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Abstract

This paper investigates dynamical behaviors of the tumor-immune system per-
turbed by environmental noise. The model describes the response of the cytotoxic
T lymphocyte to the growth of an immunogenic tumour. The main methods are
stochastic Lyapunov analysis, comparison theorem for stochastic differential equa-
tions (SDEs) and strong ergodicity theorem. Firstly, we prove the existence and
uniqueness of the global positive solution for the tumor-immune system. Then we
go a further step to study the boundaries of moments for tumor cells and effector
cells and the asymptotic behavior in the boundary equilibrium points. Furthermore,
we discuss the existence and uniqueness of stationary distribution and stochastic
permanence of the tumor-immune system. Finally, we give several examples and
numerical simulations to verify our results.
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1 Introduction

At present, cancer is considered to be one of the most complicated diseases to be treated
clinically and one of the most dreadful killers in the world today. Keeping in mind its dev-
astating nature, a great deal of human and economic resources are devoted to the research
on cancer biology and subsequent development of proper therapeutic measures. Surgery,
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radiation therapy, and chemotherapy are the three traditional therapy procedures that
are practised for treatment of cancer. However, all these procedures are characterized by
a relatively low efficacy and high toxicity for the patient. Therefore, compared with tra-
ditional treatment methods, emerging immunotherapy has great development prospects.
Immunotherapy, also known as biological therapy, usually refers to the use of cytokines,
a protein hormone that mediate both natural and specific immunity to induce antitumor
responses of immune system.

Mathematical models of tumour-immune system and their dynamical behaviors [1,
3], help us to understand better how host immune cells and cancerous cells evolve and
interact. In order to get closer to reality more and more tumour-immune models have
been studied, for instance, [6, 8, 10, 21, 24, 31, 35, 36, 37] and reference therein. It’s
worth noticing that a classical mathematical simplified tumour-immune model

(1.1)


dx(t) =

(
σ +

ρx(t)y(t)

η + y(t)
− µx(t)y(t)− δx(t)

)
dt,

dy(t) =
(
αy(t)− βy2(t)− x(t)y(t)

)
dt

is proposed to simulate the interaction of the cytotoxic T lymphocyte with immunogenic
tumor cells and took into account the inactivation of effector cells as well as the pene-
tration of effector cells into tumor cells by [22], where x represents non-dimensional local
concentration of effector cells (EC), y represents the non-dimensional local concentration
of tumor cells (TC). Local and global bifurcations for the parameters δ, the effector cell
“death rate”, and σ, the baseline effector cell “source rate”, were calculated, and the
possible connection between two different mechanisms of the tumor: tumor dormancy
and sneaking through is illustrated. Yafia [37] studied the stability of the equilibriums
and proved the existence of a family of periodic solutions bifurcating from the nontrivial
steady state of the Kuznetsov-Taylor model with a delay. More complete bibliography
about the evolution of cells and the relevant role of cellular phenomena in directing the
body toward recovery or toward illness can be found in [7, 29, 32].

In the tumor tissue, the growth rate and cytotoxic parameters are influenced by many
environmental factors, e.g. the degree of vascularization of tissues, the supply of oxygen,
the supply of nutrients, the immunological state of the host, chemical agents, temperature,
radiations, gene expression, protein synthesis and antigen shedding from the cell surface,
etc. Due to the complexity, it is unavoidable that in the course of time the parameters
of the system undergo random variations which give them a stochastic character [12, 14,
15, 25]. Inclusion of randomness in mathematical models of biological and biochemical
processes is thus necessary for better understanding of mechanisms which govern the
biological systems. Considering the impact of the stochastic volatility of environment, we
assume that environmental fluctuations mainly affect the culling rate of effector cells δ
and the intrinsic growth rate of tumor cells α

−δdt→ −δdt+ σ1dB1(t), αdt→ αdt+ σ2dB2(t),

where B1(t) and B2(t) are the 1-dimensional Brown motion and independent, and σ1

and σ2 denote the intensity of white noises. Thus the stochastic tumor-immune model is
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described by the following SDE

(1.2)


dx(t) =

(
σ +

ρx(t)y(t)

η + y(t)
− µx(t)y(t)− δx(t)

)
dt+ σ1x(t)dB1(t),

dy(t) =
(
αy(t)− βy2(t)− x(t)y(t)

)
dt+ σ2y(t)dB2(t),

with an initial value x(0) = x0 > 0, y(0) = y0 > 0. Based on the actual background of
the model, we assume that σ1, σ2 and all other parameters are non-negative real numbers.
Obviously, the model (1.2) degenerates into (1.1) if σ1 = 0, σ2 = 0.

In the last years, stochastic growth models for cancer cells have been developed, one
can see [2, 13, 34] and reference therein. Lyapunov exponent method and Fokker-Planck
method are used to investigate the stability of the stochastic models by numerical sim-
ulations. Mukhopadhyay and Bhattacharyya [28] analyzed the stochastic stability for
a stochastic virus-tumor-immune model. Oana, Dumitru and Riccardo [30] studied the
stochastic stability of the stochastic Kuznetsov-Taylor model near their equilibriums. Li
and Cheng [23] established the scalar tumor growth model describing the interaction and
competition between the tumor cells based on the Michaelis-Menten enzyme kinetics, and
gave the threshold conditions for extinction, weak persistence and stochastic persistence
of tumor cells by the rigorous theoretical proofs, to name a few.

In this paper our main aim is to investigate the stochastic Kuznetsov-Taylor tumor-
immune model (1.2), which describes the response of the cytotoxic T lymphocyte to the
growth of immunogenic tumor cells. Combing the stochastic Lyapunov analysis with
the comparison principle for SDEs and making use of the strong ergodicity theorem,
we discuss the asymptotic behaviors including the stochastic ultimately boundedness in
moment, the limit distribution as well as the ergodicity. Especially, it is pointed out
that when tumor cells subject to strong stochastic perturbations, the density of tumor
cells is exponentially decreasing while the density of effector cells tends to the stationary
distribution. On the other hand, under weak environmental noises of the tumor cells,
the existence and uniqueness of the stationary distribution with the support set R2

+ is
yielded, which implies that tumor cells and immune cells are stochastically permanence
and approach a dormant steady state. These obtained judgement criteria on extinction
and permanence will provide us some inspirations on how to make more effective and
precise therapeutic schedule to eliminate tumor cells and improve the treatment of cancer.

Compared with the results on the stochastic Kuznetsov-Taylor model [30] and the
scalar tumor growth model [23], our model not only considers the stimulated accumu-
lation of effector cells due to the presence of the tumor but also predicts the stochastic
permanence and the ergodicity by the rigorous theoretical proofs. Although those of the
deterministic model (1.1) are rich in [22], the dynamical behaviors of the stochastic model
(1.2) are different completely, especially, as the intensity of the tumor noises is large, see
Examples 5.1 and 5.2. The fact is revealed that the stochastic environmental perturbation
to the tumor cells cannot be ignored, which is the key factor to eliminate the tumor cells.

The rest of the paper is arranged as follow. Section 2 gives some notations and
proves the existence of the unique global positive solution. Section 3 obtains the ultimate
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moment boundedness of the global positive solution. Section 4 yields the ergodicity of
tumor cells and effector cells in the stochastic tumor-immune model which implies the
stochastic permanence of cells. Section 5 presents a couple of examples and numerical
simulations to illustrate our results. Section 6 concludes this paper.

