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Abstract 

A strongly nonlinear system often has multiple solutions under harmonic excitation. However, 

measuring all of these multiple responses in structural dynamics is challenging because often 

one solution is unstable and difficult to obtain. The standard stepped sine approach is to fix the 

harmonic excitation force amplitude, and step the excitation frequency up or down. This leads 

to the well-known jump phenomenon, and captures at most two stable solutions. Alternatively, 

the excitation frequency can be fixed and the amplitude swept up or down, although this also 

leads to jumps in the response. Recently, experimental continuation methods have successfully 

measured all solutions, including the unstable solutions, via active control. This paper takes a 

different approach and exploits the dynamics of the electromagnetic exciter to both stabilize 

the unstable solution, and also to track the solutions continuously, without any jumps. This is 

achieved by monotonically increasing or decreasing the voltage applied to the exciter at a fixed 

frequency, and using the force drop-out phenomenon through the resonance to control the force 

applied to the structure. In these tests, the input voltage then defines the continuation parameter, 

rather than force amplitude or frequency in the standard tests. The obvious advantage of this 

method is that there is no feedback control of the excitation and it is easy to implement. A 

strongly nonlinear single degree of freedom system is used to demonstrate this method. 
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Highlights: 

 The force drop-out phenomenon at resonance in strongly nonlinear systems is exploited 

for fixed frequency sinusoidal tests. 

 The input voltage of electromagnetic exciter is considered as a natural continuation 

parameter for strongly nonlinear systems. 

 A fixed frequency test is proposed to measure multivalued response curves of strongly 

nonlinear systems without feedback control of the excitation. 

1. Introduction 

Engineering structures are often treated as linear structures, although in many cases this is 

clearly an approximation and simplification. These structures often contain nonlinearities, and 

typical sources of nonlinearities in structural dynamics include geometric nonlinearity, material 

nonlinearity, inertial nonlinearity, damping dissipation and nonlinearities caused by boundary 

conditions [1]. Clearly, the relationship between the steady-state harmonic excitation and the 

periodic response is linear for a linear system, or approximately so for low amplitude excitation 

of nonlinear structures. For a strongly nonlinear system, jump phenomena may occur because 

of the multivalued nature of the response curves [2]. Such strongly nonlinear behavior can be 

found in many nonlinear structures, such as beams with local nonlinearities [4], turbine blades 

with nonlinear contacts [5], bolted joint structures [6], complex aerospace structures [7] and 

even in micro-electromechanical systems (MEMS) [8]. The multiple solutions of nonlinear 

systems are a clear difference between linear and strongly nonlinear oscillations[3]. 

The multivalued response of strongly nonlinear systems has been discussed in detail [2] in 

the theoretical study of nonlinear vibration. In recent years, different numerical methods and 

software toolkits have been developed, which can be used to solve for the periodic solutions of 

strongly nonlinear systems [9], including the shooting method based on Newmark time 

integration [10], orthogonal collocation methods and the harmonic balance method in the 

frequency domain [11]. These methods are mainly based on a continuation procedure [12]. The 

orthogonal collocation methods have developed a variety of software toolkits such as COLSYS, 

AUTO, MATCONT and COCO [9]. The harmonic balance method can also be used in the 

vibration analysis of large-scale nonlinear finite element models [5][13]. However, significant 

difficulties and challenges still exist in the measurement of the multivalued response curve of 

a strongly nonlinear system. 

In modal testing, the electromagnetic shaker is the most common type of exciter in which the 

supplied excitation signals can be continuous, such as sinusoidal and random, or transient, such 
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as the pulse and chirp. These different excitation signals have their own advantages and 

disadvantages [14]. Generally, sinusoidal excitation is an important periodic excitation used to 

investigate the nonlinear dynamic characteristics of structures because the frequency and 

amplitude can be accurately controlled independently. However, the electromagnetic shaker is 

not an ideal source of energy, and the actual amplitude of the excitation force will change due 

to the vibration of the structure, especially near resonance. A force drop-out phenomenon can 

happen in the swept sine test of a linear structure or a nonlinear structure [15][16] and this has 

been discussed by several scholars [17][18][19]. Furthermore the magnetic field of the exciter 

is generally considered to be nonlinear and can be assumed to be linear only under small 

vibration conditions. As the armature moves in the magnetic field the large vibration near 

resonance causes the interaction force between the exciter and the structure to become very 

small [14]. Generally speaking, if the structure under test is linear, the influence of this drop-

out phenomena can be ignored in the calculation of the frequency response function (FRF) 

measurement because the FRFs are independent of excitation amplitude. However, this force 

drop-out cannot be ignored for nonlinear structures [20].  

