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The measurement of time-harmonic perturbed field data, at a range of fre-
quencies, is beneficial for practical metal detection, where the goal is to locate
and identify hidden targets. In particular, these benefits are realised when
frequency-dependent magnetic polarizability tensors (MPTs) are used to pro-
vide an economical characterisation of conducting permeable objects, and a
dictionary-based classifier is employed. However, despite the advantages shown
in dictionary-based classifiers, the behaviour of the MPT coefficients with fre-
quency is not properly understood. In this paper, we rigorously analyse, for the
first time, the spectral properties of the coefficients of the MPT. This analysis
has the potential to improve existing algorithms and design new approaches for
object location and identification in metal detection. Our analysis also enables
the response transient response from a conducting permeable object to be
predicted for more general forms of excitation.
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1 INTRODUCTION

In metal detection, there is considerable interest in being able to locate and identify conducting permeable objects from
the measurements of mutual inductance between a transmitting and a measurement coil. Applications include security
screening, archaeology excavations, ensuring food safety as well as the search for land mines, and unexploded ordnance.
There are also closely related topics such as magnetic induction tomography for medical imaging and eddy current testing
for monitoring the corrosion of steel reinforcement in concrete structures.

Within the metal detection community, magnetic polarizability tensors (MPTs) have attracted considerable interest to
assist with the identification of objects when the transmitting coil is excited by a sinusoidal signal, eg,1-7 Engineers believe
that a rank 2 MPT provides an economical characterisation of a conducting permeable object that is invariant of position.
An asymptotic formula providing the leading order term for the perturbed magnetic field due to the presence of a small
conducting permeable object has been obtained by Ammari, Chen, Chen, Garnier, and Volkov,8 which characterises the
object in terms of a rank 4 tensor. We have shown that this simplifies for orthonormal coordinates and allows an object
to be characterised by a complex symmetric rank 2 MPT, with an explicit formula for its coefficients, thus, justifying the
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2 LEDGER AND LIONHEART

earlier engineering conjecture.9 We have extended the work of Ammari et al to provide a complete asymptotic expansion
for the perturbed magnetic field, which allows an object to be characterised by generalised MPTs of which the rank 2 MPT
is the simplest case.11 In Ledger et al,12 we have developed asymptotic expansions for the perturbed magnetic field that
describe (a) the leading order term for a small inhomogeneous conducting permeable object and (b) the response in the
case of multiple small conducting permeable objects, thus, extending the rank 2 MPT description of each of the objects
to these cases. Some properties of the MPT are described in Ledger and Lionheart,13 and the availability of the explicit
formula for the isolated single object case has been communicated to the engineering community.14

The measurement of time-harmonic perturbed field data, at a range of frequencies, has already been shown to be ben-
eficial for object location and object identification with several dictionary-based algorithms being proposed for metal
detection8,12,15 and electro-sensing.16 These benefits are realised because of the frequency dependence of the tensor coef-
ficients. In the case of an object with homogeneous conductivity and permeability, computational results (eg, Ledger and
Lionheart)13 have shown, for a range of object shapes and topologies, that the eigenvalues of the real part of the MPT is
monotonic and bounded with logarithmic frequency while the eigenvalues of the imaginary part of the MPT has a single
local maximum with logarithmic frequency. The behaviour was found to be similar for objects with inhomogeneous per-
meability; however, for objects with inhomogeneous conductivity, computational results show that the eigenvalues of the
real part have multiple nonstationary infection points, and the imaginary part has multiple local maxima.12 This was also
found to be the case in the measurements of the MPTs of US coins, which are made up of different conducting materials.17

An insight into the spectral behaviour of MPT coefficients is provided by the analytical solution for a conducting perme-
able sphere obtained by Wait and Spies,18 who also provide a description for the transient perturbed magnetic field when
the excitation is through a step or impulse function. Baum19 has suggested the form that the spectral response for an MPT
for a homogeneous conducting object should take a similar form, but does give a formal proof or an explicit expansion.
Instead, he uses heuristic arguments to justify its existence. He uses this as a basis for the so-called singularity expansion
method,20,21 where he proposes that the transient response to a conducting permeable object can be characterised by a
series of resonant frequencies, rather than its MPT coefficients. This approach, however, has been received with scepti-
cism when applied to objects other than spheres because of its lack of rigour.22 In this work, we present the first rigorous
spectral analysis of the MPT coefficients and its eigenvalues, which, we anticipate, will lead to improvements to existing
algorithms and the design of new approaches for object location and object identification. Furthermore, the improved
understanding of the spectral behaviour of the MPT coefficients also allows the transient response of conducting perme-
able objects to be understood when the excitation is not harmonic (eg, in the case of delta function) extending the work of
Wait and Spies and making rigorous the work of Baum. This is of practical value for metal detectors, which use impulse or
other nonharmonic forms of excitation. See also related work in the field of electro-sensing.23 These points are addressed
in our work through the following novelties:

1. A new alternative invariant form of the MPT is introduced, where the coefficients of the MPT follow from symmetric
bilinear forms.

2. Explicit expressions for the MPT coefficients for the limiting cases of an inhomogeneous permeable object at low
frequency and an inhomogeneous object with infinite conductivity (perfectly conducting) for multiply connected
topologies.

3. A new alternative view point is introduced, where the MPT coefficients are derived from an energy functional
expressed as a sum of three inner products, describing the magnetostatic and time varying magnetic and electric
energies. This leads to explicit expressions for the real and imaginary parts of the MPT in the form

 =  0 +𝜎∗ + i𝜎∗ , (1)

for a general inhomogeneous object. In the above,  0,𝜎∗ , and 𝜎∗ are all real symmetric rank 2 tensors; the former
describes the magnetostatic response, and the latter two are frequency-dependent. The frequency behaviour of the
coefficients of 𝜎∗ and 𝜎∗ is also explicitly derived.

4. The introduction of an eigenvalue problem that allows the spectral behaviour of , and hence the frequency
response of 𝜎∗ and 𝜎∗ , to be understood as a convergent infinite series using the Mittag-Leffler theorem.

5. Explicit forms of the transient response from a homogeneous conducting permeable object when the excitation is
a step function or an impulse function are derived. For the step function, this rigorously shows that the long time
response is that of a permeable object, and for an impulse function, the short time response is that of a perfect
conductor.
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The paper is organised as follows: In Section 2, some background on the characterisation of a conducting permeable
object by an MPT is briefly reviewed. Then, in Section 3, a new invariant form of the MPT is presented. Section 4 describes
the explicit expressions for the MPT coefficients for the limiting cases of an inhomogeneous nonconducting permeable
multiply connected object at low frequency and an inhomogeneous multiply connected object with infinite conductivity
(perfectly conducting). In Section 5, an energy functional is defined, from which the MPT coefficients follow, leading to
explicit expressions for 𝜎∗ and 𝜎∗ . Section 6 provides bounds on 𝜎∗ and 𝜎∗ , generalising the results already known
for  0. Then, in Section 7, explicit expressions for the eigenvalues of the tensors  0, 𝜎∗ , and 𝜎∗ are derived. Section 8
presents a spectral analysis of the MPT coefficients allowing their behaviour with frequency to be understood. Using this
analysis, the transient response for several different forms of excitation is obtained in Section 9.

2 CHARACTERISATION OF CONDUCTING PERMEABLE OBJECTS

We begin by considering the characterisation of a single homogenous conducting permeable object. Following,8,9 we
describe a single inclusion by B𝛼 ∶= 𝛼B + z, which means that it can be thought of a unit-sized object B located at the
origin, scaled by 𝛼 and translated by z. We assume the background is nonconducting and nonpermeable and introduce
the position-dependent conductivity and permeability as

𝜎𝛼 =
{
𝜎∗ in B𝛼
0 in Bc

𝛼 ∶= R3 ⧵ B𝛼
, 𝜇𝛼 =

{
𝜇∗ in B𝛼
𝜇0 in Bc

𝛼
, (2)

where 𝜇0 ∶= 4𝜋 × 10−7H/m is the permeability of free space, 0 < 𝜇* < ∞ and 0 ≤ 𝜎* < ∞. For metal detection, the
relevant mathematical model is the eddy current approximation of Maxwell's equations since 𝜎* is large and the angular
frequency 𝜔 = 2𝜋f is small (see Ammari, Buffa and Nédélec24 for a detailed justification). The electric and magnetic
interaction fields, E𝛼 and H𝛼 , respectively, satisfy the curl equations

∇ × H𝛼 = 𝜎𝛼E𝛼 + J0, ∇ × E𝛼 = i𝜔𝜇𝛼H𝛼, (3)

in R3 and decay as O(|x|−1) for |x| → ∞. In the above, J0 is an external current source with support in Bc
𝛼 . In absence of

an object, the background fields E0 and H0 satisfy (3) with 𝛼 = 0.
The task is to find an economical description for the perturbed magnetic field (H𝛼 − H0)(x) because of the presence

of B𝛼 , which characterises the object's shape and material parameters by a small number of parameters separately to its
location z. For x away from B𝛼 , the leading order term in an asymptotic expansion for (H𝛼 − H0)(x) as 𝛼 → 0 has been
derived by Ammari et al.8 We have shown that this reduces to the simpler form9,14 *

(H𝛼 − H0)(x)i = (D2
xG(x, z))i𝑗([𝛼B])𝑗k(H0(z))k + (R(x))i

= 1
4𝜋r3 (3r̂ ⊗ r̂ − I)i𝑗([𝛼B])𝑗k(H0(z))k + (R(x))i.

(4)

In the above, G(x, z) ∶= 1∕(4𝜋|x − z|) is the free space Laplace Green's function, r ∶= x − z, r = |r| and r̂ = r∕r and I

is the rank 2 identity tensor. The term R(x) quantifies the remainder, and it is known that |R| ≤ C𝛼4||H0||W2,∞(B𝛼). The
result holds when 𝜈 ∈ R+ ∶= 𝜎∗𝜇0𝜔𝛼

2 = O(1) as 𝛼 → 0 (this includes the case of fixed 𝜎*, 𝜇*, 𝜔 as 𝛼 → 0). Note that
(4) involves the evaluation of the background field within the object, usually at its centre, ie, H0(z), and requires it to be
analytic at this location. In addition, the notation [𝛼B] is used to denote that  is evaluated for the configuration 𝛼B.
In the following, we write  for [𝛼B], where no confusion arises.

The rank 2 tensor  ∶= − +  = (−()i𝑗 + ( )i𝑗)ei ⊗ e𝑗 depends on 𝜔, 𝜎*, 𝜇*∕𝜇0, 𝛼 and the shape of B but is
independent of z. This is the MPT, and its coefficients can be computed from vectorial solutions 𝜽j(𝝃), j = 1, 2, 3, to a

*In order to simplify notation, we drop the double check on  and the single check on , which was used in Ledger and Lionheart9 to denote two and
one reduction(s) in rank, respectively. We recall that  = ()i𝑗ei ⊗ e𝑗 , by the Einstein summation convention, where we use the notation ei to denote
the ith unit orthonormal basis vector, and repeated indices imply summation unless otherwise stated. We will denote the ith component of a vector u
by u · ei = (u)i and the i, jth coefficient of a rank 2 tensor  by ()i𝑗 .
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transmission problem, which we will state shortly, using

()i𝑗 ∶= − i𝛼3

4
ei · ∫B

𝜈𝛏 × (𝜽𝑗 + e𝑗 × 𝛏)d𝛏, (5a)

( )i𝑗 ∶= 𝛼3∫B

(
1 − 𝜇0

𝜇∗

)(
ei · e𝑗 +

1
2

ei · ∇𝜉 × 𝜽𝑗
)

d𝛏. (5b)

If the object is inhomogeneous, with possibly different piecewise-constant values of 𝜇* and 𝜈 in different regions of the
object, then (4) and (5) still hold if we replace B with B = ∪N

n=1B(n) and B𝛼 = 𝛼B + z by B𝛼 = 𝛼B + z to describe the fact
that B is made up of N regions.12 We require that B (and B(n)) have Lipschitz boundaries and note that

𝜇 =
{
𝜇∗(𝛏) in B
𝜇0 in Bc ∶= R3 ⧵ B , 𝜎 =

{
𝜎∗(𝛏) in B
0 in Bc ,

and
𝜇∗ = 𝜇

(n)
∗ in B(n) , 𝜎∗ = 𝜎

(n)
∗ in B(n) , 𝜈 = 𝜔𝛼2𝜇0𝜎

(n)
∗ in B(n) ,

where 0 < 𝜇
(n)
∗ < ∞, 0 ≤ 𝜎

(n)
∗ < ∞. In addition, 𝛼 denotes the size of the (combined) configuration and z its location.

Throughout the following, we concentrate on results for the case of B, but these readily simplify to the case of B. The
aforementioned transmission problem is

∇𝜉 × 𝜇−1
∗ ∇𝜉 × 𝜽𝑗 − i𝜔𝜎∗𝛼2𝜽𝑗 = i𝜔𝜎∗𝛼2e𝑗 × 𝛏 in B, (6a)

∇𝜉 · 𝜽𝑗 = 0, ∇𝜉 × 𝜇−1
0 ∇𝜉 × 𝜽𝑗 = 𝟎 in Bc, (6b)

[n × 𝜽𝑗]Γ = 0, [n × 𝜇−1∇𝜉 × 𝜽𝑗]Γ = −2[𝜇−1]Γn × e𝑗 on Γ, (6c)

𝜽𝑗 = O(|𝛏|−1) as |𝛏| → ∞, (6d)

which is solved for 𝜽j(𝝃), j = 1, 2, 3. In the above, [·]𝛤 denotes the jump of the function over 𝛤 , with 𝛤 = 𝜕B for the
homogeneous case or Γ = 𝜕B ∪ {𝜕B(n) ∩ 𝜕B(m),n,m = 1, … ,N,n ≠ m} otherwise, and 𝝃 is measured from an origin
chosen to be in B or B, respectively.

3 INVARIANT FORM OF 
We define 𝚯(u), for a constant real vector u, to be the complex vector field solution of the transmission problem

∇ × 𝜇−1
r ∇ ×𝚯 − i𝜈𝚯 = i𝜈u × 𝛏 in B, (7a)

∇ ·𝚯 = 0, ∇ × ∇ ×𝚯 = 𝟎 in Bc, (7b)
[n ×𝚯]Γ = 0, [n × 𝜇̃−1

r ∇ ×𝚯]Γ = −2[𝜇̃−1
r ]Γn × u on Γ, (7c)

𝚯 = O(|𝛏|−1) as |𝛏| → ∞, (7d)

where, here, and in the following, the dependence of𝚯(u) on position 𝛏 is not stated explicitly for compactness of notation,
and we have dropped the subscript 𝜉 on ∇. In addition,

𝜇r(𝛏) ∶=
𝜇∗(𝛏)
𝜇0

, 𝜈(𝛏) ∶= 𝜔𝜇0𝛼
2𝜎∗(𝛏), 𝛏 ∈ B, 𝜇̃r ∶=

{
𝜇r in B
1 in Bc .

Thus, it clear that 𝜽j = 𝚯(ej). In addition, setting

C(u, v) ∶= − i𝛼3

4
u · ∫B

𝜈𝛏 × (𝚯(v) + v × 𝛏)d𝛏, (8a)

N(u, v) ∶= 𝛼3∫B

(
1 − 𝜇−1

r
) (

u · v + 1
2

u · ∇ ×𝚯(v)
)

d𝛏, (8b)
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M(u, v) ∶= N(u, v) − C(u, v), (8c)

where v is also a constant real vector then, obviously, ()i𝑗 = C(ei, e𝑗), ( )i𝑗 = N(ei, e𝑗), and ()i𝑗 = M(ei, e𝑗) are the
aforementioned tensor coefficients.

