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Abstract 

The mesoporous carbon stack architecture is attracting considerable interest as a potential candidate 

for scalable, environmentally stable and low-cost perovskite solar cells amenable to high throughput 

manufacturing processes. These cells are characterised by microns-thick mesoporous titania and 

zirconia layers capped by a non-selective carbon top electrode with the whole stack being infused with 

a perovskite semiconductor. Although the architecture does not yet deliver the >20% power 

conversion efficiencies characteristic of some perovskite planar and mesoporous structures, it does 

appear to produce cells with respectable efficiencies >16% which is unexpected due to the carbon 

electrode being far from an ideal anode and the active layers being so thick. Full optimization of these 

cells requires a detailed understanding of the coupled efficiencies of light absorption, charge 

generation and extraction but the mode of operation is not yet understood. In this communication, 

we report a combined experimental-simulation study which elucidates the photogeneration and 

extraction of charge. By determination of the optical constants of the individual components of cell 

and using effective medium approximation, we determine the internal quantum efficiency (IQE) in 

both the titania and zirconia layers to be equally ~85%. Our numerical drift-diffusion simulations 

indicate that this high IQE together with a respectable open circuit voltage is a consequence of the 

thick junctions in play – reducing minority carrier concentrations at the electrodes and thereby 

decreasing surface recombination which is otherwise present in thinner cells with a non-selective 

contact.  This insight can now be used to further tune the carbon stack for efficiency and simplicity.       

  



Introduction 

The organohalide perovskites are an intriguing class of semiconductors which can be processed from 

solution or evaporated at low temperatures from a range of simple, cheap and commonly available 

feedstocks. The modern manifestation of ‘perovskites’ originated quite recently from impressive 

performance as the semiconductor in thin film solar cells, but their applications have broadened to 

light emitting diodes (so called PLEDs now with external quantum efficiencies > 20% and rivalling 

mature organic LEDs) 1, photodetectors with detectivities close to silicon 2, and even rudimentary field 

effect transistors 3. Perovskite solar cells have reached power conversion efficiencies (PCEs) of > 23% 
4  in a mesoporous scaffold architecture and > 21% in simple planar nip and pin structures 5. It is thus 

no surprise that the race is on to commercialise perovskite photovoltaics both as stand-alone junctions 
6 and in tandems with silicon 7.  

There are many challenges to be overcome in ‘scaling’ a new optoelectronic technology to full product 

realisation. Thin film solar cells (for example based upon organic semiconductors) have proven 

particularly difficult to transition from the laboratory to the factory 8  – and key stumbling blocks have 

(and continue to be) issues such as the relatively high sheet resistance of commercially available 

transparent conducting electrode materials, junction thickness inhomogeneities, long term stability9, 

and compatibility with suitable high throughput, low cost manufacturing processes. Perovskite solar 

cells face very similar scaling challenges, particularly the planar nip and pin structures where the 

junction thickness is < 500nm or so. An architecture recently proposed as a more scalable and 

manufacturable solution is the so-called mesoporous carbon stack. This cell design contains thick 

mesoporous zirconia and titania layers on the order of a micron, topped off with a mesoporous carbon 

electrode (anode) and infused with a perovskite semiconductor. The carbon anode is composed of 

nano-particulate graphene crystals conferring electrical conductance 10, 11. In principle, all layers of this 

stack are printable, and indeed, various groups are now producing mini-modules with power 

conversion efficiencies of > 6% (aperture area of 198 cm2) using amino valeric acid-methyl ammonium 

lead iodide (AVA-MAPI3) as the perovskite semiconductor; see for example the work of Watson and 

co-workers 12-15. The zirconia, titania and carbon layers of the modules of Watson et al. were screen 

printed from porous pastes and the MAPI3 ‘infused’ into the stack post deposition and annealing. The 

schematic of Figure 1a shows a typical carbon stack structure, a notable feature being the relatively 

thick carbon (~10 um), zirconia (800 nm) and titania (1200 nm) layers. These form a considerably 

thicker ‘junction’ than other perovskite architectures and requires that photogenerated charges must 

traverse several microns to be extracted. Furthermore, there is the question of the work function of 

the carbon electrode being far from Ohmic and/or selective for holes. Figure 1b presents an energy 

level diagram of the carbon stack. Based on the energetics, it is clear that the carbon anode (with a 

work function of ~ 5eV10) can act as either a non-ideal anode or cathode. As such, while the dense 

crystalline titania (c-TiO2) is an efficient, selective, electron extracting contact10, the carbon electrode 

is expected to be non-selective. Thus, an interesting general question arises as to whether perovskite 

cells in general require one or two selective contacts 16 and more specifically as to how carbon stack 

perovskite solar cells operate at all.         

