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Using numerical simulations of lattice QCD with physical quark masses, we reveal the influence of
magnetic-field background on chiral and deconfinement crossovers in finite-temperature QCD at low
baryonic density. In the absence of thermodynamic singularity, we identify these transitions with inflection
points of the approximate order parameters: normalized light-quark condensate and renormalized Polyakov
loop, respectively. We show that the quadratic curvature of the chiral transition temperature in the
“temperature–chemical potential” plane depends rather weakly on the strength of the background magnetic
field. At weak magnetic fields, the thermal width of the chiral crossover gets narrower as the density of the
baryon matter increases, possibly indicating a proximity to a real thermodynamic phase transition.
Remarkably, the curvature of the chiral thermal width flips its sign at eBfl ≃ 0.6 GeV2, so that above the
flipping point B > Bfl, the chiral width gets wider as the baryon density increases. Approximately at the
same strength of magnetic field, the chiral and deconfining crossovers merge together at T ≈ 140 MeV.
The phase diagram in the parameter space “temperature-chemical potential-magnetic field” is outlined,
and single-quark entropy and single-quark magnetization are explored. The curvature of the chiral
thermal width allows us to estimate an approximate position of the chiral critical end point at zero magnetic
field: ðTCEP

c ; μCEPB Þ ¼ ð100ð25Þ MeV; 800ð140Þ MeVÞ. These results are based on numerical simulations
performed mainly at the lattice time extension Nt ¼ 6.
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I. INTRODUCTION

Strongly interacting fundamental particles, quarks and
gluons, form a plasma state at sufficiently high temperature.
The quark-gluon plasma (QGP), which existed at certain
stage of the evolution of the early Universe, may also be
created in relativistic heavy-ion collisions. The QGP has
been studied at relativistic heavy ion collider (RHIC) at
Brookhaven National Laboratory, at the Large Hadron
Collider (LHC) at CERN, and will also be subjected to

further investigation at Nuclotron Ion Collider fAcility at
JINR in Dubna, and the Facility for Antiproton and Ion
Research in Darmstadt [1].
These experiments offer a unique tool to investigate the

QCD phase diagram in a range of increasing baryon
densities. A collision of heavy ions creates a QGP fireball
which expands, locally thermalizes, cools down, passes
through the confining/chiral QCD transition, and then (re)
hadronizes into final-state colorless states, hadrons.
Noncentral collisions also generate a very strong magnetic
field which may affect, at least at the early stages, the
evolution of the QGP fireball [2]. Despite that the whole
process evolves in an out-of-equilibrium regime, certain
features of the expanding QGP at zero or sufficiently low
baryon density can be determined by its properties in the
thermodynamic equilibrium, which are accessible in
numerical lattice simulations of QCD.
At vanishing magnetic field and zero baryon density, the

equilibrium QCD experiences a broad crossover transition
[3] which incorporates the transitions associated with the
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restoration of the chiral symmetry and the loss of the color
confinement in the high-temperature regime.
The crossover has a noncritical character, with both phases

being analytically connected. The chiral and deconfining
transitions need not to happen precisely at the same point.
Moreover, due to the nonsingular nature of the crossover, the
concrete value of the “pseudocritical” temperature depends
on the operator which is used to define it. The most recent
studies indicate that the chiral crossover transition, deter-
mined via the inflection point of the light-quark chiral
condensate, takes place at Tch

c ¼ 156.5ð1.5Þ MeV [4]. The
deconfinement transition, identified as the inflection point of
the Polyakov loop, appears at substantially higher temper-
aturevalue,Tconf

c ¼ 171ð3Þ MeV[3].Alternatively, onemay
also use the susceptibilities of these order parameters which
would give slightly different crossover transitions even in the
thermodynamic limit.
Among many possible options, we define the pseudoc-

ritical temperatures of the chiral and deconfining transitions
via the inflection points of the light-quark chiral condensate
and the Polyakov loop, respectively. These quantities are
the order parameters of QCD with quarks of zero masses
(the chiral limit of QCD) and with quarks of infinite
masses (the pure Yang-Mills theory), where the associated
symmetries are not broken explicitly.
Due to the analyticity of the transition, the continuity

arguments suggest that the pseudocritical nature of the
transition persists in a low-density region at small values of
the baryon chemical potential μB. Thus, at sufficiently low
baryon density, the transition temperature may be expanded
over even powers of μB,

TcðμBÞ ¼ Tcð0Þ − A2μ
2
B þ A4μ

4
B þOðμ6BÞ; ð1Þ

where A2 and A4 are the first two curvature coefficients of
the pseudocritical transition line. The general form of the
polynomial (1) is supported by the analyticity arguments at
μB ¼ 0 along with the invariance of thermodynamic
properties of the system under the charge reflection,
μB → −μB: due to charge conjugation symmetry, the
transition temperature of an equilibrium QGP is an even
function of the baryon chemical potential μB.
Lattice simulations of the T-μB phase diagram give the

first-principles determination of the transition line (1),
which may be confronted with the results of the heavy-
ion experiments on the chemical freeze-out line. The
freeze-out line corresponds to another curve in the T-μB
plane at which the hadron abundances, that encode the
chemical composition of the expanding plasma, get stabi-
lized and thus leave an imprint in the experimentally
measured hadronic spectra. It is expected that the chemical
freeze-out of the expanding quark-gluon plasma takes place
right after the completion of the (re)hadronization process,
so that the chemical freeze-out temperatures of a generic
QGP fireball lie below the pseudocritical temperature

curve (1). The observed momenta of hadrons provide more
details on the thermal freeze-out stage that happen at later
stages after the chemical freeze-out [5]. The chemical
freeze-out temperature may well be described by a poly-
nomial fit similar to the crossover temperature (1) [6].
We study hot strongly interacting matter at low baryonic

density subjected to a classical strong magnetic-field back-
ground. These environmental parameters match the quark-
gluon plasma created in the noncentral collisions at the
LHC. Due to computational constraints, we do not consider
inhomogeneous effects of the high vorticity which is an
inevitable feature of plasma created in noncentral collisions
with large initial angular momentum [7].
In the first-principles lattice simulations, the effects of

the strong magnetic field (B ≠ 0), low baryonic densities
(μ ≠ 0), and high temperatures (T ∼ Tc) were studied, so
far, in different combinations. At zero magnetic field, the
presence of the baryonic matter lowers the pseudocritical
temperature of the QCD crossover transition in the region
of low baryon densities. This property is rigidly established
in numerical simulations of lattice QCD with imaginary
baryonic chemical potential μI ≡ iμB [4,8,9] and is also
well understood in effective modes of nonperturbative
QCD [10–12]. A review of recent lattice results may be
found in Ref. [13].
At zero baryonic density, the strengthening of the

magnetic-field background leads to a smooth decrease of
the QCD transition temperature [14], often associated with
the decrease in the chiral condensate. These phenomena,
known as the inverse magnetic catalysis, are not well
understood.1 The strength of the thermodynamic crossover
transition was found to increase with the magnetic-field
background, possibly indicating the existence of a mag-
netic-field induced phase transition end point at zero
baryon density [22].
Notice that the effect of the background magnetic field

on transition temperature depends on the masses of the
dynamical quarks. The lattice results also vulnerable to
lattice artifacts induced by the coarse lattice spacing and
unimproved discretization of the lattice action. In Ref. [23],
it was concluded that the latter effects are likely responsible
for the observation, made in earlier studies of Refs. [24,25],
of the (direct) magnetic catalysis phenomenon at relatively
large (unphysical) quark masses: the transition temperature
was shown to raise slightly with the strengthening of the
magnetic field. However, a recent careful analysis indicates

1A difficulty of the theoretical description of the inverse
magnetic catalysis, observed at low quark masses, exhibits itself
in the very fact that a set of standard effective models predict
exactly the opposite phenomenon [15–17], the usual magnetic
catalysis, provided the parameters of the models are not fine-
tuned to specific functions of magnetic field or the models are
made nonlocal [18]. Various effective models are also employed
to study thermodynamics of QCD in the background magnetic
field [19–21].
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that the crossover temperature—calculated as an inflection
point of the chiral condensate—appears to be a decreasing
function of the magnetic field for all quark masses [23].2 In
this article, we consider QCD with physical quark masses
and with a Symanzik-improved action for gluons and stout-
improved 2þ 1 flavor staggered fermions, that minimize
the presence of lattice artifacts.
Thus, both baryonic density (μB ≠ 0) and the magnetic-

field background (B ≠ 0), considered separately, force the
temperature of the crossover transition Tc to drop. Hence, it
would be natural to expect that the combined effect of both
these factors, μB and B, should enhance each other and lead
to a much stronger decrease of the crossover temperature.
One of the results of our article is that we confirm

the mentioned qualitative expectations. We will also show
that the magnetic field affects the magnitude of the leading
curvature A2 ¼ A2ðBÞ of the transition temperature
Tc ¼ TcðμB; BÞ, Eq. (1). However, we will see that the
combined effect of the magnetic field and the baryon
density leads to unexpected effects such as strengthening
(weakening) of the finite-temperature chiral crossover
transition at low (high) magnetic field, with the change
of the regime at the magnetic strength of the order of the
(vacuum) mass rho-meson squared. An interplay of the
wide deconfinement crossover and the narrow chiral cross-
over is discussed in details. The single-quark magnetization
is studied for the first time.
The structure of the paper is as follows. In Sec. II,

we discuss particularities of the lattice model and describe
technical details of our numerical simulations, which
were performed on Nt ¼ 6, 8 lattices generated with a
Symanzik-improved gluons and stout-improved 2þ 1 fla-
vor staggered fermions at imaginary baryonic chemical
potential with subsequent analytical continuation. The
properties of the chiral and deconfinement crossovers,
uncovered via the chiral condensate of light quarks and
the Polyakov loop, are presented, respectively, in Secs. III
and IV. We discuss the pseudocritical temperatures and the
thermal widths of both transitions, as well as the effects of
the magnetic field and the imaginary chemical potential
on these quantities. In Sec. V, we use the renormalized
Polyakov loop to calculate the single-quark entropy and the
single-quark magnetization. The differences between the
properties of the magnetization of the bulk quarks
and the single-quark magnetization are outlined. The last
section is devoted to the discussion of the overall picture of
the crossover transitions and to conclusions.

II. DETAILS OF NUMERICAL SIMULATIONS

A. Quark densities and chemical potentials

We consider the lattice QCD with three, Nf ¼ 2þ 1,
quark flavors: two light, up (u) and down (d), quarks and
one heavier, strange (s), quark. The total number of quarks
N f ¼

R
d4xψ̄fγ

0ψf of the definite flavor f ¼ u, d, s is
controlled by the set of the chemical potentials μf, via the
direct coupling in the density part of the action,

P
f μfN f.