To provide an alternative splitting of , we generalise Lemma 1 of Ledger and Lionheart,13 which was for a
homogenous object, to the inhomogeneous case, in terms of

𝚯(u) = 𝚯(0)(u) +𝚯(1)(u) − u × 𝛏,
= 𝚯̃(0)(u) +𝚯(1)(u),

with 𝚯̃(0)(u) ∶= 𝚯(0)(u) − u × 𝛏, as follows:

Lemma 3.1. The coefficients of  in a orthonormal basis ei, i = 1, … , 3, can be expressed as ()i𝑗 ∶= M(ei, e𝑗) =
N𝜎∗ (ei, e𝑗) + N0(ei, e𝑗) − C𝜎∗ (ei, e𝑗) where

C𝜎∗ (u, v) ∶= − i𝛼3

4
u · ∫B

𝜈𝛏 × (𝚯(0)(v) +𝚯(1)(v))d𝛏, (9a)

N𝜎∗ (u, v) ∶= 𝛼3

2 ∫B

(
1 − 𝜇−1

r
) (

u · ∇ ×𝚯(1)(v)
)

d𝛏, (9b)

N0(u, v) ∶= 𝛼3

2 ∫B

(
1 − 𝜇−1

r
) (

u · ∇ ×𝚯(0)(v)
)

d𝛏, (9c)

and u, v are constant real vectors. Note that  𝜎∗ − 𝜎∗ = (N𝜎∗ (ei, e𝑗) − C𝜎∗ (ei, e𝑗))ei ⊗ e𝑗 is a complex rank 2 tensor, and
 0 = N0(ei, e𝑗)ei ⊗ e𝑗 is a real rank 2 tensor. The forms C𝜎∗ , N𝜎∗ , and N0 depend on the solutions 𝚯(0)(u), 𝚯(1)(u) to the
transmission problems

∇ × 𝜇̃−1
r ∇ ×𝚯(0) = 𝟎 in B ∪ Bc, (10a)

∇ ·𝚯(0) = 0 in B ∪ Bc, (10b)

[
𝚯(0) × n

]
Γ = 𝟎 on Γ, (10c)

[
𝜇̃−1

r ∇ ×𝚯(0) × n
]
Γ = 𝟎 on Γ, (10d)

𝚯(0) − u × 𝛏 = O(|𝛏|−1) as |𝛏| → ∞, (10e)

and
∇ × 𝜇−1

r ∇ ×𝚯(1) − i𝜈(𝚯(1) +𝚯(0)) = 𝟎 in B, (11a)

∇ × ∇ ×𝚯(1) = 𝟎 in Bc, (11b)

∇ ·𝚯(1) = 0 in Bc, (11c)

[
𝚯(1) × n

]
Γ = 𝟎 on Γ, (11d)

[
𝜇̃−1

r ∇ ×𝚯(1) × n
]
Γ = 𝟎 on Γ, (11e)

𝚯(1) = O(|𝛏|−1) as |𝛏| → ∞, (11f)

respectively, where 𝚯(0)(u) is a real vector field and 𝚯(1)(u) is a complex vector field.
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Proof. The proof is analogous to Lemma 1 of Ledger and Lionheart.13

We now consider the symmetry of the forms N0(u, v), M(u, v), and M(u, v) − N0(u, v) = N𝜎∗ (u, v) − C𝜎∗ (u, v) and,
hence, the tensors  0,  and  − 0 =  𝜎∗ − 𝜎∗ for the inhomogeneous case. In the homogeneous case, the tensor
 0 can be shown to be equivalent to the Pólya-Szegö tensor parameterised by the contrast in permeability,  (𝜇r), (see
Lemma 3 of Ledger and Lionheart13). In addition, we have that  =  0 + O(𝜔) =  (𝜇r) + O(𝜔) as 𝜔 → 0 (by Theorem
9 of Ledger and Lionheart13), and  0 is known to be real symmetric. Consequently, the tensor  0 provides an object
characterisation for magnetostatic problems. In Lemma 4.4 of Ledger and Lionheart,9 we have previously shown that 
is complex symmetric and provides a characterisation of homogeneous conducting permeable objects. In order to extend
these results to the inhomogeneous case, for square integrable complex vector fields a, b, we will use the notation

⟨a,b⟩L2(B) = ⟨b,a⟩L2(B) ∶= ∫B
a · bd𝛏, (12)

to denote the L2 inner product over B, where the overbar denotes the complex conjugate. This reduces to ⟨a,b⟩L2(B) =⟨b,a⟩L2(B) if a, b are square integrable real vector fields. Hence, ||u||L2(B) ∶= ⟨u,u⟩1∕2
L2(B) is the L2 norm of u over B. We also

define ||u||W(c,B) ∶= ⟨cu,u⟩1∕2
L2(B), for a piecewise constant c > 0 in B, as a weighted L2 norm of u over B. The following

theorem reveals insights into N0(u, v) for inhomogeneous objects.

Theorem 3.2. N0(u, v) ∶ R3 × R3 → R is a symmetric bilinear form on real vectors that can be expressed as

N0(u, v) = 𝛼3⟨(1 − 𝜇−1
r
)

u, v
⟩

L2(B) +
𝛼3

4
⟨
𝜇̃−1

r ∇ × 𝚯̃(0)(u),∇ × 𝚯̃(0)(v)
⟩

L2(B∪Bc) (13)

and also defines an inner product provided that 𝜇r(𝝃) ≥ 1 for 𝝃 ∈ B. In the above, 𝚯̃(0)(u) ∶= 𝚯(0)(u) − u × 𝛏 is a real
vector field, which satisfies the transmission problem

∇ × 𝜇̃−1
r ∇ × 𝚯̃(0) = 𝟎 in B ∪ Bc, (14a)

∇ · 𝚯̃(0) = 0 in B ∪ Bc, (14b)[
𝚯̃(0) × n

]
Γ = 𝟎 on Γ, (14c)[

𝜇̃−1
r ∇ × 𝚯̃(0) × n

]
Γ = −2[𝜇̃−1

r ]Γu × n on Γ, (14d)

𝚯̃(0) = O(|𝛏|−1) as |𝛏| → ∞. (14e)

Proof. We first rewrite N0(u, v) as

N0(u, v) = 𝛼3∫B

(
1 − 𝜇−1

r
) (

u · v + 1
2

u · ∇ × 𝚯̃(0)(v)
)

d𝛏,

where we have used 𝚯(0)(u) = 𝚯̃(0)(u) + u × 𝛏 in (9c). The transmission problem for 𝚯̃(0)(u) is also easily derived.
To obtain (13), we notice that

∫B
(1 − 𝜇−1

r )u · ∇ × 𝚯̃(0)(v)d𝛏 =
N∑

n=1
(1 − (𝜇r(B(n)))−1)∫B(n)

u · ∇ × 𝚯̃(0)(v)d𝛏

=
N∑

n=1
(1 − (𝜇r(B(n)))−1)∫

𝜕B(n)
u · n × 𝚯̃(0)(v)d𝛏,
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where 𝜇r(B(n)) = 𝜇r(𝝃) with 𝝃 ∈ B(n). Then, using [n × 𝚯̃(0)(v)]𝜕B(n)∪𝜕B(m) = 𝟎 for n,m = 1, … ,N, n ≠ m, it follows that

∫B
(1 − 𝜇−1

r )u · ∇ × 𝚯̃(0)(v)d𝛏 =
N∑

n,m=1,n≠m
∫
𝜕B(n)∩𝜕B(m)

[𝜇−1
r ]𝜕B(n)∩𝜕B(m)u · n × 𝚯̃(0)(v)d𝛏

+ ∫
𝜕B
[𝜇̃−1

r ]𝜕Bu · n− × 𝚯̃(0)(v)d𝛏

= −
N∑

n,m=1,n≠m
∫
𝜕B(n)∩𝜕B(m)

[𝜇−1
r ]𝜕B(n)∩𝜕B(m)𝚯̃(0)(v) · n × ud𝛏

− ∫
𝜕B
[𝜇̃−1

r ]𝜕B𝚯̃(0)(v) · n− × ud𝛏.

By application of the transmission conditions in (14) and integration by parts, this becomes

−1
2

(
−

N∑
n,m=1,n≠m

∫
𝜕B(n)∩𝜕B(m)

([n × 𝜇−1
r ∇ × 𝚯̃0(u)]𝜕B(n)∩𝜕B(m) · 𝚯̃(0)(v)d𝛏

+∫
𝜕B

n+ × ∇ × 𝚯̃0(u) · 𝚯̃0(v)|+d𝛏 + ∫
𝜕B

n− × 𝜇−1
r ∇ × 𝚯̃0(u) · 𝚯̃0(v)|−d𝛏

)
= 1

2

(
∫B
𝜇−1

r ∇ × 𝚯̃0(u) · ∇ × 𝚯̃0(v)d𝛏 + ∫Bc
∇ × 𝚯̃0(u) · ∇ × 𝚯̃0(v)d𝛏

)
,

from which (13) immediately follows. We observe, from (13), and the linearity of the transmission problem (14), that
N0(u, v) = N0(v,u) ∀u, v ∈ R3, N0(u+w, v) = N0(u, v)+N0(w, v) ∀u, v,w ∈ R3 and N0(cu, dv) = cdN0(u, v) ∀u, v ∈ R3

and c, d ∈ R . Thus, N0(u, v) ∶ R3 × R3 → R is a symmetric bilinear form. Provided that 𝜇r(𝝃) ≥ 1 for 𝝃 ∈ B then
N0(u,u) ≥ 0 and N0(u,u) = 0 only if u = 0, hence, N0(u, v) defines an inner product.

Corollary 3.3. It immediately follows from Theorem 3.2 that  0 = N0(ei, e𝑗)ei ⊗ e𝑗 is a symmetric tensor extending
the known result for a homogenous object proved in Lemma 1 of Ledger and Lionheart.13 In particular, the diagonal
coefficients of the associated tensor  0 are

( 0)ii = N0(ei, ei) = 𝛼3∫B

(
1 − 𝜇−1

r
)

d𝛏 + 𝛼3

4

(||∇ × 𝚯̃(0)(ei)||2L2(Bc) + ||∇ × 𝚯̃(0)(ei)||2W(𝜇−1
r ,B)

)
,

where the repeated index i does not imply summation. In addition, we see that  0
ii > 0 provided that 𝜇r(𝝃) > 1 for 𝝃 ∈ B.

The following result provides further insights into N0(u, v) when the object is homogeneous:

Lemma 3.4. For the homogeneous case, where B becomes B, N0(u, v) can also be expressed in the following alternative
forms:

N0(u, v) = 𝛼3

4 ∫Γ
(1 − 𝜇−1

r )∇ × (u × 𝛏) · n− ×𝚯(0)(v)d𝛏, (15a)

= −𝛼
3

4 ∫Γ
(𝜇r − 1)(u × 𝛏) · n− × ∇ ×𝚯(0)(v)|+d𝛏, (15b)

= 𝛼3

4
𝜇r + 1
𝜇r − 1

(
u · v|B| + ⟨

𝜇−1
r ∇ ×𝚯(0)(u),∇ ×𝚯(0)(v)

⟩
L2(B)

+
⟨
∇ × 𝚯̃(0)(u),∇ × 𝚯̃(0)(v)

⟩
L2(Bc)

)
, (15c)

where 𝜇r = 𝜇*∕𝜇0 is now a constant.
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Proof. To obtain (15a), we replace B by B and transform the volume integral over B in (9c) to a surface integral over
𝛤 = 𝜕B and use 2u = ∇ × (u × 𝝃).

As 𝜇r is constant in B for this case, then, to obtain (15b), we subtract the following from (9c)

0 = 𝛼3

4 ∫B
(1 − 𝜇−1

r )∇ × ∇ ×𝚯(0)(v) · u × 𝛏d𝛏

= 𝛼3

4

(
∫B

(1 − 𝜇−1
r )∇ · (∇ ×𝚯(0)(v) × (u × 𝛏))d𝛏 + 2∫B

(1 − 𝜇−1
r )u · ∇ ×𝚯(0)(v)d𝛏

)
.

The result then follows by transforming the remaining volume integral to a surface integral over 𝛤 and using the
transmission condition in (10).

For the third form, we use (15a) and (15b) to give

(1 + 𝜇−1
r )N0(u, v) =𝛼

3

4
(1 − 𝜇−1

r )
(
∫Γ

∇ × (u × 𝛏) · n− ×𝚯(0)(v)d𝛏

−∫Γ
u × 𝛏 · n− × ∇ ×𝚯(0)(v)|+d𝛏

)
.

Then, writing 𝚯(0)(v) = 𝚯̃(0)(v) + v × 𝛏, so that ∇ ×𝚯(0)(v) = ∇ × 𝚯̃(0)(v) + 2v, we have

∫Γ
(u × 𝛏) · n− × ∇ ×𝚯(0)(v)|+d𝛏 =∫Γ

u × 𝛏 · n− × ∇ × 𝚯̃(0)(v)|+d𝛏 + 2∫Γ
n− · v × (u × 𝛏)d𝛏

=∫Γ
u × 𝛏 · n− × ∇ × 𝚯̃(0)(v)|+d𝛏 − 4|B|u · v.

This means that

4
(
𝜇r + 1
𝜇r − 1

N0(u, v)
𝛼3 − |B|u · v

)
= − ∫Γ

𝚯(0)(v) · n− × (∇ × (u × 𝛏))|+d𝛏

− ∫Γ
u × 𝛏 · n− × ∇ × 𝚯̃(0)(v)|+d𝛏

= − 𝜇−1
r ∫Γ

𝚯(0)(v) · n− × ∇ ×𝚯(0)(u)|−d𝛏

+ ∫Γ
𝚯̃(0)(u) · n− × ∇ × 𝚯̃(0)(v)|+d𝛏,

which follows from first using n×∇× (u× 𝛏) = −n×∇× 𝚯̃(0)(u)|+ +𝜇−1
r n×∇×𝚯(0)(u)|−, then using n×𝚯(0)(u)|+ =

n×𝚯(0)(u)|− = n×(u× 𝛏)+n× 𝚯̃(0)(u)|+ and simplifying. The final result follows from integration by parts and using
the far field decay conditions of 𝚯̃(0)(u).

Corollary 3.5. It immediately follows from Lemma 3.4 that the diagonal coefficients of  0 for homogeneous case are

( 0)ii =
𝛼3

4
𝜇r + 1
𝜇r − 1

(|B| + ||∇ × 𝚯̃(0)(ei)||2L2(Bc) + 𝜇
−1
r ||∇ ×𝚯(0)(ei)||2L2(B)

)
,

where the repeated index i does not imply summation, and hence,  0
ii > 0 if 𝜇r > 1 and  0

ii < 0 if 𝜇r < 1.

We now consider the symmetry of the bilinear forms M(u, v) and M(u, v) − N0(u, v) = N𝜎∗ (u, v) − C𝜎∗ (u, v) and, hence,
the symmetry of the tensors  and  − 0 =  𝜎∗ − 𝜎∗ .
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Theorem 3.6. M(u, v) ∶ R3 ×R3 → C is a symmetric bilinear form on real vectors, which can be expressed as

M(u, v) =𝛼
3

4

(
∫B

1
i𝜈
∇ × 𝜇−1

r ∇ ×𝚯(u) · ∇ × 𝜇−1
r ∇ ×𝚯(v)d𝛏

+ ∫B

(
1 − 𝜇−1

r
)
(4u · v + 2∇ ×𝚯(u) · v + 2u · ∇ ×𝚯(v)) d𝛏

−∫B∪Bc
𝜇̃−1

r ∇ ×𝚯(u) · ∇ ×𝚯(v)d𝛏
)
,

(16)

and N𝜎∗ (u, v) − C𝜎∗ (u, v) = M(u, v) − N0(u, v) ∶ R3 × R3 → C is also a symmetric bilinear form on real vectors.

Proof. The first part of the proof applies similar arguments to Lemma 4.4 of Ledger and Lionheart,9 which showed
that  is a symmetric tensor for a homogenous object. Here, we will apply these arguments to the form M(u, v) and
consider an object with possibly inhomogeneous materials. We begin by noting from (8a) that

−4C(u, v)
𝛼3 =∫B

i𝜈(𝚯(v) + v × 𝛏) · (u × 𝛏)d𝛏

=∫B
∇ × 𝜇−1

r ∇ ×𝚯(v) ·
( 1

i𝜈
∇ × 𝜇−1

r ∇ ×𝚯(u) −𝚯(u)
)

d𝛏

=∫B

1
i𝜈
∇ × 𝜇−1

r ∇ ×𝚯(v) · ∇ × 𝜇−1
r ∇ ×𝚯(u)d𝛏

− ∫B
∇ × 𝜇−1

r ∇ ×𝚯(v) ·𝚯(u)d𝛏,

by use of the transmission problem (7). Next, by integration by parts, we have

∫B
∇ × 𝜇−1

r ∇ ×𝚯(v) ·𝚯(u)d𝛏 = ∫
𝜕B

n− × 𝜇−1
r ∇ ×𝚯(v) ·𝚯(u)|−d𝛏

+ ∫B
𝜇−1

r ∇ ×𝚯(u) · ∇ ×𝚯(v)d𝛏 −
N∑

n,m=1,n≠m
∫
𝜕B(n)∪𝜕B(m)

[n × 𝜇−1
r ∇ ×𝚯(u)]𝜕B(n)∩𝜕B(m) ·𝚯(u)d𝛏

= ∫
𝜕B

n− × ∇ ×𝚯(v) ·𝚯(u)|+ + 2[𝜇̃−1
r ]𝜕Bn− × v ·𝚯(u)d𝛏

+ ∫B
𝜇−1

r ∇ ×𝚯(u) · ∇ ×𝚯(v)d𝛏 + 2
N∑

n,m=1,n≠m
∫
𝜕B(n)∪𝜕B(m)

[𝜇−1
r ]𝜕B(n)∩𝜕B(m)n × v ·𝚯(u)d𝛏

= ∫
𝜕B

n− × ∇ ×𝚯(v) ·𝚯(u)|+ + 2[𝜇̃−1
r ]𝜕Bn− × v ·𝚯(u)d𝛏

+ ∫B
𝜇−1

r ∇ ×𝚯(u) · ∇ ×𝚯(v)d𝛏 + 2
N∑

n=1
(1 − (𝜇r(B(n)))−1)∫

𝜕B(n)⧵𝜕B
n− × v ·𝚯(u)d𝛏,

since [n ×𝚯(v)]𝜕B(n)∪𝜕B(m) = 𝟎 for n,m = 1, … ,N, n ≠ m. It then follows that

∫B
∇ × 𝜇−1

r ∇ ×𝚯(u) ·𝚯(u)d𝛏 = ∫B
𝜇−1

r ∇ ×𝚯(u) · ∇ ×𝚯(v)d𝛏

+ ∫Bc
∇ ×𝚯(u) · ∇ ×𝚯(v)d𝛏 − 2∫B

(1 − 𝜇−1
r )∇ ×𝚯(u) · vd𝛏.

