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Abstract 30 

The outbreaks of Xylella fastidiosa (Xf) in Europe are generating considerable economic and 31 

environmental damage, and the spread of this plant pest appears to continue. Detecting and 32 

monitoring the spatio-temporal dynamics of the symptoms of diseases caused by Xf at large scales 33 

is key to curtailing its expansion or mitigating its impacts. This study evaluates the temporal series 34 

of airborne hyperspectral and Sentinel-2 satellite images for monitoring Xf infection incidence in 35 

olive orchards integrating satellite and airborne data with radiative transfer modelling and field 36 

observations. We used time-series of Sentinel-2A images collected over a two-year period to 37 

assess the temporal trends of Xf-infected olive orchards located in the region of Apulia, Southern 38 

Italy. First, we evaluated the sensitivity of different physiological and structural vegetation 39 

indices (VIs) to the severity and incidence of Xf-induced disease observed in situ. The same 40 

relationships were then evaluated using a 3D radiative transfer model to account for the temporal 41 

variations of canopy structure, understory and soil background that affect the spectral reflectance 42 

of Sentinel-2 over a grid-planted orchard. Hyperspectral images, spanning the same 2-year period 43 

as the Sentinel-2 data collected in the Xf-infected zone in Italy, were used for validation along 44 

with field surveys comprising more than 3000 trees across disease severity (DS) classes in 16 45 

orchards, with varying disease-incidence (DI) levels. Among a wide range of structural and 46 

physiological vegetation indices evaluated from Sentinel-2 imagery, the temporal variation of the 47 

Atmospherically Resistant Vegetation Index (ARVI) and Optimized Soil-Adjusted Vegetation 48 

Index (OSAVI) showed superior performance for DS and DI estimation (r2
ARVI=0.74, p<0.001). 49 

We estimated the difference in the spectral reflectance within each plot between 2016 and 2017 50 

based on the VIs calculated from model simulations accounting for the temporal variations of the 51 

understory which confirm its impact, showing a Root Mean Square Error (RMSE) three times 52 
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lower than without temporal understory changes simulated. This analysis demonstrates the 53 

benefit of combining 3-D radiative transfer modelling accounting for the background variations 54 

with Sentinel-2 data to assess the spatio-temporal dynamics of Xf infections in olive orchards. 55 

The systematic retrieval of DI through model inversion and Sentinel-2 imagery can form the basis 56 

for operational damage monitoring worldwide. Furthermore, interpreting temporal variations of 57 

model retrievals is a critical step to detect anomalies in vegetation health. 58 

 59 

Keywords: Sentinel-2, hyperspectral, Xylella fastidiosa, temporal change, radiative transfer 60 

 61 

1. Introduction 62 

Xylella fastidiosa (Xf), a plant pathogenic bacterium that can live in the xylem of more than 300 63 

plant species is causing severe damages to multiple crops around the world (e.g. olive trees and 64 

stone fruits) (Almeida and Nunney, 2015). The first outbreak of Xf in Europe was detected in 65 

olive orchards in Apulia (southern Italy) in 2013 (Saponari et al., 2017), and the pathogen is now 66 

officially identified in France and Spain (EFSA, 2018) and very recently (2019) in Israel. 67 

According to Saponari et al. (2017), olive stands can be infected for more than 5 months without 68 

noticeable symptoms. During this period, the bacterium can spread within the xylem tissue and, 69 

theoretically, cause water-related stress that may lead, among other things, to lower 70 

photosynthetic rates. The symptoms then start to become visible with a progressive increase in 71 

discolouration and defoliation of the tree crowns within a few months, and leading to their deaths 72 

within years. 73 



3 
 

Accurate detection and diagnosis of Xf symptoms are critical for the operational monitoring of its 74 

spread and for the reduction of losses in crop yield (Sisterson et al., 2010). Recent work showed 75 

that early symptoms of Xf infection in olive trees are detectable through very high-resolution 76 

hyperspectral and thermal remote sensing from airborne platforms; manifested as alterations in 77 

the photoprotective mechanisms, reduction in photosynthetic activity due to pigment degradation 78 

processes, decreased chlorophyll fluorescence emission and the plant transpiration rates (Zarco-79 

Tejada et al., 2018a). Unfortunately, while airborne imaging spectroscopy permits the detection 80 

of early and even non-visible symptoms of Xf infection, such tree-level alterations cannot be 81 

directly detected by current satellite sensors due to their limited spectral and spatial resolution. 82 

However, we hypothesise that symptoms at intermediate and advanced stages of Xf diseases, 83 

visible as leaf browning, wilting, chlorosis, and desiccation of the leaves or even entire crowns, 84 

are observable in Sentinel-2 satellite data. Satellite-based monitoring of such symptoms could 85 

support the monitoring of Xf spread over large areas, providing the spatial distribution related to 86 

the epidemiology of Xf and contributing to the assesment of vegetation health by environmental 87 

managers and other end-users.  Furthermore, the high revist time of up to 2-3 days at moderate 88 

latitudes of this satellite provides key temporal information about the variation in vegetation 89 

status over large areas. 90 

Sentinel-2 images starting in 2015 are freely available and combine moderate to high spatial 91 

resolution (10 to 60 m) in 13 spectral bands, with a revisit time of five days. Given their 92 

combination of spatial, spectral, and temporal resolution, Sentinel-2 data could, in theory, be used 93 

to help monitor the spread of Xf over entire regions with a frequency not achievable through other 94 

means. Pre-launch studies using simulated Sentinel-2 data products demonstrated the potential of 95 

the sensor to measure several biophysical variables, such as chlorophyll content (William James 96 
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Frampton et al., 2013) and leaf area index (Herrmann et al., 2011). The added value of the 97 

Sentinel-2’s red-edge bands has proved high accuracies when estimating chlorophyll content 98 

(Zarco-Tejada et al., submitted), the fractional cover (FC) of forest canopies, the quantification 99 

of leaf area index (LAI) (Korhonen et al., 2011), and for land cover-mapping (Forkuor et al., 100 

2018). Sentinel-2 data thus widen the possibility of using passive optical satellite data for 101 

vegetation monitoring, particularly in non-homogeneous and complex canopies (Lange et al., 102 

2017). The temporal resolution of Sentinel-2 offers new opportunities to understand the trends of 103 

the vegetation affected by infective agents with higher accuracy than other satellites such as 104 

Landsat (Rahimzadeh-Bajgiran et al., 2018) or MODIS (Mura et al., 2018). Recent studies have 105 

investigated the actual capabilities of the sensor for monitoring temporal changes in vegetation 106 

activity in different canopy types such as wetlands (Araya-López et al., 2018; Whyte et al., 2018), 107 

grasslands (Hill, 2013) or forests (Castillo et al., 2017; Zarco-Tejada et al., 2018b). To the extend 108 

of our knowledge, no studies have validated the applicability of Sentinel-2 to evaluate the spectral 109 

variations produced by the incidence of Xf-induced disease. 110 

Nevertheless, the spatial resolution of Sentinel-2 causes mixed-pixel effects, which makes it 111 

challenging when attempting to separate the contribution of the different canopy scene 112 

components, such as soil, shadows, and understory, particularly in open canopies. This is relevant 113 

for the case of olive orchards, where planting densities are typically in the range of 200-2000 114 

trees/ha, and the canopy is rarely closed (Sibbett and Ferguson, 2005). The mixture of canopy 115 

scene components hamper the scaling up of plant functional traits from pure tree crown to broader 116 

spatial extents. Furthermore, the understory and soil in these landscapes may vary considerably 117 

spatially and through time, as a result of vegetation phenology, agricultural practices, or soil 118 

dynamics impacting the multi-temporal spectral datasets. 119 



5 
 

Common approaches to assess vegetation traits from passive optical satellite observations include 120 

the use of vegetation indices and radiative transfer models (RTM). The normalised difference 121 

vegetation index (NDVI) has been widely applied for vegetation trend analysis (Beck et al., 2011; 122 

