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Abstract: Type 1 diabetes (T1D) is associated with a greater occurrence of cardiovascular pathologies.
Vascular dysfunction has been shown at the level of the endothelial layers and failure to maintain a
continuous pool of circulating nitric oxide (NO) has been implicated in the progression of poor vascular
health. Biochemically, NO can be produced via two distinct yet inter-related pathways that involve
an upregulation in the enzymatic activity of nitric oxide synthase (NOS). These pathways can be split
into an endogenous oxygen-dependent pathway i.e., the catabolism of the amino acid L-arginine to
L-citrulline concurrently yielding NO in the process, and an exogenous oxygen-independent one i.e.,
the conversion of exogenous inorganic nitrate to nitrite and subsequently NO in a stepwise fashion.
Although a body of research has explored the vascular responses to exercise and/or compounds
known to stimulate NOS and subsequently NO production, there is little research applying these
findings to individuals with T1D, for whom preventative strategies that alleviate or at least temper
vascular pathologies are critical foci for long-term risk mitigation. This review addresses the proposed
mechanisms responsible for vascular dysfunction, before exploring the potential mechanisms by
which exercise, and two supplementary NO donors may provide vascular benefits in T1D.

Keywords: type 1 diabetes; cardiovascular disease; nitric oxide; endothelial dysfunction;
dietary nitrates

1. Introduction

Type 1 diabetes (T1D) is an autoimmune disease characterised by the progressive depletion and
destruction of pancreatic 3-cells accompanied with impaired glucagon-producing «-cell function.
The resulting deficiency in endogenous insulin secretion manifests in chronic hyperglycemia with
the sequential need for a lifelong reliance on exogenous insulin therapy [1]. For individuals with
T1D, cardiovascular disease (CVD) is a major cause of mortality and constitutes a major area of
pharmacological and clinical research [2-7]. The term ‘CVD’ refers to an array of singularly distressing
diseases that affect the micro-vascular and macro-vascular systems. Although the pathogenesis of
these complications is multidimensional, the common recipient of injury is the vascular endothelium.
This is a monolayer of cells that line the inner surface of the blood vessels. The single, adjacent
formation of the endothelial cells (ECs) enables a tight confluent structure, which constitutes an
interface between circulating blood and lymph in the lumen and the rest of the vessel wall. For
many decades, the structural characteristic of the ECs meant the endothelium was viewed simply as a
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semipermeable barrier between blood and interstitial fluid, which facilitated the exchange of water
and small molecules. However, more contemporary views highlight a mediatory role in an extensive
range of vital homeostatic functions. Occupying a strategically important location between circulating
blood and the surrounding tissues, the endothelium modulates the tone of the underlying vascular
smooth muscle, maintains a non-adhesive luminal surface, mediates homeostasis, evokes cellular
proliferation, and modulates inflammatory and immune mechanisms within the vascular wall [8].
Moreover, there is increasing evidence suggesting that neovascularization and vasculogenesis are
products of increased proliferation of bone marrow—derived circulating 1 progenitor cells (cPCs) [9],
which are reduced in people with T1D [10-12]. Endogenously, cPCs are upregulated in response to
conditions of hypoxia, heat, stress, trauma, and altered energy status. Collectively, these conditions
characterize the physiological responses to both exercise and nutrient intake, which can considerably
alter bioenergetics.

EC activity can be dramatically altered in response to various physiological and pathophysiological
stimuli. ECs that are actively undergoing proliferation exhibit phenotypical alterations in both their
function and shape. Junctional structures contribute to the ‘resting’ phenotype by transducing signals
within the cells and changing gene expression. For example, when the ECs are confluent, they express
an epithelioid phenotype that inhibits growth and mobility [13]. The tight contact between each EC
provides a form of protection against apoptosis. However, sparse cells, which lack cell-cell junctions,
are unable to transduce such signals, which results in fibroblastic morphology, active growth, and
cell mobility. The process is a tightly regulated balance between the intermediates that induce cell
damage i.e., pro-constrictive, pro-inflammatory, pro-thrombotic, and pro-hypertensive factors and the
intermediates that support cell vitality i.e., pro-relaxation, anti-inflammatory, anti-thrombotic, and
anti-hypertensive factors. Disturbances to this fine-tuned equilibrium lead to “endothelial dysfunction”
(ED), which describes an overexposure of the ECs to repeated insults that compromise the integrity of
the vessel wall [14].

Critically, the early manifestation of ED precedes intimal thickening and clinical atherosclerosis
by decades. As such, the early presentation of ED not only increases the relative risk for a subsequent
cardiovascular event but also constitutes a biological barometer for cardiovascular function. This
is important considering the elevated risk of primary CVD in people with-versus without-T1D
across the lifespan [15]. Taken collectively, the accelerated degree to which diabetes propagates
atherosclerotic tendencies emphasises the need to target risk in its infancy before progression has
reached an irreversible stage.

