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Estimation of intrinsic growth factors in a
class of stochastic population model

Jingjie Li1,∗Jiang-Lun Wu2and Guang Zhang1
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Abstract

This paper discusses the problem of parameter estimation with nonlinear mean-
reversion type stochastic differential equations (SDEs) driven by Brownian motion
for population growth model. The estimator in the population model is the climate
effects, population policy and environmental circumstances which affect the intrinsic
rate of growth r. The consistency and asymptotic distribution of the estimator θ is
studied in our general setting. In the calculation method, unlike previous study, since
the nonlinear feature of the model, it is difficult to obtain an explicit formula for the
estimator. To solve this, some criteria are used to derive an asymptotically consistent
estimator. Furthermore Girsanov transformation is used to simplify the equations,
which then gives rise to the corresponding convergence of the estimator being with
respect to a family of probability measures indexed by the dispersion parameter, while
in the literature the existing results have dealt with convergence with respect to a given
probability measure.

MSC(2010): 60H10; 62F12; 62M05.

Keywords:population growth model; intrinsic rate of growth; environmental factors; non-
linear mean-reversion type SDEs; Girsanov transformation; least square estimator (LSE);
discrete observation; consistency of least square estimator; asymptotic distribution of LSE

1 Introduction

Let (Ω,F , P ) be a complete probability space endowed with a usual filtration {Ft}t≥0,
i.e., Fs ⊂ Ft ⊂ F for 0 ≤ s ≤ t ≤ 1 and F0 contains all null sets of P . The stochastic
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process X = (Xt, 0 ≤ t ≤ 1) with a given initial value X0 = x ∈ R, is determined by the
following mean reversion stochastic differential equation (SDE)

dXt = [r(θ) + α(Xt, t, ε)]Xtdt+ εXtdBt, 0 ≤ t ≤ 1, (1.1)

where ε ∈ (0, 1] is a parameter which stands for the scaling of the volatility; α is the mean
correction with the function: R × [0, 1] × (0, 1] → R being twice differentiable with respect
to x and differentiable with respect to t; Bt is a one dimensional {Ft}−Brownian motion
defined on the probability space {Ω,F , P, {Ft}0≤t≤1}; mean value r(θ) is a C2-function of
parameter θ with inf

θ∈Θ
|r′(θ)| > 0 for all θ ∈ Θ = Θ̄0(the closure of Θ0) with Θ0 being an open

bounded subset of R.

In fact, Equation (1.1) should be a population model with the stochastic inference, see
Mao [32]. Here, r is the intrinsic rate of growth determined the parameter θ which denotes
the climate effects [6], [15], [10], population policy [4] and environmental circumstances
[48] that affect the growth of the biological population. With the development of modern
industry and agriculture, climate warming, environmental pollution and population policy
continue to change the ecosystem, these factors have seriously affected the growth rate of
the population, and even have led to extinction of many species.

In the present paper, we aim to investigate the least squares estimator for the true value
of θ based on the (discrete) sampling data (Xti)

n
i=1. It is important to study the factors

that influence the growth rate of biological population, and it can effectively evaluate the
environment. In our model, the impact of factors on growth rates is monotonically increasing
or monotonically decreasing and meets the convex or concave, that is r′(θ) 6= 0 and r′′(θ) 6= 0.

In the past decades, the theory of SDEs has played an important role in modeling uncer-
tain and volatile systems arising in economics, finance and biology see, e.g. Basak, Ghosh and
Mukherjee [3], Dogan-Ciftci and Allen [7], Kunitomo and Takahashi [19], Long [29],Takahashi
[42], Takahashi and Yoshida [43], Uchida and Yoshida [44], and Yoshida [51]. Especially
after the mid-1970s, the SDEstheory are widely used in the study of population ecology,
population genetics, neurobiology, epidemiology, immunology, physiology and environmen-
tal pollution. So that biological mathematics has been development fast. In 1969, Levins
[24] analyzed the effects of the growth of biological populations on different types of random
variables. Compared with the deterministic environment, May [33] studied the stability of
the population growth model under random perturbation. After that, Braumann [5] gave
a detailed summary of all the previous results on population growth in a random environ-
ment. The study of the population model with random disturbance attracts the attention
of many scholars, and many of the existing literatures have explored this aspect in depth
and have made many remarkable achievements. However, compared with the deterministic
environment, the stochastic model has a very large difference in theory and research method
in the environment with stochastic perturbation.

Fundamental issues of parameter estimation theory for stochastic differential equations(SDEs)
is to estimate certain parameters (i.e., deterministic quantities) appearing in the random
models by certain observations (or by experimental data). There have been two main meth-
ods for the case of parameter estimation: maximum likelihood estimator(MLE) method,
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see for instance Andrade and Tavares [1], Kutoyants [22], Liptser and Shiryaev [27], Mishra
and Prakasa Rao[34], Moummou [35],Prakasa Rao [38], Wen [47] and least square estima-
tor (LSE) method, see Breton [23], Dorogoveev [8], and Kasonga [18]. Eventually, it turns
out that both the MLE and the LSE are asymptotically equivalent and the LSE enjoys the
strong consistency property under some regularity conditions. Moreover, Prakasa Rao [37]
gave a study of the asymptotic distribution. Further, Shimizu and Yoshida [39] considered
a multidimensional diffusion process with jumps whose jump term is driven by a compound
Poisson process. Shimizu [40] considered a similar case and proposed an estimating function
with more complicated situation.