Fang et al., 2018; Gillespie et al., 2018), and to monitor vegetation productivity in olive groves 123 

(Brilli et al., 2013; Noori and Panda, 2016). Besides its strengths, the limitations of NDVI for 124 

vegetation monitoring have received much attention in the literature (Montandon, 2009; Myneni 125 

et al., 1991). These limitations stem from the index’s sensitivity to soil and atmospheric features, 126 

and its tendency to saturate in high-biomass environments. As a result, alternatives such as the 127 

soil-adjusted vegetation index (SAVI) (Huete, 1988), adjusted transformed soil-adjusted 128 

vegetation index (ATSAVI) (Baret and Guyot, 1991a), atmospherically resistant vegetation index 129 

(ARVI) (Huete et al., 1994) or the global environment monitoring index (GEMI) (Pinty and 130 

Verstraete, 1992) have been proposed. For instance, ARVI has a similar dynamic range to NDVI, 131 

but on average is four times less sensitive to atmospheric effects than NDVI (Kaufman and Tanre, 132 

1992a). However, the spectral mixture produced using medium resolution satellite observations 133 

inherently limits the extent to which vegetation indices can upscale field observations of plant 134 

functional traits to entire landscapes (Atzberger and Richter, 2012; Zurita-Milla et al., 2015). In 135 

addition, the large effects in the spectral reflectance of the canopy produced by the variation in 136 

the understory may have important implications in the aplicability of this VI in temporal change 137 

analysis. The literature lacks studies focused on the sensitivity of VI to variations in both 138 

vegetation health and temporal change, including the contribution of changes in the understory 139 

that affect the reflectance information of Sentinel images. 140 

RTM can overcome some of these typical limitations of purely empirical approaches, minimising 141 

the dependence of field measurements and modelling the reflectance mixture produced by the 142 
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contribution of different components at medium resolutions. These two factors are essential to 143 

improve the retrieval of biophysical vegetation parameters over time. For uniform canopies, the 144 

use of 1-D RTM such as SAIL (Verhoef, 1984) has been successfully used to monitor grass and 145 

crop stress (Bayat et al., 2016; Martín et al., 2007). However, modelling heterogeneous and 146 

discontinuous vegetation canopies require the use of complex 3-D RTM models accounting for 147 

tree canopy structure and background effects. Previous studies have used FLIGHT to provide a 148 

3-D representation of tree canopies to perform the spatial and spectral scaling of different 149 

biophysical variables (Bye et al., 2017; Hernández-Clemente et al., 2017). Still, none of these 150 

models includes the effect produced by the understory on the spectral reflectance of the canopy. 151 

The variations in understory is especially important in natural environments with high-impact in 152 

time-series data analysis over heterogeneous or sparse canopies (Assal et al., 2016; Yang et al., 153 

2014). Some other RTM such as DART (Gastellu-Etchegorry et al., 1996) have overcome these 154 

limitation and could particularly benefit the simulation of the canopy. On the contrary, the large 155 

number of parameters needed in this case can limit the inversion procedures (Hernández-156 

Clemente et al., 2014; Yáñez-Rausell et al., 2015). 157 

Here, we investigate the use of Sentinel-2 images for monitoring disease symptoms in Xf-affected 158 

olive orchards. Using field observations and multi-temporal remote sensing data we assessed i) 159 

the capability of physiological and structural vegetation indices calculated from Sentinel-2 160 

imagery to evaluate DI and DS in Xf-affected olive orchards in the southern Italy infected zone, 161 

and ii) whether the application of a 3-D radiative transfer model to account for temporal changes 162 

in the soil and understory improved the prediction of Xf incidence based on Sentinel-2 datasets. 163 

 164 

2. Material and methods 165 
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2.1. Study site and field data collection  166 

The study was conducted in olive orchards (Olea europaea L.) located in Apulia (southern Italy, 167 

40°30'50"N 18°01'50"E), an area where Xf was officially detected for the first time in October 168 

2013 (Fig. 1). Despite phytosanitary measures, they have been unsuccessful so far in preventing 169 

the spread of Xf through southern Apulia, which has a temperate climate with mild winters, and 170 

a landscape dominated by olive orchards, that favour the natural spread of Xf  (Saponari et al., 171 

2017; Strona et al., 2017). By 2015, the pathogen had spread throughout a ca. 275,000 ha area in 172 

the region, and currently, it affects an area greater than 600,000 ha labelled as ‘Infected zone’ in 173 

Fig. 1. 174 

 175 

 176 
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Figure 1. Southern Italy with a Sentinel-2 footprint overlaid (green box, B), and a corresponding 177 
Sentinel 2A scene (large inset, A), on which airborne hyperspectral mosaics are overlaid. The 178 
three hyperspectral images were acquired from aircraft on 28 June 2016 with a micro-179 
hyperspectral imager yielding 40 cm spatial resolution. The infected zone highlighted (red box, 180 
C) in the main map outlines the area where Xylella fastidiosa has been found as of March 2018 181 
(Commission Implementing Decision (EU) 2018/927, 2018) 182 

 183 

We carried out field surveys in 16 olive orchards located in the Xf-infected zone where qPCR 184 

analysis had confirmed the presence of Xf (Zarco-Tejada et al., 2018a), making it the most likely 185 

causal agent of the symptoms. During the surveys, disease severity (DS) and incidence (DI) was 186 

assessed for 3300 olive trees. Seem (1984) defines DS as the quantity of disease which is affecting 187 

entities within a sampling unit; DI is a quantal measure, defined as the proportion or percentage 188 

of diseased entities within a sampling unit. DS thus accounts for disease severity, while incidence 189 

only considers whether a tree is affected or not. Incidence is, therefore, quicker and easier to 190 

measure, and generally more accurate and reproducible than other quantitative measures, making 191 

it usually the preferred measurement method for the detection and enumeration of disease 192 

propagation patterns (Horsfall and Cowling, 1978). Based on visual inspection, we assigned 193 

individual trees to one of five DS categories (Fig. 2) depending on the proportion of their crown 194 

affected by typical Xf symptoms including desiccation and discolouration of leaves and branches. 195 

DS ranged from 0, indicating the absence of symptoms, to 4 when most of the branches were 196 

dead in the crown (Table 1). DI was either 0 or 1, indicating non-symptomatic trees and 197 

symptomatic trees respectively, where non-symptomatic trees corresponded to a severity of 0 and 198 

symptomatic trees to any other severity DS>0 (Fig. 3). From these records per tree, we calculate 199 

the average of DS and DI of all trees for each orchard (DSo and DIo, respectively). 200 
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 201 