Research has emphasized the significance of nitric oxide (NO) bioavailability in the pathogenesis
of ED and subsequent atherosclerosis [16,17]. Of particular interest are the vasodilatory effects of NO,
which control the distensibility, compliance, and elastic modulus of the arterial-vascular system [18].

The compliance of the arterial networks can be accessed via flow mediated dilation (FMD),
which detects changes in brachial artery diameter before and after ischemic stress induced by
sphygmomanometer cuff inflation [1]. As an intimate reflection of NO bioavailability, a delayed
or non-existent FMD response correlates with the extent of angiographically detectable vascular
disorders [2] and the subsequent manifestation of cardiovascular events [3]. A reduced FMD response
has been reported in those with-versus-without T1D and this phenomenon appears to present as early
as childhood [4].

Therefore, maintaining a continuous pool of circulating NO becomes an increasingly important
requirement in pathological circumstances characterised by low arterial compliance. Accordingly,
interventions aimed at augmenting nitric oxide synthesis (NOS) via increases in enzymatic gene
transcription, mRNA stability, and protein translation have generated interest within the literature.
Furthermore, considering the identification of metabolic abnormalities in ED, the bioenergetic potential
of acute and regular exercise alongside the contributory roles of macro-nutrient and micronutrient
status should not be overlooked. As such, dietetic and nutritional interventions gated toward enhancing
NOS constitute potential therapeutic options for promoting vascular health.
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In this article, we first outline the hypothesized pathological basis of ED in T1D, before exploring
existing literature that outlines the potential role of physical exercise and two dietary supplements
acting as NO donors in preventing and/or managing vascular related complications.

2. Nitric Oxide Synthesis and Biochemical Formation in The Vascular Endothelium

NO is a soluble gaseous signaling molecule formed in the vascular endothelium. Its formation
is dependent on the NOS enzymes, which is a group of polypeptide proteins that consist of three
genes including neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), and
endothelial nitric oxide synthase (eNOS) [18]. NOS activity is regulated at transcriptional, translational,
and post-translational levels, which differ depending on several genetic and environmental cues [18].

Both nNOS and eNOS are Calcium- Calmodulin (Ca?*- CaM) dependent enzymes while iNOS
can operate independently of Ca* [19]. In order for the NOS proteins to actively synthesise NO,
the two separate NOS enzymes must dimerise to produce a homodimer. The substrate for NOS
enzymes is the amino acid L-arginine, which undergoes catabolism to L-citrulline concurrently
producing NO in the process [18]. The first step involves the conversion of L-arginine into the molecule
N-hydroxy-arginine via the reduction of nicotinamide adenine dinucleotide phosphate (NAPDH) to
NADP*. The second step involves the addition of another NADPH molecule, which binds to the
NADPH within the reductase domain. Lastly, the conversion of L-arginine into L-citrulline requires
the addition of a half-reduced molecule of NADPH and an O, molecule. During the cleaving process
of N-hydroxy-arginine, the nitrogen atom is double bound to one of the oxygen (O,) molecules to
create NO. The remaining O, molecule along with the remaining hydrogen atoms are combined to
create HyO (Figure 1).

L-arginine N-hydroxy l-arginine L-citrulline
NH N-OH 0
H N/\N/\/\/\ OH —N C -NH, H, N/\N/\/\‘/\ OH
H NH,
NADPH NADP* NADPH NADP* B
¥ eqiuv ¥ eqiuv

Figure 1. Biochemical formation of nitric oxide in the endothelium. NADPH = Nicotinamide
adenine dinucleotide binding domain. NO = nitric oxide. O, = Oxygen. Equiv = Equivalent.
H = hydrogen. C = Carbon. N= Nitrogen. Modified from McAllister & Laughlin 2006 [5]. ‘Vascular
nitric oxide: effects of physical activity, importance for health’. Essays Biochemistry vol 42. Figure 2.
https://www.ncbi.nlm.nih.gov/pubmed/17144884.