2 Global positive solution

Throughout this paper, let (Ω,F , {Ft}t≥0,P) be a complete filtered probability space with
{Ft}t≥0 satisfying the usual conditions (that is, it is right continuous and F0 contains all P-
null sets). Let B(t) = (B1(t), B2(t))T be a 2-dimensional Brownian motion defined on the
probability space. Let | · | denote the Euclidean norm in R2. Also let R+ = {x ∈ R|x > 0}
and R2

+ = {(x, y) ∈ R2|x > 0, y > 0}. Let C denote a generic positive constant whose
value may change in different appearances. Moreover, let C2,1(R2 × R+;R+) denote the
family of all nonnegative functions V (x, t) on R2 × R+ which are continuously twice
differentiable in x and once differentiable in t. For each V ∈ C2,1(R2×R+;R+), define an
operator L such that LV : R2 × R+ → R with the form

LV (x, y, t) = Vt(x, y, t) + Vx(x, y, t)
(
σ +

ρxy

η + y
− µxy − δx

)
+ Vy(x, y, t)

(
αy − βy2 − xy

)
+

1

2

(
Vxx(x, y, t)σ

2
1x

2 + Vyy(x, y, t)σ
2
2y

2
)
.

(2.1)

Since x(t) represents the density of EC, y(t) represents the density of TC, both x(t)
and y(t) in (1.2) should be positive. The theorem below gives an affirmative answer.

Theorem 2.1 For any initial value (x0, y0) ∈ R2
+, the equation (1.2) has a unique global

positive solution (x(t), y(t)) for all t ≥ 0 with probability one.

Proof. Due to the local Lipschitz continuity of the coefficients, by [26, p.91, Theorem
3.3.15], there is a unique local solution (x(t), y(t)) (t ∈ [0, τe)) with any given initial
value (x0, y0) ∈ R2

+, where τe is the explosion time, namely, it is a stopping time such
that 0 ≤ τe ≤ ∞ a.s. and lim supt→τe(x

2(t) + y2(t)) = ∞ whenever τe < ∞ [26, p.90,
Definition 3.3.14]. Choose an m0 ≥ 1 such that x0 ∈ (1/m0,m0), y0 ∈ (1/m0,m0). For
any positive m ≥ m0, define the stopping time as follows

(2.2) τm = inf

{
t ∈ [0, τe) : min{x(t), y(t)} ≤ 1

m
or max{x(t), y(t)} ≥ m

}
,

We set inf ∅ = ∞, clearly, τm ≤ τe, and τm is increasing as m → ∞. Let τ∞ = lim
m→∞

τm,

τ∞ ≤ τe a.s. If we can prove that τ∞ = ∞ a.s. then τe = ∞ a.s. This implies that the
solution is not only positive but also global.

Here we give a proof by contradiction. Suppose that τ∞ = ∞ a.s. doesn’t hold, then
there exist constants T > 0 and ε ∈ (0, 1) such that

P(τ∞ ≤ T ) > ε.
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This implies that exists an m1 ≥ m0 such that for all m ≥ m1

(2.3) P(τm ≤ T ) ≥ ε

2
.

Define
V (x, y) = (x+ 1− log x) + (y + 1− log y), ∀(x, y) ∈ R2

+.

Using the Itô formula, we have

E[V (x(τm ∧ T ), y(τm ∧ T ))] = V (x0, y0) + E
∫ τm∧T

0

LV (x(t), y(t))dt,(2.4)

where

LV (x, y) =(σ + δ − α +
1

2
σ2

1 +
1

2
σ2

2) +
ρxy

η + y
+ x+ (µ+ α + β)y

− µxy − δx− σ

x
− ρy

η + y
− βy2 − xy

≤(σ + δ +
1

2
σ2

1 +
1

2
σ2

2) + (ρ+ 1)x+ (µ+ α + β)y.

≤v1 + 2(ρ+ 1)(x+ 1− log x) + 2(µ+ α + β)(y + 1− log y)

≤v1 + v2V (x, y),

with v1 = σ+ δ+ 1
2
σ2

1 + 1
2
σ2

2, v2 = 2(ρ+ 1 +µ+α+β). This, together with (2.4), implies

E[V (x(τm ∧ T ), y(τm ∧ T ))] ≤V (x0, y0) + v1T + v2E
∫ τm∧T

0

V (x(t), y(t))dt

=V (x0, y0) + v1T + v2E
∫ T

0

I[[0,τm]](t)V (x(t), y(t))dt

≤V (x0, y0) + v1T + v2E
∫ T

0

V (x(t ∧ τm), y(t ∧ τm))dt

=V (x0, y0) + v1T + v2

∫ T

0

EV (x(t ∧ τm), y(t ∧ τm))dt,

where IA(·) is the indicate function of a set A. The Gronwall inequality yields that

(2.5) E[V (x(τm ∧ T ), y(τm ∧ T ))] ≤ (V (x0, y0) + v1T )ev2T .

Let Ωm = {ω : τm ≤ T}, then ∀ω ∈ Ωm, at least one of x(τm(ω) ∧ T ) and y(τm(ω) ∧ T ) is
equal to 1/m or m. Hence, we have

(m+ 1− logm) ∧ (
1

m
+ 1 + logm) ≤ V (x(τm ∧ T ), y(τm ∧ T )).

Due to (2.3) and (2.5), we arrive at

ε

2
(m+ 1− logm) ∧ (

1

m
+ 1 + logm) ≤ E[IΩm(ω)V (x(τm ∧ T ), y(τm ∧ T ))]

≤ (V (x0, y0) + v1T )ev2T .
(2.6)
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On the other hand, one observes

lim
m→∞

(m+ 1− logm) ∧ (
1

m
+ 1 + logm) =∞.

Taking m→∞ in (2.6), we obtain

∞ ≤ (V (x0, y0) + v1T )ev2T <∞,

which results in a contradiction. The proof is therefore complete.

3 Moment boundedness

Based on the existence result of positive solutions, this section focuses on the asymptotic
estimation of the moments of x(t) and y(t). We borrow the idea of looking at the
boundary to analyze the asymptotic behaviors [9, 11, 16, 17]. The method of looking at
the boundary has been shown to be very effective since it enables ones to get not only
sufficient but close to necessary conditions [9, 11]. Its generalization to high dimensional
Kolmogorov systems are referred to [16, 17]. In order to discuss the asymptotic upper
boundary of E[yk(t)], we look at the growth rule of y(t) on the boundary x(t) = 0. So we
introduce an auxiliary process ψ(t) described by

(3.1)

 dψ(t) = ψ(t) [α− βψ(t)] dt+ σ2ψ(t)dB2(t),

ψ(0) = y0 > 0,

where B2(t) is the Brownian motion defined in (1.2). By utilizing a comparison theorem,
one observes that 0 < y(t) ≤ ψ(t) for all t ≥ 0 a.s. The following result is taken from [5],
we cite it as a lemma.

