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Abstract. Slowed behavioral reaction time is associated with pathological brain changes, including white matter lesions, the
common clinical characteristic of subcortical ischemic vascular cognitive impairment (SIVCI). In the present study, reaction
time (RT) employing Trails B of the Trail Making Test, with responses capped at 300 s, was investigated in SIVCI (n = 27)
compared to cognitively healthy aging (CH) (n = 26). RT was significantly slowed in SIVCI compared to CH (Cohen’s d
effect size = 1.26). Furthermore, failure to complete Trails B within 300 s was also a characteristic of SIVCI although some
ostensibly cognitively healthy older adults also failed to complete within this time limit. Within the SIVCI group, RT did
not differ significantly with respect to whether the patients were classified as having moderate/severe or mild, periventricular
white matter changes visible on their diagnostic CT/MRI scans. This, together with the high degree of overlap in RT between
the two SIVCI subgroups, raises the possibility that using visible ratings scales in isolation may lead to the underestimation
of disease level.
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INTRODUCTION

Clinically, subcortical ischemic vascular cognitive
impairment (SIVCI) is characterized by periven-
tricular white matter changes (leukoaraiosis [LA])
[1–4]. Nevertheless, it can be difficult to determine
the clinical extent and relevance of white matter
lesions in SIVCI particularly as their full extent may
not be visible on diagnostic CT/MRI scans. In the
research domain, a significant body of evidence sup-
ports a strong association between pathological brain
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changes, including distributed or global structural and
functional breakdown in white matter, and cognitive
decline [5–13], particularly behavioral reaction time
(RT) [6–10, 14–25]. Testing RT may therefore be
an important adjunct to the diagnosis of SIVCI and
the determination of disease load that may not be
fully represented by the level of periventricular white
matter visible on diagnostic scans. Evidence is how-
ever lacking with respect to which RT tests may be
most sensitive to SIVCI. Furthermore, in principle,
examining RT using a variety of tests (whose vary-
ing designs and performance requirements can be
expected to recruit different processing networks, at
least in part) may improve the identification of slow-
ing in various aspects of behaviour relevant to every-
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day function in individuals living with SIVCI. To
address this issue, we examined RT using two tests in
the same patient and cognitively healthy (CH) control
groups.

In the first part of this study [26], RT was exam-
ined using a multi-trial, computer-based visual search
test, typically used in research. Participants were
instructed to respond to whether a pre-defined tar-
get was pointing to the left or right, when it appeared
in isolation and when it was surrounded by distract-
ing stimuli. RT was significantly slower in SIVCI
compared to CH under both conditions, but particu-
larly slow in the presence of distracting information1

(Cohen’s effect size 1.19). Within the SIVCI group,
RT did not however vary significantly with respect
to whether the level of periventricular LA (based on
the Age-Related White Matter Changes Rating Scale
(ARWMC) [27]) was mild or moderate/severe. This
lack of significance could be the consequence of rela-
tively low numbers of patients within each subgroup
(mild, n = 15, versus moderate/severe, n = 12). Nev-
ertheless, there was a high degree of variability in RT
within each subgroup, i.e., in those ostensibly with the
same level of disease, and substantial overlap in RT
between patients classified as having mild and moder-
ate/severe levels of disease. This raises the possibility
that the level of CT- or MRI-visible periventricular
white matter change alone does not fully explain the
highly significant RT slowing in SIVCI compared
to CH. RT results may also represent the impact
of ‘silent’ white matter disease and/or other disease
related changes in SIVCI. It is also possible that a dif-
ferent test of RT may be more representative of visible
periventricular white matter changes in SIVCI.

In this study, we examine RT using Trails B of the
Trail Making Test (TMT) [28, 29] in the same par-
ticipants who took part in the visual search RT study
[26]. Trails B was examined because it represents a
typical clinical test of RT and we wanted to examine
whether it provided RT results comparable to those
resulting from the use of a research-based test of such
function. Given that multiple processes underlie both
visual search and TMT (which also requires a serial
search strategy), it is likely that both tests recruit a
network of interconnected regions rather than single
brain regions, some of which will be recruited by both
tests. One can therefore expect some overlap in RT
performance. Nevertheless, there are differences with

1A high processing load condition designed to evoke a search
strategy involving serial attentional disengagement, shifting and
engagement throughout the stimuli until the target is found.

respect to factors such as processing demands, stim-
ulus processing, motor and oculomotor components,
performance strategies, and the number of trials pre-
sented [30–33]. Such differences can be expected, at
least in part, to lead to the recruitment of different
processing networks and thus potentially differential
sensitivity to the presence of disease.