The synthesised NO diffuses into circulating platelets and the smooth muscle cell layer where
it activates guanylate cyclase (GCA) and then cyclic GMP (cGMP). The presence of cGMP initiates
vascular relaxation and minimises platelet aggregation to provide equilibrium of pro-thrombotic and
anti-thrombotic factors [20]. Collectively, this process is termed ‘endothelial-dependent vasodilation’
(EDV). However, while this endogenously regulated pathway is the most recognized for NO production,
an alternative O,-independent pathway has been identified, during which conversion of inorganic
nitrate (NO37) to nitrite (NO, ™) and then to NO occurs in a stepwise fashion (Figure 2). Following
exogenous ingestion, NO3™ is sequentially taken up by the salivary glands before being reduced
to NO,~ by oral commensal bacteria. The NO,~ in swallowed saliva is then internally absorbed
and, once within the system, circulation is further reduced to NO by metalloproteins (haemoglobin
and deoxyhaemoglobin), enzymes (xanthine oxidoreductase), and compounds with redox potential
(polyphenols) [21,22]. Notably, the reductive process of NO,™ to NO is stimulated by low PO, and pH,
which perhaps emphasises the compensatory potential of the NOs ™~ reduction pathway in pathological
complications that effect the efficiency of NOS activity including T1D.
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NO; — NO,” — NO,” + NO — NO
N N N

Salivary bacteria Gastric absorption and Low O; and pH
producing NO;™ reductase processing

Figure 2. Exogenously regulated NO production pathway that involves the stepwise conversion of
inorganic nitrate to nitrite and subsequently nitric oxide. NO3;~ = inorganic nitrate. NO,~ = nitrite.
NO = nitric oxide. O, = Oxygen.

3. Potential Pathogenic Mediators of Endothelial Damage in Type 1 Diabetes

By virtue of its position i.e., the interface between moving blood and tissue, the endothelium
is exposed to a substantial amount of both biomechanical and biochemical stimuli. Pertinent to
physical exercise, the biomechanical stimuli include wall shear stresses (tractive forces generated at the
luminal endothelial interface by blood flow), pressures (hydrostatic forces that act perpendicular to
the endothelial interface), and cyclic strains (circumferential stretching of endothelium cells within
the vessel wall as a consequence of pulsatile blood flow) [23]. The biochemical stimuli include
hyperglycemia, hyperlipidemia, and insulin resistance [14]. These stimuli can have both adaptive and
maladaptive consequences and may dictate the overall phenotypic response of the ECs.

3.1. Abnormal NO Production

While not fully understood, the hypothesized mechanisms responsible for the increased prevalence
of ED in T1D is believed to cause EC apoptosis, NAPDH oxidase activation, eNOS uncoupling, and loss
of NO bioavailability [24]. Paradoxically, research has shown a reduction in the suppressing activity
of the NOS inhibitor asymmetric-dimethyl-L-arginine (ADMA) in people with short duration and
uncomplicated T1D [25]. Mechanistically, the authors proposed that increased hyperglycemia-induced
NOS by iNOS, along with a reduced inhibition of iNOS activity may lead to an over-production
of NO [25]. Earlier work by the same group reported hypouricemia in people with T1D, which
they hypothesized as another potential mechanism for the observed over production of NO [6].
While uric acid has both direct and indirect antioxidant properties, the latter phenotype acts by
promoting superoxide dismutase activity. When the superoxide is overproduced together with NO,
the resultant peroxynitrite subsequently oxidizes tetrahydrobiopterin, an iNOS, and eNOS co-factor,
into hydrobiopterin. Under this condition, the iNOS and eNOS enzymes are in an uncoupled state.
Thus, the increased serum uric acid may be a sign of ED, which is secondary to diminished vascular
NO activity and the consequential lack of xanthine oxidase inhibition [26]. In a complete contract to
its sister isoforms, the expression of iNOS is absent in regulatory physiology [7] and, yet, becomes
apparent in conditions of pathophysiological inflammation [8,9]. Unsurprisingly, iNOS has been
referred to as a contributary mediator of vascular distress [10,11] and may help explain the elevated
rates of ED in those with T1D.

3.2. Hyperglycaemia

Hyperglycemia is a feature of T1D and plays a major role in the susceptibility of vascular
complications [27]. Biochemically, hyperglycemia enhances the activity of the four main gluco-mediated
pathways, which are the polyol pathway [28,29], the hexosamine pathway [30], the formation of
advanced glycation end-products (AGEs) [31], and the activation of protein kinase C (PKC) [32,33] where
each orchestrate changes at the endothelial level. First, in the presence of high glucose, aldose reductase
reduces glucose to sorbitol and, subsequently, fructose within the polyol-pathway. During this process,
the aldose reductase concurrently consumes NADPH, which, thereby, increases the susceptibility of the
cell to oxidative stress [29]. Second, the increased activation of the hexosamine pathway may be linked
to a loss of insulin-mediated capillary recruitment via increases in glucosamine-6-phosphate. Notably,
this results in the accumulation of ID-acetylglucosamine and, subsequently, O-linked glycosylation
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(O-GleNAc). Experimentally, O-GlcNAc has been shown to modify eNOS activity in T1D, such that
the enzyme is rendered incapable of activation by fluid shear stress stimuli and vascular endothelial
growth factor signaling [30]. Third, AGEs quench NO and impair the extracellular matrix and tissue
remodeling [31], while glucose-induced changes in PKC isoform activity have been shown to reduce
NO production [33].

