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Graphical Abstract 

 

The J-V curves of the champion PSCs by introduced NPB into MAPbI3 

The high performance devices were realized by introducing small molecule N,N’-

bis(naphthalen-1-yl)-N,N’+-bis(phenyl)benzidine (NPB) in MAPbI3 perovskite layer. 

A high efficiency of 19.22% was achieved based on NPB modified MAPbI3 with 

improved stability and suppressed hysteresis, which can be attributed to cation-π 

interaction between NPB and MA+. The introduced NPB not only reduce intrinsic 

defects in perovskite films, enhance the crystallization and passivate the perovskites 

films, which is benefit to improve the stability of perovskite film and improved the 

efficiency of planar perovskite solar cells. 
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Abstract: In organic-inorganic hybrid perovskite solar cells, migration of intrinsic 

ions (e.g., MA+, Pb2+, I-) have a significant impact on the current-voltage hysteresis 

and stability of devices. Here, N, N’-diphenyl-1, 1’-biphenyl-4, 4’-diamine (NPB) 

was introduced into MAPbI3 perovskite layer to facilitate the stability of perovskite 

film and improved the efficiency of planar perovskite solar cells (PSCs). The results 

suggest that migration of intrinsic ions are inhibited effectively by cation-π interaction 

between NPB and MA+, and lead to reduce intrinsic defects in perovskite films, which 

is benefit for the stability of devices. Lewis basicity of NPB enhances the 

crystallization, passivates the perovskites films and addresses the issue of low electron 

extraction efficiency. Consequently, solar cells made using NPB modified MAPbI3 

resulted hysteresis-free, enhanced power conversion efficiency of 19.22% with 

improved stability. 
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1. Introduction 

Organic-inorganic halide perovskites have attracted tremendous interest due to 

their excellent optoelectronic performance [1,2], large absorption coefficient [3,4], 

high carrier mobility [5], large diffusion length [6,7], and tunable flexibility in 

bandgap [8-10]. In recent years, organic–inorganic hybrid perovskite solar cells (PSCs) 

have emerged as a very promising alternative for next-generation solar cell 

technology and the power conversion efficiency (PCE) kept rising from 3.8% in 2009 

years to 23.2% [11-13]. Given the impressive gains in PCE, it is natural that long time 

stability becomes the main research topic in the community. So much intrinsic defects 

produced during annealing or light irradiation, such as ionic migration and vacancy of 

the ions, inevitably result in instability of perovskite [14-16]. The ion migration 

problem has been considered as the one of main reasons for causing instability and 

degradation in the perovskite solar cells. 

Several of researchers attempt to suppress the ion-migration by all kinds of 

experimental and theoretical methods [17-20]. In fact, there are two main mobile ions 

in the organic-inorganic perovskites (OIPs), the organic cation and halide ions [21,22]. 

In addition, poling field would result in the organic redistribution, which would affect 

the chemical and electric equilibrium of solar cell devices [23]. Thus, inhibiting 

organic cation migration could enhance the electrical transport properties and stability 

of the OIPs device efficiently.  

Cation–π interaction is a type of electrostatic attraction between cation and large 

π surface of benzene and other aromatic [24]. It presents astonishing stabilization with 



 

the large interaction energy, which is strong enough to hook the movement of organic 

cation [25]. Considering, we introduce the chelation-like cation-π interaction in PSCs 

by mixing aromatic NPB into perovskite films, this assist during the film-forming 

process to restrict the migration of organic cations. Thus, by fine tuning the 

concentration of NPB in MAPbI3 leads to suppressing cation mobility and hysteresis 

in solar cells that resulted into the improved performance and stability of PSCs. 