The conserved quantities—the baryon number B, the
electric charge Q, and the strangeness S—are determined
by the corresponding chemical potentials μq with q ¼ B,
Q, S and are related to the quark numbers as follows:

B ¼ ðN u þN d þN sÞ=3;
Q ¼ ð2N u −N d −N sÞ=3;
S ¼ −N s: ð2Þ

Each quark, irrespective of its flavor, carries one-third
baryonic charge, and their electric charges are qu ¼ 2=3e
and qd ¼ qs ¼ −1=3e, where e ¼ jej is the elementary
charge. The strangeness of the s quark is S ¼ −1, while u
and d quarks carry zero strangeness.
Comparing the density part of the action on the basis of

the quark numbers and on the basis of the conserved
charges,

P
q μqq ¼ P

f μfN f, we find the following rela-
tions between all six chemical potentials:

μu ¼ μB=3þ 2μQ=3; μB ¼ μu þ 2μd;

μd ¼ μB=3 − μQ=3; μQ ¼ μu − μd;

μs ¼ μB=3 − μQ=3 − μS; μS ¼ μd − μs: ð3Þ

In our simulations, we take equal potentials for the light
quarks and zero chemical potential for the strange quark

μs ¼ 0; μu ¼ μd ¼ μ≡ μB
3
: ð4Þ

With this setup, the chemical potentials for the light quarks,
μ, and for the baryon charge, μB, are related via Eq. (4),
μB ¼ 3μ. The chemical potential for the electric charge is
zero, μQ ¼ 0. Controversially, the strange chemical poten-
tial takes its value from the one of the light quarks, μS ¼ μ.
However, in the absence of a strong electromagnetic
background, which would otherwise distinguish between
the up and down (strange) quarks due to the difference in
their electric charges qf, this choice of the chemical
potentials corresponds to near-equal densities of the light
quarks and vanishing strange quark density in the quark-
gluon plasma phase. Such quark-gluon plasma should
necessarily possess a nonzero (positive) electric charge,
but so do the colliding ions. Therefore, the choice of the
quark content (4) is considered to be a natural one, and it is

2In this paper, we associate the term “the inverse magnetic
catalysis” with the decrease of the chiral crossover temperature as
a function of magnetic field B. The same term is also used to
describe a damping of the quark condensate with increasing
magnetic field B in the crossover region, that is only found for
physical quark masses and not observed for larger masses of
quarks [23,26].
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used in many numerical simulations of the quark-gluon
plasma [9,27,28]. In any case, the dependence of the
curvature of the phase transition on the chemical potential
of the relatively heavy s quark is negligible [29,30], so that
we may safely set the chemical potential of the strange
quark μs to zero.

B. Lattice partition function

In our numerical simulations, we partially follow the
numerical setup of Ref. [9]. We perform lattice simulations
of QCD with Nf ¼ 2þ 1 flavors in the presence of purely
imaginary quark chemical potentials, μf ¼ iμf;I; μf;I ∈ R,
with f ¼ u, d, s, subjected to a strong magnetic-field
background. We work with the following Euclidean par-
tition function of the discretized theory:

Z ¼
Z

DUe−SYM½U� Y
f¼u;d;s

det ðMf
st½u;U; μf;I�Þ

1
4; ð5Þ

where the functional integration is performed over the SU
(3) gauge link fields Uxμ with the tree-level-improved
Symanzik action for the gluon fields [31,32]

SYM½U� ¼ −
β

3

X
x;μ≠ν

�
5

6
W1×1

x;μν −
1

12
W1×2

x;μν

�
: ð6Þ

The lattice coupling β is related to the continuum gauge
coupling g in the standard way, β ¼ 6=g2. The action (6) is
given by the sum over the traces of the flat n ×m-sized
Wilson lines Wn×m

x;μν ≡Wn×m
x;μν ½U� labeled by the plane

vectors μ and ν, and by the starting point x.
The quark degrees of freedom (d.o.f.) enter the partition

function (5) via the product of the determinants of the
staggered Dirac operators,

ðMf
st½u;U; μf;I�Þx;y

¼ amfδx;y þ
X4
ν¼1

ηx;ν
2

½eiaμf;Iδν;4ufx;νUð2Þ
x;νδx;y−ν̂

− e−iaμf;Iδν;4uf;�x−ν̂;νU
ð2Þ†
x−ν̂;νδx;yþν̂�; ð7Þ

constructed from the two-times stout-smeared links Uð2Þ
x;ν ≡

Uð2Þ
x;ν½U� following the method of Ref. [33] with the

isotropic smearing parameters ρμν ¼ 0.15 for μ ≠ ν. Here
a ¼ aðβÞ is the lattice spacing. The stout smearing
improvement is a standard technique used to ameliorate
the systematics related to the effects of finite lattice spacing
and reduce taste symmetry violations [34]. Following
similar approaches [9,27–30,35,36], we use the rooting
procedure in the partition function (5) in order to remove a
residual, fourth degeneracy of the lattice Dirac operator (7).
The Dirac operator (7) corresponds to the quarks with

the imaginary chemical potential μf;I subjected to the

magnetic-field background B. The chemical potential
enters the Dirac operator (7) via the additional phases
eþiaμf;I and e−iaμf;I associated with the temporal links in,
respectively, forward and backward directions. The mag-
netic field appears in the quark operator (7) of the fth flavor

via the composite link field, Ũf
x;μ ¼ ufx;μ ·U

ð2Þ
x;μ, where U

ð2Þ
x;μ

is the usual (stout-smeared) SU(3) gauge field, while the
ufx;μ prefactor represents the classical Uð1Þ gauge field
corresponding to the uniform magnetic-field background.
We consider the classical magnetic background so that the
kinetic term of the Abelian field ufx;μ is absent.
In a finite volume with periodic boundary conditions, the

total magnetic flux through any lattice plane must be an
integer number in units of the elementary magnetic flux
[37,38]. For our lattice geometry N3

s × Nt, this property
leads to quantization of the strength of the uniform
magnetic field B, acting on the quarks of the fth flavor,

B ¼ 1

qf

2πn
N2

sa2
: ð8Þ

Here the integer quantity n ∈ Z counts the number of total
magnetic fluxes. Given the fact that the quark electric
charges are not the same, one takes the minimal charge,
qf ≡ jqdj ¼ e=3, so that the quantization (9) gives a
consistent field for all three quarks,

eB ¼ 6πn
N2

sa2
; n ∈ Z; 0 ≤ n ≤ N2

s : ð9Þ

For the uniform magnetic field Bi ¼ δi3B directed along
the third axis, the Abelian link field ufx;μ ≡ ufμðxÞ, acting on
the quark of the flavor f, may be chosen in the following
explicit form [25]:

uf1ðx1; x2; x3; x4Þ ¼ e−ia
2qfBx2=2; x1 ≠ Ns − 1;

uf1ðNs − 1; x2; x3; x4Þ ¼ e−ia
2qfBðNsþ1Þx2=2;

uf2ðx1; x2; x3; x4Þ ¼ eia
2qfBx1=2; x2 ≠ Ns − 1;

uf2ðx1; Ns − 1; x3; x4Þ ¼ eia
2qfBðNsþ1Þx1=2

uf3ðxÞ ¼ uf4ðxÞ ¼ 1; ð10Þ

where x≡ ðx1; x2; x3; x4Þ is the four coordinate with the
elements running through xν ¼ 0…Ns − 1. The magnetic
field B is given by Eq. (9).
Due to the periodic structure of the Abelian field (10),

the magnetic field cannot be larger than maximal value,
determined by the flux number nmax ¼ bN2

s=2c, where bxc
gives the greatest integer less than or equal to x. Thus, the
nonzero lattice magnetic field B may only be imposed in
the range 6π=ðeN2

sa2Þ ≤ B≲ 3π=ðea2Þ, where the strong-
est value of the field may lead to strong ultraviolet artifacts.
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To avoid these discretization artifacts, we take n ≪ N2
s=2 in

our numerical simulations.

C. Observables

1. Chiral sector

The chiral condensate hψ̄ψi is the most straightforward
characteristic of the dynamical chiral symmetry breaking in
the system of fermions ψ . The condensate vanishes in the
phase with unbroken chiral symmetry, ψ → eiγ5ωψ and
ψ̄ → ψ̄eiγ5ω, while its deviation from zero signals the
violation of the chiral symmetry. The chiral condensate
corresponds to an order parameter of the spontaneous chiral
symmetry breaking of massless fermions, for which the
group of chiral transformations is an exact symmetry group
of the classical Lagrangian.
In QCD, the nonzero masses of quarks, mf ≠ 0, break

the chiral symmetry explicitly, in all phases. Therefore, the
chiral condensate, in a strict mathematical sense, is not an
order parameter. However, the condensate of light up and
down quarks, with masses well below the characteristic
QCD energy scale mu ∼md ≪ ΛQCD may still serve as an
approximate order parameter and thus effectively probe the
chiral dynamics.
The chiral condensate of the quark flavor f is given by

the partial derivative of the partition function (5) with
respect to the quark’s mass

hψ̄ψif ¼ T
V
∂ logZ
∂mf

; ð11Þ

where V is the spatial volume of the system.
In our Nf ¼ 2þ 1 simulations, the masses of the light u

and d quarks are degenerate, ml ≡mu ¼ md. Therefore,
it is convenient to introduce the common light-quark
condensate given by the sum

hψ̄ψil ¼
T
V
∂ logZ
∂ml

¼ hūui þ hd̄di: ð12Þ

The chiral condensate of fth flavor

hψ̄fψfi ¼
T
4V

hTrM−1
f i ð13Þ

is evaluated as the trace over the negative power of the
Dirac operator (7). Numerically, this calculation is per-
formed with the help of the noisy estimators which
comprise Oð10Þ random vectors for each fixed flavor.
The finite-temperature renormalization of the light-quark

condensate (12) in the presence of the condensate hs̄si of
the third, heavier quark s, is implemented following the
prescription of Ref. [39]:

hψ̄ψirl ðB; T; μIÞ≡
½hψ̄ψil − 2 ml

ms
hs̄si�ðB; T; μIÞ

½hψ̄ψil − 2 ml
ms
hs̄si�ð0; 0; 0Þ ; ð14Þ

where ms is the bare mass of the strange quark s.
The condensate entering the denominator of the renor-

malized condensate (14) is computed in the vacuum state,
i.e., at zero magnetic field B ¼ 0, zero temperature T ¼ 0,
and zero (imaginary) chemical potential μI ¼ 0. We took
the data for this quantity from (interpolated, when needed)
results of Ref. [9]. Other possible renormalization pre-
scriptions may be found in Refs. [27,28].

