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Abstract. The aim of this paper is twofold. Firstly, we derive upper and lower non-
Gaussian bounds for the densities of the marginal laws of the solutions to backward stochas-
tic differential equations (BSDEs) driven by fractional Brownian motions. Our arguments
consist of utilising a relationship between fractional BSDEs and quasilinear partial differ-
ential equations of mixed type, together with the profound Nourdin-Viens formula. In the
linear case, upper and lower Gaussian bounds for the densities and the tail probabilities
of solutions are obtained with simple arguments by their explicit expressions in terms of
the quasi-conditional expectation. Secondly, we are concerned with Gaussian estimates for
the densities of a BSDE driven by a Gaussian process in the manner that the solution can
be established via an auxiliary BSDE driven by a Brownian motion. Using the transfer
theorem we succeed in deriving Gaussian estimates for the solutions.
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1 Introduction

The problem of density estimates for solutions of stochastic equations has been extensively
studied in recent years, see e.g. the monograph [27] and references therein. Remarkably, the
celebrated Bouleau-Hirsch criterion (see [27, Theorem 2.1.2]) provides a sufficient condition
for a random variable possessing a density. Moreover, in [26], Nourdin and Viens derive
a formula for a Malliavin differentiable random variable to admit a density with lower
and upper Gaussian estimates. These results have been further extended and applied
to solutions of stochastic differential equations (SDEs) and stochastic partial differential
equations (SPDEs), among which let us just mention, for examples, the works by Debussche
and Romito [8], Delarue, Menozzi and Nualart [10], Millet and Sanz-Solé [23], Mueller and
Nualart [24], Nualart and Quer-Sardanyons [28], and the references therein.
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On the other hand, in the seminal paper [29] Pardoux and Peng initiated the theory
of nonlinear backward stochastic differential equations (BSDEs), which is of increasing
importance in stochastic control and mathematical finance (see, e.g., [12] and most recently
[33]). This class of equations is of the following form

yt = ξ +

∫ T

t
f(s, ys, zs)ds−

∫ T

t
zsdBs, t ∈ [0, T ] (1.1)

on a given filtered probability space (Ω,F ,P; {Ft}t∈[0,T ]), where T > 0 is arbitrarily fixed,
ξ is a FT -measurable random variable, the generator f : [0, T ] × R × R → R is a jointly
measurable map, and B = (Bt)t≥0 is a Brownian motion adapted to {Ft}t∈[0,T ] or simply
{Ft}t∈[0,T ] is taken as the natural filtration of B. Recall that a solution to the BSDE
(1.1) is a pair of predictable processes (y, z) with suitable integrability conditions such that
(1.1) holds P-a.s.. To date, there is a wealth of existence and uniqueness results under
various assumptions on the generators f including, for instnace, the cases of Lipschitz
or (super-)quadratic growth [11, 12, 18, 29, 30]. When dealing with applications such
as the numerical approximation of the solutions, one needs to investigate the existence
and regularity of densities for the marginal laws of (y, z). As far as we know, there are
comparably only a few works to study this problem. The first results have been derived by
Antonelli and Kohatsu-Higa [3], in which they study the existence and the estimates of the
density for yt at a fixed time t ∈ [0, T ] via the Bouleau-Hirsch criterion. Then, based on the
Nourdin-Viens formula, Aboura and Bourguin [1] have proved the existence of the density
for zt under the condition that the generator f is linear with respect to its z variable, and
further obtained the estimates on the densities of the laws of yt and zt. Recently, Mastrolia,
Possamäı and Réveillac in [21] have studied the existence of densities for marginal laws of
the solution (y, z) to (1.1) with a quadratic growth generator, and derived the estimates
on these densities. Afterwards, Mastrolia [20] has extended the results to the case of non-
Markovian BSDEs.

One of the main objective of the present paper concerns the problem of density estimates
for the following BSDE

yt = h(ηT ) +

∫ T

t
f(s, ηs, ys, zs)ds−

∫ T

t
zsdB

H
s , t ∈ [0, T ], (1.2)

where ηt = η0 +
∫ t

0 bsds +
∫ t

0 σsdB
H
s with η0, bs and σs being respectively a constant and

deterministic functions, and BH is a fractional Brownian motion with Hurst parameter
H ∈ (0, 1), the stochastic integral is the divergence-type integral. Precise assumptions on
the (deterministic and joint measurable) generator f : [0, T ]×R×R×R→ R and h : R→ R
will be specified in later sections. Let us recall that, BH with Hurst parameter H ∈ (0, 1)
is a center Gaussian process with covariance

RH(t, s) := E
(
BH
t B

H
s

)
=

1

2

(
t2H + s2H − |t− s|2H

)
, t, s ∈ [0, T ].

This implies that for each p ≥ 1, there holds E(|BH
t − BH

s |p) = C(p)|t − s|pH . Then
BH is (H − ε)-order Hölder continuous for any ε > 0 and is an H-self similar process.
This, together with the fact that B1/2 is a Brownian motion, converts fractional Brownian
motion into a natural generalization of Brownian motion and leads to many applications
in modelling physical phenomena and finance behaviours.
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We mention that there are several papers concerning the existence and uniqueness results
of solutions for (1.2). Biagini, Hu, Øksendal and Sulem in [6] first studied linear fractional
BSDE with H ∈ (1/2, 1) which are based on fractional Clark-Ocone formula and the
Girsanov transformation. In the spirit of the four step scheme introduced by Ma, Protter
and Yong [19] for BSDEs perturbed by a standard Brownian motion, Bender [4] constructed
an explicit solutions for a kind of linear fractional BSDEs with H ∈ (0, 1) via the solution of
some PDE and fractional Itô formula. In the case of nonlinear fractional BSDEs with H ∈
(1/2, 1), Hu and Peng [17] first proved the existence and uniqueness of the solution through
the notion of quasi-conditional expectation introduced in [16]. Then, based on [17], Maticiuc
and Nie in [22] made some improvements of analysis and extended to the case of fractional
backward stochastic variational inequalities, and Fei, Xia and Zhang in [13] generalized the
investigation to BSDEs driven by both standard and fractional Brownian motions. In a
multivariate setting where each of the components is an independent fractional Brownian
motion BHi

i with Hi ∈ (1/2, 1), Hu, Ocone and Song in [15] solved fractional BSDEs by
using their relation to PDEs, and they further derived a comparison theorem.