The asymptotic theory of parametric estimation based on continuous time observations
is well developed, references can be found in e.g., Kutoyants [21], Kutoyants [20], Uchida
and Yoshida [45], Yoshida [53] and Yoshida [52].

On the other side, parametric estimation based on discrete-time observations have been
studied. For instant, Sφrensen [41] gave an excellent survey of existing estimation techniques
for stationary and ergodic diffusion processes observed at discrete points in time. Long
[28] gave an investigation of the parameter estimation for discretely observations on one
dimensional Ornstein-Uhlenbeck (O-U) processes driven by small Lévy noise. Since the
actual data is obtained in discrete time, it is more realistic and interesting to consider the
parameter estimation for diffusion processes based on discrete observation, We begin with
our study from this point of view.

Nowadays, the parameter estimation for mean-reversion type SDEs has received a lot of
attention. In Long, Shimizu and Sun [30], the author consider the problem of parameter
estimation for discretely observed stochastic processes driven by additive small Lévy noises.

dXt = b(Xt, θ)dt+ εdLt, 0 ≤ t ≤ 1.

In that case, the drift function b(Xt, θ) and the consistency of θ are studied. In this frame-
work, the author established the consistency and asymptotic normality for the proposed
estimators.

Recently, Li and Wu [25] give a study on drift parameter estimation for mean-reversion
type stochastic differential equations with discrete observations. In that paper, we consider
the model

dXt = [r + α(Xt, t, ε)]b(Xt, t)dt+ εσ(Xt, t)dBt, 0 ≤ t ≤ 1.

In order to study the consistency of the parameter r, we use a novel idea called Girsanov
transformation to simplify drift term α(Xt, t, ε). Then the consistency of the estimator r and
the associated asymptotic distribution are studied with high frequency and small dispersion
simultaneously.

Comparing to Long’s case in [30], the dispersion part in our case (1.1) contains εXtdBt

term which called bilinear noise perturbation [See [9]]. In control system, it is not purely
external, but depends on system states, and more difficult to stabilize the system than Long’s
case. According to the existing studies in the literature, there are two major difficulties in
our case. The first one is the appearance of the item α(Xt, t, ε) in the drift coefficient of
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(1.1). In our case here, Girsanov Transformation is applied to get rid of the term α(Xt, t, ε),
which changes the original probability measure P to a family of (equivalent) probability
measures Qε. The other difficulty is to gain the least square estimator explicitly, due to the
nonlinear feature of our case. Some criteria in statistical inference (See Chapter 5 of Vaart
[46]) is used to solve it. After these works, the consistency of the least square estimators is
derived under the family Qε to a limit which turns out to be the true value of the parameter
θ. Finally, the asymptotic distribution is gained under a new equivalent probability measure.

The paper is divided into four sections. In Section 2, Girsanov Transformation will be
used to simplify our system (1.1). Meanwhile, an explicit form of our estimator will be
defined. Moreover, some preliminaries and auxiliary results for subsequent developments
will be presented. In Section 3, the convergence of the estimators will be demonstrated with
high frequency and small dispersion simultaneously. The rate of the relevant convergence
and the associated asymptotic distribution are derived in Section 4. To finish, the last section
draws a conclusion.

2 Preliminaries and auxiliary results

In this section, we start with an introduction of the SDEs of mean-reversion type and
then we impose some assumptions on our SDE (1.1) to ensure the existence and uniqueness
of the solution. Furthermore, we introduce Girsanov transformation to simplify our equation
(1.1). On the other hand, in order to obtain the consistency and asymptotics of our LSE
θ̂n,ε, an explicit form of θ̂n,ε is defined. In addition, the following notations and preliminaries
will be given, which are useful for the development of our result. Throughout the paper,
we use notation ”→Q” to denote ”convergence in probability Q”; notation ”→P” to denote
”convergence in probability P” and notation ”⇒” to denote ”convergence in distribution”.

We assume equation (1.1) satisfies the following condition:
(1) α(x, t, ε)x− α(y, t, ε)y ≤ H|x− y|, where H > 0 is a constant, x, y ∈ R.
The above conditions guarantee (see, e.g., [49]) the existence of a unique solution of (1.1)
for a given initial data X0 = x ∈ R. The celebrated Girsanov transformation (also called
the transformation of the drift) provides a very useful and efficient approach to solve (1.1).
The transformation says the following. Since (1) implies that α is bounded, In order to get
rid of the term α(Xt, t, ε), for ε ∈ (0, 1], we can specify u such that

uε(Xt, t) =
α(Xt, t, ε)

ε
. (2.1)

Let u : R× [0, 1]→ R satisfy the following Novikov condition

E

[
exp

(
1

2

∫ t

0

|uε(Xs, s)|2ds
)]

<∞, ∀t ∈ [0, 1]. (2.2)

Then, we define

M ε
t = exp

(
−
∫ t

0

uε(Xs, s)dBs −
1

2

∫ t

0

u2
ε(Xs, s)ds

)
, ∀t ∈ [0, 1] (2.3)
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by the Girsanov theorem (cf e.g. Theorem IV 4.1 of [14]), M ε
t is an {Ft}t∈[0,1]martingale.