2. Gluon sector

The nonperturbative dynamics of the gluon sector gives
rise to the confinement of color: the formation of the
colorless hadronic states, mesons and baryons, in the low-
temperature QCD. At high temperatures, these states melt,
and the system enters the quark-gluon plasma phase with
unconfined quarks and gluons. The order parameter of the
quark confinement is the Polyakov loop, which may
suitably be formulated in the Euclidean QCD as follows:

P ¼ 1

V

X
x

1

3
Tr

�YNt−1

x4¼0

Ux;x4;4

�
: ð15Þ

The Polyakov loop operator is averaged over the spatial
volume V ¼ N3

s with the spatial coordinate x.
In a purely gluonic Yang-Mills theory, the vacuum

expectation value of the Polyakov loop (15) vanishes in
the confining, low-temperature phase and differs from zero
in the high-temperature phase that corresponds to the
quark-gluon plasma regime. In a purely gluonic theory,
the Polyakov loop (15) is an exact order parameter
associated with the spontaneous breaking of the global
Z3 center symmetry, P → ZP, where Z ¼ e2πni=3, n ¼ 0, 1,
2 are the elements of the center subgroup Z3 of the SUð3Þ
group. In the presence of light dynamical quarks, the
Polyakov loop represents an approximate order parameter
of the quark confinement.
For practical reasons of studies of the deconfinement

phenomenon, it is convenient to consider the real part of the
Polyakov loop,

L ¼ ReP: ð16Þ
D. Parameters

We perform numerical simulations at finite temperature
around the phase transition using mainly N3

s × Nt ¼
243 × 6 lattice. In order to estimate the magnitude of the
lattice artifacts related to the ultraviolet cutoff effects, we
also repeated certain runs on another, 323 × 8 lattice with
the same ratio Nt=Ns ¼ 1=4. The comparison of the
selected set of results with the ones obtained on the third
lattice geometry, 323 × 6, gives us an opportunity to
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estimate the robustness of our data with respect to the finite-
volume effects.
The zero-temperature data, used in the renormalization

of the condensate (14), were taken from simulations on a
324 lattice of Ref. [9]. The physical temperature T ¼
1=ðaðβÞNtÞ is controlled by the lattice coupling constant
β. The lattice spacing varied from a ¼ 0.113 fm at our
largest coupling β ¼ 3.7927 till a ¼ 0.253 fm at the lowest
coupling β ¼ 3.4949.
The bare (lattice) masses of the quarks, ml and ms, are

fine-tuned at each value of the lattice coupling β in order to
keep the pion mass at its physical value, mπ ≃ 135 MeV,
and maintain, at the same time, the physical ratio of the
quark masses, ms=ml ¼ 28.15. This line of constant
physics is well known phenomenologically from the
numerical simulations of Refs. [40–42].
We simulated the lattice QCD at the physical point at

sevenvalues of the backgroundmagnetic field in the interval
eB ¼ ð0.1 − 1.5Þ GeV2. We took eight points of the imagi-
nary chemical potential of the light quarks, μI ≡ μl;I, in the
range from a zero value up to μI=ðπTÞ ¼ 0.275.
In the paper, we present only statistical error bars, a

thorough study of systematic uncertainties lies beyond the
scope of this work.

III. CHIRAL CROSSOVER

A. Chiral condensate and discretization errors

We have performed the numerical calculations of the
chiral condensate at the wide range of the external magnetic
fields, eB=GeV2 ¼ 0.1, 0.5, 0.6, 0.8, 1.0, 1.5, and at a
dense set of the imaginary chemical potentials μI=ðπTÞ¼0,
0.1, 0.14, 0.17, 0.2, 0.22, 0.24, 0.275.
The data for the renormalized chiral condensate may be

excellently described by the following function:

hψ̄ψirl ðTÞ ¼ C0 þ C1 arctan
T − Tch

c

δTch
c

; ð17Þ

which has also been used to study the condensate at zero
magnetic field in Ref. [9]. The fitting function (17) contains
four free parameters: two amplitudes C0 and C1, which
describe the scale of the condensate and the degree of its
variation over in the crossover region, as well as the
pseudocritical transition temperature Tch

c and the width
of the crossover δTch

c . All four fitting parameters in Eq. (17)
are the functions of the magnetic field B and the imaginary
chemical potential μI .
The numerical data for the condensates and their fits are

shown in Fig. 1 for a set of imaginary chemical potentials at
smallest nonzero and largest values of the magnetic field.
On a qualitative level, the data clearly demonstrate the well-
known effect of the inverse magnetic catalysis: the stronger
the magnetic field B the smaller the chiral crossover
temperature Tch

c . They also show that at fixed magnetic

field, the increase of the imaginary chemical potential μI
leads, as expected, to increase of the critical crossover
temperature.
Before going to the quantitative description of the main

results, we estimate the influence of effects of ultraviolet
and infrared artifacts of the lattice discretization. At zero
magnetic field, these effects were investigated in
Refs. [9,29], and we extend the study to the case of the
strongest magnetic field, eB ¼ 1.5 GeV2, shown in the
bottom plot of Fig. 1 for the lowest and largest available
imaginary chemical potentials, μI=ðπTÞ ¼ 0 and 0.275.
The analysis of lattices with different spatial volumes
Ns ¼ 24, 32 at fixed temporal extension Nt ¼ 6 ensures
us that the volume-dependent infrared effects are almost
negligible. The inspection of the lattices with Ns ¼ 24, 32
and fixed ratio Nt=Ns ¼ 1=4 demonstrates that while the
ultraviolet discretization effects on the condensate are
noticeable, the effect of varying lattice spacing on the
transition temperature is rather small.
In order to quantify these assertions, we show in Table I

the critical temperature Tc at both vanishing and largest

FIG. 1. The light-quark condensate as the function of temper-
ature at fixed imaginary chemical potentials μI in the background
of the weakest, eB ¼ 0.1 GeV2 (the upper plot) and the strongest,
eB ¼ 1.5 GeV2 (the lower plot) magnetic fields. The lines are the
best fits by the function (17). The condensate for the weakest field
is shown for all available values of the imaginary chemical
potential μI at 243 × 6 lattice. The strongest field is represented
by the lowest and largest imaginary chemical potentials,
μI=ðπTÞ ¼ 0, 0.275 for 243 × 6, 323 × 6, and 323 × 8 lattices.
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studied chemical potentials μI at lattices of all mentioned
geometries. The critical temperature, obtained with the fits
(17) shown in the bottom plot of Fig. 1, indicates that the
variations of the chiral crossover temperature are of the
order of 1 MeV, i.e., less than 1%.
We would like to notice that at low (but nonzero) values

of the background magnetic fields, there is a particular
property of the lattice system which leads to large system-
atic errors of certain computed quantities. Due to lattice
discretization effects, the quantization of the magnetic field
(9) limits the number of temperature points at fixed value of
magnetic-field strength. Narrowing the study to the cross-
over region imposes further restrictions, thus reducing the
quality of the data. We will see below that the data at low
magnetic fields have a tendency to possess larger (stat-
istical) errors as compared to the data at stronger fields.

B. Chiral crossover temperature and its width

1. General picture

The quantitative analysis of the fits of the chiral con-
densate gives us the important information how the chiral
crossover temperature evolves with increase of the imagi-
nary chemical potential in the magnetic-field background.
While the behavior of the critical temperature is known
both at zero chemical potential μI ¼ 0, Ref. [14] and at zero
magnetic field B ¼ 0, Ref. [9], the studies in the full ðB; μIÞ
plane are performed here for the first time. In addition, we
would like to clarify the influence of magnetic field on the
thermal crossover width δTch in the finite-density QCD.
This question is important in view of the fact that the role of
the magnetic field on the strength of the QCD (phase)
transition even at zero chemical potential, μ ¼ 0, has
historically been evolving via a set of controversies
[14,15,24].
In Fig. 2, we show the spline-interpolated data for the

critical temperature of the chiral crossover in the plane of
magnetic field B and the squared imaginary chemical
potential μ2I . One may clearly see that the increase of

the imaginary chemical potential, at fixed magnetic field B,
leads to the enhancement of the critical temperature for all
studied values of B. On the other hand, the strengthening of
the magnetic field at fixed imaginary chemical potential μI
gives rise to the decrease of the critical temperature.
The equitemperature curves in Fig. 2 are close to the

straight, almost-parallel lines. These properties indicate,
respectively, that at small baryon densities (i) the critical
temperature of the chiral crossover Tch

c at fixed magnetic
field B is a quadratic function of the chemical potential μ2I ;
and (ii) the strength of the quadratic dependence does not
depend significantly on the strength of the magnetic field.
In terms of the baryonic potential, μ2B ¼ −ð3μIÞ2, we
conclude that the slope A2 of the chiral crossover temper-
ature (1) is a positive nonvanishing quantity which mod-
erately depends on the value of magnetic field.
The thermal width of the chiral crossover transition (the

“chiral thermal width”) is encoded in the color of the
surface in the same Fig. 2. The chiral width exhibits a weak,
but still noticeable, dependence on the imaginary chemical
potential. However, the influence of the magnetic field on
the chiral thermal width δTch is much more pronounced:
the stronger magnetic field B, the narrower transition. This
behavior is well seen in the spline representation of the
thermal width in Fig. 3. Interestingly, the magnetic field has
a qualitative effect on the behavior of the chiral width: at
weak (strong) magnetic field, the chiral thermal width is an
increasing (decreasing) function of the imaginary chemical
potential μI .

2. Chiral transition temperature and its curvature

At small values of the imaginary chemical potential μI ,
the behavior of thermodynamic quantities is necessarily
analytic in μI due to the absence of a thermodynamic
singularity in the vicinity of the μI ¼ 0 point. The Taylor
series of the observable (real-valued) quantities must
therefore run over the even powers of the chemical
potential, which makes it possible to use the trivial relation

FIG. 2. The critical temperature Tch
c of the chiral crossover as

the function of the magnetic-field strength B and the imaginary
chemical potential squared μ2I . The color encodes the width δTch

c
of the chiral crossover transition.