Trails B lacks some of the benefits of the visual
search test [34] and can be difficult to perform,
particularly for those from clinical populations [15,
34–36]. Nevertheless, like the visual search test, per-
formance recruits distributed aspects of information
processing and thus can be highly sensitive to neuro-
logical impairment [29]. Furthermore, in contrast to
the visual search task, Trails B is already widely used
in clinical practice and research and does not require
a computer for administration.

METHODS

Ethical approval

Ethical approval was granted by the NHS Health
and Research Authority Wales Research Ethics Com-
mittee 6, and Research and Development, Cardiff
and Vale NHS Trust. Only participants who had the
capacity to make an informed decision were included
in the study (according to The Mental Capacity Act
2005/2019: Health Research Authority). All partici-
pants gave written informed consent.

Participants

On an incident patient basis, 27 patients with
SIVCI were recruited via their referral to the Mem-
ory Clinic at Llandough Hospital, Cardiff, Wales,
UK. They were diagnosed with minor or major neu-
rocognitive disorder associated with lacunar infarcts
and ischemic white matter lesions (LA), located
predominantly subcortically [3, 37]. In accord with
normal clinical practice, diagnosis included neu-
roimaging (typically CT scans, or MRI scans if
requested) from which the extent of periventric-
ular LA was assessed using the ARWMC Scale
[27], detailed clinical history, routine laboratory
tests and a neuropsychological test battery includ-
ing, Addenbrooke’s Cognitive Examination III [37],
the Montreal Cognitive Assessment (MoCA) [38],
Test of Premorbid Functioning [39], National Adult
Reading Test [40], and the Hospital Anxiety and
Depression Scale [41]. Inclusion criteria included
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capacity to provide informed consent (as assessed
by clinicians according to The Mental Capacity
act 2005/2019: Health Research Authority), mild
to moderate cognitive impairment (MoCA score
between 12 and 25 and/or Addenbrooke’s Cognitive
Examination III score between 50 and 90), normal
or corrected-to-normal vision and hearing, and phys-
ical ability to perform the research tasks. Exclusion
criteria included other significant contributory cause
of cognitive impairment (e.g., clinically significant
neurological, psychiatric, psychological or medical
conditions), use of psychoactive drugs (at present or
a history thereof) of substance or alcohol dependency,
and problems with motor or manual dexterity.

The CH group (n = 26) were recruited from rel-
atives of patients attending the Llandough Memory
Clinic who were participating in this study, research
volunteers from the Centre for Ageing and Demen-
tia Research (CADR) and the older adult research
volunteer database at Swansea University. Inclu-
sion criteria included MoCA scores of >25, normal
or corrected-to-normal vision and hearing, and the
physical ability to perform the research tasks. Exclu-
sion criteria included self-reported cognitive change
or impairment, or visits to their general practi-
tioner or memory services regarding concerns about
such function, significant neurological, psychiatric,
or medical condition, psychoactive drug use, and cur-
rent or a history of substance or alcohol dependency.
The use of prescribed and non-prescribed medication
was recorded but not controlled.

Within the SIVCI group, CT or MRI scan-visible
periventricular white matter change was assessed
using the ARWMC scale [27], with 0 = no lesions,
1 = focal lesions, 2 = beginning of lesion confluence,
3 = diffuse involvement of the entire region. Fifteen
patients were diagnosed with mild (ARWMC score
of 0 or 1), and 12 were diagnosed with moder-
ate to severe (ARWMC score of 2 or 3), visible
periventricular white matter change. Assessment was
undertaken by two experienced professionals in the
field (AB and AT) who independently rated each
scan, yielding a 93% (25 out of the 27 scans) con-
sensus rate. The remaining two scores were agreed
by consensus after discussion.

The Trail Making Test

Trails B of the TMT [28, 29], was administered
according to standard administration instructions
[29]. RT was indicated by the time taken to com-
plete the test (with the time taken to self-correct any

error included in the score), with a performance time
limit of 300 s in accordance with typical clinical time
limits [29]. Participants were provided with the stan-
dard practice trial. Performance feedback was not
provided.

Data analysis

The data from individuals who failed to complete
Trails B within 300 s were included in the statisti-
cal analysis, but RT was capped at 300 s [29]. As
the RT data was generally normally distributed, with
variance similar for both groups, parametric analysis
was employed. Note, however, that in light of the sig-
nificant polemic surrounding the issues of statistical
analysis in RT research, the data were also analyzed
using non-parametric tests. The results of these tests
were the same as those using the parametric tests and
thus are not described here.

RESULTS

Demographics

The demographic details are displayed in Table 1.
Independent samples t-test analysis revealed no

significant differences in mean age, anxiety, or
depression scores between the CH and SIVCI groups
[all p-values >0.05]. Mean educational level was
however significantly lower for the SIVCI compared
to the CH group [t (44.72) = 3.7, p = 0.001, two tailed,
d = 1.005, 95% CI (1.5, 5.21)].

