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Nak Eun Cho1 · Young Jae Sim2 · Derek K. Thomas3

Received: 1 February 2019 / Revised: 26 June 2019 / Accepted: 16 July 2019
© The Author(s) 2019

Abstract
Let f be analytic in the unit disk D = {z ∈ C : |z| < 1}, and S be the subclass of
normalized univalent functions given by f (z) = z + ∑∞

n=2 anz
n for z ∈ D. We give

bounds for ||a3| − |a2|| for the subclass B(α, iβ) of generalized Bazilevič functions
when α ≥ 0, and β is real.

Keywords Univalent function · Close-to-convex function · Bazilevič function ·
Difference of coefficients

Mathematics Subject Classification 30C45 · 30C50 · 30C55

1 Introduction

Let A denote the class of analytic functions f in the unit disk D = {z ∈ C : |z| < 1}
normalized by f (0) = 0 = f ′(0) − 1. Then for z ∈ D, f ∈ A has the following
representation

f (z) = z +
∞∑

n=2

anz
n . (1.1)
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Let S denote the subclass of all univalent (i.e., one-to-one) functions in A.
In 1985, de Branges [2] solved the famous Bieberbach conjecture by showing that

if f ∈ S, then |an| ≤ n for n ≥ 2, with equality when f (z) = k(z) := z/(1− z)2, or a
rotation. It was therefore natural to ask if for f ∈ S, the inequality ||an+1|− |an|| ≤ 1
is true when n ≥ 2. This was shown not to be the case even when n = 2 [4], and that
the following sharp bounds hold.

−1 ≤ |a3| − |a2| ≤ 3

4
+ e−λ0(2e−λ0 − 1) = 1.029 . . . ,

where λ0 is the unique value of λ in 0 < λ < 1, satisfying the equation 4λ = eλ.
Hayman [6] showed that if f ∈ S, then ||an+1|−|an|| ≤ C , whereC is an absolute

constant. The exact value of C is unknown, best estimate to date being C = 3.61 . . .

[5], which because of the sharp estimate above when n = 2, cannot be reduced to 1.
Denote by S∗ the subclass of S consisting of starlike functions, i.e. functions f

which map D onto a set which is star-shaped with respect to the origin. Then it is
well-known that a function f ∈ S∗ if, and only if, for z ∈ D

Re

{
z f ′(z)
f (z)

}

> 0.

It was shown in [8], that when f ∈ S∗, then ||an+1|− |an|| ≤ 1 is true when n ≥ 2.
Next denote by K the subclass of S consisting of functions which are close-to-

convex, i.e. functions f which map D onto a close-to-convex domain. Then again it
is well-known that a function f ∈ K if, and only if, there exists g ∈ S∗ such that
for z ∈ D

Re

{
z f ′(z)
g(z)

}

> 0. (1.2)

Koepf [7] showed that if f ∈ K, then ||an+1| − |an|| ≤ 1, when n = 2, but
establishing this inequality when n ≥ 3 remains an open problem.

In 1955, Bazilevič [1] extended the notion of starlike and close-to-convex functions
by showing that if f ∈ A, and is given by (1.1), then if α > 0 and β ∈ R, f given by

f (z) =
(

(α + iβ)

∫ z

0
gα(t)p(t)t iβ−1dt

)1/(α+iβ)

, (1.3)

where g ∈ S∗, and p ∈ P , the class of functions with positive real part in D, then
functions defined by (1.3) form a subset of S. Such functions are known as Bazilevič
functions.

We note that in the original definition of Bazilevič functions [1], Bazilevič assumed
that α > 0, however Sheil-Small [10], subsequently showed that when α = 0, such
functions also belong to S, and satisfy

z f ′(z)
f (z)

(
f (z)

z

)iβ

= p(z), (1.4)

where p ∈ P .
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For α ≥ 0 and β ∈ R, we denote functions defined as in (1.3) and (1.4) by
B(α, iβ), and note that the class B(α, 0) ≡ B(α) has been extensively studied, and
that B(0, 0) ≡ S∗ and B(1, 0) ≡ K.

Another well studied subclass of B(α, iβ) is the class B1(α, iβ), where β = 0 and
the starlike function g(z) ≡ z, (see e.g. [11]). This class is usually denoted by B1(α).
Although much is known about the initial coefficients of functions in B1(α), there
appears to be no published information concerning the difference of coefficients. We
also note that B1(1, 0) reduces to the class of functions inR such that their derivatives
have positive real part for z ∈ D, and that the class B1(1, iβ) has been little studied.

