No Cover Image

Journal article 44 views

NanoRefinery of carbonaceous nanomaterials: Complementing dairy manure gasification and their applications in cellular imaging and heavy metal sensing / J. Plácido; S. Bustamante-López; K.E. Meissner; D.E. Kelly; S.L. Kelly

Science of The Total Environment, Volume: 689, Pages: 10 - 20

Swansea University Author: Kelly, Steven

  • Accepted Manuscript under embargo until: 25th June 2020

Abstract

This article describes an efficient method, combining chemical oxidation and acetone extraction, to produce carbonaceous nanomaterials from dairy manure biochar. The optical and mechanical properties are similar to methods previously reported carbonaceous nanomaterials from biomass. Our novel proces...

Full description

Published in: Science of The Total Environment
ISSN: 00489697
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa50979
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: This article describes an efficient method, combining chemical oxidation and acetone extraction, to produce carbonaceous nanomaterials from dairy manure biochar. The optical and mechanical properties are similar to methods previously reported carbonaceous nanomaterials from biomass. Our novel process cuts the processing time in half and drastically reduces the energy input required. The acetone extraction produced 10 fractions with dairy manure biochar-derived carbonaceous nanomaterials (DMB–CNs). The fraction with the carbonaceous nanomaterials, DMB–CN-E1, with highest fluorescence was selected for in-depth characterisation and for initial testing across a range of applications. DMB–CN-E1 was characterised using atomic force microscope, electrophoresis, and spectrophotometric methods. DMB–CN-E1 exhibited a lateral dimension between 11 and 28 nm, a negative charge, and excitation/emission maxima at 337/410 nm, respectively. The bioimaging potential of DMB–CN-E1 evidenced different locations and different interactions with the cellular models evaluated. DMB–CN-E1 was quenched by several heavy metal ions showing a future application of these materials in heavy metal ion detection and/or removal. The demonstrated capabilities in bioimaging and environmental sensing create the opportunity for generating added-value nanomaterials (NanoRefinery) from dairy manure biochar gasification and, thus, increasing the economic viability of gasification plants.
Keywords: Carbonaceous nanomaterials Dairy manure biochar Chemical depolymerisation Cell imaging Heavy metal ions sensors Gasification
College: Swansea University Medical School
Start Page: 10
End Page: 20