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1 Introduction

Defect QFTs play an important role in our current understanding of Quantum Field The-

ories. Of particular interest is the situation when the ambient QFT is a CFT with a

holographic dual. In this case, introducing appropriate branes in the dual geometry it is

possible to construct the gravity dual of the defect QFT, that can then be studied holo-

graphically [1–3]. When the defect QFT is a CFT, the explicit AdS dual geometry can

be constructed in terms of the fully backreacted geometry [4, 5], if the number of defect

branes is sufficiently large.
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2d defect CFTs breaking half of the supersymmetries of the ambient CFT have been

studied in [6–8], and their corresponding AdS3 gravity duals have been constructed.1 The

ambient CFT is either a 6d (1,0) CFT [6, 7] or a 5d fixed point theory [8].2 In the first

case the 2d CFT lives in D2-D4 branes introduced in the D6-NS5-D8 brane intersections

that underlie 6d (1,0) CFTs. In the second case it lives in D2-NS5-D6 branes in the D4-D8

brane set-ups that give rise to 5d Sp(N) fixed point theories.

In this work we will be interested in an extension of the first realisation. We will

show that a sub-class of the local solutions constructed recently in [11], preserving small

N = (0, 4) supersymmetry on a foliation of AdS3×S2×CY2 over an interval, can be used to

construct globally compact solutions dual to 2d (0,4) SCFTs that have an interpretation in

terms of D2-D4 defects in 6d (1,0) CFTs. More precisely, we will be using the word defect to

indicate the presence of extra branes in Hanany-Witten brane set-ups that would otherwise

arise from compactifying higher dimensional branes. This provides a new scenario in which

2d (0,4) CFTs appear in string theory.

2d (0,4) CFTs play a key role in the microscopical description of 5d black holes with

AdS3×S2 near horizon geometries [12–17]. In string theory they can be realised in D1-D5-

KK systems [18–21] and D1-D5-D9 systems [22]. They also play a prominent role in the

description of self-dual strings in 6d (1,0) CFTs realised in M- and F-theory [23–28]. Their

extensions to 2d (0,4) CFTs with large superconformal algebra have also received a good

deal of attention [29–33]. Very recently we have also shown that they can be realised in

larger D2-D4-D6-NS5-D8 brane systems [34, 35].

In [11] AdS3×S2×M4 solutions in massive IIA supergravity preserving N = (0, 4)

supersymmetry with SU(2)-structure were classified. These solutions are warped products

of AdS3×S2×M4 over an interval, with M4 either a CY2 or a Kahler manifold. The CFT

duals of the first class were studied in [34, 35]. They are described by (0,4) quiver gauge

theories with gauge groups
∏n
i=1 SU(ki) × SU(k̃i). SU(ki) is the gauge group associated

to ki D2 branes stretched between NS5 branes and SU(k̃i) is the gauge group associated

to k̃i D6-branes, wrapped on the CY2, also stretched between the NS5 branes. On top of

these there are D4 and D8 branes that provide flavour groups to both types of nodes of the

quiver. These quivers are a generalisation of the linear quivers studied in [26], where the D6

branes are unwrapped and are thus non-dynamical. In this paper we give an interpretation

to our brane systems as D2-D4 brane defects in the D6-NS5-D8 branes associated to 6d

(1,0) CFTs.

The organisation of the paper is as follows. In section 2 we review the main properties

of the AdS3×S2×CY2 solutions constructed in [11], and summarise the key features of their

2d dual CFTs, following [35]. In section 3 we construct a mapping that relates a sub-class

of these solutions with the AdS7 solutions in massive IIA supergravity constructed in [36].

Using this map we can interpret the 2d dual CFTs as associated to D2-D4 defects in the

D6-NS5-D8 brane set-ups dual to the AdS7 solutions, wrapped on the CY2. This suggests

that it should be possible to construct RG flows that interpolate between these two classes

11d CFTs and their AdS2 duals have been addressed in [9].
2SUSY-preserving defects in 5d CFTs have been studied recently in [10].
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of solutions. In section 4 we discuss the AdS7 solution that describes the 6d linear quiver

with gauge groups of increasing ranks terminated by D6 branes, in relation to the map

constructed in section 3. By means of this study we rediscover the non-Abelian T-dual

(NATD) of the AdS3×S3×CY2 geometry, constructed in [37] (see also [30]), as the leading

order in an expansion on the number of gauge groups, of this solution. Then in section 5

we start a detailed study of the non-Abelian T-dual solution. We show that it provides a

simple explicit example in the general classification in [11], that describes a 2d (0,4) CFT

with two families of gauge groups [35] with increasing ranks. As in other AdS solutions

generated through non-Abelian T-duality, the solution is non-compact, and this renders

and infinitely long dual quiver CFT. Remarkably, we are able to provide explicit global

completions of the solution that have associated well-defined 2d (0,4) dual CFTs, that we

describe. This solution thus provides a useful example where it is possible to use holography

in a very explicit way to determine global properties of non-compact solutions generated

through non-Abelian T-duality, following the ideas in [38–42]. In section 6 we attempt to

make connection with RG flows in the literature that connect AdS3 geometries in the IR,

with an interpretation as 2d defect CFTs, with AdS7 solutions in the UV [6, 7]. Our results

are negative, and thus exclude the RG flows constructed in these references as interpolating

between the AdS3 solutions in [11] and the AdS7 solutions in [36]. Section 7 contains our

conclusions and future directions. Appendix A contains some explicit derivations useful

in section 5. Appendix B contains details of the BPS flow constructed in [6], upon which

section 6 is built.

2 AdS3×S2×CY2 solutions in massive IIA and their CFT duals

In [11] AdS3×S2 solutions in massive IIA with small (0,4) supersymmetry and SU(2)

structure were classified. Two classes of solutions that are warped products of the form

AdS3×S2×M4×I were found, for M4 either a CY2 manifold, class I, or a family of Kahler

4 manifolds depending on the interval, class II. The solutions in the first class provide a

generalisation of D4-D8 systems involving additional branes, while those in the second class

are a generalisation of the (T-duals of the) solutions in [28], based on D3-branes wrapping

curves in F-theory. In this paper we will be interested in the first class of solutions, that

we now summarise.

The explicit form of the NS sector of the solutions referred as class I in [11] is given by:

ds2 =
u√
h4h8

(
ds2(AdS3) +

h8h4

4h8h4 + (u′)2
ds2(S2)

)
+

√
h4

h8
ds2(CY2) +

√
h4h8

u
dρ2, (2.1)

e−Φ =
h

3
4
8

2h
1
4
4

√
u

√
4h8h4 + (u′)2, H =

1

2
d

(
− ρ+

uu′

4h4h8 + (u′)2

)
∧ vol(S2) +

1

h8
dρ ∧H2.

Here Φ is the dilaton, H the NS 3-form and ds2 is the metric in string frame. The warpings

are determined from three independent functions h4, u, h8. h4 has support on (ρ,CY2) while

u and h8 have support on ρ, with u′ = ∂ρu. The reason for the notation h4, h8 is that

– 3 –
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these functions may be identified with the warp factors of intersecting D4 and D8 branes

when u = 1.3

The 10 dimensional RR fluxes are

F0 = h′8, (2.2a)

F2 = −H2 −
1

2

(
h8 −

h′8u
′u

4h8h4 + (u′)2

)
vol(S2), (2.2b)

F4 =

(
d

(
uu′

2h4

)
+ 2h8dρ

)
∧ vol(AdS3)

− h8

u
(?̂4d4h4) ∧ dρ− ∂ρh4vol(CY2)− uu′

2(4h8h4 + (u′)2)
H2 ∧ vol(S2), (2.2c)

with the higher fluxes related to these as F6 = − ?10 F4, F8 = ?10F2, F10 = − ?10 F0.

Supersymmetry holds whenever

u′′ = 0, H2 + ?̂4H2 = 0, (2.3)

which makes u a linear function. Here ?̂4 is the Hodge dual on CY2. In turn, the Bianchi

identities of the fluxes impose

h′′8 = 0, dH2 = 0 (2.4)

h8

u
∇2

CY2
h4 + ∂2

ρh4 −
2

h3
8

?̂4(H2 ∧H2) = 0,

away from localised sources.

In this paper we will be interested in the subclass of solutions for which the symmetries

of the CY2 are respected by the full solution. This enforces H2 = 0 and a compact CY2.

Thus, we will be dealing with T4 or K3. The supersymmetry and Bianchi identities are

then all solved for h8, u, h4 arbitrary linear functions in ρ.

