No Cover Image

E-Thesis 658 views 713 downloads

User Experience Enchanced Interface ad Controller Design for Human-Robot Interaction / Junshen Chen

Swansea University Author: Junshen Chen

DOI (Published version): 10.23889/Suthesis.52455

Abstract

The robotic technologies have been well developed recently in various fields, such as medical services, industrial manufacture and aerospace. Despite their rapid development, how to deal with the uncertain envi-ronment during human-robot interactions effectively still remains un-resolved. The current...

Full description

Published: Swansea 2019
Institution: Swansea University
Degree level: Doctoral
Degree name: Ph.D
URI: https://cronfa.swan.ac.uk/Record/cronfa52455
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2019-10-15T20:24:09Z
last_indexed 2023-01-11T14:29:36Z
id cronfa52455
recordtype RisThesis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-12-18T09:50:20.9223638</datestamp><bib-version>v2</bib-version><id>52455</id><entry>2019-10-15</entry><title>User Experience Enchanced Interface ad Controller Design for Human-Robot Interaction</title><swanseaauthors><author><sid>68261945e3976dfebf1a1d9941b291c5</sid><ORCID>NULL</ORCID><firstname>Junshen</firstname><surname>Chen</surname><name>Junshen Chen</name><active>true</active><ethesisStudent>true</ethesisStudent></author></swanseaauthors><date>2019-10-15</date><abstract>The robotic technologies have been well developed recently in various &#xFB01;elds, such as medical services, industrial manufacture and aerospace. Despite their rapid development, how to deal with the uncertain envi-ronment during human-robot interactions e&#xFB00;ectively still remains un-resolved. The current arti&#xFB01;cial intelligence (AI) technology does not support robots to ful&#xFB01;l complex tasks without human&#x2019;s guidance. Thus, teleoperation, which means remotely controlling a robot by a human op-erator, is indispensable in many scenarios. It is an important and useful tool in research &#xFB01;elds. This thesis focuses on the study of designing a user experience (UX) enhanced robot controller, and human-robot in-teraction interfaces that try providing human operators an immersion perception of teleoperation. Several works have been done to achieve the goal.First, to control a telerobot smoothly, a customised variable gain con-trol method is proposed where the sti&#xFB00;ness of the telerobot varies with the muscle activation level extracted from signals collected by the surface electromyograph(sEMG) devices. Second, two main works are conducted to improve the user-friendliness of the interaction interfaces. One is that force feedback is incorporated into the framework providing operators with haptic feedback to remotely manipulate target objects. Given the high cost of force sensor, in this part of work, a haptic force estimation algorithm is proposed where force sensor is no longer needed. The other main work is developing a visual servo control system, where a stereo camera is mounted on the head of a dual arm robots o&#xFB00;ering operators real-time working situations. In order to compensate the internal and ex-ternal uncertainties and accurately track the stereo camera&#x2019;s view angles along planned trajectories, a deterministic learning techniques is utilised, which enables reusing the learnt knowledge before current dynamics changes and thus features increasing the learning e&#xFB03;ciency. Third, in-stead of sending commands to the telerobts by joy-sticks, keyboards or demonstrations, the telerobts are controlled directly by the upper limb motion of the human operator in this thesis. Algorithm that utilised the motion signals from inertial measurement unit (IMU) sensor to captures humans&#x2019; upper limb motion is designed. The skeleton of the operator is detected by Kinect V2 and then transformed and mapped into the joint positions of the controlled robot arm. In this way, the upper limb mo-tion signals from the operator is able to act as reference trajectories to the telerobts. A more superior neural networks (NN) based trajectory controller is also designed to track the generated reference trajectory. Fourth, to further enhance the human immersion perception of teleop-eration, the virtual reality (VR) technique is incorporated such that the operator can make interaction and adjustment of robots easier and more accurate from a robot&#x2019;s perspective.Comparative experiments have been performed to demonstrate the e&#xFB00;ectiveness of the proposed design scheme. Tests with human subjects were also carried out for evaluating the interface design.