In the theoretical analysis of nonlinear systems the input force is commonly assumed to be a 

simple harmonic excitation with a constant force level. In order to compare the theoretical and 

experimental results, the actual excitation force in experiments is often tuned to ensure a 

constant amplitude harmonic excitation force. Controlled-level vibration tests (CLV) are 

developed to keep the force level constant at resonance using nonlinear force control algorithms 

[14][15]. This method has been implemented in many commercial products and is widely used. 

Example experiments where the force amplitude of the electromagnetic shaker is kept constant 

have been widely reported [4][9][21]. Often there are three possible steady-state periodic 

responses in the frequency response curve of a strongly nonlinear system near resonance, which 

are usually termed the higher, middle and lower branches, depending on the response amplitude. 

The actual response obtained will depend on the initial conditions and the phase relationship 

between the response and the force will be different. The middle branch is often unstable and 

cannot be observed in practice [22]. The CLV test method can obtain the higher and lower 

solution branches of strongly nonlinear systems through forward and backward swept sine tests, 

but cannot obtain the middle branch. The continuous response curve cannot be measured in a 

CLV test, which leads to the occurrence of the jump phenomenon in experiments.  

In order to measure the continuous frequency response curve of a strongly nonlinear system, 

the arc length continuation method in nonlinear numerical computation has been introduced 

into experimental tests as a control strategy and an intelligent nonlinear coupling analysis 

(INCA) method was proposed by Ferreira et al. [14][23]. Although this technique gives good 

results, it is difficult to choose the control parameters in the experiments to obtain the derivative 

from the finite difference and the appropriate radius of the constraint equation [23]. Remarkably, 
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the unstable branch is measured by this method. The explanation from Ferreira is that although 

the nonlinear structure itself has an unstable response, the structure composed of the shaker 

plus the nonlinear structure is stable [14]; the stablizing effect of the exciter will also be used 

in the method proposed in this paper.  

Recently, a control-based continuation method (CBC) for experimental bifurcation analysis 

has been developed by Sieber et al. [24][25]. This method can be used to measure the 

multivalued frequency response curves of strongly nonlinear systems. The detailed 

development of this method can be found in reference [26]. Barton et al. [27] applied this 

method to a nonlinear energy harvester based on the idea of numerical continuation to perform 

pseudo-arc length continuation through feedback control to measure the nonlinear frequency 

response curve and demonstrated good results. Furthermore, they kept the forcing frequency 

fixed rather than the forcing amplitude to measure the response curve for each given frequency 

[28][29]. Because the forcing frequency doesn’t need to be controlled, the path-following 

techniques used in CBC could be simplified, resulting in a significant speed up of the method. 

In addition, an indirect method for the synthesis of nonlinear frequency responses near an 

isolated resonance was developed by Peter et al. [30]. This method is based on standard linear 

and nonlinear modal testing using a variant of the phase resonance method in order to avoid the 

difficulties related to the nonlinear frequency response function measurements. In 1979, Nayfeh 

and Mook proposed two hypotheses on the experimental measurement of jump phenomena of 

a nonlinear system [2]. One is that if the experiment is performed in which the amplitude of the 

excitation is kept constant, while the frequency of the excitation is very slowly swept up or 

down through the resonance (constant force tests), and a jump phenomenon will be observed. 

This hypothesis has been verified in many experiments [4][9][21]. The alternative approach is 

to perform the experiment with the frequency of excitation held fixed, while the amplitude of 

the excitation is varied slowly (fixed frequency tests), and a similar jump phenomenon may be 

observed. However, this type of test is rarely undertaken and hence rarely reported. 

In this paper, the force drop-out phenomenon for electromagnetic exciters in a strongly 

nonlinear system is exploited in fixed frequency tests. When the input voltage of the shaker 

increases slowly in a fixed frequency test, the amplitude of the fundamental frequency 

component of the excitation force to the structure will not increase monotonically, but increases 

at first, then decreases, and finally increases at frequencies near resonance; in contrast the 

response amplitude keeps increasing. During this sweep, there are multiple (usually three) 

response amplitudes corresponding to the same excitation amplitude. This phenomenon only 

occurs in strongly nonlinear systems and the effect is different from the force drop-out near 

resonance for a linear structure. Thus the input voltage of the electromagnetic shaker can be 

considered as a natural continuation parameter in fixed frequency tests. Since the input voltage 

varies monotonically (for example, increases linearly), the multivalued response curve can be 
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guided smoothly through the turning point and traverse the bifurcation point of the solution. 

