transforms zm of xT+m, m = 1, . . . , 30. It can be seen that the correlation between

the probability integral transforms is not statistically significant in all cases. So from this

point of view, both models perform similarly.

Figure 8 shows the empirical distributions of zms (step curves) for the two return series,

where the two dashed curves in each panel form a corresponding 95% confidence interval

for the distribution of the probability integral transforms, and the grey straight line is the

U(0, 1) cumulative distribution function. Figure 8 suggests that for Hang Seng return se-

ries, the two sets of density forecasts are satisfactory, which was further confirmed by the

KS-test as in both cases we cannot reject the null hypothesis of the test at the 5% level

of significance. However, for the S&P500 return series, our method outperforms that of

the ARMA-GARCH model, which was also confirmed by the KS-test: for our results the
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Figure 7: ACF plots of the probability integral transforms zms. (a)(c) are for our models,
while (b)(d) are for ARMA-GARCH models.
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p-value is 0.96, while for the ARMA-GARCH model the p-value is less than 0.00005.

5.2.2 Comparison with GJR-GARCH models

The GJR-GARCH model of order 1 (Glosten et al., 1993) is defined by xt =
√
ht εt, where

ht = ω + (a + b [xt−1 < 0])x2
t−1 + δht−1, and εt is the error term of the model. In this

comparison, we also let εt follow a skewed t-distribution.

For the Hang Seng return series, the estimated GJR-GARCH model is given by xt =
√
ht εt, where ht = 0.4 × 10−5 + (0.035 + 0.104 I [xt−1 < 0])x2

t−1 + 0.900ht−1 and εt

follows a skewed t-distribution with skewness 0.931 and degrees of freedom around 18.

For the S&P500 return series, the estimated AR(2)-GJR-GARCH model is given by

yt = −0.091yt−1 − 0.055yt−2 +
√
ht εt, where

ht = 0.3×10−5+(0.1×10−7+0.187 I [xt−1 < 0])(yt+0.091yt−1+0.055yt−2)2+0.897h2
t−1

and εt follows a skewed t-distribution with skewness 0.812 and degrees of freedom 6.7.

Figure 9 checks the density forecasts obtained from the above GJR-GARCH models.

Clearly, the distribution of the probability integral transforms are away from U(0, 1) and

there exists strong autocorrelation between these transforms. These results suggest that the

density forecasts obtained from the GJR-GARCH models are not satisfactory. One of the

possible reasons for this unsatisfactory GJR-GARCH performance could be that both the

threshold and the delay parameter values in this model are fixed, rather than being estimated

from the data.

6 Further comments and conclusions

This paper develops an α-quantile QMLE method for VaRt by showing that the associ-

ated density function is an α-quantile density and it belongs to the tick-exponential family.
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Figure 9: Density forecasting evaluation for GJR-GARCH models: (a)(c) Empirical dis-
tribution function plots of zms (step curves) together with an associated 95% confidence
intervals (dashed curves). (b)(d) ACF plots of the zms.

Hence the method guarantees that our estimator is consistent for the parameters of VaRt.

Performing Bayesian inference about VaRt provides an alternative method for parameter

estimation. We also propose simple density forecasting methodology based on the VaRt at

a single non-extreme level. This density forecasting method overcomes the limitations of

some existing forecasting methods with quantile models.

For model estimation, our simulation results show that the proposed α-quantile QMLE

method for VaRt outperforms the Gaussian QMLE method for ht for heavy-tailed financial

data that follow TGARCH models. For density forecasting, our results show that density

forecasts based on the proposed α-quantile QMLE for VaRt outperform those based on the

Gaussian QMLE for ht for both heavy-tailed and non-heavy-tailed financial data. More-

over, our results also show that the impact of volatility persistence on model estimation and

forecasting depends on the tail behaviour of financial data. The results obtained from the

empirical work on market returns show that our forecasting method also outperforms some
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benchmark models for density forecasting of financial returns.

In this paper, the number of thresholds and the order of the model are assumed known.