</abstract><type>E-Thesis</type><journal/><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication>Swansea</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords>Teleoperation, HRI, User Experience</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-12-31</publishedDate><doi>10.23889/Suthesis.52455</doi><url/><notes/><college>COLLEGE NANME</college><department>College of Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><degreelevel>Doctoral</degreelevel><degreename>Ph.D</degreename><apcterm/><funders/><projectreference/><lastEdited>2022-12-18T09:50:20.9223638</lastEdited><Created>2019-10-15T16:54:20.2347559</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Junshen</firstname><surname>Chen</surname><orcid>NULL</orcid><order>1</order></author></authors><documents><document><filename>0052455-15102019165711.pdf</filename><originalFilename>Junshen_Chen_PhD_Thesis_Final.pdf</originalFilename><uploaded>2019-10-15T16:57:11.1530000</uploaded><type>Output</type><contentLength>16677603</contentLength><contentType>application/pdf</contentType><version>E-Thesis &#x2013; open access</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-10-14T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2022-12-18T09:50:20.9223638 v2 52455 2019-10-15 User Experience Enchanced Interface ad Controller Design for Human-Robot Interaction 68261945e3976dfebf1a1d9941b291c5 NULL Junshen Chen Junshen Chen true true 2019-10-15 The robotic technologies have been well developed recently in various fields, such as medical services, industrial manufacture and aerospace. Despite their rapid development, how to deal with the uncertain envi-ronment during human-robot interactions effectively still remains un-resolved. The current artificial intelligence (AI) technology does not support robots to fulfil complex tasks without human’s guidance. Thus, teleoperation, which means remotely controlling a robot by a human op-erator, is indispensable in many scenarios. It is an important and useful tool in research fields. This thesis focuses on the study of designing a user experience (UX) enhanced robot controller, and human-robot in-teraction interfaces that try providing human operators an immersion perception of teleoperation. Several works have been done to achieve the goal.First, to control a telerobot smoothly, a customised variable gain con-trol method is proposed where the stiffness of the telerobot varies with the muscle activation level extracted from signals collected by the surface electromyograph(sEMG) devices. Second, two main works are conducted to improve the user-friendliness of the interaction interfaces. One is that force feedback is incorporated into the framework providing operators with haptic feedback to remotely manipulate target objects. Given the high cost of force sensor, in this part of work, a haptic force estimation algorithm is proposed where force sensor is no longer needed. The other main work is developing a visual servo control system, where a stereo camera is mounted on the head of a dual arm robots offering operators real-time working situations. In order to compensate the internal and ex-ternal uncertainties and accurately track the stereo camera’s view angles along planned trajectories, a deterministic learning techniques is utilised, which enables reusing the learnt knowledge before current dynamics changes and thus features increasing the learning efficiency. Third, in-stead of sending commands to the telerobts by joy-sticks, keyboards or demonstrations, the telerobts are controlled directly by the upper limb motion of the human operator in this thesis. Algorithm that utilised the motion signals from inertial measurement unit (IMU) sensor to captures humans’ upper limb motion is designed. The skeleton of the operator is detected by Kinect V2 and then transformed and mapped into the joint positions of the controlled robot arm. In this way, the upper limb mo-tion signals from the operator is able to act as reference trajectories to the telerobts. A more superior neural networks (NN) based trajectory controller is also designed to track the generated reference trajectory. Fourth, to further enhance the human immersion perception of teleop-eration, the virtual reality (VR) technique is incorporated such that the operator can make interaction and adjustment of robots easier and more accurate from a robot’s perspective.Comparative experiments have been performed to demonstrate the effectiveness of the proposed design scheme. Tests with human subjects were also carried out for evaluating the interface design. E-Thesis Swansea Teleoperation, HRI, User Experience 31 12 2019 2019-12-31 10.23889/Suthesis.52455 COLLEGE NANME College of Engineering COLLEGE CODE Swansea University Doctoral Ph.D 2022-12-18T09:50:20.9223638 2019-10-15T16:54:20.2347559 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Junshen Chen NULL 1 0052455-15102019165711.pdf Junshen_Chen_PhD_Thesis_Final.pdf 2019-10-15T16:57:11.1530000 Output 16677603 application/pdf E-Thesis – open access true 2019-10-14T00:00:00.0000000 true