In the present paper, with the help of the connection between the solution to BSDE
(1.2) and the solution to its associated PDE of mixed type, we shall give some sufficient
conditions to ensure the existence of densities for marginal laws of the solution (y, z) to
BSDE (1.2). Moreover, we will derive non-Gaussian tail estimates of densities. To the best
of our knowledge these kind of estimates for BSDE (1.2) are not available in the existing
literature. When

f(s, ηs, ys, zs) = αs + βsys + γtzs,

i.e., BSDE (1.2) is linear, the Gaussian bounds for the densities and the tail probabilities of
solutions will be derived with a direct and simpler arguments by their explicit expressions
in terms of the quasi-conditional expectation.

Our paper is also dedicated to obtaining Gaussian bounds for the densities of the solution
to BSDE

yt = h(XT ) +

∫ T

t
f(s,Xs, ys, zs)dV (t)−

∫ T

t
zsd
�Xs, (1.3)

where X is a centered Gaussian process with a strictly increasing continuous variance
function V (t) = VarXt, the stochastic integral is the Wick-Itô integral defined via the S-
transformation and the Wick product. When X is a Brownian motion, the above Wick-Itô
integral coincides with the classical Itô integral. In [5] Bender shows the existence and
uniqueness results and then obtains a strict comparison theorem for BSDE (1.3) using the
transfer theorem which can transfer the concerned problems to an auxiliary BSDE driven
by a Brownian motion. In [5] the author also compares this type of equations with other
BSDEs driven by Gaussian non-semimartingales, especially BSDEs driven by fractional
Brownian motion BH with H ∈ (1/2, 1). The final objective of the present paper is to
deepen the investigation of BSDE (1.3). We study the Gaussian bounds for marginal laws
of the solution (y, z) to BSDE (1.3) via the transfer theorem.

The rest of our paper is structured as follows. Section 2, the next section, presents some
basic elements of stochastic calculus with respect to fractional Brownian motion which are
needed in later sections. We investigate the non-Gaussian bounds for the densities of the
nonlinear fractional BSDEs in Section 3. Section 4 is devoted to the derivation of the
Gaussian bounds for the densities and the tail probabilities of linear fractional BSDEs.
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Finally in Section 5, we provide the Gaussian bounds for the densities of BSDEs driven by
Gaussian processes.

2 Preliminaries

In this section, we shall give some basic elements of stochastic calculus with respect to
fractional Brownian motion. For a deeper and detailed discussion, we refer the reader to
[2, 7, 9] and [27].

Let Ω be the canonical probability space C0([0, T ],R), i.e., the Banach space of contin-
uous functions on [0, T ] vanishing at time 0, equipped with the supremum norm, and F
is taken to be the Borel σ-algebra. Let P be the unique probability measure on Ω such
that the canonical process BH = (BH

t )t∈[0,T ] is a fractional Brownian motion with Hurst
parameter H ∈ (0, 1).

Let E be the space of step functions on [0, T ], and H the closure of E with respect to
the following scalar product determined by the covariance RH of BH

〈I[0,t], I[0,s]〉H = RH(t, s).

By the bounded linear transformation theorem, the mapping I[0,t] 7→ BH
t can be extended

to an isometry between H and the Gaussian space H1 associated with BH . Denote this
isometry by φ 7→ BH(φ). When H ∈ (1/2, 1) it can be shown that L1/H([0, T ]) ⊂ H, and
when H ∈ (0, 1/2) there holds H ⊂ L2([0, T ]). For H ∈ (1/2, 1), we shall use the following
representation of the inner product in H:

〈φ, ψ〉H = CH

∫ T

0

∫ T

0
φuψv|u− v|2H−2dudv, (2.1)

where CH := H(2H − 1).

Let S denote the totality of smooth and cylindrical random variables of the form

F = f(BH(φ1), · · ·, BH(φn)),

where n ≥ 1, f ∈ C∞b (Rn), the set of f and all its partial derivatives are bounded, φi ∈
H, 1 ≤ i ≤ n. The Malliavin derivative of F , denoted by DHF , is defined as the H-valued
random variable

DHF =

n∑
i=1

∂f

∂xi
(BH(φ1), · · ·, BH(φn))φi.

For any p ≥ 1, we define the Sobolev space D1,p
H as the completion of S with respect to the

norm

‖F‖p1,p = E|F |p + E‖DHF‖pH.

Next, let F be in D1,2
H and write DHF := ΦF (BH), where ΦF : RH → H is a measurable

mapping. Set

gF (x) =

∫ ∞
0

e−θE
[
E′
[
〈ΦF (BH), Φ̃θ

F (BH)〉H
]
|F − EF = x

]
dθ, x ∈ R (2.2)
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where Φ̃θ
F (BH) := ΦF (e−θBH +

√
1− e−2θB′H) with B′H an independent copy of BH such

that BH and B′H are defined on the product probability space (Ω × Ω′,F × F ′,P × P′).
We recall the following result, cf. [26, Theorem 3.1 and Proposition 3.7], which presents
a criterion for a Malliavin differentiable random variable to have a density with Gaussian
bounds based on the above function g.

Proposition 2.1 The law of F has a density ρF with respect to the Lebesgue measure if
and only if gF (F − EF ) > 0 a.s. In this case, Supp(ρF ) is a closed interval of R and for all
z ∈ Supp(ρF ), there holds

ρF (z) =
E|F − EF |

2gF (z − EF )
exp

(
−
∫ z−EF

0

udu

gF (u)

)
.

Furthermore, if there exist constants c1, c2 > 0 such that

c1 ≤ gF (x) ≤ c2, P− a.s.,

then the law of F has a density ρ satisfying, for almost all x ∈ R,

E|F − EF |
2c2

exp

(
−(x− EF )2

2c1

)
≤ ρ(x) ≤ E|F − EF |

2c1
exp

(
−(x− EF )2

2c2

)
.

Besides, by [26, Theorem 4.1] (see also [25, Proposition 2.2]) we then have the following
tail estimates.

Proposition 2.2 Let F ∈ D1,2
H with EF = 0. If 0 < gF (x) ≤ a1x+a2, a.s. for some a1 ≥ 0 and

a2 > 0, then

P(F ≥ x) ≤ exp

(
− x2

2a1x+ 2a2

)
and P(F ≤ −x) ≤ exp

(
− x2

2a2

)
, x > 0.