2. Experiment 

The glass/FTO substrate of 25×25 mm2 square shape was sequentially washed 

with isopropanol, acetone, alcohol and distilled water. The sheet resistance of FTO 

(the thicknesses ~250 nm) used here is about 14 Ω. For TiO2 nanoparticles films, 

TiCl4 (4.5 ml) solution is instilled into 200 ml distilled water ice cube. Sixty minutes 

later, this TiCl4 solution is poured into culture dish in which there lies washed 

glass/FTO substrate and then annealed in drying oven at 70 ℃ for 60 min. After 30 

min ozone treatment for the TiO2 film (electron transport layer), the perovskite film 

was spin-coated onto the TiO2 layer at 1000 rpm/10 s and then 4000 rpm/40 s using 

the mixed solution of chlorobenzene and NPB as anti-solvent. Perovskite-NPB graded 

heterojunction would be obtained. This precursor film was annealed at 100 ℃ for 10 

min in nitrogen glove box. After annealing, HTLs (Spiro-OMeTAD) in chlorobenzene 

solution was coated onto the perovskite layer at 5000 rpm/30 s. Finally, MoO3 layer 

(10 nm) and Ag electrode (150 nm) was evaporated in vacuum chamber under 

vacuum at 2×10−6 Torr. 

    Current density–voltage characteristics of perovskite solar cells were performed 



 

with a programmable Keithley 2400 source meter under AM 1.5G solar irradiation at 

100 mW/cm−2 (Newport, Class AAA solar simulator, 94023A-U). The IPCE 

measurement was carried out by a system combining a xenon lamp, a monochromator, 

a chopper, and a lock-in amplifier together with a calibrated silicon photodetector. The 

absorbance of the HTLs films was measured with an UV-vis spectrophotometer 

(PerkinElmer Lambda 750). The surface morphology of a typical sample was 

characterized by SEM SUPRA™ 40. Steady-state PL measurements were acquired 

using Edinburgh Instruments FLS920 fluorescence spectrometer with a 532 nm 

pulsed laser as excitation source at the room temperature.       

3. Results and discussion: 

Fig. 1(a) shows the device configuration of planar heterojunction perovskite 

solar cells. The micro-molecular organics 

N,N՛ -diphenyl-1,1՛ -biphenyl-4,4՛ -diamine (NPB) (the molecular structure of NPB 

is shown in Fig. 1(b)) is introduced into the perovskite absorber layer. This introduced 

NPB-MAPbI3 perovskite employed into the 

FTO/TiO2/MAPbI3-NPB/Spiro-OMeTAD/Ag solar cell architecture. NPB often used 

as the hole transporting layer (HTL) in PSCs due to its matching bandgap between the 

HOMO level (5.4 eV) and the VB edge of the MAPbI3. When NPB introduced in 

MAPbI3, cation-π interaction between electron-rich π system and adjacent MA+ cation 

will form by noncovalent forces when introduce aromatic NPB into MAPbI3 [24]. To 

make sure formation of cation-π interaction, the main structure parameters and the 

optimized geometry active site were calculated and was chosen by density functional 



 

theory using Gaussian 09 software, and the result shown in Fig. 1(c) and (d). Since 

different π moieties of NPB would be interacted with MA+ cations, over 6 possible 

initial position points were optimized under B3LYP-D3/6-311G (d.p) level with 

dispersion corrections. Frequency calculations were carried out to ensure that the 

conformations obtained are stable points. Single point energy calculations with the 

correction of basis set superposition error (BSSE) were performed to estimate the 

interaction energy. Two most stable cation-π interaction positions (labeled locus 3# 

and locus 6#, respectively) shown in Fig. 1(c) and (d), which have no imaginary 

frequency and the lowest energies, were selected from the six possible positive points. 

According to the results, the stable molecular structures of MA+-NPB have two N-H 

bonds of MA+ cations toward NPB with the bond lengths of 1.04 Å, which hook the 

central tetracene for interactions of σN–H- πNPB. Moreover, these two N-H bonds are a 

little longer than that of the other N-H bond pointing away from NPB (1.02 Å) (as 

shown in Fig. 1(c) and (d)). Different bond length reveals the interaction between 

NPB and perovskite materials again. In addition, the interaction between MA+ cations 

and NPB has relative larger interaction energy (-35.2 kcal mol-1 (locus 3#) and -39.2 

kcal mol-1 (locus 6#) in gas phase), which is remarkably stronger than that of a 

common cation-π interaction such as MA+-benzene (-18.8 kcal mol-1 in gas phase). It 

is reported that cations are always strongly attracted to the π face of benzene and other 

aromatic structures [26]. Therefore, such strong interaction could be attributed to the 

synergetic effect of multiple off-axis cation-π interactions, leading to the mobile 

organic cations MA+ anchored firmly by NPB [27]. 