For each ε ∈ (0, 1], let Qε be a probability measure on F1, satisfying

dQε := M ε
1dP. (2.4)

Or equivalently, in terms of the Radon-Nikodym derivative

dQt

dP
= exp

(∫ t

0

u(Xs, s)dBs −
1

2

∫ t

0

u2(Xs, s)ds

)
.

We say Qε is absolutely continuous with respect to Ft and P. Moreover, we define

B̂ε
t :=

∫ t

0

uε(Xs, s)ds+Bt (2.5)

where B̂ε
t is an {Ft}t∈[0,1] Brownian motion with respect to Qε. Then we arrive at the

equation (1.1) for Xt, that is

dXt = r(θ)Xtdt+ εXtdB̂ε
t ∀t ∈ [0, 1]. (2.6)

which, from now, we will focus on. We denote the true value of the parameter r(θ) by
r(θ0) and the least square estimator of r(θ) by r(θ̂). As mentioned before we focus on
investigation of the least squares estimator for the true value r0 based on the (discrete)
sampling data (Xti)

n
i=1 obtained by the Euler-Maruyama numerical scheme for the Cauchy

problem of the equation (2.6) with initial X0 = x. For simplicity, we assume that the process
Xt is observed at regularly spaced time points 0 = t0 < t1 < ... < ti−1 < ti < ... < tn = 1
with {ti = i

n
, i = 0, 1, 2, ..., n}, where n ∈ N is arbitrarily fixed. That is,

Xti = x+ r(θ)
n∑
i=1

Xti−1
∆ti + ε

n∑
i=1

Xti−1
(B̂ε

ti
− B̂ε

ti−1
)

where ∆ti = ti − ti−1 = 1
n
; ∆B̂ε

ti
= B̂ε

ti
− B̂ε

ti−1
is the increment of Brownian motion. Let us

start with the use of the least square method to get a consistent estimator. First of all, we
consider the following contrast function

ρn,ε(θ) =
n∑
i=1

|Xti −Xti−1
− r(θ)Xti−1

∆ti|2

ε2X2
ti−1

∆ti
.

Then the least square estimator θ̂n,ε is defined as

θ̂n,ε := argmin ρn,ε(θ).

We study the least square estimator for the true value θ0 based on the sampling data
(Xti)

n
i=1 with small dispersion ε and large sample size n. The following lemma is a reformu-

lation of Theorem 7.3 of [32] (see also [14] or [36]), which is nothing but the Burkholder-
Davis-Gundy inequality in our setting
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Lemma 2.1. Let g ∈ L2(R+;R). Define, for 0 ≤ t ≤ T ,

x(t) =

∫ t

0

g(s)dBs

and

A(t) =

∫ t

0

|g(s)|2ds.

Then for every p > 0, there exist universal positive constants cp, Cp(depending only on p),
such that

cpE|A(t)|
p
2 ≤ E

(
sup

0≤s≤t
|x(s)|p

)
≤ CpE|A(t)|

p
2

for all t ≥ 0. In particular, one may take cp = (p/2)p, Cp = (32/p)p/2, if 0 < p < 2;
cp = 1, Cp = 4, if p = 2; cp = (2p)−p/2, Cp = [pp+1/2(p− 1)p−1]p/2, if p > 2.

3 Consistency of the least square estimator

This section is devoted to prove the consistency of the least squares estimator θ̂n,ε. The
following theorem is our first main result of this section.

Theorem 3.1. Let n→∞ and ε→ 0 with εn
1
2 → 0, we have θ̂n,ε →Qε θ0.

Before we give a proof, we derive an explicit decomposition for θ̂n,ε. Since minimizing
ρn,ε(θ) is equivalent to minimizing

φn,ε(θ) := ε2(ρn,ε(θ)− ρn,ε(θ0)). (3.1)

We have

φn,ε(θ) = ε2(ρn,ε(θ)− ρn,ε(θ0))

=
n∑
i=1

|Xti −Xti−1
−Xti−1

r(θ)∆ti−1|2 − |Xti −Xti−1
−Xti−1

r(θ0)∆ti−1|2

X2
ti−1

∆ti

=
n∑
i=1

|Xti −Xti−1
|2 − 2Xti−1

r(θ)∆ti−1(Xti −Xti−1
) + |Xti−1

r(θ)∆ti−1|2

X2
ti−1

∆ti

−
n∑
i=1

|Xti −Xti−1
|2 − 2Xti−1

r(θ0)∆ti−1(Xti −Xti−1
) + |Xti−1

r(θ0)∆ti−1|2

X2
ti−1

∆ti

=
n∑
i=1

2(Xti −Xti−1
)Xti−1

∆ti−1(r(θ0)− r(θ)) +X2
ti−1

∆t2i−1(|r(θ)|2 − |r(θ0)|2)

X2
ti−1

∆ti

= 2(r(θ0)− r(θ))
n∑
i=1

Xti −Xti−1

Xti−1

+ (r2(θ)− r2(θ0)).

