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Abstract  

Chronic respiratory diseases such as chronic obstructive pulmonary disease 
(COPD), lung cancer and cystic fibrosis (CF) are leading causes of disease and death 
in the UK. These diseases are difficult to monitor and diagnose in an efficient and 
timely manner. In this work, Fourier-transform infrared spectroscopy (FTIR) was 
used to investigate sputum samples from lung cancer, COPD and CF patients for 
specific IR-spectral markers which could be utilised for the diagnosis and 
management of these conditions. It is proposed that spectral changes correspond to 
structural changes to sputum mucins, which could be biomarkers for COPD 
progression and exacerbation, for lung cancer diagnosis, and for CF patient 
monitoring. 

In this study, sputum samples from COPD patients were obtained for FTIR 
analysis to generate a spectral library for use in creation of a generalised predictive 
model for COPD exacerbation. It was found that COPD exacerbations are a highly 
complex and heterogeneous condition, which made the generation of a generalised 
predictive model for exacerbation problematic. One model developed in this work 
demonstrated a capability to determine exacerbation from COPD baseline samples 
with 80% sensitivity and 48% specificity. Small correlations were found between peak 
positions and absorbance intensities around wavenumbers associated with mucin 
glycoprotein structural change, and physiological factors, such as smoking status or 
lung function. 

FTIR spectroscopy was shown to have a very high power for distinguishing 
lung cancer sputum samples from non-cancer respiratory disease sputum samples, 
using a simple protocol with no sample pre-processing and linear regression 
modelling. A series of diagnostic algorithms were developed and were shown to have 
a greater than 90% sensitivity and specificity for detecting lung cancer from raw 
sputum.  

FTIR was also successfully utilised in the monitoring of CF patient sputum 
samples for the presence of a novel inhaled therapeutic, OligoG, during and after 
treatment. It was found that FTIR spectroscopy can readily detect very low 
concentrations of OligoG in sputum with no sample processing or targeting of the 
therapeutic necessary.  

In conclusion, FTIR was shown to be a powerful tool for analysis of raw 
sputum, capable of providing high-quality molecular structural information 
pertaining to the mucin glycoproteins, and proposed changes to these structures. 
Using this information, it is possible to distinguish lung cancer sputum from other 
respiratory disease sputum, and monitor the levels of a novel therapeutic in CF 
patient lungs. Associations were made between FTIR spectral features and 
physiological factors of COPD patients, however further work is needed to fully 
evaluate if COPD exacerbation can be predicted using this method. 
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General Introduction: Chronic Diseases of the Respiratory 

System and Vibrational Spectroscopic Techniques for Biofluid 
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1.0 Chapter Aims 

This chapter seeks to provide a comprehensive review of the current literature 

focussing on chronic diseases of the respiratory system, and vibrational spectroscopy. 

A brief overview of the human respiratory system will be given, before providing 

reviews of three major respiratory diseases which pose significant threats to public 

health; chronic obstructive pulmonary disease, lung cancer, and cystic fibrosis.  

The second section of the literature review will focus on mucus and mucin 

biochemistry, providing a comprehensive examination of the role of mucus and 

mucins in the human respiratory system. It will also focus on how changes to mucus 

composition can contribute to chronic respiratory disease. 

The final portion of the literature review will focus on vibrational spectroscopy, 

detailing the theoretical and mechanistic principles of various vibrational 

spectroscopic techniques, and how these techniques can be employed in patient 

biofluid analysis for disease diagnosis and/or management. 

This chapter will also set-out the research questions and aims & objectives of this 

thesis. 

1.1 The Respiratory System and Chronic Diseases of the 

Respiratory System 

1.1.1 A Brief Overview of the Physiology of the Human Respiratory System 

In order to fully comprehend how physiological changes are brought about in 

the development of respiratory disease and how these changes can affect the patient, 

it is important to have an understanding of the healthy human respiratory system. 

The physiology of the human respiratory system will be briefly described. 

The human respiratory system is a highly-specialized set of organs and 

structures in which the primary function of gas exchange between the alveoli and the 

blood is carried out. To effectively and efficiently accomplish this function, the lung 

requires a very large internal surface area through which the gases will diffuse. The 

internal surface area of the lungs was estimated to range between 30-50m2 (Hasleton, 

1972), but a more recent study focussing on the deposition of bioaerosols within the 

lung used an estimated average internal surface area of adult lung to be 77.9m2 

(Guha, Hariharan, & Myers, 2014). The airways are made up of many different tissues 

including alveoli, where gas exchange occurs, and the bronchi and bronchioles, 
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through which the inhaled and exhaled air passes. The bronchi and bronchioles 

divide and subdivide many times, creating a vastly complex and intricate branching 

structure which allows the exchange of approximately 6 litres of gas per minute 

(Rackley & Stripp, 2012). The epithelial lining of the upper and large respiratory tracts 

is pseudostratified, with the lower and small being columnar and cuboidal (Crystal, 

Randell, Engelhardt, Voynow, & Sunday, 2008). The airway epithelium is highly 

specialised with many different types of cells including basal cells, goblet cells and 

ciliated cells performing multiple functions to ensure homeostasis in the lung. The 

composition of the airway epithelium includes a high number of mucus-producing 

cells; submucosal glandular cells and, lining the epithelium there are surface 

mucus/goblet cells (Vareille, Kieninger, Edwards, & Regamey, 2011). These cells 

express and secrete mucin proteins, which form a mucus gel lining the airways. This 

thin protective layer forms the airway surface liquid (ASL) layer, the main function of 

which is to maintain correct hydration of the airway and to form a physical and 

chemical barrier in which foreign particles and pathogens are trapped and 

subsequently removed through the action of the ciliated cells by mucociliary 

clearance (MCC) (Knowles & Boucher, 2002). 

Toll-like receptors (TLRs) are fully expressed within the airway epithelium 

and have a direct role in regulating the immune response through immune cell 

recruitment and cytokine signalling (Parker & Prince, 2011). For example, 

lipopolysaccharide (LPS), a well-characterised molecule found in bacterial cell walls 

capable of inducing inflammation, is known to directly stimulate TLR-4 leading to 

cytokine and interferon production (Lu, Yeh, & Ohashi, 2008). 

Immune cells including eosinophils, neutrophils, macrophages, dendritic 

cells, T-cells and natural killer (NK) cells are also present in the epithelial lining and 

are a vital part of the innate and adaptive immune response in the lungs (Figure 1-1). 

Together they form a highly important system, vital for the protection of the airways 

against bacterial and viral infection (Vareille et al., 2011).  
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Figure 1-1: The airway epithelium acts as a physical barrier against pathogens and 
foreign particles, such as cigarette smoke. Mucus is secreted from mucus-secreting 
goblet cells into the ASL and traps any pathogens or particles which enter the airway; 
ciliary beating action pushes the mucus out of the airway. Infection from bacteria or 
virus, or assault by foreign particles induces an initial innate immune response, with 
Type I and II interferons (IFNs), nitric oxide, β-defensins and lactoferrin being 
released into the ASL. TLR-binding is important for activation of signal-transduction 
pathways which lead to chemokine and cytokine release. Chemokines and cytokines 
are released by the epithelial cells, recruiting eosinophils, neutrophils, macrophages, 
dendritic cells, T-cell and NK-cells to the site of infection. (Figure and information 
adapted from Parker & Prince, 2011; Qiu et al., 2015; Thorley et al., 2011; Vareille et al., 
2011). ASL – Airway surface liquid; TLRs – Toll-like Receptors; NK-cells – Natural Killer 
cells; IFNs – Interferons; EGFR – epithelial growth factor receptor  

All of these highly-specialized cells work together to ensure the airways are 

kept in good health and free from infection. However when one or more parts of the 

respiratory system stop working correctly, it can contribute to the pathogenesis of a 

multitude of chronic respiratory disorders, including asthma, cystic fibrosis, 

bronchiectasis, emphysema, COPD and lung cancer. Diseases such as these represent 

a major burden on healthcare systems across the world; according to the World 

Health Organisation (WHO), chronic respiratory disease is responsible for 3.8 million 

deaths per year, equivalent to approximately 9% of all deaths worldwide (World 

Health Organization, 2018). Therefore, it is important that efforts are focussed on 
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reducing this mortality burden, through enhanced diagnostic technologies to 

diagnose diseases more quickly and efficiently and novel therapeutics to reduce 

symptom burden on the patient and improve their quality of life. 

1.1.2 Chronic Obstructive Pulmonary Disease 

1.1.20 Introduction to Chronic Obstructive Pulmonary Disease 

Chronic obstructive pulmonary disease (COPD) is a serious, debilitating and 

progressive disease of the respiratory tract, characterized by irreversible chronic air-

flow reduction which is associated with an abnormal inflammatory response of the 

lungs to toxins and pollutants. Airflow is limited by chronic obstruction of the 

airways through increased mucus production and reduced mucus clearance via MCC 

activity. The principle cause of COPD is smoking, but exposure to environmental and 

occupational pollutants and chemicals can have a significant impact on disease 

progression (Blanc et al., 2009; Health and Safety Executive, 2014). COPD patients are 

also at an increased risk of developing lung cancer, and the two conditions are 

thought to be linked by inflammatory pathways (Houghton, Mouded, & Shapiro, 

2008). 

COPD is a term used to describe progressive and irreversible respiratory 

diseases involving chronic decline in lung function. This term mainly incorporates the 

diseases chronic bronchitis (CB) and emphysema. CB occurs due to hypersecretion of 

mucus and narrowing of the bronchi, caused by inappropriate inflammation 

responses, and emphysema is a permanent destructive enlargement of the airspaces 

within the lung without accompanying fibrosis of the lung tissue (Health and Safety 

Executive, 2014).  

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) in their 

latest report (Global Initiative for Chronic Obstructive Lung Disease, 2018) define 

COPD as follows;  

“Chronic Obstructive Pulmonary Disease (COPD) is a common, 

preventable and treatable disease that is characterized by persistent 

respiratory symptoms and airflow limitation that is due to airway 

and/or alveolar abnormalities usually caused by significant exposure to 

noxious particles or gases”  
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There are approximately 3 million deaths due to COPD per year, and it is 

projected to rise to become the 3rd leading cause of death by 2030, due to a predicted 

increase in tobacco usage (Global Burden of Disease Collaborators, 2015; World 

Health Organization, 2008). Within England and Wales, it is estimated that there are 

approximately 900,000 COPD patients, although this number could be much higher 

due to under-diagnosis with the true number being between 1.5 million and 3.8 

million (Health and Safety Executive, 2014). COPD is consistently responsible for 

between 25,000 and 30,000 deaths per annum for the last 25 years in the UK (Health 

and Safety Executive, 2014). A recent study estimated how the prevalence of COPD 

and the associated costs to healthcare providers will grow until 2030; the authors 

calculated that in England alone, numbers of COPD patients could grow from 

950,000 in 2011, to 1.3 million in 2030: an increase of 38%. They also estimated costs to 

rise from £1.5 billion, to over £2.3 billion by 2030 (McLean et al., 2016). 

Stage FEV1/FVC and FEV1 Scores Characteristics 

0: At risk Normal Chronic cough and sputum 
production, but lung function 
is normal. 

FEV1 < 30% failure. 
Chronic cough and sputum 
production also present 

Table 1-1: Classification stages of COPD, with increasing severity of symptoms and 
decrease in lung function between each stage; FEV: Forced expiratory volume in 1 
second; FVC: Forced vital capacity; COPD: Chronic obstructive pulmonary disease. 
Information adapted from Rabe et al. (2007) 

A diagnosis of COPD is considered in any patient who displays the symptoms 

of cough, sputum production, dyspnoea, and/or a history of exposure to risk factors 

for the disease, such as smoking or heavy exposure to a variety of dusts and chemicals 

found in an occupational capacity. To confirm a diagnosis of COPD, lung function is 

measured using the ‘Forced Expiratory Volume in one second’ (FEV1) and the ‘Forced 
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Vital Capacity’ (FVC). The diagnosis of partially irreversible air-flow limitation is 

confirmed by the presence of a post-bronchodilator FEV1 of < 80% of the predicted 

value, in combination with a FEV1/FVC < 70% (Rabe et al., 2007). Example spirometry 

traces from GOLD for normal and obstructed airways are shown Figure 1-2 (Global 

Initiative for Chronic Obstructive Lung Disease, 2018). As COPD progresses, it is 

classified into separate stages, based upon lung function and symptoms. Each 

sequential stage describes an increase in severity of the disease as illustrated in Table 

1-1 (information derived from Rabe et al., (2007)).  

 

Figure 1-2: Example spirometry traces for A) normal airways with no obstructive 
disease, B) obstructed airways. FEV1 is indicated by the orange-dashed line and FVC by 
the green line, drawn at the tangent of the plateau of the trace. FEV1 – Forced 
expiratory volume in 1 second; FVC – Forced vital capacity. Figure adapted from Global 
Initiative for Chronic Obstructive Lung Disease, (2018) 

COPD being a complex disease, with many different causes and stages, is 

associated with different comorbidities each influencing the disease outcome for the 

patient. A recent review aimed to categorise COPD phenotypes according to these 

various factors (Mirza & Benzo, 2017). The authors identified 7 distinct phenotypes of 

COPD – these are summarised in Table 1-2. All of these patients will have a confirmed 

diagnosis of COPD but will require different levels of care. Because of this, patients 

will utilise their local healthcare resources in diverse ways. By assigning a patient to a 

sub-category of COPD, the most appropriate care can be more readily and efficiently 

applied. It is important to recognise that diversity among patients exists and that it 

can have a significant impact of the quality and efficacy of care. However, it is also 

important to recognise that because of this diversity, these 7 phenotypes may not be 

complete, and that a single patient may be able to be classified into two or more 

phenotypes. It could be possible to further classify into subgroups of multiple 

phenotypes, for example Frequent-Exacerbator-&-Rapid-Decliner-Phenotype or 
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Comorbid-&-Physical-Frailty-Phenotype, each with their own specific treatment 

regime. Therefore, care must be taken when analysing patient groups based solely on 

this limited classification.  
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Phenotype 
Classifier 

Clinical Importance Phenotypic Markers Phenotype-
Specific 
Management  

Asthma-COPD 
Overlap 
Phenotype 

Increased frequency and 
severity of exacerbations. 
Faster FEV1 decline. 
Increased healthcare 
utilization. 
Increased comorbidity burden 
and mortality. 

Responds well to 
bronchodilators. 
Sputum eosinophilia. 
History of asthma. 
High total IgE. 
History of atopy. 

Inhaled 
corticosteroids. 
Bronchodilators. 
Address atopy. 

Frequent 
Exacerbator 
Phenotype 

Faster decline in lung function. 
Increased healthcare 
utilization. 
Increased mortality. 
Increased risk of depression. 

2 or more exacerbations 
per year. 

Bronchodilators. 
Inhaled 
corticosteroids. 
Anti-inflammatory 
treatment. 

Upper Lobe-
Predominant 
Emphysema 
Phenotype 

Potentially substantial 
symptomatic benefit with 
surgical lung volume reduction. 

CT scans show 
predominant upper lobe 
emphysema. 

Consider surgical 
lung volume 
reduction. 

Rapid Decliner 
Phenotype 

High mortality. Rapid decline of lung 
function. 
Usually younger. 
Poor nutritional status. 
No major comorbidities. 

Early subspecialty 
and lung transplant 
evaluation. 

Comorbid 
phenotype 

Increased healthcare 
utilization. 
Poorer QOL. 
Increased mortality risk. 

High comorbidity burden. 
Ischaemic heart disease. 
Congestive heart failure, 
diabetes, and high BMI are 
most common.  

Aggressive 
management of 
comorbid disease 
alongside optimal 
respiratory therapy. 

Physical-
Frailty 
Phenotype 

High symptom burden. 
Frequent exacerbations. 
Poor functional capacity. 
Poor self-management of 
disease. 

Screening:  
4MGS (<0.8 m/s) 
TUGT (>10 seconds) 
PRISMA-7 questionnaire 
(score ≥ 3)  
Diagnosis: Fried criteria – 
meets ≥ 3 of 5 criteria  

Pulmonary 
rehabilitation. 
Screening of COPD 
patients for frailty 
recommended. 

Emotional-
Frailty 
Phenotype 

Increased healthcare 
utilization. 
Poorer QOL. 
Poor disease self-management. 

High depression and 
anxiety scores. 
Fear of breathlessness. 

Health coaching. 
Cognitive therapy. 
Pharmacological 
management. 

Table 1-2: COPD phenotypes and phenotype-specific identifiers and management 
techniques, as described in Mirza & Benzo (2017): 4MGS: 4 meter gait speed; PRISMA: 
Program of Research to Integrate Services for the Maintenance of Autonomy; TUGT: 
Timed Up and Go test; QOL: Quality of Life; COPD: Chronic Obstructive Pulmonary 
Disease; FEV1: Forced expiratory volume in 1 second 

1.1.21 Genetic and Environmental Risk Factors 

COPD results from the interplay between genetic susceptibility and exposure 

to environmental stimuli. Smoking cigarettes has been shown to be the leading cause 

(Forey, Thornton, & Lee, 2011), but non-smokers may be at risk from environmental 

and occupational pollutants (Pauwels et al., 2001). A person’s early upbringing can 



Charles Brilliant 
 

10 
 

have a significant influence on their chance of developing COPD. Svanes and 

colleagues (2010) described factors including maternal, paternal and childhood 

asthma, maternal smoking, and childhood respiratory infections as “childhood 

disadvantage factors”. These factors are associated with a substantial increase in 

COPD risk, permanently lowering lung function shown by a significantly associated 

reduced FEV₁ value which doesn’t improve with age. The impact of one or more of 

these childhood disadvantage factors was shown to be as large as heavy smoking 

(Svanes et al., 2010). The risk of developing COPD in non-smokers is increased if the 

patient is exposed to outdoor air pollution, second-hand smoke, occupational dust 

and fumes, and biomass smoke. The risk is also increased if the patient has previously 

been infected with tuberculosis (Eisner et al., 2010). There is also a link between 

economic privation and development of COPD. Smokers who are economically 

deprived, or come from areas of high deprivation, are more likely to develop COPD 

than their non-smoking counterparts, but are also at a significantly increased risk of 

lung disease compared to smokers who are less deprived (Sherratt, Field, & Marcus, 

2017). Recent evidence also suggests that electronic cigarette (e-cigarette) use could 

be a similar influencing factor on COPD development as conventional tobacco 

cigarette smoking. Alterations to the ratio of mucin glycoproteins in the lung, 

alongside significant increases in neutrophil granulocyte and neutrophil elastase 

levels have been observed in e-cigarette users, which are comparable to the changes 

observed in tobacco cigarette smokers (Reidel et al., 2018). However, this study did 

not make a distinction between e-cigarette users who had never smoked tobacco and 

those who had previously smoked cigarettes. There is evidence that suggests long-

term smoking cessation leads to the sputum proteome of healthy former smokers 

becoming more similar to that of those who have never smoked (Titz et al., 2015). 

However, it is difficult to ascertain if the changes observed in e-cigarette users were 

due to current e-cigarette smoking status, or if changes caused by previous tobacco 

smoking were still evident in these participants as there was also no distinction of the 

e-cigarette users by the length of time they had ceased smoking (Reidel et al., 2018). 

Despite this, the study still demonstrates that e-cigarettes may be harmful and could 

contribute to the progression of lung diseases, including COPD. 

There is also evidence to suggest that COPD has genetic associations. 

Currently, the only well-established genetic cause of COPD is α-1 antitrypsin 

deficiency. An antiprotease, α-1 antitrypsin is a regulator of neutrophil elastase in the 
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lung (Haq et al., 2016). Through decreased regulation of neutrophil elastase, a 

deficiency in α-1 antitrypsin can lead to damage to lung tissue (Kawabata, Hagio, & 

Matsuoka, 2002). However this cause of COPD is rare, being present in 1-2% of all 

COPD patients (Gooptu, Ekeowa, & Lomas, 2009). Although relatively rare, this does 

provide evidence for the concept that an imbalance in proteolytic enzymes is involved 

in the pathogenesis of emphysema and COPD (Hogg, 2004). Other possible genetic 

causes of COPD have been suggested through work performed in genome-wide 

association studies. Regions on chromosome 4 near HHIP and in FAM13A, and 

regions on chromosome 15 in CHRNA and IREB2 have been identified to be 

unambiguously associated with increasing COPD susceptibility (Pillai et al., 2009).  

Not all polymorphisms have a negative effect on COPD progression. Some 

protective genetic factors for individuals classified as being at high-risk of developing 

COPD have been identified. For example, a minor allele of a single-nucleotide 

polymorphism (SNP) in the gene for matrix metalloproteinase 12 (MMP12) (rs2276109 

[−82A→G]), has been shown to have a significant protective effect on lung function in 

children with asthma and adult smokers as well as significantly reducing the 

incidence of COPD in adult smokers (Hunninghake et al., 2009). MMP12 is produced 

by macrophages, the primary inflammatory cells that respond to smoke (Niewoehner, 

Kleinerman, & Rice, 1974). Increased MMP12 function in the airways has been shown 

to lead to degradation of elastin and is thought to be closely linked to COPD 

progression, although the exact mechanisms by which MMP12 can influence COPD 

progression are unclear (Hunninghake et al., 2009).  

Another example of a protective polymorphism is found in the enzyme 

microsomal epoxide hydroxylase (EPHX1). EPHX1 is an enzyme strongly expressed in 

the bronchial epithelium and is involved in the initial breakdown of exogenous 

toxins, such as polycyclic aromatic hydrocarbons (PAHs) produced by smoking. Two 

functional polymorphisms of EPHX1 exist; Tyr113His and His139Arg, or “fast-" and 

“slow-acting”, respectively. The Tyr113His polymorphism has also been shown to have 

a protective effect in high COPD-risk populations (Brøgger, Steen, Eiken, Gulsvik, & 

Bakke, 2006). However, high EPHX1 activity has also been associated with an elevated 

risk of tobacco-related lung cancer, although the authors did speculate that cigarette 

smoking could affect enzyme activity status (X. Li et al., 2011). 
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It is important to note that the role of genetic factors in non-smokers with 

COPD has been less-widely studied, so care must be taken when interpreting findings 

from studies comparing genetic susceptibility of smokers to non-smokers. However, 

it has been implied that genetic factors are at least as important in COPD 

development among non-smokers as they are among smokers (Eisner et al., 2010).  

1.1.22 Pathophysiology of COPD 

The pathological changes associated with COPD are observed in the airways, 

lung parenchyma, and pulmonary vasculature (Hogg, 2004). Characteristics of the 

pathological changes observed in COPD are as follows: chronic inflammation of the 

airways coupled with elevated numbers of inflammatory cells; remodelling and 

thickening of the airway walls due to repeated damage and repair; loss of elasticity by 

emphysematous destruction of parenchyma; chronic overproduction of mucus in the 

upper airway, and the formation of mucus plugs in lower airways (Hogg, 2004). All of 

these factors contribute to a progressive and partially-irreversible air-flow limitation, 

measured by a reduction in FEV1 and FEV1/FVC values. In general, these changes are 

more markedly increased in more severe disease states (Global Initiative for Chronic 

Obstructive Lung Disease, 2018). 

Cigarette smoke is known to be one of the greatest risk factors for COPD 

(Forey et al., 2011); much of the advice for COPD treatment is based around smoking 

cessation (Pauwels et al., 2001). The multiple pathways associated with mucus 

production and cell proliferation (Gensch et al., 2004; Lemjabbar et al., 2003) 

activated by cigarette smoke are well understood and it is clear how smoking can 

contribute to the thickening of airway walls and formation of mucus plugs, such as 

seen in Figure 1-3(B, and C).  
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 Figure 1-3: Small airway obstruction stains, with increasing degrees of severity. (A) 
Normal small airway for comparison. No inflammation, no mucus overproduction. (B) 
Small airway with a mucus plug, but little or no evidence of hyperplasia. Mucus 
probably formed in the upper airway and aspirated into the small airway. This is 
indicative of mucus over-production and/or impaired MCC ability in the upper airway. 
(C) Acutely-inflamed airway with a markedly thickened wall. A large plug formed of 
mucus and cells, which was likely produced in the small airway, partially fills the 
lumen. (D) The airway is severely restricted and surrounded by connective tissue. 
Normal enlargement of the lumen and enlargement of the epithelial lining during 
lung inflation may not be possible (adapted from Hogg, 2004). 

Oxidative stress has been suggested to be an important mechanism by which 

COPD pathogenesis is amplified. Reactive oxygen species (ROS) have been identified 

as a cause of inflammation in lung tissue. The hydroxyl radical (●OH-) and the 

superoxide anion (O2
-) are highly unstable and are capable of inducing oxidative 

stress in a biological system. These ROS are continuously generated either 

endogenously by metabolic reactions, or exogenously from air pollution or cigarette 

smoke. Smoking induces MUC5AC production and secretion through activation of an 

epidermal growth factor receptor (EGFR)-dependant mechanism (Takeyama et al., 

2001) and also through an EGFR-independent mechanism triggered by ROS (Gensch 

et al., 2004). 
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Smokers who show symptoms of COPD have been shown to have increased 

numbers of neutrophils, macrophages, CD45+, CD8+ cells and goblet cells compared 

to non-smokers. This is indicative of a sustained immune response and airway 

remodelling (Seatta et al., 1998). The action through which cigarette smoke triggers 

cell proliferation is via the action of ROS-stimulated ADAM 17, (also known as 

tumour necrosis factor α-converting enzyme (TACE)) and amphiregulin (Lemjabbar 

et al., 2003). Amphiregulin is a ligand for EGFR: binding of amphiregulin to EGFR 

activates the MAPK signal transduction pathways and triggers cellular proliferation. 

This increase in cellular proliferation in the airways would have a significant effect on 

the thickening of the airway wall and subsequent restriction of the airway itself. 

These same pathways have been implicated in increased mucin gene transcription 

and are thought to be crucial to mucus hypersecretion mechanisms (Thai, 

Loukoianov, Wachi, & Wu, 2008). 

As seen in Figure 1-4, EGFR is phosphorylated in response to both smoke and 

lipoteichoic acid (LTA). Tobacco smoke generates ROS, through an NADPH oxidase 

dependant reaction, which in turn activates ADAM 17 (TACE) leading to 

amphiregulin cleavage. Conversely LTA stimulates platelet-activating factor receptor 

(PAFR), which consequently triggers ADAM 10, eventually leading to heparin-binding 

EGF-like growth factor (HBEGF) cleavage. HBEGF is also a ligand for EGFR and so 

HBEGF cleavage can lead to an increase in the transcription of proliferative and 

mucin production genes.  

 

Figure 1-4: A model for the activation of the EGFR signalling cascade by tobacco smoke 
and LTA from Gram-positive bacteria (adapted from Lemjabbar et al., 2003)  
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 Another signalling pathway involved in COPD pathogenesis is the interleukin 

(IL)-17/IL-6 paracrine-autocrine loop. IL-17 is an important cytokine for 

autoimmunity, contributing towards the response of the immune system to bacterial 

and viral infection (Onishi & Gaffen, 2010), and is more highly expressed in the 

presence of cigarette smoke (Montalbano et al., 2015). Evidence for the involvement 

of IL-17 in COPD pathogenesis is shown by the observation that IL-17 acts in tandem 

with IL-6 through a JAK2-dependent pathway to stimulate MUC5AC and MUC5B 

expression in the bronchial epithelial cells. It was also demonstrated that both IL-16 

and IL-17 directly interact with the promoter region of MUC5B, stimulating 

expression (Y. Chen et al., 2003). Increased IL-6 levels have been associated with 

increased severity of COPD, and IL-17 expression may be elevated by exposure to 

cigarette smoke (Chang et al., 2014; Liang, Zhang, & Song, 2013). 

IL-17 stimulates IL-6 expression and secretion in bronchial epithelial cells 

(Fossiez et al., 1996), so it is easy to see how, in the presence of persistent 

inflammatory stimuli such as those present in the COPD lung and the observation 

that IL-17 is elevated in end-stage COPD (Roos et al., 2015), a positive feedback loop 

for mucin gene expression can be formed, leading to increased MUC5AC and MUC5B 

secretion, contributing towards COPD pathogenesis. 

1.1.23 COPD Exacerbation Mechanisms  

Exacerbations of COPD are defined as an event in the natural course of the 

disease that are characterised by an acute worsening of the patient’s baseline 

dyspnoea, cough, and/or sputum production beyond day-to-day variations, and are 

sufficient to warrant a change in management (Papi, Luppi, Franco, & Fabbri, 2006). 

The state of health of a COPD patient is heavily influenced by the frequency of acute 

exacerbations, with those being prone to more frequent exacerbations undergoing 

more hospital admissions and generally having a marked decrease in their quality-of-

life (QOL) (Seemungal et al., 1998). Exacerbations of COPD can be triggered by a 

variety of factors including bacterial and viral infection, and air pollutants (Papi et al., 

2006).  

Exacerbation increases inflammation and oxidative stress in the lung, possibly 

due to the large numbers of neutrophils that are activated in response to the 

enhanced levels of proinflammatory cytokines such as IL-8 and tumour necrosis 

factor-α (TNFα) present in the COPD lung (Noguera et al., 2001; Zheng et al., 2017). 

Additionally, during acute exacerbation the levels of proinflammatory cytokines are 
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further increased, alongside an increased load of the transmembrane mucin MUC1 

(Zheng et al., 2017). MUC1 has functions associated with many signal-transduction 

pathways, including the MAP kinase pathway (Singh & Hollingsworth, 2006), which 

has previously been shown to contribute to increased expression of mucin genes (K. 

S. Song et al., 2003). Levels of MUC1 expression has also been correlated with 

colonization by Pseudomonas aeruginosa and Streptococcus pneumoniae in the lung, 

with an increase in MUC1 expression observed after bacterial infection suggesting a 

potential protective effect of MUC1 (Dhar, Ng, Dunne, & Sutton, 2017; Kato et al., 

2017). MUC1-mediated increases in MUC5AC/B via MAP kinase pathways could 

therefore be one of the mechanisms through which mucus is hyper-secreted into the 

airways in colonized COPD lungs.  

The lower airways of between 25-50% of COPD patients are colonized by 

bacteria, in particular Haemophilus influenzae, S. pneumoniae, and Moraxella 

catarrhalis (Papi et al., 2006). The extent of colonization is closely correlated with the 

severity of disease and cigarette smoking (Monso et al., 1999). Bacterial colonization 

of the airways directly influences airway inflammation, as it is known that bacterial 

exoproducts are mediators of the inflammatory response. In this way bacterial 

colonization could have a significant effect on the frequency and severity of COPD 

exacerbations. H. influenzae has been shown to induce more airway inflammation 

through increased neutrophil activation and as such, colonization of a COPD lung by 

H. influenzae could lead to a significantly increased risk of exacerbation compared to 

patients infected by other colonizing strains such as S. pneumoniae (Chin et al., 2005).  

Respiratory viruses have been found in approximately 50% of currently 

exacerbating COPD patients, compared to fewer than 20% of stable COPD patients. 

The most common viruses that have been reported to be in COPD sputa are 

rhinovirus, picornavirus, influenza A and respiratory syncytial virus (RSV). It is of 

note that these viruses were generally not detected in the nasal lavage of the patients 

(Rohde et al., 2003; Seemungal, Harper-Owen, Bhowmik, Jeffries, & Wedzicha, 2000). 

Viral exacerbations are also associated with symptomatic colds and an increased 

recovery time compared to non-viral exacerbations (Seemungal, Donaldson, 

Bhowmik, Jeffries, & Wedzicha, 2000). 

It has also been suggested that elevated levels of air pollution are key 

contributors towards COPD patient mortality, giving strong evidence that 

exacerbations can be caused by air pollution. Strong associations between elevated 
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levels of sulphur dioxide (SO2), and nitrogen dioxide (NO2) levels and COPD patient 

mortality were shown in a 5-year time-series analysis, with weaker associations shown 

between the levels of pollution and the general, non-COPD population (Garcia-

Aymerich, Tobías, Antó, & Sunyer, 2000). 

Interestingly, some results have shown that COPD exacerbation could be 

influenced by gender. It has been observed that more female than male COPD 

patients in the USA are dying, and where smoking is implicated in the development 

of COPD, women develop more severe COPD symptoms after fewer pack-years 

compared to men (Han et al., 2007). Additionally, a recent multicentre study of 

women (n = 1,369) found that lung function declines more rapidly in post-

menopausal women than in pre-menopausal women (Triebner et al., 2017).  

This observed increase in female deaths from COPD has been attributed to 

the increased levels of the oestrogens, a family of sex steroid hormones which are 

generally expressed at higher levels in women (Tam et al., 2011). This explanation is 

probable as it is known that the oestrogens – including oestrone, oestradiol, and 

oestriol – and their associated receptors, oestrogen receptor (ER) α and ERβ, are 

expressed in the large bronchi and lung tissue respectively (Koehler, Helguero, 

Haldosén, Warner, & Gustafsson, 2005), therefore any alterations in oestrogen levels 

could affect the physiology of the lungs and large bronchi. Oestradiol is known to 

increase the expression of cytochrome P450 (CYP) enzymes, such as CYP1A1 

(Mollerup, Ryberg, Hewer, Phillips, & Haugen, 1999), which are responsible for the 

metabolism of cigarette smoke into Phase I intermediate metabolites. These 

metabolites can cause damage to the lung through oxidative stress when the Phase II 

enzymes, which conjugate the metabolites to allow them to be excreted, become 

saturated. It is suggested that the oestrogen family of hormones contribute to 

oxidative stress in the lungs through this upregulation of Phase I enzymes (Tam et al., 

2011).  

Evidence of physiological changes in lung tissue caused by alterations in 

oestrogen expression comes from the observation that oestradiol can cause significant 

increases in MUC5AC synthesis in a human bronchial epithelial cell line (1HAE0), via 

action of nuclear factor of activated T-cell (NFAT) (Tam, Wadsworth, Dorscheid, 

Man, & Sin, 2014). MUC5B synthesis in human bronchial epithelial cells has also been 

shown to be upregulated by elevated oestradiol concentrations (Choi et al., 2009). 

Therefore it is plausible that increased levels of oestrogen can lead to an increase in 
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mucin synthesis in the bronchioles and could be an important indicator of a patient’s 

likelihood of exacerbation. Combining these increased levels of mucin synthesis with 

the previously stated observations of increased expression of oestradiol contributing 

to increased oxidative stress in female lungs through the CYP enzyme pathway, it is 

possible to suggest that the increased rate of COPD mortality in women, and the 

worsened symptoms in women who smoke may be due to the naturally higher levels 

of oestrogens. 

Another mechanism which has been identified as a potential contributor 

towards exacerbation symptoms is an imbalance in secreted protease and 

antiprotease enzymes during time of exacerbation. A small study (n = 9) of COPD 

patients found that an increase in secreted antiproteases at the start of an 

exacerbation contributed to higher mucin concentration and stability and thus 

contribute towards mucus obstruction. Whilst a very small study, these results are 

still interesting as the authors reported that elevated levels of mucin glycoproteins 

MUC5AC and MUC5B persisted up to 5 weeks after the onset of initial symptoms 

(Chillappagari et al., 2015). 

Unfortunately it is hard to have an accurate picture of the true volume of 

COPD exacerbations, as most generally go unreported. One study found that around 

50% of all exacerbations are not reported, as COPD patients tend to be accustomed to 

frequent symptom changes and thus do not feel the need report each occurrence 

(Seemungal et al., 1998). This has a detrimental effect on the management and 

treatment of COPD, and therefore can have a significant impact on the patient’s 

health.  

1.1.24 Diagnosis of COPD and Exacerbation 

A diagnosis of COPD is considered when a patient presents with the 

symptoms of cough, increased sputum production, dyspnoea, and/or a history of 

exposure to risk factors for the disease, as previously described. Currently COPD 

diagnosis is confirmed by spirometry, or a lung function test, which is the gold 

standard as it is the most reproducible, standardised and objective way of measuring 

lung function and air-flow limitation (Global Initiative for Chronic Obstructive Lung 

Disease, 2018). Spirometry involves measuring the patient’s FEV1 and FVC. A post-

bronchodilator FEV1 score of < 80% and a FEV1/FVC score of < 70% which is not fully 

reversible is indicative of reduced lung function and therefore is used to confirm 

suspected COPD (Pauwels et al., 2001). Although this method is readily available and 
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provides reproducible results, it is not a reliable indicator of disease progression, or 

exacerbation prediction (X. Chen, Xu, & Xiao, 2013).  

 By detecting biomarkers of disease progression and exacerbation, it is 

possible to identify which patients are most at risk, and therefore it could be possible 

to reduce patient morbidity. It has been observed that COPD exacerbations occur in 

clusters, with a period of elevated risk for a secondary exacerbation of approximately 

8 weeks after the initial occurrence (Hurst et al., 2009). There is a strong requirement 

for a low-cost, non-invasive and reliable method to detect COPD progression and 

exacerbation at an earlier stage in order to more effectively manage and treat the 

disease. 

1.1.3 Lung Cancer 

1.1.31 Introduction to Lung Cancer 

Lung cancer is a malignant tumour found within the tissues of the lung which 

is characterised by uncontrolled cell proliferation. Generally speaking, lung cancer 

can be categorised into two major types: small-cell lung carcinoma (SCLC) and non-

small-cell lung carcinoma (NSCLC), although these can be further divided into 

subtypes; for example, common forms of NSCLC are adenocarcinoma and squamous-

cell carcinoma (SCC). 

Lung cancer is a major cause of cancer death in the UK, contributing to 23.6% 

and 13.6% of cancer deaths in males and females, respectively (Stewart & Wild, 2014). 

From 1995-2009, 552,143 patients in the UK were diagnosed with lung cancer, and 

during this time the 5-year survival rate improved from 7.3 to 9.6% (Allemani et al., 

2015). This however is still extremely low, and the main contributing factor to this 

poor prognosis is the inability of current diagnostic techniques to detect early-stage 

disease, when it is more easily treated. A review comparing 1-year lung cancer survival 

rates and stage-at-diagnosis found that on average 71.1% of patients diagnosed with 

stage I NSCLC survived at least 1-year after diagnosis, compared to an average of 

15.5% of stage IV patients. The same review also found that 1-year survival of SCLC 

patients is also affected by stage of diagnosis, falling from 55.9% for stage I & II 

patients, to 14.4% for stage IV patients (Walters et al., 2013).  

1.1.32 Lung Cancer Diagnosis 

Currently, the most commonly used methods for detection of lung cancer 

include flexible bronchoscopy, CT-scan and X-ray (Latimer & Mott, 2015; Sutedja, 
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2003). However, these techniques are not effective for early detection of the disease, 

as evidenced by the extremely poor rate of diagnosis of early-stage disease (Allemani 

et al., 2015; Morgan & Wilkes, 2017), and the high rate of late-stage diagnosis as seen 

in Figure 1-5 (Cancer Research UK, 2017). 

 

Figure 1-5: Average percentage of lung cancer cases by T stage at diagnosis: diagnosis of 
late-stage disease is much more common than early-stage. Data obtained from Cancer 
Research, 2017 

Flexible bronchoscopy has been shown to have an overall sensitivity for lung 

cancer diagnosis of 88%, however this sensitivity drops markedly for peripheral 

lesions of < 2cm in diameter to 34% (Rivera, Mehta, & Wahidi, 2013). Two common 

forms of bronchoscopy, auto-fluorescence imaging (AFI) and white-light 

bronchoscopy (WLB), have sensitivity scores of 80%, and 53.3%, respectively, while 

the specificities were 83.3% for AFI, and 50% for WLB (Andolfi et al., 2016). Patients 

who are suspected of lung cancer also undergo diagnostic X-rays and computed-

tomography (CT) scans to identify regions of malignant tissue. Almost 1 in 4 (23%) of 

diagnostic X-rays have been shown to provide a false negative results (Stapley, Sharp, 

& Hamilton, 2006), whilst CT-scan has been shown to have 88.9% sensitivity and 

92.6% specificity for diagnosis of lung cancer in a study comparing X-ray to CT-

scanning (Toyoda, Nakayama, Kusunoki, Iso, & Suzuki, 2008). However, CT-scanning 

is limited by the potential for over-diagnosis and causing radiation-related harm to 

the patient (Hoffman & Sanchez, 2017; Mulshine & D’Amico, 2014). Evidently, there is 
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also a clear unmet need for a highly-sensitive and specific diagnostic tool, capable of 

diagnosing both centrally- and peripherally-located lesions. 

1.1.33 Environmental and Genetic Risk factors for Lung Cancer Development 

Smoking was first identified as a major contributing factor to the development 

of lung cancer in 1950 (Doll & Hill, 1999). In the years 2015/16 smoking was attributed 

as a contributing factor in 54% of all cancer deaths from cancers that can be caused 

by smoking (Statistics on Smoking England: 2017, 2017). The WHO identifies tobacco 

use as a major contributor to developing lung cancer, but there are also important 

environmental and occupational risks, as well a multitude of genetic factors (Stewart 

& Wild, 2014). Indeed, it is estimated that 10-25% of lung cancers worldwide occur in 

patients who are reported to have never smoked cigarettes and lung cancer in never-

smokers is more common in women than in men (Couraud, Zalcman, Milleron, 

Morin, & Souquet, 2012). Existence of comorbid conditions has an influencing factor 

on lung cancer development; for example, COPD patients have a higher risk of 

developing lung cancer as their forced expiratory volume in one second (FEV1) 

declines (Skillrud, Offord, & Miller, 1986; Tockman, Anthonisen, Wright, & Donithan, 

1987). In fact, COPD and lung cancer are proposed to be related through a chronic 

inflammatory mechanism (Houghton et al., 2008), so the finding that the risk of 

developing lung cancer increases as COPD progresses is not surprising. Exposure to 

airborne pollutants has also been linked to development of lung cancer. 

Environmental exposure to tobacco smoke, air pollution, and cooking- and heating-

fuel fumes have all been linked to an elevated risk of lung cancer in never-smokers 

and the general population (Couraud et al., 2012).  
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Figure 1-6: K-Ras signalling transduction pathway: Activation of the k-Ras pathway 
leads to cell proliferation and antiapoptosis through the Raf-1/MEK/ERK and PI3K/Akt 
pathways, respectively. BAD = Bcl-2–antagonist of cell death; ELK = ephrin receptor 
EphB1 precursor; GDP = guanosine diphosphate; IKKB = inhibitor of NF-κΒ kinase β 
subunit; MNK = MAP kinase interacting S/T kinase; MST1 = mammalian sterile 20–like 
1; NORE1 = novel Ras effector 1; PDK1 = phosphoinositide-dependent kinase–1; PKB = 
protein kinase B; PLA2 = phospholipase A2; ROS = reactive oxygen species. Figure 
adapted from Aviel-Ronen, Blackhall, Shepherd, & Tsao, (2006) 

In addition to environmental contributors to lung cancer risk, there are also a 

multitude of genetic factors which have been associated with an elevated risk for lung 

cancer. Activation/stimulation of oncogenes is a common genetic mechanism 

through which cancer can develop. One such oncogene is the GTPase k-Ras, which is 

involved in signal transduction pathways leading to cell proliferation (Figure 1-6). 

Overactive mutated forms of k-Ras have been found in 20-30% of all NSCLC (Aviel-

Ronen et al., 2006).  

As well as overactive oncogenes, inactivation/suppression of tumour-

suppression genes can contribute to an increased risk of lung cancer. One tumour-

suppressor gene, of which mutated forms have been well associated with an 

increasing risk of cancer, is p53. Mutated, inactive forms of p53 have been found in 

more than 50% of NSCLC cases  

In addition to contributing to an increased overall risk for developing lung 

cancer, certain mutations have been shown to be associated with specific forms of 
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lung cancer developing. For example, EGFR mutations in lung adenocarcinoma have 

also been found to correlate with a greater number of metastatic lesions in the lung 

and brain, and a lower lymph node stage (Enomoto, Takada, Hagiwara, & Kojima, 

2013). Also, a recent study identified upregulation of COL5A1 as a key determinant of 

metastasis in lung adenocarcinoma. Observations of cell-growth-inhibition in 

COL5A1 knockdown-human adenocarcinoma metastatic cells, and expression of 

COL5A1 was observed to be higher in adenocarcinoma patients, with an associated 

increase in recurrence and decreased survivability, all contributed to this conclusion 

(Liu et al., 2017).  

1.1.34 Lung Cancer Screening for Early Detection 

According to Cancer Research UK, the most common route to diagnosis of lung 

cancer is presentation of the patient to the emergency room, with more than 35% of 

patients being diagnosed this way (Figure 1-7). Also, a higher proportion of stage IV 

carcinomas are diagnosed in the emergency room than in any other route to 

diagnosis (Figure 1-8). 

 

Figure 1-7: Percentages of lung cancer diagnoses by each route to diagnosis: The data 
show how emergency presentation is the most common way patients receive a 
diagnosis of lung cancer, followed by the Two Week Wait, and general practitioner 
(GP) referral. Data obtained from Cancer Research UK, 2017 
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Figure 1-8: Percentages of stages (stage I: green; stage II: yellow; stage III: orange; stage 
IV: red, unknown stage: blue) at diagnosis, split by route to diagnosis: a higher 
proportion of stage IV cases are diagnosed by emergency presentation than stage I-III 
cases. Additionally, whilst the proportion of stage IV cases are highest, there are more 
patients diagnosed at stages I-III in the two week wait and GP referral pathways than 
in the other routes to diagnosis. Data obtained from Cancer Research UK, 2017 

These data from Cancer Research UK suggest that patients who are in contact 

with their health service and/or their GP have a greater chance of being diagnosed at 

an earlier stage of disease, and therefore have a greater chance of survival (Figure 1-7, 

Figure 1-8 & Figure 1-9). This clearly demonstrates the need for an effective screening 

programme which can be implemented into the diagnostic pathway. Through regular 

screening of a high-risk population of patients, it would be possible to increase the 

likelihood of diagnosing lung cancer at earlier stages, and therefore increase the 

chances of survival. 
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Figure 1-9: Net one-year survival percentages for lung cancer patients, distinguished by 
stage at diagnosis. The data show that women (red) have a larger one-year survival 
percentage than men (blue) at all stages, but this survival percentage decreases 
sharply for both genders as the stage at diagnosis increases. Data obtained from 
Cancer Research UK, 2017 

Screening of high-risk respiratory disease patients, such as COPD patients, for 

early signs of lung cancer could improve early diagnosis and therefore could lead to 

an improvement in prognosis. As previously stated, there is evidence that diagnosis at 

later stages has a negative effect on the patient’s overall prognosis, with poorer 

survival rates reported in those patients (Cancer Research UK, 2017; Walters et al., 

2013). However, any screening programme must be effective at detecting early-stage 

lung carcinoma, and must contribute to a reduction in mortality in the target 

population.  

A meta-analysis of lung cancer screening programme trials has found that 

screening programmes where frequent chest X-rays was the modality of choice were 

associated with an 11% increase in patient mortality compared to less frequent 

screening (Manser et al., 2013). Reviews by Mulshine & D’Amico (2014) and Hoffman 

& Sanchez (2017) of screening programmes for lung cancer detection identified 

evidence from the National Lung Screening Trial (NLST), that low-dose CT (LDCT) 

screening was effective at reducing lung cancer mortality in at-risk populations 

through an associated 20% decrease in death rate in patient groups that underwent 

yearly screening. The reviews also identified a range of issues with LDCT screening 
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which must be addressed in any potential screening technology. Among the issues 

identified were over-diagnosis, physical harm caused by the technique to the patient, 

and integration of the screening technology into primary care (Mulshine & D’Amico, 

2014). Indeed, it was reported by the NLST that 26% of LDCT screening tests were 

positive; however 96.4% of all positive screenings were false positives. The guidelines 

for detection of abnormal nodules have now been changed to reflect this, although 

this has led to a sensitivity decrease of 8.6-15.2% (Hoffman & Sanchez, 2017). The 

same review also identified the cost of implementing LDCT screening within the USA, 

with a potential cost of $6.8 billion over a 5-year time frame. Despite this cost, it is 

suggested that LDCT screening could be cost-effective with an estimated $81,000 per 

quality-adjusted life-year, although this was variable depending on the subgroup of 

patient screened with the highest-risk patients showing most cost-effectiveness 

(Hoffman & Sanchez, 2017). A lower-cost technology would be more cost-effective for 

all patient groups screened and could therefore be more easily rolled-out to a wider 

population. 

Sputum cytology is another commonly-used tool for lung cancer diagnosis 

(Rivera et al., 2013; Thunnissen, 2003; Toyoda et al., 2008). It has been suggested to 

have limited effectiveness as a stand-alone screening technology (Manser et al., 2013). 

However, the potential for using sputum cytology for early-stage cancer detection can 

be enhanced through combination with DNA analysis and nuclear image analysis 

(Thunnissen, 2003), although this adds extra complexity, time and financial 

requirements. 

LDCT screening programs have seen good success in reducing lung cancer 

mortality, but there are significant issues and costs that must be overcome if it is to 

become widespread and routine. There is a clear and strong need for a highly-

sensitive and specific, low-cost, rapid and easily-implementable screening technology 

for lung cancer diagnosis. 

1.1.4 Cystic Fibrosis 

1.1.41 Introduction to Cystic Fibrosis 

Cystic fibrosis (CF) is an autosomal recessive disorder which primarily affects 

the airways, through airway-restriction by increased mucus load (Voynow, Gendler, & 

Rose, 2006). There are approximately 85,000 patients with CF worldwide and this 

number is projected to increase by 75% by 2025 (Burgel et al., 2015; Kris De Boeck & 



Charles Brilliant 
 

27 
 

Amaral, 2016). This is mainly due to an increasing life-expectancy for CF patients, 

coupled with a decreasing mortality rate – see Figure 1-10 (Cystic Fibrosis Foundation, 

2016). Despite this increase in life-expectancy, the leading cause of death for CF 

patients is still respiratory failure (Elborn, 2016). 

A major characteristic of CF is an increased mucus load within the airways 

due to a reduced mucus clearance capacity (Elborn, 2016). The increased mucus load 

restricts the airflow, reducing lung capacity and has a significant impact on the QOL 

for the patient, with patients generally reporting a decrease in QOL over time 

(Uchmanowicz, Jankowska-Polanska, Rosinczuk, & Wleklik, 2015). Patients must 

undergo constant physical therapy and monitoring in order to appropriately manage 

their disease and improve their QOL (Button et al., 2016; Feiten et al., 2016).  

 

Figure 1-10: a) Median predicted survival of CF patients from 1986 to 2016 in 5 year 
increments, and b) mortality rate per 100,000 people with CF, from 1986 to 2016. There 
is an overall trend of predicted survival increasing, coupled with a decreasing 
mortality rate (figures adapted from Cystic Fibrosis Foundation, 2016) 

CF is primarily caused by mutations or deficiency in the cystic fibrosis 

transmembrane conductance regulator (CFTR) gene, with the most common 

mutation being the homozygous Phe508del CFTR mutation (K. De Boeck, Zolin, 
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Cuppens, Olesen, & Viviani, 2014a). The CFTR gene encodes for the CFTR 

transmembrane chloride and bicarbonate ion channel and mutations in this protein 

lead to dysregulation of epithelial fluid transport (Gustafsson et al., 2012). Because of 

this, CF mucus contains less fluid and is therefore less hydrated than non-CF mucus. 

As a direct consequence of this, MCC activity is impaired in CF-patients (Lee & 

Foskett, 2014). Dysregulation of the CFTR channels can also lead to an elevation in 

salt levels in CF airway mucus, which has been shown to inhibit the activity of 

antimicrobial peptides (Zabner, Smith, Karp, Widdicombe, & Welsh, 1998). Due to 

the combination of reduced MCC activity and inhibition of antimicrobial peptides, CF 

patients are more susceptible to airway infection. 

As a consequence of these inhibited activities, most CF patients are 

persistently colonized by biofilm-forming Pseudomonas aeruginosa and Burkholderia 

strains (Powell et al., 2014; Wagner & Iglewski, 2008). A bacterial biofilm is formed 

when bacteria adhere to solid surfaces and secrete extracellular polysaccharides to 

form a matrix to which more bacteria cells can adhere. Biofilms also contribute 

antimicrobial-agent resistance, including antibiotics, further increasing the 

susceptibility of CF patients to persistent infection (Donlan, 2001). 

Pulmonary infection by Aspergillus, Candida, Lomentospora and Scedosporium 

species is also common in CF patients (Garczewska, Jarzynka, Kuś, Skorupa, & 

Augustynowicz-Kopeć, 2016; Schwarz et al., 2018) 

1.1.42 Treatments for Cystic Fibrosis 

Currently, treatments for CF are focussed on the reduction of the severity of 

symptoms, with most CF patients undergoing regular pulmonary and physical 

therapy (Cystic Fibrosis Foundation, 2015). Management of CF is complex, but 

recently developed targeted therapies for CF have seen success; one prominent new 

therapy, Ivacaftor, has been shown to improve lung function, and reduce the risk of 

pulmonary exacerbations through a potentiating effect on CFTR (Ramsey et al., 2011). 

However, there is limited evidence that Ivacaftor has significant antimicrobial and 

antibiofilm properties, especially when targeted against P. aeruginosa colonies and 

biofilms (Payne et al., 2017; Reznikov et al., 2014). Therefore, therapies based on 

administration of Ivacaftor would require additional therapeutic input in order to 

reduce the bacterial load on the patient.  
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Tezacaftor and Lumacaftor are two novel therapeutic CFTR modulators which 

recently have been shown to function as combination drugs alongside Ivacaftor under 

the names of Symdeko and Orkambi, respectively. This work does not focus on these 

therapies so they will only be described in brief detail. 

The clinical effectiveness of Tezacaftor-Ivacaftor combination therapy has 

been studied. One randomised controlled trial of 510 patients showed a 35% lower 

rate of pulmonary exacerbation in patients who had received Tezacaftor-Ivacaftor 

(Taylor-Cousar et al., 2017). Another study found that the combination therapy of 

Tezacaftor-Ivacaftor is safe, with only moderate side effects reported (Davies et al., 

2018). 

Lumacaftor-Ivacaftor has been shown to be effective in CF patients with the 

homozygous Phe508del CFTR mutation in a study of 1108 patients. It was found that 

approximately twice any patients who received the combination of Lumacaftor-

Ivacaftor experienced an improvement in predicted FEV1(%) of 5% or greater from 

baseline, than patients who received placebo alone. Similarly, patients who received 

Lumacaftor-Ivacaftor treatment also experienced a longer time to first pulmonary 

exacerbation after starting treatment than patients in the placebo cohort 

(Wainwright et al., 2015). A recent review on the safety of Lumacaftor-Ivacaftor 

combination therapy found that, although the overall risk-benefit ratio was positive 

in favour of the therapy, care must be taken when prescribing to certain populations. 

It was found that Lumacaftor-Ivacaftor therapy may worsen liver function in CF 

patients with advanced liver disease, and it may also cause cataracts (Guevera & 

Mccolley, 2017).  

Another novel inhaled therapeutic for CF which is currently under 

development is OligoG. OligoG is a low weight alginate oligosaccharide extracted and 

purified from the stem of brown seaweed (Laminaria hyperborean) and composed of a 

repeating chain of α-L-guluronate subunits. This thesis has a focus on the action of 

OligoG in the CF lung, and therefore OligoG will be described in further detail. 