However, it is possible to develop a reversible jump MCMC method to estimate these pa-

rameters simultaneously with all the other model parameters. We leave this for future work.
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Appendix I

We want to show that if xt follows model (1), then VaRt follows expression (2).

Let Q(τ) be the τ th quantile of εt. It follows from (1) that the τ th quantile of xt, i.e.

one-step ahead VaRt , is given by VaRt = Q(τ)
√
ht. Hence,

VaR2
t = Q2(τ)ht

= Q2(τ)
{∑k

j=1

(
αj0 +

∑pj
p=1 αjpx

2
t−p +

∑qj
q=1 βjqht−q

)
I [xt−d ∈ Ωj]

}
=
∑k

j=1

(
Q2(τ)αj0 +

∑pj
p=1 Q

2(τ)αjpx
2
t−p +

∑qj
q=1Q

2(τ)βjqht−q
)
I [xt−d ∈ Ωj] .

So it follows from VaR2
t−q = Q2(τ)ht−q that

VaR2
t =

∑k
j=1

(
aj0 +

∑pj
p=1 ajpx

2
t−p +

∑qj
q=1 bjqVaR2

t−q
)
I [xt−d ∈ Ωj] ,

where ajp = Q2(τ)αjp and bjq = βjq. Taking the square root on both sides gives

VaRt = sQ

√∑k
j=1

(
aj0 +

∑pj
p=1 ajpx

2
t−p +

∑qj
q=1 bjqVaR2

t−q
)
I [xt−d ∈ Ωj],
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in which sQ = sign(Q(τ)).

Appendix II

We now prove Proposition 1. First recall that vt are iid with τ th quantile 0 and variance 1.

It follows from (1) that

E[xt | xt−1] = 0 and that E[x2
t | xt−1] = Var[xt | xt−1] = ht. (16)

Hence, it follows from (3) and (16) that

0 = E[xt | xt−1] = VaRt +
√
gtE[vt], so that

√
gtE[vt] = −VaRt,

and that
ht = E[x2

t | xt−1] = E[(VaRt +
√
gtvt)

2 | xt−1]

= VaR2
t + 2 VaRt

√
gtE[vt] + gtE[v2

t ].

Hence,

ht = VaR2
t − 2 VaR2

t + gtE[v2
t ], so that gt =

ht + VaR2
t

E[v2
t ]

as required.

Moreover, it follows from this result, from (2) and from the facts that βjq = bjq and vt

are iid that

gt =
ht + VaR2

t

E[v2
t ]

= 1
E[v2

t ]

∑k
j=1

{
(αj0 + aj0) +

∑pj
p=1(αjp + ajp)x

2
t−p + bjq(ht−q + VaR2

t−q)
}
I[xt−d ∈ Ωj]

=
∑k

j=1

{
αj0 + aj0
E[v2

t ]
+
∑pj

p=1

αjp + ajp
E[v2

t ]
x2
t−p + bjq

ht−q + VaR2
t−q

E[v2
t ]

}
I[xt−d ∈ Ωj]

=
∑k

j=1

{
φj0 +

∑pj
p=1 φjpx

2
t−p + bjqgt−q

}
I[xt−d ∈ Ωj],

where φjp = (αjp + ajp)/E[v2
t ] for j = 1, . . . , k and p = 0, . . . , pj . This completes the
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proof.

Appendix III

First note that τ in the density defined by (5) corresponds to α in the α-quantile density and

the tick-exponential family defined by Komunjer (2005a, b).

For the first part of the Proposition 2, we need to show that the density function (5) can

be written in the form

fα(u; θ, φ) =


2α(1−α)

φ
exp

[
−2(1− α) |u−θ|

φ

]
, u ≤ θ,

2α(1−α)
φ

exp
[
−2α |u−θ|

φ

]
, u > θ,

where 0 < α < 1, φ > 0 and θ ∈ R. This is the definition given by Komunjer (2005a).