TABLE I. Illustration of finite-size and finite-volume effects on
the chiral crossover temperature at strongest studied magnetic
field eB ¼ 1.5 GeV2, at both vanishing and largest available
values of the chemical potential μI .

eB ¼ 1.5 GeV2

Lattice μI=πT Tch
c , MeV δTch

c , MeV χ2=d:o:f

243 × 6 0 130.5(2) 5.2(4) 1.2
323 × 6 0 130.8(1) 5.2(3) 0.8
323 × 8 0 131.3(1) 5.7(2) 0.3

243 × 6 0.275 144.5(2) 4.7(2) 1.0
323 × 6 0.275 144.7(6) 4.1(3) 1.2
323 × 8 0.275 145.6(5) 4.8(7) 1.6
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between the imaginary and real baryonic chemical
potentials, μ2I ≡ −ðμB=3Þ2. Therefore, the behavior Tc ¼
TcðμB; BÞ of the critical crossover temperature (1) of the
finite-density QCD may be restored from the series of
TcðμI; μBÞ at small imaginary chemical potential μI ,

Tch
c ðμI; BÞ
Tch
c ðBÞ

¼ 1þ κch2 ðBÞ
�

3μI
Tch
c ðBÞ

�
2

þ κch4 ðBÞ
�

3μI
Tch
c ðBÞ

�
4

þO

�
μ6I
T6
c

�
; ð18Þ

where we used the notation TcðBÞ≡ TcðμB ¼ 0; BÞ.
In analogy with the lattice studies with a vanishing

magnetic field, we deduce that at B > 0 the curvature A2 of
the critical transition (1) at nonzero baryon density μB is
related to the dimensionless curvature coefficient κ2 at the
imaginary chemical potential μI in Eq. (18) as

Ach
2 ðBÞ ¼

κch2 ðBÞ
Tch
c ðμB ¼ 0; BÞ : ð19Þ

Equations (1), (18), and (19) have rather universal character
and can be equally applied to both chiral and deconfining
transitions.
In Fig. 4, we show the fits of the critical temperature

Tc ¼ TcðμB; μIÞ by the polynomial (18). We fix the
magnetic field B and consider the critical temperature as
a function of the dimensionless ratio μI=T. All three fitting
parameters TcðBÞ, κ2ðBÞ, and κ4ðBÞ are treated as functions
of the magnetic field B. We use both quadratic (with
κ4 ≡ 0) and quartic (with κ4 being a fit parameter) fits.
The fitting results for the chiral crossover are presented

in Fig. 5. We conclude the following:
(i) The fits allow us to estimate the critical temperature

Tch
c ðBÞ at zero baryon chemical potential, μB ¼ 0,

subjected to a strong magnetic-field background,
Fig. 5(a). The critical temperature decreases with the
magnetic field, in an agreement with the inverse
magnetic catalysis [14]. In the zero-field limit, our
data converge well to the known result Tch

c ¼
156.5ð1.5Þ MeV of Ref. [4], shown by the red
square in Fig. 5(a).

(ii) Both for quadratic and quartic fits (18), the quadratic
curvature coefficient κ2 ¼ κ2ðBÞ is largely insensi-
tive to the strength of the magnetic field, Fig. 5(b).
These fits give qualitatively consistent results, all of
which are in agreement with the B ¼ 0 result κ2 ¼
0.0132ð18Þ obtained in Ref. [9] and shown by the
red square in Fig. 5(b).

(iii) According to Fig. 5(b), the quartic curvature coef-
ficient κ4 ¼ κ4ðBÞ raises with increase of the mag-
netic field until it reaches the peak around
eBfl ≃ ð0.5 − 0.6Þ GeV2, Eq. (24). At higher mag-
netic fields, the quartic coefficient κ4 decreases and
almost vanishes around eB ≃ 1.5 GeV2. These con-
clusions have a preliminary character as our numeri-
cal results for κ4 possess rather large statistical
errors. Below, we will exclude this coefficient from
our analysis and concentrate on the quadratic trun-
cation of the curvature polynomial (18).

The physical curvature Ach
2 of the chiral crossover

temperature (1) for the real-valued chemical potential μB
can be obtained with the help of the analytical continuation
(19). The curvature, shown in Fig. 6, seems to exhibit
a wide maximum at the magnetic-field strength eB∼
0.6 GeV2. Unfortunately, the substantial statistical errors
of our data do not allow us to determine the presence (and,
the position) of this maximum with sufficient certainty.
However, we will see below that this particular value of the
magnetic field marks another interesting effect in the low-
density QCD.

FIG. 4. The critical temperature Tch
c of the chiral crossover

transition as the function of the imaginary chemical potential
squared at a set of values of the magnetic field B. The translucent
(opaque) lines correspond to quadratic (quartic) truncations by
the fitting function (18).

FIG. 3. The width of the chiral crossover δTch
c as the function of

the magnetic field B and the imaginary chemical potential μI
squared. The height of the cylinders represents the error bars of
the data, and the smooth surface corresponds to a spline
interpolation.
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To summarize, we observed the effect of the inverse
magnetic catalysis both at zero and finite densities. The
increasing magnetic field affects the curvature Ach

2 of the
chiral crossover transition, making it larger compared to
the zero-field value, Fig. 6. We found the presence of the
baryonic matter enhances the effect of the inverse magnetic
catalysis in a sense that the combined effect of both these
factors, μB and B, leads to a stronger decrease of the
crossover temperature.

3. Chiral thermal width and its curvature

As we have already seen, the thermal width of the chiral
crossover transition δTch

c ¼ δTch
c ðμI; BÞ has a set of inter-

esting features in the parameter space of the magnetic field
B and the imaginary chemical potential μI, as illustrated in
Fig. 3. What do these properties mean for the crossover
transition in the dense QCD with a real-valued baryonic
chemical potential μB? In order to answer this question, we
notice that the thermal chiral width δTch

c —which is,
essentially, a difference in temperatures corresponding to
opposite sides of the crossover—may be analytically

continued to the real chemical potentials, similarly to the
critical temperature Tch

c itself. To this end, we define the
quadratic curvature δκch2 of the chiral thermal width δTch

c as
follows:

δTch
c ðμI; BÞ
δTch

c ðBÞ
¼ 1þ δκch2

�
3μI

Tch
c ðBÞ

�
2

þO

��
μI
Tch
c

�
4
�
; ð20Þ

where Tch
c ðBÞ≡ Tch

c ðμI ¼ 0; BÞ.
Similarity to Eqs. (1), (18), and (19), the thermal width

may be analytically continued to the real-valued baryonic
potential as follows:

δTch
c ðμI; BÞ ¼ δTch

c ð0; BÞ − δAch
2 ðBÞμ2B þOðμ4BÞ; ð21Þ

where

δAch
2 ðBÞ ¼

δTch
c ðμB ¼ 0; BÞδκch2 ðBÞ
ðTch

c ðμB ¼ 0; BÞÞ2 ð22Þ

is the curvature of the thermal width in the “temperature-
baryon chemical potential” plane.
In Fig. 7, we demonstrate that the numerical data for the

chiral thermal width can be well described by the quadratic

(a) (b) (c)

FIG. 5. (a) The critical temperature Tch
c of the chiral crossover at μB ¼ 0, as well as the curvatures (b) κ2 and (c) κ4 as functions of the

magnetic-field strength B. The first two quantities are obtained with the help of both quadratic and quartic versions of the fitting function
(18), with fits shown in Fig. 4. The red points in plots (a) and (b) correspond to the known results at B ¼ 0. They are taken from
Refs. [4,9], respectively.

FIG. 6. The quadratic curvature Ach
2 of the chiral crossover

temperature (1) at nonzero magnetic field B, calculated via
Eq. (19). The red data point is obtained with the help of the
B ¼ 0 data of Refs. [4,9]. The arrow marks the magnetic flipping
point for the width of the chiral crossover (24).

FIG. 7. The chiral thermal width δTch
c as the function of the

imaginary chemical potential μI squared. The lines represent the
quadratic fits (20).
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function (20). The fits give us the chiral thermal width at
zero chemical potential, μB ¼ 0, shown in Fig. 8(a). The
plot suggests that the chiral thermal width is insensitive to
the magnetic field until the field reaches the value eBfl ∼
0.5 GeV2 and then the width starts to decrease slowly.
The effect of the magnetic-field background on the

curvature of the chiral thermal width is shown in dimen-
sionless, δκch2 , and physical δA

ch
2 units in Figs. 8(b) and 8(c),

respectively. It turns out that the curvature δAch
2 of the chiral

thermal width δTch
c may be well approximated by the linear

function of the background magnetic field B for both
quantities,

δκch2 ðBÞ ¼ δκð0Þ2 þ δκð1Þ2 eB; ð23aÞ

δAch
2 ðBÞ ¼ δAð0Þ

2 þ δAð1Þ
2 eB: ð23bÞ

Thebest linear fits are shown in Fig. 8(c) by the solid lines.
The corresponding best fit parameters are the thermal width

at a vanishing magnetic field, δκð0Þ2 ≡ δκ2ð0Þ ¼ 0.045ð9Þ
and δAð0Þ

2 ≡ δA2ð0Þ ¼ 0.018ð6Þ GeV−1, and the linear

slopes δκð1Þ2 ¼ −0.071ð9Þ and δAð1Þ
2 ¼ −0.028ð5Þ GeV−3,

respectively.
From Figs. 8(b) and 8(c), we readily notice the interest-

ing feature of the chiral width: at certain strength of the
magnetic field,

eBfl ¼ 0.63ð6ÞGeV−2; ð24Þ

the curvature of the chiral thermal width flips the sign from
positive to negative values. We call the value (24) as “the
magnetic flipping point.”
Qualitatively, one can understand the effect of the sign

flip of the curvature δAch
2 as follows. The magnetic flipping

point (24) separates two regimes: at weaker magnetic
fields, B < Bfl, the quadratic curvature is positive,
δA2ðB < BflÞ > 0, and the thermal width of the crossover
temperature gets narrower (21) with the rise of the baryon
chemical potential. At stronger magnetic fields, B > Bfl,

the thermal width becomes wider, δA2ðB < BflÞ < 0 as the
density of the baryonic medium increases.
Numerically, the strength of the magnetic field at the

flipping point (24) coincides with the (vacuum) mass of the
ρmeson squared, eBfl ≃m2

ρ ≃ 0.601 GeV2. At this value of
the flipping magnetic field, the ρ mesons were proposed to
form a superconducting condensate at low enough temper-
ature [43,44]. While this statement is subjected to critical
debates [45–47], we notice that thermal effects contribute
to the ρ meson mass and are likely to destroy the ρ-meson
condensate should it be formed at low temperature.
Nevertheless, the closeness of the magnetic flipping

point (24) to the mass of the mass scale of the ρ meson
suggests that the latter may play a particular role. One could
suggest that the mechanism behind the appearance of the
magnetic flipping point may be related to the vector meson
dominance model [48]. This model proposes that the
electromagnetic field interacts with the quark matter via
the creation of the quark-antiquark pairs with the quantum
numbers of photons. The lightest such pairs correspond to
the neutral rho mesons.
Numerical lattice calculations and effective analytical

models suggest that the mass of the neutral meson slowly
raises with the strengthening of the magnetic field
[45,46,49,50]. Moreover, at the crossover temperature,
thermal fluctuations slightly increase the mass of the ρ
meson as well [51]. Quantitatively, we expect that the
combined temperature and magnetic-field effects at the
crossover shift the mass by about 20% from its vacuum
value so that the magnetic flipping point (24) is approx-
imately given by the scale of the rho-meson mass.
In order to shed more light on the sign flip of the chiral

thermal width, Fig. 8(c), in the next section we study the
confining properties of dense QCD in the magnetic-field
background. The vector dominance hypothesis suggests
that the photons interact with the hadronic medium
predominantly via the neutral ρ mesons, which are color-
less states that do not couple directly to gluons. As we will
see below, the sign-flip phenomenon does not exist in the
gluonic sector.