In this paper we present some inequalities for ||a3| − |a2|| when f ∈ B(α, iβ),
obtaining sharp bounds when f ∈ B(α), and f ∈ B1(α, iβ) when α ≥ 0 and β ∈ R.
We also give the sharp bounds for ||a3| − |a2||, when f ∈ B(0, iβ).

2 Preliminary Lemmas

Denote by P , the class of analytic functions p with positive real part on D given by

p(z) = 1 +
∞∑

n=1

pnz
n . (2.1)

We will use the following properties for the coefficients of functions P , given by
(2.1).

Lemma 2.1 [9] For p ∈ P and ν ∈ C,

∣
∣
∣p2 − ν

2
p21

∣
∣
∣ ≤ 2max {|ν − 1|; 1} ,

and

∣
∣
∣
∣p2 − 1

2
p21

∣
∣
∣
∣ ≤ 2 − 1

2
|p1|2.

Both inequalities are sharp.

Lemma 2.2 [3] If p ∈ P , then

p1 = 2ζ1 (2.2)

and

p2 = 2ζ 2
1 + 2(1 − |ζ1|2)ζ2 (2.3)

for some ζi ∈ D, i ∈ {1, 2}. For ζ1 ∈ T, the boundary of D, there is a unique function
p ∈ P with p1 as in (2.2), namely,
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p(z) = 1 + ζ1z

1 − ζ1z
(z ∈ D).

For ζ1 ∈ D and ζ2 ∈ T, there is a unique function p ∈ P with p1 and p2 as in (2.2)
and (2.3), namely,

p(z) = 1 + (ζ 1ζ2 + ζ1)z + ζ2z2

1 + (ζ 1ζ2 − ζ1)z − ζ2z2
(z ∈ D).

We will also need the following well-known result.

Lemma 2.3 [7, Lem. 3] Let g ∈ S∗ and be given by g(z) = z +∑∞
n=2 bnz

n. Then for
any λ ∈ C,

∣
∣
∣b3 − λb22

∣
∣
∣ ≤ max {1; |3 − 4λ|} .

The inequality is sharp when g(z) = k(z) if |3−4λ| ≥ 1, and when g(z) = (k(z2))1/2

if |3 − 4λ| < 1.

3 The classB(˛, iˇ)

We begin by proving the following inequalities for f ∈ B(α, iβ).

Theorem 3.1 Let f ∈ B(α, iβ) and be given by (1.1). If 0 ≤ α ≤ (
√
17 − 1)/2 and

β ∈ R, then

− 1 ≤ |a3| − |a2| ≤ 2 + α

|2 + α + iβ| . (3.1)

Proof Recall that |a2|−|a3| ≤ 1 for all f ∈ S [4, Thm. 3.11]. So, since B(α, iβ) ⊂ S
for all α ≥ 0 and β ∈ R, it is sufficient to prove the upper bound in (3.1).

Let f ∈ B(α, iβ) be of the form (1.1). Then from (1.3) we have

(
z f ′(z)
f (z)

)(
f (z)

g(z)

)α (
f (z)

z

)iβ

= p(z),

for some g ∈ S∗ and p ∈ P . Writing

g(z) = z +
∞∑

n=2

bnz
n and p(z) = 1 +

∞∑

n=1

pnz
n

and equating the coefficients, we obtain

a2 = αb2 + p1
1 + α + iβ

(3.2)
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and

a3 = p2
2 + α + iβ

− (−1 + α + iβ)p21
2(1 + α + iβ)2

+ α(3 + α + iβ)b2 p1
(1 + α + iβ)2(2 + α + iβ)

+ αb3
2 + α + iβ

+ α(−1 + α − 2iβ − iαβ + β2)b22
2(2 + α + iβ)(1 + α + iβ)2

.

(3.3)

Let μ1 = (3 + α + iβ)/(2(2 + α + iβ)), and suppose that |a2| ≤ 1/|μ1|.
Then by Lemmas 2.1 and 2.3 we have

|a3 − μ1a
2
2 | =

∣
∣
∣
∣

1

2 + α + iβ

(

p2 − 1

2
p21 + α

(

b3 − 1

2
b22

))∣
∣
∣
∣

≤ 2 + α

|2 + α + iβ| .
(3.4)

Thus from (3.4) we obtain

|a3| − |a2| ≤ |a3| − |μ1||a2|2 ≤ |a3 − μ1a
2
2 | ≤ 2 + α

|2 + α + iβ| .