From the above, and M(u, v) = N(u, v) −C(u, v), the result in (16) immediately follows. On consideration of (16), and
the linearity of the transmission problem (11), we see that M(u, v) = M(v,u) ∀u, v ∈ R3, M(u + w, v) = M(u, v) +
M(w, v) ∀u, v,w ∈ R3 and M(cu, dv) = cdM(u, v) ∀u, v ∈ R3 and ∀c, d ∈ R, and thus, M(u, v) ∶ R3 × R3 → C is a
symmetric bilinear form on real vectors. By using Theorem 3.2, it follows that M(u, v) − N0(u, v) ∶ R3 × R3 → C is
also a symmetric bilinear form on real vectors.
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Corollary 3.7. It immediately follows from Theorem 3.6 that  = M(ei, e𝑗)ei ⊗ e𝑗 is a complex symmetric tensor and
 − 0 =  𝜎∗ − 𝜎∗ = (N𝜎∗ (ei, e𝑗) − C𝜎∗ (ei, e𝑗))ei ⊗ e𝑗 is a complex symmetric tensor, extending the known results in
Lemma 4.49 and Lemma 113 for a homogeneous object to the inhomogeneous case.

Remark 3.8. Note that the first and last terms in (16) cannot be expressed in terms of the notation introduced in (12)
since 𝚯(u) and 𝚯(v) are complex valued and the integrands each lack a complex conjugate.

4 LIMITING CASES OF 
Recall that the asymptotic formula (4) is valid for 𝜈 = O(1) as 𝛼 → 0, and so, care needs to be exercised when interpret-
ing the limiting cases of . Still further, recall that the eddy current model (2) is a low-frequency approximation of the
Maxwell system, and so, the limit of 𝜈 → ∞ for fixed 𝜎*, 𝛼would break break both (4) and (2). The case of a perfect conduc-
tor with sufficiently small 𝜔, 𝛼, and 𝜎* → ∞ is permitted by the eddy current model, provided topological requirements
on B are satisfied24,25 but invalidates (4) as we still have 𝜈 → ∞. In the following, we compute M(u, v; 𝜈) when 𝜈 = 0 and
𝜈 → ∞. From the former, we can deduce (0), which provides a magnetostatic characterisation of B for a permeable
object, and from the latter, we can obtain (∞), which we denote as the characterisation of a perfectly conducting object.
The coefficients of (∞) cannot be substituted into (4) and, instead, should be viewed as the limiting characterisation of
B provided by (4) as 𝜎* → ∞ and 𝛼 → 0.

Lemma 4.1. The limiting cases of M(u, v; 𝜈) when 𝜈 = 0 and 𝜈 → ∞ are

M(u, v; 0) = N0(u, v) = 𝛼3⟨(1 − 𝜇−1
r
)

u, v
⟩

L2(B)

+ 𝛼3

4
⟨
𝜇̃−1

r ∇ × 𝚯̃(0)(u),∇ × 𝚯̃(0)(v)
⟩

L2(B∪Bc), (17)

M(u, v;∞) = −𝛼3⟨u, v⟩L2(B) −
𝛼3

4
⟨
∇ ×𝚯(∞)(u),∇ ×𝚯(∞)(v)

⟩
L2(Bc), (18)

where 𝚯̃(0)(u) is the real vector field solution to (14), and 𝚯(∞)(u) is the real vector field solution to

∇ × ∇ ×𝚯(∞)(u) = 𝟎 in Bc, (19a)

∇ ·𝚯(∞) = 0 in Bc, (19b)

n × ∇ ×𝚯(∞)(u)|+ = −2n × u on 𝜕B, (19c)

𝚯(∞) = O(|𝛏|−1) as |𝛏| → ∞. (19d)

Proof. Using Lemma 3.1, we immediately establish that C(u, v) vanishes for 𝜈 = 0 and, from (11), find that𝚯(1)(u) = 0
for 𝜈 = 0. Thus, M(u, v; 0) = N0(u, v), and we quote the form of N0(u, v) given in Theorem 3.2.

To obtain M(u, v;∞), we see, from (7), that 𝚯(u) = −u × 𝝃 in B when 𝜈 → ∞. Using Theorem 3.6 for this case, we
have

M(u, v;∞) = 𝛼3

4

(
−4∫B

𝜇−1
r u · vd𝛏

− ∫Bc
∇ ×𝚯(u) · ∇ ×𝚯(v)d𝛏

+∫B

(
1 − 𝜇−1

r
)
(4u · v − 4u · v − 4u · v) d𝛏

)
,

which immediately simplifies to (18) by realising that 𝚯(u) becomes 𝚯(∞)(u) ∈ R3 when 𝜈 → ∞. This is because,
on the interior interfaces of B, we observe, from (7), that [n × 𝜇−1∇ ×𝚯(u)]𝜕B(m)∪𝜕B(n) = −2[𝜇−1]𝜕B(m)∪𝜕B(n)n × u,
n,m = 1, … ,N, n ≠ m is now automatically satisfied since ∇ × 𝚯(u) = −2u in B and, on 𝜕B, the jump condition
[n × 𝜇̃−1∇ ×𝚯(u)]𝜕B = −2[𝜇̃−1]𝜕Bn × u simplifies to the boundary condition n × ∇ ×𝚯(∞)(u)|+ = −2n × u.

Corollary 4.2. For an object with homogeneous 𝜇*, (0) = M(ei, e𝑗 , 0)ei ⊗ e𝑗 =  0 = N0(ei, e𝑗)ei ⊗ e𝑗 is just the
Póyla-Szegö tensor parameterised by the contrast in permeability  (𝜇r), independent of the object's topology.
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Proof. The result follows from Lemma 4.1 and by applying similar arguments to Lemma 3 of Ledger and Lionheart.13

The latter discusses the contractibility of loops associated with holes in the object so that the result is independent of
the object's topology.

Corollary 4.3. In the case where B becomes a single object B, with Betti numbers such that 𝛽1(B) = 𝛽1(Bc) = 0, then
((∞))i𝑗 = M(ei, e𝑗 ;∞) can be expressed as

((∞))i𝑗 = −𝛼3|B|𝛿i𝑗 − 𝛼3∫Bc
∇𝜓i · ∇𝜓𝑗d𝛏 (20a)

= −𝛼3|B|𝛿i𝑗 − 𝛼3∫Γ
n+ · e𝑗𝜓id𝛏 (20b)

= −𝛼3|B|𝛿i𝑗 + 𝛼3∫Γ
n− · ∇𝜓i𝜉𝑗d𝛏 = ( (0))i𝑗 (20c)

and coincides with the coefficients of the Póyla-Szegö tensor parameterised by 0, ( (0))i𝑗 . In the above, 𝛿ij denotes the
Kronecker delta, and 𝜓 i(𝝃) solves

∇2𝜓i = 0 in Bc, (21a)

n · ∇𝜓i|+ = n · ∇𝜉i on Γ, (21b)

𝜓i = O(|𝛏|) as |𝛏| → ∞. (21c)

Proof. For the case of 𝛽1(B) = 𝛽1(Bc) = 0, it follows from Lemma 4.1 that we can set ∇ ×𝚯(∞)(ei) = −2∇𝜓i, where 𝜓 i
solves (21). Also, by applying integration by parts, the different forms of ((∞))i𝑗 = M(ei, e𝑗 ;∞) in (20) can be easily
obtained. We see this coincides with ( (0))i𝑗 by comparing (20c) with the expression for  (c) given in (9) of Ledger
and Lionheart13 in the case where the contrast becomes 0.

Remark 4.4. For objects, with 𝛽1(Bc) ≠ 1 then ∇ × 𝚯(∞)(ei) = −2∇𝜓i + Hi in Bc where Hi is a curl free function that
is not a gradient with dimension dim(Hi) = 𝛽1(Bc). Unlike in Lemma 3 of Ledger and Lionheart,13 the loops 𝛾k(Bc),
k = 1, … , 𝛽1(Bc) associated with the holes passing through the object are no longer contractable and so Hi ≠ 0 in this
case. Thus, ((∞))i𝑗 does not coincide with ( (0))i𝑗 for objects with holes and the more general form ((∞))i𝑗 =
M(ei, e𝑗 ;∞) following from (18) must be used. Numerical examples illustrating this for single multiply connected
objects with loops were presented in Ledger and Lionheart.13

5 THE ENERGY FUNCTIONAL ASSOCIATED WITH 
An important alternative representation of M(u, v)−N0(u, v) = N𝜎∗ (u, v)−C𝜎∗ (u, v) is provided in the following theorem.

Theorem 5.1. The bilinear form M(u, v)−N0(u, v) = N𝜎∗ (u, v)−C𝜎∗ (u, v) can be written as R𝜎∗ (u, v)+ iI𝜎∗ (u, v), where
R𝜎∗ (u, v) ∶ R3 ×R3 → R, I𝜎∗ (u, v) ∶ R3 ×R3 → R are the following symmetric bilinear forms on real vectors

R𝜎∗ (u, v) = Re(N𝜎∗ (u, v) − C𝜎∗ (u, v))

= −𝛼
3

4 ∫B∪Bc
𝜇̃−1

r ∇ ×𝚯(1)(v) · ∇ ×𝚯(1)(u)d𝛏

= −𝛼
3

4
⟨
𝜇̃−1

r ∇ ×𝚯(1)(v),∇ ×𝚯(1)(u)
⟩

L2(B∪Bc)

= −𝛼
3

4
⟨
𝜇̃−1

r ∇ ×𝚯(1)(u),∇ ×𝚯(1)(v)
⟩

L2(B∪Bc), (22a)
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I𝜎∗ (u, v) = Im(N𝜎∗ (u, v) − C𝜎∗ (u, v))

= 𝛼3

4 ∫B

1
𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(v) · ∇ × 𝜇−1
r ∇ ×𝚯(1)(u)d𝛏

= 𝛼3

4

⟨1
𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(v),∇ × 𝜇−1
r ∇ ×𝚯(1)(u)

⟩
L2(B)

= 𝛼3

4

⟨1
𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(u),∇ × 𝜇−1
r ∇ ×𝚯(1)(v)

⟩
L2(B)

. (22b)

Additionally, −𝜎∗ (u, v) and 𝜎∗ (u, v) define inner products on real vectors.

Proof. Using the definitions in (9a) and (9b) and the transmission problem (11), we have

(N𝜎∗ − C𝜎∗ )(u, v) = i𝛼3

4
u · ∫B

𝜈𝛏 × 1
i𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(v)d𝛏

+ 𝛼3

2 ∫B

(
1 − 𝜇−1

r
) (

u · ∇ ×𝚯(1)(v)
)

d𝛏

= 𝛼3

4 ∫B
∇ × 𝜇−1

r ∇ ×𝚯(1)(v) · u × 𝛏d𝛏

+ 𝛼3

2 ∫B

(
1 − 𝜇−1

r
) (

u · ∇ ×𝚯(1)(v)
)

d𝛏.

Then, using u × 𝛏 = 1
i𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(u) − (𝚯(0)(u) +𝚯(1)(u) − u × 𝛏) in B we have, for u ∈ R3,

u × 𝛏 = u × 𝛏 = i
𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(u) − (𝚯(0)(u) +𝚯(1)(u) − u × 𝛏),

in B since 𝚯(0)(u) ∈ R3. Thus, it follows that

(N𝜎∗ − C𝜎∗ )(u, v) = i𝛼3

4 ∫B

1
𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(v) · ∇ × 𝜇−1
r ∇ ×𝚯(1)(u)d𝛏

− 𝛼3

4 ∫B
∇ × 𝜇−1

r ∇ ×𝚯(1)(v) · (𝚯(0)(u) +𝚯(1)(u) − u × 𝛏)d𝛏

+ 𝛼3

2 ∫B

(
1 − 𝜇−1

r
) (

u · ∇ ×𝚯(1)(v)
)

d𝛏.

Denoting the latter two terms by − 𝛼3

4
A1 and 𝛼3

2
A2, respectively, then, by integration by parts, we have

A1 =∫B
𝜇−1

r ∇ ×𝚯(1)(v) · ∇ ×𝚯(1)(u)d𝛏 + ∫B
𝜇−1

r ∇ ×𝚯(1)(v) · ∇ ×𝚯(0)(u)d𝛏

− 2u · ∫B
𝜇−1

r ∇ ×𝚯(1)(v)d𝛏

+ ∫B
∇ · (𝜇−1

r ∇ ×𝚯(1)(v) × (𝚯(0)(u) +𝚯(1)(u) − u × 𝛏))d𝛏

=∫B
𝜇−1

r ∇ ×𝚯(1)(v) · ∇ ×𝚯(1)(u)d𝛏 + ∫B
𝚯(1)(v) · ∇ × 𝜇−1

r ∇ ×𝚯(0)(u)d𝛏

+ ∫B
∇ · (𝚯(1)(v) × 𝜇−1

r ∇ ×𝚯(0)(u))d𝛏

− 2u · ∫B
𝜇−1

r ∇ ×𝚯(1)(v)d𝛏 − ∫Bc
∇ · (∇ ×𝚯(1)(v) × (𝚯(0)(u) +𝚯(1)(u) − u × 𝛏))d𝛏.
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Next, using ∇×𝜇−1
r ∇×𝚯(0)(u) = 𝟎 in B, integrating by parts the third integral over B, and expanding the integral over

Bc, we have

A1 =∫B
𝜇−1

r ∇ ×𝚯(1)(v) · ∇ ×𝚯(1)(u)d𝛏 − ∫Bc
∇ · (𝚯(1)(v) × ∇ ×𝚯(0)(u))d𝛏

− 2u · ∫B
𝜇−1

r ∇ ×𝚯(1)(v)d𝛏

+ ∫Bc
∇ ×𝚯(1)(v) · ∇ ×𝚯(0)(u)d𝛏 + ∫Bc

∇ ×𝚯(1)(v) · ∇ ×𝚯(1)(u)d𝛏

− 2u · ∫Bc
∇ ×𝚯(1)(v)d𝛏

=∫B∪Bc
𝜇r

−1∇ ×𝚯(1)(v) · ∇ ×𝚯(1)(u)d𝛏 − ∫Bc
∇ ×𝚯(0)(u) · ∇ ×𝚯(1)(v)d𝛏

+ ∫Bc
∇ × ∇ ×𝚯(0)(u) ·𝚯(1)(v)d𝛏

− 2u · ∫B
𝜇−1

r ∇ ×𝚯(1)(v)d𝛏 + ∫Bc
∇ ×𝚯(1)(v) · ∇ ×𝚯(0)(u)d𝛏 − 2u · ∫Bc

∇ ×𝚯(1)(v)d𝛏

=∫B∪Bc
𝜇r

−1∇ ×𝚯(1)(v) · ∇ ×𝚯(1)(u)d𝛏 − 2u · ∫B
𝜇−1

r ∇ ×𝚯(1)(v)d𝛏 − 2u · ∫Bc
∇ ×𝚯(1)(v)d𝛏.

Note that the final equality follows by cancelling terms and using ∇ × 𝜇−1
r ∇ × 𝚯(0)(u) = 𝟎 in Bc. In addition, by

transforming the surface integral in A2, we have

A2 = − u · ∫B
𝜇−1

r ∇ ×𝚯(1)(v)d𝛏 − u · ∫
𝜕B

n+ ×𝚯(1)(v)d𝛏

= − u · ∫B
𝜇−1

r ∇ ×𝚯(1)(v)d𝛏 − u · ∫Bc
∇ ×𝚯(1)(v)d𝛏,

so that

(N𝜎∗ − C𝜎∗ )(u, v) = i𝛼3

4 ∫B

1
𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(v) · ∇ × 𝜇−1
r ∇ ×𝚯(1)(u)d𝛏

− 𝛼3

4 ∫B∪Bc
𝜇r

−1∇ ×𝚯(1)(v) · ∇ ×𝚯(1)(u)d𝛏.