 

Nevertheless, the interaction with anions is also quantified by quantum chemistry 

calculation. But the results show that the iodine ion is far away from the π surface and 

turns to the hydrogen atom of NPB at the edge (Figure S2). And the calculated 

interaction energy between I- anion and NPB in the most stable locus is only -14.47 

kcal mol-1 in gas phase. Summary, cation-π interaction plays the main role of the 

interaction between perovskite and NPB, which would benefit to the inhibition of the 

ion migration.  

To clarify the effect of cation-π interaction on the inhibition of ion migration in 

the perovskite solar cells, the current-density-voltage (J-V) properties of the planar 

heterojunction perovskite solar cell with different concentration of NPB introduced 

into MAPbI3 are shown in Fig. 2(a). Moreover, the corresponding average results of 

photovoltaic parameters are summarized in Table 1. It can be clearly seen that both 

the short-circuit current density Jsc and open-circuit voltage Voc keep increasing with 

the increasing of NPB content. Especially, Jsc increases strikingly from 21.93 to 23.42 

mA/cm2. On the other hand, the filler factor FF reaches the peak point of 77% for the 

perovskite film introducing with 6 mg/ml NPB. Moreover, on further increasing the 

concentration of NPB, the value of FF begins to decrease. However, the optimum 

PCE of 19.22% is obtained for the MAPbI3 added with 9 mg/ml NPB, although the 

FF is slightly decline compared to introducing 6 mg/ml NPB. This PCE is 

significantly higher than the control planar PSCs (17.36%). This suggests that 

optimum introducing of NPB can remarkably improve the electrical properties of the 

perovskite solar cell. Solar cell statistics of 60 devices prepared using optimized NPB 



 

(9 mg/ml) introduced and unintroduced (pristine) MAPbI3 is shown in Figure S3. 

Performance statistics data shows improved reproducibility for solar cells that 

employs NPB introduced MAPbI3 as absorber. 

The corresponding incident photon-to-current conversion efficiency (IPCE) and 

the integrated Jsc (from IPCE curves) of device with and without NPB is characterized 

and compared (as shown in Fig. 2(b)). There is a wide and flat wavelength band 

increment of IPCE for device with NPB introducing in core absorption region from 

350 nm to 700 nm spectra, the value of IPCE curve reach over 90%. This wideband 

enhancement means that the Jsc increasing of the PSC as a reason of NPB introducing 

that attributes to the improvement of crystallinity of the perovskite film [28]. As we 

known, the high crystallinity of perovskite film with lower defects will result in more 

efficient charge carrier generation and transport in the cation-immobilized perovskite 

films, which would inhibit the loss of photo-induced carriers during transfer, and then 

enhance the collection of photo-induced carriers in PSC. Therefore, the intrinsic 

reason is that the PSC introduced NPB possesses faster transport of photo-generated 

carriers and less recombination centers [29,30]. The integrated Jsc from IPCE curves 

also agree with the measured Jsc very well. In addition, the stabilized current density 

and PCE at the maximum power point as a function of time are also recorded. As 

shown in Fig. 2(c), a stabilized PCE of 18.56% with a current density of ~21.57 

mA/cm2 is obtained, showing a stable output characteristic within 300 s. 

J-V hysteresis characterization gives an estimation of the charge transport and 

ion migration in PSCs. Device performance under reverse and forward scans with and 



 

without NPB was measured and analyzed. The J-V curves were measured with either 

a 10 ms after each 50 mV voltage. The reference PSCs without introduced NBP 

exhibited significant hysteresis. Meanwhile, PSCs with NPB modification present a 

negligible hysteresis (hysteresis index ¼ 1.0%). The suppressed negligible hysteresis 

PSCs indicates fewer defects at the NPB introducing perovskite interface due to better 

crystallinity and coverage of perovskite film on TiO2.  