Such a continuation parameter has physical significance in practice and can be controlled 

directly. Therefore, the test process will be greatly simplified and is easy to be implement. 

Although the arc length and the pseudo arc length in the previously introduced INCA [14][23] 

and CBC methods [24][25] are also used as the continuation parameters, they have geometrical 

rather than physical meaning and cannot be controlled directly. 

The structure of this paper is as follows. In Section 2, force drop-out phenomena are 

introduced through a weakly and a strongly nonlinear system. In particular, a new force drop-

out phenomenon peculiar to the strongly nonlinear system found in fixed frequency sinusoidal 

tests is discussed in detail. In Section 3, the relationship between the excitation and input 

voltage, and the relationship between the response and input voltage are discussed respectively. 

It is found that the input voltage can be considered as an ideal continuation parameter. In 

Section 4, an experimental measurement method of multivalued responses of a strongly 

nonlinear system is proposed based on the force drop-out phenomena, taking the input voltage 

as a continuation parameter. Measured results are given in Section 5, where influence of 

excitation on the measured multivalued responses are discussed. Section 6 draws the 

conclusions of this paper. 

 

2. Response Measurement of Nonlinear Structures 

Stepped or swept sine tests are commonly used for nonlinear systems as they are easy to 

perform and emphasize any nonlinear behavior in the structure. Furthermore, such tests are 

often used in the analysis of nonlinear systems and so the measurements can be directly 

compared to simulated results. There are two types of sine test commonly used for structures: 

the fixed force test and the fixed frequency test, as shown in Fig. 1. In the fixed force test, 

shown in Fig. 1(a), the harmonic input force amplitude is fixed and the excitation frequency is 

stepped up or down in small increments (or slowly swept) and the response measured at the 

excitation frequency. At each frequency a delay before the measurement is taken allows the 

response of the structure to reach the steady state. During the step from one frequency to the 

next, the force is continuous to minimize the transients and ensure the response stays on the 

solution branch of interest. The test is then repeated for a different force amplitude. In contrast, 

the excitation frequency may be fixed and the force amplitude slowly increased or decreased, 

as shown in Fig. 1 (b). 

Both the fixed force amplitude and the fixed excitation frequency need feedback control on 

the force since the output from the signal analyzer will be a voltage input to the shaker amplifier. 

The force drop-out phenomenon, discussed in depth in the next section, means that the force 
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will reduce at resonance for a fixed voltage. Most commercial analyzers used for stepped sine 

testing will include facilities for this force control, although this does significantly increase the 

length of the test. However, the frequency response functions obtained using this approach can 

be compared directly to the simulated results. The other issue is that the coupling between the 

nonlinear structure and the exciter will cause the excitation force to contain harmonics of the 

fundamental excitation frequency, even though the voltage input is a pure sinusoid. Including 

harmonics of the fundamental frequency in the voltage input can be used, with suitable feedback 

control, to eliminate the harmonics in the force and provide a purely sinusoidal force (see for 

example Shaw et al. [33]). 
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(a) Fixed force test                 (b) Fixed frequency test  

Fig. 1 The two common sine test methods 

The response obtained from the fixed force amplitude and fixed frequency tests may be 

demonstrated by the simulated results of a single degree of freedom (SDOF) system with a 

cubic stiffness. The theoretical analysis can generate the multivalued response curve of a 

nonlinear system based on fixed force amplitude or fixed excitation frequency [2]. These 

simulated multivalued responses from a typical SDOF system are shown in Fig. 2. The green 

curves give the upper and lower stable branches for the fixed force amplitude test. Starting at 

low frequency for a stepped frequency test, the response would follow the upper branch until 

the resonance point, where it would jump to the lower branch at higher frequencies. Similarly 

starting at a high frequency the response would follow the lower branch until the turning point, 

where it would jump to the upper branch. The middle solution, give in magenta, is unstable and 

cannot be reached by standard stepped sine testing. The blue curve gives the upper and lower 

branches for the fixed frequency test, where the force is either slowly increased or decreased. 

Jumps will also occur in the corresponding responses, and the unstable middle branch, given in 

magenta, again cannot be reached. 
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This simple example highlights the two issues in obtaining the full FRF curve for nonlinear 

systems. Using force amplitude or excitation frequency as the continuation parameter is unable 

to negotiate the turning points, and hence cannot obtain the middle branch of the solution. Also, 

the middle branch is often unstable and hence cannot be obtained in a standard test. Using the 

force drop-out phenomena for electrodynamic exciters is able to solve both of these problems. 