Denoting the real part of (N𝜎∗ − C𝜎∗ )(u, v) as R𝜎∗ (u, v) and its imaginary part by I𝜎∗ (u, v), then we have

R𝜎∗ (u, v) = −𝛼
3

4
Im

(
∫B

1
𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(v) · ∇ × 𝜇−1
r ∇ ×𝚯(1)(u)d𝛏

)
− 𝛼3

4
Re

(
∫B∪Bc

𝜇r
−1∇ ×𝚯(1)(v) · ∇ ×𝚯(1)(u)d𝛏

)
, (23a)

I𝜎∗ (u, v) =𝛼
3

4
Re

(
∫B

1
𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(v) · ∇ × 𝜇−1
r ∇ ×𝚯(1)(u)d𝛏

)
− 𝛼3

4
Im

(
∫B∪Bc

𝜇r
−1∇ ×𝚯(1)(v) · ∇ ×𝚯(1)(u)d𝛏

)
. (23b)
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By the properties of the complex conjugate, we get that

R𝜎∗ (v,u) = −𝛼
3

4
Im

(
∫B

1
𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(u) · ∇ × 𝜇−1
r ∇ ×𝚯(1)(v)d𝛏

)
− 𝛼3

4
Re

(
∫B∪Bc

𝜇r
−1∇ ×𝚯(1)(u) · ∇ ×𝚯(1)(v)d𝛏

)
= −𝛼

3

4
Im

(
∫B

1
𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(v) · ∇ × 𝜇−1
r ∇ ×𝚯(1)(u)d𝛏

)

− 𝛼3

4
Re

(
∫B∪Bc

𝜇r
−1∇ ×𝚯(1)(v) · ∇ ×𝚯(1)(u)d𝛏

)
= 𝛼3

4
Im

(
∫B

1
𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(v) · ∇ × 𝜇−1
r ∇ ×𝚯(1)(u)d𝛏

)
− 𝛼3

4
Re

(
∫B∪Bc

𝜇r
−1∇ ×𝚯(1)(v) · ∇ ×𝚯(1)(u)d𝛏

)
= −𝛼

3

4
Re

(
∫B∪Bc

𝜇r
−1∇ ×𝚯(1)(v) · ∇ ×𝚯(1)(u)d𝛏

)
= R𝜎∗ (u, v),

(24)

where, in the final step, we have used

𝛼3

4
Im

(
∫B

1
𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(v) · ∇ × 𝜇−1
r ∇ ×𝚯(1)(u)d𝛏

)
= 0, (25)

which follows since we know that R𝜎∗ (u, v) = 𝜎∗ (v,u) by the symmetry of N𝜎∗ (u, v) − C𝜎∗ (u, v) in Theorem 3.6 and,
hence, the symmetry of its real and imaginary parts. By applying similar arguments to 𝜎∗ , we get that

−𝛼
3

4
Im

(
∫B∪Bc

𝜇r
−1∇ ×𝚯(1)(v) · ∇ × 𝜽(1)(u)d𝛏

)
= 0, (26)

and

I𝜎∗ (u, v) = 𝛼3

4
Re

(
∫B

1
𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(v) · ∇ × 𝜇−1
r ∇ × 𝜽(1)(u)d𝛏

)
. (27)

Still further, using (26), (24) becomes (22a), and in a similar manner, using (25), (27) becomes (22b) as desired.
It also follows from (22a), and the linearity of the transmission problem (11), that R𝜎∗ (u, v) = R𝜎∗ (v,u) ∀u, v ∈ R3,

R𝜎∗ (u + w, v) = R𝜎∗ (u, v) + R𝜎∗ (w, v) ∀u, v,w ∈ R3 and R𝜎∗ (cu, dv) = cdR𝜎∗ (u, v) ∀u, v ∈ R3 and ∀c, d ∈ R and, thus,
R𝜎∗ (u, v) ∶ R3 ×R3 → R is a symmetric bilinear form on real vectors. Similarly, I𝜎∗ (u, v) ∶ R3 ×R3 → R is a symmetric
bilinear form on real vectors. In addition, since −𝜎∗ (u,u) ≥ 0, 𝜎∗ (u,u) ≥ 0 and 𝜎∗ (u,u) = 𝜎∗ (u,u) = 0 only if
u = 0, −R𝜎∗ (u, v) and I𝜎∗ (u, v) define inner products on real vectors.

Corollary 5.2. An alternative splitting of the MPT is  =  0 + 𝜎∗ + i𝜎∗ , where  0 = N0(ei, e𝑗)ei ⊗ e𝑗 , 𝜎∗ =
R𝜎∗ (ei, e𝑗)ei⊗e𝑗 and𝜎∗ = I𝜎∗ (ei, e𝑗)ei⊗e𝑗 are real symmetric tensors. In addition, ( 0)ii ≥ 0, (𝜎∗ )ii ≤ 0 and (𝜎∗ )ii ≥ 0,
where the repeated index i does not imply summation.

Proof. The splitting  =  0 + 𝜎∗ + i𝜎∗ immediately follows from Theorem 5.1. The symmetry of  0 =
N0(ei, e𝑗)ei ⊗ e𝑗 follows from (13) and the symmetries of 𝜎∗ = R𝜎∗ (ei, e𝑗)ei ⊗ e𝑗 and 𝜎∗ = I𝜎∗ (ei, e𝑗)ei ⊗ e𝑗 from (22a)
and (22b), respectively. The diagonal coefficients of  0 are quoted in Corollary 3.3, and those of 𝜎∗ and 𝜎∗ are

(𝜎∗ )ii = −𝛼
3

4

(||∇ ×𝚯(1)(ei)||2W(𝜇−1
r ,B) + ||∇ ×𝚯(1)(ei)||2L2(Bc)

)
, (28a)

(𝜎∗ )ii =
𝛼3

4

(||∇ × 𝜇−1
r ∇ ×𝚯(1)(ei)||2W(𝜈−1,B)

)
, (28b)

leading to the quoted result.
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Remark 5.3. In Theorems 3.2 and 5.1, we have established that the MPT follows from the symmetric bilinear form

M(u, v) = N0(u, v) + R𝜎∗ (u, v) + iI𝜎∗ (u, v), (29)

where u and v are real vectors, and N0(u, v), −R𝜎∗ (u, v) and I𝜎∗ (u, v) are symmetric bilinear forms and inner products.
This suggests that another possible route to the derivation of the asymptotic formula for (H𝛼−H0)(x) could be through
through the approach of topological derivatives,29 where through the definition of an appropriate energy functional,
its topological derivative is the leading order term of (4). Still further, N0(u, v) defines a magnetostatic type energy,
−R𝜎∗ (u, v) a magnetic type energy and I𝜎∗ (u, v) an electric (Ohmic) type energy functional for pairs of solutions 𝚯(u)
and 𝚯(v), which provides a concrete interpretation of the three contributions in (29).

We complete this section by establishing an alternative form of R𝜎∗ (u, v) and I𝜎∗ (u, v). To do this, we first remark that
the weak form for the transmission problem (11) is as follows: Find 𝚯(1)(u) ∈ X such that⟨

𝜇̃−1
r ∇ ×𝚯(1)(u),∇ × 𝝍

⟩
L2(B∪Bc) = i

⟨
𝜈(𝚯(1)(u) +𝚯(0)(u)),𝝍

⟩
L2(B) ∀𝝍 ∈ X , (30)

where
X ∶= {𝝋 ∈ H(curl) ∶ ∇ · 𝝋 = 0 in Bc,𝝋 = O(|𝛏|−1) as |𝛏| → ∞}.

We can then establish the following result:

Lemma 5.4. An alternative form of the symmetric bilinear forms R𝜎∗ (u, v) and I𝜎∗ (u, v), introduced in (22a) and (22b),
respectively, is

R𝜎∗ (u, v) = −𝛼
3

4
⟨
𝜈Im(𝚯(1)(u)),𝚯(0)(v)

⟩
L2(B), (31a)

I𝜎∗ (u, v) = 𝛼3

4

(⟨
𝜈Re(𝚯(1)(u)),𝚯(0)(v)

⟩
L2(B) +

⟨
𝜈𝚯(0)(u),𝚯(0)(v)

⟩
L2(B)

)
. (31b)

Proof. Choosing 𝝍 = 𝚯(1)(v) in (30) then⟨
𝜇̃−1

r ∇ ×𝚯(1)(u),∇ ×𝚯(1)(v)
⟩

L2(B∪Bc) = i
⟨
𝜈(𝚯(1)(u) +𝚯(0)(u)),𝚯(1)(v)

⟩
L2(B),

and hence, from (22a), we obtain that

R𝜎∗ (u, v) = −i𝛼
3

4
⟨
𝜈(𝚯(1)(u) +𝚯(0)(u)),𝚯(1)(v)

⟩
L2(B),

which must be real by definition. Also, by using the transmission problem (11) and recalling 𝚯(0)(u) ∈ R3, we have
that

I𝜎∗ (u, v) =𝛼
3

4
⟨
𝜈(𝚯(1)(u) +𝚯(0)(u)),𝚯(1)(v) +𝚯(0)(v)

⟩
L2(B)

=𝛼
3

4

(⟨
𝜈(𝚯(1)(u) +𝚯(0)(u)),𝚯(1)(v)

⟩
L2(B) +

⟨
𝜈𝚯(1)(u),𝚯(0)(v)

⟩
L2(B)

+
⟨
𝜈𝚯(0)(u),𝚯(0)(v)

⟩
L2(B)

)
= − 1

i
R𝜎∗ (u, v) + 𝛼3

4

(⟨
𝜈𝚯(1)(u),𝚯(0)(v)

⟩
L2(B) +

⟨
𝜈𝚯(0)(u),𝚯(0)(v)

⟩
L2(B)

)
,

which must be real by definition. Then, since R𝜎∗ (u, v) ∈ R, 𝚯(0)(u) ∈ R3 and 𝚯(1)(u) ∈ C3, it follows that the first
term is purely imaginary, the second is complex, and the last term is real, and hence, an alternative form of I𝜎∗ (u, v)
is given by (31b). Still further, we have

Im
(
−1

i
R𝜎∗ (u, v)

)
+ 𝛼3

4
⟨
𝜈Im(𝚯(1)(u)),𝚯(0)(v)

⟩
L2(B) = 0,

and from this, we immediately obtain (31a).

Corollary 5.5. In a similar way to Corollary 5.2, the expressions (31a) and (31b), obtained in Lemma 5.4, can be used
to obtain alternative expressions for the tensors 𝜎∗ = R𝜎∗ (ei, e𝑗)ei ⊗ e𝑗 and 𝜎∗ = I𝜎∗ (ei, e𝑗)ei ⊗ e𝑗 .
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6 BOUNDS ON THE OFF-DIAGONAL COEFFICIENTS OF 𝜎∗ AND 𝜎∗
Bounds on the off-diagonal coefficients of the Pólya-Szegö tensor, and hence  0 for homogenous 𝜇*, have previously
been established, eg, in the previous studies.13,26,27 The following provides a bound on the magnitudes of the off-diagonal
coefficients of 𝜎∗ and 𝜎∗ .

Lemma 6.1. For i ≠ j, then |(𝜎∗ )i𝑗| ≤ |Tr(𝜎∗ )| = |(𝜎∗ )kk| , (32a)

|(𝜎∗ )i𝑗| ≤ Tr(𝜎∗ ) = (𝜎∗ )kk. (32b)

Proof. First, we construct an upper bound on |(𝜎∗ )i𝑗| for i ≠ j as

|(𝜎∗ )i𝑗| = 𝛼3

4
||||∫B∪Bc

𝜇r
−1∇ ×𝚯(1)(e𝑗) · ∇ ×𝚯(1)(ei)d𝛏

||||
≤ 𝛼3

4

(||||∫B
𝜇r

−1∇ ×𝚯(1)(e𝑗) · ∇ ×𝚯(1)(ei)d𝛏
|||| + ||||∫Bc

∇ ×𝚯(1)(e𝑗) · ∇ ×𝚯(1)(ei)d𝛏
||||
)

≤ 𝛼3

4
(||∇ ×𝚯(1)(e𝑗)||W(𝜇−1

r ,B)||∇ ×𝚯(1)(ei)||W(𝜇−1
r ,B)

+ ||∇ ×𝚯(1)(e𝑗)||L2(Bc)||∇ ×𝚯(1)(ei)||L2(Bc)
)
,

which follows by application of the Cauchy-Schwartz inequality. From (c−d)2+2cd = c2+d2, we have cd < 2cd < c2+d2

for real c > 0 and d > 0 and so

|(𝜎∗ )i𝑗| ≤ 𝛼3

4

(||∇ ×𝚯(1)(ei)||2W(𝜇−1
r ,B) + ||∇ ×𝚯(1)(ei)||2L2(Bc)

+ ||∇ ×𝚯(1)(e𝑗)||2W(𝜇−1
r ,B) + ||∇ ×𝚯(1)(e𝑗)||2L2(Bc)

)
≤ 𝛼3

4

( 3∑
k=1

||∇ ×𝚯(1)(ek)||2W(𝜇−1
r ,B) + ||∇ ×𝚯(1)(ek)||2L2(Bc)

)

≤
||||||

3∑
k=1

(𝜎∗ )kk

|||||| ,
as desired. In a similar fashion, for i ≠ j,

|(𝜎∗ )i𝑗| = 𝛼3

4
||||∫B

1
𝜈
∇ × 𝜇−1

r ∇ ×𝚯(1)(e𝑗) · ∇ × 𝜇−1
r ∇ ×𝚯(1)(ei)d𝛏

||||
≤ 𝛼3

4
(||∇ × 𝜇−1

r ∇ ×𝚯(1)(ei)||W(𝜈−1,B)||∇ × 𝜇−1
r ∇ ×𝚯(1)(e𝑗)||W(𝜈−1,B)

)
≤ 𝛼3

4

(||∇ × 𝜇−1
r ∇ ×𝚯(1)(ei)||2W(𝜈−1,B) + ||∇ × 𝜇−1

r ∇ ×𝚯(1)(e𝑗)||2W(𝜈−1,B)

)
≤ 𝛼3

4

3∑
k=1

(𝜎∗ )kk,

since (𝜎∗ )kk > 0 giving the result as desired.

7 EIGENVALUES OF 𝜎∗, 𝜎∗, AND  0

As 𝜎∗ and 𝜎∗ are real symmetric tensors, their coefficients, when arranged in the form of a 3 × 3 matrices, can be
diagonalised by orthogonal matrices Q𝜎∗ and Q𝜎∗ , respectively, so that Λ𝜎∗ and Λ𝜎∗ are diagonal and

(Λ𝜎∗ )i𝑗 = ((Q𝜎∗ )T𝜎∗Q𝜎∗ )i𝑗 = (Q𝜎∗ )ki(𝜎∗ )kp(Q𝜎∗ )p𝑗 , (33a)
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(Λ𝜎∗ )i𝑗 = ((Q𝜎∗ )T𝜎∗Q𝜎∗ )i𝑗 = (Q𝜎∗ )ki(𝜎∗ )kp(Q𝜎∗ )p𝑗 . (33b)

Moreover, the diagonal entries of Λ𝜎∗ and Λ𝜎∗ are the eigenvalues of 𝜎∗ and 𝜎∗ , respectively, and the columns of the
matrices Q𝜎∗ and Q𝜎∗ are their eigenvectors. In a similar way,  0 can be diagonalised by the orthogonal matrix Q 0

containing the eigenvectors of  0 so that

(Λ 0)i𝑗 = ((Q0)T 0Q0)i𝑗 = (Q0)ki( 0)kp(Q0)p𝑗 , (34)

are the elements of a diagonal matrix containing the eigenvalues of  0.
The orthogonal matrices Q𝜎∗ , Q𝜎∗ , and Q 0 can also be viewed as rotations of the object B such that 𝜎∗ [Q𝜎∗ (B)],

𝜎∗ [Q𝜎∗ (B)], and  0[Q 0(B)] † are diagonal and their entries being the associated eigenvalues. We summarise this as
the main result of this section:

Theorem 7.1. The eigenvalues of 𝜎∗ , 𝜎∗ , and  0 can be explicitly expressed as the diagonal coefficients

(Λ𝜎∗ )ii = (𝜎∗ [Q𝜎∗ (B)])ii

= −𝛼
3

4

(||∇ ×𝚯(1)(ei)||2W(𝜇−1
r ,Q𝜎∗ (B)) + ||∇ ×𝚯(1)(ei)||2L2(Q𝜎∗ (Bc))

)
, (35a)

(Λ𝜎∗ )ii = (𝜎∗ [Q𝜎∗ (B)])ii

= 𝛼3

4

(||∇ × 𝜇−1
r ∇ ×𝚯(1)(ei)||2W(𝜈−1,Q𝜎∗ (B))

)
, (35b)

(Λ 0 )ii = ( 0[Q 0(B)])ii

= 𝛼3

4

(
4∫Q0 (B)

(1 − 𝜇−1
r )d𝛏 + ||∇ × 𝚯̃(0)(ei)||2L2(Q0 (Bc)

+ ||∇ × 𝚯̃(0)(ei)||2W(𝜇−1
r ,Q0 (B))

)
, (35c)

where the repeated index i does not imply summation, and 𝚯(1)(u) is the solution to

∇ × 𝜇−1
r ∇ ×𝚯(1)(u) − i𝜈(𝚯(1)(u)) +𝚯(0)(u)) = 𝟎 in Q(B), (36a)

∇ × ∇ ×𝚯(1)(u) = 𝟎 in Q(Bc), (36b)

∇ ·𝚯(1)(u) = 0 in Q(Bc), (36c)[
𝚯(1)(u) × n

]
Q(Γ) = 𝟎 on Q(Γ), (36d)

[
𝜇̃−1

r ∇ ×𝚯(1)(u) × n
]

Q(Γ) = 𝟎 on Q(Γ), (36e)

𝚯(1) = O(|𝛏|−1) as |𝛏| → ∞, (36f)

with Q = Q𝜎∗ , Q = Q𝜎∗ , respectively. In addition, 𝚯(0)(u) = 𝚯̃(0)(u) + u × 𝛏 is the solution to

∇ × 𝜇̃−1
r ∇ ×𝚯(0)(u) = 0 in Q(B) ∪ Q(Bc), (37a)

∇ ·𝚯(0)(u) = 0 in Q(B) ∪ Q(Bc), (37b)

†In a similar way to (4), the square brackets used here emphasise the object for which the tensor is evaluated.
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𝚯(0)(u) × n

]
Q(Γ) = 𝟎 on Q(Γ), (37c)[

𝜇̃−1
r ∇ ×𝚯(0)(u) × n

]
Q(Γ) = 𝟎 on Q(Γ), (37d)

𝚯(0) − u × 𝛏 = O(|𝛏|−1) as |𝛏| → ∞, (37e)

with Q = Q𝜎∗ , Q = Q𝜎∗ , Q = Q 0 , respectively.