OIPs has been beset by hysteresis for long time, which is caused by both scan 

rate and direction of the J-V characteristics [31]. It is widely reported that hysteresis is 

always attributed to the reducing built-in electric field by the changing quantities of 

charge accumulated at the MAPbI3 interfaces, resulting in loss of photocurrent 

[14,32,33]. Furthermore, ion migration under external electric field is considered as 

causing the accumulation of mobile ions at the interfaces [34]. Therefore, ion 

migration plays an important role in device hysteresis behavior [35-37]. In MAPbI3 

based perovskite solar cell, MA+ cation is one of the main mobile ions. Once 

illuminated, large number of cations would migrate freely in MAPbI3 and can 

interfere charges, this result in notorious, noticeable J-V hysteresis phenomenon [37]. 

Thus, suppressing ion migration would govern the current-voltage hysteresis. PSCs 

prepared from NPB introduced MAPbI3 showed hysteresis-free J-V curves as 

presented in the Fig. 2(d). Considering the fact that mobile ions contribute for 

hysteresis, this clearly shows that the mobile ions can be well inhibited. This can be 

contributed to the cation-π interaction between NPB and MA+ as motioned earlier. 

Moreover, to study the optoelectronic changes in MAPbI3 film with and without 



 

NPB introducing, Ultraviolet-visible absorption measurement was performed. For 

measurement, to mimics the device architecture, all the perovskite films with and 

without NPB were deposited on FTO/TiO2 film. As shown in Fig. 3(a), NPB 

introduced in perovskite film shows enhanced absorbance covering almost all the 

visible light region, which is attributed to the improved crystalline of NPB-MAPbI3 

films (Fig. S4). Furthermore, the steady-state photoluminescence (PL) spectra (Fig. 

3(b)) and time-resolved photo-luminescence (TRPL) spectra (Fig. S5) of the 

perovskite film with and without NPB were employed to study the impact of NPB and 

MA+ on the extraction of electrons and charge recombination in perovskite film. The 

steady state PL intensity of NPB-MAPbI3 film is reduced than that of the pristine 

MAPbI3 film, which is attributed better charge transport across NPB-MAPbI3/TiO2 

interface. 

To understand the effects of the carriers migration on interface charge transport, 

the Nyquist plots of the electrochemical impedance spectra (EIS) under the 

illumination of AM 1.5G in ambient air was performed for device with and without 

NPB (as shown in Fig. 3(c)). In general, the internal series resistance (Rs) in the 

higher frequency represents the ohmic resistance consists of the sheet resistance 

(RSHEET) of the electrodes, the charge-transfer resistance (RCT) at the interfaces 

between electrode and carriers transfer layer (included holes transfer layer and 

electrons transfer layer) and between carriers transfer layer and the perovskite layer 

[38,39]. Because all the samples in this experiment possess the same device structure, 

RSHEET could be assumed to be the same. The only difference is the RCT which arises 



 

from the different carriers transport at the ETL/perovskite and HTL/perovskite 

interfaces. Here, the introduction of NPB is via anti-solvent after spin-coating 

perovskite film. Most portion of NPB stayed on the upper layer of the perovskite film. 

As a result, the RCT arises from ETL/perovskite interface were also considered as 

same. Therefore, impedance spectrometry could be used to investigate the electrical 

properties of the HTL/perovskite interfaces. Attractively, RCT values of 32.85 and 

105.05 kΩ were obtained by testing the devices with and without NPB into perovskite 

layer, respectively. Without NPB, a large RCT value indicated that the large 

charge-transfer resistance resulted from the inferior contact at the interface with the 

Spiro-OMeTAD/MAPbI3. While, with NPB introduced into the perovskite film, 

smaller RCT was obtained as a result of the larger interfacial area between MAPbI3 and 

Spiro-OMeTAD, which is benefit to the transmission of the photo-induced carriers. 

Therefore, it is a corroborative evidence for the higher PCE from the NPB-MAPbI3 

than from the pure MAPbI3.  

