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Abstract. We study the Weihrauch degrees of closed choice for finite
sets, closed choice for convex sets and sorting infinite sequences over finite
alphabets. Our main result is that choice for finite sets of cardinality
i + 1 is reducible to choice for convex sets in dimension j, which in turn
is reducible to sorting infinite sequences over an alphabet of size k + 1,
iff i ≤ j ≤ k. Our proofs invoke Kleene’s recursion theorem, and we
describe in some detail how Kleene’s recursion theorem gives rise to a
technique for proving separations of Weihrauch degrees.

Keywords: computable analysis · Weihrauch reducibility · Closed choice.

1 Introduction

The Weihrauch degrees are the degrees of non-computability for problems in
computable analysis. In the wake of work by Brattka, Gherardi, Marcone and
P. [16, 4, 3, 24] they have become a very active research area in the past decade.
A recent survey is found as [7].

We study the Weihrauch degrees of closed choice for finite sets, closed choice
for convex sets and sorting infinite sequences over finite alphabets. The closed
choice operators have turned out to be a useful scaffolding in that structure: We
often classify interesting operations (for example linked to existence theorems) as
being equivalent to a choice operator, and then prove separations for the choice
operators, as they are particularly amenable for many proof techniques. Exam-
ples of this are found in [3, 2, 11, 5, 9, 6, 10, 21, 17]. Convex choice in particular
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captures the degree of non-computability of finding fixed points of non-expansive
mappings via the Goehde-Browder-Kirk fixed point theorem [21].

The present article is a continuation of [20] by Le Roux and P., which already
obtained some results on the connections between closed choice for convex sets
and closed choice for finite sets. We introduce new proof techniques and explore
the connection to the degree of sorting infinite sequences. Besides laying the
foundations for future investigations of specific theorems, we are also address-
ing a question on the complexity caused by dimension: Researchers have often
wondered whether there is a connection between the dimension of the ambient
space and the complexity of certain choice principles. An initial candidate was to
explore closed choice for connected subsets, but it turned out that the degree is
independent of the dimension, provided this is at least 2 [10]. As already shown
in [20], this works for convex choice. One reason for this was already revealed in
[20]: We need n dimensions in order to encode a set of cardinality n+ 1. We add
another reason here: Each dimension requires a separate instance of sorting an
infinite binary sequence in order to find a point in a convex set.

Structure of the paper Most of our results are summarized in Figure 1 on Page
5. Section 2 provides a brief introduction to Weihrauch reducibility. In Section 3
we provide formal definitions of the principles under investigation, and give a bit
more context. We proceed to introduce our new technique to prove separations
between Weihrauch degrees in Section 4; it is based on Kleene’s recursion the-
orem. The degree of sorting an infinite binary sequence is studied in Section 5,
including a separation technique adapted specifically for this in Subsection 5.1,
its connection to convex choice in Subsection 5.2 and a digression on the task
of finding connected components of countable graphs in Subsection 5.3. Section
6 is constituted by Theorem 5 and its proof, establishing the precise relation-
ship between finite choice and sorting. Finally, in Section 7 we introduce a game
characterizing reducibility between finite choice for varying cardinalities.

2 Background on Weihrauch reducibility

Weihrauch reducibility is a quasiorder defined on multi-valued functions between
represented spaces. We only give the core definitions here, and refer to [25] for
a more in-depth treatment. Other sources for computable analysis are [29, 8].

Definition 1. A represented space X is a set X together with a partial surjection
δX :⊆ NN → X.

A partial function F :⊆ NN → NN is called a realizer of a function f :⊆
X → Y between represented spaces, if f(δX(p)) = δY(F (p)) holds for all p ∈
dom(f◦δX). We denote F being an realizer of f by F ` f . We then call f :⊆ X→
Y computable (respectively continuous), iff it has a computable (respectively
continuous) realizer.

Represented spaces can adequately model most spaces of interest in everyday
mathematics. For our purposes, we are primarily interested in the construction
of the hyperspace of closed subsets of a given space.
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The category of represented spaces and continuous functions is cartesian-
closed, by virtue of the UTM-theorem. Thus, for any two represented spaces X,
Y we have a represented spaces C(X,Y) of continuous functions from X to Y.
The expected operations involving C(X,Y) (evaluation, composition, (un)currying)
are all computable.

Using the Sierpiński space S with underlying set {>,⊥} and representation
δS : NN → {>,⊥} defined via δS(⊥)−1 = {0ω}, we can then define the repre-
sented space O(X) of open subsets of X by identifying a subset of X with its
(continuous) characteristic function into S. Since countable or and binary and
on S are computable, so are countable union and binary intersection of open
sets.