(3.2)
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In what follows, we first let

Φn,ε(θ) =
n∑
i=1

Xti −Xti−1

Xti−1

(3.3)

which is the part of above decomposition. Since

Xti −Xti−1
= r(θ0)

∫ ti

ti−1

Xsds+ ε

∫ ti

ti−1

XsdB̂ε
s . (3.4)

We have

Φn,ε(θ) =
n∑
i=1

r(θ0)
∫ ti
ti−1

Xsds+ ε
∫ ti
ti−1

XsdB̂ε
s

Xti−1

=
n∑
i=1

r(θ0)
∫ ti
ti−1

(Xs −Xti−1
)ds+ r(θ0)

∫ ti
ti−1

Xti−1
ds+ ε

∫ ti
ti−1

XsdB̂ε
s

Xti−1

= r(θ0) +
n∑
i=1

r(θ0)
∫ ti
ti−1

(Xs −Xti−1
)ds

Xti−1

+
n∑
i=1

ε
∫ ti
ti−1

XsdB̂ε
s

Xti−1

:= r(θ0) + Φ1(n, ε) + Φ2(n, ε).

To prove Theorem 3.1, the following Proposition is needed. We shall study the asymptotic
behavior of Φn,ε(θ).

Proposition 3.1. Let n→∞ and ε→ 0 with εn
1
2 → 0, we have Φn,ε(θ)→Qε r(θ0).

Proof. This result follows from the following lemmas.

Lemma 3.1. We have Φ1(n, ε)→Qε 0 as n→∞ and ε→ 0.

Proof. From (3.4), we get

|Xt −Xti−1
| ≤

∫ t

ti−1

|r(θ0)||Xs|ds+ |ε
∫ t

ti−1

XsdB̂
ε
s |

≤ |r(θ0)|
∫ t

ti−1

|Xs −Xti−1
|+ |Xti−1

|ds+ |ε
∫ t

ti−1

XsdB̂
ε
s |.

By Gronwall’s Inequality

|Xt −Xti−1
| ≤ e|r(θ0)|(t−ti−1)

(
n−1|r(θ0)||Xti−1

|+ ε sup
ti−1≤t≤ti

|
∫ t

ti−1

XsdB̂
ε
s |
)
.

It yields

sup
ti−1≤t≤ti

|Xt −Xti−1
| ≤ en

−1|r(θ0)|
(
n−1|r(θ0)||Xti−1

|+ ε sup
ti−1≤t≤ti

|
∫ t

ti−1

XsdB̂
ε
s |
)
. (3.5)
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On the other side, from Φ1(n, ε), it is seen that

|Φ1(n, ε)| ≤ |r(θ0)|
n∑
i=1

∫ ti
ti−1
|Xs −Xti−1

|ds
|Xti−1

|

≤ |r(θ0)|
n∑
i=1

n−1 sup
ti−1≤t≤ti

|Xt −Xti−1
|

|Xti−1
|

.

From (3.5), note that

|Φ1(n, ε)| ≤ |r(θ0)|
n∑
i=1

n−1e
|r(θ0)|
n

(
n−1|r(θ0)||Xti−1

|+ ε sup
ti−1≤t≤ti

|
∫ t
ti−1

XsdB̂
ε
s |
)

|Xti−1
|

=
|r(θ0)|2e

|r(θ0)|
n

n
+

n∑
i=1

|r(θ0)|n−1e
|r(θ0)|
n ε sup

ti−1≤t≤ti
|
∫ t
ti−1

XsdB̂
ε
s |

|Xti−1
|

.

We set

Φ
(1)
1 (n, ε) := |r(θ0)|2e

|r(θ0)|
n

n
;

Φ
(2)
1 (n, ε) :=

n∑
i=1

|r(θ0)|n−1e
|r(θ0)|
n ε sup

ti−1≤t≤ti
|
∫ t
ti−1

XsdB̂εs |

|Xti−1 |
.

It is clear that Φ
(1)
1 (n, ε)→ 0, as n→∞. Then we consider Φ

(2)
1 (n, ε), by Holder’s Inequality,

Markov Inequality and Lemma 2.1, for δ > 0, we have

Qε(|Φ(2)
1 (n, ε)| > δ) ≤ EQε|Φ

(2)
1 (n, ε)|
δ

≤ 1

δ
EQε

n∑
i=1

|r(θ0)|n−1e
|r(θ0)|
n ε sup

ti−1≤t≤ti
|
∫ t
ti−1

XsdB̂
ε
s |

|Xti−1
|

=
1

δ

n∑
i=1

EQεX
−1
ti−1

(
|r(θ0)|n−1e

|r(θ0)|
n ε sup

ti−1≤t≤ti
|
∫ t

ti−1

XsdB̂
ε
s |
)

≤ 1

δ

n∑
i=1

(EQεX
−2
ti−1

)
1
2

[
EQε

(
|r(θ0)|n−1e

|r(θ0)|
n ε sup

ti−1≤t≤ti
|
∫ t

ti−1

XsdB̂
ε
s |
)2] 1

2

=
1

δ

n∑
i=1

(EQεX
−2
ti−1

)
1
2

[
|r(θ0)|2n−2e

|2r(θ0)|
n ε2EQε

(
sup

ti−1≤t≤ti
|
∫ t

ti−1

XsdB̂
ε
s |
)2] 1

2

=
1

δ

n∑
i=1

X−1
0 e

3ε2

2
ti−1−rti−1

[
|r(θ0)|2n−2e

|2r(θ0)|
n ε2EQε

(
sup

ti−1≤t≤ti
|
∫ t

ti−1

XsdB̂
ε
s |
)2] 1

2

:= A.