We proceed as follows.

f(v) =
√

1− 2τ + 2τ 2 exp
{
v
√

1−2τ+2τ2

τ−I[v≥0]

}

=
√

1− 2τ + 2τ 2 exp
{
−v
√

1−2τ+2τ2

τ(1−τ)
(τ − I[v ≤ 0])

}

= 2τ(1−τ)

2τ(1−τ)/
√

1−2τ+2τ2
exp

{
− 2v(τ−I[(v≤0)])

2τ(1−τ)/
√

1−2τ+2τ2

}

=


2τ(1−τ)

φ
exp

{
−2(1−τ)|v|

φ

}
if v ≤ 0,

2τ(1−τ)
φ

exp
{
−2τ |v|

φ

}
if v > 0,

where φ = 2τ(1 − τ)/
√

1− 2τ + 2τ 2. Comparing this with the above definition, we see

that the density function (5) is an α-quantile density with φ = 2τ(1 − τ)/
√

1− 2τ + 2τ 2

and θ = 0. This completes the first part of the proof.

For the second part, we need to show that the density function defined by (5) can be
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written as

fα(y, µ) = exp {−(1− τ)[at(µ)− bt(y)]I[y ≤ µ] + τ [at(µ)− ct(y)]I[y > µ]}

for some functions at(µ), bt(y) and ct(y). This corresponds to the definition given by Ko-

munjer (2005b).

First note that

f(v) =
√

1− 2τ + 2τ 2 exp
{
v
√

1−2τ+2τ2

τ−I[v≥0]

}

=
√

1− 2τ + 2τ 2 exp
{
−v
√

1−2τ+2τ2

τ(1−τ)
(τ − I[v ≤ 0])

}
.

Then by letting y = v
√

1− 2τ + 2τ 2, we have

f(y) = exp
{
− y
τ(1−τ)

(τ − I[y ≤ 0])
}

= exp
{
−(1− τ) −y

τ(1−τ)
I[y ≤ 0] + τ −y

τ(1−τ)
I[y > 0]

}

= exp
{
−(1− τ)

[
0

τ(1−τ)
− y

τ(1−τ)

]
I[y ≤ 0] + τ

[
0

τ(1−τ)
− y

τ(1−τ)

]
I[y > 0]

}

= exp {−(1− τ) [at(µ)− bt(y)] I[y ≤ 0] + τ [at(µ)− ct(y)] I[y > 0]} ,

where at(µ) = 0/{τ(1 − τ)} = 0 and bt(y) = ct(y) = y/{τ(1 − τ)}. Hence, the density

defined by (5) also belongs to the tick-exponential family. This completes the proof.
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Appendix IV

To prove Proposition 3, we need to show that

∫
Ω

π(β,γ, d, sQ | xT , k,p,q,xt0 ,Vt0 ,gt0)dθ <∞.

Note that, for any θ ∈ Ω, we have gt ≥
∑k

j=1 φj0I [xt−d ∈ Ωj] ≥ φ0 > 0, and that

exp
[√

1− 2τ + 2τ 2 (xt − VaRt)/ {
√
gt (τ − I [xt ≥ VaRt])}

]
≤ 1.

Hence, using (7), we have

∫
Ω
π(β,γ, d, sQ | xT , k,p,q,xt0 ,Vt0 ,gt0)dθ

≤ M̃
∏T

t=t0+1
1√
φ0

∫
Ω
πβ(β)πγ(γ)πd(d)πs(sQ)dθ

= M̃
φ

(T−t0)/2
0

∫
Ω
πβ(β)πγ(γ)πd(d)πs(sQ)dθ.

Therefore, if the prior density function is well defined on Ω, i.e. if
∫

Ω
πβ(β)πγ(γ)πd(d)πs(sQ)dθ <

∞,we must have
∫

Ω
π(β,γ, d, sQ | xT , k,p,q,xt0 ,Vt0 ,gt0)dθ <∞. That it, the posterior

distribution is well defined on Ω.

Appendix V

Since d and sQ are uniformly distributed on {1, . . . , d0} and {−1, 1} respectively, πd(d)

and πs(sQ) are constant. The prior density functions of ajp, φjp, bjq, and γj are given by

πajp =
1

ajpσjp
√

2π
e− ln2(ajp)/2σ2

jp , πφjp =
1

φjpλjp
√

2π
e− ln2(φjp)/2λ2jp ,

πbjq =
1

bjqsjq
√

2π
e− ln2(bjq)/2s2jq , πγj =

1

ξj
√

2π
e−γ

2
j /2ξ

2
j ,
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where σjp, sjq, λjp and ξj are the scale parameters of these log-normal or normal distribu-

tions respectively.