Studies have been carried out focussing on the clinical effectiveness of OligoG, 

which have shown that OligoG has promise as a treatment of CF. It has been shown 

to have antimicrobial, antibiofilm, calcium-chelating and mucolytic properties 

(Ermund et al., 2017; Powell et al., 2013; Roberts et al., 2013; Vitko et al., 2016), all of 
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which can contribute to a reduction of CF respiratory symptoms. Crucially, OligoG 

has been shown to have a potent antibiofilm affects against bacterial biofilms, which 

are commonly found in the CF lung (Powell et al., 2013). Burkholderia and P. 

Aeruginosa colonisations of the CF lung are also significantly disrupted by OligoG 

treatment, through interactions between OligoG and the bacterial surface which 

inhibit bacterial motility (Powell et al., 2014). OligoG has been shown to have an 

potentiating effect on antibiotics, increasing the effectiveness of azithromycin, 

aztreonanm ceftazidime, erythromycin, and oxytetracycline against Gram negative 

bacteria up to 512-fold (Khan et al., 2012). OligoG has also been shown to be effective 

against fungal infections commonly found in the CF lung. Anti-fungal treatments 

nystatin, amphotericin B, fluconazole, miconazole, voriconazole, and terbinafine were 

all shown to have their activity enhanced by OligoG, with nystatin showing the most 

improvement with 16-fold reduction in minimum inhibitory concentration of nystatin 

required against Aspergillus and Candida strains (Tøndervik et al., 2014).  

Research is currently underway to fully elucidate the mechanisms utilised by 

OligoG within the airway mucus. Phase I, IIa and IIb studies have been carried out 

and have demonstrated that OligoG is safe for human use, with no intolerance up to 

540 mg/day (https://ClinicalTrials.gov, NCT00970346, NCT01465529, NCT02157922 & 

NCT02453789). Although OligoG can be administered by inhalation daily without 

adverse effects, there is limited understanding of how OligoG is eliminated from the 

lung (Pritchard et al., 2016). Other inhaled therapeutics are eliminated from the 

airways through a combination of macrophage uptake and alveolar clearance 

(Ibrahim & Garcia-Contreras, 2013). It is reasonable to hypothesise that OligoG could 

be eliminated from CF airways in a similar manner, but this is currently unconfirmed 

and requires further testing to confirm.  

1.2 Sputum, Mucus and Mucins 

1.2.1 Sputum 

 Sputum is the expectorated secretion of mucus from the upper airways, 

usually produced by patients with chronic inflammation of their lungs (Voynow & 

Rubin, 2009). It is a gel-like substance comprised mainly of mucus and is produced in 

the upper airways. It has a critical protective role in the lung, forming the first barrier 

to pathogens and foreign particles that enter the lung. The composition of sputum is 

known to change in chronic disease patients, and it is thought that alterations to the 
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biochemistry of a patient’s sputum can have a direct effect on the progression of 

chronic lung disease (Kirkham et al., 2008). 

1.2.2 Mucus and Mucins 

Mucus is a highly viscoelastic substance which coats all of the organs exposed 

to the external environment, including the respiratory, gastrointestinal, reproductive, 

and oculo-rhino-otolaryngeal tracts (Bansil & Turner, 2006). In the airways, the 

respiratory mucus gel forms the first line of defence against pathogens, airborne 

toxins and pollutants, which are trapped in the luminal mucus layer and constantly 

removed from the airway by MCC (K. C. Kim et al., 1997). 

The main macromolecular constituent of mucus is mucin; mucin is a general 

term for the large family of glycoproteins found in mucus secretions (Thornton, 

Rousseau, & McGuckin, 2008). Mucins are very large glycoproteins which may be 

secreted to form mucus gels, or mucins may be membrane-bound (Bansil & Turner, 

2006). The other major components of mucus are water (~95% w/w), 

immunoglobulins, lipids, inorganic salts, cholesterol and other proteins (Bansil, 

Stanley, & LaMont, 1995). Mucins are responsible for the biological, physical and 

chemical properties of mucus and provide the structural matrix from which its 

protective properties can be derived (Georgiades, Pudney, Thornton, & Waigh, 2014). 

Therefore it is easy to see how abnormalities in mucus and mucin production can 

often lead to the development of serious pathological conditions and even death of 

patients. MUC5AC and MUC5B are the main constituents of airway mucus, and 

therefore are the most important mucins with regards to chronic respiratory diseases. 

Currently, 21 human mucin genes have been identified and endorsed by the HUGO 

gene nomenclature committee: MUC1-MUC8, OVGP1, MUC12, MUC13, EMCN, MUC15-

MUC17 and MUC19-MUC22 (Yates et al., 2017), and the messenger ribonucleic acid 

(mRNA) expression values of these mucin genes in many different tissues have been 

characterised by the GeneAtlas® survey (Su et al., 2004). 

There is evidence to suggest that the cystic fibrosis transmembrane 

conductance regulator (CFTR) channel acts as a bicarbonate channel and is required 

for normal mucin secretion (Borowitz, 2015; Gustafsson et al., 2012). When mucins are 

secreted into the lung they are initially in tightly-packed, high calcium-ion 

concentration granules as an N-terminal concatenated ring platform. These tightly-

packed rings then expand as the calcium is removed by bicarbonate, increasing the 
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pH and forming the mucin mesh component of mucus, (Gustafsson et al., 2012). 

Hydrogen bonds and Ca2+ mediated cross-links are also required for proper formation 

of the mucus mesh (Meldrum et al., 2018). 

1.2.3 Protein Glycosylation and Glycan Synthesis 

Mucins are highly glycosylated and the structure of the glycans is highly 

important in determining the biophysical properties of the mucin and mucus. 

Therefore it is key to have an understanding of the mechanisms of protein 

glycosylation and glycan synthesis. These will be briefly described.  

Protein glycosylation is described as the attachment of polysaccharide chains, 

or glycans, to proteins and is the most observed and diverse post-translational 

modification of proteins, being found on cytosolic, cell-surface and secreted proteins 

(Shental-Bechor & Levy, 2008). A key feature of glycosylation is a high degree of 

heterogeneity in the sites of glycosylation and the structures of the glycans (Packer, 

Lawson, Jardine, Sanchez, & Gooley, 1998). Mammalian glycosylation occurs on the 

nascent protein chain as it travels through the endoplasmic reticulum lumen and 

Golgi complex. Glycosylation patterns on proteins have crucial roles in establishing 

protein thermostability and correct folding, as well as molecular recognition and 

immune responses (Shental-Bechor & Levy, 2008). There are two types of 

glycosylation; O- and N-glycosylation. Both types are distinct with respect to the 

amino acid residue at which the glycan is attached, and the required precursor 

molecules.  
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Figure 1-11: Examples of N-glycans in Consortium for Functional Glycomics (CFG) 
format and the glycoproteins or cell types in which they are found. The conserved core 
structure, formed of two N-Acetylglucosamine (GlcNAc) and three mannose residues, 
is encircled by the red box to highlight its position (adapted from Easton, 2011). 

N-glycosylation requires a 14-mer precursor structure covalently bonded to an 

asparagine residue within the consensus sequence of Asn-X-Ser/Thr, where X is any 

amino acid except proline. Not every consensus sequence can be glycosylated, due to 

the 3-dimensional folding of the protein preventing access by oligosaccharyl 

transferase to the protein backbone. After binding, the precursor molecule is 

trimmed down to a conserved core structure, shown in Figure 1-11, containing two N-

Acetylglucosamine (GlcNAc) residues and three mannose residues (Easton, 2011). 

Glycosyltransferases then carry out the step-wise addition of monosaccharide 

building blocks leading to the formation of complex and diverse structures with 

multiple branching chains. N-glycosylation does not occur on mucin glycoproteins 

and hereinafter will not be further explained.  
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Figure 1-12: Examples of O-glycans and the glycoprotein or the cell types in which they 
are found. Note all O-glycans start with an N-Acetylgalactosamine residue bound to 
either a serine or threonine amino acid residue, but there is no single conserved core 
structure (adapted from Easton, 2011). 

O-glycosylation is the only type of glycosylation modification that occurs on 

mucin glycoproteins. It contrasts with N-glycosylation in that there is no conserved 

consensus sequence on which glycosylation occurs, and no single core glycan 

structure (Figure 1-12). Instead O-glycosylation occurs almost exclusively on serine or 

threonine amino acid residues (Easton, 2011). O-glycans tend to be much smaller than 

N-glycans, usually being comprised of around 3 to 6 monosaccharide units. They 

always are attached to the protein backbone via an N-Acetylgalactosamine residue 

but there is no conserved core structure; rather a family of eight core structures can 

be formed, although only four are commonly observed on mucin protein backbones.  

The first residue is invariably N-Acetylgalactosamine (GalNAc), transferred to 

the protein backbone by GalNAc transferase. Specific glycosyltransferase enzymes 

then perform additions of monosaccharide units in a manner comparable to the 

assembly of N-glycans. The chain is initially elongated by addition of galactose (Gal) 

or GlcNAc residues to form one of the core O-glycan structures (Figure 1-13). These 

glycan cores are then modified by additional glycosyltransferase enzymes, until the 

chain is terminally glycosylated by addition of fucose, sialic acid (N-acetylneuramic 

acid), or a sulphate residue (Rose & Voynow, 2006). Interestingly, the GlcNAc-6-O-

sulfotransferase from human bronchial mucosa is only active on terminal GlcNAc 
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residues (Degroote et al., 1997), clearly imply that sulphate residues can only ever be 

located at the termini of the glycan structures. 

 

Figure 1-13: Four of the core structures of O-glycans commonly found in glycoproteins. 
A GalNAc monosaccharide is covalently bonded via an α-bond to either a serine or 
threonine residue on the mucin protein backbone. The glycan chain is then extended 
with the addition of galactose and GlcNAc residues to form the four common O-
GalNAc structures. Further additions of monosaccharide residues then extend these 
core structures, forming complex, diverse and possibly branched glycan chains. 

Through progressive addition of monosaccharides to the glycan chain, it is 

possible for the Lewis antigen blood-group determinants to be formed within the 

glycan structure. These structures are associated with inflammation and are 

characteristic of respiratory disease (Davril et al., 1999; Degroote et al., 2003; Kirkham 

et al., 2008). The presence of Lewis antigens within the glycan structure confers a 

negative charge to the mucin and can influence the rheology of the mucus (A. T. 

Lewis, Jones, Lewis, Jones, & Lewis, 2013). 

1.2.4 Mucin Glycoprotein Structure 

Although the mucin family is large and diverse, mucin glycoproteins share 

many characteristics. In general, mucins are large, highly glycosylated, viscoelastic 

glycoproteins (Figure 1-14) synthesized in specialized goblet cells found in the surface 

epithelium, and mucous cells of the submucosal glands. They have a high molecular 

weight of between 0.5-2 MDa, are approximately 80% carbohydrate by weight, with a 

large number of O-glycans (Bansil & Turner, 2006). Mucins also possess an extensive 

number of tandem repeats (TR) in the backbone of the protein. It is these TR 

domains that distinguish mucins from other glycoproteins (Rose & Voynow, 2006). 

These TR regions have a very high proportion of serine and threonine residues, which 

are the sites of O-glycosylation (K. C. Kim et al., 1997).  

Despite the similarities throughout the mucin glycoprotein family, there are 

some important differences between each mucin. Mucins can be subdivided into two 
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main groups; secretory or membrane bound (Rose & Voynow, 2006). Within these 

groups there is a variation in the structure of the mucin based on size, and the 

presence or absence of defining features such as TR units, cysteine-rich motifs and 

von Willebrand factor (VWF) D4, C1 or C2 domains (Rose & Voynow, 2006). The 

secretory mucins are capable of forming oligomers with one another – the backbone 

of the mucus gel. Evidence suggests that both MUC5AC and MUC5B mucin 

monomers dimerize through C-terminal disulphide linkages. These mucin dimers 

then form oligomeric chains through disulphide linkages of the N-termini (Sheehan 

et al., 2004; Wickström, Davies, Eriksen, Veerman, & Carlstedt, 1998). These 

oligomers then interact with one another through H-bonding and intermolecular 

forces to form the mucus gel. 

 

Figure 1-14: A schematic drawing of a secretory mucin glycoprotein. The MUC protein 
backbone is represented by the blue, yellow and green sections. The central region 
(yellow) represents the tandem repeat region, which is the area where glycan 
attachment occurs on serine and threonine residues, indicated by white and black 
circles respectively (adapted from Rose & Voynow, 2006). 

1.2.5 Mucin-mesh structure 

As stated above, the main components of mucus responsible for its visco-

elastic gel-like properties are the high-molecular weight mucin glycoproteins (Bansil 

& Turner, 2006). Mucins polymerize to form long chains, linked by disulphide bonds 

at the C- and N-termini (Thornton et al., 2008). The mucin chains have an overall 

negative charge and therefore bind readily with positive ions (Bansil & Turner, 2006). 

Inter-chain interactions between salivary MUC5B chains has been shown to be 

mediated by Ca2+ ions (Raynal, Hardingham, Sheehan, & Thornton, 2003). More 

recently, high-concentrations of Ca2+ have been identified as crucial for proper 

packaging and secretion of MUC5B into the airway, and failure to reabsorb calcium 

and uncouple the calcium cross-links in the mucus packages after secretion can 

impede mucin expansion and therefore has a major impact on the physical properties 

of the mucus gel (Ridley et al., 2014).  

Exposure of the mucus to oxidating agents, such as ROS, can have significant 

impacts on the physical properties of the mucus gel. Oxidation of airway mucus has 
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been found to increase the number of inter-chain disulphide cross-links in healthy 

airway mucus causing an increase in elasticity of the mucus. In the same study, 

mucus from CF patients was shown have abnormally high concentrations of oxidised 

disulphide cross-links which correlated with the level of ROS in the respective 

samples (Yuan et al., 2015). 

1.2.6 Mucin Gene Expression and Regulation 

Multiple in situ hybridisation studies have determined that MUC5AC and 

MUC5B are differentially expressed throughout normal, healthy respiratory tissues. 

MUC5AC is strongly expressed in the goblet cells found in the surface epithelium, 

and is not expressed in the submucosal glands of the trachea and bronchi. 

Conversely, MUC5B is expressed at very low levels in the goblet cells and moderate to 

high levels of MUC5B expression are found in the submucosal glands (Audie et al., 

1993; Buisine et al., 1999; Reid, Gould, & Harris, 1997). Neither MUC5AC nor MUC5B 

were found to be expressed in healthy adult bronchioles nor the alveoli (Buisine et al., 

1999), so presence of these mucins in respiratory disease patients’ lower airways is 

indicative of abnormal mucus production and/or impaired MCC activity. Mucus 

hypersecretion is one of the main symptoms of COPD and is indicative of an 

increased rate of production of MUC5AC and MUC5B from the goblet cells and 

submucosal glands, which could partially result from goblet cell hyperplasia (Molfino 

& Jeffery, 2007; Saetta et al., 2000). Indeed, MUC5AC expression is known to be 

elevated compared to MUC5B in stable COPD patients (Caramori et al., 2009). It has 

been shown that goblet cell hyperplasia is accompanied by an increase in sialic acid 

residues in infected murine intestines (Y. S. Kim & Ho, 2010). This could be relevant 

to chronic respiratory disease in humans as MUC5AC and MUC5B have been shown 

to be well-conserved across species (Desseyn, Aubert, Porchet, & Laine, 2000). 

The main gel-forming mucins are coded for by the MUC2, MUC5AC, MUC5B 

and MUC6 genes. These genes are found in a cluster on 11p15.5 and are thought to 

have evolved from one common ancestor (Desseyn et al., 2000). Regulation of mucin 

gene expression occurs via many distinct mechanisms, whereby one regulatory agent 

can cause the up- or down-regulation of multiple MUC genes, through the activation 

of multiple pathways. These regulators are usually inflammatory/immune response 

mediators and are a diverse group of molecules, although they can be broadly 

categorised into four groups; (I) inflammatory cytokines, (II) bacterial products, (III) 

growth factors, and (IV) environmental chemicals or pollutants (Thai et al., 2008). 
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Specific mucin genes can be regulated at both the transcriptional and post-

transcriptional level by specific regulators. For example, the agonist 

lipopolysaccharide (LPS) found on the cell wall of Gram-negative bacteria such as 

Pseudomonas aeruginosa, has been shown to transcriptionally upregulate both MUC2 

and MUC5AC via distinct mechanisms. Such mechanisms include the upregulation of 

MUC2 via an Src-dependent NF-κB activation (J.-D. Li et al., 1998), and MUC5AC 

upregulation by TNF-α converting enzyme (TACE) mediated TGFα release and EGFR 

activation (Shao, Ueki, & Nadel, 2003). Another way mucin gene expression is post-

transcriptionally regulated is through TNF-α 

In the lungs, mucin proteins are synthesised in two main types of secretory 

cells; submucosal glandular cells and the surface mucous/goblet cells that line the 

epithelium. The main mucins synthesised in the lung epithelium are MUC5AC and 

MUC5B. The expression and synthesis of these mucins is tightly regulated to ensure 

that over-production/hypersecretion of mucins does not occur. In non-COPD 

sputum, the ratio of MUC5AC to MUC5B is much higher than that of COPD sputum 

(Kirkham et al., 2008), which suggests the regulation of expression of the airway 

mucins is altered during disease states.  

MUC5AC is located on chromosome 11p15.5, in a cluster along with MUC5B, 

MUC2 and MUC6 and is primarily expressed in surface goblet cells in the lungs 

(Hovenberg, Davies, & Carlstedt, 1996). MUC5AC is strongly regulated by 

inflammatory cytokines, bacterial exoproducts, growth factors, proteases, pollutants 

and viruses. A common pathway utilised by many of these regulatory molecules is the 

MAP kinase pathway, with the ERK and p38 molecules (Figure 1-15).  
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Figure 1-15: A schematic of the 5’ promoter regulatory regions of MUC5AC and MUC5B, 
showing some specific regulatory and signal transduction pathways involved in the 
expression of MUC5AC and MUC5B (adapted from Thai et al., 2008). 

MUC5B is located next to MUC5AC in the 11p15.5 cluster and is almost 

exclusively expressed in the submucosal glands of the airways (Gosalia, Leir, & Harris, 

2013). MUC5B expression has been shown to be stimulated in an autocrine/paracrine 

loop by the action of the cytokines IL-6 and IL-17 (Y. Chen et al., 2003). IL-17 induces 

IL-6 secretion in human airway epithelial cells, through a Janus kinase (JAK)-

dependant pathway, whereupon binding of IL-17 to IL-17R activates JAK2. This in turn 

leads to IL-6 production and secretion, which will bind with IL-6R. Binding of IL-6R 

leads to ERK signalling, which is known to implicated in upregulation of mucin 

genes.  

1.2.7 Use of Sputum for Biomarker Discovery in Chronic Respiratory Disease 

As detailed above, sputum production is elevated through multiple 

mechanisms during the course of chronic respiratory disease. As a consequence of 

this, sputum is a readily available, non-invasive sample source from these patients, 

which makes it an attractive prospect for biomarker discovery. Sputum has been 

shown to be a valuable source of biomarkers for respiratory disease. For example, a 

recent study has shown how asthma and COPD patients can been differentiated from 

COPD-asthma-overlap syndrome patients through significantly elevated levels of 

neutrophil gelatinase-associated lipocalin (NGAL) in COPD-asthma-overlap patient’s 

sputum (Iwamoto et al., 2014). 
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Sputum cytology has been used to accurately detect early-stage lung cancer in 

high-risk groups, however it requires a highly-trained and experienced operative, and 

strict technical control between laboratory environments to be most effective (Endo 

et al., 2015). Its use is currently limited in lung cancer screening studies (Manser et al., 

2013), despite having a higher chance for detection of early-stage tumours than X-ray 

screening (Thunnissen, 2003). 

Examination of sputum samples from CF patients revealed that severity of 

lung disease in CF patients has been correlated to levels of surface-bound neutrophil 

elastase on sputum-neutrophils, which has subsequently been suggested to be a novel 

biomarker for CF lung disease (Dittrich et al., 2018). 

1.2.8 Alterations to Respiratory Mucin Glycan Structure & Composition in 

Chronic Respiratory Disease 

Key to the pathogenesis of COPD is an alteration in the properties of the 

mucus layer that lines the airways. Aside from a much greater amount of mucus being 

produced (i.e. mucus hypersecretion), the composition of the mucus is altered. The 

ratio of MUC5B : MUC5AC is changed, so much greater amounts of MUC5B are 

produced in COPD patients (Kirkham et al., 2008; Kirkham, Sheehan, Knight, 

Richardson, & Thornton, 2002). Because of the highly-diverse nature of the 

monosaccharide building blocks of the glycans, the properties of the glycans can vary 

greatly. Glycans composed with more N-acetylneuraminic acid or sulphated residues 

have an overall greater negative charge and are more acidic (A. T. Lewis et al., 2013). 

Therefore it is possible for overall acidity of the mucus to be affected by the levels of 

N-acetylneuraminic acid and sulphated residues. The degree of fucosylation of the 

mucins can also affect the rheology of the mucus, as an increase of fucosylation has 

been shown to increase hydrophobicity of the mucins (A. T. Lewis et al., 2013).  

There can be different glycoforms of specific mucins based on charge 

differences – specifically MUC5B has two glycoforms, a low-charge form and a high-

charge form. The high-charge form is composed with more sialic acid, as well as more 

sulphated residues forming sulphate esters. A change in the balance of the charged 

glycoforms of mucins can have serious implications for the patient’s health, as 

demonstrated by the finding of a highly-viscous mucous plug composed of mainly the 

low-charge glycoform of MUC5B in the lungs of a patient in status asthmaticus 

(Sheehan, Howard, Richardson, Longwill, & Thornton, 1999). Similarly, a recent study 
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focusing on children with acute asthma also identified increased MUC5AC and low-

charge glycoform of MUC5B present in airway mucus (Welsh et al., 2017).  

 Differences in the amounts of low- or high-charge glycoforms of mucins can 

have significant effects on the overall pH of the mucus due to the different levels of 

sialic acid and sulphated residues. Both increased sialylation and sulphation displayed 

by the high-charge glycoforms are associated with increased acidity. A study 

performed by Davril and colleagues demonstrated significant differences in the levels 

of sialic acid and sulphate in airway mucin glycans between infected and non-infected 

cystic fibrosis (CF) and chronic bronchitis (CB) patients. Average sulphation of 

bronchial mucins of CF patients was found to be higher than that of CB patients. 

Sulphation levels are also significantly increased in infected CF and CB patients 

compared to non-infected CF and CB patients. The sialic acid content of the same 

bronchial mucins was observed to be significantly higher in infected patients than in 

non-infected patients (Davril et al., 1999).  

Elevated levels of oestradiol have been shown to be linked to increased 

fucosylation of MUC5AC, as oestradiol causes an increase in fucosyltransferase mRNA 

expression in human airway epithelial cell lines (Tam et al., 2014). This is interesting 

as if it is taken together with the observation that increased fucosylation causes the 

hydrophobicity of the mucins to increase (A. T. Lewis et al., 2013), it is possible to 

suggest that increasing oestradiol levels can be associated with mucin hydrophobicity 

and mucus viscosity, therefore having the potential to be a reliable indicator of 

exacerbation risk.  

1.3 Vibrational Spectroscopy Methods 

1.3.1 Theoretical and Mechanistic Principles of Current Techniques 

1.3.1.0 Fourier Transform Infrared Spectroscopy 

Fourier transform infrared (FTIR) spectroscopy is a highly-sensitive analytical 

method which is capable of rapidly analysing structural changes in molecules. Briefly, 

FTIR measures chemical bond vibrations by measuring infrared (IR) absorbance by a 

sample - or transmission through a sample - and then produces an infrared spectrum 

based on the absorptive properties of that sample which is measured in absorbance 

units (AU).  
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The theoretical basis of FTIR function is absorption of IR light, by molecular 

bonds such as N-H, O-H and C=O. IR light is directed at the sample which is partially 

absorbed in a molecule/bond-specific manner. Molecular bonds have well-defined 

energy levels and exist at a ground state in terms of vibrational energy. These bonds 

can absorb IR light, become excited and transition between energy levels. Each type 

of bond will absorb IR light at specific wavenumbers, which correspond to the 

frequency of vibration of the bond, and a spectrum of absorbance can be generated 

based on the total composition of molecular bonds in the sample.  

By using IR light of many wavelengths to analyse the sample, it is possible to 

construct a distinctive IR molecular fingerprint based on the principle that different 

chemical bonds absorb different wavelengths. FTIR produces both narrow and broad 

spectral bands, which are easily resolved, molecule-specific and directly provide 

information on the biochemical composition of the sample. Samples generally require 

very little preparation before analysis by FTIR; for example, the sample does not need 

to be mixed into a matrix. Indeed, biofluids taken from patients can be analysed 

almost immediately by pipetting directly onto the device and taking a spectrum. One 

disadvantage of FTIR is that samples must be as free from water as possible, because 

water is a strong absorber of IR light and will mask all other bonds that may be 

present in the sample. Therefore the sample to be analysed must be completely dry 

before any successful analysis can be carried out as the –OH bonds in water have a 

very strong absorption band at 1640cm-1 and will also obscure any peaks generated 

from the sample at lower wavenumbers (Oberg & Fink, 1998). When planning FTIR 

experiments on biofluids, drying time of the samples must be taken into account, 

which will be an influencing factor on which FTIR technology to use, sample 

preparation methods, and the number of samples which can analysed.  

Mechanistically, the core of an FTIR spectrometer is an interferometer, which 

is comprised of a beam-splitter and two mirrors, one fixed and one movable, for the 

generation of a variable optical-path difference between two beams. The initial results 

appear as an interferogram, which is subsequently Fourier-transformed to produce an 

absorbance spectrum. The source emits an IR beam which is divided by the beam-

splitter into two beams of equal energy. One beam is refracted towards the fixed 

mirror and the other beam is directed towards the movable mirror, which reflects it 

towards the beam-splitter. The two beams recombine and interfere with one-another 
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in either a constructive or destructive way, depending on the optical path difference. 

The recombined beam is then passed through the sample before reaching the 

detector. The detector measures the light intensity relative to the position of the 

movable mirror and creates an interferogram. This interferogram is then Fourier 

transformed into a readable spectrum by the computer (Barth, 2007). This spectrum 

contains a mix of sharp and broad, resolvable bands which are unique to the 

molecular content of the sample.  

There are multiple configurations that FTIR spectrometers can be made from, 

with the two most common being attenuated total reflectance (ATR)-FTIR and 

transmission-FTIR (T-FTIR). ATR-FTIR and T-FTIR have some important similarities, 

which makes the two techniques comparable. For example, both techniques have 

been shown to produce almost identical information on a protein’s structure 

(Goormaghtigh, Gasper, Bénard, Goldsztein, & Raussens, 2009), but there are 

important differences that must be taken into account. 

1.3.1.1 Transmission-FTIR 

Transmission-FTIR (T-FTIR) is a common form of FTIR technology which is 

utilised in a broad manner of applications. The sample to be analysed is placed onto 

an IR-transmissible substrate, such as calcium fluoride (CaF2), silicon, or low-E glass 

slides. Samples are applied in a liquid state and are allowed to dry to form a thin film. 

T-FTIR is not typically suited to analysis of solid or powder samples without sample 

preparation, and liquid-sample analysis must be carried out using a liquid-

transmission cell. Tissue samples can be readily examined by T-FTIR, however they 

must first be fixed to the slide using a suitable fixing agent, which must then be 

removed prior to spectrum acquisition to remove its signal from the fixing agent and 

reduce scattering (Pilling & Gardner, 2016). T-FTIR has been used for high-definition 

tissue imaging in pathology, with spatial resolutions of 5-6µm achievable, allowing for 

extremely highly detailed IR-images of the tissue section (Pilling & Gardner, 2016). It 

has been shown that IR spectral histopathology (SHP) can diagnose lung cancer with 

accuracy comparable to multi-panel immuno-histochemistry (Bird et al., 2012).  

 In T-FTIR, the IR beam passes directly through the sample and the IR-

transmissible sampling substrate. Generating a good quality spectrum is dependent 

on the IR beam being able to penetrate and transmit through the sample and 

substrate with minimal losses due to scattering of the beam. Beam scattering can be 
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reduced by ensuring the sample dries evenly over the sampling area, minimising 

variation in the topography of the sample and reducing the “coffee-ringing” effect, 

whereby high concentrations of the sample are drawn to the edges of the drying 

sample spot. This effect can be reduced through the use of a strict experimental 

design (Baker et al., 2015), however this adds complexity, time and cost to the 

procedure. 

1.3.1.2 Attenuated Total Reflection-FTIR 

Attenuated total reflection (ATR)-FTIR is another common configuration of 

FTIR technology. It is capable of rapidly generating structural information of the 

chosen sample without the need for preparation of thin-films or the use of liquid 

cells, unlike in T-FTIR. In ATR-FTIR, the sample to be analysed is placed directly on 

top of an IR-transparent crystal. The IR-beam is refracted into and internally reflected 

through the crystal, creating an evanescent wave of IR radiation which penetrates 

into the sample applied to the crystal. IR radiation is absorbed by the sample in a 

molecular bond specific manner and a spectrum of absorbance is generated (Figure 1-

16). 

 ATR crystals are usually diamond or germanium (Ge) due to these materials’ 

high hardness and resistance to scratches, but can also be zinc selenide (ZnSe), zinc 

sulphide (ZnS), silicon, or potassium bromide (KBr), depending on the intended 

application. Each material has specific advantages and disadvantages relating to their 

properties, which in turn has implications regarding the suitability of the crystal for 

use in certain settings and environments, and for analysis of certain samples. For 

example, whilst diamond and Ge have a very high hardness and are suitable for use 

with most samples, they come with a very high cost which can limit the potential 

applications an FTIR device equipped with such crystals can be used in. Other 

crystals, including ZnS and ZnSe, however, have a much lower associated cost and so 

are more appropriate for use in settings where low-cost-of-use/low-purchase-cost are 

more important; for example, as a point-of-care device. Other crystals, such as KBr, 

may not be suited for use on aqueous samples, including biofluids, as KBr is soluble in 

water. 
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Figure 1-16: A simplified schematic drawing of an ATR-FTIR spectrometer, showing the 
IR source, interferometer (dotted perimeter), ATR crystal and detector. The detected 
signal (interferogram) is interpreted by a connected computer and Fourier-
transformed to generate the spectrum. 

Due to the rapid nature of ATR-FTIR, experiments designed around ATR-FTIR 

are able to monitor real-time structural alterations caused by environmental change 

through modification of environmental conditions (e.g. temperature, pressure, pH). 

ATR-FTIR overcomes many of the disadvantages associated with T-FTIR methods. 

For example, T-FTIR requires the use of expensive and fragile slides, usually made of 

CaF2 for sample preparation, whereas ATR-FTIR does not. However, ATR-FTIR still 

requires that the sample be completely free of water, to prevent masking of peaks. 

ATR-FTIR requires very little sample preparation prior to spectral acquisition, 

with spectra being able to be generated immediately after a sample is placed onto the 

sampling module. ATR-FTIR is ideal for rapid analysis of both fluid and solid/powder 

samples, although solid/powder samples must be held in place to ensure close 

contact between the sample and ATR crystal. Another advantage of ATR-FTIR is the 

speed-of-spectrum acquisition; it is possible to use ATR-FTIR to quickly and easily 

perform quality analysis throughout processes by monitoring molecular bond 

composition of a sample as it passes through an assay, for example cleavage of glycan 

chains from a protein backbone by β-elimination.  

There are limitations to ATR-FTIR, for example, due to the very low 

penetration depth of the IR beam into the sample, it must be in extremely close 
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contact with the ATR crystal. This is achieved by directly spotting the samples onto 

the ATR crystal and allowing it to dry, forming a thin-film directly on top of the 

crystal. When analysing solid samples with ATR-FTIR, this contact is created by 

applying external pressure using a clamp to press the sample into the ATR-crystal. 

Another limitation of ATR-FTIR is the long spectral acquisition time of multiple 

samples. Individual samples can be rapidly analysed, however ATR-FTIR of many 

samples can be time-consuming, especially if the samples have to be dehydrated prior 

to spectral acquisition, as no automated high-throughput ATR system is available 

(Baker et al., 2015). 

1.3.1.3. Attenuated Total Reflectance Variable Filter Infrared Spectroscopy 

ATR-Variable filter infrared spectroscopy (ATR-VFIR) is a variation of ATR-

FTIR spectroscopy. The spectrometer is constructed with zero moving parts and 

utilises a linear variable filter (LVF) detector. An example of an ATR-VFIR 

spectrometer is the IR Sphinx, manufactured by Comline Spectrolytic (Wackersdorf, 

Germany). This spectrometer is lightweight and hand-held, and therefore is truly 

portable. It is also relatively low-cost compared to other full size ATR units such as 

the Bruker Alpha, and it is these qualities that have created an interest in utilising 

ATR-VFIR as a potential tool for use in the clinic for monitoring of disease 

ATR-VFIR instruments make use of a linear variable filter detector, consisting 

of a variable-wavelength filter, which allows specific wavelengths to be transmitted 

through at specific regions of the filter, mounted on top of a piezoelectric crystal 

wedge. The detector present in the IR Sphinx is the Pyreos Thin Film Pyroelectric 

Linear 128 Element Line Sensor Array, with a lead-zirconate-titanate (PZT) filter 

capable of allowing wavelengths from 1818-909cm-1 to be transmitted (Pyreos, part no: 

PY0738). 

1.3.1.4 Final Summary Comparison of T-FTIR, ATR-FTIR & ATR-VFIR 

 The various FTIR technologies described so far each have their own unique 

features, advantages and disadvantages. Hereinafter, these will be directly compared 

to highlight key differences between each technology.  

 All of the technologies described are forms of vibrational spectroscopy, 

measuring the absorbance of infrared radiation through excitation of the vibrational 

energy of molecular bonds present in the sample of interest. FTIR spectrometers 

require an interferometer to spatially deconstruct the IR beam, whereas the VFIR 
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spectrometer has no need of an interferometer, and therefore has no moving parts 

and is less complex than conventional FTIR spectrometers. This reduced complexity 

allows VFIR spectrometers to be low cost, and small enough to be hand-held and 

portable, qualities which not applicable to conventional FTIR spectrometers. 

However, they are currently not capable of the same level of spectral resolution as 

FTIR spectrometers, and therefore applications in which they could be used may be 

limited. 

 As previously stated, FTIR spectroscopy can be performed in several 

configurations, with the two of the most common being T-FTIR and ATR-FTIR. The 

main difference between these configurations is the sampling mode. T-FTIR passes 

the IR beam directly through the sample which is held on an IR transmissible 

substrate, whereas in ATR-FTIR the beam is refracted and internally reflected 

through an IR transmissible crystal, such as diamond or KBr, on to which the sample 

is placed. In T-FTIR the IR beam is transmitted completely through the sample and 

substrate, but in ATR-FTIR IR radiation only penetrates a few microns into the 

sample, at the point of internal reflection in the crystal.  

1.3.2 Use of Vibrational Spectroscopic Methods in Disease Management and 

Diagnosis 

Due to its inherent ease of use, high reproducibility and non-invasiveness, 

FTIR has previously been applied with success to a range of biofluids and tissue 

samples. The technique is capable of analysing microlitre volumes of sample, with 

minimal sample preparation required. 

A great deal of work has been carried out to establish FTIR as a suitable 

technology for diagnosis of various cancers and other diseases. An increasing number 

of publications show that FTIR is a viable tool for analysing biofluid samples (Baker, 

Trevisan, Bassan, Bhargava, & Butler, 2014), and diagnosis and monitoring of diseases 

such as brain cancer (Hands et al., 2016), cystinuria (Oliver et al., 2016), breast cancer 

(Backhaus et al., 2010) and oropharyngeal cancers (Menzies et al., 2014). 

Whiteman et al. performed a small preliminary study into the use of FTIR 

spectroscopy as a diagnostic tool for detection of biomarkers of exacerbation in 

COPD patients’ sputum. It was found that the infra-red spectra of nebulised sputum 

collected from COPD patients and healthy volunteers were significantly different in 

the amide II and glycogen-rich regions, but not the amide A region despite COPD 
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patients having more peaks over a wider range in this region (Whiteman, Yang, Jones, 

& Spiteri, 2008). This study demonstrated the proof of concept, that it is possible to 

use FTIR to characterise differences in COPD patients’ sputum from healthy sputum. 

The authors attributed the observed spectral differences to changes in mucin protein 

secondary structure and glycosylation. In fact, FTIR is capable of determining protein 

secondary structure by determination of the exact positions of the absorbance bands 

within amide I. α-helices, and random coil structures are associated with major 

absorption bands centred around 1656, and 1650cm-1, respectively whilst β-sheets 

produce a range of bands from 1624 to 1642cm-1, an absorbance maximum seen 

around 1636cm-1 (Goormaghtigh et al., 2009; Kong & Yu, 2007; S. P. Lewis, Lewis, & 

Lewis, 2013).  

FTIR has previously been shown to be a valuable tool in the diagnosis of lung 

cancer; work within our group demonstrated the efficacy with which FTIR can be 

utilised to analyse sputum samples from patients and determine the presence of lung 

cancer with high sensitivity and specificity (Paul D. Lewis et al., 2010). It was also 

reported that FTIR spectra suggested a diagnosis of cancer in 48% of patients where 

no tumour was visible during bronchoscopy. This is highly important as it shows how 

FTIR could be used as more accurate diagnostic tool, rather than just bronchoscopy 

and pathology alone.  

Lewis et al. have identified a large number of discrete sugar- and sulphate-

associated infrared absorption peaks that can be used to predict the presence of the 

major mucin-linked carbohydrates and mucin modifications observed in the IR 

spectrum of sputum (A. T. Lewis et al., 2013). These specific absorption peaks are able 

to distinguish differences in glycosylation patterns between COPD and non-COPD 

sputa. This has implications for the rapid distinction of COPD from other respiratory 

diseases, for example asthma or bronchiectasis.  

1.4 Aims and Objectives 

This thesis is focussed on evaluating the utility of FTIR for regular use on sputum 

samples from chronic respiratory disease patients. Sputum samples to be analysed by 

FTIR will be obtained from COPD patients for the prediction of exacerbation, from 

lung cancer patients for the diagnosis of lung cancer, and from CF patients for the 

investigation of the interactions of the novel therapeutic OligoG with sputum.  
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1. Evaluate FTIR to determine changes to IR spectral patterns from baseline to 

exacerbation 

2. Evaluate the sensitivity and specificity of the hand-held FTIR device for 

detection of COPD in sputum and develop a standardised protocol for sputum 

analysis by ATR-VFIR using a sampling strip 

3. Further examine FTIR as a potential tool for early lung cancer diagnosis and 

lung cancer staging through analysis of raw sputum 

4. Investigate the utility of FTIR for monitoring of concentration in sputum of an 

inhaled therapeutic, and interaction with sputum mucins, in spontaneous 

cystic fibrosis patient sputum 

 

Objective 1: Evaluate FTIR to determine changes to IR spectral patterns from 

baseline to exacerbation.  

Based on previous knowledge of predicted changes to sialylated glycans in 

mucins during exacerbation, the student will use FTIR to generate an infrared 

spectral library for samples from the same patients at baseline, and at the start of 

their next exacerbation. These samples have already been collected by respiratory 

nurses, as part of the existing MEDLUNG study. This work will provide preliminary 

data leading to a large study for full evaluation of FTIR as a method for long-term 

monitoring of COPD patients and predicting exacerbation. Replicate spectra will be 

generated using a Bruker Alpha and high-throughput Bruker Vertex with an HTS-XT 

attachment. Using ratios of absorbencies at 1650cm-1 against absorbencies of 

wavenumbers specific to Lewis antigen structures, we have developed a regression 

model that provides a single threshold score where patient scores below are predicted 

as baseline and scores equal/above are predicted as exacerbation. For sample size 

calculation we use an ROC curve to determine accuracy and set an area under the 

curve at 0.8 with a null hypothesis of 0.5. For Type I and II error rates at 0.01 we 

require a minimum sample size of 72; i.e. 36 samples at baseline followed by 36 

samples at exacerbation to test model accuracy.  

 

Objective 2: Evaluate the sensitivity and specificity of the IR Sphinx for 

detection of COPD in sputum and develop a standardised protocol for sputum 

analysis by ATR-VFIR using a sampling strip. 
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Using glycan-associated wavenumbers, evaluate the miniaturised FTIR device 

to detect COPD on a retrospective sputum sample set of adequate statistical power 

for COPD baseline cases. This data will allow the development of generalized linear 

models to provide the likelihood of COPD disease future trial evaluation. Using 

backward selection, models will be evaluated in terms of goodness of fit (inc. R2 and 

likelihood ratio), significance of model coefficients and validated by resampling via 

bootstrapping and test data sets. Models will be selected according to sensitivity and 

specificity in classifying COPD.  

 

Objective 3: Further examine FTIR as a potential tool for early lung cancer 

diagnosis and lung cancer staging through analysis of raw sputum. 

Through utilisation of high-throughput FTIR technology, retrospectively 

collected sputum samples obtained through the MEDLUNG study from patients 

attending bronchoscopy clinics under suspicion of lung cancer will be analysed. 

Samples were collected with patient consent prior to bronchoscopy by instructing the 

patient to produce sputum by cough. Patients who receive a final clinical diagnosis of 

“lung cancer” will be compared to those who receive a final diagnosis of “COPD” or 

“non-COPD respiratory disease”. Through comparison of the patient’s clinical data 

(cancer status, morphology, stage) with replicate FTIR spectra of their raw sputum, 

generalized linear models will be developed to predict the likelihood of lung cancer in 

these patients. Regression models will be evaluated based on sensitivity and 

specificity scores for this known sample set. FTIR will be investigated for its utility to 

distinguish different lung cancer subtypes (adenocarcinoma, squamous cell, SCLC) 

and TNM stages. Through statistical modelling using multivariate techniques, 

variation in sputum spectra between cancer subtypes and TNM stages will be 

quantified for regression and classification model construction. 

 

Objective 4: Investigate the utility of FTIR for monitoring of concentration in 

sputum of an inhaled therapeutic, and interaction with sputum mucins, in 

spontaneous cystic fibrosis patient sputum. 

FTIR spectroscopic techniques will be applied to sputum samples collected 

from CF patients who were taking part in a clinical trial of a novel therapeutic drug, 

in order to evaluate interaction between the drug and patient’s sputum. This will be 

achieved through statistical evaluation and comparison of IR spectra of the drug and 
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of CF-patient sputum. Alterations to the sputum spectrum caused by presence of the 

drug will be quantified using similarity and distance modelling.  
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Chapter 2 

Materials & Methods 
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2.1 Sputum and Patient Data Collection 

2.1.1 MEDLUNG – diagnostic study 

Informed consent to provide a sputum sample was obtained as part of the 

Medlung observational study (loco-regional ethical committee approval 

05/WMW01/75, study trial UKCRN ID 4682). Spontaneous sputum was collected 

from patients during visits to bronchoscopy clinics throughout the duration of the 

study at the following hospital sites: Great Western Hospital, Swindon; St. George’s 

Hospital, London; Queen Elizabeth Hospital, Birmingham; New Cross Hospital, 

Wolverhampton. King’s Mill Hospital, Nottingham; Milton Keynes Hospital, Milton 

Keynes; Chelsea and Westminster Hospital, London; Prince Philip Hospital, Llanelli; 

Bronglais Hospital, Aberystwyth. Patient details were collected regarding: patient 

medical history, drug history, age, biological sex, smoking status & pack-years. The 

patient’s final clinical diagnosis, including staging, histological data and final source 

of diagnosis, where appropriate, was also recorded. All details were stored on a secure 

server at www.onedrive.com and accessed electronically. After providing full, 

informed consent, patients were instructed to provide a single sample of sputum by 

coughing-up from their airways. All sputum samples were immediately stored at -

80°C in the hospital until transit to Swansea University on dry ice. Samples were 

stored in Swansea University at -80°C until FTIR analysis.  

MEDLUNG recruited 1270 patients in total, over the period from June 2006 to 

December 2015. Of these 1270 patients, samples from 252 patients with confirmed 

lung cancer were available in Swansea University for the commencement of this work 

in 2014. An additional 132 COPD patients had also been recruited, of which 89 whose 

disease was classified as currently baseline, and 43 who were classified as currently 

exacerbating. 

2.1.2 SPEDIC – longitudinal study 

SPEDIC was a year-long study performed throughout the duration of this 

thesis, in collaboration with Cwm Taf University Health Board, and was designed to 

track the progress of COPD patients’ disease (loco-regional ethical committee 

approval 15/LO/1703, study trial UKCRN ID 32064). The aim of this study was to 

evaluate the feasibility of using FTIR analysis to investigate COPD patient sputum 

samples in order to reliably predict an exacerbation prior to the exacerbation 

occurring. The study recruited patients who attended the respiratory clinic in Prince 
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Charles Hospital (Cwm Taf, Merthyr Tydfil) after referral from their GP due to 

worsening COPD symptoms, or after presenting in the emergency room with an 

exacerbation of COPD. In total, 55 COPD patients who attended these clinics 

throughout the study course consented to take part in the study. 

Patients recruited into the study gave informed consent to give up to 5 

spontaneous sputum samples per week, which would then be analysed by FTIR 

spectroscopy at Swansea University. All samples were stored at -20°C in the patients’ 

homes until collection and subsequent long-term storage at -80°C. There were two 

collections per patient per 7-day period, with a maximum of 4 days between sputum 

production and collection for storage at -80°C. The effects of short-term storage of 

sputum at -20°C were unclear, however there was no feasible alternative given the 

frequency of sample production throughout the study. A review of the literature 

found that short-term storage of mucus-based samples at -20°C does not cause 

significant degradation of the mucin glycoprotein structure as evidenced by no 

significant differences in rheological properties of mucus stored at -20°C or -80°C 

(Gastaldi, Jardim, & King, 2000). Further studies have also shown that the other 

components of mucus are not significantly affected by short-term cold storage at the 

comparatively increased temperatures of 2-8°C. One such study focused on cervical 

mucus and compared the levels of various cytokines in samples which had been 

refrigerated for 8 hours to those which were snap-frozen on dry ice. They found the 

yield of cytokines was not significantly different between storage modes, with the 

exception of TNFα, type II interferon gamma (IFN-γ), and IL-1β which all showed an 

increased yield in the refrigerated samples compared to the snap-frozen samples 

(Panicker, Meadows, Lee, Nisenbaum, & Unger, 2007). Another study found that 

short-term refrigeration of sputum does not cause significant differences in the levels 

of detectable cytokines nor Mycobacterium tuberculosis cultures (Kolwijck et al., 

2013). Taken together, these studies all suggest that short-term storage of sputum at -

20°C before long-term storage at -80°C does not cause alterations to the molecular 

structure of the mucin glycoproteins nor to the other constituent components of 

mucus.  

Patients filled in a validated patient health questionnaire providing 

information about various aspects of their current health status, including cough, 

sputum production, and difficulty performing light, moderate and strenuous physical 



Charles Brilliant 
 

55 
 

activity with patients rating each variable on a scale of 1-6, with higher values 

associated with worse symptoms. Current exacerbation status was confirmed by the 

health care assistant assigned to each patient. The patient health status data was 

stored on secure server at www.zoho.com and assessed electronically. 

SPEDIC also recruited 70 non-COPD chronic respiratory disease patients. A key 

question facing clinicians is the distinction between COPD and other respiratory 

diseases, such as asthma or bronchiectasis. These patients’ sputum samples were 

analysed by FTIR and compared to COPD patient sputum spectra in order to identify 

specific markers to distinguish COPD from non-COPD respiratory disease. 

2.1.3 Novel Therapeutics in Cystic Fibrosis Trial 

CF patients were recruited into randomised, double-blind, crossover phase IIb 

studies (NCT02157922 & NCT02453789). For this work, samples from 17 CF patients 

were used. Patients were administered the drug treatment (OligoG 0.2% w/v) or a 

placebo treatment (lactose 0.2% w/v) via inhalation daily for 4 weeks before crossing 

over and receiving the other treatment – see appendix 1.4 for study phase allocations 

for each patient. Sputum samples were provided by the patients before any treatment 

as a screening sample, and at regular 14 day intervals during both treatment phases. 

Samples were frozen at -80°C, transported to Swansea University on dry ice and then 

subsequently stored at -80°C until FTIR analysis was performed. The aims were to 

ascertain if FTIR analysis could be employed to determine OligoG presence in sputum 

after treatment, and to provide evidence for any possible interaction between OligoG 

and sputum mucins.  

2.1.3 Spirometry 

Lung function tests were performed in accordance with the joint American 

Thoracic Society/European Respiratory Society (ATS/ERS) guidelines (Miller et al., 

2005) by trained National Health Service (NHS) research staff. Spirometry was used 

to measure the patient’s FEV and FVC values to provide a quantitative measure of 

lung function to be compared to FTIR spectra of sputum, as it has been shown to 

have a high diagnostic accuracy for COPD (Schneider et al., 2009). However, care was 

taken to not over-emphasise the importance of spirometry results in the analysis of 

this work as it is known to have limited accuracy. One study found that spirometry 

was performed to an acceptable standard in only 60% of 153 patients, with inability to 
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meet “end-of-test criteria” being the most common cause of failure, followed by poor 

repeatability (Hegewald, Gallo, & Wilson, 2016).  

2.2 FTIR Spectroscopy 

2.2.0 Sample preparation 

 All raw sputum samples in Swansea University were stored at -80°C when not 

in use. Samples were allowed to slowly thaw and reach room temperature prior to 

spectral analysis. No other sample preparation was carried for FTIR analysis. 

2.2.1 ATR-FTIR  

ATR-FTIR spectroscopy was carried out using a Bruker Alpha, with the ATR 

diamond single reflection sampling module attachment (Bruker Optics), equipped 

with a deuterated triglycine sulphate (DTGS) detector. Prior to each measurement, 

the diamond sampling window was cleaned in 70% ethanol, and a background 

spectrum was acquired. 2µl of each sample was directly pipetted onto the sampling 

window and allowed to dry in air at room temperature. Once dry, sample spectra 

were generated, with each spectrum consisting of an average of 24 scans per sample 

at 4cm-1 resolution, over the spectral range of 4000-400cm-1. After the spectrum was 

generated, the sample was rehydrated using dH2O to facilitate cleaning and then the 

ATR crystal was cleaned with 70% ethanol and blue roll. The instrument was 

controlled by Optics User Software (OPUS) version 7.5 (Bruker).  

2.2.2 High-throughput Transmission FTIR 

High-throughput-transmission FTIR (HT-FTIR) was carried using the Bruker 

Vertex 70 with the HTS-XT module attachment, equipped with a DTGS detector. A 

silicon 96-well plate (Bruker Optics) was used as the FTIR substrate, which was 

cleaned in 70% ethanol prior to sampling. One position on the plate was always left 

clear to enable background measurements to be taken. 2µl of sample was spotted 

onto the sampling plate and allowed to dry in air at room temperature. Spectra were 

acquired in transmission mode within the spectral range of 4000 to 400cm-1, at a 

resolution of 4cm-1 and were the result of 32 scans. 

2.2.3 FTIR Microspectroscopy 

FTIR microspectroscopy was performed using a Bruker Vertex 70 with a Hyperion 

2000 IR microscope attachment, in reflectance mode. The spectrometer was equipped 

with a KBr beamsplitter and a liquid nitrogen-cooled mercury cadmium telluride 
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(MCT) detector. The knife-edge aperture was set to 50 × 50µm. A single background 

spectrum of a gold standard plate was taken prior to spectrum acquisition. Sputum 

was pipetted (2µl) onto silicon plate and allowed to dry in air. 900 spectra were 

acquired over an area of approximately 1000x1000µm within the sputum spot. 

2.2.4 OPUS controlling software 

The Bruker Spectrometers were controlled, and the parameters of each 

spectrum acquisition were set, by OPUS version 7.5 (Bruker Optics) as described 

above.  

2.2.5 IR Sphinx  

2.2.5.1 IR Sphinx - Crystal 

The IR-Sphinx (Spectrolytic Gmbh) was used for ATR-VFIR measurements. 

The ATR crystal was cleaned with 70% ethanol and blue roll before all measurements. 

A background scan was taken and then 20µl of sputum was pipetted directly onto the 

ATR crystal, and allowed to air-dry. A small fan was used to expedite the drying. Once 

the sputum was dry, 3 consecutive spectra were taken 2 minutes apart at 200 scans 

each and modulation frequency of 8Hz. An average of these spectra was taken if they 

displayed a similarity score greater than 0.98. Similarity assessment was carried out 

using the in-built “SIX” algorithm in the Sphinx Suite Software. 

2.2.5.2 IR Sphinx – Sample Strip 

20µl of sputum was pipetted directly onto surface of the sample strip, and 

allowed to air-dry. A small fan was used to expedite the drying. Once the sputum was 

dry, a background spectrum was first taken, and then the sample strip was applied to 

the crystal and using a custom-made clamp, was held in place throughout the scan. 3 

consecutive spectra were taken 2 minutes apart at 200 scans each and as above, 

similarity scores calculated prior to averaging.  

2.2.5.3 SphinxSuite controlling software 

The IR Sphinx Spectrometers were controlled, and the parameters of each 

spectrum acquisition were set, by SphinxSuite version 1.4.7 (Spectrolytic).  
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2.3 Spectral Processing 

2.3.1 FTIR Spectra 

 Each FTIR spectrum was processed using the in-built algorithms in OPUS for 

baseline correction using the rubberband method, min-max or vector normalisation, 

second-derivative calculation (window size = 9, derivative degree =2) and peak 

picking.  

2.3.2 ATR-VFIR Spectra 

Acquired spectra were processed using the in-built algorithms in SphinxSuite. 

Spectra were converted to absorbance and a Savitzky-Golay filter (Window size = 13; 

Polynomial order = 5; Derivation degree = 0) was applied to smooth the data. An 

extended multiplicative scattering correction (EMSC) was applied to all spectra. 

2.4 Statistical Methods 

Statistical programming was carried out using the statistical programming 

environment, R (R Core Team, 2016). Data reduction techniques and statistical 

modelling were carried out using the in-built and custom-made functions. Normality 

and/or skewedness of data was tested for using data visualisation by histograms, with 

Q-Q plots and with the Shapiro-Wilk test for normality. Significance was assessed by 

either the parametric T-Tests or the non-parametric Wilcoxon Rank Sum Test, 

depending on the normality of the data. One way ANOVA was also performed to 

assess variance between and within patient groups. 

2.4.1 Principle Component Analysis 

Principle components analysis (PCA) is a data reduction and visualisation 

technique which is used to determine patterns of variation within a dataset. Principle 

components (PCs) are calculated based on the summation of vectors drawn from the 

sum of individual variable components within the dataset. PCs can then be plotted as 

vectors and visualised in geometric space (Figure 2-1). 
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Figure 2-1: Graphical representation of PCA, showing vectors 1-6 originating from the 
origin of PC1 and PC2. Vectors can be grouped according to the variance of the 
variables (black, orange and blue perimeters)  

PCA was used to reduce the spectral data into a set of variables (wavenumbers) 

and transform them into a Cartesian coordinate system that could be used to separate 

and display individual spectra in a scatterplot. The R “prcomp” (R Core Team, 2016) 

package was used to perform PCA on spectral data. 