 

Fig. 2 Multivalued response curves of a cubic SDOF system 

 

3. The Force Drop-out Phenomena in Nonlinear Systems 

In stepped or swept sine tests using an electromagnetic shaker without feedback control, the 

force drop-out phenomenon will occur near resonance, for both linear or nonlinear structures. 

However, there is a significant difference in the effect of the force drop-out phenomena between 

linear or weakly nonlinear systems and strongly nonlinear systems. In order to illustrate the 

difference, sine tests at different excitation voltage levels have been performed on a weakly 

nonlinear system and a strongly nonlinear system. Note that these systems are different and are 

only used here to demonstrate the different effects due to the nonlinearity. 

 

3.1. Force drop-out phenomena in a weakly nonlinear system 

A weakly nonlinear system is shown in Fig. 3, which consists of a frame structure with bolted 

joints. There are three steel plates, which may be considered as three lumped masses, and the 

four aluminum beams are equivalent to three springs in this structure. The size of each steel 

plate is 150mm×100mm×10mm with mass density of 7820kg/m3, so each plate has a mass of 

about 1.173kg. The size of each aluminum beam is 220mm×30mm×2mm. Four rubber rings 
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are installed between the four aluminum beams and the base plate to introduce unknown 

nonlinear stiffness and damping behavior. This structure represents a three DOF weakly 

nonlinear system for the lateral vibration and it is excited by one ET-140 electrodynamic shaker 

from Labworks Inc. More details and experimental results for this structure are given in [31].  
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(a) Experimental setup                          (b) Dynamic model 

Fig. 3 The three DOF weakly nonlinear system 

In the stepped sine tests, an electromagnetic shaker is used to excite the first mass; the force 

input is directly measured and the responses are measured using accelerometers. The frequency 

range is 20Hz to 27Hz (covering the first resonance), and the frequency step size is 0.1Hz. The 

input voltage range of the signal generator is 0.05V to 1V, and the step size is 0.05V. A delay 

of 3 seconds after each test ensures that the response transients have decayed. 

When the input voltage is 1V, the first harmonic of the force and the fundamental frequency 

response functions are shown in Fig. 4. The force drop-out clearly occurs near resonance, since 

the excitation force is 13.4N at 20Hz, and then drops with increasing frequency. At resonance 

(about 23Hz) the force is reduced to 6.4N, and then increases for high frequencies. This kind 

of force drop-out phenomenon is well known in stepped and swept sine tests, and also occurs 

with broadband excitation. 
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(a) Force drop-out phenomenon          (b) The acceleration FRF         

Fig. 4 The force drop-out phenomenon for the three DOF structure  

The results of a group of 20 tests for different excitation voltages are shown in Fig. 5. The 

resonance frequency clearly decreases with an increase in the excitation voltage because of the 

nonlinear softening stiffness. The shift in the resonance frequency also corresponds to the 

minimum force during the drop-out. Note that in a linear system the resonance frequency would 

not change with excitation amplitude. 

 

 

(a) Force drop-out phenomenon          (b) The acceleration FRF   

Fig. 5 Force drop-out phenomenon in the weakly nonlinear system 

 

3.2 Force drop-out phenomena in a strongly nonlinear system 

A strongly nonlinear system is shown in Fig. 6. A square steel block and two thin plates are 

assembled and fixed on a square frame by screw connections, while the frame is fixed to the 

foundation. Only the lateral vibration of the first mode is considered. The elastic recovery force 

provided by the thin steel plates is close to a cubic nonlinearity. This structure represents a 
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SDOF system with cubic nonlinearity and it is also excited by one ET-140 electrodynamic 

shaker from Labworks Inc. A more detailed introduction to this kind of nonlinearity can be 

found in [21] and [33]. 

 

(a)  3D model                       (b) Experimental setup   

Fig. 6 A strongly nonlinear system representing a rotor bearing support 

The frequency range for the experiments is selected as 59Hz to 64Hz, which covers the 

resonance of the first mode and the frequency step size is 0.1Hz. The input voltage range of the 

signal generator is 0.05V to 2V, and the step size is 0.05V. The results of a group of 40 tests at 

different voltage levels are shown in Fig. 7. Clearly there are strong force drop-outs near 

resonance and the shift of the resonance frequency corresponds to the minimum force. The 

resonance frequency increases with the excitation voltage, due to the hardening stiffness of the 

nonlinearity.  