While some groups have already made good progress on the engineering problems of these cells17-19, 

the optimisation of the carbon stack cell has been a largely empirical exercise – questions of (for 

example) the optimal junction thickness have not been examined in any systematic manner and 

certainly not using the electro-optical simulation tools utilised in other perovskite architectures and 

organic semiconductor thin film solar cells 20. We have previously reported the use of transfer matrix 

field simulations coupled with ellipsometric and spectrophotometric analysis of thin film optical 

constants to predict the optimum junction and interlayer thicknesses in planar nip 21 and pin 22 



perovskite solar cells. The approach can also be used to accurately determine the internal quantum 

efficiency (IQE) 20, 23 from the measured external quantum efficiency (EQE), and in the limit of low 

illumination intensities, the charge generation efficiency . The application of such an approach to the 

carbon stack is much more challenging because of the composite mesoporous nature of all layers, and 

the notorious difficulty in determining perovskite optical constants 24. Furthermore, the assumption 

of nearly perfect charge extraction in perovskite cells is no longer valid for carbon stack cells due to 

the large junction thickness and non-ideality of the work function of the carbon. This demands 

inclusion of full electro-optical device simulation using, for example, drift-diffusion methodologies. 

Understanding where, and with what efficiency, free carriers are generated and collected would allow 

rational improvements of the carbon stack device structure and the identification of voltage and 

current loss pathways. 

Motivated by these questions we report a full electro-optical simulation of a previously empirically 

optimised carbon stack solar cell. We apply effective medium theory in combination with advanced 

ellipsometric and spectrophotometric measurements to accurately determine the composite optical 

constants of the mesoporous layers and are thus able to simulate the absorbed photon profiles in the 

junction layers. From this, and by comparing with the measured EQE, we evaluate the internal 

quantum efficiency for charge collection in both the zirconia and titania elements of the junction. 

Feeding the charge generation profiles into our drift-diffusion model we are also able to numerically 

quantify charge carrier recombination in these cells and explain their mode of operation. We find that 

the carbon stack cells with non-ideal anodes only work because they are very thick. The large optical 

density of these devices reduces the amount of electrons generated near the carbon anode reducing 

the overall surface recombination rate even though the surface recombination velocity is expected to 

be large due to the non-selectivity of the carbon electrode. 

Experimental 

The Transfer Matrix Method: The Abeles transfer matrix method allows one to compute the optical 

field distribution in any multilayer stack 25, 26. The only requirement for this method is accurate 

knowledge of layer thicknesses and refractive indices, which can be determined experimentally with 

a combination of single-layer ellipsometry, profilometry, and spectrophotometry 27, 28. The 

fundamentals of the methodology are well known 29 but amount to the definition of a propagation 

matrix for each of the layers in an arbitrary stack as follows: 

  

where rij and tij are the Fresnel coefficients and φL = exp(𝐢 2π𝑛L𝑡L λ⁄ ) is the phase operator for each 

layer, dependent on the wavelength, thickness and complex refractive index, nL=n+ik. Each layer 

effectively adds another matrix to the transfer matrix product, which lets us determine the forwards-

and-backwards-propagating optical electric field Ei at each layer interface. Thus, the optical field 

throughout the stack can be modelled if the layer constants are known. From this field distribution, 

we can then derive the charge photogeneration distribution in the active layers, which can in turn be 

used to determine the ideal device EQE, under global AM1.5 radiation or any other illumination. 