The magnetic components of the Page fluxes F̂ = F ∧ e−B2 , are given by

f̂0 = h′8, (2.5)

f̂2 = −1

2

(
h8 − (ρ− 2nπ)h′8

)
vol(S2) (2.6)

f̂4 = −h′4vol(CY2), (2.7)

f̂6 =
1

2

(
h4 − (ρ− 2nπ)h′4

)
vol(CY2) ∧ vol(S2), (2.8)

where we have included large gauge transformations of B2 of parameter n, such that

B2 =
1

2

(
2nπ − ρ+

uu′

4h4h8 + (u′)2

)
∧ vol(S2). (2.9)

The 2d CFTs dual to this class of solutions were constructed in [35]. They are described

by (0,4) supersymmetric quivers with gauge groups associated to D2 and D6 branes, the

3The interpretation for generic u is more subtle.
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Figure 1. Generic quiver field theory whose IR is holographic dual to the solutions discussed in this

section. The solid black line represents a (4,4) hypermultiplet, the grey line a (0,4) hypermultiplet

and the dashed line a (0,2) Fermi multiplet. (4,4) vector multiplets are the degrees of freedom at

each node.

0 1 2 3 4 5 6 7 8 9

D2 x x x

D4 x x x x x

D6 x x x x x x x

D8 x x x x x x x x x

NS5 x x x x x x

Table 1. 1
8 -BPS brane intersection underlying the quiver depicted in figure 1. (x0, x1) are the

directions where the 2d CFT lives, (x2, . . . , x5) span the CY2, on which the D6 and the D8-branes

are wrapped, x6 is the direction along the linear quiver, and (x7, x8, x9) are the transverse directions

on which the SO(3)R symmetry is realised.

latter wrapped on the CY2 manifold, stretched between NS5 branes. Having finite extension

in this direction, the field theory living in both the D2 and D6 branes is two dimensional

at low energies compared to the inverse separation between the NS5-branes. It was shown

in [35] that these quivers are rendered non-anomalous with adequate flavour groups at

each node, coming from D4 and D8 branes. Remarkably, the flavour groups associated

to gauge groups originating from D2 branes arise from D8 branes (wrapped on the CY2)

while those associated to the gauge groups originating from wrapped D6-branes arise from

D4-branes. The corresponding quiver is depicted in figure 1. The underlying brane set-up

is summarised in table 1.

The 2d CFTs dual to the solutions in class I thus generalise the (0,4) quivers studied

in [26] from D2, NS5 and D6 branes, in two ways. First, the D6 branes are compact, and

therefore give rise to gauge, as opposed to global, symmetries. Second, there are D8 branes

between the NS5 branes that can give rise to different flavour groups to each gauge group

coming from D2 branes [44, 45]. Non-compact D4 branes provide the necessary flavour

groups that render the nodes associated to the new, colour, D6 branes non-anomalous.

Our quivers also generalise the (0,4) quivers constructed in [32] from D3-brane box config-

urations to gauge nodes with different gauge groups.

– 5 –
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1
8 -BPS brane set-ups such as the one depicted in table 1 were discussed in [7] in the

context of 2d defect CFTs originating from D2-D4 branes living in 6d (1,0) CFTs. In the

next section we find that it is indeed possible to give an interpretation to some of the

CFTs studied in [35] in these terms. We will discuss the connection with the solutions

constructed in [7] in section 6.

3 A map between AdS3×S2 and AdS7 solutions in massive IIA

In [36] an infinite class of AdS7 solutions in massive IIA was constructed,4 preserving 16

supersymmetries (eight Poincare and eight conformal) on a foliation of AdS7×S2 over an

interval. In this section we show that they can be related to our solutions in [11], preserving

(0,4) supersymmetries on a foliation of AdS3×S2×CY2 over an interval, through a map

that reduces supersymmetry by half. As opposed to the mappings in [47] between AdS7

solutions and the AdS5 and AdS4 solutions in [48, 49], this mapping is not one-to-one,

due to the presence of D2-D4 defects, whose backreaction introduces new 4-form and 6-

form fluxes.

We start by briefly summarising the solutions constructed in [36]. Using the parametri-

sation in [50], these solutions can be completely determined by a function α(z) that satisfies

the differential equation
...
α = −162π3F0. (3.1)

Where F0 is the Ramond zero-form. Explicitly, the metric and fluxes are given by

ds2
10 = π

√
2

(
8

√
−α
α̈
ds2(AdS7) +

√
− α̈
α
dz2 +

α3/2(−α̈)1/2

α̇2 − 2αα̈
ds2(S2)

)
(3.2)

e2Φ = 25/2π538 (−α/α̈)3/2

α̇2 − 2αα̈
(3.3)

B2 = π

(
− z +

αα̇

α̇2 − 2αα̈

)
vol(S2) (3.4)

F2 =

(
α̈

162π2
+

πF0αα̇

α̇2 − 2αα̈

)
vol(S2). (3.5)

These backgrounds were shown to arise as near horizon geometries of D6-NS5-D8 brane

intersections [51, 52] (see also [50, 53] for previous hints), from which 6d linear quivers

with 8 supercharges can be constructed [44, 45]. In these quivers anomaly cancelation

implies that for every gauge group the number of flavours must double the number of

gauge multiplets, Nf = 2Nc [53]. In reference [50] a prescription was given to calculate the

function α(z) that encodes the explicit AdS7 solution dual to a given 6d quiver diagram.

In this quiver diagram the NS5 branes are located at different values of z, the D6-branes

are stretched between them along this direction and the D8 branes are perpendicular. The

corresponding brane set-up is depicted in table 2.

4See [46] for orientifold constructions thereof.
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0 1 2 3 4 5 6 7 8 9

D6 x x x x x x x

D8 x x x x x x x x x

NS5 x x x x x x

Table 2. 1
4 -BPS brane intersection underlying the 6d (1,0) CFTs dual to the AdS7 solutions

in [36]. (x0, . . . , x5) are the directions where the 6d CFT lives, x6 is the direction along which the

NS5-branes are located, and (x7, x8, x9) realise the SU(2) R-symmetry of the internal space.

After this brief summary we can introduce the mapping that relates these solutions to

the solutions in class I in [11], summarised in the previous section. The mapping reads

ρ ↔ 2πz (3.6)

u ↔ α (3.7)

h8 ↔ −
α̈

81π2
(3.8)

h4 ↔
81

8
α . (3.9)

Using these relations one can match the B2 field, dilaton, F0 and F2 fluxes of the two

solutions, as well as the S2 × I components of the metric. For the rest of the metric one

must consider the mapping

ds2(AdS3) +
34

23
ds2(CY2)↔ 4 ds2(AdS7) . (3.10)

Besides, the F4 and F6 fluxes, which would violate the symmetries of the AdS7 solution,

must be disregarded when using the mapping from AdS3 to AdS7. These fluxes clearly sign

the presence of a D2-D4 defect in the AdS3 solution. As we discuss below, its backreaction

has also the effect of modifying the dependence of the different functions on both sides

of (3.7)–(3.9) on the respective field theory directions (related through (3.6)).

Indeed, (3.7) and (3.9) relate linear functions in ρ with a cubic function of z. This

mapping is therefore essentially different from the mappings found in [47], where other than

the replacements of AdS5×Σ2 or AdS4×Σ3 with AdS7, the internal space is just distorted

by some numerical factors. This difference is due to the presence of the D2-D4 defect in

the AdS3 solution, which is also responsible for the reduction of the supersymmetry from

1/2 BPS to 1/4 BPS.

Using (3.8) and (3.6) it is possible to obtain the AdS7 solution related to a particular

AdS3×CY2 solution. One finds

h8 = F0ρ+ c ↔ α̈ = −162π3F0z + c̃ , (3.11)

from which α(z), and thus, the explicit AdS7 solution in [36], can be determined. This

mapping does not however give the expressions for the u and h4 functions that define

the AdS3 solution. Still, one can exploit (3.11) to show that the D8-brane charges of the

AdS7 and AdS3 solutions, determined, respectively, from h′8 and −...
α/(162π3), agree, and

– 7 –
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that the same holds for the D6-brane charges, given that the corresponding f̂2 Page fluxes

satisfy

f̂2(AdS3) = −1

2

(
h8 − (ρ− 2nπ)h′8

)
vol(S2)↔

(
α̈

162π2
+ F0(z − nπ)

)
vol(S2) = f̂2(AdS7).

(3.12)

This implies that the D6-NS5-D8 sector of the AdS3 solution is simply obtained by com-

pactifying on the CY2 the D6-NS5-D8 branes that underlie the AdS7 solution.

However, as we have mentioned, the u and h4 linear functions needed to fully specify

the AdS3 solution, cannot be determined from the AdS7 solution using this mapping, other

than the fact that they have to be proportional to each other.5 This was to be expected,

since, as we showed in [11], these functions encode the information of the additional D2-

D4 branes present in the AdS3 solution. This is, once more, essentially different from the

mappings between AdS5 and AdS4 and AdS7 solutions found in [47], where it is not possible

to identify 6 and 4-cycles on which additional D2 or D4 brane charges can be defined. In

this case this is possible due to the non-trivial CY2 4-cycle in the internal space of the

AdS3 solutions.