Lemma 3.1 [5, Lemma 2.1, p.729] Let ψ(t) be the solution of (3.1). Then it holds that
for any k > 1,

(3.2) Eψk(t) ≤
[

1

y0

e−(α+ k−1
2
σ2
2)t +

2β

2α + (k − 1)σ2
2

(
1− e−(α+ k−1

2
σ2
2)t
)]−k

.

Therefore, we have

lim sup
t→∞

Eψk(t) ≤ %k :=
(2α + (k − 1)σ2

2

2β

)k
, ∀k > 1.

We now investigate the asymptotic properties of the moments of y(t).

Theorem 3.2 For any k > 1, we have

lim sup
t→+∞

E[yk(t)] ≤ %k;

For any 0 < k ≤ 1, we have

lim sup
t→+∞

E[yk(t)] ≤ (%2)
k
2 .
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Proof. Since 0 < y(t) ≤ ψ(t), for k > 1, by Lemma 3.1, we have

lim sup
t→+∞

E[yk(t)] ≤ lim sup
t→+∞

E[ψk(t)] ≤ %k.

Furthermore, for 0 < k ≤ 1, by the Hölder inequality, we obtain

lim sup
t→+∞

E[yk(t)] ≤ lim sup
t→+∞

[
E[y2(t)]

] k
2 ≤ (%2)

k
2 ,

as required.
Next, we continue to consider the asymptotic property of the moments of x(t). By

virtue of the interaction between x(t) and y(t) and the positivity of y(t) we provide the
following sufficient result for the moment boundedness of x(t).

Theorem 3.3 For any θ ∈
(
0, 1 + 2δ/σ2

1

)
and c > [ρ/η − µ]+,

lim sup
t→∞

E[(1 + x(t) + cy(t))θ] ≤ L(c, θ),

where L(c, θ) is a positive constant dependent on θ and c, which is defined by (3.8) below.

Proof. Since the proof is rather technical we divide it into three steps.
Step 1. We estimate the upper bound of L[eκtV1(x, y)]. Define the function f1(y) =

ρy

η + y
− (µ+ c)y for any y ≥ 0, then

f ′1(y) =
−(µ+ c)y2 − 2(µ+ c)ηy + (ρ− η(µ+ c))η

(η + y)2
.

Solving f ′1(y) = 0, we obtain two roots

y1 = −η −
√

ηρ

µ+ c
< 0, y2 = −η +

√
ηρ

µ+ c
.

The condition c > [ρ/η−µ]+ yields y2 < 0. By virtue of f ′1(y) < 0(∀y > 0) it follows that

(3.3) f1(y) < f1(0) = 0, ∀y > 0.

For a fixed θ ∈ (0, 1 + 2δ/σ2
1), define

V1(x, y) = (1 + x+ cy)θ, ∀(x, y) ∈ R2
+.

By virtue of (2.1) and (3.3), computing LV1(x, y) leads to

LV1(x, y)

=θ(1 + x+ cy)θ−2

{[
ρy

η + y
− (µ+ c)y − δ +

θ − 1

2
σ2

1

]
x2

+
[
− c
(
β + µ+ c

)
y2 +

(
cα +

cρy

η + y
− cδ − µ− c

)
y +

ρy

η + y
− δ + σ

]
x

− c2βy3 +
(
c2α− cβ +

θ − 1

2
c2σ2

2

)
y2 + c(α + σ)y + σ

}
.

(3.4)
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The condition 0 < θ < 1 + 2δ/σ2
1 implies δ +

(1− θ)
2

σ2
1 > 0. Now, choose a positive

constant κ := κ(θ) sufficiently small such that

L1(θ) := δ +
(1− θ)

2
σ2

1 −
κ

θ
> 0.

By the Itô formula,

Mv1(t) := eκtV1(x(t), y(t))− V1(x0, y0)−
∫ t

0

L[eκtV1(x(s), y(s))]ds

is a local martingale. By (3.4), we have

L[eκtV1(x, y)]

=κeκtV1(x, y) + eκtLV1(x, y)

≤θeκt(1 + x+ cy)θ−2

{[ ρy

η + y
− (µ+ c)y −

(
δ +

1− θ
2

σ2
1 −

κ

θ

)]
x2

+
[
− c
(
β + µ+ c

)
y2 +

(
cα + cρ− cδ − µ− c+

2cκ

θ

)
y
]
x

+
(
ρ− δ + σ +

2κ

θ

)
x− c2βy3 +

(
c2α− cβ +

θ − 1

2
c2σ2

2 +
c2κ

θ

)
y2

+ c
(
α + σ +

2κ

θ

)
y + σ +

κ

θ

}
≤θeκt(1 + x+ cy)θ−2W (x, y),

where

W (x, y) := −L1(θ)x2 + L2(c, θ)x− c2βy3 +
(
c2α− cβ +

θ − 1

2
c2σ2

2 +
c2κ

θ

)
y2

+c
(
α + σ +

2κ

θ

)
y + σ +

κ

θ
,

L2(c, θ) := sup
y∈R+

{
− c
(
β + µ+ c

)
y2 +

(
cα + cρ− cδ − µ− c+

2cκ

θ

)
y + ρ− δ + α +

2κ

θ

}
.

One observes that
lim

x2+y2→+∞
(1 + x+ cy)θ−2W (x, y) = −∞,

which together with the continuity of (1 + x+ cy)θ−2W (x, y) in R2
+ implies that

L3(c, θ) := θ sup
x,y∈R+

{
(1 + x+ cy)θ−2W (x, y)

}
< +∞.

Thus, we have

(3.5) L[eκtV1(x, y)] ≤ L3(c, θ)eκt.
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Step 2. We show that

E[eκtV1(x(t), y(t))] = E[V1(x0, y0)] + E
∫ t

0

L[eκsV1(x(s), y(s))]ds.

In fact, let n0 > 0 be sufficiently large for x0, y0 lying within the interval (1/n0, n0). For
any constant n ≥ n0, define the stopping time

ξn = inf{t ≥ 0| max{x(t), y(t)} ≥ n}.

Note ξn is monotonically increasing and hence has a (finite or infinite) limit. Denote the
limit by ξ∞. For any n sufficiently large, we have ξn ≥ τn, where τn is defined by (2.2).
By Theorem 2.1, we have τ∞ =∞, then ξ∞ =∞. The local martingale property implies
that E[Mv1(t ∧ ξn)] = 0. That is, for any t ≥ 0

E[eκ(t∧ξn)V1(x(t ∧ ξn), y(t ∧ ξn))] = E[V1(x0, y0)]

+ E
∫ t∧ξn

0

L[eκsV1(x(s), y(s))]ds.
(3.6)

From the definition of ξn, we have eκ(t∧ξn)(1 + x(t ∧ ξn) + cy(t ∧ ξn))θ is monotonically
increasing in n. Let n→∞, we obtain

eκ(t∧ξn)(1 + x(t ∧ ξn) + cy(t ∧ ξn))θ ↑ eκt(1 + x(t) + cy(t))θ a.s.

By the monotone convergence theorem,

E[eκ(t∧ξn)V1(x(t ∧ ξn), y(t ∧ ξn))] → E[eκtV1(x(t), y(t))], as n→∞.

By (3.5) and the dominated convergence theorem,

E
∫ t∧ξn

0

L[eκsV1(x(s), y(s))]ds→ E
∫ t

0

L[eκsV1(x(s), y(s))]ds, as n→∞.