Optical Constant Determination: A combination of spectroscopic ellipsometry (JA Woollam M2000) 

and reflection and transmission spectrophotometry (Perkin Elmer 950 equipped with universal 

reflectance attachment and 150 mm integrating sphere) were used to accurately determine the 

optical constants of each of the constituents of the carbon stack. Samples for this analysis were 

prepared as single layers on glass (the experimental conditions for the deposition of each layer are 

provided in the Supplementary Information) with thicknesses relevant to the full cell structure (from 

the fluorine doped tin oxide (FTO): 600, 50, 800, 1200, and 3000 nm respectively; see Figure 1a). The 

dense titania was modelled as a single homogeneous layer, and the graded FTO was implemented in 

the ellipsometric model as separate layers of 'SnO2' and 'SnOF' (regular and fluorinated tin oxide), with 

thicknesses of 100 and 500 nm respectively. This treatment of FTO as two separate layers is justified 

by a spectrophotometric analysis (reflectance and transmittance measurement and simulations) as 

shown in the Supplementary Information (Figure S2). Constant determination of the mesoporous 

titania, zirconia and MAPI3 is considerably more complicated than either the FTO or dense TiO2 – the 

mesoporous oxide layers are inhomogeneous and scattering, and the perovskite is polycrystalline with 

high dispersion in both n and k. We have previously published a methodology and the resultant optical 

constants for MAPI3 27, which we utilise in this current study since they have been verified by 

experimental measurement of short circuit current density and EQE. As indicated previously, the 

mesoporous titania and zirconia cannot be thought of as compositionally homogeneous, and their 

optical constants scale with pore volume fraction in a manner predicted by the effective medium 

approximation 30. To determine the pore volume in both materials, ellipsometric porosimetry with 

dynamic toluene infiltration was utilised (see Supplementary Information), the results of which are 

shown in Figure 2(a). The pore volume fraction was determined to be approximately 0.5 in both cases. 

This value was then used to determine the relative optical constants of the mesoporous titania and 

zirconia layers with and without perovskite infiltration using the Bruggeman Effective Medium 

approximation: 

𝑓𝑎
𝜖𝑎−𝜖

𝜖𝑎+2𝜖
+ (1 − 𝑓𝑎)

𝜖𝑏−𝜖

𝜖𝑏+2𝜖
= 0                                                          (1) 

where fa and (1-fa) represent the probabilities of finding the respective materials of dielectric 

constants 𝜖𝑎 and 𝜖𝑏 in a spherical space and can be interpreted as a volume ratio. All optical constants 

for the FTO, dense titania and mesoporous zirconia and titania are provided in Figure S1 in the 

Supplementary Information. The mesoporous titania and zirconia infiltrated with MAPI3 assuming 

100% pore filling are shown in Figure 2b. These data enable a full modelling of the optical field 

distribution in the entire carbon stack solar cell. 

Carbon Stack Multilayer Model & Quantum Efficiency (External & Internal): The stack model was 

implemented in Matlab using a standard Transfer Matrix approach with layers: ‘Air’, ‘Glass’, 'FTO', 

'compact TiO2', 'mesoporous TiOx', 'mesoporous ZrOx', and 'mesoporous Carbon' (Figure 3), where 

the glass was treated as incoherent (i.e. optically thick relative to the wavelength of incident light). 

The modelled thicknesses of the optically coherent layers, starting with the FTO in nm, were again 

600, 50, 800, 1200, and 3000 as per the estimated experimental thicknesses of the empirically 

optimised cell structures.  

The experimentally measured External Quantum Efficiency (EQEexp(𝜆)) can be considered as the sum 

of the EQEs of the two absorbing components titania-MAPI3 and zirconia-MAPI3. This in turn can be 

considered as the sum of the optical absorbance 𝐴(𝜆) in each component scaled by the Internal 

Quantum Efficiency (IQE) such that: 

EQEexp(𝜆) = IQETiO2 ∙ 𝐴TiO2(𝜆) + IQEZrO2 ∙ 𝐴ZrO2(𝜆)                               (2) 



The Internal Quantum Efficiency of solar cells with MAPI3 as the active component (or indeed other 

high efficiency perovskite systems) has been shown to be spectrally invariant 27. Hence by comparing 

the experimentally measured and simulated absorbances from the Transfer Matrix analysis (which is 

equivalent to the EQE assuming 100% generation and collection efficiency) the individual IQEs can be 

extracted.  