The symmetry between the D6-NS5-D8 and D2-NS5-D4 sectors, manifest in the ex-

pressions of the RR Page fluxes of the AdS3 solutions,

f̂0 = h′8, f̂2 = −1

2

(
h8 − (ρ− 2nπ)h′8

)
vol(S2) (3.13)

and

f̂4 = −h′4vol(CY2), f̂6 =
1

2

(
h4 − (ρ− 2nπ)h′4

)
vol(CY2) ∧ vol(S2), (3.14)

stress the role of both D2 and D6 branes as colour branes in the 2d CFT dual to the AdS3

solution, and of D4 and D8 branes as flavour branes [35]. The resulting 2d (0,4) CFT thus

contains two types of nodes, associated to the gauge groups of D2 and compact, wrapped

on the CY2, D6 branes. This is the generalisation of the (0,4) quivers discussed in [26]

that we found in [35]. Note that compactification on the CY2 of the 6d CFT living in

D6-NS5-D8 branes preserves (4,4) supersymmetries.6 The D2-D4 branes further reduce

the supersymmetries by one half [7] (see also [59]). Alternatively, one could start with

the D2-NS5-D4 Hanany-Witten brane set-ups discussed in [60, 61], realising 2d (4,4) field

theories, and intersect them with wrapped D6 and D8 branes, which would also reduce the

supersymmetries by a half. The resulting 1
8 BPS configuration (increasing to 1

4 at the near

horizon) is the one that we depicted in table 1.

5We will see below that this guarantees that the two solutions share the same singularity structure, or,

in other words, that the S2 shrinks in the same way to produce topologically an S3.
6Gauge theories with (4, 4) supersymmetry in two dimensions may be viewed as the dimensional re-

duction of 6d (1, 0) gauge theories. The six dimensional gauge theories have an SU(2)R R-symmetry.

Upon dimensional reduction to two dimensions there is an additional SO(4) = SU(2)r × SU(2)l symmetry

acting on the four reduced dimensions. This is also an R-symmetry since the supercharges are a spinor

of this SO(4) group; the left-moving (positive chirality) supercharges are in the (2,1,2) representation of

SU(2)l × SU(2)r × SU(2)R while the right-moving (negative chirality) supercharges are in the (1, 2, 2)

representation [54, 55].
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Let us now discuss the physical reason for the condition h4 ∼ u, implied by (3.9)

and (3.7), in the AdS3 solutions. As we have mentioned, the functions u and h4, needed to

completely determine the AdS3×CY2 solution, cannot be computed from (3.7) and (3.9),

due to the different dependence on ρ and z of these functions and α(z), respectively. Rather,

the relation h4 = 81u/8 has to be seen as a restriction on the class of AdS3×CY2 solutions

that can be interpreted as defects in the CFTs dual to AdS7 solutions. This restriction

comes from the condition that both solutions share the same singularity structure. In order

to see this we note that in both solutions the range of the interval is determined by the

points at which the S2 shrinks, such that the S2×I space is topologically an S3. In AdS7

there is a D6 brane when α = 0, α̈ 6= 0, and a O6 when α̈ = 0, α 6= 0. In turn, when

α = 0, α̈ = 0 the S2 shrinks smoothly [48]. Similarly, for AdS3 solutions satisfying h4 ∼ u

there is a D6 brane when u ∼ h4 = 0, h8 6= 0 and a O6 when h8 = 0, u ∼ h4 6= 0. In turn,

the S2 shrinks smoothly for u ∼ h4 = 0, h8 = 0 [11]. The role played by the D6 branes

terminating the space as flavour branes is discussed in section 4.

Let us summarise our findings so far in this section. We have shown that a subclass

of the solutions in [11]7 can be interpreted as arising from D2-D4 defect branes inside the

D6-NS5-D8 brane intersections underlying the AdS7 × S2 × I solutions in [36], wrapped

on the CY2 of the internal manifold. 6d (1,0) CFTs compactified in CY2 manifolds give

rise to 2d (4,4) field theories that are not conformal [54, 55]. Therefore, AdS3 solutions

cannot be obtained from the AdS7 solutions in [36] simply by extending the construction

of AdS5 and AdS4 solutions in [47] to 4d manifolds. As we showed in [11] extra D2 and D4

branes are needed, that further reduce the supersymmetries down to 1/8 BPS and the AdS3

solutions to 1/4-BPS. These branes backreact in the compactified geometry, and modify

the simple mappings found in [47] such that the dependence of the functions defining the

AdS3 and AdS7 solutions change, due to the backreaction. One can thus think of the 2d

CFT associated to the AdS3 solutions as comprised of two sectors, one coming from D6-

NS5-D8 branes wrapped on the CY2, which by itself does not give rise to a 2d CFT, and one

coming from extra, D2-D4 branes, which would not give rise either to 2d CFTs together

with the NS5-branes [60]. One can in this sense interpret the D2-D4 branes as defects

inside D6-NS5-D8 brane systems. We would like to stress that this defect interpretation is

essentially different from the defect interpretation in terms of punctures that can be given

to the Gaiotto theories in 4d [56], dual to the Gaiotto-Maldacena geometries [57]. In this

last case both the field theory in the absence of punctures (dual to the Maldacena-Nunez

solution [58]) and the ones with punctures are well- defined 4d CFTs, in contrast with the

2d CFTs dual to our AdS3 solutions.

Further light on the relation between the 2d (0,4) CFTs dual to the AdS3 solutions

and compactifications on CY2 of the 6d (1,0) CFTs dual to the AdS7 solutions comes from

comparing their respective central charges, following [62]. The holographic central charge

of the 6d CFTs dual to the AdS7 solutions was computed in [63]:

cAdS7 =
1

GN

24

38

∫
dz(−αα̈). (3.15)

7Those that share the same singularity structure of the solutions in [36], in the sense that we have just

explained.
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In turn, the holographic central charge of the 2d CFTs dual to the AdS3×CY2 solutions

is [35]

cAdS3 =
3π

2GN
Vol(CY2)

∫
dρ(h8h4) . (3.16)

Using the mapping given by (3.6)–(3.9) this becomes

cAdS3 ↔
3

23GN
Vol(CY2)

∫
dz(−αα̈) =

39

27
Vol(CY2) cAdS7 . (3.17)

Thus, there exists a universal relation between the central charges associated to both types

of solutions. Similarly, in [64] (see also [65]) AdS3 × Σ4 solutions of massive IIA were

constructed whose 2d (0,1) and (0,2) CFT duals arise as compactifications of the 6d (1,0)

theories dual to the AdS7 solutions. Their respective free energies were shown to satisfy

the relation
F2

F6
=

1

(2XIR)5
Vol(Σ4), (3.18)

where Σ4 is the compactification manifold and XIR is a constant that characterises the AdS3

solution.8 Our result is thus in agreement with an interpretation of the 2d CFTs dual to our

solutions as compactified 6d (1,0) theories in CY2 manifolds, with extra degrees of freedom

coming from the 2d defects. It would be very interesting to obtain explicit flows connecting

the AdS3×CY2 solutions in the IR with the AdS7 solutions in the UV. In particular, it

would be interesting to clarify whether these involve R1,1×CY2 warped product geometries,

which would be the natural extension of the flows constructed in [62, 64, 65], or wrapped

AdS3 subspaces, more directly related to defects, as in [6–8]. In [7] different limits of

the D2-D4-D6-NS5-D8 intersections depicted in table 1 were studied, giving rise to either

AdS7 or AdS3×S3×I’ geometries, associated to the UV or IR limits of the intersection,

respectively. In particular, AdS3×T4 geometries should arise when the branes are smeared

on the T4. In section 6 we explore the connection between the BPS flows constructed

in [6, 7] and the subclass of AdS3×T4 solutions defined by the mapping discussed in this

section.

4 The linear quiver with infinite number of nodes

As we have mentioned, the mapping found in the previous section is formal, in the sense

that it relates α, a cubic function in z, to h4 ∼ u, which are linear in ρ (with z and ρ

related as in (3.6)). In this section we discuss a particular instance in which α and h4 ∼ u
can be explicitly related.

Consider an AdS7 solution in which the S2×I geometry is smooth at z = 0 and termi-

nates at z = P + 1, such that

F0 = −α
′′′(z)

162π3
=
N

2π

{
1 , 0 ≤ z ≤ P
−P , P ≤ z ≤ P + 1.

(4.1)

8XIR is the value in the IR of the X scalar field of 7d minimal supergravity (see section 6).
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Figure 2. D6-NS5-D8 brane set-up associated to a linear quiver with increasing ranks terminated

by a flavour group. NS5 branes are denoted by circles, D6 branes by horizontal lines and D8 branes

by vertical lines.

For this we need N(P + 1) D8-branes at z = P , given that

dF0 =
N(P + 1)

2π
δ(z − P )dz. (4.2)

As shown in [63], for a particular choice of the integration constants such that α(0) =

α(P + 1) = 0, and α and α′ are continuous functions, we have

α(z) =
27π2N

2

{
P (P + 2)z − z3 , 0 ≤ z ≤ P

Pz3−3P (P + 1)z2 + P (3P 2 + 4P + 2)z − P 3(P + 1) , P ≤ z ≤ P + 1,

(4.3)

and the dual CFT is a linear quiver with gauge group

SU(N)× SU(2N)× SU(3N)× SU(4N)× . . .× SU(PN), (4.4)

finished with a SU((P + 1)N) flavour group, represented by the D8 branes. The brane

set-up associated to this quiver is depicted in figure 2.