The space A(X) of closed subsets is obtained by taking formal complements,
i.e. the names for A ∈ A(X) are the same as the names of X \A ∈ O(X) (i.e. we
are using the negative information representation). Intuitively, this means that
when reading a name for a closed set, this can always shrink later on, but never
grow. It is often very convenient that we can alternatively view A ∈ A({0, 1}N)
as being represented by some tree T via [T ] = A (here [T ] denotes the set of
infinite paths through T ).

We can now define Weihrauch reducibility. Again, we give a very brief treat-
ment here, and refer to [7] for more details and references.

Definition 2 (Weihrauch reducibility). Let f, g be multivalued functions on
represented spaces. Then f is said to be Weihrauch reducible to g, in sym-
bols f ≤W g, if there are computable functions K,H :⊆ NN → NN such that
(p 7→ K〈p,GH(p)〉) ` f for all G ` g.

The Weihrauch degrees (i.e. equivalence classes of ≤W) form a distributive
lattice, but we will not need the lattice operations in this paper. Instead, we use
two kinds of products. The usual cartesian product induces an operation × on
Weihrauch degrees. We write fk for the k-fold cartesian product with itself. The
compositional product f ? g satisfies that

f ? g ≡W max
≤W

{f1 ◦ g1 | f1 ≤W f ∧ g1 ≤W g}

and thus is the hardest problem that can be realized using first g, then something
computable, and finally f . The existence of the maximum is shown in [12] via
an explicit construction, which is relevant in some proofs. Both products as well
as the lattice-join can be interpreted as logical and, albeit with very different
properties.

We’ll briefly mention a further unary operation on Weihrauch degrees, the
finite parallelization f∗. This has as input a finite tuple of instances to f and
needs to solve all of them.

As mentioned in the introduction, the closed choice principles are valuable
benchmark degrees in the Weihrauch lattice:

Definition 3. For a represented space X, the closed choice principle CX :⊆
A(X) ⇒ X takes as input a non-empty closed subset A of X and outputs some
point x ∈ A.
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3 The principles under investigation

We proceed to give formal definitions of the three problems our investigation is
focused on. These are finite choice, the task of selecting a point from a closed
subset (of {0, 1}N or [0, 1]

n
) which is guaranteed to have either exactly or no more

than k elements; convex choice, the task of selecting a point from a convex closed
subset of [0, 1]

k
; and sorting an infinite sequence over the alphabet {0, 1, . . . , k}

in increasing order. Our main result is each task forms a strictly increasing
chain in the parameter k, and these chains are perfectly aligned as depicted in
Figure 1. For finite choice and convex choice, this was already established in [20].
Our Theorem 5 implies the main theorem from [20] with a very different proof
technique.

Definition 4 ([20, Definition 7]). For a represented space X and 1 ≤ n ∈ N,
let CX,]=n := CX|{A∈A(X)||A|=n} and CX,]≤n := CX|{A∈A(X)|1≤|A|≤n}.

It was shown as [20, Corollary 10] that for every computably compact com-
putably rich computable metric space X we find CX,]=n ≡W C{0,1}N,]=n and

CX,]≤n ≡W C{0,1}N,]≤n. This in particular applies to X = [0, 1]
d
. We denote this

Weihrauch degree by C]=n respectively C]≤n.

Definition 5 ([20, Definition 8]). By XCn we denote the restriction of C[0,1]n

to convex sets.

Since for subsets of [0, 1] being an interval, being convex and being connected
all coincide, we find that XC1 is the same thing as one-dimensional connected
choice CC1 as studied in [10] and as interval choice CI as studied in [3].

Definition 6. Let Sortd : dω → dω be defined by Sortd(p) = 0c01c1 . . . k∞, where
|{n | p(n) = 0}| = c0, |{n | p(n) = 1}| = c1, etc, and k is the least such that
|{n | p(n) = k}| =∞. We write just Sort for Sort2.

Sort was introduced and studied in [22], and then generalized to Sortk in
[9]. Note that the principle just is about sorting a sequence in order without
removing duplicates. In [26] it is shown that Sortn+1 ≡W Sortn; it follows that
Sort∗ ≡W Sort∗d ≡W

∐
d∈N Sortd. The degree Sort∗ was shown in [22] to capture

the strength of the strongly analytic machines [13, 15], which in turn are an
extension of the BSS-machines [1]. Sort is equivalent to Thomae’s function; and
to the translation of the standard representation of the reals into the continued
fraction representation [28]. In [17], Sort is shown to be equivalent to certain
projection operators.