2.5 Incubation of Sputum with OligoG 

Sputum samples from CF patients were incubated with 2% OligoG at a 1:10 

(OligoG:sputum) concentration, for a final concentration of 0.2% OligoG in sputum, 

to mimic concentrations of OligoG used in previous studies (Hengzhuang et al., 2016; 

Pritchard et al., 2016). Incubations were performed at 37°C for 30 minutes prior to 

FTIR analysis. 

2.6 OligoG, DNA and Calcium Ion Interaction 

OligoG was incubated with 0mM (control), 1mM and 5mM Ca2+ (Cole-Parmer) 

ions, and 0mM (control), 1mM and 10mM whole human DNA (Promega) for 30 

minutes at 37°C. Table 2- below shows all final dilutions of OligoG, DNA, and Ca2+ 

ions made up prior to incubation and subsequent high-throughput T-FTIR analysis, 

as described earlier in Section 2.2.2. 

 

PC1 

PC2 

2 1 

3 

4 

5 

6 
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Variable Modified Final Concentrations 

DNA 

2%OligoG + 
0mM DNA 
+ 0mM Ca2+ 

(Control) 

2%OligoG + 
1mM DNA + 
0mM Ca2+ 

2%OligoG + 
10mM DNA 
+ 0mM Ca2+ 

Ca2+ 
2%OligoG + 
0mM DNA 
+ 1mM Ca2+ 

2%OligoG + 
0mM DNA 
+ 5mM Ca2+ 

Ca2+ & DNA 
2%OligoG + 
1mM DNA + 

1mM Ca2+ 

2%OligoG + 
10mM DNA 
+ 5mM Ca2+ 

Table 2-1: Concentrations of DNA and Ca
2+

 ions incubated with 2% OligoG prior to FTIR 
analysis 
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Chapter 3 

Investigations of Sputum Mucins from Chronic Obstructive 

Pulmonary Disease Patients to Predict Exacerbation by FTIR 
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3.1 Introduction 

3.1.1 COPD, Mucus and Mucin 

COPD is a progressive and life-limiting condition of the respiratory system, 

characterised by moderate to severe airflow limitation, excess mucus and sputum 

production, and cough. The patient’s airflow is limited by chronic airway obstruction 

by increased mucin production leading to an increased mucus load. Mucus clearance 

via MCC activity is also reduced. COPD is primarily caused by smoking, however 

environmental and occupational exposure to chemicals and other pollutants are also 

significant contributors towards COPD progression (Health and Safety Executive, 

2014).  

COPD patients frequently undergo episodic worsening of their disease, 

termed exacerbations. Exacerbations of COPD are defined as an event in the natural 

course of the disease that are characterised by an acute, non-fully reversible 

worsening of the patient’s baseline dyspnoea, cough, and/or sputum production 

beyond day-to-day variations, and are sufficient to warrant a change in management 

(Papi et al., 2006). 

The state of health of a COPD patient is heavily influenced by the frequency 

of acute exacerbations, with those being prone to more frequent exacerbations 

undergoing more hospital admissions, and generally having a marked decrease in 

their QOL (Seemungal et al., 1998). Currently there is no way to predict exacerbation 

occurrence, and exacerbations are usually self-reported. This is hypothesised to 

contribute to the phenomenon that approximately 50% of COPD exacerbations are 

unreported to the patient’s clinician and therefore it can be assumed that 

approximately 50% are also untreated (Seemungal, Hurst, & Wedzicha, 2009). This 

represents a significant issue for management of COPD by patients and by clinicians, 

as due to the progressive nature of COPD, after each exacerbation the patient’s 

symptoms worsen and their QOL decreases. This is highlighted by the finding that 

patients who had a higher exacerbation reporting rate had an improved quality of life 

compared to patients who did not report and subsequently did not receive treatment 

(Wilkinson, Donaldson, Hurst, Seemungal, & Wedzicha, 2004). 

 COPD phenotyping into seven distinct phenotypes has been shown to be 

effective for defining patients, leading towards clinically meaningful outcomes (Mirza 

& Benzo, 2017). The identified phenotypes are described in detail in Table 1-2, but 
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briefly are 1) asthma-COPD overlap, 2) frequent exacerbator, 3) upper lobe-

predominant, 4) rapid decliner, 5) comorbid COPD, 6) physical frailty, and 7) 

emotional frailty. These phenotypes each have distinct causes and each has practical 

implications for the care of the patient. For example, comorbid COPD patients who 

have high BMI, congestive heart failure, and/or ischemic heart disease show higher 

levels of dyspnoea, lower QOL, increased health care utilization and increased 

mortality risk compared to COPD patients with similar airflow limitation but no 

comorbidity.  

3.1.2 Fourier-Transform Infrared Spectroscopy 

FTIR spectroscopy is a vibrational spectroscopy technique capable of rapidly 

identifying molecular structures in samples of interest through measurements of IR 

absorbance by molecular bonds. Every molecular bond has vibrational energy, which 

is increased through absorption of certain IR wavelengths, specific to that molecular 

bond. By targeting a sample with IR light composed of many wavelengths a spectrum 

of absorbance can be generated, corresponding to the molecular composition of the 

sample. 

FTIR spectroscopy has been successfully applied in the analysis of biofluids 

from patients of many different diseases. It has been shown to be effective for 

detection of DNA and mannose-6-phosphase, a known breast and prostate cancer 

marker, in saliva from smokers (Rodrigues et al., 2017). FTIR spectroscopy has also 

been shown to be capable of classifying and staging many different cancers including 

breast (Backhaus et al., 2010), lung (Bird et al., 2012; Paul D. Lewis et al., 2010), 

oropharyngeal (Menzies et al., 2014), and brain cancers (Hands et al., 2016). This 

shows that FTIR is a powerful tool for determining subtle molecular changes in 

complex biofluids, which are regularly comprised of a mixture of proteins, sugars, 

lipids, cellular debris, and DNA.  

FTIR has also been shown to be capable of determining protein secondary 

structure, through determination of α-helices, β-sheet, and random coil structures 

present in bovine submaxillary mucin (BSM), a mucin protein which is homologous 

to MUC5AC and MUC5B in terms of primary and secondary structures (S. P. Lewis et 

al., 2013). 

 Whiteman et al. performed a small preliminary study into the use of FTIR 

spectroscopy as a diagnostic tool for detection of biomarkers of exacerbation in 
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COPD patients’ sputum. It was found that the infra-red spectra of sputum collected 

from COPD patients and healthy volunteers were significantly different in the amide 

II and glycogen-rich regions, but not the amide A region despite COPD patients 

having more peaks over a wider range in this region (Whiteman et al., 2008). 

The main constituents of sputum are the high molecular weight mucin 

glycoproteins MUC5AC and MUC5B, which are heavily glycosylated with O-glycan 

structures covalently bonded to the polypeptide chain (Rose & Voynow, 2006; 

Wickström et al., 1998). Expression of MUC5AC is known to be increased in COPD 

patients with stable disease, compared to smokers without respiratory disease and 

healthy non-smokers (Caramori et al., 2009). COPD exacerbations are known to be 

related to inflammatory processes within the lung (Wedzicha & Seemungal, 2007). 

Additionally, levels of pro-inflammatory mediators, such as neutrophil elastase, 

hyaluronic acid metabolites, LPS, IL-8 and ROS have all been demonstrated to be 

linked to increased mucin expression (Bautista et al., 2009; Bozinovski, Anthony, & 

Vlahos, 2014; Papakonstantinou et al., 2015; J.-S. Song, Cho, Yoon, Moon, & Park, 

2005). Expression of certain inflammatory mediators has also been shown to increase 

the expression of specific glycosyltransferases, which can alter the glycosylation 

patterns on the sputum mucins. For example, TNFα exposure can increase 

sialyltransferase activity in the bronchial mucosa (Delmotte et al., 2002). Respiratory 

infections have been linked to elevated levels of sialylation and sulphation of mucin 

glycan structures in non-cancer respiratory disease patients (Davril et al., 1999; Lo-

Guidice et al., 1997; van Halbeek et al., 1994), again showing how response to 

inflammatory mediators and stimulants can change the glycan structure in diseased 

airway mucins. Evidence has also been demonstrated that alterations to the levels of 

specific mucin glycans in mucus can alter the viscosity of the mucus. Mediation of 

fucosylation and sialylation of glycan structures in MUC5AC by carbocysteine has 

been shown to reduce the viscosity of airway mucus (Ishibashi, Takayama, Inouye, & 

Taniguchi, 2010). 

 FTIR spectroscopy has previously identified wavenumbers uniquely 

associated with absorption peaks corresponding to specific individual glycan 

moieties, including fucose, galactose, GlcNAc, GalNAc, and sialic acid. It was also 

used to identify unique FTIR absorption peaks associated with Lewis X antigens, and 

sialylation and sulphation of these glycan structures (A. T. Lewis et al., 2013).  
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 Work previously carried out by the Swansea University Respiratory 

Diagnostics Group, as part of Aaran Lewis’ PhD thesis (Figure 3-1), utilised a small 

cohort of COPD patient sputum samples (~40 total) and suggested that FTIR could be 

utilised to detect COPD exacerbation. The work presented in this chapter seeks to 

expand on this work, by increasing the number of patients tested and examining the 

patient groups more closely to establish if differences between COPD phenotypes can 

be identified through FTIR sputum analysis. 

 

Figure 3-1: Three-dimensional scatterplot from Aaran Lewis’ PhD Thesis, showing 
separation of COPD baseline (green) from COPD exacerbation (red) patients using 
absorbance at 3 prominent wavenumbers; 1703, 1118 and 947cm

-1
. 

3.1.3 Chapter Aims 

The aims of this chapter are to investigate glycosylation patterns in sputum 

mucins using FTIR, in order to distinguish exacerbation of COPD from baseline, and 

to address the practical issues of performing FTIR analysis on viscous biofluids. This 

chapter evaluates FTIR as a tool for exacerbation detection, through monitoring of 

sputum mucin glycosylation patterns by applying FTIR analysis to raw sputum 

samples obtained from COPD patients. Through careful interpretation of IR spectra 

from sputum samples, differences observed in sample spectra derived from patients 

at baseline or exacerbation can be related to changes in the molecular structure of the 
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sputum. Models that distinguish exacerbation sample spectra from baseline COPD 

sample spectra will be constructed. 

To achieve these goals, FTIR analysis was applied to raw sputum samples 

obtained from patients with a diagnosis of COPD who were either confirmed by a 

clinician to be currently undergoing an exacerbation, or to be at baseline. Spectral 

data was then interrogated by statistical and multivariate analysis to identify regions 

of the spectrum able to differentiate between the disease groups.  

A longitudinal study was also carried out, analysing COPD patient sputum 

samples throughout the course of one year. This was done to show the potential of 

FTIR spectroscopy to detect changes to the glycosylation patterns of sputum mucins 

in the days preceding an exacerbation. FTIR spectra of sputum samples collected 

during the study will be analysed for specific patterns which can be used in the 

creation of generalised predictive models for exacerbation.  

3.2 Methods 

3.2.1 Patient Recruitment and Sample Classification 

 As described in Chapter 2, section 2.1.1, COPD patient sputum samples (n=132 

were obtained from patients recruited through the MEDLUNG study. Patient samples 

were classified as “baseline” (n=89) or “exacerbation” (n=43) depending on the clinical 

diagnosis established at recruitment. Background clinical information of each patient 

was provided by the recruiting centre. Information provided included age, biological 

sex, smoking status (current, former, or never) and pack-years, occupation, lung 

function, medical and drug history, current infection status, and exposure to asbestos.  

COPD patients were also recruited through the SPEDIC study, which was 

longitudinal study with a focus on using FTIR to identify spectral markers for 

exacerbation prediction. Patients recruited to the study provided 5 sputum samples 

per week whilst their day-to-day health and current exacerbation status was recorded. 

FTIR analysis was carried out on these samples as described in Chapter 2 Section 2.2 

and the spectra compared to the patient’s health data.  

SPEDIC sputum samples were classified as either being “baseline”, 

“exacerbation”, “pre-exacerbation” or “post-exacerbation” (high-risk) according to the 

daily health data collected during the study. Sputum from exacerbation days were 
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identified through the reporting from patients and clinicians during the study. 

Samples belonging to the high-risk category were identified as being collected less 

than 8 weeks after the last reported exacerbation event, as patients within this period 

have an elevated risk of a secondary exacerbation (Hurst et al., 2009). Pre-

exacerbation samples were identified as those being collected 7 or fewer days prior 

the first reported day of an exacerbation; 7 days was chosen as the cut-off for the pre-

exacerbation phase after consulting with respiratory clinicians identified 7 days as a 

suitable time period for an “early warning system” of COPD exacerbation. 

SPEDIC also recruited 70 non-COPD chronic respiratory disease patients. A key 

question facing clinicians is the distinction between COPD and other respiratory 

diseases, such as asthma or bronchiectasis. These patients’ sputum samples were 

analysed by FTIR and compared to COPD patient sputum spectra in order to identify 

specific markers to distinguish COPD from non-COPD respiratory disease. 

3.2.1.1 Phenotyping Patients 

 COPD patients were grouped into phenotypes using the patient’s clinical 

information, collected at time of recruitment. COPD phenotypes were classified using 

the following parameters, where information was available: 1) smoker/non-smoker, 2) 

COPD stage by FEV1 value only, as the FVC/FEV1 ratio was not available for any 

patients, and 3) presence of comorbidities which may influence the progression of 

COPD. 

3.2.2 FTIR Spectroscopy 

 FTIR spectroscopy was carried out in accordance to the protocols outlined in 

Chapter 2, section 2.2.1 & 2.2.2. Spectral processing was performed as described in 

Chapter 2, section 2.3. 

3.2.3 Spectral Analysis and Model Building 

 IR peak identification and characterisation was performed using the peak 

picking algorithm in OPUS (Bruker Optics) set to a 10% threshold. Peak widths were 

measured using the same tool and are displayed as full width at half maximum 

(FWHM).  

FTIR spectra of COPD patient sputum from each classification group were 

analysed for significant differences using a Wilcox rank-sum test to identify IR 

regions which could be used to distinguish baseline from exacerbation samples. 
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Multivariate statistical modelling using PCA was applied to visualise the data points 

and how baseline and exacerbation samples cluster in a two-dimensional scatterplot. 

Regression models were constructed based on these PCA scatterplots for sensitivity 

and specificity calculations. 

3.2.4 Calculation of IR Spectral Ratios 

Ratios of absorbencies at specific biologically significant wavenumbers were 

calculated to generate a single value, or quotient, to represent the spectrum. This 

quotient (“Q-value”) calculation method was used as a data reduction technique to 

enable correlation of a whole spectrum to current patient health data. 

3.3 Results 

 First, COPD patient sputum samples were collected from patients attending 

bronchoscopy clinics and emergency departments in hospitals from across the UK. 

These patients were part of the MEDLUNG study, and were classified at recruitment 

as being either “baseline COPD” or “exacerbation of COPD”. These samples were 

analysed by FTIR spectroscopy for sensitive and specific markers which could be used 

to distinguish baseline COPD from exacerbations of COPD. 

3.3.1 FTIR spectrum generation and COPD sputum characterisation 

 FTIR spectra were generated in triplicate for COPD baseline (n=89) and 

COPD exacerbation (n=43) sputum samples. These spectra were processed by vector-

normalisation and baseline correction to allow comparisons between sputum samples 

from different patients, reducing impact from variations introduced during sampling 

and spectral acquisition.  

 Average raw absorbance spectra of the COPD baseline and exacerbation 

patient cohorts show a high degree of similarity, although differences in raw 

absorption intensity can be observed. The average COPD exacerbation spectrum, 

shown in Figure 3-2, display a general increase of absorption at the major glycogen-

associated peaks (between 1200 and 900cm-1), compared to the average baseline 

spectrum. The difference spectrum (Figure 3-3) identifies regions of the average 

spectra where the differences between exacerbation and baseline are greatest, with 

large peaks identifiable at well characterised glycan-associated wavenumbers; 1586, 

1458, 1419, 1106, 1030, 990 and 923cm-1 (Kačuráková & Mathlouthi, 1996; Khajehpour, 

Dashnau, & Vanderkooi, 2006; A. T. Lewis et al., 2013; Wiercigroch et al., 2017). This 

suggests an increase in overall glycan content in COPD exacerbation sputum. This 



Charles Brilliant 
 

69 
 

increase in sugar may be due to an overall increase in glycosylation of the mucin 

glycoproteins.  

 

Figure 3-2: Min-max normalised absorbance ATR-FTIR average spectra of the COPD 
baseline cohort (blue) and COPD exacerbation cohort (red), from 1800-900cm

-1 

 

Figure 3-3: Average difference spectrum of min-max normalised baseline and 
exacerbation sputum absorbance spectra with peak positions indicating regions of the 
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spectrum where average exacerbation absorbance is greater than the average baseline 
absorbance. 

 Using wavenumbers which have been associated with specific mucin glycan 

structures (Kačuráková & Mathlouthi, 1996; Khajehpour et al., 2006; A. T. Lewis et al., 

2013; Wiercigroch et al., 2017), and mucin protein secondary structure (S. P. Lewis et 

al., 2013), it is possible to characterise the COPD sputum FTIR spectrum and annotate 

with proposed structures. Shown in Figure 3-4 is an average FTIR spectrum of all 

baseline COPD patient sputum samples, annotated with proposed molecular 

structures for specific absorption bands. 

 The amide I peak is centred at 1636cm-1, suggesting that the major constituent 

of the protein secondary structure is β-sheets (S. P. Lewis et al., 2013), followed by the 

amide II peak found at 1544cm-1 corresponding to N-H bonds, typically found within 

the protein chain. Absorbance bands around 1586cm-1 are associated with amino-

glycans, such as GlcNAc, GalNAc and sialic acid (Khajehpour et al., 2006). Sulphated 

glycan residues produce absorbance bands at 1240cm-1 (S=O), 1153cm-1 (S-O), 1116cm-1 

(S=O), and 990cm-1 (S-O) (A. T. Lewis et al., 2013); indicated by the orange lines on 

Figure 3-4. Sialylation of glycan structures produces absorbance bands at 1161cm-1, 

corresponding to C-N bonds in the acetyl functional group, and at 1130cm-1, 

corresponding to C-O bonds located in the hexose ring (Khajehpour et al., 2006); 

indicated by the red lines in Figure 3-4. Absorbance bands around 1456 and 1418cm-1 

are associated with C-H2 and H-C-OH bonds, respectively (Kačuráková & Mathlouthi, 

1996; Wiercigroch et al., 2017). It is also possible to identify particular glycan linkages 

indicating increased fucosylation of the glycan structures, such as the Fuc-(α1-3)-

GlcNAc linkage which produces an absorption band at 1020cm-1; indicated by the 

purple line in Figure 3-4. If a glycan structure contains a second fucose residue in a 

Fuc-(α1-2)-Gal configuration, peaks shifts towards 1164cm-1 can be observed (A. T. 

Lewis et al., 2013). 
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Figure 3-4: Average vector-normalised, baseline-corrected FTIR spectrum of all COPD 
patient sputum samples. Wavenumbers corresponding to absorbance bands 
associated with sialylated (red), sulphated (orange), and fucosylated (purple) glycan 
residues are shown. The peak positions at 1636cm

-1
 and 1544cm

-1
 corresponding to 

amide I (blue) and amide II (green), respectively, are also indicated. 

Absorption intensity and peak positions were examined around these 

absorbance bands, for statistically significant differences between COPD baseline and 

exacerbation sputa.  

3.3.2 Distinction of Baseline from Exacerbation 

3.3.2.1 Absorbance spectra 

The absorbance spectra were examined for differences between absorbance 

intensities at wavenumbers associated with molecular structures hypothesised to be 

associated with COPD exacerbation. However, significance testing by the Wilcoxon 

rank sum identified no wavenumbers which showed a statistically significant (p < 

0.05) difference in absorbance when comparing COPD baseline to exacerbation 

sputum spectra. 
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First, the absorbance spectra were examined in the same manner as in Aaran 

Lewis’s previous work, in order to replicate the findings on the larger dataset. 

Unfortunately it was not possible to replicate the previous findings using the same 

methods (Figures 3-5 and 3-6). The methodologies used to generate the data in both 

cases were identical, thus reducing the possibility of operator error being the cause of 

the inability to reproduce the findings. It is more likely that the irreproducibility is 

due to the previous work being carried out on a comparatively small dataset (n = 24 

baseline, and n = 13 exacerbation samples), which may have caused any observed 

trends or differences between patient groups to be due to statistical chance rather 

than statistically significant differences in sputum structure.  

 

Figure 3-5: Three-dimensional scatterplot of baseline-corrected, min-max normalised 
absorbance values at 1073, 1118 and 947cm

-1
. 
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Figure 3-6: Three-dimensional scatterplot of baseline-corrected, min-max normalised 
absorbance values at 1073, 1118 and 1637cm

-1
.  

 PCA was carried out on the dataset in an attempt to account for the inter-

sample variation. To ensure that the PCA would be focussed in spectral regions with 

the most chance of discriminating baseline from exacerbation, the peaks identified in 

the difference spectrum in Figure 3-3 were used in the PCA algorithm. 

 

Figure 3-7: Two-dimensional PCA scatterplot showing the variance explained by PC1 
and PC2. Baseline (green) and exacerbation (red) spectra cluster together with no 
separation observed. 
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Figure 3-8: Three-dimensional scatterplot showing how baseline (green) and 
exacerbation (red) spectra cluster together based on PC1, PC2 and PC3. 

 PCA analysis on the absorbance spectra showed poor separation of baseline 

and exacerbation patient samples (Figure 3-7 & Figure 3-8). This suggests that a 

higher resolution method for determining differences between absorbance bands, 

such as second-derivative spectrum analysis, may be required to distinguish the 

patient groups from one another. 
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3.3.2.2 Second Derivative Spectra  

Second derivative spectra were calculated to increase the resolution of peak 

detection across the spectrum, by calculating a rate of change within a defined 

window of the absorbance spectrum (Figure 3-9). A second-derivative peak is 

identified when the rate of change within the absorbance spectrum changes 

direction, and can be used to more detect absorbance distributions which comprise 

large, broad peaks such as those observed in the glycogen-rich region. 

 

Figure 3-9: Average second-derivative spectra of COPD baseline (blue) and 
exacerbation (red) sputum samples, from 1800-900cm

-1
. Spectra show a high degree of 

similarity, but small variations can be seen in the glycogen-rich region (1200-900cm
-1
) 
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Figure 3-10: Average second-derivative spectra of COPD baseline (blue) and 
exacerbation (red) sputum samples, focussed on 1200-900cm

-1
 and major peak 

positions highlighted for clarity. An apparent peak shift can be observed from around 
1166cm

-1
 in the baseline spectrum to around 1154cm

-1
 in the exacerbation spectrum. 

Another probable candidate for peak shift is from around 1054cm
-1
 to 1052cm

-1
 from 

baseline to exacerbation. An increase in second-derivative absorption can be seen at 
around 986cm

-1
 in the exacerbation spectrum compared to the baseline spectrum, 

along with a broadening of the peak to obscure the secondary peak at around 998cm
-1
 

(yellow circle). 

 The second-derivative spectra show an extremely high degree of similarity 

across the spectral region 1800-900cm-1, although some subtle differences in peak 

position and absorbance can be observed (Figure 3-10). To highlight further possible 

regions of interest, a spectral subtraction was performed, subtracting the 

exacerbation spectrum from the baseline spectrum (Figure 3-11). 
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Figure 3-11: Average second-derivative spectra from 1800-900cm
-1
 of COPD baseline 

(green) and exacerbation (red) sputum samples, with the difference spectrum (blue) 
shown to highlight probable spectral regions which may differentiate COPD baseline 
from exacerbation. 

 Because the differences between the average spectra are small, the subtractive 

spectrum displays small peaks which are difficult to differentiate from surrounding 

noise, especially in the amide I and amide II regions. However, examining the 

glycogen-rich region reveals some broader subtractive peaks which may be indicative 

of differences between the populations (Figure 3-12). These regions are centred 

around 1066cm-1 (purple box), 1020cm-1 (yellow box), and 988cm-1 (black box). 
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Figure 3-12: Average second-derivative spectra from 1200-900cm
-1
 of COPD baseline 

(green) and exacerbation (red) sputum samples, with the difference spectrum (blue) 
shown to highlight probable spectral regions which may differentiate COPD baseline 
from exacerbation. Regions of interest (purple, yellow and black boxes) have been 
highlighted as possible regions of difference between COPD baseline and 
exacerbation spectra. 

The average second-derivative spectra of the baseline and exacerbation 

sample spectra are highly similar, with an extremely high Spearman’s Rho for 

correlation of 0.9853, indicating a very low level of variation between the sample 

groups. Significance testing using the non-parametric Wilcoxon Rank Sum of the 

second-derivative absorbance values indicated a panel of 18 non-contiguous 

wavenumbers which showed a significant difference (p < 0.05) in second-derivative 

absorbance between COPD baseline and exacerbation samples. The distributions of 

these wavenumbers are shown in the boxplots below (Figure 3-13 to Figure 3-30). 

All of the wavenumbers examined above show a statistically significant 

difference at the 95% confidence level between mean second-derivative absorbencies 

for each patient cohort; however there was a large overlap between each group for 

each wavenumber. Multiple hypothesis testing was carried out, which indicated a 

new α-level of 0.05/636 = 7.862 *10-5. None of the calculated p-values were below this 

new α-level, so it was deemed that second-derivative absorbance values of key 

wavenumbers could not show a statistically significant difference between baseline 

and exacerbating COPD patients. 
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Figure 3-13: Distribution of absorbance values at 1731cm
-1
 in COPD baseline (green) and 

exacerbation (red) sputum second-derivative spectra 

  

Figure 3-14: Distribution of absorbance values at 1696cm
-1
 in COPD baseline (green) 

and exacerbation (red) sputum second-derivative spectra 

  

Figure 3-15: Distribution of absorbance values at 1645cm
-1
 in COPD baseline (green) 

and exacerbation (red) sputum second-derivative spectra 
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Figure 3-16: Distribution of absorbance values at 1595cm
-1
 in COPD baseline (green) 

and exacerbation (red) sputum second-derivative spectra 

  

Figure 3-17: Distribution of absorbance values at 1556cm
-1
 in COPD baseline (green) and 

exacerbation (red) sputum second-derivative spectra 

  

Figure 3-18: Distribution of absorbance values at 1526cm
-1
 in COPD baseline (green) 

and exacerbation (red) sputum second-derivative spectra 
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Figure 3-19: Distribution of absorbance values at 1467cm
-1
 in COPD baseline (green) 

and exacerbation (red) sputum second-derivative spectra 

 

Figure 3-20: Distribution of absorbance values at 1445cm
-1
 in COPD baseline (green) 

and exacerbation (red) sputum second-derivative spectra 

 

Figure 3-21: Distribution of absorbance values at 1436cm
-1
 in COPD baseline (green) 

and exacerbation (red) sputum second-derivative spectra 
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Figure 3-22: Distribution of absorbance values at 1421cm
-1
 in COPD baseline (green) and 

exacerbation (red) sputum second-derivative spectra 

  

Figure 3-23: Distribution of absorbance values at 1556cm
-1
 in COPD baseline (green) 

and exacerbation (red) sputum second-derivative spectra 

  

Figure 3-24: Distribution of absorbance values at 1556cm
-1
 in COPD baseline (green) 

and exacerbation (red) sputum second-derivative spectra 
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Figure 3-25: Distribution of absorbance values at 1246cm
-1
 in COPD baseline (green) 

and exacerbation (red) sputum second-derivative spectra 

 

 

Figure 3-26: Distribution of absorbance values at 1194cm
-1
 in COPD baseline (green) 

and exacerbation (red) sputum second-derivative spectra 

  

Figure 3-27: Distribution of absorbance values at 1133cm
-1
 in COPD baseline (green) and 

exacerbation (red) sputum second-derivative spectra 
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Figure 3-28: Distribution of absorbance values at 1061cm
-1
 in COPD baseline (green) 

and exacerbation (red) sputum second-derivative spectra 

  

Figure 3-29: Distribution of absorbance values at 1001cm
-1
 in COPD baseline (green) 

and exacerbation (red) sputum second-derivative spectra 

  

Figure 3-30: Distribution of absorbance values at 951cm
-1
 in COPD baseline (green) and 

exacerbation (red) sputum second-derivative spectra 
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 PCA analysis was carried out on all wavenumbers that were deemed to be 

significant at the 95% confidence level, in order to identify wavenumbers which were 

the main sources of variation within the patient cohorts. 

PCA was not able to differentiate COPD baseline from exacerbation with a 

high degree of sensitivity or specificity. This was not surprising, given that the 

distributions of absorbencies at these wavenumbers showed a large degree of overlap. 

The lack of clustering of patient spectra did not allow classification of groups of 

variance, so it was not possible to identify and group the patients by sources of 

variance. Both patient cohorts were found in all four PCA quadrants, with no clear 

clustering of groups (Figure 3-31). 

 

Figure 3-31: PCA scatterplot of PC1 vs PC2 based on the 18 wavenumbers which were 
indicated to be statistically significant (p < 0.05) for determining COPD baseline 
(green) from exacerbation (red). The principle components which account for the 
most variation between samples are shown. 

3.3.3 Distribution of Peak Positions in Second Derivative Spectra 

 Second derivative spectra were calculated from the corresponding absorbance 

spectra for each sample and peak picking analysis was carried out within the 1800-

900cm-1 fingerprint region. Peak detection analysis was performed on the second-

derivative spectra rather than the absorbance spectra because it is possible to 

discriminate small peaks and shoulders that would otherwise be obscured by larger 

absorbance peaks. In this way, loss or gain of secondary absorbance bands that could 

be indicative of exacerbation may be identified.  
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The detected peaks in all patient spectra were grouped together by spectral 

region and COPD status. The distributions of peak positions in wavenumbers were 

examined using histograms (Figure 3-32 to Figure 3-53) and boxplots (Figure 3-54, 

Figure 3-55, and Figure 3-56), and significance was assessed using the non-parametric 

Wilcoxon rank sum test, with statistical significance being found at the 95% 

confidence level.  

 

 

 Figure 3-32: Histograms showing distribution of wavenumber position of detected 
peaks around 1770cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 
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Figure 3-33: Histograms showing distribution of wavenumber position of detected 
peaks around 1745cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 

 

Figure 3-34: Histograms showing distribution of wavenumber position detected peaks 
around 1730cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 
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Figure 3-35: Histograms showing distribution of wavenumber position of detected 
peaks around 1714cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 

 

Figure 3-36: Histograms showing distribution of wavenumber position of detected 
peaks around 1659cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 
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Figure 3-37: Histograms showing distribution of wavenumber position of detected 
peaks around 1650cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 

 

Figure 3-38: Histograms showing distribution of wavenumber position of detected 
peaks around 1594cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 



Charles Brilliant 
 

90 
 

 

Figure 3-39: Histograms showing distribution of wavenumber position of detected 
peaks around 1544cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 

 

Figure 3-40: Histograms showing distribution of wavenumber position of detected 
peaks around 1415cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 
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Figure 3-41: Histograms showing distribution of wavenumber position of detected 
peaks around 1376cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 

 

Figure 3-42: Histograms showing distribution of wavenumber position of detected 
peaks around 1342cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 
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Figure 3-43: Histograms showing distribution of wavenumber position of detected 
peaks around 1316cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 

 

Figure 3-44: Histograms showing distribution of wavenumber position of detected 
peaks around 1280cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 
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Figure 3-45: Histograms showing distribution of wavenumber position of detected 
peaks around 1240cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 

 

Figure 3-46: Histograms showing distribution of wavenumber position of detected 
peaks around 1205cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 
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Figure 3-47: Histograms showing distribution of wavenumber position of detected 
peaks around 1115cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 

 

Figure 3-48: Histograms showing distribution of wavenumber position of detected 
peaks around 1128cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 
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Figure 3-49: Histograms showing distribution of wavenumber position of detected 
peaks around 1076cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 

 

Figure 3-50: Histograms showing distribution of wavenumber position of detected 
peaks around 1033cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 
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Figure 3-51: Histograms showing distribution of wavenumber position of detected 
peaks around 986cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 

 

Figure 3-52: Histograms showing distribution of wavenumber position of detected 
peaks around 946cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 
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Figure 3-53: Histograms showing distribution of wavenumber position of detected 
peaks around 922cm

-1
 in the second-derivative spectra of COPD baseline (green) and 

exacerbation (red) patients: overlapping colours show both exacerbation and baseline 
patients with peaks at the same wavenumber 

 The histograms show that second-derivative peak distribution is very similar 

in both COPD baseline and COPD exacerbation sputum. Statistical significance 

testing showed that the distribution of peak positions was not significantly different 

between COPD baseline and exacerbation patients in all but two detectable second-

derivative peaks; 1115 and 1376cm-1.  

 A peak in the second-derivative spectra centred around 1129cm-1 was identified 

in 52.81%, and 30.23% of baseline spectra and exacerbation sputum spectra, 

respectively. This difference was shown to be statistically significant at the 95% 

confidence level (p=0.014), suggesting that peak loss around 1129cm-1 may be 

indicative of exacerbation, however the low number of baseline samples the peak is 

detected in suggests this peak is not common in COPD sputum second-derivative 

spectra. Therefore using peak loss around 1129cm-1 as an exacerbation marker could 

lead to a large number of type I errors in a detection protocol. 
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Figure 3-54: Distribution of wavenumber position of peaks detected around 1116cm
-1
 in 

the second-derivative spectra of COPD baseline and exacerbation patients. 

 

Figure 3-55: Distribution of wavenumber position of peaks detected around 1076cm
-1
 in 

the second-derivative spectra of COPD baseline and exacerbation patients 

 

Figure 3-56: Distribution of wavenumber position of peaks detected around 1076cm
-1
 in 

the second-derivative spectra of COPD baseline and exacerbation patients 
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After examination of the distributions of detected peak positions in second-

derivative spectra, it was found that there were two regions in the fingerprint region 

around which peaks were detected at statistically significantly (p < 0.05) different 

wavenumbers for COPD baseline and exacerbation sputum. These regions were 

centred at approximately 1376 and 1116cm-1.  

A statistically significant (p < 0.05) peak shift was observed in second-

derivative spectra of COPD exacerbation sputum, from 1115.508cm-1 in baseline 

sputum to 1116.984cm-1 in exacerbation sputum. This peak was detectable in 68.54% of 

baseline sputum spectra and 72.09% of exacerbation spectra, and this difference was 

not found to be statistically significant (p=0.086), indicating that the peak is a 

common peak readily detectable in the majority of COPD patient sputum samples.  

The distribution of peaks around 1376cm-1 was different however, with both 

baseline and exacerbation sputum spectra sharing the same median peak position at 

1376.88cm-1. However the exacerbation sputum spectra showed very little variation 

from the median, whereas the baseline spectra displayed much more variation. This 

peak was detectable in 82.02%, and 76.74% of baseline and exacerbation second-

derivative spectra, respectively. Therefore, using presence of a peak at 1376.88cm-1 

would be weak evidence for indication of exacerbation, as too many patients at 

baseline would display this peak. An alternative to this approach would be to use 

presence of peaks at other wavenumbers within this region as evidence for not 

indicating an exacerbation sample.  
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Figure 3-57: Two dimensional linear regression model comparing positions of detected 
peak at approximately 1376 and 1116cm

-1
 in COPD baseline (blue) and exacerbation 

(red) sputum second-derivative spectra 

 A linear regression model comparing the detected peak positions at around 

1116cm-1 and 1376cm-1 was generated (Figure 3-57). Using the model, COPD 

exacerbation spectra can be differentiated from baseline with sensitivity and 

specificity of 80.76% and 48.00%, respectively. Both peaks were observed in 58.01% of 

all patients, with no statistically significant difference observed between patient 

groups for the detection of peaks.  

3.3.4 Distinction of COPD patients based on Physiological Measures 

 One possible factor which may contribute to the difficulty to distinguish 

baseline COPD from exacerbation is the fact that COPD exacerbation is a 

heterogeneous condition, with a multifactorial aetiology. It may be possible to 

distinguish exacerbation from stable disease with greater power if some of the 

following confounding variable could be controlled for. 

At the time of recruitment to MEDLUNG, patients were asked to provide 

information regarding their state of health and medical background. Alongside their 

current COPD status (baseline or exacerbation) information pertaining to the 

patients’ biological sex, age, medical history and comorbidities, drug history, current 
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smoking status and pack-years, current infection status, occupation, likely exposure 

to asbestos, and lung function by FEV1 (%) were all collected. Patients were grouped 

by common features within each category and these groups were analysed to assess 

the level of variation within the sputum FTIR spectra that each variable may be 

responsible for. Correlation between non-categorical data, such as pack-years or 

FEV1, and absorbance intensity and peak position was evaluated.  

3.3.4.1 Infection 

Infection of the airways is a common cause of exacerbation in COPD patients, 

with increased bacterial colonisation being evident in an estimated 69% of 

exacerbation cases (Wedzicha & Seemungal, 2007) and viral infection being the 

primary cause of an estimated 22-23%. Examination of the patient clinical 

information shows that the majority of exacerbating patients (25 infections out of 35 

total exacerbation samples) had a bacterial infection in their airways, compared to 

only 7 confirmed baseline COPD patients. Due to this low number of infected 

baseline patients, all patients were grouped by infection status regardless of current 

COPD status. This was deemed appropriate for two reasons: 1) the current interest 

was to observe differences specific to infection status, and 2) the majority of 

exacerbation samples collected were reported to be infective exacerbations, and that 

exacerbations of COPD have been heavily associated with increased bacterial and 

viral loads in the patient’s airways (Huang & Boushey, 2015; Seemungal, Harper-

Owen, et al., 2000; Wedzicha & Seemungal, 2007). 

FTIR analysis to distinguish infected vs non-infected COPD patient sputum 

was carried out. The average spectra of the infected and non-infected cohort were 

plotted to visualise any differences between groups. The infected sputum spectra 

were found to show a slight decrease in absorption at the protein associated amide I 

(~1630cm-1) and amide II (~1530cm-1) regions, alongside a concurrent slight increase in 

absorption at 1032 and 990cm-1 (Figure 3-58), which are associated with sialylated and 

sulphated Lewis antigen species in mucin glycans, respectively (A. T. Lewis et al., 

2013). Sulphated and sialylated glycans are associated with infection and exacerbation 

in CF and CB patients (Davril et al., 1999; Lhermitte et al., 1991). This suggests that 

relative to the overall protein content of sputum, the levels of sulphated and 

sialylated glycans are increased during times of pulmonary infection in COPD 

patients. 
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Figure 3-58: Vector-normalised, baseline-corrected absorbance spectra of infected 
sputum (red) and non-infected sputum (blue). A slight decrease in absorption can be 
observed in the amide I (purple dashed) and amide II (orange dashed) regions, along 
with a concurrent slight increase in absorption at 1032 (green dashed) and 990cm

-1
 

(black dashed) can be observed. 

3.3.4.2 Biological Sex 

 It has been shown that COPD is becoming more common in women, and 

female COPD patients develop more severe symptoms after fewer pack-years than 

male patients (Han et al., 2007). The biological rationale for this observation has been 

discussed in chapter 1 (section 1.1.23), but briefly, it is thought that the mechanism 

behind women’s increased susceptibility to COPD is based on oestrogen levels, which 

are higher in women. MUC5AC and MUC5B synthesis in human bronchial epithelial 

cells can be upregulated by oestradiol (Choi et al., 2009; Tam et al., 2014), therefore 

the increased levels of oestrogen in women could contribute to a more rapid 

worsening of COPD symptoms through more rapid mucin synthesis and secretion.  

  The COPD patients were grouped by biological sex as determined on the 

patient recruitment form and statistically significant differences between the two 

cohorts was sought for each detected peak position and absorbance intensity. No 

peak position changes could be identified, but small changes in absorption within the 

glycogen-rich region and at approximately 1580cm-1 could be identified. However 

these were not deemed to be statistically significant at the 95% confidence level. 
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3.3.4.3 Smoking Status 

 Smoking is known to be the major contributing factor to COPD progression, 

with smoking activating many of the same signal transduction pathways implicated in 

COPD disease progression and exacerbation (Lemjabbar et al., 2003; Seatta et al., 

1998; Thai et al., 2008). 

 Patients were grouped by their current smoking status (current-, ex-, or 

never-smoker) and by pack-years. The vast majority of patients were reported as 

being ex-smokers (n = 82, 62.12%), with 34 (25.76%) reporting as current-smokers and 

7 (5.30%) reporting as never-smokers. As the number of never-smokers was very low, 

statistical significance was only sought between current- and ex-smokers. 

Correlation between the number of pack-years and FTIR spectral features was 

calculated by Spearman’s Rho. A small but significant positive correlation (rho = 0.3, 

p = 0.0041) was found between pack-years and the wavenumber position of the 

second-derivative peaks found around 1115cm-1 (Figure 3-59). 

 

Figure 3-59: A shift in peak position from around 1115cm
-1
 towards higher wavenumbers 

and pack-years in all COPD patients was found to have a small positive correlation 
(rho = 0.3, p = 0.0041) 

A another small but significant (rho = -0.233, p=0.026) negative correlation 

was found between pack-years and the wavenumber position of the second-derivative 
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peaks found around 1019cm-1 (Figure 3-60), although examination of the scatterplot 

suggests that the significance may be influenced by the presence of outliers.  

Indeed, once the smoking pack-years outliers have been removed, the 

correlation scores between pack-years and second-derivative peak position drops 

from 0.3000 to 0.2014, and from -0.2330 to -0.1480 for peak positions around 1115 and 

1019cm-1, respectively. Neither of these new correlation coefficient scores were 

deemed to be statistically significant at the 95% confidence level. 

 

Figure 3-60: A shift in peak position from around 1020cm
-1
 towards lower wavenumbers 

and pack-years in all COPD patients was found to have a small negative correlation 
(rho = -0.233, p = 0.0026) 

3.3.4.4 Occupation 

 Certain occupations have been linked to an increased risk of COPD. 

Occupations where this risk is highest are those where the worker is exposed to dusts, 

fine particulate matter, volatile organic chemicals and polycyclic aromatic 

hydrocarbons (Health and Safety Executive, 2014). Such occupations include, but are 

not limited to, those in construction, mining, textiles and farming.  

 Patients were grouped according to their occupational risks for COPD, into 

high-occupational-risk and low-occupational-risk. All patients who were identified as 
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having worked in a high-risk environment, such as construction, mining, or farming, 

were classified as high-occupational-risk (n = 76). Further subclassification was not 

possible as there was no information regarding the/any specific risks each patient 

faced at their place-of-work; for example the load of the exposure during work, or 

length of time the patient was exposed to the pollutant. Low-risk occupations, such as 

clerical or office staff were placed into the low-risk-occupation cohort (n = 56). 

 

Figure 3-61: Vector-normalised, baseline-corrected average spectra of the higher-risk 
job cohort (red) and the lower-risk job cohort (blue). A significant increase in 
absorbance can be seen across the glycogen-rich region 

 Statistically significant differences in absorbance from 1132-to 1103cm-1 and 

from 1082 to 1076cm-1 were detected (Figure 3-61). These wavenumbers are important 

due to their association with modifications to glycan moieties in sputum mucins. 

1080cm-1 is a major glycosylation peak, associated with C-O stretching moieties within 

the glycan pentose and hexose rings, and 1116cm-1 has been associated with sulphated 

and sialylated Lewis antigen structures, which are indicative of inflammation 

(Delmotte et al., 2002; A. T. Lewis et al., 2013). This suggests that an occupation which 

places the patient at higher risk of COPD may contribute towards increased 

modification of the mucin glycan structures by Lewis antigens.  

3.3.4.5 Asbestos Exposure 

 Asbestos is known to be a major cause of lung disease, eventually causing 

asbestosis in exposed individuals. It is thought that exposure to fine particles, like 
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asbestos, could cause exaggerated lung tissue damage in individuals with impaired 

MCC activity, like COPD patients (Seibold et al., 2011). 

 Patients were classified into cohorts of “non-exposure” (n = 82), or “exposure” 

(n = 47) according to self-reported exposure to asbestos at any time in their life. Three 

patients provided “not-known” for this question and were excluded from the analysis. 

Asbestos exposure was not associated with any statistically significant change in peak 

position or absorbencies at any wavenumbers. This is despite the average spectra 

showing a relative decrease in absorption within the amide I region, coupled with a 

slight increase in the glycosylation rich region, similar to the spectral effects seen in 

sputum from infected COPD patients (Figure 3-62).  

 

Figure 3-62: Vector-normalised, baseline-corrected average spectra of sputum from 
COPD patients who have been exposed to asbestos (red) and those who have not been 
exposed (blue). Small differences in absorption can be seen within the glycosylation-
rich region, along with a larger, but not statistically significant (p > 0.05), decrease in 
absorption at approximately 1630cm

-1
, the protein-associated amide I region. 

3.3.4.6 Lung Function 

 Lung function was assessed by spirometry, and quantified using FEV1 (%), 

which is the gold standard for assessing lung function in COPD patients (Pauwels et 

al., 2001). Unfortunately COPD stage information was not available due to the 

patients only providing a single FEV1 score at time of recruitment. The patients’ FVC 

scores, which were required for the FVC/FEV1 ratio, a crucial component for 

estimating COPD stage alongside FEV1 (%) – see chapter 1 for a more detailed 
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description on COPD stages – were not collected by the recruitment teams. Historical 

FVC/FEV1 ratios, even where available, were not deemed to be appropriate for use in 

this work as COPD is a progressive disease and it was likely that the patients’ lung 

function could have declined since their most recent spirometry session.  

 FEV1 (%) scores were correlated against second-derivative peak positions, 

which indicated two regions of wavenumbers where the second-derivative peaks 

positions demonstrated statistically significant correlation with the FEV1 (%) value. 

The median peak positions indicated were 1279cm-1 (rho = 0.262, p = 0.045) (Figure 3-

63), and 922cm-1 (rho = 0.24, p = 0.0149) (Figure 3-64). 

 

Figure 3-63: Correlation plot showing a small but significant correlation between FEV1 
(%) and peak shift from approximately 1276 to 1284cm

-1
 as FEV1 (%) increases (rho = 

0.262, p = 0.045) 
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Figure 3-64: Correlation plot showing a small but significant correlation between FEV1 
(%) and peak shift from approximately 916 to 928cm

-1
 as FEV1 (%) increases (rho = 0.24, 

p = 0.0149) 

3.3.5 SPEDIC Longitudinal Study 

The data shown so far from the MEDLUNG study have not conclusively 

shown how FTIR spectroscopic analysis could differentiate COPD exacerbation from 

baseline. Moreover, merely differentiating exacerbation from baseline is not 

necessarily clinically useful, as each exacerbation causes a non-fully reversible 

worsening of symptoms and leads to COPD progressing (Seemungal, Donaldson, et 

al., 2000). It is therefore more expedient to predict when an exacerbation is likely to 

occur, prior to onset of symptoms and hospitalisation as patients who are deemed to 

be high-risk for exacerbation can receive targeted preventative therapies (National 

Institute for Health and Care Excellence, 2018). Indeed, the COPD patients recruited 

during the MEDLUNG study were recruited as a “snap-shot” of their disease, with 

little information provided about the patient’s exacerbation status, only whether or 

not they were currently exacerbating. One such example of missing information is the 

time since the most recent and time to the next exacerbation episode; exacerbations 

are known to occur in temporal clusters, with an initial exacerbation increasing the 

likelihood of a subsequent exacerbation within 8 weeks (Hurst et al., 2009).  
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 SPEDIC was a longitudinal study performed during the completion of this 

thesis, which recruited 55 COPD patients for monitoring over the period of 12 months 

which aimed to address some of the issues faced by MEDLUNG. Patients provided 5 

sputum samples per week over the course of the study which were then analysed by 

FTIR spectroscopy. Patients were regularly assessed by healthcare assistants and data 

regarding the patient’s state of health and exacerbation status were gathered.  

 The main aim of the SPEDIC study was to monitor the patient’s disease as it 

progressed over time, and identify IR spectral features which could be used to predict 

exacerbation prior to reporting of symptoms by the patient or healthcare assistants. 

Identification of such IR spectral features would be invaluable for assessing a patient’s 

disease state and could inform therapy choice. Through close monitoring of the 

patients by clinicians throughout the study, it was very clear when a patient was truly 

at their baseline and when they were exacerbating and at what stage they were during 

the exacerbation. In this way, SPEDIC has more clarity pertaining to the patient’s 

current state of COPD than the MEDLUNG study described earlier in this chapter. 

With samples being available from each patient on most days, it will be possible to 

closely track their disease and identify biomarkers of exacerbation before the 

symptoms may become apparent to either the patient or the clinician and therefore, 

before the exacerbation can be diagnosed and treated. Identification of these markers 

will allow the classification of another subgroup of COPD patients – the pre-

exacerbation/high-risk group.  

3.3.5.1 Inflammatory Quotient Time-Series Plots 

Inflammatory markers are known to be elevated at exacerbation, and COPD 

disease progression is well linked to inflammatory markers in sputum (Parr, White, 

Bayley, Guest, & Stockley, 2006; Seemungal et al., 2001). Additionally, airway 

inflammation has been concluded to be a driver for sputum heterogeneity 

(Whiteman et al., 2008). Some markers of inflammation in the lung such as sialic 

acid, or sulphated Lewis antigens have been previously characterised by FTIR analysis 

and wavenumbers positions of peaks associated with these structures have been 

identified (Kačuráková & Mathlouthi, 1996; Khajehpour et al., 2006; A. T. Lewis et al., 

2013; S. P. Lewis et al., 2013; Wiercigroch et al., 2017). Shown in appendix 3 are time 

series plots showing a quotient value (Q-value) calculated from a series of 

inflammation-associated wavenumbers of each spectrum for every patient. These Q-

values are classified by the point in the baseline-exacerbation cycle the patient was 
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currently in, as defined by the reported health status data collected during the study. 

The categories are true baseline (C), currently exacerbating (E), pre-exacerbation 

being within 7-days prior to the first reported exacerbation day (P), and post-

exacerbation high-risk period being within 8 weeks from the last reported 

exacerbation day and not within 7 days prior to the next reported exacerbation (H). It 

was hypothesised that due to the inflammatory nature of COPD exacerbations, IR 

absorption at inflammation-associated wavenumbers would be increased, relative to 

absorption at wavenumbers associated with protein and glycan structure. The Q-

values, were calculated using the following equation: 

𝑄 =

(

 
 
 
 (
∑(log√𝐴𝑏𝑠(16702, 15892, 13772, 11682, 11032, 10542, 10352, 10202, 9972, 9862, 9672))

11
)

(
∑(log√𝐴𝑏𝑠(16552, 15432, 10782))

3
)

)

 
 
 
 

 

Equation 1: Calculation of inflammatory Q-value, where Abs(X) is equal to the 

absorbance value at the specified wavenumber in cm
-1
. Each absorbance value is 

squared and square-rooted to give the absolute values. The log of each value is then 

summed and an average is taken. The inflammation-associated wavenumbers are 

normalised by division of the overall mucin contribution. 

 The inflammatory Q-values were plotted in chronological order, and each 

sample classified according to the categories described. Analysis of the plots was 

carried out, looking for patterns among the Q-values that were prescriptive of an 

exacerbation occurrence within 7 days. A five-point moving average trend line was 

used to visualise overall trends occurring throughout a week, as the patients provided 

a maximum of 5 samples per week. Absolute rate-of-change of the inflammatory Q-

values from sample-to-sample was calculated to quantify the degree of change 

between each sampling day. Where consecutively collected samples were collected 

with a multiple day gap, differences between sample spectra were averaged out by 

dividing by the number of days between each sample.  

3.3.5.2 Predicting Exacerbation from Inflammatory Q-Values 

 The inflammatory Q-values were plotted against the patient’s sample 

classifications to identify any recurring patterns of the Q-values that may occur in the 

days prior to the first reported day of exacerbation. The plots are shown in appendix 

3. Each point on the graphs represents a single sputum sample from a single day. For 



Charles Brilliant 
 

111 
 

example, each exacerbation episode is by a sequential series of “E” markers, with each 

marker representing a single sputum sample received during the exacerbation 

episode.  

As the inflammatory Q-value is composed of absorbencies derived from 

wavenumbers which have been associated with an increased absorbance due to the 

presence of molecular structures associated with inflammation, it was hypothesised 

that an increase in an inflammatory Q-value may precede an exacerbation event. 

Additionally, as COPD is a chronic condition associated with sustained inflammatory 

responses, each patient was hypothesised as having a “normal” or “acceptable” level of 

airway inflammation which would not constitute an exacerbation. Therefore the 

sequences were interrogated for an increase in Q-value, which surpassed the average 

level of inflammatory Q-value from all previous non-exacerbation samples for that 

patient, and was sustained over at least two days prior to the first reported day of 

exacerbation. 

 The number of days prior to the first reported day of exacerbation where a 

positive prediction was made were plotted to visualise the distribution. The mode was 

found to be 10 days, with a higher proportion of positive predictions being made 

within 15 days of the first reported day (Figure 3-65). 

 

Figure 3-65: Histogram showing the distribution of positive predictive values in the 
days leading up to the first reported day of exacerbation. A greater distribution of 
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positive predictive values can be seen within 15 days of the first reported day of 
exacerbation onset. 

 Throughout the course of the study, 56 individual exacerbation episodes were 

recorded by the patients and a positive prediction was made within 15 days of the first 

reported day of exacerbation 36 times (60.71%). However, a correct positive 

prediction was made a total of 578 times in 4204 individual samples. Discounting 

multiple predictions for the same exacerbation episode, an exacerbation episode 

prediction was made 141 times. This suggests 1) a high false positive rate for predicting 

exacerbation, or 2) the possibility of the patients not reporting all of their 

exacerbations, possibly due to being accustomed to short-term changes in their 

symptoms which may mask an exacerbation, as has been reported previously 

(Seemungal et al., 2009). 

3.4 Discussion 

3.4.1 MEDLUNG 

The major aim of this chapter was to further the work previously undertaken 

within the Respiratory Diagnostics Group at Swansea University, by extending the 

number of COPD patients analysed. An initial FTIR analysis was carried out on 89 

COPD baseline and 43 COPD exacerbation sputum samples. The first aim was to 

replicate and expand the work carried out by Aaran Lewis on the small subset of 

COPD sputum samples, by increasing the numbers of patients analysed. However, it 

was not possible to replicate the results from the previous work, with multivariate 

analysis and three-dimensional scatterplots being unable to distinguish baseline 

COPD sputa from exacerbations. This is most likely due to the small patient numbers 

used in the original work compared to the larger dataset used in this current work. In 

order to fully ascertain if COPD baseline could be distinguished from exacerbation 

using FTIR spectroscopy of raw sputum, a more in-depth analysis of the spectra was 

required. Deconvolution of the spectra was carried out by second-derivative analysis 

to increase the resolution of secondary peaks and absorbance distributions which 

were obscured by the major amide I, amide II and glycogen-rich bands.  