Now, consider the situation in which P is very large, so that the region of interest

reduces to 0 ≤ z ≤ P and we can take α(z) = 27π2N
2 (P (P +2)z−z3) for all P .9 Redefining

z =
√
P (P + 2)x, we can write the solution in this region as

ds2√
P (P + 2)

=
8π√

3

√
1− x2 ds2(AdS7) +

2
√

3π√
1− x2

[
dx2 +

x2(1− x2)2

1 + 6x2 − 3x4
ds2(S2)

]
,

e4Φ =
12

F 4
0 π

2P (P + 2)

(1− x2)3

(1 + 6x2 − 3x4)2
, F0 =

N

2π
(4.5)

B2 = −2π
√

(P (P + 2)
x3(5− 3x2)

1 + 6x2 − 3x4
vol(S2), F2 = F0B2, f̂2 = nvol(S2).

This solution can be expanded close to x = 1 (the end of the space) by defining x = 1− v.

We then have a metric and dilaton that for small values of v read,

ds2 ∼ 8π

√
2

3

√
v ds2(AdS7) +

√
6π√
v

(dv2 + v2ds2(S2)),

e4Φ ∼ v3. (4.6)

It is thus clear that close to v ∼ 0 or x ∼ 1, in the end of the space, we have D6 branes

that extend along AdS7. As discussed in [48], these D6 branes can play the role of flavour

9Note that strictly speaking this would extend the region of interest to 0 ≤ z ≤
√

P (P + 2), but this is

equivalent to 0 ≤ z ≤ P when P is large.
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branes even when their dimensionality is the same as that of the colour branes. They differ

in that the colour branes are extended along the six Minkowski directions of AdS7 plus a

bounded interval, while the flavour D6-branes are extended on the whole AdS7. Being non-

compact they can act as flavour branes, as happens in many other (qualitatively different)

examples, like [66, 67].

Now, we would like to use the mapping between AdS3 and AdS7 solutions described

by (3.6)–(3.9). This tells us that we should identify,

h8 =
N

2π
ρ, u =

27πN

4

(
P (P + 2)ρ− ρ3

4π2

)
, h4 =

81

8
u. (4.7)

This is not a solution of the equations of motion of the AdS3 system. Nevertheless, if we

take P →∞ or, equivalently, ρ→ 0, we have

h8 =
N

2π
ρ, u =

27πN

4
P (P + 2)ρ, h4 =

37πN

25
P (P + 2)ρ, (4.8)

which defines a non-compact AdS3 solution. This is the solution constructed in [37] act-

ing with non-Abelian T-duality on the AdS3×S3×CY2 solution dual to the D1-D5 sys-

tem [54, 55, 68–70].

As we discuss in the next section, the non-compact nature of the non-Abelian T-dual

solution is reflected in the dual CFT in the existence of an infinite number of gauge groups of

increasing ranks. In this section we have rediscovered it as the leading order of the solution

defined by (4.5), dual to a well-defined six dimensional CFT.10 Since we are working at

very small values of z (equivalently, very small values of ρ), we do not see the flavour D6

branes, and the space is rendered non-compact. Conversely, taking P →∞ we see no sign

of these branes closing the space.

We discuss the non-Abelian T-dual solution in detail in the next section, and describe

other possible ways to define it globally using AdS3/CFT2 holography.

5 The non-Abelian T-dual of AdS3×S3×CY2

In this section we discuss in detail one of the simplest solutions in the classification of

AdS3×S2 geometries in [11], with a focus on the description of its 2d dual CFT, follow-

ing [35]. This solution arises acting with non-Abelian T-duality on the near horizon of the

D1-D5 system, and was originally constructed in [37]. In reference [30] it was shown that

the (4,4) supersymmetry of the D1-D5 system is reduced to (0,4) upon dualisation, and

that the solution can be further T-dualised and uplifted to M-theory such that it fits in the

class of AdS3×S2×S2×CY2 solutions in [71].11 This solution is particularly interesting in

the study of the interplay between non-Abelian T-duality and holography, since it allows

for simple explicit global completions of the geometry using field theory arguments.

10To be more precise, (4.8) selects a particular non-Abelian T-dual solution, with a given relation between

the D2 and D6 brane charges. We give more details in the next section.
11Actually, it provides the only known example in this class with SU(2) structure.
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In this section we also discuss another solution in the class in [11] that arises from

the D1-D5 system, and that can be obtained as a limit of the non-Abelian T-dual solu-

tion [38, 39, 72]. This is the Abelian T-dual (ATD) of AdS3×S3×CY2 along the Hopf-fibre

of the S3, and orbifolds thereof, that also preserve (0,4) of the supersymmetries of the

original D1-D5 system. The orbifold solutions describe the D1-D5-KK system, and are

dual to (0,4) CFTs that have been discussed in the literature [18–21, 25, 32].

5.1 The NATD solution

The non-Abelian T-dual (NATD) of AdS3×S3×T4 with respect to a freely acting SU(2)

subgroup of its SO(4) R-symmetry group was constructed in [37]. As in other NATD

examples, the space dual to S3 becomes, locally, R×S2. The SO(4) R-symmetry is reduced

to an SU(2) R-symmetry, and the solution is rendered (0,4) supersymmetric [30]. Due to our

lack of knowledge of how non-Abelian T-duality extends beyond spherical worldsheets [73],

the space is globally unknown. In this section we will resort to holography in order to

construct a compact internal space for which a well-defined 2d dual CFT exists, following

the strategy in [38–42].

We start generalising the solution constructed in [37] to arbitrary D1 and D5 brane

charges and a compact CY2 four dimensional internal space. The most general solu-

tion reads

ds2
10 = 4L2ds2(AdS3) +M2ds2(CY2) + 4L2ds2(S3) (5.1)

e2Φ = 1 (5.2)

F3 = 8L2vol(S3) (5.3)

F7 = −8L2M4vol(S3) ∧ vol(CY2) . (5.4)

The corresponding D1 and D5 brane charges are given by

N1 =
1

(2π)6

∫
S3×CY2

F7 =
4L2M4

(2π)4
Vol(CY2) (5.5)

N5 =
1

(2π)2

∫
S3
F3 = 4L2 (5.6)

The NATD with respect to a freely acting SU(2) group on the S3 reads

ds2
10 = 4L2ds2(AdS3) +M2ds2(CY2) +

dρ2

4L2
+

L2ρ2

4L4 + ρ2
ds2(S2) (5.7)

e2Φ =
4

4L6 + L2ρ2
(5.8)

B2 = − ρ3

2(4L4 + ρ2)
vol(S2) (5.9)

F0 = L2 (5.10)

F2 = − L2ρ3

2(4L4 + ρ2)
vol(S2) (5.11)

F4 = −L2M4vol(CY2) (5.12)

F6 =
L2M4ρ3

2(4L4 + ρ2)
vol(CY2) ∧ vol(S2) (5.13)
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It is easy to see that this solution fits locally in the class of AdS3×S2×CY2 solutions

constructed in [11], with the simple choices

u = 4L4M2ρ (5.14)

h4 = L2M4ρ (5.15)

h8 = F0ρ . (5.16)

These functions define a regular, albeit non-compact, solution. We will shortly be discussing

various possibilities that define it globally. For now let us analyse the associated quantised

charges.

We start discussing the relevance of large gauge transformations. Close to ρ = 0 the

3d transverse space is R3, while for large ρ it is R× S2. This implies that for finite ρ there

is a non-trivial S2 on which we can compute
∫

S2 B2, which needs to satisfy

1

4π2
|
∫

S2
B2| ∈ [0, 1). (5.17)

For B2 as in (5.9) this implies that a large gauge transformation needs to be performed as

we move in ρ, such that B2 → B2 + nπvolS2 for ρ ∈ [ρn, ρn+1], with

ρ3
n

4L4 + ρ2
n

= 2nπ. (5.18)

The non-compactness of ρ is then reflected in the existence of large gauge transformations

of infinite gauge parameter n. Moreover, taking into account large gauge transformations,

we see that even if the 2-form and 6-form Page fluxes vanish identically,

f̂2 = F2 − F0 ∧B2 = 0, f̂6 = F6 −B2 ∧ F4 = 0, (5.19)

implying the absence of D6 and D2 brane quantised charges, there is a non-zero contribution

when n 6= 0, such that

N8 = 2πF0 = 2πL2 (5.20)

N6 =
F0

2π
nπVol(S2) = nN8 (5.21)

N4 =
1

(2π)3

∫
CY2

F4 =
L2M4

(2π)3
Vol(CY2) (5.22)

N2 =
1

(2π)5

∫
CY2

F4nπVol(S2) = nN4 (5.23)

N5 =
1

(2π)2

∫ ρn+1

ρn

∫
S2

H3 = 1. (5.24)

These conserved charges suggest that the D1-D5 system that underlies the Type IIB

AdS3×S3×CY2 solution has been mapped under the NATD transformation onto a brane

system consisting on n D2-D6 branes at each [ρn, ρn+1) interval, dissolved in a D4-D8

bound state, due to the non-vanishing B2-charge. The corresponding brane distribution is

depicted in table 3.
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0 1 2 3 4 5 6 7 8 9

D2 x x x

D4 x x x x x

D6 x x x x x x x

D8 x x x x x x x x x

NS5 x x x x x x

Table 3. Distribution of branes compatible with the quantised charges of the NATD solution.