There are some additional Weihrauch problems we make passing reference
to. All-or-unique choice captures the idea of a problem either having a unique
solution, or being completely undetermined:

Definition 7. Let AoUCX be the restriction of CX to {{x} | x ∈ X} ∪ {X}.
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CN Sort Sort2 Sortn Sort∗

XC1 XC2 XCn

C]≤2 C]≤3 C]≤n+1

C]=2 C]=3 C]=n+1 CN

1 ≡W C{0} C{0,1} C{0,1,2} C{0,...,n} XC1

Fig. 1. Overview of our results; extending [20, Figure 1] by the top row. The dia-
gram depicts all Weihrauch reductions between the stated principles up to transitivity.
Boxes mark degrees appearing in two places in the diagram. Our additional results are
provided as Theorems 3 and 5.

A prototypical example (which is equivalent to the full problem) is solving
ax = b over [0, 1] with 0 ≤ b ≤ a: Either there is the unique solution b

a , or
b = a = 0, and any x ∈ [0, 1] will do. The degree of AoUCX is the same for any
computably compact computably rich computable metric space, in particular for
X = {0, 1}N or X = [0, 1]

d
. We just write AoUC for that degree. This problem

was studied in [23, 19] where it is shown that AoUC∗ is the degree of finding
Nash equilibria in bimatrix games and of executing Gaussian elimination.

4 Proving separations via the recursion theorem

A core technique we use to prove our separation results invokes Kleene’s recursion
theorem in order to let us prove a separation result by proving computability
of a certain map (rather than having to show that no computable maps can
witness a reduction). We had already used this technique in [19], but without
describing it explicitly. Since the technique has proven very useful, we formally
state the argument here as Theorem 1 after introducing the necessary concepts
to formulate it.

Definition 8. A representation δ of X is precomplete, if every computable par-
tial f :⊆ 2ω → X extends to a computable total F : 2ω → X.

Proposition 1. For effectively countably-based X, the space O(X) (and hence
A(X)) is precomplete.
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Proof. It suffices to show this for O(N), where it just follows from the fact that
we can delay providing additional information about a set as long as we want;
and will obtain a valid name even if no additional information is forthcoming.

The preceding proposition is a special case of [27, Theorem 6.5], which shows
that many pointclasses have precomplete representations.

Proposition 2. The subspaces of A([0, 1]
n
) consisting of the connected respec-

tively the convex subsets are computable multi-valued retracts, and hence pre-
complete.

Proof. For the connected sets, this follows from [10, Proposition 3.4]; for convex
subsets this follows from computability of the convex hull operation on [0, 1]

n
,

see e.g. [20, Proposition 1.5] or [30].

By M(X,Y) we denote the represented space of strongly continuous multi-
valued functions from X to Y studied in [12]. The precise definition of strong
continuity is irrelevant for us, we only need every partial continuous function
on {0, 1}N induces a minimal strongly continuous multivalued function that it is
a realizer of; and conversely, every strongly continuous multivalued function is
given by a continuous partial realizer.

Theorem 1. Let X have a total precomplete representation. Let f : X ⇒ Y
and g : U ⇒ V be such that there exists a computable e : U ×M(V,Y) ⇒ X
such that if x ∈ e(u, k) and v ∈ g(u), then k(v) * f(x). Then f �W g.

Proof. Assume that f ≤W g via computable H, K. Let computable E be a
realizer of e. Let (φn :⊆ N → N)n∈N be a standard enumeration of the partial
computable functions. By assumption, we can consider each φn to denote some
element in X. Let λ be a computable function such that φλ(n) = E(H(φn), (v 7→
K(φn, v))). By Kleene’s recursion theorem, there is some n0 with φn0

= φλ(n0).
Inputting φn0 to f fails the assumed reduction witnesses.

As simple sample application for how to prove separations of Weihrauch
degrees via the recursion theorem, we shall point out that XC1 already cannot
solve some simple products. For contrast, however, note that C∗2 ≤W XC1 was
shown as [10, Proposition 9.2].

Theorem 2. C2 ×AoUC �W XC1.

Proof. Given a convex tree T ⊆ 2<ω and a partial continuous function φ :⊆
{0, 1}N → 2 × {0, 1}N, we compute set S ∈ A({0, 1}) and V ∈ A({0, 1}N) such
that S 6= ∅, and V = {0, 1}N or V = {p} for some p ∈ {0, 1}N. Our construction
ensures that ∃p ∈ [T ] φ(p) /∈ S × V .

Initially, S = {0, 1} and V = {0, 1}N.
We first search for s such that for any σ ∈ T of length s, the first value of

φ(σ) is determined. If we never find one, then S = {0, 1} and V = {0, 1}N work
as desired.
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Next, we search for some τ ∈ {0, 1}s such that Pτ := [T ]∩
⋃
j<2 φ

−1(j, [τ ]) is
such that any interval contained in Pτ is contained in some [σ] for σ ∈ {0, 1}s.
Note that if (Ji)i∈I is a collection of pairwise disjoint intervals in {0, 1}N such
that every Ji intersects with at least two cylinders [σ] and [σ′] for some strings
σ 6= σ′ of length s, then the size of I is at most 2s − 1. Hence, if φ is defined on
[T ], such a τ has to exist. Once we have found it, we set V = {τ0ω}.