Second derivative peak analysis highlighted two peak positions which were 

found to be statistically significantly different between COPD baseline and 

exacerbation sputum. A statistically significant peak shift from approximately 1115cm-1 

in baseline samples to approximately 1116cm-1 was detected, possibly indicating a 
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change in the sulphation of the glycan residues. The second statistically significant 

(two-fold) peak shift was from approximately 1376cm-1 in exacerbation samples to 

wavenumbers within the range of 1372 to 1380cm-1 in baseline samples. The majority 

of exacerbation samples displayed a peak at 1376cm-1 but this was less common in 

baseline patients, who displayed a greater distribution of peak positions. A peak being 

present at 1376cm-1 is not itself enough to be indicative of exacerbation, however 

presence of a peak at the wavenumbers from approximately 1372 to 1380cm-1 with 

exception of 1376cm-1 may be indicative of the patient not currently having an 

exacerbation episode. No other statistically significant peak shifts were observed 

across the spectrum. 

PCA analysis also struggled to differentiate baseline COPD from exacerbations, 

with little clustering of groups and no separation of groups from one another.  

One possible reason for the difficulty in differentiating between COPD baseline 

and exacerbation is the innate variability of the disease. It is well known that there 

are multiple phenotypes of COPD, each requiring its own distinct course of treatment 

and management (Mirza & Benzo, 2017). Therefore, an in-depth analysis of the COPD 

patient cohorts was performed by examining the measured physiological 

characteristics of each patient to ascertain if they could be a source of inter-patient 

variation within each cohort, and could therefore be controlled.  

Patients were categorised according to their personal and clinical information 

and statistical associations between the spectra and physiological data were sought. 

High-risk occupations, increased smoking status and infection were all correlated 

with an increase in absorption at the sulphate-associated wavenumber 1116cm-1, or 

peak shift around 1116cm-1. This supports the hypothesis that a patient’s personal and 

physiological factors can influence their sputum’s molecular characteristics, which 

are detectable in the FTIR spectra. These factors should be controlled for when 

making determinations about COPD patients and exacerbation detection. 

3.4.2 SPEDIC 

The SPEDIC study was a year-long longitudinal study of 55 COPD patients 

during which the patients provided five samples of sputum per week, and their 

current exacerbation status was recorded. FTIR analysis was carried out on the 

sputum samples in order to compare the molecular structural information to the 

patient’s current state of health, and to generate predictive models for exacerbation. 
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The previous MEDLUNG study was limited by the lack of prior and follow-up 

information provided for each patient, so it was unclear if any of the baseline patients 

had experienced an exacerbation within the previous eight weeks, or if they had an 

exacerbation within a short period of time of recruitment. This meant that it was 

unclear if any pre- or post-exacerbation biological alterations to the mucins were 

present which may have increased the variation within the baseline cohort. 

The FTIR spectrum of each sputum sample was converted into an 

inflammatory Q-value, which was based on the contributions of a panel of 

inflammation-associated wavenumbers, normalised against overall mucin content. 

Patterns in this inflammatory Q-value over time were sought by interrogating each 

patient’s time series with a predictive algorithm based on the hypothesis that 

inflammation-associated structures may become more prevalent in sputum in the 

days preceding exacerbation, and a concordant increase in inflammatory Q-value may 

be observed. The predictive algorithm was found to successfully predict 

approximately 60% of all individually reported exacerbation episodes; however the 

number of false positive predictions was very high. This could indicate that the 

measure used may not accurately reflect the true nature of inflammation within the 

COPD lung. A follow-up study during which physiological measurements of 

inflammation are taken over time and the correlated to FTIR spectra of sputum would 

provide insight into how inflammation effects the sputum molecular structure in 

‘real-time’. 

An unexpected outcome of the SPEDIC study was an apparent overall 

reduction in exacerbations for all patients. Out of 55 patients, only 26 patients 

recorded at least one exacerbation episode during the whole study period. This was 

confirmed as each patient was visited by a designated healthcare assistant at least 

twice per 7 day period, and each reported exacerbation was confirmed by either the 

healthcare assistant or, in the case of patients who were hospitalised due to 

exacerbation, the patient’s medical notes upon admission to hospital.  

Additionally, fewer hospitalisation days due to COPD exacerbation were 

recorded during the study (280) for all patients compared to the previous year (652). 

This was also surprising, but through consultations with the clinical team who met 

with the patients, it became clear that many of the patients were previously unaware 

of how to manage their condition in a proactive, rather than reactive manner. This 

suggests that the patients became more educated regarding their disease. The clinical 
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team reported that the patients also showed a change in perception of their disease, 

as they started to actively engage with their disease and take steps to avoid 

progression towards exacerbation. Whilst this is clearly a confounding factor for the 

SPEDIC study and the work presented within this thesis, it is inarguably a highly 

positive outcome for the patients involved.  

This has led to the hypothesis that through increased engagement of COPD 

patients with healthcare professionals, and ensuring that they are considering their 

disease more carefully, a reduction in COPD exacerbation admissions to hospitals 

could be achieved, along with an associated reduction in COPD-associated costs to 

the healthcare system. As this hypothesis is based on a single study of a low number 

of patients over a single year, it is important to consider that it is possible the 

reduction in exacerbation days is due to chance alone; however the finding presented 

in this work is promising and warrants further investigation with larger patient 

cohort in a multi-centre study over a longer timeframe. 

3.5 Conclusions 

 FTIR is a rapid, low-cost and non-invasive technology, capable of reliably 

providing detailed molecular structural information about a sample of interest. The 

work presented in this chapter adds to the already large volume of work 

demonstrating the utility of FTIR spectroscopy for biofluid analysis. Reproducible and 

reliable spectra were acquired for 132 COPD patients using a simple protocol 

involving no sample preparation, and detailed structural information was obtained 

for each of these samples. However, it has also shown that FTIR spectroscopy may not 

be suitable for COPD exacerbation detection. One two-dimensional linear model 

based on second-derivative peak positions demonstrated a capability to determine 

exacerbation from baseline samples with 80% sensitivity and 48% specificity in 

sputum samples which contained detectable peaks within the regions of interest.  

Additionally a longitudinal study of COPD patients which aimed to use FTIR 

to monitor COPD patient sputum samples was not able to generate a generalised 

predictive model for COPD exacerbation prediction. One of the main reasons for this 

is hypothesised to be that the limited number of patients enrolled in the study was 

not enough to overcome the inter-patient variability which is innate to COPD. A new, 

larger cohort study, during which the patient’s physiological factors are regularly 

measured, would provide valuable insight towards how the inflammatory processes in 
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the respiratory system change over time, and how these changes cause alterations to 

the biophysical properties of sputum.  

Engagement of COPD patients by healthcare assistants appears to reduce the 

healthcare service requirements of these patients. This hypothesis is based on the 

observation of reduced hospitalisation days due to exacerbation during the SPEDIC 

study compared to the year before, but is based only on small number of patients. 

Further work is required to fully establish the relationship between COPD patient 

engagement by healthcare professionals and subsequent utilisation of healthcare 

service resources by the patients. 
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Chapter 4 

Evaluation and Development of Hand-held Attenuated Total 

Reflectance Variable Filter Infrared Spectroscopy for Potential 

Use by Clinicians and Patients to Manage COPD 
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4.1 Introduction 

4.1.1 Introduction to ATR-VFIR 

Attenuated total reflectance variable filter infrared spectroscopy (ATR-VFIR) 

is a relatively new technology within the confines of IR spectroscopy. It is based 

around the use of a linear variable filter (LVF) to split the IR light into its constituent 

wavenumbers. The filter is laid on top of a photodetector array, which converts the IR 

radiation into an electrical signal to be interpreted by a computer – a schematic 

drawing in Figure 4-1 shows a basic layout of a VFIR spectrometer with LVF detector. 

These filters are of a lower cost and are significantly smaller in size than the 

interferometers found in conventional FTIR spectrometers. They also have another 

advantage in that they contain no moving parts, as the beam can be collimated over 

the whole LVF through the use of stationary optics (Emadi, Wu, De Graaf, & 

Wolffenbuttel, 2011).  

Miniaturised spectrometers have lower-quality optics than their benchtop 

counterparts (Wolffenbuttel, 2005), which can lead to lower-quality spectra being 

generated. However, it has been shown that miniaturised spectrometers are capable 

of highly-specific discrimination between molecular species, giving comparable 

results to benchtop spectrometers (Bentini et al., 2006; Unger, Pfeifer, & Siesler, 

2016). 

The development of optical spectrometers with LVF array detectors has led to 

an increase in miniaturised, hand-held, and portable spectrometers. One 

commercially, available miniaturised IR spectrometer is the IR Sphinx (Spectrolytic 

GmbH), originally designed for oil quality analysis. This chapter will explore and 

evaluate the IR Sphinx with respect to its capabilities for analysis of more complex 

biofluids and its suitability for the clinical environment.  
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Figure 4-1: Schematic drawing of a VFIR spectrometer, showing an IR source emitting 
IR radiation through a slit and collimating optics, which focus the beam onto the LVF 
filter and detector array.  

4.1.2 Development of a Sputum Sampling Strip for ATR-VFIR Analysis of 

Sputum 

4.1.2.1 Rationale and Key Criteria 

A key component of the IR Sphinx ATR-VFIR system is the use of a large zinc 

sulphide (ZnS) ATR-crystal. This crystal has a lower-cost than diamond, but still 

retains a high hardness and so is resistant to scratching during sampling and 

cleaning. However, when sputum is applied to a surface and allowed to dry, it 

becomes extremely hard and is difficult to remove without soaking and scrubbing. 

Any potential device that requires a labour-intensive cleaning protocol after each use 

will not be suitable for clinical use. Additionally, whilst the ZnS crystal is resistant to 

scratching, with heavy use in the clinical environment, with potentially many uses 

throughout the day, there is a risk that the device could become damaged if sputum 

is being directly applied. For these reasons, a low-cost, low-IR-absorbing, disposable 

sampling-strip is required to be used to apply the sputum, which would then be 

applied to the spectrometer by a clamping mechanism.  

For the sampling-strip to be suitable for IR analysis, it must conform to 

certain criteria: 
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1) The IR substrate must not interfere with the sputum spectrum through addition of 

spectral artefacts due to absorption, or scattering by the substrate. 

2) The substrate must not react with sputum, forming new molecular interactions which 

would introduce additional peaks into the spectrum. 

3) The sputum must adhere strongly to the substrate and not be removed during the 

spectrum acquisition process. 

4) All of the components used in the manufacture of the sampling-strip must be of a low 

enough cost to ensure that using the sampling-strip as a disposable item is feasible. 

5) The strip must be able to be clamped in place against the ATR crystal without damage 

occurring to the strip or device, whilst ensuring that there is consistent contact 

between sample and crystal. 

4.1.2.2 Construction of the Sample Strip 

As previously stated, there are certain criteria to which the sampling strips 

must conform, and therefore the construction of the strips must also meet them. 

Shown in Figure 4-2 is a basic schematic describing how the individual components 

of the strip are arranged. The hard plastic backing acts as a solid base to which the 

other components are attached. Additionally the backing is used for handling the 

strip. The low-IR-absorbing substrate is the surface onto which sputum is spread and 

allowed to dry. This substrate is laid over a compressible tape, which is present to 

cushion the substrate between the plastic backing and ATR crystal, and to evenly 

distribute the clamping force across the whole strip.  

 

 

 



Charles Brilliant 
 

121 
 

Figure 4-2: (a) Schematic of sampling strip construction, and (b) sampling strip use, 
showing sputum dried onto the substrate surface and the strip being placed “upside-
down” on the ATR-crystal. A clamping force maintains close contact between the 
sample and ATR crystal during measurement 

4.1.2.3 Selection of Low-IR-Absorbing Substrate 

Low-IR-absorbing materials are a crucial component of all FTIR substrates, and 

care must be taken to ensure that the chosen substrate allows maximum signal, with 

minimal substrate interference. Previously, ATR-FTIR has been performed using 

highly-IR-reflective low-E or gold-coated slides, but the cost of these slides is 

prohibitive for use within the clinical environment where substrates must be single-

use (Cui, Butler, Martin-hirsch, & Martin, 2015). Aluminium oxide (AlO) foil has been 

shown to have a low absorption of IR in the mid-IR range, and is substantially lower-

cost than conventional ATR substrates (Cui et al., 2015; Vahur, Teearu, Peets, Joosu, & 

Leito, 2016). For these reasons, AlO was selected as a potential candidate substrate for 

the sampling strip and was subjected to further testing. 

4.1.2.4 Selection of Compressible Tape 

 ATR-FTIR spectroscopy requires excellent contact between the sample and 

ATR-crystal, therefore one of the chief components of the sampling strip would have 

to be a suitable material that would facilitate this contact. Additionally, the ATR 

crystal of the IR Sphinx is very large, (17mm*25mm = 425mm2), thus requiring a large 

amount of the sample to be evenly applied to generate a spectrum with maximum 

signal and minimum noise. Applying the samples with a disposable sampling strip 

requires that the sample strip creates and maintains this excellent contact between 

the sample and ATR crystal. The need for a suitable material that would evenly 

distribute applied downward pressure through the sample onto the ATR crystal was 

therefore identified.  

4.1.3 Chapter Aims 

The primary aim of this chapter is to evaluate a miniaturised ATR-VFIR 

spectrometer, the IR-Sphinx (Spectrolytic GmbH). This spectrometer will be 

evaluated with respect to its utility as a clinical tool in the diagnosis of COPD 

exacerbation through sputum analysis, but this is not the major aim of this work. 

Comparisons of spectral quality and COPD exacerbation discrimination will be made 

between the IR Sphinx and the laboratory FTIR spectrometers used in Chapter 3. The 

IR Sphinx will also be assessed for its suitability for the clinical environment based on 

criteria as defined by consultations with clinicians. 



Charles Brilliant 
 

122 
 

As part of the clinical evaluation of the IR Sphinx, a hand-held sampling strip 

on which to apply sputum prior to IR measurements will also be developed. Different 

low-IR-absorbing substrates and backing materials will be tested, and comparisons 

will be made between spectra generated using the sample strip and those generated 

through direct application of the sputum to the ATR crystal. Spectral quality will be 

assessed through signal-to-noise ratio, and similarity index calculations and spectra 

will be examined for introduction of spectral artefacts caused by the sampling strip.  

4.2 Methods 

4.2.1 Spectral Generation 

IR spectra were generated as described in Chapter 2, section 2.2.  

4.2.2 Spectral Processing 

All spectra were processed as described in Chapter 2, section 2.3. 

4.2.3 Sample Strip Materials 

Metallised-polyurethane foam was obtained from Coveris (Louth, UK). AlO 

film was obtained from Swansea University Welsh Centre for Printing and Coating 

(Swansea, UK). Compressible foams were obtained from TESA (Milton Keynes, UK) 

and 3M (Bracknell, UK).  

4.2.4 Density Testing of Compressible Foam 

 The density of compressible foams used in the construction of the sample 

strip was calculated by measuring the dimensions of a known sample of foam using 

callipers, and measuring the weight using digital scales with a margin of error of 

0.05g. Measurements were taken in triplicate and averaged.  

4.3 Results 

4.3.1 IR Sphinx Evaluation 

 A hand-held, portable and low-cost spectrometer, such as the IR Sphinx, 

capable of distinguishing molecular structural differences in complex biofluids has 

great potential to be useful within the clinical environment for rapid identification of 

disease biomarkers. The work outlined in Chapter 3 did not definitively show how 

high resolution FTIR spectroscopy could distinguish sputum samples collected from 

COPD patients with baseline disease or at time of exacerbation. 
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The IR Sphinx was evaluated for its ability to generate reliable spectra of 

sputum samples obtained from currently exacerbating COPD patients, and COPD 

patients currently at baseline. Sputum from COPD patients was used for this work 

because of the sample volumes required by the IR Sphinx were greater than which 

was previously required, especially when taking into account sample replicates, and 

COPD patient sputum was in much greater supply. Determination of baseline from 

exacerbation was not the primary aim of this work, rather the aim was to assess the 

reliability of the IR Sphinx, and develop protocols to improve the suitability of the 

device for a clinical application. 

 The spectra generated by the IR Sphinx were also compared to those 

generated by the Bruker Alpha, a benchtop, portable ATR-FTIR spectrometer to 

provide a benchmark. 

4.3.1.1 IR Sphinx Resolution Characterisation 

 First, IR spectra generated by the IR Sphinx were assessed for quality, by 

comparing spectral resolution to that of spectra generated by the Bruker Alpha, 

through comparison of isopropyl alcohol (IPA) spectra generated using the IR Sphinx 

under normal operating conditions, and the Bruker Alpha at decreasing resolutions 

from 2 – 256cm-1 (Figure 4-3). A direct comparison of an IPA spectrum generated 

using the IR Sphinx and Bruker Alpha at 32cm-1 shows a great deal of similarity, 

although the three peaks observable in the Bruker Alpha spectrum from 1500-1300cm-1 

are not individually resolvable in the IR Sphinx spectrum. 
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Figure 4-3: A series of ATR-FTIR spectra of IPA acquired at a range of spectral 
resolutions decreasing from 2cm

-1
 to 256cm

-1
 using the Bruker Alpha (coloured, solid 

lines spectra), and an IPA spectrum acquired using the IR Sphinx (black dashed) 

 

Figure 4-4: A direct comparison of the Bruker Alpha IPA spectrum at 32cm
-1
 resolution 

and the IR Sphinx IPA spectrum.  
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Spectral resolution of the IR Sphinx was found to be lower than that of the 

Bruker Alpha, with little to no distinction of the peaks within the amide I and amide 

II regions, and no resolution of individual peaks through the glycogen-rich region. 

The overall resolution of the IR Sphinx was estimated to be approximately 30cm-1 due 

to the similarity of the spectra shown in Figure 4-4. 

4.3.1.2 IR Sphinx COPD Sputum Spectra and Exacerbation Detection 

 COPD patient sputum ATR-VFIR spectra (n=129) were acquired using the IR 

Sphinx in triplicate. Figure 4-5(a) shows the average COPD baseline spectrum, with 

broad absorbance bands clearly visible at amide I and II, and at the glycogen-rich 

region. However it is difficult to resolve individual peak positions; for example, 

distinguishing the exact position of the amide II peak from the amide I peak is 

problematic due to the lack of trough between the two peaks which is characteristic 

of the region. 
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Figure 4-5: Infrared spectra generated by the IR Sphinx of a) min-max normalized, 
baseline-corrected average COPD baseline spectrum, and b) all baseline-corrected, 
mean-normalized COPD patient sputum spectra (red – exacerbator, green – baseline). 

 

 PCA was performed on absorbencies at wavenumbers shown to be statistically 

significant (p < 0.05) after multiple-hypothesis testing for determining baseline from 

exacerbation samples. The six most significant wavenumbers selected for PCA were 

992, 1022, 1127, 1289, 1337 and 1700cm-1 (Figure 4-6). 

 

Figure 4-6: PCA scatterplot showing a clustering of exacerbation samples in PC1+ PC2-. 
The regression model shown distinguishes COPD baseline from COPD exacerbation 
samples with a sensitivity and specificity of 54.05% and 88.09%, respectively. 
Sensitivity can be improved whilst retaining >80% specificity by determining baseline 
from exacerbation based on the sample falling within PC1

+
PC2

-
, giving sensitivity and 

specificity scores of 60% and 81.48%, respectively. 

4.3.2 Development of the Sample Strip IR Substrate 

As part of the clinical evaluation and development of the hand-held IR Sphinx 

spectrometer, a need for a disposable sampling strip was identified. There were 

certain criteria that the sample strips needed to adhere to in order to be suitable for 

use with the IR Sphinx. The substrate onto which the sample was deposited must not 

interfere with the spectrum and must have low-IR absorption properties, sputum 

must adhere strongly to the substrate, the whole strip must be of low enough cost to 
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be used as a disposable item, and the strip must be capable of being clamped onto the 

ATR crystal without damage occurring to the strip or crystal. 

Aluminium oxide (AlO) film was selected as a potential substrate for the 

sampling strip due its well-documented low-IR absorption properties. Through 

collaboration with WCPC at Swansea University, a thin (<100µm) polyurethane (PU) 

film metallised with AlO was obtained.  

4.3.3 Testing the AlO Substrate: Bruker Alpha 

-

 

Figure 4-7: ATR-FTIR spectra from 4000-450cm
-1
 of the AlO substrate, on different 

backing materials; (red) AlO deposited onto a PU film, placed onto adhesive PE foam 
and then secured on a hard plastic backing (AlO film), and (blue & purple) AlO 
deposited directly onto PU foam by metallisation (M-PU) and secured onto a hard 
plastic base, directly measured by ATR-FTIR at the centre (purple), or the edge (blue) 
of the M-PU strip. 

 Replicate spectra of the M-PU and AlO-film substrates were generated using 

the Bruker Alpha (Figure 4-7). The M-PU spectra show a higher level of absorption 

across the whole mid-IR spectrum, compared to the AlO-film spectra. Also, the M-PU 

spectra show increasing absorption from approximately 1800cm-1 and down towards 

the N-IR region. The fingerprint region (1800-900cm-1) contains the most spectral 
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information, so an increasing baseline of absorption due to the sampling substrate is 

undesirable.  

 

Figure 4-8: Distribution of average absorbencies of whole ATR-FTIR spectra (n=6) of 
M-PU and AlO film. The M-PU spectra were generated from the centre and the edges 
of the metallised surface of the M-PU. This was to provide insight into the uniformity 
of the metallised surface across the wide surface area of the sampling strip. The AlO 
film shows a significantly decreased average absorbance level compared to the M-PU. 
Additionally, there is a significant difference between the sampling modes of the M-
PU, suggesting that the metalized coating is not consistent across the strip. 

 

It was found that the AlO coating on the M-PU is easily disrupted. Figure 4-9 

shows pictures taken of the M-PU before (Figure 4-9 A) and after (Figure 4-9 B & C) 

ATR-FTIR measurements using the Bruker Alpha. This is further evidence that the M-

PU substrate is inappropriate for use as a sampling strip for routine ATR-VFIR 

analysis. Therefore, AlO deposited onto PU film (AlO film) was the substrate of 

choice for the sampling strip. 
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Figure 4-9: Photographs of the M-PU strips before ATR-FTIR measurements (A) and 
after ATR-FTIR measurements (B & C). B shows the M-PU with plastic base and C 
shows it without. The plastic base appears to protect the M-PU from most severe wear, 
although there is evidence of AlO disbonding near the edges (red arrows). 

4.3.4 Testing the AlO Substrate: IR Sphinx 

 

Figure 4-10: Replicate ATR-VFIR (IR Sphinx) spectra of the plain AlO substrate placed 
onto M-PU (green) or the AlO film on foam (red). The plain M-PU shows a markedly 
higher level (approximately 4x) of absorbance compared to the AlO film, and a drifting 
baseline towards the lower wavenumber region. 

Figure 4-10 and Figure 4-11 show how the different deposition methods of AlO 

influence the spectra generated using the IR Sphinx. As with the Bruker Alpha, the 

average absorbance across the spectrum was significantly (p < 0.05) increased in M-

PU spectra, compared to AlO film spectra. This shows how the metallisation process 

of the PU foam does not produce a layer of AlO of sufficient thickness to ensure that 

the IR beam does not penetrate through the AlO layer and become absorbed by the 

underlying substrate layer. This is further evidence that AlO film is a more suitable 

substrate for ATR-VFIR analysis.  
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Figure 4-11: Boxplots of average absorbencies across the whole IR spectrum from 
1800:950cm

-1
 of plain MPU and AlO substrates generated with the IR Sphinx (n=6). 

Significance testing using the Wilcoxon-rank sum test shows the AlO film substrate 
causes significantly less absorbance across the whole spectrum (p < 0.05). 

4.3.5 Backing material testing 

 For the sampling strip to produce spectra of optimal quality there must be 

extremely close contact between the sampling surface and ATR crystal. The ATR 

crystal of the IR Sphinx is large, with a total area of 425mm2, compared to the 4mm2 

of the diamond ATR crystal found in conventional benchtop FTIR spectrometers, 

such as the Bruker Alpha. This large surface area increases the potential for variation 

in how samples could be applied to the ATR crystal, both with and without the use of 

an external sampling strip. The sampling strip was designed with compressible foam 

underneath the IR-substrate (Figure 4-2(a)), to spread the applied load from the 

clamping force during IR-spectrum acquisition and ensure equally close contact 

between the sample and ATR crystal surfaces. Multiple compressible foams with 

differing hardnesses, thicknesses and densities were tested to ensure that the optimal 

material was used for the best possible quality spectrum acquisition (Table 4-1).  
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Name Supplier Material Thickness (µm) Density 
(kg/m3) 

Hardness 

E1715h 3M PE Foam 380 480 Medium-Firm 
E1515h 3M PE Foam 380 465 Medium 

E1120h 3M PE Foam 559 384 Soft 
Softprint 
52122 

TESA PE Foam 500 330* Soft 

xSOFT 52223 TESA PE Foam 500 270* Extra Soft 
Table 4-1: List of the foams analysed and a description of properties - *values not 
provided by manufacturer, calculated in house; PE = polyethylene. 

 Porcine gastric mucin (PGM) was used as a control sample for testing 

sampling strips with different compressible foams, to ensure that any differences seen 

are due to the properties of the foam. PGM was applied directly to the AlO-film and 

allowed to dry at room temperature for one hour. Replicate (n=12) ATR-VFIR spectra 

of the PGM dried on the sampling strips with each backing material were acquired 

and assessed for overall spectral quality using the following parameters; signal-to-

noise ratios (SNR), variation of overall absorbance intensity and peak positions 

variation. 

 

Figure 4-12: Distribution of SNRs from all spectra acquired using each backing 
material.  

 ATR-VFIR spectra of PGM were first evaluated in terms of overall SNR, which 

was calculated using the in-built signal-to-noise algorithm in OPUS, with parabolic 

fitting enabled. The 3M-E1120 tape showed the greatest variation in range of SNR, 

whereas the TESA xSOFT showed the least variable SNR values. The TESA SoftPrint 

showed the greatest overall SNR, although the range was large and overlapped 

strongly with the other foam tapes.  
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 Spectra were also evaluated for variation in peak positions within the 

glycogen-rich region of the spectrum, and average absorbance across the spectrum 

and specified regions of the spectrum. 

 

Figure 4-13: Distribution of the wavenumber position (cm
-1
) of the major glycogen peak 

found in PGM using each backing material. 

 

 

Figure 4-14: Distribution of average absorbencies across the full spectrum - 1800-
900cm

-1
. Variance is lowest in the Softprint and xSOFT tapes 
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Figure 4-15: Distribution of average absorbencies within the major glycogen-associated 
peak (1130-950cm

-1
). 

 Mean 
Absorbance 
1130-950cm

-1
 

Variance Mean Major 
Glycogen 
Peak 
Position 

Variance Mean 
SNR 

Variance 

E1120 0.179011 0.0012 1046.167 11.0606 4.53075 1.00674 

E1515 0.148525 0.0013 1047.167 38.6970 3.520917 0.58614 

E1715 0.14348 0.0014 1045.727 16.0182 3.514818 0.5005 

SoftPrint 0.197294 0.0006 1048.167 27.0606 4.814333 1.10665 

xSOFT 0.161803 0.0006 1045.833 14.6970 3.708167 0.1453 

ANOVA  
Between 
Groups (p) 

0.00063489 0.671685744 0.000220598 

Table 4-2: Mean absorbance from 1130-950cm
-1
, mean glycogen peak position, and 

mean SNR across the whole spectrum, with variances for each group shown. Lowest 
variance values for each parameter are bolded for clarity. The Softprint and xSOFT 
tapes both show the lowest variance in terms of absorbance intensity, and the xSOFT 
shows the least variable SNR. The 3M-E1120 tape showed the least variance for 
detection of the major glycogen peak. Single factor ANOVA shows that the variation 
between the groups of backing materials is statistically significantly different at the 
95% confidence level when assessing the mean absorbance and SNR, but not the peak 
position.  

Spectra generated using the xSOFT tape showed the lowest variation in terms 

of average absorbance, and SNR (Table 4-2). The observed variation in peak position 

was lowest for the E1120 tape, although the peak positions in spectra acquired with 

xSOFT tape were not shown to be statistically significantly different between the 

E1120 and xSOFT tapes at p=0.822163 (Table 4-3). This suggested that usage of the 

xSOFT tape could produce more reliable spectra than the other tapes in terms of 

absorption intensity and SNR, whilst not significantly increasing variation in the 

wavenumber positions of the major peaks.  
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    Two-sided T-Test Results 

    E1120 E1515 E1715 SoftPrint 

Glycogen 
Peak Position 

E1515 0.62971     

E1715 0.77869 0.51389    

SoftPrint 0.27601 0.67352 0.21967   

xSOFT 0.82216 0.53514 0.94898 0.14152 

Average 
Absorbance 
1130-950cm-1 

E1515 0.04692*       

E1715 0.02744* 0.74646    

SoftPrint 0.15107 0.00113* 0.00083*   

xSOFT 0.16995 0.30590 0.18216 0.00367* 

Signal-to-
Noise Ratio 

E1515 0.01157*       

E1715 0.01056* 0.98435    

SoftPrint 0.50626 0.00256* 0.00234*   

xSOFT 0.01875* 0.45912 0.43302 0.00851* 

Table 4-3: Results of statistical significance testing by T-test for differences in detected 
peak positions, average absorbance from 1130-950cm

-1
, and SNR across the spectrum 

due to the use of the backing materials. Significance was sought at p<0.05, and all 
significant differences found due to the backing material are indicated with an 
asterisk.  

4.3.6 Comparison of ATR-FTIR Spectra with and without the Sampling Strip 

The sample-strip was first tested using the benchtop Bruker Alpha 

spectrometer, to perform direct comparisons between sputum spectra acquired using 

the standard ATR-FTIR protocol, as used in Chapter 3, and sputum spectra acquired 

with the sampling strip. The sampling strip spectra were examined for introduction of 

spectral artefacts, shifts in baseline, shifts in peak position, relative to ATR-FTIR 

spectra acquired without the strip. One COPD patient’s sputum sample (TR06) which 

had previously been observed to produce easily reproducible spectra, and which was 

in plentiful supply in order to carry out many repeats was chosen to assess the 

reproducibility of IR-spectra generated using the sampling strip.  
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Figure 4-16: Vector-normalized, baseline-corrected ATR-FTIR spectra of COPD patient 
sample TR06, dried onto a sampling strip (red) and directly onto the ATR crystal 
(blue) in triplicate. Raw spectra of plain sampling strip (grey) in triplicate are also 
shown for comparison of AlO absorbance features to absorption profiles of typical 
sputum spectra. 

 A visual examination of the spectra in Figure 4-16 shows that the vector-

normalised, baseline-corrected replicate ATR-FTIR spectra of sample TR06 do not 

show a large degree of variation between sampling modes. There are no visible 

spectral artefacts, or major peak position shifts introduced by the sampling strip. A 

statistical analysis of the TR06 patient sputum spectra followed to confirm the 

significance of any changes that the sampling strip may introduce. 
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Figure 4-17: Baseline-corrected, vector-normalized ATR-FTIR spectra of COPD patient 
sputum sample TR06 dried onto the sampling strip (red, 16 replicates), and onto the 
ATR crystal (blue, triplicate). Exact peak positions of major peaks found within (a) 
1660 – 1610cm

-1
, (b) 1555 – 1535cm

-1
, (c) 1260 – 1220cm

-1
, and (d) 1040 – 1025cm

-1
 regions are 

highlighted above the spectra and shown in figure 4-4.  

The location and number of major IR peaks in ATR-FTIR spectra within amide 

I, amide II, or glycogen-rich regions (Figure 4-16 and Figure 4-17) does not 

significantly change because of the use of the sampling strip. Subtle variation in peak 

positions can be seen, however the range of the peak positions is small, and could be 

due to variations of the molecular structure of the sputum sample. The 

heterogeneous nature of sputum has been explored in this thesis in Chapter 3; 

therefore it is reasonable that the absence of observations of major peak position 

alterations in spectra generated using the sampling strip could support the hypothesis 

that the subtle peak position variation could be due to intra-sample variation. 

Variation between and within sampling modes was assessed by ANOVA (Table 4-4). 

Variation within each sampling mode was found to be statistically significantly 
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greater (p < 0.05) than the variation introduced by the sampling strip at all peak 

positions except for the glycogen-rich peak position.  

Spectral 
Region 

Variation Within 
Sampling Modes 

Variation 
Between 

Sampling Modes 

P-value 

Amide I 10.2036 0.2457 0.5308 
Amide II 13.6585 0.4233 0.4778 
Sulphate 57.9309 3.1373 0.3508 

Glycogen-rich 3.2993 2.8442 0.0014 
Table 4-4: ANOVA results, no significant variation between sampling modes for the 
amide I, amide II and sulphate regions, but statistically significant difference in 
variation between the sampling modes was detected within the glycogen-rich region. 

 SS WO SS WO SS WO SS WO 

 Amide I Amide II Sulphate Glycogen-rich 

 Mean 
Peak 

Position 
1634.65 1634.96 1544.04 1544.45 1240.83 1239.72 1031.37 1032.40 

P-value 0.3443 0.5981 0.6987 0.09715 

95% CI -1.0551589 
0.4314089 

-2.864628 
2.045878 

-9.37816 
11.60691 

-2.5478322 
0.4257489 

Table 4-5: Mean peak positions of ATR-FTIR spectra generated using the sampling 
strip (SS) and without (WO) the sampling strip. P-values with 95% confidence intervals 
(CI) show degree of significance of differences in peak position due to the sampling 
strip.  

Normality testing with a Shapiro-Wilk test for normality suggested that the 

peak position data were normally distributed, so significance testing was performed 

using Welch’s two-sided T-test, with an α-level of 0.05. A statistically significant 

difference was found at the glycogen-rich region peak position (p < 0.05) due to use 

of the sampling strip (Table 4-5). 

4.3.7 Comparison of COPD Sputum ATR-FTIR Spectra Generated with and 

without the Sampling Strip  

 ATR-FTIR spectra of COPD patient sputum samples were generated using the 

Bruker Alpha ATR spectrometer with and without the use of the sampling strip. This 

was to assess if using the sampling strip introduced a source of error or variation into 

the acquired spectra. Replicate (n=3) ATR-FTIR spectra of 118 COPD patient sputum 

samples were processed and averaged according to Chapter 2, Section 2.2.3. The 

average spectra for each patient were acquired for each sampling mode were then 

analysed for significant differences. The average spectra are shown in appendix 4. 

Average Peak 
Position 

1638.128 1543.403 1239.567 1071.261 1035.405 
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p-two-sided 1.30E-09 0.03545 0.0001507 6.82E-05 1.49E-09 

p-one-sided 
(greater) 

6.52E-10 0.9823 0.9999 3.41E-05 7.47E-10 

p-one-sided 
(less) 

1 0.0177 7.54E-05 1 1 

Mean 
difference (cm

-

1
) 

3.3887 -0.6479 -1.4940 1.4628 2.412 

99 % CI 
2.0428 -1.4452 -0.4964 0.5401 1.486 

4.7347 0.1494 -2.4914 2.3854 3.339 

Table 4-6: Average major peak positions detected in absorbance spectra with 
significance values from paired T-tests for differences in peak positions in sputum 
spectra generated using the two sampling modes. 

 Statistical significance testing using paired T-tests showed that there are 

statistically significant (p < 0.05) differences in detected peak positions at all major 

peaks when comparing spectra generated using the sampling strip or by depositing 

directly onto the ATR crystal (Table 4-6). The distribution of peak positions across all 

samples was also found to be statistically significantly different between the sampling 

modes (Figure 4-18 to Figure 4-22). The sampling strip appears to contribute to a 

greater degree of variance in detected absorbance peak position across the infrared 

spectrum. This greater variance could either be due to the AlO foil interacting with 

the IR beam, or due to variations in the sputum sample itself. However, the IR-

absorbance of aluminium foil is very low and the spectrum is almost featureless, with 

the exception of a small peak at 974cm-1 (Figure 4-7). It is unlikely, however, that this 

peak should influence the position of the detected peaks studied in this work. 

 

Figure 4-18: Comparison of the distributions of all detected absorbance spectrum peak 
positions (cm

-1
) within the amide I region from the use of the sampling strip (red) and 

the ATR crystal (blue) 
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Figure 4-19: Comparison of the distributions of all detected absorbance spectrum peak 
positions (cm

-1
) within the amide II region from the use of the sampling strip (red) and 

the ATR crystal (blue) 

 

Figure 4-20: Comparison of the distributions of all detected absorbance spectrum peak 
positions (cm

-1
) within the sulphate (S=O stretching) region from the use of the 

sampling strip (red) and the ATR crystal (blue) 
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Figure 4-21: Comparison of the distributions of all detected absorbance spectrum peak 
positions (cm

-1
) within the glycogen-rich region from 1065 – 1085cm

-1
 from the use of 

the sampling strip (red) and the ATR crystal (blue) 

 

Figure 4-22: Comparison of the distributions of all detected absorbance spectrum peak 
positions (cm

-1
) within the glycogen-rich region from 1025 – 1045cm

-1
 from the use of 

the sampling strip (red) and the ATR crystal (blue) 

4.3.8 Further Development of ATR Sampling Strip 

 A recent, exciting development in the field of ATR-FTIR has seen the 

introduction of a novel design of ATR crystal, using etched silicon wafers. Silicon 

wafers have been used as substrates for T-FTIR for many years, but recently IRUBIS 

GmbH have developed silicon wafers for ATR spectroscopy. A simplified schematic of 

a silicon ATR wafer is shown in Figure 4-23. They claim that the silicon ATR wafer 

produces spectra of comparable quality to that produced using a conventional ZnSe 
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or diamond crystal. These wafers are approximately €40 each, and therefore represent 

a significant reduction in cost for an ATR spectrometer compared to conventional 

diamond, ZnSe, or KBr crystals. This reduction in cost per unit ATR crystal raises the 

possibility of using these or similar silicon ATR crystals as a disposable sampling 

substrate. For this reason, silicon ATR wafers were acquired from IRUBIS and 

evaluated for their inter- and intra-wafer reproducibility of spectra, and the overall 

quality of spectra produced by these wafers.  

 

Figure 4-23: Schematic of silicon ATR wafer, showing etched prisms and beam path 
refracting through the prism. Figure adapted from IRUBIS GmbH, 2018 
(https://irubis.com/products/atr-crystals/single-reflection-atr-crystal/) 

Fifteen silicon ATR wafers were obtained from IRUBIS for direct comparison 

to ATR-FTIR spectra produced by the benchtop Bruker Alpha instrument utilised 

earlier in this thesis. It was necessary to use an ATR-adapter in the sample 

compartment of the Bruker Vertex, onto which the ATR wafers were placed for 

analysis. One COPD patient’s sputum (TR01) was chosen for this test to ensure that 

variation due to sampling was limited. Sputum was pipetted (2µl) onto each wafer 

and allowed to dry before FTIR analysis. Replicate spectra (n=7) were generated for 

each wafer using a new background spectrum each time, to reduce any potential 

influence from changing environmental conditions. The spectra generated are shown 

in Figure 4-24 with low inter- and intra-wafer variability seen. The spectra can be 

seen to group together by wafer, although this could be due to variation in sampling 

when applying the sputum. This is confirmed in Figure 4-25, where the pattern of 

wafer groups is distinct from that shown in Figure 4-24. The light-green spectra in 

Figure 4-25 are seen to group away from the other spectra, which suggests that an 

error in sampling occurred. Such an error could be that the sputum was applied too 

thickly or too was not applied completely on the active area of the ATR wafer. 

Sputum which is applied too thickly takes more time to fully dry, but also it is 

possible that water contained in the sample could become trapped at the interface 
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between the sample and wafer. Presence of water in a sample is known to adversely 

affect spectrum acquisition (Baker et al., 2014; S. P. Lewis et al., 2013; Oberg & Fink, 

1998), therefore it is reasonable to hypothesise that retained water could be a source 

of sampling error. Another potential source of error is the possibility of the ATR wafer 

being incorrectly loaded into the spectrometer prior to spectrum acquisition. 

However this is unlikely as all three replicate spectra show the same error. 

Furthermore, if the error was due to the loading of the wafer into the spectrometer it 

would be reasonable to assume that such an error could be present in the spectra for 

the other wafers, however examination of the these spectra shows no such error. 

Because of this, care should be taken to ensure that sputum is not applied to the 

wafers too thickly, and all samples should be fully dry before spectrum acquisition. 

To further test the concordance between silicon ATR-wafers, the experiment 

was repeated using a different condition for the background spectrum. A background 

spectrum of every wafer was collected, and an average of each of these was calculated. 

For comparison, spectra were generated using the specific background spectrum for 

each wafer, and the average background spectrum (Figure 4-26). A mean spectrum 

for each experimental condition was calculated (Figure 4-27), showing a Pearson’s 

correlation coefficient of 0.999998 (p < 2.2*10-16) between the two conditions of 

background spectrum. This implies that variation introduced by the wafers is 

extremely low. Correlation between the wafers was also assessed by comparing the 

average spectrum for each wafer to every other spectrum generated using the silicon 

ATR wafers. The median correlation coefficient of each wafer was shown to be rho > 

0.99, suggesting a high degree of similarity between spectra of the same sample 

generated using different ATR wafers. 
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Figure 4-24: First experiment of the silicon ATR wafers. Baseline-corrected ATR-FTIR 
spectra (n=105) of COPD sputum (TR01) generated using the silicon ATR wafer. Each 
spectrum is coloured according to the wafer used, with 7 replicate spectra per wafer.  

 

Figure 4-25: Second experiment of the silicon ATR-wafers. Colour coding of wafers is 
the same as in Figure 4-24.  
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Figure 4-26: Baseline-corrected ATR-FTIR spectra (n=150) generated using background 
spectra specific to the wafer (n=75, 5 per wafer), and an average background spectrum 
consisting of background spectra from all wafers (n=75, 5 per wafer). Colour coding of 
spectra as in Figure 4-24. 

 

 

Figure 4-27: Baseline-corrected mean spectra of TR01 generated using the silicon ATR 
wafers, with wafer-specific background spectrum (red), and the average background 
spectrum (blue). Pearson’s correlation coefficient of 0.999998 (p < 2.2*10

-16
) showing 

very high degree of similarity between spectra generated using the different 
background conditions. 
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Figure 4-28: Distribution of Spearman’s Rank correlation coefficient between each 
wafer’s average spectrum and all other spectra generated using the silicon ATR wafers. 
The median correlation coefficient of each wafer to all other spectra is >0.99, implying 
excellent correlation and a high degree of similarity between spectra generated using 
each wafer. 

 Next, the spectra generated by the ATR wafers in the Bruker Vertex were 

compared to spectra previously generated by the Bruker Alpha ATR-FTIR 

spectrometer. Porcine gastric mucin (PGM) was used as a standard sample to 

compare across devices. Repeat spectra (n=15 per device) were generated in the same 

manner as described earlier. Analysis of spectra focused on identifying differences 

between raw spectra generated on either device, which may constitute the aberrant 

addition of spectral artefacts. For this reason only raw, unprocessed spectra were 

examined. Shown in Figure 4-29 are the average raw spectra of PGM for both devices.  
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Figure 4-29: Average raw spectra of PGM generated with ATR wafers (black) and the 
Bruker Alpha (blue), from 1800 – 900 cm

-1
. The dashed lines represent 95% confidence 

levels from the mean spectrum. 

  Initial investigation of the raw spectra shows an overall increase in spectral 

drift towards the N-IR region in the PGM spectra generated with the ATR wafers. The 

wafers could be the cause of this drift; however it could also be due to the 

experimental design. It was necessary to use two spectrometers for this experiment, 

which have different architecture and detectors. It is possible that the use of different 

spectrometers is the reason for this difference in drift. No peak gain or loss was 

observed within the fingerprint region, and all peaks show the same overall shape, 

with no apparent distortion introduced by the wafers. Subtle variations can be 

observed in peak position at the amide I and glycogen-rich regions, but statistical 

analysis highlighted zero peaks positions which showed a statistically significant (p < 

0.05) shift. Similarity between the ATR-wafer spectra and Bruker Alpha ATR spectra 

was quantified using Spearman’s Rank, with the average correlation coefficient 

between sampling modes calculated as 0.935617, suggesting excellent similarity 

between raw spectra. 

 The work presented in this chapter overall suggests that the silicon ATR 

wafers do not introduce a source of variation when performing ATR-FTIR analysis of 

sputum, and therefore are a suitable alternative substrate for ATR-FTIR analysis. They 

also produce spectra of excellent quality, which are highly comparable to spectra of 

the same sample generated using a diamond ATR FTIR crystal. 
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4.4 Discussion 

4.4.1 The IR Sphinx for Generation of COPD Sputum Spectra 

The IR-Sphinx is a hand-held, miniaturised IR spectrometer, based on ATR-

VFIR technology, with a MEMS detector. It contains zero moving parts, with the IR 

beam being split into constituent wavenumbers by the LVF filter which forms part of 

the MEMS detector. It also utilises a large ZnS ATR crystal. For these reasons, the IR-

Sphinx is a lower-cost alternative to the laboratory systems such as the Bruker Alpha. 

The IR-Sphinx was evaluated in this thesis to ascertain its capability for generating 

reliable spectra from complex biofluids. To this end, COPD patient sputum from 

baseline and exacerbating patients were used. It was found that the IR Sphinx is 

capable of generating reproducible sputum spectra, which were, in general, 

comparable to those generated by a higher-resolution device, although much spectral 

information was lost. 

The spectra produced by the IR Sphinx are of a lower resolution than that 

produced by the Bruker Alpha. The Bruker Alpha is capable of producing spectra at a 

resolution of 4cm-1; however comparative testing using IPA spectra provided an 

estimate of resolution of approximately 30cm-1 for the IR Sphinx. This decrease in 

resolution is evident when directly comparing spectra for the same sample. Key 

spectral features, such as the amide I, and the major glycogen-rich region peak and a 

peak at around 1240cm-1 are all identifiable. However, the trough between amide I 

and II is almost completely lost, leading to difficulties in resolving the major amide II 

peak, and there is little resolution of secondary absorbance bands across the 

spectrum.  

There is a loss of resolution of the minor peaks present across the spectrum, for 

example, the secondary peak seen at approximately 1125cm-1, and the minor peak 

identified at 967cm-1 in the Bruker Alpha spectra are not clearly resolvable in the IR 

Sphinx spectra. Additionally, the major peak at amide II is lost, forming only a small 

shoulder in the amide I peak. This drop in the ability to resolve individual peaks and 

shoulders limits the ability of the IR Sphinx to provide spectra from which accurate 

ratios of glycosylation patterns can be derived.  

Shown in Figure 4-6, is a PCA scatterplot based on absorbencies at six 

wavenumbers shown to be significantly (p < 0.05) different between the two patient 

groups - 992, 1022, 1127, 1289, 1337 and 1700cm-1. This PCA was examined in terms of 
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its sensitivity and specificity for distinguishing COPD baseline and exacerbation 

sputum samples, with the best sensitivity of 60% and specificity of 81.48% if the 

sample fell within PC1+PC2-. A linear model provided increased specificity, but 

decreased sensitivity of 88.09% and 54.05% respectively. However, one must be 

careful when interpreting these results. The IR Sphinx is a lower resolution device, 

compared to the Bruker Alpha and Bruker Vertex instruments used in Chapter 3. The 

work presented in the previous chapter was not able to demonstrate that high 

resolution FTIR spectroscopy could discriminate COPD exacerbation from baseline in 

a reliable method. This heavily calls into question the accuracy of the results 

generated by the IR Sphinx for this chapter – why is the lower resolution IR Sphinx 

capable of achieving sensitivity and specificity scores for COPD exacerbation 

detection which the high-resolution benchtop instruments cannot? One possible 

explanation for this could relate to the respective sizes of the sampling crystals on 

each instrument. The Bruker Alpha has a small single bounce diamond ATR crystal, 

with a surface area of 4mm2, whereas the IR Sphinx has a much larger active area for 

sampling, of 425mm2. The architecture of the LVF detector present in the IR Sphinx 

requires that any sample is spread evenly across the ATR crystal to ensure that all 

wavelengths of IR light passing through the sample are measured by the detector. 

Therefore, much larger sample volumes are required, so a greater averaging effect of 

any subtle spectral differences could be present. It could be possible that this 

reduction in spectrum variability leads to an overall reduction in variability within 

the patient cohorts, which in turn allows a multivariate data reduction technique 

such as PCA to more easily group each patient cohort. However, care should be 

exercised when interpreting spectral results from low resolution instruments such as 

the IR Sphinx. 

4.4.2 Design of the Sampling Strip 

The IR Sphinx was originally designed as a robust, portable IR spectrometer, 

mainly for use as a rapid analytical tool in challenging environments, such as for oil 

quality analysis. For this reason it has been developed with no moving parts, and is 

encased in a rugged aluminium shell with a rubber bumper strip to protect it from 

impact. It also has many grooves running along its sides, for the user to grip the 

device more easily. The ATR crystal is recessed into the body of the aluminium shell. 

These design choices for the IR Sphinx are ideal for its originally intended purpose; 

however they make the device unsuitable for the clinical environment, for use by 



Charles Brilliant 
 

149 
 

either clinicians or patients. It must be completely redesigned prior to 

implementation into patient care and disease management. 

Part of the redesign process of the IR Sphinx involved the designing of a novel, 

low-cost, disposable sampling strip, to which sputum samples will be applied for 

analysis. The sampling strip was constructed with a low IR-absorbing substrate, 

placed on top of the adhesive compressible foam to ensure that the pressure from 

clamping the strip in place was applied evenly across the sampling surface. The 

compressible foam was then laid on top of a rigid plastic backing, for handling and to 

maintain the shape of the sampling strip (Figure 4-2). 

 A literature search suggested AlO would be a suitable low-cost, low IR-

absorbing substrate for FTIR analysis. Subsequent IR-absorption testing using the 

benchtop Bruker Alpha FTIR spectrometer showed that AlO deposited onto a PE film 

(AlO-film) absorbed less IR radiation across the mid-IR region of 4000-400cm-1 than 

AlO directly deposited onto PU foam (M-PU) (Figure 4-7). Additionally it was found 

that the degree of IR-absorption by M-PU varied depending on the location within 

the sampling strip from which the spectrum is taken (Figure 4-8), which suggested 

the metallisation process of the PU foam was not uniform. Visual inspection of the M-

PU after FTIR analysis revealed that the metallisation of the foam by AlO was not 

durable, as it was easily removed and damaged during spectrum acquisition (Figure 

4-9). All of these factors contributed to the final decision that AlO-film was the 

substrate of choice for a low-cost and reliable sampling strip.  

After testing the AlO-film for raw absorbance, sputum was dried onto the film 

and FTIR analysis on these sputum samples was carried out. Initial testing was 

performed using only one COPD patient sputum sample (TR06), which had 

previously been shown to produce spectra with a high degree of reproducibility, and 

which was in high enough supply for all desired replicate spectra. COPD sample TR06 

was dried on the sampling strip prior to ATR-FTIR analysis (n=16), and these spectra 

were compared to TR06 sample spectra previously generated for Chapter 3 (n=3). It 

was found that the two sampling modes produced highly comparable IR-spectra, with 

an ANOVA test showing very little variation found between and within sampling 

modes for each peak position (Table 4-4) and no significant differences being shown 

in peak position between sampling modes (Table 4-5). 
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The sampling strip was required to contribute to maintaining close contact 

between the sputum sample and the ATR-crystal, with the assistance of a bespoke, in-

house made clamp. To achieve this, the sampling strip was designed with 

compressible foam underneath the AlO-film substrate, in order to spread the applied 

clamping force across the whole sample and ATR-crystal. It was hypothesised that the 

properties of the foam could influence the quality of the produced spectra, by having 

a direct influence on the ability of the sampling strip to press the sputum sample 

against the ATR crystal. Multiple compressible foams from two manufacturers were 

evaluated to ensure the optimal material was used; from 3M the E1715h, E1515h, and 

E1120h tapes, and from TESA the Softprint 52122, and xSOFT 52223 tapes were 

evaluated. These foams were selected based on their varying hardnesses, densities 

and thicknesses. The performance of the tapes were evaluated based on the quality of 

the spectra produced by the IR Sphinx, using PGM dried onto sample strips 

constructed with the separate tapes. After comparisons of SNR, and variation within 

absorbance levels and peak positions in spectra produced when using each foam, it 

was found that the soft, thicker tapes (TESA xSOFT, TESA SoftPrint, and 3M-E1120h) 

performed best, with the lower variance in the spectral parameters observed. This 

suggests that softer, more pliable foams could be more suitable to applying and 

distributing the clamping force required to firmly and evenly hold the sampling strip 

in place.  

4.4.3 Testing the Sampling Strip with COPD Sputum 

Further testing was then carried out on all available COPD patient sputum 

samples (n = 118). It was found that AlO-film produced IR-spectra comparable to 

spectra generated using the standard operating procedure of drying sputum onto the 

ATR crystal using the Bruker Alpha. The mean correlation coefficient of the baseline-

corrected, vector-normalised average-spectra of each sample generated using both 

sampling modes was found to be rho = 0.9787. This high degree of correlation is 

indicative of good similarity between sputum dried onto the ATR crystal and the 

sampling strip.  

Statistical significance testing showed the peak positions of spectra generated 

using the sampling were significantly different from those generated by applying the 

sample directly to the ATR-crystal of the Bruker Alpha (Table 4-6). This suggests that 

use of the sampling strip does lead to significant changes in the features of any IR 

spectrum generated. The mean differences between the peak positions for each 
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sampling mode are shown to be relatively small, with the largest mean difference 

being observed at the peak detected at approximately 1638cm-1. No significant 

correlation was identified between the shifts detected at amide I and shifts at any 

other major peak, suggesting that the causes of shifts at each peak are independent of 

one another. One suggested cause of peak shift is the differing effect of water 

interference in the spectrum when changing the sampling mode.  

Figure 4-2(b) shows how the sample is inverted onto the ATR crystal after 

drying, with the topside of the dried sputum being in direct contact with the ATR 

crystal. This is in contrast to conventional ATR-FTIR in which the sample is dried 

directly on the ATR crystal so that the underside of the sample is in contact with the 

crystal. Water is known to produce strong peaks within the amide I region (1660-

1620cm-1) and can influence the absolute peak position within this region (Baker et al., 

2014; Barth, 2007). Additionally, it is also known that biofluids do not dry evenly on a 

surface: the edges of a sample drying faster than the centre leading to a coffee-ringing 

effect with higher levels of sample-molecules concentrating at the edges of the 

sample. Also the degree of coffee-ringing is directly influenced by the initial 

concentration of the sample molecules, with a stronger effect seen in more dilute 

biofluid samples (Baker et al., 2015). The amide I peaks detected in the sampling strip 

cohort could be split into two distinct groups; centred at approximately 1636cm-1, and 

centred at approximately 1650cm-1). Infrared spectroscopy of proteins in an aqueous 

medium requires a short path length, and high concentration (Barth, 2007). It could 

be that by re-orientating the sample ‘upside-down’ for the measurement on an ATR 

crystal, the path length to higher concentrations of proteins may be shortened. Due 

to the coffee ringing effect, water is pulled by osmotic pressure towards the edges of 

the drying sample, and away from the centre. 