We set EQε( sup
ti−1≤t≤ti

|
∫ t
ti−1

XsdB̂
ε
s |2) = ϑ.
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It yields

ϑ ≤ 4EQε

(∫ ti

ti−1

|Xs|2ds
)

≤ 4

∫ ti

ti−1

EQε|Xs|2ds

= 4n−1X2
0exp(ε

2s+ 2r(θ)s).

(3.6)

So that, we have

A ≤ 1

δ

n∑
i=1

X−1
0 exp

(3ε2

2
ti−1 − r(θ)ti−1

)
|r0|n−1e

|r0|
n ε2n−

1
2X0 exp

(1

2
ε2s+ r(θ)s

)
= |r(θ0)|2

δ
exp

(3ε2

2
ti−1 − r(θ)ti−1 +

|r(θ0)|
n

+
1

2
ε2s+ r(θ)s

)
εn−

1
2

which imply A→Qε 0 as n→∞ and ε→ 0. Then we have φ
(2)
1 (n, ε)→Qε 0 as n→∞ and

ε→ 0. Finally, we get Φ1(n, ε)→Qε 0 as n→∞ and ε→ 0.

Lemma 3.2. Let n→∞ and ε→ 0 with εn
1
2 → 0, we have Φ2(n, ε)→Qε 0.

Proof. Since Φ2(n, ε) =
n∑
i=1

ε
∫ ti
ti−1

XsdB̂εs

Xti−1
.

Together with Holder’s Inequality, Markov Inequality and Lemma 2.3.1, we obtain, for δ

Qε(|Φ2(n, ε)| > δ) ≤ EQε|(Φ2(n, ε))|
δ

=
1

δ

n∑
i=1

EQεX
−1
ti−1

ε|
∫ ti

ti−1

XsdB̂
ε
s |

≤ 1

δ

n∑
i=1

(
EQεX

−2
ti−1

) 1
2
[
EQε(ε sup

ti−1≤t≤ti
|
∫ ti

ti−1

XsdB̂
ε
s)|2
] 1

2

≤ 1

δ

n∑
i=1

X−1
0 exp

(3ε2

2
ti−1 − r(θ)ti−1

)
2εn−

1
2X0exp

(1

2
ε2s+ r(θ)s

)
=

2

δ
exp

(3ε2

2
ti−1 − r(θ)ti−1 +

1

2
ε2s+ r(θ)s

)
εn

1
2

which implies that Φ2(n, ε)→Qε 0 as n→∞, ε→ 0 and εn
1
2 → 0.

Then by using Lemma 3.1 and 3.2, we have

Φ(n, ε) := r(θ0) + φ1(n, ε) + φ2(n, ε)→Qε r(θ0)

as n→∞ and ε→ 0 with εn
1
2 → 0.

Proof. Proof of Theorem 3.1.
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We recall that φn,ε(θ) = 2(r(θ0) − r(θ))
n∑
i=1

Xti−Xti−1

Xti−1
+ (r2(θ) − r2(θ0)), by Proposition

3.1, as n→∞, ε→ 0 and εn
1
2 → 0, we have

φn,ε(θ)→Qε (r(θ)− r(θ0))2. (3.7)

Recall that our contrast function is

ρn,ε(θ) =
n∑
i=1

|Xti −Xti−1
− r(θ)Xti−1

∆ti|2

ε2X2
ti−1

∆ti
.

In order to obtain the least square estimator r(θ̂n,ε), we let

∂ρn,ε(r(θ))

∂θ
= r′(θ).

Since r′(θ) 6= 0, we get

∂ρn,ε(r(θ̂))

∂r(θ̂)
= 0

So that

r(θ̂n,ε) =
n∑
i=1

Xti −Xti−1

Xti−1

. (3.8)

From Proposition 3.1, we know Φn,ε(θ)→Qε r(θ0), as n→∞, ε→ 0 and εn
1
2 → 0. Together

with (3.3) and (3.8) we get r(θ̂n,ε)→Qε r(θ0) as n→∞, ε→ 0 and εn
1
2 → 0. Since r(θ) is

a C2-function of θ with r′(θ) 6= 0, we have

{|θ̂n,ε − θ0| > η} ⊂
{
|r(θ̂n,ε)| >

η

inf
θ∈Θ
|r′(θ)|

}
for η > 0. This implies θ̂n,ε →Qε θ0 as n → ∞, ε → 0 and εn

1
2 → 0. This completes the

proof.
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4 Asymptotic of The Least Square Estimator

We aim to study the asymptotic behavior of the least square estimator in this section. For
the sake of simplicity, we assume that α(x, t, ε) = εα(x, t) such that Q = Qε is independent
of ε. Then we formulate our main result of this section as following theorem.