Proof. Under the action of a rotation Q, the MPT's coefficients transform as (′)i𝑗 = ([Q(B)])i𝑗 = (Q)ip(Q)𝑗q()pq.
Thus,

( 0′ )i𝑗 + (𝜎′∗ )i𝑗 + i(𝜎′∗ )i𝑗 = (Q)ip(Q)𝑗q(( 0)pq + (𝜎∗ )pq + i(𝜎∗ )pq)

( 0′ +𝜎′∗ )i𝑗 + i(𝜎′∗ )i𝑗 = (Q)ip(Q)𝑗q( 0 +𝜎∗ )pq + i(Q)ip(Q)𝑗q(𝜎∗ )pq,

and so ( 0′ )i𝑗 = ( 0[Q(B)])i𝑗 = (Q)ip(Q)𝑗q( 0)pq, (𝜎′∗ )i𝑗 = (𝜎∗ [Q(B)])i𝑗 = (Q)ip(Q)𝑗q(𝜎∗ )pq and (𝜎′∗ )i𝑗 =
(𝜎∗ [Q(B)])i𝑗 = (Q)ip(Q)𝑗q(𝜎∗ )pq. Choosing Q = Q𝜎∗ , and noting that under the action of this rotation B becomes
Q𝜎∗ (B), then, by the application of Corollary 5.2 for the rotated object configuration, we have

(𝜎′∗ )ii = (𝜎∗ [Q𝜎∗ (B)])ii = −𝛼
3

4

(||∇ ×𝚯(1)(ei)||2W(𝜇−1
r ,Q𝜎∗ (B)) + ||∇ ×𝚯(1)(ei)||2L2(Q𝜎∗ (Bc))

)
= (Q𝜎∗ )ip(Q𝜎∗ )iq(𝜎∗ )pq = (Λ𝜎∗ )ii,

for the diagonal coefficients, where the repeated index i does not imply summation. Repeating similar steps for Q =
Q𝜎∗ and Q = Q 0 gives the corresponding result for Λ𝜎∗ and Λ 0 .

Remark 7.2. When Q = Q𝜎∗ is applied to B, the resulting 𝜎′∗ = 𝜎∗ [Q𝜎∗ (B)] will necessarily be diagonal and will
have the eigenvalues of𝜎∗ [B] as its diagonal coefficients, ie,Λ𝜎∗ = 𝜎′∗ . Since𝜎′∗ is diagonal, the eigenvalues of𝜎′∗

are its diagonal entries, ie, Λ𝜎′∗ = 𝜎′∗ , and the eigenvectors of 𝜎′∗ form the columns of I. However, the eigenvectors
of 𝜎∗ [B] do not, in general, form the columns of I unless the object has rotational or reflectional symmetries. It
follows that the eigenvalues contained in Λ𝜎∗ = Λ𝜎′∗ are invariant under the action of rotation of an object, but the
eigenvectors of 𝜎∗ are not. Using similar arguments, we also get that Λ𝜎′∗ = Λ𝜎∗ and Λ 0′ = Λ 0 are invariant
under rotation.

Corollary 7.3. Excluding the limiting cases of zero frequency and infinite conductivity, 𝜎∗ is negative definite and 𝜎∗
is positive definite. If 𝜇(𝝃) > 1 for 𝝃 ∈ B,  0 is positive definite for an inhomogeneous object. For a homogeneous object,
 0 is positive definite if 𝜇r > 1 and negative definite if 𝜇r < 1. For the limiting case of zero frequency,  =  0, and thus,
has the aforementioned properties of the real tensor  0, and for the limiting case of infinite conductivity,  → (∞) is
real and negative definite.

Proof. Choosing 𝜈 ∈ (0,∞) excludes the limiting cases of zero frequency and infinite conductivity.13 The definiteness
of 𝜎∗ , 𝜎∗ , for 𝜈 ∈ (0,∞), and  0, for 𝜇(𝝃) > 1 for 𝝃 ∈ B, follow from Theorem 7.1. The results on  0 for a
homogeneous object follow from Ammari and Kang,26, pg. 93 since  0 coincides with the Pólya-Szegö tensor for a
homogenous object. The results on the limiting cases follow from (17) and (18) by considering 𝜈 = 0 and 𝜈 → ∞,
respectively.

8 SPECTRAL ANALYSIS OF  =  0 +𝜎∗ + i𝜎∗ FOR AN OBJECT WITH
HOMOGENEOUS 𝜎*

In this section, we investigate how  depends on 𝜔. An illustration of the typical behaviour of the diagonal coefficients
of Re((𝜔)) =  0 +𝜎∗ (𝜔) and Im((𝜔)) = 𝜎∗ (𝜔) for the case of a conducting sphere B𝛼 = 𝛼B with radius 𝛼 = 0.01m
and material parameters 𝜇r = 1.5 and 𝜎* = 5.96 × 106S/m is shown in Figure 1. This plot is obtained by evaluating the
known analytical solution provided by Wait.28 Here, Λ𝜎∗ , Λ𝜎∗ , and Λ0 each contain a single repeated eigenvalue of
multiplicity three as 𝜎∗ ,  0, and 𝜎∗ (𝜔) are each a multiple of I. Numerical results for other object shapes can be found
in the previous studies.12-14
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(A) (B)

FIGURE 1 Conducting sphere with 𝛼 = 0.01m, 𝜇r = 1.5, and 𝜎* = 5.96 × 106S/m: behaviour of the diagonal coefficents of
(A) Re((𝜔)) =  0 +𝜎∗ (𝜔) and (B) Im((𝜔)) [Colour figure can be viewed at wileyonlinelibrary.com]

The matrices of eigenvaluesΛ𝜎∗ andΛ𝜎∗ are strongly dependent on 𝜈 = 𝛼2𝜎*𝜔𝜇0. The limiting behaviour of− 0 =
𝜎∗ + i𝜎∗ = −̌𝜎∗ + 𝜎∗ for 𝜈 = 0 and 𝜈 → ∞ has already been investigated, and we recall that

• 𝜎∗ → 0, 𝜎∗ → 0 as 𝜈 → 0 and hence Λ𝜎∗ → 0, Λ𝜎∗ → 0 as 𝜈 → 0;
• 𝜎∗ → 0 as 𝜈 → ∞ and hence since  0 +𝜎∗ → (∞) as 𝜈 → ∞ by Lemma 4.1 then Λ𝜎∗ → 0 and Λ 0+𝜎∗ → Λ(∞)

as 𝜈 → ∞. If 𝛽1(B) = 0 then (∞) simplifies to  (0) and Λ 0+𝜎∗ → Λ (0).

Throughout this section, we require that 𝜎∗ = 𝜎
(n)
∗ is constant throughout B but allow 𝜇* to still vary in a piecewise

constant manner through B. With this, and the above in mind, it is beneficial to consider the dependence of , 𝜎∗ ,
and 𝜎∗ on 𝜈 from which their behaviour with 𝜔 can be readily obtained by a simple change of variables. As explained
previously in Section 4, our interest lies in understanding the behaviour of these tensors where 𝜈 = O(1) so as not to
invalidate (4). We begin by investigating the behaviour of 𝚯(1)(u) with 𝜈.

8.1 Spectral behaviour of 𝚯(1)(u) with 𝜈
We introduce the model eigenvalue problem: Find the eigenvalue-eigensolution pairs (𝜆,𝝓) such that

∇ × 𝜇−1
r ∇ × 𝝓 = 𝜆𝝓 in B, (38a)

∇ × ∇ × 𝝓 = 𝟎 in Bc, (38b)

∇ · 𝝓 = 0 in B ∪ Bc, (38c)

[n × 𝝓]Γ = 𝟎 on Γ, (38d)

[n × 𝜇̃−1
r ∇ × 𝝓]Γ = 𝟎 on Γ, (38e)

𝝓 = O(|𝛏|−1) as |𝛏| → ∞, (38f)

which we will show, is closely related to understanding the behaviour of 𝚯(1)(u). The model eigenvalue problem can be
written in weak form as follows: Find 𝝓 ∈ Y and 𝜆 such that⟨

𝜇−1
r ∇ × 𝝓,∇ × 𝝍

⟩
L2(B) = 𝜆⟨𝝓,𝝍⟩L2(B) ∀𝝍 ∈ Y , (39)

where
Y ∶= {𝝋 ∈ H(curl) ∶ ∇ × ∇ × 𝝋 = 0 in Bc,∇ · 𝝋 = 0 in B ∪ Bc,𝝋 = O(|𝛏|−1) as |𝛏| → ∞}.
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To analyse (39), it is useful to apply a Helmholtz decomposition30, pg.86 to Y:

Y = Y0 ⊕ ∇S, Y0 ∶= {𝝓 ∈ Y ∶ ⟨𝝓,∇p⟩L2(B) = 0 ∀p ∈ S},

and based on treatment of a similar problem in Monk,30, pg. 96 we summarise its properties in the following remark.

Remark 8.1. Repeating similar arguments to those of Monk,30, pg 96. the eigenvalue problem (39) can be investigated
using a Helmholtz decomposition

𝝓(𝛏) = 𝝓0 + ∇p where 𝝓0 ∈ Y0, p ∈ S, (40)

for 𝝃 ∈ B. Corresponding to the eigenvalue 𝜆 = 0, then it can be shown that 𝝓0 = 0, and there are an infinite number
of gradient eigenfunctions in B. Corresponding to 𝜆 ≠ 0, the problem (39) can be rewritten as follows: Find 𝝓0 ∈ Y0
and 𝜆 ≠ 0 such that ⟨

𝜇−1
r ∇ × 𝝓0,∇ × 𝝍

⟩
L2(B) = 𝜆⟨𝝓0,𝝍⟩L2(B) ∀𝝍 ∈ Y0. (41)

Choosing𝝍 = 𝝓0 in (41), it is possible to show that 𝜆 > 0 . Continuing to follow Monk, then, by introducing an appro-
priate solution operator, the existence of eigenvalues and eigenfunctions can be established using the Hilbert-Schmidt
theory leading to the following conclusions:

1. Corresponding to the eigenvalue 𝜆 = 0, there is an infinite family of eigenfunctions, which are such that 𝝓 = ∇p
in B for any p ∈ S.

2. There is an infinite discrete set of eigenvalues 𝜆j > 0, j = 1, 2 … and corresponding eigenfunctions 𝝓j ∈ Y0,
𝝓j ≠ 0 such that

• Problem (39) is satisfied,
• 0 < 𝜆1 < 𝜆2 < … ,
• lim𝑗→∞𝜆𝑗 = ∞,
• 𝝓j is orthogonal to 𝝓k in the L2(B) inner product

⟨
𝝓𝑗 ,𝝓k

⟩
L2(B) = 𝛿𝑗k.

Using these properties, we can deduce the following about 𝚯(1)(u):

Lemma 8.2. The weak solution to (11) for 𝜈 ∈ [0,∞) can be expressed as the convergent series

𝚯(1)(u) = −
∞∑

n=1

i𝜈
i𝜈 − 𝜆n

Pn(𝚯(0)(u)) =
∞∑

n=1
𝛽nPn(𝚯(0)(u)), 𝛽n ∶= − i𝜈

i𝜈 − 𝜆n
, (42)

where Pn(𝚯(0)(u)) = 𝝓n
⟨
𝚯(0)(u),𝝓n

⟩
L2(B), (𝜆n,𝝓n) satisify (39), and

Re(𝛽n) = − 𝜈2

𝜈2 + 𝜆2
n
, Im(𝛽n) =

𝜈𝜆n

𝜈2 + 𝜆2
n
.

Proof. We begin by defining a ∶ Y × Y → C by

a(f , g) ∶=
⟨
𝜇−1

r ∇ × f ,∇ × g
⟩

L2(B) − i𝜈⟨f , g⟩L2(B).

For 𝜈 ∈ (0,∞), it is clear that i𝜈 is not an eigenvalue of (39) and, hence, by Corollary 4.19 in Monk30, pg. 98 the problem:
Find 𝚯(1)(u) ∈ Y such that

a(𝚯(1)(u),𝝍) = i𝜈
⟨
𝚯(0)(u),𝝍

⟩
L2(B) ∀𝝍 ∈ Y , (43)

has a unique solution for every 𝚯(0)(u) ∈ L2(B) ⊂ Y′. Defining the operator (L − i𝜈I) ∶ Y → Y ′, this problem consists
of finding the solution to the operator equation

(L − i𝜈I)𝚯(1) = i𝜈𝚯(0). (44)
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Writing A = (L − i𝜈I)−1 ∶ Y ′ → Y for the solution operator defined by⟨
𝜇−1

r ∇ × (Af ),∇ × g
⟩

L2(B) − i𝜈⟨Af , g⟩L2(B) = ⟨f , g⟩L2(B) ∀g ∈ Y ,

then it is clear that A is linear, and we can check that it is self adjoint:

⟨f ,Ag⟩L2(B) =
⟨
𝜇−1

r ∇ × (Af ),∇ × (Ag)
⟩

L2(B) − i𝜈⟨Af ,Ag⟩L2(B)

=
⟨
𝜇−1

r ∇ × (Ag),∇ × (Af )
⟩

L2(B)
− i𝜈

⟨
Ag,Af

⟩
L2(B)

=
⟨

g,Af
⟩

L2(B)
= ⟨g,Af ⟩L2(B) = ⟨Af , g⟩L2(B).

Also, using the spectral behaviour of L from Remark 8.1, we have L𝝓n = 𝜆n𝝓n, thus, (L − i𝜈I)𝝓n = (𝜆n − i𝜈)𝝓n and,
hence, A𝝓n = (𝜆n − i𝜈)−1𝝓n. Furthermore, as A is linear and self adjoint, the spectral theorem applies to A, which,
when combined with (44), leads immediately to (42). We can extend its applicability to 𝜈 ∈ [0,∞) since we know
that 𝚯(1)(u) vanishes for 𝜈 = 0. Then, we introduce 𝛽n ∶= −i𝜈∕(i𝜈 − 𝜆n), and its real and imaginary parts are trivially
computed.

To show that the series converges, we expand 𝚯(0)(u) in terms of 𝝓n as

𝚯(0)(u) =
∞∑

n=1
𝝓n

⟨
𝚯(0)(u),𝝓n

⟩
L2(B),

from which it follows that

||∇ × 𝜇̃−1
r ∇ ×𝚯(0)(u)||2L2(B∪Bc) = ||∇ × 𝜇−1

r ∇ ×𝚯(0)(u)||2L2(B) =

=
∞∑

n=1

∞∑
m=1

⟨
𝚯(0)(u),𝝓n

⟩
L2(B)

⟨
𝚯(0)(u),𝝓m

⟩
L2(B)∫B

∇ × 𝜇−1
r ∇ × 𝝓n · ∇ × 𝜇−1

r ∇ × 𝝓md𝛏

=
∞∑

n=1

∞∑
m=1

⟨
𝚯(0)(u),𝝓n

⟩
L2(B)

⟨
𝚯(0)(u),𝝓m

⟩
L2(B)𝜆n𝜆m⟨𝝓n,𝝓m⟩L2(B)

=
∞∑

n=1
𝜆2

n
⟨
𝚯(0)(u),𝝓n

⟩2
L2(B) < C,

(45)

with C > 0 independent of 𝜆n since ||∇ × 𝜇̃−1
r ∇ ×𝚯(0)(u)||L2(B∪Bc) is bounded and ⟨𝝓n,𝝓m⟩L2(B) = 𝛿mn. Hence,

|||⟨𝚯(0)(u),𝝓n
⟩

L2(B)
||| < O(𝜆−s∕2

n ),

as n → ∞ with s > 2. Combining this with |𝝓n| < C𝜆n||𝝓n||L2(B) < C𝜆n, which follows, for example, from using an
analogous result to that in Proposition 3.1 of Filoche and Mayboroda,31 and

𝛽n = −
(𝜈∕𝜆n)2

(𝜈∕𝜆n)2 + 1
+ i

𝜈∕𝜆n

(𝜈∕𝜆n)2 + 1
,

then we have that |𝛽nPn(𝚯(0)(u))| ≤ |𝛽n||𝝓n| |||⟨𝚯(0)(u),𝝓n
⟩

L2(B)
||| < C|𝛽n|𝜆1−s∕2

n .