At the cellular level, the ECs are particularly susceptible to hyperglycemia [34], which is believed
to account for the observed impairments of vascular repair processes via augmented phosphorylation
of eNOS and NO production [24]. In response to damage or injury, there is an upregulation in the
release of ECs from the bone marrow niche, which respond by proliferating, migrating, and honing to
the ischemic or damaged tissue. This process of repair and rejuvenation is largely based on a group of
cPCs that have been shown to initiate vascular repair and regeneration [9]. Not surprisingly, several
progenitor cell populations including circulating endothelial progenitor cells (cEPCs), mesenchymal
stromal/stem cells (MSCs), and resident cardiac progenitor cells (CPCs) have stimulated interest
as therapeutic targets in vascular pathologies [35]. The number and functionality of cPCs appear
to be reduced in clinical T1D [10-12,36] which also manifests as a blunted cEPC response to acute
exercise [37,38]. This blunted phenotype suggests that mobilization failure precedes the reduction
of proangiogenic cell activity, which accelerates the likelihood of vascular distress. However, the
combination of intensive insulin therapy alongside glucagon-like peptide-1 (GLP-1) as a means to
optimize glycemia has been shown to restore endothelial function in people with T1D [39,40].

Moreover, coincubation with the NO donor sodium nitroprusside (SNP) or p38 mitogen-activated
protein kinase (MAPK) inhibitor SB230580 have previously been shown to significantly ameliorate
the inhibitory effect of hyperglycemia on the EPC number and proliferation (for early and late EPCs,
respectively) [24]. However, coincubation with the NOS inhibitor 1-Ng-nitro-l-arginine methyl ester
(I-NAME) or PI3K inhibitor LY294002 has been shown to enhance the inhibitory effect of high glucose
on the EPC number and proliferation [24].

Taken collectively, these data indicate that hyperglycemia may downregulate vascular repair
mechanisms, and that the introduction of certain NO donors may inhibit or alleviate the
magnitude of this response. Notwithstanding the mechanistic basis of these findings, research
has consistently demonstrated that improvements in glycemic control translate into improvements in
both clinical [41-43] and subclinical [44] biomarkers of CVD in individuals with T1D.

4. The Energetic and Therapeutic Potential of Exercise-Induced Nitric Oxide Synthase

With the onset of physical exercise, Ca?* travels into the cytoplasmic portion of the skeletal muscle
cell, where it can transform chemical energy into mechanical work through the cyclic interaction
between actin and myosin filaments [45]. During exercise, cytosolic and mitochondrial Ca* levels
increase exponentially alongside intensity dependent changes in metabolic contributions [46,47]. These
extracellular signals facilitate the interaction of the NOS enzymes with CaM to ultimately generate
NO [18]. The importance of NO in modulating skeletal muscle function is strongly inferred by the
presence of all three NOS isoforms in mammalian myocytes [18]. Skeletal muscle functions regulated
by NO include contractility, autoregulation of blood flow, nutrient exchange, and mitochondrial
respiration [18]. Although all isoforms are transcriptionally regulated by hypoxia, the eNOS isoform
found in vascular and skeletal muscle cells is upregulated in response to physical exercise mediated
via both biomechanical (hyperemia) and biochemical (metabolic and extracellular) processes [18].
The involvement of NO in mediating the autoregulation of blood flow during the excitation -
contraction process, hypoxia, and the reflex sympathetic discharge experienced in resting and exercising
skeletal muscle highlights its significance in determining the microvascular responses to exercise [18].
The co-operative intimacy between skeletal muscle and its surrounding vasculature is made clear
by the proximity through which muscle fibers and capillaries are found [32]. The rate of tissue
perfusion is dependent on the expansion of the arteriole lumen, which dictates the amount of blood
perfused into the capillary networks for subsequent venous return. The elastic potential of the large
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vessels within the arterial system produce pressure forces that facilitate the movement of oxygenated
blood into the smaller vessels via elastic recoil [48]. This mechanism pushes the blood into the
arterioles and subsequently the capillary system, which characterizes a network of small tubular
structures that facilitate nutrient exchange. During exercise, there is an increased need for O, by the
peripheral musculature, which is physiologically met by the sudden rise in arterial blood flow [48].
Concurrently, there is an acute increase in intraluminal shear forces that induce EDV in order to
facilitate nutrient exchange and local muscle capillary-and-arterial vasodilatation [49]. Structurally,
muscle microvasculature is the final interface through which circulating nutrients, hormones, gases,
and electrolytes must pass in journeying to and from the systemic circulation [50]. Markedly, a
decrease in capillary density also effects the spatial pattern of flow within the microvascular beds,
which propagates non-uniformity in the distribution of vessel flow and, therefore, tissue nutrient
exchange [32].