Theorem 4.1. Let n→∞ and ε→ 0 with εn
1
2 → 0, we have

ε−1(θ̂n,ε − θ0)→Q

(
r′(θ0)

)−1

U

where U is a Q-random variable with standard normal distribution N(0, 1).

Proof. Before we give a proof, we introduce

I(θ) =
(
r′(θ)

)2

and

D(θ) = −
(
r′(θ)

)2

. (4.1)

Since

φn,ε(θ) = 2(r(θ0)− r(θ))
n∑
i=1

Xti −Xti−1

Xti−1

+ (r2(θ)− r2(θ0)).

We have

φ′n,ε(θ) = −2
n∑
i=1

Xti −Xti−1

Xti−1

r′(θ) + 2r(θ)r′(θ).

Set

fn,ε(θ) =
n∑
i=1

Xti −Xti−1

Xti−1

r′(θ)− r(θ)r′(θ)

and

Dn,ε(θ) = f ′n,ε(θ)

=
n∑
i=1

Xti −Xti−1

Xti−1

r′′(θ)−
(
r′(θ)

)2

− r(θ)r′′(θ).

Let B(θ0; ρ) = {θ : |θ − θ0| ≤ ρ} for ρ > 0. Then, by the consistency of θ̂n,ε, there exists

a sequence ηn,ε → 0 as n → ∞ and ε → 0 such that B(θ0; ηn,ε) ⊂ Θ0, and Pθ0 [θ̂n,ε ∈
B(θ0; ηn,ε)]→ 1. When θ̂n,ε ∈ B(θ0; ηn,ε), we have

ε−1{fn,ε(θ̂n,ε)− fn,ε(θ0)}

=ε−1(θ̂n,ε − θ0)

∫ 1

0

Dn,ε(θ0 + u(θ̂n,ε − θ0))du.

11



Now, we will consider ε−1fn,ε(θ̂n,ε) and ε−1fn,ε(θ0) respectively. For ε−1fn,ε(θ̂n,ε), we have

ε−1fn,ε(θ̂n,ε) = ε−1

n∑
k=1

Xti −Xti−1

Xti−1

r′(θ̂n,ε)− ε−1r(θ̂n,ε)r
′(θ̂n,ε)

= ε−1r(θ̂n,ε))r
′(θ̂n,ε)− ε−1r(θ̂n,ε)r

′(θ̂n,ε)

= 0

since r(θ̂n,ε) =
n∑
i=1

Xti−Xti−1

Xti−1
. by (3.8). For ε−1fn,ε(θ0), we present following Proposition.

Proposition 4.1. We have
ε−1fn,ε(θ0)→Q r

′(θ0)U

as n→∞ and ε→ 0.

Proof. Note that from (3.4)

ε−1fn,ε(θ0) = ε−1
( n∑
i=1

Xti −Xti−1

Xti−1

r′(θ0)− r(θ0)r′(θ0)
)

= ε−1
( n∑
i=1

r(θ0)
∫ ti
ti−1

(Xs −Xti−1
)ds

Xti−1

+
n∑
i=1

ε
∫ ti
ti−1

XsdB̂s

Xti−1

)
r′(θ0).

(4.2)

We set

C(n, ε) = ε−1
( n∑
i=1

r(θ0)
∫ ti
ti−1

(Xs −Xti−1
)ds

Xti−1

+
n∑
i=1

ε
∫ ti
ti−1

XsdB̂s

Xti−1

)
= ε−1

n∑
i=1

r(θ0)
∫ ti
ti−1

(Xs −Xti−1
)ds

Xti−1

+
n∑
i=1

∫ ti
ti−1

XsdB̂s

Xti−1

:= C1(n, ε) + C2(n, ε).

To prove Proposition 4.1, we give the following two lemmas.

Lemma 4.1. We have C1(n, ε)→Q 0 as n→∞ and ε→ 0.

Proof. From C1(n, ε), we have

|C1(n, ε)| ≤ |ε−1||r(θ0)|
n∑
i=1

∫ ti
ti−1
|Xs −Xti−1

|ds
|Xti−1

|

≤ |ε−1||r(θ0)|
n∑
i=1

n−1 sup
ti−1≤t≤ti

|Xt −Xti−1|

|Xti−1
|

.

12



From (3.5), we have

|C1(n, ε)| ≤ |ε−1||r(θ0)|
n∑
i=1

n−1e
|r(θ0)|
n (n−1|r(θ0)||Xti−1

|+ ε sup
ti−1≤t≤ti

|
∫ t
ti−1

XsdB̂s|)

|Xti−1
|

=
|ε−1||r(θ0)|2e

|r(θ0)|
n

n
+ |r(θ0)|

n∑
i=1

n−1e
|r(θ0)|
n sup

ti−1≤t≤ti
|
∫ t
ti−1

XsdB̂s|

|Xti−1
|

:= C1
1(n, ε) + C2

1(n, ε).