Therefore, letting n→∞ in (3.6) yields

(3.7) E[eκtV1(x(t), y(t))] = E[V1(x0, y0)] + E
∫ t

0

L[eκsV1(x(s), y(s))]ds.

Step 3. We complete the proof. By (3.5) and (3.7) we have

eκtE[(1 + x(t) + cy(t))θ] ≤ E[(1 + x0 + cy0)θ] +
L3(c, θ)

κ
eκt.

Then

E[(1 + x(t) + cy(t))θ] ≤ E[(1 + x0 + cy0)θ]e−κt +
L3(c, θ)

κ
.
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Letting t→∞, we obtain

(3.8) lim sup
t→∞

E[(1 + x(t) + cy(t))θ] ≤ L3(c, θ)

κ
=: L(c, θ).

The proof is complete.
The positivity of y(t) implies the follow result directly.

Corollary 3.4 For any θ ∈ (0, 1 + 2δ/σ2
1) and c > [ρ/η − µ]+,

lim sup
t→∞

E[(1 + x(t))θ] ≤ L(c, θ),

where L(c, θ) is defined in Theorem 3.3.

Due to the inequality direction in the theory of probability it is difficult to find the
lower bound of the moment of x(t). Alternatively, we try to look for the upper bound of
the moment of 1/x(t). Thus we get the following result.

Theorem 3.5 For any fixed θ > 0, there exists a positive constant L̄ such that

lim sup
t→∞

E[x−θ(t)] ≤ L̄.

Proof. Let V2(x) =
(
1 + 1

x

)θ
, ∀x > 0. Choosing a positive constant κ and applying

the Itô formula we obtain that

(3.9) Mv2(t) := eκtV2(x(t))− V2(x0)−
∫ t

0

Lx[eκsV2(x(s))]ds

is a local martingale, where

Lx[eκtV2(x)]

:= θeκt
(

1 +
1

x

)θ−2 [
− σ

x3
−
(
σ − δ − θ + 1

2
σ2

1 −
κ

θ

) 1

x2
+
(
δ + σ2

1 +
2κ

θ

)1

x

− ρy

x(η + y)
+
µy

x
− ρy

x2(η + y)
+ µ

y

x2
+
κ

θ

]
≤ θeκt

(
1 +

1

x

)θ−2 [
− σ

x3
−
(
σ − δ − θ + 1

2
σ2

1 −
κ

θ

) 1

x2
+
(
δ + σ2

1 +
2κ

θ

)1

x

+
κ

θ

]
+ 2µθeκt

(
1 +

1

x

)θ
y.

Due to Young’s inequality, one observes that

2µ

(
1 +

1

x

)θ
y ≤ 2µθ

θ + 1
2

(
1 +

1

x

)θ+ 1
2

+
µ

θ + 1
2

y2θ+1

=
2µθ

θ + 1
2

(
1 +

1

x

)θ−2(
1 +

1

x

) 5
2

+
2µ

2θ + 1
y2θ+1

≤ 8µ

(
1 +

1

x

)θ−2(
1 +

1

x
5
2

)
+

2µ

2θ + 1
y2θ+1,

10



in the last inequality, we have used the fact that
(
1 + 1

x

) 5
2 ≤ 2

3
2

(
1 + 1

x
5
2

)
≤ 4

(
1 + 1

x
5
2

)
.

This implies that

Lx[eκtV2(x)]

≤ θeκt
(

1 +
1

x

)θ−2 [
− σ

x3
+

8µ

x
5
2

−
(
σ − δ − θ + 1

2
σ2

1 −
κ

θ

) 1

x2

+
(
δ + σ2

1 +
2κ

θ

)1

x
+
κ

θ
+ 8µ

]
+

2µθ

2θ + 1
eκty2θ+1

≤ eκt
(
L4 +

2µθ

2θ + 1
y2θ+1

)
,

(3.10)

where

L4 = sup
x∈R+

{
θ

(
1 +

1

x

)θ−2 [
− σ

x3
+

8µ

x
5
2

−
(
σ − δ − θ + 1

2
σ2

1 −
κ

θ

) 1

x2

+
(
δ + σ2

1 +
2κ

θ

)1

x
+
κ

θ
+ 8µ

]}
.

Let n0 > 0 be sufficiently large for the initial value x0 lying within the interval (1/n0, n0).
For any n ≥ n0, define the stopping time

ξ̃n = inf{t ≥ 0, x(t) ≤ 1/n}.

Note ξ̃n is monotonically increasing and hence has a (finite or infinite) limit. Denote the
limit by ξ̃∞. For any n sufficiently large, we have ξ̃n ≥ τn, where τn is defined by (2.2).
By Theorem 2.1, we have τ∞ = ∞, so ξ̃∞ = ∞. The local martingale property implies
that E[Mv2(t ∧ ξ̃n)] = 0. That is, for any t ≥ 0

E[eκ(t∧ξ̃n)V2(x(t ∧ ξ̃n))] = E[V2(x0)] + E
∫ t∧ξ̃n

0

Lx[eκsV2(x(s))]ds.

From the definition of ξ̃n, we have eκ(t∧ξ̃n)(1 + 1
x(t∧ξ̃n)

)θ is monotonically increasing. Let-

ting n→∞ yields

eκ(t∧ξ̃n)

(
1 +

1

x(t ∧ ξ̃n)

)θ
↑ eκt

(
1 +

1

x(t)

)θ
a.s.

By the monotone convergence theorem one notices that as n→∞

E[eκ(t∧ξ̃n)V2(x(t ∧ ξ̃n))] → E[eκtV2(x(t))].

Noting that E
(
y2θ+1(t)

)
is bounded uniformly with respect to t ∈ [0,∞), by the Fubini

theorem and (3.10), we obtain

E
∫ t

0

L[eκsV2(x(s))]ds ≤ E
∫ t

0

eκs
(
L4 +

2µθ

2θ + 1
y2θ+1(s)

)
ds

= E
∫ t

0

L4e
κsds+

2µθ

2θ + 1

∫ t

0

eκsE
(
y2θ+1(s)

)
ds <∞.

11



Using the dominated convergence theorem implies that as n→∞

(3.11) E
∫ t∧ξ̃n

0

L[eκsV2(x(s))]ds→ E
∫ t

0

L[eκsV2(x(s))]ds.

Therefore, letting n→∞ yields

(3.12) E[eκtV2(x(t))] = E[V2(x0)] + E
∫ t

0

L[eκsV2(x(s))]ds.

This together with Theorem 3.2 implies

eκtE

[(
1 +

1

x(t)

)θ]

≤
(

1 +
1

x0

)θ
+ E

∫ t

0

eκs
(
L4 +

2µθ

2θ + 1
y2θ+1(s)

)
ds ≤

(
1 +

1

x0

)θ
+
L5

κ
eκt,

(3.13)

where L5 := L4 +
2µθ

2θ + 1
sup
t≥0

E
(
y2θ+1(t)

)
<∞. Hence

E

[(
1 +

1

x(t)

)θ]
≤
(

1 +
1

x0

)θ
e−κt +

L5

κ
.