Figure 2. Examples of the five disease severity (DS) classes that olive trees (n=3300) were 202 
assigned to during a field survey in 2016 that was repeated in 2017. The classes related to the 203 
extent of severity of typical visual symptoms of Xylella fastidiosa ranging from apparently 204 
healthy trees (DS=0) to trees showing canopies with a prevalence of dead branches (DS = 4). 205 

Table 1. Xylella fastidiosa evaluation criteria: severity and incidence crown level assignment. 206 

Level Severity Description Desiccation Incidence 

0 Healthy 
 
Symptomless 0% No incidence 

1 Initial severity 
Few desiccated branches affecting a 
limited part of the canopy > 0 ≤ 25% Incidence 

2 Medium severity 
Desiccation affecting a large part of 
the canopy > 25 ≤ 50% Incidence 

3 High severity 
Canopy with desiccated branches 
uniformly distributed > 50 ≤ 75% Incidence 

4 Very high severity 
 
Severe tree decline > 75% Incidence 
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 207 

Figure 3. Example of olive orchards with medium (left panel) and high (right panel) incidence of 208 
Xf-related disease, viewed by an airborne high-resolution narrow-band hyperspectral camera 209 
(VHR HS, top), Sentinel-2A (S2A, middle, RGB-composite of bands B3, B2 and B4) and through 210 
their spectral signature captured by the VHR HS and Sentinel-2A (bottom). 211 
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The first field survey was conducted in June 2016, and found 48.5% of the trees to be 212 

asymptomatic; when it was repeated in July 2017, this was 15.2%. Symptomatic trees were found 213 

in all the sampled orchards in both years, with a minimum DIo of 25.0 % and 63.9 % in 2016 and 214 

2017, respectively. This reflects the fact that all olive orchards across a very large region, that 215 

extends more than 50 km from our study sites, are infected to some degree (Fig. 1). Given the 216 

ubiquity of Xf there and the challenge of determining an area is Xf-free, a direct comparison 217 

between Xf-infected and Xf-free orchards experiencing otherwise similar environmental 218 

conditions is not possible. The relative increase of Xf infection in surveyed orchards, expressed 219 

as ΔDS and ΔDI, was measured based on the DSo and DIo observed between the 2016 and 2017 220 

field surveys as: 221 

ΔDS = (DSoyear n+1 - DSoyear n) / DSoyear n  (1) 222 

ΔDI = (DIoyear n+1 - DIoyear n) / DIoyear n  (2) 223 

where values above zero of ΔDS and ΔDI imply an aggravation of the symptoms; zero values 224 

correspond to orchards with no significant changes; and values below zero refer to a lessening of 225 

visual symptoms in an orchard. 226 

 227 

2.2. Sentinel-2A imagery 228 

A temporal dataset of Sentinel-2 images was used to analyse the feasibility of detecting the ΔDS 229 

and ΔDI of Xf infection using VI trends. The Multispectral Instrument (MSI), on board 230 

Sentinel-2A, acquires imagery at a ten-day interval under constant viewing conditions which 231 

results in 4-6 day revisit times at mid-latitudes due to the swath overlap between neighbouring 232 

orbits. The MSI measures reflected radiance in 13 spectral bands from visible and near-infrared 233 
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(VNIR) to short-wave infrared (SWIR), with images at 12-bit per channel and with a spatial 234 

resolution of 10 m (Central Wavelength (CWL) at 496.6, 560.0, 664.5 and 835.1 nm with a 235 

bandwidth of 98, 45, 38 and 145 nm, respectively), 20 m (CWL at 703.9, 740.2, 782.5, 864.8, 236 

1613.7 and 2202.4 nm with a bandwidth of 19, 18, 28, 33, 143 and 242 nm, respectively) and 60 237 

m (CWL at 443.9, 945.0 and 1373.5 nm with a bandwidth of 27, 26 and 75 nm, respectively).  238 

In this study, we used the multi-temporal Sentinel-2A data available for the first two complete 239 

years after its launch in 2015. We built a multi-temporal spectral dataset from the 86 cloud-free 240 

Sentinel-2A images (Level-1C, ortho-rectified imagery expressed in top-of-atmosphere 241 

reflectance) (Richter et al., 2011) available from July 2015 to August 2017. From Level-1C, the 242 

images were atmospherically corrected to generate Level-2A (bottom-of-atmosphere - surface 243 

reflectance - provided with a pixel classification mask) with Sen2Cor (version 2.3.1). Using the 244 

scene classification from Level-2A, we then filtered the data that were affected by clouds or cirrus 245 

before calculating a suite of vegetation indices. 246 

We selected spectral VIs that are primarily sensitive to canopy structure or pigment concentration 247 

and compatible with the spectral bandset of Sentinel-2. The equations and references for each VI 248 

are shown in Table 2. More precisely, we calculated i) conventional and corrected ratio and 249 

normalised indices derived from the near-infrared and red bands such as Normalized Difference 250 

Vegetation Index (NDVI), Modified Simple Ratio (MSR), Green Normalized Difference 251 

Vegetation Index (GNDVI) and Renormalized Difference Vegetation Index (RDVI); ii) 252 

conventional soil-adjusted indices such as Adjusted Transformed Soil-Adjusted VI (ATSAVI), 253 

Optimised Soil Adjusted Vegetation Index (OSAVI) and Modified Soil-Adjusted Vegetation 254 

Index (MSAVI) and corrected versions using SWIR bands such as OSAVI1510; iii) conventional 255 

and corrected chlorophyll vegetation indices such as Chlorophyll Index (CI), Normalized 256 
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Difference Index (NDI), Medium Resolution Imaging Spectrometer (MERRIS) Terrestrial 257 

Chlorophyll Index (MTCI), Pigment Specific Simple Ratio A (PSSRa), Sentinel-2 Red-Edge 258 

Position (S2REP), Inverted Red-Edge Chlorophyll Index (IRECI); and iv) chlorophyll indices 259 

formulated to minimise their sensitivity to structural effects based on the Chlorophyll Absorption 260 

in Reflectance Index (CARI) and its transformations into Transformed Chlorophyll Absorption 261 

Ratio Index (TCARI) & Modified Chlorophyll Absorption Ratio Index (MCARI) normalised by 262 

OSAVI in the form TCARI/OSAVI and MCARI1510 using SWIR bands, as formulated in Table 2. 263 

Finally, a smoothing algorithm based on Local Polynomial Regression Fitting (Cleveland et al., 264 

1992) reduced atmospheric variability and filled gaps to produce daily time-series of the indices. 265 

Table 2. Vegetation indices derived from Sentinel-2 data included in this study and their 266 
formulations. 267 

Vegetation index Equation Reference 

Normalized Difference Vegetation Index 𝑁𝐷𝑉𝐼 = (𝑅()) − 𝑅+,))/(𝑅()) + 𝑅+,)) (Rouse et al., 1974) 

Chlorophyll Index 𝐶𝐼 =
𝑅,1)
𝑅,1)