 

(a) Force drop-out phenomena          (b) The acceleration FRFs 

Fig. 7 Force drop-out phenomenon in the strongly nonlinear system as the voltage 

increases from 0.05V to 2.00V with a step of 0.05V 

In order to observe the force drop-out in more detail, the test curves for selected voltages and 

close to the resonance frequencies are shown in Fig. 8. In this case, the force curves at different 

javascript:;
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voltages cross over each other, especially for higher voltages. Thus the excitation force 

amplitude may decrease for some frequencies near resonance as the input voltage increases.  

 

 

(a) Force drop-out for selected voltages     (b) Force drop-out from 60Hz to 62Hz 

Fig. 8 Force drop-out phenomenon in the strongly nonlinear system in detail 

 

3.3. Comparing weakly and strongly nonlinear systems  

By comparing the test results of force-drop phenomena in Sections 3.1 and 3.2, we can find 

their similarities and differences. The force drop-out will occur near resonance in stepped or 

swept sine tests, and the frequencies corresponding to the maximum force drop changes with 

the increase of the input voltage level to the electromagnetic shaker. The direction and degree 

of this shift depends on the form of the nonlinearity. The major difference is that the force drop 

curves of the strongly nonlinear system under different excitation levels will cross each other, 

while those for the weakly nonlinear system will not. In order to demonstrate this difference 

more clearly, the relationship between the force at a single frequency near resonance and the 

input voltage is shown in Fig. 9. Although the relationship between the force and voltage is no 

longer linear, it remains monotonic for the weakly nonlinear system, so that the excitation force 

amplitude increases with increasing input voltage, as shown in Fig. 9(a). However, this 

monotonicity does not occur at many frequencies near resonance for the strongly nonlinear 

system, as shown in Fig. 9(b). The force amplitude increases initially, then decreases, before 

increasing again. This is a new interpretation of the force drop-out phenomenon in fixed 

frequency tests. This force drop-out means that there are multiple input voltages corresponding 

to the same excitation amplitude, and this will be exploited in the tests described in detail in 

Section 4. In experiments, if this kind of force drop-out phenomenon occurs in a system, it 

shows that the system has a strongly nonlinear behavior with multiple responses and co-existing 

solutions. 
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(a) Weakly nonlinear system         (b) Strongly nonlinear system 

Fig. 9 The relationship between the force and voltage at fixed frequencies 

4. Measurement with input voltage as the continuation parameter 

From the view of continuation measurement, if we want to obtain a multivalued response 

curve, we need to control the excitation frequency drop-out in the constant force test (see the 

green curve in Fig. 2), or control the excitation amplitude drop-out in the fixed frequency test 

(see the blue curve in Fig. 2) through the continuation parameter which will guide the response 

curve through the turning point smoothly. In experiments, the electromagnetic shaker has 

dynamic characteristics that couple with the structure and cause a relationship between the 

excitation frequency and amplitude. When the excitation frequency is fixed, the excitation force 

amplitude will be affected by the vibration of the structure, as shown in Section 3. Therefore, 

one option is to control the excitation force amplitude through the resonance to keep the 

excitation amplitude constant, which would require an increase in the input voltage through 

resonance. However, this force control would mean that the unstable middle branch response 

cannot be obtained and jump phenomenon would occur. In the fixed frequency test, only one 

parameter that determines the excitation amplitude needs to be controlled to realize the 

measurement of multivalued response curves. Therefore, the force drop-out in the fixed 

frequency test is exploited here to measure the multivalued response curve of a strongly 

nonlinear system. 

Generally, the measurement of the multivalued response curve requires the selection of an 

appropriate continuation parameter. An ideal continuation parameter can uniquely identify each 

solution on the branch and traverse the whole solution through monotonic variation of the 

parameter [12]. Generally, the continuation parameters used, such arc length or pseudo arc 

length, only have a geometrical rather than a physical meaning, and cannot be controlled 

directly in experiments. If a physical continuation parameter exists, then this would lead to a 

much simpler test. Here, the input voltage of the electromagnetic shaker is proposed as a 
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suitable physical continuation parameter, and in the fixed frequency test the force drop-out is 

used to indirectly control the excitation force.  

The strongly nonlinear example given in Section 3.2 is used to demonstrate the approach at 

the fixed excitation frequency of 61.2Hz, which is close to the first resonance, and the variation 

of the first harmonic of the excitation and response with the input voltage is measured. The 

linear increase of the input voltage to the electromagnetic shaker during the test is shown in Fig. 

10. The voltage range is from 0.05 V to 2 V and the step size is 0.05 V. A total of 40 voltage 

levels are used and hence 40 single frequency sinusoidal tests are performed. 