In order to understand further the NPB introducing devices can reduce the carrier 

recombination, dark J-V characteristics of the solar cell prepared with and without 

NPB introduced MAPbI3 films measured and shown in Fig. 3d. It presents a 

prominent rectifying characteristic with a lower reverse leakage current and higher 

forward conducting current. The dark current density of the solar cell device with 

NPB-MAPbI3 film is obviously lower than the pristine device. This obvious 

decreasing leakage current can be contributed to the cation-π interaction in the 

NPB-MAPbI3. Additionally, the devices based on NPB-MAPbI3 and pristine 



 

perovskite have almost the same forward turn-on voltage, which ascribes to the 

similar built-in electric field distribution inside the devices.  

X-ray diffraction (XRD) recorded for MAPbI3 film with and without NPB. As 

shown in Fig. 4(a), the main diffraction peaks at 14.2° and 28.4° are assigned to the 

(110) and (220) planes of tetragonal crystal structure of MAPbI3. The diffraction 

peaks of NPB-MAPbI3 film became clearly enhanced, indicating that the crystallinity 

of perovskite films is improved. Moreover, the full widths at half maximum of the 

two main peaks enlarge slightly due to the formation of the bigger sized perovskite 

grain. Hence, NBP introduced is help to the improvement of the crystallinity and the 

growth of crystal grain of perovskite film. This is further confirmed from the SEM 

surface morphology images Fig. 4(b-f). 

In the SEM experiment, we fix the optimal perovskite layer thickness of ~300 

nm for all the devices to exclude the variations in optical absorption or interference 

effects. As shown in Fig. 4(b-f), the perovskite film without NPB has no very clear 

grain boundary. The heterogeneity of grain size is the other microstructure of that film. 

With the concentration increasing for NPB into MAPbI3 film, the size of crystal grain 

increases slowly and the boundary becomes more distinct. However, the precipitation 

phase appear gradually between grain boundaries as the stoichiometry of NPB 

increasing over 9 mg/ml. SEM images demonstrate again that NPB introduced is 

favorable for perovskite crystallization, enlarge the grain and improve morphology of 

the perovskite film. It is reported that better crystallinity and less defect material result 

in less traps and mobile ions, which were beneficial for charge transporting, as well as 



 

for reducing hysteresis [40-43]. Moreover, surface and grain boundaries of the crystal 

grain of the perovskite film can affect the ionic migration quite significantly and 

could lead to a reduction in collection efficiency [44]. Therefore the effective 

suppression of hysteresis effects is attributed to the improving morphology of the 

interface of perovskite/HTLs, which leads to relative high efficient charge extraction 

and then result in the increasing of Jsc and PCE.  

Long-term stability is another critical characteristic for PSCs, especially the 

operational stability under 1 sun illumination in ambient air. To investigate the 

stability of devices with the NPB-MAPbI3 and pristine MAPbI3, we performed 

stability tests of PSCs without encapsulation and under identical storage conditions 1 

sun illumination (illumination for one week). And their efficiency was periodically 

measured to check the long-term stability. All the devices exposure to ambient air in 

the Sample Storage Room where maintained in about 20 degree centigrade and 40% 

relative humidity. As shown in Fig. 5(a), the PCEs of typical PSCs with MAPbI3 

retained only about 24 % of their initial efficiency. However, the devices with 

CH3NH3PbI3-NPB film exhibit the retention of PCE about 83 % of the initial value. 

The inset of Fig. 5(a) show that the NPB-MAPbI3 films with larger water contact 

angle of 42.10° than that of pure MAPbI3 (36.00°). It indicates that the NPB-MAPbI3 

films could prevent the water, to some extent. In addition, the XRD patterns were 

measured for the samples exposed in air for 48 h (~40% relative humidity) (as shown 

in Fig.5 (b)). As expected, an obvious new peak appeared in the XRD curve without 

NPB at 12.6°, indicates the decomposition of perovskite materials and the appearance 



 

of PbI2. While negligible XRD peak obtained at the same position in the orange curve 

suggesting the slower degradation and excellent stability of the NPB-MAPbI3 films.  