(a) (b) (c)

FIG. 8. (a) The chiral thermal width δTch
c , the corresponding quadratic curvature δκch2 in dimensionless (b) and physical (c) units. In

plot (c), the solid line shows the best fit of the data by the linear function (23), and the red arrow marks the critical value of magnetic field
(24) where the curvature of the chiral thermal width vanishes.
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We close this section by noticing that our findings on
the chiral crossover at zero baryonic density agree well
with already known properties of the system. As the
strength of the magnetic field increases, the chiral crossover
temperature becomes lower, Fig. 5(a), while the transition
itself becomes stronger, Fig. 7(a), in agreement with
Refs. [14,22], respectively.
In addition, our data on the chiral thermal width of the

crossover raise an interesting possibility that the parameter
plane of the imaginary chemical potential and temperature
may contain a thermodynamic phase transition in the limit
of large baryonic density at low magnetic field, B < Bfl. At
stronger magnetic field, B > Bfl, the increase of the baryon
density leads to the softening of the phase transition.
The chiral pseudocritical temperature and the thermal

width of the chiral crossover, as well the their curvatures in
the (μ; T) plane are summarized in Table III.

4. Shrinking chiral width and critical chiral end point

We would like to finish this section by the following
curious observation. As we mentioned above, the width of
the chiral transition shrinks in the presence of the baryonic
density. Although our numerical simulations are done in the
region of relatively low baryon density, we notice that the
observation of the shrinking chiral width is consistent with
the expectation that at a higher baryon density the crossover
turns into a critical end point (CEP) of the second order
which, at even higher densities, becomes a transition line of
the first order.
We may estimate the position of the end point as a value

of the baryonic chemical potential μB ¼ μCEPB at which the
width of the phase transition δTch

c ðμB; 0Þ vanishes. To this
end, we use Eq. (21) along with the results for the chiral
thermal width δTch

c ð0; 0Þ and its curvature δA2ð0Þ to get for
the baryonic density at the CEP,

μCEPB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δTcð0; 0Þ
δA2ð0Þ

s
¼ 800ð140Þ MeV; ð25Þ

where we neglected the corrections of the order Oðμ4BÞ and
higher.
The result (25) is obtained at zero magnetic field. Notice

that with the strengthening of magnetic field B, the
curvature of the chiral width δA2ðBÞ quickly diminishes
towards zero, Fig. 8(c), while the width δTch

c ðμB ¼ 0; BÞ at
zero density μB ¼ 0 drops down less dramatically, Fig. 8(a).
Therefore, we may expect that μCEPB ðBÞ is an increasing
function of the magnetic field B. However, at the flipping
point (24), our estimation of the CEP (25) formally gives
infinite value of the CEP baryonic chemical potential μCEPB ,
which shows the limitation of our approach and importance
of the higher-order terms, Oðμ4BÞ, which were neglected in
our simple analysis based on quadratic curvature width (21).

The temperature of the critical end point may be obtained
with the help of Eq. (1) which takes into account
the curvature of the chiral crossover temperature TCEP≡
TcðμCEPB Þ ¼ 100ð25Þ MeV. Together with the result (25),
this result gives us a very naive estimation of the position of
the critical end point in the T-μ plane of the phase diagram

ðTCEP
c ; μCEPB Þ ¼ ð100ð25Þ MeV; 800ð140Þ MeVÞ: ð26Þ

Curiously, these numbers come close to (although some-
what larger than) the recent estimations of the location of
the critical end point within other approaches, summarized
in Table II.
On the contrary, the recent estimates within lattice

simulations of QCD do not show any noticeable signatures
of the critical end point [29,55]. This statement is in line
with the noncritical behavior of the Polyakov loop observed
in our work (see Sec. IV), which is different from the
behavior of the chiral condensate as the deconfinement
phase transition always becomes wider with the baryon
density. It might imply that at the critical end point the
chiral condensate has a pronounced singularity while the
Polyakov loop has a much softer behavior. Another
possible explanation is that the widths of the chiral and
deconfinement phase transition, observed in our paper,
suffer from large systematic uncertainties (coming, for
example, due to effects of the finite time extension of
the lattice, Nt). A thorough study of these systematic
uncertainties goes beyond the scope of this paper and
would be reported elsewhere.

IV. DECONFINING CROSSOVER

A. Renormalized Polyakov loop

The deconfinement (phase) transition is associated with
the dynamics of gluons. The corresponding order param-
eter, in purely gluonic Yang-Mills theory, is the Polyakov
loop (15). For the sake of convenience, we study the real
part (16) of the Polyakov loop, which is renormalized with
the help of the gradient-flow approach following Ref. [56].
The details of the renormalization and the scheme depend-
ence of the gradient-flow procedure are discussed in
Appendix.

TABLE II. The position of the critical end point ðTCEP; μCEPB Þ in
Nf ¼ 2þ 1 QCD obtained in this paper compared to the results
from the functional renormalization group (FRG) [52], the
Dyson-Schwinger equations (DSE) [53], and the holographic
gauge/gravity correspondence [54].

ðTCEP; μCEPB Þ, MeV

Lattice: this work (100, 800)
FRG [52] (107, 635)
DSE [53] (117, 488)
Holography [54] (89, 724)
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In the vicinity of the crossover, the renormalized
Polyakov loop may be well described by the same func-
tional behavior as the chiral condensate (17),

hLirðTÞ ¼ C2 þ C3 arctan
T − Tconf

c

δTconf
c

; ð27Þ

where the fitting parameters C2 and C3 determine the value
of the Polyakov loop at both sides of the crossover region,
and Tconf

c is the pseudocritical temperature of the deconfine-
ment transition with the deconfining thermal width δTconf

c .
Some selected fits at lowest (eB ¼ 0.1 GeV2) and highest
(eB ¼ 1.5 GeV2) values of magnetic field are shown in
Fig. 9 for zero, moderate, and highest imaginary chemical
potentials, μI ¼ ð0; 0.17; 0.275ÞπT, respectively.
Similarly to the case of chiral condensate of light quarks,

we check the robustness of our results with respect to the
volume variations, Fig. 9. In addition of the main results
obtained on a 243 × 6 lattice, we also show the plots of the
renormalized Polyakov loop calculated at a 323 × 6 lattice

of a higher volume. The visual comparison of the results
indicates that the increasing imaginary chemical potential
leads to stronger volume dependence at low magnetic field,
while at the low density and/or in the strong magnetic field,
the sensitivity of the renormalized Polyakov loop to the
infrared effects is almost unnoticeable.
The reason for the emergence of these volume effects has

a simple systematic origin which is not directly related
to the dynamical volume effects. Due to the quantization
of magnetic field (9), the number of numerical points,
available for the fit (27), is very much limited for weak
magnetic fields as compared to stronger magnetic fields.
Instead, the magnetic field is varied by the discrete flux
variable n ¼ 1; 2;…, which needs to be counterweighted
by the variation of the lattice spacing a ¼ aðβÞ in Eq. (9).
The variation of the latter, in turn, affects the temperature
T ¼ 1=ðaNsÞ, which quickly goes out of the interesting
temperature interval of the deconfining crossover.
Therefore, we are faced with an artificial limitation of
the number of points that could be used in the fit (27), thus
bringing a large systematic error to our results. Due to these
reasons, we do not discuss below the lattices other than
243 × 6 (noticing, at the same time, that the formal low-
field B → 0 limit agrees with the known B ¼ 0 results). At
larger magnetic fields, the flux variable n may run over
larger sets of points and this problem does not exist.

B. Deconfining temperature and its thermal width

In Fig. 10, we show the pseudocritical temperature of
the deconfining crossover as the function of the imaginary
chemical potential for the whole set of the available
magnetic fields. It turns out that the dependence of the
deconfining crossover temperature on imaginary chemical
potential can well be fitted by the (quadratically truncated)
Taylor series (18) almost at all values of the magnetic field.
Notice that the large error bars at the lowest magnetic
strength as well as the difference of the results on two
lattice sizes Ns ¼ 24 and Ns ¼ 32 have the systematic
origin mentioned above.

FIG. 9. The renormalized Polyakov loop (15) as the function
of temperature at various fixed values of μI=ðπTÞ in the back-
ground of the weakest (eB ¼ 0.1 GeV2) and the strongest
(eB ¼ 1.5 GeV2) magnetic fields on the lattice 243 × 6. For
comparison, we also show the renormalized Polyakov loop on the
lattices 323 × 6 and 323 × 8, for the lowest and largest imaginary
chemical potentials, μI=ðπTÞ ¼ 0, 0.275. The lines are the best
fits by the function (27).

FIG. 10. The deconfinement crossover temperature Tconf
c de-

termined via the fits (27) of the renormalized Polyakov loop. The
lines represent the best fits by the quadratically truncated
Eq. (18).
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The temperature Tc of the deconfining crossover at
zero chemical potential, obtained with the help of the
quadratic fits, is shown in Fig. 11(a). Similarly to the chiral
crossover temperature, the deconfining crossover temper-
ature is a diminishing function of the magnetic field. This
property agrees well with the earlier observation that the
gluonic d.o.f., as probed by the gluon action, experience the
inverse magnetic catalysis similarly to the light-quark
condensates [57].
According to Fig. 11(a), in the limit of weak magnetic

fields, the pseudocritical temperature of the deconfining
transition agrees well with the known B ¼ 0 result,
Tc ¼ 171ð3Þ MeV, obtained in Ref. [3].3 At strong mag-
netic fields, the pseudocritical line of the deconfining
transition, shown in Fig. 11(a), overlaps with the line of
the chiral crossover, Fig. 5(a). This fact will be clearer in the
last section, where we discuss the overall phase diagram.
The quadratic curvature of the deconfining transition,

obtained with the quadratic fits, is shown in Fig. 11(b) as
the dimensionless quantity κconf2 and in Fig. 11(c) as the
physical curvature Aconf

2 , calculated via Eq. (19). It seems to
have a peak around the magnetic flipping field (24) which
is, however, determined with a substantial uncertainty due
to large statistical errors. Still, the curvature Aconf

2 is a
positive quantity so that the pseudocritical temperature of
the deconfining crossover diminishes in the dense QCD
matter. This fact means that the presence of the baryon
density enhances the “inverse magnetic catalysis” effect for
the deconfining phase transition: the presence of matter
makes the deconfinement crossover transition happening at
lower temperatures.
The thermal width of the deconfining transition may be

analytically continued to the real-valued baryonic potential
similarly to its chiral counterpart (21). In Fig. 12, we
demonstrate that the numerical data for the deconfining
thermal width can be well described by the quadratic

function (20). In this figure, we dropped a few points with
very large error bars which practically do not contribute to
the fits while making the figure less readable.
The width of the deconfining crossover is shown in

Fig. 13(a). At low magnetic field, the deconfining cross-
over is very wide, δTconf ≃ 60 MeV as compared with
the δTch ≃ 11 MeV of the chiral crossover shown in
Fig. 8(a). At the magnetic flipping point (24), the width
suddenly drops down. At largest studied magnetic field
eB ¼ 1.5 GeV2, the deconfining thermal width δTconf ≃
11 MeV becomes comparable with the chiral thermal
width δTch ≃ 5 MeV.
The curvature of the deconfining thermal width is a

negatively valued quantity, as it is shown in dimensionless,
Fig. 13(b), and physical, Fig. 13(c), units. The latter has
been obtained with the help of Eq. (22) but for the
deconfining crossover.
We would like to stress that the presence of the baryonic

matter makes the deconfining thermal width wider, thus
softening the deconfining transition in the whole studied
range of magnetic field.
The deconfining temperature and its thermal width, as

well the their curvatures in the (μ; T) plane, are summarized
in Table III below. Wewill discuss the general picture of the
chiral and deconfining crossover transitions in the last
section.