We therefore obtain

lim sup
t→∞

E[x−θ(t)] ≤ lim sup
t→∞

E

[(
1 +

1

x(t)

)θ]
≤ L5

κ
=: L̄.

The proof is complete.

4 Existence and uniqueness of invariant measure

This section is devoted to analyze the invariant measure. Define function

f2(y) =
ρy

η + y
− µy, y ≥ 0.

Similar to the analysis of the function f1(y) in Theorem 3.3, we obtain

(i) If ρ ≤ µη, f2(y) < 0, ∀y > 0.

(ii) If ρ > µη, f2(y) ≤ (
√
ρ−√µη)2, ∀y > 0.

12



This implies that for any y > 0, f2(y) ≤ [(
√
ρ − √µη) ∨ 0]2. We now introduce a new

auxiliary process ϕ(t) with respect to x(t) described by

(4.1)

{
dϕ(t) = [σ − (δ − h2)ϕ(t)]dt+ σ1ϕ(t)dB1(t),

ϕ(0) = x0 > 0,

where

(4.2) h := (
√
ρ−√µη) ∨ 0.

If δ − h2 > 0, by solving the Fokker-Planck equation (see details in [9, p.1065]), the
process ϕ(t) has a unique stationary distribution ν(·), which is the inverse Gamma
distribution with parameter

a1 =
2(δ − h2)

σ2
1

+ 1, b1 =
2σ

σ2
1

.

And probability density of ν(·) is

f ∗(x) =
ba11

Γ(a1)
x−(a1+1)e−

b1
x , x > 0.

With a notation abuse slightly, we write ϕ ∼ IG(a1, b1). For any p > 0, by the strong
ergodicity we deduce that

(4.3) lim
t→∞

1

t

∫ t

0

ϕp(s)ds =

∫ ∞
0

xpf ∗(x)dx =: Mp a.s.

Especially, if p = 1, M1 =
σ

δ − h2
. Moreover, the stationary distribution of

1

ϕ(t)
is

the Gamma distribution with parameter a1 and b1, see details in [11, p.189]. Therefore,
changing the variable by the Itô formula, noting that the mean of Gamma distribution is
a1/b1, and by the strong ergodicity we arrive at

(4.4) lim
t→∞

1

t
lnϕ(t) = lim

t→∞

1

t

∫ t

0

(
σ

ϕ(s)
− δ + h2 − σ2

1

2

)
ds+ σ1 lim

t→∞

B1(t)

t
= 0,

By virtue of the comparison theorem it follows that 0 < x(t) ≤ ϕ(t) for all t ≥ 0 a.s.
This implies,

(4.5) lim sup
t→∞

1

t
lnx(t) ≤ 0 a.s.

Furthermore, we derive the following result from (4.3).
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Lemma 4.1 If δ − h2 > 0, then we have

(4.6) lim sup
t→∞

1

t

∫ t

0

xp(s)ds ≤Mp, ∀p > 0, a.s.

Moreover,

lim sup
t→∞

1

t

∫ t

0

x(s)ds ≤ σ

δ − h2
a.s.

To obtain more properties of x(t), we go a further step to consider the equation on
the boundary y(t) = 0

(4.7)

 dz(t) = (σ − δz(t))dt+ σ1z(t)dB1(t), ∀t ≥ t0,

z(t0) = x(t0),

where t0 ≥ 0 will be chosen latter. By solving the Fokker-Planck equation (see details
in [9, p.1065]), the process z(t) has a unique stationary distribution µ(·), and obeys the
inverse Gamma distribution with parameter

a2 =
2δ

σ2
1

+ 1, b2 =
2σ

σ2
1

.

And probability density of µ(·) is

p∗(x) =
(b2)a2

Γ(a2)
x−(a2+1)e−

b2
x , x > 0.

With a notation abuse slightly, we write z ∼ IG(a2, b2).
In the following, we will reveal the long-time behavior of the tumor cells and the

effector cells, if the intensity of the noise σ2 is large sufficiently.

Theorem 4.2 If λ1 :=
σ2

2

2
− α > 0, then we have

lim sup
t→∞

ln y(t)

t
≤ −λ1,

and the distribution of x(t) converges to a unique invariant probability measure π1(·) as
t→∞.

Proof. By virtue of the auxiliary process ψ(t) defined by (3.1), changing the variable
by the Itô formula leads to

(4.8) lim sup
t→∞

1

t
ln y(t) ≤ lim sup

t→∞

1

t
lnψ(t) ≤ −λ1 a.s.
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For any ε > 0, let T > 0 be sufficiently large satisfying max
{
µ, ρ

η

}
< ελ1

2
exp

(
λ1T

2

)
such

that P(Ωε) > 1− ε, where Ωε :=

{
y(t) ≤ exp

(
−λ1t

2

)
, ∀t ≥ T

}
.

Case (1). Suppose ρ ≤ µη, then f2(y) =
ρy

η + y
− µy ≤ 0. Fix a constant t0 ≥ T , by

the comparison theorem, we have P{z(t) ≥ x(t), ∀t ≥ t0} = 1. By the Itô formula, we
deduce that for almost all ω ∈ Ωε, ∀t ≥ t0,

0 ≤ ln z(t)− lnx(t) =σ

∫ t

t0

(
1

z(s)
− 1

x(s)

)
ds−

∫ t

t0

ρy(s)

η + y(s)
ds+ µ

∫ t

t0

y(s)ds

≤µ
∫ t

t0

exp

(
−λ1s

2

)
ds

=
2µ

λ1

[
exp

(
−λ1t0

2

)
− exp

(
−λ1t

2

)]
≤ 2µ

λ1

exp

(
−λ1T

2

)
< ε.

Case (2). Suppose ρ > µη, then f ′2(0) > 0. Due to the continuity of f2(y) at
y = 0, one may choose a positive constant ŷ such that for any 0 < y < ŷ, f2(y) > 0.
Choose a constant t0 ≥ T satisfying exp

(
−λ1t0

2

)
≤ ŷ. By the comparison theorem,

x(t) ≥ z(t), ∀t ≥ t0, for almost all ω ∈ Ωε. By the Itô formula we deduce that, for almost
all ω ∈ Ωε, ∀t ≥ t0,

0 ≤ lnx(t)− ln z(t) =σ

∫ t

t0

(
1

x(s)
− 1

z(s)

)
ds+

∫ t

t0

ρy(s)

η + y(s)
ds− µ

∫ t

t0

y(s)ds

≤ρ
η

∫ t

t0

y(s)ds ≤ ρ

η

∫ t

t0

exp

(
−λ1s

2

)
ds

=
2ρ

λ1η

[
exp

(
−λ1t0

2

)
− exp

(
−λ1t

2

)]
≤ 2ρ

λ1η
exp

(
−λ1T

2

)
< ε.