No novel major peaks were identified or lost in any COPD sputum spectra 

generated with the sampling strip when compared with those generated using the 

standard procedure. These findings overall suggest that a sampling strip comprised of 

AlO and a compressible tape is a reliable method for the generation of sputum 

spectra. 

4.4.4 Silicon ATR Wafers 

A novel form of ATR-FTIR using silicon ATR wafers was tested in this chapter. 

The silicon wafers are a low-cost alternative to conventional ATR crystals, in which 
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diamond, ZnS/Se, or KBr are regularly used. These materials are high-cost, brittle, or 

soluble in water, making them unsuitable for use in the clinical environment without 

significant protocols in place to reduce the risk of damage to the device. The 

reproducibility of spectra generated using the silicon ATR wafers was assessed, and 

was shown to be extremely good (Figure 4-24 to Figure 4-27). Spectra were shown to 

have very little variation in absorbance intensity, or peak position, and any variation 

observed was deemed to be due to variations within the sample as variations specific 

to a particular wafer were not consistent.  

4.4.5 Conclusions 

The IR Sphinx is a robust, portable IR spectrometer, which has been shown to 

be capable of generating IR spectra of the complex biofluid, sputum. Analysis of 

COPD patient sputum using the IR Sphinx appears to suggest that differentiation of 

COPD baseline and exacerbation samples, using a simple analytical protocol, 

combined with a multivariate statistical approach is possible. However, one must be 

careful, as the work presented in chapter 3 showed that differentiating COPD baseline 

from COPD exacerbation sputum samples using high-resolution FTIR spectroscopy is 

problematic. One possible explanation for this disparity could be due to the sample 

volumes required to generate a spectrum, with much larger volumes required by the 

IR Sphinx, leading to an overall averaging effect of any differences between patient 

samples. Care is required when interpreting these spectra; subtle variation of 

absorbance bands and calculation of spectral ratios of absorbance bands which are 

close together is not possible, and this could limit the IR Sphinx’s usefulness. 

 The lower-cost of the IR Sphinx, combined with its portability and ease-of-

use, compared to other benchtop FTIR spectrometers, raises the possibility that 

miniaturised IR spectrometers could be integrated into patient primary care for rapid 

analysis of biofluids and disease diagnosis. However, further work needs to be carried 

out to develop miniaturised IR spectrometers to be more suited to the clinical 

environment; for example, the components within the IR Sphinx, whilst lower-cost 

compared to conventional FTIR, are costly to replace if broken and the devices are 

not user-friendly for a patient or clinician to use quickly on the ward. Proper 

operation of the device requires a separate computer plugged in to control the 

software and collate the data. For the device to be made truly suitable for the clinical 

environment, the IR Sphinx and controlling software must be incorporated into a 

single device, and be made of components that are economical to replace.  
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Disposable sampling strips have been developed which partially address some 

of the issues faced by the IR Sphinx. They are extremely low-cost and allow the user 

to quickly scan many samples without lengthy drying times after sample application 

to the ATR crystal. Applying the patient’s sputum to the sampling strip allows the 

user to analyse samples without touching the ATR crystal, and therefore minimises 

the chances of breakages occurring during operation or cleaning. The sampling strips 

are held in place on the window using a clamp which can be set to not apply a force 

in excess of the breaking-point of any component of the IR Sphinx, further reducing 

the likelihood of breakages. High resolution spectroscopy of sputum dried onto the 

sampling strips did not identify any new spectral artefacts caused by the strips, 

suggesting that they are suitable for use as an FTIR substrate. However, statistically 

significant peak shifts were observed, at all major peaks across the spectrum, this was 

not shown to be consistent in all patient samples, suggesting that spectrum variation 

may be related to sputum sample variation. 

Use of novel silicon wafers as ATR crystals has been shown to be a highly 

effective potential substrate for FTIR analysis of sputum, providing reproducible 

spectra of comparable quality to those generated using a conventional diamond ATR 

crystal. Further work into development of disposable sampling strips for clinical FTIR 

analysis should focus on optimising the use of silicon wafer ATR crystal. At €40 per 

crystal they are not yet of low-enough cost to be considered truly disposable. 

However optimisation through a reduction in size of the crystals, and up-scaled 

production could lead to much lower costs and the potential to use these crystals as a 

disposable item in the clinical environment. 
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Chapter 5 

Evaluation of FTIR for Rapid Diagnosis of Lung Cancer and 

Distinction of Lung Cancer Subtypes 
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5.1 Introduction 

5.1.1 Lung Cancer  

Worldwide, lung cancer represents a burden on healthcare systems and is a 

major cause of mortality. Alongside bowel cancer, lung cancer is the second most 

common cause of cancer in adult males (13%) with prostate cancer being the most 

common at 26%. Lung cancer is also the second most common in adult females (12%), 

after breast cancer which accounts for 31% of all cancer cases in women (Cancer 

Research UK, 2018). In the UK, lung cancer is the most common cause of cancer 

death, currently accounting for approximately 21% of all cancer deaths (Cancer 

Research UK, 2018). Lung cancer patients also have a very poor 5-year survival rate of 

<10%, which is primarily due to a majority of patients being diagnosed only after the 

disease has progressed too far to be easily treated (Allemani et al., 2015; McPhail, 

Johnson, Greenberg, Peake, & Rous, 2015; Morgan & Wilkes, 2017). The WHO 

identifies tobacco use as a major contributor to developing lung cancer, but there are 

also important environmental and occupational risks, as well a multitude of genetic 

factors. COPD patients have a higher risk of developing lung cancer as their forced 

expiratory volume in one second (FEV1) declines (Skillrud et al., 1986; Tockman et al., 

1987). Chronic inflammation is the proposed mechanism through which lung cancer 

and COPD are thought to be related (Houghton et al., 2008). Diagnosis of lung cancer 

is influenced by the patients’ background with a late-stage diagnosis more likely in 

the presence of comorbidities and disability (Ram, Young, Wook, Kook, & Hyock, 

2017), with COPD as a comorbid condition being strongly associated with stage-

independent poor survival (Gao et al., 2016). Indeed, some COPD patients, especially 

those who have frequent exacerbations, can be accustomed to frequent changes in 

their condition (Seemungal et al., 1998), and this may contribute further to a late-

stage diagnosis of cancer as persistent changes to symptoms could be attributed to an 

exacerbation. There is an unmet need for a diagnostic tool to more readily identify 

lung cancer at an early-stage and to distinguish it from COPD.  

The recommended procedure for the diagnosis of lung cancer is flexible 

bronchoscopy and has been shown to have an overall sensitivity for lung cancer 

diagnosis of 88%. However this sensitivity drops markedly for peripheral lesions of 

<2cm in diameter to 34% (Rivera et al., 2013). There are two common forms of 

bronchoscopy, auto-fluorescence imaging (AFI) and white light bronchoscopy (WLB), 
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which have sensitivity scores of 80%, and 53.3%, respectively, while the specificities 

were 83.3% for AFI, and 50% for WLB (Andolfi et al., 2016). Patients who are 

suspected of lung cancer also undergo diagnostic X-rays and computed-tomography 

(CT) scans to identify regions of malignant tissue. Almost 1 in 4 (23%) of diagnostic X-

rays have been shown to provide false negative results (Stapley et al., 2006). CT-

scanning has greater sensitivity and specificity scores of 88.9% & 92.6%, respectively 

(Toyoda et al., 2008), however it is costly and requires highly-trained operators to 

achieve this level of accuracy. Evidently, there is also a clear unmet need for a rapid, 

inexpensive, highly-sensitive and specific diagnostic tool, capable of diagnosing both 

centrally- and peripherally-located lesions. 

5.1.2 Fourier-Transform Infrared Spectroscopy 

FTIR is a vibrational spectroscopy technique which detects molecular bond 

conformations through measuring the absorbance of IR light at specific frequencies. 

A specific type of molecular bond, for example C-O, will absorb IR light at a 

frequency that correlates with the vibrational frequency of the bond. The exact 

vibrational frequency of the bond is influenced by ionic, electrostatic and dipole-

dipole interactions, as well as the stretching and bending moments of the bond. 

Changes to these properties can have a significant impact on the absorbance of IR-

light and can therefore influence the overall spectrum.  

A great deal of work has been carried out to establish FTIR as a suitable 

technology for diagnosis of various cancers and other diseases. An increasing number 

of publications show that FTIR is a viable tool for analysing biofluid samples (Baker et 

al., 2014), and diagnosis and monitoring of diseases such as brain cancer (Hands et al., 

2016), cystinuria (Oliver et al., 2016), breast cancer (Backhaus et al., 2010) (Backhaus 

et al., 2010) and oropharyngeal cancers (Menzies et al., 2014). Previous work in our 

group has already shown FTIR to be capable at distinguishing lung cancer from 

COPD with a high sensitivity and specificity by analysing cell pellets isolated from 

spontaneous sputum samples (Paul D. Lewis et al., 2010). Additionally, a US-based 

group has shown that spectral histopathology (SHP) can diagnose lung cancer with 

accuracy comparable to multi-panel immuno-histochemistry (Bird et al., 2012). Both 

of these studies provide excellent evidence for the proof-of-concept of using FTIR to 

diagnose and detect lung cancer at an early-stage. However there are limitations to 

both of these studies, chiefly the low n-number and complex protocols involved. This 

chapter seeks to improve and extend beyond this proof-of-concept by increasing the 
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number of cases analysed, but also by becoming more clinically relevant with a 

simplified protocol. 

5.1.3 Chapter Aims 

The main aim of this chapter is to evaluate the utility of FTIR as a tool for lung 

cancer diagnosis through comparison of lung cancer and COPD patient sputum 

spectra. FTIR analysis performed on lung cancer and COPD patient raw sputum 

samples will be the basis for the development of predictive diagnostic models for lung 

cancer against the patients’ confirmed clinical diagnosis. Models will be assessed in 

terms of their sensitivity and specificity scores for accurate lung cancer detection.  

5.2 Methods 

5.2.1 Patient Recruitment 

The Medlung observational study (loco-regional ethical committee approval: 

05/WMW01/75) recruited patients who attended bronchoscopy clinics across the UK 

under suspicion of lung cancer and were subsequently given a final clinical diagnosis 

of either “lung cancer” or “non-cancer”. The non-cancer group could be split into 

those who had a diagnosis of COPD, and those who have other respiratory diseases 

including pneumonia, asthma, and/or tuberculosis. Patients were referred by their 

GPs to the bronchoscopy clinics in the recruiting hospitals after showing signs of lung 

cancer. Patients gave informed consent before providing a sample of spontaneous 

sputum. The final clinical diagnosis after bronchoscopy, biopsy and any other 

relevant scans was recorded along with the histological data for each cancer. 

Confirmed cancer cases and confirmed COPD cases make up the “Cancer”, and 

“Bronchoscopy COPD control” (bCOPD) cohorts respectively. 

The SPEDIC diagnostic study (loco-regional ethical committee approval: 

15/LO/1703) recruited patients who presented at the respiratory clinic in Prince 

Charles Hospital (Cwm Taf, Merthyr Tydfil) due to showing symptoms of chronic 

respiratory disease, but not COPD. These patients had never attended the clinic 

before, had no previous diagnosis of COPD or COPD exacerbation and make up the 

“Non-Cancer-Non-COPD control” (NC) cohort. Additionally, 55 COPD patients were 

also recruited to a year-long longitudinal trial during which they provided 5 sputum 

samples per week. For the work presented in this chapter, 40 sputum samples from 

patients at baseline COPD were randomly selected from this pool of samples. These 

COPD patients are used as a random control, as the samples are taken from any point 
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in time when the patient is not presenting at hospital, and are treated as the “Random 

COPD control” (rCOPD) cohort. 

In total, raw sputum samples were collected from 214 lung cancer patients 

with a confirmed metastatic status, 108 bCOPD patients, 40 randomly selected non-

exacerbation sputum samples from the rCOPD cohort and 46 NC patients (Table 5-) – 

see appendix 1 for detailed patient information. Each sputum sample was stored at -

80oC until required for FTIR spectrum generation.  
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Confirmed Cancer 
Diagnosis  

252 53 89 46 64 

Total Confirmed 
With Full 
Histology 

214 42 83 41 48 

Metastatic 106 29 39 18 23 

Non-Metastatic 108 13 44 23 25 

bCOPD cases 108 total 
74 Confirmed COPD 
Baseline 

34 Confirmed COPD 
Exacerbation 

rCOPD cases 40 total 
40 Confirmed COPD Baseline > 6 weeks after most recent 
exacerbation 

NC cases 46 total 
Mixed cohort of diagnoses of non-cancer, non-COPD 
respiratory disease 

Table 5-1: Lung cancer and COPD patient cohort data; cancer histological subtypes and 
COPD exacerbation status recruited to study are also shown 

5.2.2 Spectrum Acquisition and Sample Processing 

Transmission-FTIR (t-FTIR) was carried on raw sputum samples using a 

Bruker Vertex 70 with high throughput attachment (HTS-XT), a KBr beamsplitter, 

and a DGTS detector. Ninety-six well silicon plates (Bruker) were cleaned in 70% 

ethanol, rinsed with dH2O three times then air dried. Triplicate raw sputum samples 

were pipetted directly onto the plates and allowed to dry in atmospheric conditions. 

Once dry, spectra were generated at 32 scans per spectrum, with a fresh background 

spectrum taken between each sample spectrum. Each 96-well plate was scanned in 

triplicate, giving a total of 9 replicate spectra per sample.  
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5.2.3 Spectrum Processing 

All spectra underwent a quality analysis before processing. A spectrum was 

discarded if the signal-to-noise ratio (SNR) was too low and/or if the baseline of the 

spectrum was sloped or oscillatory which is indicative of excessive scattering (Baker 

et al., 2015). All sample replicates were averaged before vector-normalisation and 

baseline-correction using the OPUS 7.5 (Bruker) in-built baseline-correction, vector-

normalisation algorithms. Second derivative spectra were generated using the 

Savitzky-Golay method with 9 smoothing points. Peak picking analysis was carried 

out using the in-built peak peaking algorithm in OPUS, set to a 10% threshold.  

5.2.4 Statistical Analysis 

Statistical tests were carried out using the programming environment R (R 

Core Team, 2016). Testing for distribution normality was carried out using the 

Shapiro-Wilk test, with an α-level set to 0.05, suggesting that the null hypothesis of 

the data being drawn from a normally-distributed population could be rejected, 

alongside Q-Q plots and histograms to visualise the distribution. As normality testing 

suggested non-normally distributed data, statistical significance was calculated using 

the non-parametric Mann-Whitney U Test, at the 95% confidence level. Multivariate 

analyses were carried out to establish how groups cluster using principle components 

analysis (PCA).  

5.2.5 Model Building 

Two dimensional scatterplots were produced comparing absorbencies at 

specific wavenumbers. Sensitivity and specificity calculations were carried out using 

the linear equations of the separator line. The wavenumbers of initial interest were 

those previously identified to be discriminatory for lung cancer, 966, 1024, 1051, 1411, 

1577, and 1654cm-1 (P. D. Lewis et al., 2010), as well as other prominent peaks 

identified during peak picking analysis.  
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5.3 Results 

 High-throughput transmission FTIR spectroscopy was performed as described 

on sputum samples obtained from lung cancer patients recruited through the 

MEDLUNG study. In total, 214 lung cancer sputum samples were analysed by FTIR – 

absorbance spectra shown in appendix 2. These spectra were compared to FTIR 

spectra from 148 COPD sputum samples and 46 non-cancer-non-COPD (NC) 

respiratory disease sputum samples. 

5.3.1 Normality and Significance Testing 

Normality testing was carried out to ascertain how the absorbencies at each 

wavenumber were distributed across the cancer and control cohorts. A Shapiro-Wilk 

(SW) test for normality on five wavenumbers which correspond with positions of 

major peaks and troughs was initially carried out, and the results are summarised in 

Table 5-2. The results suggested that the null hypothesis that the data were drawn 

from a normally distributed population can be rejected, therefore indicating the data 

are non-normally distributed. 

Wavenumber (cm-1-) Cancer Non-Cancer 

1740 < 2.2e-16 6.68E-15 

1653 < 2.2e-16 2.06E-14 

1589 0.00102 0.006305 

1410 3.11E-08 8.18E-06 

1076 6.38E-07 0.0723 * 

Table 5-2: Results from Shapiro-Wilk test for normality of distribution of absorbencies 
at 1740, 1653, 1589, 1410 and 1076cm

-1
 in cancer and non-cancer control cohorts. P<0.05 

suggests that the null hypothesis of normally distributed data can be rejected and the 
data are non-normally distributed. *P >0.05, the null hypothesis cannot be rejected, 
the data are normally distributed. 

Q-Q plots and histograms were drawn to visualise distribution (Figure 5-1). 

The distribution of absorbencies at 1653cm-1 was shown to be heavily tailed, and the 

distribution at 1076cm-1 can be said to be closer to normality, but still demonstrated a 

light skewing in both cancer and control cohorts. Therefore, combining these results 

with the Shapiro-Wilk normality results, the data can be said to be non-normally 

distributed. Thus, non-parametric statistical testing was carried out to determine 

significance of differences between absorbencies at wavenumbers of interest. 
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Figure 5-1: A) QQ Normality plots and B) frequency histograms of distribution of 
absorbencies at 1653cm

-1
 and 1076cm

-1
. Plots of distribution at 1653cm

-1
 show a heavy-

tailed distribution. Distribution at 1076cm
--1

 is closer to normality but the cancer 
cohort shows a light-tailed distribution and the control cohorts show a light skewing.  

As all wavenumbers tested were shown to be drawn from non-normally 

distributed data. The non-parametric Mann-Whitney U test was carried out to assess 

the statistical significance of any differences between the mean absorbencies.  

a) b)
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5.3.2 Absorbance Spectra Diagnostic Models 

Shown in Figure 5-2 are vector-normalised, baseline-corrected average 

absorbance spectra of the cancer, rCOPD, bCOPD and NC cohorts (red, blue, purple 

and green respectively). Whilst the average spectra appear to be highly similar, with 

little variation in peak position or relative absorbance, subtle differences can be 

identified. 

 

Figure 5-2: Average vector-normalised, baseline-corrected absorbance spectra from 
1800-950cm

-1
 of cancer (red), rCOPD (blue), bCOPD (purple) and NC (green) cohorts, 

with major peak positions shown. rCOPD – random COPD; bCOPD – bronchoscopy 
COPD; NC – non-cancer-non-COPD 

For example, the relative intensity of multiple peaks and troughs can be seen 

to be different between cancer and non-cancer average spectra. For example, the 

relative absorbance at amide I (~1653cm-1) is higher in the cancer average spectrum, 

and the major glycogen peak (~1076cm-1) is lower compared to the non-cancer 

average spectra. The proposed vibrational mode of 1653cm-1 is C=O stretching from a 

protein source. The proposed vibrational mode of the glycogen peak at ~1076cm-1 is 

C-O stretching, from the alcohol groups found within individual monosaccharide 

moieties throughout the sputum. This suggests that overall glycosylation compared 

to protein content in lung cancer sputum could be reduced, compared to COPD and 

NC patient sputum. Additionally, the trough between amide I and amide II of the 

cancer spectrum appears to be lower than all of non-cancer spectra, whilst the amide 
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I peak shows a greater relative intensity than the non-cancer amide I peaks. This may 

suggest a reduction in the levels of amino-sugars such as sialic acid, N-

acetylgalactosamine (GalNAc) or N-acetylglucosamine (GlcNAc) relative to the levels 

of protein present in lung cancer sputum, as amino-sugars have been shown to 

produce peaks at 1550, 1564 and 1628cm-1 (S. P. Lewis et al., 2013). 

Figure 5-3 demonstrates how the different patient cohorts cluster and 

separate from each other based on the absorbance at 1076 and 1653cm-1, as well as 

showing the overall trend within each patient cohort. There appears to be a trend for 

cancer sputum spectrum to show an increase in relative absorption at 1653cm-1 

alongside a decrease in relative absorption at 1076cm-1. In fact, the absorption at these 

wavenumbers was found to be statistically significantly different when comparing the 

cancer cohort against all of the control cohorts simultaneously (Table 5-3). The 

patient groups cluster together well, with very little separation evident, especially 

within the NC and COPD control cohorts. Linear regression lines were drawn at three 

locations and the equations calculated. Using these equations the sensitivity and 

specificity of using only absorbance at two wavenumbers of normalized-baseline-

corrected spectra was calculated. 

Wavenumber 

(cm-1) 

Mean Cancer 

Spectrum 

Absorbance  

Mean Non-

Cancer 

Spectrum 

Absorbance 

p-Value 

1740 0.020078 0.011667 7.185e-15 

1653 0.152049 0.146985 1.02*10-12 

1589 0.065135 0.078781 < 2.2e-16 

1411 0.048932 0.055263 1.958e-09 

1076 0.061379 0.071092 2.45*10-9 

Table 5-3: Results of significance testing, comparing the normalized absorbencies at 
each wavenumber between the cancer and non-cancer cohorts with a Mann-Whitney U 
test; all wavenumbers tested were shown to be highly-significantly different between 
the patient groups. 
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Figure 5-3: Vector-normalised baseline-corrected absorbencies at 1076cm
-1
 and 1653cm

-1
 

of all cancer (red), NC (green), bCOPD (purple) and rCOPD (blue) sample spectra. 
rCOPD – random COPD; bCOPD – bronchoscopy COPD; NC – non-cancer-non-COPD 

The calculated sensitivity and specificity scores for a model based on 

normalized absorbencies at 1653cm-1 and 1076cm-1 are shown below in Table 5-4. The 

cancer and non-cancer patient cohorts exhibit a large overlap, so the intercept of the 

linear separator was modified to optimise sensitivity and specificity scores. The most 

accurate equation was determined to be y2, with sensitivity and specificity of 61.11% 

and 71.65% respectively. The other models demonstrated stronger specificity but poor 

sensitivity (y1) or vice versa (y3). 

1076 vs 1653 cm-1 

y1 = 0.6008x - 0.0377  y2 = 0.6008x - 0.0277s  y3 = 0.6008x - 0.0177 

True Positives 109  True Positives 154  True Positives 188 

False Positives 25  False Positives 55  False Positives 104 

True Negatives 169  True Negatives 139  True Negatives 90 

False Negatives 143  False Negatives 98  False Negatives 64 

Sensitivity (%) 43.26  Sensitivity 61.11  Sensitivity 74.60 

Specificity (%) 87.11  Specificity 71.65  Specificity 46.39 

Table 5-4: Sensitivity and specificity scores for determining lung cancer from non-
cancer control groups based on the equations of the three lines shown in Figure 5-3. 
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As seen in Table 5-3, other absorbance values at many wavenumbers were 

shown to be statistically significantly different between the cancer and non-cancer 

patient cohorts. Combinations of these wavenumbers were assessed for their 

sensitivity and specificity. The best performing linear regression model based on 

absorbance spectra was found to be 1589 vs 1740cm-1, with sensitivity and specificity 

scores for lung cancer detection of 77.78% and 81.9%, respectively. 

 

Figure 5-4: Two-dimensional, linear separation model of normalised absorbencies at 
1589 and 1740cm

-1
, showing absorbencies from lung cancer (red), bCOPD (purple), 

rCOPD (blue) and NC (green) sputum sample spectra. rCOPD – random COPD; bCOPD 
– bronchoscopy COPD; NC – non-cancer-non-COPD 

The mean absorbencies at five wavenumbers hypothesised to have good 

power for lung cancer detection were found to be statistically significantly different at 

α=0.05 (Table 5-3). However, the regression models shown Figure 5-3 and Figure 5-4 

display poor separation of cancer and non-cancer patient cohorts, confirmed by 

overall sensitivity and specificity scores of <80%. 

 This implies that further methods such as deconvolution of the spectra 

through second-derivative calculation, or multivariate statistics are necessary to 

further elucidate any differences between the patient groups. 
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5.3.3 Multivariate Statistics on Vector-Normalised, Baseline-Corrected 

Absorbance Spectra 

PCA was carried out using the same wavenumbers previously identified to be 

able to distinguish lung cancer from healthy controls (P. D. Lewis et al., 2010). All 

wavenumbers were found to be statistically significantly different between the patient 

cohorts at α=0.05 after multiple hypothesis testing. 

 

Figure 5-5: Scree plot of percentage of variances accounted for by each PC, with 
approximately 60% of the variance being accounted for by PC1, 27% by PC2 and 8% by 
PC3. PC4, 5, 6, and 7 accounts for less than 5% of the variance each and so are not 
included in the analysis. PC – Principle component 

 

Figure 5-6: PCA scatterplot of PC1 vs PC2 showing clustering of cancer (red) from non-
cancer (blue) sputum sample spectra based on the six wavenumbers previously 
specified 
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Figure 5-7: PCA scatterplot of PC1 vs PC2 showing how the PCs separate cancer (red) 
from non-cancer (blue) sputum sample spectra based on the 6 wavenumbers 
previously specified 

 PCA analysis on the absorbance spectra focussed on the wavenumbers 

described above was not able to increase the discrimination of cancer sputum from 

non-cancer respiratory disease sputum compared to the linear absorbance models. 

Two-dimensional PCA scatterplots containing PCs explaining more than 5% of the 

variances were plotted (Figure 5-6 and Figure 5-7). PC1 and PC2 (Figure 5-6) show a 

horseshoeing effect which is a statistical artefact and suggests any separation of 

patient groups in this manner is not genuine (P. D. Lewis & Menzies, 2015). 

Visualising PC1 and PC3 together (Figure 5-7) show how the cancer spectra tend to 

group towards PC1+ whilst the non-cancer spectra tend towards PC1-. PC3 does not 

display good separation of patient clusters, but the horseshoeing artefact seen in 

PC1/PC2 is not observed.  

5.3.2 Second Derivative Absorbance Models 

Second derivative spectra were calculated from the vector-normalised, 

baseline-corrected average spectra. A second-derivative spectrum is used to increase 

the sensitivity for peak finding by calculating the rate-of-change across a small 

window of the spectrum. In this way, the resolution of small peaks and shoulders 

within larger peaks is increased. 
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Figure 5-8: (a) Absorbance spectra and (b) corresponding second-derivative spectra of 
(i) 1600-1400cm

-1
 showing the amide II region, and (ii) 1250-900cm

-1
 showing the 

glycogen-rich region of cancer (red), bCOPD (purple), rCOPD (blue) and NC (green) 
patient average spectra. Peak maxima in the absorbance spectra correspond with peak 
minima in the second-derivative spectra. rCOPD – random COPD; bCOPD – 
bronchoscopy COPD; NC – non-cancer-non-COPD 

The average second-derivative spectra were closely examined to identify 

regions of the spectra that could be used to distinguish cancer from non-cancer. 

Wavenumbers previously identified to have good discriminatory potential for lung 

cancer sputum were selected for examination (P. D. Lewis et al., 2010), alongside 

novel wavenumbers being selected by examination of the average second-derivative 

spectra. 
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Figure 5-9: Second derivative spectra from (a) 1800-950cm
-1
 (b) 1400-1300cm

-1
, and (c) 

1250-950cm
-1
 of cancer, rCOPD, bCOPD and non-cancer-non-COPD cohorts. rCOPD – 

random COPD; bCOPD – bronchoscopy COPD; NC – non-cancer-non-COPD 

Linear regression models were generated to examine how the second-

derivative absorbencies at specific wavenumbers could separate the cohorts within 

two dimensions. The second-derivative absorbance at 967.598cm-1 was initially 

chosen as a standard for plotting against other wavenumbers. This was because it was 

readily identifiable in all spectra and was calculated to have the lowest standard 

deviation and variance compared to all other major peaks detected in the cancer 

(Table 5-5), rCOPD (Table 5-6) and NC cohorts (Table 5-7). It has been previously 

shown to be associated with presence of nucleic acids and phosphorylation of 

proteins (Malins et al., 2005; Maziak et al., 2007) as well as the presence of the Lewis 

X (Lex) antigen within the mucin glycans (A. T. Lewis et al., 2013). 
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Mean Peak 
Position 

1170.88 1129.58 1079.14 1056.84 1034.53 1020.45 998.01 985.79 967.59 

Number of 
Samples Peak 
Detected (/60) 

47 31 58 29 45 32 30 31 55 

Mode  1171 1130 1079 1057 1036 1021 999 984 968 

Std Dev 1.686 1.298 1.341 1.68 2.58 2.050 2.39 3.19 1.13 

Min peak position 1167.70 1127.35 1071.48 1053.87 1027.70 1013.60 992.87 976.24 964.27 

Max peak position 1173.53 1131.80 1081.16 1059.91 1040.11 1022.39 1002.05 991.36 970.06 

Variance 2.783 1.631 1.767 2.73 6.51 4.07 5.55 9.86 1.25 

Table 5-5: Average major peak positions within the glycogen-rich region from a subset 
of 60 randomly selected lung cancer patient second-derivative spectra. Standard 
deviation and variance for each peak has been calculated and the lowest values are 
highlighted. 

Mean Peak 
Position 

1168.41 1129.91 1078.65 1053.93 1035.57 1020.70 998.40 985.19 967.73 

Number of 
Samples Peak 
Detected (/40) 

39 36 40 11 38 36 34 23 40 

Mode  1168 1130 1079 1055 1035 1021 999 984 968 

Std Dev 2.15 1.46 1.91 2.99 1.53 0.64 0.69 1.34 0.41 

Min peak position 1160.95 1124.97 1073.87 1049.58 1031.345 1019.55 996.64 983.64 966.76 

Max peak position 1172.13 1132.31 1084.94 1059.82 1038.77 1022.35 999.66 989.52 969.08 

Variance 4.52 2.07 3.54 8.179 2.271 0.401 0.456 1.727 0.16 

Table 5-6: Average major peak positions within the glycogen-rich region from all 
rCOPD patient second-derivative spectra. Standard deviation and variance for 
each peak has been calculated and the lowest values are highlighted. 

Mean Peak 
Position 

1169.36 1129.39 1079.21 1055.87 1034.96 1020.42 998.83 986.14 967.91 

Number of 
Samples Peak 
Detected (/46) 

38 37 46 16 40 41 25 35 44 

Mode  1169 1131 1078 1055 1033 1021 999 985 968 

Std Dev 1.53 2.08 2.28 1.73 2.33 1.50 1.04 2.14 0.95 

Min peak position 1166.18 1123.32 1073.24 1054.18 1027.53 1014.12 994.32 982.18 964.82 

Max peak position 1172.17 1132.53 1085.07 1060.74 1039.13 1022.69 999.96 992.35 969.54 

Variance 2.35 4.32 5.20 2.98 5.41 2.26 1.08 4.56 0.90 

Table 5-7: Average major peak positions within the glycogen-rich region from all 
NC patient second-derivative spectra. Standard deviation and variance for each 
peak has been calculated and the lowest values are highlighted. 

 

A series of linear regression models were built and tested for sensitivity and 

specificity for determining lung cancer from non-cancer respiratory disease, and are 

shown below: 
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Figure 5-10: Two dimensional scatterplot of second-derivative absorbencies at 967cm
-1

 
and 1051cm

-1
, showing good separation of cancer (red) and non-cancer (blue, purple, 

green) sputum sample spectra, primarily along the 967cm
-1
 axis. A linear regression 

line for cancer prediction is shown at 93.94% sensitivity and 75.26% specificity. rCOPD 
– random COPD; bCOPD – bronchoscopy COPD; NC – non-cancer-non-COPD 

 

Figure 5-11: Two dimensional scatterplot of second-derivative absorbencies at 967cm
-1

 
and 1024cm

-1
, showing a linear relationship between the wavenumbers and separation 

of cancer (red) and non-cancer (blue, purple, green) sputum sample spectra across 
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both wavenumbers. A linear regression line for cancer prediction is shown at 85.58% 
sensitivity and 81.44% specificity. rCOPD – random COPD; bCOPD – bronchoscopy 
COPD; NC – non-cancer-non-COPD 

 

Figure 5-12: Two dimensional scatterplot of second-derivative absorbencies at 967cm
-1
 

and 1051cm
-1
, showing separation of cancer (red) and non-cancer (blue, purple, green) 

sputum sample spectra, primarily along the 967cm
-1
 axis. A linear regression line for 

cancer prediction is shown at 81.31% sensitivity and 81.44% specificity. 

 

Figure 5-13: Two dimensional scatterplot of second-derivative absorbencies at 967cm
-1
 

and 1656cm
-1
, showing good separation of cancer (red) and non-cancer (blue, purple, 
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green) sputum sample spectra. A linear regression line for cancer prediction is shown 
at 83.18% sensitivity and 77.32% specificity. A distinct separation of the bCOPD (purple) 
and other non-cancer groups is also observed along the 1656cm

-1
 axis. Reasons for this 

are explored in more detail subsequently. rCOPD – random COPD; bCOPD – 
bronchoscopy COPD; NC – non-cancer-non-COPD 

 

Figure 5-14: Two dimensional scatterplot of second-derivative absorbencies at 967cm
-1
 

and 1079cm
-1
, showing excellent separation of cancer (red) and non-cancer (blue, 

purple, green) sputum sample spectra. A linear regression line for cancer prediction is 
shown at 92.99% sensitivity and 94.33% specificity. rCOPD – random COPD; bCOPD – 
bronchoscopy COPD; NC – non-cancer-non-COPD 

 984 vs 
967cm-1 

1024 vs 
967cm-1 

1051 vs 
967cm-1 

1079 vs 
967cm-1 

1411 vs 
967cm-1 

1577 vs 
967cm-1 

1656 vs 
967cm-1 

True 
Positives 

178 181 174 199 178 192 178 

False 
Positives 

39 36 36 11 22 39 44 

True 
Negatives 

155 158 158 183 172 155 150 

False 
Negatives 

36 33 40 15 36 22 36 

Sensitivity 
(%) 

93.93 84.58 81.31 92.99 83.18 89.72 83.18 

Specificity 
(%) 

75.26 81.44 81.44 94.33 88.66 79.90 77.32 

Table 5-8: Sensitivity and specificity calculations for each linear model shown above. 
All models show good sensitivity and specificity, with the weakest being 1656 vs 967cm

-

1
 at 77.32% specific and the strongest 1079 vs 967cm

-1
 at 94.33 specific. 

 The linear models shown above provided an excellent proof-of-concept that 

lung cancer sputum could be distinguished from non-cancer based on second-
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derivative absorbencies at defined wavenumbers. The wavenumbers examined thus 

far were those previously identified by the Respiratory Diagnostics Group at Swansea 

University (P. D. Lewis et al., 2010), and not all of the regression models displayed 

>80% sensitivity and specificity. Examination of the second-derivative spectra in 

Figure 5-9 suggested that there could be novel wavenumbers that may also 

distinguish cancer from non-cancer. Therefore, further analysis was carried out and 

the models that are summarised in Table 5-8 were optimised to maximise sensitivity 

for lung cancer whilst having a minimum specificity of 80%. These new models and 

optimisations are summarised in Figure 5-15. 

 

Figure 5-15: Two-dimensional heatmap of predictions by each regression model, with 
sensitivities and specificities for each model shown. A prediction of cancer is shown as 
yellow, and a prediction of non-cancer is shown as blue. The cross-model concordance 
is >80%, with greater agreement between models observed when predicting a cancer 
diagnosis. This suggests a possible bias towards a cancer prediction output from the 
models. 
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Figure 5-16: Two-directional linear model of second-derivative absorbencies at 1034 cm
-

1
 and 1388cm

-1
, showing good separation of cancer and non-cancer cohorts. The linear 

separator lines divide the space into 4 quadrants (Q1, Q2, Q3. and Q4) allowing the 
classification of “non-cancer” (Q1) “higher risk” (Q2 & Q3) and “cancer” (Q4) quadrants. 
rCOPD – random COPD; bCOPD – bronchoscopy COPD; NC – non-cancer-non-COPD 

The two-directional regression model shows a more complex model based on 

the appearance of peaks at 1034 & 1388cm-1 in the second-derivative spectrum (Figure 

5-16). Two regression lines are used in conjunction to improve the specificity of the 

model. The cancer cohort spectra show a strong grouping in Q4, whilst the spectra 

from the non-cancer cohorts show less strong clustering, but the majority of these are 

found in Q1.  

The cancer samples have a tight cluster in Q4 that is surrounded by a few 

non-cancer cases in Q2 & Q3, whilst the main cluster of non-cancer is in Q1. There are 

also a few cancer cases in Q2 and Q3. These therefore could be described as “higher 

risk” quadrants, where the samples have absorbance patterns more similar to a typical 

cancer spectrum. As seen in Table 5-9, the sensitivity for each linear model is 

excellent, with 93.93% and 99.07% for y1 and y2, respectively however the specificities 
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for each are low, at 78.35% and 63.40%. By combining the two models the sensitivity 

is slightly reduced to 92.99%, but the specificity markedly improves to 89.18%.  

 y1 y2 y1 & y2 

True Positives (Ca in Q4) 201 212 199 

False Positives (NC in Q4) 42 71 21 

True Negatives (NC in Q1, Q2 & Q3) 152 123 173 

Overall False Negatives (Ca in Q1, 
Q2 & Q3) 

13 2 15 

False Negatives in “Non-cancer” 
Quadrant (Ca in Q1 only) 

0 0 0 

False Negatives in “Higher Risk” 
Quadrants (Ca in Q2 & Q3) 

13 2 15 

Sensitivity (%) 93.93 99.07 92.99 

Specificity (%) 78.35 63.40 89.18 

False Negatives Classified as 
"Higher Risk" (Q2 & Q3) (%) 

  100 

True Negatives Classified as "Higher 
Risk" (Q2 & Q3) (%) 

  41.04 

Table 5-9: Sensitivity and specificity calculations of each single linear model (y1, y2 
individually) and the two-directional model (y1 & y2 simultaneously). Y1=-0.6433x-
0.00003 y2=0.8333x+0.00005; Ca - cancer; NC - non-cancer 

5.3.3 Squared Euclidean Distance 

The models presented above generally show the cancer samples clustering 

closely with one another, whilst the COPD and NC cohorts are more dispersed. This 

suggests that cancer sputum spectra may be more similar to one-another than spectra 

from COPD and other respiratory disease samples. This also suggests that there may 

be an IR spectral signature for cancer. The geometric mean of absorbencies at 967 

and 1076cm-1 for each patient cohort was calculated and treated as the “cancer model” 

or “non-cancer model”. These wavenumbers were chosen due to the high sensitivity 

and specificity with which they separate cancer from non-cancer sputum along with 

the strong clustering exhibited (Figure 5-14). The Squared Euclidean Distance (SED) 

of each sample spectrum was then calculated from this point to estimate the 

similarity of each spectrum to the cancer signature. SED calculation from both a 

cancer and non-cancer model allows the distance-value generation of the sample 

from each model. These can be compared against a threshold distance, with an SED 

value being smaller than a set cancer-threshold and larger than a set non-cancer 

threshold, implying that a sample should be classified as cancer. These distances were 

compared and the results are shown in Figure 5-17.  
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Figure 5-17: SED values of all cancer and non-cancer spectra from the cancer and non-
cancer model spectra, with threshold lines at y=1.3*10

-8
 and x=6*10

-9
. The thresholds 

were set so as to capture as many cancer cases within a quadrant as possible, whilst 
ensuring as few non-cancer cases as possible were also captured. A few false negative 
results can be observed but crucially these cases cannot be said to be closer to the 
non-cancer model than the cancer model. Therefore, it can be said that these cases are 
more similar to cancer model and thus a higher % likelihood of cancer should be 
returned.  

The plotted SED values show the distances of individual sample spectra from 

the cancer and non-cancer models. As can be seen, the cancer spectra generally have 

a low SED value from the cancer model with little variation within the group, whereas 

the SED of non-cancer spectra from the cancer model is generally much greater. 

There is also a greater amount of variation within the non-cancer samples, although 

most samples show a low SED from the non-cancer model. This higher variation is 

indicative of the mixed nature of this cohort of patients, being made up of COPD and 

non-COPD patients.  

The low amount of observed variation in the SED of the confirmed cancer 

sample spectra from the cancer model implies that the spectra that build the cancer 

model are similar to each other, in that they are share similar spectral characteristics 

and therefore the calculated models have a good strength. Due to infrared spectra 
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directly relating to the molecular structure and configuration of the sample, this 

therefore means that the molecular structure of the cancer samples can be said to be 

similar to each other. This implies that there is a detectable molecular alteration to 

the structure of sputum from lung cancer patients.  

 

Figure 5-18: SED values of each prediction made by the two-directional model in Figure 
5-16 to the cancer and non-cancer model spectra. The high-risk prediction samples 
(green) are seen to group closely towards the cancer predictions (red) and the cancer 
model spectrum, whilst the non-cancer predictions (blue) are closest to the non-
cancer model. This implies that the high-risk predictions made by the model in Figure 
5-16 are not random and could therefore indicate that this could be used a method for 
identifying true higher-risk patients. 

There is a small overlap of groups, which occurs when the Euclidean distance 

of the sample spectrum from the non-cancer model increases whilst also decreasing 

the SED value from the cancer model. This means a sample spectrum found within 

this overlap is more similar to the cancer model than the non-cancer model, which 

directly implies the molecular structure of this particular sputum sample may be 

more similar to a cancer sample than a non-cancer sample. This overlap of SED values 

mirrors what can be seen in the linear separation model in Figure 5-14, with a small 

but important number of false negative and false positive results. It is possible that 

these cases could represent a subset of patients who have not received a diagnosis of 
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cancer due to no cancer being detectable at bronchoscopy, but who may be at risk of 

developing cancer in the short-term. This hypothesis is supported by the generally 

lower SED values of the predicted higher-risk patients towards the cancer model 

spectrum, than those observed in the predicted non-cancer patients Figure 5-18. 

5.3.4 Distinguishing Lung Cancer Sub-types and Histology by FTIR 

 A secondary aim of this chapter was to evaluate the ability of FTIR 

spectroscopic analysis to determine lung cancer subtypes and histologies. A smaller 

subset of the lung cancer sample set was statistically interrogated for significant 

trends which may show spectral differences between adenocarcinoma, squamous cell 

carcinoma and SCLC. Twenty spectra for each histological group were analysed. 

Initial examination of the average second-derivative spectra shows a high degree of 

similarity between the histological groups. 

 

Figure 5-19: Average second-derivative spectra of adenocarcinoma (blue), squamous 
cell carcinoma (red) and SCLC (green) lung cancer patient groups. The spectra show 
high similarity with few differences, although a promising difference in absorbance 
intensity can be seen at a few wavenumbers; namely a small increase in intensity at 
1747cm

-1
 in squamous cell carcinoma (red arrow), and an increase in intensity at 1649 

and 986cm
-1
 in adenocarcinoma (black arrows). 

 Statistical tests were performed to assess the significance of the differences in 

second-derivative absorbance at the wavenumbers identified in Figure 5-19. ANOVA 

testing suggested that the variation between the histology groups was statistically 

significant at the 95% confidence level at only 986cm-1 (Table 5-10). Subsequent T-
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Test analysis with multiple hypothesis correction (α = 0.01667) found that the 

differences between the histology groups were not statistically significant (Table 5-11). 

 Wavenumber (cm-1) 

 1747.38068 1649.018 986.5179 

Between Groups 
Variation (p-
value) 

0.462188797 0.052109 0.035623 

Table 5-10: Single factor ANOVA test results for second-derivative absorbance at 
wavenumbers of interest for distinguishing histological groups, with statistically 
significant (p <0.05) variation between groups being shown at 986cm

-1
, suggesting that 

second-derivative absorbance at 986cm
-1
 may be key for determining histology. 

 

 Squamous SCLC 

Adenocarcinoma 0.0657 0.0706 

Squamous  0.9267 

Table 5-11: Two-sided p-value scores from significance testing of absorbance at 986cm
-1

 
between histological groups; multiple hypothesis testing set the α = 0.01667. Statistical 
significance was not found. SCLC – Small cell lung cancer 

 Statistical analysis of the second-derivative peaks found within the glycogen-

rich region also did not identify any significant peak shifts between the histological 

groups (Table 5-12). 

 Wavenumber (cm-1) 

 1130 1079 1055 1030 1020 998 985 967 

Adeno-
Sq 

0.197651 0.938103 0.937318 0.011446 0.074654 0.013765 0.303451 0.855445 

Adeno-
SC 

0.505636 0.866535 0.924569 0.440799 0.08236 0.189174 0.471057 0.802816 

Sq-SC 0.386532 0.806994 0.985283 0.076731 0.795943 0.143944 0.667538 0.916255 

Table 5-12: Two-sided p-value scores from T-tests for significance of differences 
between detected peak positions in the second-derivative spectra. No statistical 
significance was found (p > 0.05). Adeno – adenocarcinoma; Sq – Squamous cell 
carcinoma; SC – Small cell lung cancer 

5.4 Discussion 

The aim of this study was to assess the ability of FTIR to detect and diagnose 

lung cancer using raw sputum with no sample pre-processing and a simple analytical 

protocol. Currently there is a strong clinical need for an early detection method. We 

have demonstrated that high-throughput FTIR technology can be readily utilised to 

sensitively and specifically distinguish lung cancer from non-cancer respiratory 

disease. The linear separation models developed above show a strong degree of 

clustering, with a clear separation of groups and small overlap. The mean 
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absorbencies of cancer spectra at 1740, 1653, 1589, 1411, and 1076cm-1 were shown to be 

statistically significantly different from all other non-cancer spectra. However, linear 

models of these wavenumber could only distinguish cancer from control at a 

maximum sensitivity and specificity of 77.78% and 81.96% respectively when plotting 

the absorbencies at 1740 and 1589cm-1.  

The initial results were encouraging but the sensitivity and specificity scores 

were not high enough for a potential clinical application. Deconvolution of the 

absorbance spectra by calculation of the 2nd derivative spectra was used to increase 

spectral resolution and subsequently linear regression models were developed from 

these 2nd derivative spectra. The work presented in this chapter has developed 11 

distinct regression models based on second-derivative spectra which are all capable of 

distinguishing cancer from non-cancer with sensitivities and specificities greater than 

80% and 70% respectively. Within these 11 models, there were five models which 

showed sensitivities in excess of 95%, whilst retaining >80% specificity for lung 

cancer. 

Additionally, the models developed in this chapter produce highly concordant 

results, with an average cross-model concordance level of 87.48%. This cross-model 

agreement was shown to be higher for the cancer patient cohort, which reflects the 

sensitivity-weighting of the regression models.  

In each model a small but significant number of false positives and false 

negatives were identified, due to a small overlap of clusters. This overlap of clusters 

suggests that FTIR may be able to identify patients who may have a higher risk of 

developing lung cancer in the near future, compared to other patients who attend 

bronchoscopy clinic. This could be utilised in a screening capacity, where patients 

who attend respiratory clinics could have their sputum routinely analysed and 

therefore avoid the need to undergo bronchoscopy. This is further supported by the 

high cross-model concordance indicating that these models could be combined into a 

battery of tests which could then be used to provide a “% likelihood” of cancer, with 

more models reporting a diagnosis of “cancer” contributing to a higher “% 

likelihood”.  

Many models show a close clustering of cancer samples, with few outliers, 

compared to the NC and COPD cohorts which show a more dispersed grouping. This 
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higher dispersion is indicative of the variability of the patients within these cohorts. 

The NC cohort shows the most variability with more diverse diagnoses, reflected in 

the clusters, thus suggesting a greater amount of variation between spectra within 

this cohort. In contrast, the cancer cohort tends to group more closely, implying that 

there is less variation between spectra within this cohort. Indeed, analysis of variance 

testing of the absorbencies used in these tests indicated a greater degree of variation 

within the NC cohort than in rCOPD or bCOPD, and all control cohorts showed more 

variation than the cancer cohort. This suggests that there may be an IR spectral 

signature for lung cancer, to which a patient’s similarity through SED could be 

calculated. In this work the similarity of each non-cancer and cancer sample 

spectrum was calculated to the cancer signature for the 967 vs 1079cm-1. The band 

around 967cm-1 has been associated with phosphorylated proteins, nucleic acids and 

LeX antigens in sputum (A. T. Lewis et al., 2013; Malins et al., 2005; Maziak et al., 

2007).  

Further work needs to be carried out to clarify if the models developed in this 

study could be used to identify lung cancer cases earlier than current diagnostic 

methods. As shown in this chapter, a number of potential diagnostic models for lung 

cancer have been developed, but the number of false positives identified in many of 

these models is not trivial. A raw sputum sample was predicted as being from a 

cancer patient if its spectral features were similar to that of many other cancer 

samples. It could be possible that a patient’s sputum sample may give a spectral 

signature more similar to that of cancer before any histological affects could be 

detected by bronchoscopy. In this way, FTIR could be utilised as a potential early-

warning system. In order to confirm this, a new longitudinal follow-up study must be 

carried out in which patients are monitored over an extended period of time (>5 

years). Such a study would compare the similarity of their sputum spectral signatures 

to the cancer signature and then follow up with respect to any future cancer 

diagnosis.  

The two-directional linear model (Figure 5-16) highlights an interesting 

possibility of using such a model to estimate a patient’s likelihood of developing 

cancer within a short period of time, if a diagnosis of cancer is not possible through 

X-ray, CT scan or bronchoscopy. It could be possible that those patients who received 

a diagnosis of non-cancer, but whose spectra fall into Q2, Q3 or Q4 regions in 
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Cartesian space may have currently undetectable pre-malignancies, or be at an early-

stage of cancer. A major challenge which reduces the effectiveness of lung cancer 

treatment is the difficulty involved in diagnosing early-stage lung cancer, when 

treatment outcomes are usually better: through early detection of lung cancer, overall 

survival rates can be improved. (Allemani et al., 2015; Morgan & Wilkes, 2017). With 

respect to the two-directional linear model (Figure 5-16), an effective method for 

detecting pre-malignant or early-stage lung cancer cases may be possible. When a 

patient’s sample falls within the “higher risk” (Q2, Q3) or “cancer” (Q4) quadrant the 

Euclidean distance of the sample from the geometric centre of the cancer model 

spectrum developed in this work could be calculated. Through a future study based 

on following up these patients, it may be possible to provide a quantifiable measure 

of potential risk of lung cancer that each patient may have. 

A review of lung cancer diagnostic methods highlighted how sputum cytology 

screening programs have a higher chance of detecting early-stage lung cancer, and 

how sputum cytology was able to precede a radiological diagnosis by 18-36 months 

(Thunnissen, 2003). This suggests that premalignant/early-stage carcinomas may be 

occurring many months prior to diagnosis by radiological methods. Sputum cytology 

relies on observations of the morphology of cells found in the sputum. The work 

presented in this chapter shows that FTIR is capable of distinguishing between lung 

cancer and respiratory disease patient sputum samples based on spectral changes 

which can be related to molecular structural change. Given the observation that a 

sputum cytological diagnosis can precede a radiological diagnosis by many months, it 

is reasonable to hypothesise that molecular structural change indicative of lung 

cancer may be occurring within the lung tissue for an extended period of time prior 

to the appearance of symptoms or a diagnosis. FTIR may be capable of detecting 

structural changes to morphology of cells within sputum. However a large study 

comparing early-stage lung cancer detection rates in high-risk populations of 

multiple diagnostic modalities, such as sputum cytology, x-ray, bronchoscopy and CT 

scanning, to FTIR spectroscopy must be carried out in order to fully establish the 

usefulness of FTIR as a screening tool for early-stage lung cancer. 

An analysis carried out on a limited subset of 20 adenocarcinoma, squamous-

cell-carcinoma and SCLC lung cancer sputum samples did not find any statistically 

significant differences in second-derivative absorbance or peak position between the 
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histological groups of lung cancer sputum spectra. This is not surprising given that 

the previous analysis in this chapter showed extremely close clustering of the cancer 

spectra when analysing them using wavenumbers within the glycogen-rich region. 

These findings suggest that a larger study is necessary to truly determine whether 

molecular structural change specific to lung cancer histologies may be detectable by 

FTIR spectroscopy. However, these findings do support the universality of the major 

finding of this chapter: that FTIR spectroscopy is capable of determining lung cancer 

patient sputum from chronic respiratory disease patient sputum, and the histology of 

the cancer does not affect the ability to detect the cancer. 

5.5 Conclusion 

FTIR analysis has been shown to have potential as an effective tool for the 

detection of lung cancer in raw sputum, using a rapid protocol with no sample 

preparation and simple spectral analysis. The work presented in this chapter showed 

a panel of two-dimensional linear models capable of differentiating lung cancer 

sputum from COPD sputum with sensitivity and specificity scores of >80% each, and 

the best performing models showing 100% sensitivity with 85.6% specificity.  

The possibility of using FTIR as a screening tool for early cancer detection in 

high-risk individuals is raised. However, the work presented in this thesis does not 

yet allow the absolute determination of a “cancer” or “non-cancer” diagnosis in a 

patient. Whilst the high sensitivity and specificity scores are highly encouraging, the 

study needs to be validated on a larger set of patients, over a longer period of time. A 

future study in which patients attending the diagnostic pathway for lung cancer are 

recruited and monitored long-term is needed to fully assess the diagnostic power of 

FTIR for early-stage lung carcinomas. It could be possible that molecular structural 

changes are detectable in sputum by FTIR spectroscopy some months prior to 

detection by X-ray, CT-scan or bronchoscopy.  
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Chapter 6 

Utility of FTIR for Monitoring Retention and Interaction of a 

Novel Therapeutic with Sputum Mucins in Cystic Fibrosis 

Patient Sputum 
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6.1 Introduction 

6.1.1 Cystic Fibrosis Background 

Cystic fibrosis (CF) is a genetic disorder which primarily affects the airways, 

through airway-restriction by increased mucus load (Rose & Voynow, 2006). There 

are approximately 85,000 patients with CF worldwide and this number is projected to 

increase by up to 75% by 2025 (Burgel et al., 2015; Kris De Boeck & Amaral, 2016). This 

is mainly due to an increasing life-expectancy for CF-patients, from 27 in 1986 to 38.3 

in 2010 (Cystic Fibrosis Foundation, 2010). Despite this increase in life-expectancy, the 

leading cause of death for CF-patients is still respiratory failure (Elborn, 2016). 

The increased mucus load restricts the airflow, reducing lung capacity and has 

a significant impact on the quality-of-life (QOL) for the patient, with patients 

generally reporting a decrease in QOL over time (Uchmanowicz et al., 2015). Patients 

must undergo constant physical therapy and monitoring in order to appropriately 

manage their disease and improve their QOL (Button et al., 2016; Feiten et al., 2016).  

CF is caused by mutations or deficiency in the cystic fibrosis transmembrane 

conductance regulator  (CFTR) gene, which encodes for the CFTR transmembrane 

chloride and bicarbonate ion channel (Gustafsson et al., 2012). Over 1900 mutations of 

CFTR have been reported, with the most common CF-causing mutuation being 

Phe108del (K. De Boeck, Zolin, Cuppens, Olesen, & Viviani, 2014b). Defects in this 

protein lead to dysregulation of epithelial fluid transport, decreasing mucus 

hydration and increasing the viscosity of CF airway mucus. As a direct consequence of 

this, mucociliary-clearance (MCC) is impaired in CF-patients (Lee & Foskett, 2014). 