With this in mind, microvascular dysfunction, in particular rarefaction, may have consequences
for skeletal muscle perfusion during exercise, due to diminished nutrient delivery to the contracting
myocytes [32]. Supporting this concept, research has shown impaired peak and submaximal
physiological parameters during cardiopulmonary exercise testing in individuals with T1D [44,51,52].
These dysfunctional mechanisms correlate with low flow mediated dilatation of the brachial artery
and a blunted response to hyperemia if retinopathy is present, which highlights the downstream
complications associated with vascular dysfunction [53]. It should be noted that the attainment
of good glycaemic control, that is a HbA; of at least < 7% (53 mmol/mol), appeared to offset this
observation [54]. Yet, only 27% of adults with T1D are currently achieving this glycemic target [55].
Perhaps more worryingly, several studies have demonstrated suboptimal glycemic control in pediatric
and adolescent T1D cohorts across various nationalities [56-58], which may further exacerbate vascular
disease susceptibility [59]. The fact that the initiation of CVD precedes the manifestation of clinically
recognized biomarkers, such that atherosclerotic tendencies appear as early as childhood irrespective
of diabetes [60], combined with the increase in T1D diagnosis in adolescents within the last decade [61],
emphasizes the need to target risk in its infancy. Considering the intimate link between T1D and
microvascular dysfunction [5], the potency of physical exercise to increase skeletal muscle fiber
capillarisation and facilitate efficient gas and nutrient exchange, should lessen the likelihood of
vascular distress.

During the last decade, several research groups have demonstrated that both acute and chronic
exercise training has the potency to initiate vascular repair via mechanisms of re-endothelization [62-67].
Thus far, research has demonstrated a blunted cEPC response to physical exercise in people with T1D,
which reflects the above hypotheses regarding maladaptation’s at the microvascular level. However, it
should be noted that, in these instances, the importance of global conditioning has been somewhat
neglected, since the exercise programming has consisted of either exclusively moderate-intensity
continuous exercise [38] and/or submaximal, hypertrophic lower limb resistance exercise [37]. Rather,
it seems that ischemic, exhaustive exercise appears to be the most potent stimuli for increasing
stem/progenitor cell activity within the bone marrow [68,69] and peripheral blood [69-71] albeit it
in non-T1D cohorts. Supporting these insights, recent work by Boff and colleagues highlighted the
superior effects of high intensity interval training versus moderate continuous exercise training on
flow mediated endothelial function and cardiorespiratory fitness (CRF) in complication-free people
with T1D [72].

Biochemically, intense exercise constitutes a metabolic insult, which causes considerable
disturbances in various cellular and systematic tissue level processes. These metabolic disturbances
activate several kinases and phosphatases, which are necessary not only for the immediate supply of
energy to sustain contractional output, but also the synthesis of genetic transcriptions, that produce
an adaptive phenotype for subsequent functional demands [32]. Intense exercise protocols have
been shown to augment the production and release of several vascular repair-and-pro-angiogenic
factors [64,73-75]. These processes are mediated via an upregulation in several intracellular signaling
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cascades including both the phosphatidyl inositol 3-kinase (PI3K) and AMP-activated protein kinase
(AMPK) pathways [46,76], which further enhance glucose uptake and glycogen synthesis [77]. Recent
research has identified a unique gene expression profile in the T1D heart and kidney ECs, which present
opposite metabolic cues and distinct angiogenic patterns. The findings revealed an upregulation in
several genes that inhibit angiogenic, tissue remodeling, and cell differentiation processes as well as
an overexpression of AMPK-associated genes implicated in catabolism in renal ECs coupled with a
downregulation of these same genes in heart ECs [78]. The discovery that NOS is also a downstream
target of AMPK in heart cells raises the possibility that NO could reinforce the intracellular activity
of this enzyme via an auto-stimulatory loop [77] as well as highlights the therapeutic potential of a
mediator of AMPK activity. These data suggest that, in pathologies during which there is an alteration
in metabolic proficiency, supplementary NO donors alongside exercise may represent a compelling
solution to the often-blunted responses experienced, possibly by means of offering a supplementary
‘boost’” in the functionality of comprised physiological processes. Despite these insights, the realms of
both appropriately designed exercise programs combined with potential ergogenic and vasodilatory
supplements remains relatively unexplored in individuals with T1D, who may stand to benefit most
from interventions that acutely enhance vascular performance.