Either we are already done (since we would have that ∃p ∈ [T ] φ(p) /∈ S×V ),
or it holds that [T ] ⊆ [σ] for some σ ∈ {0, 1}s. In that case, by choice of s we
find that ∃j ∈ {0, 1} π0φ(p) = j for all p ∈ [T ]. We can set S = {1 − j}, and
have obtained the desired property that ∃p ∈ [T ] φ(p) /∈ S × V . By Theorem 1,
the claim follows.

5 Some observations on Sort

5.1 Displacement principle for Sortk

The basic phenomenon that the number of parallel copies of Sort being used
corresponds to a dimensional feature can already by a result similar in feature
to the displacement principle from [10]:

Proposition 3. C2 × f ≤W Sortk+1 implies f ≤W Sortk ×CN.

Proof. Let the reduction C2 × f ≤W Sortk+1 be witnessed by computable H,
K1, K2. Assume, for the sake of a contradiction, that for some input x to f and a
name p for {0, 1} it holds that H(p, x) contains infinitely many 0s. In that case,
Sortk(H(p, x)) = 0ω, and hence K1 is defined as either 0 or 1 on p, x, 0ω. But
then there is some k ∈ N such that K1 already outputs the answer on reading
some prefix p≤k, x≤k, 0

k. Additionally, we can chose some k′ ≥ k such that H
writes at least k′ 0s upon reading the prefixes p≤k′ , x≤k′ . By changing p after k′

to be a name of {1−K1(p, x, 0ω)} shows the contradiction.
Now we note that x 7→ H(p, x) and K2 witness a reduction from f to the

restriction of Sortk+1 to inputs containing only finitely many 0s. But this restric-
tion is reducible to Sortk ×CN: In parallel, call Sortk on the sequence obtained by
skipping 0s and decrementing every other digit by 1, and using CN to determine
the original number of 0s.

Corollary 1. Let f be a closed fractal. Then C2× f ≤W Sortk+1 implies f ≤W

Sortk.

Corollary 2. C2 × Cn]≤2 �W Sortn+1.

Corollary 3. C2 ×XCn1 �W Sortn+1

We also get an alternative proof of the following, which was previously shown
in [22] using the squashing principle from [14]:

Corollary 4. Sortk+1 �W Sortk
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5.2 Sort and convex choice

The one-dimensional case of the following theorem was already proven as [9,
Proposition 16]:

Theorem 3. XCn ≤W Sortn+1

Proof. Let (Hd
i )i∈N be an effective enumeration of the d-dimensional rational

hyperplanes for each d ≤ n − 1. Given A ∈ A([0, 1]
n
), we can recognize that

A ∩ Hd
i = ∅ by compactness of [0, 1]

n
. We proceed to compute an input p to

Sortn+1 as follows:
We work in stages (`0, . . . , `n−1). We simultaneously test whether A∩Hn−1

`0
=

∅, whether A∩Hn−1
`0
∩Hn−2

`1
= ∅, . . ., and whether A∩Hn−1

`0
∩ . . .∩H1

`n−1
= ∅.

If we find a confirmation for a query involving `k as the largest index, we
write a k to p, increment `k by 1, and reset any `i for i > k. All tests of smaller
indices are continued (and hence will eventually fire if true before a largest index
test interferes). In addition, we write ns to p all the time to ensure an infinite
result.

Now consider the output Sortn+1(p). If this is 0ω, then A does not intersect
any n− 1-dimensional rational hyperplane at all. As a convex set, A has to be a
singleton. Thus, as long as we read 0s from Sortn+1(p), we can just wait until A
shrinks sufficiently to produce the next output approximation. If we ever read a
1 in Sortn+1(p) at position t, we have thus found a n−1-dimensional hyperplane
Hn−1
t intersecting A. We can compute A ∩ Hn−1

t ∈ A([0, 1]
n
), and proceed to

work with that set. By retracing the computation leading up to the observation
that A∩Hn−1

t−1 = ∅, we can find out how many larger-index tests were successful
before that. We disregard their impact on Sortn+1(p). Now as long as we keep
reading 1s, we know that A∩Hn−1

t−1 is not intersecting n−2-dimensional rational
hyperplanes (and hence could be singleton). Finding a 2 means we have identified
a n− 2-dimensional hyperplane Hn−2

t′ intersecting A∩Hn−1
t−1 , and we proceed to

work with A∩Hn−1
t−1 ∩H

n−2
t′ . Continuing this process, we always find that either

our set has been collapsed to singleton (from which we can extract the point), or
we will be able to reduce its dimension further (which can happen only finitely
many times).