3 BSDEs driven by fractional Brownian motions

The objective of this section is to study the non-Gaussian densities estimates for the solution
of the following BSDE driven by fractional Brownian motion{

dyt = f(t, ηt, yt, zt)dt− ztdBH
t ,

yT = h(ηT ),
(3.1)

with

ηt := η0 +

∫ t

0
bsds+

∫ t

0
σsdB

H
s .

Here η0 is a given constant, b and σ are bounded deterministic functions such that σt 6= 0
for all t ∈ [0, T ], H ∈ (1

2 , 1). A pair of Ft-adapted stochastic processes (y, z) is called a
solution to the equation (3.1) if

yt = h(ηT ) +

∫ T

t
f(s, ηs, ys, zs)ds−

∫ T

t
zsdB

H
s , t ∈ [0, T ].

We begin with the assumption (H1) below
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(i) f : [0, T ]× R3 → R is differentiable with respect to the third component and there exists
a nonnegative constant K such that, for all t ∈ [0, T ], x, y1, y2, z1, z2 ∈ R,

|f(t, x, y1, z1)− f(t, x, y2, z2)|+ |fy(t, x, y1, z1)− fy(t, x, y2, z2)| ≤ K(|y1 − y2|+ |z1 − z2|).

(ii) h : R→ R is continuously differentiable and of polynomial growth.

Due to [15, Theorem 3.4], the condition (H1) ensures that there exists a unique solution
(y, z) to BSDE (3.1), which is given by yt = u(t, ηt) and zt = σtux(t, ηt) via some deter-
ministic function u : [0, T ] × R → R, where ux(t, x) := ∂

∂xu(t, x). The argument in [15] is
based on a connection between this equation and a quasilinear PDE of mixed type. In the
remaining part of this section, we assume (H1) holds and moreover the unique solution is
of the above form. We aim to show the non-Gaussian densities estimates for the marginal
laws of (y, z) at a fixed time t ∈ (0, T ). To this end, we let

%t = CH

∫ t

0

∫ t

0
σuσv|u− v|2H−2dudv, p%t(x) =

1√
2π%t

e
− x2

2%t

and for each h ∈ L0(R), define

h := inf{γ > 0 : lim sup
|x|→+∞

|h(x)|
|x|γ

<∞}, h := inf{γ > 0 : lim inf
|x|→+∞

|h(x)|
|x|γ

<∞}.

Clearly, the above h and h can describe the asymptotic growth of h in the neighborhood
of +∞ and −∞.

Our main result of this section reads as follows

Theorem 3.1 Let t ∈ (0, T ]. Suppose that 0 < u(t, ·) < +∞, ux(t, ·) < +∞ and there exist

positive constants L, λ satisfying ux(t, ·) ≥ 1
L(1+|·|λ)

. Then, the law of yt = u(t, ηt) has a density

ρyt , and for any ε, δ > 0 there exist positive constants Cε,t and Cδ,t depending on ε, t and δ, t,
respectively, such that

E|yt − Eyt|

2C(ε, δ)%t
(
1 + |z|ε̄δ̄

) (
1 + |z|ε̄δ̄ + %

ε̄
2
t

) exp

(
− 1

C̃(δ)%t

∫ z−Eyt

0
u
(

1 + |u+ Eyt|2λδ̄
)

du

)
≤ ρyt(z)

≤ E|yt − Eyt|
2C̃(δ)%t

(
1 + |z|2λδ̄

)
exp

− 1

C(ε, δ)%t

∫ z−Eyt

0

udu(
1 + |u+ Eyt|ε̄δ̄

) (
1 + |u+ Eyt|ε̄δ̄ + %

ε̄
2
t

)
 ,

(3.2)

where

C(ε, δ) := sup
t∈[0,T ]

[
C2
ε,t

(
1 + C ε̄δ,t2

(ε̄−1)+

)
·

((
1 + 3(ε̄−1)+

∣∣∣∣η0 +

∫ t

0
bsds

∣∣∣∣ε̄ +
C ε̄δ,t6

(ε̄−1)+

1 + ε̄

)
∨

(
Γ
(

1+ε̄
2

)
2
ε̄
2

√
π

))]
and

C̃(δ) :=
1

3(λ−1)+2L2(1 + 2(2λ−1)+C2λ
δ,t )
· sup
t∈[0,T ]

∫
R

p%t(z)

1 +
∣∣∣η0 +

∫ t
0 bsds

∣∣∣λ + |z|λ
dz

with ε̄ := ux(t, ·) + ε and δ̄ := u−1(t, ·) + δ.
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Proof. By the fact that u(t, ·) is continuous and increasing, we easily verify that yt has
a density ρyt . In order to prove (3.2), we rely heavily on Proposition 2.1.

Notice first that for 0 < u ≤ t ≤ T , we have DH
u yt = ux(t, ηt)σu. Then, it follows that

Φyt(B
H) = ux(t, ηt)σ·

and

Φ̃θ
yt(B

H) = Φyt

(
e−θBH +

√
1− e−2θB′H

)
= ux

(
t,
(

1− e−θ
)(

η0 +

∫ t

0
bsds

)
+ e−θηt +

√
1− e−2θ

∫ t

0
σsdB

′H
s

)
σ·.

Hence, using (2.2) and (2.1), we deduce that for y ∈ R,

gyt(y)

=

∫ ∞
0

e−θE
[
E′
[
〈Φyt(B

H), Φ̃θ
yt(B

H)〉H
] ∣∣∣yt − Eyt = y

]
dθ

= %t

∫ ∞
0

e−θE
[
ux(t, ηt)

E′ux
(
t,
(

1− e−θ
)(

η0 +

∫ t

0
bsds

)
+ e−θηt +

√
1− e−2θ

∫ t

0
σsdB

′H
s

) ∣∣∣ηt = u−1(t, y + Eyt)
]
dθ

= %tux(t, u−1(t, y + Eyt))

·
∫ ∞

0
e−θ

∫
R
ux

(
t,
(

1− e−θ
)(

η0 +

∫ t

0
bsds

)
+ e−θu−1(t, y + Eyt) +

√
1− e−2θz

)
p%t(z)dzdθ.

(3.3)

With the relation (3.3) in hand, we shall follow the strategy designed in [21] to obtain
upper and lower bounds for gyt .