 (Zarco-Tejada et al., 2001) 

Normalized Difference Index 𝑁𝐷𝐼 = (𝑅,)+ − 𝑅++2)/(𝑅,)2 + 𝑅++2) (Delegido et al., 2011) 

MERIS Terrestrial Chlorophyll Index 𝑀𝑇𝐶𝐼 = (𝑅,52 − 𝑅,)6)/(𝑅,)6 − 𝑅+(1) (Dash and Curran, 2007) 

Modified Chlorophyll Absorption Ratio 
Index 

𝑀𝐶𝐴𝑅𝐼 = ((𝑅,)) − 𝑅+,)) 

−0.2(𝑅,)) − 𝑅55))) ;
<=>>
<?=>

@  
(Haboudane et al., 2004) 

Green Normalized Difference Vegetation 
Index 𝐺𝑁𝐷𝑉𝐼 = (𝑅()) − 𝑅55))/(𝑅()) + 𝑅55)) (Gitelson et al., 1996) 

Pigment Specific Simple Ratio A 𝑃𝑆𝑆𝑅𝑎 =
𝑅())
𝑅+()

 (Blackburn, 1998) 

Sentinel-2 Red-Edge Position 𝑆2𝑅𝐸𝑃 = 705 + 35
𝑅,(I + 𝑅++5

2 − 𝑅,)5
𝑅,2) − 𝑅,)5

 (W. J. Frampton et al., 2013) 

Inverted Red-Edge Chlorophyll Index 𝐼𝑅𝐸𝐶𝐼 = (𝑅,(I − 𝑅++5)/(𝑅,)5 + 𝑅,2)) (W. J. Frampton et al., 2013) 

Renormalized Difference Vegetation Index 𝑅𝐷𝑉𝐼 = (𝑅()) − 𝑅+,))/J(𝑅()) + 𝑅+,)) (Roujean and Breon, 1995) 

Modified Simple Ratio 𝑀𝑆𝑅 =
𝑅())/𝑅+,) − 1

(𝑅())/𝑅+,))).5 + 1
 (Chen, 1996) 

Transformed Chlorophyll Absorption Ratio 𝑇𝐶𝐴𝑅𝐼 = 3L
(𝑅,)) −	𝑅+,))

−	0.2	(𝑅,)) −	𝑅55))
𝑅,))
𝑅+,)

N (Haboudane et al., 2002) 

Optimized Soil-Adjusted Vegetation Index 𝑂𝑆𝐴𝑉𝐼 = (1 + 0.16)	
𝑅()) − 𝑅+,)

𝑅()) + 𝑅+,) + 0.16
 (Rondeaux et al., 1996) 

TCARI/OSAVI 𝑇𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼	 =
TCARI
OSAVI 

(Haboudane et al., 2002) 

Modified Chlorophyll Absorption Ratio 
Index 1510 

𝑀𝐶𝐴𝑅𝐼1510 = ((𝑅,)) − 𝑅151)) 

−0.2(𝑅,)) − 𝑅55))) ;
<=>>
<YZY>

@  
(Herrmann et al., 2010) 
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Transformed Chlorophyll Absorption Ratio 
1510 𝑇𝐶𝐴𝑅𝐼1510 = 3L

(𝑅,)) −	𝑅151))

−	0.2	(𝑅,)) −	𝑅55))
𝑅,))
𝑅151)

N (Herrmann et al., 2010) 

Optimized Soil-Adjusted Vegetation Index 
1510 𝑂𝑆𝐴𝑉𝐼1510 = (1 + 0.16)	

𝑅()) − 𝑅151)
𝑅()) + 𝑅151) + 0.16

 (Herrmann et al., 2010) 

Red Green Ratio Index 𝐼𝑅𝐺 = 𝑅+,) − 𝑅55) (Gamon and Surfus, 1999) 

Perpendicular Vegetation Index 𝑃𝑉𝐼 =
𝑅()) − 𝑎 · 𝑅+,) − 𝑏

√𝑎^ + 1
 

(Richardson and Wiegand, 
1977) 

Ratio Vegetation Index - Simple Ratio 
800/670 𝑅𝑉𝐼 =

𝑅())
𝑅+,)

 (Pearson and Miller, 1972) 

Adjusted Transformed Soil-Adjusted VI 𝐴𝑇𝑆𝐴𝑉𝐼 = 𝑎 ·
𝑅()) − 𝑎 · 𝑅+,) − 𝑏

𝑎 · 𝑅()) + 𝑅+,) − 𝑎𝑏 + 𝑥(1 + 𝑎^)
		 (Baret and Guyot, 1991b) 

Atmospherically Resistant Vegetation 
Index 𝐴𝑅𝑉𝐼 =

𝑅()) − 𝑅+,) − 𝑦(𝑅+,) − 𝑅25))
𝑅()) + 𝑅+,) − 𝑦(𝑅+,) − 𝑅25))

		 (Bannari et al., 1995) 

Global Environment Monitoring Index 

𝐺𝐸𝑀𝐼 = 𝑛(1 − 0.25𝑛)
𝑅+,) − 0.125
1 − 𝑅+,)

 

𝑛 = 
2b𝑅())^ − 𝑅+,)^c + 1.5 · 𝑅()) + 0.5 · 𝑅+,)

𝑅()) + 𝑅+,) + 0.5
 

 

(Pinty and Verstraete, 1992) 

Difference Vegetation Index 𝐷𝑉𝐼 = 𝑔 · 𝑅()) − 𝑅+,) 
(Richardson and Wiegand, 
1977) 

Aerosol Free Vegetation Index 1600 
𝐴𝐹𝑅𝐼1510 =	

𝑅()) − 0.66
𝑅1+))

𝑅()) + 0.66 · 𝑅1+))
 

(Karnieli et al., 2001) 

Aerosol Free Vegetation Index 2100 
𝐴𝐹𝑅𝐼2100 =	

𝑅()) − 0.5
𝑅^1))

𝑅()) + 0.56 · 𝑅^1))
 (Karnieli et al., 2001) 

 268 

For each of the 16 orchards, we used the daily dataset of VIs to calculate the values for June 2016 269 

and July 2017 taking the means over 2-week intervals centred on the dates of the ground 270 

measurement collection to reduce random fluctuations in time series data. We additionally 271 

calculated the temporal rate of change for each VI in the form VIyear=n+1 / VI year=n in order to 272 

understand the temporal trajectory of VIs as a function of the Xf infections. Finally, Pearson 273 

correlation analysis and p-values, adjusted with a Bonferroni correction to control false positives 274 

(Haynes, 2013), were used to determine the strength and statistical significance of the relationship 275 

between the in-situ measurements of Xf impact, i.e. ΔDI and ΔDS, and the rate of change of VIs 276 

derived from Sentinel-2 data. 277 

 278 
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2.3. Airborne hyperspectral images 279 

For validation purposes, we collected very high-resolution images (Fig. 3) on 28th June 2016, and 280 

3rd July 2017, using a micro hyperspectral imager – Micro-Hyperspec VNIR model (Headwall 281 