(a) (b) (c)

FIG. 11. (a) The pseudocritical temperature Tconf
c of the deconfining crossover at zero chemical potential μB ¼ 0, as well as the

curvature in (b) dimensionless units κconf2 , and (c) physical units Aconf
2 versus the magnetic-field strength B. The red data point in plot

(a) corresponds to the zero field B ¼ 0 obtained in Ref. [3].

FIG. 12. The same as in Fig. 10 but for the deconfining thermal
width.

3For consistency reasons, we do not include the syste-
matic error from Ref. [3] for the deconfining pseudocritical
temperature.
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V. THERMODYNAMICS PROPERTIES
OF HEAVY QUARKS

A. Polyakov loop and thermodynamic potential

The expectation value of the Polyakov loop (15) deter-
mines grand-canonical thermodynamic potential of the
static quark ΩQ,

jhPij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hRePi2 þ hImPi2

q
¼ e−ΩQ=T: ð28Þ

Free quarks do not exist in the confining phase of QCD.
Consequently, at low temperatures, the energy of an
individual quark is large and the Polyakov loop is a small

quantity. Notice that in the pure Yang-Mills theory the
Polyakov loop is an exact order parameter of the quark
confinement (the Polyakov loop vanishes in the confine-
ment phase, hPi ¼ 0) while in QCD the expectation value
of the Polyakov loop does not vanish exactly due to the
presence of dynamical quarks.
In the deconfining phase, the free energy of a single

quark is a finite quantity. However, the free energy suffers
from ultraviolet divergences due to large perturbative
contributions. In order to give a physical meaning to the
free energy, it needs to be renormalized. In our paper, we
use the gradient flow method to renormalize the Polyakov
loop [56].

(a) (b) (c)

FIG. 13. (a) The thermal width δTc of the deconfining crossover at zero chemical potential μB ¼ 0, as well as the curvature of the
deconfining thermal width in (b) the dimensionless units δκ2, and (c) physical units δA2 versus the magnetic-field strength B.

TABLE III. The characteristics of the chiral and deconfining crossovers versus the magnetic field B established by the arctan-type
fitting used to identify the inflection points of the light-quark condensate (17) and the Polyakov loop (27), respectively. We show the
pseudocritical temperatures Tc, the widths δTc, as well as the dimensionless quadratic curvatures of the crossover temperature κ2 and its
width δκ2, determined, correspondingly via the quadratically truncated fits (18) and (20). The curvatures in the physical units, A2 and
δA2, are found via the fits (19) and (22). The marks denote the data taken from other sources, given in the continuum limit: (a) Ref. [4],
(b) Ref. [3], and (c) Ref. [9]. The data point (d) is derived from (c) via Eq. (19). Note that for our data we present only the statistical
errors, while the points (a)–(d) include also systematic uncertainties coming from an extrapolation to the continuum limit.

Pseudocritical temperature
and thermal width at μ ¼ 0

Curvature of pseudo
critical temperature Tc

Curvature of thermal
width δTc

eB Tc, MeV δTc, MeV κ2 A2, GeV−1 δκ2 δA2, GeV−1

Chiral crossover
0 156.5(1.5)(a) … 0.0132(18)(c) 0.085(12)(d) … …
0.1 148.3(2) 11.4(3) 0.0145(7) 0.097(6) 0.044(10) 0.019(5)
0.5 141.7(3) 11.2(4) 0.0174(10) 0.123(7) 0.020(10) 0.010(5)
0.6 139.0(3) 10.4(4) 0.0183(9) 0.132(6) 0.025(12) 0.011(6)
0.8 136.8(3) 9.0(3) 0.0170(6) 0.125(4) −0.011ð8Þ −0.008ð4Þ
1. 134.89(13) 7.8(2) 0.0168(4) 0.125(3) −0.045ð5Þ −0.014ð2Þ
1.5 130.46(15) 5.2(4) 0.0153(3) 0.117(2) −0.047ð4Þ −0.021ð2Þ

Deconfining crossover
0 171(3)(b) … … … … …
0.1 165.4(1.1) 60(2) 0.017(2) 0.103(10) −0.058ð8Þ −0.12ð2Þ
0.5 139.8(1.6) 40(4) 0.024(3) 0.174(18) −0.070ð14Þ −0.10ð2Þ
0.6 137.4(1.2) 20(3) 0.020(2) 0.142(17) −0.051ð25Þ −0.05ð3Þ
0.8 135.1(5) 22.8(1.2) 0.0183(9) 0.135(7) −0.061ð7Þ −0.07ð1Þ
1. 134.5(2) 18.0(6) 0.0153(3) 0.113(3) −0.053ð5Þ −0.052ð5Þ
1.5 130.3(2) 11.4(6) 0.0148(4) 0.114(3) −0.023ð11Þ −0.014ð7Þ
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In a general thermodynamic system of a volume V, the
grand-canonical thermodynamic potential Ω is related to
the pressure P as follows,Ω ¼ −PV. The differential of the
potential is defined as follows:

dΩ ¼ −SdT − Ndμ −MdB; ð29Þ

where entropy S, particle number N, and magnetization M
determine the response of the grand potential to the
variations in temperature T, chemical potential μ, and
magnetic field B, respectively. These quantities may also
be defined for a single static quark introduced into the
system by the Polyakov loop operator (15). They have a
sense of variation in, respectively, the entropy, the (light)
quark number, and the magnetization of the overall system
in a response of adding one infinitely heavy, static quark.
We use the subscript “Q” for these thermodynamic quan-
tities in order to highlight their single-quark meaning.
There is an important feature of our numerical approach:

we perform the simulations at a fixed ratio of the imaginary
chemical potential μI to temperature T instead of fixing
these quantities separately. Thus, for convenience, we
define the ratios

f ¼ μ

T
¼ iμI

T
; fI ¼

μI
T
≡ −if ð30Þ

and rewrite the differential of the free energy (29) as

dΩQ ¼ −ðSQ þ fNQÞdT − TNQdf −MQdB: ð31Þ

Then it is easy to obtain the following relations in terms of
ðf; T; BÞ variables:

SQ ¼ −
�∂ΩQ

∂T
�

f;B
þ f
T

�∂ΩQ

∂f
�

T;B
; ð32Þ

MQ ¼ −
�∂ΩQ

∂B
�

T;f
: ð33Þ

It is worth noticing that the baryon number, determined by
a differentiation of the free energy with respect to the
baryon chemical potential, is formally an imaginary quan-
tity in our case. However, its physical meaning remains the
same, and the baryon number may, in principle, be
analytically continued to the domain of the real chemical
potential. We do not analyze this quantity in the paper
because the accuracy of our numerical data does not allow
us to extract the baryon number density unambiguously.

B. Single-quark entropy

Despite the imaginary nature of the chemical potential
μI , the entropy (32) may be determined reliably in the
region where the thermodynamic potential is an analytic
function of the chemical potential μ. Indeed, Eq. (30)

implies the relation f∂f ≡ fI∂fI , which may be used to
compute the last term of the entropy of the single quark
(32). In this case, the entropy of the single quark may be
directly expressed via the renormalized Polyakov loop
hPir,

SQ ¼ ln jhPirj þ ∂ ln jhPirj
∂ lnT −

∂ ln jhPirj
∂ ln fI ; ð34Þ

where the dimensionless ratio fI is equal to μI=T.
Although the quark entropy (34) is not sensitive to the

(global) Z3 center symmetry, it is expected to pinpoint a
(phase) transition between the low- and high-temperature
regions. The entropy of the single heavy quark has a
peak—a local maximum as a function of temperature at
other parameters fixed—which is close to the pseudoc-
ritical temperature of the chiral crossover [58].
In Fig. 14, we show the single-quark entropy, computed

as (34), in the parameter plane of the temperature T and
the normalized imaginary chemical potential μI=ðπTÞ. At
each value of the chemical potential, the quark entropy has
a maximum point which is denoted by a solid blue line. As
the imaginary chemical potential increases, the peak is
shifted toward higher values of temperature, which is in
the qualitative agreement with the picture obtained from
our studies of the chiral and deconfinement phase tran-
sitions. Unfortunately, with current ensembles we are able
to determine the position of the entropy peak only for
sufficiently strong magnetic fields, eB > 0.5 GeV2. For
these large fields, the entropy takes it maximum, in the
zero-density limit, at T ∼ 127ð10Þ MeV, in consistency
with the position of the common line of chiral and
deconfining crossovers.
The calculation of the quark entropy requires an inter-

polation of the renormalized Polyakov loop to a continuous
range of temperatures T and normalized imaginary chemi-
cal potentials fI ¼ μI=T to properly compute derivatives in
(34). In this case, good enough resolution in terms of
discrete ðT; μI=TÞ points in the phase transition region is
especially important. Unfortunately, we currently have
three to five temperature points in the region near Tc for
all chemical potential and magnetic-field values, which turn
out to be not enough for the proper estimation of peak in SQ
(cubic B-spline with smoothing was employed for inter-
polation). Moreover, statistics consist of 100–200 configu-
rations per ðT; B; fIÞ set, thus relative errors in Tc obtained
from the maximum of single-quark entropy reach 10%. We
leave a detailed study of SQ for future papers.