Upper bound. Since u(t, ·) ∈ (0,∞), we know from [21, Lemma 5.2] that u−1(t, ·) ∈
(0,∞). Taking into account the definitions of ux(t, ·) and u−1(t, ·), we have for each ε > 0

(0 <)ux(t, z) ≤ Cε,t(1 + |z|ux(t,·)+ε), ∀z ∈ R, (3.4)

and for each δ > 0

|u−1(t, z)| ≤ Cδ,t(1 + |z|u−1(t,·)+δ), ∀z ∈ R, (3.5)

where Cε,t and Cδ,t are both constants depending on ε, t and δ, t respectively.

For the convenience of the notation, we let ε̄ = ux(t, ·) + ε and δ̄ = u−1(t, ·) + δ. Then
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plugging the inequalities (3.4) and (3.5) and resorting to the Cr-inequality, we have

gyt(y)

≤ %tC
2
ε,t

(
1 + |u−1(t, y + Eyt)|ε̄

)
·
∫ ∞

0
e−θ

∫
R

(
1 +

∣∣∣∣(1− e−θ
)(

η0 +

∫ t

0
bsds

)
+ e−θu−1(t, y + Eyt) +

√
1− e−2θz

∣∣∣∣ε̄
)
p%t(z)dzdθ

≤ %tC
2
ε,t

(
1 + |u−1(t, y + Eyt)|ε̄

)
·
∫ ∞

0
e−θ

∫
R

(
1 + 3(ε̄−1)+

[∣∣∣∣η0 +

∫ t

0
bsds

∣∣∣∣ε̄ + e−ε̄θ|u−1(t, y + Eyt)|ε̄ + |z|ε̄
])

p%t(z)dzdθ

= %tC
2
ε,t

(
1 + |u−1(t, y + Eyt)|ε̄

)
·

(
1 + 3(ε̄−1)+

∣∣∣∣η0 +

∫ t

0
bsds

∣∣∣∣ε̄ +
3(ε̄−1)+

1 + ε̄
|u−1(t, y + Eyt)|ε̄ +

Γ
(

1+ε̄
2

)
2
ε̄
2

√
π

%
ε̄
2
t

)
≤ %tC

2
ε,t

(
1 + C ε̄δ,t2

(ε̄−1)+

(
1 + |y + Eyt|ε̄δ̄

))
·

(
1 + 3(ε̄−1)+

∣∣∣∣η0 +

∫ t

0
bsds

∣∣∣∣ε̄ +
C ε̄δ,t6

(ε̄−1)+

1 + ε̄

(
1 + |y + Eyt|ε̄δ̄

)
+

Γ
(

1+ε̄
2

)
2
ε̄
2

√
π

%
ε̄
2
t

)
≤ C(ε, δ)%t

(
1 + |y + Eyt|ε̄δ̄

)(
1 + |y + Eyt|ε̄δ̄ + %

ε̄
2
t

)
(3.6)

where

C(ε, δ) = sup
t∈[0,T ]

[
C2
ε,t

(
1 + C ε̄δ,t2

(ε̄−1)+

)
·

((
1 + 3(ε̄−1)+

∣∣∣∣η0 +

∫ t

0
bsds

∣∣∣∣ε̄ +
C ε̄δ,t6

(ε̄−1)+

1 + ε̄

)
∨

(
Γ
(

1+ε̄
2

)
2
ε̄
2

√
π

))]
.

Lower bound. Due to the condition on ux(t, ·), the Cr-inequality and (3.5), we obtain

gyt(y)

≥ %t
L2(1 + |u−1(t, y + Eyt)|λ)

·
∫ ∞

0
e−θ

∫
R

p%t(z)

1 +
∣∣∣(1− e−θ)(η0 +

∫ t
0 bsds

)
+ e−θu−1(t, y + Eyt) +

√
1− e−2θz

∣∣∣λdzdθ

≥ %t
L2(1 + |u−1(t, y + Eyt)|λ)

·
∫
R

p%t(z)

1 + 3(λ−1)+

(∣∣∣η0 +
∫ t

0 bsds
∣∣∣λ + |u−1(t, y + Eyt)|λ + |z|λ

)dz

≥ 1

3(λ−1)+L2
·
∫
R

p%t(z)

1 +
∣∣∣η0 +

∫ t
0 bsds

∣∣∣λ + |z|λ
dz · %t

(1 + |u−1(t, y + Eyt)|λ)2

≥ 1

3(λ−1)+2L2
·
∫
R

p%t(z)

1 +
∣∣∣η0 +

∫ t
0 bsds

∣∣∣λ + |z|λ
dz · %t

1 + C2λ
δ,t

(
1 + |y + Eyt|δ̄

)2λ
≥ C̃(δ)

%t

1 + |y + Eyt|2λδ̄
, (3.7)
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where C̃(δ) = 1

3(λ−1)+2L2(1+2(2λ−1)+C2λ
δ,t)
· sup
t∈[0,T ]

∫
R

p%t (z)

1+|η0+
∫ t
0 bsds|

λ
+|z|λ

dz.

Therefore, applying Proposition 2.1, together with (3.6) and (3.7), we complete the proof.
�

Remark 3.2 Let us have a close look at the lower bound of ρyt . In fact, a direct computation
shows that∫ z−Eyt

0
u
(

1 + |u+ Eyt|2λδ̄
)

du =
1

2
|z − Eyt|2 +

1

2(1 + λδ̄)

(
|z|2(1+λδ̄) − |Eyt|2(1+λδ̄)

)
− |Eyt|

1 + 2λδ̄

(
sgn(zEyt)|z|1+2λδ̄ − |Eyt|1+2λδ̄

)
=: χ(z,Eyt).

(3.8)

Then, it yields the following

ρyt(z) ≥
E|yt − Eyt|

2C(ε, δ)%t
(
1 + |z|ε̄δ̄

) (
1 + |z|ε̄δ̄ + %

ε̄
2
t

) exp

(
−χ(z,Eyt)

C̃(δ)%t

)
.

As for the upper bound in Theorem 3.1, we get the following result.

Corollary 3.3 Under the assumptions in Theorem 3.1, there exists z0 > 0 such that

ρyt(z) ≤
E|yt − Eyt|

2C̃(δ)%t

(
1 + |z|2λδ̄

)
exp

(
−|z − Eyt|2(1−ε̄δ̄) − |sgnz · z0 − Eyt|2(1−ε̄δ̄)

4(1− ε̄δ̄)C(ε, δ)%t

)

holds for all |z| > z0.