5.3 A digression: Sort and finding connected components of a graph

On a side note, we explore how Sort relate to the problem FCC of finding a
connected component of a countable graph with only finitely many connected
components. Here the graph (V,E) is given via the characteristic functions of
V ⊆ N and E ⊆ N×N, and the connected component is to be produced likewise
as its characteristic function. In addition, we have available to us an upper bound
for the number of its connected components. In the reverse math context, this
problem was studied in [18] and shown to be equivalent to Σ0

2 -induction.

Theorem 4. The following are equivalent:
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1. FCC
2. Sort∗

Proof. FCC ≤W

∐
k∈N Sortk

We are given n ∈ N and a graph with at most n connected components.
For each 2 ≤ i ≤ n, we pick some standard enumeration (V ij )j∈N of the

i-element subsets of N. As soon as we learn that none of the V ij with j ≤ l is
an independent set, we write the l-th symbol i− 2 on the input to Sortn−1.
We write an n− 1 occasionally to ensure that the output is actually infinite.
Now assume we have access to the corresponding output q of Sortn−1. This
will be 0ω iff the graph had a single connectedness component, and of the
form 0l1p else where V 2

l is an independent pair. We can thus start computing
the connectedness component of 0 by searching in parallel whether q 6= 0ω

and searching for a path from 0 to the current number. Either search will
terminate. In the latter case, we can answer yes. In the former, we now
search for paths to the two vertices in the pair (and thus might be answer to
correctly no). Simultaneously we investigate the remnant p whether p = 1ω

(and thus the graph has 2 connectedness components, and any vertex is
linked to either member of V 2

l ), or find an independent set of size 3, etc.
Sortk ≡W Sortk−1

This was shown in [26].
Sort ≤W FCC

We compute a graph with at most 2 connectedness components. The graph
will be bipartite, with the odd and even numbers being separate components.
All odd numbers are connected to 0, and at any stage there will be some
even number 2n not yet connected to 0, which represents some number i
such that we have not yet read i times 0 in the input p to Sort. If we read
the i-th 0 in p at time t, we connect 2t+ 1 to both 0 and 2n. If we read a 1
at time t, then 2t+ 1 gets connected to 0 and 2t.
If p contains infinitely many 0s, then we end up with a single connectedness
component. Otherwise we obtain either the connectedness component of 0, or
equivalently, its complement. Once we see that e.g. 2 is in this connectedness
component, then we can output 0. Moreover, then 2 must be linked to 0 via
some 2t+ 1 (which we can exhaustively search for), and whether 2t is in the
connectedness component tells us whether the next bit of the output is 1
(and then continuous as 1ω), or 0 again, in which case we need to search for
the next significant digit.

FCC× FCC ≤W FCC
Just use the product graph.

6 Finite choice and sorting

Theorem 5. C#≤k+1 6≤W Sortk.

Proof. By the recursion theorem, it suffices to describe an effective procedure
which, given α ∈ kω and Φ, constructs an instance C of C#≤k+1 such that there
is a solution q to Sortk(α) such that Φ(q) is not a solution to C.
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For a finite tree T of height s, we say that σ ∈ T is extendible if there is
a leaf ρ ∈ T of height s which extends σ. Note that an instance of C#≤k+1 is
generated by an increasing sequence (Ts)s∈ω of finite binary trees satisfying the
following conditions for every s.

(I) Ts is of height s, and Ts has at least one, and at most k+1 extendible leaves.

(II) Every node σ ∈ Ts+1 \ Ts is of length s + 1, and extends an extendible leaf
of Ts.

More precisely, for such a sequence (Ts), the union T =
⋃
s Ts forms a (Ts)-

computable tree which has at most k+ 1 many infinite paths. Therefore, the set
of all infinite paths through T is an instance of C#≤k+1.

For η ∈ k<ω and u < k, let N [η, u] be the number of the occurrences of u’s
in η, i.e., N [η, u] = #{i : η(i) = u}. We define the u-partial sort of η as the
following string:

(η)sortu = 0N [η,0]1N [η,1]2N [η,2] . . . (u− 1)N [η,u−1].

Our description of an effective procedure which, given an instance α of Sortk,
returns a sequence (Ts)s∈ω of finite trees generating an instance of C#≤k+1 is
subdivided into k many strategies (Su)u<k. At stage s, the u-th strategy Su
for u < k believes that u is the least number occurring infinitely often in a
given instance α of Sortk, and there is no i ≥ s such that α(i) < u. In other
words, the strategy Su believes that (α � s)sortu

auω, the u-partial sort of the
current approximation of α followed by the infinite constant sequence uω, is
the right answer to the instance α of Sortk. Then, the strategy Su waits for
Φ((α � s)sortu

auω) being a sufficiently long extendible node ρ of Ts, and then
make a branch immediately after an extendible leaf ρu ∈ Ts extending ρ, where
this branch will be used for diagonalizing Φ((α � s)sortu

auω). This action injures
all lower priority strategies (Sv)u<v<k by initializing their states and letting ρv
be undefined.