Dysregulation of the CFTR channels can also lead to an elevation in salt levels in CF 

airway mucus, which has been shown to inhibit the activity of antimicrobial peptides 

(Zabner et al., 1998). Due to the combination of reduced MCC activity and inhibition 

of antimicrobial peptides, CF patients are more susceptible to airway infection. 

As a consequence of these inhibited activities, most adult CF patients are 

persistently colonized by biofilm-forming Pseudomonas aeruginosa strains (Wagner & 

Iglewski, 2008). A bacterial biofilm is formed when bacteria adhere to solid surfaces 

and secrete extracellular polysaccharides to form a matrix to which more bacteria 

cells can adhere. Biofilms also contribute to resistance to antimicrobial agents, 
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including antibiotics, further increasing the susceptibility of CF patients to persistent 

infection (Donlan, 2001).  

6.1.2 Mucus and mucins 

Mucus is the primary component of the airway surface liquid (ASL) barrier in 

the airways. The main functions of mucus are to protect the airways from pathogens 

& foreign particles, and to maintain hydration of the airways. The vast majority of 

respiratory-mucus is primarily composed of water – approximately 95% of mucus is 

water (Bansil et al., 1995). Of the remaining 5%, mucin glycoproteins are the 

dominant molecules, namely the secretory mucins MUC5AC and MUC5B, although 

other mucins are also present (Rose & Voynow, 2006). These mucins are high-weight 

glycoproteins and are extremely heavily glycosylated along the length of the 

polypeptide chain. Mucins are responsible for the biological, chemical and physical 

properties of mucus, and provide for mucus the structural matrix through a strong 

mesh-like structure formed by a complex web of ionic, hydrophilic, hydrophobic and 

covalent bonds (Georgiades et al., 2014). Therefore it is easy to see how alterations in 

the constituent parts of mucus, especially in mucin glycoprotein expression/secretion 

can have a significant impact on the properties of the mucus itself. 

Evidence suggests that the CTFR channel is able to act as a bicarbonate 

channel, leading to suboptimal levels of bicarbonate being present in the CF lung 

(Borowitz, 2015). Bicarbonate is used to neutralise the pH, and remove the Ca2+ to 

unpack the secreted mucin granules and form the mucus mesh. The reduced levels of 

bicarbonate in the CF lung prevents full mucin expansion, leading to denser more 

viscous airway mucus (Ambort, Johansson, Gustafsson, Ermund, & Hansson, 2012; 

Gustafsson et al., 2012). 

6.1.3 OligoG  

OligoG is a low weight alginate oligosaccharide extracted and purified from 

the stem of brown seaweed (Laminaria hyperborean) and composed of α-L-guluronate 

subunits (Figure 6-1). 
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Figure 6-1: (a) Fischer projections, (b) stick, and (c) space filling visualisations of 12-(a), 
and 16- (b & c) residue OligoG molecule. One of α-L-guluronate residue has been 
highlighted by the yellow box. CPK colouring has been used. Fischer projection 
adapted from Hengzhuang et al., 2016. 

In vitro experimentation with multidrug resistant bacteria (including 

Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus oralis) has shown 

that OligoG possesses an antibacterial effect on such cells with it commonly being 

observed to visibly distort the outer LPS membrane (Khan et al., 2012). It is currently 

thought that this is due to the interaction of OligoG with calcium ions found within 

the membrane (Pritchard et al., 2017). This cell surface interaction has shown to be 

able to resist removal via hydrodynamic shear (Powell et al., 2014). In addition to this 

when used in conjunction with antibiotics, such as triclosan and colistin, OligoG was 

seen to have a potentiating effect increasing the effectiveness of the drug several-fold 

(Hengzhuang et al., 2016; Khan et al., 2012; Roberts et al., 2013). 

 Antifungal properties of OligoG have also been investigated against strains of 

pathogenic fungus (e.g. Candida tropicalis and Aspergillus spp), where at low 

concentrations (>0.5%) OligoG was shown to significantly inhibit hyphal growth, and 

at high concentrations (>6%) showed a significant inhibition of cell growth. It was 

also shown to have a potentiating effect on various antifungal drugs, with as high as 

16-fold reduction in minimum inhibitory concentration being observed when used in 

conjunction with nystatin (Tøndervik et al., 2014). 

OligoG has also been found to have a dose dependant antibiofilm effect with 

biofilms being visibly weakened in its presence described as appearing more open and 

a)
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porous, and containing less biomass. Biofilms treated with OligoG are also found to 

have their mechanical properties compromised, being removed with less force and 

also being less resistant to deformation under force than untreated biofilms (Khan et 

al., 2012; Powell et al., 2014; Roberts et al., 2013; Tøndervik et al., 2014). This 

antibiofilm effect has also been observed in murine lungs (Hengzhuang et al., 2016), 

suggesting that the antibiofilm effect is not limited to bacterial and fungal strains 

found in human lungs. This effect is seen with regards to both bacterial and fungal 

biofilms. These antibacterial, antifungal and antibiofilm properties have identified 

OligoG as a potentially useful drug in the treatment of respiratory infections.  

Another property of OligoG that further promotes its suitability as a 

treatment for CF is its ability to improve the state of the mucous system within the CF 

lung. As previously stated, individuals with CF have abnormally thick mucus that is 

difficult to clear from the lung, providing both an ideal environment for bacterial 

biofilms to become established, and posing as a barrier for drug delivery to the full 

lung. Evidence for the ability of OligoG to modify the viscoelastic properties of mucus 

comes from atomic force microscopy (AFM) imaging and rheological studies. Such 

analyses have shown that OligoG-treated CF sputum has a larger surface area and 

pore size, and a marked decrease in elasticity and viscosity (Pritchard et al., 2016). In 

CF mice orally treated with OligoG this modification have been shown to improve 

intestinal transit, which is usually hindered by the viscous CF mucus which builds up 

in the intestinal system (Vitko et al., 2016). 

The method of action for this modulation of mucus viscosity appears to be its 

calcium chelating capabilities. As previously stated, secretion of bicarbonate is 

impaired in CF. In healthy individuals this bicarbonate would compete with the N-

terminus of MUC2 for calcium ions. The removal of these calcium ions from the N-

terminus then allows the mucin network to properly expand (Ambort et al., 2012). 

OligoG appears to be able to act as a substitutional competitor for the calcium ions at 

these N-termini in the absence of bicarbonate, with a high affinity for Ca2+ (Ermund 

et al., 2017). Therefore, this would allow OligoG to alleviate the symptoms of CF 

associated with increased mucus viscosity.  

6.1.4 Importance of continued drug presence/persistence in lung 

It has repeatedly been shown that the effects of OligoG as a mucolytic, 

antifungal and antibacterial therapeutic are highly dependent on the dose with which 
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it is present (Khan et al., 2012; Pritchard et al., 2016; Tøndervik et al., 2014). Therefore, 

the ability to quantify the amount of drug retained in the lung is necessary for 

ensuring the patients are receiving a therapeutic level of the drug. Animal studies 

have shown that ingested OligoG is largely excreted from the gastrointestinal tract 

within 24 hours, and intravenously administered OligoG is also rapidly removed in 

urine (Pritchard et al., 2016). Measuring the volume of drug removed from the lung, 

or the volume still present within, however is markedly harder due to the nature of 

the organ. 

Preclinical trials have shown that inhalation of OligoG into the lung can safely 

be undertaken daily without adverse effect. Dry powder inhalation was also seen to be 

a better inhalation route than nebulisation for whole lung deposition of the drug 

(Pritchard et al., 2016). Currently relatively little is known about the elimination of 

OligoG from the lung, although most likely it is removed via a combination of the 

lungs regular mechanism of drug elimination such as MCC, alveolar clearance, and/or 

macrophage uptake (Ibrahim & Garcia-Contreras, 2013). 

There is a need for a simple and non-invasive technique to monitor the 

presence of OligoG within the lung. Ideally, this technique would be performed 

multiple times over an extended period of time and would allow a clinician to 

optimise the dosing strategy to keep a patient within the effective dose range for as 

long as possible. 

6.1.5 FTIR for Monitoring Disease States and Drug 

Fourier-transform infrared (FTIR) spectroscopy is a fast, cheap-to-use and 

effective vibrational spectroscopy technique used to detect and monitor the 

molecular structure of a specific sample.  

Interest in using FTIR as a clinical tool for patient-sample testing has been 

growing steadily for a number of years and FTIR continues to be shown as a viable 

tool for biofluid and patient sample analysis (Backhaus et al., 2010; Baker et al., 2014; 

Hands et al., 2016; Paul D. Lewis et al., 2010; Menzies et al., 2014; Rodrigues et al., 

2017). The non-invasive nature of FTIR makes it an ideal candidate technology for 

monitoring drug levels in patient sputum samples without causing discomfort or 

inconvenience to the patient. Through analysing the spectra of patient samples, it is 

possible to identify specific patterns within the spectra that relate to specific 

molecular changes within the sample itself. By taking a reference sample spectrum of 
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OligoG, it is possible to screen patient samples for unique features that relate to the 

reference OligoG spectrum. In this way FTIR can be utilised to screen CF-patient 

samples for the presence of OligoG after treatment.  

6.1.6 Chapter Aims 

The aims of this chapter were to evaluate the use of FTIR analysis for 

successful use as a tool for routine screening of the alginate drug, OligoG, in CF 

sputum. Specifically, this study aims to use OligoG specific peaks, in order to show 

that the drug is present in patients’ sputum, and provide insight into quantifying 

OligoG concentration through the generation of OligoG in sputum dosing curves. 

Additionally, FTIR spectroscopy and FTIR-microspectroscopy will be utilised 

to interrogate CF-patient sputum in finer detail. Two dimensional maps of sputum 

will be generated to identify areas rich in mucin and OligoG, providing evidence for 

OligoG-mucin interactions. OligoG interactions with DNA and Ca2+ will also be 

investigated by FTIR. 

6.2 Methods 

6.2.1 Patient Recruitment and Sample Collection 

CF patients were recruited and sputum samples collected for FTIR analysis as 

described in Chapter 2, Section 2.1.3.  

6.2.2 Spectrum Acquisition 

A Bruker Vertex 70 with HTS-XT attachment with a DTGS detector (Bruker 

Optics), controlled by OPUS version 7.5, was used in transmission mode to generate 

transmission IR spectra of CF patient sputum samples from each stage in the study. 

Each spectrum was composed of an average of 32 scans and a background of 32 scans 

taken before each sample spectrum. Samples were pipetted (2µl) onto silicon 96-well 

plates (Bruker Optics) and allowed to dry in air for a minimum of one hour before 

measurements were taken. The plates were cleaned in 70% ethanol. 

ATR-FTIR spectra were acquired using a Bruker Alpha (Bruker Optics) with 

diamond ATR module attachment, controlled by OPUS version 7.5. Each spectrum 

was composed of an average of 24 scans, and a background scan of 24 scans taken 

before each sample spectrum. The ATR sampling module was cleaned in 70% ethanol 

prior to each background scan. Samples were pipetted onto the sampling crystal (2µl) 

and dried in air before spectrum acquisition. Sample dryness was monitored using the 
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onboard live-scanning facility in OPUS. Sputum drying was expedited using a small 

USB-powered fan to provide airflow across the surface of the sample. 

6.2.3 FTIR Microspectroscopy 

 FTIR microspectroscopy was performed using a Bruker Vertex 70 with a 

Hyperion 2000 IR microscope attachment, in reflectance mode. The spectrometer was 

fitted with a KBr beamsplitter and a liquid nitrogen-cooled mercury cadmium 

telluride (MCT) detector. The knife-edge aperture was set to 50x50µm. A single 

background spectrum of a gold standard plate was taken prior to spectrum 

acquisition. Sputum was pipetted (2µl) onto silicon plate and allowed to dry in air. 

900 spectra were acquired over an area of approximately 1000x1000µm within the 

sputum spot. 

6.2.4 Spectrum Processing 

Prior to any analysis or processing, quality analysis was performed on all 

spectra on a case-by-case basis, where any spectra showing excessive noise or an 

arching baseline were rejected. Spectra were processed using the in-built tools and 

algorithms in OPUS 7.5 (Bruker). Spectra were vector-normalised and then baseline-

corrected using the automatic rubberband correction. Second derivative spectra were 

calculated using the Savitizky-Golay method with 9 smoothing-points. The OPUS 

automatic peak picking algorithm was set to a threshold of 10%. 

6.2.5 Statistical Analysis 

Statistical tests were carried out using the programming environment R (R 

Core Team, 2016). Statistical significance was calculated using the Mann-Whitney 

Rank Sum Test, with significance shown with p-values of < 0.05. Correlation analysis 

was performed using the Spearman’s Rho, with a two-tailed hypothesis.  

6.3 OligoG Incubation 

 Incubation of OligoG with DNA and Ca2+ ions was carried out as described in 

chapter 2, section 2.7. 
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Stock conc. 
OligoG (% w/v) 

Dilution factor 
(OligoG:Sputum) 

Final OligoG conc. in 
Sputum (% w/v) 

0 1:10 0 
0.2 1:10 0.02 
0.5 1:10 0.05 
1 1:10 0.1 
2 1:10 0.2 
5 1:10 0.5 
10 1:10 1 
15 1:10 1.5 
20 1:10 2 

 Table 6-1: OligoG concentrations incubated with CF-patient sputum at a 1:10 ratio for 
the final OligoG concentrations shown. 

CF-patient sputum screening (day 0) samples were incubated with OligoG of 

varying concentrations from 0% w/v to 20% w/v (Table 6-1) at a 1:10 (OligoG:sputum) 

ratio for 30 minutes at 37°C, prior to FTIR analysis. 

OligoG solutions at a concentration of 2% (w/v) were dosed with 0mM 

(control), 1mM and 5mM Ca2+ ions (Cole-Parmer) dissolved in dH2O. Each mixture of 

OligoG and Ca2+ ions were then dosed with 0mM (control), 1mM and 10mM whole 

human DNA (Promega), dissolved in dH2O. Each final mixture of OligoG, Ca2+ ions 

and DNA were then incubated for 30 minutes at 37°C in a water bath. Table 6-2 below 

shows all final dilutions of OligoG, DNA, and Ca2+ ions made up prior to incubation 

and subsequent high-throughput T-FTIR analysis, as described earlier in section 2.2.2. 

Variable Control Experimental Solutions 

DNA 

2%OligoG + 
0mM DNA 
+ 0mM Ca2+ 

(Control) 

2%OligoG + 
1mM DNA + 
0mM Ca2+ 

2%OligoG + 
10mM DNA 
+ 0mM Ca2+ 

Ca2+ 
2%OligoG + 
0mM DNA 
+ 1mM Ca2+ 

2%OligoG + 
0mM DNA 
+ 5mM Ca2+ 

Ca2+ & DNA 
2%OligoG + 
1mM DNA + 

1mM Ca2+ 

2%OligoG + 
10mM DNA 
+ 5mM Ca2+ 

Table 6-2: Concentrations of DNA and Ca
2+

 ions incubated with 2% OligoG prior to 
FTIR analysis. 

6.3 Results 

6.3.1 OligoG IR Spectrum and Peak Characterisation 

Replicate (n=18) FTIR spectra of OligoG were acquired to establish the 

reproducibility of OligoG IR-spectra and to identify peaks associated with OligoG.  
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Figure 6-2: Baseline-corrected absorbance spectra of OligoG (n=18) from 1800-900cm
-1
. 

Average positions of major peaks are highlighted. Very little variation in peak position 
and absorbance can be observed across all replicate spectra. 

OligoG absorbance spectra (Figure 6-2 & Table 6-3) show many distinct and 

well-defined peaks within the wavenumber region of 1800 - 900cm-1. The distribution 

of major peaks is mainly towards to glycogen-rich region (1200-900cm-1), with four 

major peaks readily identifiable, compared to three in the rest of the spectrum 

(Figure 6-2). Peaks in this region are mainly associated with the C-O bonds within the 

pentose ring of each monomer unit. The glycosidic bond (O-O-C) linking each 

monomer unit, has been associated with bands around 987-993cm-1, 1132-1136cm-1, and 

1141-1156cm-1 (Kačuráková & Mathlouthi, 1996). A major peak is identified at 

1127.413cm-1 in the OligoG absorbance spectrum, which is close to the 1132-1136cm-1 

glycosidic bond peak range and could therefore represent the glycosidic linkages 

between each α-L-guluronate monomer.  

The average characteristics of each major peak are described in Table 6-3, 

with standard deviations calculated from n=18 replicate spectra shown. For each peak, 

the standard deviations of the wavenumber and absorption intensity are small, 

suggesting little variation in OligoG molecular structure. The standard deviation of 

the peak width at 1031.132cm-1 is much larger than the standard deviations of all other 
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peaks. Additionally, the average width of 50.351 indicates that the 1031.132cm-1 peak is 

broad, and could be comprised of multiple smaller peaks corresponding to separate 

molecular species. Wide peaks are also observed at 1611.018, 1417.758, and 1321.069cm-1, 

indicative of additional smaller absorbance bands being present within the large 

peaks.  

Wavenumber (cm-

1) 
Absorption 

Intensity 
Peak Width 

(FWHM) 

1611.018 (0.407) 0.139 (0.0014) 70.496 (2.361) 

1417.758 (0.414) 0.086 (0.0014) 37.0645 (0.262) 

1321.069 (0.334) 0.03 (0.0013) 41.8643 (1.181) 

1127.413 (0.127) 0.064 (0.0016) 15.3828 (0.281) 

1088.77 (0.859) 0.079 (0.0016) 21.426 (0.748) 

1031.132 (0.214) 0.100 (0.0016) 50.351 (16.717) 

951.0141 (0.159) 0.027 (0.0008) 16.0141 (0.302) 
Table 6-3: OligoG absorbance spectra peak positions, absorbance intensities and peak 
widths with standard deviations shown in brackets. Low standard deviation in peak 
positions and absorbance intensity can be seen for all major peaks. The higher 
standard deviation for the peak width at the peak centred around 1031.132cm

-1
, 

alongside the higher peak width suggests that this peak may be composed of multiple 
underlying absorption bands. These bands could be associated with molecular 
structures within OligoG.  FWHM: Full Width at Half Maximum. 

 To confirm this, second-derivative spectra can be calculated from the 

absorbance spectra. Calculation of second-derivative spectra determines the rate-of-

change within a moving window of a defined size, which moves across the 

absorbance spectrum. Small peaks and shoulders within larger absorbance peaks 

cause directional change and are therefore detected as a difference in rate-of-change 

of absorbance by the second-derivative calculation.  

 The second-derivative of the OligoG absorbance spectra were calculated to 

increase the resolution of peaks obscured by large and/or broad peaks. The number of 

peaks detected within the glycogen-rich region increased from four in the absorbance 

spectrum, to eleven in the second-derivative spectrum. Figure 6-3 shows the second-

derivative spectrum for the (a) whole fingerprint region (1800-900cm-1) and, (b) the 

glycogen-rich region (1200-900cm) in closer detail.  
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2nd Derivative Peak 
Position (cm-1) 

2nd Derivative 
Peak Width 

(FWHM) 

Absorbance 
Peak Position 

(cm-1) 

Difference between 
Absorbance & 2nd 
Derivative Peak 

Position 

1126.751 (0.309) 13.0512 (0.513) 1127.413 (0.127) 0.662 
1095.923 (0.387) 20.1977 (6.285)   
1084.971 (0.179) 21.689 (0.907) 1088.77 (0.859) 3.799 
1064.257 (0.531) 10.8373 (1.097)   
1047.397 (0.712) 9.0654 (0.999)   

1029.659 (0.190) 11.6004 (0.315) 1031.132 (0.214) 1.473 
997.239 (0.182) 10.3055 (0.263)   
977.964 (0.228) 35.004 (7.725)   
951.4249 (0.158) 9.1402 (0.377) 951.0141 (0.159) -0.4108 
935.826 (0.331) 10.3638 

(27.642) 
  

905.5773 (0.256) 3.3965 (0.459)   
Table 6-4: Peak positions and corresponding widths with standard deviations in 
brackets of average OligoG second-derivative spectrum from 1200-900cm

-1
, detected by 

the peak detection algorithm in OPUS. The positions of OligoG peaks in the 
absorbance spectrum are also shown for comparison, with difference in wavenumbers 
between the peaks. Peaks detectable in both absorbance and second-derivative 
spectra are bolded for clarity. FWHM: Full Width at Half Maximum. 

Small changes in wavenumber position of major peaks can be seen, for 

example from 1031.132cm-1 in the absorbance spectrum to 1029.659cm-1 in the second-

derivative spectrum, with a smaller secondary peak becoming evident at 1047.397cm-1. 

It is possible that the absorbance peak found at 1031.132cm-1 may be the sum of these 

two second-derivative peaks; this is likely considering the large peak width of the 

peak centred around 1031.132cm-1. 
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Figure 6-3: Second derivative average spectrum of OligoG showing the (a) fingerprint region from 1800-900cm
-1
 and (b) the glycogen-rich region 

from 1200-900cm
-1
. 
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Figure 6-4: Average FTIR (a) absorbance and (b) second-derivative spectra of OligoG 
from 1200-900cm-1, with dashed lines highlighting how the second-derivative peaks 
(pointing downwards) correspond with peaks and shoulders observed in the 
absorbance spectrum.  

 

Figure 6-5: Replicate (n=18) 2
nd

 derivative spectra of OligoG from 1200-900cm
-1
 with 

average peak positions shown. As in Figure 6-2, the variability between replicate 
spectra is low, and many peaks are easily defined. 



Charles Brilliant 
 

  199 
 

6.3.2 Studying Interactions of CF sputum with OligoG by FTIR 

 CF patients, like COPD patients, produce a high volume of sputum although it 

is known that the viscoelastic properties of sputum produced by each group of 

patients are different and this contributes towards differing pathologies of the disease 

(Voynow, 2002; Voynow & Rubin, 2009). OligoG has been shown to have an 

alleviating effect on the symptoms of CF, possibly through Ca2+ mediated interactions 

between (Ermund et al., 2017). However there are uncertainties around OligoG, with 

respect in particular to its mode-of-action, but also to its persistence in the lung. FTIR 

spectroscopy is highly-efficient at detecting very low quantities of molecules within 

more complex biological mixtures, for example detection of environmental pollutants 

in animal tissues (Llabjani et al., 2012). The work presented in this section seeks to 

evaluate the ability of FTIR to detect and quantify OligoG within the complex biofluid 

of sputum. 

6.3.2.1 FTIR Analysis of CF Sputum 

 Thus far this thesis has focussed heavily on sputum from COPD patients, and 

a good representation of the molecular structure of COPD sputum has been made. 

COPD and CF are both characterised by excessive mucus load, leading to restricted 

airways and reduced lung function. The successes of OligoG for treating CF patients 

described previously, coupled with the similarities in respiratory symptoms of both 

diseases, presents the possibility that OligoG could also have success for treating 

COPD patients. Therefore, before examining OligoG-dosed CF sputum, it is necessary 

to have an understanding of the molecular similarities and differences between 

COPD and CF sputum. Whilst excessive mucus load in the airways and lung tissue 

damage are common features of both diseases, they differ in the mechanisms which 

contribute to this increased load and damage. One important difference is an 

increased presence of bacterial DNA in CF sputum compared to other respiratory 

diseases, including COPD (Brandt, Breitenstein, von der Hardt, & Tümmler, 1995; 

Matthews, Spector, Lemm, & Potter, 1963; Riethmueller et al., 2008; Shak, Capon, 

Hellmiss, Marsters, & Baker, 1990). Increased DNA presence in sputum creates a 

secondary polymeric structure, alongside the primary mucin polymer mesh formed 

during MUC5AC and MUC5B secretion. This secondary mesh is more rigid than the 

mucins mesh and contributes to increased viscoelasticity of CF sputum (Voynow & 

Rubin, 2009). 
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Both COPD and CF spectra (Figure 6-6) show dominant amide I (~1650cm-1) 

and amide II (~1530cm-1) peaks, as well as a series of peaks and shoulders in the 

glycogen-rich region (1200 - 900cm-1), which are likely to be resultant from the high 

mucin glycoprotein content of sputum. A main difference between COPD and CF 

sputum appears around 1410cm-1, where the CF spectrum shows a distinct peak, 

compared to the COPD sputum spectrum. This peak correlates well with the strong 

1409cm-1 peak seen in the DNA spectrum (Figure 6-6). Futher evidence for the 

elevated level of DNA affecting the CF sputum spectrum can be seen within the 

second-derivative spectra (Figure 6-7). 

 

Figure 6-6: Baseline-corrected, min-max-normalised FTIR spectra of sputum samples 
from randomly selected COPD (red), and CF (blue) patients from 1800-900cm

-1
. A 

spectrum of human DNA (green) is also shown. Major peak positions of each spectrum 
are shown in the corresponding colours. 
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Figure 6-7: Second derivative spectra of sputum samples from randomly-selected 
COPD (red), CF (blue) patients and DNA (green) from 1200-900cm

-1
. Positions of 

detected peaks are highlighted. 

 Both the CF and COPD sputum second-derivative spectra show similar overall 

patterns, however a notable difference is observable with the range of 1040-1020cm-1. 

The COPD sputum shows two distinct peaks at 1035 and 1021cm-1, whereas the CF 

sputum shows only one at 1029.80cm-1 matching the DNA spectrum peak at 

1028.98cm-1. Peaks at these wavenumbers are associated with C-O bonds in pentose 

and hexose rings. The sugars found in mucin glycoprotein glycan chains are hexose 

ring structures whereas the sugars in DNA are deoxy-ribose pentose structures.  

Recent work has identified potential IR bands which could be markers of 

many pentose and hexose sugars, where 1011cm-1 is suggested as a potential marker for 

deoxy-ribose (Wiercigroch et al., 2017). The authors did not identify a peak at or 

around 1028cm-1 for deoxy-ribose, although phosphate is known to produce an 

absorption band within this region (Fredericks, Bennett, Williams, & Rogers, 2012), so 

it is possible that the peak seen at 1028.98cm-1 in the DNA spectrum (Figure 6-7) 

could correspond to the phosphate backbone of the DNA molecule. Similarly, the 

peak identified at 1029.80cm-1 in the CF sputum spectrum may contain contributions 

from the phosphate backbone of any DNA present in the sputum. A peak in the DNA 

spectrum is identified at 1011cm-1, and a change in the shape of the CF spectrum is 

observable, although a peak is not identified (Figure 6-8). This change in peak shape 
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in the CF sputum spectrum may be due to the presence of the deoxy-ribose sugars 

present in the DNA backbone.  

 

Figure 6-8: Second derivative spectra of sputum samples from randomly selected 
COPD (red), and CF (blue) patients and DNA (green) from 1030-980cm

-1
. Positions of 

detected peaks are highlighted. 

 Accurate identification of the characteristics of CF sputum spectra is 

important for accurately characterising OligoG/mucin interactions by FTIR 

spectroscopy. Molecular dynamics simulations, FTIR spectroscopy and isothermal 

titration calorimetry experiments have suggested that OligoG does not interact with 

directly with DNA (Powell et al., 2018), but DNA does produce some strong IR 

absorption bands which could influence the parameters of mucin and/or OligoG 

peaks. Whilst current results suggest that OligoG and DNA in sputum do not 

interact, the elevated levels of DNA in CF sputum are known to change the 

viscoelastic properties of sputum. Therefore, this change in physical properties may 

influence the interaction of OligoG with COPD sputum mucins and this should be 

taken into account before any potential studies of OligoG in COPD patients.  
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6.3.2.2 FTIR Spectra of OligoG-incubated CF Sputum Spectra 

 

Figure 6-9: Vector-normalised, baseline-corrected IR spectra from (a) 1800-900cm
-1
 and 

(b) 1200-900cm
-1
, and (c) second-derivative spectra from 1200-900cm

-1
 of OligoG (grey), 

control CF-sputum (black), and OligoG-incubated-CF sputum in progressively 
increasing final concentrations from 0.02% to 20% (orange 0.02%; red 0.05%; yellow 
0.1%; pink 0.2%, dark-green 0.5%; light-green 1.0%; light-blue 1.5%; dark-blue 2.0%). As 
the OligoG concentration in sputum increases, the sputum spectra show peaks which 
are more similar to those observed in the OligoG spectrum. This is especially evident 
in the glycogen-rich region of the spectrum (b and c). 

Sputum was obtained from a CF patient at time of screening/recruitment to 

the study, prior to receiving any dose of OligoG, and was incubated with OligoG 

solutions at varying concentrations from 0% (w/v) to 20% (w/v) at a 1 in 10 dilution 

(OligoG:Sputum) for final OligoG-in-sputum concentrations of 0:2% (w/v). Sputum 

obtained from the screening/recruitment stage was chosen as the patient had not yet 

been exposed to either the drug or placebo. Therefore, it was possible to certain that 

there was no residual OligoG presence in the sputum, so baseline levels of absorption 

at the wavenumbers detailed above (Table 6-3) could be established. This also 

allowed any change in absorption to be directly attributed to OligoG incubation. 

Sputum samples were incubated with OligoG as described in the methods section. 

FTIR spectra of CF sputum incubated with OligoG at increasing 

concentrations were acquired and then analysed. As the concentration of OligoG in 
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sputum is increased, the absorbance intensity of wavenumbers corresponding to 

OligoG peaks shows a corresponding increase (Figure 6-9). This is most strongly 

evident within the glycogen-rich region (Figure 6-9b), where OligoG-associated peaks 

in the sputum spectra become evident at low concentrations of OligoG. For example, 

an increase in absorption at approximately 1030cm-1 can be observed at 0.2% w/v 

OligoG in sputum, which is detectable as an additional peak to the sputum glycogen 

peak at approximately 1065cm-1 (Table 6-5). As the concentration of OligoG is further 

increased, the absorption peak profile within the glycogen-rich region becomes more 

similar to that of OligoG (Table 6-5).  

 

OligoG Control 0% 0.02% 0.05% 0.10% 0.20% 0.50% 1.00% 1.50% 2.00% 
 

1127.413 
(0.127)        

1122.4861 
(0.0608) 

1122.8391 
(0.041) 

1123.0066 
(0.0255) 

1088.77 
(0.859)         

1082.1809 
(0.0143) 

1082.2961 
(0.0425) 

 
1066.9449 

(0.1719) 
1067.0956 
(0.7342) 

1066.431 
(0.1134) 

1069.5283 
(0.1396) 

1065.1708 
(1.8751) 

1065.2001 
(0.2937)      

    
1038.3549 

(0)        
1031.132 
(0.214)      

1032.4149 
(0) 

1028.6331 
(0.258) 

1027.5035 
(0.0409) 

1026.675 
(0.1782) 

1026.7871 
(0.3189) 

951.0141 
(0.159)        

948.9743 
(0.1039) 

948.7242 
(0.2563) 

948.9345 
(0.2694) 

Table 6-5: Average wavenumber (cm
-1
) positions of IR-absorbance peaks detected in 

control and OligoG-incubated CF sputum; standard deviations shown in brackets. 
Peaks associated with OligoG are highlighted in red. 
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OligoG Control  
CF Sputum 

Final OligoG concentration in Incubated CF Sputum (w/v) 

0% 0.02% 0.05% 0.10% 0.20% 0.50% 1.00% 1.50% 2.00% 

 
1191.0853 
(0.99918) 

1190.6669 
(0.55083) 

1190.7585 
(0.02175) 

1192.3993 
(0.44497) 

1192.5308 
(0.36911) 

1191.8661 
(0.3437) 

    

 
1170.0004 
(0.5606) 

1170.6249 
(0.18043) 

1166.7727 
(2.77815) 

 1166.7367 
(1.97165) 

1168.588 
(0.1487) 

1163.9194 
(0) 

1162.1498 
(0.51823) 

1161.5884 
(0.78533) 

1161.2218 
(0.05028) 

 
1155.4481 
(2.10901) 

1153.0801 
(0.43105) 

1154.0896 
(0.92342) 

1154.9698 
(1.02161) 

1156.4085 
(0) 

1155.3805 
(0.25215) 

1159.2292 
(0.36065) 

   

1126.751 
(0.309) 

  1127.3124 
(0) 

1125.7938 
(0.2803) 

1124.0108 
(0.29666) 

1123.5928 
(1.04382) 

1123.8721 
(0.05495) 

1124.1794 
(0.10059) 

1124.2326 
(0.17386) 

1124.1798 
(0.07847) 

 
1116.1911 
(0.45161) 

1116.1528 
(0.42845) 

1115.0315 
(1.0284) 

1118.6097 
(0) 

      

1095.923 
(0.387) 

1097.0973 
(0) 

  1095.8289 
(0.5008) 

1094.9142 
(0.00525) 

1096.4296 
(0.2527) 

1094.6252 
(0.43936) 

1094.289 
(0) 

  

1084.971 
(0.179) 

1079.2034 
(0.73885) 

1079.1527 
(0.25292) 

1077.9319 
(0.51803) 

1079.4059 
(0.71975) 

1080.1017 
(0.13945) 

1080.8203 
(0.93451) 

1081.9415 
(0.27913) 

1082.5214 
(0.31799) 

1082.9123 
(0.19448) 

1082.812 
(0.07384) 

1064.257 
(0.531) 

1066.9644 
(0) 

1066.3775 
(0) 

1066.4709 
(0.06174) 

1061.0571 
(0) 

1064.6519 
(2.60876) 

1065.3826 
(0.28463) 

1062.5991 
(0.08478) 

1062.0891 
(0.61948) 

1061.5873 
(0.27269) 

1061.8409 
(0.23022) 

 
 1055.5424 

(0) 
1055.2209 
(0.07104) 

       

1047.397 
(0.712) 

    1043.9682 
 (0) 

1043.1787 
(0.58235) 

1044.4327 
(0.40601) 

1045.2247 
(0.0712) 

1045.5316 
(0.17528) 

1045.4009 
(0.35013) 

 
1035.3473 
(2.02689) 

1034.5655 
(2.8002) 

1037.5503 
(0.45267) 

       

1029.659 
(0.190) 

1021.3348 
(0.28405) 

1023.3314 
(2.67252) 

1027.3264 
(0.26962) 

1027.6543 
(1.80979) 

1027.4842 
(0.81041) 

1027.112 
(0.2545) 

1026.1277 
(0.08476) 

1026.025 
(0.1221) 

1025.6953 
(0.07122) 

1025.8984 
(0.22997) 

 
 1018.3135 

(0) 
 1008.1413  

(0) 
 1010.1535 

(0.246) 
1008.9127 

(0) 
1009.1897 
(0.23763) 

1009.3927 
(0.09058) 

1009.5042 
(0.15065) 

997.239 
(0.182) 

993.5119 
(5.81825) 

 996.3369  
(0) 

996.3228 
(1.08228) 

995.9859 
(0.09168) 

995.3628 
(0.55131) 

994.7463 
(0.13209) 

994.8793 
(0.06948) 

994.2801 
(0.14314) 

994.3658 
(0.16696) 

977.964 
(0.228) 

968.329  
(0.17396) 

968.7587 
(0.18003) 

968.6719 
(0.25908) 

968.5463 
(0.04051) 

968.5094 
(0.31091) 

969.0161 
(0.15093) 

968.7541 
(0.18761) 

971.8285 
(2.07134) 

974.5493 
(0.46451) 

974.8625 
(0.5101) 

951.4249 
(0.158) 

948.03  
(0.79115) 

947.4837 
(0.0641) 

947.2096 
(1.47375) 

947.8127 
(0.44371) 

948.2972 
(0.5146) 

948.3355 
(0.3151) 

948.5597 
(0.19562) 

949.0491 
(0.02534) 

948.9595 
(0.11088) 

949.2323 
(0.2333) 

935.826 
(0.331) 

     934.4534 
(0) 

933.7569 
(0) 

934.4631 
(0.00036) 

933.9976 
(0.17362) 

934.184 
(0.11981) 

 923.8742 
(1.21977) 

923.6613 
(0.92118) 

923.285 
(0.46075) 

922.9677 
(0.18064) 

923.4774 
(0.30518) 

922.8006 
(0.35753) 

921.6212 
(1.1278) 

   

905.5773 
(0.256) 

 907.3613 
(0) 

907.7411 
(0) 

       

Table 6-6: Average wavenumber (cm
-1
) positions of second-derivative peaks detected in control and OligoG-incubated CF sputum; standard 

deviations shown in brackets. Peaks corresponding with OligoG are highlighted in red.
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6.3.2.2 Absorption Curves 

OligoG-incubated sputum IR-spectra were generated and the absorption at 

peak positions corresponding to major OligoG absorption peaks were plotted against 

the corresponding concentration of OligoG in sputum. Table 6-2 shows the 

wavenumbers of interest which were examined. The observed absorbance values were 

plotted against OligoG concentration in sputum. Linear and fourth-order polynomial 

trend lines were fitted to the observed data and the goodness-of-fit of trend lines 

were evaluated using Pearson’s Chi Square. The equations of both linear and 

polynomial trend lines are shown on each plot. 

  

Figure 6-10: Relative absorbance (AU) of 1601cm
-1
, against final concentration of OligoG 

incubated in sputum (w/v) with linear (red) and polynomial (blue) trend lines fitted to 
the average absorbance at each concentration (black). 
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Figure 6-11: Relative absorbance (AU) of 1412cm
-1
, against final concentration of OligoG 

incubated in sputum (w/v) with linear (red) and polynomial (blue) trend lines fitted to 
the average absorbance at each concentration (black). 

 

Figure 6-12: Relative absorbance (AU) of 1125cm
-1
, against final concentration of OligoG 

incubated in sputum (w/v) with linear (red) and polynomial (blue) trend lines fitted to 
the average absorbance at each concentration (black). 
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Figure 6-13: Relative absorbance (AU) of 1089cm
-1
, against final concentration of 

OligoG incubated in sputum (w/v) with linear (red) and polynomial (blue) trend lines 
fitted to the average absorbance at each concentration (black). 

 

Figure 6-14: Relative absorbance (AU) of 1028cm
-1
, against final concentration of 

OligoG incubated in sputum (w/v) with linear (red) and polynomial (blue) trend lines 
fitted to the average absorbance at each concentration (black). 
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Figure 6-15: Relative absorbance (AU) of 948cm
-1
, against final concentration of OligoG 

incubated in sputum (w/v) with linear (red) and polynomial (blue) trend lines fitted to 
the average absorbance at each concentration (black). 

 The absorption standard curves above all show an increase of absorption at 

OligoG-associated wavenumbers at increased concentrations of OligoG in CF-

sputum.  

Wavenumber 
(cm-1) 

Pearson’s 
Chi Square 
to Linear 
Fit 

Pearson’s Chi 
Square to 
Polynomial Fit 

OligoG concentration 
statistically significantly 
different from control (% 
w/v) 

1601 0.91239 
(p=0.000601) 

0.98004 
(p=0.0000036) 

0.05 
(p=0.0043) 

1412 0.88684 
(p=0.001435) 

0.97608 
(p=0.0000068) 

0.05 
(p=0.0072) 

1125 0.89361 
(p=0.001164) 

0.97643 
(p=0.0000065) 

0.05 
(p=0.0056) 

1086 0.96545 
(0.00002441) 

0.98793 
(p=0.00000063) 

0.10 
(p=0.0271) 

1028 0.96923 
(p=0.000016) 

0.99722 
(p=0.000000004) 

0.05 
(p=0.0117) 

948 0.9801 
(p=0.0000036) 

0.99776 
(p=0.000000002) 

0.10 
(p=0.0277) 

Table 6-7: Summary of standard curves of absorption at each OligoG-associated 
wavenumber (cm

-1
), with Pearson’s correlation coefficient for each fit to the observed 

data shown. The lowest final concentration (w/v) of OligoG in sputum which was 
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found to have statistically significantly (p<0.05) increased absorption compared to the 
control sputum sample is also shown for each wavenumber. Calculated p-values are 
shown in parenthesis. 

6.3.2.3 Correlation Analysis 

Each IR-spectrum of OligoG-incubated and control CF-sputum was correlated 

to a reference OligoG spectrum using the non-parametric Spearman’s Rho test of 

correlation. Both absorbance and second-derivative spectra were correlated to the 

corresponding OligoG absorbance or second-derivative spectrum. The most distinct 

peaks in the OligoG spectrum are found within the glycogen-rich region (Figure 6-2), 

from 1200-900cm-1. For this reason, the correlation analysis was focussed within this 

region.  

 

Figure 6-16: Spearman’s Rho of OligoG-incubated-sputum absorbance spectra to the 
reference OligoG absorbance spectrum against the final concentration of OligoG. As 
the concentration of OligoG in sputum is increased, the corresponding Spearman’s 
Rho increases. The average Spearman’s Rho coefficient is shown (red line) and a 
fourth-order polynomial trendline (black line) has been fitted, with an R

2
 of 0.9778 
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Figure 6-17: Spearman’s Rho of OligoG-incubated-sputum second-derivative spectra to 
the reference OligoG second-derivative spectrum against the final concentration of 
OligoG. As the concentration of OligoG in sputum is increased, the corresponding 
Spearman’s Rho increases. The average Spearman’s Rho coefficient is shown (red line) 
and a third-order polynomial trendline (black line) has been fitted, with an R

2
 of 

0.9886 

 

Figure 6-18: The relationship between the Spearman’s Rho coefficients for the 
absorbance and second-derivative spectra as the concentration of OligoG in sputum is 
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increased is shown. The correlation coefficient between the second-derivative sputum 
spectra and OligoG reference spectrum is low at concentrations of OligoG below 0.5% 
(w/v), but is statistically significantly increased at 0.02% (w/v). The correlation 
coefficients of the absorbance sputum spectra all show a high degree of similarity to 
the OligoG reference spectrum, with all coefficients being greater than 0.75. 

Correlation analysis shows how an increasing concentration of OligoG 

corresponds with an increase in Spearman’s Rho coefficient when comparing the 

sputum spectrum to an OligoG reference spectrum. An increase in correlation can be 

observed even at 0.02% OligoG, which was found to be statistically significant at the 

95% confidence level for both the absorbance spectra (one-tailed p = 0.0142), and 

second-derivative spectra (one-tailed p = 0.0278). Correlation coefficients for all other 

concentrations were also found to be statistically significantly different from the non-

incubated control and 0%-OligoG incubated sputum (p<0.05). The correlation 

coefficients for the control and 0%-OligoG incubated sputum were not found to be 

statistically significantly different from each other at the 95% confidence level, for 

either the absorbance or second-derivative spectra (absorbance p = 0.2261, second-

derivative p = 0.6585), showing that the differences observed were not due to the 

experimental conditions.  

6.3.3 Detecting OligoG in Treated, Placebo and Control CF Patient Sputum 

Samples 

 Sputum samples were collected from CF patients at the time of screening, and 

during the OligoG- and placebo-treatment phases. Samples were analysed by FTIR to 

determine the capability FTIR to detect OligoG in sputum and distinguish it from 

placebo treatment. 

6.3.3.1 Correlation Analysis 

In the previous section of this chapter, correlation analysis was shown to be 

effective for determining OligoG concentration in OligoG-incubated sputum. In this 

section, CF-patient sputum samples from screening and both treatment phases were 

analysed and the IR-spectra of sputum were compared to a reference average OligoG 

spectrum. Correlation coefficients of these sputum spectra to the reference OligoG 

spectrum were calculated using Spearman’s Rho and a two-tailed hypothesis. 

Correlation coefficients were calculated for absorbance and second-derivative spectra, 

in the wavenumber region of 1200-900cm-1. This region was identified as a potential 

region-of-interest because, as seen from Figure 6-2 to Figure 6-5, OligoG produces 

many strong and distinct bands within the region. 
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Figure 6-19: Correlation coefficient scatterplot of absorbance and second-derivative CF 
patient sputum spectra to the absorbance and second-derivative OligoG spectrum for 
placebo-treated sputum (blue) and OligoG-treated sputum (red) from patient no. 
82606003. 

 

Figure 6-20: Correlation coefficient scatterplot of absorbance and second-derivative CF 
patient sputum spectra to the absorbance and second-derivative OligoG spectrum for 
placebo-treated sputum (blue) and OligoG-treated sputum (red) from patient no. 
82602002. 
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The scatterplots above (Figure 6-19 & Figure 6-20) show that by calculating 

the correlation of the sputum absorbance or second-derivative spectrum to the 

OligoG absorbance or second-derivative spectrum respectively it is possible to 

distinguish between a pre-treatment sample which has not received any OligoG 

(blue) and a treatment phase sample which has received OligoG (red). Each group 

clusters together well, with few outliers and clear distinction between group 

boundaries. The variability seen in the plots could be due to the heterogeneous 

nature of sputum itself and the innate variability seen between patients. However 

despite this variation, this method is able to distinctly separate OligoG-treated 

sputum from non-treated sputum.  

This analysis was then expanded to all patients recruited in the trial who had 

received both placebo and OligoG treatment. All of the correlation coefficients were 

plotted together to build a linear regression model for detection of OligoG in CF 

sputum (Figure 6-21). Table 6-8 shows the sensitivity and specificity of the model at 

86 and 90%, respectively, for correct prediction of OligoG presence. 

 

Figure 6-21: Scatterplot plot of sputum-OligoG correlation coefficients of each CF 
patient sputum sample from each phase of the trial; placebo (green), OligoG 
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treatment (red), screening samples obtained pre-test OligoG dose (blue) and 
screening samples obtained post-test OligoG dose.  

 

 Treated Placebo Screening/Day 
0 

Placebo & 
Screening/Day 
0 

Total Samples 29 27 23 50 

Correctly Predicted 25 22 23 45 

Incorrectly Predicted 4 5 0 5 

Sensitivity 0.86    

Specificity  0.81 1.00 0.90 

Table 6-8: Sensitivity and specificity scores for prediction of OligoG presence in CF 
sputum, showing overall sensitivity and specificity scores of 86% and 90%, 
respectively. 

6.3.3 OligoG and Calcium Ion Interaction 

OligoG is known to have calcium chelating properties (Ermund et al., 2017), 

however the mode of action is unclear. This chapter sought to further characterise 

molecular interactions between OligoG and Ca2+ using FTIR spectroscopy. OligoG at 

2% w/v concentration was incubated with varying concentrations of Ca2+ from 0mM 

to 5mM and FTIR analysis was carried out.  
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Figure 6-22: (A) Absorbance and (B) second-derivative average spectra from 1200-
900cm

-1
 of 2% w/v OligoG (green), 2% w/v OligoG incubated with 5mM Ca

2+
 (red), and 

5mM Ca
2+

 (black). 

 The average IR-spectrum of OligoG incubated with 5mM Ca2+ ions shows 

distinct blue shifts towards lower wavenumbers in the 1200-900cm-1 region, compared 

to OligoG incubated with only dH2O (Figure 6-22). This is indicative of electrostatic 

interactions between the OligoG and Ca2+ ions, causing the C-O and C-H bonds of the 

OligoG molecule to exist at a higher vibrational energy state. Marked peak shifts are 

seen from 951cm-1 to 947cm-1, and from 998cm-1 to 990cm-1 in Ca2+-incubated OligoG. 

The large shift from 998cm-1 to 900cm-1 suggests interaction between the glycosidic 

linkage of OligoG and Ca2+ ions. Another peak shift can be observed from 1031cm-1 to 

1025cm-1, indicating that the Ca2+ ions interact with the C-O bonds present in the 

pentose rings of the OligoG monosaccharide units. Notably, a small peak found 

around 1050cm-1 in the non-incubated OligoG second-derivative average spectrum 

disappears altogether in the Ca2+-incubated OligoG average second-derivative 

spectrum (Figure 6-22(b)). Glycosidic linkage bonds (CO-O-CO) are associated with 

IR-absorption from 1050-1040cm-1. This could indicate that Ca2+ chelation by OligoG 
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may influence the bending/stretching moments of the glycosidic bonds between 

OligoG monosaccharide units.  

6.3.4 FTIR Microspectroscopy Imaging 

FTIR microspectroscopy was carried out on pre-treatment screening CF 

sputum (AP114) and OligoG-treated CF sputum (AP148) samples produced by the 

same patient and 2D maps showing the intensity across specific spectral regions 

relating to biologically significant molecular bonds across the sputum were 

generated. The spectral regions investigated are the i) amide I peak (~1718-1650cm-1), 

ii) glycogen-rich region (~1177-931cm-1) and iii) an OligoG-specific peak (1029cm-1). 

The peak at 1029cm-1 was chosen for map generation as the second-derivative 

spectrum of OligoG shows the largest peak at 1029cm-1 (Figure 6-3). 

 

Figure 6-23: FTIR microspectroscopy images of CF sputum from pre-treatment 
screening phase AP114 (a) and OligoG-treatment phase AP148 (b). The maps for each 
treatment phase are all from the same area of sputum and relate to the (i) amide I 
region, (ii) glycogen-rich region, and (iii) the area under 1029cm

-1
. The region labelled 

‘Z’ is highlighted as a potential hot spot for OligoG interaction with the mucus mucins. 
Taken together, the amide I region (b(i)) and glycogen-rich region (b(ii)) show a high 
concentration of mucin. This region also shows a high concentration of the OligoG-
specific peak at 1029cm

-1
. This same effect is not seen in the pre-treatment phase 

sputum, which show an overall low intensity of 1029cm
-1
, despite higher levels of 

mucin across the sample. 

Area-under-the-curve (AUC) analysis within the amide I, glycogen-rich and 

OligoG-specific spectral regions highlighted how absorption of OligoG-specific peaks 

 

a
i 

a 
ii 

a 
iii 

b
i 

b 
ii 

b 
iii 

Z Z Z 



Charles Brilliant 
 

  218 
 

is independent of absorption of mucin glycoproteins. This is demonstrated by the 

screening sample (Figure 6-23) showing a lower overall AUC value within the OligoG-

specific region (Figure 6-23a(iii)) compared to the amide I (Figure 6-23a(i)) and 

glycogen-rich (Figure 6-23a(ii)) regions, whilst the OligoG-treatment phase sample 

(Figure 6-23b) shows AUC values for the OligoG-specific region (figure 6-19b(iii)) 

comparable to those observed in the amide I (Figure 6-23b(i)) and glycogen-rich 

regions (Figure 6-23b(ii)). 

Sample ID & Map Spectral Region Z min Z max 

(a/i) Screening  Amide I -1.10 8.75 

(a/ii) Screening  Glycogen-rich 4.68 21.91 

(a/iii) Screening OligoG-specific 

1029cm-1 

0.00741 0.875 

(b/i) OligoG-

treatment 

Amide I -1.72 3.85 

(b/ii) OligoG-

treatment 

Glycogen-rich 9.04 26.80 

(b/iii) OligoG-

treatment 

OligoG-specific 

1029cm-1 

0.926 4.36 

Table 6-9: Range of spectral intensities for each spectral region, across each sample.  

6.4 Discussion 

 This chapter focussed on further evaluating FTIR spectroscopy as a tool for 

use in clinical settings; specifically in this case, the aim was to assess the capability of 

FTIR to detect the presence of a novel therapeutic drug, OligoG, in CF patients’ 

sputum throughout the duration of a Phase IIb, placebo-controlled, crossover study.  

CF patients require constant therapy and monitoring in order to appropriately 

manage their disease (Button et al., 2016; Feiten et al., 2016). There is currently no 

cure for CF, but the median age of survival has steadily improved in recent times 

(Cystic Fibrosis Foundation, 2016). This is mainly due to improvements in treating 

persistent airway infection and enhancing airway mucus clearance (Elborn, 2016). The 

alginate-based drug OligoG is thought to have promise as a novel therapy for CF 

patients, with multiple studies demonstrating its anti-microbial and mucolytic 

properties (Powell et al., 2013; Pritchard et al., 2016, 2017; Roberts et al., 2013; 

Tøndervik et al., 2014).  

As part of on-going clinical studies into the efficacy of OligoG as an adjunct-

therapy for CF, this thesis carried out FTIR analysis on a subset of sputum samples 
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from CF-patients who have received OligoG or placebo treatment over a 28 day 

period before crossing over into the next phase. This work aimed to assess whether it 

is possible to use FTIR technology to detect OligoG within CF patient sputum 

samples, following a simple protocol and involving minimal sample preparation. The 

overall goal of this work was to develop a protocol centred around FTIR spectroscopy 

to be used for drug screening in biofluids which could provide clinicians and 

healthcare providers with valuable information pertaining to drug uptake/adherence 

to therapy, and persistence of the drug within specific biofluids which could have 

direct implications on the required dose.  

The results show that FTIR is a viable tool for detecting the presence/absence 

of OligoG within raw sputum, with minimal statistical and spectral analysis. Using 

multiple analyses this work was able to distinguish pre-treatment phase CF sputum 

from OligoG-treatment phase CF sputum on a patient-by-patient basis. The strongest 

technique explored in this study is the calculation of Spearman’s Rho correlation 

coefficient of second-derivative and absorbance sputum spectra to second-derivative 

and absorbance OligoG spectra respectively. Dosing experiments showed that OligoG 

could be identified in sputum by statistically significant increases in absorbance at all 

key wavenumbers at concentrations of 0.1% (w/v) and higher (Table 6-7). 

All patients recruited to the trial received an initial test-dose of OligoG at their 

screening visit. This test-dose was either given prior to, or after production of the 

patient’s sputum sample. Review of the patient data made clear which patients had 

received a dose of OligoG prior to providing their screening sputum sample. This 

allowed the classification of screening samples based on the time of sputum 

production and OligoG test dosing. Subsequent calculation of overall specificity 

scores for correctly identifying OligoG in sputum was shown to be 90% (Table 6-8). 

 In all patients a relationship was identified indicating an increase in 

correlation between sputum and OligoG spectra after treatment. This suggests that 

OligoG at the therapeutic concentration of 0.2% changes the molecular environment 

of sputum significantly enough to be detected by FTIR. The minimum effective dose 

for OligoG to cause biofilm disruption is 2% (w/v) (Powell et al., 2018), therefore an 

FTIR-based protocol could readily detect therapeutic concentrations of OligoG in 

patient sputum samples.  
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Data from FTIR microspectroscopy suggest that OligoG is primarily interacting 

with the glycan chains present on the mucin glycoprotein backbone because areas of 

higher concentration of OligoG correlate closely with areas of higher mucin 

concentration (Figure 6-23).  

6.5 Conclusions 

OligoG has been shown to be an exciting and novel potential therapy for CF 

patients. Studies such as this are important for establishing how long OligoG persists 

in respiratory mucus, but are also for showing how FTIR can be used to enhance the 

management of chronic disease. Using FTIR to monitor CF patients could allow 

clinicians and healthcare providers to tailor treatment with OligoG based on patient’s 

specific needs. Patient adherence to CF therapy can be low, but electronic monitoring 

of adherence in CF patients has been suggested to be a driver to enhance treatment 

adherence (Narayanan, Mainz, Gala, Tabori, & Grossoehme, 2017). A simple protocol 

based on FTIR for detection of OligoG in sputum could help to ensure that patients 

are taking the optimum dosage of OligoG.  
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Chapter 7 

General Discussion, Final Conclusions and Future Work 
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7.1 General Discussion 

 Chronic respiratory diseases, such as COPD, lung cancer and CF, are a major 

burden on healthcare systems in the UK and across the world, and a significant cause 

of patient mortality yearly. Patients typically have a poorer QOL and reduced life 

expectancy, compared to their healthy peers. The diseases discussed in this thesis are 

all characterised by damage to the respiratory system which is associated with 

reduced lung function, directly impacting on the patient’s QOL (Rose & Voynow, 

2006). Although the particular form of damage caused by each specific disease is 

unique, and requires bespoke treatment, these diseases do share certain aetiologies, 

such as a chronic inflammatory response within the airways, leading to increased 

mucin production and secretion. 