Proof. We first observe that by Theorem 3.1 our problem can be reduced to show that
the following inequality∫ z−Eyt

0

udu(
1 + |u+ Eyt|ε̄δ̄

) (
1 + |u+ Eyt|ε̄δ̄ + %

ε̄
2
t

)
≥ 1

4(1− ε̄δ̄)

(
|z − Eyt|2(1−ε̄δ̄) − |sgnz · z0 − Eyt|2(1−ε̄δ̄)

)
(3.9)

holds for each |z| > z0. In order to prove (3.9), we start by noticing that

lim
u→+∞

u(
1 + |u+ Eyt|ε̄δ̄

) (
1 + |u+ Eyt|ε̄δ̄ + %

ε̄
2
t

) 1
u
|u|2ε̄δ̄

= 1,

and then for some sufficiently large u0 > 0, we have for u ≥ u0

u(
1 + |u+ Eyt|ε̄δ̄

) (
1 + |u+ Eyt|ε̄δ̄ + %

ε̄
2
t

) ≥ u

2|u|2ε̄δ̄
.

Consequently, there exists z0 > 0 large enough such that (3.9) holds for any |z| ≥ z0.
Indeed, when z ≤ −z0 (the choosing of z0 depends on the above argument and moreover
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satisfies z0 − |Eyt| > 0), we get∫ z−Eyt

0

udu(
1 + |u+ Eyt|ε̄δ̄

) (
1 + |u+ Eyt|ε̄δ̄ + %

ε̄
2
t

)
=

∫ 0

z−Eyt

−udu(
1 + |u+ Eyt|ε̄δ̄

) (
1 + |u+ Eyt|ε̄δ̄ + %

ε̄
2
t

)
≥

∫ −z0−Eyt
z−Eyt

−udu(
1 + |u+ Eyt|ε̄δ̄

) (
1 + |u+ Eyt|ε̄δ̄ + %

ε̄
2
t

)
≥

∫ −z0−Eyt
z−Eyt

−udu

2|u|2ε̄δ̄

=
1

4(1− ε̄δ̄)

(
(−z + Eyt)2(1−ε̄δ̄) − (z0 + Eyt)2(1−ε̄δ̄)

)
=

1

4(1− ε̄δ̄)

(
|z − Eyt|2(1−ε̄δ̄) − |sgnz · z0 − Eyt|2(1−ε̄δ̄)

)
.

Along the same lines as above, we can easily check the case z ≥ z0. This completes our
proof. �

Example 3.4 Let us consider the BSDE (3.1) with T = 1, h(x) = x3 + x, f(s, x, y, z) = x, bs =
0, σs = 1 and η0 = 0, that is

yt = (BH
1 )3 +BH

1 +

∫ 1

t
BH
s ds−

∫ 1

t
zsdB

H
s .

Then, by [22, Theorem 3] and [31, Theorem 4.3.1] we can show that the unique solution is given
by

yt = (BH
t )3 + (2− t)BH

t , zt = 3(BH
t )2 + 2− t, t ∈ [0, 1],

from which we derive that yt admits a density ρyt with respect to the Lebesgue measure. How-
ever, it is obvious that yt does not have Gaussian tail. Since u(t, x) = x3 + (2 − t)x, ux(t, x) =
3x2 + 2− t, we can easily verify that the conditions in Theorem 3.1 hold. Consequently, for each
t ∈ (0, 1] we can provide non-Gaussian type tail estimates for the density ρyt due to Theorem
3.1 and Corollary 3.3.

Notice that zt = σtux(t, ηt) and then DH
u zt = σtuxx(t, ηt)σ·, following exactly the same

line as the proof of Theorem 3.1 then yields a result for zt, which we state as follows

Theorem 3.5 Let t ∈ (0, T ]. Suppose that 0 < ux(t, ·) < +∞, uxx(t, ·) < +∞ and there exist

positive constants L, λ satisfying uxx(t, ·) ≥ 1
L(1+|·|λ)

. Then the law of zt has a density ρzt , and

for any ε, δ > 0 there exists positive constants C1 and C2 such that

E|zt − Ezt|

C1σ2
t %t
(
1 + |z|ε̄δ̄

) (
1 + |z|ε̄δ̄ + %

ε̄
2
t

) exp

(
− 1

C2σ2
t %t

∫ z−Ezt

0
u
(

1 + |u+ Ezt|2λδ̄
)

du

)
≤ ρzt(z)

≤ E|zt − Ezt|
C2σ2

t %t

(
1 + |z|2λδ̄

)
exp

− 1

C1σ2
t %t

∫ z−Ezt

0

udu(
1 + |u+ Ezt|ε̄δ̄

) (
1 + |u+ Ezt|ε̄δ̄ + %

ε̄
2
t

)
 .
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Similar to Remark 3.2 and Corollary 3.3, we have the following estimates.

Corollary 3.6 With the same preamble as in Theorem 3.5, then the density ρzt fulfills the
following bounds

ρzt(z) ≥
E|zt − Ezt|

C1σ2
t %t
(
1 + |z|ε̄δ̄

) (
1 + |z|ε̄δ̄ + %

ε̄
2
t

) exp

(
−χ(z,Ezt)
C2σ2

t %t

)
, z ∈ R

and

ρzt(z) ≤
E|zt − Ezt|
C2σ2

t %t

(
1 + |z|2λδ̄

)
exp

(
−|z − Ezt|2(1−ε̄δ̄) − |sgnz · z0 − Ezt|2(1−ε̄δ̄)

4(1− ε̄δ̄)C1σ2
t %t

)
, |z| > z0

with some positive constant z0.

Example 3.7 Let us consider the following BSDE

yt = h(BH
1 ) +

∫ 1

t
(BH

s )2ds−
∫ 1

t
zsdB

H
s ,

where h(x) = x4 + 2x2. According to [22, Theorem 3] and [31, Theorem 4.3.1], we deduce that
the unique solution is shown by

yt = (BH
t )4 + (3− t)(BH

t )2, zt = 4(BH
t )3 + 2(3− t)BH

t , t ∈ [0, 1].

In this case, u(t, x) = x4 + (3− t)x2, ux(t, x) = 4x3 + 2(3− t)x and uxx(t, x) = 12x2 + 2(3− t)
for all (t, x) ∈ [0, 1] × R. It can be verified that the assumptions in Theorem 3.5 are satisfied.
So, we obtain that for all t ∈ (0, 1], zt has a density ρzt with respect to the Lebesgue measure
with non-Gaussian type lower and upper bounds by Theorem 3.5 and Corollary 3.6.

We conclude this section with a remark.