Reaction time

The group mean RT scores are displayed in Table 2.

Table 1
Group mean demographic details for the CH and the SIVCI patient

groups. Standard deviation in parenthesis

CH SIVCI Difference in
mean values

(CH – SIVCI)

Total N 26 27
Age mean (y) 76.19 (5.51) 78.11 (6.14) –1.92
Age range 70–86 68–91
Gender (N) 26.9% Male, 51.9% Male,

73.1% Female 48.1% Female
Years in full time 15.69 (3.87) 12.33 (2.72) 3.36

education
Educational range 10–22 8–21
MoCA score 28.12 (1.42) 19.93 (3.28) 8.19
Anxiety 5.7 (3.8) 6.08 (3.68) –0.38
Depression 2.9 (2.86) 4.29 (3.43) –1.39
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Table 2
Group mean RT (in seconds; standard deviation in parenthesis) for

Trails B

RT CH RT SIVCI Difference in
(n = 26) (n = 27) means

(CH – SIVCI)

Trails B 135.81 (103.1) 255.38 (85.8) –119.57

Previous reports that Trails B can be a particularly
difficult task to perform, especially for those from
clinical populations [15–18], are supported by the
results of the present study as 25.9% of the CH and
73.1% of the SIVCI groups failed to complete within
300 s. To overcome this issue, participants who failed
to complete within this time limit were included but
their data was capped at the maximum 300 s.

For Trails B, independent t-test analysis revealed
that RT was again significantly slower for the
SIVCI compared to the CH group [t (51) = –4.6,
p < 0.001, Effect size, Cohen’s d = 1.26, 95% CI
(–171.8, –67.35)]. There was no significant cor-
relation between Trails B RT and educational
level for either the CH [r = 0.056, p = 0.79] or
SIVCI group, [r = 0.26, p = 0.19] and the results did
not vary significantly with respect to gender [all
p-values >0.05].

Reaction time and level of white matter change in
SIVCI

Group mean level (mild or moderate/severe) of
visible periventricular white matter lesions and Reac-
tion time (s) for the SIVCI group is displayed in
Table 3.

Ten out of the fifteen patients (66.7%) with a mild
level of white matter disease, and ten out of the
twelve patients (83.3%) with a moderate/severe level
of white matter disease failed to complete Trails B
within the 300 s time limit.

The mean RT for the moderate/severe group was
approximately 33 s slower than that for the mild
group, but this difference failed to reach significance
[p > 0.05].

Table 3
Mean level (mild or moderate/severe) of visible periventricular
white matter lesions and Reaction time (seconds) for the SIVCI

group. Standard deviation in parenthesis

Mean level of white Number of Trails B
matter disease participants Mean RT

Mild 0.6 (0.51) 15 240.39 (100.78)
Moderate/severe 2.42 (0.52) 12 274.12 (61.5)

DISCUSSION

Reaction time in SIVCI compared to CH

In a recent study [26], we examined RT in SIVCI
using a multi-trial, computer-based visual search test.
Although this test revealed significantly slower RT in
SIVCI compared to CH, RT did not vary significantly
with respect to whether the level of periventricular
white matter change in SIVCI was mild or mod-
erate/severe [27]. We [26] suggested this lack of
significance could be the consequence of relatively
low numbers of patients within each subgroup (mild,
n = 15, versus moderate/severe, n = 12). There was,
however, a high degree of variability in RT within
each subgroup, i.e., in those ostensibly with the same
disease level, together with considerable RT overlap
between those classified as having mild and mod-
erate/severe levels of disease. This suggests that the
level of CT- or MRI-visible periventricular white mat-
ter change alone might not fully explain the highly
significant slowing of RT in SIVCI compared to
CH, as RT slowing may also represent the impact
of ‘silent’ white matter disease and/or other disease
related changes in SIVCI [6–10, 14–25]. It is also
possible that the results from different RT tests may
be more closely associated with visible periventric-
ular white matter changes in SIVCI. The aim of this
study was therefore to examine RT using Trails B of
the TMT, to measure RT in SIVCI compared to CH
in the same individuals taking the visual search test.

Trails B revealed a significantly slowed RT in
SIVCI compared to CH, with a Cohen’s effect size of
1.26. It is clear that for the same participants, Trails
B RT appears similarly sensitive to that evoked by
the visual search test, particularly when the target
was surrounded by distracting information, which
resulted in a Cohen’s effect size of 1.19 [26]. Both
tests therefore provide robust evidence of signifi-
cant RT slowing in SIVCI compared to CH. The
similarity of results suggests that both the Trails B
test and the visual search test used in our previous
study [26] share some common information process-
ing networks, and/or that pathological change is so
widespread that many tests of RT (which is also a dis-
tributed network function) will show a similar degree
of abnormality in SIVCI.