 

 Fig. 10 Linear increase of the input voltage in the fixed frequency tests 

The relationship between the first harmonic of the excitation amplitude and the voltage is 

shown in Fig. 11. With the increase of input voltage, the change of excitation amplitude can be 

divided into three stages. Between points A and D, the excitation amplitude increases – initially 

the trend is approximately linear (because the coupling to the shaker dynamics is low), but the 

rate of increase reduces and reaches a maximum at D. From point D to point F, the force drop-

out phenomenon occurs, where the force amplitude decreases and reaches a minimum at F. 

Finally, the force amplitude increases again after point F. 

The force drop-out between points D and F, forms a multivalued region in the rectangle given 

by B, K, H and J. Here, a many to one mapping is formed between voltage and force, although 

the force is a single valued function of voltage, and hence there is a unique excitation amplitude 

corresponding to each voltage. In contrast, there are multiple input voltages (typically 3) 

corresponding to each excitation force amplitude. 
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       Fig. 11 The force drop-out phenomenon in the fixed frequency tests 

 

The relationship between the first harmonic of the response amplitude, corresponding to the 

force input given in Fig. 11, and the voltage is shown in Fig. 12. The response amplitude is a 

monotonous and single valued function of the input voltage. Thus, there is a unique response 

amplitude corresponding to each voltage. The results from Figs. 11 and 12 show that, for the 

fixed frequency tests, there is a unique excitation amplitude and a unique response amplitude 

corresponding to each voltage. This indicates that the input voltage of the electromagnetic 

shaker can be used as a continuation parameter for the measurement of the multivalued response 

curves of strongly nonlinear systems. Generally speaking, one continuation parameter is 

required to guide the response curve through the turning point smoothly. As we discussed in 

Section 1, common continuation parameters, such as the arc length and pseudo arc length, can 

be used in numerical analysis or experiments. However, these parameters only have a 

geometrical rather than a physical meaning and cannot be controlled directly in experiments. 

Here we have exploited the force drop-out phenomenon and used the input voltage of the 

electrodynamic shaker as a continuation parameter to measure the multivalued response curve 

of a strongly nonlinear system in experiments. This is one of the first experiments to 

demonstrate the use of a continuation parameter with a physical meaning in practice. However, 

further research is still required to determine how far this behavior generalizes to other systems. 

A shaker-structure model is being developed to explain these phenomena through simulation, 

and hence to optimize the shaker characteristics, and the results will be reported in future 

research papers. 
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Fig. 12 The monotonic increase in the response amplitude with the input voltage 

 

5. Measuring the multivalued response curves at fixed frequencies 

5.1 Measurement method 

In the theoretical analysis of a strongly nonlinear system, if there is a multivalued relationship 

between the excitation force amplitude, F , and the response amplitude, R , then the force-

response curve may be written as an implicit function when the excitation frequency, , is fixed. 

Thus 

   0f F ,R    (1) 

This curve can be parameterized by a parameter,  , which generally has a geometrical rather 

than a physical meaning. Then, 

 
 

 

F F

R R

 


 

  (2) 

Section 4 showed that the input voltage, V , of the electromagnetic shaker can be used as a 

natural continuation parameter. So when the excitation frequency is fixed, the excitation force 

amplitude and the response amplitude can be measured as a function the input voltage, that is 

 
 

 

F F V

R R V






  (3) 

The excitation force amplitude and the response amplitude are both single-value functions 

of the input voltage, and hence there is a unique excitation amplitude and response amplitude 

corresponding to each input voltage. Therefore, the relationship between excitation force 
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amplitude and the response amplitude can be obtained directly and the multivalued response 

curve at this frequency can be established. This method exploits the force drop-out phenomenon 

of the electromagnetic shaker in fixed frequency tests and controls the variation of excitation 

amplitude automatically with the input voltage. The measurement process is shown 

diagrammatically in Fig. 13, and may be summarized as follows: 

 Perform some preliminary vibration tests for the nonlinear structure, such as swept 

frequency sine tests, to obtain the variation range of the resonance frequencies in the 

frequency range of interest. 

 Determine the input voltage range of the electromagnetic shaker for the fixed frequency 

tests. The excitation force should not be too large near resonance, to avoid damage to 

the structure. 

 Perform fixed frequency tests and establish the curves of excitation amplitude with input 

voltage and response amplitude with input voltage for each frequency. If the excitation 

force amplitude falls with the input voltage, it indicates that there is multivalued 

response at this frequency; otherwise, there is no multivalued response. 

 Finally, establish the multivalued response curves of strongly nonlinear systems from 

the measurements for the required range of fixed frequencies. 