Remark 3.8 (i) Comparing to the relevant results on BSDE driven by the standard Brownian
motion (H = 1

2) proved in [21, Theorem 5.6], it is clear to see that our results apply to more

general BSDEs since we replace B
1
2
t with ηt = η0 +

∫ t
0 bsds +

∫ t
0 σsdB

H
s and treat the case

of fractional Brownian motion with arbitrary H ∈ (1
2 , 1) as driving process. Furthermore, an

explicit low bound for the density of the solution yt without any restriction for the variable z is
shown in our Remark 3.2.

(ii) The advantage of the above method of estimating densities allows us to obtain non-
Gaussian type lower and upper bounds. The drawback is that Theorem 3.1 and Theorem 3.5
must be completed by an analysis of the following PDE{

ut(t, x) + 1
2%
′
tuxx(t, x) + b(t)ux(t, x) + f(t, x, u(t, x), σtux(t, x)) = 0,

u(T, x) = h(x),

which is studied in [15]. In the next two sections, we will present the Gaussian type densities
estimates results where the only assumptions are those put on the data of BSDEs.
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4 Linear BSDEs driven by fractional Brownian motions

In the previous section, we have presented the non-Gaussian type densities estimates for the
fractional BSDE (3.1), which are indeed obtained by using the relation between this type
of equation and a quasilinear PDE of mixed type. While the BSDE (3.1) is linear, we are
able to prove the Gaussian type bounds and the tail probabilities with a direct and simpler
method based on the explicit expression of the solutions in terms of the quasi-conditional
expectation.

Consider the following linear BSDE{
dyt = − (αt + βtyt + γtzt) dt− ztdBH

t ,
yT = ξ,

(4.1)

where αt, βt, γt are given as continuous and adapted processes.

Notice that BSDE (4.1) admits a unique solution under the condition (4.2) below. More
specifically, set ςt := γt +

∫ t
0 D

H
t βsds, B̄

H
t := BH

t +
∫ t

0 ςsds and

Rt := exp

[
−
∫ t

0

(
K−1
H

∫ ·
0
ςrdr

)
(s)dWs −

1

2

∫ t

0

(
K−1
H

∫ ·
0
ςrdr

)2

(s)ds

]
.

It follows from the Novikov condition, i.e.

E exp

[
1

2

∫ T

0

(
K−1
H

∫ ·
0
ςrdr

)2

(s)ds

]
<∞, (4.2)

that (Rt)t∈[0,T ] is an exponential martingale and then the Girsanov theorem implies that

(B̄H)t∈[0,T ] is a fractional Brownian motion under the probability measure Q := RTdP. Let

ρt := exp
{∫ t

0 βsds
}

. Applying the fractional integration by parts formula to ρtyt yields

that

d(ρtyt) = −αtρtdt− ρtztdB̄H
t . (4.3)

Then, there is a unique solution for BSDE (4.1), and moreover

yt = ρ−1
t ÊQ

[
ρT ξ +

∫ T

t
αsρsds|Ft

]
, (4.4)

where Ê stands for the quasi-conditional expectation. More details can be found in [17,
Theorem 5.1] or [32].

Next, we want to show the existence of densities for the marginal laws of the solution
(y, z) to BSDE (4.2) and then to derive the Gaussian bounds for them via the relation
(4.4) and Proposition 2.1. To this end, let αt, βt, γt be given continuous and deterministic
functions and ξ = h(ηT ), in which η is defined in the previous section. Put

pt(x) :=
1√
2πt

e−
x2

2t ,

and further denote

Ptg(x) :=

∫
R
pt(x− y)g(y)dy.

We first state the following useful lemma concerning the representation of the quasi-
conditional expectation.

12



Lemma 4.1 Assume that g : R → R is a measurable function of polynomial growth, then the
following holds

Ê (g(ηT )|Ft) = P‖σ‖2T−‖σ‖2t g
(
η0 +

∫ T

0
bsds+

∫ t

0
σsdB

H
s

)
.

Proof. Though the proof is similar to the one proposed in [17, Theorem 3.8], yet we
give a justification for the convenience of the reader. For t ∈ [0, T ], let η̃t := η0 +∫ T

0 bsds +
∫ t

0 σsdB
H
s . Applying the Itô formula (see [17, Theorem 2.3] or [22, Corollary

35]) to P‖σ‖2t−‖σ‖2sg(η̃s), we get

g(η̃t) = P‖σ‖2t g(η̃0) +

∫ t

0

∂

∂x
P‖σ‖2t−‖σ‖2sg(η̃s)σsdB

H
s . (4.5)

Choosing t = T in the above equation and then taking the quasi-conditional expectation
with respect to Ft, we have

Ê (g(η̃T )|Ft) = P‖σ‖2T
g(η̃0) +

∫ t

0

∂

∂x
P‖σ‖2T−‖σ‖2s

g(η̃s)σsdB
H
s . (4.6)

By the semigroup property of Pt, it is easy to verify that, for 0 ≤ s ≤ t ≤ T ,

∂

∂x
P‖σ‖2T−‖σ‖2s

g(x) = P‖σ‖2T−‖σ‖
2
t

∂

∂x
P‖σ‖2t−‖σ‖2sg(x).

Hence, this, together with (4.6) and (4.5), yields the desired result. �

Frow now on, let us suppose the following
(H2) h : R → R is twice differentiable and 0 < c ≤ h′ ≤ C, 0 < c̃ ≤ h′′ ≤ C̃, where c, C, c̃
and C̃ are constants.
Besides, we set

ϑ1(t) := %t exp

[
2(T − t) inf

s∈[0,T ]
βs

]
and

ϑ2(t) := %t exp

[
2(T − t) sup

s∈[0,T ]
βs

]
.

Recall that %t is defined in Section 3.

We are now in the position to state our main result of this section.