Level of completion for Trails B

In the present study, 25.9% of CH older adults and
of 73.1% of patients with SIVCI failed to complete



E. Richards et al. / Reaction time in SIVCI 863

Trails B within the 300 s time limit. Furthermore,
within the SIVCI group, ten out of fifteen patients
(66.7%) with mild white matter disease, and ten out
of the twelve patients (83.3%) with moderate/severe
levels, failed to complete in time.

To overcome this issue, the RT of participants who
failed to complete were included but capped at the
maximum 300 s. Arguably, imposing such a time
limit may mask the ‘true’ extent of slowing. However,
this has to be considered alongside the possibility
that allowing any longer for completion invokes a
greater likelihood of effects such as lack of con-
centration. Nevertheless, despite this time limit, RT
was still significantly slowed in SIVCI compared to
CH. Furthermore, in accordance with findings from
other studies, our results indicate that failure to com-
plete Trails B in time per se is indicative of disease
[16–18], specifically for SIVCI in this study. Our
results are more surprising with respect to the per-
formance of the CH group, with approximately 25%
failing to complete Trails B in time. Unfortunately,
we could not obtain CT/MRI scans for the CH group.
Although white matter disease is a feature of cog-
nitively healthy aging, it is possible that those who
failed to complete in time were not as ‘cognitively
healthy’ as their results of the neuropsychological
tests used in our study would suggest. Despite this
potential overlap in higher RTs with some individu-
als within the SIVCI group, RT was still significantly
slower in SIVCI compared to CH.

The relationship between the level of visible
periventricular white matter change and RT
in SIVCI

In our previous study [26], there was no signifi-
cant difference in visual search-related RT between
the mild versus moderate/severe white matter change
subgroups of the SIVCI group. We argued that a pos-
sible contributory factor was the test used to measure
RT. However, the present study reveals that Trails
B RT also did not vary significantly between the
SIVCI subgroups. These results provide further sup-
port for the suggestion that the level of periventricular
white matter disease visible on typical CT and MRI
scans may not fully represent the level of pathol-
ogy in SIVCI. However, such speculation has to be
tempered again by the relatively low numbers of par-
ticipants in this study (the result of known difficulties
in recruiting patients with this strict SIVCI diagno-
sis) and in particular the relatively low numbers of
patients within each SIVCI subgroup. Nevertheless,

the high degree of within-group variability in RT, in
both groups but particularly the mild group, and the
substantial overlap in RT between groups with osten-
sibly different levels of periventricular white matter
changes (see Table 3) provides some indication that
CT/MRI-visible levels of periventricular white matter
changes alone do not fully account for the RT results.

Potential study limitations and future research

Potential study limitations include the aforemen-
tioned relatively low participant numbers within the
SIVCI subgroups with respect to determining the
relationship between periventricular white matter
change and RT (although the effect sizes for the RT
were high and indicative of an appropriately powered
study for the measurement of RT per se in SIVCI).
The relatively low patient numbers reflect the dif-
ficulty in recruiting participants with respect to the
inclusion and exclusion criteria necessary for the
inclusion of individuals with strictly defined SIVCI
[4]. In addition, we were unable to perform CT/MRI
scans for the CH control group, and also were unable
to perform DTI scans for either group. This precluded
the ability to examine the relationship between global
measure of white matter integrity (and other patho-
logical changes) and RT. Examination of the specific
networks recruited by Trails B and the visual search
test and any pathological change affecting these net-
works was also not possible.

In terms of future studies, we suggest a repeat of the
current study with greater participant numbers and a
wider range of RT tests and with a significant neu-
roimaging component with longitudinal assessment,
including voxel-based morphometry to assess grey
matter volume change, diffusion-weighted imaging
of white matter integrity (especially markers of
demyelination), and the performance of RT tests dur-
ing fMRI and resting state, in order to gain evidence
of any relationship between RT and structural and
functional changes over time.

Conclusion

In the present study, it was not possible to pro-
vide independent evidence of the well-established
relationship between white matter integrity and
behavioral RT [5–25]; it is possible however, that
slowing in SIVCI may also reflect ‘silent’ white mat-
ter changes and the presence of other pathological
changes such as demyelination, atrophy, micro-
infarcts, grey matter, and neurochemical changes
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[42]. Although research with greater participant num-
bers within SIVCI subgroups is required, it is possible
that interpreting CT/MRI-visible ratings of periven-
tricular white matter changes in isolation may lead to
the underestimation of disease burden per se, and an
underestimation of its variability within individuals
classified as having the same level of disease.
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