This estimate goes to zero as n → ∞ and, hence, (42) converges.

Corollary 8.3. From the definition of 𝛽n in Lemma 8.2, it follows that

d
d log 𝜈

(Re(𝛽n)) = −2
𝜆2

n𝜈
2

(𝜈2 + 𝜆2
n)2

= −2(Im(𝛽n))2
, (46)
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and
d2

d(log 𝜈)2 (Re(𝛽n)) = −
4𝜆2

n𝜈
2(𝜆2

n − 𝜈2)
(𝜈2 + 𝜆2

n)3
= −4Im(𝛽n)

d
d log 𝜈

(Im(𝛽n)). (47)

Remark 8.4. The complex functions 𝛽n(𝜈), n = 1, 2, … , characterise the behaviour of 𝚯(1)(u) with respect to 𝜈. The
real part of each function, Re(𝛽n), is monotonic and bounded with log 𝜈 and the imaginary part of each function,
Im(𝛽n), has a single local maximum with log 𝜈.

8.2 Spectral behaviour of 𝜎∗ and 𝜎∗ with 𝜈
The following Lemma, which describes the behaviour of 𝜎∗ and 𝜎∗ with 𝜈, follows from the representation of 𝚯(1)(u)
provided by Lemma 8.2.

Lemma 8.5. The coefficients of the tensors 𝜎∗ and 𝜎∗ for an object with homogeneous 𝜎*, although not necessarily
homogenous 𝜇*, can be expressed as the convergent series

(𝜎∗ )i𝑗 = − 𝛼3𝜈2

4

∞∑
n=1

𝜆n

𝜈2 + 𝜆2
n

⟨
𝝓n,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,𝚯(0)(e𝑗)

⟩
L2(B)

= 𝛼3

4

∞∑
n=1

Re(𝛽n)𝜆n
⟨
𝝓n,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,𝚯(0)(e𝑗)

⟩
L2(B), (48a)

(𝜎∗ )i𝑗 =
𝛼3𝜈

4

∞∑
n=1

𝜆2
n

𝜈2 + 𝜆2
n

⟨
𝝓n,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,𝚯(0)(e𝑗)

⟩
L2(B)

= 𝛼3

4

∞∑
n=1

Im(𝛽n)𝜆n
⟨
𝝓n,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,𝚯(0)(e𝑗)

⟩
L2(B). (48b)

Proof. Using Theorem 5.1 and Lemma 8.2, we see that (𝜎∗ )i𝑗 can be expressed as

(𝜎∗ )i𝑗 = − 𝛼3

4

(⟨
𝜇−1

r ∇ ×𝚯(1)(e𝑗),∇ ×𝚯(1)(ei)
⟩

L2(B) +
⟨
∇ ×𝚯(1)(e𝑗),∇ ×𝚯(1)(ei)

⟩
L2(Bc)

)
,

= − 𝛼3

4

(⟨ ∞∑
n=1

i𝜈
i𝜈 − 𝜆n

𝜇−1
r ∇ × Pn(𝚯(0)(ei)),

∞∑
m=1

i𝜈
i𝜈 − 𝜆m

∇ × Pm(𝚯(0)(e𝑗))

⟩
L2(B)

+

⟨ ∞∑
n=1

i𝜈
i𝜈 − 𝜆n

∇ × Pn(𝚯(0)(ei)),
∞∑

m=1

i𝜈
i𝜈 − 𝜆m

∇ × Pm(𝚯(0)(e𝑗))

⟩
L2(Bc)

)

= − 𝛼3

4

( ∞∑
n=1

∞∑
m=1

i𝜈
i𝜈 − 𝜆n

i𝜈
i𝜈 − 𝜆m

(⟨
𝜇−1

r ∇ × Pn(𝚯(0)(ei)),∇ × Pm(𝚯(0)(e𝑗))
⟩

L2(B)

+
⟨
∇ × Pn(𝚯(0)(ei)),∇ × Pm(𝚯(0)(e𝑗))

⟩
L2(Bc)

))
.

(49)

Then, noting that

⟨ 𝜇−1
r ∇ × Pn(𝚯(0)(ei)),∇ × Pm(𝚯(0)(e𝑗))

⟩
L2(B) +

⟨
∇ × Pn(𝚯(0)(ei)),∇ × Pm(𝚯(0)(e𝑗))

⟩
L2(Bc)

=
⟨
𝝓n,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓m,𝚯(0)(e𝑗)

⟩
L2(B)(⟨

𝜇−1
r ∇ × 𝝓n,∇ × 𝝓m

⟩
L2(B) + ⟨∇ × 𝝓n,∇ × 𝝓m⟩L2(Bc)

)
=

⟨
𝝓n,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓m,𝚯(0)(e𝑗)

⟩
L2(B)𝜆n⟨𝝓n,𝝓m⟩L2(B)

=
⟨
𝝓n,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓m,𝚯(0)(e𝑗)

⟩
L2(B)𝜆n𝛿nm,

(50)
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and combining with (49), gives the desired result for (𝜎∗ )i𝑗 . For (𝜎∗ )i𝑗 , we have

(𝜎∗ )i𝑗 =
𝛼3

4𝜈
⟨
∇ × 𝜇−1

r ∇ ×𝚯(1)(ei),∇ × 𝜇−1
r ∇ ×𝚯(1)(e𝑗)

⟩
L2(B)

= 𝛼3

4𝜈

⟨ ∞∑
n=1

i𝜈
i𝜈 − 𝜆n

∇ × 𝜇−1
r ∇ × Pn(𝚯(1)(ei)),

∞∑
m=1

i𝜈
i𝜈 − 𝜆m

∇ × 𝜇−1
r ∇ × Pm(𝚯(1)(ei))

⟩
L2(B)

,

and using

∇ × 𝜇−1
r ∇ × Pn(𝚯(1)(ei)) =

⟨
𝝓n,𝚯(0)(ei)

⟩
L2(B)∇ × 𝜇−1

r ∇ × 𝝓n

= 𝜆n
⟨
𝝓n,𝚯(0)(ei)

⟩
L2(B)𝝓n inB,

we have

(𝜎∗ )i𝑗 =
𝛼3

4𝜈

∞∑
n=1

∞∑
m=1

i𝜈
i𝜈 − 𝜆n

i𝜈
i𝜈 − 𝜆m

𝜆n𝜆m
⟨
𝝓n,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓m,𝚯(0)(e𝑗)

⟩
L2(B)

⟨𝝓n,𝝓m⟩L2(B).

The final result for (𝜎∗ )i𝑗 follows from noting that ⟨𝝓n,𝝓m⟩L2(B) = 𝛿mn.
The convergence of (48a) and (48b) follows in a similar manner to that of (42) by using

|||⟨𝚯(0)(u),𝝓n
⟩

L2(B)
||| < O(𝜆−s∕2

n ),

as n → ∞ with s > 2.

Taking into account possible multiplicities in the eigenvalues 𝜆n, we have the following:

Remark 8.6. The result of Lemma 8.5 can be rewritten to make explicit possible multiplicities in the eigenvalues 𝜆n as

(𝜎∗ )i𝑗 =
𝛼3

4

∞∑
n=1

Re(𝛽n)𝜆n

mult (𝜆n)∑
k=1

⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(B), (51a)

(𝜎∗ )i𝑗 =
𝛼3

4

∞∑
n=1

Im(𝛽n)𝜆n

mult (𝜆n)∑
k=1

⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(B). (51b)

We observe that Lemma 8.5 provides a connection between the point of inflection of (𝜎∗ )i𝑗 with log 𝜈 and the stationary
point of (𝜎∗ )i𝑗 with log 𝜈 as discussed in the following remark.

Remark 8.7. Applying (47) to the results (51) then a point of inflection for (𝜎∗ )i𝑗 with log 𝜈 corresponds to where

d2

d(log 𝜈)2 ((𝜎∗ )i𝑗) = −𝛼3
∞∑

n=1

𝜆3
n𝜈

2(𝜆2
n − 𝜈2)

(𝜈2 + 𝜆2
n)3

mult (𝜆n)∑
k=1

⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(B)

= −𝛼3
∞∑

n=1
𝜆nIm(𝛽n)

d
d log 𝜈

(Im(𝛽n))
mult (𝜆n)∑

k=1

⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(B)

= 0.
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Similarly, the stationary point for (𝜎∗ )i𝑗 with log 𝜈 corresponds to where

d
d(log 𝜈)

((𝜎∗ )i𝑗) =
𝛼3

4

∞∑
n=1

𝜆2
n𝜈(𝜆2

n − 𝜈2)
(𝜈2 + 𝜆2

n)2

mult (𝜆n)∑
k=1

⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(B)

= − 𝛼3

16

∞∑
n=1

𝜆n

Im(𝛽n)
d2

d(log 𝜈)2 (Re(𝛽n))

mult (𝜆n)∑
k=1

⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(B)

= 0.

Thus, a stationary point for (𝜎∗ )i𝑗 with respect to log 𝜈 corresponds to a point of inflection for (𝜎∗ )i𝑗 with respect to
log 𝜈.

8.2.1 Dominant spectral behaviour of (𝜎∗(𝜈))i𝑗 , (𝜎∗(𝜈))i𝑗
From Corollary 8.3, we observe, for i = j, that the expressions (51a) and (51b) involve sums of terms that are each mono-
tonically decreasing and bounded with log 𝜈 and have a single local maximum with log 𝜈, respectively. For i ≠ j, (51a)
involves sums of terms that are either monotonically decreasing and bounded or monotonically increasing and bounded
with log 𝜈, and (51b) has terms, which have either a single local minimum or maximum with log 𝜈. The difference in the
behaviour of the different terms for i ≠ j is due to

mult(𝜆n)∑
k=1

⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(B),

whose sign can vary for different n. For each i, j we expect, amongst the terms in these summations, there is a n = ndom,
which we call the dominant mode, that provides the dominant behaviour of (𝜎∗ (𝜈))i𝑗 and (𝜎∗ (𝜈))i𝑗 for 𝜈 ∈ [0, 𝜈max). We
confirm this behaviour by using a least squares fit of the functions

𝑓 (𝜎∗ )i𝑗 (a, b) = − ab𝜈2

𝜈2 + b2 , 𝑓 (𝜎∗ )i𝑗 (c, d) = cd𝜈
𝜈2 + d2 ,

to the curves of (𝜎∗ (𝜈))i𝑗 = (Re((𝜈)))i𝑗−( 0)i𝑗 and (𝜎∗ (𝜈))i𝑗 = (Im((𝜈)))i𝑗 , where a and c control the amplitude and
sign of the functions, and we expect to find that b ≈ d corresponds to the dominant eigenvalue 𝜆ndom for the considered
coefficient.

First, we consider the conducting sphere previously shown in Figure 1. For this object, 𝜎∗ (𝜈) and 𝜎∗ (𝜈) are diagonal
and a multiple of I. We also expect the dominant mode to be ndom = 1, which has an eigenvalue with multiplicity 3.
By fitting the functions 𝑓 (𝜎∗ )ii (a, b) and 𝑓 (𝜎∗ )ii(c, d) to the exact data (no summation implied) for f ∈ [0, 104)Hz, where
fmax = 𝜔max∕(2𝜋) = 104Hz, which implies 𝜈max = 𝛼2𝜎*𝜇0𝜔max ≈ 47, we find b ≈ d ≈ 10, as expected. In Figure 2,
we observe that the functions provide a good approximation of (𝜎∗ (𝜈))ii and (𝜎∗ (𝜈))ii. Also included are the residuals
−|(𝜎∗ (𝜈))ii − 𝑓 (𝜎∗ )ii(a, b)| and |(𝜎∗ (𝜈))ii − 𝑓 (𝜎∗ )ii(a, b)|, which are small for 𝜈 ∈ [0, 𝜈max).

As a second example, we consider an irregular conducting tetrahedron B𝛼 = 𝛼B, where the object B has vertices (0, 0, 0),
(0.7, 0, 0), (0.89, 0.46, 0) and (1.36, 1.33, 1.62), 𝛼 = 0.01m, 𝜇r = 1.5, and 𝜎* = 5.96 × 106S/m. For this object, 𝜎∗ (𝜈) and
𝜎∗ (𝜈) have six independent coefficients, and therefore, for each coefficient, the dominant mode may differ. The functions
𝑓 (𝜎∗ )i𝑗 (a, b) and 𝑓 (𝜎∗ )i𝑗 (c, d) are fitted to the curves (𝜎∗ (𝜈))i𝑗 and (𝜎∗ (𝜈))i𝑗 obtained using the computational procedure
described in the previous studies9,13 for f ∈ [0, 105)Hz using a mesh of 34 473 unstructured tetrahedra and third-order
finite elements. Different values of c ≈ d are obtained for each coefficient, and we observe, in Figure 3, for the diagonal
coefficients, and in Figure 4, for the off-diagonal coefficients, that the functions describe the dominant behaviour of
(𝜎∗ (𝜈))i𝑗 and (𝜎∗ (𝜈))i𝑗 for f ∈ [0, 105)Hz, where fmax = 𝜔max∕(2𝜋) = 105Hz, which implies 𝜈max = 𝛼2𝜎*𝜇0𝜔max ≈ 470.

The presence of dominant modes also provides further insights into how (𝜎∗ )ii and (𝜎∗ )ii are connected as described
in the following remark.
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(A) (B)

FIGURE 2 Conducting sphere with 𝛼 = 0.01m, 𝜇r = 1.5, and 𝜎* = 5.96 × 106S/m: Curve fitting of (A) (𝜎∗ (𝜈)ii = (Re((𝜈)))ii − ( 0)ii and
(B) (𝜎∗ (𝜈))ii = (Im((𝜈)))ii, (no summation implied, i = 1, 2, 3 are identical) [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 3 Conducting irregular tetrahedron with 𝛼 = 0.01m, 𝜇r = 1.5, and 𝜎* = 5.96 × 106S/m: Curve fitting of (A)
𝜎∗

ii (𝜈) = Re((𝜈))ii − 0
ii and (B) 𝜎∗ii (𝜈) = Im((𝜈))ii, i = 1, 2, 3 (no summation implied) [Colour figure can be viewed at

wileyonlinelibrary.com]

Remark 8.8. For 𝜈 ∈ [0, 𝜈max) then, given a dominate mode ndom, and applying Corollary 8.3 to Lemma 8.5, we have
the following: |||| d

d log 𝜈
((𝜎∗ )ii)

|||| =𝛼3

2

∞∑
n=1

(Im(𝛽n)2𝜆n

mult (𝜆n)∑
k=1

⟨
𝝓n,k,𝚯(0)(ei)

⟩2
L2(B)

≈𝛼
3

2
(Im(𝛽ndom )

2𝜆ndom

mult (𝜆ndom
)∑

k=1

⟨
𝝓ndom,k,𝚯

(0)(ei)
⟩2

L2(B)

≈C(𝜎∗ )2
ii,

(52)

where C > 0 depends on 𝜆ndom ,𝝓ndom,k and 𝚯(0) but is independent of 𝜈, which reveals insights into how ||| d
d log 𝜈

((𝜎∗ )ii)
|||

and (𝜎∗ )2
ii are connected. From frequency sweeps of the computed tensor coefficients for different objects with

homogenous 𝜎* (eg, the previous studies12-14), and from broadband measurements of tensorial coefficients (eg, the
previous studies17,32,33), (𝜎∗ )ii has been found to exhibit a monotonic and bounded behaviour with log 𝜈, and 𝜎∗ii has
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(A) (B)

FIGURE 4 Conducting irregular tetrahedron with 𝛼 = 0.01m, 𝜇r = 1.5, and 𝜎* = 5.96 × 106S/m: Curve fitting of (A)
(𝜎∗ (𝜈))i𝑗 = (Re((𝜈)))i𝑗 − ( 0)i𝑗 and (B) (𝜎∗ (𝜈))i𝑗 = (Im((𝜈)))i𝑗 , i ≠ j [Colour figure can be viewed at wileyonlinelibrary.com]

a single local maximum with log 𝜈 for a large range of objects. Thus, one might be tempted to conjecture that

|||| d
d log 𝜈

((𝜎∗ )ii)
|||| ≤ C(𝜎∗ )ii;

however, this is not true, the correct behaviour being of the type stated in (52).