(y0, y1) are the directions where the 2d CFT lives, (y2, . . . , y5) parameterise the CY2, y6 = ρ, y7 is

the radius of AdS3 and (y8, y9) span the S2.

This configuration is the same as the one underlying the solutions constructed in [7],

and, as in that case, it can be related to the 1
8 -BPS brane set-up depicted in table 1, where

the SU(2)R symmetry is manifest, through a rotation in the (x6, x7) subspace. Due to the

non-compactness of ρ the brane system is however infinite. This suggests a relation with

the linear quiver with infinite gauge groups discussed in section 4, that we can now make

more explicit.

Indeed, given that h4 and u, as given by (5.15) and (5.14), satisfy the condition h4 ∼ u,

the NATD solution fits in the class of solutions that can be related to AdS7 solutions,

discussed in section 3. Both solutions are related explicitly through the mapping

u = 162F0L
4ρ , P =

2
√

3

π
L2, (5.25)

with P as introduced in (4.3). This selects the NATD solution with M2 = 34

2 L
2,12 as the

one related to the 6d (1,0) linear quiver discussed in section 4. These relations show that

in the supergravity limit L � 1 the D6-branes are sent off to infinity. In this way we can

think of the NATD solution as the leading order in an expansion in P , of the AdS7 solution

dual to the 6d linear quiver with gauge groups of increasing ranks, terminated with flavour

D6-branes.

In the next subsections we define other ways of completing the NATD solution with

compact AdS3 solutions. This will be valid for arbitrary values of the charges.

5.2 2d (0,4) dual CFT

As we have seen, the quantised charges of the NATD solution are compatible with an

infinite brane system consisting on D2 and D6 branes stretched between NS5 branes. The

D6 branes are wrapped on the CY2, and thus share the same number of non-compact

directions of the D2 branes.

General 2d (0,4) quiver theories associated to the 1/8-BPS D2-D4-D6-D8-NS5 brane

configurations depicted in table 1 were constructed in [35]. For the particular configuration

corresponding to the NATD solution the quiver contains two infinite families of nodes,

associated to D2 and wrapped D6 branes, with gauge groups of increasing ranks, and no

12This restriction is imposed because the AdS7 solution depends on one single parameter, P , while a

generic NATD solution depends on two parameters, L and M .
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Figure 3. Infinite quiver associated to the NATD solution.

flavours. This quiver is depicted in figure 3. We next summarise its main ingredients (the

reader can find more details in reference [35]):

• To each gauge node corresponds a (0,4) vector multiplet plus a (0,4) twisted hy-

permultiplet in the adjoint representation of the gauge group. In terms of (0,2)

multiplets, the first consists on a vector multiplet and a Fermi multiplet in the ad-

joint, and the second to two chiral multiplets forming a (0,4) twisted hypermultiplet,

also in the adjoint. The (0,4) vector and the (0,4) twisted hypermultiplet combine to

form a (4,4) vector multiplet. They are represented by circles.

• Between each pair of horizontal nodes there are two (0,2) Fermi multiplets, forming

a (0,4) Fermi multiplet, and two (0,2) chiral multiplets, forming a (0,4) hypermulti-

plet, each in the bifundamental representation of the gauge groups. The (0,4) Fermi

multiplet and the (0,4) hypermultiplet combine into a (4,4) hypermultiplet. They are

represented by black solid lines.

• Between each pair of vertical nodes there are two (0,2) chiral multiplets forming a

(0,4) hypermultiplet, in the bifundamental representation of the gauge groups. They

are represented by grey solid lines.

• Between each gauge node and any successive or preceding node there is one (0,2)

Fermi multiplet in the bifundamental representation. They are represented by dashed

lines.

• Between each gauge node and a global symmetry node there is one (0,2) Fermi multi-

plet in the fundamental representation of the gauge group. They are again represented

by dashed lines.

Note that the resulting quiver, depicted in figure 3, can be divided into two, horizontal,

(4,4) linear quivers consisting on (4,4) gauge groups with increasing ranks connected by

(4,4) bifundamental hypermultiplets. They correspond to the two (4,4) D6-NS5-D8 and

D2-NS5-D4 subsectors of the brane configuration. The coupling between these two lin-

ear quivers through (0,4) hypermultiplets and (0,2) Fermi multiplets renders however the

complete quiver (0,4) supersymmetric (see [35] for more details).

The previous fields contribute to the gauge anomaly of a generic SU(Ni) gauge group as:

• A (0,2) vector multiplet contributes with a factor of −Ni.
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Figure 4. Completed quiver with a finite number of gauge groups.

• A (0,2) chiral multiplet in the adjoint representation contributes with a factor of Ni.

• A (0,2) chiral multiplet in the bifundamental representation contributes with a factor

of 1
2 .

• A (0,2) Fermi multiplet in the adjoint representation contributes with a factor of −Ni.

• A (0,2) Fermi multiplet in the fundamental or bifundamental representation con-

tributes with a factor of −1
2 .

Following these rules it is easy to see that the coefficient of the anomalous correlator of the

symmetry currents < JAµ (x)JBν (x) >∼ kδµνδAB vanishes for each gauge group (see [35] for

more details) - hence the gauge anomalies vanish. By assigning R-charges to the different

multiplets (see [35] for the precise assignation), we can calculate the U(1)R anomaly (for

U(1)R inside SU(2)R). The correlation function < jµ(x)jν(y) > for two U(1)R currents is

proportional to the number of N = (0, 4) hypermultiplets minus the number of N = (0, 4)

vector multiplets. This result is conserved when flowing to lower energies. In the far IR,

when the theory is proposed to become conformal the R-symmetry anomaly is related to

the central charge as indicated below.

5.2.1 Central charge

Let us now discuss the central charge associated to this quiver. We compute it using the

formula (see [35, 43])

c = 6(nhyp − nvec), (5.26)

where nhyp counts the number of fundamental and bifundamental hypermultiplets and nvec

of vector multiplets. Clearly, these numbers are infinite for our quiver in figure 3. However,

since they are subtracted in the computation of the central charge, they could still render a

finite value. Terminating the space at a given n = P and analysing the behaviour when P

goes to infinity we show however that this is not the case. Anomaly cancellation enforces

that flavour groups must be added to both gauge groups at the end of the quiver. The

resulting quiver is the one shown in figure 4. This quiver was discussed in [35], as one

of the anomaly free examples analysed therein. For completeness we reproduce here the

computation of its central charge.

The hypermultiplets that contribute to the counting of nhyp are the two chiral mul-

tiplets in each solid horizontal line, plus the two chiral multiplets in each vertical line.
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They give

nhyp =

P−1∑
j=1

j(j+1)(N2
4 +N2

8 )+
P∑
j=1

j2N4N8 = (N2
4 +N2

8 )

(
P 3

3
−P

3

)
+N4N8

(
P 3

3
+
P 2

2
+
P

6

)
(5.27)

Vector multiplets come from each node in the quiver, such that:

nvec =

P∑
j=1

(j2N2
4 − 1 + j2N2

8 − 1) = (N2
4 +N2

8 )

(
P 3

3
+
P 2

2
+
P

6

)
− 2P (5.28)

This gives for the central charge

c = 6

[
− (N2

4 +N2
8 )

(
P 2

2
+
P

2

)
+N4N8

(
P 3

3
+
P 2

2
+
P

6

)
+ 2P

]
. (5.29)

To leading order in P we have,

c ∼ 2N4N8P
3. (5.30)

The central charge thus diverges with P 3 for the infinite quiver dual to the NATD solution.

Still, it is useful to show that (5.30) coincides with the holographic central charge for

ρ ∈ [0, ρP ], with ρP satisfying (5.18). Note that for large P we can simply take ρP = 2πP .

Using (3.16) we find for ρ ∈ [0, 2πP ],

chol =
π

2GN
(2π)5N4N8P

3 = 2N4N8P
3, (5.31)

in agreement with the field theory result.

Our calculation shows the precise way in which the central charge diverges due to the

non-compact field theory direction. It also gives us a possible way to regularise the infinite

CFT dual to the NATD solution. Indeed, the quiver depicted in figure 4 describes a well-

defined 2d (0,4) CFT, that can be used to find a global completion of the non-Abelian

T-dual solution. This completion is obtained glueing the non-Abelian T-dual solution at

ρP = 2πP to another solution in [11] that terminates the space at ρ = 2π(P + 1). We

present the details of this completion in the next subsection. In section 5.3.2 we present a

different completion, which makes manifest that this procedure is not unique and that one

can device different global completions of the NATD solution, as stressed in [38].

5.3 Completions

In this section we present two possible completions of the NATD solution. The AdS3 exam-

ple is particularly useful in this respect, because the completed solution is not only explicit

but also extremely simple, as opposed to other examples in higher dimensions [38, 39, 41].