Photonics Inc., Fitchburg, MA, USA) – on board a Cessna aircraft. Visible and near-infrared 282 

spectral regions (400-885 nm) were covered by operating the sensor with 260 bands and a 283 

radiometric resolution of 12 bits at 1.865 nm CWL interval, yielding 6.4 nm full-width at half-284 

maximum (FWHM) spectral resolution with a 25-μm slit. The acquisition frame-rate on board 285 

the aircraft was 50 frames per second with an integration time of 18 ms; with a focal length of 8 286 

mm, an angular field of view (FOV) of 49.82° was produced (instantaneous (IFOV) of 0.93 287 

mrad). More platform details and sensor configuration can be found in Zarco-Tejada et al. (2013). 288 

The hyperspectral sensor was radiometrically calibrated in the laboratory with an Ulbricht sphere 289 

(CSTM-USS-2000C Uniform Source System from LabSphere, North Sutton, NH, USA) by 290 

calculating coefficients derived from the calibrated light source in four illumination levels. The 291 

atmospheric correction was carried out using the total incoming irradiance simulated with the 292 

SMARTS model (Gueymard, 1995, 2001), which allowed the conversion of radiance values to 293 

reflectance. The model was fed with data from a weather station (WX510 from Vaisala, Vantaa, 294 

Finland) and a MICROTOPS II solar photometer (Solar LIGHT Co., Philadelphia, PA, USA). 295 

Hyperspectral imagery was ortho-rectified with PARGE (ReSe Applications Schläpfer , Wil, 296 

Switzerland) using inputs from an inertial measurement unit (MTiG from Xsens, Enschede, 297 

Netherlands) installed on board and synchronized with the imager; image correction and data pre-298 

processing are described in detail in Hernández-Clemente et al. (2012) and Zarco-Tejada et al. 299 

(2016).  300 
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The hyperspectral images had a ground resolution of 40 cm, allowing us to distinguish individual 301 

olive tree crowns from the background made up of soil and understory vegetation. We used the 302 

hyperspectral images to evaluate the contribution of the background in the relationship between 303 

∆DI and the rate of change of VIs derived from Sentinel-2 data. To do this, we calculated for each 304 

orchard the hyperspectral vegetation indices separately for the background areas surrounding the 305 

trees – with a five metres radius from its centroid and masking the crown by segmentation – and 306 

for the tree crowns only. 307 

We also used the very high-resolution images as ground-truth for model parametrisation, detailed 308 

in the next section, following the methodology proposed by (Zarco-Tejada et al., 2019) using 309 

scene components extracted from airborne hyperspectral images. Fig. 4 shows a strong correlation 310 

between VIs derived from Sentinel-2 and hyperspectral images over the 16 olive orchards in both 311 

2016 (r2=0.86, p<0.001 for NDVI and r2=0.78, p<0.001 for OSAVI) and 2017 (r2=0.68, p<0.001 312 

for NDVI and r2=0.65, p<0.001). Hence, the consistency between the two datasets enables the 313 

use of the high-resolution imagery as ground-truth for model parametrisation (Fig. 4). 314 
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 315 

Figure 4. Comparison between Sentinel-2A and high spatial resolution aircraft (Hyperspec 316 
VNIR) imagery using the vegetation indices NDVI (top) and OSAVI (bottom) of 16 olive 317 
orchards surveyed in June 2016 and July 2017.  318 
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2.4. Model simulations 319 

We used a coupled leaf-canopy radiative transfer model to analyse the sensitivity of different VIs 320 

to orchard-level changes in Xf symptoms through time and to evaluate the effects of the 321 

background and soil on the detection of the symptoms. The leaf optical properties were simulated 322 

with the PROSPECT-D model (Feret et al., 2017) which requires seven variables: the leaf 323 

structure coefficient (N), chlorophyll content (Ca+b), carotenoid content (Cx+c), anthocyanin 324 

content (Anth), brown pigment content (Cbrown), water equivalent thickness (Cw) and dry matter 325 

content (Cm). The PROSPECT leaf model was coupled to the 3-dimensional FLIGHT model 326 

(Hernández-Clemente et al., 2017; North, 1996) to simulate the optical effects stemming from 327 

heterogeneous architecture of the olive tree crowns and orchards. FLIGHT uses Monte Carlo Ray 328 

Tracing (MCRT) techniques for the radiative transfer within crowns and between crowns and 329 

other canopy components. FLIGHT calculates directional reflectance of the canopy by 330 

accumulating photon energy in the observation direction as a function of different components 331 

defining the canopy structure (crown shape and size, tree height, position, density and 332 

distribution) (Table 3).  333 
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Table 3. Nominal values used in PROSPECT+FLIGHT simulation analysis. 334 

Variable Variable code Nominal values 
PROSPECT 

  

Structure coefficient N 1.2 
Chlorophyll content Ca+b (μg/cm2) 10 – 80 
Carotenoid content Cx+c (μg/cm2) 10 
Anthocyanin content Anth (μg/cm2) 1.0 
Brown pigment content Cbrown  0.0 
Water content Cw (cm) 0.015 
Dry matter Cm (g/cm2) 0.009 

FLIGHT 
  

Mode of operation MODE r (reverse) 
Dimension of model FLAG 3 (3D Representation) 
Solar zenith, view zenith (°) θs, θv 39.27, 0.0 
Solar azimuth, view azimuth (°) Φs, Φv 103.87, 0.0 
Number of wavebands NO_WVBANDS 401 
Image size IM_SIZE 200 x 200 
Number of photons traced - 40000 (reverse mode, from image size) 
Total LAI (LAI crown) TOTAL_LAI 0.25 – 3.5 
Leaf angle distribution LAD [1–9] 0.015, 0.045, 0.074, 0.1,0.123, 0.143, 

0.158,0.168, 0.174 
Fractional cover (%) FRAC_COV 5 – 55 

 335 

Using the described PROSPECT+FLIGHT modelling approach, we generated a look-up table 336 

(LUT) to investigate the temporal dynamics of Xf incidence using VIs calculated from simulated 337 

spectra. We built an LUT with 7056 simulations using the input parameters described in Table 3. 338 

The nominal values used to generate the simulations were defined based on field measurements 339 

and hyperspectral imagery (Table 3), and mimicked the orchards’ architecture and the level of 340 

disease impact across the study area. The 40 cm spatial resolution hyperspectral images (Fig. 3 341 

top) were used to distinguish the scene components (Fig. 5), facilitating the parametrisation of 342 

the FLIGHT model simulations. In particular, we quantified the fractional cover of each orchard 343 

(FCo) using the high-resolution NDVI image obtained from the airborne hyperspectral sensor. 344 

To this image, a threshold of NDVI > 0.3 was applied to distinguish tree crowns from background 345 

pixels during image segmentation according to the Niblack’s thresholding method (Niblack, 346 

1986) and Sauvola’s binarisation techniques (Sauvola and Pietikäinen, 2000). Next, we applied a 347 
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binary watershed analysis using the Euclidean distance map for each object to automatically 348 

separate trees with overlapping crowns, which enables to rebuild the scene with the same features. 349 