title User Experience Enchanced Interface ad Controller Design for Human-Robot Interaction
spellingShingle User Experience Enchanced Interface ad Controller Design for Human-Robot Interaction
Junshen Chen
title_short User Experience Enchanced Interface ad Controller Design for Human-Robot Interaction
title_full User Experience Enchanced Interface ad Controller Design for Human-Robot Interaction
title_fullStr User Experience Enchanced Interface ad Controller Design for Human-Robot Interaction
title_full_unstemmed User Experience Enchanced Interface ad Controller Design for Human-Robot Interaction
title_sort User Experience Enchanced Interface ad Controller Design for Human-Robot Interaction
author_id_str_mv 68261945e3976dfebf1a1d9941b291c5
author_id_fullname_str_mv 68261945e3976dfebf1a1d9941b291c5_***_Junshen Chen
author Junshen Chen
author2 Junshen Chen
format E-Thesis
publishDate 2019
institution Swansea University
doi_str_mv 10.23889/Suthesis.52455
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description The robotic technologies have been well developed recently in various fields, such as medical services, industrial manufacture and aerospace. Despite their rapid development, how to deal with the uncertain envi-ronment during human-robot interactions effectively still remains un-resolved. The current artificial intelligence (AI) technology does not support robots to fulfil complex tasks without human’s guidance. Thus, teleoperation, which means remotely controlling a robot by a human op-erator, is indispensable in many scenarios. It is an important and useful tool in research fields. This thesis focuses on the study of designing a user experience (UX) enhanced robot controller, and human-robot in-teraction interfaces that try providing human operators an immersion perception of teleoperation. Several works have been done to achieve the goal.First, to control a telerobot smoothly, a customised variable gain con-trol method is proposed where the stiffness of the telerobot varies with the muscle activation level extracted from signals collected by the surface electromyograph(sEMG) devices. Second, two main works are conducted to improve the user-friendliness of the interaction interfaces. One is that force feedback is incorporated into the framework providing operators with haptic feedback to remotely manipulate target objects. Given the high cost of force sensor, in this part of work, a haptic force estimation algorithm is proposed where force sensor is no longer needed. The other main work is developing a visual servo control system, where a stereo camera is mounted on the head of a dual arm robots offering operators real-time working situations. In order to compensate the internal and ex-ternal uncertainties and accurately track the stereo camera’s view angles along planned trajectories, a deterministic learning techniques is utilised, which enables reusing the learnt knowledge before current dynamics changes and thus features increasing the learning efficiency. Third, in-stead of sending commands to the telerobts by joy-sticks, keyboards or demonstrations, the telerobts are controlled directly by the upper limb motion of the human operator in this thesis. Algorithm that utilised the motion signals from inertial measurement unit (IMU) sensor to captures humans’ upper limb motion is designed. The skeleton of the operator is detected by Kinect V2 and then transformed and mapped into the joint positions of the controlled robot arm. In this way, the upper limb mo-tion signals from the operator is able to act as reference trajectories to the telerobts. A more superior neural networks (NN) based trajectory controller is also designed to track the generated reference trajectory. Fourth, to further enhance the human immersion perception of teleop-eration, the virtual reality (VR) technique is incorporated such that the operator can make interaction and adjustment of robots easier and more accurate from a robot’s perspective.Comparative experiments have been performed to demonstrate the effectiveness of the proposed design scheme. Tests with human subjects were also carried out for evaluating the interface design.
published_date 2019-12-31T04:04:50Z
_version_ 1763753370656440320
score 10.998138