8.2.2 Reduction in the number of coefficients in 𝜎∗(𝜈), 𝜎∗(𝜈) due to object symmetries
The important role played by

⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(B) in the transformation of 𝜎∗ and 𝜎∗ is understood

through the following lemma.

Lemma 8.9. Under the action of an orthogonal transformation matrix Q⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(Q(B))

⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(Q(B))

= (Q)ip(Q)𝑗q
⟨
𝝓n,k,𝚯(0)(ep)

⟩
L2(B)

⟨
𝝓n,k,𝚯(0)(eq)

⟩
L2(B), (53)

transforms like the coefficients of a rank 2 tensor. Consequently, the coefficients of 𝜎∗ and 𝜎∗ expressed in the form (51)
obey the transformations

(𝜎∗ [Q(B)])i𝑗 = (Q)ip(Q)𝑗q(𝜎∗ [B])pq,

(𝜎∗ [Q(B)])i𝑗 = (Q)ip(Q)𝑗q(𝜎∗ [B])pq,

as expected.

Proof. Using the notation 𝚯(0)
B (u) to denote the solution of (10) and 𝝓n,k,B to denote the n, k eigenmode of (38), where

the dependence on B has been made explicit, we have, from Proposition 4.3 of Ammari et al,15 the transformations

𝚯(0)
Q(B)(u) = |Q|Q𝚯(0)

B (QTu), 𝝓n,k,Q(B) = |Q|Q𝝓n,k,B,

for an orthogonal transformation matrix Q. Observe that 𝝓n,k,R(B) does not depend on auxiliary vector, and so, its
transformation is simpler. Following similar arguments to the proof of Theorem 3.1 of Ledger and Lionheart,9 we have
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⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(Q(B)) =∫Q(B)

𝝓n,k,Q(B) ·𝚯
(0)
Q(B)(ei)d𝛏

=|Q|2∫B
Qpq(𝝓n,k,B)qQps(𝚯(0)

B (QTei))sd𝛏

=𝛿qs∫B
(𝝓n,k,B)q(𝚯(0)

B (QTei))sd𝛏

=(Q)ip∫B
𝝓n,k,B ·𝚯(0)

B (ep)d𝛏,

where we have used 𝚯(0)
B (QTei) =

∑3
p=1 (Q)ip𝚯(0)

B (ep) in the final step. Repeating similar steps for
⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(Q(B))

gives the result in (53). On consideration of (51), the transformations of the coefficients of 𝜎∗ [Q(B)] and 𝜎∗ [Q(B)]
immediately follow.

Remark 8.10. Suppose, because of reflectional or rotational symmetries of an object, that (𝜎∗ )i𝑗 = 0 and (𝜎∗ )i𝑗 = 0
for some i ≠ j. According to Lemma 8.9, we have already seen

⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(B) transforms like

the coefficients of a rank 2 tensor. This then implies

mult(𝜆n)∑
k=1

⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(B) = 0, (54)

must hold for each n to ensure that (51) results in (𝜎∗ )i𝑗 = 0 and (𝜎∗ )i𝑗 = 0, independent of the object's materials and
the frequency. It is impossible to have

⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(B) = 0 or

⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(B) = 0 for all k since this would then

imply that all of the ith row or the jth column of the tensor was 0, which contradicts Lemma 4.1, where the diagonal
coefficients only go to 0 for extreme values. Furthermore, this also implies that if we have a rotational, or reflectional
symmetries resulting in (𝜎∗ )i𝑗 = 0 and (𝜎∗ )i𝑗 = 0 for some i ≠ j, then we must also have mult(𝜆n) ≥ 2 for all n.

8.2.3 Spectral behaviour of the eigenvectors of 𝜎∗(𝜈), 𝜎∗(𝜈)
For objects with rotational and/or reflectional symmetries, such that 𝜎∗ and 𝜎∗ are diagonal, then all of the coefficients
of the commutators satisfy

(𝜎∗ (𝜈))i𝑗(𝜎∗ (𝜈))𝑗k − (𝜎∗ (𝜈))i𝑗(𝜎∗ (𝜈))𝑗k = 0, (55a)

(𝜎∗ (𝜈1))i𝑗(𝜎∗ (𝜈2))𝑗k − (𝜎∗ (𝜈2))i𝑗(𝜎∗ (𝜈1))𝑗k = 0, (55b)

(𝜎∗ (𝜈1))i𝑗(𝜎∗ (𝜈2))𝑗k − (𝜎∗i𝑗 (𝜈2))i𝑗(𝜎∗ (𝜈1))𝑗k = 0, (55c)

for any choice of 0 < 𝜈1, 𝜈2, 𝜈 < ∞, and hence, the eigenvectors of 𝜎∗ (𝜈1) and 𝜎∗ (𝜈2) are the same for any 0 < 𝜈1, 𝜈2 <∞.
To understand how the eigenvectors of𝜎∗ and 𝜎∗ for a general object can differ, we consider the following Lemma that

provides estimates on the off-diagonal elements of the commutators using the alternative form of the tensors provided by
Lemma 5.4. We note that it is easy to show that the diagonal elements of the commutators, corresponding to i = k in (55),
always vanish for any object.

Lemma 8.11. The off-diagonal elements of the commutators of𝜎∗ (𝜈)and𝜎∗ (𝜈),𝜎∗ (𝜈1)and𝜎∗ (𝜈2), as well as𝜎∗ (𝜈1)
and 𝜎∗ (𝜈2), for 0 < 𝜈1, 𝜈2, 𝜈 < ∞ for 𝜈1 ≠ 𝜈2, for a general object, can be estimated as follows:

||(𝜎∗ (𝜈))i𝑗(𝜎∗ (𝜈))𝑗k − (𝜎∗ (𝜈))i𝑗(𝜎∗ (𝜈))𝑗k|| ≤ C𝛼6𝜈, (56a)

||(𝜎∗ (𝜈1))i𝑗(𝜎∗ (𝜈2))𝑗k − (𝜎∗ (𝜈2))i𝑗(𝜎∗ (𝜈1))𝑗k|| ≤ C𝛼6, (56b)

||(𝜎∗ (𝜈1))i𝑗(𝜎∗ (𝜈2))𝑗k − (𝜎∗ (𝜈2))i𝑗(𝜎∗ (𝜈1))𝑗k|| ≤ C𝛼6𝜈1𝜈2, (56c)

where i ≠ k, C > 0 is independent of 𝜈, 𝜈1, 𝜈2, and 𝛼.
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Proof. Using (31a), we estimate that

|(𝜎∗ (𝜈))i𝑗| ≤ 𝜈
𝛼3

4
||Im(𝚯(1)(ei))||L2(B)||𝚯(0)(e𝑗)||L2(B)

≤ 𝜈
𝛼3

4

( 3∑
p=1

||Im(𝚯(1)(ep))||2L2(B)

)1∕2( 3∑
p=1

||𝚯(0)(ep)||2L2(B)

)1∕2

≤ C𝜈𝛼3

( 3∑
p=1

||Im(𝚯(1)(ep))||2L2(B)

)1∕2

,

(57)

where C > 0 does not depend on 𝜈 or 𝛼, and from (31b), we estimate

|(𝜎∗ (𝜈))i𝑗| ≤𝜈 𝛼3

4
(||Re(𝚯(1)(ei))||L2(B)||𝚯(0)(e𝑗)||L2(B) + ||𝚯(0)(ei)||L2(B)||𝚯(0)(e𝑗)||L2(B)

)
≤𝜈 𝛼3

4

( 3∑
p=1

||𝚯(0)(ep)||2L2(B)

)1∕2 ⎛⎜⎜⎝
( 3∑

p=1
||Re(𝚯(1)(ep))||2L2(B)

)1∕2

+

( 3∑
p=1

||𝚯(0)(ep)||2L2(B)

)1∕2⎞⎟⎟⎠
≤C𝜈𝛼3

⎛⎜⎜⎝
( 3∑

p=1
||Re(𝚯(1)(ep))||2L2(B)

)1∕2

+ 1
⎞⎟⎟⎠ .

(58)

Furthermore, using (42), we obtain

||Im(𝚯(1)(ep))||2L2(B) = ∫B
Im(𝚯(1)(ep)) · Im(𝚯(1)(ep))d𝛏

=
∞∑

n=1

∞∑
m=1

Im(𝛽n)Im(𝛽m)
⟨
𝝓n,𝚯(0)(ep)

⟩
L2(B)

⟨
𝝓m,𝚯(0)(ep)

⟩
L2(B)⟨𝝓n,𝝓m⟩L2(B)

=
∞∑

n=1
(Im(𝛽n))2 ⟨𝝓n,𝚯(0)(ep)

⟩2
L2(B)

= 1
𝜈2

∞∑
n=1

𝜆2
n

(1 + (𝜆n∕𝜈)2)2

⟨
𝝓n,𝚯(0)(ep)

⟩2
L2(B) ,

(59)

where we have used Im(𝚯(1)(ep)) ∈ R and ⟨𝝓n,𝝓m⟩L2(B) = 𝛿mn. In a similar way, we can show that

||Re(𝚯(1)(ep))||2L2(B) =
∞∑

n=1

1
(1 + (𝜆n∕𝜈)2)2

⟨
𝝓n,𝚯(0)(ep)

⟩2
L2)B) . (60)

Next, we use ||(𝜎∗ (𝜈))i𝑗(𝜎∗ (𝜈))𝑗k − (𝜎∗ (𝜈))i𝑗(𝜎∗ (𝜈))𝑗k|| ≤|(𝜎∗ (𝜈))i𝑗||(𝜎∗ (𝜈))𝑗k| + |(𝜎∗ (𝜈))i𝑗||(𝜎∗ (𝜈))𝑗k|,
and substitute (57) and (58) followed by (59) and (60) to obtain

||(𝜎∗ (𝜈))i𝑗(𝜎∗ (𝜈))𝑗k − (𝜎∗ (𝜈))i𝑗(𝜎∗ (𝜈))𝑗k|| ≤ C𝛼6𝜈E1(𝜈)E2(𝜈), (61)

where
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FIGURE 5 Conducting irregular tetrahedron with 𝛼 = 0.01m,
𝜇r = 1.5, and 𝜎* = 5.96 × 106S/m: Behaviour of|(Z(𝜔))ik| = |(𝜎∗ (𝜔))i𝑗 (𝜎∗ (𝜔))𝑗k − (𝜎∗ (𝜔))i𝑗 (𝜎∗ (𝜔))𝑗k| as a function
of 𝜔 for i ≠ k [Colour figure can be viewed at wileyonlinelibrary.com]

E1(𝜈) ∶=

( ∞∑
n=1

𝜆2
n(

1 + (𝜆n∕𝜈)2
)2

3∑
p=1

⟨
𝝓n,𝚯(0)(ep)

⟩2
L2(B)

)1∕2

,

E2(𝜈) ∶=

( ∞∑
n=1

1(
1 + (𝜆n∕𝜈)2

)2

3∑
p=1

⟨
𝝓n,𝚯(0)(ep)

⟩2
L2(B)

)1∕2

+ 1.

Still further, using (45), we obtain that

E1(𝜈)2 ≤
∞∑

n=1
𝜆2

n

3∑
p=1

⟨
𝝓n,𝚯(0)(ep)

⟩2
L2(B) ≤ C,

independent of 𝜈. Since E2(𝜈) < E1(𝜈), then we also have E2(𝜈) < C independent of 𝜈, which, together with (61), leads
immediately to (56a). The other two bounds are found in a similar way.

Remark 8.12. In Ledger and Lionheart,12 we have proposed to use the eigenvalues of 𝜎∗ and 𝜎∗ for the classification
of objects, as they are known to be invariant under an object rotation, and their eigenvectors for determining an
object's orientation. Lemma 8.11 shows that the off-diagonal elements of the commutator between 𝜎∗ (𝜈) and 𝜎∗ (𝜈),
for general objects, grows at most linearly with 𝜈. Recalling that 𝜈 = 𝜔𝜎*𝜇𝛼

2, then, by using

d
d𝜔

||(𝜎∗ (𝜔))i𝑗(𝜎∗ (𝜔))𝑗k − (𝜎∗ (𝜔))i𝑗(𝜎∗ (𝜔))𝑗k|| , (62)

over a range of𝜔, will also provide useful information and allow cases where the eigenvectors of𝜎∗ (𝜔) and 𝜎∗ (𝜔) are
the same and where they differ to be distinguished. As an illustration, we include, in Figure 5, the numerical results
for |(Z(𝜔))ik| = |(𝜎∗ (𝜔))i𝑗(𝜎∗ (𝜔))𝑗k −(𝜎∗ (𝜔))i𝑗(𝜎∗ (𝜔))𝑗k|, i ≠ k, for the irregular tetrahedron previously considered
in Figures 3 and 4. We observe that the behaviour of |(Z(𝜔))ik| tracks ||𝜎∗ ||F||𝜎∗ ||F and this behaviour is similar, in
turn, to the estimate in (61).

8.3 Mittag-Leffler expansion of 
Given a meromorphic function f(w) in a region Ω with poles an, then Ahlfors34, pg. 187 explains how it can be expressed in
the form

𝑓 (w) = g(w) +
∑

n
Pn

(
1

w − an

)
, (63)

where Pn (1∕(w − an)) is a polynomial in 1∕(w − an) for each pole an, and g(w) is analytic in Ω. Unfortunately, the sum
on the right hand side is infinite and so there is no guarantee that it will converge in general. However, as described by
Ahlfors, it is possible to modify (63) by subtracting an analytic function pn from each singular part Pn, where each pn can
be chosen as a polynomial. In the case whereΩ is the complex plane, then, in Theorem 4 of Ahlfors,34, pg.187 Ahlfors proves
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that every meromorphic function has a development in partial fractions and that the singular parts can be described
arbitrarily, with this being a particular case of a more general result because of Mittag-Leffler. In particular, he explains
that the modified series

𝑓 (w) = g(w) +
∑

n
Pn

(
1

w − an

)
− pn(w) (64)

can be constructed by taking pn to be the Taylor series expansion of Pn

(
1

w−an

)
expanded about 0 and truncated at some

sufficient degree nv. Still further, he explains that the series in (64) can be made absolutely convergent in the whole
complex plane, apart from the poles, by choosing nv sufficiently large, in particular such that 2nv ≥ Mn2n for all n, where
Mn = max |Pn(w)| for |w| < an∕2.

We apply this result to i𝑗(w) with w ∶= i𝜈 and obtain the following theorem, which is the main result of this section.

Theorem 8.13. The coefficients of (w) are meromorphic in the whole complex plane with simple poles at 𝜆n on the
positive real axis, where 0 < 𝜆1 < 𝜆2 < … , and is analytic at w = 0 with (0) =  0. Thus, the coefficients of (w)
admit a Mittag-Leffler type expansion for simple poles in the form

((w))i𝑗 = ( 0)i𝑗 +
∞∑

n=1

(
𝜆n

w − 𝜆n
+ 1

)
((n))i𝑗 − pn(w), (65)

where

pn(w) = −
(

w
𝜆n

+ w2

𝜆2
n
+ … + wnv

𝜆
nv
n

)
((n))i𝑗 , (66)

((n))i𝑗 ∶= −𝛼
3𝜆n

4

mult (𝜆n)∑
k=1

⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(B). (67)

In the above, (𝜆n,𝝓n) are the eigenvalue-eigensolution pairs of (38). The series can be made absolutely convergent in the
complex plane, apart from the poles, by choosing nv sufficiently large, in particular such that 2nv ≥ Mn2n for all n, where
Mn = max | (𝜆n∕(w − 𝜆n) + 1) ((n))i𝑗| for |w| < 𝜆n∕2.

Proof. Recall 𝜎∗ + i𝜎∗ =  − 0 and from (51) that

((w))i𝑗 =( 0)i𝑗 +
𝛼3

4

∞∑
n=1
𝛽n(w)𝜆n

mult (𝜆n)∑
k=1

⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(B),

for objects B with homogenous 𝜎*, and possibly inhomogeneous 𝜇*, where we have introduced w = i𝜈. Thus, by
introducing (67), we have

((w))i𝑗 = ( 0)i𝑗 +
∞∑

n=1

w
w − 𝜆n

((n))i𝑗 = ( 0)i𝑗 +
∞∑

n=1

(
𝜆n

w − 𝜆n
+ 1

)
((n))i𝑗 . (68)

We recall from Lemma 4.1 that for the limiting case of 𝜈 = 0, we have (0) =  0, which, by Corollary 4.2,
reduces to the Póyla-Szegö tensor when considering a single object with homogeneous 𝜇*, and as its coefficients are
independent of 𝜈, they are clearly analytic. Thus, 𝑓 (w) = ((w))i𝑗 is of the form of (63) with g(w) = ( 0)i𝑗 and
Pn(w) =

(
𝜆n

w−𝜆n
+ 1

)
((n))i𝑗 , where the poles are simple. We already know from Lemma 8.5 that (68) is convergent

for 𝜈 ∈ [0,∞), ie, when w lies on the positive imaginary axis, away from the poles in the real axis. We can extend this
further by applying the Mittag-Leffler Theorem, described above, and constructing a modified expansion (65), where
our pn(w) in (66) is the Taylor series expansion of our Pn(w) about 0 and truncated at nv in such a way to ensure that it
is convergent at all points in the complex plane away from the poles. This then immediately leads to our quoted result.