5.3.1 Completion with O-planes

The simplest way to complete the NATD solution is by terminating the infinite linear

quiver at a certain value of ρ, as we have done in the previous subsection. We take this to
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be ρ = 2π(P + 1), with P ∈ Z, and choose the u, h8 and h4 functions such that:

u = 4L4M2ρ, 0 ≤ ρ ≤ 2π(P + 1) (5.32)

h8(ρ) = F0.

{
ρ 0 ≤ ρ ≤ 2πP

P (2π(P + 1)− ρ) 2πP ≤ ρ ≤ 2π(P + 1).
(5.33)

h4(ρ) = L2M4.

{
ρ 0 ≤ ρ ≤ 2πP

P (2π(P + 1)− ρ) 2πP ≤ ρ ≤ 2π(P + 1).
(5.34)

The explicit form of the metric, dilaton and fluxes in the 2πP ≤ ρ ≤ 2π(P + 1) region

can be found in appendix A. One can check that the NS sector is continuous at ρ = 2πP .

The 2-form and 6-form Page fluxes are also continuous once large gauge transformations

are taken into account. They are given by

f̂2 = −F0 vol(S2).

{
nπ 0 ≤ n ≤ P

Pπ(P + 1− n) P ≤ n ≤ P + 1
(5.35)

f̂6 = L2M4 vol(S2) ∧ vol(CY2).

{
nπ 0 ≤ n ≤ P

Pπ(P + 1− n) P ≤ n ≤ P + 1,
(5.36)

so they vanish at n = P + 1, where the geometry terminates. We show below that at

this point the background has a singularity associated to O6-O2 planes. In turn there is

a discontinuity in F0 and F4 at n = P that is translated into (P + 1)N8 and (P + 1)N4

additional flavours connected to the nodes corresponding to PN4 D2 and PN8 D6 branes,

respectively. This is exactly as in the quiver depicted in figure 4.

The expressions of the metric and dilaton in the 2πP ≤ ρ ≤ 2π(P + 1) region, given

by equations (A.1), (A.2) in appendix A, show that close to ρ = 2π(P + 1) they behave as

ds2 ∼ x−1ds2(AdS3) +M2ds2(CY2) + x
(
dx2 + ds2(S2)

)
, e2φ ∼ x−1 (5.37)

where x = ρ− 2(P + 1). This singular behaviour corresponds to the intersection of an O6

fixed plane lying on AdS3×CY2 with O2-planes lying on AdS3 and smeared on CY2×S2.

Even if it is not clear what this object is in string theory, the fact that the solution has a

well-defined dual CFT suggests that it should be possible to give it a meaning.

5.3.2 Glueing the NATD to itself

Another interesting way of defining globally the NATD solution is by glueing it to itself.

In this case we take:

u(ρ) = 4L4M2, 0 ≤ ρ ≤ 4πP. (5.38)

h8(ρ) = F0.

{
ρ 0 ≤ ρ ≤ 2πP

4πP − ρ 2πP ≤ ρ ≤ 4πP.
(5.39)

h4(ρ) = L2M4.

{
ρ 0 ≤ ρ ≤ 2πP

4πP − ρ 2πP ≤ ρ ≤ 4πP.
(5.40)
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The explicit form of the metric, dilaton and fluxes in the 2πP ≤ ρ ≤ 4πP region can

be found in appendix A. One can check that the NS sector is continuous at ρ = 2πP . The

2-form and 6-form Page fluxes are also continuous once large gauge transformations are

taken into account. They are given by

f̂2 = −F0 vol(S2).

{
nπ 0 ≤ n ≤ P

(2P − n)π P ≤ n ≤ 2P
(5.41)

and

f̂6 = L2M4 vol(S2) ∧ vol(CY2).

{
nπ 0 ≤ n ≤ P

(2P − n)π P ≤ n ≤ 2P
(5.42)

Therefore, they are both continuous at n = P and vanish at n = 2P . The corresponding

quantised charges are:

N6 =

{
nN8 0 ≤ n ≤ P

(2P − n)N8 P ≤ n ≤ 2P
(5.43)

and

N2 =

{
nN4 0 ≤ n ≤ P

(2P − n)N4 P ≤ n ≤ 2P
(5.44)

where N6 denotes anti-D6 brane charge, N2 D2-brane charge and N8 = ±2πF0 in the two

regions. For N4 we have

N4 =
1

(2π)3

∫
f̂4 =

1

(2π)3

∫
F4 = ∓L

2M4

(2π)3
Vol(CY2) (5.45)

in the two regions. Thus, the D2 and D6 brane charges increase linearly in the 0 ≤ n ≤ P
region, corresponding to the NATD solution, and decrease linearly in the P ≤ n ≤ 2P

region, till they vanish at n = 2P , where the geometry terminates. At this point the S2

shrinks smoothly. The discontinuity of N8 and N4 at n = P is translated into 2N8 and

2N4 additional flavours at the nodes with flavour groups PN4 and PN8, respectively. The

associated quiver is the one depicted in figure 5. The 2N8 and 2N4 flavour groups contribute

each with one (0,2) Fermi multiplet in the fundamental representation of the corresponding

gauge group. As for the quivers constructed in [35], the flavour group introduced at the

node associated to D2-branes arises from D8-branes while that introduced at the node

associated to D6-branes arises from D4-branes.

The central charge of this quiver is given by

c = 6

[
(N2

4 +N2
8 )(−P ) +N4N8

(
2

3
P 3 +

P

3

)
+ 4P − 2

]
. (5.46)

To leading order in P this gives

c = 4N4N8P
3, (5.47)

which one can check is in agreement with the holographic central charge.
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N4 2N4 (P − 1)N4

N8 2N8 (P − 1)N8

PN4

PN8

(P − 1)N4

(P − 1)N8

2N4

2N8

N4

N8

2N8

2N4

Figure 5. Symmetric quiver associated to the NATD solution glued to itself.

5.4 The Abelian T-dual limit

The non-Abelian T-dual solution defined in ρ ∈ [ρn, ρn+1] gives rise to the Abelian T-dual,

along the Hopf-fibre of the S3, of the original AdS3×S3×CY2 background, in the limit in

which n goes to infinity [38, 39, 72]. In this subsection we will be interested in the ATD

solution, and orbifolds thereof, in its own right, as another explicit example in the class

in [11].

The ATD solution is given by

ds2
10 = 4L2ds2(AdS3) +M2ds2(CY2) +

dψ2

4L2
+ L2ds2(S2) (5.48)

e2Φ =
4

L2
(5.49)

B2 = −ψ
2

vol(S2) (5.50)

F2 = −L
2

2
vol(S2) (5.51)

F6 =
1

2
M4L2vol(CY2) ∧ vol(S2), (5.52)

where ψ is the ATD of the Hopf-fibre direction, normalised such that ψ ∈ [0, 2π]. Upon

dualisation, the (4,4) supersymmetries of the original solution are reduced to (0,4) [30],

and the solution fits in the classification in [11]. The corresponding u, h4 and h8 functions

are given by

u = 4L4M2 (5.53)

h4 = L2M4 (5.54)

h8 = L2. (5.55)

The quantised charges are,

N2 =
L2M4

(2π)4
Vol(CY2) , N6 = L2 , N5 = 1 (5.56)
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Figure 6. Circular quiver associated to the (orbifolded) ATD solution.

so using (3.16) the holographic central charge gives

chol = 6N2N6. (5.57)

One can check that this is reproduced from the NATD solution for ρ ∈ [ρn, ρn+1] and n

large, using that N2 = nN4 and N6 = nN8 in this interval. The brane set-up describing the

ATD solution consists on N2 D2-branes and N6 D6-branes, wrapped on the CY2, stretched

along the ψ circular direction between two NS5-branes that are identified.

Orbifolds of this solution can be constructed taking ψ ∈ [0, 2πN ]. They are T-

dual to the AdS3×S3/ZN×CY2 solution in Type IIB that describes the D1-D5-KK sys-

tem [18–21, 25]. The Type IIA brane realisation of this system is depicted in figure 6.

From this quiver we have that

nvec = (N2
2 − 1 +N2

6 − 1)N, nhyp = (N2
2 +N2

6 +N2N6)N. (5.58)

One then obtains a central charge

c = 6(nhyp − nvec) = 6N2N6N + 12N. (5.59)

This gives in the large N2, N6 limit,

c ∼ 6N2N6N, (5.60)

in agreement with the central charge of the D1-D5-KK system [18].13

For N = 1 the quiver in figure 6 reduces to the quiver depicted in figure 7. The (4,4)

hypermultiplets connecting N2 nodes and N6 nodes among themselves become (4,4) hyper-

multiplets in the adjoint representation. In turn, the (0,2) Fermi multiplets connecting each

13This central charge was computed using the Brown-Henneaux formula [74]. One can also use (3.16),

which generalises the central charge therein to non-trivial warping and dilaton.
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Figure 7. Quiver associated to the ATD solution.