Now assume that 1/|μ1| ≤ |a2| ≤ 2, and let μ2 = 1/(2 + α + iβ). Then

a3 − μ2a
2
2 = �1 + 1

2 + α + iβ
�2, (3.5)

where

�1 = αb3
2 + α + iβ

− α(1 + iβ)b22
2(1 + α + iβ)(2 + α + iβ)

,

and

�2 = αb2 p1
(1 + α + iβ)

− (α + iβ)p21
2(1 + α + iβ)

+ p2.

Put μ = (1 + iβ)/(2(1 + α + iβ)). Then it is easily seen that |3 − 4μ| = |1 + 3α
+ iβ|/|1 + α + iβ| ≥ 1. Thus Lemma 2.3 gives

|�1| ≤ α

|2 + α + iβ| |3 − 4μ| = α|1 + 3α + iβ|
|2 + α + iβ||1 + α + iβ| . (3.6)

Next use (2.2) and (2.3) in Lemma 2.2 to obtain

�2 = 2αb2ζ1
1 + α + iβ

+ 2ζ 2
1

1 + α + iβ
+ 2

(
1 − |ζ1|2

)
ζ2,
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where ζi ∈ D (i = 1, 2). The triangle inequality and |b2| ≤ 2 then gives

|�2| ≤ ψ(|ζ1|), (3.7)

where

ψ(x) = 2 + 4α

|1 + α + iβ| x + 2

(
1 − |1 + α + iβ|

|1 + α + iβ|
)

x2

with x ∈ [0, 1].
Let x0 = α/(|1 + α + iβ| − 1), so that x0 ∈ [0, 1], and ψ has a unique critical

point at x = x0. Since ψ has a negative leading coefficient, it follows from (3.7) that
for all x ∈ [0, 1],

|�2| ≤ ψ(x0) = 2 + 2α2

|1 + α + iβ|(|1 + α + iβ| − 1)
(x ∈ [0, 1]). (3.8)

Therefore from (3.5), (3.6) and (3.10) we obtain

|a3 − μ2a
2
2 | ≤ 1

|2 + α + iβ|
(

2 + α|1 + 3α + iβ|
|1 + α + iβ| + 2α2

|1 + α + iβ|(|1 + α + iβ| − 1)

)

=: �(α, β).

Next write y := |a2|, and assume that y ∈ [1/|μ1|, x̃], where

x̃ = 2α + 2

|1 + α + iβ| , (3.9)

so that

|a3| − |a2| ≤ |a3 − μ2a
2
2 | + |μ2||a2|2 − |a2| ≤ �(α, β) + ϕ(y), (3.10)

where ϕ is defined by

ϕ(y) = 1

|2 + α + iβ| y
2 − y (y ∈ [1/|μ1|, x̃]).

Since ϕ is convex on [1/|μ1|, x̃],

ϕ(y) ≤ max{ϕ(1/|μ1|);ϕ(x̃)} (3.11)

for all y ∈ [1/|μ1|, x̃].
Thus in order to establish the upper bound in (3.1), we use (3.10) and (3.11), and

need to show that

�(α, β) + ϕ

(
1

|μ1|
)

≤ 2 + α

|2 + α + iβ| (3.12)
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and

�(α, β) + ϕ(x̃) ≤ 2 + α

|2 + α + iβ| . (3.13)

We first obtain (3.12).
Since

4

|3 + α + iβ| − 2 < 0 and
|2 + α + iβ|
|3 + α + iβ| ≥ 2 + α

3 + α
,

(3.12) holds provided

A1 := α|1 + 3α + iβ|
|1 + α + iβ| + 2α2

|1 + α + iβ|(|1 + α + iβ| − 1)

+ 4(2 + α)|2 + α + iβ|
(3 + α)|3 + α + iβ| − α

≤ 2(2 + α)|2 + α + iβ|
3 + α

=: A2.

Clearly A1 ≤ A2 is true when α = 0. For α > 0, using the inequalities

|1 + 3α + iβ|
|1 + α + iβ| ≤ 1 + 3α

1 + α
,

1

|1 + α + iβ| ≤ 1

1 + α

and

1

|1 + α + iβ| − 1
≤ 1

α
,

it follows that

1

2
(A1 − A2) ≤ |2 + α + iβ|

(
α

|2 + α + iβ| + 2(2 + α)

(3 + α)|3 + α + iβ| − 2 + α

3 + α

)

.