Therefore

(4.9) P
{∣∣ ln z(t)− lnx(t)

∣∣ > ε
}
≤ 1− P(Ωε) < ε, ∀t ≥ t0,

which implies that lnx(t) converges weakly to ln z(t). Let π∗1(·) be the invariant mea-
sure of ln z(t). In order to show that the distribution of x(t) converges to a probability
measure π1(·), we only need to prove that the distribution of lnx(t) converges to π∗1(·).
Let P(R) represents the family of all probability measures on R. For any P1,P2 ∈ P(R),
define the distance as in [26, p.212]

dL(P1, P2) = sup
f∈L

∣∣∣ ∫
R
f(x)P1(dx)−

∫
R
f(x)P2(dx)

∣∣∣,
where

L =
{
f : R→ R : |f(x)− f(y)| ≤ |x− y| and |f(·)| ≤ 1

}
.
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By the Portmanteau theorem, we need to prove that for any f ∈ L,

Ef(lnx(t))→ f̄ :=

∫
R
f(x)π∗1(dx) =

∫ ∞
0

f(lnx)π1(dx).

Since the diffusion is nondegenerate, it is well known that as t → ∞ the distribution
of ln z(t) converges to the unique stationary distribution π∗1(·), namely,

(4.10) lim
t→∞

Ef(ln z(t)) = f̄ .

We now compute∣∣Ef(lnx(t))− f̄
∣∣

≤
∣∣Ef(lnx(t))− Ef(ln z(t))

∣∣+
∣∣Ef(ln z(t))− f̄

∣∣
≤ E[|f(lnx(t))− f(ln z(t))|I{| lnx(t)−ln z(t)|≤ε}]

+ E[|f(lnx(t))− f(ln z(t))|I{| lnx(t)−ln z(t)|>ε}] +
∣∣Ef(ln z(t))− f̄

∣∣
≤ εE[I{| lnx(t)−ln z(t)|≤ε}] + 2E[I{| lnx(t)−ln z(t)|>ε}] +

∣∣Ef(ln z(t))− f̄
∣∣

= ε+ 2P
{∣∣ ln z(t)− lnx(t)

∣∣ > ε
}

+
∣∣Ef(ln z(t))− f̄

∣∣.
(4.11)

This, together with (4.9) and (4.10), yields

lim sup
t→∞

|Ef(lnx(t))− f | = 0.

The proof is therefore complete.

Remark 4.3 Theorem 4.2 predicts that when the stochastic perturbation for tumor cells
is strong enough the tumor is going to die out at exponential rate while the distribution
of effector cells converges to a steady state π1. It is clear that σ2 is a critical parameter
to eliminate the tumor cells and let the effector cells tend to a steady state in stochastic
version. This implies that the dynamics of the stochastic model (1.2) are completely
different from those of the deterministic model (1.1) in [22]. .

Recall the auxiliary process ψ(t) defined by (3.1). We have proved that α <
σ2

2/2 implies lim sup
t→∞

ψ(t) = 0 a.s due to (4.8). If α > σ2
2/2, by solving the Fokker-

Planck equation (see details in [11, p.189]), the process ψ(t) has a unique stationary
distribution λ(·), and obeys the Gamma distribution with parameter

a3 =
2α

σ2
2

− 1, b3 =
2β

σ2
2

.

The probability density of λ(·) is

g∗(x) =
(b3)a3

Γ(a3)
xa3−1e−b3x, x > 0.
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With a notation abuse slightly, we write ψ ∼ G(a3, b3). For any p > 0, by the strong
ergodicity we derive that

(4.12) lim
t→∞

1

t

∫ t

0

ψp(s)ds =

∫ ∞
0

xpg∗(x)dx =: M̄p a.s.

In particular, if p = 1, we have M̄1 =
1

β
(α− σ

2
2

2
). Therefore, using the Itô formula implies

(4.13) lim
t→∞

1

t
lnψ(t) = lim

t→∞

1

t

∫ t

0

(
α− σ2

2

2
− βψ(s)

)
ds+ σ2 lim

t→∞

B2(t)

t
= 0.

By virtue of the comparison theorem it follows that 0 < y(t) ≤ ψ(t) for all t ≥ 0 a.s.
One observes that

(4.14) lim sup
t→∞

1

t
ln y(t) ≤ 0 a.s.

Furthermore, we have the following result from (4.12).

Lemma 4.4 If α >
σ2

2

2
, then the property

(4.15) lim sup
t→∞

1

t

∫ t

0

yp(s)ds ≤ M̄p, ∀p > 0, a.s.

holds. Moreover,

lim sup
t→∞

1

t

∫ t

0

y(s)ds ≤ 1

β
(α− σ2

2

2
) a.s.

In order to investigate the probability law for the small noises we prepare two lemmas.

Lemma 4.5 If α >
σ2

2

2
, then the property

(4.16) lim sup
t→∞

1

t

∫ t

0

1

x(s)
ds ≤ λ2

holds, where λ2 :=
1

σ

[µ
β

(
α− σ2

2

2

)
+ δ +

σ2
1

2

]
.

Proof. For any (x0, y0) ∈ R2
+, using the fact 0 < y(t) ≤ ψ(t) a.s. and the Itô formula, we

have

1

t
lnx(t) =

1

t

∫ t

0

(
σ

x(s)
+

ρy(s)

η + y(s)
− µy(s)

)
ds− δ − σ2

1

2
+

lnx0

t
+
σ1B1(t)

t

≥ 1

t

∫ t

0

σ

x(s)
ds− 1

t

∫ t

0

µψ(s)ds− δ − σ2
1

2
+

lnx0

t
+
σ1B1(t)

t
.
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Letting t→∞, by the strong ergodicity, (4.5) and (4.12) we deduce that

lim sup
t→∞

1

t

∫ t

0

1

x(s)
ds ≤ 1

σ

(
lim sup
t→∞

1

t

∫ t

0

µψ(s)ds+ δ +
σ2

1

2

)
=

1

σ

[µ
β

(
α− σ2

2

2

)
+ δ +

σ2
1

2

]
.

The proof is complete.

Lemma 4.6 If δ > h2 and α− σ2
2

2
− σ

δ − h2
> 0, then the inequality

(4.17) lim inf
t→∞

1

t

∫ t

0

y(s)ds ≥ λ3

holds, where λ3 :=
1

β

(
α− σ2

2

2
− σ

δ − h2

)
.

Proof. For any (x0, y0) ∈ R2
+, since 0 < x(t) ≤ ϕ(t) a.s., an application of the Itô formula

yields

1

t
ln y(t) = α− σ2

2

2
− 1

t

∫ t

0

βy(s)ds− 1

t

∫ t

0

x(s)ds+
ln y0

t
+
σ2B2(t)

t

≥ α− σ2
2

2
− 1

t

∫ t

0

βy(s)ds− 1

t

∫ t

0

ϕ(s)ds+
ln y0

t
+
σ2B2(t)

t
.

Taking t→∞, by (4.3) and (4.14) we have

lim inf
t→∞

1

t

∫ t

0

y(s)ds ≥ 1

β

(
α− σ2

2

2
− lim inf

t→∞

1

t

∫ t

0

ϕ(s)ds

)
=

1

β

(
α− σ2

2

2
− σ

δ − h2

)
.

The proof is complete.
Based on the above analysis we prove the existence and uniqueness of the invariant

measure of the equation (1.2) under weak noises.

Theorem 4.7 If δ > h2 and α− σ2
2

2
− σ

δ − h2
> 0, the solution (x(t), y(t)) of (1.2) has

a unique invariant measure π2(·) with the support set R2
+.