5. Potential Therapeutic Mediators of Endothelial Vitality in Type 1 Diabetes

The complexity of ED within T1D requires a multimodal approach that involves standardized care
alongside reference to modifications in behavioral and environmental factors. In hypoxic conditions,
when the O,-dependent NO synthases may become dysfunctional, the nitrite reduction process is
instead greatly enhanced. As such, the utility of nitrate and nitrite as storage pools supporting NO
signaling during metabolic stress is of interest [21]. With new gene-based research having identified
distinct metabolic and angiogenic patterns in T1D ECs, the role of nutrient status in controlling
the activity of various metabolic pathways is noteworthy. Certainly, research orientated around the
exploration of nutrient-gene interaction and expression has attracted more attention, with nutrigenomics
gaining more momentum in the scientific community. As such, dietary and/or exercise practices that
may enhance NO constitute potential therapeutic options that warrant further exploration.

5.1. NO Donor 1: Dietary Nitrate

Experimentally, it has been demonstrated that plasma NO, ™ mirrors acute changes in eNOS activity,
such that low circulating levels correlate with the number of CVD risk factors [79,80] Unsurprisingly,
NO;™ has been identified as an important mediator of several cardiovascular-based functions.

This provides a rationale to intervene with substances rich in NO3~ (with the sequential increase
in circulating NO, ™) as a potential means of modulating endothelial health and CVD susceptibility.
Beetroot juice (BR]) is one of the richest dietary sources of NO3™ noted for its high degree of
intestinal bioavailability [81]. Beetroot (Beta vulgaris) is classified as an herbaceous biennial from the
chenopodiaceous family that has several varieties made distinctive by differences in their taste and
taproot color [82]. The deep red colored beetroots contain several active compounds (carotenoids,
glycine betaine, saponins, betacyanin’s, folates, betanin, polyphenols, and flavonoids) [82], which
account for its micronutrient profile. Notably, these chemical compounds appear to assist in elevating
circulating levels of NO, ™ and, therefore, harness the potential to improve vascular compliance [83-85]
Recently, a large collection of literature has demonstrated the efficacy of BR] in elevating levels of plasma
NO;~ (and, therefore, the potential for O, independent NO production) to increase skeletal muscle blood
flow, slow the reduction in microvascular O, partial pressure (PO;), reduce O, uptake (VO,) [86-88],
lower exercise mean arterial oxygen saturation (Sa O,) [89], and improve cognitive performance during
exercise [87,90]. Moreover, these performance enhancing effects have been observed across multiple
exercise disciplines (water sports [89,91,92], running [86,90,93], cycling [87], and strength-based
activities [94,95] performed at varying intensities (high [86,90,91,93], moderate [88,92], and low [89,95])
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and within several contrasting environments (below sea level [89], hyper-thermic conditions [96], and
altitude [88]).

Despite these findings, research has so far failed to identify any improvements in either blood
pressure or exercise performance outcomes following four days dosing of BR] (6.43 mmol-L~! NO3~)
in people with T1D. Moreover, while a post-exercise improvement in peripheral indices of vascular
function was noted, this did not translate to elevations in cellular indices of vascular function,
since a blunted EPC response was observed [37]. However, it should be noted that the exercise
protocols used have somewhat neglected the implementation of global conditioning (i.e., the practice
of simultaneously engaging a large amount of muscle mass in both the upper and lower body segments
to induce substantial tissue and metabolic disturbance), which appears to be a critical component in
provoking a response [64]. Physiologically, it is proposed that conditions of cellular hypoxia stimulate
erythrocyte-derived NO-mediated vascular relaxation, which serves to match skeletal muscle oxidative
capacity (Q.0O,) to a local metabolic rate, while high PO, triggers vasoconstriction [97].

Reduced O, levels in skeletal muscle during intense exercise mandate the utilization of
non-oxidative fuel metabolism that contributes to conditions of hypoxia. Recent research has supported
these concepts, which shows a higher degree of PO, in muscle comprised of fast twitch rather than slow
twitch fibers following NO3;~ supplementation. These findings corroborate the hypothesis that the
physiological environment extant in these muscles (i.e., lower pH and higher lactate) appears favorable
for the reduction of NO, ™ to NO [98]. Furthermore, it is postulated that the activity of the NOS family of
enzymes may be reduced under such conditions. Reference [21] allows the NO3"NO,™-NO pathway to
serve as a backup system in the local regulation of NO bioavailability when the endogenous L-arginine
pathway is dysfunctional [21,99]. Dietary NO3~ supplementation also abolishes the reduction in the
rate of pH-independent phosphocreatine (PCr) recovery, which is typically observed in hypoxia and
restores maximal oxidative capacity (Q.max) to values similar to those observed in normoxia [97]. A
significantly lower muscle pH at rest and at the end of exercise has been observed in people with T1D,
which indicates a greater reliance on glycolytic metabolism [100]. Moreover, a significantly slower
PCr recovery time has been noted in adolescence with-versus-without T1D, which suggests a reduced
skeletal muscle oxidative profile with an impaired recovery capacity [101].