(3.14)

We next note that the following is valid provided α ∈ [0, (√17 − 1)/2].
α

|2 + α + iβ| + 2(2 + α)

(3 + α)|3 + α + iβ| ≤ α

2 + α
+ 2(2 + α)

(3 + α)2
≤ 2 + α

3 + α
. (3.15)

Thus from (3.15) and (3.14), A1 ≤ A2 and (3.12) is established, providing α ∈
[0, (√17 − 1)/2].

Next we prove (3.13), which is satisfied if B1 ≤ B2, where

B1 := α(|1 + 3α + iβ| − |1 + α + iβ|) + 2α2

|1 + α + iβ| − 1
+ (2α + 2)2

|1 + α + iβ|
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and

B2 := 2(1 + α)|2 + α + iβ|.

A similar process to the above gives

B1 ≤ 2α2 + 2α + (2α + 2)2

1 + α
= 2(1 + a)(2 + a) ≤ B2,

which proves inequality (3.13), and so the proof of Theorem 3.1 is complete. ��
When β = 0, we deduce the following, noting that when α = 1, we obtain the

inequality ||a3| − |a2|| ≤ 1 for f ∈ K obtained in [7].

Corollary 3.1 Let f ∈ B(α). Then ||a3|−|a2|| ≤ 1 provided 0 ≤ α ≤ (
√
17−1)/2] =

1.56 . . . .
The inequality is sharp when both the functions f and g are the Koebe function.

We end this section by noting from the definition, since B1(0, iβ) ≡ B(0, iβ), the
following is an immediate consequence of Theorem 4.1 below.

Theorem 3.2 Let f ∈ B(0, iβ), and be given by (1.1) with β ∈ R. Then

− 2
√|1 + iβ|2 + |3 + iβ| ≤ |a3| − |a2| ≤ 2

|2 + iβ| . (3.16)

Both inequalities are sharp.

4 The classB1(˛, iˇ),

We next consider the class B1(α, iβ), recalling that f ∈ B1(α, iβ) if, and only if, for
α ≥ 0 and β ∈ R,

Re

{
z f ′(z)
f (z)

(
f (z)

z

)α+iβ
}

> 0 (z ∈ D).

We find the sharp upper and lower bounds of |a3| − |a2| over the class B1(α, iβ).

Theorem 4.1 Let f ∈ B1(α, iβ) for α ≥ 0 and β ∈ R, and be given by (1.1). Then

− 2
√|1 + α + iβ|2 + |3 + α + iβ| ≤ |a3| − |a2| ≤ 2

|2 + α + iβ| . (4.1)

Both inequalities are sharp.
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Proof From (3.2), (3.3) (with b2 = b3 = 0), and Lemma 2.2, we obtain

a2 = 2ζ1
1 + α + iβ

and

a3 =
(

2

2 + α + iβ
− 2(−1 + α + iβ)

(1 + α + iβ)2

)

ζ 2
1 + 2

2 + α + iβ

(
1 − |ζ1|2

)
ζ2

for some ζi ∈ D (i = 1, 2). The triangle inequality gives

|a3| − |a2| ≤ ψ(|ζ1|), (4.2)

where

ψ(x) = κ2x
2 + κ1x + κ0 (x ∈ [0, 1])

with

κ2 =
∣
∣
∣
∣

2

2 + α + iβ
− 2(−1 + α + iβ)

(1 + α + iβ)2

∣
∣
∣
∣ − 2

|2 + α + iβ| ,

κ1 = − 2

|1 + α + iβ| , and κ0 = 2

|2 + α + iβ| .

We first prove the upper bound in (4.1).
If κ2 ≤ 0, then since κ1 < 0, we have ψ ′(x) = 2κ2x + κ1 < 0 for all x ∈ [0, 1].