More precisely, each strategy Su has a state, states(u) ∈ {0, 1, 2}, at each
stage s, which is initialized as state0(u) = 0. We also define a partial function
u 7→ ρsu for each s, where ρsu is extendible in Ts if it is defined. Roughly speaking,
ρsu is the stage s approximation of the diagonalize location for the u-th strategy
as described above. We assume that ρ0u is undefined for u > 0, for any s ∈ ω, ρs0
is defined as an empty string, and ρsu is a finite string whenever it is defined.

At the beginning of stage s + 1, inductively assume that a finite tree Ts of
height s and a partial function u 7→ ρsu has already been defined. Moreover,
we inductively assume that if states(u) = 1 then ρsu is defined, and ρsu

ai is
extendible in Ts for each i < 2. At substage u of stage s + 1, the strategy Su
acts as follows:

1. If (α � s+ 1)sortu 6= (α � s)sortu , then initialize the strategy, that is, put states+1(u) =
0, and let ρs+1

u be undefined. Then go to the next substage u + 1 if u < k;
otherwise go to the next stage s+ 2.
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2. If (α � s+ 1)sortu = (α � s)sortu and states(u) = 0, then ask if Φ((α � s)sortu
auω)[s]

is an extendible node ρ ∈ Ts such that for any v < u, if ρsv is defined, then
ρ 6� ρsv holds.

(a) If yes, define ρs+1
u as the leftmost extendible leaf of Ts extending such a

ρ, and put states+1(u) = 1. Injure all lower priority strategies, that is,
put states+1(v) = 0 and let ρs+1

v be undefined for any u < v < k. Then
go to the next stage s+ 2.

(b) If no, go to the next substage u + 1 if u < k; otherwise go to the next
stage s+ 2.

3. If (α � s+ 1)sortu = (α � s)sortu and states(u) = 1, then ask if Φ((α � s)sortu
auω)[s]

is an extendible node ρ ∈ Ts which extends ρsu
ai for some i < 2.

(a) If yes, define ρs+1
u = ρsu

a(1 − i) for such i, and put states+1(u) = 2.
Injure all lower priority strategies, that is, put states+1(v) = 0 and let
ρs+1
v be undefined for any u < v < k. Then go to the next stage s+ 2.

(b) If no, go to the next substage u + 1 if u < k; otherwise go to the next
stage s+ 2.

4. If not mentioned, set states+1(u) = states(u) and ρs+1
u = ρsu.

At the end of stage s+1, we will define Ts+1. Consider the downward closure
T ∗s+1 of the following set:

{ρs+1
u

ai : state(u) = 1 and i < 2} ∪ {ρs+1
u : state(u) = 2}.

Let T ∗,leafs+1 be the set of all leaves of T ∗s+1. Note that every element of T ∗,leafs+1

is extendible in Ts since ρs+1
u is extendible in Ts. For each leaf ρ ∈ T ∗,leafs+1 ,

if |ρ| = s + 1 then put ηρ = η; otherwise choose an extendible leaf η ∈ Ts
extending ρ, and define ηρ = ηa0.

Let T0 be an empty tree. We define Ts+1 as follows:

Ts+1 = Ts ∪ {ηρ : ρ ∈ T ∗,leafs+1 }.

Note that the extendible nodes in Ts+1 are exactly the downward closure of
{ηρ : ρ ∈ T ∗,leafs+1 }, and every element of T ∗s+1 is extendible in Ts+1, that is,

– If states+1(u) = 1, then ρs+1
u

ai is extendible in Ts+1 for each i < 2.
– If states+1(u) = 2, then ρs+1

u is extendible in Ts+1.

Our definition of (Ts)s∈ω clearly satisfies the property (II) mentioned above.
Concerning the property (I), one can see the following:

Lemma 1. Ts+1 has at least one, and at most k + 1 extendible leaves.