N2 (N6) node with adjacent N6 (N2) nodes combine into (0,4) Fermi multiplets connecting

each N2 node with its respective N6 node, which together with the (0,4) hypermultiplets

between them give (4,4) hypermultiplets in the bifundamental. In this way supersymmetry

is enhanced to (4,4), and the quiver describes the D1-D5 system in terms of the D2 and

D6-brane charges of the Abelian T-dual solution.14

6 Relation with the AdS3×S2 flows of Dibitetto-Petri

In [6, 7] Dibitetto and Petri (DP) constructed various BPS flows within minimal N = 1 7d

supergravity that are asymptotically locally AdS7. These flows are described by warped

AdS3 solutions triggered by a non-trivial dyonic 3-form potential. A particularly interesting

solution was constructed in [6], which was shown to interpolate between asymptotically

locally AdS7 and AdS3×T4 geometries. The UV AdS7 limit is (asymptotically locally) the

reduction to 7d of the AdS7 solutions of massive IIA constructed in [36]. In this subsection

we would like to explore the 10d uplift of the IR AdS3×T4 limit, in connection with the

subclass of solutions discussed in section 2, in the case in which CY2 =T4.

The AdS3 solution constructed in [6] reads (see appendix B for the details),

ds2
7 = e2U(r)ds(AdS3)2 + e2V (r)dr2 + e2W (r)ds(S3)2,

X = X(r),

B(3) = k(r)vol(AdS3) + l(r)vol(S3), (6.1)

where X, U , V , W , k and l are functions of r discussed in the appendix B. This solution

is asymptotically locally AdS7 when r → ∞ , while when r → 0 it flows to an AdS3×T4

non-singular limit, given by,15

ds2
7 =

231/5

g2

(
32/5

52
ds2(AdS3) +

4

38/5
ds2(T4)

)
, (6.2)

and

B3 = −1

2
vol(AdS3)− 4r4vol(S3). (6.3)

14See [75], section 4, for this analysis in Type IIB.
15As compared to [6], we write the 7d metric in terms of an AdS3 space of radius one.
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As the AdS7 asymptotic limit, this geometry is not a solution of 7d N = 1 minimal

supergravity by itself, but rather the IR leading asymptotics of the flow. In the discussion

that follows it will be useful to recall from appendix B that the values of the 7d scalar X

in the r →∞ and r → 0 limits are X = 1 and X5 = 22/3, respectively.

7d N = 1 minimal supergravity can be consistently uplifted to massive IIA on a

squashed S3 [64]. Using the uplift formulae provided in appendix B, a family of AdS3

solutions to massive IIA can thus be constructed from the DP flow. This gives rise in

the r →∞ limit to 10d geometries that asymptote to the AdS7×S2×I family of solutions

in [36]. In turn, the geometry that is obtained in the AdS3×T4 limit reads16

ds2
10 = 8

√
2π

√
−α
α̈

(
23
√

3

52
ds2(AdS3) +

25

3
√

3
ds2(T4)

)
+

2
√

2√
3
π

√
− α̈
α
dz2 + 2

√
6π
α3/2(−α̈)1/2

3α̇2 − 8αα̈
ds2(S2) (6.4)

e2Φ = 2338
√

6π5

(
− α

α̈

)3/2 1

3α̇2 − 8αα̈
(6.5)

B2 = π

(
− z +

3αα̇

3α̇2 − 8αα̈

)
vol(S2) (6.6)

F2 =

(
α̈

162π2
+

3πF0αα̇

3α̇2 − 8αα̈

)
vol(S2) (6.7)

F4 =
29

34π

(
α̈

53
dz ∧ vol(AdS3)− 25

33
α̇vol(T4)

)
(6.8)

F6 = − 29

5337

αα̈

3α̇2 − 8αα̈

(
2853αvol(T4) + 34α̇vol(AdS3) ∧ dz

)
∧ vol(S2). (6.9)

As in 7d, the uplift of the r → 0 limit of the DP flow is not a solution to massive IIA

by itself, but rather its IR leading asymptotics. We would like to see whether it can be

completed by an AdS3×T4 solution in the class of [11], with the same asymptotics. For

that it is easy to realise that one can absorb the constant X that causes the distortion of

the internal space (we are referring to (B.25)–(B.29) in appendix B) by simply modifying

the mapping for the h4 function in (3.9) as h4 = 81
8 X

5u ↔ 81
8 X

5α. We then have for the

IR geometry given by (6.4)–(6.9),

ρ ↔ 2πz (6.10)

u ↔ α (6.11)

h8 ↔ −
α̈

81π2
(6.12)

h4 =
27

2
u↔ 27

2
α . (6.13)

This gives for the AdS3×T4 subspace

u√
h4h8

ds2(AdS3) +

√
h4

h8
ds2(T4)↔

√
6π

√
−α
α̈

(
ds2(AdS3) +

33

2
ds2(T4)

)
. (6.14)

16Here we have taken g3 = 8
√

2, which is the value for which the internal space and fluxes of the AdS7

solutions in [36] are recovered.

– 24 –



J
H
E
P
1
2
(
2
0
1
9
)
0
1
3

The result is a bonna fide AdS3×T4 solution to massive IIA, supplemented with F4 and

F6 fluxes satisfying (2.7) and (2.8). The resulting 7d metric does not share however the

asymptotics of the 7d metric arising from (6.4). Thus, the IR limit of the DP flow cannot be

completed into an AdS3×T4 solution in the class of [11], that shares its same asymptotics.

This result excludes the RG flows constructed in [6] as solutions interpolating between

AdS3×T4 geometries (in the subclass defined in section 3) and the AdS7 solutions con-

structed in [36]. Still, it should be possible to construct these flows, perhaps as R1,1×CY2

warped product geometries, as the ones discussed in [64].

7 Conclusions

In this paper we have discussed some aspects of the class of AdS3×S2 solutions with small

N = (0, 4) supersymmetry and SU(2)-structure constructed in [11]. We have focused our

analysis on a sub-set of solutions contained in “class I” of [11], which are warped products

of AdS3×S2×CY2 over an interval with warpings respecting the symmetries of CY2. 2d

(0,4) CFTs dual to these solutions have been proposed recently in [34, 35].

We have established a map between the previous solutions and the AdS7 solutions

in [36], that allows one to interpret the former as duals to defects in 6d (1,0) CFTs. More

precisely, the 2d dual CFT arises from wrapping on the CY2 the D6-NS5-D8 branes that

underlie the AdS7 solutions, and intersecting them with D2 and D4 branes. In this sense it

combines wrapped branes and defect branes. The D2-branes are stretched between the NS5-

branes, as the D6-branes, and the D4-branes are perpendicular, as the D8-branes. They

give rise to (0,4) quivers with two families of gauge groups connected by matter fields [35].

Each family is described by a (4,4) linear quiver and is connected with the other family by

(0,4) and (0,2) multiplets, rendering the final quiver (0,4) supersymmetric.

The previous mapping suggests that it should be possible to construct flows connecting

the AdS3×CY2 solutions in the IR with the AdS7 solutions in the UV. The presence of

D2-D4 defects suggests that one should look at warped AdS3 flows, as the ones discussed

in [6], which interpolate between asymptotically locally AdS3×T4 geometries, with an

interpretation as 2d defect CFTs, and AdS7 solutions. We have found however that our

solutions have different asymptotics than the IR AdS3 geometries considered in [6]. This

discrepancy could originate on the wrapped branes present in our solutions, more suggestive

of an R1,1×CY2 flow [62], as the one constructed in [64]. It would be very interesting to

find the explicit flow that interpolates between these two classes of solutions.

We have provided a thorough analysis of the AdS3×S2×CY2 solution that arises from

the Type IIB solution dual to the D1-D5 system through non-Abelian T-duality. Using

the map between AdS3 and AdS7 solutions derived in the first part of the paper, we have

rediscovered this solution as the leading order of the AdS7 solution in the class in [36]

dual to a 6d linear quiver with gauge groups of increasing ranks, terminated by D6-branes.

Secondly, we have provided two explicit global completions with AdS3 solutions in the class

in [11]. One of these completions is obtained glueing the non-Abelian T-dual solution to

itself, in a sort of orbifold projection around the point where the space terminates. This

solution has a well-defined 2d dual CFT that we have studied. Orbifolds have previously
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played a role in the completion of NATD solutions, remarkably in the example discussed

in [41], but this is the first time the explicit completed geometry has been constructed.