Results and Discussion 

Figure 3 shows the calculated charge generation spatial profile (𝐺(𝑧)) for two wavelengths, one which 

should be strongly absorbed by the titania-MAPI3 (400 nm) and one in the tail of the perovskite 

absorption. Notably, and as expected intuitively, carriers derived from blue photons are generated 

with a Beer-Lambert profile within the first 500 nm of the titania-MAPI3 layer. Conversely, those 

generated from red photon absorption extend throughout both layers to the top carbon contact and 

show the typical modulations indicative of low-Q cavity interference. Simulations at every wavelength 

from 400 nm to 800 nm allow a full reconstruction of the EQE which is shown in Figure 4a overlaid on 

a typical experimentally measured EQE. There is a clear discrepancy between the simulated and 

experimental spectra although they have the same shape as a function of wavelength – this difference 

being due to the real non-unity of the IQEs in the two charge generating layers due to both geminate 

and non-geminate recombination losses. 

Equation 2 can now be used to extract IQETiO2and IQEZrO2by a two-parameter global fit, once again 

noting the spectral flatness of the IQEs. Figure 4b shows the best fit for this analysis from which the 

parameters are extracted. It should be noted that the fitting range was truncated at 760 nm where 

the experimental EQE decreases precipitously near the MAPI3 band edge and hence the fitting error 

diverges rapidly (see Figure S3). From this analysis we extract internal quantum efficiencies of 0.87 

and 0.86 for the titania-MAPI3 and zirconia-MAPI3 layers respectively, i.e. implying that the efficiency 

with which photogenerated charge is extracted is very similar in the two cases. We also determined 

the numerical fitting sensitivity for these values based upon an error sensitivity analysis of the fitting 

procedure (Supplementary Figure S4). 

These are interesting findings for two key reasons:  

i) the relatively high IQEs mean that holes generated in the titania-MAPI3 can be efficiently 

transported several microns (including through the zirconia-MAPI3) to be extracted at the 

carbon anode, and likewise electrons generated in the zirconia-MAPI3 layer to be 

extracted at the FTO cathode; 

ii) electrons and holes are transported with similar efficiencies through the two layers even 

though zirconia is a wide gap insulator and titania an n-type semiconductor – i.e. they 

have very different electrical properties. 

One could therefore surmise that the infused MAPI3 plays a dominant role in transporting 

photogenerated charge carriers over relatively large distances with recombination loss mainly at the 

interfaces. Free carrier diffusion lengths in various perovskites have been estimated to be up to several 

hundred microns 31, and so maybe this should not come as too great a surprise in these carbon stack 

cells. Clearly, the non-selectivity of the carbon (nanocrystalline graphene) anode does not suppress 

hole collection at short-circuit and we turn to this question later in the communication.  

In addition, a direct application of our optical model is to predict the optimal thickness of the optically 

active layers to achieve maximum short-circuit current density (𝐽SC). Figure 5a shows the predicted 

short-circuit current density as a function of the active layer thickness 𝑑, assuming an IQE of 100%, for 

a fixed thickness ratio of 2/3 between the m-TiOx and m-ZrOx (see Figure 1a). It can be seen that, 



while a thickness 𝑑 > 1 µm is needed to avoid substantial losses in absorption, increasing the active 

layer beyond 𝑑 = 2.5 µm increases the maximal 𝐽SC only marginally. We note that interference effects, 

generally expected at the lower active layer thicknesses, are small in these types of structures because 

of the poorly reflecting mesoporous carbon (back) contact.  

Whilst the 𝐽SC is expected to be relatively unaffected by the non-selectivity of the carbon electrode 

due to the reduced carrier concentration under short circuit conditions, it is well-known that the open-

circuit voltage (𝑉OC) is highly susceptible to non-selective contacts with non-optimized energy levels, 

in particular in systems exhibiting relatively high carrier mobilities where the carrier diffusion is 

considered long range 32, 33. In this regard it is likely that the carbon work function mismatch with the 

MAPI3 valence band edge produces a Schottky rather than a perfectly Ohmic contact. To clarify the 

role of the non-selective carbon anode, we combine the optical model with electrical device 

simulations based on a numerical drift-diffusion model33, 34. Figure 5b shows the qualitative thickness 

dependence of the open-circuit voltage, for the system depicted in Figure 1b, treating the carbon as 

a non-selective electrode with respect to the extraction of electrons and holes. The optically active 

layer is treated as an effective medium with an electron and hole mobility of 10 cm2V-1s-1, whereas the 

FTO/c-TiO2 layer is assumed an electron-selective cathode. For comparison, we have also included the 

idealized case of a selective, hole-only extracting anode. The corresponding effect of the selectivity of 

the anode and the thickness of the optically active layer on current-voltage characteristics is simulated 

in Figure 5c and Figure5d. 