Through enhanced management and/or screening of such diseases, it would 

be possible to see improvements in patient care and subsequent reductions in 

disease-related patient mortality. Indeed, much of the current advice and guidelines 

for COPD, CF and lung cancer focuses on enhanced monitoring and screening of 

patients to improve the efficiency of healthcare provision and understand disease 

progression more fully (Cystic Fibrosis Foundation, 2016; Global Initiative for Chronic 

Obstructive Lung Disease, 2018; Latimer & Mott, 2015; Stewart & Wild, 2014). The 

FTIR spectrometer is simple & inexpensive to use, IR spectra of sputum are non-

invasive and rapid to generate. A vast amount of molecular structural information 

about the patient’s sputum sample can be generated in a short timeframe. The work 

contained within this thesis clearly demonstrates the utility of FTIR in respiratory 

disease management through raw sputum analysis. Indeed, this thesis adds weight to 

the mounting body of evidence that applications involving FTIR for diagnosing 

diseases from biofluids could be viable for implementation into clinical pathways 

(Baker et al., 2015; Bird et al., 2012; Hands et al., 2016; P. D. Lewis et al., 2010; Menzies 

et al., 2014; Rodrigues et al., 2017; Smith et al., 2016). 

 The workflow for generating IR spectra of a sputum sample is very simple, 

involving little-to-no sample pre-processing or preparation, and could be readily 

implemented within a pathology laboratory. Once a spectrum is generated it must 

first be analysed, before any conclusions can be made about the patient’s current 

state-of-health. However, analysis of raw biological sample-spectra is complex, due to 

the presence of overlapping bands within the spectrum which may obscure peaks of 
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interest, and spectral artefacts which can arise from inappropriate sampling 

procedures (Baker et al., 2015). Therefore it would be inadvisable to introduce FTIR 

spectroscopy into the clinic without first implementing a series of modifications to 

the spectrometer and controlling software in order to make the devices more suitable 

for the clinical environment, whether that is primary or secondary care focussed. 

Discussions must be held with primary and secondary care clinicians, patients, 

clinical research teams and pathology laboratories to identify the particular needs of 

each potential user-base for an FTIR-based screening/diagnostic technology. During 

such discussions, it would be important to factor-in the costs associated with training 

laboratory staff to use FTIR screening against the costs of training for other 

methodologies. 

7.1.1 FTIR for Detection and Prediction of COPD Exacerbation 

 FTIR spectroscopy on COPD sputum samples to detect exacerbation and 

distinguish it from baseline disease proved to be problematic. The distributions of 

FTIR spectrum peaks and absorbencies were found to be highly similar for both 

baseline and exacerbating COPD patients. Two peak positions were found to be 

statistically significantly different between the disease states, but this was deemed 

unreliable due to the relatively low number of patient spectra in which both peaks are 

always detectable. It was thought that one of the main confounding factors was the 

uncertainty whether the patient had recently, or was soon to have an exacerbation, 

which could influence the biophysical properties of the sputum. Such ambiguity was 

thought to be the major reason many COPD baseline and exacerbation spectra shared 

numerous spectral characteristics. 

 Prediction of exacerbation through time-series analysis of COPD patient 

sputum sought to account for the uncertainty based around exacerbation timelines. A 

predictive algorithm based on inflammation-associated wavenumbers was generated 

and tested on the dataset. The algorithm was able to detect 60% of all individual 

exacerbation episodes in the study, but a very high number of false positive 

predictions were also made, limiting the effectiveness of the algorithm.  

7.1.2 Lung Cancer Diagnosis by FTIR Spectroscopy 

 FTIR spectroscopy was carried out on sputum samples collected from lung 

cancer patients in order to create diagnostic algorithms which could be used to detect 

lung cancer. The work presented in this thesis showed how lung cancer has a distinct 

spectral signature, with little variation observed within the lung cancer cohort. A 
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series of predictive linear regression models was developed, capable of distinguishing 

lung cancer from non-cancer respiratory disease with overall sensitivity and 

specificity scores greater than 80%. The best performing single models showed 

sensitivity scores of 100% with >85% specificity. 

Due to the low running costs and simplicity of the protocol used in this thesis, 

the work represents a major potential for FTIR to be used in the lung cancer 

diagnostics pathway as a potential screening tool for early lung cancer detection. 

FTIR spectrometers could be in place in primary care scenarios, for use by a clinician 

as a tool to reduce the uncertainty around potential lung cancer diagnosis when a 

patient arrives in primary care displaying symptoms which could suggest carcinoma 

presence. It could be possible that such a tool could reduce the numbers of patients 

being referred to X-ray, CT-scans or bronchoscopies, by rapid identification of 

patients who can be said, within a degree of certainty, to not currently have lung 

cancer, or a pre-malignancy. Further work would need to be carried out to fully 

characterise the ability of an FTIR-based protocol to detect early-stage lung cancer in 

raw sputum and to state with an extremely high degree of certainty that any given 

patient does not currently have lung cancer.  

7.1.3 OligoG Monitoring in CF Sputum by FTIR 

 OligoG is an exciting novel therapeutic for CF patient treatment and 

management. It has antibacterial, antifungal and mucolytic properties, all of which 

work to alleviate the symptom burden on CF patients. However, the mode of action 

of OligoG in the CF lung was uncertain (Ermund et al., 2017; Hengzhuang et al., 2016; 

Pritchard et al., 2017). It was unclear if OligoG was detectable in airway mucus after 

treatment is, so an FTIR protocol was developed to quantify the levels of OligoG 

present in the lung through comparisons with an OligoG reference spectrum. This 

method proved to be highly powerful, capable of sensitively detecting concentrations 

of OligoG in sputum as low as 0.05% (w/v), well below the minimum effective dosage 

of 2% (w/v) (Powell et al., 2018). This represents an important finding for clinicians of 

CF patients; through rapid FTIR analysis an estimation of the current OligoG 

concentrations in the airways can be calculated, helping clinicians determine a CF 

patient’s adherence to the therapy. 
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7.2 Spectral Biobank Libraries 

Due to the low-cost, non-destructive and rapid nature of FTIR spectroscopy, 

performing IR spectroscopy on patient biofluids and tissues presents the opportunity 

for the creation of large spectral libraries. These libraries would contain IR spectra of 

patient samples collected from a multitude of diseases, and sample sources. An 

unknown sample could then be compared against the spectral biobank, allowing for 

qualitative identification of the sample. This principle could be extended from 

diagnosis of respiratory disease through sputum analysis, to detection and qualitative 

identification of bacterial and viral pathogens in sputum. Indeed, studies have shown 

that FTIR chemometric analysis can differentiate bacteria at the genus, species and 

clonal levels (Grewal, Jaiswal, & Jha, 2015; Zarnowiec, Lechowicz, Czerwonka, & Kaca, 

2015).  

Characterisation of individual absorbance bands in IR spectra of biofluids is 

highly complex, due to the varied chemical groups present within the sample (Baker 

et al., 2015). Through collection of samples from thousands of patients, it could be 

possible to identify and account for the variation within patient subgroups that 

contributes to spectral variations. For example, the medication available to COPD 

patients is highly varied and is tailored to the particular patient’s specific needs 

(Global Initiative for Chronic Obstructive Lung Disease, 2018). The use of spectral 

biobank libraries of COPD patients coupled with patient phenotype data, could 

eventually allow COPD patients to be rapidly phenotyped based on the biochemistry 

of their sputum. 

Implementation of FTIR into the clinical setting would allow access to an 

extremely large set of patients of varying diseases and sample sources. Using cloud-

based technology, IR spectra of patient biofluids could be uploaded to a central 

spectrum repository, into which the patient’s clinical information is also loaded. 

Machine-learning and deep-learning algorithms could identify specific patterns 

within the patient groups that could be indicative of disease subtypes. An example of 

such classification in use could eventually be preliminary identification of lung cancer 

subtypes by FTIR spectroscopy. Spectral markers specific to early-stage carcinoma or 

specific histologies may be identifiable through use of large spectral banks. This 

application could help direct the diagnostic pathway for lung cancer most efficiently 

towards the final clinical diagnosis. 
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With respect to COPD, in this thesis it was found that some associations 

could be made between FTIR spectra and certain physiological variables such as FEV1 

(%) predicted, smoking pack-years, and exposure to pollutants. Through collection of 

detailed COPD patient information and sputum samples, these associations could be 

used to build classification models to classify COPD patients into phenotypes based 

on those described in Mirza & Benzo (2017). Use of spectral libraries would allow the 

collection of data from many thousands of patients, which are required by machine-

learning and deep-learning tools for optimal accuracy. 

7.3 Final Conclusions 

COPD exacerbation is a complex disease, influenced by many confounding 

variables, not least the patient themselves. FTIR analysis of COPD patient raw 

sputum was unable to develop a generalised, predictive model for COPD 

exacerbation. Associations between FTIR spectral features and physiological 

characteristics were made, suggesting that sputum does undergo molecular structural 

change which could be related to the patient’s current state of health, but further 

work would be required to fully identify a link between COPD exacerbation status 

and FTIR spectra of raw sputum. 

FTIR analysis of raw sputum samples has clearly shown that lung cancer 

patients can be readily distinguished from non-cancer-chronic-respiratory disease 

patients. The current work has built on an already solid foundation of evidence (P. D. 

Lewis et al., 2010) suggesting that lung cancer patients are spectrally distinct from 

healthy controls. This thesis has expanded this work by increasing the numbers of 

patients analysed and distinguishing lung cancer patients from a clinically relevant 

group of respiratory disease non-cancer controls with up to 100% sensitivity and 

>85% specificity. Through this work, FTIR has been demonstrated to be a highly-

effective tool for detecting lung cancer, using a simple protocol which can be readily 

translated to the clinic. 

This work has also indicated how it is possible to utilise FTIR as a tool for 

monitoring drug retention in CF patients. OligoG has been previously shown to be an 

effective potential therapy for CF patients, but the mode of action and clearance of 

OligoG within the lung was unclear, leading to ambiguity around the maximum safe 

long-term therapeutic dosage. By showing that FTIR can sensitively and specifically 

identify OligoG presence in sputum with no sample pre-processing and a simple 
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algorithm, this thesis has highlighted the potential of FTIR to be used as a long-term 

screening tool for detecting OligoG in raw sputum with applications in CF patient 

management, notably in monitoring patient adherence to therapy.  

7.4 Future Work 

The work presented in this thesis is limited by the multifactorial nature of 

COPD, which is characterised by the many observed phenotypes described in the 

literature. These phenotypes are based on the physical and mental characteristics of 

the patients, such as lung function, frequency of exacerbation, mental and physical 

frailty, and presence of comorbidities (Mirza & Benzo, 2017). Future studies should 

focus on COPD’s multifactorial nature, by recruiting a large cohort of patients to 

account for the inter-patient variability, and allow the production of generalised 

predictive models for exacerbation in each COPD phenotype.  

Interest in the application of FTIR spectroscopic analysis to CF sputum 

samples has been raised. One question which has commonly arisen during this thesis 

is: “Could FTIR spectroscopy be used to detect CF exacerbation?” Pulmonary 

exacerbations of CF are strongly associated with mortality and decreased QOL, and 

the numbers of CF pulmonary exacerbations has not significantly decreased in recent 

years, despite overall improvement in CF patient health and pulmonary function 

(Cystic Fibrosis Foundation, 2016). The CF patient sputum samples used in this work 

were collected only once every two weeks. The work carried out in Chapter 3 in the 

SPEDIC study collected five samples per week, and only minimal evidence for a 

reliable exacerbation prediction protocol was gathered. In order to fully investigate 

the potential of FTIR spectroscopic analysis of raw sputum from CF patients to detect 

pulmonary exacerbation prior to the commencement of symptoms, a large 

longitudinal study collecting many more samples is required. Such a study would also 

have to tightly control the CF patients recruited to the study, to ensure variability 

between patients is minimal. An example of required control may be to ensure that 

all CF patients have the same CFTR mutation. 

 To ensure the efficacy of FTIR for lung cancer detection, a large, blinded, 

multi-centre study must be carried out, comparing the predictive power of FTIR to 

the clinical pathway. This should focus on the capability of FTIR spectroscopy for 

early-stage lung cancer detection, when chances of survival are greatest (McPhail et 

al., 2015). 
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 Miniaturised IR spectroscopy should continue to be developed towards 

eventual use in the clinical environment, either by clinicians in primary, secondary or 

tertiary care scenarios, or by patients in their own homes. A major barrier to entry 

however is the complexity of benchtop FTIR spectrometers. They require trained 

operators to apply samples and interpret the resultant data. For an IR spectrometer to 

be acceptable for use by a clinician or patient, a simplified user interface for 

spectrometer control is required. The user would place a sample on a sampling 

substrate and a clinical output pertaining to the patient’s current state of health is 

given through the use of computer programs.  

 Another barrier is the cost of conventional FTIR spectrometers, which can be 

many thousands of pounds. A significant portion of this cost can be the ATR crystal. 

Silicon is highly transparent for wavenumbers below 10,000cm-1, low-cost and is 

readily manufactured into thin wafers (Wolffenbuttel, 2005). It is therefore an 

excellent candidate as a substrate for applying sputum samples. Recent advances 

within this field have shown that silicon wafers are a viable substrate for use as ATR 

crystals. It is possible to manufacture these wafers at a lower cost than current ATR 

crystals, and a drop in performance in terms of spectrum acquisition when compared 

to a single-bounce diamond ATR crystal is not observed. Future developments of 

miniaturised or home- and/or clinic-based spectrometers could be feasibly based on 

the use of such crystals.  

The low cost of these silicon ATR wafers raises another possible application 

for FTIR spectroscopy of sputum. Earlier in this thesis, the viability of short-term 

storage of sputum at low, or room temperatures was addressed. A review of the 

literature found that mucus-based samples are stable for a period of time, with no 

effect on the quantitative yield of bacterial colonies or mucin stability after short-

term refrigeration (Gastaldi et al., 2000; Kolwijck et al., 2013; Panicker et al., 2007). 

Taken together these two factors raise the possibility of supplying patients of chronic 

respiratory disease, for example CF patients, or patients who have been identified as 

higher-risk for developing lung cancer, with specialised sputum collectors and 

applicators which could apply the sputum to the ATR wafer. These could then be 

transported to a laboratory for analysis, with the results being used to inform the 

patient’s care. 
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The efficacy with which a simple FTIR protocol and analytical procedure has 

been shown to detect the alginate-based CF therapy OligoG suggests that other 

inhaled therapies could be detected in raw sputum by a similar protocol. Adherence 

of CF patients to therapies is known to be a major influencing factor for the patient’s 

QOL (Narayanan et al., 2017). Future studies could be employed to develop 

procedures and algorithms for detection of other inhaled therapies in sputum, such as 

Symdeko or Orkambi, which could in turn help inform management of CF patients 

prescribed with these therapies.  

To finally summarise, FTIR spectroscopy has been shown to have great 

potential in the diagnosis and on-going management of three serious respiratory 

diseases. Rapid diagnosis is known to improve prognosis and reduce mortality: should 

this technology be developed to its fullest, it has the potential to contribute to 

improved survival-rates and reduced costs. It is an exciting area of study which 

promises to increase accurate detection, and help manage the symptoms, of 

potentially life-limiting conditions. 
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Appendix 1: Patient Clinical Data, Grouped by Recruiting Study 

A1.1 SPEDIC COPD Patients Details 

 

Table A1-1: Details of patients recruited through SPEDIC, whose samples were used as part of this thesis: Ref – refused; W/D – withdrawn; NK – Not 
known, CAT – COPD assessment test; MRC – Medical Research Council; FEV – Forced expiratory volume; FVC – Forced Vital Capacity 

Patient 
ID. No. 

Sex Year of 
Birth 

CAT 
Score 

MRC 
breathlessness 

score 

Ever Smoked 
- cigarettes 

Estimated 
Pack-years 

Date of 
Lung 

function 

FEV1 
(Litres) 

FEV1 (% 
Predicted) 

FVC FEV1/FVC 

SP01 M 1950 32 4 No 0 08/22/16 0.76 47.4 1.61 62 
SP02 M 1938 27 5 Yes 50 Ref Ref Ref Ref Ref 
SP03 F 1949 33 5 Yes 108 09/05/16 0.37 18 1.2 45 
SP04 F 1957 29 4 Yes 40 ? 1.01 87 2.25 ? 
SP05 M 1946 25 3 Yes 110 11/14/16 3.13 100 5.46 75 
SP06 M 1946 41 5 Yes 55 09/01/16 1.1 38 3.21 56 
SP07 F 1956 27 5 Yes 38 09/01/16 0.3 15 0.65 45 
SP08 F 1947 14 3 Yes 65 01/18/17 1.36 91 2.16 80 
SP09 M 1952 33 5 Yes 45 05/01/15 0.74 22 2.57 37 
SP10 F 1967 57 4 Yes 22 09/12/16 1.04 40 2.53 40 
SP11 M 1953 20 4 Yes 53 W/D W/D W/D W/D W/D 
SP12 F 1951 38 4 Yes 99 Ref Ref Ref Ref Ref 
SP13 M 1950 40 4 Yes 36 W/D W/D W/D W/D W/D 
SP14 F 1938 24 4 Yes 39 2015 0.74 74 1.86 72 
SP15 M 1952 33 5 Yes 104 W/D W/D W/D W/D W/D 
SP16 F 1947 20 2 Yes 40 04/18/15 1.05 ? 2.08 43 
SP17 M 1956 21 3 Yes 54 10/06/16 1.11 35 2.9 38 
SP18 F 1949 32 3 Yes 49 07/02/15 1.14 54 1.55 73 
SP19 M 1941 27 4 Yes 18 04/29/16 1.31 3.13 4.2 82 
SP20 F 1942 28 4 Yes 60 01/01/16 1.02 55 2.27 46 
SP21 M 1939 37 5 Yes 35 05/01/16 1.32 47 2.67 71 
SP22 M 1978 34 5 Yes 28 09/08/15 0.8 21 2.83 30 
SP23 M 1939 18 4 Yes 8 01/16/16 1.15 48 3.18 40 
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Patient 
ID. No. 

Sex Year of 
Birth 

CAT 
Score 

MRC 
breathlessness 

score 

Ever Smoked 
- cigarettes 

Estimated 
Pack-years 

Date of 
Lung 

function 

FEV1 
(Litres) 

FEV1 (% 
Predicted) 

FVC FEV1/FVC 

SP24 M 1949 33 4 Yes 74 06/15/17 0.76 30 2.8 27 
SP25 M 1945 33 5 Yes 45 10/03/16 1.9 70 2.86 89 
SP26 F 1965 0 3 Yes 6 10/07/16 1.11  1.86 59 
SP27 F 1959 33 4 Yes 86 10/27/15 1.36 61 2.27 59 
SP28 F 1949 31 5 Yes NK Ref Ref Ref Ref Ref 
SP29 F 1949 32 5 Yes 49 W/D W/D W/D W/D W/D 
SP30 F 1945 13 4 Yes 56 09/2015 0.73 33 1.67 56 
SP31 F 1953 36 5 Yes 100 09/26/16 0.55 27 1.64 42 
SP32 M 1957 38 5 Yes 156 01/14/16 2.12 63 3.2 75 
SP33 M 1951 32 5 Yes 94 Ref Ref Ref Ref Ref 
SP34 F 1962 32 2 Yes NK 12/03/15 0.71 28 2.02 44 
SP35 M 1957 30 3 Yes 17 Ref Ref Ref Ref Ref 
SP36 M 1956 38 5 Yes NK 10/01/16 1.79 57 2.61 67 
SP37 M 1937 33 5 Yes 44 W/D W/D W/D W/D W/D 
SP38 F 1947 37 5 Yes 47 08/21/14 0.66 38 1.91 35 
SP39 M 1944 15 4 Yes 62 11/11/16 1.92 32 0.75 45 
SP40 M 1937 30 4 Yes 14 11/14/16 1.6 69 2.78 76 
SP41 F 1944 35 5 No 0 W/D W/D W/D W/D W/D 
SP42 F 1936 37 5 Yes 49 W/D W/D W/D W/D W/D 
SP43 M 1943 34 4 Yes 47 11/23/16 1.53 3.5 3.5 57 
SP44 M 1942 33 3 Yes 90 08/01/16 1.36 59 3.71 37 
SP45 M 1933 26 4 Yes 22 11/23/16 1.43  2.54 56 
SP46 F 1965 28 4 No 0 Ref Ref Ref Ref Ref 
SP47 F 1966 33 2 Yes 31 05/01/16 1.76 78 2.37 88 
SP48 M 1946 27 4 Yes 0 09/29/16 2.52 77 3.98 84 
SP49 M 1942 25 4 Yes 52 06/17/16 1.28  4.01 32 
SP50 M 1944 40 5 Yes 8 09/07/16 1.92  4.13 48 
SP51 M 1951 8 2 Yes 52 W/D W/D W/D W/D W/D 
SP52 M 1935 31 4 Yes 362 04/05/15 2.12  2.81 50 
SP53 F 1953 17 2 Yes 52 10/12/16 1.07 48 2.4 44 
SP54 M 1948 35 5 Yes 177 02/09/15 0.77 26 2.08 37 
SP55 F 1944 25 4 Yes 11 05/24/17 0.55 42 1.98 28 
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A1.2 SPEDIC Non-COPD Patient Details 

 

Table A1-2: Details on non-COPD patients recruited during SPEDIC whose sputum samples were used in this thesis: NK – not known; FEV – forced 
expiratory volume, FVC – forced vital capacity 

Patient 
ID. No. 

MRC 
breathlessne

ss score 

Diagnosis Chronic 
Bronchitis 

Smoking 
Status 

Estimated 
Pack-years 

FEV1 
(Litres

) 

FEV1 (% 
Predicted) 

FVC FEV1/FVC 
Oxygen 

Saturation/ 
Blood Gas 

SPCC003 1 asthma No Yes 5 3.75 88 4.79 92 98 
SPCC004 2 N/K No No 0 1.2 . 2.18 55 96 
SPCC007 1 N/K No Yes 41 1.96 84 2.48 78.99  
SPCC008 2 Glucoma No No 0 1.71 135 2.39 72 98 
SPCC009 2 N/K No Yes 27 3.16 

 
4.35 72 97 

SPCC010 3 N/K No Yes 42 2.3 
 

3.21 72 96 
SPCC011 3 Diabetes No Yes 14 Awaiting 

  
 

SPCC012 4 N/K No Yes 1 n/a n/a n/a n/a 99 
SPCC014 3 N/K No Yes 0 2.08 

 
3.77 55 97 

SPCC015 1 N/K No 
No 

(passive) 
0 2.41 

 
3.53 68 98 

SPCC016 3 Asthma No No 0 1.29 
 

2.1 61 98 
SPCC017 4 heart surgery No No 0 n/a n/a n/a n/a 96 
SPCC018 2 N/K No No 0 2.37 

 
2.94 79 100 

SPCC020 1 chronic asthma Yes Yes 14 1.78 
 

2.9 61 95 
SPCC025 2 asthma No No 0 

    
98 

SPCC026 4 sleep apnoea No Yes 58 
    

92 
SPCC027 2 asthma No No 0 1.19 62 2.03 57 95 
SPCC028 3 asthma No Yes 20 2.25 

 
3.4 66 95 

SPCC029 3 asthma/MI No Yes 14 
    

98 
SPCC031 2 asthma No Yes 14 

    
98 

SPCC034 4 asthma No Yes 24 1.66 43 2.49 66 94 
SPCC035 4 asthma No Yes 8 0.97 23 1.29 

 
94 

SPCC036 1 asthma No Yes 6 2.79 92 4.11 71.1 98 
SPCC037 4 asthma No Yes 150 2.02 91 2.84 71 96 
SPCC038 2 asthma N/K Yes 45 1.41 65 2.16 82 96 
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Patient 
ID. No. 

MRC 
breathlessne

ss score 

Diagnosis Chronic 
Bronchitis 

Smoking 
Status 

Estimated 
Pack-years 

FEV1 
(Litres

) 

FEV1 (% 
Predicted) 

FVC FEV1/FVC 
Oxygen 

Saturation/ 
Blood Gas 

SPCC039 1 ?asthma  Yes 20 2.88 88 4.2 68 97 

SPCC040 3 
asthma/ 

bronchiectasis 
Yes 

No 
(passive) 

0 0.82 34 1.33 62 96 

SPCC041 1 
asthma/ 

bronchiectasis 
Yes No 0 

 
80 

 
74 96 

SPCC042 4 asthma No No 0 1.87 93 2.6 108 96 
SPCC045 1 asthma No Yes 19 3.13 100 4.16 91 99 
SPCC046 3 asthma No Yes 11 1.68 57 3.76 75 94 
SPCC047 3 asthma No Yes 45 2.42 0 3.59 71  
SPCC048 4 asthma Yes Yes 6 1.59 61 1.94 82 94 
SPCC049 4 asthma No Yes 20 1.47 

 
2.67 55 96 

SPCC050 3 asthma No No 0 2.21 93 2.83 
 

95 
SPCC052 2 asthma No Yes 6 2.71 106 35.1 98 97 
SPCC053 4 asthma No No 0 1.92 74 3.49 73 96 

SPCC056 3 asthma No 
No 

(passive) 
0 1.93 

 
2.23 78 96 

SPCC063 1 asthma No Yes 0 3.2 
 

4.68 68 99 
SPCC065 2 asthma No No 0 

    
 

SPCC070 4 Chronic cough No No 0 2.14 
 

3.24 66 95 
SPCC071 4 asthma No Yes 2 

    
 

SPCC074 4 Chronic cough No Yes 60 0.7 36 1.26 56 95 
SPCC075 2 asthma No No 0 2.4 

 
3.16 68 97 

SPCC078 3 Cough No Yes 48 Declined 
  

 
SPCC080 4 Asthma No Yes 81 Never done 
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A1.3 MEDLUNG Patient Details 

Table A1-3: Details of patients recruited to MEDLUNG whose samples were used during this thesis: NK – not known; NSCLC – Non-small cell lung 
cancer; SCLC – small cell lung cancer; FEV – Forced expiratory volume 

Patient ID Recruiting 
Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 

Smoking 
Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

BC0002 Birmingham 
City  

M 12/12/2012 68 Ex 5 2.17 NSCLC Adenocarcinoma T3 N0 M0 

BC0003 Birmingham 
City  M 01/03/2012 61 Ex 94 1.9 NSCLC 

Squamous Cell 
Carcinoma 

T4 N1 M0 

BC0005 Birmingham 
City  

M 13/03/2012 75 Ex 80 41 NSCLC Adenocarcinoma T4 N0 M0 

BC0007 Birmingham 
City  

F 19/06/2012 65 Ex 0.07 NK NSCLC NK T1 N0 M0 

BC0009 Birmingham 
City  M 25/09/2012 79 Ex 60 1.64 NSCLC 

Squamous Cell 
Carcinoma 

T1 N0 M0 

BC0010 Birmingham 
City  F 10/02/2012 67 Current 100 1.19 NSCLC 

Squamous Cell 
Carcinoma 

T1 N0 M0 

BGHLC001
6 

Bronglais 
M 10/10/2012 68 Current 56 NK NSCLC 

In situ Squamous 
Cell 

T4 N2 M1 

BQE0023 Birmingham, 
Queen 
Elizabeth 

F 09/05/2012 89 Ex nk 80 SCLC SCLC T2A N0 M0 

BQE0032 Birmingham, 
Queen 
Elizabeth 

M 11/01/2012 74 Ex 132 74.1 
Squamous cell 

carcinoma 
Squamous cell 

carcinoma 
T3 N3 M1b 

BQE0033 Birmingham, 
Queen 
Elizabeth 

M 11/01/2012 73 Ex 33 77.5 Adenocarcinoma Adenocarcinoma T4 N2 M1b 

BQE0036 Birmingham, 
Queen 
Elizabeth 

M 12/06/2012 59 Ex 30 78 
Squamous cell 

carcinoma 
Squamous cell 

carcinoma 
T2a N0 M0 
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Patient ID Recruiting 
Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 

Smoking 
Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

CW0001 Chelsea 
Westminster M 10/10/2012 69 Current 50 101 Adenocarcinoma NSCLC T1a N0 M0 

CW0003 Chelsea 
Westminster M 17/10/2012 75 Ex nk nk Adenocarcinoma Adenocarcinoma NK 

CW0005 Chelsea 
Westminster F 18/10/2012 51 

 
nk nk SCLC SCLC NK 

CW0011 Chelsea 
Westminster M 16/01/2013 62 Current 70 nk NSCLC Adenocarcinoma NK 

CW0012 Chelsea 
Westminster M 16/01/2013 71 Ex 40 nk NSCLC Adenocarcinoma NK 

CW0018 Chelsea 
Westminster M 21/02/2013 69 Current 90 124 NSCLC Adenocarcinoma NK 

CW0020 Chelsea 
Westminster M 05/03/2013 76 Current 120 39 SCLC SCLC NK 

CW0030 Chelsea 
Westminster M 10/04/2014 58 Current 40 nk NSCLC Adenocarcinoma NK 

CW0036 Chelsea 
Westminster F 16/04/2014 82 Ex 

 
nk SCLC nk NK 

CW0040 Chelsea 
Westminster M 07/05/2014 75 Ex nk nk NSCLC nk NK 

CW0044 Chelsea 
Westminster M 12/08/2014 46 Never 0 nk NSCLC nk NK 

CW0046 Chelsea 
Westminster M 18/09/2014 65 Ex 100 nk NSCLC Adenocarcinoma NK 

CW0050 Chelsea 
Westminster M 25/09/2014 90 Ex 50 nk SCLC nk NK 
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Patient ID Recruiting 
Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 

Smoking 
Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

DE0012 Derby 
F 22/05/2013 84 Ex 70 107 NSCLC 

Squamous cell 
carcinoma 

T2a N0 M0 

DE0015 Derby M 07/01/2013 80 Ex 25 70 NSCLC nk T3 N1 M1b 

DE0030 Derby M 10/09/2013 83 Current 15 NK NSCLC nk T3 N2 M0 

DE0036 Derby M 18/12/2013 77 Never 0 NK NSCLC nk T3 N3 M1b 

DE0050 Derby M 28/12/2012 75 Ex NK 62 NSCLC nk T2 N3 M0 

DE0051 Derby F 01/09/2013 65 Ex NK 63 NSCLC nk T4 N2 M0 

DE0052 Derby M 13/02/2013 62 Current 48 129 NSCLC nk T2a N1 M0 

DE0053 Derby F 20/02/2013 61 Current 40 97 NSCLC nk T2b N3 M0 

DE0054 Derby F 28/02/2013 67 Ex 41 NK NSCLC nk T4 N3 M1a 

KMN0002 Kings Mill, 
Nottingham F 27/06/12 64 Ex 49 64.00% COPD Baseline N/A N/A 

KMN0005 Kings Mill, 
Nottingham M 23/07/12 64 Ex 92 46.00% COPD Baseline N/A N/A 

KMN0006 Kings Mill, 
Nottingham M 25/07/12 76 Ex 45 50.00% COPD Baseline N/A N/A 

KMN0010 Kings Mill, 
Nottingham M 15/08/12 59 Ex 34 

 
COPD Baseline N/A N/A 

KMN0013 Kings Mill, 
Nottingham M 17/08/12 75 Current 57 64.00% COPD Baseline N/A N/A 

KMN0014 Kings Mill, 
Nottingham M 22/08/12 50 Current 15 29.00% COPD Baseline N/A N/A 

KMN0015 Kings Mill, 
Nottingham M 22/08/12 67 Current 24 

 
COPD Baseline N/A N/A 

KMN0016 Kings Mill, 
Nottingham M 22/08/12 76 Ex 5 

 
COPD Baseline N/A N/A 
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KMN0017 Kings Mill, 
Nottingham M 22/08/12 80 Ex 8 31.00% COPD Baseline N/A N/A 

KMN0018 Kings Mill, 
Nottingham F 22/08/12 67 Ex 2 94.00% COPD Baseline N/A N/A 

KMN0020 Kings Mill, 
Nottingham M 22/08/12 69 Ex 38 66.00% COPD Baseline N/A N/A 

KMN0021 Kings Mill, 
Nottingham M 22/08/12 68 eX 165 88.00% COPD Baseline N/A N/A 

KMN0023 Kings Mill, 
Nottingham M 22/08/12 71 Ex 65 

 
COPD Baseline N/A N/A 

KMN0024 Kings Mill, 
Nottingham M 22/08/12 68 Ex 30 NK COPD Baseline N/A N/A 

KMN0028 Kings Mill, 
Nottingham M 18/09/2012 84 Ex 40 NK COPD Baseline N/A N/A 

KMN0030 Kings Mill, 
Nottingham M 28/09/2012 86 Ex 24 115.00% COPD Baseline N/A N/A 

KMN0031 Kings Mill, 
Nottingham F 10/01/2012 78 Current 25 49.00% COPD Baseline N/A N/A 

KMN0033 Kings Mill, 
Nottingham F 10/01/2012 52 Current 90 31.00% COPD Baseline N/A N/A 

KMN0034 Kings Mill, 
Nottingham M 15/10/2012 57 EX 10 37.00% COPD Baseline N/A N/A 

KMN0035 Kings Mill, 
Nottingham M 17/10/2012 71 Ex 88 39.00% COPD Baseline N/A N/A 

KMN0036 Kings Mill, 
Nottingham F 17/10/2012 70 Ex 30 NK COPD Baseline N/A N/A 
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KMN0037 Kings Mill, 
Nottingham M 17/10/2012 76 Current 10 NK COPD Baseline N/A N/A 

KMN0038 Kings Mill, 
Nottingham M 17/10/2012 73 Ex 14 57.00% COPD Baseline N/A N/A 

KMN0039 Kings Mill, 
Nottingham F 29/10/2012 64 Ex 50 77.00% COPD Baseline N/A N/A 

KMN0040 Kings Mill, 
Nottingham M 11/09/2012 67 Ex 35 29.00% COPD Baseline N/A N/A 

KMN0042 Kings Mill, 
Nottingham M 11/12/2012 68 Never 0 NK COPD Baseline N/A N/A 

KMN0043 Kings Mill, 
Nottingham M 11/12/2012 81 EX 50 NK COPD Baseline N/A N/A 

KMN0044 Kings Mill, 
Nottingham M 19/11/2012 80 Never 0 NK COPD Baseline N/A N/A 

KMN0046 Kings Mill, 
Nottingham M 21/11/2012 77 Current 90 30.00% COPD Baseline N/A N/A 

KMN0047 Kings Mill, 
Nottingham M 21/11/2012 81 Ex 6 76.00% COPD Baseline N/A N/A 

KMN0049 Kings Mill, 
Nottingham F 12/05/2012 67 Current 25 50.00% Cervical N/A N/A 

KMN0050 Kings Mill, 
Nottingham F 12/05/2012 67 Current 50 60.00% Breast N/A N/A 

KMN0052 Kings Mill, 
Nottingham M 12/10/2012 67 Never 0 47.00% COPD Baseline N/A N/A 

KMN0053 Kings Mill, 
Nottingham M 14/12/2012 82 Ex 45 97.00% COPD Baseline N/A N/A 
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KMN0055 Kings Mill, 
Nottingham M 21/12/2012 67 Current 50 44.00% COPD Baseline N/A N/A 

KMN0056 Kings Mill, 
Nottingham M 16/01/2013 70 Ex 50 33.00% COPD Baseline N/A N/A 

KMN0057 Kings Mill, 
Nottingham M 16/01/2013 65 Current 40 44.00% COPD Baseline N/A N/A 

KMN0058 Kings Mill, 
Nottingham M 16/01/2013 69 Current 90 NK COPD Baseline N/A N/A 

KMN0059 Kings Mill, 
Nottingham F 28/01/2013 48 Current 20 39.00% COPD Baseline N/A N/A 

KMN0061 Kings Mill, 
Nottingham M 02/08/2013 61 Current 23 NK COPD Baseline N/A N/A 

KMN0062 Kings Mill, 
Nottingham M 02/11/2013 74 Current 60 31.00% COPD Baseline N/A N/A 

KMN0063 Kings Mill, 
Nottingham M 15/02/2013 65 Never 0 43.00% COPD Baseline N/A N/A 

KMN0064 Kings Mill, 
Nottingham M 15/02/2013 74 Ex 56 73.00% COPD Baseline N/A N/A 

KMN0066 Kings Mill, 
Nottingham F 18/02/2013 77 Current 60 68.00% COPD Baseline N/A N/A 

KMN0068 Kings Mill, 
Nottingham F 25/02/2013 66 Ex 63 34.00% COPD Baseline N/A N/A 

KMN0069 Kings Mill, 
Nottingham M 25/02/2013 67 Ex 100 48.00% COPD Baseline N/A N/A 

KMN0071 Kings Mill, 
Nottingham M 03/01/2013 64 Ex 14 43.00% COPD Baseline N/A N/A 
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KMN0072 Kings Mill, 
Nottingham M 03/01/2013 64 Ex 75 67.00% 

COPD/ 
bronchiectasis 

N/A N/A 

KMN0074 Kings Mill, 
Nottingham M 18/03/2013 78 EX 20 65.00% COPD Baseline N/A N/A 

KMN0075 Kings Mill, 
Nottingham M 18/03/2013 75 Current 90 70.00% COPD Baseline N/A N/A 

KMN0077 Kings Mill, 
Nottingham M 04/08/2013 78 Ex 42 19.00% COPD Baseline N/A N/A 

KMN0078 Kings Mill, 
Nottingham M 04/08/2013 77 Ex 45 61.00% COPD Baseline N/A N/A 

KMN0079 Kings Mill, 
Nottingham M 04/08/2013 74 Current 31 37.00% COPD Baseline N/A N/A 

KMN0080 Kings Mill, 
Nottingham M 04/08/2013 60 Ex 53 49.00% COPD Baseline N/A N/A 

KMN0081 Kings Mill, 
Nottingham M 04/12/2013 81 Ex 54 64.00% COPD Baseline N/A N/A 

KMN0083 Kings Mill, 
Nottingham M 04/12/2013 83 Ex 57 58.00% COPD Baseline N/A N/A 

KMN0084 Kings Mill, 
Nottingham M 04/12/2013 68 Ex 35 35.00% COPD Baseline N/A N/A 

KMN0085 Kings Mill, 
Nottingham M 04/12/2013 65 Never 0 68.00% COPD Baseline N/A N/A 

KMN0086 Kings Mill, 
Nottingham F 15/04/2013 77 Ex 34 58.00% COPD Baseline N/A N/A 

KMN0088 Kings Mill, 
Nottingham F 17/04/2013 64 Current 25 73.00% COPD Baseline N/A N/A 
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KMN0089 Kings Mill, 
Nottingham M 17/04/2013 75 Ex PIPE NK COPD Baseline N/A N/A 

KMN0091 Kings Mill, 
Nottingham M 17/04/2013 66 Ex 50 51.00% COPD Baseline N/A N/A 

KMN0093 Kings Mill, 
Nottingham F 17/04/2013 68 Current 11 67.00% COPD Baseline N/A N/A 

KMN0094 Kings Mill, 
Nottingham F 17/04/2013 72 Ex 23 55.00% COPD Baseline N/A N/A 

KMN0095 Kings Mill, 
Nottingham M 19/04/2013 83 Ex 40 46.00% COPD Baseline N/A N/A 

KMN0097 Kings Mill, 
Nottingham M 22/04/2013 72 Ex 54 58.00% COPD Baseline N/A N/A 

KMN0098 Kings Mill, 
Nottingham M 22/04/2013 73 Ex 75 39.00% COPD Baseline N/A N/A 

KMN0099 Kings Mill, 
Nottingham F 23/04/2013 58 Ex 40 58.00% COPD Baseline N/A N/A 

KMN0102 Kings Mill, 
Nottingham F 13/05/2013 57 Ex 30 42.00% COPD Baseline N/A N/A 

KMN0104 Kings Mill, 
Nottingham M 13/05/2013 76 EX 30 29.00% COPD Baseline N/A N/A 

KMN0105 Kings Mill, 
Nottingham F 13/05/2013 70 EX 49 27.00% COPD Baseline N/A N/A 

KMN0106 Kings Mill, 
Nottingham F 13/05/2013 50 Current 20 20.00% COPD Baseline N/A N/A 

KMN0110 Kings Mill, 
Nottingham F 20/05/2013 57 Ex 35 48.00% COPD Baseline N/A N/A 
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KMN0111 Kings Mill, 
Nottingham M 20/05/2013 56 Ex 25 38.00% COPD Baseline N/A N/A 

KMN0112 Kings Mill, 
Nottingham F 20/05/2013 71 Current 40 48.00% COPD Baseline N/A N/A 

KMN0114 Kings Mill, 
Nottingham M 22/05/2013 72 Ex 15 76.00% COPD Baseline N/A N/A 

KMN0116 Kings Mill, 
Nottingham M 22/05/2013 65 EX 175 20.00% COPD Baseline N/A N/A 

KMN0117 Kings Mill, 
Nottingham F 29/05/2013 76 Ex 20 59.00% COPD Baseline N/A N/A 

KMN0118 Kings Mill, 
Nottingham M 06/03/2013 63 Ex 45 60.00% COPD Baseline N/A N/A 

KMN0119 Kings Mill, 
Nottingham M 06/10/2013 58 Ex 66 40.00% COPD Baseline N/A N/A 

LC0161 Prince Phillip, 
Llanelli F 06/07/2012 61 Current Nk 87.00% NSCLC Adenocarcinoma T1a N0 M0 

MK0007 Milton Keynes 
F 09/10/2012 65 Never 0 NK 

Non Small Cell 
Carcinoma 

NK T4 N2 M1b 

MK0010 Milton Keynes 

F 14/11/2012 56 EX 20 91.00% Metastatic NSCLC  Adenocarcinoma T2 N3 M1b 

MK0011 Milton Keynes 

F 19/11/2012 68 Ex 42 Nk 
Non Small Cell 
Carcinoma of 

Bronchus 
 

T1 N0 M1a 

MK0012 Milton Keynes 

M 20/11/2012 80 Ex 43 72.00% 

Poorly 
differentiated 

Squamous Cell 
Lung Cancer 

 
T4 N2 M0 
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MK0014 Milton Keynes 
M 18/12/2012 79 Ex 41 nk 

Metastatic 
Adenocarcinoma  

T2 N3 M1a 

MK0019 Milton Keynes 
M 16/04/2013 49 Ex 25 nk 

Small Cell Lung 
Cancer  

T4 N3 M1a 

MK0020 Milton Keynes 

M 26/04/2013 63 Current 45 75.00% 
Metastatic Non 
Small cell Lung 

Cancer 
 

T N M 

MK0021 Milton Keynes 

M 30/04/2013 73 Ex 35 66.00% 

Mucinous 
Adenocarcinoma 

Well 
differentiated 

 
T3 N2 M0 

MK0028 Milton Keynes F 02/07/2013 69 Ex 30 43.00% Lung Cancer 
 

T4 N2 M1b 

MK0029 Milton Keynes 

F 27/08/2013 69 Ex 58 65.00% 

Poorly 
Differentiated 

Adenocarcinoma 
of Lung 

 
T3 N3 M1b 

MK0030 Milton Keynes 

M 27/08/2013 64 Current 100 65.00% 

Poorly 
Differentiated 
Squamous Cell 

Carcinoma 
 

T4 N3 M1 

MK0033 Milton Keynes 

M 27/09/2013 70 Current 60 93.00% 
Metastatic 

Adenocarcinoma 
of the Lung 

 
T1b N3 M0 

MK0034 Milton Keynes 
F 01/10/2013 64 Ex 15 nk 

Small Cell Lung 
Cancer  

T3 N2 M1 

MK0035 Milton Keynes 

M 01/10/2013 65 EX 20 nk 

Poorly 
Differentiated 
Squamous Cell 

Carcinoma 
 

T4 N2 M1b 

MK0036 Milton Keynes 

M 08/10/2013 66 EX 35 nk 
Metastatic 

Squamous Cell 
Carcinoma 

 
T4 N3 M1a 
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MK0038 Milton Keynes 
M 22/10/2013 49 Current 35 nk 

Metastatic lung 
cancer  

T3 N3 M0 

MK0039 Milton Keynes 
F 05/11/2013 55 Current 40 43.00% 

Adenocarcinoma 
of lung  

T3 N0 M0 

MK0041 Milton Keynes 
F 12/03/2014 59 Ex 40 64.00% 

Squamous Cell 
Carcinoma  

T3 N3 M1 

MK0042 Milton Keynes 
M 08/04/2014 60 Ex 45 54.00% 

Squamous Cell 
Carcinoma  

T4 N2 M1 

MK0043 Milton Keynes 

M 17/06/2014 65 Ex 30 106.00% 
Invasive non small 

cell carcinoma 
(squamous cell) 

 
T3 N3 M0 

MK0044 Milton Keynes 
F 18/06/2014 67 Ex 20 55.00% 

Small Cell Lung 
Cancer  

T N M 

MK0047 Milton Keynes 
M 29/07/2014 56 Current 40 63.00% 

Metastatic Small C
ell Carcinoma  

T N M 

MK0054 Milton Keynes F 15/10/2014 71 Ex 20 74% NSCLC 
 

T4 N0 M1A 

MK0055 Milton Keynes 
M 19/11/2014 83 Ex 20 nk 

Adenocarcinoma 
of Lung  

T3 N2 M1b 

MK0056 Milton Keynes M 09/12/2014 81 Ex 50 61% NSCLC 
 

T3 N0 M0 

MK0058 Milton Keynes 
F 22/01/2015 62 Ex 32 57 NSCLC 

 
T4 N2 M1 

MK0060 Milton Keynes 
M 14/04/2015 72 Ex nk 88% NSCLC 

 
T2 N2 M1b 

MK0061 Milton Keynes 
F 15/04/2015 59 Current 60 84% 

Squamous Cell 
Carcinoma  

T4 N0 M1a 

MK0062 Milton Keynes 
M 15/04/2015 68 Current 50 40% NSCLC 

 
T4 N2 M0 

MK0063 Milton Keynes 
F 15/04/2015 51 Current 41 nk NSCLC 

 
T4 N2 M1b 

MK0064 Milton Keynes 
M 22/04/2015 56 Ex nk nk NSCLC 

 
T4 N2 M1b 
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MK0067 Milton Keynes 
M 15/07/2015 74 ex 17 nk NSCLC 

 
T2b N3 M0 

MK0069 Milton Keynes F 09/03/2015 66 Ex 40 nk NSCLC 
 

T1 N3 M0 

MK0070 Milton Keynes F 09/04/2015 72 Ex 38 nk NSCLC 
 

T4 N2 M1b 

NCW0001 New Cross, 
Wolverhampto
n 

F 24/01/2013 44 EX 20 63 Adenocarcinoma Adenocarcinoma T4 N2 M0 

NCW0002 New Cross, 
Wolverhampto
n 

M 29/01/2013 71 EX 20 69 
Squamous cell 

Carcinoma 
squamous cell T4 N2 M0 

NCW0004 New Cross, 
Wolverhampto
n 

F 02/06/2013 35 EX NK NK Adenocarcinoma Adenocarcinoma T2b N0 M0 

NCW0005 New Cross, 
Wolverhampto
n 

M 15/02/2013 44 EX 16 66 Adenocarcinoma Adenocarcinoma T4 N2 M1a 

NCW0007 New Cross, 
Wolverhampto
n 

M 26/02/2013 63 EX 61 57 Squamous Cell Squamous Cell T3 N1 M0 

NCW0009 New Cross, 
Wolverhampto
n 

M 03/01/2013 55 EX 60 42 
Small cell Lung 

cancer 
Small cell lung 

cancer 
T4 N2 M0 

NCW0010 New Cross, 
Wolverhampto
n 

F 03/06/2013 49 EX 39 76 Squamous Squamous T3 N2 M0 

NCW0011 New Cross, 
Wolverhampto
n 

M 13.03.2013 48 NEVER 0 48 Adenocarcinoma Adenocarcinoma T3 N0 M0 

NCW0013 New Cross, 
Wolverhampto
n 

F 05/02/2013 71 EX 20 97 
Small cell lung 

cancer 
Adenocarcinoma T4 N3 M1 

NCW0017 New Cross, 
Wolverhampto M 07/04/2013 60 EX 40 NK Lung Cancer 

Non small cell 
carcinoma 

T2b N3 M0 
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n 

NCW0018 New Cross, 
Wolverhampto
n 

F 17/07/2013 72 never 0 72 
metastatic 

adenocarcinoma 
Adenocarcinoma T2b N0 M1 

NCW0019 New Cross, 
Wolverhampto
n 

F 30/7/2013 77 EX 10 73 NSCLC 
Non small cell 

carcinoma 
T2a N3 Ma 

NCW0020 New Cross, 
Wolverhampto
n 

M 31/07/2013 59 current 18 53 
Squamous cell 

cancer 
Squamous cell 

carcinoma 
T3 N2 M0 

NCW0022 New Cross, 
Wolverhampto
n 

M 09/12/2013 73 EX 50 89 Squamous Cell Adenocarcinoma T1a N0 M0 

NCW0024 New Cross, 
Wolverhampto
n 

M 13/09/2013 73 current 55 NK 
Squamous Cell 

Carcinoma 
Squamous Cell T3 N0 M1b 

NCW0026 New Cross, 
Wolverhampto
n 

M 17/09/2013 76 EX NK 97 
Squamous Cell 

Carcinoma 
Squamous Cell T2a N0 M0 

NCW0027 New Cross, 
Wolverhampto
n 

M 17/09/2013 71 EX 50 NK 
Squamous Cell 

Carcinoma 
Squamous cell T1a N0 M0 

NCW0028 New Cross, 
Wolverhampto
n 

M 24/09/2013 53 current 40 63 NSCLC NSCLC T3 N2 M1a 

NCW0029 New Cross, 
Wolverhampto
n 

F 24/09/2013 60 current 30 74 NSCLC NSCLC T1b N2 M0 

NCW0034 New Cross, 
Wolverhampto
n 

F 29/10/2013 64 current 40 
 

Lung Carcinoma small Cell T1a N3 M1b 
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NCW0035 New Cross, 
Wolverhampto
n 

F 29/10/2013 79 EX 20 42 Adenocarcinoma Adenocarcinoma T4 N0 M1a 

NCW0036 New Cross, 
Wolverhampto
n 

M 11/04/2013 83 EX 5 64 Squamous Cell Squamous Cell T4 N0 M1b 

NCW0039 New Cross, 
Wolverhampto
n 

M 19/11/2013 78 EX 70 73 Squamous cell Squamous cell T2a, N2, M1a 

NCW0040 New Cross, 
Wolverhampto
n 

M 12/04/2013 72 EX 45 59 Squamous cell Squamous Cell T3, N2, M0 

NCW0044 New Cross, 
Wolverhampto
n 

F 31/12/2013 42 nk nk NK 
Small Cell 
Carcinoma 

Small Cell 
Carcinoma 

T3 N3 M1b 

NCW0049 New Cross, 
Wolverhampto
n 

F 21/01/2014 51 current 20 99 Adenocarcinoma Adenocarcinoma T1b N2 M0 

NCW0051 New Cross, 
Wolverhampto
n 

F 02/04/2013 73 EX NK NK Adenocarcinoma Adenocarcinoma T2b N3 M1b 

NCW0052 New Cross, 
Wolverhampto
n 

M 02/06/2014 82 EX 40 79 NCSLC NSCLC T3 N0 M1b 

NCW0053 New Cross, 
Wolverhampto
n 

F 02/10/2014 64 EX 5 103 Adenocarcinoma Adenocarcinoma T3 N3 M1b 

NCW0054 New Cross, 
Wolverhampto
n 

M 02/10/2014 73 current 60 NK 
Small Cell 
Carcinoma 

Small Cell 
Carcinoma 

T4 N2 M0 

NCW0055 New Cross, 
Wolverhampto
n 

M 18/02/2014 71 EX 25 98 Adenocarcinoma Adenocarcinoma T3 N3 M1a 
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NCW0057 New Cross, 
Wolverhampto
n 

M 03/11/2014 59 EX NK 77 Adenocarcinoma Adenocarcinoma T3 N2 M0 

NCW0058 New Cross, 
Wolverhampto
n 

F 24/03/2014 67 EX 17 NK Squamous Cell Squamous Cell T3 N0 M0 

NCW0062 New Cross, 
Wolverhampto
n 

M 04/07/2014 72 Current 15 NK 
Squamous Cell 

Carcinoma 
Squamous Cell 

Carcinoma 
T2b N2 M0 

NCW0063 New Cross, 
Wolverhampto
n 

M 15/04/2014 78 Never 0 71 Adenocarcinoma Adenocarcinoma T4 N2 M0 

NCW0064 New Cross, 
Wolverhampto
n 

M 16/04/2014 58 current 20 NK Squamous Cell Squamous cell T3 N3 M0 

NCW0065 New Cross, 
Wolverhampto
n 

M 29/04/2014 74 EX NK NK Small Cell Small Cell T1a N3 M1b 

NCW0070 New Cross, 
Wolverhampto
n 

M 21/05/2014 72 EX NK NK Adenocarcinoma Adenocarcinoma T4 N1 M0 

NCW0073 New Cross, 
Wolverhampto
n 

M 16/06/2014 78 Current 40 NK Non Small Cell Non Small Cell T3 Nx M1b 

NCW0074 New Cross, 
Wolverhampto
n 

M 16/06/2014 84 EX 40 NK Adenocarcinoma Adenocarcinoma T2b N2 M1a 

NCW0075 New Cross, 
Wolverhampto
n 

M 19/06/2014 90 EX 15 55 Small Cell Small Cell T4 N3 M1b 

NCW0076 New Cross, 
Wolverhampto
n 

M 01/07/2014 77 EX 50 81 Adenocarcinoma Adenocarcinoma T1b N2 M1b 
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NCW0077 New Cross, 
Wolverhampto
n 

M 07/07/2014 59 EX 40 NK Squamous Cell Squamous cell T3 N2 M1b 

NCW0078 New Cross, 
Wolverhampto
n 

M 10/07/2014 60 EX NK 28 Adenocarcinoma Adenocarcinoma T4 N3 M1a 

NCW0080 New Cross, 
Wolverhampto
n 

F 11/07/2014 71 Current 28 NK Small Cell Small Cell T1b N2 M0 

NCW0081 New Cross, 
Wolverhampto
n 

M 15/07/2014 68 Current 108 56 Squamous Cell Squamous cell T2 N2 M0 

NCW0082 New Cross, 
Wolverhampto
n 

M 22/07/2014 64 Current 52 96 Adenocarcinoma Adenocarcinoma T3 N0 M0 

NCW0085 New Cross, 
Wolverhampto
n 

M 11/08/2014 78 EX 40 58 Squamous Cell Squamous cell T3 N2 M1b 

NCW0086 New Cross, 
Wolverhampto
n 

M 12/08/2014 54 EX 20 86 Adenocarcinoma Adenocarcinoma T3 N2 M1b 

NCW0087 New Cross, 
Wolverhampto
n 

M 18/08/2014 66 Current 5 a day 79 Squamous Cell Squamous cell T4 N2 M0 

NCW0088 New Cross, 
Wolverhampto
n 

M 21/08/2014 66 Never 0 NK Adenocarcinoma Adenocarcinoma T1b N2 M1b 

NCW0089 New Cross, 
Wolverhampto
n 

M 21/08/2014 70 Never 0 NK Adenocarcinoma Adenocarcinoma T3 N0 M1b 

NCW0092 New Cross, 
Wolverhampto
n 

F 04/09/2014 68 Current NK 49 Adenocarcinoma Adenocarcinoma T2a N2 M1b 
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NCW0094 New Cross, 
Wolverhampto
n 

M 08/09/2014 66 EX 20 NK Adenocarcinoma Adenocarcinoma T4 N2 M0 

NCW0095 New Cross, 
Wolverhampto
n 

F 09/09/2014 70 EX NK ND Non small cell Non Small Cell T1b N2 M1b 

NCW0097 New Cross, 
Wolverhampto
n 

M 30/09/2014 68 Current NK NK Adenocarcinoma Adenocarcinoma T4 N2 M1b 

NCW0098 New Cross, 
Wolverhampto
n 

F 02/10/2014 71 EX 50 NK Squamous Cell Squamous cell T3a N2 M0 

NCW0099 New Cross, 
Wolverhampto
n 

M 10/10/2014 70 EX 40 ND Adenocarcinoma Adenocarcinoma T4 N2 M0 

NCW0102 New Cross, 
Wolverhampto
n 

M 24/10/2014 71 Ex NK NK Squamous cell Squamous Cell T2a N0 M0 

NCW0103 New Cross, 
Wolverhampto
n 

M 24/10/2014 77 Ex nk 33 Adenocarcinoma Adenocarcinoma T4 N2 M1b 

NCW0108 New Cross, 
Wolverhampto
n 

M 01/12/2014 76 EX 20 36 Small Cell Small Cell T2b N3 M1a 

NCW0110 New Cross, 
Wolverhampto
n 

M 23/12/2014 79 EX 47 79 Adenocarcinoma Adenocarcinoma T3 N2 M0 

NCW0113 New Cross, 
Wolverhampto
n 

F 05/02/2015 61 Current 60 NK Non Small Cell Non Small Cell T3 N3 M0 

NCW0117 New Cross, 
Wolverhampto
n 

F 05/03/2015 68 EX 40 NK Adenocarcinoma 
Poorly 

differentiated 
Adenocarcinoma 

T2B N3 M1b 
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Patient ID Recruiting 
Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 

Smoking 
Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

NCW0118 New Cross, 
Wolverhampto
n 

F 09/03/2015 70 Current 15 nk Squamous Cell Squaous Cell T3 N2 M1b 

NCW0121 New Cross, 
Wolverhampto
n 

F 02/06/2015 76 EX 8 123 Adenocarcinoma Adenocarcinoma T2a N0 M0 

NCW0122 New Cross, 
Wolverhampto
n 

F 09/06/2015 82 EX 2 45 Adenocarcinoma Adenocarcinoma TX N3 M1b 

NCW0123 New Cross, 
Wolverhampto
n 

M 20/10/2015 69 EX 70 54 Adenocarcinoma Squamous Cell T4 N2 M0 

NCW0124 New Cross, 
Wolverhampto
n 

F 29/10/2015 61 EX 135 82 Adenocarcinoma Adenocarcinoma T2a N0 M0 

NCW0125 New Cross, 
Wolverhampto
n 

F 29/10/2015 42 EX 35 48 Small Cell Small Cell T4 N3 M1a 

NCW0126 New Cross, 
Wolverhampto
n 

M 11/10/2015 48 EX NK 72 Adenocarcinoma Adenocarcinoma T2a N0 M0 

NCW0127 New Cross, 
Wolverhampto
n 

M 23/11/2015 69 EX 30 62 Small Cell Small Cell T4 N0 M0 

NCW0131 New Cross, 
Wolverhampto
n 

F 22/12/2015 72 Current 50 88 Small Cell Small Cell T2a N3 M1b 

NCW0132 New Cross, 
Wolverhampto
n 

F 14/01/2016 74 EX 50 95 Small Cell Small Cell T2 N0 M0 

NCW0133 New Cross, 
Wolverhampto
n 

M 28/01/2016 74 EX 20 73 Adenocarcinoma 
Moderately 

Differentiated 
mucinous adeno 

T3 N1 M0 
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Patient ID Recruiting 
Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 

Smoking 
Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

SGUL01 Saint George's 
University 
Hospital, 
London 

F 15/04/2013 76 Ex 1.5 NK 
COPD 

exacerbation 
N/A N/A 

SGUL02 Saint George's 
University 
Hospital 

F 17/4/2013 86 Ex 8 72 
COPD 

exacerbation 
N/A N/A 

SGUL03 Saint George's 
University 
Hospital 

M 18/04/2013 90 ex 56 45.00% 
COPD 

exacerbation 
N/A N/A 

SGUL04 Saint George's 
University 
Hospital 

M 23-04-2013 NK Ex 30 NK 
pneumothorax 

and COPD 
Exacerbation 

N/A N/A 

SGUL05 Saint George's 
University 
Hospital 

F 24-04-2013 85 Never 0 NK 
COPD 

exacerbation with 
T2RF 

N/A N/A 

SGUL06 Saint George's 
University 
Hospital 

M 25-04-2013 NK Current NK 31.00% 
COPD 

exacerbation 
N/A N/A 

SGUL08 Saint George's 
University 
Hospital 

M 26-04-2013 60 EX 40 17.00% IECOPD N/A N/A 

SGUL09 Saint George's 
University 
Hospital 

F 29-4-2013 NK EX 79 NK 
COPD 

exacerbation. 
N/A N/A 

SGUL10 Saint George's 
University 
Hospital 

M 30-04-2013 55 EX 112 NK 
COPD 

exacerbation 
N/A N/A 



Charles Brilliant 
 

  275 
 

Patient ID Recruiting 
Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 

Smoking 
Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

SGUL11 Saint George's 
University 
Hospital 

F 05/02/2013 76 EX 52 NK 
COPD 

exacerbation 
N/A N/A 

SGUL12 Saint George's 
University 
Hospital 

M 05/08/2013 70 Ex 56 47.00% 
COPD 

Exacerbation out 
patient 

N/A N/A 

SGUL13 Saint George's 
University 
Hospital 

M 14-5-2013 50 EX 78 
17% (Feb 

2012) 
COPD 

exacerbation 
N/A N/A 

SGUL14 Saint George's 
University 
Hospital M 30/05/2013 57 EX 50 

65% (Nov 
2012) 

COPD not 
exacerbating. 