It is easy to see that C1
1(n, ε)→Q 0, as n→∞.

Then we consider C2
1(n, ε), by Holder’s Inequality, Markov Inequality, Lemma 2.3.1, we have

Q(|C2
1(n, ε)| > δ) ≤ EQ|C2

1(n, ε)|
δ

≤ 1

δ
|r(θ0)|EQ

n∑
i=1

n−1e
|r(θ0)|
n sup

ti−1≤t≤ti
|
∫ t
ti−1

XsdB̂s|

|Xti−1
|

=
1

δ
|r(θ0)|

n∑
i=1

EQX
−1
ti−1

(n−1e
|r(θ0)|
n sup

ti−1≤t≤ti
|
∫ t

ti−1

XsdB̂s|)

≤ 1

δ
|r(θ0)|

n∑
i=1

(EQX
−2
ti−1

)
1
2 [EQ(n−1e

|r(θ0)|
n sup

ti−1≤t≤ti
|
∫ t

ti−1

XsdB̂s|)2]
1
2

=
1

δ
|r(θ0)|

n∑
i=1

(EQX
−2
ti−1

)
1
2 [n−2e

|2r(θ0)|
n EQ( sup

ti−1≤t≤ti
|
∫ t

ti−1

XsdB̂s|)2]
1
2

=
1

δ
|r(θ0)|

n∑
i=1

X−1
0 e

3ε2

2
ti−1−r(θ0)ti−1 [n−2e

|2r(θ0)|
n EQ( sup

ti−1≤t≤ti
|
∫ t

ti−1

XsdB̂s|)2]
1
2

= ι.

We recall that EQ( sup
ti−1≤t≤ti

|
∫ t
ti−1

XsdB̂s|2) = ϑ.

By equation (3.6), we have

ι ≤ 1

δ
|r(θ0)|

n∑
i=1

X−1
0 exp(

3ε2

2
ti−1 − r(θ)ti−1)n−1e

|r(θ0)|
n 2n−

1
2X0 exp(

1

2
ε2s+ r(θ0)s)

=
2

δ
|r(θ0)| exp(

3ε2

2
ti−1 − r(θ)ti−1 +

|r(θ0)|
n

+
1

2
ε2s+ r(θ)s)n−

1
2

which implies ι →Q 0 as n → ∞. Then we have C2
1(n, ε) →Q 0 as n → ∞ and ε → 0.

Finally, we get C1(n, ε)→Q 0 as n→∞ and ε→ 0.

Let X0
t be the solution of the underlying ordinary differential equation under the true

value of the drift parameter:

dX0
t = r(θ0)X0

t dt, X0
0 = x0. (4.3)
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Lemma 4.2. We have C2(n, ε) →Q U as n → ∞ and ε → 0, where U is a Q-random
variable with standard normal distribution N(0, 1).

Proof. Since

C2(n, ε) =
n∑
i=1

∫ ti
ti−1

XsdB̂s

Xti−1

.

=
n∑
i=1

X−1
ti−1

∫ ti

ti−1

XsdB̂s

=
n∑
i=1

(X0
ti−1

)−1

∫ ti

ti−1

X0
sdB̂s +

n∑
i=1

(X0
ti−1

)−1

∫ ti

ti−1

(Xs −X0
s )dB̂s

+
n∑
i=1

(X−1
ti−1
− (X0

ti−1
)−1)

∫ ti

ti−1

XsdB̂s

:= C1
2(n, ε) + C2

2(n, ε) + C3
2(n, ε).

Define a deterministic process V (s) by V (s) =
n∑
i=1

(X0
ti−1

)−1X0
s 1(ti−1,ti](s). Let V+(s) and

V−(s) denote the positive and negative part of V (s). By Theorem 4.1 of Kallenberg [17],
there exist two independent Q-Brownian motions B̂′, B̂′′, which have the same distribution
of B̂, such that

C1
2(n, ε) =

∫ 1

0

V (s)dB̂s = B̂′ ◦
∫ 1

0

V 2
+(s)ds− B̂′′ ◦

∫ 1

0

V 2
−(s)ds.

Note that

V 2
+ =

n∑
i=1

(X0
ti−1

)−2(X0
s )2

+1(ti−1,ti](s)

and

V 2
− =

n∑
i=1

(X0
ti−1

)−2(X0
s )2
−1(ti−1,ti](s).

Then we have ∫ 1

0

V 2
+(s)ds→

∫ 1

0

(X0
s )−2(X0

s )2
+ds

and ∫ 1

0

V 2
−(s)ds→

∫ 1

0

(X0
s )−2(X0

s )2
−ds

as n→∞. Then,

B̂′ ◦
∫ 1

0

V 2
+(s)ds→ B̂′ ◦

∫ 1

0

(X0
s )−2(X0

s )2
+ds

and

B̂′′ ◦
∫ 1

0

V 2
−(s)ds→ B̂′′ ◦

∫ 1

0

(X0
s )−2(X0

s )2
−ds.
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We get

C1
2(n, ε)→Q U1

(∫ 1

0

(X0
s )(−2)(X0

s )2
+ds
) 1

2 − U2

(∫ 1

0

(X0
s )−2(X0

s )2
−ds
) 1

2

where U1 and U2 are two random variables with standard normal distribution N(0, 1) as
n→∞. Since

X0
s+ = max(X0

s , 0)

and
X0
s− = max(−X0

s , 0).