In general, the higher stability of PSCs attributed to the hydrophobic properties 

[35,45,46]. The water molecules in aqueous environments would combine easily with 

MA+ cations of the pristine perovskite materials and neutralize the charges of the 

cations, which leads to the loss of MA+ and cause the decomposition of perovskite 

materials [47]. However, the introduction of hydrophobic binding site comprised of 

aromatic rings can compete with full aqueous solvation in the binding of highly 

cations in MAPbI3 materials, which is important for the stability of PSCs [48]. In the 

NPB introducing perovskite PCSs, and higher interaction energy of cation-π 

interaction between MA+ in the perovskite and aromatic rings in NPB not only 

improves the quality of perovskite film but also induce hydrophobicity to formation 

stable perovskite devices.  

4. Conclusions 

Fine tuning of NPB in MAPbI3 induce the cation-π interaction that is able to 

effectively suppress the migration of MA+ in OIPs. PSCs made employing optimal 

quantity of NPB-introduced MAPbI3 shown record hysteresis-free efficiency of 

19.22%. Additionally, the introducing of NPB also improved the crystalline quality of 

the perovskite film that ultimately resulted into enhanced stability of solar cells 

prepared using NPB-MAPbI3. The NPB-MAPbI3 film possesses effectively transport 

of photo-generated carriers and less recombination centres, which mainly due to 

inhibition of MA+ in perovskite. This work gives a novel methodology for 

suppressing the notorious hysteresis phenomenon as well improving the efficiency 



 

and stability in MAPbI3 based PSCs.  
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Figure Captions 

 

Figure 1. (Color online) (a) Device configuration of planar heterojunction perovskite 

solar cells. (b) The molecular structure of NPB. (c) and (d) DFT calculations for 

the two stable molecular structures of NPB-MA+ with the lowest energies. 

Figure 2. (Color online) Photovoltaic properties of perovskite films with and without 

NPB. (a) J-V curves of the champion PSCs with different concentration of NPB 

introduced into MAPbI3. (b) IPCE curves and the integrated current curve of the 

PSCs. (c) Steady-state photocurrent and efficiency of PSCs with NPB. (d) Best 

J-V data in forward (FS) and reverse (RS) scans. 

Figure 3. (Color online) (a) UV-visible absorption spectrum of (b) Photoluminescence 

spectra of perovskite films without and with NPB. (c) Nyquist plots of PSCs 

with and without NPB. The inset is the equivalent circuit model for fitting curves. 

(d) Dark J–V characteristics of the PSCs with and without NPB. 

Figure 4. (Color online) X-ray diffraction (a) and top view SEM images (b-f) of 

perovskite films with different concentration of NPB introduced into 

CH3NH3PbI3. The scale bar is 200 nm. 

Figure 5. (Color online) (a) Stability of PSCs with and without NPB. These PSCs 

were measured every 24 h and stored in ambient air before and after J–V 

measurement. The inset is water contact angles of perovskite films with and 

without NPB on glass substrate. (b) XRD pattern were observed after the sample 

stored in air for 48 h. 
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Tables 
 

Table 1. Champion performance of PSCs fabricated by using pristine MAPbI3 and 

different concentrations of NBP introduced into MAPbI3 as an active absorber layer. 

Active layer with different 
concentration of NPB 

Voc 
(V) 

Jsc 
(mA/cm2) 

FF 
(%) 

PCE 
(%) 

0 mg/ml NPB 1.07 21.93 74 17.36 

3 mg/ml NPB 1.08 22.09 76 18.11 

6 mg/ml NPB 1.08 22.80 77 18.90 

9mg/ml NPB 1.09 23.42 75 19.22 

12 mg/ml NPB 1.10 23.95 71 18.70 

 
 



 

 

Keywords:  

Perovskite Solar Cells; Migration of intrinsic ions; Cation–π Interaction 

High Light 

1. Carrier-recombination inhibition by the cation–π interaction in planar perovskite 

solar cells. 

2. NPB was introduced into CH3NH3PbI3 layer to form cation–π interaction. 

3. An enhanced efficiency of 19.22% for the perovskite solar cells with negligible 

hysteresis are acquired. 