Nonlinear struture

Initial tests

Frequency range Voltage range

Curves of excitation 
varying with voltage

Curves of response 
varying with voltage

Curves of response 
varying with excitation

Fixed frequency tests

 

Fig. 13 The flowchart to measure multivalued response curves 
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5.2 Measured results 

The multivalued response curve obtained at 61.2Hz, for the example in Section 3.2, is shown 

as Fig. 14. The variation of the response amplitude with the excitation amplitude can be divided 

into three stages that correspond with those given in Section 4. Between points A and D, the 

excitation amplitude increases, and reaches the maximum at point D. At the same time, the 

response amplitude also increases. From point D to point F, the force drop-out occurs and the 

excitation force amplitude begins to decrease and reaches the minimum at F. During this 

process, the response amplitude still increases. After point F, the excitation amplitude begins 

to increase again, and the response amplitude also increases. 

Because of the force drop-out in the second stage, a multivalued region is formed in the 

rectangular region between the line FB (about 1.76N) and HD (about 5.50N). In this 

multivalued region, there are multiple response amplitudes (typically 3) corresponding to the 

same excitation amplitude. For example, there are 3 response C, E, G when the force is 4.2N. 

 

Fig. 14 The multivalued response curve at 61.2Hz 

The multivalued response curves in the frequency range 59Hz to 64Hz with a step size of 

0.1Hz are shown in Fig. 15. The results at some frequencies, such as 61.5Hz (the green line in 

Fig. 15. (b)), are incomplete. This is because the voltage range is the same at each frequency 

and since the force reduces significantly at resonance, the resulting excitation is too small. To 

obtain the complete multivalued response curve at this frequency, the voltage range should be 

increased, although at resonance this may risk permanent damage to the structure. Once 

multivalued response curves from fixed frequency tests are obtained, the required response 

surface and frequency response functions could be created using Gaussian process regression 

[29].  
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(a) Response curves at different frequencies   (b) Response curves at frequencies near resonance  

Fig. 15 The multivalued response curves from 59Hz to 64Hz  

6. Characteristics of the multivalued responses and the influence of 

excitation 

The characteristics of the multivalued responses and the influence of excitation are analyzed 

in this section, taking the test data of the strongly nonlinear system described in Section 3.2 at 

61.2Hz as an example. 

The time domain test data at the points C, E, and G in Fig. 14 are shown in Fig. 16. Initially 

no force is applied to the system for 0.1s, and it can be clearly seen that each test begins with 

zero initial conditions. Starting from zero initial conditions is possible in this case because of 

the single valued nature of the force and response amplitudes as a function of input voltage. 

Standard stepped or swept sine tests that vary excitation frequency or force amplitude will often 

contain jumps and hence require only small transients by ensuring the continuity of the force 

excitation. The sampling time is sufficiently long for the excitation force and the response to 

reach steady state. A stability assessment of the solutions is necessary in experiments in order 

to improve efficiency, and there are several methods to assess stability in experiments [29][32], 

which could be added to the fixed frequency tests in future. The three chosen voltage levels 

have the same force amplitude at the excitation frequency, however the time history of 

excitation at the three voltage levels are not the same. The difference arises because of the 

presence of harmonics in the excitation force which will be seen in the frequency domain 

analysis later. The response amplitudes of increase gradually from C to E to G.  

An interesting fact is that the measured response at point E on the unstable branch has 

reached a stable steady state under zero initial conditions. Normally this solution is considered 

as unstable and is not observed in practice. In this case the complete system, composed of the 
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nonlinear structure and the exciter, is indeed stable and so the steady state is achieved in the 

experiment [14].  

 

(a) Time-history of excitation            (b) Time-history of response 

Fig. 16 The measured time domain data for the strongly nonlinear system 

 

In order to further analyze the multivalued phenomenon, Fig. 17 shows the steady-state time 

domain data at points C, E, and G, as well as their order spectrum obtained from the FFT. In 

the time domain, the force at point C is almost harmonic, but the steady state excitation becomes 

more distorted at higher input voltage levels. Higher order harmonics, especially the second 

and third harmonics, are often found. These harmonics arise because of the nonlinearity in the 

structure, and possibly also in the shaker, and the coupling between the shaker and the structure 

leads to nonlinear behavior and harmonics in the excitation force at large amplitudes of 

vibration [15][20]. Notice that the amplitudes of the first harmonic at points C, E and G are 

identical and 4.2N, but the amplitudes of the higher order harmonics, especially the second and 

third harmonics, are very different. The presence of the higher harmonics is the reason for the 

distortion in the time domain force signals.  
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(a) Time history                      (b) Order spectrum 

Fig. 17 The steady state force excitations at different input voltage levels and their order 

spectra 

 

The steady-state response data and their order spectra at points C, E, and G are shown in Fig. 