Taken collectively, these data suggest that, during hypoxia, dietary NO3~ supplementation may
facilitate NO production and enable greater muscle oxygenation [97], which offsets the possible
manifestation of hypoxia induced muscle fatigue (which is exacerbated in those with T1D [102]).
Furthermore, the implementation of whole-body exercises that require the simultaneous recruitment
of large amounts of skeletal muscle in both the upper and lower body segments also appear to benefit
most from NO;~ supplementation. During whole body exercise in hypoxia, NO3;™ supplementation
has been shown to reduce the O, cost of submaximal exercise [103,104] as well as elevate muscle
oxygenation [104]. Critically, research has demonstrated abnormal peripheral skeletal muscle perfusion
both at rest and after ischemia in individuals with T1D, which also appears to correlate with impaired
endothelial function and reactive hyperemia when retinopathy is present [32]. During exercise, this
under perfusion (which potentially effects both the skeletal and cardiac muscle tissues) may lead to peak
performance limitations especially considering the lowered nutrient delivery capabilities associated
with hyperglycemia-induced hexosamine activity. Several studies have created an upregulation in NO
by means of the supplementary inorganic NO,~, which appears to have positive exercise tolerance
outcomes in subjects with and without vascular dysfunction [105]. Considering the strong inverse and
independent association between acute non-fatal CV events and cardio-respiratory fitness (CRF), the
ergogenic potential of BR] has important health and performance related outcomes.

5.2. NO Donor 2: Citrulline Malate

L-citrulline is one of the three amino acids involved in the urea cycle (alongside L-arginine and
L-ornithine). The cycle is divided into two main parts including a chemical part that occurs within
hepatocytes and operates to form urea from ammonia (NH3), and a mechanical part that occurs
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within the kidneys and operates as a filtration system with the potential to synthesize NOS. Amino
acids undergo deamination (the removal of ammonium [NH4]) and form keto-acids, which undergo
decarboxylation i.e., the liberation of carbon dioxide (CO;) and produce adenosine triphosphate
(ATP). The NH,4 ™ is then transported into the hepatocyte mitochondria concurrent with the entry of
carbon dioxide (CO;,) produced via bicarbonate (HCO3~) [106]. Upon their entry, NH;* and CO,
are acted on by the enzyme carbamoyl phosphate synthetase one (CPS1). CPS is synthesised via
N-acetylglutamate, which is produced by Acetyl-CoA plus glutamate via the enzyme N-acetylglutamate
synthase. The N-acetylglutamate synthase enzyme is regulated by the presence of arginine, which
emphasises the importance of substrates like L-citrulline that facilitate an upregulation in circulating
concentrations of L-arginine [106]. Research has demonstrated that the availability of L-citrulline
facilitates the clearance of ammonium, which is an upstream mediator of glycolysis and inhibitor
of oxidative metabolism that contributes to excessive lactate formation [107]. While ureagenesis is
responsible for a small percentage of L-citrulline synthesis, the majority of circulating citrulline is
converted to L-arginine via the hydroxy-L-arginine and NOS pathway described previously.

While supplemental arginine can be employed to enhance intracellular arginine/ADMA ratios,
L-arginine treatment is retarded by intestinal arginase activity, which results in considerable
pre-systemic elimination [108]. Paradoxically, although endogenous L-arginine is the direct precursor
of NO production, L-citrulline supplementation has been shown to raise circulating L-arginine
concentrations to a greater extent than L-arginine supplementation during endotoxemia and
mitochondprial dysfunction [109-111]. As such, oral supplementation with L-citrulline may appear to
be a preferred choice in pathologies associated with elevated levels of inflammation [111,112].

In a diabetic nephropathy-induced rodent model, researchers found that L-citrulline but not
L-arginine was effective in preventing pathologically-induced increases in the glomerular filtration
rate and proteinuria [113]. More recently, the chronic co-administration of L-citrulline and sepiaterin (a
biosynthetic precursor of tetrahydrobiopterin i.e., an important co-factor of eNOS coupling [114]), had
a favorable impact on the evolution of diabetic cardiomyopathy and myocardial ischemia/reperfusion
injury in obese diabetic mice [115]. Additional work has demonstrated the efficacy of L-citrulline
supplementation in improving indices of endothelial function from ADMA-induced injury [116,117].
Moreover, improvements in the right ventricle function in heart failure patients with preserved
ejection fraction have been noted following supplementary L-citrulline [118]. Pooled analysis has
also highlighted the anti-hypertensive properties of L-citrulline, which were most apparent at doses
of >6 grams per day [119]. However, it should be noted that these vascular improvements are not
ambiguous within the literature, with some research failing to identify flow mediated improvements
with acute and short-term L-citrulline administration [120,121].