C. Magnetization

The single-quark magnetization (33) is a real-valued
quantity, which may be computed straightforwardly from
the renormalized Polyakov loop and then analytically
continued to the real-valued chemical potential. On a
first glance, the physical meaning of the single-quark
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magnetization (33) is somewhat obscure since this quantity
is associated with the presence of

(i) a static, infinite-heavy quark, which
(ii) does not possess a spin d.o.f., and
(iii) has zero electric charge.
Due to the latter property, the test quark is not directly

coupled to the external magnetic field. Moreover, the
immobility of the test quark means that it does not
contribute to the Landau diamagnetism, while the absence
of the spin, and, consequently, of the magnetic moment,
implies the lack of the Pauli paramagnetic contribution.
Therefore, one could naively argue that the external test
quark would not affect the magnetization properties of the
system. On the other hand, the immobile chargeless
spinless quark may still affect the electromagnetic proper-
ties of the medium since its presence modifies—via the
gluon-mediated interactions—the distribution of the
dynamical quarks around it, which, in turn, do couple to
the background magnetic field and contribute to the overall
magnetization of the system. Therefore, the single-quark
magnetization has a meaning of the extent with which the
test quark affects the electromagnetically active dense
medium of charged quarks and antiquarks.
In Fig. 15, we show the single-quark magnetization (33)

computed for three characteristic temperatures at the low
(135 MeV), middle (150 MeV), and upper (165 MeV) parts
of the crossover transition. The upper row of plots in
Fig. 15 corresponds to the actual data obtained for the
imaginary chemical potential μI . In the low-density region,
one can perform an analytical continuation of the mag-
netization data MImðμ2I Þ by (i) first expanding the mag-
netization via the series of the even powers of the imaginary
chemical potential μI; and (ii) then using the relation,
μ2B ¼ −ð3μIÞ2, to obtain the desired function MðμBÞ ¼
MImð−ðμB=3Þ2Þ. At a practical side, we found that the
numerical data for MImðμIÞ at the imaginary chemical
potential may be described, at a satisfactory level, by the
quartic dependence

MImðμIÞ ¼ C0 þ C2μ
2
I þ C4μ

4
I ð35Þ

for all values of magnetic field. Here Ci are dimensional
fitting parameters. Notice that we make the fits (35) of
magnetization at fixed temperatures and magnetic fields so
that Ci ¼ CiðB; TÞ. The analytically continued single-
quark magnetization

MðμBÞ ¼ M0 − κðMÞ
2

�
μB
3πT

�
2

þ κðMÞ
4

�
μB
3πT

;

�
4

ð36Þ

is shown in the lower row of Fig. 15. From these figures,
one readily observes that the single-quark magnetization is
a positive quantity in the whole range of studied parameters
ðμI=T; BÞ. In other words, heavy quarks contribute para-
magnetically to the overall magnetization of the quark-
gluon plasma. Moreover, this paramagnetic contribution is
enhanced with the increase of the magnetic field.
Usually, the effect of the heavy quarks on the magnetic

polarization of the quark-gluonplasma is ignoredbecause the
massive quarks behave as nonrelativistic particles for which
both the (spin-related) magnetic moment and the (orbital-
related) cyclotron frequency are suppressed by the heavy
mass. Here we show that (even, infinitely) heavy quarks are
magnetically active constituents of the plasma as they
contribute paramagnetically to the overall magnetization.
In order to get a suitable continuous description, shown

in Fig. 15, we interpolated the data for the single-quark
magnetization using the method splines, largely following
our approach to of the single-quark entropy SQ. We found
that while our data may be used to reliably estimate the
inflection point of the Polyakov loop, the presented data for
magnetization may contain systematic inaccuracies related
to the scarce grid of the data used for the interpolation. This
point needs a further investigation.
It is instructive to compare our results on the single-

quark magnetization with the behavior of the “bulk”
magnetization of the quark-gluon plasma observed in

FIG. 14. A smooth interpolation of the single-quark entropy (34) as the function of temperature T and imaginary chemical potential μI
for three values of magnetic fields, eB ¼ ð0.6; 1.0; 1.5Þ GeV2, on 243 × 6 lattice. The blue solid curve marks the maximum of the quark
entropy at each μI . Only mean values without error bars are plotted for the sake of clarity (the systematic relative errors may reach 30%).
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Refs. [59–61] in a zero-density limit of QCD. The bulk
magnetization of the μB ¼ 0 quark-gluon plasma is a
positive quantity and, therefore, the zero-density QCD is
a paramagnetic medium. The paramagnetic response of the
bulk quark-gluon plasma increases in strength both with
the increase of temperature and the strengthening of the
magnetic field. Our results at μB ¼ 0 do not show a
significant increase in the single-quark magnetization,
which may still be consistent with the earlier results of
Refs. [59–61] because our temperature interval (30 MeV) is
much shorter compared to that of the quoted references
(hundredths of MeV). However, we observe the weakening
of the single-quark magnetization with the strengthening of
the magnetic field in a sharp contrast with the observed
strengthening of the bulk magnetization.
It worth noticing that the single-quark magnetization and

bulk magnetization cannot be compared with each other
directly because these quantities have different physical
meanings and they even possess different dimensions: the
former quantity corresponds to the energy of a single heavy
static quark, while the latter number characterizes the energy
density of the bulk medium. Nevertheless, both quantities
characterize the magnetic properties of the strongly inter-
acting medium subjected to an intense magnetic-field
background.

VI. OVERALL PICTURE AND CONCLUSIONS

In our work, we studied the influence of the strong
magnetic field on the chiral and deconfinement transitions
in finite-temperature QCD at a low baryonic chemical
potential. In the low-density QCD with real (physical)
masses of u, d, and s quarks, these transitions are not
accompanied by any thermodynamic singularities in the
parameter space of the theory. Instead, the theory experi-
ences a smooth broad crossover from the cold chirally
broken hadronic medium to the hot chirally symmetric
plasma of deconfined quarks and gluons.
In the absence of a real phase transition, the positions of

the chiral and deconfining crossovers are not well defined;
they depend on a particular form of the operator employed
to probe them. In our paper, we identify the location of the
chiral crossover as the inflection point of the expectation
value of the chiral condensate of light quarks, which is an
exact order parameter for the chirally broken phase in QCD
with massless quarks.
We reveal the location of the deconfining crossover

via the inflection point of the expectation value of the
gradient-flow-renormalized Polyakov loop, which is the
order parameter for the deconfinement phase transition in a
pureYang-Mills theory (QCDwith infinitelymassive quarks).
In addition to the positions of the chiral and deconfining

crossover lines in the parameter space, we determined the

FIG. 15. A smooth interpolation of the single-quark magnetization (33) as the function of magnetic field B and (upper plots) imaginary
chemical potential μI or (lower plots) real baryon chemical potential μB for three values of temperatures, at (a) lower, (b) middle,
(c) upper regions of the crossover transition, T ¼ ð135; 150; 165Þ MeV, calculated on a 243 × 6 lattice. For the sake of clarity, we plot
the mean values only. The overall picture has a qualitative, not quantitative character as the relative errors may reach 30%.
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thermal width of each of these crossovers. In the absence of
thermodynamically singular behavior, the thermal width
may serve as a quantitative characteristic of the strength of
the crossover transition. The thermal width δT, formally
defined via the fitting functions (17) and (27), can be
understood as a temperature range over which the corre-
sponding order parameter reaches its values at both sides of
the crossover. Similarly to the positions of the crossover
lines, their thermal widths are prescription-dependent
quantities which may depend on the operator used to
identify them.
We performed the calculations on Nt ¼ 6, 8 lattices

generated with Symanzik improved gluons and stout-
improved 2þ 1 flavor staggered fermions at physical quark
masses and imaginary baryonic chemical potential. We
used the analytical continuation from purely imaginary to
real-valued baryon chemical potential.
Below, we summarize all effects of the magnetic-field

background on the chiral and confining crossover transi-
tions at low baryonic densities and finite temperature.

A. The chiral crossover

(1) The effect of the inverse magnetic catalysis extends
to the region of low baryon densities: the chiral
crossover temperature drops down as the back-
ground magnetic field strengthens. Moreover, the
presence of the baryonic matter, the effect of the
inverse magnetic catalysis becomes slightly stronger.

(2) The quadratic curvature Ach
2 ðBÞ≡ κ2ðBÞ=Tc of the

chiral crossover transition

TchðB; μBÞ ¼ TchðB; 0Þ − Ach
2 ðBÞμ2B þ… ð37Þ

experiences a local maximum at the “magnetic flip-
ping field” (24) which is approximately given by the
scale of the ρ-meson mass, eBch

fl ≃ 0.6 GeV2 ≃m2
ρ,

Fig. 6. The presence of magnetic field generally
enhances the curvature Ach

2 ðBÞ.
(3) The thermal width δTch

c of the chiral crossover
shrinks approximately twice, from δTch

c ≃ 11 MeV
at vanishing field to δTch

c ≃ 5 MeV at the maximal
studied strength, eB ¼ 1.5 GeV2, Fig. 8(a).

(4) The properties of thermal width δTch
c at finite

baryon density allowed us to estimate the loca-
tion of the chiral critical end point in the T-μB
plane at vanishing magnetic field ðTCEP; μCEPB Þ≃
ð100; 800Þ MeV, Eq. (26).

(5) The curvature δAch
2 of the chiral thermal width

δTchðB; μBÞ ¼ δTchðB; 0Þ − δAch
2 ðBÞμ2B þ… ð38Þ

changes its sign at the magnetic flipping point,
eB ≃ 0.6 GeV2, as shown in Fig. 8(c). Thus, the
presence of the baryon matter makes the chiral

crossover transition narrower (wider) in the mag-
netic-field background with B < Bfl (B > Bfl).

B. The deconfining crossover

(7) The deconfining crossover experiences the inverse
magnetic catalysis as well, Fig. 11(a).

(8) The curvature of the deconfining transition is a
positive-valued quantity with a peak around the
critical value of magnetic field eBfl, Fig. 11(c).
Therefore, the presence of the baryonic matter
lowers the deconfining temperature at finite mag-
netic field, thus, effectively, enhancing the inverse
magnetic catalysis of the deconfining crossover. The
maximum enhancement happens around the mag-
netic flipping field B ≃ Bfl, Eq. (24).

(9) The deconfining crossover is generally a much
wider transition as compared to the chiral crossover.
This fact follows from comparison of their widths,
Figs. 8(a) and 13(a), respectively. However, the
deconfining thermal width decreases very rapidly
with magnetic field: it shrinks at least five
times, from δTconf

c ≃ 60 MeV at a vanishing field
to δTconf

c ≃ 11 MeV at the strongest studied field,
eB ¼ 1.5 GeV2.

(10) The curvature of the thermal width of the confining
crossover is a negative quantity in the whole studied
range of magnetic fields, Fig. 13(c). It means that the
presence of baryonic matter tends to weaken the
deconfining crossover in the studied range of B.

C. The overall picture of the crossover region

The pseudocritical temperatures and the thermal widths
of the chiral and deconfining crossovers, as well as the their
curvatures in the (μ; T) plane, are summarized in Table III.
We illustrate the overall picture of the crossover region in

the (B; T) plane in Fig. 16 and also in the video at [62]. We
show the pseudocritical temperatures Tc of the chiral and
deconfining transitions, as well as their thermal widths δTc
as functions of magnetic field B for three different values of
the baryonic chemical potential μB ¼ 0; 250; 500 MeV (the
video shows the evolution of the phase diagram as the
baryonic chemical potential increases). We used the quad-
ratic analytical continuation for the chiral crossover temper-
ature (37), its width (38), and the same quantities for the
deconfining crossover transition. The value of the largest
chemical potential, μB ¼ 500 MeV, is specially chosen for
illustrative purposes in order to highlight the qualitative
effects of the baryonic matter on the phase transition. At
this relatively high baryon density, the presence of the
quartic term in the Taylor expansions over the chemical
potential may affect, quantitatively, both the transition lines
and their widths.
The three plots in Fig. 16 capture all basic properties of

the crossover transition region.
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(11) At a vanishing magnetic field and zero baryonic
density, the deconfining transition is a wide cross-
over with the thermal width δTconf ≃ 60 MeV which
takes place at Tconf ≃ 170 MeV. The chiral transi-
tion is much narrower crossover, δTch ≃ 11 MeV,
that takes place at somewhat lower temperature,
Tch ≃ 156 MeV.