Thus

ψ(x) ≤ ψ(0) = κ0 (x ∈ [0, 1]). (4.3)

Suppose next that κ2 > 0. We now note that κ2 + κ1 ≤ 0, since

1

2
(κ2 + κ1) ≤ | − 1 + α + iβ|

|1 + α + iβ|2 − 1

|1 + α + iβ|
= 1

|1 + α + iβ|
( | − 1 + α + iβ|

|1 + α + iβ| − 1

)

and |1 + α + iβ| ≥ | − 1 + α + iβ|.
Since κ2 > 0, ψ is a quadratic function with positive leading coefficient, and

ψ(1) = κ2 + κ1 + κ0 ≤ κ0 = ψ(0), it follows that

ψ(x) ≤ max{ψ(0);ψ(1)} = ψ(0) = κ0 (x ∈ [0, 1]). (4.4)
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Thus from (4.2), (4.3) and (4.5) we obtain

|a3| − |a2| ≤ κ0 = 2

|2 + α + iβ| .

We next prove the lower bound in (4.1).
Write

|a3| − |a2| = 2

|2 + α + iβ|�, (4.5)

where

� =
∣
∣
∣R1e

iθ ζ 2
1 + (1 − ζ 2

1 )ζ2

∣
∣
∣ − R2ζ1

with

R1 =
∣
∣
∣
∣

3 + α + iβ

(1 + α + iβ)2

∣
∣
∣
∣ , θ = arg

(
3 + α + iβ

(1 + α + iβ)2

)

and

R2 =
∣
∣
∣
∣
2 + α + iβ

1 + α + iβ

∣
∣
∣
∣ ,

so that we need to show that

� ≥ −R2√
R1 + 1

.

Since both B1(α, iβ) and P are rotationally invariant, we may assume that ζ1 ∈
[0, 1].

Now write ζ2 = seiϕ with s ∈ [0, 1] and ϕ ∈ R, so that

� =
∣
∣
∣R1e

i(θ−ϕ)ζ 2
1 + (1 − ζ 2

1 )s
∣
∣
∣ − R2ζ1.

Then

� =
√
R2
1ζ

4
1 + 2R1ζ

2
1 (1 − ζ 2

1 )s cos(θ − ϕ) + (1 − ζ 2
1 )2s2 − R2ζ1

≥
∣
∣
∣R1ζ

2
1 − (1 − ζ 2

1 )s
∣
∣
∣ − R2ζ1,

(4.6)

with equality when cos(θ − ϕ) = −1.
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Suppose that R1ζ
2
1 − (1−ζ 2

1 )s ≤ 0, then ζ1 ≤ √
s/(R1 + s) =: η1, and so by (4.6)

it follows that

� ≥ −(R1 + s)ζ 2
1 − R2ζ1 + s

≥ −(R1 + s)η21 − R2η1 + s

= −R2

√
s

R1 + s

≥ −R2√
R1 + 1

,

since s ≤ 1.
If R1ζ

2
1 − (1 − ζ 2

1 )s ≥ 0, then ζ1 ≥ η1, and define φ by

φ(x) = (R1 + s)x2 − R2x − s,

and let

η2 = R2

2(R1 + s)

be the unique critical point of φ. Then by (4.6) we have

� ≥ φ(ζ1). (4.7)

The condition η2 ≥ η1 is equivalent to the inequality 4s2 + 4R1s − R2
2 ≥ 0, which

holds for 0 ≤ s ≤ λ, where

λ = λα,β := 1

2

(

−R1 +
√
R2
1 + R2

2

)

.

It is easily seen that λ < 1 since

R2
2 = (2 + α)2 + β2

(1 + α)2 + β2 ≤
(
2 + α

1 + α

)2

≤ 4 < 4 + R1,

for α ≥ 0, and β ∈ R.
We also note that R2 − 2R1 < 2, since

R2 − 2R1 < R2 ≤ 2 + α

1 + α
≤ 2.

Weconsider next the case R2 ≤ 2R1,whereη1 ≤ 1 for all s ∈ [0, 1], and distinguish
two sub-cases, η2 ≤ η1, and η2 ≥ η1.

When s ∈ [λ, 1], we have η2 ≤ η1, and so from (4.7) we obtain

� ≥ φ(η1) = −R2

√
s

R1 + s
≥ −R2√

R1 + 1
(4.8)
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since s ∈ [0, 1]. When s ∈ [0, λ], we have η2 ≥ η1. This, and (4.7), implies that

� ≥ φ(η2) = −
(

s + R2
2

4(R1 + s)

)

= −1

4
h(s), (4.9)

where h is defined by

h(x) = 4x + R2
2

R1 + x
. (4.10)

Differentiating h gives

(R1 + x)2h′(x) = 4x2 + 8R1x + 4R2
1 − R2

2 .