The FCo values retrieved from the airborne sensor were related to the field observations (DSo 350 

and DIo) with a linear regression model (r2=0.67, p<0.05) used as a proxy of DSo and DIo in the 351 

model simulation. The relationship between FCo and DSo was used to mimic the natural range 352 

of variation in FCo values for each DSo and used as input in the LUT. The initial LUT was then 353 

classified to set an approximate range of FCo per DSo and DIo (Table 4). For each class (Level 354 

0 to 4), we assumed a range of crown diameters and LAI per orchard to comply with the FCo 355 

defined for each level. We also assumed a range of decrease in the chlorophyll content values 356 

corresponding to the increase in DSo to mimic the typical discolouration observed in Xf-affected 357 

olive trees. 358 

 359 

 360 

Figure 5. Overview of an olive grove acquired with a 40-cm hyperspectral sensor enabling the 361 
identification of single trees (left panel) and a 3-D scene generated with FLIGHT Monte Carlo 362 
simulation mimicking crowns distribution (right panel).  363 
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Table 4. Classification criteria in the model inversion, including disease severity (DSo) and 364 
fractional cover (FCo) at orchard level, leaf area index at both crown (LAICROWN) and scene level 365 
(LAISCENE), and chlorophyll content (Ca+b) 366 

Level DSo FCo LAICROWN Ca+b LAISCENE 

0 Healthy 45 – 55 2 – 3.5 65 – 80 0.9 – 1.925 

1 Initial severity 25 – 45 1.5 – 2 50 – 65 0.375 – 0.9 

2 Medium severity 20 – 25 0.75 – 1.5 35 – 50 0.15 – 0.375 

3 High severity 10 – 20 0.5 – 0.75 20 – 35 0.05 – 0.15 

4 Very high severity 5 – 10 0.25 – 0.5 10 – 20 0.0125 – 0.05 

 367 

To define the synthetic dataset associated with the change, we established a pool of combinations 368 

of change describing the positive increase rate of severity (𝑐 = ∑ 𝑘5
ij1 ) between orchards 369 

classified at different levels for the years n and n+1 (year nL4→ year n+1L4, year nL3→ year 370 

n+1L3, year nL3→ year n+1L4, …, year nL0→ year n+1L4). The rate of change between simulations 371 

of years n and n+1 was used for the final retrieval of ΔDI and ΔDS.  372 

Three different approaches were considered to account for the canopy background: i) a more 373 

complex solution that included the background spectral reflectance variation recorded by the 374 

hyperspectral images between 2016 and 2017 for each plot, named as temporal background per 375 

plot (TBP); ii) a simpler approach considering a constant spectral reflectance for the background 376 

(PB) using a bare-soil spectrum extracted from the hyperspectral imagery collected in 2016; and 377 

iii) a compromise solution by computing the average of the background’s spectral reflectance 378 

recorded for all plots during 2016 and 2017, named as the mean temporal background scheme 379 

(MTB). The performance of the model was evaluated based on the Root Mean Square Error 380 

(RMSE) between the DI increase estimated from the retrieved Sentinel-2 data and the field 381 

observations collected from the 16 orchards. 382 
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3. Results 383 

 In this section we present the results from the empirical approach to detect variations in DI of 384 

Xf-affected olive orchards using physiological and structural vegetation indices calculated from 385 

Sentinel-2 imagery data. It is followed by the modelling results using a 3-D radiative transfer 386 

model to predict temporal changes of Xf incidence accounting for the soil and understory 387 

variations affecting the temporal trends. 388 

3.1. Temporal trends of DS and DI and vegetation indices 389 

Both the DI and DS caused by Xf increased between 2016 and 2017 at all surveyed olive orchards 390 

(Fig. 6). DS and DI were significantly correlated with each other (r2=0.84, p<0.05) as were the 391 

temporal change rates ∆DS and ∆DI (r2=0.79, p<0.05) (data not shown). Orchards where 392 

incidence had already reached 100% continued to see an increase in symptom severity (e.g. A5 393 

and A4), and orchards with a low initial incidence and severity (e.g. C20 to B3), one year later 394 

showed a strong increase in both, as reflected by high ∆DI and ∆DS, respectively (e.g. B3). 395 

 396 
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 397 

Figure 6. Temporal evolution of DIo and DSo between 2016 and 2017. X-axis labels refer to the 398 
16 olive orchards surveyed. 399 

  400 
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The rate of change in 17 out of the 25 Sentinel-2 vegetation indices correlated significantly 401 

(p<0.001) with ∆DS and ∆DI, and six of them showed a coefficient of determination (r2) 402 

exceeding 0.57 (Fig. 7). The indices ARVI and OSAVI produced the highest coefficients of 403 

determination with ∆DI (r2=0.75 and r2=0.76, respectively; p<0.001) (Fig. 8). Classical 404 

vegetation indices such as ATSAVI and NDVI yielded similar results (r2=0.72 and r2=0.71, 405 

respectively), and outperformed RDVI (r2=0.65) and MSR (r2=0.61). Relating those VIs to ∆DS 406 

generated a similar ranking (r2ARVI=0.74, r2OSAVI=0.71, r2ATSAVI=0.72, r2NDVI=0.71, r2RDVI=0.57, 407 

r2MSR=0.6, p<0.001). Surprisingly, however, greater ∆DI was associated with smaller reductions 408 

in the vegetation indices, whether considering entire orchards (Fig. 8), the background cover only 409 

(Fig. 9a), or tree crowns only (Fig. 9b). 410 

 411 

Figure 7. Relationship between severity (∆DS) and incidence increase (∆DI) and temporal rate of 412 
change in Sentinel-2 vegetation indices selected for this study. Correlation coefficient ranges 413 
from -1 to 1. Cross symbols indicate non-significant relationships (p-value ≥ 0.001). 414 
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 415 

Figure 8. Relationship between Xf-incidence increase (∆DI) and the rate of change of the 416 
vegetation indices ARVI (a) and OSAVI (b). Rate of change was calculated from Sentinel-2 417 
images taken in 2016 and 2017. 418 
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 419 

Figure 9. Relationship between Xf-incidence increase (∆DI) and the rate of change of the 420 
vegetation index OSAVI with the background around a tree (a), with a radius of 5 metres around 421 
its centroid and masking the tree crown itself by segmentation; and taking only tree crowns (b). 422 
Rate of change was calculated from hyperspectral imagery in 2016 and 2017 due to its resolution 423 
to discriminate between background and trees. 424 

 425 

The analysis of the temporal evolution of Sentinel-2A ARVI and OSAVI data revealed distinct 426 

patterns in orchards with medium and high DI over the last two years (Fig. 10). Orchards with 427 

high DI had a lower ARVI and OSAVI than those with medium DI. The differences were most 428 

substantial during the summer. In this season, the VIs tended to be lower than in winter and much 429 
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less variable than in spring. In addition, a much higher degree of variation was observed during 430 

the spring, the season when infection symptoms may develop, and potentially depend on local-431 

scale environmental conditions, as well as the physiological status of individual trees. 432 

 433 

 434 

Figure 10. Daily mean OSAVI (top) and ARVI (bottom) time-series of orchards with medium 435 
and high Xf-incidence as evaluated in the field on 28th June 2016 (dots indicate the timing of the 436 
field survey). Lines represent the mean of medium (DIo2016<50%; n=10) and high incidence 437 
(DIo2016>50%; n=6) orchards, and bands extend two standard deviations around them. 438 
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3.2. Modelling changes in vegetation trends with Sentinel-2 439 