The AdS3 example provides indeed a very useful set-up where to test the role played

by holography in extracting global information of NATD in string theory, following the

ideas in [38–42].
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A Completions of the NATD solution

Completion with O-planes. The metric, dilaton and fluxes of the NATD solution

completed as indicated in section 5.3.1 read, in the 2πP ≤ ρ ≤ 2π(P + 1) region,

ds2 =
4L2ρ

P (2π(P + 1)− ρ)
ds2(AdS3) +M2ds2(CY2) +

P (2π(P + 1)− ρ)

4L2ρ
dρ2

+
L2Pρ (2π(P + 1)− ρ)

4L4 + P 2(2π(P + 1)− ρ)2
ds2(S2) (A.1)

e2Φ =
4ρ

L2P (2π(P + 1)− ρ)
(

4L4 + P 2(2π(P + 1)− ρ)2
) (A.2)

B2 = − ρP 2(2π(P + 1)− ρ)2

2
(

4L4 + P 2(2π(P + 1)− ρ)2
)vol(S2) (A.3)

F0 = −PL2 (A.4)

F2 = −
L2
(
P 3 (2π (P + 1)− ρ)3 + 8L4πP (P + 1)

)
2
(

4L4 + P 2 (2π (P + 1)− ρ)2
) vol(S2) (A.5)

F4 = L2M4P vol(CY2) (A.6)
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NATD solution glued to itself. The metric, dilaton and fluxes of the NATD solution

glued to itself read, in the 2πP ≤ ρ ≤ 4πP region,

ds2 =
4L2ρ

4πP − ρ
ds2(AdS3) +M2ds2(CY2) +

4πP − ρ
4L2ρ

dρ2 +
L2ρ(4πP − ρ)

4L4 + (4πP − ρ)2
ds2(S2)

(A.7)

e2Φ =
4ρ

L2(4πP − ρ)
(

4L4 + (4πP − ρ)2
) (A.8)

B2 = − ρ(4πP − ρ)2

2
(

4L4 + (4πP − ρ)2
)vol(S2) (A.9)

F0 = −L2 (A.10)

F2 = −
L2
(

(4πP − ρ)3 + 16πPL4
)

2
(

4L4 + (4πP − ρ)2
) vol(S2) (A.11)

F4 = L2M4 vol(CY2) (A.12)

B The Dibitetto-Petri flow in minimal N = 1 7d supergravity

The solution discussed in section 6 was obtained in [6] taking the following ansatz:

ds2
7 = e2U(r)ds2(AdS3) + e2V (r)dr2 + e2W (r)ds2(S3),

X = X(r),

B(3) = k(r)vol(AdS3) + l(r)vol(S3), (B.1)

and vanishing vector fields. Here ds2(S3) is the metric of an S3 with radius 2
κ , parame-

terised as:

e1 =
1

κ
dθ2,

e2 =
1

κ
cos θ2dθ3,

e3 =
1

κ
(dθ1 + sin θ2dθ3), (B.2)

and ds2(AdS3) is the metric of an AdS3 with radius 2
L , parameterised as:

e1 =
1

L
(dt− sinhx1dx

2),

e2 =
1

L
dx1,

e3 =
1

L
coshx1dx

2. (B.3)
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vol(S3) and vol(AdS3) represent their corresponding volume forms. DP showed that (B.1)

is a solution to minimal 7d sugra with X, U , V , W , k and l given by,

X(r) =
22/5h1/5

(
−1 + ρ8

)2/5(
−8Lρ4 (1 + ρ8) +

√
2g (1 + 4ρ4 + 4ρ12 + ρ16)

)1/5 , (B.4)

e2U(r) =
(ρ4 + 1)2

4ρ4X2
, (B.5)

e2V (r) =
4X8

h2
, (B.6)

e2W (r) =
(ρ4 − 1)2

4ρ4X2
, (B.7)

l(r) =
1

16hρ4 (ρ4 + 1)2 [
√

2g
(
−1 + 4ρ4 + 4ρ8 + 4ρ12 − ρ16

)
+2L

(
1− 4ρ4 − 2ρ8 − 4ρ12 + ρ16

)
], (B.8)

k(r) =
1

16hρ4 (ρ4 − 1)2

[√
2g
(
1 + 4ρ4 + 4ρ12 + ρ16

)
−2L

(
1 + 4ρ4 − 2ρ8 + 4ρ12 + ρ16

) ]
, (B.9)

where r = log ρ and κ and L satisfy,

κ+ L =
√

2g. (B.10)

In these expressions g and h are the gauge coupling of the vector fields17 and the topological

mass of the 3-form potential, respectively, of minimal N = 1 7d supergravity.

B.1 The r →∞, AdS7 limit

When r →∞ the previous solution is asymptotically locally AdS7, for any values of κ and

L respecting the constraint given by their equation (4.27). The explicit way in which AdS7

arises is as follows.

The r →∞ limit of the previous functions gives, for g = 2
√

2h,18

X ' 1,

e2U ' ρ4

4
=
e4r

4
, (B.11)

e2V ' 4

h2
, (B.12)

e2W ' ρ4

4
=
e4r

4
, (B.13)

k ' −ρ
4

16
= −e

4r

16
, (B.14)

l ' ρ4

16
=
e4r

16
. (B.15)

17This constant enters in the superpotential even for vanishing profile for the vector fields.
18This value is fixed such that X = 1 asymptotically.
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This gives for the 7d metric,

ds2
7 =

e4r

L2
ds2(AdS3) +

4

h2
dr2 +

e4r

κ2
ds2(S3), (B.16)

in terms of unit radius S3 and AdS3 spaces. In turn, the 3-form potential is given by,

B3 =

√
2g − 2L

16h
e4r
(

vol(AdS3)− vol(S3)
)
. (B.17)

For arbitrary L and κ, the scalar curvature is

R = −3

2
e−4r

(
28e4rh2 + L2 − κ2

)
, (B.18)

and thus asymptotes to that of an AdS7 space of radius 1/h. The geometry in the UV

can thus be completed by an AdS7 space with vanishing 3-form potential, that solves the

equations of motion and gives rise to an AdS7 solution to massive IIA supergravity upon

uplift to ten dimensions [64].

B.2 The r → 0, AdS3×T4 limit

In turn, the r → 0 limit of the expressions (B.4)–(B.9) is non-singular for the special value

L =
5g

4
√

2
, (B.19)

which is also the value for which the leading order behaviour of the scalar potential ν(X),

ν(r) =
h2/5(5

√
2g − 8L)8/5

23/10r16/5
+ . . . (B.20)

is non-singular. Note that from (B.10),

κ =
3g

4
√

2
. (B.21)

Substituting these values in (B.4)–(B.9) and taking the r → 0 limit, one finds

X ' 22/5

31/5
,

e2U ' 32/5

24/5
,

e2V ' 28

3g2

(
2

33

)1/5

,

e2W ' 32/526/5r2.

(B.22)

This gives, for the metric in (B.1)

ds2
7 =

231/5

g2

(
32/5

52
ds2(AdS3) +

4

38/5
ds2(T4)

)
, (B.23)

and for the 3-form potential

B3 = −1

2
vol(AdS3)− 4r4vol(S3). (B.24)

As discussed in [6], this geometry is not a solution of 7d N = 1 minimal supergravity

by itself, but rather the IR leading profile of the flow for L and κ given by (B.19), (B.21).
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B.3 Uplift to massive IIA

7d N = 1 minimal supergravity can be consistently uplifted to massive IIA on a squashed

S3 [64]. The uplift formulae were provided in that reference. They read, in the parameter-

isation used in [50] and for vanishing vector fields:

ds2
10 =

16

g
π

(
− α

α̈

)1/2

X−1/2ds2
7

+
16

g3
πX5/2

[(
− α̈

α

)1/2

dz2 −
(
− α

α̈

)1/2 αα̈

α̇2 − 2αα̈X5
ds2(S2)

]
(B.25)

e2Φ =
X5/2

g3

3826π5

α̇2 − 2αα̈X5

(
− α

α̈

)3/2

(B.26)

B2 =
23
√

2

g3

(
παα̇

α̇2 − 2αα̈X5
− πz

)
vol(S2) (B.27)

F2 =

(
23
√

2

g3
F0

παα̇

α̇2 − 2αα̈X5
+

α̈

342π2

)
vol(S2) (B.28)

F4 =
23

34π

[
−α̈dz ∧B(3) − α̇dB(3)

]
, (B.29)

where in the last expression we have used the odd-dimensional self-duality condition [76]

X4 ∗7 F4 = −2hB3. (B.30)

Open Access. This article is distributed under the terms of the Creative Commons
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[27] C. Lawrie, S. Schäfer-Nameki and T. Weigand, Chiral 2d theories from N = 4 SYM with

varying coupling, JHEP 04 (2017) 111 [arXiv:1612.05640] [INSPIRE].

[28] C. Couzens, C. Lawrie, D. Martelli, S. Schäfer-Nameki and J.-M. Wong, F-theory and
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[40] Y. Lozano, C. Núñez and S. Zacarias, BMN Vacua, Superstars and Non-Abelian T-duality,

JHEP 09 (2017) 000 [arXiv:1703.00417] [INSPIRE].

[41] G. Itsios, Y. Lozano, J. Montero and C. Núñez, The AdS5 non-Abelian T-dual of
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[63] C. Núñez, J.M. Peńın, D. Roychowdhury and J. Van Gorsel, The non-Integrability of Strings

in Massive Type IIA and their Holographic duals, JHEP 06 (2018) 078 [arXiv:1802.04269]

[INSPIRE].

[64] A. Passias, A. Rota and A. Tomasiello, Universal consistent truncation for 6d/7d

gauge/gravity duals, JHEP 10 (2015) 187 [arXiv:1506.05462] [INSPIRE].

[65] F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization,

JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].
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