Theorem 4.2 Assume that (H2) holds. Then, for each t ∈ (0, T ], yt and zt possess densities
pyt and pzt , respectively. Moreover, for almost all x ∈ R, pyt and pzt satisfy, respectively, the
following bounds

E|yt − Eyt|
2C2ϑ2(t)

exp

(
−(x− Eyt)2

2c2ϑ1(t)

)
≤ pyt(x) ≤ E|yt − Eyt|

2c2ϑ1(t)
exp

(
−(x− Eyt)2

2C2ϑ2(t)

)
.

and

E|zt − Ezt|
2C̃2ϑ2(t)σ2

t

exp

(
− (x− Ezt)2

2c̃2ϑ1(t)σ2
t

)
≤ pzt(x) ≤ E|zt − Ezt|

2c̃2ϑ1(t)σ2
t

exp

(
− (x− Ezt)2

2C̃2ϑ2(t)σ2
t

)
.
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Proof. By (4.4), we obtain yt = e
∫ T
t βsdsÊQ[ξ|Ft] + ρ−1

t

∫ T
t αsρsds. Hence, we have

DH
u yt = e

∫ T
t βsdsDH

u

(
ÊQ[ξ|Ft]

)
. (4.7)

On the other hand, from Lemma 4.1, we get

ÊQ[ξ|Ft] = ÊQ[h(ηT )|Ft] = ÊQ
[
h

(
η0 +

∫ T

0
bsds−

∫ T

0
σsγsds+

∫ T

0
σsdB̄

H
s

)
|Ft
]

= P‖σ‖2T−‖σ‖
2
t
h

(
η0 +

∫ T

0
bsds−

∫ T

0
σsγsds+

∫ t

0
σsdB̄

H
s

)
= P‖σ‖2T−‖σ‖

2
t
h

(
η0 +

∫ T

0
bsds−

∫ T

t
σsγsds+

∫ t

0
σsdB

H
s

)
.(4.8)

Then, for u ∈ [0, t]

DH
u

(
ÊQ[ξ|Ft]

)
= σuP‖σ‖2T−‖σ‖

2
t
h′
(
η0 +

∫ T

0
bsds−

∫ T

t
σsγsds+

∫ t

0
σsdB

H
s

)
. (4.9)

This allows us to deduce from (4.7) that, for u ∈ [0, t]

DH
u yt = σue

∫ T
t βsdsP‖σ‖2T−‖σ‖

2
t
h′
(
η0 +

∫ T

0
bsds−

∫ T

t
σsγsds+

∫ t

0
σsdB

H
s

)
. (4.10)

Notice that

Φyt(B
H) = DHyt = σ·e

∫ T
t βsdsP‖σ‖2T−‖σ‖

2
t
h′
(
η0 +

∫ T

0
bsds−

∫ T

t
σsγsds+

∫ t

0
σsdB

H
s

)
,

then

Φ̃θ
yt(B

H)

= Φyt(e
−θBH +

√
1− e−2θB′H)

= σ·e
∫ T
t βsdsP‖σ‖2T−‖σ‖

2
t
h′
(
η0 +

∫ T

0
bsds−

∫ T

t
σsγsds+ e−θ

∫ t

0
σsdB

H
s +

√
1− e−2θ

∫ t

0
σsdB

′H
s

)
.

Thus, according to (2.1), we have

〈Φyt(B
H), Φ̃θ

yt(B
H)〉H = %tκ(t, θ),

where

κ(t, θ)

= e2
∫ T
t βsdsP‖σ‖2T−‖σ‖

2
t
h′
(
η0 +

∫ T

0
bsds−

∫ T

t
σsγsds+

∫ t

0
σsdB

H
s

)
×P‖σ‖2T−‖σ‖2th

′
(
η0 +

∫ T

0
bsds−

∫ T

t
σsγsds+ e−θ

∫ t

0
σsdB

H
s +

√
1− e−2θ

∫ t

0
σsdB

′H
s

)
with c2e2(T−t) infs∈[0,T ] βs ≤ κ(t, θ) ≤ C2e2(T−t) sups∈[0,T ] βs due to (H2). Consequently, we
arrive at the following bound

c2ϑ1(t) ≤ gyt ≤ C2ϑ2(t). (4.11)
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Next, we devote to computing DH
· zt and then estimating gzt . From (4.3), we know

y0 − ρT ξ −
∫ T

0
αtρtdt =

∫ T

0
ρtztdB̄

H
t . (4.12)

On the other hand, by the fractional Clark-Ocone formula (see [14] and [16]) on (B̄H ,Q),
we can write

y0 − ρT ξ −
∫ T

0
αtρtdt =

∫ T

0
ÊQ
[
DH
t

(
y0 − ρT ξ −

∫ T

0
αtρtdt

)
|Ft
]

dB̄H
t

= −
∫ T

0
ρT ÊQ [DH

t ξ|Ft
]

dB̄H
t . (4.13)

Then, combining (4.12) with (4.13) yields the following

zt = −ρT
ρt

ÊQ [DH
t ξ|Ft

]
= −σte

∫ T
t βsdsÊQ [h′(ηT )|Ft

]
.

Similar to (4.10) and (4.11), we obtain

DH
u zt = −σuσte

∫ T
t βsdsP‖σ‖2T−‖σ‖

2
t
h′′
(
η0 +

∫ T

0
bsds−

∫ T

t
σsγsds+

∫ t

0
σsdB

H
s

)
, (4.14)

and

c̃2ϑ1(t)σ2
t ≤ gzt ≤ C̃2ϑ2(t)σ2

t . (4.15)

Finally, applying Proposition 2.1 to (4.11) and (4.15) respectively, we end up with the
desired results and the proof is complete. �

Remark 4.3 We can alternatively derive (4.9) in the above proof, by the following

DH
u

(
ÊQ[h(ηT )|Ft]

)
= ÊQ[DH

u h(ηT )|Ft] = σuI[0,t](u)ÊQ[h′(ηT )|Ft]

= σuI[0,t](u)P‖σ‖2T−‖σ‖
2
t
h′
(
η0 +

∫ T

0
bsds−

∫ T

t
σsγsds+

∫ t

0
σsdB

H
s

)
.

where the last equality is similar to (4.8).

In view of the proof of Theorem 4.2, one can derive the following tail estimates for the
probability laws of yt and zt.

Corollary 4.4 Suppose (H2). Then there hold, for all x > 0,

P(yt − Eyt ≥ x) ≤ exp

(
− x2

2C2ϑ2(t)

)
, P(yt − Eyt ≤ −x) ≤ exp

(
− x2

2C2ϑ2(t)

)
, (4.16)

and

P(zt − Ezt ≥ x) ≤ exp

(
− x2

2C̃2ϑ2(t)σ2
t

)
, P(zt − Ezt ≤ −x) ≤ exp

(
− x2

2C̃2ϑ2(t)σ2
t

)
. (4.17)

Proof. Noticing first that gF (x) = gF−EF (x). Then the relation (4.16) follows by (4.11)
and Proposition 2.2 with a1 = 0 and a2 = C2ϑ2(t). (4.17) can be verified similarly. �
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5 BSDEs driven by Gaussian processes

In this section, we consider the following BSDE driven by a centered Gaussian process
{Xt}t∈[0,T ] {

dyt = −f(t,Xt, yt, zt)dV (t) + ztd
�Xt,

yT = h(XT ),
(5.1)

where VarXt = V (t), t ∈ [0, T ], is a strictly increasing, continuous function with V (0) = 0,
the stochastic integral is the Wick-Itô integral defined by the S-transformation and the
Wick product.