The results of the radiative transfer modelling approach proposed to evaluate the sensitivity of 440 

VIs to track the temporal evolution of the disease are displayed in Figure 11. The FLIGHT model 441 

simulations obtained using a synthetic multi-temporal dataset of values within the typical range 442 

of variation observed in olive groves affected by Xf in two consecutive years for OSAVI (Fig. 443 

11a) and ARVI (Fig. 11b) show a direct relationship between ∆DI and the rate of change between 444 

two years. The simulated VIs generated using the MTB approach were significantly related to 445 

∆DI for OSAVI, ARVI and NDVI yielding similar accuracy to the empirical relationship with 446 

OSAVI (r2=0.74) but somewhat lower with ARVI (r2=0.49) and higher for NDVI (r2=0.68) (data 447 

are not shown). In any case, their linear response matched the empirically inferred one very 448 

closely. 449 

∆DI estimated through model inversion using different vegetation indices (ARVI and OSAVI) 450 

corresponded well with field observation of the ∆DI temporal change (Fig. 12). The complexity 451 

in accounting for the background in the models had an effect on the goodness-of-fit, introducing 452 

a bias in the DI change estimates (Fig. 12); when the year-to-year evolution of the background 453 

was considered independently for each of the orchards (TBP approach), the model simulations 454 

were entirely corrected for background effects and, therefore, the accuracy of ∆DI retrievals using 455 

OSAVI and ARVI was significantly higher (RMSEOSAVI=43% and RMSEARVI=44%) (Fig. 12 a, 456 

b). Model performance decreased when instead the mean background reflectance time-series from 457 

all orchards (MTB approach) was used as model input (RMSEOSAVI=50% and RMSEARVI=84%, 458 

Fig. 12 c, d). Finally, when model simulations did not account for the temporal changes in 459 

background reflectance at all (PB approach), the fitted models degraded significantly, leading to 460 

larger errors (RMSE≥140%) (Fig. 12 e, f). 461 
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 462 

Figure 11. Simulations of the disease incidence increase (∆DI) with OSAVI (a) and ARVI (b), 463 
generated by PROSPECT+FLIGHT and using the average spectral reflectance measured in  parts 464 
of the orchards not covered by olive tree crowns to represent the background in the model (MTB 465 
approach). 466 
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 467 

Figure 12. Estimated versus measured Xf-increase incidence (∆DI) using OSAVI (left) and ARVI 468 
(right) vegetation indices. PROSPECT+FLIGHT inversions calculated using TBP (a, b), MTB 469 
(c, d) and PB (e, f). 470 
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 471 

Figure 13. Xf-disease incidence increase (∆DI) map generated from Sentinel-2A data of 29th June 472 
2016 and 24th June 2017 using a lookup-table generated by inverting a PROSPECT+FLIGHT 473 
model that considered the temporal changes in background reflectance (MTB approach, see text 474 
for details). Dots in the map indicate the individual olive orchards that were surveyed in the field. 475 
Bottom panels show incidence increases over different areas (green dots) where olive orchards 476 
were surveyed. Observed incidence increase for each selected orchard is also indicated. The map 477 
has been masked with a layer of olive groves for Puglia extracted from the Puglia Land Cover 478 
2011 (InnovaPuglia Spa - Servizio Territorio e Ambiente, 2013). 479 
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Applying this methodology with OSAVI and the MTB model (Fig. 11 a, Fig. 12 c) to entire 480 

Sentinel-2A scenes generated a map of the predicted increase in Xf-symptom incidence between 481 

29th June 2016 and 24th June 2017 (Fig. 13). 482 

 483 

4. Discussion 484 

The first research question of this study was to analyse if satellite data could be used to monitor 485 

temporal changes of Xf-induced DI and DS, and provide insights into the epidemiology of Xf 486 

spread over large areas. Previous work showed that non-visual symptoms of Xf infection can be 487 

detected with very high-resolution hyperspectral images and radiative transfer models (Zarco-488 

Tejada et al., 2018a), providing an innovative tool for the early detection of infected olive trees 489 

at local scales. However, since Xf has spread rapidly iin Southern Italy in the last years affecting 490 

entire olive orchards, tracking more conspicuous damage (such as DI and DS) across large areas 491 

could help measure, forecast, and mitigate the impact of Xf on the landscape, and on socio-492 

economic sectors depending on it (Luvisi et al., 2017; White et al., 2017). The fast spread is 493 

reflected in our field observations: DI and DS increased considerably between 2016 and 2017, 494 

and ∆DI and ∆DS were linearly related. Indeed, the widespread increase of Xf infections in the 495 

last three years in southern Apulia (Girelli et al., 2017) has posed a risk to the olive trees and 496 

sector in the region. 497 

In natural conditions, biotic and abiotic factors jointly affect the development of vegetation 498 

diseases over different spatial and temporal scales. The interaction may cause a progressive loss 499 

in chlorophyll and biomass producing irreversible changes in the vegetation. Both alterations are 500 

detectable and quantifiable through VIs calculated from Sentinel-2 data (Zarco-Tejada et al., 501 
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2019). However, relationships between VIs (OSAVI or NDVI) and DS or DI were poor when 502 

considering data from 2016 and 2017 together (r2<0.22, p<0.05) (Fig. 1, supplementary material), 503 

indicating that the VIs reflect other orchard characteristics than Xf-symptoms and that these 504 

characteristics vary considerably between years. Hence, a precise disease assessment requires a 505 

quantitative estimation of the temporal evolution of the disease (∆DI and ∆DS) rather than a mere 506 

quantification of DI and DS at one specific time (Nutter et al., 2006). Indeed, the availability of 507 

frequent multispectral data from Sentinel-2 offers the opportunity to assess, not only spatial, but 508 

also temporal variation in VIs to monitor Xf infections in olive orchards over time.  509 

When working with multi-temporal data acquired over non-closed canopies, one of the main 510 

challenges is to decouple the spectral reflectance changes produced by alterations in the 511 

vegetation condition from those produced by atmospheric and background factors. Here, the 512 

seasonal variation of VIs showed thighest variability in winter and early spring. In these periods, 513 

cloudy days are more frequent, increasing the residual noise in the data and the need for temporal 514 

interpolation. The sensitivity of different vegetation indices to soil background and atmospheric 515 

effects were previously analysed by in efforts to improve the accuracy of the retrieval of LAI and 516 

absorbed photosynthetically active radiation (APAR) (Baret and Guyot, 1991b; Haboudane et al., 517 

2004; Huete et al., 1985) and chlorophyll (Haboudane et al., 2008; Zhang et al., 2008). The 518 

variation in FC of forest under decline also affects the performance of some vegetation indices 519 

with higher sensitivity to canopy structure changes (Hernández-Clemente et al., 2011). The best-520 

performing VIs in our study, OSAVI and ARVI, tend to be relatively robust to background and 521 

atmospheric effects (Kaufman and Tanre, 1992b; Rondeaux et al., 1996). Empirical and 522 

modelling results agreed regarding the accuracy of OSAVI as the best-performing index to track 523 