Malate is one of the eight intermediates of the citric acid cycle (CAC) alongside citrate, iso-citrate,
alpha-ketoglutarate, succinate, succinyl-CoA, fumarate, and oxaloacetate. The intermediates operate
in a cyclic sequence, which is why an addition of any one intermediate to the cycle has an anaplerotic
effect, while its removal has a cataplerotic effect. During each cycle, these anaplerotic and cataplerotic
reactions operates to remove electrons from acetyl CoA for the formation of Nicotinamide adenine
dinucleotide (NADH) and flavin adenine dinucleotide (FADH,). The re-oxidation of these electrons
during oxidative phosphorylation enter the electron transport chain where they are used to generate
ATP. Thus, as one of the gluconeogenic intermediates produced by the CAC, malate also plays an
integral role in the process of gluconeogenesis by facilitating the reduction of pyruvate to oxaloacetate
within the mitochondria. Pyruvate must first be translocated into the mitochondria where it can be
acted on by pyruvate carboxylase in the presence of acetyl CoA and Biotin (Vitamin. B7) to form
oxaloacetate. However, the oxaloacetate is incapable of transporting out of the mitochondria matrix.
Therefore, it must first be reduced to form malate, which can transverse the mitochondrial matrix
via the malate aspart shuttle. Once converted to malate, the malate aspartate shuttle enables its
navigation across the anti-porter transport system housed on the inner membrane of the mitochondria
matrix and into the cytosol in exchange of an « keto-glutamate molecule. After its deportation
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from the mitochondrion, malate is converted into cytosolic oxaloacetate, which is decarboxylated to
phosphoenolpyruvate by phosphoenolpyruvate carboxykinase (Figure 3). This constitutes the rate
limiting step in the conversion of nearly all the gluconeogenic precursors (such as the glucogenic
amino acids and lactate) into glucose by the liver and kidney [122].

Pyruvate
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Figure 3. Graphical overview of the role of Malate in part of the gluconeogenic process.
NADPH = Nicotinamide adenine dinucleotide binding domain. H = Hydrogen. O = Oxygen.
MPC = mitochondrial pyruvate carrier. ~ATP = Adenosine triphosphate. = ADP = Adenosine
diphosphate. C = carbon.

Combined, the synergistic use of L-citrulline and malate to produce citrulline-malate (CM),
has generated interest as a potential therapeutic aid against vascular distress. Recent research has
demonstrated improvements in mean arterial pulmonary hypertension (APH) and indices of quality of
life in patients with idiopathic APH and Eisenmenger syndrome [123]. Earlier animal work by Callis et
al. found that CM increased hepatic ureagenesis and favorized the renal reabsorption of bicarbonates,
which offsets acidosis [124]. Moreover, as a commercially available sports supplement, CM has been
linked to positive exercise performance outcomes, which are mainly driven by its anti-asthenic effect
on muscle fatigue [107,125-128]. However, there is considerable disagreement on this topic within
the literature, since several studies have failed to observe any ergogenic potential of CM regardless of
variations in dosing strategies [129-132].

Nevertheless, considering that individuals with T1D report lower levels of CRF [51], which alone
stand as both a major barrier to regular exercise engagement [133] and a biomarker of increased
CVD. The ergogenic potential of CM as a mediator of continued exercise performance is noteworthy.
Notwithstanding the importance in optimizing CRF from an exercise performance point of view,
the necessary improvements in the functionality of the cardio-respiratory, vascular, and muscular
parameters needed to achieve enhanced exercise tolerance contribute to minimizing CVD susceptibility,
which is mechanistically underpinned by the integrative function of these systems.

6. Directions for Future Research

Despite an encouraging body of work having been done in individuals without T1D, the realms
of ergogenic and vasodilatory dietary supplements remain relatively unexplored in individuals with
T1D, who may stand to benefit most from interventions that acutely enhance vascular performance.
Furthermore, while the acute endothelial responses to exercise have not been the main topic of
discussion in this review, the potential of dietary supplements in combination with appropriately
programmed exercise regimes that specifically target the upstream mediators of endothelial mediated
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vasodilation represent exciting exploratory opportunities, particularly considering the dampened
endothelial response to acute exercise observed in individuals with T1D [37,38].

7. Conclusions

Intuitively, it seems reasonable to suggest that an increase in circulating NO, ™ may be a means of
alleviating the risk of diabetes-related vascular complications in people with T1D. However, while the
biochemical mechanisms support the potential of these concepts in people with T1D, more research is
needed to confirm their real-world applicability.
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