C1
2(n, ε)→Q {U1, X0

s≥0

U2, X0
s≤0

as n→∞.
So it can be summarized by

C1
2(n, ε)→Q U

as n→∞.

Now, let us consider C2
2(n, ε). By using Holder’s Inequality, Markov Inequality, Lemma

2.1, we get

Q(|C2
2(n, ε)| > δ) ≤ δ−1EQ[

n∑
i=1

(X0
ti−1

)−1 sup
ti−1≤t≤ti

|
∫ ti

ti−1

(Xs −X0
s )dB̂s|]

≤ 1

δ

n∑
i=1

EQ[(X0
ti−1

)−2]
1
2 [EQ( sup

ti−1≤t≤ti
|
∫ ti

ti−1

(Xs −X0
s )dB̂s)|2]

1
2

≤ 1

δ

n∑
i=1

EQ[(X0
ti−1

)−2]
1
2 [EQ

∫ ti

ti−1

|Xs −X0
s |2ds]

1
2

≤ 1

δ

n∑
i=1

EQ[(X0
ti−1

)−2]
1
2 [2t

1
2EQ sup

ti−1≤t≤ti
|Xs −X0

s |ds]

which tends to zero as n→∞ and ε→ 0. For C3
2(n, ε), we have

C3
2(n, ε) =

n∑
i=1

(X−1
ti−1
− (X0

ti−1
)−1)

∫ ti

ti−1

XsdB̂s

=
n∑
i=1

(−
Xti−1

−X0
ti−1

X0
ti−1

Xti−1

)

∫ ti

ti−1

XsdB̂s

≤
n∑
i=1

(−
sup

ti−1≤t≤ti
|Xti−1

−X0
ti−1
|

X0
ti−1

Xti−1

)

∫ ti

ti−1

XsdB̂s.

sup
0≤t≤1

|Xt −X0
t | →Qε 0 as ε→ 0.[See Lemma2.3 of [25]] we have C3

2(n, ε)→Q 0 as n→∞.
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Proof of Proposition 4.1, by combining Lemma 4.1 and Lemma 4.2, we have

C(n, ε) = C1(n, ε) + C2(n, ε)

→Q U

as n→∞ and ε→ 0.
By (4.2),

ε−1fn,ε(θ0)→Q r
′(θ0)U

as n→∞ and ε→ 0.
Now we construct∣∣∣ ∫ 1

0

Dn,ε(θ0 + u(θ̂n,ε − θ0))du−Dn,ε(θ0)
∣∣∣1{ ˆθn,ε∈B(θ0;ηn,ε)}

≤ sup
θ∈B(θ0;ηn,ε)

|Dn,ε(θ)−Dn,ε(θ0)|

≤ sup
θ∈B(θ0;ηn,ε)

|Dn,ε(θ)−D(θ)|+ sup
θ∈B(θ0;ηn,ε)

|D(θ)−D(θ0)|+ sup
θ∈B(θ0;ηn,ε)

|Dn,ε(θ0)−D(θ0)|

:=A1 + A2 + A3.

Since

Dn,ε(θ) =
n∑
i=1

Xtk −Xtk−1

Xtk−1

r′′(θ)−
(
r′(θ)

)2

− r(θ)r′′(θ).

According to Proposition 3.1, (3.3) and (4.1), let n→∞ and ε→ 0 with εn
1
2 → 0, then, we

obtain
Dn,ε(θ)→Q D(θ).

Consequently, we have A1 → 0, A2 → 0 and A3 → 0 as n → ∞ and ε → 0 with εn
1
2 → 0.

So that, we get ∫ 1

0

Dn,ε(θ0 + u(θ̂n,ε − θ0))du→Q D(θ0)

Finally, we are ready to prove Theorem 4.1. Proof of Theorem 4.1. With previous proof, we
have

ε−1(θ̂n,ε − θ0) = −
(∫ 1

0

Dn,ε(θ0 + u(θ̂n,ε − θ0))dθ
)−1

ε−1fn,ε(θ0)

→Q

(
r′(θ0)

)−1

U

as n→∞ and ε→ 0 with εn
1
2 → 0.
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5 Conclusion

In this paper, we give a study on the problem of parameter estimation in a class of
stochastic population model. In population system, the parameter θ represent the climate
effects, population policy and environmental circumstances including temperature, humidity,
air quality, toxins and so on. These factors affect the rate of growth r directly. We consider
the consistency and asymptotic distribution of the parameter θ in (1.1). In the calculation,
some novel ideas are used. For instant, we utilise the celebrated Girsanov Transformation
to simplify the drift coefficient, which then changes the originally given probability measure
P to a family of equivalent probability measures {Qε}ε>0. The significance of the parameter
estimation in the model is to conduct an environmental assessment of the located environ-
ment.
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