Proof. The former assertion trivially holds since ρs0 is always defined as an empty
string for any s ∈ ωω. For the latter assertion, it suffices to show that any
branching extendible node of Ts+1 is of the form ρs+1

u for some u < k. This is
because Ts is binary, and then the above property automatically ensures that Ts
has at most k + 1 extendible leaves.
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Let σ be a branching extendible node of Ts+1. If |σ| = s, since Ts is of height
s, σ is of the form ρs+1

u by our definition of Ts+1 . If |σ| < s, then it is also a
branching extendible node of Ts by the property (II) of our construction, and
thus it is of the form ρsu by induction. If ρsu = ρs+1

u for any u, then our Lemma
clearly holds. If ρsu 6= ρs+1

u , then it can happen at (2a) or (3a), and thus, there
is v ≤ u such that the v-th strategy has acted at stage s+ 1. We claim that for
any ρ ∈ T ∗s+1 we have ρsu 6≺ ρ. This claim implies that ρsu is not a branching
extendible node in Ts+1, which is a contradiction, and therefore we must have
ρsu = ρs+1

u .
To show the claim, note that ρs+1

w is undefined for w > v. If w < u and ρsw
is defined then ρsu 6� ρsw by Su’s action at (2a). If w < v then ρs+1

w = ρsw. For
w = v, if states+1(v) = 1 then Sv reaches at (2a) at stage s+ 1 and ρsv 6� ρsu by
Sv’s action. If states+1(v) = 2 then Sv reaches at (3a) at stage s+ 1, and thus
ρs+1
v is a successor of ρs+1

u and thus ρsu 6≺ ρs+1
v . Hence, there is no ρ ∈ T ∗s+1 such

that ρsu ≺ ρ as desired.

Lemma 2. If states+1(u) = 2, then Φ((α � s+ 1)sortu
auω) is not extendible in

Ts+1.

Proof. If states+1(u) = 2, then there is stage t ≤ s + 1 such that (α � t)sortu =
(α � s+ 1)sortu and the u-th strategy Su arrives at (2a) at stage s and (3a) at
s+ 1, and the u-th strategy is not injured by any higher priority strategy during
stages between t and s + 1, and in particular, ρtu = ρsu. By our action (3a),
Φ((α � s+ 1)sortu

auω) extends the sister of ρs+1
u . If v > u then ρs+1

v is undefined.
If v < u and ρtv is undefined, then since no injury happens below u during stages
between t and s+1, we have ρsu = ρtu 6� ρtv = ρs+1

v , which implies that ρs+1
v does

not extend the sister of ρs+1
u . Hence the sister of ρs+1

u does not extend to a leaf
of T ∗s+1. Therefore, Φ((α � s+ 1)sortu

auω) is not extendible in Ts+1.

We now verify our construction. Put T =
⋃
k Tk. By Lemma 1, since our

construction of (Ts)s∈ω satisfies the conditions (I) and (II), the set [T ] of all
infinite paths through T is an instance of C#≤k+1. Let α be an instance of Sortk.

Lemma 3. Φ(Sortk(α)) 6∈ [T ].

Proof. By pigeonhole principle, there exists u such that α(i) = u for infinitely
many i. Let u be the least such number. Then there exists s such that (α)sort :=
(α � s)sortu

auω is the right answer to the instance α of Sortk, that is, it is the
result by sorting α. Then, for any v ≤ u, the v-partial sort of α stabilizes after
s, that is, (α � t+ 1)sortv = (α � t)sortv for all t ≥ s. After the v-partial sort of
α stabilizes, the v-th strategy Sv can injure lower priority strategies at most
two times, i.e., at (2a) and (3a). Therefore, there is stage s0 ≥ s such that the
u-th strategy Su is never injured by higher priority strategies after s0. Then,
statet(u) converges to some value.

Case 1. limt statet(u) = 0. By our choice of s0, Su always goes to (2b), and
never goes to (2a) after s0. However, if Φ((α)sort) is an infinite string, then the



Finite choice, convex choice and sorting 13

strategy must go to (2a) since {ρsv : v < u} is finite. Hence, Φ((α)sort) cannot be
an infinite path through T .

Case 2. limt statet(u) = 1. Let s1 ≥ s0 be the least stage such that Su reaches
(2a) with some ρ. We claim that if an extendible node in Tt extends ρ, then it
also extends ρtu for any t > s1. According to the condition of Su’s strategy (2),
for any v < u, we have ρ 6� ρs1v = ρs0v . By injury in (2a), ρs1v is undefined for
any v > u. Therefore, any extendible node of Ts1+1 extends ρtv or ρtv

ai for some
v ≤ u and i < 2. Hence, if an extendible node in Ts1+1 extends ρ, then it also
extends ρs1+1

u = ρtu. By the property (II) of our construction, the claim follows.
Now, by our assumption, Su always goes to (3b), and never goes to (3a). This
means that Φ((α � t)sortu

auω) extends ρ, but does not extend ρtu for any t > s1.
Therefore, Φ((α � t)sortu

auω) is not extendible in Tt for any t > s1. Consequently,
Φ((α)sort) 6∈ [T ].

Case 3. limt statet(u) = 2. Let s2 ≥ s0 be the least stage such that Su reaches
(3a). Then by Lemma 2, Φ((α � s2)sortu

auω) is not extendible in Ts2 . Since Su is
not injured after s0, we conclude Φ((α)sort) 6∈ [T ].