As stated in [5, Section 4.4], BSDE (5.1) covers a wide class of Gaussian processes as
driving processes including fractional Brownian motion with H ∈ (0, 1) and fractional
Wiener integral and so on, wherein a comparison with BSDE (3.1) is also given. Moreover,
we notice that Bender [5] shows the existence and uniqueness results for BSDE (5.1) under
the Lipschitz or even superquadratic growth conditions via the transfer theorem which
can transfer the concerned problems to an auxiliary BSDE driven by a Brownian motion.
Recall that the auxiliary BSDE is of the following form{

dȳt = −f(U(t), W̄t, ȳt, z̄t)dt+ z̄tdW̄t,
ȳV (T ) = h(W̄V (T )),

(5.2)

where {W̄t}t∈[0,V (T )] is a standard Brownian motion, U(t), t ∈ [0, V (T )], is the inverse of V
defined as

U(t) := inf{s ≥ 0 : V (s) ≥ t}, t ∈ [0, V (T )].

In this part, we aim to investigate the existence of densities and then derive their Gaus-
sian estimates for the marginal laws of the solution (y, z) to BSDE (5.1). For this, we start
by adopting the following set of conditions from [1, 5]: (H3)

(i) h ∈ C2
b (R) and inf

x∈R
h′′(x) > 0;

(ii) E
∫ T

0 |f(t,Xt, 0, 0)|2dV (t) <∞, and for each t ∈ [0, T ], f(t, ·, ·, ·) ∈ C2
b (R3) with all positive

derivatives.

We state our final main result as follows

Theorem 5.1 Assume (H3) holds true. Then, for all t ∈ [0, T ],

(1) yt has a density ρyt , and there exist two strictly positive constants c1 < c2 such that for
any z ∈ R,

E|yt − Eyt|
c2V (t)

exp

(
−(z − Eyt)2

c1V (t)

)
≤ ρyt(z)

≤ E|yt − Eyt|
c1V (t)

exp

(
−(z − Eyt)2

c2V (t)

)
, (5.3)
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(2) if the generator f(t, x, y, z) has a linear dependence on the z component, zt possesses a
density ρzt , and furthermore if f only depends on the components (t, y), there exist two
strictly positive constants c3 < c4 such that for any z ∈ R,

E|zt − Ezt|
c4V (t)

exp

(
−(z − Ezt)2

c3V (t)

)
≤ ρzt(z)

≤ E|zt − Ezt|
c3V (t)

exp

(
−(z − Ezt)2

c4V (t)

)
. (5.4)

Proof. By (H3), it follows by [12, Theorem 4.1] that the auxiliary BSDE (5.2) admits a
unique solution (ȳ, z̄) which has the following representation

ȳt = φ(t, W̄t), z̄t = ψ(t, W̄t), t ∈ [0, V (T )], (5.5)

where both φ, ψ : [0, V (T )]× R→ R are deterministic functions.
Then, in light of [5, Theorem 4.2 and Theorem 4.4] or the transfer theorem asserted in
[5, Theorem 3.1], we conclude that BSDE (5.2) has a unique solution (y, z) which can be
written as

yt = φ(V (t), Xt), zt = ψ(V (t), Xt), t ∈ [0, T ]. (5.6)

Therefore, taking into account the fact that VarXt = V (t) we deduce that the law of yt
(resp. zt) is the same as that of ȳV (t) (resp. z̄V (t)).

On the other hand, by [1, Theorem 3.3] it follows that ȳV (t) possesses a density ρȳV (t)
,

and moreover there exist some strictly positive constants c1 < c2 such that for all z ∈ R,

E|ȳV (t) − EȳV (t)|
c2V (t)

exp

(
−

(z − EȳV (t))
2

c1V (t)

)
≤ ρȳV (t)

(z)

≤
E|ȳV (t) − EȳV (t)|

c1V (t)
exp

(
−

(z − EȳV (t))
2

c2V (t)

)
, (5.7)

which then yields our first claim.
As for zt, provided that the generator f has a linear dependence on the z component, owing
to [1, Theorem 4.3], we conclude that z̄V (t) has a law which is absolutely continuous with
respect to the Lebesgue measure. Moreover, if f depends only on (t, y) components, then
applying [1, Theorem 4.6], we obtain the following Gaussian bounds for the density of z̄V (t)

E|z̄V (t) − Ez̄V (t)|
c4V (t)

exp

(
−

(z − Ez̄V (t))
2

c3V (t)

)
≤ ρz̄V (t)

(z)

≤
E|z̄V (t) − Ez̄V (t)|

c3V (t)
exp

(
−

(z − Ez̄V (t))
2

c4V (t)

)
,(5.8)

where c3 < c4 are two strictly positive constants.
We therefore obtain the other assertion. �

Remark 5.2 (i) If we choose Brownian motion as the driving Gaussian process, namely Xt =

B
1
2 , then our estimates (5.3) and (5.4) coincide with the estimates of [1, Theorem 3.3 and
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Theorem 4.6]. Note that the equation (5.1) that we considered is more general than that of [1]
since we allow X to be a wide class of Gaussian processes which includes fractional Brownian
motion with arbitrary H ∈ (0, 1) as special case. Therefore, the results stated in Theorem 5.1
cover that of [1].

(ii) If we take Xt = ηt, then the equation (5.1) is of the same form as (3.1) and (4.1), which
we considered in Section 3 and 4, respectively. By simple calculus we know that the result
of Theorem 3.1 combined with Remark 3.2 and Corollary 3.3 is more elaborate than that of
Theorem 5.1. Similarly, we also note that the estimates in Theorem 4.2 are better than the
estimates (5.3) and (5.4) in Theorem 5.1. Indeed, the derivation of Theorem 5.1 is mainly based
on the transfer theorem which is a time change type transformation allowing us to represent the
equation (5.1) in terms of a class of BSDE driven by Brownian motion, while the arguments
used in Section 3 and 4 focus on the structures of the original equations.
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