In the simulations (Figure 5), a hole-selective contact is realized by setting the electron current to be 

zero at the anode contact. For the non-selective case, the contact instead acts as a sink for both 

electrons and holes: this is realized by requiring that the electron density at the contact maintains its 

equilibrium value during solar cell operating conditions, so that the electron density at the anode 

contact is given by 𝑁𝑐 exp(−𝜙𝐵𝑛 𝑘𝑇⁄ ). Here, 𝜙𝐵𝑛 is the Schottky barrier height for electrons at the 

anode contact (the difference between the conduction band edge of the active layer and the Fermi 

level of the anode), whereas 𝑁𝑐 is the effective density of states for electrons in the active layer. 

Furthermore, we assume a dielectric constant of 13, effective density of states of 1019 cm-3, and 

second-order recombination with a coefficient of 6 × 10−11 cm3/s. The corresponding carrier density 

profiles for the devices in Figure 5(c) and (d) under short-circuit and open-circuit conditions have been 

simulated in Figure 6.  

Based on these simulations, it can be concluded that the main loss induced by the non-selectivity of 

the carbon electrode manifests as a loss in the open-circuit voltage. The loss in photovoltage is a direct 

consequence of the large surface recombination caused by unintentional extraction of electrons at 

the carbon contact. While this loss can be reduced in principle by making the carbon electrode 

selective for the extraction of holes, this strategy might be non-trivial in practice, though attempts 

have already been made35. However, the surface recombination loss can also be reduced by making 

the active layer thicker. This is to be expected considering that most of the charge carriers are 

generated close to the c-TiO2 contact; by increasing the active layer thickness the number of electrons 

generated near the carbon contact can be reduced thus also reducing the unintentional extraction of 

electrons at this contact. Owing to the electron-selectivity of the c-TiO2 layer, holes in turn will drift-

diffuse towards the carbon contact, without substantial recombination in the bulk (be it first or second 

order). We note, however, that the surface recombination loss of electrons at the non-selective 

contact is also highly sensitive to the electron mobility.  

It should also be pointed out that the fill factor is strongly dependent on the prevailing charge 

transport and recombination parameters, as well as external resistive effects, and is therefore in 

general also influenced by the thickness of the optically active layer. Further experiments such as 



injection-CELIV 36, or intensity-dependent photocurrent measurements 37, would allow us to probe the 

recombination mechanisms at play. This in turn would facilitate more accurate  electro-optical device 

simulations, allowing us to make genuine layer thickness optimizations that account for most 

parameters as per conventional, planar cells 38-40. This work is underway. 

Conclusions   

The carbon stack architecture is widely viewed as a possible candidate for low cost, manufacturable 

perovskite solar cells. We have developed an optical model based upon composite mesoporous oxide-

perovskite absorbing, charge generating layers (titania-MAPI3 and zirconia-MAPI3) and using a Transfer 

Matrix approach simulated the External Quantum Efficiency of a previously empirically optimised 

operational device. Comparison of these simulations with the experimental EQEs has allowed us to 

estimate the Internal Quantum Efficiency (charge generation and extraction) to be of order 0.85 in 

both composite layers. This is a somewhat surprising result given the transport distances involved and 

the poor electrical properties of the zirconia in particular. We therefore conclude that the infused 

MAPI3 plays a significant role in the transport of electrons to the FTO cathode and holes to the carbon 

anode. Furthermore, we find that a thick junction is essential to reduce surface recombination (i.e. 

unintentional extraction) of electrons at the non-selective carbon contact. This unintentional 

extraction of electrons at the anode results in large open-circuit voltage losses in thinner junctions.  
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Figure 1. The carbon stack perovskite solar cell: (a) A multilayer schematic representation of the 

carbon stack perovskite solar cell built upon a glass-FTO (fluorine doped tin oxide - cathode) substrate 

with subsequent layers of dense, crystalline titania (c-TiO2), mesoporous titania and MAPI3 (perov), 

mesoporous zirconia and MAPI3 (perov), and carbon (nanocrystalline graphene) anode. The optically 

active layers are boxed in red. (b) An approximate flat band energy level diagram for this structure 

with values extracted from known literature or measured by Kelvin Probe Microscopy or Ultraviolet 

Photoemission Spectroscopy. 