By the recursion theorem, this obviously implies the desired assertion.

7 The comparison game for products of finite choice

In this section we consider the question when finite choice for some cardinality
is reducible to some finite product of finite choice operators. We do not obtain
an explicit characterization, but rather an indirect one. We introduce a special
reachability game (played on a finite graph), and show that the winner of this
game tells us whether the reduction holds. This in particular gives us a decision
procedure (which so far has not been implemented yet, though).

Our game is parameterized by numbers k, and n0, n1, . . . , n`. We call the
elements of

⋃
i≤`{i}× ni colours, and the elements of Πi≤`ni tokens. A token w

has colour (i, c), if wi = c.
The current board consists of up to k boxes each of which contains some set of

tokens, with no token appearing in distinct boxes. If there ever is an empty box,
then Player 1 wins. If the game continues indefinitely without a box becoming
empty, Player 2 wins. The initial configuration is chosen by Player 1 selecting
the number of boxes, and by Player 2 distributing all tokens into these boxes.

The available actions are as follows:

Remove Player 1 taps a box b. Player 2 selects some colours C such that every
token in b has a colour from C. Then the box b and all tokens with a colour
from C are removed.

Reintroduce colour Player 2 picks two ‘adjacent’ colours (i, c) and (i, d), such
that no token on the board has colour (i, d). For every box b, and every token
w ∈ b having colour c, he then adds a token w′ to b that is identical to w
except for having colour (i, d) rather than (i, c).
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Split box If there are less than k boxes on the board, Player 1 can select a box
b to be split into two boxes b0 and b1. Player 2 can chose how to distribute
the tokens from b between b0 and b1. Moreover, Player 2 can do any number
of Reintroduce colour moves before the Split box -move takes effect.

Theorem 6. C]≤k ≤W C]≤n0×. . .C]≤n`
iff Player 2 wins the comparison game

for parameters k, n0, . . . , n`.

The proof proceeds via Lemmas 4, 5 below. We observe that the game is
a reachability game played on a finite graph. In particular, it is decidable who
wins the game for a given choice of parameters. We have only considered the
case ni = 2 so far, and know:

Proposition 4.

1. Player 2 wins for k + 1 ≤ `.
2. Player 1 wins for k + 1 ≥ 2`−1

Proof. The first claim follows from Theorem 6 in conjunction with [20, Proposi-
tion 3.9] stating that C]≤n+1 ≤W Cn]≤2. The second is immediate when analyzing
the game.

Lemma 4. From a winning strategy of Player 2 in the comparison game we can
extract witnesses for the reduction C]≤k ≤W C]≤n0

× . . .C]≤n`
.

Proof. We recall that the input to C]≤k can be seen as an infinite binary tree
having at most k vertices on each level. We view this tree as specifying a strat-
egy for Player 1 in the comparison game: The boxes correspond to the paths
existing up to the current level of the tree. If a path dies out, Player 1 taps the
corresponding box. If a path splits into two, Player 1 splits the corresponding
box.

Which tokens exist at a certain time tells us how the instances to C]≤n0 , . . . ,C]≤n`

are built. The colour (i, j) refers to the j-path through the i-th tree at the cur-
rent approximation. If a colour gets removed, this means that the corresponding
path dies out. If a colour gets reintroduced, we split the path corresponding to
the duplicated colour into two.

It remains to see how the outer reduction witness maps infinite paths through
these trees back to an infinite path through the input tree. If we are currently
looking at some finite approximation of the input tree and the query trees,
together with an infinite path through each query tree, then the infinite paths
indicates some token which never will be removed. That means that any box
containing that token never gets tapped, i.e. that certain prefixes indeed can be
continued to an infinite path.

Lemma 5. From a winning strategy of Player 1 in the comparison game we can
extract a witness for the non-reduction C]≤k �W C]≤n0

× . . .C]≤n`
according to

Theorem 1.
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Proof. We need to describe a procedure that constructs an input for C]≤k given
inputs to C]≤n0

, . . . ,C]≤n`
and an outer reduction witness. Inverting the proce-

dure from Lemma 4, we can view the given objects as describing a strategy of
Player 2 in the game. We obtain the input tree to C]≤k by observing how the
winning strategy of Player 1 acts against this. When Player 1 taps the i-th box,
we let the i-th path through the tree die out. When Player 1 splits the i-th box,
we let both children of the i-th vertex present at the current layer be present
at the subsequent layer. Otherwise, we keep the left-most child of any vertex on
the previous layer.

Since Player 1 is winning, we will eventually reach an empty box. At that
point, we let all other paths die out, and only keep the one corresponding to the
empty box. This means that any path selected by the outer reduction witness
we obtained Player 2’s strategy from will fall outside the tree, and thus satisfy
the criterion of Theorem 1.
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