Corollary 8.14. Expanding (s) =  0 +𝜎∗ (s) + i𝜎∗ (s) in terms of s = −i𝜔, we have that ((s))i𝑗 is meromorphic
in the whole complex plane with simple poles at sn = −𝜆n∕(𝜇0𝜎*𝛼

2) on the negative real axis, where 0 < |s1| < |s2| < …
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and is analytic at s = 0 with (0) =  0 and, hence, in the case of nv = 0, admits the expansion

((s))i𝑗 = ( 0)i𝑗 +
∞∑

n=1

(
sn

s − sn
+ 1

)
((n))i𝑗 , (69)

which is absolutely convergent in the whole complex plane, apart from the poles, provided that
max | (sn∕(s − sn) + 1) ((n))i𝑗|, for |s| < |sn|∕2, decays faster than 2−n.

Proof. For nv = 0, the result stated in (65) in Theorem 8.13 becomes

((w))i𝑗 = ( 0)i𝑗 +
∞∑

n=1

(
𝜆n

w − 𝜆n
+ 1

)
((n))i𝑗 , (70)

which is convergent for 𝜈 ∈ [0,∞), ie, when w lies on the positive imaginary axis and is absolutely convergent in
the whole complex plane, apart from the poles provided that Mn = max | (𝜆n∕(w − 𝜆n) + 1) ((n))i𝑗| for |w| < 𝜆n∕2
decays faster than 2−n . Still further, using a simple change of variables, we can obtain an expansion of (s) =  0 +
𝜎∗ (s) + i𝜎∗ (s) in terms of s = −i𝜔 and find that the poles are at sn = −𝜆n∕(𝜇0𝜎*𝛼

2) on the negative real axis, where
0 < |s1| < |s2| < … . Making the change of variables w = −s𝜇0𝜎*𝛼

2 in (70) gives (69).

Remark 8.15. Wait and Spies18 obtained an analytical solution for a conducting permeable sphere and obtained
explicit expressions for the tensor coefficients and the negative real values of the poles sn for this case. Their choice of
sn corresponds to our sn𝜇r in the case of a permeable homogeneous object, but ours is more general as it can also be
applied to inhomogeneous objects, where 𝜇r is no longer a constant. For other shapes with homogeneous parameters,
Baum19 has predicted that (s) has simple poles on the negative real axis and quoted

(s) =(0) +
∞∑

n=1

s
sn(s − sn)

MnMn ⊗ Mn + possible entire function,

=(0) +
∞∑

n=1

(
1

s − sn
+ 1

sn

)
MnMn ⊗ Mn + possible entire function, (71)

without a formal proof and without explicit expressions for the tensor coefficients or the scalars Mn. He proposes
a numerical approximation approach for calculation of sn and the eigenvectors Mn but does not make reference to
eigenvalue problem (38), which is fundamental to their correct computation. His prediction uses s = i𝜔 as he applies
ei𝜔t to obtain the time harmonic equations instead of e−i𝜔t used in this work. Indeed, the subject of Baum's prediction
was of subject of some considerable debate, see, eg, Ramm.22 His prediction can be seen as a special case of Theorem
8.13 discussed in Corollary 8.14, which by comparing with (69) makes clear the definition of all the terms and makes
explicit the correct eigenvalue problem (38) that needs to be solved. Although, importantly, (69) will only be absolutely
convergent in the complex plane, apart from the poles, if max |(sn∕(s − sn) + 1)((n))i𝑗|, for |s| < |sn|∕2, decays faster
than 2−n.

9 TRANSIENT RESPONSE OF (H𝛼 − H0)(x)

Building on the earlier work of Wait and Spies,18 who have obtained an analytical expression for transient response from
a conducting permeable sphere, we can now apply Theorem 8.13 to obtain explicit expressions for the transient response
from an inhomogeneous conducting permeable object with 𝜎* fixed.
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Theorem 9.1. The transient perturbed magnetic field response to B𝛼 with fixed 𝜎* placed in a background field
Hstep

0 (x, t) = H0(x)u(t) is

(H𝛼 − Hstep
0 )(x, t)i = (D2

xG(x, z))i𝑗(step(t))𝑗k(H0(z))k + (R(x, t))i,

(step(t))𝑗k ∶=

(
( 0)𝑗k +

∞∑
n=1

esnt((n))𝑗k

)
u(t),

where H0(x) is real valued and u(t) a unit step function, generated by a divergence free current source of the form
Jstep

0 (x, t) = J0(x)u(t) with real valued J0(x). In the above, H𝛼(x, t) is the transient magnetic interaction field, which sat-
isfies the transient version of (3), sn = −𝜆n∕(𝜇0𝜎*𝛼

2), 𝜆n is an eigenvalue of (38), and (n)
i𝑗 is as defined in (67). If the

conditions of the asymptotic formula (4) are met then R(x, t) = 0.

Proof. For consistency with Wait and Spies,18 we set s = i𝜔 and apply

(H𝛼 − Hstep
0 )(x, t)i =

1
2𝜋i ∫

c+i∞

c−i∞

1
s
(H𝛼 − H0)(x)iestds = −1

(1
s
(H𝛼 − H0)(x)i

)
,

where c is a positive constant and −1 denotes the inverse Laplace transform. The complex conjugate of (H𝛼 −H0)(x)i
is taken as Wait and Spies use ei𝜔t rather than e−i𝜔t used here. Now, substituting the asymptotic formula (4), we have,
assuming H0 is real, that

(H𝛼 − Hstep
0 )(x, t)i = (D2

xG(x, z))i𝑗
1

2𝜋i ∫
c+i∞

c−i∞

1
s
()𝑗kestds(H0(z))k

+ 1
2𝜋i ∫

c+i∞

c−i∞

1
s

R(x, s)iestds.

By considering (65), applying the change of variables from w = i𝜈 to s = −i𝜔, so that the poles lie on the negative real
axis at sn = −𝜆n∕(𝜇0𝜎*𝛼

2), as discussed in Corollary 8.14, and closing the contour by an infinite semicircle in the left
hand s plane, we find, for t > 0, that

1
2𝜋i ∫

c+i∞

c−i∞

1
s
()𝑗kestds = 1

2𝜋i ∫
c+i∞

c−i∞

1
s

(
( 0)i𝑗 +

∞∑
n=1

(
sn

s̄ − sn
+ 1 − qn(s)

)
((n))i𝑗

)
estds

= Res
s=0,s̄=sn

(
1
s

(
( 0)i𝑗 +

∞∑
n=1

(
sn

s̄ − sn
+ 1 − qn(s)

)
((n))i𝑗

)
est

)
u(t)

=

((
( 0)i𝑗 +

∞∑
n=1

(
sn

0 − sn
+ 1 − qn(0)

)
((n))i𝑗

)
e0t +

∞∑
n=1

sn

sn
((n))i𝑗esnt

)
u(t)

=

(
( 0)i𝑗 +

∞∑
n=1

((n))i𝑗esnt

)
u(t),

where qn(s) ∶= −( s
sn
+ s2

s2
n
+ … + snv

snv
n
), and we have used the fact that sn is real. For t < 0, we close the integral by

an infinite semicircle in the righthand s plane and find that the integral vanishes in this case as there are no poles in
the right hand plane. From Ammari et al,8 under the conditions of (4) are met, then R(x, s) ≤ C𝜈𝛼4||H0||W2,∞(B𝛼) =
C|s|𝜇0𝜎∗𝛼

6||H0||W2,∞(B𝛼), and hence,

(R(x, t))i =
1

2𝜋i ∫
c+i∞

c−i∞

1
s
(R(x, s))iestds = −1

(1
s
(R(x, s))i

)
= 0. (72)

Thus, the result immediately follows.
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Remark 9.2. Theorem 9.1 shows the long-time response of the perturbed field for a step function characterises of an
inhomogeneous object by the  0 tensor, which describes the magnetostatic characteristics of B𝛼 . Similar observa-
tions were found for a conducting permeable sphere by Wait and Spies.18 Despite the issues with the convergence of
Baum's19 for a homogenous object, it leads to a predication that is similar to that obtained in (71) when the correct
form of Mittag-Leffler theorem is used. However, importantly, all terms are now explicitly defined and, under the
conditions of (4), can be computed.

Theorem 9.3. The transient perturbed magnetic field response to B𝛼 with fixed 𝜎* placed in a background field
Himp

0 (x, t) = H0(x)𝛿(t) is

(H𝛼 − Himp
0 )(x, t)i = (D2

xG(x, z))i𝑗(imp(t))𝑗k(H0(z))k +
(

R̃(x, t)
)

i,

(imp(t))𝑗k ∶= ((∞))𝑗k𝛿(t) +
∞∑

n=1
snesnt((n))𝑗ku(t),

where H0(x) is real valued and 𝛿(t) is a delta function associated with an impulse at t = 0, generated by a divergence free
current source of the form Jimp

0 (x, t) = J0(x)𝛿(t) with real valued J0(x). In the above, H𝛼(x, t) is the transient magnetic
interaction field, which satisfies the transient version of (3), sn = −𝜆n∕(𝜇0𝜎*𝛼

2), 𝜆n is an eigenvalue of (38), and ((n))i𝑗
is as defined in (67). If the conditions of the asymptotic formula (4) are met, then R̃(x, t) = 0.

Proof. Applying Wait and Spies,18 we have

(H𝛼 − Himp
0 )(x, t)i =

𝜕

𝜕t
((H𝛼 − Hstep

0 )(x, t)i), (73)

then, since 𝛿(t) = d∕dt(u(t)), it follows that

(H𝛼 − Himp
0 )(x, t)i = (D2

xG(x, z))i𝑗

((
( 0)𝑗k +

∞∑
n=1

esnt((n))𝑗k

)
𝛿(t) +

∞∑
n=1

snesnt((n))𝑗ku(t)

)
× (H0(z))k +

(
R̃(x, t)

)
i.

Considering that the first term in parenthesis is only present at time t = 0, we have, using (67), that

( 0)𝑗k +
∞∑

n=1
((n))𝑗k = ( 0)𝑗k −

𝛼3𝜆n

4

mult (𝜆n)∑
k=1

⟨
𝝓n,k,𝚯(0)(ei)

⟩
L2(B)

⟨
𝝓n,k,𝚯(0)(e𝑗)

⟩
L2(B)

= ( 0)𝑗k −
𝛼3

4

∞∑
n=1

∞∑
m=1

(⟨
𝜇−1

r ∇ × Pn(𝚯(0)(ei)),∇ × Pm(𝚯(0)(e𝑗))
⟩

L2(B)

+
⟨
∇ × Pn(𝚯(0)(ei)),∇ × Pm(𝚯(0)(e𝑗))

⟩
L2(Bc)

)
,

where (50) has been applied. Notice that lim𝜈→∞𝛽n = lim𝜈→∞ − i𝜈
i𝜈−𝜆n

= −1 and, thus, from Lemma 8.2, we have

lim
𝜈→∞

𝚯(1)(u) = −
∞∑

n=1
Pn(𝚯(0)(u)),

and so

( 0)𝑗k +
∞∑

n=1
((n))𝑗k = ( 0)𝑗k −

𝛼3

4
lim
𝜈→∞

(⟨
𝜇−1

r ∇ ×𝚯(1)(e𝑗),∇ ×𝚯(1)(ek)
⟩

L2(B)

+
⟨
∇ ×𝚯(1)(e𝑗),∇ ×𝚯(1)(ek)

⟩
L2(Bc)

)
.
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Still further, 𝚯(1)(u) = 𝚯(u) + 𝚯̃(0)(u), and since 𝚯̃(0)(u) is independent of 𝜈, we have, using Theorem 3.2, and writing
in terms of inner products, that

( 0)𝑗k +
∞∑

n=1
((n))𝑗k = 𝛼3∫B

(
1 − 𝜇−1

r
)
𝛿𝑗kd𝛏 + 𝛼3

4

(⟨
𝜇−1

r ∇ × 𝚯̃(0)(e𝑗),∇ × 𝚯̃(0)(ek)
⟩

L2B)

+
⟨
∇ × 𝚯̃(0)(e𝑗),∇ × 𝚯̃(0)(ek)

⟩
L2(Bc)

)
− 𝛼3

4
lim
𝜈→∞

(⟨
𝜇−1

r ∇ ×𝚯(1)(e𝑗),∇ ×𝚯(1)(ek)
⟩

L2(B)

+
⟨
∇ ×𝚯(1)(e𝑗),∇ ×𝚯(1)(ek)

⟩
L2(Bc)

)
= 𝛼3∫B

(
1 − 𝜇−1

r
)
𝛿𝑗kd𝛏 − 𝛼3

4
lim
𝜈→∞

(⟨
𝜇̃−1

r ∇ ×𝚯(e𝑗),∇ ×𝚯(ek)
⟩

L2(B∪Bc)

+
⟨
𝜇̃−1

r ∇ ×𝚯(e𝑗),∇ × 𝚯̃(0)(ek)
⟩

L2(B∪Bc) +
⟨
𝜇̃−1

r ∇ × 𝚯̃(0)(e𝑗),∇ ×𝚯(ek)
⟩

L2(B∪Bc)

)
,

and since lim𝜈→∞𝚯(u) = −u × 𝛏 in B then

lim
𝜈→∞

⟨
𝜇−1

r ∇ ×𝚯(e𝑗),∇ ×𝚯(ek)
⟩

L2(B) = 4∫B
𝜇−1

r 𝛿𝑗kd𝛏.

We can also show, by integration by parts, that

lim
𝜈→∞

⟨
𝜇̃−1

r ∇ ×𝚯(e𝑗),∇ × 𝚯̃(0)(ek)
⟩

L2(B∪Bc)

= lim
𝜈→∞

(
∫
𝜕B

n− ·𝚯(e𝑗) × 𝜇−1
r ∇ × 𝚯̃(0)(ek)|−d𝛏 + ∫

𝜕B
n+ ·𝚯(e𝑗) × 𝜇−1

r ∇ × 𝚯̃(0)(ek)|+d𝛏
)

= − lim
𝜈→∞∫

𝜕B
𝚯(e𝑗) · [𝜇̃−1

r ∇ × 𝚯̃(0)(ek) × n−]𝜕Bd𝛏 = 2 lim
𝜈→∞∫

𝜕B
[𝜇̃−1

r ]𝜕B𝚯(e𝑗) · ek × n−d𝛏

= 4∫B
(1 − 𝜇−1

r )𝛿𝑗kd𝛏

and similarly obtain

lim
𝜈→∞

⟨
𝜇̃−1

r ∇ × 𝚯̃(0)(e𝑗),∇ ×𝚯(ek)
⟩

L2(B∪Bc) = lim
𝜈→∞

⟨
𝜇̃−1

r ∇ ×𝚯(ek),∇ × 𝚯̃(0)(e𝑗)
⟩

L2(B∪Bc)

= lim
𝜈→∞

(
∫
𝜕B

n− ·𝚯(ek) × 𝜇−1
r ∇ × 𝚯̃(0)(e𝑗)|−d𝛏 + ∫

𝜕B
n+ ·𝚯(ek) × 𝜇−1

r ∇ × 𝚯̃(0)(e𝑗)|+d𝛏
)

= − lim
𝜈→∞∫

𝜕B
𝚯(ek) · [𝜇̃−1

r ∇ × 𝚯̃(0)(e𝑗) × n−]𝜕Bd𝛏 = 2 lim
𝜈→∞∫

𝜕B
[𝜇̃−1

r ]𝜕B𝚯(ek) · e𝑗 × n−d𝛏

= 4∫B
(1 − 𝜇−1

r )𝛿𝑗kd𝛏.

Thus, we finally obtain that

( 0)𝑗k +
∞∑

n=1
((n))𝑗k = −𝛼3∫B

𝛿𝑗kd𝛏 − 𝛼3

4
⟨
∇ ×𝚯(∞)(e𝑗),∇ ×𝚯(∞)(ek)

⟩
L2(Bc) = ((∞))𝑗k, (74)

where we used lim𝜈→∞𝚯(u) = 𝚯(∞)(u), which satisfies the transmission problem (19).

Remark 9.4. Theorem 9.3 shows that the short-time response of the perturbed field for an impulse function char-
acterises an inhomogeneous object by the coefficients of the (∞) tensor, which describes a perfectly conducting
object B𝛼 . Similar observations were found for a conducting permeable sphere by Wait and Spies.18 This also confirms
Baum's19 predication for homogeneous conducting objects and makes explicit all of the terms if the conditions of the
asymptotic formula (4) are met.
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Remark 9.5. Theorems 9.1 and 9.3 rely on the conditions of the asymptotic formula (4) in order for R(x, t) and R̃(x, t)
to vanish. In general, when these conditions are not met, we do not have estimates of R(x, t) and R̃(x, t). Quantifying
their behaviour for more general circumstances will form part of our future work.
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