Proof. For convenience, let 2ζ := (δ − h2)

(
α− σ2

2

2

)
− σ. Obviously, the given

conditions imply ζ > 0. Furthermore, choose a constant c > 0 small sufficiently such that

(4.18) c(δ + σ2
1) ≤ σζ.
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Define U : R2
+ → R+ by

(4.19) U(x, y) = x+
c

x
+ y2 + (δ − h2) ln(1 +

1

y
).

Computing LU(x, y) yields

LU(x, y)

=

(
σ +

ρxy

η + y
− µxy − δx

)
− c

(
σ

x2
+

ρy

x(η + y)
− µy

x
− δ + σ2

1

x

)
+
[
(2α + σ2

2)y2

−2βy3 − 2xy2
]

+ (δ − h2)

[
− σ2

2

2(y + 1)2
− α− σ2

2 − x
y + 1

+
βy

y + 1

]
.

Noting that the definition of h in (4.2) and δ > h2,
µy

x
≤ σ

2x2
+
µ2

2σ
y2, one observes that

LU(x, y) ≤ [σ − (δ − h2)x]− cσ

2x2
+
c(δ + σ2

1)

x
+ (2α + σ2

2 +
cµ2

2σ
)y2

−2βy3 + (δ − h2)

[
− σ2

2

2(y + 1)2
− α− σ2

2 − x
y + 1

+
βy

y + 1

]
.(4.20)

One can see that
lim

x→+∞,y→+∞
LU(x, y) = −∞,

which implies that there exist positive constants H1
x and H1

y such that

(4.21) LU(x, y) ≤ −ζ, ∀x ≥ H1
x, y ≥ H1

y .

Moreover, we can show that

lim
x→0+,y→+∞

LV (x, y) = −∞,

which implies that there exist positive constants h1
x < H1

x and H2
y ≥ H1

y such that

(4.22) LU(x, y) ≤ −ζ, 0 < x ≤ h1
x, y ≥ H2

y .

One goes a further step to notice that

lim
y→+∞

LU(x, y) = −∞, h1
x < x < H1

x,

which implies that there exists a positive constant Hy ≥ H2
y such that

(4.23) LU(x, y) ≤ −ζ, h1
x < x < H1

x, y ≥ Hy.

Combing (4.21), (4.22) and (4.23) yields

(4.24) LU(x, y) ≤ −ζ, ∀x > 0, y ≥ Hy.
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One notices that
lim
x→0+

LU(x, y) = −∞, 0 < y < Hy,

which implies that there exist a positive constant hx such that

(4.25) LU(x, y) ≤ −ζ, 0 < x ≤ hx, 0 < y < Hy.

Note that
lim sup

x→+∞,y→0+
LU(x, y) ≤ −2ζ.

which implies that there exist positive constants H1
x > hx and h1

y < Hy such that

(4.26) LU(x, y) ≤ −ζ, H1
x ≤ x, 0 < y ≤ h1

y.

Once more, we can see that

lim
x→+∞

LU(x, y) = −∞, h1
y < y < Hy,

which implies that there exists a positive constant Hx ≥ H1
x such that

(4.27) LU(x, y) ≤ −ζ, Hx ≤ x, h1
y < y < Hy.

Combing (4.26) and (4.27) yields

(4.28) LU(x, y) ≤ −ζ, Hx ≤ x, 0 < y < Hy.

Due to (4.18), we know that for any x > 0,

− cσ

2x2
+
c(δ + σ2

1)

x
≤ −cσ

2

(
1

x
− δ + σ2

1

σ

)2

+
c(δ + σ2

1)2

2σ
≤ c(δ + σ2

1)2

2σ
≤ ζ

2
.

From the above inequality one observes that

lim sup
y→0+

LU(x, y) ≤ −3ζ

2
, ∀x > 0,

which implies that there exists a positive constant hy < Hy such that

(4.29) LU(x, y) ≤ −ζ, 0 < x, 0 < y ≤ hy.

Therefore, (4.24), (4.25), (4.28) and (4.29) imply

(4.30) LU(x, y) ≤ −ζ, (x, y) /∈ D =
{

(x, y) ∈ R2
+ : hx < x < Hx, hy < y < Hy

}
.

By [20, pp.106-122], (x(t), y(t)) is positive recurrent with respect to D. This together
with the non-degeneracy of the diffusion coefficient yields that the solution (x(t), y(t)) of
(1.2) has a unique invariant measure π2(·).

Moreover, since the coefficients of (1.2) satisfy the conditions of [4, Corollaries 2.9 and
2.10], the support of the invariant measure π2(·) is R2

+.
By [19, p.249] and [20, p.110, Theorem 4.2; p.114, Lemma 4.10], we have the following

ergodicity result.
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Theorem 4.8 Under the conditions of Theorem 4.7, the following properties hold.

(i) For any π2-integrable f(x, y) : R2
+ → R, we have

lim
t→∞

1

t

∫ t

0

f(x(s), y(s))ds =

∫
R2
+

f(x, y)π2(dx, dy) a.s. ∀(x0, y0) ∈ R2
+.

(ii) Let ‖ · ‖var denote the total variation norm, for (x, y) ∈ R2
+, we have

lim
t→∞
‖P(t, (x, y), ·)− π2(·)‖ = 0, ∀(x, y) ∈ R2

+.

(iii) For any ε > 0, there is ζ ∈ (0, 1) such that

lim inf
t→∞

P
(
t, x, y, [ζ, ζ−1]× [ζ, ζ−1]

)
> 1− ε.

For a biological system the property (iii) of Theorem 4.8 is also called stochastically
strong permanence.

Remark 4.9 Theorems 4.7 and 4.8 predict that under the small tumor noises the distri-
bution of both tumor cells and effectors cells tends to a invariant measure π2 as t → ∞.
This means that the tumor cells approach to a dormant steady state in stochastic version.
The similar phenomenon was observed for the deterministic model (1.1) in [22].

5 Examples and numerical simulations

In this section, we mainly illustrate the effects of noise intensity on effector cells and
tumor cells. We select the data in [22] and [33], see Table 4.1 below.

Table 4.1: The Significance and value of the parameters
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Parameter Real value/unit Biological significance

a 0.18 /day the intrinsic growth rate of the TC

b 2.0× 10−9 /day Reciprocal of environmental

capacity of TC

s 1.3× 104 /piece×day the normal rate of inflow into the

tumor site for EC

d 0.0412 /day the coefficient of destruction and

migration of EC

g 2.019× 107 piece the positive constant in response

functional

q 0.1245 /day q = fK, K =
k1

k2 + k3 + k−1

r1 2.422× 10−10 /day×piece r1 = Kk3

r2 1.101× 10−7 day×piece r2 = Kk2

where f is the positive constant of response function, k1 and k−1 describe the rates of
binding of EC to TC and detachment of EC from TC without damaging cells, k2 is the rate
at which EC-TC interactions irreversibly program TC for lysis, and k3 is the rate at which
EC-TC interactions inactivate EC. The non-dimensional treatment of the equation is done
by selecting the order of magnitude scales E0 and T0 for the E and T cell populations,
respectively, where E0 = T0 = 106 cells [22, p.304]. Using the non-dimensionalization
method in [22, p.304] yields coefficients in the model (1.2) as follows

σ =
s

r2E0T0

= 0.1181, ρ =
q

r2T0

= 1.131, µ =
r1

r2

= 0.00311,

δ =
d

r2T0

= 0.3743, α =
a

r2T0

= 1.636, η =
g

T0

= 20.19,

β =
ab

r2

= 3.272× 10−3, x0 = 5, y0 = 50.