Since 4R2
1 − R2

2 = (2R1 + R2)(2R1 − R2) ≥ 0, h is increasing on the interval [0, λ],
and so from (4.9) we have

� ≥ −1

4
h(λ) = −

(

λ + R2
2

4(R1 + λ)

)

. (4.11)

Next note that

R2√
R1 + 1

≥ λ + R2
2

4(R1 + λ)
, (4.12)

since

λ + R2
2

4(R1 + λ)
≤ R2

√
λ√

R1 + λ
,

provided
√

λ(R1 + 1) ≤ √
R1 + λ which is valid for all α ≥ 0 and β ∈ R since

λ < 1.
Thus it follows from (4.8), (4.11) and (4.12) that

� ≥ −R2√
R1 + 1

is true provided R2 ≤ 2R1.
Next assume that R2 ≥ 2R1. In this case there exists s ∈ [0, 1], such that η2 ≥ 1.
Setting λ̂ = (R2 − 2R1)/2 it follows that 0 < λ̂ < λ < 1.
When s ∈ [λ, 1], we have η2 ≤ η1, and a similar method to that used in the case

R2 ≤ 2R1 gives

� ≥ −R2√
R1 + 1

.
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When s ∈ [λ̂, λ], we have η2 ≥ η1, and so the function h, defined by (4.10), is
increasing on [λ̂, λ] since

(R1 + x)2h′(x) = 4x2 + 8R1x + 4R2
1 − R2

2

≥ 4λ̂2 + 8R1λ̂ + 4R2
1 − R2

2 = 0 (x ∈ [λ̂, λ]).

Thus from (4.11) and (4.12), we have

� ≥ −1

4
h(λ) ≥ −R2√

R1 + 1
.

When s ∈ [0, λ̂], we have η2 ≥ 1, which implies

� ≥ φ(1) = R1 − R2. (4.13)

Finally from (4.13), in order to establish the left hand inequality in (4.1), it is enough
to show that

R2√
R1 + 1

≥ R2 − R1. (4.14)

Since

R1 − R2 + R2√
R1 + 1

= R1R2

(
1

R2
− 1

R1 + 1 + √
R1 + 1

)

,

and since R1 > 0 and R2 > 0, (4.14) is satisfied, if for α ≥ 0 and β ∈ R

√
R1 + 1 > R2 − R1 − 1. (4.15)

Since

R2 − R1 − 1 = 1

|1 + α + iβ|
(

|2 + α + iβ| − |1 + α + iβ| − |3 + α + iβ|
|1 + α + iβ|

)

and

|2 + α + iβ| ≤ |1 + α + iβ| + 1 < |1 + α + iβ| + |3 + α + iβ|
|1 + α + iβ| ,

it follows that R2 − R1 − 1 < 0 <
√
R1 + 1, which establishes (4.15), and hence

(4.14).
Thus the proof of the inequalities for |a3| − |a2| is complete.
In order to show that the inequalities are sharp, first let the function f1 be defined

by (1.3) with g(z) = z and p(z) = (1 + z2)/(1 − z2). Then f1 ∈ B1(α, iβ) with
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f1(z) = z + 2

2 + α + iβ
z3 + · · · .

Thus the upper bound in (4.1) is sharp.
Next put ζ1 = 1/

√
R1 + 1, and ζ2 = seiϕ with s = 1 and ϕ = θ − π . Then

� =
∣
∣
∣R1e

i(θ−ϕ)ζ 2
1 + (1 − ζ 2

1 )s
∣
∣
∣ − R2ζ1 = − R2√

R1 + 1
. (4.16)

Since ζ1 ∈ D and ζ2 ∈ T, it follows from Lemma 2.2 that the function p̂ defined by

p̂(z) = 1 + (ζ1ζ2 + ζ1)z + ζ2z2

1 + (ζ1ζ2 − ζ1)z − ζ2z2

=
√
R1 + 1 + (eiϕ + 1)z + √

R1 + 1eiϕz2√
R1 + 1 + (eiϕ − 1)z − √

R1 + 1eiϕz2

belongs to P . Now let the function f2 be defined by (1.3) with g(z) = z and p = p̂.
Then f2 ∈ B1(α, iβ). From (4.5) and (4.16), we obtain

|a3| − |a2| = 2

|2 + α + iβ|� = − 2
√|1 + α + iβ|2 + |3 + α + iβ| ,

which shows that the left hand equality in (4.1) is sharp.
This completes the proof of Theorem 4.1. ��
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