ΔDI. In contrast, the sensitivity of ARVI to the field observations was not entirely confirmed by 524 
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model simulations. This may be related to the fact that ARVI is a vegetation index that minimises 525 

the atmospherical effects on the reflectance, conditions that were not included in the modelling 526 

which assumed stable atmospherical conditions for both years. 527 

In either case, the overall robustness shown by modified VIs such as OSAVI or ARVI is in 528 

disagreement with some other studies where traditional indices had a better performance. For 529 

instance, Frampton et al. (2013) found that LAI and chlorophyll could be extracted from Sentinel-530 

2 NDVI images for crops as well as from novel indices such as S2REP and MTCI. Differences 531 

in the homogeneity of crops versus olive orchard canopies might explain this apparent 532 

contradiction; in the latter case, the confounding effects produced by the structural heterogeneity 533 

of the orchards invalidates VIs with high sensitivity to soil effects and atmospheric conditions. 534 

The contribution of the background seems to affect not only the spectral reflectance of the canopy 535 

measured by Sentinel-2 but also the spectral reflectance retrieved from the diseased crowns using 536 

hyperspectral images. Both sensors, with different spatial and spectral resolutions, namely 537 

showed a significant and similar relationship with greater ΔDI leading to greater VI increases. 538 

This counterintuitive result is unlikely to be driven by weather patterns in the two years, as the 539 

sampled orchards experience very similar meteorological conditions. Instead it might reflect the 540 

impact that the background has on the crown spectral response as olive trees crowns generally 541 

have low transmittance and LAI (Gómez Calero et al., 2011) and defoliation increased with DS. 542 

As a result, the background has a particularly large contribution to the temporal VI trends once 543 

Xf disease symptoms are severe, even when using self-corrected (Kaufman and Tanre, 1992b) 544 

and soil-adjusted (Rondeaux et al., 1996) VIs and considering only tree crowns. Simultaneously, 545 

the increase in Xf infections was associated with a decrease in FC of the trees and an increase in 546 

the FC of the background, further increasing the dominance of the understory in the signal at 547 
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orchard resolution. The inverse effect of an increase in the greenness of the background when the 548 

health of Xf-infected trees decreases could be management driven if diseased orchards are 549 

abandoned, and no longer mowed or ploughed, leaving low-stature vegetation to reoccupy the 550 

soil. It may also be partly ecologically driven if diseased trees leave more nutrients and water 551 

available to the understory (Peltzer and Köchy, 2001). 552 

This pattern further emphasises the relevance of incorporating 3-D radiative transfer models 553 

(RTMs) when analysing VIs to explicitly incorporate background effects if the impact of Xf on 554 

spectral characteristics of olive groves is to be modelled with considerable precision (Meggio et 555 

al., 2008; Richardson and Wiegand, 1977). This drove us to answer our second research question 556 

showing the feasibility of modelling changes in DI from multi-temporal Sentinel-2 image data 557 

using different vegetation indices and radiative transfer models. In fact, the background effect has 558 

a significant impact on the model estimation against in-situ measurements; there was an 559 

improvement in the retrieval of ΔDI of 33.5% when accounting for the background effects, and 560 

a further 9.5% when its heterogeneity was also considered. These results have critical 561 

implications in the use of vegetation indices to assess the temporal evolution of the disease due 562 

to the non-homogeneous background effects across orchards affected by Xf altering the spectral 563 

signature of the canopy with Sentinel-2 image data. The simulation approach demonstrated the 564 

benefit of using a 3-D radiative transfer model accounting for those effects, which is critical to 565 

monitoring future spread of Xf infections and understanding its epidemiology (Fuente et al., 566 

2018). Therefore, this study takes one step further via modelling methods for change monitoring, 567 

enabling the retrieval of vegetation trends associated with Xf infections and improving the 568 

understanding of the dynamics of the understory.  569 

 570 
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The methodology proposed based on the use of RTM and Sentinel-2 imagery offers the advantage 571 

of using free satellite data in comparison to any other remote sensing product limited by the 572 

availability of hyperspectral images. However, the applicability of these methods into a 573 

systematic detection system may be limited by the computational time required through model 574 

inversion, notwithstanding this limitation can be overcome in combination with data-driven 575 

machine learning algorithmsbased on multi-output algorithms emulating the functioning of RTM 576 

(Rivera et al., 2015). The result of mapping disease-incidence dynamics using radiative transfer 577 

modelling illustrates the potential of the medium-spatial resolution Sentinel-2 sensor to assess 578 

olive groves’ health dynamics. The challenge of mapping disease infections has been thus far 579 

mainly addressed using environmental data and probabilistic models (Hay et al., 2006) and rarely 580 

met in quantitative terms. Remote sensing combining radiative transfer and vegetation indices 581 

makes it possible to map Xf’s DI dynamics based on the main biophysical changes Xf causes not 582 

only in plants, but in the entire landscape. The dense time-series, which the Sentinel-2 satellites 583 

now provide, possibly in combination with Landsat, means such mapping could, in theory, be 584 

carried out on a near-monthly basis bringing new opportunities for monitoring Xf disease 585 

incidence over large areas. Future work towards this aim should particularly consider how to 586 

disentangle direct plant-level effects of Xf infection from those that manifest themselves in other 587 

components of the landscape, either because of changes in vegetation composition or 588 

management. 589 

 590 

5. Conclusions 591 

This study demonstrates that Sentinel-2 enables the detection of changes associated with temporal 592 

variations of Xf-induced symptoms at the orchard level. The work used a two-year dataset, 593 
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integrating Sentinel-2 satellite images and high-resolution hyperspectral imagery, field 594 

observations and radiative transfer modelling. The temporal rate of change of disease incidence 595 

(DI) and severity (DS) was evaluated using different VIs showing that the monitoring of Xf-596 

infected orchards required the use of self-corrected and soil-adjusted VIs. Among all the 597 

Sentinel-2 VIs studied, the best performance was found for those that minimised the atmospheric 598 

and background effects such as ARVI, OSAVI and ATSAVI. These VIs performed better than 599 

traditional vegetation indices when used as a quantitative proxy of the fractional cover (FC) of 600 

green and healthy vegetation, such as NDVI, RDVI and MSR. However, the confounding effects 601 

of the understory had a considerable impact on the VIs calculated from Sentinel-2 over infected 602 

olive orchards due to the discontinuous canopies characteristic of this crop. Therefore, this study 603 

demonstrated that 3-D RTM and field observations properly explained the temporal variations in 604 

both tree canopy and background, required to accurately predict ΔDI and ΔDS. Applying a 605 

temporal trend analysis supported by the 3-D RTM demonstrated that ARVI and OSAVI can be 606 

used to monitor orchard-level changes in DI and DS, yielding Normalised Root Mean Square 607 

Error (NRMSE) values below 0.22 and 0.36 respectively for the two years of analysis. Overall, 608 

these results suggest that Sentinel-2 time-series data can provide useful spatio-temporal indicators 609 

to monitor the damage caused by Xf infections across large areas. 610 
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Figure 1. Supplementary material. Relationship between severity (DSo) and incidence (DIo) and 629 
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