 

  



 

 

Figure 2. Mesoporous oxide-perovskite composite layer optical constants: (a) Results of porosimetry 

obtained with dynamic ellipsometry with toluene infiltration of the two mesoporous layers. Both 

active materials (m-TiOx and m-ZrOx) have a pore radius on the scale of 10-20nm and can be shown 

to have volume fractions of respectively 51 and 49%. (b) Optical constants (refractive index and 

extinction coefficients) of the two active layers after MAPI3 infiltration, using the Bruggeman effective 

index model. The model assumes full infiltration as well as previously derived MAPI3 optical 

constants27.  



 

 

Figure 3. Spatial profile of photo-generated charges in the multilayer carbon stack solar cell at 400nm 

and 700nm incident light wavelengths (as examples). The generation profile is determined from a 

Transfer Matrix simulation of the optical field distribution assuming unity Internal Quantum Efficiency. 

Light is incident from left and propagates to the right. 

 

  



 

 

Figure 4. External Quantum Efficiencies (EQE) – experimental values compared with simulations for 

the case of (a) unity Internal Quantum Efficiency (IQE), and (b) non-unity, spectrally flat IQEs 

determined from a two-parameter fit (Supplementary Information Figure S5). The analysis yields 

IQE’s of 0.87 and 0.86 in the titania and zirconia layers respectively.  



 

Figure 5. Simulated thickness dependence: (a) shows the short-circuit current density vs. active layer 

thickness as predicted by the optical model, assuming an IQE of 100%; (b) shows the corresponding 

qualitative active layer thickness dependence of the open-circuit voltage, as obtained by electrical 

device simulations, for the case with a selective and a non-selective carbon contact. A thickness ratio 

of 2/3 between m-TiOx and m-ZrOx layers (see Figure 1a) within the optically active layer is assumed. 

The simulated current-voltage characteristics under 1 sun incident illumination are shown at an active 

layer thickness of (c) 2000 nm and (d) 200 nm. The solid and dashed lines correspond to the cases with 

an external series resistance (from the electrodes and the external wires) of 0 and 10 Ωcm2, 

respectively.        

 

 



 

Figure 6. The charge carrier distributions inside the active layer under 1 sun incident illumination using 

the combined optical and electrical device model simulated at short-circuit and open-circuit for the 

case with a non-selective carbon electrode. Here, the c-TiO2 contact is at 𝑧′ = 0, whereas the non-

selective carbon contact is at 𝑧′ = 𝑑. In all of the electrical device simulations, an energy level 

structure defined by Figure 1b is assumed. Furthermore, electron and hole mobilities of 10 cm2/Vs, a 

dielectric constant of 13, effective density of states of 1019 cm-3, and second-order recombination with 

a coefficient of 6 × 10−11 cm3/s are assumed.   
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Figure S1. Optical Constants used in our Transfer Matrix modelling - from top to bottom: compact 

TiO2, mesoporous Titania + air (51% porosity, Bruggeman model), mesoporous Zirconia + air (49% 

porosity, Bruggeman model, k is assumed 0 in the derivation of the final active layer constants, since 

this is likely a scattering relic), and MAPI perovskite as previously reported 27. 

 



 

 
Figure S2. (Top) Optical constants of Fluorine-doped SnO (FTO). A good ellipsometry fit was found 

using subsequent layers of high-doped and low-doped FTO on a layer of undoped SnO. (Bottom) 

experimental Reflectance and Transmittance data of an FTO substrate compared with simulations 

using the Transfer Matrix approach and determined optical constants. Model interference peaks are 

more pronounced (higher visibility) towards the high-energy wavelengths, most likely due to 

scattering effects and glass absorption, not accounted for in the model but simulation and experiment 

are in good agreement with respect to fringe position. 

 



 

 

Figure S3. Layer absorptions calculated using our optical model. Note how m-Carbon (both the carbon 

conductor and perovskite within it) starts to absorb significantly around 760nm, which is probably 

indicative of the reason for the precipitous EQE model/device divergence beyond this wavelength. 

 

 

Figure S4. Sensitivity analysis of the IQE fitting, where the error is calculated as the norm of the 

difference between the simulated and experimental EQE. Sensitivity within a 4x4% grid is found to be 

80 for the titania IQE and 10 for the zirconia IQE. 

 

 