Recruited from 
out-patient clinic 

N/A N/A 

SGUL16 Saint George's 
University 
Hospital M 06/05/2013 54 current 72 

61% (dec 
2012) 

COPD, not 
exacerbating. 

Recruited from 
out-patient clinic 

N/A N/A 

SGUL17 Saint George's 
University 
Hospital M 06/10/2013 53 current 45 

49% (June 
2013) 

COPD, not 
exacerbating. 

Recruited from 
out-patient clinic 

N/A N/A 

SGUL18 Saint George's 
University 
Hospital 

F 13/06/2013 58 current 33 
58% March 

2011 

COPD, not 
exacerbating. 

Recruited from 
Chest Clinic 

N/A N/A 

SGUL19 Saint George's 
University 
Hospital 

M 17/07/2013 72 EX 20 
35% March 

2012 
IECOPD N/A N/A 
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Patient ID Recruiting 
Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 

Smoking 
Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

SGUL20 Saint George's 
University 
Hospital 

M 17/07/2013 47 Current 30 NK CCF N/A N/A 

SGUL21 Saint George's 
University 
Hospital 

M 26/06/2013 64 
 

60 
22% 

13/10/2011 

Infectious 
exacerbation of 

COPD 
N/A N/A 

SGUL22 Saint George's 
University 
Hospital 

F 25-7-2013 57 EX 81 
60% pred 

12/2012 
IECOPD N/A N/A 

SGUL23 Saint George's 
University 
Hospital M 16-10-2013 72 Ex 69 

77% 16-10-
2013 

COPD, not 
exacerbating. 

recruited from 
Chest Clinic 

N/A N/A 

SGUL24 Saint George's 
University 
Hospital 

F 14/11/2013 58 current 68 
 

Infective 
Exacerbation of 

COPD 
N/A N/A 

SGUL25 Saint George's 
University 
Hospital 

M 10/09/2013 78 

EX ( 
stopped 
50 years 

ago) 

60 
135.00% 

(22-08-2013) 

Acute 
exacerbation of 

COPD, 
haemoptysis 
secondary to 

bronchiectasis 

N/A N/A 

SGUL26 Saint George's 
University 
Hospital 

M 10/09/2013 55 current 32 NK 
Collapse ( possible 
metastatic cancer) 

N/A N/A 

SGUL27 Saint George's 
University 
Hospital 

M 19-11-2013 61 current 59 NK 
Aspirational 

Pneumonia & 
COPD 

N/A N/A 
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Patient ID Recruiting 
Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 

Smoking 
Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

SGUL28 Saint George's 
University 
Hospital 

F 20-11-2013 54 ex 42 NK 
Community 

acquired 
pneumonia 

N/A N/A 

SGUL29 Saint George's 
University 
Hospital 

M 21-1-2014 58 ex 42 
62% 17-8-

2009 

Non infectious 
exacerbation of 

COPD 
N/A N/A 

SGUL30 Saint George's 
University 
Hospital 

F 03/10/2014 53 EX 40 
48% Sept 

2013 

Infectious 
exacerbation of 

COPD 
N/A N/A 

SGUL32 Saint George's 
University 
Hospital 

M 18-03-2014 71 ex 76 
61% July 

2011 

Community 
acquired 

pneumonia 
N/A N/A 

SGUL33 Saint George's 
University 
Hospital 

F 18-3-2014 58 ex 56 NK IECOPD N/A N/A 

SGUL34 Saint George's 
University 
Hospital 

M 23-4-2014 NK ex 50 NK IECOPD N/A N/A 

SGUL35 Saint George's 
University 
Hospital 

F 24-4-2014 63 ex 39 
65% July 

2012 
IECOPD N/A N/A 

SGUL36 Saint George's 
University 
Hospital 

M 01/05/2014 75 ex 50 NK IECOPD N/A N/A 

SGUL37 Saint George's 
University 
Hospital 

F 02/05/2014 64 ex 29 NK IECOPD N/A N/A 
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Patient ID Recruiting 
Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 

Smoking 
Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

SGUL38 Saint George's 
University 
Hospital 

M 02/05/2014 84 ex 15 
79% 3-2-

2012 
IECOPD N/A N/A 

TGW0011 The Great 
Western, 
Swindon 

M 22/8/2011 67 Current 30 2.62 -102% NSCLC Adenocarcinoma T3 N0 M0 

TGW0043 The Great 
Western, 
Swindon 

M 28/08/2012 68 Ex 80 82.00% NSCLC Squamous T3 N1 M0 

TGW0044 The Great 
Western, 
Swindon 

M 31/10/2012 64 Current 100 49.00% SCLC 
 

T4 N3 M1a 

TGW0046 The Great 
Western, 
Swindon 

M 11/07/2012 46 nk nk nk SCLC 
 

T2a/3 N2 M0 

TGW0047 The Great 
Western, 
Swindon 

M 11/07/2012 58 Ex 40 82.00% NSCLC 
 

T3 N2 M0 

TGW0048 The Great 
Western, 
Swindon 

M 21/11/2012 64 Ex 100 93.00% NSCLC 

Adenocarcinoma, 
combined large 

cell 
neuroendocrine 

T2 N2 M0 

TGW0049 The Great 
Western, 
Swindon 

F 21/11/2012 46 Ex nk 63.00% SCLC 
 

T1b N1 M0 

TGW0050 The Great 
Western, 
Swindon 

F 27/11/2012 69 Ex 40 86.00% NSCLC Adenocarcinoma T2a N1 M0 

TGW0051 The Great 
Western, 
Swindon 

M 28/11/2012 53 Never 0 nk NSCLC Adenocarcinoma T1a N0 M0 
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Patient ID Recruiting 
Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 

Smoking 
Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

TGW0053 The Great 
Western, 
Swindon 

F 12/06/2012 68 Ex nk nk NSCLC 
 

T3 N3 M1b 

TGW0054 The Great 
Western, 
Swindon 

M 12/06/2012 48 Current nk 76.00% NSCLC 
 

T1a N2 M1a 

TGW0055 The Great 
Western, 
Swindon 

F 12/12/2012 65 Ex 30 66.00% NSCLC Adenocarcinoma T4 N3 M1b 

TGW0057 The Great 
Western, 
Swindon 

F 01/02/2013 67 Current 55 79.00% NSCLC Adenocarcinoma T3 N1 M0 

TGW0059 The Great 
Western, 
Swindon 

M 01/10/2013 77 Ex nk 78.00% NSCLC Adenocarcinoma T1b N2 M0 

TGW0062 The Great 
Western, 
Swindon 

F 17/1/2013 65 Current nk 90.00% NSCLC Adenocarcinoma T2b N1 M0 

TGW0063 The Great 
Western, 
Swindon 

F 17/1/2013 70 Never 0 110.00% NSCLC Adenocarcinoma T2b N3 M0 

TGW0064 The Great 
Western, 
Swindon 

M 23/1/2013 79 Ex 40 55.00% SCLC 
 

T2a N2 M1b 

TGW0065 The Great 
Western, 
Swindon 

F 31/1/2013 60 Ex 50 47.00% SCLC 
 

T4 N3 M1b 

TGW0067 The Great 
Western, 
Swindon 

F 02/07/2013 65 Ex 10 113.00% NSCLC 
 

T1b N1 M1b 

TGW0068 The Great 
Western, 
Swindon 

F 14/2/2013 75 Never 0 nk NSCLC Adenocarcinoma T4 N3 M0 
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Patient ID Recruiting 
Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 

Smoking 
Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

TGW0069 The Great 
Western, 
Swindon 

M 21/2/2013 83 Ex 60 69.00% NSCLC Adenocarcinoma T4 N1 M0 

TGW0070 The Great 
Western, 
Swindon 

M 26/2/2013 73 Ex 60 40.00% NSCLC Adenocarcinoma T3 N2 M1b 

TGW0073 The Great 
Western, 
Swindon 

M 03/05/2013 66 Ex 80 62.00% NSCLC Adenocarcinoma T2 N2 M0 

TGW0075 The Great 
Western, 
Swindon 

M 03/12/2013 64 Ex nk 91.00% SCLC 
 

T4 N2 M0 

TGW0080 The Great 
Western, 
Swindon 

M 18/6/2013 74 Ex nk 63.00% NSCLC R upper lobe T2b N1 M0 

TGW0082 The Great 
Western, 
Swindon 

M 25/6/2013 77 Current nk 65.00% NSCLC 
 

T2a N0 M0 

TGW0083 The Great 
Western, 
Swindon 

M 27/6/2013 77 Ex nk nk NSCLC Squamous T2a N0 M1a 

TGW0085 The Great 
Western, 
Swindon 

F 27/6/2013 67 Never 0 nk NSCLC Adenocarcinoma T2b N0 M1b 

TGW0091 The Great 
Western, 
Swindon 

F 07/02/2013 74 Ex 20 76.00% NSCLC Adenocarcinoma T3 N2 M1b 

TGW0092 The Great 
Western, 
Swindon 

F 07/02/2013 60 Current 40 nk NSCLC Adenocarcinoma T3 N2 M1b 

TGW0095 The Great 
Western, 
Swindon 

NK 17/7/2013 NK Ex nk 76.00% SCLC 
 

T2a N2 M0 
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Patient ID Recruiting 
Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 

Smoking 
Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

TGW0097 The Great 
Western, 
Swindon 

M 29/7/2013 69 Current 50 nk SCLC 
 

T3 N1 M1b 

TGW0099 The Great 
Western, 
Swindon 

M 28/8/2013 57 Current 40 45.00% SCLC 
 

T4 N3 M0 

TGW0100 The Great 
Western, 
Swindon 

M 17/9/2013 67 Current 25 52.00% SCLC 
 

T4 N3 M0 

TGW0101 The Great 
Western, 
Swindon 

F 20/9/2013 59 Ex nk nk SCLC 
 

T4 N2 M0 

TGW0106 The Great 
Western, 
Swindon 

M 10/03/2013 58 Current 40 111.00% NSCLC 
 

T2 N1 M0 

TGW0107 The Great 
Western, 
Swindon 

F 10/08/2013 78 Ex 40 86.00% NSCLC 
 

T3 N1 M1 

TGW0112 The Great 
Western, 
Swindon 

M 16/10/2013 73 Ex nk nk NSCLC 
 

T2 N2 M1a 

TGW0113 The Great 
Western, 
Swindon 

M 24/10/2013 86 Ex 15 nk SCLC 
 

T4 N2 M1a 

TGW0114 The Great 
Western, 
Swindon 

M 31/10/2013 60 Current 30 74.00% NSCLC 
 

T4 N3 M1a 

TGW0118 The Great 
Western, 
Swindon 

M 19/11/2013 73 Current 100 58.00% SCLC 
 

T4 N2 M1a 

TGW0121 The Great 
Western, 
Swindon 

M 21/11/2013 62 Current 40 nk NSCLC Adenocarcinoma T2b N3 M1b 
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Patient ID Recruiting 
Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 

Smoking 
Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

TGW0125 The Great 
Western, 
Swindon 

F 12/04/2013 74 Ex 20 127.00% NSCLC Adenocarcinoma T4 N0 M0 

TGW0126 The Great 
Western, 
Swindon 

M 12/05/2013 74 Current 120 106.00% SCLC 
 

T4 N3 M0 

TGW0127 The Great 
Western, 
Swindon 

F 12/06/2013 66 Ex 100 69.00% SCLC 
 

T4 N3 M0 

TGW0128 The Great 
Western, 
Swindon 

F 01/06/2014 62 Current 40 100.00% NSCLC Adenocarcinoma T2a N2 M1b 

TGW0129 The Great 
Western, 
Swindon 

M 16/1/2014 68 Ex 20 95.00% NSCLC Adenocarcinoma T2a N3 M1b 

TGW0130 The Great 
Western, 
Swindon 

M 16/1/2014 83 Ex nk nk SCLC 
 

T4 N2 M0 

TGW0132 The Great 
Western, 
Swindon 

F 20/06/2014 65 Current 20 96.00% NSCLC 
 

T3 N0 M1b 

TGW0134 The Great 
Western, 
Swindon 

M 15/07/2014 63 Current 50 nk SCLC 
 

T1a N2 M0 

TGW0136 The Great 
Western, 
Swindon 

M 18/07/2014 65 Current 50 nk SCLC 
 

T3A N2 M0 

TGW0137 The Great 
Western, 
Swindon 

F 08/08/2014 67 Current 50 nk NSCLC Adenocarcinoma T2b N2 M0 

TGW0140 The Great 
Western, 
Swindon 

M 22/08/2014 69 nk nk nk NSCLC 
 

T2a N3 M1a 
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Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 

Smoking 
Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

TGW0141 The Great 
Western, 
Swindon 

F 22/08/2014 71 Current 20 nk SCLC 
 

TX N2 M0 

TGW0142 The Great 
Western, 
Swindon 

M 26/08/2014 70 Ex nk 89.00% NSCLC squamous T3 N2 M0 

TGW0147 The Great 
Western, 
Swindon 

M 04/11/2014 75 Ex 30 35% NSCLC Adenocarcinoma T2b N1 M0 

TGW0148 The Great 
Western, 
Swindon 

F 19/11/2014 69 Current 50 116% SCLC 
 

T3 N2 M1b 

TGW0149 The Great 
Western, 
Swindon 

M 19/11/2014 79 Ex nk 73% SCLC 
 

T1b N1 M0 

TGW0153 The Great 
Western, 
Swindon 

M 16/01/2015 69 Ex 30 nk SCLC 

mixed large cell 
neuroendocrine 
with small cell 

carcinoma 

T2b N1 MO 

TGW0155 The Great 
Western, 
Swindon 

M 23/02/2015 67 Ex nk nk NSCLC Adenocarcinoma T4 N0 M1a 

TGW0156 The Great 
Western, 
Swindon 

M 05/03/2015 73 Ex 140 81 NSCLC 
Adenocarcinoma 

Stage 4 
T1b N3 M1a 

TGW0159 The Great 
Western, 
Swindon 

M 09/06/2015 66 Ex 40 91 NSCLC Adenocarcinoma T3 N2 M0 

TGW0160 The Great 
Western, 
Swindon 

F 09/06/2015 69 Ex 50 60 SCLC Metastatic SCLC T3 N2 M1b 

TGW0161 The Great 
Western, 
Swindon 

M 25/06/2015 74 Ex 75 nk NSCLC squamous T3 N2 M1b 
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Patient ID Recruiting 
Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 

Smoking 
Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

TGW0164 The Great 
Western, 
Swindon 

F 04/08/2015 72 Ex nk nk NSCLC Adenocarcinoma T4 N2 M1a 

TGW0167 The Great 
Western, 
Swindon 

F 19/08/2015 78 Ex nk nk NSCLC Adenocarcinoma T4 N0 M1a 

TGW0168 The Great 
Western, 
Swindon 

M 01/09/2015 57 Current 40 nk NSCLC Adenocarcinoma T1a N0 M1b 

TGW0170 The Great 
Western, 
Swindon 

F 10/09/2015 60 Ex 23 nk NSCLC 
Invasive 

Adenocarcinoma 
T1a N3 M0 

TGW0172 The Great 
Western, 
Swindon 

F 08/10/2015 64 Ex 40 nk SCLC 
 

T2a N3 M0 

TGW0173 The Great 
Western, 
Swindon 

M 12/10/2015 69 Ex 25 nk SCLC Stage 3B T4 N2 M1b 

TGW0174 The Great 
Western, 
Swindon 

F 20/10/2015 74 Ex 5 nk SCLC N/A T4 N2 M0 

TR01 Prince Phillip, 
Llanelli M 22/11/2012 nk Current nk 36 

COPD 
Exacerbation 

N/A N/A 

TR02 Prince Phillip, 
Llanelli F 22/11/2012 nk Ex 30 38 

COPD 
Exacerbation 

N/A N/A 

TR04 Prince Phillip, 
Llanelli M 12/12/2012 NK Current 60 41 

COPD 
Exacerbation 

N/A N/A 

TR05 Prince Phillip, 
Llanelli F 12/12/2012 NK Never 0 61 

COPD 
Exacerbation 

N/A N/A 

TR06 Prince Phillip, 
Llanelli M 23/01/2013 NK Ex nk 52 

COPD 
Exacerbation 

N/A N/A 
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Hospital 

Patien
t Sex 

Date 
Recruited 

Age at 
Diagnosis 
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Status 

Pack-
years 

FEV1 (%) of 
Predicted 

Final Clinical 
Diagnosis 

Histology Staging 

TR08 Prince Phillip, 
Llanelli M 20/02/2013 NK Ex 25 48 

COPD 
Exacerbation 

N/A N/A 

TR09 Prince Phillip, 
Llanelli F 25/02/2013 NK Ex 34 69 

COPD 
Exacerbation 

N/A N/A 

TR11 Prince Phillip, 
Llanelli M 07/03/2013 NK Ex nk 72 

COPD 
Exacerbation 

N/A N/A 

TR12 Prince Phillip, 
Llanelli F 11/03/2013 NK Ex 40 47 

COPD 
Exacerbation 

N/A N/A 

TR13 Prince Phillip, 
Llanelli F 11/03/2013 NK Ex 40 48 COPD Baseline N/A N/A 

TR16 Prince Phillip, 
Llanelli F 26/03/2013 NK Ex 40 49 COPD Baseline N/A N/A 

TR17 Prince Phillip, 
Llanelli F 10/04/2013 NK Current 25 71 COPD Baseline N/A N/A 

TR18 Prince Phillip, 
Llanelli M 10/04/2013 NK Current 50 47 

COPD 
Exacerbation 

N/A N/A 

TR20 Prince Phillip, 
Llanelli F 03/05/2013 NK Ex 40 77 COPD Baseline N/A N/A 

TR21 Prince Phillip, 
Llanelli M 03/05/2013 NK Current 50 52 COPD Baseline N/A N/A 

TR22 Prince Phillip, 
Llanelli M 28/05/2015 NK Ex 30 38 

COPD 
Exacerbation 

N/A N/A 
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A 1.4 Cystic Fibrosis Inhaled Therapeutics Patient List 

 

Table A1-4: Treatment phase assignments for each CF patient.  

 Phase I Phase II 

20801-002 OligoG Placebo 

27601-005 Placebo OligoG 

27604-003 OligoG Placebo 

27605-003 OligoG Placebo 

27606-003 OligoG Placebo 

57801-003 Placebo OligoG 

75202-001 OligoG Placebo 

75202-003 OligoG Placebo 

82601-002 Placebo OligoG 

82602-002 OligoG Placebo 

82602-005 OligoG Placebo 

82602-006 OligoG Placebo 

82603-003 OligoG Placebo 

82604-008 Placebo OligoG 

82604-009 Placebo OligoG 

82606-003 Placebo OligoG 
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Appendix 2: Medlung Patient Spectra 

A2.1 COPD Patient Sputum Average Spectra 

 

Figure A2-1: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0002 from 4000-400cm

-1 

 

Figure A2-2: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0005 from 4000-400cm

-1
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Figure A2-3: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0006 from 4000-400cm

-1 

 

 

Figure A2-4: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0010 from 4000-400cm

-1
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Figure A2-5: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0013 from 4000-400cm

-1 

 

 

Figure A2-6: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0014 from 4000-400cm

-1
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Figure A2-7: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0015 from 4000-400cm

-1 

 

 

Figure A2-8: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0016 from 4000-400cm

-1
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Figure A2-9: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0017 from 4000-400cm

-1 

 

 

Figure A2-10: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0018 from 4000-400cm
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Figure A2-11: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0020 from 4000-400cm
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Figure A2-12: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0021 from 4000-400cm
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Figure A2-13: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0023 from 4000-400cm
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Figure A2-14: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0024 from 4000-400cm
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Figure A2-15: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0028 from 4000-400cm

-1 

 

 

Figure A2-16: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0030 from 4000-400cm
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Figure A2-17: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0031 from 4000-400cm
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Figure A2-18: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0033 from 4000-400cm
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Figure A2-19: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0034 from 4000-400cm
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Figure A2-20: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0035 from 4000-400cm
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Figure A2-21: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0036 from 4000-400cm
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Figure A2-22: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0037 from 4000-400cm
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Figure A2-23: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0038 from 4000-400cm
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Figure A2-24: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0039 from 4000-400cm
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Figure A2-25: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0040 from 4000-400cm
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Figure A2-26: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0042 from 4000-400cm

-1 

 



Charles Brilliant 
 

  300 
 

 

Figure A2-27: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0043 from 4000-400cm
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Figure A2-28: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0044 from 4000-400cm
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Figure A2-29: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0046 from 4000-400cm
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Figure A2-30: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0047 from 4000-400cm
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Figure A2-31: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0052 from 4000-400cm
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Figure A2-32: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0053 from 4000-400cm
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Figure A2-33: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0055 from 4000-400cm
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Figure A2-34: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0056 from 4000-400cm
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Figure A2-35: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0057 from 4000-400cm
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Figure A2-36: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0058 from 4000-400cm
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Figure A2-37: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0059 from 4000-400cm

-1 

 

 

Figure A2-38: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0061 from 4000-400cm
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Figure A2-39: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0062 from 4000-400cm
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Figure A2-40: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0063 from 4000-400cm
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Figure A2-41: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0064 from 4000-400cm
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Figure A2-42: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0066 from 4000-400cm
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Figure A2-43: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0068 from 4000-400cm
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Figure A2-44: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0069 from 4000-400cm
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Figure A2-45: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0071 from 4000-400cm
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Figure A2-46: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0072 from 4000-400cm
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Figure A2-47: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0074 from 4000-400cm

-1 

 

 

Figure A2-48: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0075 from 4000-400cm
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Figure A2-49: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0077 from 4000-400cm
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Figure A2-50: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0078 from 4000-400cm
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Figure A2-51: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0079 from 4000-400cm
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Figure A2-52: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0080 from 4000-400cm
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Figure A2-53: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0081 from 4000-400cm
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Figure A2-54: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0083 from 4000-400cm

-1 

 



Charles Brilliant 
 

  314 
 

 

Figure A2-55: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0084 from 4000-400cm
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Figure A2-56: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0085 from 4000-400cm
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Figure A2-57: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0086 from 4000-400cm
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Figure A2-58: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0088 from 4000-400cm
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Figure A2-59: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0089 from 4000-400cm
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Figure A2-60: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0091 from 4000-400cm
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Figure A2-61: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0093 from 4000-400cm
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Figure A2-62: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0094 from 4000-400cm
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Figure A2-63: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0095 from 4000-400cm
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Figure A2-64: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0097 from 4000-400cm
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Figure A2-65: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0098 from 4000-400cm
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Figure A2-66: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0099 from 4000-400cm

-1 

 



Charles Brilliant 
 

  320 
 

 

Figure A2-67: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0102 from 4000-400cm
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Figure A2-68: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0103 from 4000-400cm
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Figure A2-69: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0104 from 4000-400cm
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Figure A2-70: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0105 from 4000-400cm
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Figure A2-71: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0106 from 4000-400cm
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Figure A2-72: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0110 from 4000-400cm
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Figure A2-73: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0111 from 4000-400cm
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Figure A2-74: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0112 from 4000-400cm
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Figure A2-75: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0114 from 4000-400cm
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Figure A2-76: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0116 from 4000-400cm
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Figure A2-77: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0117 from 4000-400cm
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Figure A2-78: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0118 from 4000-400cm
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Figure A2-79: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
KMN0119 from 4000-400cm
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Figure A2-80: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
SGUL01 from 4000-400cm
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Figure A2-81: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
SGUL02 from 4000-400cm
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Figure A2-82: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
SGUL03 from 4000-400cm
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Figure A2-83: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
SGUL04 from 4000-400cm
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Figure A2-84: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
SGUL05 from 4000-400cm
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Figure A2-85: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
SGUL06 from 4000-400cm
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Figure A2-86: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
SGUL08 from 4000-400cm
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Figure A2-87: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
SGUL09 from 4000-400cm
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Figure A2-88: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
SGUL10 from 4000-400cm
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Figure A2-89: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
SGUL11 from 4000-400cm
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Figure A2-90: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
SGUL12 from 4000-400cm
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Figure A2-91: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
SGUL13 from 4000-400cm
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Figure A2-92: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
SGUL14 from 4000-400cm
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Figure A2-93: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
SGUL16 from 4000-400cm
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Figure A2-94: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
SGUL17 from 4000-400cm
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Figure A2-95: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
SGUL18 from 4000-400cm
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Figure A2-96: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
SGUL19 from 4000-400cm
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Figure A2-97: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
SGUL21 from 4000-400cm
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Figure A2-98: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
SGUL22 from 4000-400cm
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Figure A2-99: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
SGUL23 from 4000-400cm

-1 

 

Figure A2-100: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient SGUL24 from 4000-400cm
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Figure A2-101: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient SGUL24 from 4000-400cm

-1 

 

Figure A2-102: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
SGUL27 from 4000-400cm
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Figure A2-103: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient SGUL29 from 4000-400cm
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Figure A2-104: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient SGUL30 from 4000-400cm
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Figure A2-105: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient SGUL33 from 4000-400cm
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Figure A2-106: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient SGUL34 from 4000-400cm
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Figure A2-107: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient SGUL35 from 4000-400cm
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Figure A2-108: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient SGUL36 from 4000-400cm
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Figure A2-109: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient SGUL37 from 4000-400cm
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Figure A2-110: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient SGUL38 from 4000-400cm
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Figure A2-111: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
TR01 from 4000-400cm
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Figure A2-112: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
TR02 from 4000-400cm
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Figure A2-113: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
TR04 from 4000-400cm

-1 

 

 

Figure A2-114: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient TR05 from 4000-400cm
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Figure A2-115: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
TR06 from 4000-400cm
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Figure A2-116: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient TR08 from 4000-400cm
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Figure A2-117: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator patient 
TR09 from 4000-400cm
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Figure A2-118: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient TR11 from 4000-400cm
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Figure A2-119: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
TR12 from 4000-400cm
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Figure A2-120: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
TR13 from 4000-400cm
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Figure A2-121: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
TR16 from 4000-400cm
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Figure A2-122: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient TR17 from 4000-400cm
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Figure A2-123: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
TR18 from 4000-400cm
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Figure A2-124: Baseline-corrected absorbance spectrum of MEDLUNG COPD baseline patient 
TR20 from 4000-400cm
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Figure A2-125: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient TR21 from 4000-400cm

-1 

 

 

Figure A2-126: Baseline-corrected absorbance spectrum of MEDLUNG COPD exacerbator 
patient TR22 from 4000-400cm
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A2.2 Lung Cancer Patient Sputum Average Spectra 

 

Figure A2-127: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient BC0002 from 4000-600cm

-1 

 

 

Figure A2-128: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient BC0003 from 4000-600cm
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Figure A2-129: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient BC0005 from 4000-600cm
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Figure A2-130: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient BC0007 from 4000-600cm
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Figure A2-131: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient BC0009 from 4000-600cm
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Figure A2-132: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient BC0010 from 4000-600cm
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Figure A2-133: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient BGHLC0016 from 4000-600cm
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Figure A2-134: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient BQE0023 from 4000-600cm
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Figure A2-135: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient BQE0032 from 4000-600cm
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Figure A2-136: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient BQE0033 from 4000-600cm
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Figure A2-137: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient BQE0036 from 4000-600cm
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Figure A2-138: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient CW0001 from 4000-600cm
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Figure A2-139: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient CW0003 from 4000-600cm
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Figure A2-140: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient CW0005 from 4000-600cm
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Figure A2-141: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient CW0011 from 4000-600cm
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Figure A2-142: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient CW0012 from 4000-600cm
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Figure A2-143: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient CW0018 from 4000-600cm
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Figure A2-144: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient CW0020 from 4000-600cm
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Figure A2-145: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient CW0030 from 4000-600cm
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Figure A2-146: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient CW0036 from 4000-600cm
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Figure A2-147: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient CW0040 from 4000-600cm
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Figure A2-148: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient CW0044 from 4000-600cm
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Figure A2-149: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient CW0046 from 4000-600cm
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Figure A2-150: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient CW0050 from 4000-600cm
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Figure A2-151: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient DE0012 from 4000-600cm
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Figure A2-152: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient DE0015 from 4000-600cm
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Figure A2-153: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient DE0030 from 4000-600cm
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Figure A2-154: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient DE0036 from 4000-600cm
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Figure A2-155: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient DE0050 from 4000-600cm
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Figure A2-156: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient DE0051 from 4000-600cm
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Figure A2-157: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient DE0052 from 4000-600cm
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Figure A2-158: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient DE0053 from 4000-600cm
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Figure A2-159: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient DE0054 from 4000-600cm
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Figure A2-160: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient LC0161 from 4000-600cm
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Figure A2-161: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0007 from 4000-600cm
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Figure A2-162: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0010 from 4000-600cm
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Figure A2-163: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0011 from 4000-600cm
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Figure A2-164: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0012 from 4000-600cm

-1
 

 



Charles Brilliant 
 

  369 
 

 

Figure A2-165: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0014 from 4000-600cm
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Figure A2-166: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0019 from 4000-600cm
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Figure A2-167: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0020 from 4000-600cm
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Figure A2-168: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0020 from 4000-600cm
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Figure A2-169: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0028 from 4000-600cm

-1
 

 

 

Figure A2-170: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0029 from 4000-600cm
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Figure A2-171: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0030 from 4000-600cm
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Figure A2-172: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0033 from 4000-600cm
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Figure A2-173: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0034 from 4000-600cm
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Figure A2-174: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0035 from 4000-600cm
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Figure A2-175: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0036 from 4000-600cm
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Figure A2-176: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0038 from 4000-600cm
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Figure A2-177: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0039 from 4000-600cm
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Figure A2-178: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0041 from 4000-600cm
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Figure A2-179: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0042 from 4000-600cm
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Figure A2-180: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0043 from 4000-600cm
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Figure A2-181: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0044 from 4000-600cm
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Figure A2-182: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0047 from 4000-600cm
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Figure A2-183: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0054 from 4000-600cm
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Figure A2-184: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0055 from 4000-600cm
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Figure A2-185: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0056 from 4000-600cm
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Figure A2-186: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0058 from 4000-600cm
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Figure A2-187: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0060 from 4000-600cm
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Figure A2-188: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0061 from 4000-600cm
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Figure A2-189: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0062 from 4000-600cm
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Figure A2-190: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0063 from 4000-600cm
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Figure A2-191: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0064 from 4000-600cm
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Figure A2-192: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0067 from 4000-600cm
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Figure A2-193: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0069 from 4000-600cm
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Figure A2- 194: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient MK0070 from 4000-600cm
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Figure A2- 195: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0001 from 4000-600cm
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Figure A2- 196: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0002 from 4000-600cm
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Figure A2- 197: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0004 from 4000-600cm
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Figure A2- 198: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0005 from 4000-600cm
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Figure A2- 199: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0007 from 4000-600cm
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Figure A2- 200: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0009 from 4000-600cm

-1 

 



Charles Brilliant 
 

  387 
 

 

Figure A2- 201: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0010 from 4000-600cm
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Figure A2- 202: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0011 from 4000-600cm
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Figure A2- 203: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0013 from 4000-600cm
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Figure A2- 204: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0017 from 4000-600cm
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Figure A2- 205: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0018 from 4000-600cm
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Figure A2- 206: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0019 from 4000-600cm
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Figure A2- 207: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0020 from 4000-600cm
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Figure A2- 208: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0022 from 4000-600cm
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Figure A2- 209: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0024 from 4000-600cm
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Figure A2- 210: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0026 from 4000-600cm
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Figure A2- 211: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0027 from 4000-600cm
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Figure A2- 212: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0028 from 4000-600cm
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Figure A2- 213: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0029 from 4000-600cm
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Figure A2- 214: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0034 from 4000-600cm
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Figure A2- 215: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0035 from 4000-600cm
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Figure A2- 216: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0036 from 4000-600cm
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Figure A2- 217: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0039 from 4000-600cm
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Figure A2- 218: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0040 from 4000-600cm
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Figure A2- 219: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0044 from 4000-600cm
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Figure A2- 220: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0049 from 4000-600cm
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Figure A2- 221: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0051 from 4000-600cm
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Figure A2- 222: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0052 from 4000-600cm
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Figure A2- 223: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0053 from 4000-600cm
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Figure A2- 224: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0054 from 4000-600cm
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Figure A2- 225: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0055 from 4000-600cm
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Figure A2- 226: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0057 from 4000-600cm
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Figure A2- 227: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0058 from 4000-600cm

-1 

 

 

Figure A2- 228: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0062 from 4000-600cm
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Figure A2- 229: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0063 from 4000-600cm
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Figure A2- 230: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0064 from 4000-600cm
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Figure A2- 231: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0065 from 4000-600cm
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Figure A2- 232: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0070 from 4000-600cm
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Figure A2- 233: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0073 from 4000-600cm
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Figure A2- 234: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0074 from 4000-600cm
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Figure A2- 235: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0075 from 4000-600cm
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Figure A2- 236: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0076 from 4000-600cm
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Figure A2- 237: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0077 from 4000-600cm
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Figure A2- 238: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0078 from 4000-600cm
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Figure A2- 239: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0080 from 4000-600cm
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Figure A2- 240: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0081 from 4000-600cm
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Figure A2- 241: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0082 from 4000-600cm
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Figure A2- 242: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0085 from 4000-600cm
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Figure A2- 243: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0086 from 4000-600cm
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Figure A2- 244: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0087 from 4000-600cm
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Figure A2- 245: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0088 from 4000-600cm
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Figure A2- 246: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0089 from 4000-600cm

-1 

 



Charles Brilliant 
 

  410 
 

 

Figure A2- 247: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0092 from 4000-600cm
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Figure A2- 248: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0094 from 4000-600cm
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Figure A2- 249: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0095 from 4000-600cm
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Figure A2- 250: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0097 from 4000-600cm
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Figure A2- 251: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0098 from 4000-600cm
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Figure A2- 252: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0099 from 4000-600cm
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Figure A2- 253: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0102 from 4000-600cm
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Figure A2- 254: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0103 from 4000-600cm
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Figure A2- 255: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0108 from 4000-600cm
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Figure A2- 256: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0110 from 4000-600cm
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Figure A2- 257: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0113 from 4000-600cm
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Figure A2- 258: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0117 from 4000-600cm
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Figure A2- 259: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0118 from 4000-600cm
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Figure A2- 260: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0121 from 4000-600cm
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Figure A2- 261: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0122 from 4000-600cm
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Figure A2- 262: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0123 from 4000-600cm
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Figure A2- 263: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0124 from 4000-600cm
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Figure A2- 264: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0125 from 4000-600cm

-1 

 



Charles Brilliant 
 

  419 
 

 

Figure A2- 265: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0126 from 4000-600cm
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Figure A2- 266: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0127 from 4000-600cm
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Figure A2- 267: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0131 from 4000-600cm
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Figure A2- 268: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0132 from 4000-600cm
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Figure A2- 269: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient NCW0133 from 4000-600cm
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Figure A2- 270: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0011 from 4000-600cm
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Figure A2- 271: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0043 from 4000-600cm
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Figure A2- 272: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0044 from 4000-600cm
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Figure A2- 273: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0046 from 4000-600cm
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Figure A2- 274: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0047 from 4000-600cm

-1 

 



Charles Brilliant 
 

  424 
 

 

Figure A2- 275: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0048 from 4000-600cm
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Figure A2- 276: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0049 from 4000-600cm
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Figure A2- 277: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0050 from 4000-600cm
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Figure A2- 278: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0051 from 4000-600cm
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Figure A2- 279: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0053 from 4000-600cm
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Figure A2- 280: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0054 from 4000-600cm
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Figure A2- 281: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0055 from 4000-600cm
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Figure A2- 282: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0057 from 4000-600cm
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Figure A2- 283: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0059 from 4000-600cm
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Figure A2- 284: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0062 from 4000-600cm
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Figure A2- 285: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0063 from 4000-600cm
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Figure A2- 286: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0064 from 4000-600cm
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Figure A2- 287: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0065 from 4000-600cm
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Figure A2- 288: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0067 from 4000-600cm
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Figure A2- 289: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0068 from 4000-600cm
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Figure A2- 290: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0069 from 4000-600cm
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Figure A2- 291: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0070 from 4000-600cm
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Figure A2- 292: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0073 from 4000-600cm
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Figure A2- 293: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0075 from 4000-600cm
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Figure A2- 294: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0080 from 4000-600cm
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Figure A2- 295: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0082 from 4000-600cm
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Figure A2- 296: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0083 from 4000-600cm
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Figure A2- 297: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0085 from 4000-600cm
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Figure A2- 298: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0091 from 4000-600cm
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Figure A2- 299: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0092 from 4000-600cm
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Figure A2- 300: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0095 from 4000-600cm
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Figure A2- 301: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0097 from 4000-600cm
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Figure A2- 302: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0099 from 4000-600cm
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Figure A2- 303: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0100 from 4000-600cm
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Figure A2- 304: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0101 from 4000-600cm
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Figure A2- 305: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0106 from 4000-600cm
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Figure A2- 306: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0107 from 4000-600cm
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Figure A2- 307: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0112 from 4000-600cm
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Figure A2- 308: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0113 from 4000-600cm
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Figure A2- 309: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0114 from 4000-600cm
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Figure A2- 310: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0118 from 4000-600cm
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Figure A2- 311: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0121 from 4000-600cm
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Figure A2- 312: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0125 from 4000-600cm
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Figure A2- 313: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0126 from 4000-600cm
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Figure A2- 314: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0127 from 4000-600cm
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Figure A2- 315: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0128 from 4000-600cm
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Figure A2- 316: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0129 from 4000-600cm
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Figure A2- 317: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0130 from 4000-600cm
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Figure A2- 318: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0132 from 4000-600cm

-1 

 



Charles Brilliant 
 

  446 
 

 

Figure A2- 319: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0134 from 4000-600cm
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Figure A2- 320: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0136 from 4000-600cm
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Figure A2- 321: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0137 from 4000-600cm
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Figure A2- 322: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0140 from 4000-600cm
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Figure A2- 323: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0141 from 4000-600cm
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Figure A2- 324: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0142 from 4000-600cm
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Figure A2- 325: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0147 from 4000-600cm
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Figure A2- 326: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0148 from 4000-600cm
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Figure A2- 327: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0149 from 4000-600cm
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Figure A2- 328: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0153 from 4000-600cm
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Figure A2- 329: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0155 from 4000-600cm
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Figure A2- 330: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0156 from 4000-600cm
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Figure A2- 331: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0159 from 4000-600cm
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Figure A2- 332: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0160 from 4000-600cm
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Figure A2- 333: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0161 from 4000-600cm
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Figure A2- 334: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0164 from 4000-600cm
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Figure A2- 335: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0167 from 4000-600cm
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Figure A2- 336: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0168 from 4000-600cm
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Figure A2- 337: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0170 from 4000-600cm
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Figure A2- 338: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0172 from 4000-600cm
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Figure A2- 339: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0173 from 4000-600cm
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Figure A2- 340: Vector-normalised, baseline-corrected absorbance spectrum of MEDLUNG lung 
cancer patient TGW0174 from 4000-600cm
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Appendix 3: SPEDIC Patients’ Longitudinal Q-values plots 

 

Figure A3-1: Inflammatory quotient values (blue) for patient SP01, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-2: Inflammatory quotient values (blue) for patient SP02, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-3: Inflammatory quotient values (blue) for patient SP05, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-4: Inflammatory quotient values (blue) for patient SP06, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-5: Inflammatory quotient values (blue) for patient SP07, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-6: Inflammatory quotient values (blue) for patient SP09, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-7: Inflammatory quotient values (blue) for patient SP10, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-8: Inflammatory quotient values (blue) for patient SP12, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-9: Inflammatory quotient values (blue) for patient SP14, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-10: Inflammatory quotient values (blue) for patient SP16, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-11: Inflammatory quotient values (blue) for patient SP17, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-12: Inflammatory quotient values (blue) for patient SP18, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-13: Inflammatory quotient values (blue) for patient SP20, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-14: Inflammatory quotient values (blue) for patient SP21, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-15: Inflammatory quotient values (blue) for patient SP23, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-16: Inflammatory quotient values (blue) for patient SP24, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-17: Inflammatory quotient values (blue) for patient SP25, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-18: Inflammatory quotient values (blue) for patient SP27, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-19: Inflammatory quotient values (blue) for patient SP28, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-20: Inflammatory quotient values (blue) for patient SP30, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-21: Inflammatory quotient values (blue) for patient SP31, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-22: Inflammatory quotient values (blue) for patient SP34, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-23: Inflammatory quotient values (blue) for patient SP35, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-24: Inflammatory quotient values (blue) for patient SP36, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-25: Inflammatory quotient values (blue) for patient SP38, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-26: Inflammatory quotient values (blue) for patient SP39, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-27: Inflammatory quotient values (blue) for patient SP40, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-28: Inflammatory quotient values (blue) for patient SP43, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-29: Inflammatory quotient values (blue) for patient SP44, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-30: Inflammatory quotient values (blue) for patient SP47, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-31: Inflammatory quotient values (blue) for patient SP48, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 



Charles Brilliant 
 

  488 
 

 

Figure A3-32: Inflammatory quotient values (blue) for patient SP49, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-33: Inflammatory quotient values (blue) for patient SP50, plotted over time, with sample classifications shown on the x-axis as current 

exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 

identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-34: Inflammatory quotient values (blue) for patient SP54, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Figure A3-35: Inflammatory quotient values (blue) for patient SP55, plotted over time, with sample classifications shown on the x-axis as current 
exacerbation (E), baseline control (C), pre-exacerbation (P), or post-exacerbation (H). A 5-point moving average trendline (black) is shown to 
identify overall short-term, weekly and long-term patterns in sputum molecular structural change. 
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Appendix 4: Spectra Generated with and without the Sampling 

Strip on the Bruker Alpha 

 

Figure A4-1: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm

-1 
of COPD sputum sample KMN0002 dried onto the sampling strip (red), 

and the ATR crystal (blue) 
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Figure A4-2: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm

-1
 of COPD sputum sample KMN0005 dried onto the sampling strip (red), 

and the ATR crystal (blue) 

 

Figure A4-3: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm

-1
 of COPD sputum sample KMN0006 dried onto the sampling strip (red), 

and the ATR crystal (blue) 
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Figure 4: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm

-1
 of COPD sputum sample KMN0010 dried onto the sampling strip (red), 

and the ATR crystal (blue) 

 

Figure A4-5: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm

-1
 of COPD sputum sample KMN0013 dried onto the sampling strip (red), 

and the ATR crystal (blue) 
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Figure A4-6: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm

-1
 of COPD sputum sample KMN0014 dried onto the sampling strip (red), 

and the ATR crystal (blue) 

 

Figure A4-7: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm

-1
 of COPD sputum sample KMN0015 dried onto the sampling strip (red), 

and the ATR crystal (blue) 
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Figure A4-8: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm

-1
 of COPD sputum sample KMN0016 dried onto the sampling strip (red), 

and the ATR crystal (blue) 

 

Figure A4-9: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm

-1
 of COPD sputum sample KMN0017 dried onto the sampling strip (red), 

and the ATR crystal (blue) 
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Figure A4-10: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm

-1
 of COPD sputum sample KMN0018 dried onto the sampling strip (red), 

and the ATR crystal (blue) 

 

Figure A4-11: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm

-1
 of COPD sputum sample KMN0020 dried onto the sampling strip (red), 

and the ATR crystal (blue) 
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Figure A4-12: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm

-1
 of COPD sputum sample KMN0021 dried onto the sampling strip (red), 

and the ATR crystal (blue) 

 

Figure A4-13: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm

-1
 of COPD sputum sample KMN0023 dried onto the sampling strip (red), 

and the ATR crystal (blue) 
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Figure A4-14: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm

-1
 of COPD sputum sample KMN0024 dried onto the sampling strip (red), 

and the ATR crystal (blue) 

 

Figure A4-15: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0028 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-16: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0031 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 
Figure A4-17: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0031 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-18: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0039 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

 

Figure A4-19: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0040 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-20: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0042 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

Figure A4-21: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0043 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-22: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0046 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

Figure A4-23: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 

1800:900cm-1 of COPD sputum sample KMN0049 dried onto the sampling strip (red), 

and the ATR crystal (blue) 
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Figure A4-24: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 

1800:900cm-1 of COPD sputum sample KMN0050 dried onto the sampling strip (red), 

and the ATR crystal (blue) 

Figure A4-25: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 

1800:900cm-1 of COPD sputum sample KMN0052 dried onto the sampling strip (red), 

and the ATR crystal (blue) 
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Figure A4-26: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0053 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-27: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0056 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-28: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0057 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-29: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0058 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-30: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0059 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-31: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0061 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-32: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0062 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-33: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0063 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-34: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0064 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-35: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0066 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-36: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0069 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-37: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0071 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-38: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0072 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-39: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0074 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

10001200140016001800

Wavenumber cm-1

-0.4

-0.2

0.0

0.2

0.4

0.6

A
b
s
o
rb

a
n
c
e
 U

n
it
s

25/09/2018

 

10001200140016001800

Wavenumber cm-1

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

A
b
s
o
rb

a
n
c
e
 U

n
it
s

25/09/2018

 



Charles Brilliant 
 

  512 
 

 

Figure A4-40: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0075 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-41: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0077 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-42: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0078 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-43: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0079 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-44: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0080 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 Figure A4-45: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0081 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-46: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0084 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-47: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0085 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-48: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0086 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-49: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0088 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-50: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0091 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-51: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0093 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-52: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0094 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-53: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0095 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-54: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0097 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-55: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0099 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-56: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0102 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-57: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0103 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-58: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0104 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-59: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0105 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

10001200140016001800

Wavenumber cm-1

-0.3

-0.2

-0.1

0.0

0.1

0.2

A
b
s
o
rb

a
n
c
e
 U

n
it
s

25/09/2018

 

10001200140016001800

Wavenumber cm-1

-0.3

-0.2

-0.1

0.0

0.1

0.2

A
b
s
o
rb

a
n
c
e
 U

n
it
s

25/09/2018

 



Charles Brilliant 
 

  522 
 

 

Figure A4-60: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0106 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-61: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0110 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-62: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0111 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-63: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0112 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-64: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0116 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-65: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0117 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-66: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0118 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-67: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample KMN0119 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-68: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL01 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-69: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL02 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-70: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL03 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-71: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL04 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-72: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL05 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-73: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL06 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-74: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL08 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-75: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL09 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-76: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL10 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-77: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL11 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-78: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL12 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-79: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL13 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-80: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL14 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-81: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL16 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-82: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL17 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-83: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL19 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-84: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL20 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-85: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL21 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-86: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL22 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-87: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL23 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-88: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL24 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-89: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL25 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-90: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL26 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-91: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL27 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-92: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL28 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-93: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL29 dried onto the sampling strip (red), 
and the ATR crystal (blue) 
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Figure A4-94: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL30 dried onto the sampling strip (red), 
and the ATR crystal (blue) 

 

Figure A4-95: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL32 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-96: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL33 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-97: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL34 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-98: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL35 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 Figure A4-99: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL36 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-100: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL37 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-101: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample SGUL38 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-102: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample TR02 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-103: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample TR04 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

10001200140016001800

Wavenumber cm-1

-0.04

-0.02

-0.00

0.02

0.04

0.06

0.08

0.10

A
b
s
o
rb

a
n
c
e
 U

n
it
s

26/09/2018

 

10001200140016001800

Wavenumber cm-1

-0.04

-0.02

-0.00

0.02

0.04

0.06

0.08

0.10

A
b
s
o
rb

a
n
c
e
 U

n
it
s

26/09/2018

 



Charles Brilliant 
 

  544 
 

 

Figure A4-104: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample TR05 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-105: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample TR06 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-106: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample TR08 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-107: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample TR09 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-108: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample TR11 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-109: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample TR12 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-110: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample TR13 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-111: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample TR16 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-112: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample TR17 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-113: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample TR18 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-114: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample TR20 dried onto the sampling strip (red), and 
the ATR crystal (blue) 

 

Figure A4-115: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample TR21 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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Figure A4-116: Baseline-corrected, vector-normalised average ATR-FTIR spectra from 
1800:900cm-1 of COPD sputum sample TR22 dried onto the sampling strip (red), and 
the ATR crystal (blue) 
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