18. Although the higher order harmonics appear in the response, their amplitudes are small and 

the harmonic distortions in the time response are not obvious. 



 

21 

 

(a) Time history                      (b) Order spectrum 

Fig. 18 The steady state responses at different input voltage levels and their order 

spectra 

 

Figure 17 shows that the excitation force does contain higher order harmonics. Their 

influence on the response is now analyzed more comprehensively. The relationship between 

the amplitudes of the first three harmonics of the excitation force and the input voltage is shown 

in Fig. 19. The amplitude of the first harmonic clearly shows the force drop-out, which has 

already been discussed extensively. However, the amplitudes of the second and third harmonics 

increase monotonically and reflects the increase in the response. Near resonance, the amplitude 

of the first harmonic could be smaller than the amplitude of the third harmonic. 

The relationship between the amplitudes of the first three harmonics of the responses and 

the input voltage is shown in Fig. 20. Clearly, with the increase of the input voltage, the 

amplitudes of all three harmonics also increase. The amplitude of first harmonic still dominates 

in the response and the amplitudes of other two harmonics are obviously much smaller. These 

harmonic components also maintain a monotonically increasing trend. 
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Fig. 19 The main harmonics of the excitation force as a function of the input voltage 

 

Fig. 20 The main harmonics of the response amplitude as a function of the input voltage 

 

The relationship between the first harmonic of the excitation and the response is given in 

Fig. 14 and shows the multivalued response curve. The curves of the second and third harmonic 

of the excitation and with the corresponding harmonic of the response are shown in Fig. 21 and 

Fig. 22, respectively. The relationship between the second harmonic (and the third harmonic) 

of the excitation and response is basically linear. Overall, the higher order harmonics of the 

excitation force are likely to have only a limited effect on the first harmonic of the response for 

this nonlinear system. Strictly speaking, high order harmonics in the force should be eliminated, 

to replicate the simulated tests and analysis. If necessary, a control system may be used to 

eliminate the higher harmonics in the excitation force, by adding harmonics into the input 

voltage signals. This has been done for standard stepped sine testing with a constant force 

amplitude [33]. The same approach could be adopted here, with the slight difference that the 

amplitude of the fundamental component of the input voltage is fixed rather than the 

fundamental component of the excitation force. This approach will be studied in future work. 
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Fig. 21 The second harmonic of the response as a function of the second harmonic of the 

excitation force 

 

Fig. 22 The third harmonic of the response as a function of the third harmonic of the 

excitation force 

7. Conclusions 

In this paper, the force drop-out phenomenon in fixed frequency tests is exploited in the 

experimental testing of strongly nonlinear systems. The input voltage of the electromagnetic 

shaker is used as a natural continuation parameter in the fixed frequency tests. Based on these 

two findings, an experimental measurement method for multivalued response curves for 

strongly nonlinear systems is proposed. This method uses the force drop-out phenomenon of 

electromagnetic shaker in fixed frequency tests to automatically and passively control the 

variation of excitation amplitude. With the input voltage as the continuation parameter the 

multivalued response curves through the force drop-out are measured. The coupling with the 

exciter increases the damping in the system and stabilizes the unstable branch of the strongly 

nonlinear system in isolation. This method is very simple and easy to perform without any need 

of feedback control. 
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The objectives of this paper are to propose a new approach to testing nonlinear structures 

and to demonstrate that it works on a relatively simple structure. Significant further research is 

required to develop and optimize the testing procedure and some of these research directions 

are now summarized. The input voltage of the electromagnetic shaker is increased with a 

constant step size. Although the multivalued response curves can be measured, the information 

at the turning point cannot be obtained accurately, which is a disadvantage for experimental 

bifurcation research. In order to improve the test efficiency and to accurately obtain the 

information at the turning point, a variable step size control can be used. Methods to assess the 

stability of the solutions may also be added to fixed frequency tests. The structure-shaker 

interaction should be modelled to determine the conditions for the stability of the assembled 

system and to optimize the shaker characteristics. Current methods to remove the higher order 

harmonics from the excitation during the experiments need to be extended to the voltage 

controlled approach described in this paper. In addition, the proposed method has only been 

demonstrated on a SDOF system with cubic nonlinearity; the method needs to be further 

verified and improved for the application to other nonlinear structures. 
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