Applying the Milstein method in Higham [18, p.539] yields the discrete equation as follows
xk+1 = xk +

(
σ +

ρxkyk
η + yk

− µxkyk − δxk
)

∆t+ σ1xk
√

∆tξk +
σ2

1x
2
k

2

(
ξ2
k − 1

)
∆t,

yk+1 = yk +
(
αyk − βy2

k − xkyk
)

∆t+ σ2yk
√

∆tηk +
σ2

2y
2
k

2

(
η2
k − 1

)
∆t,

where ξk, ηk (k = 1, 2, . . .) are two independent Gaussian random variables, and both
obey the normal distribution with mean 0 and variance 1.
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Example 5.1 Choose the noise intensities σ1 = 0.2, σ2 = 2 in the stochastic tumor-
immune model (1.2). Then we have

α− σ2
2

2
= −0.364 < 0.

Theorem 4.2 tell us that the density of tumor cells y(t) is exponentially decreasing, see
the right side of Figure 1. Meanwhile, Theorem 4.2 also shows that the distribution of
effector cells x(t) converges to the unique invariant probability measure π1(·), the inverse
gamma distribution with a3 = 19.715 and b3 = 5.905. To further illustrate the result of
Theorem 4.2, we use the K-S test with a significance level of 0.05 to check if the stationary
distribution of x−1(t) is the gamma distribution. At this level of significance, by Matlab
we do confirm that the stationary distribution of x−1(t) is the Gamma distribution. Since
x−1(t) ∼ G(19.715, 5.905) is equivalent to x(t) ∼ IG(19.715, 5.905), we know that the
stationary distribution of x(t) is the inverse gamma distribution.
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Figure 1: Example 5.1. For the stochastic tumor-immune model (1.2), the red solid line
depicts the density of the effector cells x(t), the solid blue line depicts the density of the
tumor cells y(t).

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7

Figure 2: Example 5.1. The red solid line indicates the density function of the inverse
gamma IG(19.715, 5.905), the blue dotted line indicates the empirical density function
of the effector cell x(t).
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Figure 3: Example 5.1. For the deterministic tumor-immune model (1.1), the red solid
line depicts the density of effector cells x(t), the blue solid line depicts the density of
tumor cells y(t).

Furthermore, to more intuitively illustrate the result of Theorem 4.2, we plot the em-
pirical density function of x(t) and the density function of the inverse gamma distribution
IG(19.715, 5.905) in Figure 2. One observes obviously from the Figure 2 that as t→∞,
the distribution of x(t) converges to π1(·). Thus, this example illustrates the significance
of the result of Theorem 4.2.

We go a further step to compare the dynamical behaviors of the stochastic model (1.2)
with those of the deterministic model (1.1) for the same parameter values above. In [22]
the authors revealed that the density of tumor cells beginning from some initial values
approaches the dormant steady state while the tumor escapes the immune regulation
for others initial conditions. The bifurcation analysis for parameters δ and σ helps the
illustration of the phenomenon “sneaking through”. Figure 3 depicts that the path of
y(t) in the deterministic model tends to a positive equilibrium with frequency vibration,
namely, the density of tumor cells approaches the dormant steady state. However, when
the noise intensity is large satisfying α < σ2

2/2, by virtue of Theorem 4.2, y(t) in the
stochastic model (1.2) is exponentially decreasing, so the tumor cells are extinct. Figure
1 depicts the path of y(t). It is revealed that stochastic perturbations for tumor cannot
be ignored, and their existence plays a key role in the elimination of the tumor cells.

Example 5.2 In the stochastic tumor-immune model (1.2), let σ2 = 0.25, which implies
that the stochastic environment has a weak effect on the intrinsic growth rate of tumor
cells. At the same time, the binding rate of EC to TC will be decreased when the immune
response of the effector cells to the tumor cells is weak or the tumor cells are less irritating
to the effector cells. Therefore, in this example we reduce the binding rate k1 of EC and
TC in the literature [22], let ρ = 0.613. Compute

δ − h2 = 0.09089 > 0, α− σ2
2

2
− σ

δ − h2
= 0.30539 > 0.

The empirical density of the invariant measure π∗ of the stochastic tumor-immune
model (1.2). These imply that the conditions of Theorems 4.7 and 4.8 hold. By virtue
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Figure 4: Example 5.2. For stochastic tumor-immune model (1.2), the red solid line
indicates the density of the effector cells x(t), the solid blue line indicates the density of
the tumor cells y(t).

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y(t)

x(t
)

Figure 5: Example 5.2. The phase diagram of the stochastic tumor-immune model (1.2).

Figure 6: Example 5.2. The empirical density of the invariant measure π∗ of the stochastic
tumor-immune model (1.2).
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of Theorems 4.7 and 4.8 the solution (x(t), y(t)) of the stochastic tumor-immune model
(1.2) has a unique invariant probability measure π2(·), and the system is stochastically
permanent. Figure 4 depicts the trajectories of the effector cells x(t) and the tumor cells
y(t) in (1.2). Figure 5 is the phase diagram with respect to the model (1.2). Figure 6
depicts the empirical density of the invariant measure π2(·) of the stochastic model (1.2).
Therefore, this example verifies the theoretical results of Theorems 4.7 and 4.8 well.

Under the same parameter values of this example the deterministic model in [22]
predicts the existence of the dormant tumor steady state which implies the lethal tumor
cells persist with little or no increase in the population. This fact is also revealed in
stochastic version by the model (1.2) given that the intrinsic growth rate of tumor cells
are subject to the weak stochastic perturbation.

6 Concluding remarks

This paper mainly studies the dynamical behaviors of the tumor-immune model pro-
posed by [22] perturbed by the environment noise. Firstly, we prove the existence and
uniqueness of the global positive solution for the tumor-immune system by the method
of stochastic Lyapunov analysis. Next, by looking at the boundary and constructing ap-
propriate comparison equations, we obtain the asymptotic moment boundedness of the
effector cells and the tumor cells. Regarded the boundary equation (4.8) as a bridge,
it is pointed out that when tumor cells are subject to the strong noise, the density of
the tumor cells decays to zero at an exponential rate while the density of effector cells
tends to a stationary distribution. Furthermore, when the noise intensity of tumor cells
is small relatively, by analyzing the upper and lower limits of the density of tumor cells
and effector cells at time-average, we prove the existence and uniqueness of the stationary
distribution of the stochastic tumor-immune model (1.2). Moreover, the ergodicity and
the stochastic permanence is obtained. Finally, all of our main results are illustrated
and verified by numerical simulations. Overall, the fact is revealed that the intensity of
stochastic noise for tumor cells plays a key role in the elimination of tumor cells. Com-
pared with the deterministic tumour-immune model (1.1), the dynamical behaviors of the
stochastic model under strong tumor noises are completely different. On the other hand,
the phenomenon that the concentration of tumor cells tends to the dormant steady state
is verified by the stochastic tumor-immune model (1.2) under weak tumor noises.
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