Hence, the prior density function πθ(β,γ, d, sQ | k,p,q,xt0 ,Vt0 ,gt0) is given by

πθ(β,γ, d, sQ | k,p,q,xt0 ,Vt0 ,gt0) = πβ(β)πγ(γ)πd(d)πs(sQ)

∝
∏k

j=1

∏pj
p=0{e− ln2(ajp)/2σ2

jp/ajpσjp}{e− ln2(φjp)/2λ2jp/φjpλjp}

×
∏qj

q=1{e− ln2(bjq)/2s2jq/bjqsjq}{e−γ
2
j /2ξ

2
j /ξj}

Appendix VI

The general formula for calculating the Metropolis-Hastings algorithm acceptance proba-

bility can be found in Brooks (1998). This formula involves the ratios of the likelihood

functions and the prior probability density functions at the proposed and at the current val-

ues, multiplied by the ratio of appropriately defined transition densities. In the following

we derive the formulae required for calculating the acceptance probability for our MCMC

method.

A = L(β′,γ ′, d′, s′Q | xT , k,p,q,xt0 ,Vt0 ,gt0)/L(β,γ, d, sQ | xT , k,p,q,xt0 ,Vt0 ,gt0)

∝
∏T

t=t0+1

{
exp (a′/b′) /

√
g′t

}
/{exp (a/b) /

√
gt}

=
∏T

t=t0+1

(√
gt/
√
g′t

)
exp (a′/b′ − a/b)

where
a′ =

√
1− 2τ + 2τ 2 u′t, a =

√
1− 2τ + 2τ 2 ut,

b′ = (τ − I [u′t ≥ 0])
√
g′t, b = (τ − I [ut ≥ 0])

√
gt.
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B = πθ(β
′,γ ′, d′, s′Q | k,p,q,xt0 ,Vt0 ,gt0)/πθ(β,γ, d, sQ | k,p,q,xt0 ,Vt0 ,gt0)

=
∏k

j=1

∏pj
p=0

(
ajp/a

′
jp

)
exp{−(ln2 a′jp − ln2 ajp)/2σ

2
jp}

×
(
φjp/φ

′
jp

)
exp{−(ln2 φ′jp − ln2 φjp)/2λ

2
jp}

×
∏qj

q=1

(
bjq/b

′
jq

)
exp{−(ln2 b′jq − ln2 bjq)/2s

2
jq}

×
∏k

j=1 exp{−(γ′ 2j − γ2
j )/2ξ

2
j }

and C = C1/C2, in which

C1 = q(β′ → β) q(γ ′ → γ) q(d′ → d) q(s′Q → sQ)

C2 = q(β → β′) q(γ → γ ′) q(d→ d′) q(sQ → s′Q),

q(a→ b) represents the transition probability density function of b conditional on a, and

q(β′ → β)/q(β → β′)

=
∏k

j=1

∏pj
p=1

a′jpφ
′
jp

ajpφjp

∏qj
q=1

b′jq
bjq

∏k
j=1

φ′j0

[
1− Φ

{
(lnφ′j0 − lnφ0)/λ̃j0

}]
φj0

[
1− Φ

{
(lnφj0 − lnφ0)/λ̃j0

}] .

Since d′ is simulated uniformly on {1, . . . , d0}, q(d′ → d)/q(d→ d′) = 1; similarly,

q(s′Q → sQ)/q(sQ → s′Q) = 1. Finally,

q(γ ′ → γ)

q(γ → γ ′)
=

k−1∏
j=1

Φ((b− γj)/ξ̃j)− Φ((γ′j−1 − γj)/ξ̃j)
Φ((b− γ′j)/ξ̃j)− Φ((γj−1 − γ′j)/ξ̃j)

where γ0 = γ and Φ(·) is the standard normal cumulative distribution function.
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