(12) As the magnetic field strengthens, the transition
temperatures of the confining and chiral crossovers
become lower (the inverse-magnetic catalysis phe-
nomenon). Both crossover transitions become nar-
rower and, therefore, stronger.

(13) At the “tripseudocritical” point ðeB�; T�Þ≃
ð0.5 GeV2; 140 MeVÞ, these transitions merge to-
gether and overlap at higher magnetic fields, with
different widths for chiral and deconfining cross-
overs. The tricritical point appears at the magnetic
flipping field, B� ≃ Bfl. Since the deconfining cross-
over is very wide (δTconf > jTconf

c − Tch
c j in the

whole studied region), the merging point has a
rather academic significance.

(14) The presence of the baryonic matter enhances the
inverse-magnetic-catalysis effect for both cross-
overs: the pseudocritical temperatures drop as the
baryon chemical potential increases in the whole
studied region of magnetic field. Both chiral and
deconfining curvatures are found to be (generally)
increasing in the presence of the magnetic field.

(15) The presence of the baryonic matter always widens
the deconfining crossover.

(16) The effect of the baryon density on the chiral
crossover is twofold: the matter makes chiral tran-
sition narrower (wider) at lower (higher) fields
compared to the magnetic flipping field (24)
Bfl ≈ B�, where the both crossovers merge.

(17) The behavior of the chiral thermal width and its
curvature give a simple estimation (26) of the critical
end point in the T-μ plane in, surprisingly, reason-
able range of parameters (26),

ðTCEP; μCEPB Þ ≃ ð100; 800Þ MeV:

In addition, we have studied the single-quark entropy
and the single-quark magnetization. The maximum of the
single-quark entropy (32) corresponds very well to the
common chiral-deconfining transition line at larger mag-
netic fields, B≳ B�, Fig. 14. Since the deconfining cross-
over is very wide, thus the peak of SQ is broad and it is
difficult to pinpoint the maximum of the entropy with
acceptable accuracy at lower magnetic fields with our
current statistics.
The single-quark magnetization (33) exhibits a variety of

nontrivial features, Fig. 15. First of all, the magnetization of
the heavy quarks turns out to be nonzero. This fact reveals a
surprising property of the system because for nonrelativ-
istic heavy particles both the magnetic moment and the
cyclotron frequency are suppressed by the large mass,
implying—naively—that these particles do not contribute
to magnetic properties of the plasma. We argue that the
influence of the heavy quarks on the magnetization goes
indirectly. The heavy quarks affect locally the dynamics of
the light quarks, while the latter quarks, being magnetically
active, contribute to the excess of the overall magnetization.
Given the scarce number of points in the direction of

magnetic field, the following features of the single-quark
magnetization—made in the vicinity of the crossover
transition at T ¼ ð135–165Þ MeV—are largely of a quali-
tative nature:

(i) The single quark has the paramagnetic response to
the external magnetic field (i.e., the single-quark
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FIG. 16. The chiral (blue) and deconfining (red) crossover transitions at the baryonic chemical potential (from left to right) μB ¼ 0, 250,
and 500MeV.The solid lines denote themiddle positions of the crossovers,T ¼ Tc, and the dash-dotted and dashed lines show theirwidths,
T ¼ Tc � δTc, as the function of magnetic field. See the video displaying continuous change of μB from 0 to 500 MeV at [62].
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magnetization is a positive quantity at all studied
fields).

(ii) As the strength of the magnetic field increases, the
magnetization drops down in the low-density cross-
over region.

(iii) At zero magnetic field and low baryonic densities,
the magnetization, as the function of the real-valued
baryon potential, increases (decreases) in the had-
ronic (quark-gluon plasma) regions of the crossover.

It is important to stress that the exact positions of the
crossover transitionsand their thermalwidthsareprescription-
dependent quantities. Their precise values depend not only
on the operators used to reveal them but also on the (re)
normalization of these operators. However, the analysis
indicates that our results match well with other available
data at the corners of the explored parameter space, thus
providing us with additional support for the validity of the
presented picture in the whole explored region.

ACKNOWLEDGMENTS

We are grateful toMassimoD’Elia for sharing with us the
data fromRef. [9]. Wewould like to thank Gergely Endrődi,
Jan Pawlowski, Oleg Teryaev, and Johannes Weber for
comments and discussions. This work was supported by the
RFBRGrantNo. 18-02-40126mega. Thework ofA.Yu. K.,
who generated field configurations and performed the
measurements of the chiral condensate, has been supported
by a grant from the Russian Science Foundation (Project
No. 18-72-00055). A. A. N. acknowledges the support from
STFC via Grant No. ST/P00055X/1. This work has been
carried out using computing resources of the federal
collective usage center Complex for Simulation and Data
Processing for Mega-science Facilities at NRC “Kurchatov
Institute.” In addition, the authors used the supercomputer of
Joint Institute for Nuclear Research “Govorun.”

APPENDIX: SCHEME DEPENDENCE OF
POLYAKOV LOOP RENORMALIZATION

In this paper, we renormalize the expectation value of the
Polyakov loop using the gradient flow procedure [63,64].
This procedure removes perturbative ultraviolet content of
gauge fields. We refer an interested reader to Refs. [56,63]
for a comprehensive account of the renormalization with
the help of gradient flow.
The approach postulates the evolution of the gauge field

configurations in the “Wilson flow”4 space defined by the
differential equation of a diffusion type,

_Vx;μðτÞ ¼ −g20f∂x;μSYM½Vx;μðτÞ�gVx;μðτÞ; ðA1Þ

with the initial condition

Vx;μðτÞjτ¼0 ¼ Ux;μ: ðA2Þ
The flow time τ controls the degree of smoothing of the
initial gauge configuration (A2) in the space of gauge-field
configurations, guided by the gauge action SYM and the
bare gauge coupling g0. The functional derivative ∂x;μ in
Eq. (A1) acts in the Euclidean coordinate space and in the
color space [63]. The dot over V in Eq. (A1) denotes a
partial derivative with respect to the flow time τ.
Due to the diffusive character of the evolution

equation (A1), the flow smears gluon configurations at
the length scale

f ¼
ffiffiffiffiffi
8τ

p
: ðA3Þ

The operators built from the flow-evolved variables Vx;μ do
not require an additional renormalization [65] after extrapo-
lation to τ → 0 limit. In the case of Polyakov loop for small τ,
the evolved operator is equivalent, up to a multiplicative
factor, to the renormalized original operator at τ → 0 [64,65].
The gradient flow procedure has an intrinsic ambiguity

related to the choice of the “optimal” flow time at which
the smoothing procedure should stop. On the physical
grounds, the optimal τ is naturally constrained within the
ultraviolet and infrared limits, a ≪

ffiffiffiffiffi
8τ

p
≪ ΛQCD. How-

ever, this interval is too broad to fix the renormalized free
energy (28) ΩQ unambiguously. Since the Polyakov loop is
renormalized multiplicatively, the uncertainty in the
renormalization scale leads to an additive ambiguity in
the renormalized free energy

ΔΩQ ¼ ΩQðf̃Þ −ΩQðfÞ ðA4Þ
determined at two scales f and f̃, related to the corre-
sponding optimal flow times via Eq. (A3).
In order to probe the dependence of the free energy on

the choice of the optional flow time, we compared the shift
(A4) for two different values of the renormalization scale,
f̃ ¼ 0.54 fm and f ¼ 0.80 fm, for two values of magnetic
field, eB ¼ 0.5 GeV2 and eB ¼ 1.5 GeV2. The results are
shown in Figs. 17(a) and 17(b).
It appears that the energy shift (A4) does not depend,

within the error bars, on the imaginary chemical potential,
i.e., chemical potential does not affect the renormalization.
For a moderate magnetic field eB ¼ 0.5 GeV2, the energy
shift ΔΩQ is almost a temperature-independent quantity,
with a slight systematic drop—albeit within the large error
bars—at the colder side of the pseudocritical crossover
temperature T ≃ 140 MeV; see Fig. 17(a). On the contrary,
according to Fig. 17(b), the drop in the shift at the low-
temperature side of the crossover region is clearly visible at
the stronger field, eB ¼ 1.5 GeV2.
Figure 17 suggests that the energy shift ΔΩQ for dif-

ferent renormalization scales f and f̃ is affected by the
strong magnetic-field background. Let us estimate if this
scheme dependence may influence the determination of
the deconfining crossover temperature from the inflec-

4For a Symanzik–improved gluon action, the appropriate
evolution is called “Symanzik flow.”
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tion point of the Polyakov loop. The energy shift ΔΩQ

differs from ∼50 MeV at the cold (T−∼100MeV) side of
the crossover to ∼55 MeV at the hot (Tþ ∼ 200 MeV)
side. Thus, exp ½−ΔΩQðT−1þ − T−1

− Þ� ∼ 1.3, i.e., the multi-
plicative bias in renormalization is about 30% in both
ends. But the change in the magnitude of the Polyakov
loop, induced by the deconfinement phenomenon (Fig. 9),
amounts to the factor of 10, which is about 30 times
bigger compared to the mentioned systematics of the
scheme. Thus, we expect that this effect of the renorm-
alization scheme dependence may be safely neglected.
Let us also estimate how single-quark entropy and single-

quarkmagnetization are affected by the scheme dependence
of the Polyakov loop and free energy. Since both SQ andMQ

are the derivatives of the free energy densityΩQ, one should

look at the derivatives of the ΔΩQ with respect to magnetic
field, temperature, and (imaginary) chemical potential.
Figure 17 suggests that ΔΩQ is independent on imaginary
chemical potential μI and temperature T (apart from large
magnetic field and small temperatures). Also, the depend-
ence of ΔΩQ on magnetic field is rather mild. From this

figure, one can estimate that ∂ΔΩQ

∂T ≲ 5 MeV
20 MeV ¼ 0.25 (the

typical value of single-quark entropy is∼5), ∂ΔΩQ

∂B ∼ 5 MeV
1 GeV2 ¼

5 × 10−3 GeV−1 (the typical value of single-quark mag-
netization is ∼0.1 GeV−1). Thus, in both cases, the differ-
ence between renormalization schemes is more than by
order of magnitude less than the quantity itself. Moreover, it
is even smaller than the typical errors and can be safely
neglected.
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